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PREFACE 

The problem considered here is to set up a confidence interval of 

a constant width for a simple linear regression mean at a given point 

which is belonging to a finite interval. The problem considered has the 

following property: Given the coverage probability and constant width, 

a rule is defined to determine the sample size so that the probability 

based on the determined sample size which covers a simple linear regres

sion mean at a given point approaches a number.which is no less than the 

preassigned coverage probability as the width goes to zero. 
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CHAPTER I 

INTROE>UCTION 

The problem consider~d in the present work is to set up a con

fidence interval of a constant width for a simple linear regression 

mea~ at a given point·X which is belonging to a finite interval. The 

problem considered has the fellowing property: Given.the coverage 

probaQility, say a, and the constant width; say 2 d, a rule will be 

defined to determine the sample size n so th~t th~ probability based on 

the determined sample si~e n which covers a simple linear regression 

mean at a given point X will approach a number.which is ne less than 

a when d decreases. The problem will be treated in twa cases: namely, 

when the.variance of the dependent random variable Y is known.and when 

it is unknown. A nan-sequential precedure will be used ta determine n 

when the variance is known; a sequential procedure will be used when 

the variance is unknown. In botQ cases, there.is no assumption to be 

made about tQe distribution of. Y, ex':ept. that .the variance has to be 

finite. 

· The subject .of linear regression has been a popular one, A con

ventional method to set up a confidence interval for a regression mean 

at a given point caq be f~und in almost.any statistical methods text

book. The typical ones are Statistical Methods.by Snedecor (1) and 

fil!. Introduction t0 Linear Statistical Models, Volume 1. by Graybill (2). 

Further w0rk has been d0ne concerning the confidence bands for the 

1 



I entire regression line by such prominent statis~icians as Scbeffe (3) 

2 

Working and Hotelling (4). Then Hoel (5) considered.the possibility of· 

finding an optimal confidence band in.the sense that the expected total 

area of an admissible class of bands is a minimum. Graybill and Bowden 

(6) have developed the straight line bands rather than the conventional 

curvilinear bands and indicated that these bands are more.efficient than 

those curvilinear ones. Folks and Antle (7) also proved that polygon 

bands for general linear regression problems are more.conservative than 

those of elliptical ones. Gafarian (8) even developed bands with con-

stant width extended over a bounded interval. As he mentioned in his 

paper: 

, •• ordtnarily an experimenter is not interested in cover
age of the whole regression ct,irve. On the contrary, interest 
lies in only a bounded interval or even a finite set of 
points. A method for providing a band that is valid only 
for a finite set of interest may yield a more efficient band. 

In the present work, his cencept has been referred ta. 

There is na intentian to compare the_present work with those 

studies in the.preceding paragraph, This work·is merely another way to 

look at the_problem. 

Chow and Robbins (9) have used a general sequential procedure for 

finding a confidence-interval of _constant.width with. a given coverage 

probability for unknown meanµ of a population having fixed distribution 

F with unknown.but finite variance. Gleser. (10) and Srivastava (11) 

have examined these results to tqe li~ear regression parameters. Here, 

their results will be extended to the simple linear regression mean. 

A method given based on Snedecor (1) is as follows: Let 

x1 , x2 , ••• , Xn be a fixed set.of observable.points, Under the 

mathematical model that 



where Yi's are iid normal random variables with 

EYi = S0 + S1 (Xi - X), var (Yi)= cr2 for all i 

and given the coverage probability ~, the fixed. sample size n, the ccm-

fidence interval at a given point Xis given as 

where 

S. + S (X - X) (:) 1 

1 

± t a [1 + (X - X) 2] 2 
1-~ n ns2 

~2 = E(Y1 - Y) 2 a 1 
n.- 2 n -

A A A2 e0 , S1 and~ are all unbiased maximum-likelihood estimates fer S0 , s1 , 

3 

In this method, when n and~ are given, the width ef the confidence 

interval is 

"[1 2t c; - + 1-~ n 

cannot be camtrelled; besides, it depends on X. The farther X. is from 

X, the wider the interval will be, although X can be extended fram 

- 00 to 00 but, as Gafarian pointed eut, the experimenter may net be. 

interested. The present work considers the case that: when the 

coverage probability~ and the constant width 2d are given, a sample 

size n will be determin~d by a certain.rule, Based en the determined 



sample size, it will be shewn that the probability ef cevering the 

simple linear regressien mean at a given p0int X by the canfidence 

interval af canstant: width will be n.'0 less than <ti. when d decreases. By 

the restrictien ef t~e range of X, an experimenter may.save his sample 

size as will be shewn, 

N0tatian Used 

Let x1, x2, ••• , Xm be m fixed distinct observable,variables where 

m ~ 2 •. 

(1) 

(2) 

Then 

-lrp. 
X = m EX. 

1 l. 

[ a 'b] = [x - h' x + h] 

where his suitably chosen such that it has ta cover x1, x2, ••• , Xm. 

(3) 

(4) 

(5) 2 -1~( - )2 s = n L, xi - x n 1 n 

(6) µ = x e + e cx - x ) 0 1 n 

x• (n) • [xl ~ 
1 

~ xJ (7) 

x ' x - x • x n . 2, n n 

Mathematical Models and Esttmat~rs 

The fallci>wing are·the mathematical model and estimaters which will 

be used. 

4 



are unknawn parameters. Yi '.s are iid randam variables with 

(2) µ = j + S (X - X) X · 0 1 i n 

(3) S = [x'. (n)X(n)]-1x(n,)Y(n) which is the best .linear unbiased 

estimateaf a. 

(5) e2(n) = N-lY'(n){I(n) - X(n)[X'(n)X(n)J~1X1 (n)}Y(n) + n-l 

-1 where I(n) is then x n identity matri~, and the.additienal term ef .n 

will be explained later. 

IDescriptien and Discussien ef Taking 

0bservatiens en x1, x2, 
•• (I ' 

x m, 

5 

IDefine the set {x1, x2, ••• , Xm} as.a primary set wbere m ~ 2. Fram 

t~ese paints cempute 

X• m-1Ex and 
i 

T~en cbees• an apprepriate·h sa that: 

(l) (X.- h, X + h) cavers the primary set; 

(2) the length ef h,serves the purpese,ef an experimenter's 

interest. 

There.is a reasen which will be explained in the last ·sectien ef Chapter 

2· II, that S sheuld be as large as passible. In erder te achieve this 

purpese, the size ef m will be censidered in,twe cases: 



(l) When the paints ef X's in the primary set.are equally spaced; 

(2) When the paints ef X's in the primary set ar~ arbitrarily 

spaced. 

Case 1 .. 

6 

Let x1 and Xm be the first and last paints in the_primary set. Se, 

thus, the paints ef the primary set_will be 

(m -_:2)(\i - x1) •.• ' x + _...,....._.,_.. _____ , 
- 1 · m - 1 -

Thus, the primary set is equally spaced. 

m - mXl + 2<xm - Xl) xm - )_Cl 
X= - --=X+ 2·· m .. 1 

82 = m-1 ~ If[x + k --lex_ - x >] - [x - Xm, ~X1Jr\. 2. 
- k= 1 ~ 1 m - _ l m 1 1 · IJ 

-1 (X _ X ) 2 ~ t2k - (m + 1 )12 
... _m m 1 I.. . 2 (ni.'1_ I) 

k•l ' 

-1[<xm -.x1>2J m [ . ]2 m."'. l, cv• -x )2 
.. m 4m(m - 1)2Jk:l 2k - (m + l) • 12(m +J ."111 1 

i.e., 

2 _ [ . 2 1 (Xm "."" xl) 2 

S - 1 + m ~ 1] 12: 

The canclusian i~ 

822 > 82 > •• .- > . 3 ' . 



