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ABSTRACT 

 

 Furanics fraction has been a major obstacle that impedes the feasibility of practical 

upgrading of bio-oil. The high reactivity of species existing in the mixture favors humins 

formation via polymerization. This leads to rapid catalyst deactivation and carbon loss. 

Via the Piancatelli ring rearrangement, furfural, one of the most abundant species found 

in the second-stage of biomass torrefraction, can be stabilized into cyclopentanone (CPO) 

which can be used as a potential building block for C-C coupling reaction. 

This work covers two main sections. In the first part, different propitious upgrading 

strategies, focusing on using CPO as the building block for C-C coupling reactions 

(hydroxylalkylation, aldol condensation and alkylation) with other available oxygenates 

existing in a bio-oil mixture have been investigated. For example, via aldol 

condensation/hydroxyalkylation pathway and a following hydrodeoxygenation step, a 

mixture of C7-C16 saturated hydrocarbons, which are in the gasoline/diesel range can be 

effectively produced. Over 90% efficiency of the whole catalytic upgrading process 

starting from CPO has been demonstrated, which highlights the potential of this strategy 

for future biofuel applications. Along with the practical investigations, fundamental 

studies have also been conducted to give some extensive insights into the reaction 

mechanisms, active site requirements as well as the effects of water, a commonly found 

impurity in biomass conversion, to the catalytic activity and the stability of the catalysts.  

The second section mainly focuses on designing suitable solid acid catalysts that 

could be applied for the bio-oil upgrading processes. The catalysts have to satisfy several 
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requirements including high activity, stability and resistance against deactivation in harsh 

chemical environments (high temperature, high water content, polar solvent, etc.). The 

results have shown that zeolites and mesoporous silica are susceptible to the water/polar 

species attack, caused by the presence of surface silanols. This results in rapid 

deactivation and structure collapse. The effective way to improve hydrothermal stability 

of the catalysts is to reduce the density of surface silanols via functionalization with 

organic-functional groups which could increases the surface hydrophobicity and protect 

the surface from water



1 

  

Chapter 1 - Introduction and Research Direction 

 

1.1  Bio-oil Upgrading to Alternative Transportation Fuels 

Recently, the separated upgrading of vapors and liquids obtained from fractionation 

of bio-oil via step-wise condensation of pyrolysis vapors [1, 2] as well as multistage 

pyrolysis process [3-6] have been investigated by our group. The core of this approach is 

to carry out the sequence of thermal treatments by heating the biomass at increasing 

temperatures so that the bio-oil is fractionated into different segments containing light 

oxygenates, sugar-derived, and phenolics-derived components [3-6]. Accordingly, by 

segregating each specific group of functional molecules into each fraction, a combined 

catalyst development and upgrading strategy could be developed more selectively and 

effectively to be able to exploit the different chemistries of each fraction and optimize the 

upgrading instead of a single hydro-treating step for the full bio-oil [7-9].  

The fraction of light-oxygenates is rich in acetic acid, acetol, and acetaldehyde. We 

have previously proposed [8] that they could undergo ketonization to produce acetone, 

which in turn could be coupled with furfural, an abundant component in the sugar-derived 

stream, to produce C8-C13 oxygenates over basic catalysts [10, 11]. Alternatively, instead 

of directly condensing with acetone, furfural can also be pre-stabilized into key 

intermediates to diminish carbon losses and humins formation, a major cause of catalyst 

deactivation. The intermediate products are still functional, so they can be further 

upgraded (C-C bond-chain enlarged) to a wide range of desirable products.  The phenolics 

fraction can also be used to effectively incorporate into the fuel range those oxygenates, 
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which are too small to be directly hydrotreated. That is, converting C2-C4 oxygenates to 

alcohols greatly facilitates their incorporation via alkylation. For example, iso-propanol, 

obtained from the hydrogenation of acetone, can produce hydrocarbons in a molecular 

weight range suitable for the gasoline/diesel pool 

Hydrogenation-decarbonylation of furfural to furan compounds (i.e., methyl furan, 

dimethyl furan) [12, 13], or oxidation of furfural to carboxylic acids [14, 15] are 

outstanding examples of furfural conversion into more stable forms, which have been 

recently reported in the literature. In the so-called Sylvan process, methyl furan is 

condensed with different types of carbonyl compounds, such as acetone, butanal, or 

furfural [16, 17] to elongate the carbon chain and bring the products to the fuel range. 

Dimethyl furan can also be coupled with ethylene via Diels-Alder reaction to produce 

valuable aromatics such as p-xylene [18]. Specific strategies for upgrading biomass-

derived furanics via C-C coupling reaction have been analyzed in our recent review [19].  

Hronec et al. [20, 21] have shown that the Piancatelli ring rearrangement in reducing 

condition is also a promising route to stabilize furfural into cyclopentanone. This is a 

remarkable pathway, because the O heteroatom is removed from the ring, producing 

CPO, a useful chemical and potential building block for C-C coupling reactions [20]. 

Although the Piancatelli ring rearrangement of furfuryl alcohol readily occurs in hot 

liquid water without the need of an additional catalyst, hydrogenation is required to first 

hydrogenate the CO group in furfural, as well as the resulting C=C double bond after the 

ring closure to obtain CPO.  For this reaction, noble metal catalysts such as Pt, Pd, Ru, Ir 

as well as inexpensive metals such as Ni, Cu have been used in the conversion of furfural 

in the aqueous phase under H2 pressure [22, 23]. For example, over 75% yield of CPO 
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has been reported over Pt/C or Ni-CNTs [24, 25]. High selectivity toward cyclopentanone 

is a definite techno-economic advantage of this approach compared to other upgrading 

strategies. For the Piancatelli rearrangement, the presence of liquid water plays a crucial 

role in the reaction [21, 24, 26]. Moreover, the presence of acetic acid in the reaction 

mixture provides a positive effect on the yield of the desired products [20]. That is, 

components that are naturally present in biomass-derived streams, i.e., aqueous solutions 

with high acidity, favor the occurrence of this reaction. CPO is not only a very convenient 

building block for carbon retention in the liquid fuel range, but reaching high conversions 

of furanics to this single molecule greatly reduces catalyst deactivation by avoiding the 

typical resinification of furfurals to humins. From all of this, we propose that the path of 

furanics to cyclopentanone is a very effective strategy for upgrading furfural-rich streams 

[19].  

In this work, we explore the different C-C bond forming reactions that can be utilized 

to optimize the upgrading process, maximizing the yield in the desirable molecular weight 

range, for the specific production of gasoline, diesel, or chemicals. These C-C coupling 

reactions include aldol condensation, hydroxyalkylation and alkylation (Figure 1.1). The 

ultimate goal is to critically evaluate the different ideas about the feasibility for each of 

these reactions. Not least important, reaction mechanisms, structure/function 

relationships as well as catalytic materials design were also investigated with focus on 

the topological, chemical requirements of the active sites (acid, base, acid base pairs, both 

of Brønsted and Lewis types) and their stability when exposed to harsh chemical 

environments normally found in the upgrading processes. 
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Figure 1.1 Upgrading strategy based on using cyclopentanone (CPO) as the building 
block for C-C coupling reactions 
 

1.2 Research Direction 

The thesis will cover five main parts, focusing on evaluating the feasibility of the 

upgrading strategies with different chemistries and designing active/stable catalysts for 

the upgrading processes:  

(i) Conversion of furfural to cyclopentanone via Piancatelli ring rearrangement over 

Pd-Fe/SiO2 catalysts; 

(ii) Aldol condensation/hydroxyalkylation of cyclopentanone and m-cresol over solid 

acid catalysts. The effects of catalyst acidity and topology to catalytic activity and 

selectivity were investigated;  

(iii) Alkylation of cyclopentanol, a hydrogenation product of cyclopentanone, with m-

cresol over functionalized mesoporous silicas (MCM-41 and SBA-15). The 

catalysts stability and the nature of the leaching phenomenon on functionalized 
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mesoporous silicas catalysts were also investigated. A functionalization method 

has been proposed to produce active and stable solid acid catalysts (zeolites, 

mesoporous silica) for the upgrading process in harsh chemical environments 

(high temperature, high water content, polar solvent, etc.); 

(iv) Self- and cross-aldol condensation of cyclopentanone and acetone over ZSM-5 

zeolites. Mechanistic and kinetic studies were carried out to understand reaction 

mechanisms, the active sites and the factors that govern the catalytic activity and 

selectivity of cross- and self- aldol condensation; 

(v) The effects of water on the catalyst stability and activity. Water has shown to yield 

both negative and positive effects on the catalytic performance. Each case will be 

carefully examined.  

 

 

 

 

 

 

 

 

 

 



6 

 

Chapter 2 - Conversion of Furfural to Cyclopentanone in 

Condensed Aqueous Phase 

 

2.1 Introduction and Literature Review 

2.1.1 Introduction 

The fast polymerization of furfural, one of the abundant species in the second stage 

of torrefraction, to humins results in a rapid deactivation of heterogeneous catalysts and 

low carbon balance of the upgrading process. Since the humins formation occurs 

spontaneously even at low temperature and in the absence of catalysts, pre-stabilization 

of furfural to other stable molecules seems to be more economically and technologically 

feasible. Piancatelli et al. [26] and later Hronec et al. [27] have shown that furfural could 

be effectively converted to cyclopentanone (CPO), a compound that is stable even in the 

presence of hot water. Additionally, the carbonyl functionality of CPO allows various C-

C coupling chemistries with other oxygenates that exist in other streams of torrefraction. 

The proposed strategy is promising enough that encourages us to carry out further 

investigation. 

2.1.2 Literature review - Reaction Mechanism and Active Site Requirements 

The ring rearrangement reaction transforms furanic species to more stable C5 ketones 

through the creation of a C-C bond. This reaction was initially reported by Piancatelli et 

al. upon observing the ring rearrangement of 2-furylcarbinol into a 4-hydroxycyclopent-

2-enone in an acidic aqueous system [26], and has subsequently been referred to as a 

Piancatelli rearrangement. This rearrangement has been the subject of numerous 
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additional studies with 2-furylcarbinol [28-32], furfuryl alcohol [27, 33] and a variety of 

substituted furanic compounds [34].  

The ring rearrangement of furfural requires an initial hydrogenation step to form 

furfuryl alcohol. Therefore, the reaction pathway for the ring rearrangement of furfural 

includes two steps: hydrogenation of furfural to furfuryl alcohol, which is typically 

approached through the use of H2 over metal catalysts [21, 24], and the acid catalyzed 

ring rearrangement of the alcohol to cyclopentanone in the presence of water [26, 28-31, 

35, 36]. The protonation of the OH group on furfuryl alcohol to form a carbocation has 

been firstly proposed by Piancatelli as the initiation step for the ring rearrangement 

reaction [26, 31], resulting in the formation of species A. The unstable nature of 

protonated H2O promotes the decomposition of A to B, followed by the nucleophilic 

attack of water onto the ring to form intermediate C shown in Scheme 2.1 [26]. 

Intermediate C consecutively undergoes ring opening to generate species D, which can 

undergo 4π-conrotatory cyclization to facilitate the ring closure. This 4π-conrotatory 

cyclization is commonly referred to as Nazarov cyclization [26, 37-40]. The successive 

deprotonation of this species yields 4-hydroxy-2-cyclopentenone (4-HCP). In the 

presence of a metal catalysts and H2, the intermediate 4-HCP could undergo 

hydrogenation to form 2-cyclopentene (2-PEN) and sequential cyclopentanone (CPO) or 

cyclopentanol (CPOL) (Scheme 2.1).  
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Scheme 2. 1. Mechanism of the furfural conversion to cyclopentanone. Adopted from 
Ref [26] 

It is generally accepted that water plays an essential role in the formation of CPO 

since several literature sources report the necessity of aqueous media as a prerequisite for 

the ring rearrangement reaction [21, 24, 41]. In the presence of organic solvents, typical 

hydrogenation products such as tetrahydrofurfuryl alcohol (THFA), 2-methyl 

tetrahydrofuran (MTHF), etc. were obtained [21, 24, 41, 42]. It was proposed that water 

was responsible for initiating the opening and closure of the furan ring via nucleophile 

attack by H2O in the 5-position of the furan ring [27] as well as affecting the adsorption 

of reactants and intermediate species on the metal surface [24]. By using 97% 18O 

abundant water as a solvent, Jie Xu et al. observed that 95% of 18O existing in CPO which 

indicates the incorporation of oxygen from water into the keton group of CPO [21]. 

As can be seen from Scheme 2.1, the proposed mechanism is related to the formation 

of 4-hydroxy-2-cyclopentenone (4-HCP) as the intermediate. The 4-HCP and its isomers 

have been synthesized from the rearrangement of furfuryl alcohol and furan compounds 
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under acidic conditions [43-47]. However, it is interesting to note that in the aqueous 

medium, furfuryl alcohol can spontaneously convert to 4-HCP at temperatures above 

110oC in the absence of H2 pressure or catalysts [21, 24, 27]. It is believed that the ring 

rearrangement reaction is catalyzed by the hydronium ions generated from the auto-

dissociation of water [48]. The two steps in the furfural to CPO pathway require different 

types of catalysts including the metal catalysts for the typical hydrogenation and acid 

catalysts or hydronium ions formed from the dissociation of water for the ring 

rearrangement of furfuryl alcohol. Though chemists proposed many effective Brønsted 

and Lewis acid catalysts for the Piancatelli rearrangement [28-30] as early as 1978, the 

recent discovery of spontaneous ring rearrangement of furfuryl alcohol to CPO in water 

attracts more engineering attention due to the simplicity of the process.  

The concentration of hydronium ions in water depends on the temperature and the 

pH. An appropriate addition of weak acids such as acetic acid has a positive effect on the 

conversion of furfuryl alcohol to CPO over a Ni-based catalyst while the addition of basic 

sodium hydroxide shows the opposite trend [27]. Similarly, results over Pt and Pd-C 

catalysts showed a similar correlation [21] in which the addition of weak acids such as 

acetic acid, NaH2PO4 preferred the CPO formation while the addition of Na2CO3, 

Na2HPO4 favored the tetrahydrofurfuryl alcohol formation as depicted in Scheme 2.2. It 

has been typically believed that the role of acidic medium is to enhance the ratio between 

the rate of ring rearrangement and that of typical hydrogenation. However, the addition 

of strong inorganic acids such as H3PO4, H2SO4 over Pt, Pd-C have been reported to not 

favor the formation of CPO, but instead lead to rapid polymerization and consequently 

losses in the carbon balance [24].  
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Scheme 2. 2. Reaction pathway of furfural hydrogenation. Reproduced with permission 
from Ref [21] 

The catalysts for hydrogenation have been well developed, ranging from noble metals 

such as Pt, Pd, Ru, Ir, to non-noble ones such as Ni, Cu, etc, from mono to bimetallic and 

alloy systems [22, 23, 49, 50]. The evolution of typical hydrogenation reactions competes 

with the ring arrangement reaction, which has a significant impact on the overall product 

distribution. This will obviously also change with the selectivity of a particular metal 

catalyst for hydrogentation of the aldehyde C=O vs. the selectivity for hydrogenation of 

the ring, as well as the rate of C-O hydrogenolysis. Hronec et al. [27] demonstrated this 

balance in competing rates by using partial pressures of hydrogen in the range of 0.8MPa-

2.5MPa over commercial nickel basedcatalyst at 160oC, demonstrating high selectivity 

to CPO with the yields higher than 90 mol% while the yield of THFA was below 7%. 

The nature of the interaction of the C=O bond with the metal surface plays an important 

role in this selectivity as well.  For example, the adsorption of furfural on Cu favors a η1-

(O) aldehyde species [51, 52] due to the interaction between the electron lone pair of 

oxygen. In the case of noble metals such as Pd, Pt, however, the adsorbed furfural 

molecule lays flat on catalyst surface and the π electron of the furan ring, and the lone 
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pair electron of the carbonyl oxygen interacts strongly with the surface [53-56]. This will 

inherently influence the rates of THFA formation and the resulting product distribution. 

Therefore, the catalysts and reaction conditions should be chosen appropriately to 

maximize the yield and selectivity of ring rearrangement products.  

The acidity of support also influences the selectivity of ring rearrangement products 

(CPO+CPOL). For instance, the Pt over acidic alumina is less favorable for CPO+CPOL 

formation than that of neutral active carbon while in the case of basic MgO, the furfural 

alcohol was the dominant product [24]. Additionally, it was stated that the  acid–base  

properties  of  the  support  enhanced the  chemisorption  of  furfural  on  the  support, 

which favored  undesired  reactions such as condensation  and  oligomerization of  

furfural and furfuryl alcohol, resulting in low mass balance. The summary of the catalysts 

for the conversion of furfural to CPO is presented in Table 2.1. 

Based on the literature review, it could be seen that the control of hydrogenation 

activity plays an essential role in the selective production of CPO. The competition 

between ring rearrangement and normal hydrogenation determines the overall product 

distribution. Our previous study has demonstrated that when acetone and m-cresol were 

co-fed into a single reactor, bimetallic Pd-Fe catalysts exhibited enhanced selectivity for 

acetone hydrogenation while leaving m-cresol unreacted [8]. That is, by a suitable 

combination of metals, it is possible to enhance hydrogenation of the carbonyl groups 

(the initial step of the ring rearrangement mechanism) rather than saturation of the 

aromatic rings (normal hydrogenation). In other words, the hydrogenation activity of Pd 

could be regulated by incorporating Fe. This promising result has pointed us to use 
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bimetallic catalysts (Pd-Fe) to selectively produce cyclopentanone from sugar-rich 

streams.  

Table 2. 1 Catalytic conversion of furfural to cyclopentanone on solid catalysts * [23] 

Catalyst (g) Reaction conditions 
Conv.,

% 

Yield, % 
Ref 

CPO 
CPO 

+CPOL 
THa 

1.4% Pt-C (0.18) 160oC, 80 bar H2, 0.5 h 99.6 43.9 60.2 7.9 [24] 
1% Pt-Al2O3 (0.25) 160oC, 80 bar H2, 0.5 h 97.7 44.7 48.3 5.8  [24] 

1.4%Pt  + 1.4%Ru-C (0.09) 160oC, 80 bar H2, 0.5h 100 3.7 46.4 19.6 [24] 
1% Pt-MgO (0.25) 160oC, 80 bar H2, 0.5h 97.9 9.1 10 3.2 [24] 

5%Pt-C (0.05) 160oC, 30 bar H2, 0.5h 100 76. 5 81.3 3.8 [24] 
5%Pt-C (0.1) 175oC, 80 bar H2, 0.5h 100 40.2 76.4 14.7 [24] 
5%Pd-C (0.1) 160oC, 30 bar H2, 1h 97.8 67 68.4 10.5 [27] 
5%Ru-C (0.1) 175oC, 80 bar H2, 0.5h 98.7 56.7 66.3 12.9 [24] 

NiSAT® 320 RS (0.1) 175oC, 80 bar H2, 0.5 h 98.3 61.0 78.3 15.7 [24] 
G-134 A (0.1) 175oC, 80 bar H2, 0.5 h 100 57.3 64.2 14.2 [24] 

G-134 A (0.04)b 160oC, 8 bar H2, 1h 100 88.5 90.1 2.13 [27] 
5%Ru-C (0.1) 160oC, 30 bar H2, 0.5h 60.1 12.7 13.3 1.69 [41] 
5%Ru-C (0.1) 175oC, 80 bar H2, 1h 100 57.3 66.8 12.6 [41] 

CoMnCr (0.15) 175oC, 80 bar H2, 0.5 h 100 7.6 24 17.3 [41] 
Raney Ni Actimet C (0.2) 160oC, 30 bar H2, 1 h 100 17.5 57.5 34.7 [41] 

5%Ru-C (0.4) 165oC, 25 bar H2, 5h 100 10.6 27 44.7 [42] 
5%Ru-C (0.4) 165oC, 25 bar H2, 5h c 100 1.1 48.3 23.7 [42] 

NiCu-50-SBA-15 (0.2) 160oC, 40 bar H2, 4 h ~100 ~62 65 17 [21] 
10 wt% Ni-CNTs (1.5) 140oC, 50 bar H2, 10h 94 77 79 - [25] 
30 wt% Ni-CNTs (1.5) 140oC, 50 bar H2, 10h 95 5 88.6 - [25] 

Cu-Ni-Al hydrotalcite (1.5) 
140oC, 40 bar H2, 8h 
Cu-Ni-Al -1 : 14 : 5 

100 95.8 98.8 - [57] 

Cu-SBA-15 (0.2) 150oC, 40 bar H2, 6h 89.6 10.5 24.2 0.2 [58] 
Cu-SiO2 (0.2) 150oC, 40 bar H2, 6h 71.9 7.31 0 0.3  [58] 
CuZnAl (0.2) 150oC, 40 bar H2, 6h 97.9 60.3 62.8 0  [58] 

Au-Nb2O5
d (0.01) 140oC, 80 bar H2, 12h >99 86e - - [59] 

Au-Al2O3
d (0.01) 140oC, 80 bar H2, 12h >99 72e - -  [59] 

Pt, Pd, Ru-Nb2O5
d (0.01) 140oC, 80 bar H2, 12h >99 28-66e - -  [59] 

aYield of typical hydrogenation products including THFAL, 2-MeF, 2-MeTHF, etc; bfeed furfuryl alcohol, 
0.05g acetic acid as additive *: water solvent in most cases except cMTHF-water solvent dFeed 5-
hydroxymethyl furfural eYield of 3-hydroxymethylcyclopentanone 

 

2.2 Experimental Methods 

2.2.1 Catalyst synthesis 

Pd-Fe bimetallic catalysts were prepared by conventional incipient wetness 

impregnation of a solution of Pd(NO3).xH2O (Sigma Aldrich) and FeCl3.xH2O (Sigma 
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Aldrich) in HCl onto SiO2 support (HI-SI 915) at room temperature. The loading of Pd-

Fe were chosen to be 1% and 2% with an equivalent molar ratio of Pd and Fe. The volume 

of the solution was chosen as liquid/solid ratio of 1 ml/g. After impregnation, the catalyst 

was dried overnight in a vacuum oven at 100°C (12 h). The dry catalyst was calcinated 

at 500°C under air flow 100 ml/min for 5 h. 

2.2.2 Catalyst characterization 

The metal catalysts were examined by transmission electron microscopy (TEM) in a 

JEOL JEM-2100 Scanning Transmission Electron Microscope, operating at 200 kV with 

the images recorded on a CCD camera. The samples were prepared by suspending 2-5 

mg of sample in 10 mL of 2-propanol, followed by deposition over a Cu grid coated with 

carbon and dried at 80°C. The catalysts were pre-reduced in 5%H2/He flow at 150oC 

before taking TEM images. 

2.2.3 Catalytic reaction measurements 

The liquid-phase catalytic conversion of furfural (99%-Sigma Aldrich) was studied 

in a 300-mL batch reactor. The reaction conditions were at 150°C and 200-600 psi of H2 

pressure. In a typical experiment, 150 mg of catalyst was mixed with 90 ml of water in a 

stainless steel vessel. 2ml of furfural in 28ml of water was mixed in a vial and placed 

inside a feed cylinder. Before reaction, the reactor was purged several times with N2 and 

H2 to remove air in the system. The reduction process was conducted at 250°C, 300pisa 

of H2 for 6 h to activate the metal catalysts. Afterward, the sytem was cooled down to 

room temperature and the pressure was released. The furfural conversion reaction was 

started by heating the reactor to 150oC. The feed was injected into the reactor after the 
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temperature reached 147oC. The reaction time began being counted after 5 mins for 

temperature stabilization.  

The product mixture was analyzed by Shimadzu QP2010S gas chromatograph/mass 

spectrometer (GC-MS) and quantified by GC-FID Agilent 6890 equipped with a flame 

ionization detector for quantification. Both GC’s were equipped with a Zebron ZB-1701 

column with dimensions of 60m x 0.25 mm x 0.25 μm. 

The conversion (X), yield (Yi) and selectivity (Si) were calculated as: 

; ;FA in FA out i i
FA i i

FA in FA in i

C C C C
X Y S

C C C
 

 


  

  

The carbon balance for the furfural conversion (Cbl) was calculated as: 

FA out i

bl

FA in

C C
C

C









 

where CFA(in, out): Concentration of furfural before and after reaction; mM 

Ci: Concentration of each product; mM 

 

2.3 Results and Discussions 

2.3.1 TEM images of Pd-Fe catalysts 

The TEM images of 1%Pd, 1%Pd-Fe and 2%Pd-Fe are shown in Figure 2.1. As 

illustrated, the metal species could be well-distributed over the silica support. High 

dispersion of metal species could be detected in all of the studied samples (Table 2.2). 

The average particle sizes of 1%Pd, 1%Pd-Fe and 2%Pd-Fe are 2.67, 1.38, 1.63nm, 

respectively. The bimetallic catalysts have lower particle sizes, indicating that the 
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addition of Fe assists to reduce the particle size. Accordingly, the dispersion of the 

catalysts followed the order: %1Pd-Fe (77%) > 2%Pd-Fe (65%) >1%Pd (40%). It could 

be seen that the higher loading of metal yielded a larger particle size and the lower 

dispersion (1%Pd-Fe and 2%Pd-Fe). 

  

 

Figure 2. 1 TEM images of a-b) 1%Pd/SiO2 c) 1%Pd-Fe d) 2%Pd-Fe/SiO2. All of the 
catalysts were pre-reduced in 5%H2/He flow at 150oC  

 

 

 

a) b) 

Magnification 300 000 c) d) 
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Table 2. 2 Average particle sizes and dispersion of Pd and Pd-Fe catalysts 

Samples 
Particle size, 

nm 
Dispersion, % 

1%Pd 2.67 40 

1%Pd-Fe 1.38 77 

2%Pd-Fe 1.63 65 

 
2.3.2 Catalytic activity of Pd-Fe catalysts 

The activity and selectivity of the mono- and bi- metallic catalysts are shown in 

Figure 2.2. There are two main products: ring-rearrangement (Cyclopentanone-CPO) and 

normal hydrogenated products (Furfuryl Alcohol-FOL, Tetrahydrofurfuryl Alcohol-

THFOL and Tetrahydrofurfural-THFA). High conversion of Furfural (FA) and selectivity 

to CPO could be obtained on 1%Pd catalyst (71% and 71%, respectively) (Figure 2.2). 

