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PREFACE

The problem considered here is to set up a confidence. interval of
a constant width for a simple linear regression mean at a given point
which is belonging to a finite interval. The problem considered has the
following property: Given the coverage probability and constant width,
a rule is defined to determine the sample size so that the probability
based on the determined sample size which covers a simple linear regres-
sion mean at.a given point approaches a number which is ne less than the
preassigned coverage probability as.the width goes to zero. |
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CHAPTER I
INTRODUCTION

The problem censidered in the present work is to set up a.cen-—.
fidence interval of a constant width feor a simple linear regressien
mean at a given peint -X which 1s belonging te a finite interval. The
problem censidered has the follewing preperty: Given.the coeverage
probability, say @, and the constant width, say 2 d, a rule will be
defined to determine the sample size n . se that the probability based on
the determined sample size n which covers a simple linear regressioen
mean at a given peint X will approach a number which is ne less than
6 when d decreases. The preblem will be treated in twe cases: namely,
when the varlance of the dependent random variable Y is knewn . and when
it is unknewn. A non-sequential precedure will be used te determine n
when the variance is known; a sequential procedure will be used when
the variance 1s unknewn. In beth cases, there is ne assumption to be
made about the distributien ole, except that the variance has to be
finite.

" The subject .of linear regression has been a popular one. A con-
ventional methed to set up a coenfildence intervai for a regression mean

at a given peint can be found in almest.any statistical methods text-.

book. The typical ones are Statistical Metheds by Snedecor (1) and.

An Introduction te Linear Statistical Medels, Volume I by Graybill (2).

Further work has been done cencerning the cenfidence bands fer the



entire regression line by such preminent statisticilans as Scheffé (3)
Working and Hotelling (4). Then Heel (5) considered.the pessibility of-
finding an optimal confidence band in.the sense that the expected total
area of an admissible class of bands is a minimum. Graybill and Bowden
(6) have developed the straight line bands rather than the conventienal
curvilinear bands and indicated that these bands are mere efficient than
those curvilinear ones. Folks and Antle (7) also proved.that pelygon
bands fer general linear regression problems are more. conservative than
thoese of elliptical enes. Gafarian (8) even developed bands with con-
stant width extended over a bounded interval. As he mentioned in his
paper:

+ . . ordinarily an experimenter is not interested in cover-.

age of the whole regression curve. On the coentrary, interest

lies in only a bounded interval or even a finite set of

points. A methed for providing a band that is valid oenly

for a finite set of interest may yield a more efficient band.

In the present work, his cencept has been referred to.

There is ne intentien to compare the present work with those
studies in the preceding paragraph: This werk is merely anether way to
look at the proeblem.

Chow and Robbins (9) have used a general sequential procedure for
finding a. confidence interval of comnstant width with a given ceverage
probability for unknoewn mean j of a population having fixed distributien
F with unknown but finite variance. Gleser.(10) and Srivastava (11)
have examined these results to thélliqear.regression parameters. Here,
their results will be extended. te the simple linear regression mean.

A methoed given based on Snedecor (1) is as follews: Let

Xl’ X2, N Xn be a fixed set. of observable peints. Under.the

mathematical medel that



Y= By + 8K -X) +e,1=1,2,3, ..y

where Yi's are 1id normal randem variables with

EY11='B@ + Bl(xi - X), var (Yi) = 62 for all i

and given the coverage probability o, the fixed sample size n, the con-

fidence interval at a given poeint X is given as

1
12
Al (X -X
BO+B1(X_mitl—&G[n+ nS ]
where
A o A= on LR -X(Yy - Y
Bo = Y = BiXs By T - X

52 Iy -2 1 {g(Y 2 Ex -Dy - Y)]z}
 on -2 i - ———
1E - D)

~

-1 — -1 , - ~ ~ —_
X =alix,, T =0ty sz=n12(xi-i)2,Y=80+Bl(x-x)
@0, Bl and,a‘2 are all unbiased maximum-likelihoed estimates for Bo, Bl’
and o2,
In this method, when n and o are given, the width eof the confidence
interval is

~ll
2t1—@LG n +

cannet be contrelled; besides, it depends on X. Thg farther X is froem
X, the wider the interval will be, although X.can be extended from

-» to ® but, as Gafarian pointed out, the experimenter may net be
interested. The present work censiders the case that: when the
coverage probability o and the constant width 2d are given, a sample

size n will be determined by a certain .rule. Based en the determined



sample size, it will be shoewn that the probability of cevering the
simple linear regressien mean at a given point X by the cenfidence
interval of censtant width will be ne less than @ when d decreases. By
the restriction of the range of X, an experimenter may.save his sample

slze as will be shown.

Netatien Used

Let Xl, Xz, oy Xm_be m fixed distinct observable variables where
m > 2. Then
-0
(1) X=m "IX.
L L

(2) [a,p] = [X - h, X+ 1]

where h is sultably chesen such that it has to cever Xl, x2% cansy Xm.

(3) Xﬁ = n ZXi

m.
@ s*=aix, -0

1
2. -7 - 2
(5) Sn =n )ll(xi - Xn)
(6) By = By + B X - X’n)
1 1 1
(7) X'(n) = _ _
XI - xn’ x2 - Xh‘ Xn - Xn

Mathematical Medels and Estimaters

The feollowing are the mathematical medel and estimaters which will

be used.



(1) Yi = 80 + BI(Xi - Xn) +e,, 1 =.1? 2, 3, ... where BG and 81

i’

are unknown parameters. Yifs‘are iid randem.variables with
= - 2 _
EYi—_S0 + sl(xi - Xn), var Yi " fer 1 =1, 2, 3, ... .

@) 0, =8, +B & -T)

(3) g = [Xf(n)X(n)I_lﬁ(n)Y(n) which is the best .linear unbiased
estimate of B.

vy Y

(4) Y'(n) = (Y19 Y29 . n

(5) &%) = NMY'(@){I(n) - X(n) [X' mX@)] K () }¥(n) + ot
where I(n) is then x n identity matrix, and the additienal term of‘n_1

will be explained later.

Description and Discussioen eof Taking

Observations on Xl’ X2, ceey X

Define the set {Xl’ Xps eees Xm} as.a primary set where m > 2, From

these points compute

Y“-‘m‘lzxi_and

52 -=,m‘1>:(xi -2

Then cheese an appreprilate-h se that:
(1) & - h, Kﬁ+ h) covers tﬁe primary set;
(2) the length of h‘servés the pur#ose(ef an experimenter's
interest.
There .is a reason which will be explained in the last sectien of Chapter

II, that Szbshould be as large as possible. In order te achleve this

purpese, the size of m will be censidered in.twe cases:



(1) When the points of X's in the primary set are equally spaced;
(2) When the points of X's in the primary set are arbitrarily

spaced.
Case 1

Let Xl and Xm be the first and last peints in the primary set. Seo,

X5 xme(i' - h, X+ h),

thus, the peints ef the primary set will be

X, X +____Xm‘?(1, X +_-———-—-2(Xm_xl)’ SRR S = —‘:2)‘(va-xl):
1° 71 m-1 1 m-'1 -1 o om -1 )

