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CHAPTER I 

INTRODUCTION 

1.1 Literature Survey 

Extensive research in the area of recursive estimation has been con

ducted for the last fifteen years. A significant contribution to the 

problem of optimal estimation of the state variables of a linear dynamical 

system was.made by Kalman and Bucy (1,2). Since then extensive research 

in this area has been conducted. A large number of publications and 

reports give the extent of research and development conducted in this 

area. As a next logical step the concepts of linear filtering were ex

tended to the estimation of the states of nonlinear systems using the 

extended Kalman Filter. In (3,4,5) different techniques, for example 

least-squares, maximum-likelihood, etcetera, were used to derive the 

filter equations. Most of these techniques employ Taylor series expan

sions, neglect second- and higher-order terms, and use linearized equa

tions to compute the pseudo conditional error covariance matrix and the 

filter time-varying gains. 

Another approach to determine the filtering equations is based on 

conditional probability density and conditional eJq>ectations. Stochastic 

Ito calculus is used to derive the filter equations. Stochastic Ito 

calculus is used to derive the filter equations. This technique has been 

used by Kushner (6), and Denham and Pines (7). 

The second-order filtering technique used in this thesis has been 
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presented by Athans et al. (8). Mehra (9) compared several nonlinear 

filters for reentry vehicle tracking using radar observations. Shreve 

and Bhandari (10) presented a comparison of the first- and second-order 

filter performance for reentry vehicle tracking using optical tracker 

observations. 

The problems of divergence, adaptive estimation, and identification 

of variances have received recent attention in the literature. Typical 

papers on this line are those of Jazwinski (11), Schlee et al. (12), 

Mehra (13), and Aldrich and Krabill (14). 

1.2 The Problem and the Approach 

2 

The problem of estimating the state of a ballistic reentry vehicle 

(RV) from optical tracker observations is a highly complex problem in 

nonlinear filtering. Because of the nature of the optical trackers, only 

the endoatmospheric observations data are available; consequently all the 

estimates are for endoatmospheric reentry. The objective of the present 

research is to develop a computer software package to generate estimates 

of the state of a reentry vehicle using triangulated optical tracking 

data. Estimated quantities are: position (x,y,z), velocity (i,y,z), and 

the aerodynamic drag parameter (a). 

The geometry of tracking of a RV using optical trackers can be ex

plained using Figure 1, An earth surface fixed (ESP) cartesian coordi

nate system is shown here. There are k(k ~ 2) optical trackers .used for 

tracking. Each station gathers azimuth and elevation data as a function 

of time. Bodwell (15) has developed an algorithm for obtaining noisy 

position estimates using the angle data and the optical station coordi

nates, Given random properties of the optical trackers, that is, 
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variances of azimuth and elevation random errors, the covariance matrix 

associated with position estimates are obtained. For the present prob

lem, the triangulated position observations and the corresponding error 

covariance matrices.are available. 

4 

The objective then is to develop and implement a sequential 

algorithm which can be used to generate estimates of the state variables 

of a continuous nonlinear dynamical system from noisy observations of its 

output made at discrete instants of time. The motivation of this thesis 

was provided by the problems arising in the estimation of the state of a 

reentry vehicle: cartesian positions, velocities and ballistic drag 

parameter, using discrete optical tracker observations. The azimuth and 

elevation observations are triangulated to obtain position observations. 

Some of the most recent advances in estimation theory have been incorpo

rated in the present development. The nonlinear dynamic model is approx

imated by retaining up to se~ond-order terms in a Taylor's series 

expansion. In the present development what are called filtered and 

smoothed state estimation error covariance matrices are actually pseudo 

covariance matrices. The problem involves a continuous.nonlinear dynamic 

model and a discrete linear observation model. The dynamic model for 

extrapolating the state of a RV is developed. This is expressed in an 

earth surface fixed cartesian coordinate system with x-y-z in the east

north-up directions, respectively. 

Gravity and drag forces are included. The earth is assumed to be an 

oblate spheroid. The software package includes the capabilities of 

second-order filtering, and fixed-interval smoothing. The adaptive plant 

noise algorithm is included to solve the divergence problem. 

Based on the observation error covariance matrices at observation 
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instants, a set of error trajectories are generated by Monte Carlo tech

niques. When these trajectories are added to the nominal trajectory; a 

number of noisy observation position data sets are obtained. The per

formance of the software package is evaluated by processing the simulated 

observations with the same error covariance matrices. A double precision 

version of the program is used for increased accuracy of the computations 

over single precision. Initial values of the state estimate and estima

tion error covariance matrix are obtained by using a weighted-least

squares solution. The initializing technique is discussed in detail in 

Appendix A. The second-order filtering algorithm requires the evaluation 

of Jacobian and Hessian matrices of the dynamic model. The expressions 

for elements of these matrices are presented in Appendices Band C. 

The software package inputs are triangulated position observations, 

observation error covariance matrices, atmospheric density model, earth 

and gravity parameters, and the coordinates of the .ESP system origin. A 

description of input parameters is ~iven in Appendix D. Appendix E 

briefly describes the purpose of various.subroutines in the.software 

package. 

Figure 2 shows the flow chart of the software package~ In this 

figure, k is the time index of the observation being processed, and NST 

is the total number of.observations. 

1.3 Organization 

The structure of this thesis is as follows. Chapter II presents the 

development of the dynamic and observation models. The detailed deriva

tion of the dynamic model (equations of motion) is included. A linear 

observation model is assumed. 
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Chapter III describes the second-order filtering algorithm in the 

presence of plant noise. Plant noise is required to solve the problem of 

divergence. Different sources of plant noise and methods of dealing with 

the divergence problem are described in Chapter IV. In Chapter V, a 

fixed-interval smoothing algorithm for nonlinear systems is presented. 

Chapter VI is devoted to simulation a~d numerical results. In this 

chapter filter and smoother results with and without plant noise are des

cribed. The software package consists of the filtering and smoothing 

algorithms, with plant noise. The performance of the package is tested 

for a variety of simulated noise samples. The results of statistical 

analysis are presented in Chapter VII. Chapter VIII contains a summary 

and conclusions of results obtained in the dissertation. Suggestions for 

further research and extensions are also included in this chapter. 



CHAPTER II 

DYNAMIC AND OBSERVATION MODELS 

The dynamic model is used in the second-order filter to generate a 

priori (predicted) estimates of the state, and is also used in deriving 

the Jacobian and-Hessian matrices described in the appendices. The noisy 

observation data are obtained. by triangulating azimuth and elevation 

angles from a number of optical trackers. The two models are discussed 

in detail in this chapter. 

2.1 Dynamic Model 

The dynamic or message model is of the form 

i(t) = f(x(t)) + q(t) (2-1) 

where f(•) is a vector valued nonlinear function of the state x(t), and 

q(t) is the plant noise .vector which is used to account for modeling and 

round off errors. The vector q(t) is assumed to be a zero mean, 

Gaussian, white noise process. Basic assumptions in the dynamic model 

are: (1) observations of the reentry vehicle location are referenced to 

the earth surface fixed (x-y-z) systell!; (2) the reentry vehicle is a non.,. 

lifting point mass; (3) atmospheric density is modeled by 

p = Po exp(-kh) 

where h is the height of the reentry vehicle above mean sea level, and 

8 
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p0 and k, obtained from density data, are constant over several ranges of 

altitude. This quantity is calculated in DENY subroutine mentioned in 

Appendix E; and (4) the earth is an oblate spheroid. 

The dynamic model is derived here in a manner following the proce-

dure in (16), in which range, azimuth and elevation (R,A,E) coordinates 

were used. The basis of the present derivation is to equate the reentry 

vehicle acceleration to the sum of the drag and gravitational specific 

forces divided by the mass of the vehicle. Identical results can be ob-

tained using Lagrangian dynamics as in (17). 

To derive the equations of motion, let (u1,u2,u3) be the basis of an 

earth centered inertial frame, and Cu1,u2,u3) be the basis of an x-y-z 

frame located on the earth's surface. The situation is shown.in Figure 3. 

Figure 3. Relation Between Earth 
Surface Fixed and Earth 
Centered Inertial Frame 



Let Rbe the vector to the reentry vehicle in the x-y-z system, 

R = xu' + yu' + zu' 1 2 3 

and if a is the vecto~ from the earth's center to the primed origin 

where 

and 

a= acosµcoseul + acosµsin6u2 + asinµu3 

a = R + h e s 

R = earth's radius e 

h = height of ESF origin above mean sea level (MSL) s 

In the inertial frame, the vector to the reentry vehicle.is 

r=a+TR 

10 

(2-2) 

(2-3) 

(2-4) 

where Tis the transformation matrix from the primed to the unprimed sys-

tern. To determine T, first rotate the primed system about the u1 axis in 

a counterclockwise direction by TI/2 - µ; the resultant system is given by 

i' 1 0 0 A I 

ul 
-:-, 
J = 0 sinµ -cosµ A I 

u2 

1<' 0 cosµ sinµ A I 

u3 

where 

µ=geodetic latitude of ESF origin 

Now rotate the new (i,j,k) system about the k axis in a clockwise direc-

tion by TI/2 + a; the resultant coordinate system in terms of the original 



system is then just the unprimed, or 

" -sine -cose 0 1 0 0 ul 

" cose -sine 0 0 sinµ u2 = -cosµ 

" 0 0 1 0 sinµ u3 cosµ 

where 

e = geodetic longitude Qf ESF origin 

After multiplying the two matrices, it is seen that 

-sine 

T = cose 

0 

The specific force equation is 

or 

..... 
F 
- = m 

where 

x 
.... 
R = y 

z 

~ 

a = 

-sinµcose 

-sinµsine 

cosµ 

~ 

F -- = rm 

cosecosµ 

sine cosµ 

sinµ 

. 
!!.. .:.:. • ....... •• --' 

a+ TR+ 2TR + TR 

. 
x . 

--' ~ 

R = y R = 

z 

cose 

2 -aw COS]J sine 

0 

x 

y 

z 

11 

(2-5) 

(2-6) 



T has been 

e = wt 

F = force acting on the reentry vehicle 

w = mass of reentry vehicle and 

-r = acceleration of reentry vehicle 

. 
given above and T and T are given below. 

0 -sinµ cosµ 
. 
T = wT sinµ 0 0 

-cosµ 0 0 

1 0 0 

2 
T = -w T 0 

. 2 sinµ -sinµcosµ 

0 -sinµcosµ 2 cosµ 

Combining the above 

. . 2 cose x - 2wysinµ + 2wzcosµ - w x 
...l . F 2 2 2 2 - = -aw cosµ sine + T y + 2wxsinµ - w ysin µ + w zsinµcosµ m . 2 2 2 

0 z - 2wxcosµ + w ysinµcosµ - w zcos µ 

12 

(2-7) 

The forces acting on the reentry vehicle are gravity and drag forces, 

The lift forces are neglected. The specific forces are given by 

~ 

F 
- = m 

where Fg is the force due to gravity and Fd is due to drag. For the 

spherical earth 

or 

~ 

Fr; Gm ~ Gm ~ ~ 
..a. = - -- r = - - (a + TR) 
m 111 3 ltl 3 

(2-8) 



...I 

F Gm 
......&. = m - lr'l 3 

a [
cosµc~se] 
cosµsi.ne 

sinµ 

+ T [:] 
where 

Gm= product of universal gravitational constant and earth's mass. 

The drag force is 

., .. 

·where 

...I 

Fd 
-= -m 

1 ...I ...I 

2 gp lvlv 
e 

1 1.....11....l. = - 2 gp v va 

g = acceleration due to gravity at altitude h 

p = atmospheric density at altitude h 

1 a=-e 
e = ballistic coefficient 

In the earth surface fixed system, the velocity relative to air is 

. 
x . 