Pd-Fe/SiO2 catalysts exhibit significantly higher selectivity of CPO, reaching up to over 

90%. It is obvious that the incorporation of Fe assists to control the hydrogenation activity 

of Pd that would drive the reaction toward the ring rearrangement reaction. As can be 

seen from Table 2.3, a higher H2 pressure favors the formation of the normal 

hydrogenated products (THFOL and THFAL), resulting in a decrease of CPO selectivity. 

Table 2. 3 Furfural hydrogenation at different H2 pressures. Reaction condition: 2%Pd-
Fe/SiO2 catalyst, 150oC, 6 h, 200-600 psia H2 pressure, 0.2M furfural in water solvent. 
FOL, THFOL and THFA are furfuryl alcohol, tetrahydrofurfuryl alcohol and tetrahydro 
furfural, respectively. 
 

H2 
Pressure 

(psia) 
Conversion 

Selectivity 

FOL THFOL Cyclopentanone THFAL 

200 49% 3% 2% 95% 0% 

300 79% 4% 2% 93% 0% 

600 93% 2% 8% 88% 2% 
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Figure 2. 2 Conversion of furfural (FA) and Yields of CPO and other hydrogenated 
products including furfuryl alcohol (FOL), tetrahydrofurfuryl alcohol (THFOL) and 
tetrahydrofurfural (THFA). Reaction conditions: 2%Pd-Fe/SiO2 (1:1 molar ratio), 150oC, 
6 h, 300 psia H2 pressure, 0.2M furfural in water solvent.  
 

 

Figure 2. 3 The conversion of FA and the yields of different hydrogenated products over 
time 

As the reaction proceeded over time, the yield of FOL increased then decreased while 

the CPO yield kept increasing after 30 mins of reaction (Figure 2.3). Similar trend could 

be observed in the selectivity of those products. The results indicate that FOL is the 
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intermediate product of the FA ring rearrangement to CPO, which agrees well with 

reported studies in the literature [26] (Scheme 2.1). The furfuryl alcohol then undergoes 

the ring rearrangement to produce 4-Hydroxy-2-Cyclopentanone (4-HCP) as an 

intermediate. This intermediate is later dehydrated/ hydrogenated to yield CPO. 

In the absence of a catalyst, under either H2 or N2 pressure, 4-HCP could also be 

formed (Table 2.4). Another intermediate product detected was 2-Cyclohexene (2-CP) 

which possibly is the dehydrated and partially hydrogenated product of 4-HCP. This 

finding agrees with the literature which states that the ring rearrangement reaction is 

catalyzed by the hydronium ions generated from the auto-dissociation of water at the 

temperature above 110oC  [21, 24, 27, 48]. Besides temperature, the concentration of 

hydronium ions in water also depends on the pH of the solution. It has been reported that 

an acidic solution facilitates the formation of hydronium ions. As shown in Table 2.4, the 

use of increasing acidic solid catalysts enhanced the total yield of the ring rearrangement 

products (2-CP + 4-HCP). An increase of 4-HCP selectivity with increasing acidity of the 

solution suggests that perhaps, the pre-hydrogenation of 4-HCP to 3-Hydroxy-

cyclopantanone is required prior to the dehydration which could be a slow step in the 

absence of H2 pressure. When a metal catalyst with H2 pressure is applied, the total 

formation rate of the ring rearrangement intermediates (2-CP+4-HCP) controls the 

overall rate of CPO formation. 
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Table 2. 4 The conversion of furfuryl alcohol to the intermediate products over different 
catalysts. Reaction condition: 150oC, 6 h, 300 psia N2 pressure, 0.2M furfuryl alcohol in 
water solvent.  
 

Catalysts pH of water 
Surface area 

(m2/g) 

Conc., mM 

2-CP 4-HCP Sum 

SiO
2
 7 215 39.5 73.9 113.4 

Activated Carbon 6-8 600 12.9 106.0 118.9 

Al
2
O

3
 4.2-4.6 200 8.9 111.6 120.5 

No catalyst- 300 psia H2 
pressure 

- - 2.6 101.2 103.8 

No catalyst- 300 psia N2 
pressure 

- - 0.9 103.6 104.5 

 

2.4 Conclusion 

Since the typical hydrogenation always occurs in parallel with the Piancatelli 

rearrangement, the reaction condition that favors the hydrogenation of C=C-C=O or 

hydrogenolysis such as the utilization of highly active metal catalysts and high H2 

pressure would strongly enhance the formation of the byproducts such as 

tetrahydrofurfuryl alcohol (THFA) or 2-methyl tetrahydrofuran (MTHF), methyl furan 

(2-MF) etc., leading to the decrease of ring rearrangement selectivity. Therefore, it is 

desirable to optimize the reaction condition as well as the catalysts so that it is sufficient 

for effectively converting furfural to CPO while harnessing excess hydrogenation acitivty 

which could drive the reaction toward typical hydrogenation. 

An excellent yield and high selectivity toward CPO could be achieved over 2%Pd-

Fe/SiO2 catalysts, reaching 93 % furfural conversion and 88% selectivity to 
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cyclopentanone at 600 psia H2 and 150oC. The rapid conversion of furfurals into 

cyclopentanone shows several benefits for the upgrading of biomass processes.  For 

instance, a) It is favored by the presence of water and acids prevalent in high content in 

real bio-oil streams; b) It results in excellent yields to cyclopentanone, reducing the 

concentration of other contaminants and thus lowering separation costs; c) 

Cyclopentanone is a very convenient building block for carbon retention in the liquid fuel 

range; d) It lessens catalyst deactivation by mitigating carbon losses caused by the rapid 

resinification of furfurals to humins. 
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Chapter 3 - Simultaneous Upgrading of Furanics and 

Phenolics via Hydroxyalkylation/Aldol condensation 

Reactions 

 

ABSTRACT 

The simultaneous conversion of cyclopentanone and m-cresol has been investigated 

on a series of solid acid catalysts. Both compounds are representative of biomass-derived 

streams. Cyclopentanone can be readily obtained from sugar-derived furfurals via 

Piancatelli rearrangement under reducing conditions. Cresol represents the family of 

phenolics, typically obtained from the depolymerization of lignin.  In the first biomass 

conversion strategy proposed here, furfural is converted in high yields and selectivity to 

cyclopentanone (CPO) over metal catalysts such as Pd-Fe/SiO2 catalyst at 600 psia H2 

and 150oC. Subsequently, CPO and cresol are further converted via acid-catalyzed 

hydroxyalkylation. This C-C coupling reaction may be used to generate products in the 

molecular weight range that is appropriate for transportation fuels. Since molecules 

beyond this range may be undesirable for fuel production, a catalyst with suitable porous 

structure may be advantageous for controlling the product distribution in the desirable 

range. In fact, when Amberlyst resins were used as a catalyst, C12-C24 products were 

obtained, whereas when zeolites with smaller pore sizes were used, they selectively 

produced C10 products. Alternatively, CPO can undergo the acid-catalyzed self-aldol 

condensation to form C10 bicyclic adducts. As an illustration of the potential of practical 

implementation of this strategy for biofuel production, the long chain oxygenates 
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obtained from hydroxyalkylation/aldol condensation were successfully upgraded via 

hydrodeoxygenation to a mixture of linear alkanes and saturated cyclic hydrocarbons, 

which in practice would be direct drop-in components for transportation fuels. Aqueous 

acidic environments, typically encountered during the liquid-phase upgrading of bio-oils 

would inhibit the efficiency of base-catalyzed process. Therefore, the proposed acid-

catalyzed upgrading strategy is advantageous in terms of process simplicity for biomass 

conversion. 
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3.1 Introduction and Literature Review 

3.1.1 Introduction 

Fossil sources exhibit undoubted technological and economical advantages for 

production of chemicals and transportation fuels. However, emission of greenhouse gases 

(CO2 and CH4) is an issue of critical concern regarding global warming and climate 

change. This concern has led to increased research efforts with the goal of 

commercializing fuels and chemicals from biomass sources that would greatly reduce the 

carbon footprint.  However, techno-economic evaluations indicate that immediate 

implementation is not possible. The great variety of oxygenated compounds with 

incompatible chemistries makes a single-stage upgrading practically impossible.  

Therefore, greater efforts are needed to help in the development of more efficient biomass 

upgrading technologies with a number of unit operations that make the process 

economically feasible. Although several strategies have been investigated to process 

vapors and liquids derived from biomass pyrolysis, finding efficient processes that can 

be techno-economically attractive has been challenging [60]. The direct catalytic 

hydrotreating of condensed bio-oil faces major problems [61, 62], including low yields 

of liquids in the fuel range and high hydrogen pressures, which complicates their 

integration with a pyrolysis system [63].  Incorporation of pre-hydrogenated bio-oils into 

conventional petroleum feedstocks in refinery operations, such as the fluidized catalytic 

cracking (FCC) and hydrotreating units [64, 65] have also shown technical impediments 

that may obstruct their implementation in commercial processes. Some important 

advances have been made in the upgrading of pyrolysis vapors that leads to enhanced 
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stability of the condensed liquid by forming C-C bonds before adjusting the oxygen 

content [66, 67]. 

The utilization of torrefraction allows us to selectively fractionate a complex mixture 

of bio-oil into diffrent streams with a specific group of functionalities enriched in each 

stream [3, 4]. The stabilization of the furanics fraction via Piancatelli ring rearrangement 

(Chapter 2) has opened up many potential possibilities for incorporating this new 

chemistry with the upgrading of other fractions such as phenolics. 

Corma et al. [16, 68, 69] have pointed out the feasibility of forming C-C bonds 

between carbonyl compounds with other organic molecules whenever their electron-

density is high enough to promote the electrophilic-attack of the oxonium ion generated 

by the protonation of the carbonyl group. Phenolics compounds such as m-cresol and 

guaiacol, abundant species in biomass pyrolysis vapors, are suitable candidates as 

hydroxyalkylation aromatic substrates. In fact, several studies have reported successful 

examples of hydroxyalkylation in systems comprising acetaldehyde/p-cresol [70], 

acetaldehyde /phenol [71], formaldehyde/guaiacol [72], acetaldehyde/o-xylene [73], 

aldehyde/benzene derivatives [74, 75], acetone / phenol [76], benzaldehyde/benzene 

derivatives [77], paraformaldehyde /anisole [78], formaldehyde/benzene [79], 

formaldehyde / phenol [80] over acid-functionalized solids, such as Amberlyst acidic 

resin and acidic zeolites to produce crucial platforms for the chemical industry.  For 

example, Rode et al. [81] have reported 80-95% yields of coupling products from the 

reaction of acetaldehyde/p-cresol over Hβ and bentonite clay catalysts impregnated with 

dodecatungstophosphoric acid. 
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In this contribution, we propose a novel approach for the simultaneous upgrading of 

furfural and m-cresol, two model compounds that represent two streams of sequential 

biomass thermal treatment at moderate and high temperatures. In this strategy, furfural is 

first pre-stabilized as cyclopentanone via the Piancatelli rearrangement/hydrogenation 

process [24, 82]. This intermediate product is then used to hydroxyalkylate m-cresol and 

generate C10-C24 oxygenates, a suitable range for transportation fuel precursors. 

3.1.2 Literature review: Reaction mechanism and active site requirements 

Several catalyst systems have been studied for the hydroxy-alkylation reaction 

including homogeneous Brønsted acids: HCOOH, CH3COOH, H3PO4, H2SO4 [83], para-

toluene sulfonic acid (PTA) [84]; heterogeneous Brønsted solid acids: Amberlyst 15, 

Nafion 212 [84], acidic resin [85]; homogeneous Lewis acids such as: BF3, BeCl2, TiCl4, 

SbCl5, SnCl4; super acid HF·SbF5 and HSO3F·SbF5 [86-88]; solid Lewis acids: Al-MCM-

41[89], Sn/Si-MCM41[90]; Brønsted and Lewis solid catalysts including: USY [77], 

HY[77, 78], HZSM-5 [77, 78, 89], HBEA [77, 78, 89, 91], Al-MCM-41[89], 

heteropolyacids deposited on solid supports [76, 92, 93], montmorillonite clay, NbOPO4 

[94], MOF [95] 

Brønsted acid-catalyzed mechanism:   

An example of a proposed Brønsted acid-catalyzed mechanism for the hydroxyl-

alkylation of ketone/aldehyde with aromatics on a solid surface [96-98] is shown in 

Scheme 3.1. In the first step, formaldehyde (1) is protonated to form a hydroxymethyl 

carbocation (2), which then undergoes electrophilic substitution toward the ortho/para 

carbon atom of phenol molecule. This C-C coupling step includes several elementary 
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steps regarding the rearrangement of C-C, C-H and C-O bonds inside the aromatic ring 

to form a hydroxyl oxygen cation (3). This unstable species then returns the proton to the 

surface to form (4-hydroxy benzyl alcohol) (4). The alcohol product could be re-

protonated to generate a carbocation intermediate (5), which continues to react with 

another phenol molecule to yield a trimer intermediate and water as a by-product (6). 

Afterward, the intermediate species (6) is deprotonated to produce bisphenol F [99-102]. 

The hydroxy-alkylation mechanism in homogeneous Brønsted acids would be very 

similar. The only difference is that the proton transfer process occurs between the 

reactants and the solubilized H+ with its conjugate base in the reaction solution rather than 

the ones on the surface. Accordingly, it should be noticed that the electron density of a 

substrate plays an essential role. Barthel et. al [103] has shown that the consumption rate 

of substituted benzenes (phenol, anisole and toluene) for the hydroxy-alkylation with 

chloral on zeolites follows the order of anisole (X=OCH3) > phenol (X= OH) >toluene 

(X=CH3). This order matches with the corresponding σp+ substituent constant which 

demonstrates the strength of the electron donation effect of a substituent to the aromatic 

ring. In this study, it is likely that the kinetically relevant step is C-C bond formation since 

a higher electron density in the aromatic ring results in a higher condensation rate. Other 

mechanisms have also been proposed for the reaction such as Lewis acid-catalyzed 

mechanism on BF3, BeCl2, AlBr3, TiCl4, SbCl5, SnCl4 [86-88, 104-110] or super-

electrophiles  [86, 111-118]. Lewis acids activate the carbonyl compounds by polarizing 

the C=O bond of the carbonyl group via the interaction with the oxygen lone pair, making 

the C-carbonyl more susceptible to a nucleophilic attack [87, 104-110]. 
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Scheme 3. 1 Mechanism of the hydroxyalkylation of formaldehyde/phenol. Reproduced 
with permission from Refs [99] 

Site requirements:  

Brønsted and Lewis acids both activate the carbonyl compounds by rendering the C-

carbonyl electrophilicity. In heterogeneous systems, there is lack of a comprehensive 

study related to the mechanism of Lewis acid-catalyzed hydroxy-alkylation on a solid 

surface. This is essentially important, especially when one has to deal with a complex 

catalyst system that might contain both type of acid sites (Brønsted and Lewis). Several 

studies on different solid catalysts have not clearly differentiated the contribution of each 

site type to the observed activity [93, 99, 119]. For example, Garade et al. [101] have 

investigated the production of bisphenol F from the hydroxyalkylation of phenol and 

formaldehyde on dodecatungstophosphoric acid (DTP) impregnated on fumed silica. 

They have shown that pure SiO2 showed negligible activity due to the presence of only 

weak Lewis acid sites. The deposition of DTP on SiO2 significantly increased the density 

of strong sites as well as the total acid density (both Brønsted and Lewis sites), resulting 
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in an increase in product yields. However, no further explanation about the role of each 

site type or their contribution have been reported.  

Garade et al. [71] have shown that the conversion of formaldehyde as well as the 

trimer selectivity on DTP/montmorillonite K10 catalyst increased with increasing 

Brønsted/Lewis ratio, suggesting that the Brønsted sites are more crucial in the 

formaldehyde activation [71, 81, 120, 121]. On the other hand, Bai et al. [122] have 

reported that zeolites modified with oxalic acid exhibited a significant increase in Lewis 

acid site and a decrease in Brønsted acid site density (as confirmed by Pyridine-IR). This 

resulted in an enhancement of catalytic performance/stability for the hydroxy-alkylation 

of anisole and chloral. They attributed the improvement of the turnover number to the 

higher Lewis site density, which suggests that the Lewis sites are more effective for this 

reaction. Study on p-cresol/formaldehyde system has demonstrated that 70% coupling 

product yield could be achieved on Sn/Si-MCM41 catalyst at 90oC for 2 h. The Lewis 

acid site was originated from the presence of Sn4+ in tetrahedral coordination in silica 

framework [90]. 

Xia et al. [123] have proposed the synergy effect of both type of acid sites in their 

study, using mesoporous Al-incorporated silica-pillared clay interlayer catalysts for the 

production of bisphenol F from phenol/formaldehyde. The weak and moderate acid sites 

were proposed to be originated from OH groups bonded to the pillars’Al ion (Al-OH) 

while the strong acid sites were associated with the OH groups bonded to the tetrahedrally 

coordinated Al ions. The band at 1447 cm-1, 1544 cm-1 and 1490 cm-1 in FTIR-pyridine 

spectra corresponded to the pyridine adsorbed on Lewis, Brønsted acid site and the one 
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associated with both Lewis and Brønsted acid site, respectively [124-126]. They have 

proposed that while the Brønsted site activates the formaldehyde by donating a proton 

(H+) to the O-carbonyl, the Lewis cite (Al3+) abstracts a H- from the carbonyl C atom 

[127]. The increase of Al content leads to an increase in Lewis/Brønsted sites ratio as 

well as the activity enhancement. The activation of formaldehyde by Lewis acid site has 

been reported to require higher activation energy than that by Brønsted acid site. 

Therefore, the higher condensation rate observed at high Lewis/Brønsted ratio suggests 

that the reaction might be catalyzed by the combination (synergy effect) of both type of 

sites rather than by just a single one [123]. However, the nature of this synergy effect is 

not fully addressed. 

The type of active sites also influences the selectivity of desired products. While the 

Brønsted acid site promotes the trimer production, the Lewis ones with weaker strength 

favors the dimer generation. For instance, high selectivity of trimer bisphenol F was 

obtained with high density of strong acid sites [71, 92]. Lewis acid sites with moderate 

activity (low TPD desorption temperature range) was responsible for the highest 

selectivity toward the dimer of p-cresol/formaldehyde hydroxy-alkylation on MFI 

structured molecular sieves of SnO2/Al2O3 [128]. Increasing Al contents led to the 

increase of Brønsted acid density, resulting in an enhancing formaldehyde conversion as 

well as trimer yield. Tan et al. [80] have reported that the Brønsted acid site favors the 

formation of 4,4’-substituted whereas Lewis one favors the production of 2,4’ and 2,2’-

isomers on formaldehyde/phenol system [80] 
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3.2 Experimental Methods 

3.2.1 Chemical and materials: 

Amberlyst 15, Amberlyst 36, p-TSA and SiO2-Al2O3 were purchased from Sigma 

Aldrich and used as provided. Zeolite NH4-β (Zeolyst) was calcined at 600oC for 5 h in 

150ml/min air flow to produce H-β. 2% Pd-Fe/SiO2 catalyst was synthesized by 

impregnation method as reported previously in Chapter 2. Cyclopentanone and m-cresol 

were obtained from Sigma Aldrich. Cyclopentanone was distilled to remove impurities 

before used for the reaction while m-cresol was used as provided. 

3.2.2 Catalytic reaction measurements: 

The conversion of furfural to cyclopentanone was carried out in a Parr reactor at 

150oC, 14-40 bar for 6 h in water solvent over 0.15 g 2% Pd-Fe/SiO2 catalyst, at an initial 

concentration of furfural of 200 mM. The hydroxyalkylation of m-cresol with 

cyclopentanone was conducted at atmospheric pressure in a glass reactor at atmospheric 

pressure in the temperature range 65-140oC, for 2 h in the presence of Amberlyst 15, 

Amberlyst 36, or p-TSA (Sigma Aldrich) catalysts. Alternatively, the reaction was 

conducted in a Parr reactor at 100-250oC, under 300 psia N2 for 2 h in the presence of 

Zeolite Hβ (Zeolyst) or SiO2-Al2O3 (Sigma Aldrich). In all cases, the amount of catalyst 

used was 0.15 g and the feed was either pure CPO or m-cresol/CPO mixtures. The effect 

of m-cresol/CPO ratio (2:1, 5:1, and 7:1) on the product distribution was examined in the 

Parr reactor at 120oC, 300 psia N2 for 2 h in the presence of 1 g Amberlyst 15 in decalin 

solvent. The aldol condensation of cyclopentanone was examined in Parr reactor at 100oC 

and 300 psia N2 for 2 and 6 h. 0.5M of CPO in decalin solvent over 1 g Amberlyst 15. 
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The product mixture was analyzed by Shimadzu QP2010S gas chromatograph/mass 

spectrometer (GC-MS) and quantified by GC-FID Agilent 6890 equipped with a flame 

ionization detector for quantification. Both GC’s were equipped with a Zebron ZB-1701 

column with dimensions of 60m x 0.25 mm x 0.25 μm. 

The conversion (X), yield and selectivity were calculated as: 

  ;      ;       

The carbon balance for the HAA reaction was calculated as: 

 

The carbon balance for the HDO step was calculated as: 

   

where CCPO(in, out): Concentration of cyclopentanone before and after reaction;  

Ci: Concentration of each product;  

n: Number of cyclopentanone molecule in molecular structure of products;  

nCi: Number of carbons in molecular structure  

 

3.3 Results and Discussions 

3.3.1 Hydroxyalkylation of m-cresol/cyclopentanone    
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The hydroxyalkylation of m-cresol and CPO yields various cyclopentyl-substituted 

cresol compounds including (3), (4), (5) and (6) (HAA products) as shown in path B 

Scheme 3.2. Two products from self-aldol condensation of cyclopentanone including (1) 

and (2) (AC products) were also observed, as shown in path A. In most cases, the 

formation of product (2) is negligible compared to that of the other products; therefore, 

in most runs, product (1) is the only representative of the self-aldol condensation reaction. 

 

Scheme 3. 2 Products from hydroxyalkylation of m-cresol and cyclopentanone 

Figure 3.1 shows the reaction data obtained after 2 h in a batch reactor on Amberlyst 

15 in the temperature range 65-145oC at a 2:1 m-cresol/CPO molar feed ratio. The results 

demonstrate that the acid resin displays an acceptable activity, with conversion increasing 

from 8 to 38% as the temperature increases, keeping a good carbon balance. For instance, 

13% CPO conversion was obtained at 100oC, with 40% selectivity to AC products, 60% 

selectivity to HAA products and a carbon balance of 98%. Higher temperatures favor the 

formation of monomer and dimer coupling products (1, 3, 4, and 5).  Above 120oC, the 

decomposition of the trimer (6) becomes evident and undesired reactions start to occur. 

For example, at 145oC, the carbon balance dropped from almost 100 to 83 %, most 

probably due to polymerization as indicated by the change in color of the solution. One 
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problem associated with the use of a resin catalyst like Amberlyst 15 is the decomposition 

of the polymeric matrix that may become significant as temperature increases. 

 

Figure 3. 1 Catalytic performance of Amberlyst 15 at different temperatures. Product (1) 
– (6) are presented in Scheme 3.2 

The acid-catalyzed formation of AC products is in itself an interesting outcome of the 

study since the aldol condensation of cyclopentanone has been typically reported over 

basic catalysts, such as MgO, KF/Al2O3, CaO-CeO2, CaO, magnesium–aluminum 

hydrotalcites (MgAl-HT) and lithium–aluminum hydrotalcites (LiAl-HT) [82], or even 

in NaOH solutions [21]. While it is widely known that the aldol condensation can be 

catalyzed by both bases and acids, the latter has seldom been reported for cyclopentanone. 

Zou et al. [129] reported the self-aldol condensation of cyclopentanone and 

cyclohexanone in glass reactor over MOF-encapsulating phosphotungstic, Amberlyst 15 

and HZSM-5 materials. The reaction was conducted at 130oC in pure cyclic ketone for 

48 h and moderate conversion of the ketones could be obtained. However, no information 

related to carbon balance was reported.  

In this work, the experiments were conducted in a Parr reactor in more controlled and 

quantitative ways than previous studies with shorter reaction times and direct 
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measurement of the carbon balance. The results summarized in Figure 3.2 confirm that 

solid acids such as Amberlyst 15 are capable of producing acceptable yields of AC 

products (1+2). The yield of the monomer (1) increases over time, reaching 16% after 6 

h of reaction. The amount of dimer product (2) is very small, reaching only about 1% 

yield. Excellent carbon balances of 94-97% were observed in both cases. Although the 

reaction conditions and catalyst formulations will need to be optimized to enhance the 

yield to coupling compounds, these preliminary results are promising enough to be 

considered an interesting approach for biomass conversion, particularly since the acidic 

environment is commonly found in bio-oil upgrading. The high content of water in real 

pyrolysis mixtures would require to operate in biphasic system [130]. 

Implementation of the concepts derived from model compound studies in the 

separation and conversion of bio-oil to fuel may demonstrate the advantage of using solid 

emulsifier materials such as hydrophobized zeolites [131, 132] nanotubes, and other 

amphiphilic catalysts that stabilize emulsions [133] to achieve maximized adducts yields 

for the reaction. 

 

Figure 3. 2 The acid-catalyzed aldol condensation of cyclopentanone over Amberlyst 15 
(Parr reactor at 100oC and 300 psia N2 for 2 and 6 h in decalin solvent over 1 g Amberlyst 
15) 
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Comparison of different solid acid catalysts: 

Based on these observations, several solid catalysts with different characteristics, 

including a resin with higher acid density (Amberlyst 36), a microporous zeolite (Hβ),  

and a mesoporous acid catalyst (SiO2-Al2O3) were investigated and compared to a 

homogeneous catalyst, para-toluene sulfuric acid (p-TSA) to explore the effect of catalyst 

topology and acidity. To make a proper comparison of selectivity, we adjusted the 

reaction temperature to reach an overall CPO conversion of about 15 %. Specifically, the 

activity comparison was made at 100oC for Amberlyst and p-TSA, and at 250oC for H, 

SiO2-Al2O3. The results are summarized in Table 3.1 and Figure 3.3. Amberlyst 36 

shows an analogous behavior to Amberlyst 15, reaching 15% CPO conversion with 

selectivities of 38% and 62% for AC and HAA products, respectively. Interestingly, while 

(at 100°C) Amberlyst resins catalyzed the generation of both AC and HAA, the zeolite 

Hβ and amorphous SiO2-Al2O3 yielded only AC products (at 250°C). 