Xl + (Xm - Xl)o

Thus, the primary set is equally spaced.

m
+ K- X)) X - X

mX
1 m 1
=. — — e =X1 +-——2—.—
2.
X -X
2 -1 " k -1 m %1
§ =m " L. [Xl o1& - Xl)} - [XL' 2 D
k=1 . )
m 2
-1 2 2k - (m + 1)]
- w7, - xp? 1 [

2
X =X m
-1 ¥m ~ M1 2 m+ 1l 2
- m me =D Li[z“ - @D e 1% - )

il.e.y
; 2
2 ) 42 X, - X))
= m-1 12

The conclusien is
2
(Xm X))

S, > 87 > ... > T



where Si means the variance associated with a primary set of k points,
k=2, 3, ..., mi{ From this result, i§4can be seen that when Xl and Xm
are determined, more:poeints inserted between X1 and Xm, 32 will become
smaller with the lewer limit
- x)?
12 o

Therefore, fewer peints should be used between X, and X, in the primary

1

set whenever it is pessible. Of course, the best primary set is

2 1z _ 2
X, xm}. Szxassociated with .{xl, xm} is 7(X - X,)°, which is the

largest.
Case 2

Let Xl and Xm be the first and last poeints in the- primary set,
Xps X e(X-h, X +.h),

then

X,, X

1 e X - X)), Xy k(X =KD, el X+ X

2 l‘ m-1"m Xl)

1

where

0 = to < tl < t2 < ... < tm-l"= 1,

Thus, the primary set. is arbitrarily spaced.

l[ m (Xm - Xl) m
X=m |[mX, + Z¢t (X —X)]=X+-———-———Zt_.
N L 1 m k?:l»kl
2
m m
s?2=nl 3 [tk—l ol E tk_l} x_ - x)°
k=1 ' k=1

3@ n 2} 2
=m X Lnt - Lt ] X -X)".
k=1 k-1 k=l X 1 m 1

At this peint, it was coenjectured that the result would be.



however, this is not the case in general. TFor an example, let-

X1 = 0, and Xm = 50
then
s> =2 {0 - 25)% + (50 - 25)%} = (25)% = 625,
let
X, =0, Xy =1, X = 50
then
s2 =300 - 1%+ @ - 1%+ (50 - 1%} = 2r? + 167 + 3%
= $(289 + 256 + 1089) = 544.667
thus
Sg > Sg.

As anether example, let

X, =0, X, = 25, X_= 50
s§ =-%{(o - 25)% + (50 - 25)%) = %ﬁ(v25>2 + (25)%) ='§(1250>
= 416.667.

Let

X, =0, X, =1, X, =5 X = 50

3

2

3 = %{(0 1?2+ - 102+ (5 - 102 + (50 - 162}

S

=-%{(14)2 12+ (92 + (36)27a 196+ 169 + 81 + 1296

= 182 - 43505,



Se

2 2
< .
S3. S4
Thus, when the primary set is arbitrarily spaced, there is ne trend in.

general such as

or

especially when the poeints in the primary set clustered te either Xl or
Xm. Se, it is suggested that when several primary sets with the same
X1 and Xm are possible for an experiment, cempute»each__S2 asseciafed
with its primary set and use the primary set which yields the largest
s2.

In the present work, the sample size n is net predetermined. It is
determined by a rule, which will be defined, based on the given ceverage:
prebability o and . the censtant width 2d for a cenfidence interval. The
sample size n thus determined could not always be the:.same as m, the
number of peints in the primary set. In case n > m, observation must be
repeated on the primary set. 1In the.foellewing a descriptien 1is given.
and 1s explained as te hew the primary set should be ebserved. Define

the actual set {Xl, Xoy ovo Xn} observed as the observed set. For

2’
example, the observed set ceuld be

{xl,_xz, ooy Xy Xp, xz}

or
{xl, X, xm}

The object of the description concerns the order eof eobservatiens en the



primary set. It is
estimate

Hy = By + 8, X
for

By = By + B (X
small,

But

Se,
var [BO + Bl(X
In order to make
var [Bo + Bl(X
small, the quantity

o 2
513(Xi - Yn)

hag to be maximized.

always desirable to make the variance of the

N B ~ 2 -1 02
B)(B - B)'] = o Xmx@] = | o
2
0 —
nS2
n
2 2 (X—Xn)2
- g g - 2 211 »
_Xn):l =-E-—+;-sf2'(X—Xn). =g [;'-i-z—(x-i—_-—@-z'}
n
- Xﬁ)]

It is suggested that peints ef the primary set

should be observed in the foellewing erder:

X;s X, X, X

1 2?

m-1?

10
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When the primary set has been exhausted, repeat the order as before.
Once the order of observing X's-has been defined, the matrix X(n)
associated with such a sampling will not be a randem.matrix for a

determined n.
Summary

Let . Xl’ X

Choose an apprepriate h se that (X - h, X'+ h) will cever the primary

IEIRARE Xm be a predetermined set, the primary set.

set and, if possible, make h as short as possible.
A rule will be defined based on a coeverage probability & and a
constant width 2d for the confidence interval to determine the sample.

size n. Based on the determined n, set up the interval
I = [By + Bi(x -X) -d, By + B (x-X) +d]
it will be shewn.that

lim P[R. + B, (X =X )el | > a
40 I:CJ 1 n n]—’

where

XeX - h, X+ h).
This means that, when & and d are given, thexprobability based on the
determined size n which cevers a simple linear regressieon mean at a
given point X will appreach a number which is ne less than & when d goees

te zereo.



CHAPTER II
NON-SEQUENTIAL PROCEDURE

As stated, a confidence interval of constant width - 2d for a . simple
linear regression mean
at Xe(X - h, X'+ h) with a preassigned coverage probability o will be

set up which has the following property:

1lim P{peIl } > o
o * P

where

I ={BO+61(X—3(')—d,B

0 . O+Bl(x—3(‘n)+d}

Gz‘Known, Non-Sequential Proecedure

In the following, a rule is defined to determine the sample size n.
Based on n, the confidence interval In with tﬁe constant width 2d is.
constructed. .

Choose a number a, so that

a, 2

21 —_— _u-
1y (2m 2 1+ (%) e % du=o
-a. .
L+ (B

where h and 82 were mentioned as before. Define the sample size n as

12



the smallest positive integer so that

a’o?

d2

(2) n2

thus, n is uniquely determined when o and d are given.

defined, there is a relationship between n and d which can be written

down as

Lemma 1. d » 0 as n7 o,

Proof: As defined, n is the smallest positive integer so that

2 2
n 3=a g
d
Thus,
22
n=22—+r,02r<1
d
2.2
®© = lim(n) = ]im 2 g = azﬁzlim d_‘2
n-re nroy d7- -
lim 4 = 0.
n—>00

To develop further, the follewing lemmas are needed.

Lemma 2.