...I ,.....\ 
v = TR = T y 

z 

and 

. . . . 
1t1 2 = (TR) T (TR) = ytr'if = x2 + ;,2 + i2 = v2 

Thus 

13 



x 

y 

z 

Combining the above results, the equations of motion become 

" • • ( 2 Gm) 1 x = 2wsinµy - 2wcosµz + w - ~ x - - gpavx 
r3 2 

2 . • ( 2 . 2 Gm) y = - wsinµx + w sinµ - ~ y 
3 

2 . ( ) 1 • w s1nµcosµ z + a - 2 gpavy 
r 

2 • 2. (2 2 z = wcosµx w sinµcosµy + w cosµ Gm) (z ) 1 • 3 + a - 2 gpavz 
r 

where 

w = earth's sidereal rate 

r = distance from earth's center to the reentry vehicle 

= (x2 + y2 + (z + a)2)1/2 

v = velocity • 2 ·2 
= . (x + y •2)1/2 + z 

h = r - Re 

6 = ballistic coefficient 

This model is used to derive the partial derivatives in the 

14 

(2-9) 

Jacobian and Hessian matrices. Compared to the nonspherical earth model, 

this approach significantly reduces program complexity and hence the pro-

gram execution time. It does not however seriously affect the accuracy 

of its results. In state variable form, the equations of motion are 
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(2-12) 

(2-13) 

2. ( ) (2.2 w s1nµcosµ x3 + a + w sinµ 

2 . w s1nµcosµx 2 
Gm 
3 ) (x3 + a) (2-15) 
r 

(2-16) 

where 

xl = x 

x2 = y 

X3 = z 

X4 = x 
. 

XS = y 

x6 = z 

1 
X7 = a. = s 

The last differential equation assumes the ballistic coefficient is 

constant over one interval, but of course is updated as each data value 

is used to generate a new estimate of the seven element state vector. 

That is, in the prediction stage of the filter, the drag parameter re-

mains unc~anged. As new estimates of the state vector are generated, 

estimates of acceleration components are calculated using the expressions 

for X4, X5 and x6. A fourth-order Runge-Kutta subroutine is used to 

integrate the equations of motion between observations. 
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2.2 Observation Model 

In the system being considered, the observation vector consists of 

noisy measurements of position, x1 , x2 and x3• These are obtained by 

triangulating azimuth and elevation angle data from a network of optical 

trackers. The linear observation sequence mo4el can be described as 

where 

zk = observation vector at time (3xl) 

I\= observation matrix (3x7) 

vk = observation noise vector (3xl) 

The observation matrix is 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 

(2-17) 

0 

0 (2-18) 

0 

The observation noise vector .vk is asswned to be a zero mean process 

whose covariance matrix is given by 

2 c c a 
xk xyk xzk 

~ c 2 c (2-19) = a 
xyk yk yzk 

c c 2 a 
xzk yzk zk 

The fact that the observation model is linear significantly reduces the 

complexity of the filter algorithm discussed in Chapter III. 
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2.3 Swmnary 

The dynamic model for the propogation of the .state of the reentry 

vehicle has been derived in this chapter. The assumptions and approxima

tions made are stated. A linear observation model is adapted for the 

present study~ This simplifies the filter algorithm which significantly 

reduces computation time. 



CHAPTER III 

SECOND-ORDER FILTER 

3.1 Second-Order Filter With Plant Noise 

The second-order filter as described in (8) is used in the program. 

However, modifications to allow dynamic model noise are required since 

the development in (8) assumes a noise free plant. The filter uses a 

continuous dynamic model and a discrete observation model. The following 

development is based on the assumption that the dynamic model (plant) 

noi~e is a zero mean, Gaussian, white noise process. The plant is des

cribed by 

x(t) = f(x(t)) + q(t); x(to) = x 
0 (3-1) 

where f(·) is a nonlinear function of the state vector x, and q is the 

plant noise. Both x and fare seven component vectors. 

The observation sequence (k = 1,2,•••) is 

(3-2) 

The observation noise vk is a zero mean, Gaussian, white noise process 

independent of the initial state vector x0 , thus 

E{q(t)} = 0 Vt (3-3) 

18 
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E{vk} = 0 Vk (3-4) 

T QCt)o(t - 't) (3-5) E{q(t)q ('r)} = 

T 
E{vkvj} = }\okj (3-6) 

Covariance matrices Q(t) and I\ are assumed known. Eis the "expected 

value" operator. 

Let~ represent the state estimate at a given observation time tk. 

Define the state error at tk to be 

(3-7) 

The associated error covariance matrix is then defined as 

(3-8) 

In the time interval tk ~ t < tk+l there is no additional informa

tion until the next measurement occurs at tk+l' Hence if the state 

equation were linear, it would be correct to estimate x(t), tk ~ t < tk+l' 

using c(t) as an estimate of the dynamical system, where 

~(t) = f(c(t)) 

which is the replica of the state dynamics of the plant. Because f(•) is 

nonlinear, this model is modified by including a vector valued function 

b(t) called a bias correctiQn which will be specified so that the esti-

mate c(t) of x(t) will be generated by 

~(t) = f(c(t)) + b(t); c(tk) = x(tk) (3-9) 

Let e(t) denote.the error during the above interval; that is 
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e(t) = x(t) - c(t); tk !_ t < tk+l 

It follows that 

(3-10) 

From (3-1) and (3-9) 

;Ct)= i(t) - ~Ct) 

e(t) = f(x(t)) - f(c(t)) - b(t) + q(t) (3-11) 

If c(t) is "near" x(t), f(x(t)) can be expanded about c(t) using a Taylor 

series. Assume that by neglecting third- and higher-order terms in the 

Taylor series, a sufficiently accurate representation of the error 

dynamics is obtained. Thus 

1 7 T ~(t) = J(c(t))e(t) + -2 l ~.e (t)F. (c(t))e(t) - b(t) + q(t) 
. 1 l. l. 
1.= 

(3-12) 

where ~i is the ith natural basis vector of the state space, J is the 

Jacobian matrix for the state model with the ijth element given by 

af. 
[J (Xk)] . . A .:,-2:-

1.J .. ox. 
J xk 

i,j = 1,2,···,7 

and F., the Hessian matrix for the ith row of the Jacobian matrix has its 
l. 

jkth element given by 

i,j,k = 1,2,···,7 

Now use can be made of the mean argument .to determine the.vector b(t). 

Suppose·~ is an unbias.ed estimate , of xk, so that 
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c(t) is also required to be an unbiased estimate of x(t), so that 

E{e (t)} = O 

By defining 

S(t) = E{e(t)eT(t)} (3-13) 

the expression for the bias correction is 

1 7 
b(t) = 2 l ~.tr[F.(c(t))S(t)] 

i=l J. J. 
(3-14) 

Next a matrix differential equation which can be used to generate S(t) 

between observations is required. From the definition of the derivative 

• •T • T S(t) = E{e(t)e (t) + e(t)e (t)} 

or, 

set) T 1 7 T T = E{J(c(t))e(t)e (t) + 2 (i~l ~itr[Fi(c(t)){e(t)e (t) - S(t)}])e (t) 

+ q(t)eT(t) + e(t)eT(t)JT(c(t)) + e(t)qT(t) 

1 7 T 
+ e(t) 2 Ci!l ~itr[Fi(c(t)){e(t)e (t) - S(t)}])} (3-15) 

Now the assumption is made that e(t) is almost Gaussian with zero 

me~. In this case terms of the form 

T T E{tr[F. (c(t))e(t)e (t)]e (t)} = 0 
J. 

(3-16) 
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Hence the above differential equation reduces to. 

S(t) = J(c(t))S(t) + S(t)JT(c(t)) + E{q(t)eT(t)} + E{e(t)qT(t)L (3-17) 

The last two terms .in this equation are yet to be evaluated. In 

Equation (3-12) 

1 7 
b(t) = 2 L q,.tr[F.(c(t))S(t)] 

i= 1 1 1 

and the second term in (3-12) is 

1 7 T - L <1>1..e (t)F1. (c(t))e(t) 
2 . 1 1.= 

During the small time interval (tk,tk+l)' S(t) can be assumed to be an 

unbiased estimate of e(t)eT(t). Hence 

S(t) = E{e(t)eT(t)} = e(t)eT(t) 

This simplifies Equation (3-12) to 

~(t) = J(c(t))e(t) + Q(t) . (3-18) 

The solution of this equation is 

t 
e(t) = <l>(t,t0)e(t0) + f <l>(t,,)q(T)d, (3-19) 

to 
where q,(t,t0) is the state transition matrix of J(c(t)). Then 

T T t T 
E{e(t)q (t)} = <l>(t,t0)E{e(t0)q (t)} + J <l>(t,,)E{q(,)q (t)}d, 

to 
Since e(t0) and q(t) are assumed independent, the preceding equation 

reduces to 

t 
E{e(t)qT (t)} = J <l>(t,,)Q(T)o(t - T}d, . (3-20) 

to 
Making use of the argument given in the appendix of (21), the above 

equation reduces to 
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E{e (t)q T (t)} = ~ Q(t) = E{q(t)eT (t)} . (3-21) 

Since 

~(t,t) = I 

incorporating Equation (3-21) into (3-17) gives 

S(t) = J(c(t))S(t) + S(t)JT(c(t)) + Q(t) . (3-22) 

Equations (3-9) and (3-22) are integrated to propagate the state vector 

and error covariance matrix between observations. After propagating for 

t: tk.::. t < tk+l' the above integration gives ck+l and Sk+l' the priori 

state and covariance approximation estimates. These quantities are up-

dated based on the observation at tk+l' 

The Jacobian matrix for the observation model is 

H = ~ ax 

where His the constant matrix given by Equation (2-18), since the 

(3-23) 

observation model is linear. The following expressions are based on the 

fact that the observation model is linear. The updated state estimate is 

given by 

(3-24) 

where zk+l is the observation vector at tk+l' and Gk+l' the gain matrix 

is given by 

. (3-25) 

~+l is the error covariance matrix associated with the observation 

vector zk+l' 
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The update covariance matrix is given by 

(3-26) 

3.2 Summary 

A derivation of the second-order filtering algorithm in the presence 

of dynamic model noise has been presented in this chapter. The message 

model is nonlinear and continuous whereas the observation mode is linear 

and discrete. A basic assumption made in the derivation is that the 

state error vector is a Gaussian, zero mean, white noise process. The 

effect of plant noise on the algorithm is that the differential Equation 

(3-22), propagating the state error covariance matrix has the additive 

term Q(t). 



CHAPTER IV 

PLANT NOISE 

4.1 Introduction 

For a nonlinear system subjected to Gaussian, stochastic driving 

functions with sampled measurements on the system corrupted by Gaussian 

errors, the estimate of system states can be accomplished by the 

recursive equations developed earlier. These equations lead to estimates 

of the system states and values for the estimation error covariances, 

provided the system is correctly.and completely modeled, and the 

statistical parameters of the driving functions and errors known. 

The filter algorithm assumes that the dynamic and observation models 

are completely known. The observation data consist of noisy position 

fixes and associated error covariance matrices. 

During simulation, the second-order filter algorithm with no plant 

noise, exhibited divergence. By divergence is meant that the residuals 

(difference between observed and estimated state) keep increasing in 

either a positive or negative direction. 

The cause of this can be traced as follows. At some stage of the 

filter operation, the state error covariance becomes quite small, causing 

the filter gain matrix to also become small. This in turn causes the 

difference between actual and expected observations to be weighed by a 

very small amount. The result is that incoming data are not reflected in 

the filter estimates, thereby causing divergence .. A remedy to this 

25 
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problem is to increase the state error covariance matrix in some manner. 