 

Figure 3. 3 Yield of coupling products from different catalysts at comparable CPO 
conversion 
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It is possible that the drop in HAA selectivity might be due to different steric constrain 

in the catalysts. For instance, Amberlyst resins have large cavities that may allow the 

formation and desorption of the relatively large HAA products (see example of products 

3, 4, 5 and 6 in Scheme 3.2). By contrast, the more constrained Zeolite Hβ may only 

allow the smaller AC products (93% selectivity) leave the zeolite, while the HAA, if 

formed will remain trapped inside the microporous structure. It is suggestive that the 

homogenous p-TSA exhibits a higher selectivity to large HAA products (3 + 4 + 5 + 6) 

(Figure 3.3) in comparison to the behavior of solid catalysts. More specifically, at 

comparable CPO conversion (15-20%) the yields of 3, 4, 5 and 6 were 2.4%, 1.7%, 0.16% 

and 0.4% on Amberlyst 36 while they are much higher, reaching 5.2%, 1.3%, 1.8% and 

12.4%, respectively with the homogeneous catalyst p-TSA.  

To check the effect of reaction temperature to the product distribution, reaction runs 

were conducted on zeolite Hβ at different temperatures (100-250°C).  As shown in the 

Table 3.1, the selectivity on this zeolite did vary with temperature. Higher selectivity 

toward HAA is favorable as the temperature deceases. This observation agrees with those 

obtained from homogeneous catalysts in which low temperature favors the formation of 

HAA products rather than AC products.  

However, at this point, it can be concluded that although the temperature can change 

product distribution, the porous characteristic of solid acid catalysts is the dominant factor 

that makes AC products dominant (i.e., over 70% sel. at 120oC). At 100oC, no adducts 

were observed. In the case of SiO2-Al2O3, the same analysis was conducted with 

temperature range from 100 to 280oC. Interestingly, high selectivity towards AC is 
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observed in all cases. With a large pore size, (average 4.8 nm) and rather slow reactions, 

one would not expect internal mass transfer limitations on this mesoporous material.   

Table 3. 1 Activity and Average pore size of sceened catalysts 
 

Catalyst T, oC Conversion, 
% 

Selectivity, % Yield, % Acid 
density, 

mmol/gcat 

Conversion 
per site 
(mol.L-

1.mmolacid
-1) 

Carbon 
balance, 

% 

Average 
pore 

size, nm AC HAA AC HAA 

p-TSAa 100 20 9.3 90.7 2.9 27.5 5.8c 1.3 97 - 

Amberlyst 15a 100 12.8 39.6 60.4 3 3.5 4.7c 0.6 94 29c 

Amberlyst 36a 100 15.3 38 62 4.5 4.6 4.9c 0.7 94 24c 

Zeolite Hβb 

100 6.8 - - - - 

0.75d 

2.02 90 

0.6f 
120 11 71.1 28.9 0.2 0.045 3.38 93 

200 11.7 85 15 2.9 0.2 3.48 92 

250 16.3 93 7 11 0.5 4.86 94 

SiO2-Al2O3
b 

100 0.76 - - - - 

0.53e 

0.32 98 

4.8g 

150 1.14 - - - - 0.48 99 

200 5.42 99 1 0.9 0.004 2.29 95 

250 17 98 2 10.4 0.1 7.26 96 

280 33.8 95 5 21.6 0.7 14.3 85 

aGlass reactor; bParr reactor; creported by manufacturer; dmeasured by TPD-isopropyl amine eref [134] fref. [135], 
gmeasured by BET-N2 ads./des. 

As shown in Figure 3.4a, the variation of overall CPO conversion as a function of 

temperature indicates an apparent activation energy of about 50 kJ/mol, while on the Hβ 

zeolite, which is clearly affected by mass transfer limitations, the apparent activation 

energy is only 4.5kJ/mol.  Moreover, when the product yields are used for the Arrhenius 

plot (Figure 3.4b), apparent activation energy values of about 90 and 140 kJ/mol are 

obtained for AC and HAA formation, respectively. The lower activation energy 

calculated from CPO conversion (or disappearance) is due to the lower activation energy 

for the polimerization or coke formation that might be more favorable at higher 

temperatures. This results in a faster rate of carbon loss compared to C-C coupling 

product formation rate as the temperature increased. 
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The low activity exhibited by the amorphous silica-alumina catalyst towards 

formation of HAA products could be due to the relatively weak acid strength of this 

material. Indeed, calorimetry measurements of ammonia adsorption on SiO2-Al2O3 give 

evidence of much lower density of strong acid sites than Amberlyst or any zeolite [136, 

137]. Therefore, the acid strength of the mesoporous silica-alumina might not be high 

enough for catalyzing HAA reaction. That is, only materials with strong acidity and large 

pore structure could be effective catalysts for the HAA reaction. 

  

Figure 3. 4 Arrhenius plots for a) overall CPO conversion over Hβ and SiO2-Al2O3; and 
b) Yield of AC and HAA products over SiO2-Al2O3. 

To gain a deeper understanding of the pathway for HAA product formation on zeolite 

Hβ, several separate runs were conducted at 250°C with varying amounts of catalyst. As 

seen in Figure 3.5a, b the yields of HAA and AC products uniformly increase with the 

amount of catalyst, as expected.  At the same time, it is observed that while the selectivity 

to product (3) dominates at low yields (at the lowest catalyst mass) the selectivity to 

products (4) and (5) increased with overall conversion which demonstrates the expected 

series/parallel sequence for this reaction, i.e., CPO → (3); followed by (3) → (4) or (3) 

→ (5).  In this case, no traces of product (6) were observed. 
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Another series of independent runs was conducted, keeping the catalyst mass constant 

while varying temperatures. As shown in Figure 3.5c, contrary to the behavior of 

Amberlyst 15 and 36, which were able to achieve measureable yields (7-9%) at low 

temperatures (100-120oC), the Hβ catalyst only generated small amounts of condensation 

products at these temperatures (traces of AC and HAA products were detected).  It is 

conceivable that the diffusion of these large products out of the micro-porous structure is 

greatly hindered at low temperatures in this zeolite, leading to some disappearance of 

CPO, but without the formation of any noticeable coupling products. Figure 3.5d shows 

the distribution of HAA products from zeolite Hβ as a function of reaction temperature.  

At low temperatures (100-120oC), the major product is (5), which is necessarily produced 

from product (3). By contrast, at higher temperatures, the selectivity towards product (5) 

decreases while that to (3) increases. Clearly, at high enough temperatures, product (5) 

begins to decompose via C-C cleavage yielding back product (3). The low selectivity 

towards product (4) might be due to the higher abundance of m-cresol with respect to 

CPO (m-cresol/CP feed ratio = 2:1). 

In fact, as shown in Table 3.1, the carbon balance is over 90% for all cases. That is, 

by using a less reactive intermediate such as cyclopentanone, not only the carbon losses 

can be minimized, but valuable condensation products can be obtained with less humins 

formation. 
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Figure 3. 5 a) Yield of AC, HAA products and b) Distribution of HAA products at 
different mass of catalysts c) Yield of AC and HAA products and d) Distribution of 
HAA products at different temperatures over zeolite Hβ 

Effect of temperature on the competition between self-aldol condensation (AC) and 

hydroxyalkylation (HAA): 

The investigated reaction, in fact, is complicated since two possible parallel reactions 

are taking place at the same time. The relative rate between two pathways depends on 

factors such as feed ratio, temperature, etc. Moreover, the porous characteristic of each 

solid catalyst places different influence in the diffusion of formed products and so on the 

obtained product distribution. A series of experiments was conducted with a 

homogeneous catalyst (para-toluene sulfuric acid) to get an insight into the nature of this 

reaction. In this case, there is no possible role of porous cavities affecting the product 

distribution as in solid acid catalysts. As shown in Figure 3.6a, at low temperatures (e.g., 
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60oC), hydroxyalkylation products (HAA) dominate, with selectivity above 90%. As 

temperature increases, the selectivity toward aldol condensation products (AC) slowly 

increases (up to 150oC) but beyond this temperature, it jumps dramatically from 20% at 

200oC to 60% at 250oC. The change of product distribution with increasing temperature 

in this case might be due to the low stability of the HAA C-C coupling products (the 

alcohol) that makes it easily decomposed back to CPO and m-cresol at high temperature 

(250oC) before dehydration. This results in more abundant AC products at 250oC.  

 

Figure 3. 6. a) Selectivity of aldol condensation and hydroxylalklyation products (AC 
and HAA) at different temperatures (Reaction condition: m-cresol/cyclopentanone=2/1, 
Parr reaction, reaction volume 120ml, the conversions at 60oC, 100oC, 150oC, 200oC, 
250oC are 20%, 20%, 23%, 21%, 20%, respectively) b) Selectivity of hydroxyalkylation 
products at different temperatures 
 

At the lowest temperature, only the C-C coupling monomer (3) is observed in the 

products.  However, at 100oC, the trimer (6) is formed easily, becoming one of the most 

abundant products and reaching 45% selectivity. As the temperature is further increased, 

the selectivity to (6) greatly decreases with the other products increasing, even when the 

reactant conversion remained unchanged.  It is clear that (6) starts decomposing back to 

monomer (3). Indeed, negligible amounts of the trimer (6) are detected at 250oC. 
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Likewise, as shown previously (Figure 3.1), similar decomposition of the trimer (6) is 

observed over the solid acid Amberlyst 15 at temperatures above 120oC.  Figure 3.6b 

also shows similar trends for the trimers (4) and (5), which initially increase with 

temperature, but then decrease, reaching a maximum selectivity at 200oC (~20%).   

The possible reaction mechanism includes four primary steps: (a) protonation of 

cyclopentanone on acid sites to form an enolate, (b) C-C coupling of the activated CPO 

with another CPO or m-cresol to form condensation products (ACol and HAAol), (c) 

deprotonation, and (d) dehydration of the resulting alcohols to generate the AC and HAA 

products. It is possible that the rate limiting step for each reaction could be one of those. 

However, in the presence of acid catalysts the dehydration step is relatively fast. It should 

be noted that the relative activation energy between each step could be shifted, depending 

on catalysts with different acid strength. More detailed kinetic and theoretical studies are 

required on each individual reaction to obtain a more comprehensive understanding of 

the system. 

Effect of feed ratio: 

Both AC and HAA can yield products with longer carbon chains, which can 

subsequently be hydrodeoxygenated to molecules that directly fall in the gasoline/diesel 

range. In some applications, in may be desirable to produce a narrow molecular weight 

distribution. In this case, our results show that a narrower molecular weight distribution 

can indeed be obtained by adjusting the m-cresol/CPO feed ratio. As illustrated in Figure 

3.7, as the m-cresol/CPO increases from 2:1 to 5:1, the yield of AC products drops from 

4.5% to 1.4% while that of HAA products increases from 3.7 to 5.4%. Interestingly, when 
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the m-cresol/CPO ratio increases to 7:1, only HAA products are obtained with no traces 

of AC products. 

 

Figure 3. 7 The distribution of AC and HAA products at different m-cresol/CPO ratios 
over Amberlyst 15 (Parr reactor at 120oC, 300 psia N2 for 2 h in the presence of 1 g 
Amberlyst 15 in decalin solvent) 
 

3.3.2 Hydrodeoxygenation of coupling products obtained in the first step    

Hydrodeoxygenation is the final step after accomplishing the desired molecular 

weight via C-C coupling. For practical implementation as fuels, the coupling compounds 

generated from hydroxyalkylation would need to be saturated and deoxygenated to 

produce alkanes with properties similar to those derived from petroleum energy sources. 

To demonstrate the sequence, first, the C-C coupling step was carried via HAA reaction 

on a 3g Amberlyst 36 sample in a Parr reactor (150oC, m-cresol/CPO=2:1, 12h). In this 

step, the goal is to obtain a reasonable yield of coupling products, which can be used later 

as feedstock for the HDO upgrading. In this case, 51% CPO conversion with a wide range 

of long-chain oxygenates was obtained, as shown in Figure 3.8, with (1) and (3) as major 

products, accounting for 18% and 14% yield, respectively. 
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Scheme 3. 3 Biofuel production scheme starting from cyclopentanone 
 

To carry out the HDO upgrading step, 2 ml of the liquid product of the previous step 

was diluted in 118 ml of undecane solvent together with 500 mg of 2% Pd/Al2O3 catalysts. 

The catalyst was reduced at 150oC for 3 h under 400 psia of H2. The HDO run was 

conducted at 250oC in the batch reactor for 12 h. The most abundant products were 

cyclopentane and methyl cyclohexane, which come from the hydrogenation/dehydration 

of CPO and m-cresol. Long-chain hydrocarbon products include fully saturated C10 

alkanes, C12 cyclic and C12 alkane products which are generated from the ring opening of 

the saturated species (1) and hydrogenation of (3), followed by the ring opening, 

respectively (Scheme 3.3 and Figure 3.9). Trace amount of carbon chain longer than 12 

was observed, which is probably due to the decomposition of dimer/trimer at the high 

temperatures and long reaction time used in this experiment. The observed alkanes 

represent over 39% selectivity of the upgraded liquid. In fact, hydrogenated products 

derived from m-cresol, such as methylcyclohexane or methylcyclohexanol, also fall into 

gasoline range (C7-C12). Therefore, the whole applicable products in the fuel range would 
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account for 90% of the upgraded liquid. More interestingly, the carbon balance for the 

HAA and HDO steps are 96% and 95%, respectively, resulting in over 90% efficiency 

for the whole catalytic upgrading process, which starts from CPO and results in with drop-

in liquid fuel products. This promising result illustrates the great potential of this strategy 

for biomass-derived liquid fuel production.  

 

 

Figure 3. 8 Conversion/Yield of HAA reaction between CPO and m-cresol (dash-black 
bar is the conversion of CPO, yellow bars are the yield of each product) 
 

 

 

 

 

 

Figure 3. 9 Selectivity of each saturated products in HDO upgraded liquid 
 

3.4 Conclusion  

The Piancatelli rearrangement of furanic compounds to CPO represents a very 

attractive biomass upgrading strategy that pre- stabilizes reactive molecules such as 
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furfural into a useful and less reactive ketone. Compared to conventional 

hydrogenation/hydrogenolysis strategies, this approach demands less energy and less H2 

consumption. In addition, the high water and acid content of bio-oil are in fact favorable 

for this conversion, which makes the process more appealing in terms of practical 

implementation. The production of this stable intermediate can be followed by C-C bond 

formation reactions, such as self-aldol condensation or hydroxyalkylation with phenolics-

derived fractions. When the C-C bond forming process is followed by a 

hydrodeoxygenation step a mixture of C10-C16 hydrocarbons, which are in the 

gasoline/diesel range can be effectively obtained. For example, when the product stream 

from the AC/HAA reaction of CPO and m-cresol was followed by HDO on a bifunctional 

catalyst over 90% efficiency of the whole catalytic upgrading process starting from CPO 

was demonstrated, which highlights the potential of this strategy for future biofuel 

applications.  

The major obstacle of this approach is that the large organic molecules produced by 

the HAA reaction are trapped in microporous catalysts, particularly at low temperatures.  

Thermally stable zeolites that can be operated at higher temperatures show a lower degree 

of trapping, but the problem still subsists. Further research on acidic materials with 

hierarchical structures with a proper mesoporous/microporous balance that minimizes the 

diffusion path of large adducts out of the catalyst cavities would be desirable. 
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Chapter 4 - High-Temperature Grafting Silylation for 

Minimizing Leaching of Acid Functionality from 

Hydrophobic Mesoporous Silicas 

 

ABSTRACT  

Ordered-hexagonal silica materials such as MCM41 and SBA15 have important 

applications in heterogeneous catalysis and biomass conversion due to their chemical 

stability and mesoporous structure. Conventional grafting (CG) is one of the most 

common functionalization methods to modify the silica surface with acidic/basic or 

hydrophobic/hydrophilic moieties.  However, the materials prepared by this method are 

prone to the leaching of functional groups into the reaction medium. The exact nature of 

the leaching phenomenon has not been fully addressed in the literature. In this 

contribution, we have investigated this process at the molecular level by combining well-

controlled reaction experiments and several characterization techniques (FT-IR, 1H-29Si 

CPMAS NMR, XRD, TGA and BET). We have found that leaching is originated by the 

presence of terminal surface silanols, which render the catalysts susceptible to the attack 

of water and polar compounds. Hence, leaching can be better described as a partial 

dissolution of the surface layers of the silica, thus removing the functional groups during 

this process. Therefore, an effective strategy to minimize leaching is to reduce the density 

of free silanols via full functionalization of the surface.  We propose a novel silylation 

method, high-temperature grafting, which allows the grafting process to be conducted at 

high temperatures (180oC) under solvent-free conditions. By this method, a more 
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complete silylation of surface silanols is obtained. Consequently, the samples prepared 

by this high-temperature grafting (HG) method are highly stable during acid-catalyzed 

alkylation reaction, conducted under severe conditions (high temperature and in the 

presence of polar solvents).  
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4.1 Introduction and Literature Review 

Significant efforts have been dedicated in recent years to the development of catalytic 

processes for the production of biomass-derived chemicals and transportation fuels [138-

142]. One of the major challenges in these developments is the selection of catalytic 

materials with enough activity, selectivity, and stability to operate under the severely 

deactivating aqueous environments required by the biomass upgrading processes [143]. 

Among the family of siliceous mesoporous materials, MCM41 and SBA15 are the 

two promising candidates for the upgrading of large molecules due to their relatively large 

pores [144-155]. The ordered mesoporous structure allows for the accommodation and 

rapid diffusion of intermediates and products within the catalyst cavities, reducing mass 

transfer limitations, which are pervasive in microporous catalysts [156]. In addition, the 

high density of surface free silanols of these siliceous materials provides the capability of 

modifying their surface properties via silylation with acid/base moieties or 

hydrophobic/hydrophilic linkers [157-160], which may improve the chemical stability of 

these materials in aqueous media. Two major techniques to synthesize this type of hybrid 

inorganic-organic mesoporous materials that have been reported in the literature are co-

condensation and grafting [146, 155, 161-164].  

Unfortunately, both methods exhibit a serious drawback for catalysis applications; 

that is, the attached functional groups tend to leach out from the surface, causing loss of 

surface activity, replaced by homogeneous reactions catalyzed by the leached species.  

Obviously, this is undesirable, not only for applications in continuous flow processes, but 

also for research studies involving measurement of specific catalytic activity of the 
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heterogeneous sites. Leaching of active moieties into the reaction liquid medium has been 

observed in many cases. For example, significant leaching of sulfonic groups has been  

observed  from SBA15 functionalized with propane-sulfonic acid during the vapor-phase 

dehydration of fructose at 403K[165]. It has been proposed that the in-situ generated 

water hydrolyzes the Si-O bond between the attached functional groups and the solid 

surface to 3-(trihydroxysilyl)-1-propanesulfonic acid and surface silanols. Other studies 

have also indicated that the Si-O bond breaking is responsible for the observed leaching 

[146, 166], according to the expression: 

(SiO)3Si(CH2)3SO3H + 3H2O → 3 SiOH + (HO)3Si(CH2)3SO3H 

In contrast, the cleavage of other bonds such as Si-C, C-S or C-C of the functionalized 

species on the surface have been identified as directly responsible for the observed 

leaching.  For example, some reports of –SO3H leaching from ion-exchange poly(styrene-

divinylbenzene-sulfonicacid) resins [167] and Amberlyst 15 [168], caused by hydrolysis 

in the presence of water ascribe the functionality losses to cleavage of Si-C bonds. 

Alternatively, reports of leaching from carbon substrates functionalized with sulfonated 

polycyclic aromatics suggest the cleavage of C-C or C-S bonds [169]. 

RSO3H + H2O → RH + H2SO4 (R= resin matrix) 

Despite a wide diversity of opinion proposed in the literature for the origin of 

leaching, a common observation is that increasing temperature or polarity of the 

surrounding medium intensifies the leaching phenomenon [166, 168, 170]. That is, as 

illustrated in Table S1 Supplementary Information, leaching is typically not observed 
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below 150oC, a temperature range used in many studies with functionalized mesoporous 

silicas. However, even at low temperatures (e.g., 100oC) leaching of sulfonic groups from 

silica has been observed in highly polar media, such as a mixture of sunflower oil and 

methanol [166].  Several other reports have shown leaching in non-polar [171-173] or 

polar solvents [174] under various conditions. 

These observations strongly suggest that leaching is somehow related to a chemical 

attack initiated by polar compounds, which is intensified at higher temperatures and with 

increasing solvent polarity. In this paper, we analyze the environment of the oxygen-

containing polar groups in the silica support, which may play a crucial role in rendering 

the catalysts more or less vulnerable to the severe attack caused by the polar liquid 

medium at high temperatures.  The attack could be caused by either the cleavage of the 

Si-O bond associated with the functional group or unzipping the Si-O-Si bonds of the 

silica surface, resulting in losses of surface moieties into the solution[165, 175]. The 

analysis requires a comprehensive examination of the crucial factors involved in this 

attack that determine the leaching propensity of a given functionalized catalyst, as well 

as potential effective solutions to minimize this undesirable effect.  

The present study attempts to investigate the origin of leaching at the molecular level 

by using a series of surface characterization techniques. At the same time, a novel 

functionalization method, which we call “high-temperature grafting (HG)”, is proposed 

as a simple approach for preparing highly stable catalysts for acid-catalyzed reactions to 

be employed under severe conditions (polar solvents and high temperatures), typically 

encountered in the liquid-phase upgrading of biomass-derived products. The alkylation 
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of m-cresol with cyclopentanol has been used as a probe reaction to investigate the 

stability of the functionalized catalysts in polar and non-polar environments at high 

temperatures (250oC). This reaction is relevant to the conversion of biomass-derived 

oxygenated compounds into lower-oxygen-content products with enhanced C-C chain 

length, potentially applicable in the production of gasoline and diesel fuel components. 

4.2 Experimental Methods 

4.2.1 Chemicals and Materials  

As-received mesoporous MCM41-Type A was dried at 120°C for 12 h under N2 flow 

(99.999%, Airgas) prior to further treatment or use. The functional organosilanes (3-

Mercaptopropyl)-trimethoxysilane (95% purity, from Aldrich, MPTS), Ethyl-

(trichloro)silane (99%, from Sigma-Aldrich, ETS), Trimethoxy(octyl)silane (90% purity, 

from Aldrich, OTS) were used as provided. Anhydrous toluene (99.8%, from Sigma-

Aldrich) and anhydrous methanol (99.8%, from Sigma-Aldrich) were purified on silica-

alumina molecular sieves (Zeochem) heat-treated overnight in air at 300°C. A hydrogen 

peroxide aqueous solution (30 wt. %, from EMD Millipore) was utilized as an oxidized 

agent to convert the thiol (-SH) of MPTS to sulfonic groups (-SO3H). Cyclopentanol 

(99%), m-cresol (99%), and decahydronaphthalene, mixture cis + trans (99%) (Sigma-

Aldrich) were used as provided.  

4.2.2 Conventional grafting of mesostructured silica MCM41 (CG method) 

The grafting methods using solvent (e.g. toluene) at low temperature (<120oC) 

(Conventional grafting – CG) have been widely reported in the literature [146, 171, 176-
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186]. In this work, a typical synthesis was used, following a previously reported 

procedure [186]. First, the pretreated MCM41 was dispersed in toluene (25 mL of 

Toluene/g of MCM41) and heated up to 40 or 110°C with constant stirring in a reflux 

system. Once the temperature remained stable, the trialkoxy-organosilanes (MPTS) was 

injected into the dispersion and then stirred at a constant temperature for 12 h. After this 

period, the solid was separated in a vacuum filtration system (filter 0.22 µm) and washed 

several times with ethanol at room temperature to remove any organosilane residue. The 

resulting solid product (MCM41-SH) was dried at 80°C overnight. The thiol (-SH) groups 

was converted to active sulfonic groups (-SO3H) via oxidation in a solution of 30% H2O2 

(25 mL per gram of MCM41-SH) at room temperature for 12 h. After being separated 

from solution by filtration and washed with an excess amount of ethanol at room 

temperature, the catalyst was dried overnight in a vacuum oven at 80°C. The 

functionalization of MCM41 with ethyl-(trichloro)silane and trimethoxy(octyl)silane 

were carried out similarly, but without the oxidation step since the functional groups only 

include hydrocarbon linkers. 

4.2.3 High-temperature grafting of mesostructured silica MCM41 (HG method) 

A novel functionalization method is proposed here to synthesize active and stable 

functionalized catalysts. In this case, dry MCM41 was impregnated with a solution of 

trialkoxy-organosilanes (MPTS) in methanol (0.6 mL of methanol per gram of MCM41) 

at incipient wetness. The obtained solid was placed in an autoclave and heated to 180°C 

for 14 h. After thermal treatment, the resulting solid was washed several times with 

ethanol at room temperature and dried at 80°C overnight. The essential differences of HG 
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from CG method is high-temperature grafting under solvent-free condition. It should be 

noted that in this procedure, methanol was used with a little amount to reduce the viscosity 

of the pure MPTS precursor and to make sure the MPTS liquid was evenly dispersed over 

the solid sample (at incipient wetness point). Oxidation of the thiol groups was carried 

out with a solution of 30% H2O2 (25 mL per gram of MCM41-SH) at room temperature 

for 12 h. The final catalyst was washed several times with ethanol at room temperature 

and dried overnight at 80oC. 

4.2.4 One-step co-condensation of SBA15-SO3H 

The co-condensation procedure was conducted following a published procedure 

[187]. Pluronic 123 (Aldrich, P123) was dissolved in a solution of 1.9 M of HCl at room 

temperature. The temperature of the solution was stabilized to 40°C. Tetraethyl 

orthosilicate (>99.0%, Aldrich) was added to the mixture for pre-hydrolysis for 45 mins, 

followed by addition of the trialkoxy-organosilane (MPTS). The mixture was stirred at 

40°C for 20 h and aged at 100°C for 24 h (without stirring). The solid (SBA15-SH) was 

recovered by filtration and washed with ethanol in reflux at room temperature to remove 

the template (400 mL of Methanol/1.5 g SBA15-SH). The product was recovered by 

filtration and dried overnight at 80oC, followed by the oxidation in a solution of 30% 

H2O2 (25 mL per gram of solid) at room temperature to convert (-SH) groups into (-SO3H) 

groups. The solid was then washed several times with ethanol at room temperature and 

dried overnight at 80oC. 