1im EQ;_ = aza
n>e\ o

Proof: Since

aZGZ
n==7 +r, 0gr<l1
d
2 2
nd” = a262 + rd2, — _a2 + EQE
0] 0]

: 2
1im %) = lim(‘—l-d—z-) = 1im (az + Ed—z-) = a2.
d—-0

13

From the rule as
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or
1im [iﬁé] = a.
n>-o G
Lemma 3.

lim X_ =X, lim s? = g2,
>0 n >0 n

Proof: Since.

m m
cZX, + Res- cZX, + Res
_ —ln' 1,1‘ 1 i
X = ZX. = = -
n 1.1 n mec + r

where 0 < r < 1, c stands for the number of cycles repeating the primary
set and Res stands for residue, which is a part of the primary set.

m

in+Rﬁ
X; =Al
m+ =
C
-1
Un X =1linX =mn X, =X
nro croo 1
n . — _}n _ _n _
s =_n_lZ(X -X )2 = o 5% - 0% = otk - B2
n i n i n i n
1 : 1 1
o2
cZXi + Res
L F
me + r n.
m
in + Ris
1im si = 1im S = 1im l—-—-—j;——,-_xﬁ
n>e c¥ ¢ m+ T
m
= nlox? - %2 = 2
ll

since



15

1im ¥ = X,
n
)

Lemma 4 [Gredenko and,Kolmogorqv (12)]e

If Z2,, Z are iid random variables with Z, = 0, var Z, = 1, and

12 292 Z3s cen i 1

if {b_,}
i=1,2,3, ..., a3 n=1, 2, 3, ...

is .a fixed array of constants soe that

then

1lim Zb iZn = N(0, 1) in distribution.

noreo 1

i

With the provision of lemma 4, the following lemma is proved.

Lemma 5. Let

B, B,
0 -"0

Lin,)) = Aol —5— =
- 4

where
2 2 .
AO + Al,= 1
then

L(n,A) » N(0,1) in distribution as n-w.

Proof:

L, A) + A0 E®, - 8y) + 20T ns2 (B, - 8))



1
- o r @@ 2R ), AT = O
B = [x'xm] % (¥,
Y(n) = X(n)B + e, E¥(n) = X(n)B
X' (0)EY(n) = X' (a)X(n)B.
Since [X'(n)X(n)] is a positive definite matrix, so it is nonsingular
and [X'(@)X(n)] ! exists.
8 = [x' (@xm] k' @)EY(0)

2-8=X@x@] ' @XE - B@)]

1
L(n,\) = o A [ @xm] &' @)[Y@) - Ev@)]
2L
- X @] X wz@)

where

Z() = 0 [¥(a) - EY@)], 2'() = (2], Z,, +uey Z).

Note that Zi's are iid random variables with

_ n 0
X'(n)X(n) = 9
0 =nS
‘ n

1
[x' x@]?

1s defined as

T 0
0 nSn

1
X' (mx()] 2

16



is defined as the inverse of

L
[x' (m)x(n)] %

Now the coefficients of the Z,'s are the components of

i
_ L
A X @x@)] %X (@)

which can be written as

1 1
p G mrm] & @)
™ =
-~ of-Y 10 1 1
2, 2
=n “A 2 _ _ _
e B A O A
L
1 |1 of2] 1 1 1
244
=n “A 1
—2- _.— 7 __
0 ST % - X, X =K, e X =X
1 1 0] 1 1 1
=n 2%' 1 _
0 5, X, -%,% -X, ... X -%
L _L , 2L _L
T2 2,” 2, - 2 2,72
= {n XO + (nSn) )\l(X1 Xn), teey N AO + (nSn) Al(

[bni’ bn2’ bn3’ Tt bnn.]
where

- L

1
2 2.7 2.
b, =mn AO + (nSn)

e

i_
i=1"2, * ey n;n=l’ 2, 3’ ¢ 00

Thus

n
L(n,A) = ?bnizi'

17
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In order to show that
L(nsA) » N(0,1) in distribution as n

the conditions of lemma 4 need to be checked.

[ 1 1
n 2 n ) -5 2
??nir= ?Ln AO + (nSn) Xl(xi - Xﬁ)
.2 2,-1,2% = \2 -1, 2 -
= KO + (nSn) klﬁ(Xi - Xn) + 2(nSn} Koxlf(Xi - Xn)
_ 12 = 31" =
= AO + Kl = A'A 1

L L

2 2, 2 —
Max|bnil = Max|n ko + (nSn) )\I(Xi - Xn)]

Since as m®, X - X, Si + 3% from Lemma 3 where X}_sz and all X,'s are

finite quantities,

maxlb .[ > 0 as n-oe,
ni

The conditions of Lemma 4 are all satisfied; hence we conclude that
L(n,A) » N(0,1) in distribution as n-<=,

Lemma 6. Let

8 -
L(n) = = o+[xs‘>1 10_1

then

X - T\?
L(n) » N|O,l + 3 in distribution as n»w,

Proof: Let
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1
=\2l- =
X - X -X 2
Al—[s-]1+( s)
thus
r -1 -1
=21 2 2
2 2 X - X X -X X - X
A‘A—AO+>\1—1+ s) +[s]l+<s)
-1
21T =12
_ X - X X - X _
Ny )]_1.+( s )] .
So
lr'
“ 2[5, 8 8, 8]
X - X 0 -"0 X -X\|"1-"1
1*(5) = +< S) 4| > weo,1)
\n : ; n82
L n

in distribution as n-=<°,
But as it is known that if Xn + X in distribution where X Vv N(0O,1) then
an - N(O,cz) in distribution where ¢ is a constant. Proof is given in

the following: Let X ™~ N(0,2), then its characteristic function is.

- %t-Z

b5 (t) = e
Since
- %tz

Xn - X,¢X (t) > e as n-oo

n

iteX
¢cX (t) = Ee n.= ¢X (ct)
n n
_ %CZtZ

1im ¢cX (t) = lim,cbX (ct) = e
n n n n

an +4N(O,c2) in distribution as n—.

Let
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thus

in distribution as n-°.
Lemma 7 [Raov(13)].
Let {Xn,Yn}, n=1, 2, ... be a sequence of pairs of .variables. If
an - Yn] -+ 0 in probability and Yn -+ Y in distribution, then.Xn -+ Y in
distribution. Lemma 7 i1s used to.be used to show the fellowing.

Lemma 8.

in distributlon as n—<.

Proof: Let

B, -8, [X-X\B -8
L () = = »o+< - n) L 1

and
B, -8 8, -8
_ 0 .0 X =-X\"1 1
Ly(m) d'+(s ) o
\!n‘ -2
lnSn
then
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Let € > 0 be an arbitrary number, and let

_— (X -X oy K) By - 81]
n

S, S 9]
n

n82
n

P[|L1(n) - L] < e] =_P[|Un| < ;},

By lemma 5, letvko =0, A\, =:1, then

1

+ N(0,1) in distribution as noe

and

X - X -
( 'sh n_ X ;,X> + 0 as poe.

But .by a theorem from Rao (12), let {Xn, Yn}, n=1,2, 3, ... be a
sequence of pairs of randem variables, if Xn ~+ X in distribution, Yn -+~ 0
in probability then XnYn + 0-in probﬁbility. Therefore, Un + 0.1in prob-
ability which in turn implies that Un -+ 0 in distribution. Let Fn be the
distribution function of U.» and F be the limiting distribution of F»

lif u=20

F(u)

F(u) = 0 1f u % 0.