This will cause the gain matrix to increase and alleviate the divergence 

problem. 

One method of increasing the covariance matrix is accomplished by 

adding plant noise to the dynamic model. This noise is assumed to be a 

Gaussian, zero mean, white noise process. The modified second-order 

filtering algorithm has been derived in Chapter III. 

where 

4.2 Discrete Adaptive Plant Noise 

Let the dynamic model be 

xk = state vector (nxl) 

~k+l,k = state transition matrix (nxn) 

uk = uncertain paramete~ vector (pxl) 

~k+l,k = weighing matrix (nxp) and 

wk+l =roundoff error vector (nxl) 

(4-1) 

Here a linear, discrete dynamic model is considered. In this section the 

effects of the presence of uncertain parameters~ and round off errors 

wk on the linear filtering algorithm are studied. The results obtained 

are.extended to a nonlinear, continuous dynamic model in the next 

section. The uncertain parameter vector uk' contains those physical 

parameters whose values are not known exactly. The round off error 

vector, wk' accounts for the computational errors and is dependent on the 

machine and the complexity of the algorithm. A method of implementation 
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of the algorithm developed here is given in Section 4.4. 

Adjoining xk and uk vectors results in an n + pth order system 

(4-2) 

Let 

where~, the round off error parameter, is selected by simulations and is 

dependent on the machine and complexity of the algorithm. Here it is 

assumed that the round off error vector is proportional to the magnitude 

of the state vector (12). wk is assumed to be a zero mean process. 

Round off errors in different components of the state vector are assumed 

independent. The covariance matrix associated with wk is 

with off diagonal terms set equal to zero. Round off errors and uncer-

tain parameters are assumed to have no effect on the observation model. 

The dynamic model for uncertain parameter vector, uk, is 

(4-3) 

hence, 

(4-4) 

The observation model is as before 

(4-5) 
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where 

In terms of the augmented state vector, the observation equation becomes 

z = k [f\ (4-6) 

The linear filtering algorithm is applicable to the system given by 

Equations (4-4) and (4-6). The filtered estimate is 

where the notation xk/k implies the estimate of the state x at time tk 

given observation up to and including tk. This is an n + pth order sys

tem and hence requires increased computations. An alternate method is to 

account for uncertain parameters without actually estimating these 

parameters. To accomplish this, u is assumed to be a zero mean process 

with covariance matrix given by 

The error covariance matrix for the augmented system is of the form 

where 

and 
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From the linear filter algorithm the prediction of the state vector is 

given by 

(4-7) 

and the covariance matrix is extrapolated by 

This yields 

(4-9) 

(4-10) 

The measurement matrix for the augmented system is 

I 

Mk+l = [l\_+1: O] 

so that the matrix to be inverted in the filter gain expression is 

M. P MT R --k+l k+l/k k+l + k+l 
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Now the filter estimates are given by 

(4-11) 

(4-12) 

(4-13) 

where 

K_ _ l: H.T [l-l l: H.T + R ]-1 
-1<.+l - k+l/k--k+l --k+l k+l/k-1<.+l k+l (4-14) 

4.3 Continuous Adaptive Plant Noise 

Let the dynamic model be 

x(t) = f(x(t)) + d(u(t)) + w(t) (4-15) 

where d(·) is a vector valued function representing the effect of p 

uncertain parameters on the dynamic model, and is approximated by 

ax . I d(u(t)) = '!'u(t); '!' = au (x,u) 

Ann component vector w(t) is included to account for round off 

errors, This vector is approximated as 

-\) 
w(t) = 10 x(t) 

The error covariance matrix associated with w(t) is 

The round off errors in various components of x are assumed to be 

independent of each other making Qw a diagonal matrix. The value of the 

constant \I is determined empirically and will vary depending on the word 
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length of the machine used. 

The effect of including plant noise in the.filter algorithm is a 

modified differential equation for the state error covariance matrix. 

The de~ivation is analogous to the discrete.case. The new differential 

equation is 

• T T T T T s =JS+ SJ + ~Cu~ +~Cu~ + ~u~ + Qw (4-16) 

where 

A A T 
U = E{[u - u][u - u] } 

T Cu= E{[x - x]u} 

(pxp) 

(nxp) 

Equation (4-16) is a modified form of Equation (3-22) given earlier. The 

propagation and uptdate of the Cu matrix is given by Equation (4-9) and 

(4-13), respectively. 

4.4 Plant Noise Implementation 

When the adaptive plant µoise model of Section 4.3 is to be 

implemel).ted, the following quantities must be calculated or chosen. 

(1) Elements of the uncertain parameter vector. This can be 

accomplished by inspecting the dynamic model to see what are the 

parameters for which exact values (within reasonable tolerance) are not 

available. For the present application the only element selected is 

density, p, hence pis one. 

(2) The expressions for the elements of the ~k+l,k matrix . 

. 
ax. i = l,•••,n 

[~k 1 k] .. 
l. = ·au. + ' l.J 
J (xk ,uk) j = l,···,p 

(4-17) 
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(3) The covariance matrix of the u vector. A suggested form of 

this matrix is 

2 2 0 klul 
2 2 

k2u2 
u = (4-18) 

0 
' 2 2 
ku p p 

where the k~'s must be selected by simulation. 
l.. . 

(4) Cu010 , the initial c~variance matrix between the state and the 

uncertain parameter vector, is assumed to be zero. 

(5) This is a diagonal matrix; that is 

2 0 xlk 
2 

10-2" 

x2k 

Qwk = (4-19) 

0 
• 2 
x7k 

where vis a constant found by simulations. A typical range for" is 

three to six. 

For the prese~t application p = 1. The elements of the fk+l,k 

matrix are 

ai. 
l. 

= ~ = 0 for i = 1 , 2 , 3, 7 . 
. 

[fk+l,k]4p 
dX4 1 

= -= 2 gavx dp . 
[lk+l,k]Sp 

ax5 1 
= -= - - gavy dp 2 . 

[lk+l,k]6p 
dX6 1 

= --= - 2 gavz dp 

(4-20) 



The correlation between the uncertain parameters is assumed to be 

zero and the cross covariance term ~Cu~T + ~CuT~T is set equal to zero. 

In order to prevent divergence in.the drag parameter estimate 

2 ,i X7 
nnr = nnr for simulated data, and 
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2 
a = a 

(4-21) 

for actual data 

is added to the corresponding element of the extrapolated state error 

covariance matrix. This choice is based on a chi-square test as shown 

below. 

Let Aa be the error in the drag parameter a at any time step, tk' of 

the filter algorithm. The variance term for the drag parameter is Ea. 

Then compute 

2 
(Aa) = A.2 
E 

(say) 
a 

From chi-square tables, for one degree of freedom and 99.5% confidence 

interval, the value of ~2 is 7.88. Assume 

2 
a = a 

Aa =_0.2a 

2 0.04a 
7.88 

2 
- a 
- 200 

Addition of a! improves the drag parameter estimate significantly. 

A chi-square test is made for consistency between position residuals 

and the corresponding portion of the state error covariance matrix. If 

the test fails, plant noise is added to insure that the residual vector 

is consistent with the modified error covariance matrix. Let the-

residual vector at tk be 



(3xl) 

and the updated estimation error covariance matrix at tk be 

~3-*-4-t 1' 

tTk I -j 3 
Ek= ---~--- * 

- I - 4 
J.. 

where only Tk, the covariance matrix for the position components of the 

state vector, is of interest here. Define 
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(4-22) 

From the chi-square tables, for three degrees of freedom and 99,5% confi

dence interval, the value of k2 is 12.84. Thus if k2 .:_ 12.84, no plant 

noise is added. If k2 > 12.84, plant noise is required to insure con-

sistency between the estimation error covariance matrix and the actual 

error distribution. Let Q be the diagonal plant noise matrix added to c 

achieve this consistency; that is 

0 0 

0 

0 

where 

q = c 

(DELSk) T (DELSk) 

12.84 

The above matrix Q satisfies the equality 
c 

and since 

(4-23) 



where both Qc and Tk are positive definite symmetric matrices. It 

follows that 
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Thus the addition of Q enforces consistency between the residual vector c 

and the new matrix (Qc + Tk). 

4.5 Summary 

This chapter starts with tracing the origin of divergence in the 

filter algorithm. The main cause is that the state error covariance 

matrix becomes unrealistically small, leading to a small gain matrix. 

This results in the observations having very little effect on the esti-

mates, A remedy to this problem is to increase the error covariance 

matrix so as to increase the filter gain and thus alleviate the diver-

gence problem, Simulation results have indicated that the error 

covariance matrix can not be increased by arbitrary amounts. 

In Section 4.2 an adaptive plant noise algorithm for the discrete 

case is developed. This has been adopted from reference (26). This 

procedure accounts for errors due to uncertain parameters and round off. 

In Section 4.3, the algorithm is extended to the continuous case. In 

Section 4.4, a method is suggested as to how the plant noise is imple-

mented for the present problem. A method is given to select various 

parameters, 

The estimates of drag parameter are of crucial interest. Based on a. 

chi-square test a quantity (a2/100 or a2/200) is added to the variance 

term of the drag parameter to prevent divergence in drag parameter 
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estimates. At every step of the filter a1gorithm, a chi-square test is 

made for consistency between the position residual vector and the 

corresponding portion of the error covariance matrix. If the test fails, 

plant noise is.added to make the residual vector consistent with the 

modified error covariance matrix. 

The plant noise algorithm improves the second-order filter estimates 

significantly as described in Chapter VI. 



CHAPTER V 

FIXED-INTERVAL SMOOTHING 

5.1 Introduction 

The smoothing problem consists of estimating the state of a process 

at some time t, given noisy measurements related to the process over a 

measurement interval which includes the time t. For tracking of reentry 

vehicles, the smoothing problem is the post-flight estimation of the 

trajectory based on noisy measurements. If the estimate of the state at 

any intermediate point is desired, it can be based on all the measure

ments including those made after the point of interest. In the present 

application, the smoothing process has shown to greatly improve the 

filter estimates. In essence, the smoothing process runs backwards in 

time, The fixed-interval technique of smoothing is adapted for the 

present problem. The estimate 

k = 1,2,···,N 

N = fixed point integer 

is termed the fixed-interval smoothed estimate. The symbol xk/N is the 

estimate of the state x at any point k based on the N observed data 

points, 

In this chapter, a linear fixed-interval smoothing algorithm is 

presented and then extended for a nonlinear process. An implementation 

technique is given that results in a considerable saving in computation 
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time. 

where 

5.2 Linear Fixed-Interval Smoother 

Consider a discrete linear system model given by 

xk = state vector at time instant tk 

~k+l,k = state transition matrix, and 

qk = plant noise vector 

38 

(S-1) 

Meditch (18) has presented an algorithm for fixed-interval smoothing for 

linear systems. This algorithm can be summarized by 

where 

~IN= the smoothed state estimate at time tk' 

~=smoother gain matrix, (7x7) 

Ek/N = smoothed error covariance matrix, 

xk/k = filtered state estimate at instant tk' 

xk+l/k = extr~polated value of state $t.instant 

tk+l given observations.up to tk' 

Ek/k = state error covariance matrix corresponding 

to ~/k' and 

(5-2) 

(5-3) 

(S-4) 



rk+l/k = state error covariance matrix correspond

ing to xk+l/k" 

39 

The quantities xk/k' xk+l/k' ~k/k and rk+l/k are calculated in the filter 

algorithm. 

5.3 Nonlinear Fixed-Interval Smoother 

Consider the nonlinear system model given by 

x(t) = f(x(t)) + q(t) (5-5) 

where 

x(t) is an n-dimensional state vector, 

f(·) is n-dimensional vector valued nonlinear 

function of the state, and 

q(t) is the plant noise vector 

In order to develop equations for the fixed-interval nonlinear 

smoothing algorithm, a linear equivalent of the Equation (5-5) is 

developed so that results of the linear smoothing theory can be applied. 