4.2.5 Characterization of the mesostructured silicas 
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The surface area, pore size, and pore volume were evaluated by N2 physisorption at -

198°C in a micromeritics ASAP 2020. Prior to adsorption, the samples were degassed for 

6 h under vacuum at 250°C. A Perkin–Elmer Spectrum 100 FTIR equipped with a high-

temperature DRIFT (Diffuse Reflectance Infrared Fourier Transformation) CaF2 cell 

(HVC, Harrick) to study the surface chemistry of the functionalized silica. The samples 

were pretreated in-situ at 250°C for 1 h under He flow (30 mL/min) to remove water 

physically adsorbed on the catalyst surface. The cell was then cooled down to 50°C and 

then 64 DRIFT spectra were collected at a resolution of 1 cm-1 [131].    

Solid-state 1H-29Si CPMAS NMR was used to evaluate the silica structure and the 

functionalization modes present on the surface. The 1H-29Si CPMAS NMR spectra were 

obtained on a Bruker AVIII HD NMR spectrometer operating at a magnetic field strength 

of 11.74T, equipped with a 4 mm Bruker MAS probe. The spinning rate of 12kHz and a 

recycle delay of 25s were used. Spectra were averaged over 4096 scans and referenced to 

the TMS signal at -10.2 ppm. 

The structural characterization was conducted on an XRD unit, D8 Series II X-ray 

diffractometer BRUKER AXS, in reflection geometry using CuKα radiation generated at 

40 kV and 35 mA in the 2θ = 2-60° diffraction angle range. The topology of the catalysts 

was examined by transmission electron microscopy (TEM) in a JEOL JEM-2100 

Scanning Transmission Electron Microscope, operating at 200 kV with the images 

recorded on a CCD camera. The samples were prepared by suspending 2-5 mg of sample 

in 10 mL of 2-propanol, followed by deposition over a Cu grid coated with carbon and 

dried at 80°C.  
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The organic content of the catalysts was evaluated via thermogravimetric analysis 

coupled with temperature program oxidation (TGA-TPO) using a Netzsch STA-449 F1 

Jupiter. In a typical experiment, the functionalized material (30 mg) was placed on a 

crucible with a constant flow of Ar (40 mL/min) and air (10 mL/min). The cell was 

preheated to 40°C then increased to 700°C with a ramping rate of 3°C/min. The outlet 

gases (CO2, SO2) were analyzed on an on-line mass chromatography Aeolos QMS 403C.  

4.2.6 Catalytic reaction measurements 

The liquid phase alkylation was carried out at 250oC and 850 psi of N2 in a 160 mL 

Mini Bench Top Parr high-pressure reactor (Model Parr 4564) equipped with a Parr 4848 

Reactor Controller. Reactant concentrations of 1.0 M m-cresol and 0.5 M cyclopentanol 

(CPOL) were used in decalin solvent or as a pure m-cresol/CPOL mixture of 2:1 molar 

ratio. The collected liquid was analyzed with a GC-FID and GC-MS equipped with a 

Phenomenex capillary column (ZB-1701, 15 m x 0.25 mm x 0.25 µm).  

A specific test was designed to investigate the leaching of active moieties from 

different samples under reaction conditions. The experiments included two steps. First, 

the alkylation reaction was carried out at 250oC, 2 h, 850 psi under either decalin solvent 

(non-polar medium) or pure m-cresol/CPOL mixture (polar medium) (Step 1). After 

reaction, the catalyst was separated from the reaction mixture. A small fraction of the 

obtained liquid was collected for GC analysis while the remaining liquid product was 

placed back in a clean reactor and re-run at 250°C for 14 h, 850 N2 psi, without the 

presence of a solid catalyst (Step 2). Therefore, any enhancement in the yield of alkylated 
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products in the second step should be due to the presence of solubilized functional groups 

that further catalyze the alkylation reaction (homogeneous catalysis). The extent of 

leaching was evaluated with the calculated ratio of the homogeneous (rhomo) to 

heterogeneous rates (rhetero). First, the heterogeneous rate of formation of a coupling 

product (i) was defined as the product concentration obtained during the first run divided 

by the reaction time (2 h). Likewise, the homogeneous rate was defined as the increase in 

concentration from the first to the second run, divided by the reaction time of this run (14 

h), as shown below. The higher the value of the rhomo/rhetero ratio is, the higher is the extent 

of leaching is.  

 

In all runs, the conversion of CPOL (X), yield of a product (Yi), and carbon balance 

(Cbalance) were calculated as follows:  

                                                 

CCPOL-in and CCPOL-out: Initial and remaining concentration of CPOL (mM) 

Ci and ni : Concentration of the product i (mM) and the corresponding 
stoichiometric number  

Cin and Cout: Initial and remaining amount of carbon existing in the system (mM) 

Ci-run1 and Ci-run2: Concentration of the coupling product (i) in the first and second 
run (mM) 

rhomo and rhetero: the homogeneous and heterogeneous rate of formation of a coupling 

product (i), respectively; 2 h and 14 h were the reaction time of the first and second run, 
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respectively. Assuming that the homogeneous activity in the first run was negligible 

compared to the heterogeneous one.    

4.2.7 Computational simulations 

Ab initio molecular dynamics (AIMD) simulations were performed using Vienna ab 

initio simulation package (VASP)[188]. The ion–electron interaction was described 

through the projector-augmented wave (PAW) approach[189, 190]. For the structural 

optimization, the exchange and correlation energy was represented using the Perdew-

Burke-Ernzerhof (PBE) functional of the generalized gradient approximation 

(GGA)[191]. The van der Waals interaction has been taken into account through the 

Grimme’s DFT-D3 semi-empirical method[192]. The Brillouin zone was sampled using 

a single k-point at Γ. A 300 eV cutoff for the plane-wave basis set was adopted in the 

AIMD simulations. The simulations were performed at 320 K in canonical ensembles. 

The time step was set to 1 fs. The velocities were scaled each step to the temperature. The 

MCM41 unit cell was taken from a previous report[193]; the wall thickness of this 

structure is a bit less than 1 nm and the pore diameter is about 3 nm. Both T1 and T2 

adsorption modes for OTS have been tested, and the results were similar in terms of the 

configuration of the OTS grafted to the MCM41 framework. 

 

4.3 Results and Discussions 

4.3.1 Structure, morphology and porosity analysis of the functionalized MCM41  

A. X-ray Diffraction and Surface Area Measurements 
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The XRD profile for the bare MCM41 sample displays the typical diffraction peaks 

at 2.16°, 3.76° and 4.34° corresponding to (100), (110) and (200) planes, respectively, 

which are characteristic of the hexagonal arrangement of the mesostructured silica [194] 

(Figure 4.1). The decreased intensities observed on the functionalized catalysts indicate 

different extents of crystallinity loss during the functionalization step [195-198]. The 

almost negligible difference in crystallinity of the MCM41-SO3H-CG sample prepared 

by conventional grafting compared to the parent MCM41 correlates with the low extent 

of grafting resulting from this functionalization method. In contrast, a more significant 

decline in crystallinity is observed for the MCM41-ETS-CG, MCM41-OTS-HG and 

MCM41-SO3H-HG samples. That is, the extent of functionalization parallels the reduced 

crystallinity and porosity. Interestingly, it should be noticed that the (100) peak of 

MCM41-SO3H-HG sample gets broadened and shifted to higher angle.  

 

Figure 4. 1 XRD spectra for the functionalized and parent MCM41. 
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Nevertheless, despite the reduction in XRD intensity, the N2 adsorption-desorption 

isotherms for the functionalized MCM41 and SBA15 materials (See Figure S2-

Supplementary Information) are of type IV, which is characteristic of the mesoporous 

materials. Similarly, the hexagonal structure typical of MCM41 can still be observed in 

the TEM images for all the functionalized samples, including MCM41-SO3H-CG and 

MCM41-SO3H-HG (Figure S1. Supplementary Information). As summarized in Table 

4.1, it is clearly observed that the surface area, pore diameter, and pore volume 

consistently decrease after functionalization, according to the following order: MCM41 

> MCM41-ETS-CG ~ MCM41-OTS-HG > MCM41-SO3H-HG. However, even the 

samples exhibiting significant decreases in surface area and pore volume still retain a 

high surface area (about 400 m2/g or more), which is high enough for catalysis 

applications. The decrease in the porosity with increasing degree of functionalization can 

be attributed to the deposition of the alkyl and alkyl-sulfonic functional groups on the 

inner surface of the mesoporous silica as well on the mouth of the pores, near the external 

surface. 
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Table 4. 1 Porosity properties of parent and functionalized mesostructured silica. The 
surface area and pore diameter were calculated using BET method. The pore volume 
was obtained by BJH method 

Sample 
Surface Area 

(m2/g) 
Average 

Diameter (Å) 
Pore Volume 

(cm3/g) 

MCM41 728 32 0.61 
MCM41-SO3H-CG 706 27 0.47 
MCM41-ETS-CG 620 16 0.26 
MCM41-OTS-HG 635 17 0.30 

MCM41-SO3H -HG 394 20 0.20 
SBA15-SO3H -CC 447 72 0.88 

 

B. Diffuse Reflectance Infrared Spectroscopy Fourier Transform (DRIFTS) 

As widely documented in the literature, the bands observed in the 4000-3100 cm-1 

range of the DRIFT spectrum can be assigned to the stretching vibration of surface –OH, 

while those in the 3100-2700 cm-1 range can be ascribed to CH2/CH3 groups [131, 199]. 

Upon functionalization, the disappearance of the free surface silanol band (Figure 4.2) is 

expected since the silylation consumes surface -OH groups to form Si*- O bonds and 

grafts the functional group (as in M-Si-O-Si*-R, where M-Si-O and –R correspond to the 

silica wall and functional groups, respectively). Therefore, the density of the remaining 

surface silanol groups after functionalization can be used as an indicator of the 

effectiveness of the functionalization procedure. Along with the disappearance of silanol, 

a rise in the C-H bond band intensity is expected in the 3100-2700 cm-1 range. However, 

examination of the spectra shows that all the samples functionalized with trialkoxy-

organosilanes by the conventional grafting (CG) method exhibit a high content of residual 

free surface silanols and a low intensity of alkyl chain bands (Figure 4.2a). In fact, the 

differences with the un-functionalized MCM41 are minor. That is, the DRIFTS analysis 
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indicates a low extent of Si*-O bond formation.  It is clear that when using trialkoxy-

organosilanes as silylating agent, the temperature used (40oC) was not high enough to 

activate the silylation reaction with the surface silanols.  Moreover, increasing the 

synthesis temperature up to 110°C did not enhance the extent of sylilation (MCM41-

SO3H-CG (110C) sample much. By contrast, when the trialkoxy compound was replaced 

by a trichloro organosilane a clear disappearance of the free surface silanols was 

observed, along with a clear increase in the signal of the C-H vibration, even at the lower 

temperature treatment (see sample MCM41-ETS-CG (40C) in Figure 4.2a). Evidently, 

this difference is due to the higher reactivity of the trichloro-organosilanes compared to 

that of the trialkoxy-organosilanes. It is possible that even higher temperatures might be 

necessary to activate the trialkoxy compounds. However, the use of solvents in 

conventional synthesis procedures limits the temperature that can be used for grafting to 

the boiling point of the solvent. Therefore, it is desirable to eliminate the use of a solvent 

altogether.  By doing so, one could operate at higher temperatures and minimize the 

presence of water during the synthesis procedure, which is the basis of the high-

temperature grafting (HG) method proposed here.    

In addition, since in the HG method the organosilane precursor is impregnated on the 

silica support until the point of incipient wetness, the (CH3O)3Si-R moieties completely 

fill the pores of the solid without any excess on the external surface of the solid. So, when 

the temperature is high enough they should react with the internal silanols in an effective 

way. Consequently, this solvent-free procedure allows for a high degree of 
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functionalization and a uniform distribution of active sites across the support surface, 

minimizing cross condensation of organosilanes or decomposition.  

As demonstrated in the spectra of Figure 4.2b, all the samples synthesized by the HG 

method present a complete conversion of the free silanols along with a large increase in 

the band assigned to the alkyl groups. The band appearing in the region around 2550 cm-

1 is ascribed to the vibration of –SH groups (see sample MCM41-SH-HG). This band 

disappears upon oxidation by H2O2 to form the acidic –SO3H group (see sample MCM41-

SO3H-HG). The absence of -SH vibration signal on all of the acid-functionalized catalysts 

indicates that the oxidation process is complete. 
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Figure 4.2 FTIR spectra at 50°C for the functionalized MCM41 synthesized by 
conventional grafting (CG) and high-temperature grafting (HG) with corresponding 
synthesis temperatures a) MCM41 functionalized by CG b) MCM41 functionalized by 
HG 

 

b) 

a) 
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C. Thermal Gravimetric Analysis (TGA) 

We have used TGA to quantify the total load of organics in each sample. A typical 

TGA-TPO for a functionalized silica shows four characteristic regions (Figure 4.3). The 

first region (40-120°C) corresponds to elimination of adsorbed water. A second region 

(120-300oC) shows a mass plateau without any detectable MS peak. Moreover, the IR 

characterization (S3-Supplementary Information) demonstrates no decrease in the 

bands corresponding to the functional groups below 300°C. The 300-500°C region 

displays a significant mass loss attributed to the thermal degradation of functional groups. 

In this region, the Si-C, C-C and C-S bonds are thermally decomposed into CO2, SO2 and 

H2O. The mass loss and corresponding MS signal of evolved gases were used to quantify 

the degree of functionalization on the mesostructured silica (see Table 4.2). The mass 

loss zone starting at 550oC can be ascribed to a small extent of thermal dehydroxylation 

of remaining single and germinal silanols [200].  

As shown in Table 4.2, it can be obviously seen that the functionalization with 

trialkoxy organosilane (ex: MPTS) precursor when using the conventional CG method 

resulted in a low silylation yield (0.31 mmol/g). In contrast, the ETS precursor was much 

more effective when using the same method due to its higher reactivity. The resulting 

functionalization loading in this case was significantly higher (2.71 mmol/g). As 

mentioned above, 40oC is too low a temperature to activate the relatively unreactive 

trialkoxy organosilanes precursors. In fact, by increasing the functionalization 

temperature and conducting the silylation in a well-controlled environment (via the HG 

method), a substantial improvement in the level of the functionalization with trialkoxy 
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organosilanes was exhibited (2.1 mmol/g). Even though high degree of functionalization 

on MCM41-SO3H-HG resulted in the decreased crystallinity, the catalyst could still 

maintain high fraction of ordered hexagonal arrangement (Figure S4c-d. 

Supplementary Information). No much difference in grafting efficiency can be noted 

between two synthesis methods when ETS (CG) and MPTS or OTS (HG) were used (~35-

40%), demonstrating that at high temperature the reactivity of trialkoxy silane is as high 

as tricholo silane. The density of functional groups on MCM41-SO3H-HG was calculated 

to be about 2.34 groups/nm2, which is smaller than the density of available silanols of the 

parent MCM41. It indicates that all of functional groups are deposited inside the 

hexagonal pores rather than the external surface. 

 

Figure 4. 3 Thermal Gravimetric Analysis (TGA) of MCM41-SO3H-CG. The TGA 
results of the other samples investigated are shown in Figure. S1-Supplementary 
Information 
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Table 4. 2 Composition of the mesostructured silica after functionalizing by different 
methods 

Materials 
Synthesis 
methods 

Precursor 
(mmol/g cat)a 

Functionalization 
temperature, oC 

Functionalization 
(mmol/g cat)b 

Density, 
groups per 

nm2 

MCM41 Commercial - 
- 3.11-3.74 (Si-

OH)c 
3c-5.8d 

MCM41-
SO3H 

CG MPTS (5.11) 
40 

0.31 
0.26 

MCM41-ETS CG ETS (7.11) 40 2.71 2.44 
MCM41-OTS HG OTS (5.11) 180 1.8 1.87 

MCM41-
SO3H 

HG MPTS (5.11) 
180 

2.1 
2.34 

SBA15-SO3H CC MPTS (5.11) 100 0.97 0.91 
CG: Conventional Grafting, CC: Co-condensation, HG: High-temperature grafting. 
a Amounts of functional moieties used in the synthesis procedure 
b Calculated from the TGA-TPO results (See Figure S1- Supplementary Information). 
c Theoretical estimation of the -OH groups on the surface reported by Ref [196-198, 200] 
d Based on our AIMD simulations 

D.  Solid State NMR Cross Polarization Magic-Angle Spinning (CPMAS) 

NMR 1H1-29Si CPMAS analysis can be used to determine the different structures of 

functionalized moieties on the silica surface [146, 162, 200].  As summarized in Scheme 

4. 1, two families of signals are typically obtained on functionalized silicas.  The first 

family of signals (Qn) arises from Si species in the silica surface, giving different shifts 

depending on the coordination to bridging O or terminal silanols, that is Qn=Si-(OSi)n-

(OH)4-n, with n=2–4. The possible structures include siloxane tetra-coordinate Si-(OSi)4 

(Q4 at -111 pm), single silanol Si-(OSi)3-(OH) (Q3 at -101 ppm), and geminal silanol Si-

(OSi)2-(OH)2 (Q2 at -92 ppm). The second family of signals (Tm) corresponds to Si 

species in the organosilane structures (Tm=RSi(OSi)m-(OH)3-m, m=1–3) with varying 

degrees of bonding to the surface.  That is, triple bonded (T3 at -65 ppm). double bonded 

(T2 at -57 ppm), and single bonded (T1 at -50 ppm).  
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Scheme 4. 1 Different grafting modes on MCM41-MPTS/ETS/OTS [194, 200] 

As shown in Figure 4.4, the two samples described above as those with the highest 

extent of functionalization (MCM41-ETS-CG and MCM41-SO3H-HG) indeed display a 

high intensity for the bands representing multi-bonded functional moieties (T2 and T3). 

This increase goes in parallel with a decrease in the intensity of the Q2 and Q3 bands 

corresponding to species associated with geminal and single silanols, respectively. 

Clearly, the high-temperature grafting methods favor the generation of trialkoxide-

bonded species while MCM41-ETS-CG shows higher density of bipodal T2 species. It 

seems that a high grafting temperature facilitates the formation of tri-bonded functional 

sites on the surface, even for the less active trialkoxy precursor (MPTS). In contrast, weak 

Tn signals as well as a high density of unreacted silanols (Q3) are observed in the case of 

MCM41-SO3H-CG, in agreement with the above discussion relative to the XRD, IR and 

BET results. 
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Figure 4. 4 NMR 1H-29Si CPMAS spectra of parent and functionalized MCM41  

E. Hydrothermal stability of functionalized materials in the presence of water 

The hydrothermal stability of functionalized MCM41 was evaluated as described in 

Ref [201].  In this test, 500 mg of catalysts was placed into a Teflon container inside a 50 

mL autoclave. Water was added into the system at the bottom of the autoclave without 

direct contact with the catalysts. The system was heated to 200oC or 250oC to generate 

steam under autogenic pressure. The amount of water added was varied to control the 

state of water inside the system, which is determined by the n/no ratio, with n = amount 

of water in the system and no = amount of water needed to reach the saturation point. That 

is, n includes the amount of water added plus the amount of water already present in the 

catalyst (~0.015 g, as determined by TGA). In our conditions (T = 200oC, V = 50 ml, gas 

compressibility factor = 0.96, vapor pressure of water = 15.31 atm). The amount of water 

necessary to reach the saturation of the water vapor is no = 0.34 g. That is, when n/no < 1 

-200-150-100-50050
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water is only in the vapor phase; when n/no=1 water starts condensing; when n/no >1 the 

system contains both vapor and liquid water. After the hydrothermal treatment, the 

catalysts were dried at 100oC and analyzed by several techniques to evaluate the impact 

of the water attack on the structure. 

As shown in Figure 4.5, the XRD analysis indicates that the crystalline structure of 

the bare MCM41 completely collapsed when the mesoporous material was exposed to 

vapor water at 200oC (n/no = 0.2). In parallel, as shown in Table 4.3, the surface area 

(SBET) and pore volume (Vpore) were severely affected, dropping from 728 to 32 m2/g and 

0.61 to 0.15 cm3/g, respectively. It is clear that the bare MCM41 was extremely 

susceptible to water attack (hydrolysis) at high temperature (200oC). Moreover, even 

calcining the MCM41 at 600oC for 6 h prior to water treatment did not increase the 

resistance to water, as demonstrated in Figure 4.5 and Table 4.3. Similarly, the 

functionalized material prepared by conventional grafting MCM41-SO3H -CG catalyst 

was susceptible to water vapor attack, but to a lesser degree than the bare material. That 

is, XRD indicates that the long-range crystallinity was maintained at low n/no values. 

However, in the presence of liquid water (i.e., n/no  1), the structure was severely 

damaged. The specific surface area decreased moderately (from 706 to 609 m2/g). The 

presence of the propyl-sulfonic groups in the functionalized material obviously enhanced 

the hydrothermal stability of the catalyst compared to the non-functionalized ones. 

However, the most remarkable enhancement in water tolerance was observed on the 

sample prepared by the high-temperature grafting method. As shown in Figure 4.5 and 

Table 4.3, the MCM41-SO3H-HG sample displayed excellent resistance to water attack 
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both in the vapor and liquid states. Additionally, it was observed that a highly-saturated-

surface sample (MCM41-ETS-HG 6x) synthesized by the HG method with an excess 

amount of ETS (30.6 mmol of ETS precursor used per gram of MCM41) also exhibited 

similar high hydrothermal stability. Contrary to the large effect of the n/no ratio exhibited 

by the less functionalized samples, the ones prepared by high-temperature grafting kept 

the same crystallinity, surface area, and pore volume as well as exceptional stability 

against water attack from n/no= 0 to 4 (Figure 4.5 and Table 4.3). 

 

Figure 4. 5. Effect of the hydrothermal attack by vapor or liquid water on the structural 
stability of bare and functionalized MCM41. The corresponding XRD spectra are 
included in Figure S5-Supplementary Information 

In agreement with the XRD analysis, the 1H-29Si CPMAS data (Figure S6-

Supplementary Information) indicate that there are no substantial changes in the 

surface structure of the MCM41-SO3H-HG sample after water attack with n/no ratios 

varying from 0.2 to 2. A minor modification of the organosilane structure can be inferred 

from a slight changeover in signal intensity from T2 into T3 as n/no increases. That is, 
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while the total functional group density (based on the total area of Tm signal) remained 

the same, the intensity ratio of T3/T2 increased. Then, this changeover might be a 

reflection of further reaction, at the increasingly severe hydrothermal conditions, between 

the di-bonded functional groups and the available surface silanols, becoming tri-bonded 

groups.  

Table 4. 3 Porosity of MCM41 before and after hydrothermal treatment 

Sample 
n/no 

(at 200oC) 
Surface Area 
(m2/g) 

Average 
Diameter (Å) 

Pore Volume 
(cm3/g) 

MCM41 
Before treatment 728 32 0.61 

0.2 32 185 0.15 

MCM41 
(600oC/6h) 

Before treatment 780 28 0.54 
1 18 122 0.06 
2 12 110 0.03 

MCM41-SO3H-
CG 

Before treatment 706 27 0.47 
0.2 653 28 0.46 
1 609 27 0.41 
4 618 29 0.45 

MCM41-SO3H-
HG 

Before treatment 400 20 0.2 
0.2 432 20 0.21 
1 477 19 0.23 
4 495 19 0.24 

MCM41-ETS-
HG (6x) 

Before treatment 185 19 0.1 
1 199 19 0.1 
4 190 20 0.1 

 

F. AIMD simulations of functionalized materials  

We performed ab initio molecular dynamics (AIMD) simulations to model MCM41 

functionalized with hydrophobic groups. The MCM41 unit cell was taken from a previous 

report [193]; the wall thickness of this structure is about 1 nm and the pore diameter is 

about 3 nm. When running AIMD simulations at 320 K, we noticed that the hexagonal 

structure deformed slightly. We introduced 4 OTS molecules into the porous structure, 
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each connected with the MCM framework in the aforementioned T1 configuration. We 

tested and compared the T2 adsorption mode as well for a lower density (1 OTS per MCM 

unit cell) and didn’t observe significant difference in terms of the dynamics and 

configuration of the OTS. When 4 OTS ligands are introduced, the OTS density is about 

0.4 OTS/nm2. The simulations run for more than 10 ps, and the snapshots are shown in 

Figure 4.6.  

 

Figure 4. 6 Snapshots from AIMD simulations over 10 ps of OTS-functionalized 
MCM41. The Si, O, C and H atoms are colored yellow, red, grey, and white, respectively.  
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In the initial configuration, the OTS moieties protrude toward the center of the pore. 

During the simulation, OTS moieties may contact with each other temporarily driven by 

the intermolecular interaction (see at 2 ps and 7 ps simulation time), however, the 

interaction with the wall of the MCM41 tends to drive the OTS to be attached to the 

framework, at least at this OTS density; One would expect more inter-molecular contact 

at higher OTS densities. Note in this model of MCM41, the wall is rather hydrophilic 

[193]; The surface OH density is 5.8 per nm2. The driving force for the OTS to lean 

toward the MCM41 framework seems to be the van der Waals interactions. The AIMD 

simulations thus indicate that, as a result of the OTS functionalization, the pore volume 

and diameter decrease quite significantly, in line with the experimental finding. 