2 where Sk means the variance associated.with a primary set ef k points, 

k = 2, 3, ••• , m. Fram thi~ result, .it ,can be seen that when x1 and Xm 

2 are determined, mare,paints inserted between x1 and Xm' S will become 

smaller with the lewer limit 

(X - X ) 2 
m 1 

Therefore, fe~er peintS! should be used between.x1 and~ in the.pr;i.mary 

set whenever it is pessible. Gf ceurse, the best primary set is 

2 1 - 2 s2 .assaciated with {x1, Xm} is 4cxm - x1) , which is the 

largest. 

Case 2 

then 

where 

Let x1 and X be the first and last paints in the ·,primary set, 
m. 

0 • t. < tl < t2· < ••• < t l = 1. e m- .. 

Thus, the primary set is arbitrarily spaced. 

- x )2 
1 

_3~ m [ m 12} 2 = .m E mtk-l - E ,tk-l (}~m - X1 ) •. 
k=l k•l . 

At th~s paint, it was cenjectured that the result weuld be. 

7 



however, th~s is net the -case in general,. Fer an ~ample·, let · 

then 

let 

then 

thus 

X = © and X = 50 
1 ' m 

2 1 2 2 2 1 2 2 · 2 s3 = I {C@ - 17) + c1 - 17) + (5© - 17) } = JC17. + 16. + 33.) 

= lc2s9 + 256 + 10s9). 544.667 
3 

S2 2 
2 > 83· 

As anether example, let_ 

Let 

X = © X = 25 X = 50 1 · ' 2 - ' m 

2 1 2 2 1 2 2 1 S = -{ (0 - 25) + (5© - 25) } = -3{ (-:-25) + (25) } = -3 (125©) 3 3 _ 

= 416.667. 

2 1 2 2 2 2 s3 = 4{(© - 14) + (1 - 14) + (5 - 14) + (50 - 14) } 

• t{(14>2 + (13)2 + (9)2 + (36)2}= 196 + 169; 81 + 129~ 

= 1!42 • 435,5. 

8 



Se 

Thus, when the primary set is arbitrarily spaced, there is ne trend in. 

general such as 

s2 > s2 > s2 
2 3 4 

s3 < s2 
2 3 

especially when the p0:i,nts in the primary set clustered ta either x1 <:>r 

~· Se, it i~ suggested that wh~n several primary.sets with.the same 

2 x1 and Xm are pessible fer an experiment, cempute each S asseciated 

with its primary set and use the primary set which yields the largest;: 

s2. 

9 

In the present w<:>rk, the.sample size n is net.predetermined. It is 

determined, by a rule, ;wh:Lch v1ill be defined, based en the given ceverage · 

prebabtlity a and the censtant width_2d f<:>r a cenfidence interval. The 

sample size n thus determineq ceuld net always·be the.same.as m, the 

number 0f paints in tqe primary set, In case n > m, ebservatien must be 

repeated en the,primary set. In the_folltj>wing a descriptien is given 

and is explained as te hew the primary set sh0uld be ebserved. Define 

the actual set {x1, x2 , ••• Xn} ebs~rved as the ebserv~d set. Fer 

example, the_ebserved set ceuld be 

er 

The· ebj ect ef the descripti<:>n cQncerns the erder ef ebservaticms en the 



primary set. It is always desirable te make the variance.ef the 

est:l.mat~ 

far 

small. 

var [i0 + al (X - Xn)] 

cav (i0 , i 1). 

A _ 2 A _ 

• var 80 + (X.- Xn) var 81 -~ 2(X - X) 

But 

A r. A A A A ] 2[ J-1 cev a= E ~s - S)(B -.S)' - s X'(n)X(n) 
2 

E1 (i) = n 
2 

0 
n·s 2 

n: 

Sa, 

2 2 2 
var [a0 + i 1 (x - xn)]_ ""L + ...L(x - x) 

n nS2 n 
n 

In arder ta make 

small, the quantity 

n 
E(Xi - X )2 
1 n 

has t9 be maximized. It i~ suggested that peints af the primary set 

shauld be observed in the.folbwing <i>rd~r: 

10 
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When the primary set has been exhausted, repeat the order as before. 

Once the order of observing X's has been defined, the matrix X(n) 

associated with such a sampling will not be a random matrix for a 

determined n, 

Summary 

Let x1, x1, ••• , Xm be a predetermined set, the primary set. 

Choose an appropriate h so that (X - h, X + h) will cover the primary_ 

set and, if possible, make has short as possible. 

A rule will be defined based on a coverage probability~ and a 

constant width 2d far the confidence interval-to determine the sample 

size n, Based cm the _determined n, set up the interval 

r = [s + s ex - x > - a i" + s ex - x > + dJ n 0 1 n '1:1 1_· n 

it will be shown.that 

> Ci. - ' 

where 

XE(X - h, X + h). 

This means that, when ~ and d are given, the pr0bability based. on the 

determined size n which covers a simple linear regression me~n at.a 

given point X will approach a number which is no less than GI. when d gees 

te zer0, 



CHAPTER II 

NON-SEQUENTIAL PROCEDURE 

As stated, a confidence interval of constant width 2d for a.simple 

linear regression mean 

at XE(X - h, X+ h) with a preassigned coverage probability a will be 

set up which has the fqllowing property: 

d-+0 
lim P{µ EI}> a 

X n == 

where 

2 a Known, Non-Sequential Procedure 

In the following, a rule is defined to determine the sample size n. 

Based on n, the confidence interval I with the constant width 2d is. 
n 

constructed. 

Choose a number a, so that 

a. 

(1) 

-a 

f 1 + (~)2 

2 
u 

- z'." 
e du= a 

2 where hand S were mentioned as before. Define the sample size n as 

12 



the smallest.positive integer so that 

(2) 
2 2 

> a a 
n --= 2 

d 

13 

thus, n is uniquely determined when a and dare given. From the rule as 

defined, there is a relationship betwee~ n and d which can be written 

down as 

Lemma 1, d -+ 0 as n-+oo, 

Proof: As defined, n is the smallest positive integer so that 

Thus, 

2 2 
n = a_~ + r, 0 ~ r < 1 

d 

lim d = O. 
n-+oo 

To develop further, the following lemmas are needed. 

Lemma 2, 

2 
lim~~\) = 
n-+oo\ 0 

2 
a • 

Proof: Since 

a 2,i 
n = --+ r, 0 < r < 1 

d2 -

2 
limf-d 2) 
n-+oo \ a 

d2) 2 2 = lim ~ 2 = lim fa 2 + rd ) = a , 
d-+Q\ a d-+O\ cr2 



or 

lim 
n-+oo 

Lemma 3. 