The linearization is accomplished in the following manner. The right 

hand side of Equation (5-5) is expanded in a Taylor series about a 

nominal state vector xk; that is 

~(t) = - xk) +HOT+ q(t) 

Neglecting the higher order terms (HOT) and noting that 
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By defining ox= x - xk, the above equation becomes 

(5-6) 

where 

af I J(x ) = -
k ax xk 

is the Jacobian matrix for function f evaluated at the state vector xk. 

For the system defined by the above linear differential equation, the 

state transition matrix satisfies the following differential equation. 

<p(t,t) = I 

where <p(t,tk) represents the state transition matrix between the time 

instants tk and t. Next expand <p(t + tt,t) in a Taylor series about t, 

so that 

<p(t + tt,t) ~ <p(t,t) + ~(t,t)At + HOT(At) 2 

Neglecting the higher order terms, 

<p(t + tt,t) ~ <p(t,t) + J(•)<p(t,t)tt 

= (I+ J(·)ttH(t,t) 

Since 

Ht,t) = I 

<p(t + At,t) =I+ J(•)lt 

Letting t +At= tk+l and t = tk' this equation becomes 
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Using the notation 

the expression for the state transition matrix becomes 

(5-7) 

Hence, .the linearized model of Equation (5-5) can be expressed as 

(5-8) 

where 

xk is n-dimensional state vector, 

~k+l k is given by Equation (5-7), and 
' 

qk = q(t)lt=tk 

Now the linear fixed-interval smoother algorithm given by Equations (5-2) 

through (5-4) is used. The boundary conditions for these equations are 

~IN and EN/N' xk/k is the.filter state estimate at time instant k, 

given observations up to k. xk+l/k is the extrapolated state vector in 

the ,filter algorithm at time instant k+l given observation data up to k. 

Ek/k and Ek+l/k are state error covariance matrices corresponding to the 

state xk/k and xk+l/k' respectively. ~+l/k and Ek+l/k are obtained in 

the filter routine by.integrating Equations.(3-9) and (3-22), with xk/k 

and Ek/k as initial conditions. The updated values of the state xk/k and 

error covariance matrix Ek/k are obtained by using Equations (3-24) and 

(3-26). In Chapter III the symbols used are xk and Ek compared to xk/k 

and Ek/k here. The index k decrements from N-1 to O in the implementa

tion of the smoother algorithm. 
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The linear fixed-interval smoothing algorithm presented in Section 

5.2 is applied to obtain smoothed state estimates and corresponding error 

covariance matrices. As explained before, the priori and posteriori 

estimates and covariance matrices xk+l/k' xk/k' i:k+l/k and i:k/k from the 

filtering algorithm are used for obtaining the smoothed estimates. There 

are two advantages of this method of implementation. First the nonline

arities of the system are taken into consideration since the linearized 

dynamic model of Equation (5-7) is used only to evaluate the state 

transition matrix. Second, this technique results in a considerable 

saving in computation time. 

5.4 Summary 

This chapter commences with the reasons for using fixed-interval 

smoothing for the present problem. An algorithm for fixed-interval 

smoothing in the lienar case is presented. For the nonlinear case, a 

method is presented where the dynamic model can be linearized and the 

linear algorithm adapted. The filtered estimates are stored and used in 

the smoother algorithm which results in a considerable saving in computa~ 

tion time. The simulation results when the smoothing algorithm is 

implemented, are presented in Chapter VI. 



CHAPTER VI 

SIMULATION AND NUMERICAL RESULTS 

6.1 Introduction 

The performance of the computer software package developed for 

estimating the state of the reentry vehicle using optical tracking data 

has been evaluated by extensive simulations. Three types of data 

(position x,y and z observations.and associated error covariance matrix, 

Rk) were used to test the package. Two cases used simulated data where 

the true trajectory and noise were known. The third cas~ was.an actual 

data set (unknown true t~ajectory). The trajectories of the first two 

cases were similar, except in one case the reentry vehicle had a constant 

ballistic coefficient and in the other it was a parabolic function of 

altitude. The sample rate for the first two cases were 30 and 25 samples 

per second, respectively, while for the actual data set it was 30 samples 

per second. 

Before presenting the performance of the filter and smoother algo

rithms with and without plant noise, a method of choosing program 

constants and parameters is presented. 

6.2 Selection of Program Constants 

and Parameters 

(1) The number of data points, N, used by XNTIAL for initializing 

the filter algorithm.is selected by a test program; a test program is 

43 



44 

used to select N. The criterion is that the ballistic coefficient should 

be positive and be in a predetermined range, and when N is raised any 

further, should stay essentially constant. For the three cases, 

N = 45, 50 and 61, respectively, are. selected by this method. 

(2) The atmospheric density model is required by XNTIAL, DERFUN, 

JACN and SHMT routines. The density model that was used to generate the 

simulated data is also used when processing (generating filter and 

smoother estimates) simulated data. The U. S. standard atmospheric 

density model was used (22). In the case of actual data the density 

versus altitude infonnation is obtained from a rawindsonde and an 

exponential model fitted to the results. The standard density model used 

is 

p = p0exp(-kh) 

where O and k are constants and his altitude. For the simulated data 

cases, 

Po= 0,002377; k = 0.41X10-4 for all h 

For actual data 

Po= 0.002244; k = 0.3207Xl0-4 h 2- 45 ,000 

Po= 0.005010; k = 0.4992X10-4 45,000 < h ~ 107,000 

Po= 0.001930; k = 0.41X10-4 h > 107,000 

where the English system of units is used. 

(3) The uncertain parameter as described in Section 4.4 is density, 

p then u1 = p, The elements of the 'k+l k matrix are evaluated using 
' 
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Equation (4-17). 2 The constant k1, 

matrix. The criterion of choosing 

chosen by simulation, describes the U 

ki is that it should improve the 

filter and smoothed state estimates for all three cases. The value of 

ki selected is 

k2 = 0.0025 
1 

(4) The parameter describing the round off error is chosen to be 3, 

thus giving 

with diagonal elements zero. This is described in Equatton (4-19). 

(5) Simulation results indicate that the variance term correspond-

ing to x7 , the drag parameter a, varies by four orders of magnitude. 

This is because the gain matrix becomes very small and hence observations 

do not affect the a estimates. As a remedy to this problem, another 

term is included as plant noise. This is 

2 
x7 a2 
Too= Too 

for thesimulated trajectories and, 

2 
X7 a2 

wo = 200 

for the actual data set. The above choice is based on a chi-square test .. 

as explained in Section 4.4. This quantity is added to the variance term. 

of the drag parameter. The inclusion of this noise term makes 

considerable improvement in drag parameter estimates for all data sets. 

(6) The position plant noise matrix defined in Equation (4-23) is 

added when the chi-square test fails. This imptoves position estimates 
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significantly. 

6.3 Simulation of Observation Noise and 

Error Covariance Matrix 

The nominal trajectory,is,obtained by integrating the dynamic model 

(equations of motion) with the initial state vector as initial condi-

tions. The simulated observations and error covariance matrices are 

generated by using RCON, ADNZ, RMGN, and EIGEN subroutines. The purpose 

of these routines is briefly given in Appendix E. The process can be 

explained as follows. 

(1) Consider the nominal state vector at any time 

••• T t . : (xyzxyza) 
J 

The er~or characteristics of the sensors (zero mean and cr standard 

deviation) are known, { 
~ 

(2) Using the optical station coordinates 

((XO.,YO.,ZO.), 
l. 1 1 

the azimuth and elevation angles 

( (A. ,E.), 
1 1 

i = 1 • • • K) ' ' 

i = 1 • • • K) ' ' 

as would be observed in the absence of any noise, are calculated. K is 

the number of optical stations. 

(3) Two random numbers .. (zero mean and a standard deviation) per 

optical station are generated. These numbers.are added to the respective 

values of a~imuth and eleyation to obtain simulated tracker observations. 

(4) Using simulated observations.A., E. and the optical station . . . 1 1 . 
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coordinates. the noisy position components are obtained using the trianu-

lation algorithm (15). 

(5) The difference between the noisy positions obtained in step 

four and the nominal position elements gives the error vector. 

Steps three, four and five are repeated MCL (selected to be 60) 

times. MCL is the number of Monte Carlo runs needed for generating R .• 
J 

The sample covariance matrix, Rj, associated with the MCL error vectors 

is the observation error covariance matrix for time instant t .. 
J 

The next step is to generate an error vector that is consistent with 

the R. matrix. 
J 

The following steps are executed to achieve this. 

(6) The eigenvalue vector X (3xl) and the corresponding modal 

matrix Q for the R. matrix is evaluated by using EIGEN subroutine. 
J 

(7) Three dimensional random vector (RN) with zero mean and 

variance.Xis generated by RMGN routine. 

(8) RN vector is transformed by the modal matrix to obtain the 

error vector NOIS. 

NOIS = Q x RN 

(9) The noise vector, when added to the corresponding position 

components of the nominal trajectory yields the simulated observation 

vector, OBS. 

x 

OBS= y + NOIS 

z 

Steps one through nine are repeated at each time step of the tra-

jectory. A flow chart of this process is given in Figure _4. 
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A. , E. , i=l, • • • , K 
1 1 

CALCULATE NOISY .POSITIONS x, y, z USING 
NOISY A, E AND STATION COORDINATES 

XO., YO., ZO., i=l,•••,K 
1 1 1 

< 

OBTAIN POSITION ERROR 
(NOISY - NOMINAL) 

Figure 4. Generation of Simulated Observation 
Data 
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CALCULATE SAMPLE COVARIANCE MATRIX 
OF ERROR VECTORS R. 

J 

COMPUTE EIGENVECTOR A AND 
MODAL MATRIX Q OF RJ 

GENERATE (3xl) RANDOM VECTOR 
(ZERO MEAN AND A VARIANCE) - RN 

TRANSFORM RANDOM VECTOR BY Q MATRIX 
NOIS = Q x RN 

NOISY OBSERVATION VECTOR 

OBS=[~]+ NOIS 

J = J + 1 

STOP 

Figure 4. (Cont.) 
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Figures 5 through 7 show the simulated noise (obsE:lrved - true) 

trajectories of x,y and z components for the varying ballistic coeffi 

cient case. The veh~cle descends from an al titud.e of 82 ,000 feet, and 

so 

its velocity reduces from 24 ,000 feet per second during the tracking time . 

of approximately eleven seconds. In Table I, the nominal state vector 

components for simulated data, varying ballistic coefficient case, at 

the interval of 0.6 seconds are given. The position and velocity 

components of the nominal trajectory, for simulated data with constant 

ballistic coefficient (S = 2000 lbs/ft2), are similar to the state 

components in Table I. 

For the constant S simulated trajectory the error trajectory is 

very similar to the varying S case. 

6.4 Filtering .and Smoothing 

The objective of the development of the software package is that it 

should produce smoothed state estimates. which are "close'' to the true 

state, In the case of actual data, where the true trajectory is not 

known, the software package performance is judged by the size of position 

residuals and error covariance matrices. 

Selection of program constantsand parameters constitutes.a signifi

cant part of the software pa~kage development. Considerable effort is 

required for the calculation and progranuning of the Jacobian and Hessian 

matrix elements of the present seventh-order problem. 