4.3.2 Catalytic activity of the acid-functionalized mesostructured silicas  

The reaction of cyclopentanol (CPOL) with m-cresol was used as a probe to test the 

different catalytic materials. As illustrated in Scheme 4.2, a few reaction pathways can 

occur from these two reactants. First, CPOL can undergo self-etherification to produce 

dicyclopentyl ether (DPE) as well as cross-etherification with m-cresol (O-alkylation) to 

form cyclopentyloxy methylbenzene. However, we did not observe the latter in any of 

the runs. The main products were those from acid-catalyzed alkylation. It is well known 

that in the presence of an acid catalyst, CPOL can be readily dehydrated to generate 

cyclopentene (CPEN).  Then, either CPOL or CPEN can attack the aromatic ring via 

alkylation, forming a C12 product dimer, which can subsequently react further to produce 

the trimer C17. Both the alcohol (CPOL) and the olefin (CPEN) are alkylating agents, as 
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demonstrated in our previous work with the isopropanol/m-cresol system [9]. No trace of 

tri-alkylated product (tetramer) was detected, even at high overall conversions (~90%).  

 

  

Scheme 4. 2  Reaction pathways from CPOL and m-cresol. 

The product distributions from the several samples obtained with the different 

preparation methods, MCM41-SO3H-CG, MCM41-SO3H-HG, and SBA15-SO3H-CC 

are compared in Table 4. 4. It can be seen that all samples exhibited high activity for the 

alkylation reaction with excellent carbon balance (>90%) in most cases. In decalin 

solvent, CPEN was the most abundant intermediate product due to a rapid dehydration of 

CPOL at the reaction temperature of 250oC. 
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Table 4. 4 Activity of different functionalized catalysts for alkylation reaction between 
cyclopentanol and m-cresol. Reaction condition: Feed ratio: 1.0 M m-cresol - 0.5 M 
cyclopentanol (CPOL) in the case of decalin solvent and 6.6 M m-cresol – 3.3 M 
cyclopentanol (CPOL) in the case of using pure chemical (solvent free); Temperature: 
250oC; Pressure: 850 psi N2; Reaction time: 2h 

Catalysts Solvent 
Disappearance 
of CPOL, % 

Yield, % Carbon 
balance, % CPEN C12 C17 DPE 

MCM41-SO3H-
CG 

Decalin 80.6 43.2 18.1 3.5 1.8 86 

SBA15-SO3H-
CC 

Decalin 100 81.2 16.4 4.4 0.4 102.3 

MCM41-SO3H-
CG 

Pure CPOL/   
m-cresol 

44.4 24 15.3 1.6 3 99.5 

SBA15-SO3H-
CC 

Pure CPOL/   
m-cresol 

97.1 32 50.2 20.1 0.2 105.4 

MCM41-SO3H-
HG 

Pure CPOL/   
m-cresol 

96 40 39.9 9.6 0.6 94 

Among the possible reaction paths from Scheme 4.2, the C-alkylation is shown to be 

more favorable compared to O-alkylation for most cases. It can be seen that at lower 

concentrations of CPEN (on MCM41-SO3H-CG), more DPE was produced (1.8%) 

compared to only 0.4% yield of DPE in the case of higher concentration of CPEN (on 

SBA15-SO3H-CC). This result indicates that CPEN only reacts via C-alkylation while 

CPOL promotes both C- and O-alkylation, as reported in our previous study with 

isopropanol/m-cresol [9].  

In pure CPOL/m-cresol medium, MCM41-SO3H-CG catalyst showed lower activity 

for CPOL dehydration. In this case, a lower concentration of CPEN led to higher yields 

of DPE, as expected. Very high conversion (>90%) and yield of C12+C17 (~70%) were 

observed on SBA15-SO3H-CC. The catalyst synthesized by high-temperature method 

(MCM41-SO3H-HG) also demonstrated comparable activity toward C-alkylation, 

producing roughly 50% yield of C-C adducts. A general trend can be seen, that is, the 
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formation of bulky C17 adduct is promoted in pure medium with high concentrations of 

both CPOL, CPEN and m-cresol substrate. While in the first reaction cycles, all samples 

behaved rather similarly; significant differences were observed in subsequent cycles, as 

described below.  

As mentioned in the Experimental section, a leaching test was implemented to 

quantify the possible leaching of the active species during reaction. That is, after the initial 

alkylation reaction, the catalyst was separated from the reaction mixture. After analysis, 

the liquid mixture was sent back to the clean reactor and re-run under the same conditions, 

but without the presence of a solid catalyst. Therefore, any conversion in this step must 

be ascribed to acid species leached from the catalyst. Figure 4.7 compares the rhomo/rhetero 

ratio, which demonstrates the relative rate of the homogeneous and heterogeneous 

activity on different catalysts. CPEN is an intermediate (alkylating agent) which reacts 

quickly with m-cresol to form C-C coupling products. Therefore, CPEN yield was not 

shown here to avoid confusion. 

Under a polar medium (e.g. m-cresol/CPOL mixture), the samples MCM41-SO3H-

CG and SBA15-SO3H-CC experienced severe leaching of functional moieties, as 

observed by the high rhomo/rhetero value. That is, the observed activity during the second 

step must be ascribed to homogeneous reaction catalyzed by the solubilized sulfonic 

groups in the reaction mixture. It must be noted that no thermal reactions were detected 

under the evaluated conditions with any of the reactants, intermediates, and products in 

the absence of solid catalysts or leached moieties. The extent of leaching, as determined 

from this test seems to strongly depend on the sample and type of solvent used.  For 
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instance, leaching of active moieties was clearly observed when the SBA15-SO3H-CC 

sample was used, in both polar and non-polar solvents. However, it did not occur with the 

MCM41-SO3H-CG sample when a non-polar solvent (decalin) was used, but it did leach 

under the polar solvent. Most interestingly, the catalysts synthesized by the high-

temperature method did not show any leaching, even in the presence of a polar medium 

(Figure 4.7). In this case, the minor CPEN consumption (not shown in the graph) is 

attributed to physical loss (evaporation) during the leaching test procedure since CPEN 

is highly volatile.  

 

Figure 4. 7 The net change of product concentrations after leaching test. The reaction 
was first carried out at 250°C, 850 psi of N2 for 2h. The obtained filtrate was then re-run 
at 250°C, 850 psi of N2 for another 14 h without the addition of solid catalysts 
 

4.3.3 Analysis of the leaching process 
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It is clear that the propensity for leaching of a given functionalized organosilane from 

a mesoporous silica is a strong function of the method used for grafting these functional 

groups. In this section, we analyze the possible causes of leaching and what precautions 

can be taken to minimize it. 

A.  Internal bond cleavage  

Previous studies have proposed a leaching mechanism involving the cleavage of the 

Si-O [146, 165] or the Si-C bond [167, 168] via water-assisted hydrolysis (Scheme 4.3a). 

For instance, for the grafted SBA15 catalyst, it has been suggested that the losses of 

functional groups are mostly due to leaching of monopodal species (T1) via Si-O bond 

cleavage. In this case, disappearance of the T1 signal is observed after hydrothermal 

treatment (sample suspended in liquid water at 120oC for 7 days) while T2 and T3 species 

are less affected [146]. 

 

Scheme 4. 3 Possible causes of leaching a) Internal bond cleavage b) Weak interaction of 
functional groups 
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To clarify this mechanism in our system, we characterized the structure of the surface 

functional groups and carried out a quantitative analysis of the relative intensity of the 

1H-29Si CPMAS bands (Figure 4.8). As discussed in the previous text, there are two types 

of bands in 1H-29Si CPMAS including the Si in the silica structure (Q2, Q3 and Q4) and 

the Si in organosilane structures (T1, T2, T3). Equations 1 and 2 can be used to calculate 

the fraction of each type of Si bonding mode, organosilane and silica, respectively. The 

values of Tm and Qn signals were obtained from integrating the corresponding peaks in 

1H-29Si CPMAS spectra, which were deconvoluted using Gaussians. The results are 

shown in Figure 4.8. 
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Our data demonstrates that the organosilane composition of the spent catalyst 

(MCM41-SO3H-CG-S) displayed a decrease in T2 (from 62% to 29%) and also the total 

organosilanes signal, indicating that T2 species in MCM41-SO3H-CG leached under our 

conditions (Figure 4.8a). However, even though high proportion of the T2 bonded mode 

was observed in MCM41-SO3H-HG catalyst (~37%), no leaching was detected in this 

case. In general, there is no clear relationship between extent of leaching and nature of 

bonding mode of the functional groups since the T2 species leached in the case of 

MCM41-SO3H-CG but did not in the case of MCM41-SO3H-HG. Moreover, the fraction 

of surface silanols (Q2 and Q3) of spent catalysts did not change when the leaching 
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happened (Figure 4.8b). If the Si*-O bonds breaking is the cause of leaching, the 

regeneration of surface silanols would be expected. Therefore, the cleavage of the Si*-O 

bonds, in our system, may not be the original cause of leaching since it could not explain 

the observed significant differences of leaching behavior between the CG and HG 

samples under the same reaction conditions (i.e., CPOL/m-cresol at 250oC). In a similar 

manner, it would be not reasonable to expect that Si-C, C-S, or C-C bond breaking is the 

main cause of leaching. 

 

Figure 4. 8 Surface composition of the functionalized MCM41 a) Tm b) Qn b) Weak 
interaction between functional groups and the surface silanols 

 

B. Weak interaction between functional groups and the surface silanols 

The second possible explanation for the observed leaching is that a diversity of 

strengths of interaction existed between the functional groups and the surface. For 

example, instead of a strong chemical Si*-O bond some functional groups could be 

grafted via a weaker interaction (H-bonding or Van de Walls forces) (Scheme 4.3b). As 

a consequence, a strong interaction between the polar solvent (CPOL + m-cresol) with 
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the sulfonic groups would be able to remove these physically adsorbed species off the 

surface at elevated temperatures. This option is plausible since the results from N2 

adsorption-desorption, FTIR, and 1H-29Si CP MAS NMR showed that the CG method did 

not result in the formation of strong chemical bonds, at least not to a great extent. 

However, as further discussed below, we believe that this is not the main path for leaching 

neither. 

  

Figure 4. 9 a) NMR 1H-29Si CPMAS spectra of physically impregnated MCM41 and 
Al2O3 b) POSS (Polyhedral Oligomeric Silsesquioxane) structures 

To further examine the nature of the physically adsorbed organosilanes on the catalyst 

surface we utilized the 1H-29Si CP MAS NMR data. A sample (MCM41-PI) was prepared 

by physical impregnation of MCM41 with MPTS at room temperature, without any 

further treatment. Surprisingly, the NMR data indicated the presence of T1, T2 and T3 

structures on the impregnated sample, which indicates that the appearance of Tm bands is 

not a strong indication of chemically bonded functional groups (Figure 4.9a). In fact, to 

rule out the possibility that the silylation could occur even at low temperatures, a similar 

procedure was conducted on Al2O3 which does not possess surface silanols. As shown in 
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Figure 4.9a, the Al2O3-PI sample also showed Tm bands. That is, without silanols, 

formation of Si*-O bonds could not occur on alumina. Therefore, we can conclude that 

the observed Tm bands in both samples should be due to the physically adsorbed species, 

reacting with themselves. These species could form mono- or poly- organosilanes, such 

as the well-known POSS structures (Polyhedral Oligomeric Silsesquioxane) [202-204] 

(Figure 4.9b). To further prove this concept, the Al2O3-PI sample was oxidized and 

washed with methanol to produce the Al2O3-SO3H-HG sample. The disappearance of Tm 

signals from this sample (Figure 4.9a) indeed proves that all of the physical adsorption 

of organosilanes can be completely removed by a single step of methanol washing. 

Therefore, it should be concluded that observation of Tm signal in 1H-29Si CPMAS can 

be due to either chemically bonded functional groups or physically adsorbed species. The 

bands observed on the functionalized MCM41-SO3H-CG and MCM41-SO3H-HG 

samples are indeed due to actual chemical Si*-O bonds, in good agreement with other 

analysis techniques (FTIR, XRD, N2 adsorption-desorption, TGA, etc). However, one 

must be careful assuming that Tm bands will always indicate formation of strong surface 

grafting via chemical bonds.   

To gain a greater understanding on the leaching of MCM41-SO3H samples 

synthesized by the CG method, the stability of the catalyst was further tested via multiple 

sequential washes with MeOH at 200°C (Figure S7a-Supplementary Information). 

After each wash, the solid was recovered and re-run for alkylation reaction at 250°C, 850 

psi of N2. It was observed that the activity of MCM41-SO3H-CG gradually decreased 

after each methanol wash, which illustrates the severe leaching of functional moieties 
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when placed in contact with a strong polar medium, such as methanol. The extent of 

leaching for the MCM41-SO3H-HG catalyst was less severe, with the activity dropping 

27% initially, but stabilizing after the second wash (Figure S7b-Supplementary 

Information). This result suggests that the removal of physically adsorbed species during 

alkylation reaction does not cause the leaching. As discussed previously, a single 

methanol wash at high temperature is sufficient to clean the surface of loosely attached 

species. Therefore, if the activity keeps decreasing with subsequent washes, another more 

severely damaging effect should be occurring. 

Moreover, the MS signal accompanying the TGA profiles (Figure 4.3) shows no 

evidence of organosilanes species desorbing (nor significant mass losses) in the second 

region (120-300oC), which is at a temperature high enough to desorb physically adsorbed 

species from the surface. These results strongly suggest that most of the physically 

adsorbed or un-reacted organosilanes are completely removed after the ethanol wash 

during the catalyst preparation. In conclusion, physical adsorption or any other form of 

weakly interacting organic moieties with the surface cannot be the cause of the observed 

leaching. 

As discussed previously, FTIR analysis (Figure 4.2) indicates that the MCM41-SO-

3H-CG catalyst has a high density of free silanols. NMR analysis in Figure 4.8b also 

shows the similarity between the parent MCM41 and the functionalized MCM41-SO3H-

CG with high fraction of free silanols (Q2 and Q3) on the surface. Previous studies in our 

group have shown that silanol-terminated defects are responsible for the low tolerance of 

some zeolites in hot water [201]. In good agreement with the previous studies, the 
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hydrothermal stability experiments reported here (Table 4.3 and Figure 4.5) reflect a high 

susceptibility of MCM41 and MCM41-SO3H-CG to water. From these results, we can 

propose that the observed leaching in water or polar solvent media may be due to an 

attack on silanol-terminated sites on the silica surface, leading to partial dissolution of the 

solid surface structure, which results in massive leaching. In the next section, we will 

further elaborate this hypothesis. 

C.  The attack of water or polar species on silanol sites 

 

Figure 4. 10 Proposed leaching mechanism: Water attacks the silanol-terminated sites 
leading to structural damage 

A possible mechanism of leaching is illustrated in Figure 4.10. First, a thin liquid 

layer could be formed around hydrophilic centers, such as the sulfonic group on which 

water or polar compounds can nucleate. The remaining silanol-terminated sites would 

facilitate the attack of liquid water (or methanol) via hydrolysis (or methanolysis). The 

process starts hydrolyzing the surface, gradually spreading into the bulk solid phase and 
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destroying the structure. The leached species are, in fact, the functional groups attached 

to a fraction of silica wall, as illustrated in Figure 4.10. This explains why the leaching 

is associated with structural damage, as observed in the methanol wash experiments. This 

idea is also consistent with the relationship observed between the hydrothermal stability 

and leaching of the silica-based catalysts, which essentially depends on the density of free 

silanols. The MCM41-SO3H-HG catalysts are highly resistant to hydrolysis/leaching 

because they have a low density of silanol groups due to the more effective 

functionalization.  As shown in Figure S8-Supplementary Information, this concept is 

also applicable to other silica-based catalysts, such as SBA15. As shown, the SBA15-

SO3H-CC sample synthesized by co-condensation experienced severe leaching in either 

polar and non-polar solvents. By contrast, when the fresh SBA15-SO3H-CC was grafted 

with ETS in excess amounts via HG method (30.6 mmol ETS precursor per gram of the 

catalyst), a highly functionalized, hydrophobic surface was obtained. This heavily 

functionalized catalyst essentially showed no leaching at 250oC in pure CPOL/m-cresol 

medium. It is obvious that by capturing the free silanols by functionalization, the leaching 

could be completely shut down on the SBA15-SO3H-CC catalyst. 

The proposed leaching mechanism is in line with similar effects of surface silanols 

reported about the stability of zeolites in hot liquid water [201]. In that case, it was 

proposed that water molecule clusters nucleated by free silanols, wetted the surface, and 

accelerated the hydrolysis of Si-O-Si sites, which led to the collapse and partial 

dissolution of the zeolite structure. It was found that hydrophobization of the zeolites by 

organosilanes was an effective method to enhance hydrothermal stability [201]. Previous 
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studies have also emphasized the important role of hydrophobicity of the surface in the 

resistance against hydrolysis and leaching [205-207]. For example, Fierro et al. have 

demonstrated that the leaching of functional group depends on the hydrophobicity of the 

surface. That is, the introduction of hydrophobic linkers provides a “protection” that 

enhances the stability of S-containing group [205]. Similarly, Yang et al. have shown that 

octyl linkers prevent the leaching of active species by tangling with the acid sites to 

increase its stability against leaching agent [206]. As proposed here, the “protection” 

should include two simultaneous effects: (i) expelling the liquid water from the catalyst 

surface and (ii) capping the free silanols, which are the potential nucleation sites for 

hydrolysis. Even though the leaching phenomenon has been observed in many studies, 

the connection between hydrothermal stability/leaching and silanol density has not been 

fully described before mostly due to the complexity of the functionalized surface. 

4.4 Conclusion 

As a conclusion, we postulate that the origin of leaching of functional groups from 

mesoporous silicas can be attributed to the high susceptibility of silicas to water/polar 

species when the surface is terminated with silanol groups. That is, a high concentration 

of silanol groups on the surface favors the solvent attack and greatly diminishes the 

hydrothermal stability of the silica, speeding up the leaching process. Therefore, the three 

essential factors that regulate the resistance to leaching of functionalized mesoporous 

silica are (a) the degree of functionalization, (b) the density of free silanol groups and (c) 

the surface hydrophobicity. In fact, theses parameters are not independent parameters but 

strongly dependent. That is, increasing the degree of functionalization reduces the silanol 
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density and slows down the hydrolysis process. The surface hydrophobicity also plays an 

important role in keeping the liquid water away from the surface and preventing the 

dissolution of the outer layers of the solid. Accordingly, we have proposed a novel method 

to address these factors and obtain a non-leaching functionalized mesoporous silica.  This 

method could open up promising opportunities for applying this type of catalyst to 

reactions that require to be operated under severe conditions (e.g., polar solvents and high 

temperatures), such as those found in biomass conversion in the condensed phase. 

 

 

 

 

 

 

 

 

 

Chapter 5 - Self and Cross Aldol Condensation of 

Cyclopentanone and Acetone over ZSM-5.  
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The Factors Determining Cross- and Self- Selectivity 

 

5.1 Introduction and Literature Review 

5.1.1 Introduction 

An excellent selectivity of cyclopentanone (CPO) obtained from furfural 

hydrogenation/ring rearrangement (Chapter 2) has encouraged us to design different 

chemistries to incorporate this molecule into gasoline/diesel fraction. Besides 

hydroxyalkylation, the self-aldol condensation of CPO and the cross-aldol condensation 

of CPO with another ketone are other potential pathways to produce long-chain 

hydrocarbons. Since acetone could be selectively produced from the ketonization of 

acetic acid, one of the most abundant species in the first stage of torrefraction, the 

utilization of this small ketone has an intriguingly practical advantage as a means to vary 

molecular weights of the hydrocarbon products, depending on a specific demand or 

requirement. For example, aldol condensation of the cyclopentanone/acetone mixture 

could produce four different dimers and a few trimers with the chain length ranging from 

C8 to C15. The potential to obtain high yields of those condensated products is high since 

scientific community has extensively demonstrated the similar concept for several ketone 

mixtures on heterogeneous catalysts [208-213]. The mechanism of the reaction on basic 

catalysts has been extensively investigated in the literature while that on acid catalysts 

such as zeolites is less well-understood [214]. Furthermore, the factors that control the 

product selectivity to narrow down the diversity of the product chain length are not amply 

addressed. Therefore, the main purpose of this chapter is to give some fundamental 

insights into the matter. 
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5.1.2 Literature Review 

a/Mechanism of acid-catalyzed aldol condensation  

The acid-catalyzed aldol condensation of a wide range of ketones and aldehydes have 

been reported on zeolites [209, 215-218], Amberlyst [91, 168], acid-functionalized 

mesoporous materials [219, 220], CoAlPO4-5 [221], and MOF [222]. The mechanism for 

the acid-catalyzed aldol condensation is initiated by the simultaneous tautomerization and 

protonation. The former step can be activated by both Lewis and Brønsted acid sites. 

Herrmann et al. [223] have proposed that the Brønsted acid sites on large pore zeolites 

(BEA, FAU, MCM41) are responsible for the tautomerization of an adsorbed acetone. 

The acetone is first adsorbed on the surface via the interaction between the O atom of the 

carbonyl group with the surface proton (Scheme 5.1). The adsorbed species then 

undergoes the tautomerization with a concerted configuration on the Brønsted acid site. 

The concerted mechanism is in agreement with several previous studies [224, 225]. DFT 

calculations show that the proton does not completely transfer to the adsorbed acetone 

but instead stabilizes the molecule via H-bonding, which agrees with a 13C NMR study 

for the adsorption of acetaldehyde on HZSM-5 [226, 227]. The former enol undergoes an 

electrophilic attack on the C atom of the gas phase acetone (Eley-Rideal mechanism) to 

produce an aldol adduct [223]. In the second step, the C-C bond is formed simultaneously 

with a proton transfer in which the enol donates an α-proton to the O atom of the zeolite 

surface while accepting a proton from the Brønsted acid site to the O atom of the carbonyl 

group, as also suggested by Solans-Monfort et al. [225]. The diacetone alcohol is quickly 

dehydrated to produce mesityl oxide, which can be further isomerized to isometyl oxide 
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(Scheme 5.1). In contrast, other authors [224, 228-230] have reported that the most stable 

surface-species is a silyl-ether complex, which is the protonated adsorbed acetone at the 

transition state. The formed enol is bound to the Brønsted site via a weak  interaction 

[224]. The questions as to whether a Brønsted or a Lewis acid site is essential for the 

reaction and which step is kinetically relevant (tautomerization or C-C coupling) have 

been addressed repeatedly in the literature. 

 

Scheme 5. 1 Proposed mechanism of acid-catalyzed aldol condensation of acetone on a 
zeolite surface. Reproduced with permission from Ref. [223] 

b/ Site requirements 

Activation (enolization) by Brønsted sites:   
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Kikhtyanin et al. [208, 231] have suggested that the Brønsted acid sites on zeolites 

(HZSM-5, HBEA, HMOR and HSDUSY) play a crucial role in the aldol condensation of 

furfural/acetone. It was shown that regardless of the zeolite crystal framework structures, 

all the catalysts in H-form were all active for the reaction [208] whereas the NH4-form 

was nearly inactive. Moreover, two H-BEA catalysts with similar Brønsted acidity but 

different Lewis acidity exhibited similar activity, suggesting that the Brønsted acid sites 

are more important. 

Herrmann et al. [223] have reported a similar value of rate constants calculated from 

the first order rate expression for several MFI and BEA zeolites with different Si/Al ratios 

(MFI: 17-168, BEA: 12-43) and H+/Al ratios (MFI: 0.65-1.03, BEA: 0.22-1.04). There 

are three main points that back up their conclusion of an Eley-Rideal mechanism with C-

C coupling as the kinetically relevant step: (i) the surface was nearly saturated with H-

bonded acetone as confirmed by FTIR and DFT calculations under the reaction 

conditions; (ii) the acetone condensation rate was first order in the partial pressure of 

acetone in the gas phase; and (iii) no isotope effect was observed when acetone-d0/H2 vs. 

acetone-d6/D2 were used, indicating that the kinetically relevant step does not involve a 

proton-transfer process (i.e., formation/breaking of C-H/O-H bonds). 

On the other hand, some DFT studies on the acetone/formaldehyde system using 

cluster models have revealed that the tautomerization of acetone is the rate-limiting step 

on different zeolites: HZSM-5 [224, 225, 232], HY [232], H-FER [224], and HMCM-22 

[224], which is in agreement with an experimental gas phase study [233].  
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Activation (enolization) by Lewis sites:  Dumitriu et al. [209] have found out that 

silicalite-1 is also active for the aldol condensation of a mixture of acetaldehyde and 

formaldehyde. This material does not have any strong Brønsted acid sites, except for 

some weak acidity from terminal Si-OH groups. The authors have attributed the catalytic 

activity to the catalytic action of Lewis acid sites in combination with silanol groups, 

acting as the Brønsted acid sites (Scheme 5.2). The role of the Brønsted acid sites is to 

protonate the acetone to render the C of the carbonyl group electrophilic while that of the 

Lewis acid is to facilitate the tautomerization of the adsorbed ketone. However, the nature 

of the Lewis sites on this material was not mentioned. Biaglow et al. [234] have stated 

that acetone condensation could be catalyzed by non-framework Al species. The 

cooperation effect of both types of acid sites has also been invoked to explain the high 

activity observed in heteroatom modified-MFI zeolites (Fe, Al, Ge, B), which have both 

Brønsted and Lewis sites. The Lewis acid site can bind to acetone, enhancing the 

electrophilicity of  the  carbonyl group’s C atom, which is very similar to the protonation 

effect caused by Brønsted acid sites [234]. However, this hypothesis has not been tested 

experimentally.  

 

Scheme 5. 2. Proposed mechanism of cooperative catalysis of Brønsted and Lewis acid 
sites. Reproduced with permission from Ref. [209] 
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Panov et al. [235] have utilized FTIR to investigate the adsorption/condensation of 

acetone on alumina and USY, HY, HZSM-5 zeolites at 105 °C. They observed that on 

alumina, which possesses only Lewis acid sites, the reaction occurred at a much faster 

rate than on zeolites (containing both Brønsted and Lewis acid sites). In contrast, an 

HZSM-5 zeolite sample without non-framework aluminum exhibited zero activity. A 

linear relationship between the initial rate and density of Lewis acid sites. In contrast, no 

clear trend was observed with respect to Brønsted site density, suggesting that the Lewis 

acid sites are kinetically relevant. From FTIR spectra, it was shown that acetone could 

adsorb on both Lewis and Brønsted sites characterized by different stretching vibration 

frequencies of the carbonyl group (1650-1690 cm-1 for Brønsted sites and 1690-1705 cm-

1 for Lewis sites). This observation suggests a combined role for both types of active sites. 