[ ,tnd] = a. 
cr 1 

lim X 
n n-+oo 

= X, lim s2 
n-+oo n 

Proof: Since. 

m 
ci:X. + 

x 
-ln. 1 J., 

= n i:X. = n 1· ]. n 

14 

m 
Res· ci:Xi + Res 

1 = me+ r 

where O ~ r < 1, c stands for the number of cycles repeating the primary 

set and Res stands for residue, which is a part of the primary set. 

m 
i:X. + Res 

x . = 
n 

1 ]. c 

since 

lim X 
n n-+oo . 

m + !.. 
c 

= lim X 
n c-+oo 

m 2 
cI:X + Res •i 

1 -2 = ~~~~~ - x 
me + r n. 

lim s2 = 
n-+oo n 

lim s2 = lini n c-+oo · c-+oo 

-1 m 2 _ -x2 = 82 = m LX. 
1 ]. 

[~f + R~s ] 
--.-.x2 

m +!.. n 
c 

n 
n-1I:X2 - x2 

1 i n 



lim x = x, 
n 

Lemma 4 [Gredenko and.Kolmogorov (12)]. 

15 

If z1, z2, z3 , .•. are iid random variables with Zi = O, var Zi = 1, and 

i = 1, 2, 3, ... , n; n = 1, 2, 3, 

is a fixed array of constants so that 

then 

n 
"b 2 = l ,· 2 3 ~ i ' ' ''' 1 n 

max I b . I + 0 as n~ n1. 

n 
lim rb .z i = N(O, I) in distribution. 
n~ 1 n1. n 

With the provision of lemma 4, the following lemma is proved. 

Lemma 5. Let 

[r\ -. s0] . s2 -. s. 2 L(n,\) = ~o a - + \1 · a 

n ~ns~ 

where 

then 

L(n,\) + N(O,l) in distribution as n~. 

Proof: 



l 
= cr-1)..'[X'(n)X(n)] 2 (S- S), )..' = ().. 0 ,).. 1) 

S = [x' (n)X(n)J-1:x.• (n):Y(n), 

Y(n) = X(n)S + e, EY(n) = X(n)S 

X' (n)EY(n) = .X' (n)X(n)S. 

Since [x~ (n)X(n)] is a positive definite matri:ic~ .so it is nonsingular 

and [x' (n)X(n)J-l exists. 

where 

S = [x'· (n)X(n)]-1x• (n)EY(n) 

~ .- S = [x' (n)X(n)] '""1x• (n) [Y(n) - EY(n)] 

1 

L(n,A) = cr-1~ 1 [X'(n)Y(i1)]- 2x'(n)[Y(n) - EY(n)] 

= A' [x' (n)X(n)J 

1 
2 X' (n)Z(n) 

Z(n) = cr-1 [Y(n) - EY(n)J, Z'(n) = (Zl' Zz, 

Note that Z.'s are iid random variables with 1 . . 

i = 1, 2, 3, 0 •• 

X' (n)X(n) = In O ] 

lo ns! 
1 

[x' (n)X(n)] 2 

is defined as 

[
(ti O 1 
o Jns~J 

1 - -
[x' (n)X.(n)J 

2 

16 



is defined as the inverse of 

1 

[x' (n)X(n)] 2 • 

Now tqe coefficients of the Z 's are the components o~ 
i 

1 - -
A' [x' (n)X(n)] 2x' (n) 

which can.be written as 

1 1 

n - 2A' {n -l [x' (n)X(n)] 2x' (n) 

- ~ [] 01- t[ 1 1 1 

-YJ 
= 

n 
2
"' 0 s2 x -x x2 -x x n 1 n' n' n 

1 

I r I 0 2 1 1 1 

1 n 2A' l O 
s2" XI - xn, x2 -x n' • e,. x -x 

where 

Thus 

n 

I [! 0 1 [ 
1 l 

= n 2,, 0 

tj xl - X' x2 - x n' n' 

... , 

1 1 - - - -
b . 

Ill. 
= n 2"o + (ns!) 2"1 (Xi - Xn) 

i = 1, 2, .•• , n; n = 1, 2, 3, ,,, 

L(n,A) 
n 

= Lb . Z .• 
1 Ill. l. 

n n 

1 

x - YJ n n 

17 
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In order; to show that 

L(n;A) -+ N(0,1) in distribution as n~ 

the conditions of lemma 4 need to be checked. 

nr - l 1 

- Xn)] 2 
n 
Z::b2 l 2 (nS ) 2 

= in AO+ Al (Xi ni · n 1 . 

2 2 1 2n - 2 -1 n _ 
= A + (nS )- A Z::(X - X) + 2(nS) A0A1Z::(Xi - X) O n 11 i n n. 1 n 

- - 2 2 - 2 Since as n~, X -+ X, S -+ S from Lemma 3 where x, S and all X.'s are 
n n i 

finite quantities, 

max I b . j -+ 0 as n~. 
ni 

n 

The conditions of Lemma 4 are all satisfied; hence we conclude that 

L(n,A)-+ N(O,l) in distribut~on as n-+<x?. 

Lemma 6. Let 

then 

L(n) -+ N[0,1 + (X; xt] .in distribution as n~. 

Proof: Let 



thUl:jl 

So 

A 'A = A~ + Af = [1 + r ; xtr + [X ; xr[l + t ; xrr 
• [ 1 + t ; xt] [1 + r ; xtr • 1. 

in distribution as n-+oo, 

19 

But as it is known that if Xn + X in distribution where X ~ N(0,1) then 

cXn + N(O,c2) in distribution where c ia a constant~ Proof is given in 

the following: Let X ~ N(0,2), then its char!:).cteristic function is 

Since 

Let 

= e 
- -h2 

2 

- -b-t:2 
Xn + X;¢x (t) + e 2 as n-+oo 

n 

= EeitcXn,= ¢ex (t) ¢x (ct) 
n n 

1 2 ·2 
- ~ t 2 

lim ¢ex (t) = lim ¢x (ct) = e. 
n n n n 

2 cX. +,N(O,c) in distribution as n-+oo, 
n 



thus 

c = 

L = n 

60 - 6 
' 0 + 
cr 

{ii 

in distribut:i,on as n-+oo, 

Lemma 7 [Rao· (13)]. 

Let {Xn ,Yn}, n = 1, 2, ••• be .a sequence of pairs of .vari~bles. If 

20 

jxn - Ynl + 0 in probabil:i,ty and Yn +Yin distribut:i,on, then.Xn +Yi~ 

distribution. Lemma 7.is used to be used to show the following. 

Lemma 8. 

s -6 (x-x~s -6 [ 0 0 + . n 1 · 1 + N O,l + 
cr s cr - n . 

rn- ~ns~ 

in distribution as n-l<X?, 

Proof: Let. 

~ -13 (X--X~S-13 L (n) = 0 · 0 + n 1 . 1_ 
1 · cr s cr. 

ill n ~nS~ 

and 

then 



Let e: > O be an arbitrary number, and let 

-r - x x ; X{~Blj u n 
n s n 

{ns~ 

By lemma 5, let AO= O, Al= 1, then 

6 - B 
1 cr. 1 -+ N(0,1) in distribution as n"700 

~nS~ 

and 

( x - xn - x - Jc)-+ o 
S S as n"700, 

n 

But .by a theorem from Rao (12), let {x, Y }, n = 1; 2, 3, ,,, be a 
n n 

21 

sequence of pairs of random variables, if X -+ X in distribution, Y -+ 0 
n n 

in probability then X Y -+ 0 in probability. Therefore, U -+ 0 in prob-n n « n 

ability which in turn implies that U -+ 0 in distribution. Let F be the 
n n 

distribution f~nction of U, and F be the limiting distribution of F, 
n n 

F(u) = 1 if u = 0 

F(u) = 0 if u f 0. 