The second-order filter and smoother with no plant noi~e exhibited 

divergence. For the siqrulated obse,rvations, varying ballistic coeffi

cient case, without plant noise, the filtered and smoother error 

trajectories for the S component of the state vector are shown in 
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TABLE I 

NOMINAL TRAJECTORY FOR SIMULATED DATA, VARYING$ CASE 

. . . 
t x y z x y z 

0.040 131997.4 81728.l 80862.1 -16810.0 -10293.9 -10070.4 1988.1 
o.640 121959.6 ·r,, s 1. 1 (4842.3 -16641.3 -10190.7 -9989.9 2012.1 
1.240 112035.3 695U3.4 68878.2 -16431.3 -10062.3 -9884.4 2024.3 
le84C 10<'.'.'.251.4 63512.0 62986.4 -16170.8 -9903.0 -9748.2 2020.2 
2.44C 92641.8 ':>7627.1 'J7187., -1:,849.4 -9706.3 -9574.9 2()08.() 
3 • '.;40 83246.0 ?1873.l 51':>05.3 -15456.0 -9465.6 -9357.6 1988.1 
3.640 14110.4 46278.5 45968.4 -14980.l -9174.3 -9089.8 1953.l 
4.240 65287.2 4087':l.O 40608.7 -14413.4 -8827.4 -8766.1 1912.0 
4.840 56(,Dj.O 35b97.2 35460.8 -137'Jl.4 -8422.1 -8383.5 1865.7 
5.440 488U4e3 30719.9 30560.1 -12996.0 -7959.7 -7942.9 1811.6 

6ev40 41254.4 £'.'.6l'J'::i.8 2'J9'3':i.8 -121::>7.5 -7446.2 -7450.1 1754.4 
6.640 342213.1 .dtl'..-2.3 21628.2 -112'.::>4.4 -6893.2 -6916.1 1694.9 
1.240 2 115 ·r. o l 1b!:l8. 7 l/6Lf'je6 -10312.0 -6316.2 -6356.4 1634.0 
7.840 21855.6 14274.0 14002.0 -9360.l -5733.2 -5788.8 1574.8 
8 • Lf 40 16'J20e'-:I 110v6.4 10697.o -8427.7 -5162.2 -5231.1 1517.5 
9e64U 7460·0 5456.3 50':i0.7 -67l'J.7 -4113.7 -4204.0 1410.4 

10.240 3659.'J 3128.2 2665.9 -5965."5 -3654.3 -3753.0 1362.4 
10.840 285.7 1061.5 537.7 -5293.6 -3242.8 -3348.9 1317.5 
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Figure 8. All elements of the state vector dtverged. Similar divergence 

is also exhibited in other data sets. 

The divergence problem has been solved to a large extent with the 

inclusion of the.plant noise algorithm of Chapter.IV. Figures 9 through 

15 show filter and smoother error trajectories for components of the 

state vector for the simulated trajectory, varying S case, with plant 

noise included. Figures 16 through 22 contain similar graphs for the 

simulated trajectory, constant S case. The position residuals and the 

ballistic coefficient estimate for the actual data set are shown in 

Figures 23 through 26. 

6.5 Summary 

For the simulated trajectories, the package performance fqr position 

and velocity estimation is quite good. The ballistic coefficient error 

is large for the filter estimates but as seen in Figures 15 and 22, the 

smoothing algorithm improves the. ballistic coefficient estimates consid

erably. For the actual data set, the size of the position residuals is 

small and ballistic coefficient.estimates are close to the expected 

value. 

Theoretically, the filtering algorithm produces increasingly accu

rate estimates as additional data are prqcessed. This is reflected by a 

reduction in the magnitude of the determinant of the error covariance 

matrix. But in actual operating conditions it is observed that the size 

of the residuals tends to increase with the number of observations. This 

is the divergence problem. A solution to this problem is to increase the 

covariance matrix by incorporation of the adaptive plant noise algorithm. 

The drag parameter depends on the position, velocity and 
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acceleration of the vehicle as described in Appendix A. The assumptions. 

that the vehicle is a point mass and in between observations, the drag 

parameter stays constant, are not quite true. The density varies by four 

orders of magnitude from an initial altitude of 80 kilofeet to the ground 

level. An error in density model would .be reflected in the ballistic 

coefficient estimates. These are some of the factors that make the 

ballistic coefficient very difficult to estimate. 

A comparison of the performance of the software package to the 

results published by Athans et al. (8), Mehra (9), Jazwinski (11) and 

Schlee et al. (12) is made. In (8), a comparison of the performance of a 

first- and second-order filter as applied to a third-order problem is 

presented. In (9) a number of linear, extended and nonlinear filtering 

algorithms and their performance have been presented. Nonlinear filter 

performance using radar data has been presented in (11). The divergence 

problem is discussed in (12). The results here are comparable to those 

published in the literature even though the filtering problem using 

optical tracking data is inherently more difficult than the radar data 

filtering problem. The primary reason the optical tracking problem 

treated here is more difficult than the radar tracking problem is that 

when using radar, the reentry vehicle can be acquired exoatmospherically 

when the trajectory is still ballistic. Conseqeuntly much better initial 

estimates can be generated than if the reentry is acquired endoatmos

pherically as is the case for optical trackers. In the present problem 

initial estimates are generated using tracking data taken when the 

reentry vehicle is in a highly dynamic, nonlinear area in which the drag 

forces are beginning to take effect and the vehicle is oscillating about 

its roll, pitch and yaw axis. Also, several of the radar filtering 



problems treated in the literature involved doppler. radars so that in 

addition to position fixes, range rate data was also available. 

In the present study a seventh-order nonlinear problem is treated. 
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The divergence problems encountered are solved to a large extent using an 

adaptive plant noise algorithm. A method based on chi-square test is 

presented and applied to solve the divergence problem. Also nonlinear 

smoothing estimates are presented along with the filter estimates. 



CHAPTER VII 

STATISTICAL ANALYSIS 

7.1 Introduction 

A second-order filtering and smoothing algorithm that exhibits 

satisfactory performance for three different noisy observation data sets, 

has been developed. An inherent question involved is how well the soft

ware package would perform when it processes some different noisy obser-. 

vation data set. A Monte Carlo analysis was.performed to answer this 

question. A statistical evaluation of the program performance is the 

objective of this chapter. N runs of the filter and smoother each using 

a.different noisy data set were made, and the sample means and variances 

of the difference between smoothed estimate and true state were computed. 

The results were as expected, although the small sample size required 

because of financial (computer time) constraint caused some noisiness in 

the sample means and variances. The adaptive plant noise algorithm was 

used for all runs. 

7.2 Statistical Analysis Method 

In order to evaluate the performance of the computer software 

package, the simulated observation data set for the varying drag vehicle 

was selected. The covariance matrices, Rk, for all the observation 

instants were held unchanged, Using the Rk matrices, a position error 

trajectory was generated by Monte Carlo technique. The observation 
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position data were obtained by adding error to the nominal trajectory. 

This process yields a position observation data set whose covariance 

matrices are Rk. Different position observation data sets are obtained 

by using a different gene~ator seed, or starting parameter for each Monte 

Carlo run. The noisy observations and the error covariance matrices are 

inputs to the software package. After obtaining the smoothed state 

vector x, the smoothed error vector x - xt' as a function of time is s s 

generated and stored, where xt is the true state vector. 

The smoothed state error trajectory is,obtained for N sets of posi-

tion observations, where N is the number of Monte.Carlo runs made for the 

statistical analysis. In particular, the value of N was nine due to the 

stated constraint. Then based on these error trajectories the statistical 

performance of the package is evaluated, at least to the extent possible 

with the small sample size. As was stated earlier, the plant noise 

algorithm was the same for each run, but initial estimates of the state 

and estimation error covariance matrix were.different. The number of 

observations used to generate the initial values was selected separately 

for each Monte Carlo run. 

The sample means and variances for different elements of the 

smoothed state vector were calculated. The sample mean of k state error 

trajectories is computed by 

k 
l e. (t.) 

i= 1 1 J 
k 

where, e. (t.) is the error vector at time t. on the i-th run. Eight 
l. J J 

sample mean trajectories for each component of.the state vector were 

(7-1) 

calculated based on two through nine runs. The sample variance of the 

state error trajectories is computed by 
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k - 2 l (e. (t.) - e. (t.)) 
2 i= 1 1. J 1. J 

Ok Ct} = ----k---1---- (7-2) 

where, e. (t.) is calculated by Equation (7-1). As before, eight sample 
]. J 

variance trajectories for each component of.the state vector were 

calculated. 

7.3 Analysis Results 

As explained in the previous section, the sample means and variances 

of various components of the state error vector are calculated using k 

Monte Carlo runs. These quantities are plotted for two, six and nine 

runs. The curves for three position and velocity elements show the same 

trend, Thereby the results for the x component of position and velocity 

are presented instead of all the three x; y and z components. 

Figures 27 through 29 show the sample mean error trajectories for x 

components of position and. velocity and ballistic coefficient, S, ele-

ments of the state vector. There are three curves on each graph, identi-

fied by the number of Monte Carlo runs, as the parameter. An examination 

of the~e figures indicates that average errors become decreasingly small 

as more runs are made. 

Figures 30 through 32 show the sample variance trajectories for 

three elements: x position, x velocity and the ballistic coefficient, a, 

of the state vector. These figures show that as more runs are made the 

sample variance at first increases with the number of Monte Carlo runs. 

but later decreases. The confidence in the estimates increases with the 

sample size as indicated by the decrease in the sample variances. 
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7.4 Summary 

In this chapter, the statistical analysis of the software package 

was performed within the stated financial constraints. Nine Monte Carlo 

runs were made and the sample means and variances of the smoothed error 

trajecto];'ies were calculated and plots made. Based on this analysis, it 

is concluded that if a noisy data.set is process~d by.the software 

package, the smoothed state estimates.would be "close" to the true state 

with a high degree of confidence •. 



CHAPTER VIII 

SUMMARY AND CONCLUSIONS 

8.1 Summary 

In the present study a.solution to the problem of estimating the 

state of reentry vehicles using the optical tracking data has been pre

sented. This involved development of a.dynamic model as described in 

Chapter II. A linear observation model is .obtained by making use of 

triangulated position observations. 

Initially, the extended Kalman filter was found to provide unsatis

factory results because of the highly nonlinear nature of this problem. 

The second-order filter algorithm of Chapter III, with the plant noise 

algorithm improves the estimates considerably. The plant noise accounts 

for unmodeled errors and computation round off errors. The program was 

converted to double-precision to reduce effects of computational errors. 

A chi-square test is used to insure consistency between the position 

residuals and corresponding error covariance matrix. Divergence of the 

drag parameter estimates.is eliminated by adding o! (Equation (4-21)) to 

the corresponding variance element of the state error covariance matrix. 

The above choice is based on a chi-square test _for one degree of freedom 

and is explained in Section 4.4. In Chapter V, a nonlinear fixed

interval smoother algorithm has been developed. An efficient method of 

implementation of this algorithm is also described. 

The simulation and numerical results chapter describes the 
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performance of the filter and smoother algorithms with and without the 

plant noise. The software package performance·· is described by the 

results obtained by its application to three data sets. A statistical 

method of evaluating the performance of the software package has been 

presented in Chapter VII. 

8.2 Conclusions 

88 

The computer software package developed has shown the ability to 

generate much better estimates than those generated by linearized filters 

applied to the highly nonlinear problem of reentry. This package 

includes a second-order filter and a fixed-interval smoother. One main. 

feature of the program is the incorporation of the adaptive plant noise 

to prevent filter divergence. The plant noise accounts for uncertainties 

in model parameters, unmodeled errors, incomplete dynamic model and round 

off errors. The parameters involved in the adapttve plant noise. algo

rithm are selected on the basis of simulations. The fixed-interval 

smoother improves the filtered estimates as is shown in Chapter VI. 