P[ILI(n) - Ly < e] = P[|Un[ < e} = F_(e) - F_(-€)

1im P[lLl(n) - L2(n)| < EJ = lim{Fnce) - Fn(e{]'

n . n

=.F(e) - F(-e) = 0.

Hence,

lim P[ILl(n) - L2(n)| > E} = 0 for all e > O.
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So by Lemma 7,

- 7\2
Ll(n) -> N[O,l + (?'S X) } in distribution as n=w

since as Lemma 6 indicated

Vi
Lz(n) -> N[0,1-+ <% S}{)] in distribution as n>°

or

in distribution as n-»,

One more .lemma 1s needed before stating the main theorem which has
been described at the beginning of this chapter.
Lemma 9.
Let {bn} be a sequence of constants so that b >' b as n>®. Let {Xn} be
a sequence of randem . variables se that Xn > X in distribution as ni,
Let Gn(n) be the distribution functien of Xn and G(n) the limiting
distributien function of X. Then Gn(bn)‘converges to G(b).
Proof:
Since bn > b, so for all € > 0 there exists a positive integer N(g), so
that when n > N(g)

G (b -€) 26(b) 60k +E)

lim G (b - €) £ 1im inf "‘Gn(bn) < 1lim sup Gn(bn) S lim G (b + €)

n->o° n—)OO n—)OO n—)OO

G(b + &) £ 1im inf Gn(bn) < lim sup Gn(bn) L G(b .+ £).

n-re n-ree

Since € is arbitrary
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1im Gn(bn) = G(b).
n>°
Theorem.

1im P{ux:-:I } > a
d-0

Proof:

Lav]
—~—
=
m
H
—
1l

P{l, - | <dl

= p{| (B, - 8y + B - B - < al

B,-8, B -8 xX-X
_p [o N S n| . ¥nd
o S, 1 o

Let

Fn be the distribution functioen of Vn and F be the limiting distribution
function of Fn“ Note, F is the normal distribution function with mean

0 and variance

2
X-X
Le (2R

Pl el } = @V | < rd} Fn [{‘d:l F[—ﬁ%:[:
Iim P{u eI } = lim {En (rd) rd)}

= F(a) - F(-a) by lemma 9.

Thus
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IC-‘

]
~
N
=
~ 1
N
[y
+
><..
wnll
s
™
o
|
N

du by Lemma 8

=\ 2
\(H(X;X)
L a_ _
> (2m) 2 1 + (%) e 2 du =.0

by the definition of a and since (X - §)2‘< h2. Finally,

1im P{u_eI_} > a.
n-roo X n

From Lemma 1, it can be rewritten as
1im P {uxeln} >
>0 -

Comments

In the introduction it was mentioned that Sz associated with a.
primary set should .be as large as possible and h be as small as

possible.



Let
__a
bl ~ T
2 1+ ()
thus Zl-a is. a constant when o is given
2
2
a2 = 22 1.+ h—-.
1-o g2
5

Recall that the sample size n is determined as the smallest positive

integer n so that

8.20'2
n > 2
d
or
2.2
n==% g +r, 0Zr<1l:
d
2 2
g 2 h
n = d2 Zl—a 1+ 52 + r.
- .
Since
2 2 2
o ’ d ’ Z].—.OL-
2

and r are all constants, n can be considered as a function of h and:S

and can be written as
n= n(h,Sz) = — Z

h >0, 82> 0.

From .the function n(h,Sz) it can be seen that under the same @, n

. 2
decreases when either h decreases or S~ increases alone or h decreases

25-
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and S2 increases. Thus, when h is shorter and/or,Sz'is longer, the
sample.size n will be smaller. This implies that a smaller sample:.size
could be used if h and 82 could -be ﬁdjusted properly.A

In particular, when h approaches te zero, the sample size n will

approach

+r, 0<r<1

which coincides with the elementary methed fer determining a sample

size n when the length of confidence interval 2d is preassigned.



CHAPTER III
SEQUENTIAL PROCEDURE

In Chapter II the case that Gzyis_known has been assumed. A rule
was -defined to determine the sample size n based on a given & and a
constant width 2d. Since 62 is known and a is a fixed constant, the
rule was defined that the sample size n is the smallest positive
integer so that

2 2
a g
d2

n 2>

consequently n can be determined by a non-sequential procedure.

In the present chapter the case will be considered that Gz'is
unknown. Since an estimate az(n) for 02 has to be used in replacing 62
for defining a rule to determine the sample size n, a sequential

procedure has teo be used.

62 Unknown, Sequential Precedure

Asymptotic Consistency

As defined,

(1) %@ = o Y {Tm) - x@) [x @x@] X @ ivw) + a7

The purpose of the additienal term n—l in (1) is to ensure that-

~2
E_SEL >0 a.s.

2
o]

The positiveness of the quantity

27



>
3]
=]

02

shall be used in later prooefs. ‘In case the distribution of the randem

variable Y is continuous,

27yt () (1) [X' (@x @] 7 ) @) = v

say, will not vanish, so

V (n) >0

02

can be insured. So, when the distributien of Y is continuous, Vz(n)
serves the same purpose as 82(n) does. 1In the present case, the
distribution of Y is an arbitrary one; it can be either continuous or
discrete.

The stopping rule is defined as follows: Start by taking n 2

02

observations, so the,\n0 observatiens are

R STRIN Yno,

Then, sample one more observation at-a time and stop when-

(2) N = smallest positive integer k £=no such that
2

R
"

where N is' a positive integer valued random variable and

X - | |2
(3) aﬁ = a2 1+ XN.
iNSN ‘

From (3) 1t can be seen that

lim aé = a2.

N .

Based on (2) and (3) it will be shown that

28
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(4) 1im P{u_eL .} > o
40 XN

where o is preassigned and

A

IN=(UX-d, uX+d)o

Chow and Robbins call the property (4) the "asymptotic consistency"
property.

But, first of all, it is needed to show that the stopping rule
defined as (2) will lead the procedure to a stop.. The following lemmas
are needed.

Lemma 1- [Chow and Gleser (10)] . Let

Zys Zyy Zgs

.be‘iid random variables with-

EZi =.0 and EZi = 02 for 1 =1, 2, 3, ...

Let bmn be any array of real numbers,

m<n, n=1l; 2, sa,

so that
n
lim Z bin =]
n>®° m=1
then
_Lln
2 Lb Z =+0 a.s.
n mn n

m=1
Lemma 2 [Gleser (lO)],

5%m) + 0% a.s.

Proof:

52m) = ol () {T()x () [X* (@)xm)] 71X () be(n) + a7t

= 0 @) (Tm) - X) [X' @X@] 71X () W) + ot



where
W(n) = Y(n) - EY(n)

§2m) = oW @ [I) - U @)U@]W) + "t

where

l .
U(n) = [x <n>x<n>} 2% (a)

5%(0) = o W WM - 2 v@wm]  [u@wm] + a7t

2" @Wm) = 27 [Y() - BY@)] ' [Y(n) - EY(a)]

= > g a.s. as n»x»

by strong law of large numbers.