P[IL1 (n) - L2 (n)I < e:J • P[iunl < e:J = 

= F(e:) - F(-e:) = O. 

Hence, 

F (e:) - F (-e:) 
n n 



22 · 

So by Lemma 7 , · 

L 1 (n) + N [ 0, l + t ; xy] i,i dis 1;ribu tion as n-j<" 

since as Lemma 6 indicated 

or 

in distribution as n:°°• 

One more.lemma is needed before stating th~ main theorem whic4 has 

been described at the beginning of this chapter. 

Lemma 9. 

Let {b} be a sequence of constants so that b +·bas n~. Let {x} be n · n n 

a sequence of random,vari~bles so tQat X + X in distribution as n~. 
n 

Let Gri(n) be the distribution function of XII. and G(n) the limiting 

distribution function ef X. Then G .(b ) converges to .t.(b). 
n n. 

Proof: 

Since bn + b, so .for all .e: > 0 there exists a positive ·integer N(e:), so 

that when n > N(e:) 

lim G (b - e:) <.lim inf G (b) _< lim sup G (b) < lim G (b + e:) 
n - · n n n n - n n~.. n~ n~· n~ 

G(b + e:) < lim inf G (b) < lim sup G (b) < G(b.+ e:). 
- n n - n n -n~ n~ 

Since e: is arbitrary 
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lim Gn(bn) = G(b). 
n~ 

Theorem. 

lim P{µ EI}> a. 
d~O x n = 

Proof: 

P{µ EI}= P{Iµ - µ I < d} 
x n x x. 

Let 

Bo - s s - s1 x -x 
v 0 1 n 

= cr + . ' n (:] s 
,.fit 

~nS~ 
n 

Fn be the distribution function of Vn.and F be the limiting distribution 

functio~ of Fn' Note, Fis the normal distributton f~nction with mean 

O and variance 

Thus 

P{µ EI } = Pfilv I < €d} .. F [f!ld] - F. [--@.1 
x n '\_' n cr. n. cr] n ciJ 

l!m P{µpn} • l;," fn (fil~) - Fn(--ln!)} 
= F(a) - F(-a) by lemma 9. 



1 

... (211'.) 2 

> (2'TT) .... 
1· 
2 

e 

-a 

a 

2 
- .!!... 

2 du by Lemma 8 

by the definitio,n of.a and since (X - x) 2 ·< h2 • Finally, 

lim P{µ EI}> a. 
· x n· = n-+<x> 

From:Lemma l; it can.be rewritten as 

lim P{µ EI}> a. 
d-+O .. x. n ... 

Comments 

2 In the introdu~tion it was mentioned that S_ associated with a 

primary set sho.uld be as large as possible and h be as small as 

possible. 

1 -r 
(2'TT) 

-a 

a 2 
u 

- 2du =C:X., 
e 
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Let 

z = 1-0I. 
2 

a 

j 1 + (~)2 

thus Z is.a constant when a.is given 
1-0I. 

2 

.2 = z1;a [1 + :l 
Recall that the sample size n is determined as the smallest positive 

integer n so that 

or 

2 2 
a CJ 

n = -- + r, 0 ~ r < 1 · 
d2 

n = 

Since 

2 
cr 2 -z 
d2 1 ... a 

. 2 
+ r. 

2 and rare all constan~s; n can be considered as a function of.hand S 

and can.be written as 

2 n = n(h,.S) = 

h > O, s2 ·> O. 

C:12 2 -· z 2 1-0I. 
d - 2 

From.the function n(h,s2)- it can .be.seen that under the same OI., n 

2 decreases when either h decreases or S increases alone or h decreases 

25-
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and s2 increases. Thus, when h is shortf,:!r and/or ,s2 is lenger ,. the 

sample.size n will be smaller. This implies that a smaller sample,size 

could be used if hand s2 could be adjusted properly. 

In particular, whe.n h approaches to zero, · the sample size n. will 

approach 

which coincides with the elementary method for determining a sample 

size n when the lengt~ of confidence interval 2d is preassigned. 



CHAPTER III 

SEQUENTIAL PROCEDURE 

In Chapter II the case that 0 2 is known has been.assumed. A rule 

was-defined to determine·the sample size n.based en a.given ex and,a 

constant width 2d. 2 Sinqe a is known and a is a fixed constant, the 

rule was defined that the sample size n is the smallest positive 

integer so that 

2 2 
a 0 n >-.......... = 2 

d 

consequently n .can be determined by a non-sequential procedure. 

2 In the .present chapter the case will be considered that 0 is 

unknown, "2 . 2 2 Since an estimate a (n) for 0 has to.be used in replacing 0 

for defining a rule to determine the sample size n, a sequential 

procedure has to be used. 

0 2 U~known, Sequential Procedure 

Asymptqtic Consistency 

As defined, 

(1) 82 (n) = n ~1Y' (n) {I(n) - X(n) [x' (n)X(n)]-1x1 (n) }Y(n) + n -l ~ 

The purpose of the additional term n-l i~ (1) is to ensure that· 

"2 . a. (n) 
2 > 0 a.s. 

0 

The positiveness of the quantity 

27 



shall be used in later proofs. ·In .case·the distribution of the randem 

variable Y is continuous, 

n -ly, (n) {I(n) [x• (n)X(n)]-1x' (J:?.) }Y(n) = 2 V (n) 

say, will not ,vanish, so 

2 
V (n) > 0 
02 

can.be insured. 2 So, when the .distr_ibution of Y is· continueus, V (n) 

A2 
serves tne same purpese as <J (n) does. In ·the present .. case, the 

distribution of Y is an arbitrary one; it .can be either continuous er 

discrete. 

The-stepping rule is defined as follqws:. Start by taking n0 _> 2 

observatiens; so the_n0 observations ar«a 

... ' 

Then, sample one more observatien at-a time and stqp when-

(2) N = smallest pesitive integer k ~ n0 such that 

2 
82(k) < kd 

- 2 a -
k 

where N is a positive integer valued random variable and 

From (3) it can be seen that 

2 2 
limaN=a. 
N-+oo. 

Based en (2) and (3) it will be shown that 
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(4) lim P{µXEIN} ~ a 
d-+O 

where a i$ preassigned and 

Chow.and RC:>bbins call the property (4) the "asymptotic consistency" 

property. 

But, first of all, it is needed to show that the stopping rule 

29 

defined as (2) will lead. the procedure to a stop •. The fqllowing lemmas 

are needed. 

Lemma 1 · (chow an4 Gleser (10)] • Let . 

zl' z2, z3, ... 

be iid randC:>m variables with 

2 2 EZi = . 0 and EZi = 0 for i = 1, 2, 3, .• , , • 

Let b be any array of real nu~bers, mn 

so that 

then 

n 
lim E b2 = 1 
n-+oo m=l mn 

1 n 
- 2 Eb Z + 0 a.s. 

n m=l mn n · 

Lemma 2 [Gleser (10)], 

-"2 2 
Er (n) + C'J a.s. 