If a software package for some other nonlinear estimation problem is 

to be developed, an approach similar to the present problem is reconunend

ed. The salient features of this development wou.ld be: 

(1) development.of dynamic and observation models; 

(2) evaluation of the Jacobian and Hessian matrix elements for 

dynamic and observation models; 

(3) identification of uncertain and round off error parameters from 

simulat~ons; and 

(4) filtering and smoothing with and without plant noise. 

Depending on the order of the system, the amount of computations may 
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vary. If the order of the system is small the calculation of elements in 

step two may be trivial, but for any reasonable order system a large 

number of elements must be calculated. For example in the present 

seventh-order system 49 Jacobian matrix elements and 343 Hessian matrices 

elements must be computed. Identification of uncertain parameters and 

associated constants may not be a trivial matter. 

The techniques developed for estimating the state of the seventh

order nonlinear system by the use of a second-order filter with adaptive 

plant noise and fixed-interval smoothing is a contribution to the area of 

nonlinear filtering applied to reentry estimation. 

8.3 Suggestions for Further Work 

There are many obvious extensions of this work and a few important 

topics are suggested here. 

The development of the dynamic model with lift forces accounted for. 

The elliptical earth model rather than spherical, could be incorporated. 

Both would add to the complexity of the system and possibly call for an 

increase in the order of the state vector. 

Further recommendations are to use as inputs the sensor angle data 

directly instead of the triangulated position fixes. This would have a 

disadvantage of increased complexity since the observation model would no 

longer be linear. 

The parameters for the adaptive plant noise algorithm are presently 

chosen based on extensive simulations. If the dynamic model was more 

precisely known in that the above refinements were incorporated, a less 

complex plant noise algorithm would be required. 
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APPENDIX A 

INITIALIZING SUBROUTINE XNTIAL 

The subroutine XNTIAL is used to generate estimates of the initial 

state vector and corresponding error covariance matrix. For the present 

problem, the observation data consists of noisy positions and associated 

error covariance matrices. As stated in Chapter II, the state vector has 

three position components (x,y,z), three velocity components ci,y,z), and 

drag parameter (a). The inverse of the drag parameter is a quantity 

commonly known.as ballistic coefficient, a. This is a number associated 

with a vehicle in motion. It is.a measure of the "slipperiness" of the. 

vehicle as it moves through air. The force on the reentry vehicle can be 

written as a wind pressure Q times the cross-sectional area A on which 

the pressure acts, Since the vehicle is.not a flat plate, the coeffi-

cient of drag, CD, to account for shape effects is used. Hence the drag 

force acting on the vehicle is QCDA, The mass of the vehicle is w/g0 

where w is the ve4icle weight at sea level. If the decerleation caused 

by the drag is aD, then 

w = -a 
go D 

The left hand side of the above equation is defined to be the ballistic 

coefficient a. That is 
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when the air is sufficiently dense, the pressure Q can be written as 

2 1/2 pv where pis the mass density of the air and vis the vehicle 

velocity relative to air. Then 

8 = 

The drag acceleration is 

~ = gsiny - aT 
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where~ is the acceleration along the velocity vector and y is the angle 

between local horizont~l and the velocity vector. The dr~g parameter 

depends on the position, velocity and acceleration of the vehicle, 

gravi~y and atmospheric density, 

At the initial time the geometry of the situation is shown in 

Figures 33 and 34. The quantities estimated by XNTIAL are the initial 

state vec~or 

and the associated error covariance matrix based on the first N observa-

tions. Here subscript 1 indicates the initial time, During early 

reentry, the trajectory is .assumed to be very close to ballistic, there-

fore the position components can be approximated by 

x(t) + a2t + 
2 = al a3t 

y(t) bl + b2t 
2 = + b3t 

z(t) 2 = c1 + c2t + c3t 
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where t represents time and the coefficients a1, a2 , a3 , b1 , b2 , b3 , c1 , 

c2 , c3 are to be estimated. 

The least-squares method of curve fitting is used to evaluat~ the 

coefficients and associated covariance matrix. The x component of N 

observations can be written in matrix form as 

x A n 

xl 1 tl t2 
1 nl 

x2 1 t2 t2 
2 

al 

n2 
= a2 + (A-1) 

a3 
1 nN 

where n. is assumed to be zero mean, Gaussian, uncorrelated noise with 
1 

variance cr2• Then the covariance matrix associated with the vector n is 

and 

-1 R 

Then by the least square method, the estimate of coefficients (a1 , a2 , 

a3 ) is 

This expression can be simplified to 
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In terms of the observed values of x position and the instants of time 

the preceding expression can be written as 

-1 
,. 

N Et. Et: Ex. al ]. ]. ]. 

,. 
Et. rt: Et~ Ex.t. (A-2) a2 = ]. ]. ]. ]. ]. 

,. 
Et: Et~ Et~ 2 

a3 Ex.t. 
]. ]. ]. ]. ]. 

and the error covariance matrix associated with this estimate is 

The x component of position, velocity and acceleration at initial time 

can be calculated by 

1 tl t2 ,. 
xl 1 al 

,. 

xl = 0 1 2tl a2 

xl 0 0 2 
,. 
a3 

The covariance matrix associated with this estimate is given_by 

2 1 tl t2 1 0 0 er c • c .. 
x xx xx 1 

2 
0 1 2tl 0 2(ATA)-1 tl 1 0 (A-3) c • er• c··· = xx x xx 

2 
0 0 2 t2 2tl 2 c " c• .. CJ" xx xx x 1 



where matrix A has been given in Equation (A-1). 2 a , the variance 

associated with n. is approximated by the sample variance 
]. 

2 1 N - 2 
a = N - 1 l (x. - x.) 

i=l ]. ]. 
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The mean at any time t. is calculated by using the value of time and the 
]. 

coefficients given by Equation (A-2). 

The procedure to evaluate initial estimates of (x1,x1, x1) and the 

associated error covariance matrix has been described in detail. This 

procedure is repeated to estimate Cyi,r1,y1), and cz1,z1 ,~1) and their 

associated error covariance matrices at the initial time. 

At the initial point in time, the position, velocity and accelera-

tion estimates in the x, y, z directions, 

[X1Y1Z1~1Y1Z1~1Y1~11 

have been evaluated and their covariance matrix (9x9) is given by 

2 
0 0 0 0 0 0 (J c . c .. 

x xx xx 

0 
2 

0 0 0 0 0 (J c . c .. 
y yy yy 

0 0 
2 

0 0 0 0 (J c . c .. 
z zz zz 

0 0 
2 

0 0 0 0 c . (J. c •.. 
xx x xx (A-4) 

2 
0 c . 0 0 (J. 0 0 c ... 0 yy y yy 

0 0 0 0 
2 

0 0 c • (J. C"" zz z zz 

0 0 0 0 
2 

0 0 c .. c• .. (J •• 

xx xx x 

0 0 0 0 0 
2 

0 c .. c•·· (J" 
yy YY y 

0 0 0 0 0 0 
2 c .. c• .. (J •• 

zz zz z 
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Here all the elements are given by Equation (A-3) and similar expressions .. 

for y.and z components. 

The drag parameter is given by the expression 

...,\ 

gsiny F 
- -- • v m 

a= ~--.-1-----2..----
2 gopv 

where g is the acceleration due to gravity at altitude h; 

y is the angle between velocity vector and local horizontal; 

vis the unit velocity vector; 
~ 

E.. is given by Equation (2~7); m 

g0 is the acceleration due to gravity at mean sea level; 

p is the atmospheric density at height h; and 

vis the velocity of the vehicle. 

The acceleration due to gravity at the altitude his approximated by 

where 

a = R + h e s 

Re= radius of spherical earth 

h = altitude of ESF system origin s 

Siny is approximated as follows, From Figure 34 

g·v = lg I Iv I cosn = cosn = siny 

" 

(A-5) 

(A-6) 

where g is a unit vector in the direction from the vehicle to the center 

of the earth. g can be written as 
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A A r 
g = -r = - TrT 

where r is given by Equation (2-4), 

r =a+ TR 

Using Equations (2-3) and (2-5) for a and T, respectively, the above 

equation can be written as 

[cosµcose x 

r = acosµsine + T y 

asinµ z 

and 

r = /x2 + y2 + (z + a) 2 

A 

The unit velocity vector vis given by 

v v =-
lvl 

where 

v = T ~ 
and 

lvl = fx2 + y2 ·2 
+ z 

., 

Equation (A-6) can be written as 

siny r • v 
= - lrl lvl 



or 

xx+~+ z(z + a) 
siny = - - r 11 v I -

-
.£. is given by.Equation (2-7). Thus m 

~ 

F 
m v = ;[{x 

• • 2 • 
2ywsinµ + 2zwcosµ - w x}x 

+ {y + 2• . 2 . 2 ( xwsinµ - w sin µy + z 
2 • 

+ a)w sinµcosµ}y 

+ {z - 2xwcosµ + w2sinµcosµy - 2 2 • (z + a)w cos µ}z] 

The altitude at the initial time can be evaluated from the following 

expression using initial position estimates. 
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(A-7) 

(A-8) 

The atmospheric density is calculated by using the subroutine DENY. With 

this all the quantities in Equation (A-5) are known and the initial 

estimate of drag parameter can be found. 

At this stage all the elements of the initial state vector have been 

estimated. All elements of the state error covariance matrix are known 

except the variance of the drag parameter. It is assumed that error in 

the drag parameter is uncorrelated with the.error in other elements of 

the state vector. From Equations (A-5) through (A-8), it is .clear that 

the drag parameter is a function of all nine positions, velocity and 

acceleration components; that is 

a= L(xyzxyzxyz) 

Th~ error in the drag parameter is given by 

a= Ax 
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where A is a nine component gradient vector of function L, and xis a 

nine component error vector with position, velocity and acceleration as 

elements. Then the variance of.a is evaluated by 

(A-9) 

where E{xxT} is given by Equation (A-4). The next step is to evaluate 

the gradient vector A using the estimates of position, velocity and 

acceleration at the initial time. 

A = [~ clL 
ax' ay• 

From Equation (A-5) the expression for the drag parameter can be written 

as 

where 

-g(xx +Yr+ z(z + a)) - ~ 
rv v 

L = a = -------------,,-------....,,..-------------1 2 
I pgov 

F " )..=V[-•v] m 

is given by Equation (A-8), Hence 

By defining 

aN = g(xx + yy + z(z +a))+ )..r 

and 



the expression for L reduces to 

By using the formula for derivative of a quotient, 

~aD-aN~ ax. ax. 
]. ]. 

aD2 

. . . .. .. 
where x. represents x, y, z, x, y, z, x, y, z. The Equation (A-10) 

]. 

requires aaN/ax. and aao/ax. given below. 
]. ]. 

aaN ![ . z (z + a)] n ar -= [xx + yy + + gx + -r + A ax ax ax ax 

aaN .![ . . . 
a)] 

. a).. ar v= [xx + yy + z (z + + gy + -r + A ay ay ay 

aaN ![ . . . . a).. ar -= az [xx+ YY + z (z + a)]+ gz + -r + A az az az 

aaN a).. -= gx + -r . . 
ax ax 

aaN n -= gy + -r . . 
ay ay 

aaN g(z a) n ~= + + -:- r 
az az 

aaN a).. 
--= -r 
ax ax 

aaN n -= -r 
ay ay 

aa.N n 
-= -r 
az az 

The nonzero partial derivatives of aD are 

aao ap 3 3 ar ---vr+vp ax'" - ax ax 
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(A-10) 



aao ap v3 3 ar V = ay. r + v P ay 

aao 2 av 
-= 3v pr -;-. 
ax ax 

aao 2 av 
-= 3v pr-. . 
ay ay 

aa.D 2 av 
-= 3v pr -. . . 
az az 

The derivatives of a.N and a.D require the following set of equations. 