-1
n > 0 as n-w,

So in order to show

/\2 A
g " (n) -~ 02 a.s. as n»eo

it is necessary to show

n_lEU(n)W(n)]'[U(n)W(n)j;+ 0 a.s. as nr»,

This can be done, by using Lemma 1, as follows: .

v 1wl T .
Uip Upg wo0 Vg (W) o w
U(n)Win) = ' W2 = |3 1373
Upp Uy oo ’
' n
° SU, LW
-wn_ ) l 2j j-J
1 2 [)n 2
o [U@W@)]'[U@w@] = I | U.W
1=1|%=1 133

n n 2
. %- Iu,.z,
i=1|" j=1 9
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where

Y y@ - Y@
- :

S0

EZ, = 0, EZ, = 1, EZ =0, 1 +_k.

3
i, k=1, 2, ..., M.
In comparing with the conditions of Lemma 2, identify Uij_with bmn'

So, 1f it can be shown that

2 2
lim LUy =1,1i=1,:2
n>® j=] J

then by Lemma 1,

-1
n .

N

U,.,Z2, 0 a.s., asn>» 1i=1, 2,
1 3]

[ ne =]

This is so since

[n 2 n W
I U zU,,U,,
j=1 13 j=1 13723
U(n)u'(n) =
n n 2
IU,.,U,, T UL,
| §=1 13723 4oy 2] ]
b
= X'@xm] T @X@EX @Km] =
0 1}
hence
n
z Ui =1,1=1, 2
y=1 1
So
-1 B |1 2
n [U(n)W(n)J'[U(n)W(n)] =0 L |=1U,.2, +~ 0 a.s. as n>»,
i=1|"4=1 H 3
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Finally it can be concluded

82(n) > 02 a.s. as n¥w,
With the provision of Lemma 2, the fqllowing theorem will be shown.
Theorem 1.

PN < ) =1
where N is a positive integer valued random variable so that N = n the
smallest positive integer so that

nd2

2 °
a
n

82(n) A

This means that the stopping rule defined as (2) does lead the
procedure to stop.
Proof: .

Instead of proving P[N <ol =1 it will be shown that P‘N = wl = 0.

PN = =]

2
P[éz(n) > Ei—. for all %}.

2.
a
n
-A 2
=P Oz(n) - E%— > 0 for all n]
- a
n
2 2
= P (n) - nd > 0 for all nl.
~2 242 :
o] anG

There certainly exists a positive integer n so that,

3202
d2

n >
==

Let n be the smallest poesitive integer so that

then



202
n=25— +r,02r<1
2 ==
d
2 2
nd2 = a202 + r, gdz =1 + ;dz
acao g
hence
2 2
lim gdz = lim |1 + ;dz =1
n+®'an0 d-+0 a ¢
since
. nd2 . nd2 . a2 _
lim ) = 1im —5—5 —E- = 1
n->o anG n¥*® jga o an

Since 82(n) > 02 a.s. as n>e

a2
(6) Q;é%l' + 1 a.s. as n e,
g

Assume
~2
2@ sy,
g aag
n
for all n. Then
A2 2
p{N = o} = p| 2L _ 2d o oeor o117 nl.
2 22
g, anG

From (5), there exists a positive integer Ml(e), so that

nd2
a202
n

>
-1} < 3 when n > Ml(E).

From (6), there exists a positive integer Mz(e), so that

c"(n) _

[
< 3 when n > MZ(E)-

33
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Choose M = Max (Ml’ M2), thus

2 ~2 .,

nd - 11 + g (n) - 1] <€ whenn >M
2 2

anO' flo]

or

2 ~2
nd -G én) < € when n.> M.

2
a g o]
n
That is, there exists a number M such that when n > M

2 ~2
nd ol (n)l
(8) -

2
ago ag
n

< €

Compare (8) with (7). The conclusien is that

P[N=o] = 0orP[N <] =1,
This means that the sequential precedure will terminate subject to the
stopping rule.

In order to demonstrate (4), the following lemmas are needed.
Lemma 3 [Chow and Robbins (9X].

Let Yoo D - l, 2, 3, ... be any sequence of randem variables so
that

y_ >0 a.s, and limy_ =.1 a.s.
n no B

Let f(n) be any sequence of constants so that .
f(n) > 0
lim - f(n) = « and.

N0

14m £(@)  _ 1.
n_,,,o.f(n - 1)

For each t > 0, define N = N(t) = k, the smallest positive integer, so

that



Then (a) N = N(t) is a well-defined function of t.

(b) N(t) is a non-decreasing function of t.

(e) 1lim f) _

. =1 a,s.
oo )

(d) 1im N = « a,s.

>0
Lemma 4.
. Nd2
lim- > =1 a.s,
t>©. a o
Proof:
Define
~2 2 2 2
y_ = E—Q&L, f(n) =22~ and ¢t = 2 G-,
n - 2 2 2
o] a d-
n
then

limy_ = 1 a.s. since 82(n) - dz a.s.
o O

2
. . a.

Lin w2y = 1in 22 2l
n-e n->o an (n - 1a

2 2
= 1, since a_ + a” as n>® ,

Also, by the defined stopping rule (2)

2~2

ako (k). GZ(k) o kaz
k > 5 or > <

d o] a2 a202
k d2
i.e.,

£ (k)

Yp="¢ °

Thus, the conditions for Lemma. 3 are all satisfied. So,



lim iéﬁl = ] a.s.

1n->co

This implies that

2 2 2 2
1lim E )R = 1im ﬁ%_ . —%—E = 1im Ng 5| = 1im Ng >
-0 tr®|a agd t>oia. 0 t>oia O

N N
2
(7) lim Ng 5 =1 a.s.
t© a @

Lemma 5.

lim X_ 1 a.s.
t"_’°°t ’

Proof:

Recalling that

substitute t in (7) then

lim
t-rc0

e 1, a.s.

Lemma 6 [Wijsman, see Srivastava (llﬂ .

Let Zl’ ZZ’ 23, ... be iid random variables with
EZ, = 0, E22 =1, i = 1, 2, 3
i ’ i: ’ ’ ’ s s
Let bl’ bl’ eaey bn be a sequence of constants so that
N
ln o' I 7| =1
n>® i=1

Let N be a pesitive integer valued random variable so that %-+ 1 in

probability as t-=, Then

36
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1l
1im N 2

biZi = N(0,1) in distribution.
oo i

1

o~

Lemma 7.
Let N be a positive valued random variable so that §-+ 1 in probability

as t»», Then

—%N xi-i ,
N LA, + A {————1Z, > N(O,1) in distribution as t=
1 0 1 S i
where
2 2 ' s
ko + Al =1, Zi s are the same as in Lemma 6.
Proof:

From Lemma 5,

N
1lim .

o

=1

in probability since convergence-a.s. implies convergence in

probability [see Roussas (14)]. Define

| 2
b,=[)\ +>\(Xi-x)] ,
i 0 1 3

then
=\ 2
X, - X

122 12 e
n.Zbi=n2>\0+l(S )
1 1
1r 2 }‘fn 2 n -
= Enko + =5 2:()(i -X)° + 21112 2:(xi -X)
| s° 1 1
1p 2 Kin = .2 Xi' =2 n
=En>\0+—s7>i(xi—xn) +;5(Xn-X) + 20\ f(xi-fo