Proof: 

-1 { [ ]-1 -1 · = n W(n) I(n) - X(n) X'(n)X(n) X'(n)}W(n) + n 



where 

W(n) = Y(n) - EY(n) 

A2 1 . 1 a (n) = n- W' (n) [r(n) - U' (n)U(n)]W(n) + n- . 

where 

1· 

U(n) =. [x' (n)X(n)]- 2x1 (n) 

&\n) = n -lw, (n)W(n) - n-l [u(n)W(n)] '[u(n)W(n)] + n -l 

• n -lW' (n)W(n) = n -l [Y(n) - EY(n)] '[Y(n) - EY(n)] 

= n 
2 

+<:r a.s. as n~ 

by strong law of large numbers. 

-1 n + 0 as n~-oo. 

So in order to show 

it is necessary to show 

n-l [u(n)W(n)] '[u(n)W(n)J ,+ 0 a.s. as n~. 

This can.· be done, by using Lemma 1 , as fallows: . 

[
uil 

U(n)W(n) = 

u21 

n -l [u(n)W(n)] '[u(n)W(n)J = ~ l.l n u w] 2 

i=l lnj=l ij j 

2 n [l n ]2 
= s _E i E uijzj 

1.=l . j=l 
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where 

= ~ = Y(n) ~ EY(n) 
zj cr C:J 

so 

j, _k = 1, 2, ····., ·n, 

In ·Comparing with the co~dit~ons of Lemma 2, identify Uij with bmn' 

So, if it can be shown that; 

n 2 
lim . E U .. = -1, i = 1, ,2 
n-t00 j == 1 l.J 

then by Lemma I, 

-1 n 
n . E U i. Zj + 0 a. s, as n-+oo i = 1, 2, 

j=l J 

This is so since 

hence 

So 

U(n)U' (n) = 

n 2 
E u1j 

j=l 

- 1. 

n 2 
EU 

j=l 2j 

= [x' (n)X(n)] 2x1 (n)X(n) [x' (n)X(n)] 

n 2 
I Uij = 1, i = 1, 2. 

j=l 

1 2n-~ln. ·J2 _· 
n- [u(;n)W(n)] '[U(n)W(n)] = cr I ; I Ui,Z. + 0 a.s. as n-t00, 

i=l j=l J J 
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Finally it can be concluded 

~2 (n) ~ ,,,.2 v --r v a , s , as n-+oo, 

With the prQvis~on of Lenuna 2, the f~llowing theorem will be shown, 

Theorem 1, 

P(N < oo) = 1 

where N is a positive integer.valued rat),dom variable.so that N = n the 

smaliest positive integer so that 

A2· a (n) 
2 

< nd 
= 2 

a 
n 

This means that.the stopping rule defined as (2) does lead the 

procedure to stop, 

Pro<:>f: . 

Instead of proving PjN < 00 1 = 1 it will be shown that PjN = 00 j = O. 

There 

= P [cr2 (n) 

= P[ 2(n) 
..... 2 
cr 

certainly 

a2cr2 
n ~ --2-· 

d 

["2 = P cr, (n) 
2 nd > --2. a 

for all n] , 

n 

2 

n] 
_ nd > O for all 2 

a n 

2 

+ - !!,g__ > O for all 2 ..... 2 
a a 

n 

exists a p0sitive integer n so 

Let n be the smallest positive integer so that 

then 

2 2 
n>~ 

-= 2 
d 

that 
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a2cr2 
n = -- + r, 0 < r < 1 

d2 

2 2 
2 2 nd 1 + ~ = a a + r, -- = 

a2o2 a2cr2 

hence. 

·2 
1 . nd li im."""'z"""z = m 
n-+oo a a d-+0 

n 

[ l + rd~ = 1 

a2cr~ 

since 

nd2 [ 2 2J . nd a 
1. lim -- = lim -- • - = 2 2 2 2 2 n-+oo a cr n-+oo a cr a 

n n 

Since "2 2 a (n) -+ cr a.s. as ·n-+oo 

--2 
(6) a (n) 1 2 -+ a.s. as n"?OO. 

A 

a 

Assume 

"2 cr (n) 
(J2 

e: > 0' 

for all n. Then 

[A2 nd2 
e for all 1 ·' P{N = ~} = P ~ (~) ---

a2cr2 cr, 
n 

FJ;om (5), there .exists a positive integer M1(e:), 

nd2 e: ~2 2 - 1 < -3 when n > M1 (e:). 
a a n 

so that 

From (6), there exists a positive integer M2(e:), so that 

"2 
a (n) - 1 

2 a 
e: < 3 when n > M2(e:). 
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Choose M = Max (M1, M2), thus· 

or 

"2 + a (n) - 1 
2 ,CJ 

2 "2 nd CJ (n) 
~~ - - - < E when n_> M. 

2 rT. 2 a C:1 v 
n 

That is, there exists a number M such that when n > M 

(8) nd2 
--2,-
a CJ 

n 

< E 

Compare (8) with (7). The·conclusion is that 

P [N = .co] = 0 or. P [N < co] = 1. 

This means that .the sequential procedure will ten,nin~te subject to the 

stopping rule. 

In order ta demonst~ate (4), the following lemmas are needed. 

Lemma 3 [chow and Rebbins (9)]. 

Let y n, n - 1, 2, ,3, ·• • • be a~y sequence of . rand~m variables so 

that 

Y > 0 a.s. and limy = 1 a.s. n · n 
n-+oc1 

Let f(n) be any sequence of constan~s so that. 

f(n) > 0 

lim f(n) = 00 and 
n-+oo 

li f (n) _ 
n.! f (n :... l) - 1. 

For each t > O, define N = N(t) = k;, the small~st posittve integer, so 

that 
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Then (a) N = N(t) is a well-de~ined function oft. 

(b) N(t) is a non-decreasing function oft, 

(c) !...{El 
lim t = 1 a.s. 
t-+oo 

(d) lim N = 00 a.s. 
t-+oo 

Lemma 4 . 

. Ni 11.m .-- = 1 a.s. 
t-+oo a2cr2 · 

Proof: 

Define 

2 2 2 na a cr f(n) = .-2 and t = - 2-., 
a d_ 

then 

n 

limy 
n-+oo n 

A2 2 = 1 a,s. since cr (n) + d a.s. 

. f(i:l) 
lim f (n1 

.:... 1) 
n-+oo 

= 1, since a2 + a2 as n-+cio. 
n 

Also, by the .defined stopping rule (2) 

i.e., 

Thus, the conditions for Lemma 3 are all satisfied. So,. 

35 



lim .tifil. - 1 t ·a.s. 
n~ 

This implies, that 

-F tl\T\ [Na 2 d 2 j [Nd 2 J lim ~ = lim --- • -- = lim --· -
t 2 2 2 · 2 2 t~ t~ a.. a cr t-+<x> a cr · 

N ·· N 

(7) Nd2 
lim 22 =. 1 a. s. 
t-+<x> a cr 

Lemma 5. 

N lim - = 1 a.s. 
t t~ 

Proof: 

Recalling that 

2 2 
a cr 

t = --2-, 
d 

substitute tin (7) then 

lim N = 1, 
t~ t. 

a.s. 

Lemma 6 [wijsman, see Srivastava (11~. 

= .lim[N~\J = 1 a.s. 
t-+<x> a cr J 

Let z1, z2, z3, •.• be iid random variables with 

EZ1 = O, EZ: = 1, i • 1, 2, .3, •• ~ • 

Let b1 , b1 , ••• , bn be a sequence of constants so that 

.. 1. 