From Equation (A-8) 

a>.. 2· 
ax=-wx 

a).. 2 . 2 • 2 . • ay = - w sin µy + w sinµcosµz 

a>.. 2 . 2 2 • az" = w sinµcosµy - w cos µz 

a;\ .. 2 
-=x-wx ax 
a>.. 
-= .. 2.2 ( )2. y - w sin µy + z +aw sinµcosµ . 
ay 

a>.. 
-= 2 . 2 2 ( ) z + w sinµcosµy - w cosµ z + a . 
az 
a>.. • 
-= x 
ax 
a>.. • 
-= y 
ay 

o>.. 
-= z 
oz 

The gravity model is 

g = g. (1 _ 2h) 
O · a 
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The nonzero derivatives of gravity are given by the following expressions. 



a, r 

2£ = - 2go l. 
ay a r 

2£ = _ 2go (z + a) 
az a r 

The atmospheric density model is 

p = p0exp(-kh) 

and its nonzero derivatives are given by 

ap - kp x 
ax·= r 

ap - kp l. -= ay r 

ap az = - kp (z 

The velocity expression is 

v = I ~:2 + ;,2 

and its nonzero derivatives are given by 

. 
av x -= 
ax v 

. 
av y -= . v ay . 
av z -= . v az 

+ a) 
r 

•2 
+ z 

The distance from the vehicle to the center of the 

/ x2 2 
+. (z + a)2 r = + y 

and its nonzero derivatives are given by 
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earth is 



ar l. 
ay = r 

ar (z + a) az = r 

With these expressions, all the elements of the gradient vector A are 

known and Equation (A-9) is used to evaluate the variance of the drag 
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parameter at the initial time. Hence the covariance matrix corresponding 

to. the initial state vector becomes 

2 
0 0 0 0 0 cr c • 

x xx. 

0 
2 

0 0 0 0 cr c • 
y yy 

0 0 
2 

0 0 0 cr c . z zz 

0 0 
2 

0 0 0 c . cr. 
xx x 

0 0 0 
2 

0 0 c . cr • yy y 

0 0 0 0 
2 

0 c • cr. 
zz z 

0 0 0 0 0 0 
2 cr a. 

This algorithm is programmed in subroutine XNTIAL. 

The ~ethod of selecting N, the number of data points used in the 

initializing routine for any particular trajectory should be explained. 

The procedure is to select N which gives initial estimate of a positive 

and in the approximate range of (1750, 2250) and when N is increased 

further S should stay essentially constant. 



APPENDIX B 

JACOBIAN MATRIX 

As discussed in the Section 2.1, the following quantities are chosen 

as the state variables: 

xl = x 

x2 = y ,, 

X3 = z 

X4 = x 

XS = y 

x6 = z 

1 
X7 = ~ = s 

The state equations for the spherical earth dynamic model are: 

xl = X4 . 
Xz = XS . 
X3 = x6 . .. 2 Gm . 
X4 = x = 2wsinµxs - 2wcosµx 6 + w x1 3xl 

1 r 
- 2 gpvx4x7 

2 . 2 . 2 = - wsinµx 4 + w sin µx 2 
2 . w sinµcosµx 3 

Gm 1 2 . - 3 x2 - 2 gpvxsx7 - aw sinµcosµ 
r 2 

x6 = z = 2wcosµx4 - w sinµcosµx 2 + 2 2 
W COS µx3 

Gm 1 3 (a+ X3) - 2 gpvx6x7 + 
r 
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2 2 aw cosµ 



All .quantities in these equations are defined in Section 2 .1. The 

Jacobian matrix for the above dynamic model is given by: 

0 0 0 1 0 0 0 

0 0 0 0 1 0 0 

0 0 0 0 0 1 0 

J(x) = jxx jir jxz j •• j •• j •• j xa xx xy xz 

jyx jyy jyz j •• 
yx 

j •• 
yy 

j •• 
yz jya 

jzx j zy jzz j •• 
zx 

j •• 
zy 

j •• 
zz j za 

0 0 0 0 0 0 0 

The dynamic model can be written symbolically as: 

. 
x = f (x) 

where xis a 7-component vector and f is a 7-component vector valued 

function of x; that is 

The ijth element of the Jacobian matrix is given by: 

[j(x)] .. 
l.J 

af. 
l. 

= F. 
J 

i,j = 1,2,···,7 

The elements of J denoted by j , are found to be: 

jxx 
2 Gm .!. (g'p +.gp') x • 3Gm = w - -r- -vx +-x 2 f3 r 5 r r 

jxy 
3Gm - .!. (g Ip +.gp') l. vx = -xy 5 2 B r r 

jxz 
3Gm ( + a) 1 (g'p + gp') (z + a) = -x z - 2 5 s r r 

1 .&e.. 
·2 

j •• = - .!. ie.. ~ 
xx 2 B v 2 s v 

2 

vx 
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.. 
j • • = 2wsinµ - .!. iE.. ~ xy 2 S v 

.. 
j • • = - 2wcosµ - .!. iE.. £ xz 2 S v 

1 • = - 2 gpvx 

. 3Gm _ _l (g 'p + gp ' ) • x 
J • = - xy - - vy -yx 5 2 S r 

r 

= 2 . _ ..!. (g, p + gp 1 ) • (z + a) + 3Gmy ( + a) - w sinµcosµ 2 S vy r 5 z 

. 2 . i gpxY 
J"" = - ws1nµ - -yx 2 Sv 

•2 
j • • = - .!. iE.. Cv + L) yy 2 S v 

j •• 
yz 

.. 
= - ..!. ie.. l!. 

2 S v 

= - .!. &£.. vy 
2 S 

J·• = ~ x (z + a) - .!. (g'p + gp') !.vz 
zx rs 2 S r 

r 

j• = - w2sinµcosµ + 3~m y(a + z) - ~ (g'p + gp') ~ vz 
zy r S 

. = 2 2 Gm 3Gm (a+ z)2 _ ..!. (g'p + gp') (z + a) • 
J zz w cos µ - 3 + 5 2 S r vz 

r r 

_ .!. ie. iz jzx = 2wcosµ 2 s v 

j•• = zy . 
.. 

_ lie.E 
2 S v 

1 o-p i2 
j • • = - -2 ~ (v + -v ) zze p 

1 • 
= - 2 gpvz 

In the above expressions, the following quantities are used: 
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-kh p I kp; p II k2p p = "oe = - = 

go Cl _ 2h)· g' 
2go 

g" 0 g = = 7; = a • 

ar x ah -·= - = ax ax r 

ar y ah -·= -= -ay r ay 

ar (z + a) ah 
-= = az" az r 

av x -= . v ax 

av l. -= . v ay 

av z -= . v az 

These expressions are progranuned in the subroutine JACN. The Jacobian 

is used in both the second-order filter and the fixed-interval smoother 
,, 

algorithm. 



APPENDIX C 

HESSIAN MATRICES 

The Hessian matrix for each row of the Jacobian of the dynamic model 

is required for evaluating the second-order filter bias correction term, 

b(t). These are given by 

i = 1,2,···,n 

t,m = 1,2,···,n 

For i = 1, 2, 3 and 7, the elements of the corresponding rows of the 

Jacobian matrix are constants. This leads to the 7x7 matrix 

[F. (x)] = 0 
1 

for i = 1,2,3,7 

The following notation will be used in giving elements of the Hessian 

matrices for other rows. 

xi and xm are elements of the state vector. The Hessian matrix is sym

metric, hence it is required to calculate the n(n+l)/2 elements in the 

upper triangle matrix. Thus for n = 7, 28 elements of the Hessian 

matrices must be calculated for each of the fourth, fifth and sixth rows 

of the Jacobian matrix. 

The Hessian matrix corresponding to the fourth row of the Jacobian 
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matrix is: 

2• 1 g I p + gp I ) X XV +rc a -3-
r 
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2 
a f 4 3Gm _ 15Gm x2 Cz 1 cgp" + 2g 'p ') x Cz + a)xv 

j 4zx = filx = -5- Cz + a) 7 + a) - 2 a 2 
r r r 

1 g'p + gp'~ xCz + a)xv 
+ 2 C a ) 3 

. 
axax 

a2f . 4 
J. = -= 
4yx ayax 

a2f . 4 
J. = -= 
4zx aiax 

r 

·2 
1 cg Ip + gp I) !. CV + .!.._) 

- 2 a r v 

1 (g 'p + gp ') xxy 
- 2 a rv 

1 cg'p + gp' xxz 
- 2 a ) rv 

a2f • . 4 1 g'p + gp') xxv 
J 4ax = ~ = - 2 C a r 

j = a2f 4 = ~ x - .!.. cg 'p + gp I) x v - 15Gmxr2 
4yy ay2 rs 2 8 r r7 

2· 2· 1 gp" + 2g'p' y xv+ 1 g'p + gp' ~ 
-zC a ) 2 zC a ) 3 

r r 
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a2f 
. 4 1 gp" + 2g'p') y(z + a) • 1 g'p + gp') y(z + a) • 
J 4zy = azay = - 2 ( B r2 xv + 2 C B r3 xv 

_ lSGm xy(z + a) 
r 

a2f . 4 J. = -= 
4xy a~ay 

a2f . 4 
J. = -= 

4YY ayay 

a2f . 4 
J. = -= 

4zy azay 

a2f . 4 
J4a.y = aa.ay = 

•2 
- .!. cg I p + gp I ) l. ( V + ~) 

2 B r v 

. 
- .!. (g' P + gp ' ) yxv 

2 r 

2 

= a f 4 = ~ x _ _21 cg' p + gp ' ) xv l SGm ( a) 2 
j 4zz a z2 rs B r - 7 x z + 

2• 2· 
1 gp" + 2g'p' (z + a) xv 1 g'p + gp' (z + a) xv 

-2( B ) 2 +2( B ) 3 
r r 

. 
axaz 

1 cg'p + gp ,) cz + a)xY 
- 2 B rv 

1 g'p + gp')(z + a)xz 
- 2 ( B rv 

a2f • 
j4a.z = aa.a! = - ; (g'p + gp')(z + a) :v 

a2f . 4 
J •• = - = 

4xx ax2 

a2 f • ·2 • . 4 _ _ 1 ap (y _ x v.) 
J 4yx = ayax = 2 s v ;r 



,/f 
. 4 J •• = -= 
4zx azax 

a2f 
4 =-= 

1 1 x2 
- -2 gpv - - gp -2 v 

a2f ·2 
j • • = ___! = - .!. .&e. x r.!. - Y3) 
4yy ay2 2 B "v v 

... 
- .!. Ke.~ 

2 B v3 

1 ~ - 2 gp v 

_ .!. gpxz 
2 v 

The Hessian matrix corresponding to the fifth row of the Jacobian 

matrix is: 

2 
a f 5 3Gm 1 cg ' p + gp 1 ) v • 1 SGm 2 

Jsxx = ax2 = Ty - 2 B r y - 7 x y 

2· 2· 
1 cgp" + 2g'p') ~ 1 cg'p + gp') ~ 

- 2 B 2 + 2 B 3 
r r 

2 
. a fs 3Gm lSGm 2 1 cgp" + 2g'p ') xyYv 
J Syx = ayax = T x - 7 xy - 2 B r2 

. 
1 g'p + gp' ~ 

+zC B ) 3 
r 
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2 
. a fs lSGm 1 (gp" + 2g'p ', x(z + a)Yy 
J Szx = azax = - ---=;- xyCz + a) - 2 e J 2 

r r 

1 g'p + gp' xCz + a)Yy 
+ 2 C e ) r3 

c)2f 
j • = -2. = - !. cg Ip + gp I ) xxY 

Sxx axax 2 8 rv 

c)2f 
. 5 
J. = -= Syx • 

1 g'p + gp I 

- 2 C e ) 
•2 

x Cv + L) 
r v ayax 

c)2f 
. 5 
Jszx = azax = 

- .!. cg Ip + gp I} 2_ 
2 8 rv 

c)2f • 
j _ 5 _ 1 (g'p + gp') xyv 

Sa.x - aa.ax - - 2 r 

1 gp" + 2g'p') 2 • 1 I + gp t 

- 2 ( B Lr!.. + - cg p a ) 2 2 
r 

2 
. a fS 3Gm 

+ a) lSGm 2 C + a) Jszy = azay = s (z - ---=;- y z 
r r 

2• 
L.E 
r3 

1 (gp" + 2g'p', y(z + a) • + .!_ cg'p .+ gp') y(z + a)Yv 
- 2 a ) 2 yv 2 a 3 

r r 

c)2f 
. 5 
J. = -= 

Sxy axay 

.. 
l g Ip + gp I 'I Y. ~ 

- 2 C e ) r v 

c)2f 
' 5 J. = -= 
syy ayay 

•2 
- l cg Ip + gp I) y Cv + L) 