In this manner, the Lewis sites would tautomerize the acetone while the Brønsted sites 

would adsorb the co-reactant for the C-C coupling step. If this is the case, close proximity 

between Brønsted and Lewis sites would be a crucial requirement for the cooperative 

effect. The lack of adjacent sites could lead to a low condensation rate, even when there 

is a high density of Brønsted sites available. On alumina, the absence of Brønsted sites 

leads to an Eley-Rideal mechanism, in which the tautomerized acetone picks up the co-

reactant from the gas phase. The C-C coupling might be proposed as the rate-limiting step 

without further explanation. However, this assumption cannot explain the faster reaction 

rate observed in the case of alumina.  

The activation of aldehydes by Lewis acid sites has also been reported in other 

catalysts such as CoAlPO4-5  [221] and MOF [222]. Kikhtyanin et al. [222] have studied 
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the role of Lewis acid sites in MOF materials for the aldol condensation of furfural and 

acetone. MOF catalysts investigated included Cu-BTC (Basikite C300) and Fe-BTC 

(Basolite F300). They showed an opposite catalytic behavior even though both materials 

have a similar density of Lewis acid sites (~2.3-2.5mmol/g). While Cu-BTC showed poor 

activity for aldol condensation, Fe-BTS exhibited 10-fold higher activity. The authors 

proposed that the Fe-BTS catalyst possessed weak Brønsted acidity originating from the 

promoting effect of water. However, the nature of the active sites was not reported. 

Hypothetically, they suggested that Fe3+ could hydrolyze the water molecules in their first 

coordination sphere to generate a metal aqua complex which could donate a proton to 

activate the ketone. The poor activity of Cu-BTC indicates that Lewis acid sites alone are 

were not sufficient to initiate the aldol condensation reaction, which probably suggests 

that the rate-limiting step, in this system, is C-C coupling.  

There are two issues that have been widely discussed in the literature, but without a clear 

conclusion. In fact, conflicting proposals have often been reported.   

 The Brønsted acid site could participate in either tautomerization or protonation. 

The former renders the activated species nucleophilic (enol formation) while the 

latter makes the carbonyl carbon more electrophilic towards the attack by the enol 

[226, 236]. The question is which pathway would be more favorable than the other 

if a carbonyl compound is introduced to a surface that has mostly Brønsted acid 

sites. In fact, the difference in the activation energy between these steps has never 

been compared in the literature. This is important, especially for the systems 

having more than two carbonyl groups, since the reaction pathway and product 
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selectivity could be different. An extensive investigation of this matter is 

necessary. 

 Similarly, the roles of Lewis acid sites are still unclear. Compared to Brønsted 

acid-catalyzed aldol condensation, the Lewis acid-catalyzed case is less well-

understood.  Some questions to be addressed include whether Lewis sites alone 

can catalyze aldol condensation, whether the Lewis site requires the assistance or 

cooperative catalysis of an adjacent Lewis or Brønsted site, and what is the 

essential requirement for an active Lewis acid catalyst.  

Selectivity of self- and cross- aldol condensation 

Several studies have been conducted on the aldol condensation of the mix 

ketone/aldehyde systems including: furfural/acetone, hydromethylfurfural/acetone, 

formaldehyde/ acetaldehyde, citral/acetone, acetone/formaldehyde, benzaldehyde/n-

heptaldehyde, aromatic aldehydes/acetone over basic catalysts: MgO and alkali promoted 

MgO [237], hydrotalcites [212, 213], Mg,Al-mixed oxides [238], MgO–ZrO2 [140], 

amine-functionalized MCM41 [239]¸ Al-MCM41 supported MgO [240] and acidic 

catalysts: HZSM-5, HBEA, HMOR and HSDUSY zeolites [208-211], Lewis acidic 

zeolites (Hf-, Sn-, Zr- beta) [241], MWW family of different structure types (MCM-22, 

MCM-49, MCM-56 and MCM-36) [231], etc. 

In general, the aldol condensation of a ketone mixture could produce a complex 

mixture of aldol adducts including the self-aldol condensation of ketones that bear α-H 

and the cross-aldol condensation of those ketones with the second carbonyl compound. 

The factors that govern the selectivity toward the self- or cross- aldol condensation vary, 

depending on the ketone mixtures, catalysts as well as reaction conditions (feed ratio, 
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temperatures, etc). For example, in the furfural (or HMF)/acetone or aromatic 

aldehydes/acetone systems over zeolites [208, 222, 241], it has been reported that the 

cross-aldol condensation dominated with over 90% selectivity. In the other mixtures such 

as citral/acetone, a high selectivity toward the cross- aldol condensation of citral and 

acetone (pseudoionone) was also observed while the self- aldol condensation of acetone 

or citral was found with a trace amount over basic hydrotacites and Mg,Al-mixed oxides 

at 333K even though a high acetone/citral ratio of 3-17 was employed. Acidic zeolites 

(HY and HBEA) exhibited negligible activity in this case [211]. It is interesting to note 

that the self- aldol condensation of acetone has been obtained with a moderate yield over 

basic catalysts such as hydrotalcites [212], MgO and alkali-treated MgO [237, 242] and 

zeolites [217]. This indicates that the negligible rate of the acetone self- aldol 

condensation observed in the mixture with other carbonyl compounds could be due to the 

competitive adsorption or relatively higher activation barriers of the enolization or C-C 

bond formation steps compared to that of the other ketones. In fact, when a high 

acetone/citral ratio was used, a higher yield of acetone self- aldol adduct was observed, 

which illustrates the inhibition effect of citral to the reactivity of acetone [212]. 

Ungureanu et al. have examined the gas-phase aldol condensation of the mixture of 

formaldehyde/acetaldehyde over ZSM-5 and semicrystalline zeolitic-mesoporous UL-

ZSM-5 [243]. The authors have reported that the ratio of acrolein (cross-aldol adduct) 

over crotonaldehyde (self-aldol adduct) increased from 3 to 10 when temperatures were 

varied from 250 to 350oC. In another study, Dumitriu et al. have also stated that high 

temperature favored the formation of acrolein on silicalite-1 and HZMS-5 (in the range 

of 275-375oC) [209]. However, in this case the maximum cross-/self- ratio was only 1.5, 
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which was much smaller than the value reported by Ungureanu et al. [243]. The lower 

selectivity of crotonaldehyde at a high temperature was attributed to the coke formation 

caused by the polymerization of the product itself [210]. A change in the product 

distribution was also seen on HZSM-5 with different Si/Al ratios, in which the acrolein 

selectivity increased with increasing Al contents [210]. In this case, the nature of acid 

sites as well as their distribution on the surface obviously plays a crucial role.  

As previously discussed, Dumitriu et al. have proposed the cooperative effect 

between Brønsted and Lewis acid site, in which the Lewis site activates a ketone via 

enolization and the Brønsted site protonates another ketone to enhance the electrophilicity 

of its C-carbonyl. Then, the enol picks up the adjacent polarized ketone for the aldol 

addition step. As a result, the selectivity toward the cross- or self- products for a given 

enol might depend on the availability of the adsorbed or polarized carbonyl molecules. 

For example, it has been shown that the O-atom of acetadehyde has a higher electronic 

density than that of formaldehyde, which could facilitate the polarization of the 

acetaldehyde on a Brønsted acid site [209]. In contrast, another study has proposed that 

the Brønsted site is responsible for the enolization while the Lewis site is involved in the 

polarization. High density of Lewis acid sites facilitated the cross-aldol condensation 

selectivity [243]. 

Another factor that could play a role is the relative activation barrier (free energy) of 

the C-C coupling step between a given enol with other carbonyl compounds. Recently, 

Iglesia et al. have shown that the rate of the cross- aldol condensation for the 

formaldehyde/acetone mixture over TiO2 was a 1000 -fold higher than that of the acetone 

self- aldol condensation [244]. The value varied between different mixtures of 
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formaldehyde and other carbonyl compounds with an increasing chain length. According 

to the authors’s analysis, the cross-/self- selectivity is determined by the ΔGTS
i,j-i,i = ΔGTS

i,j 

- ΔGTS
i,i factor, which is the difference in the free activation energy of the C-C coupling 

step between cross- and self- aldol condensation. The crucial parameter that controls the 

variation in product distribution is the chain-length or size of the alkyl substituents of the 

carbonyl compounds. This factor greatly affects the entropy component (ΔSTS
i,j). DFT 

calculations have shown that the entropy loss increased for larger electrophiles (C2-C4 

carbonyls), resulting in a greater difference in the activation entropy between cross- and 

self- coupling (ΔSTS
i,j-i,i). Difference in the activation enthalpy, ΔHTS

i,j-i,i, on the other 

hand, was not influenced much by the ketone sizes. Overal, the difference in activation 

free energy was greater for the coupling of HCHO with larger enols, resulting in a more 

significantly higher cross-aldol selectivity with the increasing ketone chain length. 

 

5.2 Experimental Methods 

5.2.1 Chemical and materials: 

Zeolite NH4ZSM-5 CBV 3024E (Si/Al=15) and CBV 8014 (Si/Al=40) were obtained 

from Zeolyst International. Before being used, the zeolites were calcined at 600oC for 5 

h in 150ml/min air flow to produce H+ form. Na-ZSM-5 (Si/Al=40) was synthesized via 

ion-exchange method. First, zeolite NH4ZSM-5 CBV 8014 (Si/Al=40) was stirred with 

2M NaCl solution at 80oC for 12 h. The ion exchange was conducted three times. The 

obtained solid was dried at 110oC overnight, followed by calcination at 600oC for 5 h in 

150ml/min air. Cyclopentanone (>99%), acetone (HPLC grade, >99%) and cyclohexane 

(HPLC grade, >99.9%) were purchased from Sigma Aldrich. Cyclopentanone was 
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distilled to remove impurities before use while acetone and cyclohexane were employed 

as provided. 

5.2.2 Catalytic reaction measurements: 

The aldol condensation of cyclopentanone and acetone was carried out in a Parr 

reactor at 250oC, Vtotal=120ml, 500psi N2 pressure in cyclohexane solvent over 0.5 g 

HZSM-5 (Si/Al=15 and 40), at an initial concentration of cyclopentanone and acetone of 

900 mM. At first, 90ml of cyclohexane and the catalysts were placed in a stainless steal 

vessel. A 30ml mixture including cyclopentanone and acetone in cyclohexane was placed 

inside a feeding cylinder. After the reactor temperature reached 247oC, the feed was 

injected into the reaction mixture. The temperature was stabilized at 250oC after 5 minutes 

and the reaction time began to be counted.  

The product mixture was analyzed by Shimadzu QP2010S gas chromatograph/mass 

spectrometer (GC-MS) and quantified by GC-FID Agilent 6890 equipped with a flame 

ionization detector for quantification. Both GC’s were equipped with a Zebron ZB-1701 

column with the dimensions of 60m x 0.25 mm x 0.25 μm. 

The conversion of cyclopentanone (XC), conversion of acetone (XA), yield of a 

product based on cyclopentanone or acetone initial concentration were calculated as: 

;C in C out A in A out
C A

C in A in

C C C C
X X

C C
   

 

 
 

 

or ;i i
i

C in A in

C C
Y

C C 
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The formation rate ri (mmol.g-1.s-1) and turnover frequency TOFi (s-1) of a product were 

calculated as 

;i i
i i

cat H

n n
r TOF

m t n t

 
   

ni: Number of Mol of a product (mmol)  

mcat: mass of catalysts (g) 

nH+: Number of protons or active sites (mmol) 

t: Reaction time, (s) 

 

The carbon balance for the cyclopentanone (CC-bl) and acetone (CA-bl) were calculated as: 

;C out C P A out A P
C bl A bl

C in A in

C C C C
C C

C C
   

 

 

 
 

 

where CC(in, out), CA(in, out): Concentration of cyclopentanone and acetone before and 
after reaction (mM);  

CC→P and CA→P: Concentration of cyclopentanone and acetone convered to detectable 
products and the concentration of a product (mM);  

  

 

5.3 Results and Discussions 

5.3.1 The reaction mechanism and rate limiting step on ZSM-5 zeolites 

According to the literature, the acid-catalyzed aldol condensation of a ketone 

undergoes 3 main steps: tautomerization (enolization), C-C coupling and de-protonation. 

Over acid zeolites, it has been reported that the rate limiting step could be either the 

activation of the ketone (tautomerization) or the C-C coupling step of the enol with 
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another ketone, which corresponds to the 1st and 2nd reaction order, respectively. 

Experimental data [233] as well as DFT calculations on the acetone/formaldehyde system 

over different zeolites: HZSM-5 [224, 225, 232], HY[232], H-FER[224], HMCM-22 

[224] have revealed that the tautomerization of acetone is the rate limiting step, which 

corresponds to the 1st order reaction. Herrmann et al. have also observed the 1st order rate 

expression for the gas phase self-aldol condensation of acetone over MFI and BEA 

zeolites with different Si/Al ratios.  However, in this case the C-C coupling is the slow 

step and the surface is nearly saturated with the adsorbed acetone, resulting in the 1st order 

dependence of the measured rate on the acetone partial pressure in the gas phase [223]. 

To investigate this matter in the liquid phase aldol condensation of cyclopentanone (C) 

and acetone (A), a Langmuir Hinshelwood model was established with an assumption 

that the rate determining step is the tautomerization of the ketones 

1/The tautomerization of C and A 

* *

* [ ]

. . .. ..

. . *

C

C tau
enol

K

k

C C

C C

 


 

* *

* [ ]

. . .. ..

. . *

A

A tau
enol

K

k

A A

A A

 


 

With C, C*, [C]*enol are cyclopentanone, adsorbed cyclopentanone and activated 

cyclopentanone (the enol), respectively; A, A* and [A]* are acetone, adsorbed acetone 

and activated acetone (the enol), respectively; KC, KA, kC-tau, kA-tau are the adsorption 
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constant of cyclopentanone, adsorption constant of acetone, rate constant of 

cyclopentanone tautomerization and rate constant of acetone tautomerization, 

respectively. 

2/The C-C coupling  

For the cross- aldol condensation of C and A, the activated ketones ([C]*enol or 

[A]*enol) can couple with either adsorbed cyclopentanone or acetone (C* or A*) to 

produce four different dimer products ([C]A, [C]C, [A]A and [A]C). The dimers could 

also react with another activated ketone to generate longer chain hydrocarbons (trimers). 

However, for simplification, the formation of those trimers is not included in this model. 

In fact, experimental results show that the formation of those trimers are negligible 

compared to that of the dimers. 
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With [C]C, [C]A, [A]A and [A]C are the dimer products of C-C coupling, *[C]C, *[C]A, 

*[A]A and *[A]C are the adsorbed dimers; *[C]C+, *[C]A+, *[A]A+ and *[A]C+ are the 

protonated form of the adsorbed dimers; KC-C coupling, KC-A coupling, KA-A coupling KA-C coupling 

are the equilibrium constants of the C-C coupling steps; KC-C deprot, KC-A deprot, KA-A deprot 

KA-C deprot are the equilibrium constants of the deprotonation of the dimers; K[C]C, K[C]A, 

K[A]A, K[A]C are the adsorption constants of the dimers 

The total formation rate of the products originated from [C] and [A] enols could be written 

as: 

[ ] [C]C [C]A v

[A] [A] [ ] v

[ ]

[ ]

....................

....................

......................................

r r ( )(*) (5.1)

r r ( )(*) (5.2)

( )
(...... 5.3)

( )

C C tau C

A A C A tau A

A A tau A

C C tau C

r k K C

r k K A

r k K A

r k K C









  

  



 

With (C), (A) and (*)v are the concentration of cyclopentanone or acetone in the bulk 

phase and the concentration of vacant sites, respectively.  

The selectivity of [C]C and [C]A; [A]A and [A]C could be derived as 
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With K[i]-j-tot is the product of K[i]-j-deprot, K[i]-j-cpl, Kj and K[i]-j
-1 

From equation (5.1), (5.2) and (5.3), it can be seen that if the measured rate is limited 

by the activation of the ketones, the total formation rate of [A] products, the total 

formation rate of [C] products and the ratio of those two rates would be linearly 

proportional to the acetone bulk concentration, the cyclopentanone bulk concentration 

and the ratio of the two concentrations, respectively. Equation (5.4) and (5.5) also indicate 

that the ratio of [C]A/[C]C and [A]A/[A]C are also in proportion to the ratio of acetone 

and cyclopentanone bulk concentration. 

When the feed ratio A/C increased (increasing concentration of A while maintaining 

concentration of C), the formation rate of [A] products ([A]A+[A]C) increased 

proportionally while the formation rate of [C] products remained at the same value 
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(Figure 5.1). The formation rates of [C] products were comparable when the single feed 

of C (0.9M) or the mixture of A/C (0.9M of C + 0.9M of A) was used. The formation rate 

of [A] products in the single feed of A (0.9M of A) was also equal to that in the mixture 

of A/C (0.9M of C + 0.9M of A). Different initial concentrations of C in the single feed 

experiments (0.45M, 0.9M and 1.8M of C) yielded a proportional formation rate of [C] 

products, indicating 1st reaction order. Additionally, experimental data from Figure 5.1 

show that the ratio of total [A] over total [C] products, [C]A/[C]C and [A]A/[A]C 

proportionally depend on A/C feed ratio as clearly described in equations (5.3), (5.4) and 

(5.5). It strongly indicates that the activation of the C and A (tautomerization or 

enolization) is the kinetically relevant step. The finding also holds true for HZSM-5 with 

higher Si/Al ratio (40) as presented in Figure 5.2. 
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Figure 5. 1 The effect of acetone/cyclopentanone feed ratio (A/C) on a) The total 
formation rate of [A] and [C] products. The yellow circle, square and diamond correspond 
to a single feed experiments with 0.45, 0.9 and 1.8M of C; The black diamond correlates 
to a single feed experiment with 0.9M of A; and to b) Cross- and self- selectivity and c) 
Product distribution over ZSM-5 (Si/Al=15) 
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Figure 5. 2 The effect of acetone/cyclopentanone feed ratio (A/C) to a) The total 
formation rate of [A] and [C] products and b) Cross- and self- selectivity and c) Product 
distribution over ZSM-5 (Si/Al=40) 

Consequently, the formation rate of [C] and [A] products is controlled by the 

formation rate of the enols. Therefore, a higher formation rate of total [C] products than 

that of total [A] at an equal A/C feed molar ratio observed from Figure 5.1 and 5.2 would 

be due to the difference in the enolization reactivity of the ketones. Swain et al. have 

reported that the enolization of a ketone undergoes a step-wise mechanism in which the 

O-atom of the ketone is protonated first, followed by the abstraction of an α-H by the 

conjugate base of the Brønsted acid site. The C-H bond cleavage or the H-abstraction is 
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the rate limiting step [245-247]. By conducting a substitution of tritium (T) and deuterium 

(D) at the α-C of the ketones, the authors observed a dramatic decrease in the rate of acid-

catalyzed enolization. The isotopic effects were reported to be kC-H/kC-T = 10 and kC-H/kC-

D = 5 [245]. The conclusion was later agreed by Ref [248]. The enolization reactivity of 

a ketone, therefore, would depend on the acidity of an α-H of the ketone. From DFT 

calculations, Gómez-Bombarelli et al. have reported the value of pKa for acetone and 

cyclopentanone which are 19.6 and 16.5 in the gas phase,  20.9 and 19.7 in the aqueous 

phase, respectively [249]. Computational calculations from our group have also 

calculated that the deprotonation energies of the α-Hs of cyclopentanone and acetone are 

1453 kJ.mol-1 and 1461 kJ.mol-1 respectively. Moreover, a lower barrier for the H-

abstraction of cyclopentanone compared to that of acetone on MgO (100) was also 

observed (51 kJ/mol compared to 60 kJ/mol). These evidences firmly indicate a stronger 

acidity of the α-Hs of C compared to A, resulting in the higher formation rate of [C] enols 

as well as the total [C] coupling products. 

At an equal initial feed molar ratio of A/C, the selectivity to [C]A and [C]C (or ([A]A 

and [A]C) would depend on the relative equilibrium constants of the coupling step, the 

deprotonation step, the adsorption constants of A and C and the adsorption constants of 

[C]A and [C]C products, as demonstrated by Eqn. (5.6) - (5.7). 



110 

 

with Ki-tot is the product of Ki-cpl, Ki-deprot and Ki
-1 

Experimental data in Figure 5.3 show that at A/C molar ratio =1, over HZSM-5 

(Si/Al=15), the coupling of the enols with C is more favorable, resulting in the higher 

yields to [C]C and [A]C compared to [C]A and [A]A, respectively. Interestingly, the 

opposite trend was observed on HZSM-5 with a higher Si/Al ratio (40), in which the 

coupling of the enols with A has a higher rate than that with C, resulting in the higher 

selectivity of [C]A than [C]C and that of [A]A than [A]C. The switch of the product 

distribution with the Si/Al ratios is caused by mass transfer limitation which is prevalent 

on this catalyst for the aldol condensation reaction. Consequently, the order observed here 

is apparent and would not reflect the true order of the reaction. Further investigation is 

needed. One of the most important objective of the future work is to address this matter. 
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Figure 5. 3 Product distribution of the aldol condensation of C and A on HZSM-5 zeolites 
 

5.3.2 The nature of the active sites 

As previously demonstrated by Iglesia et al., the titration technique for the gas phase 

aldol condensation of acetone could be applied to measure the most relevant active sites 

for the reaction by co-feeding a deactivation agent into the reaction mixture. On acid 

zeolites, a base (such as pyridine or dimethyl pyridine) has been used. In this work, a 

similar concept has been applied for the liquid phase aldol condensation of 

cyclopentanone and acetone in cyclohexane solvent, which allows us to determine the 

true kinetically relevant sites for the reaction as well as quantify the density of the active 

sites at the same time. It can be seen from Figure 5.4a that the formation rates of the 

aldol-adducts over HZSM-5, HBEA and HY did not change with an increasing amount 

of pyridine, indicating that the system is in the internal mass transfer limitation regime. 

This could be owning to the small pore size entrance of those microporous zeolites, which 

might inhibit the diffusion of the reactants and release of the coupling adducts. For 
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diameter of acetone (~ 5nm) [250] (Table 5.1). Catalytic activity did not change with 

different stirring speeds, ruling out the effect of the external mass transfer limitation 

(Figure 5.4b). 

Interestingly, a linearly decaying formation rate of the aldol adducts with an 

increasing amount of pyridine added was observed over MCM41-SO3H-HG. It is obvious 

that over the mesoporous silicas with a large pore and a well-order hexagonal structure, 

the diffusion of the aldol adducts could be significantly facilitated. As a result, the 

condensation rate over MCM41 was controlled by the surface reaction, manifested by an 

instant drop of the measured rate with the pyridine addition.  

Table 5. 1 Pore size, surface area and Brønsted acid density of some zeolites 

Zeolite 
Pore Size 

(nm) 

Surface 
areaa 

(m2/g) 

Brønsted acid sites density 
(mmol/g) 

Lewis acid sites 
density (mmol/g) 

H-ZSM5 
(Si/Al=15) 

0.55-0.56 405 - 0.61 c 0.56 d 0.56 d 

H-ZSM5 
(Si/Al=40) 

0.55-0.56 425 0.39 b 0.38 c 0.33 d 0.29 d 

HY 
(Si/Al=30) 

0.66-0.67 720 0.29 b - - - 

H-Beta 
(Si/Al=19) 

0.74 710 0.54 b - - - 

MCM41-
SO3H-HG 

3 549 0.353 b - - - 

a of ammonium form, according to manufacturers; b IPA-TPD (isopropyl amine)c 
Obtained from Ref [223] d Calculated from pyridine titration and B/L ratio reported by 
Ref [251] 
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Figure 5. 4 a) The total formation rate of the aldol-adducts with different amounts of 
pyridine co-fed into the reaction. A mixture of A+C with CC=CA=0.9M was used in the 
case of functionalized MCM41 while a single feed CC=0.9M was used for the other 
catalysts. Reaction condition: 250oC, 0.5h, cyclohexane solvent b) The effect of stirring 
speeds to the catalytic activity of HZSM-5 (Si/Al=40) 

When a small amount of pyridine was added into the cross-aldol condensation of C 

and A reaction mixture over HZSM-5 zeolites, initially the formation rate of [A], [C] and 

[A]+[C] did not change due to the excess active sites. However, with more pyridine 

added, the rates started linearly dropping, indicating that the all of the excess active sites 

have been deactivated from pyridine titration. Up to this point, the system was controlled 
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by the surface reaction regime. The extrapolation of [A]+[C] curve in Figure 5.5a) and 

b) allows the quantification of acid density on HZSM-5 zeolites, which are 1.12 and 0.63 

mmol/g for Si/Al ratios of =15 and 40, respectively. It should be noted that both Brønsted 

and Lewis acid sites can be titrated by pyridine. The value obtained here might be the 

total number of Brønsted and Lewis sites. The Brønsted/Lewis ratios for HZSM-5 

(Zeolyst) with Si/Al=15 and 40 have been reported to be 0.99 and 1.11, respectively 

[251]. The calculated Brønsted acid density of HZSM-5 zeolites shown in Table 5.1 

strongly agrees with the value obtained from IPA-TPD and from Ref [223]. An equivalent 

density of Lewis acid sites was obtained. However, the Lewis acid sites alone are much 

less active than when both Brønsted and Lewis ones are present as shown in Figure 5.6a. 

The low activity of Na-ZSM-5 zeolite contradicts with some studies in the literature, 

stating that the Lewis acid site of zeolites by itself could catalyze the aldol condensation 

[234, 235]. The obtained result indicates that the Brønsted acid is the most kinetically 

relevant site for the aldol condensation reaction, in agreement with Refs [208, 223, 231]. 

Iglesia et al. have shown similar values of rate constant (normalized by the number of 

H+) on MFI and BEA zeolites for the aldol condensation of acetone [223] as also observed 

in our data (Figure 5.6b). By normalizing the total formation rate of aldol adducts 

([C]+[A]) with the number of H+ (from Table 5.1) on the two zeolites, a comparable TOF 

value was obtained (Figure 5.6b), indicating that the Brønsted sites are more kinetically 

relevant for the reaction. It should be noted that the Lewis acid density of HZSM-5 

(Si/Al=40) and Na-ZSM-5 should not be much different. Therefore, the tremendous 

difference in the activity between those catalysts is a strong evidence against the 

involvement of the Lewis sites in the enolization step. However, it could not be ruled out 
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that the elimination of the Brønsted acid sites on Na-ZSM-5 could induce the change of 

the rate limiting step from the enolization to the C-C coupling, leading to the lower 

activity on Na-ZSM-5. Further investigation into this problem is needed.  