Let N be a positive integer valued random variable so that !i + 1 in 
t 

probability as t~. Then 
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_lN 
2 lim N r biz.= N(0,1) in distriQution. 

t~ i=l l. 

Lemma 7. 

37 

N Let N be a positive valued random variable so that - + 1 in probability 
t 

as t~. Then 

- 2 N X. - X 
1 [ -~ N i ,0 + 't( 's . zi + N(0,1) in distribution as t~ 

where 

1, Zi '.s are the same as in Lemma 6. 

Proof: 

From Lemma 5, 

lim ! = 1 
t~ t 

in probability since convergence a.s. implies convergence in 

probability [see Roussas (14)]. Define 

then 

n. n[ l Eb2 = l EA + 
n. 1 i n 1 0 

1 2 \ n [ 
2 

= - nA + - E(X n O 82 1 i 
A2 

n ] 
- X ) 2 + ...lex - X) 2 + 2AOA1 E(Xi - X) n 82 n 1 
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i.e., 

Since 

s2 + s2 x + x.and A2 + A2 = 1, 
n ' n O 1 

therefore, 

Thus, the conditions of-Lemma 6 are all satisfied and it can be con-

eluded that 

Lemma 8. 

Let N(t), Zi's and A0, \ are defined as Lemma 7j then 

(N' i;J•o + 'Jri :n'\)]zi + N(0,1) in dbtributien a~ t_,.., 
Proof: 

From Lemma 7, 

1 N (Xi - x\ 
{N" i;l,- 5 -}Zi + N(O,l) in distribution as t-+oo, 
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by setting 

Also 

1 N 
·™ . ~ Z i + N ( 0, 1 ), 
1 •• i=l 

in distribution by Anscombe~ [see Chow and Robbins (9)]. Thus, 

2 2 2 2 = N(O,A0) + N(O;A1) = N(O,AO +Al)= N(0,1) in distribution 

i.e. , 

Lemma 9. 



Proof:, 

= cr 

~ - s 0 0 
cr 

-{N" 

-l[N 
0 

2 [S - S] , >..= . >.. , [S - S) =1 ~ o J f"oJ ro - So] 
NSN L 1 L:81 - s 1 

1 

= cr-1>.. ' [ x' (N)X(N)] 2<S - S) 

1 

= cr-1>.. 1 [x'(N)X(N)J2[x 1 (N)X(N)J-
1x; 1 (N)[Y(N) - EY(N8 

1 

= cr-1>.. '[x' (N)X(N)J- 2x 1 (N)[Y(N) - EY(N)] 

1 

= cr-1>.. 1N-1[x'(N)X(N)J- 2x'(N)[Y(N) - EY(N)J 

-1 [1 a 
= 1N"' 0 

1 = ~)..' 
'iN: 

1 

0 

1 

f 2x• (~+(ls) - EY(N8 s~J 

J [ ~. 
X' (N) Y(N) ; EY(N)j 

N 

40 
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i.e., 

From Lemma 8, 

Lemma 10. 
A 

so - so 
cr 

TN 

S -S ( - I, (1 -)2] + 1 a 1 x ; } ~ N l O' 1 + \x ; -x 

[Ns; 
i~ distribution as t~. 

Proof: 

From Lemma 9, assign 

then 



42 

[s -s ~ [s -. s j [ ( _ -)2]- ~ A O O + A 1 1 = l + X . X o a 1 cr · s 
TN . ~NS~ 

f\ .- i3i x - x + . . 
cr S + N(0,1) in distribution as t-+oo, 

jNs~ 
1 

+ ~1-/1 X;if+ [1+ (X;iffr2N(O,l) 
JNsi 

= N [a, l + (X ; if )2] in distril,ution as t=. 

Lemma 11. 

~ - .s S - (3 X - x__ [ ( . -)2] 0 _ 0 + 1 1 -~=NO l + X - X 
cr cr SN ' s 

{N 1Nsi 
in distribution as t-+<x>, 

Proof: . 

• Sa - (30 . Si - l\(L)[x .. x X.- ~j-
cr + a s s + s N . 

11(.. fNs; 
s -(3 (J~ -(3 = o o.+ L 1 .. _ 1 

cr ·s a 

:JN" N ~NS~ 
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From Lemma 9, assign 

then 
A s - s 

O. O ~ N(0,1) ' di ib i cr ~ . in str _ut on as t~. 

~-

If assign 

then 

s1 - s1 
cr · --+ N(O,l) in distribution aE? t~. 

f Ns; 
Also, 

~N + 1, ~-+ X as t~ since~-+ 1 a.s. 

therefore 

A 

s1 - s1 
cr 

fNs~ 
X ~N~ + N(O;l) + e ; X) N(0,1) 

= N[O,l + e ; xyJ in distribution as t_,.,, 

Now it is ready to.pr(i)ve 

Theorem 2. 

Pr(i)ef: 

Since, by the stopping rule that N = N(t) = n, the smallest-positive 

integer so that 



a cr(n) 
n .< d or .[rt 

then 

Define 

A n . A n. ~ a cr(n) . a cr(n_ >j 
Jn = µx - {n ' µx + .-{n=-, .. -. 

and 

as defined before, then 

So, if 

can be shown then Theorem 2 is proved. 

Let 

FN be the distribution function of LN' and F be the limiting distribu

tion of F. From Lemma 11, 
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[ (x _ x)2] LN-+ N 0,1 + 8 in di1;1tribution a1;1 t~. 

So 

[ (x _ :x)2] F=N0,1+ S 

[ ] 
A A2 = F(a) - F(-a) since aN-+ a, CJ(N)-+ a a.s. as t~. 

= (21T) 

1 

(21T) . 2 

1 
2 

-a 

a 

-a 

a 

by the definition of a and since 

h2 > (X - X)2 

T)lat is 

lim P{µx£IN} ~ lim P{µX£JN} >.a. 
t~ t~ 

Since t.and dare relat~d by 

2 
u 

-2 
e > du 

= 
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t ... 

the last result can be written as. 

CQmment 

2 Thequantities of hand S used in this chapter have the same 

significance as discussed in Chapter II. Namely~ if it is possible; 

2 the short.er hand larger S are recommended. The confidence.interval. 

is used and 

a 0(n) a 0(n) 
J " n. ·." +.....;.;;n..,...._ 

n = µx - ..(rl ·Ux'·· ·. .(n' ·· 

defined where 

(i Ix - x I_) 
"n • a\+ Jns~ n} 

are related as In::) JN since n is. defined· as the. smallest .positive 

integer so that 

cr 2 (n) > 
= 

nd2 
2 or 

a cr(n) 
n < d. 

a n 

The picture of this relationship is shown on page 47., 

Asymptatic Efficiency 

The sequential procedure used has another property, Chow and 

Robbins (9) called it the asymptotic efficiency property., namely 
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~-h x, 1'2 x 

Figure 1. Sequential Confidence Int~rvals of Constant Width 
for a Simple Linear Regression Mean 
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2 
1 . d EN l im """Tz = • 
d-+O a a 

2 Recall that when a is known, the sample.size n is determined as the 

smallest positive integer so that 

(1) 
2 2 

n>~ 
. = d2 

h 2 · k h 1 ' k. d i d h 11 wen cr is un nown; t e samp e size. is eterm ne as t e sma est 

positive integer so that 

(2) N = N(t) = k . ' 

so that 

where N is a positive integer valHed random variable. This property 

2 means that when cr is unknown, the·expected value of the sample-size 

N det~rmined by (2) is the same as the sample size n determined by (1) 

2 
when a is known as d goes to zero. 