2 8 r v 

c)2f 
. 5 1 g Ip + gp I Y. E 
J Szy = azay = - 2 ( S ) r v 

c)2f • 

Jsa.y = aa.a~ = - ~ Cg'p + .gp') y~v 
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= a fs = ~ y - 15G7m y(z + a/ - 21 c.S 'p + gp I i!. 
j Szz az2 rs r S ) r 

2• 2• .!. cg'p + gp ') (z + a) yv 1 gp" + 2g'p ') (z + a) yv 
+2 a 3 -re a 2 

r r 

. 
axaz 

1 g'p + gp') cz + a)xY -re (3 rv 

a2f •2 
1 cg'p ; gp ') (z ; a) (v jSyz 

5 + l...) =-= - 2 . v ayaz 

a2f 
1 g'p + gp I) (Z 

jszz 
5 + a) ~ =-= - 2 ( . (3 r v azaz 

a2 f 
. 5 1 ( , 1 ) (z + a) • J ------2 gp+gp vy Saz - aaaz - r 

a2f 
. 5 J •• = -= 
Sxx 0~2 

·2 1 11p • 1 x 
- -~ y(- --) 

2 S v v3 

·2 1 11p • 1 v . 
- - ,2.::;.. xr..::.. - '--) 

2 S '"V v3 

a2f •• . 5 1 ~ 
Jsax = ----:- = - 2 gp v 

aaax 

• 3 
_li£..Y+l~L 

2 S v 2 S v3 

•2 
- .!. gp (v + L) 2 · v 

•2 
- .!. ~ cl - ~) r 

2 a v v3 
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a2£ 
1 

jsaZ 
5 rr = --= - 2 gp 

aaaz v 

a2£ 

jSaa. 
5 

0 = --z= 
aa. 

The Hessian matrix corresponding to the sixth row of the Jacobian 

matrix is: 

2 
a f6 3Gm _ ~x2(z 1 g'p + gp' Zv 

j6xx = ax2 = rs (z + a) r7 + a) - 2 ( 8 ) r 

2• 2· 
1 (gp II + 2g Ip I) ~ + .!. (g Ip + gp I X ZV 

-2 8 2 2 B )--r 
r r 

a2f • • . 6 lSGm ( ) 1 (gp" + 2g Ip 1 ) xyzv .!. cg Ip + gp 1 ) xyzv 
J6yx = ayax = - 7 xy z + a - 2 B r2 + 2 B r3 

2 
. a f6 3Gm _ ~ x(z 2 1 (gp" + 2g'p') xCz + a)zv 
J6zx = azax = 5 x 7 + a) - 2 B 2 

r r r 

1 g'p + gp') xCz + a)Zv 
+ 2 C B 3 

r 

a2f •• 
j • : _.2.. : - .!. cg Ip + gp I )(XXZ) 

6xx axax 2 B rv 

a2f 
• 6 1 I I • • J • - cg p +.gp )Cxyz) 6yx - ayax = - 2 - B - rv 

a2 f 6 ·2 
J. • - -- 1 g 1p + gp 1 ) x z 6zx - • = - - C- - Cv + --) azax 2 B r v 

a2f 
J. - 6 - - .!. (g' P + gp ' ) !. Zv 6a.x - aa.ax - 2 r 



2 
. 0 f 6 3Gm ( ) 1 SGm 2 ( + 1 g 'p + gp ' Zv 
J 6yy = :-r = 5 a + z - -r- y a z) - 2 ( s ) r 

oy r r 

2 
. a £6 3Gm lSGm 2 1 gp" + 2g'p' y(z + a)Zv 
J6zy = azay = 5 Y - ----::;- y(a + z) - 2 (- S - ) -- 2 

r r r 

1 g'p + gp' y(z + a)Zv +re s ) 3 
r 

a2£ . 6 
J. = -= 
6XY axay 

1 g'p + gp') ~ -re s rv 

a2£ 
. 6 J. = -= 
6YY ayay 

1 g'p + gp') ~ 
- 2 ( S rv 

a2£ . 6 
J. = -= 
6 ZY azay 

·2 1 g I p + gp I ) V z 
- -2 (- - '- (v + -) S r v 

a2£ . 6 
J 6a.y = aaay = - ~ (g Ip + gp I ) f VZ 

2 
a f6 9Gm lSG 3 

· ( a) - ~(a+ z) J6zz = ~ = rs z + r7 
. 

i c&'P + gp') ~ 
- 2 S r 

2 
1 gp" + 2g'p') (z + a) 

- 2 ( S r2 
1 I I CZ + a) 2 • cg p + gp ' • zv + 2 S ) 3 zv 

r 

a2£ . 6 1 g'p + gp') (z + a)xz J • = - = - - c--___ .,......_..__ 
6xz axaz 2 S rv 

a2f .. 
j6yz 

6 1 g'p + gp' (z + a)yz =.-= - 2 ( s ) . rv ayaz 

a2£ 
1 g'p + gp' (z + a) 2 

j6zz 
6 (v + !....) =·-= - - ( s ) . 2 r v azaz 

a2£ 
6 1 (z + a) • 

J' - - - - -2 (g Ip + gp I ) ZV 6a.z - aaaz - r 
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a2f . 6 J •• = - = 
6xx ax2 

·2 
1 crp • 1 x 

- - .sz.::. z (::. - -) 
2 S '"V v3 

•2 1 crp • 1 z 
- - 2.l:.. x r::. - -) 2 S '"V 3 v 

a2f . 6 1 xz 
J • = - = - - gp --6ax aaax 2 v 

a2f ·2 
. 6 1 crp • ( _!. v , 
J 6yy = ay2 = - 2 e z 'V - ~) 

a2f . 6 
J •• = - = 

6ZY azay 

a2f 
. 6 
J6ay = aaay = 

a2f ·3 
. 6 _l&e..!.+.!.&e..~ J6zz = --;r = 2 S v 2 S v3 az 

a2f 
. 6 0 
J6aa. = aa2 = 

These expressions are programmed in the subroutine SHMT. 



APPENDIX D 

INPUT DATA AND PARAMETERS 

There are a number of physical parameters and program inputs that 

must be specified. These are listed below. 

NX: The number of differential equations in the dynamic model which 

is the order of the state equations. (NX=7). 

E: A constant step size. The interval between successive 

observations, 

NST: Number of observation data to be processed. 

NC: NC-1 is the number of observations skipped in processing. Thus 

if NC=l, every data point is used; if NC=2, every other data point is 

used, etcetera. 

N: Number of data points used by XNTIAL for initializing the filter 

algorithm. This is separately determined by a test program for the data 

to be processed. 

w: Earth's sidereal rate (radians/sec). 

Gm: Gravitational constant times earth's mass (ft3/sec2). 

hs: Height above mean sea level of origin of x-y-z coordinate 

system (feet), 

µ: Geodetic latitude of the origin of coordinate system (degrees). 

R: Earth's radius (feet). e 
2 

g0 : Acceleration due to gravity at mean sea level (ft/sec). 

The parameters specifying the.exponential atmospheric density model 
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are specified by the subroutine DENY. These may vary with the data and 

are critical in the state estimation. 

The observation sequence 

Z. = {t.; x., y., z.}, 
i i i i i 

i = 1,2,•••,NST 

and associated observation error covariance matrices R .• This data is 
i 

processed by the filter and smoother algorithms to generate the state 

estimates. 



APPENDIX E 

SUBROUTINE DESCRIPTION 

The software package development involved a number of subroutines. 

The purpose of each of the program subroutines is briefly states in this 

appendix. 

XNTIAL: This subroutine generates the initial state vector and the 

corresponding error covariance matrix. The inputs to this subroutine 

are physical constants and the first N observations. 

DENY: The atmospheric density model is given in.this subroutine. 

Atmospheric density and the first and second derivatives of density with 

respect to altitude are evaiuated in this routine. 

SHMT: Hessian matrices for the dynamic model are evaluated by this 

routine. The elements of the matrices are calculated using the state 

vector input to the subroutine. 

AWRIT: This routine takes a matrix stored in a one dimentional 

array and prints it in the stiµidard matrix form. 

RK4: Fourth-order Runge-Kutta method of integration is implemented 

in this routine. It is used for integrating the state model. 

RK2: The modified Euler's method of integration is implemented in 

this routine. It is used to integrate a set of first order differential 

equations when a large number of equations are involved. 

DERFUN: A description of the dynamic model is given in this 

routine. Derivatives of the stat~ vector are evaluated. 
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SUMS: This routine forms the differential equations for propagating 

the covariance matrix of the state vector. The derivatives of the 

covariance matrix elements are calculated by evaluating the Jacobian 

matrix and making use of GMTRA and MPRD routines. 

SBRT: This routine generates additive bias correction terms for the 

nonlinear dynamic model. It uses Hessian matriees generated by SHMT. 

JACN: The Jacobian matrix of the dynamic model is evaluated in this 

routine. 

CROF: CROP adds a diagonal matrix to the extrapolated state error 

covariance matrix to account for round off errors. 

CHTN: CHTN tests the consistency of the position residual vector 

with the corresponding portion of the state error covariance matrix. If 

the consistency requirement is not met, the error covariance matrix is 

increased by the amount necessary to insure that the residual vector is 

consistent with the new error covariance matrix. 

CMPN: CMPN adds,plant noise to,the state error covariance matrix 

due to uncertain parameters. Atmospheric density is the uncertain 

parameter used in this routine, 

SYSY: SYSY replaces a square matrix by a symmetric matrix. The 

corresponding off diagonal terms are replaced by their average. This is 

used to enforce symmetry of covariance matrices. 

MPRD: The purpose of MPRD is to multiply two matrices to form a 

resultant matrix. This requires a subroutine LOC. 

LOC: LOC computes a vector subscript for an element in a matrix of 

specified storage mode, 

MINV: MINV inverts a matrix. The determinant of the matrix is also 

obtained. 



GMTRA: GMTRA is used to obtain the transpose of a.matrix. 

EIGEN: EIGEN computes eigenvalues and eigenvectors of a real 

symmetric matrix. 

MPRD, LOC, MINV, GMTRA and EIGEN subroutines have been adopted from 

IBM-Scientific Subroutine Package Library. 

E.1 Other Programs Used for Simulation 
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RCON: RCON generates the estimate of position of vehicle in space 

based on the observed azimuth and elevation angle data collected by the 

optical trackers. Inputs to this program are position coordinates of the 

optical trac~ers and the azimuth and elevation angle observations. 

ADNZ: This subroutine generates an error vector whose 3X3 

covariance matrix is denoted by R. This is used to generate simul~ted 

noisy observation data. 

RMGN: RMGN generates an array of.pseudo random numbers with 

specified mean and standard deviation. 
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