 

 

Figure 5. 5 The formation rate of aldol adducts with increasing amounts of pyridine 
added over HZSM-5 zeolite a) Si/Al=15 and b) Si/Al=40 
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Figure 5. 6 a) Catalytic activity comparison of different zeolites (NH4-ZSM-5 catalyst 
was used as provided from Zeolyst) b) TOF for aldol adduct formation on HZSM-5 
zeolites (per H+) 

5.3.3 The role of mass transfer limitation and acid density of HZSM-5 zeolites on 

the cross- and self- selectivity 

The product distribution of the aldol adducts on HZSM-5 (Si/Al=40) dramatically 
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regime (Figure 5.7). On the other hand, HZSM-5 (Si/Al =15) initially yielded higher 

[C]C and [A]C and the selectivity of those dimers kept increasing until the system reached 

the regime transition point. Above this point, both [C]A and [A]C decreased due to the 

reduced number of the kinetically relevant sites (Figure 5.8).  

The mass transfer limitation could tailor the product selectivity by controlling the 

availability of each reactant surrounding the activated enols, based on their different 

diffusivities in the pore. In fact, a smaller molecule such as acetone would have higher 

diffusivity than cyclopentanone. For the lower acid density HZSM-5 (Si/Al=40) with 

fewer numbers of active sites located on the exterior area, both A and C have to diffuse 

deep into the inner pore. Due to the higher diffusivity of A, the local concentration of A 

in the inner pore should be higher than C, resulting in [C]A>[C]C and [A]A>A[C]. 

However, when the system is controlled by the surface reaction regime, [C]C and A[C] 

are more favorable thanks to an equivalent local concentration of acetone and CPO. 

For a higher acid density HZSM-5 (Si/Al=15), because of a higher amount of the 

exterior active sites, the local concentration of A and C around the activated enols is 

comparable, leading to [C]C > [C]A and [A]C > [A]A. The product distribution does not 

considerably change in the surface reaction regime. The coupling of the enols with C at 

the equivalent A and C local concentration is easier, which might be caused by the charge 

stabilization effects of the ring and/or the enhanced Van der Waals interaction of the ring 

with the surface. DFT calculations are being processed to give some fundamental insights 

into the results. Favorable enol-CPO coupling has also been observed in other catalyst 

systems such as MgO. 
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It is important to address why the product distribution changed with an increasing 

amount of pyridine on HZSM-5 (Si/Al=15) in the mass transfer limitation regime, but 

such behavior was not observed on the lower acid density zeolite. It is hypothesized that: 

 The acetone is more favorably adsorbed on the surface, leading to favor 

Langmuir-Hinshelwood mechanism for the enol-acetone coupling 

 Even though the surface is dominantly occupied by the adsorbed acetone, the 

capture of CPO in the bulk phase (Eley-Rideal mechanism) by the enols is 

still easier due to the more energetically favorable enols-cyclopentanone 

coupling step 

In the light of those assumptions, on HZSM-5 (Si/Al=15), the reduced amount of the 

acid sites (Brønsted or/and Lewis), especially the ones on the exterior area, caused by the 

pyridine titration could decrease the concentration of the adsorbed acetone, leading to the 

more favorable [C]C and [A]C formation. In fact, our adsorption experiments have 

demonstrated that the acetone uptake is 2 times higher than that of cyclopentanone on 

both zeolites at room temperature (Figure 5.9). Even though the uptake value should be 

different at the reaction temperature (250oC), it is expected that the more favorable 

adsorption of acetone on the catalyst surface is still valid. On HZSM-5 (Si/Al=40), due 

to the lower active sites on the exterior area, the rate of pyridine deactivation might be 

slower as pyridine has to diffuse into the inner pores. The lower diffusivity of pyridine 

compared to A and C might cause such delay in the change of product selectivity observed 

in the mass transfer limitation regime. Moreover, the higher local concentration of 

acetone in the inner pore could facilitate the enols-acetone coupling.  
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Figure 5. 7 The formation rate of a) [C]C and [C]A products and b) [A]A and [A]C 
products and c) Product selectivity between the coupling of the enolates ([A] and [C]) 
with A or C at different amounts of pyridine over HZSM-5 40 
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Figure 5. 8 The formation rate of a) [C]C and [C]A products and b) [A]A and [A]C 
products and c) Product selectivity between the coupling of the enolates ([A] and [C]) 
with A or C at different amounts of pyridine over HZSM-5 15 
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Figure 5. 9 Acetone and Cyclopentanone uptake on HZSM-5 (Si/Al=15 and 40). A(15) 
and A(40) stand for the adsorption of acetone on HZSM-5 with Si/Al=15 and 40, 
respectively. C(15) and C(40) stand for the adsorption of cyclopentanone on HZSM-5 
with Si/Al=15 and 40, respectively 
 

5.4 Conclusion 

      The enol formation has shown to be the rate limiting step for the aldol condensation 

of cyclopentanone and acetone on HZSM-5 zeolites, manifested by the 1st order 

dependence of the condensation rates on the ketone concentrations. Since both Brønsted 

and Lewis acid sites coexist on the zeolites, the Brønsted ones are more likely to be the 

most kinetically relevant, which directly tautomerizes the ketones to form the enols. 

However, the involvement of the Lewis sites cannot be completely ruled out, which 

requires further investigation.   

     The selectivity toward cross- or self- aldol condensation could be manipulated by 

tailoring the local concentration of the reactants in the inner pore via controlling reaction 

regimes (mass transfer limitation or surface reaction). Acid density and the adsorption of 
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the reactants on those sites have shown to be the crucial factors that govern the selectivity. 

Even though the pyridine titration provides a useful tool to examine the mass 

transfer/surface reaction regimes, the method still has some weaknesses. A few of those 

are the non-selective titration on both Brønsted and Lewis acid sites; and the competitive 

diffusivity of pyridine with other reactants that could greatly affect the catalytic 

performance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



123 

 

Chapter 6 - The Effects of Water on the Rate of C-C 

Coupling and Dehydration Reactions 

 

6.1 Introduction and Literature Review 

Water has been one of the most abundant components in biomass conversion [130, 

252-254]. However, the use of water as a solvent for subsequent bio-oil upgrading is not 

practically feasible due to the low solubility of oxygenates generated from the biomass 

thermal treatment in an aqueous phase. An organic solvent, on the other hand, has been 

shown to be beneficial for lignocellulosic biomass conversion [255-257]. Depending on 

the amount of an aqueous phase existing in an organic phase, water can be considered as 

a co-solvent as in the biphasic system [132, 258, 259] or an impurity that could potentially 

yield different effects on the catalytic performance as well as product selectivity as widely 

reported on many catalyst systems including oxides [260, 261], zeolites [262, 263] and 

metals [264-268]. 

The rate enhancement effect of water has been previously reported by Breslow et. al 

back in 1983 for the Diels-Alders reaction in the absence of catalysts. The authors 

observed that when water was used as a solvent, the coupling rate was dramatically 

enhanced compared to when other organic solvents were employed [269-272] (Table 

6.1). For example, the measured rate constant of cycloaddition of N-ethylmaleimide and 

hydroxymethylanthracene at 45oC in water was 200 times higher than that in acetonitrile 

[269]. The phenomenon has been explained in terms of “enforced hydrophobic 

interactions” which occurs when non-polar species favor to associate with each other at 
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the transition state to minimize the interfacial hydrocarbon-water surface with the 

surrounding aqueous phase [269]. Engberts et al. have later shown that the free energy of 

activation (at 25oC) for the Diels-Alder reaction of cyclopentadiene with different 

dienophiles decreased with an increasing molar fraction of water in C1-C4 alcohol 

solvents (Figure 6.1a), divided into three different regions: alcohol-rich solutions, non-

ideal alcohol-water mixture and highly aqueous solutions [273].  

Table 6.1 Second-order rate Constants for the Diels-Alder Reaction of 1,3-
Cyclopentadiene with Methyl Vinyl Ketone in Various Solvents. Reproduced with 
permission from Ref.[272] 

Solvent Rate constant; k x 105 
M-1 s-1 (20oC) 

Ref 

Iso-octane 5.94 ±0.3 [269] 
Methanol 75.5 

Water 4400±70 
Formamide 318±4 [272] 

Ethylene glycol 480 
 

In the highly aqueous solution region (water molar fraction ~1) (Figure 6.1b), upon 

the addition of a small amount of apolar solvent (the alcohols), water became more 

organized due to the formation of hydration shells surrounding the apolar molecules. This 

is associated with a higher entropy loss (-ΔSTS) compensated by a decrease in the 

activation enthalpy (ΔHTS). With more apolar species added to the solution (non-ideal 

alcohol-water mixture), highly dynamic clusters of apolar molecules was formed and 

consequently, the cycloaddition TS was more likely to be solvated by the apolar 

cosolvent. Up to this point, water started losing its aqueous character as well as the 

enforced hydrophobic effect, manifested by a dramatic increase of the activation free 

energy (ΔGTS).  At high alcohol content (alcohol-rich solutions), the rate gradually 
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decreased as the mixture approached the apolar solvent [273]. The proposed enforced 

hydrophobic effect was further solidified by observed chaotropic/antichaotropic effects 

(or salting-in/salting-out effects). A substance is chaotropic when upon addition, it 

increases the solubility of hydrocarbons in water by reducing the hydrophobic effect of 

water. In contrast, a substance that decreases the water solubility of hydrocarbons is called 

an antichaotropic agent. It has been reported that the addition of a chaotropic salt such as 

guanidinium chloride to water decreased the rate of the addition of N-ethylmaleimide to 

anthracene-9-carbinol by 3 times whereas a 2.5 -folds rate increase was observed with an 

antichaotropic salt such as lithium chloride [272]. Besides, the rate enhancement effect 

by water could be explained in term of the aggregation processes [274] and the high 

internal pressure of water [275, 276]. 

 

 

Figure 6. 1 a) Free energy of activation (25oC) for the Diels-Alder reaction of 
cyclopentadiene with alkyl vinyl ketones in the mixtures of water and methanol, ethanol 
and 1-propanol and 2-methyl-2-propanol as a function of the mole fraction of water 
b)Activation parameters (25oC) for the Diels-Alder reaction of cyclopentadiene with 5-
hydroxy-1,4-naphthoquinones as a function of the mole fraction of water in the mixture 

a) 
b) 
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of water with 1-propanol: ΔGTS, ΔHTS and ΔSTS. The values of ΔGTS have been displaced 
downward by 40 kJ.mol-1. Reproduced with permission from Ref [273] 
 

The positive effects of water have been observed in several metallic catalyst systems   

[260, 268, 277-280] . For instance, Wang et al. have proposed that an appropriate amount 

of water could effectively enhance the hydrogenation activity of metallic sites Rh as well 

as the acidity of HY zeolites for the ring opening of naphthalene over Rh2O3/HY. Too 

much water, in contrast, decreases the catalytic activities due to the competitive 

adsorption of water on the catalyst surface [260]. In another study, water in a condensed 

phase has proved to be beneficial for Fischer-Tropsch reaction over Ru/carbon nanotube 

nanohydrid catalysts (Figure 6.2) [268]. In this case, liquid water might act as a more 

effective H-shuttle promoter than the adsorbed one on the surface, leading to a higher 

measured rate. Liquid water with higher degrees of freedom might easily accommodate 

the H atom at the most energetically favorable configurations. Moreover, the higher 

residence time of liquid water with adsorbate (*H) on the surface can also assist the H-

transfer process [268]. The enhanced activity of FTS in the presence of water has also 

been ascribed to a reduced energy barrier of the CO dissociation step due to the water-

CO interaction [277-279] or the oxidation of low coordination sites or surface 

reconstruction [280]. 
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Figure 6. 2 Evolution of TOF and methanation as a function of initial amounts of liquid 
water added into decalin, keeping a total of 30ml of solvents. Reaction condition: 
T=473.15K, t=2h, syngas ratio H2/CO=2. Reproduced with permission from Ref [268] 
 

On zeolites, the exposure of the catalysts to vapor water can lead to a rate 

enhancement as observed in  the alkylation of toluene with iso-butylene [263]. Water has 

been reported to be able to dissociatively adsorb on strong Lewis sites to produce new 

Brønsted acid sites, resulting in a higher catalytic activity [260, 281-285]. Moreover, 

water could retard deactivation by preventing coke formation. However, exceeding water 

contents lead to the passivation of Brønsted acid sites or capillary condensation [281]. 

Other studies have also stated that a minor amount of water promotes the catalyst activity 

while excess water reduces it [261, 263, 286, 287].  

Several extensive studies have demonstrated that the interaction of water molecules 

with Brønsted acid sites of zeolites could generate different species on the surface such 

as hydronium ion H3O+ [288, 289], hydrogen-bonded form [290, 291], partially 

protonated form [292] or both hydronium ion form and hydrogen-bonded form coexisting 

on zeolite surfaces [293-295]. 1H solid-state NMR study on HZSM-5 with different water 

contents have shown that water molecules can rapidly diffuse and hope between acid 

sites, thus easily participate in the proton exchange process with the Brønsted acid sites 
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[262]. The role of water is to accelerate the proton transfer by simultaneously interacting 

with the reactants and the acid sites via H-bonding to form a bimolecular-transition state 

with a lower energy barrier, ending up an increase in the C-H activation rate by a factor 

of 10 at the value of 1 water molecule per proton. Higher water loadings (2-3 water 

molecules per active site) promote the formation of thermodynamically favorable water 

clusters on the acid sites. According to the authors, the active role of water is to stabilize 

the transition state for those reactions that involve the participation of hydrophobic 

reactants [262].    

Recently, DFT calculations on MFI-5 have demonstrated that two Brønsted acid sites 

in close proximity could substantially enhance the adsorption energy of a water molecule 

via a stronger H-bonding between water and the acid sites [296]. The increased interaction 

of water may result in the thermodynamically favorable delocalization of a proton of the 

acid pair (Figure 6.3). This results in a formation of a hydronium ion H3O+ which acts as 

a new acid site. The authors have suggested that the delocalization/deprotonation effect 

could be further enhanced with a larger water cluster, leading to a generation of a mobile 

proton network inside zeolite pores [296]. In fact, several previous studies on the 

adsorption of water on zeolites have observed such formation of protonated water clusters 

constituting of 4-5 water molecules [297-299]. 
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Figure 6. 3 Adsorption-induced changes in electron densities are shown with the orange 
portions being areas of electron density accumulation and blue areas of electron density 
depletion. The isosurface used to plot the charge density difference is ±0.03e A-3. D3+, 
D2 and D1 are different distances between two adjacent Brønsted acid sites with the 
following order:  D3+ > D2 > D1. Reproduced with permission from Ref [296] 
 

 

Figure 6. 4 DFT-optimized structures illustrating the process of hydrating the zeolite with 
increasing numbers of water molecules. For two or more water molecules, the proton 
dissociates from the T-site forming a hydronium ion with increasing degrees of hydration. 
The structure assignments of I, II, III, IV, and V are the species discussed in the 
interpretation of the XANES and IR spectra. The H9O4

+ species (not shown) is 
structurally similar to V. Reproduced with permission from Ref [300] 
 

DFT calculations from Lercher’s group have stated that a water cluster of at least 3 

molecules can deprotonate a proton on tetrahedral Al group to form a network of 

hydronium cation (H3O+) with the properties close to a homogeneous H+ [300] (Figure 

6.4). Interestingly, it has been reported that in a confined environment such as in zeolite 

pores, where pronated water clusters are formed, a complete association of the hydronium 

ions with cyclohexanol is established. That is, all of the hydronium ion is associated with 

cyclohexanol inside the confined pores, manifested by the observed zero-order 
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dependence of the dehydration rate on the cyclohexanol concentration. In a homogeneous 

acidic solution, the first-order dependence of the dehydration rate on cyclohexanol 

concentration was observed. Experimental data indicated a much higher dehydration rate 

of cyclohexanol in the zeolite pores compared to that in the bulk H+ solution (Figure 6.5). 

Furthermore, activation enthalpies, entropies and free energies at 443K calculated from 

the kinetic analysis and the transition state theory have shown that a lower activation free 

energy in the case of MFI and BEA compared to that in soluble acids is due to either 

lower activation enthalpy (MFI) or higher activation entropy (BEA) (Table 6.2). This is 

a typical compensation effect where the smaller pore zeolite (MFI) could further stabilize 

the TS, reducing the activation enthalpy but at the same time, increasing entropy loss due 

to a tighter TS. The opposite situation is expected in the larger pore zeolite (BEA) where 

a looser TS is formed. The combination of lower activation free energy and high coverage 

in MFI and BEA yields a substantially higher TOF compared to the homogeneous acids. 

The higher TOF in the case of FAU is only due to the better association of the hydronium 

ion with the alcohols [301, 302].  
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Figure 6.5. Measured turnover frequencies of cyclohexene formation in the aqueous-
phase dehydration of cyclohexanol on different acid catalysts. For zeolites, the Si/Al ratio 
is denoted as the number following the framework-type code. H4SiW and H3PW stand 
for tungstosilicic and phosphotungstic acids. Rates were determined at conversion <10%. 
Solid lines are fits to the Arrhenius equation (note that the slopes are not identical). 
Reproduced with permission from Ref [301] 
 

Table 6.2 Intrinsic activation parameters for the aqueous-phase dehydration of 
cyclohexanol.*Reproduced with permission from Ref [301] 

 

*Standard enthalpies, entropies and free energies of activation (at 443 K) on zeolites and homogeneous 
acids, derived from kinetic measurements and the transition state theory formalism. The error bars for ΔHo‡ 
and ΔSo‡ represent the 1-σ s.d.’s, while the error bar for ΔGo‡ represents the maximum error rounded up to 
the nearest integer (error analysis protocol detailed in Supplementary Methods). 
 

Based on the information collected from the literature, we investigate, in this study, 

the effects of water on the catalytic performance of HY zeolite and functionalized 
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MCM41 for C-C coupling reactions. We have found that water has both negative and 

positive effects on the catalytic performance. As discussed previously in Chapter 4 that 

liquid water can accelerate the leaching process on the functionalized MCM-41 catalysts. 

We have also found out that HY zeolite, upon being exposed to vapor water, also quickly 

deactivates without showing any enhancement effect. On the other hand, functionalized 

MCM-41 synthesized by the high grafting temperature method has displayed an enhanced 

activity for the alkylation reaction upon water addition. Later on, to fundamentally 

examine the water effects on acid catalysts, a simpler reaction such as dehydration of 

cyclohexanol in different solvents over HZSM-5 zeolites was chosen as a probe reaction.  

 

6.2 Experimental Methods 

6.2.1 Chemical and materials: 

Zeolite NH4ZSM-5 CBV 2314 (Si/Al=11.5) and CBV 8014 (Si/Al=40) were obtained 

from Zeolyst. Before used, the zeolites were calcined at 600oC for 5 h in 150ml/min air 

flow to produce H+ form. As-received mesoporous MCM41-Type A was dried at 120°C 

for 12 h under N2 flow (99.999%, Airgas) prior to further treatment or use. MCM41 

functionalized with sulfonic acid groups (MPTS) was synthesized via the high-

temperature grafting method as described previously in Chapter 4 (denoted as MCM41-

SO3H-HG). 

Cyclopentanone (>99%), cyclopentanol (99%), m-cresol (99%), 

decahydronaphthalene, mixture cis + trans (99%) (Sigma-Aldrich) and cyclohexane 

(HPLC grade, >99.9%) were obtained from Sigma Aldrich. Cyclopentanone was distilled 
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to remove impurities before used while other chemicals were employed as provided. 

Water (HPLC grade) was obtained from Fisher Chemical and used as provided. 

6.2.2 Catalytic reaction measurements: 

The  self-aldol condensation of cyclopentanone over MCM41-SO3-HG was carried 

out in a Parr reactor at 250oC, Vtotal=120ml, 500psi N2 pressure in cyclohexane solvent 

over 0.15 g MCM41-SO3H-HG (0.353 mmol H+/g), at an initial concentration of 

cyclopentanone of 900 mM. At first, 90ml of cyclohexane and the catalysts were placed 

in a stainless steal vessel. A 30ml mixture of cyclopentanone and cyclohexane was placed 

inside a feeding cylinder. After the reactor temperature reached 247oC, the feed was 

injected into the reaction mixture. The temperature was stabilized at 250oC after 5 minutes 

and the reaction time started to be counted.  

The alkylation of cyclopentanol (CPOL) and m-cresol was conducted in a Mini Bench 

Top Parr high-pressure reactor (Model Parr 4564) equipped with a Parr 4848 Reactor 

Controller. Reactant concentrations of 1.0 M m-cresol and 0.5 M cyclopentanol (CPOL) 

were used in decalin solvent or as a pure m-cresol/CPOL mixture of 2:1 molar ratio. The 

reaction set up was conducted similarly to the aldol condensation as described above. 

The product mixtures were analyzed by Shimadzu QP2010S gas chromatograph/mass 

spectrometer (GC-MS) and quantified by GC-FID Agilent 6890 equipped with a flame 

ionization detector for quantification. Both GC’s were equipped with a Zebron ZB-1701 

column with dimensions of 60m x 0.25 mm x 0.25 μm. 

For the alkylation reaction, the conversion of CPOL (X), yield of a product (Yi), and 

carbon balance (Cbalance) were calculated as follows:  
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CCPOL-in and CCPOL-out: Initial and remaining concentration of CPOL (mM) 

Ci and ni : Concentration of the product i (mM) and the corresponding 
stoichiometric number  

Cin and Cout: Initial and remaining amount of carbon existing in the system (mM) 

 

For the aldol condensation reaction, the conversion of cyclopentanone (XCPO), yield 

of a product were calculated as: 

CPO in CPO out
CPO

CPO in

C C
X

C
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i
i

CPO in

C
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The formation rate of a product ri (mmol.g-1.s-1) and turnover frequency TOF (s-1) were 

calculated as 
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The carbon balance for the aldol condensation reaction was calculated as: 

CPO out CPO P
CPO bl

CPO in

C C
C

C
 








 

where CCPO(in, out): Concentration of cyclopentanone before and after reaction (mM);  

CCPO→P and Ci: Concentration of CPO convered to detectable products and the 
concentraiton of a product (mM);  

ni: Number of Mol of a product (mmol)  
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mcat: mass of a catalysts (g) 

dH+: acid density measured from TGA (mmol/g) 

t: Reaction time, (s)  

 

6.3 Results and Discussions 

6.3.1 The rate enhancement effects of water on alkylation and aldol condensation 

reactions 

Figure 6.6 presents the rate enhancement effects of water observed on zeolites and 

MCM41 for the alkylation reactions of cyclopentane and m-cresol. The presence of vapor 

water increased the formation rate of coupling products up to 2 folds. As the liquid water 

started to form, the catalytic activity substantially dropped due to the rapid deactivation 

(structure damage/collapse) or mass transfer limitation caused by a thin liquid film of 

water on the surface. The results are in agreement with the literature [260, 261, 263, 286, 

287].   

From Arrhenius plot, the apparent activation enthalpy and entropy of the alkylation 

reaction in the presence water vapor could be estimated (Figure 6.7a and Table 6.3). The 

result shows that as the amount of water increases, both the apparent activation enthalpy 

(ΔHapp) and the apparent activation entropy (ΔSapp) increase. The observed behavior 

suggests the typical compensation effect between an enthalpy gain and an entropy loss of 

a transition state (TS). Water reduces the entropy loss of the transition state by rendering 

it more mobile but consequently increases the activation barrier of the rate limiting step 

due to a looser-interaction of the TS with the active site. As the result, a lower apparent 

activation free energy (ΔGapp) leads to a higher alkylation rate in the presence of vapor 

water.  
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Table 6. 3 Apparent activation enthalpy and entropy of the alkylation reaction under the 
presence of water (calculated from Arrhenius plot in Figure 6.7a) 

n/n0 ΔHapp, kJ/mol ΔSapp, kJ/mol 
0 20.7 -178.5 

0.45 26.9 -163.1 
0.66 32.4 -150.5 

 

Higher mobility of the activated complex suggests a hypothesis that water might form 

a bridge between an acid site and the TS via participating in the cyclopentene activation 

process or m-cresol adsorption, which could facilitate the proton transfer between the acid 

sites and the reactants. This water-assisted proton transfer process would give more 

freedom (configurations) to the transition state, leading to the lower entropy loss. Breslow 

et al. have reported similar activation enthalpy and entropy changes when a small amount 

of water was added into alcohol solvents for Diels-Alder reactions [273].  

Similar behavior was observed for the self-aldol condensation of cyclopentanone on 

MCM41-SO3-HG in decalin solvent (Figure 6.7b), in which the measured condensation 

rate was initially enhanced in the vapor region. However, once the liquid water started to 

form, the condensation rate decreased due to the deactivation/leaching or mass transfer 

limitation caused by the liquid films on the surface. On the other hand, HY zeolite 

suffered an instant deactivation even when exposed to vapor water. In this case, the 

hydrophobization is crucial to improve the catalyst resistance against water. 
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Figure 6. 6 The rate enhancement effect of water on the alkylation of cyclopentene and 
m-cresol. Reaction condition: m-cresol/CPEN=2:1, CCPEN=0.5M, solvent: decalin, 
temperature: 200oC, pressure: 800 psia N2, reaction time: 2h, mass of MCM41-SO3H-DG 
catalyst: 150mg; (n0: the amount of water needed to reach the saturation point where water 
starts to form liquid phase; n: the amount of water added to the system. At the value of 
n/n0=1, the system reaches the saturation point). 
 

  

Figure 6. 7 a) The Arrhenius plot for the alkylation reaction with different amounts of 
vapor water b)The effect of water on the measured rate of the aldol condensation of CPO 
on different catalysts 

 

6.3.2 The effects of water and solvents on the dehydration of cyclohexanol 
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C-C coupling reactions could generate a wide range of condensated products, possibly 

causing catalyst deactivation, especially in the presence of water. In that way, a 

fundamental investigation on the nature of water enhancement effect could be 

problematic. Therefore, a simpler and more robust reaction that only involves a single 

reactant and a corresponding product is desirable. In this study, the dehydration of 

cyclohexanol over HZSM-5 zeolites with different Si/Al ratios (40 and 11.5) in water and 

decalin solvents was chosen. 