2 2
1,2 M1 —.2 . ™M 2 =
=S+ =5 I - )T & -DT+ ) IX -5
s 1 S 1
1 ) Mg nAi = =2 s - S
== nAg + —;552 + ";E(Xn‘i) + 2xoxl,§(xi;xh) + 2kok1~§(xn'x)
2 .2 Si k? 2
= ko + Al ;§-+ ;—(Xﬁ - + 2k0kl(X£ -3
i.e.,
1 2o 2 2 Si k%‘
=Iby = Ag + A5 + S5 & -0+ 2N E - D).
1 S S
Since
2 2 = 2 2
s~ » s7, Xn -+ X and ko + Xl =1,
therefore,
n
lim i-Zbi =22+ SERY
ool ]

Thus, the conditions

cluded that

N
1 i
= L {A.+ A (%
R O
Lemma 8.

Let N(t), zi

N T X
ﬁ% LA, xl(}i;—————
1=1 |

Proof:

From Lemma 7,

p N/x, - X\
i) 21 s )%

fs and XO, by

of Lemma 6 are all satisfied and it can be con-

-X

3 ) Zi -+ N(0,1) in distribution as t-,

] are defined as Lemma 7, then

sl

: ;) Z, + N(0,1) in distribution as tre.

[95]

n

+ N(0,1) in distribution as t-e,

38
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by setting
2 2
AO ='Ol’ Xl =1, so XO + X1_= 1.
Also
1 N
»{-ﬁ‘ iilzi + N(0,1)

in distributien by Anscombe, [éee-Chow and Robbins (9)]. Thus,

{1 N X~ Xy
LinJg T A M|~ |2y = AGN(O,1) + AN (0,1)
o X

- N(O,Ag) + N(o,xf) - N(O,Ag + xi) = N(0,1) in distribution

i.e.,

¥ 4 - X
L |A, + A b——]IZ, > N(O,1) in distribution as t—e,
VN 0 1 S J i

i=1] N
Lemma 9.
/BO - BO . /B\l— Bl :
AO - + Al ————8—4 -+ N(0,1) in distribution as t-—»,
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0 - "o _
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Q
—
w»
i
s
-
>
!

oI '[x‘ (N)X(N)q

-

o {x (DX (N)

— N

-1
X! (N)X(N)J X' (N) [Y(N) - EY (N)J
‘l-.
g1 () {Y(N) - EY(N):{

- —

ol [x' (N)X(N)

-

G—lk'N_l[X' (N)X(N)} ) 2X‘(N)[Y(N) - EY(N):I

_ L
4 1o 2
0] .
Al X'(N)[Y(N) - EY(N):I
[ P
N
1 0 -l
1., Y(N) - EY(N);
A X' (N)
S



+ N(0,1) in distribution as to,

in distribution as t-=».
Proof:

From Lemma 9, assign

=
o
]
——
—
+
N
>
wnyl
>
~—
N
|
N

then

41
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o292 .2
A = Ag A

By ~ By B ! x - X
_a ag + N(0,1) in distribution as t=
m j
" N _ L
B, - B 8 - B é} 2
0 0 lX—X X -X
5 > [1 + ( 5 ) N(0,1)
g 52
N
X - TV
= N{0,l + ( 3 ) in dlstrlbution as o,
Lemma 11.
- + Ni0,1 +
] g S S
W o
N
in distribution as t—,
Proof: .
BO - Bo . B - B X - XN
o] 9]
N




From Lemma 9, assign

0 1
then
By - By
S > N(0,1) in distributien as t-,
If assign
AO = 0, Al =1,
then
s N(0,1)in distribution as toe,
2
NSN
Also,
S, 1,X.+Tas t+» since X > 1 a.s
SN ’XN t tee
therefore
B, -8, B -8 x- -
o 0,1 1 )H\]->N(0,l)+(x X)N(O,l)
?O_' o] SN S
N 2
NSN

x - T\
= NjO,l + < S > in distributien as t-o,

Now it 1s ready to .prove
Theorem. 2.

lim P{u eI} > o
a0 XN

Proof:

Since, by the stopping rule that N = N(t) = n, the smallest positive

integer so that

43
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2~2

a o (n) a | (n) |
n > 5 or < d
= d ﬁ —_
then
. . R ana(n) ana(n)
(g —d, gy + ) O - G- K
Define
;. _ano(n) +anc_r(n)
nT T T@ MTTA
and
In = (ux -d, Hy + d)

as defined before; then
Plugell > P{uXeJN}
So, if

lim P{u,ed.} > a
-0 X N =

can be shown then Theorem 2 is proved.

A N - SNaN—
éo'BOﬂLgl"’Blc'xbﬂ % N{.

= : <
P g g S / = 2
N ) N
N
Let
3-8 By -8 [R-T)
L. = +
N _ag [e} SN
NGy 2 '
NSN

FN be the distribution function of LN’ and F be the limiting distribu-

tion of F. From Lemma 11,



Se

[E(a) - F(—a)] since a, > a, S(N) > 82 a.s, as te,

N
1 B
= (2m 2 ﬁ+(xgx) eZ;du
-~ -a
2
X - X
L+ (255
1 2 _u
2m 2 1+(%> e2du=OL

'h
-
by the definition of a and since
n? > (x-')Z)2

That 1s

lm P{u eI } > lim P{u,eIN} > a.

t-—)OO >

Since t.and d are related by



the last result can be written as.
lim P{u el } > lim P{u_eJ .} > a.
d-»0 X N-—d—>0 XN =

Comment

The quantities of h and 32 used in this chapter have the.same
significance as discussed in Chapter II. Namely, if it is possible,

the shorter h and larger 32 are recommended. The confidence interval.

~

In=(1ix-d,1-lx+d)
is used and.
a a(n) R a a(n)
J=ﬁ__n— +n
n® g T TE T et T
defined where

X - xnl

a =.all +
n n32
] n

are related as In}) J.. since n is defined as the smallest positive

N

integer so that

AZ(n) N nd2 or anc(n) < d
o 273 NG < d.
n

The picture of this relationship is shown on page 47..
Asymptotic Efficiency

The sequential procedure used has another property, Chow and

Robbins (9) called it the asymptotic efficiency property, namely



|

]

e = } }
¥~-h % X X X *ma Xm

} 1 i et
X+h
In = {ux -d, HX + d}
. ana(n) . anc(n)
J ={Li - [ U, +
n X In X fn
|x

O
1}

O
Ve
>

[}
>
]
[
Q>
Sl
‘.’3
N’
N

Figure 1. Sequential Confidence Intervals of Constant Width
for a Simple Linear Regression Mean
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. dzEN
lim > 9 = 1.
d»0 a" @

2 .
Recall that when ¢~ 1s known, the sample size n 1s-determined as the
smallest pesitive integer so that

2 2
a g

d2

(1) n2

when 02 is unknown; the sample size k is determined as the smallest
positive integer so that

(2) N = DN(t) =k,
so that

2 2
kO'
d2

a

k2

where N is a positive iﬁteger valued randem variable, This property
means that when 02 is unknown, the expected value of the sample size
N determined by (2) is the same as the sample .size n determined by (1)
when 02 is known as d goes to zero.