The following demonstration is essentially based on Chow and 

Robbins' (9) work. 

Lemma 12 [chow and Robbins (9)]. 

If (a) y is a sequence of random variables so that y > 0 a.s. n n · 

(b) f(n) is a sequence of constants so that 

f(n) > O, lim f(n) = 00 and lim [ f(n) )] = 1. 
n-+oo n-+oo [f(n - 1 J 

48 

(c) For all t > :o, define N(t) = k, the smallest positive integer, 

< .till yk = t . 

(d) !!: [f £n)j = 1 



(e) E(N) < 00 for all t > a 

(f) lim Sup[E(NyN)/E(N)] -~ 1 
t-+<X> 

(g) there exists a sequence of con~tants g(n) so that g(n) > O, 

lim g(n) = 1, g(n) > O, lim g(n) = 1, y ~ g(n)G(n-1) . n -
n-+oo n-+oo 

when the conditions of this list are all satisfied, -then 

1 im .!ili2_ = 1 • 
t-+<X> t 

Thearem 3: 

The· sequential procedure is asymptotically efficient, i.e., 

Praof: 

Define 

2 
f(n) = n; and t 

a 
n 

All that is needed is to show 

( 3) lim :N = - 1. 
t-+<X> 

Once (3) is true and.since 

then 

2 2 
a a 

t = --2-, 
d 

2 2 a G =--. . 2 
d 

In the follawing, (3) will be shown by Lemma 12. The above list af 

49 

conditions of Lemma 12 will be checked and it will be seen that each af 
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them is satisfied. As in th~ proof of Lemma 4, conditions (a), (b), and 

(c) have been checked. Check on (d), i.e., 

lim .tihl_ = . 1. 
n-+oo n 

lim 
n-+oo 

[~ = 

2 2 since.a +.a. 
n 

lim 
n-+oo 

= lim 
n-+oo [:;] • I 

Check on (g), i.e., there exists a sequence of constants g(n) so that 

g(n) > O, lim g(n) 
n-+oo 

Define 

A A 

where Y = µ 
n X 

2 
then y = 0 (g.) 

n 0 2 
1 [n 2 ] = -2 E(Yi - \i) + 1 

nO", 1 

[n-1].I 1 n~l (Y - y )2 + 1] 
n ] · (n~l)cr2 1 . i n-1 

= [n n- 1] [02(n "'·· -2. 1)] = f p. n- 1] · ] "' J [ J ytt-1 = g(n)Yn-1. 

Thus, 

g(n) > O, lim g(n) =.l, and Yn ~ g(n)Yn-l" 
n-+oo 

Check on(~), i.e., E(N) <~for all t > 0. For fixed t > O, choose m 

so that 

~ > 1 when n > m. 
t .... 

This choosi~g is.possible since 

na2 a2C!l'2 
f(n) =-.and t = --. 

a2 d2 
n 



So 

ilil = 
t. 

when n ~ 00 , a ~ a 
n 

lim i..ifil. = lim 
. t . 

n-+oo n-+oo 

Therefore, a number m can be chose~ so t~at when n.> m, 

i..1& > 1. 
t = 

Choose O < o < 1 such that (n - l)f(n - 1) > on2 when n > 2. This == == 

choosing is possible since 

(n - l)f(n - 1) = (n - ~[(n :- l)a2J 2 . 2 2 . 
n_ n an-l 

··)2f. 2 ) =(1 -~ ~.:~l 
lim 1-<n -:- l)f ~n - 1)1 = 1. 

n~ L n j 
So o can be chosen when n ~ 2, so that 

(n - l)f(n - 1) > on2• 
= 

-(~I~{]_ l, n-1 

Now define for any r ~m; M = Min(N,r), then by Wald's theorem for 

cumulative sums [see Ferguson (15) on p. 374], 

E[!(Yi - 11t>2] • E(M)E(Yi - µX/ • ~2E(M) 

E(MYM) " Et M:2 [!(Yi - YM)2 + 1]} 
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= !2 E[i(Y1 -\/ + l] <. !z E[i(Yi - µX) 2 + l] 

=. : 2 [ciE (M) + 1] =. EM "f: : 2 

i.e., 

Recalling M = Min(N,r), so 

since 

E(MyM) > r f ~r) P{r < N) + f NyN 

{2 < N < r} = .... 

f~r) < Y,: and s NYN < ) NYN 

{2 < N < r} {N < r} - - ·-
Also, recalling that Mis a number so that a.fixed.t > 0 

ti& t ~ 1, when n > M, 

Now since r >.M, so -

Thus, 
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since 

E(MyM) ~ rP{r < N} + J NyN 

{2 ~ N < r} 

> rP{r < N} +~ Ng(N)f(nt- l) 

. {2 < N < r} 
= = 

> () > ( ) f(n - 1) p{ < N} + 1 
Y n = g n Y n-1 = g n t · - = r r t 

N2g(N)f(N - 1) 
N 

= rP{r < N} + l 
t 

N2 N; l f(N - 1) 

N 

{2 ~ N ~ r} 

rP { r < N} + ff N2 

{2 2_ N 2_ r} 

. {2 < N < r} 
= = 

since o is chosen so that (n - l)f(n - 1) ~ on2 or 

(N - l)f(N - 1) > ~ 
----------- .... u, N ~ 2, 

N2 

Therefore, 

{2 < N < r} - -
From (4) and (5) 

(6) rP(N > r) + ..2.. 
t 

{2 < N < r} 
= = 

Recalling that M = Min (N,r), thus 
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Thus 

EM= 

{r < N} {N < r} {r < N} 
= 

= rP{N > r} + f N 

{2 .::_ N ~ r} 

(7) E(M) ;;, J N + rP{N > r} 

{2 < N < r} 
= == 

{2 < N < r} = = 

Substitute (7) into (6) 

rP{N > r} + i ( N2 

t ) 

< N + rP{N > r} + .!_ 
a2 

0 
t 

{2 < N < r} ..... ... 

0 N2 -
t 

{N < r} .... 

j 0 N -
t 

{N < r} 
= 

{2 < N < r} = = {2 < N < r} 
= = 

< -= J 
{2 < N < r} - ... 

< ) N+L - a2 

{N < r} -
2 

{Nf j < + .!_ 
= cr2 

= 
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0 l fN t f (N) - l 
~ cr2 

{N < r} - {N < r} -

this implies that_E(N) < 00 • 

Check on (f): From (4) 

E(NyN) < l + l 

E(N) '"'"' cr2E(N) 

E(NyN) ( l J 
lim SuP E(N) ~ l + lim SuP ~ = l 
t-+oo t-+oo cr EN 

since E(N) = 00 as t-+oo 

i.e. , 

Thus, the conditions for Lemma 12.are all satisfied; cons~quently, 

according .to the same Lemma 

or 

lim !lli2_ = l 
t-+oo t 

d2E(N.) - a2~2 
1 . l i I.I 1.m 2 2 · = s nee t . - 2 • 
d-+O a cr d 
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Conclusion 

Given a. primary set { x1, x2 ~ ••• ,, xmj which is bounded by X - h 

and X + h, also given a preassigned coverage probability a and a 

constant width 2d, the confidence interval (µX - d, Dx. + d) for a s~ple 

linear regression mean µX = S0 + S1(x - Xn) subject.to the non~ 

sequential procedure or sequential procedure has been shown with a 

property that 

~im P{µx -.d < µx < µx + d} ~ a. 
d-+O· 

When cr2 is known, where a non~sequential procedure as mentioned in 

2 Chapter II is used; when cr is unknown, where a sequential procedure 

as mentian:ed--in Chapter III is used. 