Acid density quantification on zeolites by pyridine titration  

First, the acid density of HZSM-5 was determined by the pyridine titration in water 

solvent. A linearly decaying rate with an increasing amount of pyridine added indicates 

that the reaction is in a kinetically controlled regime (Figure 6.8). The extrapolation of 

the fitting line allows the acid density quantification of HZSM-5 zeolites, which is shown 

in Table 6.4. Even though the values determined from pyridine titration are deviated from 

the one obtained from IPA-TPD, a strong agreement could be seen on the effect of Si/Al 

ratio on the acid density of the zeolites. The value from the pyridine titration will be used 

for further analysis. 

Table 6. 4 Acid density of HZSM-5 quantification by IPA-TPD and Pyridine titration 

Cat Density (Titration), 
mmol/g 

Density (TPD), 
mmol/g 

HZSM-5 11.5 0.645 1.01 
HZSM-5 40 0.249 0.4 
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Figure 6. 8 Pyridine titration on the HZSM-5 zeolites for cyclohexanol dehydration in 
water solvent. Reaction condition: 0.32M cyclohexanol, 150oC, 730psi H2, water solvent 

Dehydration activity of HZSM-5 zeolites and homogeneous H3PO4 acid  

Catalytic activities of HZSM-5 zeolites (Si/Al=11.5 and 40), homogeneous H3PO4 

catalyst and a physical mixture of H3PO4 and silicalite-1 (MFI) are compared in Table 

6.5 and Figure 6.9. The intrinsic activities per proton (TOF, s-1) of HZSM-5 with Si/Al 

ratios of 40 and 11.5 are 150 and 50 folds higher than that of the homogeneous catalyst 

(H3PO4). A physical mixture of silicalite-1 and H3PO4 exhibited a comparable rate and 

TOF values with the homogeneous H3PO4 solution. Lercher et al. have proposed that the 

confinement in the zeolite pores could significantly enhance the association of the 

hydronium ions with cyclohexanol, leading to a higher activity of zeolites than 

homogeneous H3PO4 [301, 302]. The addition of silicalite-1 into bulk H+ solution 

(H3PO4+silicaite-1) was expected to provide such a confinement environment for the 

protons. However, no detectable effect was observed upon this addition. That means the 
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incorporation of the homogenous protons into the confined zeolite pores is not sufficient 

to yield the higher rate as observed in the zeolites. Moreover, it should be noted that the 

intrinsic activity of the heterogeneous site is two orders of magnitude more active than 

the homogeneous one, indicating that the intrinsic strength of the proton originated from 

the zeolite framework is significantly higher than the bulk H+. 

 

Figure 6. 9 Turnover frequencies of the solid acids and homogeneous acidic solution for 
the cyclohexanol dehydration in water solvent. Reaction condition: 0.32M cyclohexanol, 
150oC, 730psi H2, water solvent 

Table 6. 5 Catalytic activity of HZSM-5 zeolites and homogeneous H3PO4 solution in 
water. Reaction condition: 0.32M cyclohexanol, 150oC, 730psi H2, water solvent 

Cat Mass, mg nH+, mmol 
Conversion, 

% 
Rate, mmol/g/s 

(x 103) 
TOF, s-1  
(x 104) 

H3PO4 29.6 0.257 3.5% 5.05 5.82 

H3PO4 + silicalite 29.7 0.258 3.13% 4.72 5.44 

HZSM-5 Si/Al=40 30 0.0075 7.57% 21.4 859 

HZSM-5 Si/Al=11.5 12.3 0.0079 5.05% 18.5 287 
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Co-feeding sodium chloride into the reaction over HZSM-5 (Si/Al=11.5) also leads 

to an activity degradation due to the ion exchange of the framework hydroxyl groups (H+) 

with Na+ cations (Scheme 6.1 and Figure 6.10). A linear decay of the dehydration rate 

was observed, confirming that the framework proton is a kinetically relevant site. The 

acid density of the zeolite extrapolated to the zero-rate point of cyclohexene formation 

would give an unrealistic huge value. In contrast to the irreversible poisoning of pyridine 

on Brønsted acid sites, the ion exchange with NaCl is a reversible process, which is much 

slower. Therefore, a substantially larger amount of NaCl is needed to yield observable 

effects on the measured dehydration rate.  

It is important to point out that the ion exchange process replaces the framework 

hydroxyl groups with Na+ cations bound to the framework Al and replenishes the 

surrounding solution with homogenous protons. That means, the total number of protons 

in a particular cage is nearly unchanged. The decaying rate observed during the ion 

exchange process indicates that the intrinsic activity of the homogeneous proton and the 

hydronium ion originated from the framework hydroxyl group is considerably different, 

which agrees with the results in Figure 6.9.  

 

Scheme 6. 1 Illustration of the ion exchange of Na+
 with the framework hydroxyl groups 

within the zeolite pore 
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Figure 6. 10 Effects of the ion exchange with NaCl on the rate of cyclohexene formation 
over HZSM-5 Si/Al=11.5. Reaction condition: 0.32M cyclohexanol, 150oC, 730psi H2, 
water solvent 
 

Kinetic and activation parameter analysis for cyclohexanol dehydration  

According to the transition state theory assuming that a quasi-equilibrium is 

established between a reactant and a TS, the rate constant of cyclohexanol dehydration 

could be written as: 
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k: rate constant of cyclohexanol dehydration (s-1), 

kB: Boltzmann constant, 1.380648 x 10-23 (m2. Kg. s-2
. K-1) 

h: Planck constant, 6.62607 10-34 (m2.Kg.s-1) 

T: Temperature, K 
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ΔH‡, ΔS‡ and ΔG‡ are the true activation enthalpy, entropy and free energy of the 

transition state (of the rate limiting step) with respect to the adsorbed cyclohexanol. 

The turnover frequency of cyclohexene formation or cyclohexanol dehydration is 

identified as: 

........................ (6.2. ).ATOF k    

θA: coverage of cyclohexanol on the catalyst surface or degree of hydronium ion 

associated with cyclohexanol 

From Eqn. (6.1) and (6.2): 

/ / (6.3)..................

.........
( ) 1

ln ln (6.4.. ). .

S R H RTB
A

B

A

k T
TOF e e

h

kTOF H S

T R T R h





    

  
  



‡ ‡

‡ ‡

 

A linear relationship of cyclohexene formation rate and initial concentration of 

cyclohexanol (<300nM) in H3PO4 solution indicates 1st order kinetic regime (Figure 

6.11). At the higher initial concentration of cyclohexanol, the curve reached a plateau 

corresponding to the 0th order regime. First-order dependence of the cyclohexene 

formation rate on cyclohexanol concentration was also observed in the case of the 

physical mixture of H3PO4 and silicalite-1. Lercher et al. have reported that the 

association of hydronium ion with cyclohexanol in H3PO4 solution is ~0.16 (in similar 

studied conditions) [302]. 

The association enhancement effect caused by the confinement has been proposed to 

be originated from the significantly higher water-uptake compared to cyclohexanol-
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uptake of the zeolite pores. For instance, for 0.32M cyclohexanol solution in water, 

HBEA zeolite pore contains 1 cyclohexanol molecule together with 180 water molecules, 

resulting in a unity value of the coverage in this case [302]. Our experimental data shows 

that in an 0th reaction order was also obtained on HZSM-5 (Si/Al=40) in non-polar solvent 

(decalin) (Figure 6.12). That means, the surface was also saturated even without the 

presence of water or the formation of hydronium ions. Interestingly, the order of the 

reaction decreased with an increasing amount of water added into the reaction (Figure 

6.12). In pure water solvent, the reaction order estimated from the fitting was -0.5. 

Negative order is normally obtained for a reaction that requires two adjacent active sites 

which is not likely to be the case for a dehydration reaction. A possible explanation for 

this behavior is the deactivation which could be accelerated in water solvent. Another 

possibility is that the non-polar cyclohexene product, once produced, cannot detach from 

the hydronium ion due to the suppression of the surrounding water solvent. The 

competitive adsorption of the product could lead to a lower coverage/association of 

hydronium ion with cyclohexanol and consequently a lower rate at high initial 

concentration of cyclohexanol. It should be noted that a significant higher TOF was 

obtained in water compared to that in decalin. Higher concentration of cyclohexene would 

acceleration the deactivation/inhibition. Further investigation into this matter is needed.  

However, up to this point, it is obvious that on HZSM-5, all of the proton either on 

the surface or in the form of hydronium ion is totally associated with the reactant, 

manifested by the 0th order regime in decalin solvent. The coverage is, therefore, equal to 

1, in agreement with the literature [301, 302]. In water solvent, even the 
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deactivation/competitive adsorption might occur, the coverage should not deviate much 

from the unity value. For simplification purpose, the coverage in water solvent is assumed 

to be 1. 

  

Figure 6. 11 Rate of Cyclohexene formation as a function of cyclohexanol concentration 
on a) H3PO4 and b) physical mixture of H3PO4 and silicalite-1. Reaction condition: 0.32M 
cyclohexanol, 150oC, 730psi H2, water solvent 

 

 

Figure 6. 12. Reaction order of cyclohexanol dehydration over HZSM-5 (Si/Al=40) in 
different solvents. Reaction condition: 0.32M cyclohexanol, 150oC, 730psi H2 

0

0.001

0.002

0.003

0.004

0.005

0.006

0 100 200 300 400 500 600

R
at

e 
o

f 
C

yc
lo

he
xe

ne
 

fo
rm

at
io

n,
 m

m
ol

/g
/s

Concentration, mM

0

0.001

0.002

0.003

0.004

0.005

0 100 200 300

R
at

e 
o

f 
C

yc
lo

he
xe

ne
 

fo
rm

at
io

n,
 m

m
o

l/
g/

s

Concentration, mM

y = -0.5014x - 1.1379

y = -0.3274x - 2.8721

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

4 4.5 5 5.5 6 6.5 7

ln
r,

  l
n(

m
m

ol
/g

/s
)

lnC; ln(mM)

ZSM5-40 in water

ZSM5-40 in Decalin + 750mg water

ZSM5-40 in Decalin



146 

 

The true activation enthalpy, entropy and free energy estimated from fitting equation 

(6.4) with the experimental data are shown in Table 6.6. The ΔH‡ and ΔS‡ of the 

homogeneous H3PO4 are 149kJ/mol and 58 J/mol/K, which are close to the value reported 

by Lercher et al. [302]. The addition of silicalite-1 into the acidic solution results in a 

much lower activation enthalpy and a huge loss of activation entropy. Consequently, both 

catalyst systems ended up with a very close TOF value. The stabilization of the 

confinement obviously plays a crucial role in reducing the activation energy as also 

observed in the solid acid catalysts. Lower activation enthalpies are obtained on HZSM-

5 with Si/Al=11.5 and 40, which are 83 and 93 kJ/mol, respectively. A much lower 

entropy loss in the case of the lower Si/Al zeolite (40) leads to the lower activation free 

energy and the higher intrinsic rate constant. Up to this point, three important conclusions 

need to be addressed: 

 The addition of silicalite-1 into H3PO4 did not yield any detectable effect, 

indicating that (homogeneous protons + confinement) might be not sufficient 

to gain the higher dehydration rate as observed in the zeolites;  

 The observed unity coverage in zeolites might not be caused by the 

confinement and higher water-uptake since the 0th reaction order can also be 

achieved in decalin solvent. The strong adsorption of cyclohexanol on the acid 

sites is more likely to be the case; 

 The confinement effect induced by the zeolite pores greatly reduced the 

intrinsic activation free energy, resulting in a higher TOF. The hydronium ion 

originated from the surface is more consequential than the homogeneous one. 
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That means the confinement effect is only active for the hydronium ion bound 

to the framework. 

Table 6. 6 Intrinsic activation parameters for the cyclohexanol dehydration on different 
catalysts Reaction condition: 0.32M cyclohexanol, 120-180oC, 730psi H2, water solvent 

Catalysts H3PO4 
H3PO4 + 

silicalite-1 
HZSM-5 

Si/Al=11.5 
HZSM-5 
Si/Al=40 

ΔH‡; kJ/mol a 149 57 83 90 
ΔS‡; J/mol/K a 58 -173 -81 -56 
ΔG‡; kJ/mol a 124.5 130.1 117.3 113.7 

k x 104 (150oC), s-1 36.1 5.4 287 860 
θb 0.16 1 1 1 

TOF x 104 (150oC), s-1 c 5.8 5.4 287 860 
a Obtained from fitting experimental data with Eyring equation (3). b Adopted from Ref 
[302] c Experimental data 
 

Effects of solvent to the catalytic activity of HZSM-5 zeolites with different Si/Al ratios 

The change of solvents greatly influenced the rate of cyclohexanol dehydration on 

HZSM-5 zeolites (Table 6.7). In decalin solvent, considerably higher entropy losses were 

obtained on both zeolites, resulting in a much higher activation free energy. The water 

obviously rendered the TS more freedoms compared to the non-polar solvent, suggesting 

the formation of the water bridge between the framework-bound proton and the TS. 

Interestingly, in decalin solvent, the TOF for the olefin formation on HZSM-5 increased 

with an increasing amount of water added (Figure 6.13). The effect was dramatic in a 

small range of 0-0.05 water volume fraction (wvf.%). At a higher water content (from 

0.05 to 0.25 wvf.%), the rate enhancement was slower, reaching a plateau. Above 0.5 

wvf.%, the dehydration rate in the biphasic decalin/water is as high as that in pure water 

solvent (Figure 6.13) 
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Table 6. 7 Intrinsic parameters and turnover frequencies for the cyclohexanol 
dehydration on HZSM-5 in different solvents. Reaction condition: 0.32M cyclohexanol, 
120-150oC, 730psi H2, water solvent 

 

Catalysts 
HZSM-5 

Si/Al=11.5 
HZSM-5 
Si/Al=40 

Water Decalin Water Decalin 
ΔH‡; kJ/mol 83 55 90 59 
ΔS‡; J/mol/K -81 -166 -56 -144 
ΔG‡; kJ/mol 118 124.8 114 120.4 

k x 104 (150oC), s-1 287 36 860 102 
Θ 1 1 1 1 

TOF x 104 (150oC), s-1 287 36 860 102 
 

 

Figure 6. 13 The effect of water addition to the turnover frequencies of cyclohexanol 
dehydration on HZSM-5 zeolites. Reaction condition: 0.32M cyclohexanol, 120-150oC, 
730psi H2, water volume fraction is identified as the ratio of water volume over decalin 
volume 
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Figure 6. 14 Linear relationship of TOF and ΔG‡ versus water contents 

Interestingly, when the TOF of cyclohexene formation was plotted versus the natural 

logarithm of water volume fraction in the range of 0-0.05, a linear trend was observed 

(Figure 6.14a). Calculated intrinsic activation free energy also exhibited a linear 

relationship with ln(water volume fraction) parameter (Figure 6.14b). Furthermore, it 

can be seen from Table 6.8 that the increasing amount of water enhances the activation 

barrier while reduces the entropy loss of the TS. At the point of 0.025 wvf.% 

corresponding to 3g of water added, the maximum TOF was reached and the TS actually 

gained some small entropy compared to the adsorbed state. Above this value, the lower 

ΔH‡ is completely compensated by an increase in entropy loss, leading to an almost 

constant value of ΔG‡. The biphasic system of decalin/water started to behave similarly 

to the pure water solvent.  
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Table 6. 8. The effect of water to the activation enthalpy, entropy and free energy on 
HZSM-5 zeolites. Reaction condition: 0.32M cyclohexanol, 120-150oC, 730psi H2, 
decalin solvent 

Amount of 
water, g 

Water 
fraction 

HZSM-5 
Si/Al=11.5 

HZSM-5 
Si/Al=40 

ΔH‡ ΔS‡ ΔG‡ ΔH‡ ΔS‡ ΔG‡ 
Decalin 
solvent 

0 54.7 -166.8 125.3 59.2 -144.5 120.4 

0.10 0.00086 - - - 78.6 -93.6 118.2 
0.75 0.0065 116.2 -5.2 117.6 93.5 -53.3 116.1 
3.00 0.025 119.8 4.75 118.5 120.8 13.8 114.9 
6.00 0.051 115 -5.1 116.4 109.1 -12.7 114.5 

Water solvent 1 83 -81 105.1 90 -56 113.5 
 

The intriguing result of ΔG‡ dependence on water contents indicates the direct 

involvement of water in the TS complex structure that leads to the observed rate 

enhancement. Since the 0th reaction order is established in decalin solvent over HZSM-5 

zeolites, the role of water is not likely to assist the adsorption or association of 

cyclohexanol with the active sites. In fact, Lercher et al. have proposed such water-

associated TS complex for the cyclohexanol dehydration on HBEA zeolite in water 

solvent [302]. The cyclohexanol dehydration is proposed to undergo three elementary 

steps (E1 mechanism) including: protonation of cyclohexanol from the solvated 

cyclohexanol-hydronium complex, C-O and C-H bond cleavages, corresponding to three 

different TS complexes: [C6H11
+…H2O + (H2O)n+1]; [C6H11

+ + (H2O)n+2] and 

[C6H10…H3O+ + (H2O)n+1], respectively. The decrease in ΔG‡ with increasing water 

contents (in the range of 0-0.05 volume fraction) could be due to the increase in size of 

the water cluster that facilitates the deprotonation of the framework proton. Several 

groups from literatures have stated that the nucleation and deprotonation/delocalization 

effect of large water clusters (constituting of at least 3 molecules) on Brønsted acid sites 
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are more thermodynamically favorable than a single water molecule [262, 296, 300]. The 

more favorable delocalization effect induced by a larger water cluster makes the proton 

more detached from the surface, as the results, resulting in gaining more entropy for the 

water-associated TS complex as shown in Table 6.8. As indicated by Lercher et al., for 

a water cluster with size larger than 4 molecules (such as H9O4
+, and H11O5

+), the positive 

charge of the hydronium ion does not change with the addition of more water molecules 

[300]. This could explain the plateau at higher water content as seen in Figure 6.13  

 

6.4 Conclusion 

Zeolites with confined pores has shown a tremendous effect on the rate of 

cyclohexanol dehydration in water solvent compared to a plain acidic solution via the 

stabilization of the TS complex rather than the enhancement cyclohexanol-hydronium ion 

association. This is in line with considerably lower ΔH‡
 and ΔS‡ obtained on HZSM-5 

zeolites and a 0th to negative reaction orders obtained on HZSM-5 in decalin and water 

solvent, respectively. Furthermore, the addition of silicalite-1, a non-acidic silica-based 

material with a similar porous structure as HZSM-5, into H3PO4 solution did not yield 

any positive effect on cyclohexene formation rate compared to the plain H3PO4 solution, 

indicating that a physical combination of hydronium ions and confined pores might be 

not sufficient to enhance the dehydration rate. The hydronium ion originated from the 

framework hydroxyl group is essential for the high TOF value observed in the zeolites. 

Compared to water solvent, the cyclohexene formation is slower in decalin solvent. 

The addition of a small of amount water is beneficial for the reaction as a much faster 

rate is observed. This process associates with a gradual increase in the intrinsic activation 



152 

 

enthalpy which is compensated by a fast decrease in the entropy loss, resulting in the 

lower activation free energy. This intriguing catalytic behavior could be caused by the 

increase in size of the water clusters that might thermodynamically mediate the 

deprotonation/delocalization of the framework proton as well as the H-transfer process in 

the kinetically relevant C-H bond cleavage step. This effect is cancelled out as the water 

cluster grows bigger, corresponding to the unchanged rate at the point above 0.25 water 

volume fraction.
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A. THERMO GRAVIMETICAL ANALYSIS   

  

  

 

 

Figure S1. TGA-TPO decomposition analysis for the functionalized silica:  a) MCM41, 
b) SBA15-SO3H-CC, c) MCM41-SO3H-CG, d) MCM41-ETS-CG, e) MCM41-SO3H-
HG, f) MCM41-OTS-HG. 
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B. N2 ADSORPTION-DESORPTION ISOTHERMS  

 

 

 

Figure S2. Isotherms of adsorption and desorption for: a) MCM41, b) MCM41-SO3H-
CG, c) MCM41-ETS-CG, d) MCM41-SO3H-HG, e) MCM41-OTS-HG f) SBA15-SO3H-

CC. (♦) Adsorption isotherms, (♢) Desorption isotherms. 
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C. THERMO STABILITY OF MCM41-SO3H-HG 

 

Figure S3. DRIFT spectra at 50oC of MCM41-SO3H-HG. The samples were pretreated 
at different temperatures in constant flow of He 

The thermal stability of MCM41-SO3H-HG was evaluated by using FTIR cell 

(High temperature DRIFT HVC cell). The sample was heated up in-situ under He flow 

with ramping rate of 10°C/ min until reaching the desired temperature which is kept 

constant for 1 h during experiment. The cell was cold down to 50°C and the DRIFT 

spectra was collected. The results are presented in the Figure S3. The increases of the 

signal in the region of 3700 to 3100 cm-1 (corresponded to the O-H stretching vibration) 

along with the increasing temperature is due to the desorption of physisorbed water on 

the surface, leading to the reduction of interference on the IR signal. The pretreatment of 

samples helps to produce clear and stable signals in the C-H vibration region (2800-2600 

cm-1). No loss of functionalization was detected up to 300oC. 
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D. TRANSMISSION ELECTRON MICROSCOPY IMAGES OF THE 

FUNCTIONALIZED SILICA 

 

 

 

      

Figure S4. HRTEM for the parent and functionalized MCM41: a) parent MCM41, b) 
MCM41-SO3H-CG c-d) MCM41-SO3H-HG   
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E. XRD OF HYDROTHERMAL TREATED CATALYSTS  

 

 

 

Figure S5. XRD of functionalized MCM-41 after hydrothermal treatment a) MCM-41 

(Sample 1) and MCM-41 preheated at 600oC for 6 h (Sample 2) prior to water treatment; 

b) MCM41-ETS-HG-6x; c) MCM41-SO3H-CG; d) MCM41-SO3H-HG 

 

 

 

 

 

 

 

2 4 6 8 10 12
2θ

Sample 2

(100)

Sample 1

Sample 1 n/no=0.2

Sample 2 n/no=1

(110) (200)

a)

2 4 6 8 10 12
2θ

Before treatment

(100)

n/no=1

n/no=4

n/no=2

b)

2 4 6 8 10 12
2θ

Before treatment

(100)

(110) (200)

n/no=0.2

n/no=1

n/no=4

c)

2 4 6 8 10 12
2θ

Before treatment

(100)

(110)(200)

n/no=0.2

n/no=1

n/no=2

n/no=4

d)



159 

 

F. 1H-29Si CPMAS OF HYDROTHERMAL TREATED CATALYSTS 

 

 
Figure S6. NMR 1H-29Si CPMAS of MCM41-SO3H-HG treated with different amounts 

of water 
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G. ACTIVITY OF FUNCTIONALIZED CATALYSTS AFTER METHANOL 

WASHSES 

 

Figure S7. Catalytic activity of the functionalized MCM41 catalysts after multiple 

sequential washes with methanol at 200°C for 6 h a) MCM41-SO3H-CG and b) MCM41-

SO3H-HG. The alkylation reaction was carried out at 250°C under 850 Psi of N2, for 2 h, 

CPOL/m-cresol feed ratio 0.5M/1.0M in decalin solvent. The total yield is the sum of 

yields to alkylated products (C-C and C-O) 
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H. LEACHING TEST OF HYDROPHOBIZED SBA-15 CATALYSTS 

 

 

Figure S8. The leaching test result of SBA15-SO3-CC-HG synthesized by high-
temperature grafting with an excess amount of ETS (30.6 mmol ETS precursor per 
gram of the catalyst). Run 1: 150 mg of SBA15-SO3-CC-HG; pure CPOL/m-cresol, 
250oC, 2 h. Run 2: liquid product (from run 1) at 250oC, 14 h  
 

 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

C
on

ve
rs

io
n/

Y
ie

ld
, %

Run 1

Run 2

Conversion 
of CPOL

Yield of CPEN Yield of C12 Yield of DPE



162 

 

 

Table S1. Literature review of the stability of the functionalized mesostructured 
silica. 

Reaction Catalyst a Solvent T (°C) Stability Reference 

Esterification of acetic acid with 

methanol 
SiO2-SO3Hb Methanol 60 No leaching [205]    

      

Transesterification/Esterification of a 

mixture of ester, fatty acids and 

methanol 

SBA15-SO3Hc 

Methanol 60 

No 

Leaching [171]    SBA15-SO3Hd 

SiO2 -SO3Hd Leaching 

Etherification of glycerol with 

isobutene 

SBA15-SO3He 
Glycerol 75 

No 

Leaching 
[303]  

SBA15-SO3Hd 

Aldol condensation of 4-

nitrobenzadehyde with acetone 

MCM41-

SO3Hc 
No 50 

No 

Leaching 
[304] 

MCM41-

SO3Hd 

Esterification of fatty acids with 

ethanol 

 

Ethanol 80 

Leaching 

[206]    PS–C8–SiO2 

HNsc,f 
No 

Leaching  

Dehydration of fructose 

SBA15-SO3Hc H2O 

120 

Leaching 

[146] 
SBA15-SO3Hd DMSOh 

No 

Leaching 

Hydrolysis of cellobiose 
SiO2-NP-

SO3Hg 
Water 175 Leaching [199] 

a Catalysts were synthesized using MPTS as the precursor followed by oxidation to SO3H 
b Incipient wetness impregnation of the precursor at room temperature 
c Catalyst functionalized using CC method 
d Catalyst functionalized using CG method 
e Conventional grafting assisted by microwaves 
f Hybrid mesoporous silica hollow nano spheres (HNs), PS: Polystyrene, PMA: poly(methyl acrylate), C8: 
functionalized with OTS 
g Conventional grafting using different solvents (Ethanol, methanol, acetonitrile, toluene) of silica-coated 
magnetic nanoparticles of CoFe2O4 
h Dimethyl sulfoxide 
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