The following demonstration is essentially based on Chow and
Robbins' (9) work.
Lemma 12 [Chow and Robbins (9)}.
If (a) Y, is a sequence of randem varlables so that v, >0 a.s.

(b) f£(n) is a sequence of constants se that

f(n) > 0, lim f(n) = © and lim E;Ja&g-—ﬂ =1.

n—o aaw £ - 1

(¢) For ali t > 0, define N(t) = k, the smallest positive integer,

(d) 1im [%r—ll] -1

n-ro



(e) E(N) < @ for all t > 0

(£) 1lim Sup[E(NyN)/E(N)]-§=l~

tco

(g) there exists a sequence of constants g(n) so that g(n) > 0,

lim gn) =1, g(n) > 0, 1lim g(n) = 1, Y, 2 g(n)G(n-1)

n->e n->e
when the conditions of this list are all satisfied, then

14m 2 _
t.
t o

Theorem 3:

The sequential procedure 1s asymptotically efficient, i.e.,

. dEN
1lim 5 5 1.
d+0 a“o
Proof:
Define
~2 2 2 2
y = g_ﬁﬁl’ f(n) = 22 and t = 22— .
n 2 2 2
o] an d

All that 1is needed is te show

EN

(3) 1lim "

tco

=-lc

Once (3) is true and since

then

2
d_EN
1im > 9.~

d~+0 a“o

i.

In the follewing, (3) will be shown by Lemma 12. The above list of

conditions of Lemma 12 will be checked and it will be seen that each of
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them is satisfied. As in the proof of Lemma 4, conditions (a), (b), and

" (c) have been checked. Check on (d), i.e.,

lim iﬁEl =1,
n->°°n
2 2
lim [iéﬁl} = 1lim %{£§—) = un |3 = 1
n->e ' n>oo a_ e a

. 2
since a_ +~ a”.
n

Check on (g), i.e., there exists a sequence of constants g(n) so that

g(n) >0, lim g(n) =1, Yn.>= g(n)yn-l.

n->o

Define

2 n
g(n) = |2 . then y @ o1 iry —95% 41
n 2 2 1 n
g ng” |1
where ¥ = ﬁX
n-1 n-1
Y ;=_l_ L (Yl - ?‘—1)2 + 1= [—:11‘ L z (Yi -Y _1)2 + 1
ne? | 1 n Al m-1)e? 1 n
[ 2
n—l-]G'(n—l)‘l_n—l‘I _
- [ n l sz J - n Yn—l - g(n)Yn—l

Thus,

g(n) > 0, lim g(n) =1, and Yn g=g(n)Yn_l.

n->c0
Check on (e), 1.e., E(N) < = for all t > 0. For fixed t > 0, choose m

so that

%l;lwhenn>m.

This choosing is possible since

a262

>

f(n) = E%— and t =

a d
n



So

f(n) _ naq dz-l - nd2
t agJ azng azgz
n n

when n =+ o, an->a

2
, f(m) _ . d™n
lim = 1im 5 ol

n->e n* (a0

= o0

Therefore, a number m can be chosen so that when n > m,

£@) , ;.

t =
Choose 0 < § < 1 such that (n - 1)f(n - 1) > (5n2 when n > 2. This

choosing is possible since

(n - Df(n - 1) _ <n - 1\l (n - 1-)a21 - (n - l\e a2.’-l
2 o 2 | 2 n )| 2
n an—l J an—l_'

-4

n-1

2

n->e n

Lim [(n - Df(n = )] _ L

So § can be chosen when n > 2, so that

(- 1fn-1) > 6n2.
Now define for any r > m; M = Min(N,r), then by Wald's theorem for

cumulative sums [see Fergusen (15) on p. 374:] R

" 2 2 2
E Z(Yi - ux) = E(M)E(Yi - “x) = g"E(M)
1.
1 [M a2
E(MY,) = B —= |3(¥, - §)° + 1

Mo L1 M
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M M
1 o N2 1 2
== E[Z(Y, ~Y¥Y) "+ 1| < =S EZ(, - u,) +1
=.1—2[0'2E(M) + l] =,EM+L2-
o] c]
il.e.,
4) EQty,) < B+ 5
- o]
Recalling M = Min(N,r), so
E(My,) = ry + Nyy
{r < N} N <1}

E(MyM) >r gﬁzl’P{r < N} + | Ny

since

£é£l_< y_ and |\ NY_ < NY

{ZiNér} {N < r}

Also, recalling that M is a number so that a fixed t > O

féﬂ).zll’ when n > M,

Now since r >. M, so
-_—
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E(Myy) > rP{r < N} + Ny, > rP{r <N} + Ng(N)%—ll

{2 <N<r} {2 <N < r}

since

2
i:g(n)iigz:;ll'= rP{r < N} + %- NegMEN - 1)

¥, 2 8@y _; N

{2 <N é=r}

2N-1-
= rP{r < N} + = N N EN - 1)

=

{2 <

A
2,
A

< r}
§
rP{r < N} + - N

{2 <N<r}

since 8 is chosen so that (n. - 1)f(n - 1) z=6n2 or

N - DEN-1)

> 8, N2> 2,
N2
Therefore,
§ 2
(5) E(My,) > rP{N > r} + T N
{2 <N <}
From (4) and (5)
6) e >1) +> | N <EQy) < BM+
t 4 )
{2 <N <}

Recaglling that M = Min (N,r), thus
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o { .

{fr<n} {N<r} {rz N} {2 <N <}
= rP{N > r} + fN
{2 <N <r}

(7) EQ@) < N + rP{N > r}

Thus

{2<N<r}

Substitute (7) into (6)

N+rP{N>r}+1—-

8
rP{N > r} + T N 2

{2gN<r} {2gNgr}

-E— N < 5N+—1—

N <r} N < r}

Ty

{N < r}

A

< r} {2 <N< )

H

o

rt|os
=
ia

{N < r}



N| |§ 1
B W=t
N < r} {N < r}
L i g 8 J
> 1im N N) -1
0] = -0 ] t
B T N <1}

1 $ T
= > (EN) E(EN) - 1‘

this implies that E(N) < o,

Check on (f): From (4)

1

ENyy) S EN) + 5

E(Ny,.) _
E(NI;I i+ -
o E(N)

A

E(Ny,)
1lim SuP ————
foroo E(N)

since E(N) = ® as t¥®

i.e.,

E (NYN)
lim SuP —/———
100 EN)

L1+ 1im SuP

t-rco

<1,

(

—

o2z

1Y .,
N
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Thus, the conditions for Lemma 12 are all satisfied; consequently,

according to the same Lemma

1imﬂ%l=1

t -

or

2
1lim Q—E£E1-= 1 since t .=

d-0 a202

a

202

5

d
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Conclusien

Given a primary set'{Xl, Xpy ooy %ﬁ}vﬂd&h is bounded by X - h
and X + h, also given a preassigned covegage probability & and a
constant width 2d, the confidence interval (ﬁx -d, ﬁX +_d) for a simple
linear regression mean UX = 80_+ Bl(X - Xh) subject to the non-
sequential procedure. or sequential procedure has been shown with a
property that

]_.imP{ﬁ -d <y <u + d} > a.
i+0 X X X

When 02 is known, where a non-sequential procedure.as mentioned in
Chapter II is used; when 02 is unknown, where a sequential procedure
as mentioned-in Chapter III is used.