However, before this property coulq. be actually put int;o practice, 

the lower bound ford when a is given must be computed. That is, under 

a fixed distribution of th~ random variable Y or of the random error e 

and a probability coverage 01., it; is necessary to find the lower bound-

of d, say d0, so that 

will come to a to a satisfactory.closeness. In this paper• this 

computation work has not been done; 
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APPENDIX 

EXAMPLES FOR THE DETERMINATION OF SAMPLE SIZE 

n WHEN cr2 IS KNOWN AS WELL AS WHEN 

IT IS UNKNOWN 
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In the following, two examples will be given ab0ut , the de.termina-

2 · 
tion of the sample size n when cr is known and when it is unknown. 

Example 1 

60 

Let the primary set.be {O, 50}, then the mean and variance associ

ated with.this primary set are X = 25, s2 = 625. Leth= 25, a= 0.95, 

2 d =.1 and cr = 1, then a is determined by 

a= z1 ~ a~ ··(1.96)~1 + ~~; = (1.96)(1.41) = 2.76. 

Thus, 

a2a2 2 --;r- = (2.76) = 7.62. 

Son= 8. This means, under the conditions given, eight.observations 

are needed. The determinatiqn that n = 8 is independent from X which is 

a point.in {O, 50}. 

Example 2 

Let the primary set.be {O, 50}, then the mean and variance 

associated with the pr:1,mary set.are X = 25, s2 =.625. Leth= 25, 
2 ' 

a= 0.95, d = .1, X = 30 and 0 is unknown. The sample size n will be 

determined (so a confidence interval for a simple linear regression mean 

at X = 30 could be constructed). Here.a is defined the same way as in 

Example 1. So a= 2.76. Since 0 2 is unknown, the sample size n will be 

determined sequentially subject to the stopping rule that N = N(t) = k, 

the smallest positive integer such that 
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where 

and 

1 + Ix - xnl 2 

-=====:;.: 
~(X. - X )2 

l. n 

Here the determination for the sample size n depends on X which is a 

p0int in {O, 50}, 



Start with n = 2, 

The· following is the data as.well as the computations. 

xi-x2 
- - 2 - 2 

xi Y. Yi-Y2 (Xi-X2) (Yi-Y2) 
1 

0 4.00 -25 -4 625 16 

50 12,00 25 4 625 16 

EXi=50 EY.=16 
- 2' - 2 E(Xi-X2) · E(Yi-Y2) . 

1 

-X =25 2 y =8 2 =1250 =32 

a2 c2> = 1 ( 32 - 40 •000 + 1J = 1 c32 - 32 + 1> = o 50 2 ~ 1,250 2 ' 

2 2 I .30 - 25 
1
2 

a 2 = (2, 76) 1 + · I!5o =. (7, 62) (1. 34) = 10, 21 

2d2 2 
-2- = 10.21 = 
a2 

Since 

0.19 

so it is necessary to consider n.= 3. 
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(Xi-X2)(Yi-Y2) 

100 

100 

E(Xi-X2)(Yi-Y2) 

=200 
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The following is the data as well as the computations. 

n""' 3 

xi-x3 
' - 2 

(Xi-X3)(Yi-Y3) x. Yi Yi-Y3 ' (X·-X) (Yi-Y3) 
l. i 3 

' ' 

0 4.0 -16.67 -3.1 277. 89 9.61 51.68 · 

50 12.0 33.33 4.9 1110.89 24.01 163.32 

0 5.3 16.67 -1.8 277. 89 3.24 30.01 
-

EXi=50' EYi=21.; - 2 E(Xi-x3) - 2 E(Yi-Y3) E(Xi-X2)(Yi-Y3) 

x3=16;67 V3=7 .10 =1666.67 =36.86 =245.01 

02(3) = ~ ~36.86 - i~~~:~~) 2 + 1J = t (36.86 - 36.02 + 1) = ~(1.84) 

= 0.61 

2 2[ !30 - 16.67!12 
a3 = <2•76 ) 1 + 166.67 J = (7.62)(1.33) = 10.13 

3d2 3 
-2- = 10.13 = 0.30 
a3 

Since· 

so it is necessary to consider n _m 4, 
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The following is the data as well as the computations. 

n = 4 

x. Y. xi-x4 Yi-Y4 (Xi-X4) (Yi-~4) , (Xi-X4)(Yi-Y4) 
l. l. 

0 4.0 -25 -4.2 625 17.64 105.00 

50 12.0 25 3.8 625 14.44 95.00 

0 5.3 -25 -2.9 625 8.41 72. 50 

50 11.5 25 3.3 625 10.89 82.50 

LX.=100 LYi=32.8 
- 2 - 2 L(Xi-x4)(Yi-Y4) L(Xi-X4) L(Yi-Y4) 

l. 

X =25 4 Y = 8.2 =2500 =51.38 =355.00 

"2c) 1 f (355) 2 + 1l 1{'· _ 126025 + l a 4 = 4l51.38 - 2500 ~ = 4 51.38 2500 lj 

= ! (51.38 - 50,41 + 1> = !ci.97) = .49 

a~= (2.76) 2[1 + l3~5~025 IJ 2 = (7.62)(1.21) = 9.22 

4d2 4 
-2- = 9.22 = 0.43. 
a4 

Since 

82 ( 4) 

so it is necessary to consider n = 5. 
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The following is the data as well as t~e computations. 

n = 5 

-xi-XS Yi-Y5· 
- 2 - )2 (Xi .,.xs)(Yi-Y 5) xi y· (Xi-XS) (Yi-Y5· i 

0 4.0 -20.00 -3.3 400.00 10.89 66.00 

50 12.0 30.00 · 4.7 900. 00 · 22.09 141.00 

0 5.3 -20.00 -2.0 400.00 4 .oo · 40.00 
. \ 

50 11.5 30.00. 4.2 900.00 17.64 126.00 · 

0 3.7 -20.00 -3.6 400.00 12.96 72.00 

rxi=lOO LY.=36.5 - 2 - 2 
E(Xi-x5)(Yi-YS) rcx1-x5) L(Yi-YS) 

1 

X =20 5 Y 5=7. 3 =3000.00 · =67.58 =445.00 

"2 1 { (445>2 It 1 1 a cs)= I 67.58 - 300b + ~ = J (67.58 - 66.01 + 1) = I c2.s1) = o.s1. 

a; = c2. 16) 2 t 1 + I 3° 3~0~0 I ] 2 = c1. 62) c1.19> = 9. 08 

sa2 5 
-2- = 9. 08 = O' 55 • 
as 

Thus, 

By the stopping rule, the sample size n determined is k = 5, 
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Summary for example 2. 

nd2 

'rJ2 (n) 
2 2 a a n n n 

. 

2 0.50 10.21 0.19 

3 0.61 10.13 0.30 

4 0.49 9.22 0.43 

5 0.51 9.08 0.55 
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