However, before.this property could be actually put into practice,
the lower bound for d when o is given must be computed. That is, under
a fixed distribution of the random variable Y or of the random error e
and a probability coverage 6, it is necessary to find the lower bound.
of d, say dO, so .that

P{ﬁx - dO < My < ﬁX + do}

will come to 0 to a satisfactory.cleseness. In this paper, this

computation work has not been done.
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APPENDIX

EXAMPLES FOR THE DETERMINATION OF SAMPLE SIZE
n WHEN 62 IS KNOWN AS WELL AS WHEN

IT IS UNKNOWN

59
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In the following, two examples will be given about the determina~-

tion of the sample size n when 02718 known and when it is unknown.
Example 1

Let the primary set be {0, 50}, then the mean and variance associ-
ated with this primary set are X = 25, 82 =-625, Let h = 25, o = 0,95,

d =.1 and 02 = 1, then a is determined by

2
= h_o_ l 625 _ _
a= zl}_ ol 2 = (1.96) |1 + 255 = (1.96)(1.41) = 2.76.
Z

= (2.76)% = 7.62,

So n = 8., This means, under the conditions given, eight observations
are needed, The determination that n = 8 is independent from X which is

a point in {0, 50}.
Example 2

Let the primary set .be {0, 50} , then the mean and variance
associated with the primary set are X = 25, 82 = 625, Let h = 25,
o= 0,95, d =1, X = 30 and 62 is unkﬁown. The sample size n will be
determined (so a confidence interval for a simple linear regression mean
at X = 30 could be constructed). Here a ig defined the same way as in
Example 1. So a = 2.76. Since Gz is unknown, the sample size n will be
determined sequentially subject to the sfopping rule that N = N(t) = k,

the smallest positive integer .such that

kd2

~2
U(k)é 2
4



where
. = - 12
1 = .2 IL(Xi - Xn>(Yi - Yn>!
62m) T nlPy T Yy - — =2 T
' (X, - X))
i n
and
—_ 2
ai = a2 1+ lX B an
- =7
Z(X:.L - Xn)

Here the determination feor the sample size n depends on X which is a

point in {0, 501}.
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Start with n = 2.

The following is the data as well as the coemputations.

62

— — _ 2 — .2 —
xl Yi xi-x2 Yi Y (Xi'xz) | (Yi—YZ) (Xi—Xé)(Yi—Yz)
0 4.00| -25 | -4 625 16 100
50 12.00| 25 4 625 16 100
IX,=50 | IY.=16 .92 15t T52 | 2%, %) (1.-T.)
1 1716 17X 17Yp) | Xy =Xy) (XY,
X,=25 |Y,=8 L1250 =32 | =200

,250
2 2 30 - 25 |2
a; = (2.76) ll + S
2
2d 2
az T 10.21 0.19
2
Since
2
2 2d
@ =5
)

N

(32 - 32+ 1) = 0.50

-(7.62)(1.34) = 10.21

so 1t is necessary to consider n .= 3,



The following 1s the data as well as the computations.
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n= 3
: b a2 = T 32 = -
X b Xy=Xg| Yy-¥q | (Ky=Xq) f (Y,-Y)" | (X =Xg) (¥,-Y)
0 4.0 -16,67 ‘—3.1 277.89 9,61 51.68
50 12.0 33.33 4,9 | 1110.89 24,01 163.32
0 5.3 16.67] -1.8 277.89- |  3.24 30.01
— - 7 N ; - B =
IX,=50 ZYi—213 z:(xi x3) Z(Yi Y3) z:(xi X2)(Yi Y3)
Xé=l6£67 §5=7.1o =1666.67 {=36.86 =245,01
2
R _1 _ (245,01 1 _ 1
02(3) =3 {36.86 1666.67 + {} =3 (36.86 - 36.02 + 1) = 3(1.84)

= 0.61

,
a§ - (2.76)2[1 + lggi%gi%5911J = (7.62)(1.33) = 10.13

so it is necessary to consider n = 4,



The following is the data as well as the computations.
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n=4
Xy Yoo | KR Yl (R | () R (3 Y)
0 4,0 -25 | =4.2 625 17.64 105.00
50 12.0 25 3.8 625 14,44 95,00
0 5.3 -25 | -2.9 625 8.41 72.50
50 11.5 25 3.3 625 10.89 82,50
_ ~ =2 o 2 = =
IX,=100 Ly =32.8 LX) 7| IE-TT T X4)(Yi Y,)
i@=25 Y = 8.2 | =2500 =51.38 =355.00
2 g
~2 _1 _ (355) 1), _ 126025
o“(4) = 7 {F1.38 505 * {} = 4{,51.38 =5505 * {}

% (51.38 - 50,41 + 1) = %(_1,97) = .49

2
2 - (2.76)2[1 + l§2=;;3§ﬂJ = (7.62)(1.21) = 9.22

8, 2500

o 0.43.

4
a2 9,22
4

Since

442

2 ]
4

52wy >
a

so it is necessary to consider n =.5.
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The following is the data as well as the computations.

n=>5
X Y X,-X. | Y,-Y, (X,-X )2 (Y.-Y )2 (X, -X)(Y,-Y.)
1 i 17%5 | ¥47Ys 17%5) 17Ys5) 17%5) (Y=Y
0 4.0 |-20.00| -3.3| 400.00 10.89 66.00
50 12.0 30,00 4.7 | 900.00. 22,09 . 141.00
0 5.3 |-20.00] -2.0| 400.00 4.00 - 40.00
50 11.5 | 30.00| 4.2 | 900.00 17.64 126.00
o | 3.7 |-20.00| -3.6| 400.00 12.96 72.00
) B ' 2 02 < o
£X,=100 | 3¥,=36.5 1(x, X% |2y, T? | 2x, K (7, -T)
§3=20 §3=7.3 1 =3000,00 |=67.58 =445,00
52(5) = +{67.58 - ﬁ3ﬁ523-+ 1% =L (67.58 - 66.01 + 1) = & (2.57) = 0.51
5 ) 3000 ) 5 : : 5 ¢ M
a2 = 2.76)% |1 + B8 20 |7 - (7.62)(1.19) = 9.08
5 3000 |
2
2d” _ 5 _
2 9.8 " 0.55
5
Thus,
2
52(5) <24,
<73
a5

By the stopping rule, the sample size n determined is k = 5.



Summary for example 2.

nd2

~D a2 a2

n g (n) n n
2 0.50 10.21 0.19
3 0.61 10.13 0.30
4 0.49 9.22 0.43
5 0.51 9.08 0.55
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