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CHAPTER I

INTRODUCTION

1.1 Literature Survey

Extensive research in the area of recursive estimation has been con-
ducted for the last fifteen years. A significant contribution to the
problem of optimal estimation of the state variables of a linear dynamical
system was made by Kalman and Bucy (1,2). Since then extensive research
in this area has been conducted. A large number of publications and
reports give the extent of research and development conducted in this
area. As a next logical step the concepts of linear filtering were ex-
tended to the estimation of the states of nonlinear systems using the
extended Kalman Filter. In (3,4,5) different techniques, for example
least-squares, maximum-likelihood, etcetera, were used to derive the
filter equations. Most of these techniques employ Taylor series expan-
sions, neglect second- and higher-order terms, and use linearized equa-
tions to compute the pseudo conditional error covariance matrix and the
filter time-varying gains.

Another approach to determine the filtering equations is based on
conditional probability density and conditional expectations. Stochastic
Itd calculus is used to derive the filter equations. Stochastic Itd
calculus is used to derive the filter equations. This technique has been
used by Kushner (6}, and Denham and Pines (7).

The second-order filtering technique used in this thesis has been



pregented by Athans et al. (8). Mehra (9)‘compared several nonlinear
filters for reentry vehicle tracking using radar observations. Shreve
and Bhandari (10) presented a comparison of the first- and second-order
filter performance for reentry vehicle tracking using optical tracker
observations.

The problems of divergence, adaptive estimation, and identification
of variances have received recent attention in the literature. Typical
papers on this line are those of Jazwinski (11), Schlee et al, (12),

Mehra (13), and Aldrich and Krabill (14).
1.2 The Problem and the Approach

The problem of estimating the state of a ballistic reentry vehicle
(RV) from optical tracker observations is a highly complex problem in
nonlinear filtering. Because of the nature of the optical trackers, only
the endoatmospheric observations data are available; consequently all the
estimates are for endoatmospheric reentry. The objective of the present
research is to develop a computer software package to generate estimates
of the state of a reentry vehicle using triangulated optical tracking
data. Estimated quantities are: position (x,y,z), velocity (i,&,i), and
the aerodynamic drag parameter (o).

The geometry of tracking of a RV using optical trackers can be ex-
plained using Figure 1. An earth surface fixed (ESF) cartesian coordi-
nate system is shown here. There are k(k > 2) optical trackers used for
tracking. Each station gathers azimuth and elevation data as a function
of time. Bodwell (15) has developed an algorithm for obtaining noisy
position estimates using the angle data and the optical station coordi-

nates. Given random properties of the optical trackers, that is,
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variances of azimuth and elevation random errors, the covariance matrix
associated with position estimates are obtained. For the present prob-
lem, the triangulated position observations and the corresponding error
covariance matrices are available,

The objective then is to develop and implement a sequential
algorithm which can be used to generate estimates of the state variables
of a continuous nonlinear dynamical system from noisy observations of its
output made at discrete instants of time., The motivation of this thesis
was provided by the problems arising in the estimation of the state of a
reentry vehicle: cartesian positions, velocities and ballistic drag
parameter, using discrete optical tracker observations., The azimuth and
elevation observations are triangulated to obtain position observations.
Some of the most recent advances in estimation theory have been incorpo-
rated in the present development. The nonlinear dynamic model is approx-
imated by retaining up to second-order terms in a Taylor's series
expansion. In the present development what are called filtered and
smoothed state estimation error covariance matrices are actually pseudo
covariance matrices. The problem involves a continuous nonlinear dynamic
model and a discrete linear observation model. The dynamic model for
extrapolating the state of a RV is developed. This is expressed in an
earth surface fixed cartesian coordinate system with x-y-z in the east-
north-up directions, respectively.

Gravity and drag forces are included. The earth is assumed to be an
oblate spheroid. The software package includes the capabilities of
second-order filtering, and fixed-interval smoothing. The adaptive plant
noise algorithm is included to solve the divergence problem.

Based on the observation error covariance matrices at observation



instants, a set of error trajectories are generated by Monte Carlo tech-
niques. When these trajectories are added to the nominal trajectory,; a
number of noisy observation position data sets are obtained. The per-
formance of the software package is evaluated by processing the simulated
observations with the same error covariance matrices. A double precision
version of the program is used for increased accuracy of the computations
over single precision. Initial values of the state estimate and estima-
tion error covariance matrix are obtained by using a weighted-least-
squares solution. The initializing technique is discussed in detail in
Appendix A. The second-order filtering algorithm requires the evaluation
of Jacobian and Hessian matrices of the dynamic model. The expressions
for elements of these matrices are presented in Appendices B and C.

The software package inputs are triangulated position observations,
observation error covariance matrices, atmospheric density model, earth
and gravity parameters, and the coordinates of the ESF system origin., A
description of input parameters is given in Appendix D. Appendix E
briefly describes the purpose of various subroutines in the software
package.

Figure 2 shows the flow chart of the software package. In this
figure, k is the time index of the observation being processed, and NST

is the total number of observations.

1.3 Organization

The structure of this thesis is as follows. Chapter II presents the
development of the dynamic and observation models. The detailed deriva-
tion of the dynamic model (equations of motion) is included. A linear

observation model is assumed.
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Chapter III describes the second-order filtering algorithm in the
presence of plant noise. Plant noise is required to solve the problem of
divergence. Different sources of plant noise and methods of dealing with
the divergence problem are described in Chapter IV. In Chapter V, a
fixed-interval smoothing algorithm for nonlinear systems is presented.

Chapter VI is devoted to simulation and numerical results. In this
chapter filter and smoother results with and without plant noise are des-
cribed. The software package consists of the filtering and smoothing
algorithms, with plant noise. The performance of the package is tested
for a variety of simulated noise samples. The results of statistical
analysis are presented in Chapter VII. Chapter VIII contains a summary
and conclusions of results obtained in the dissertation. Suggestions for

further research and extensions are also included in this chapter.



CHAPTER II
DYNAMIC AND OBSERVATION MODELS

The dynamic model is used in the second-order filter to generate a
priori (predicted) estimates of the state, and is also used in deriving
the Jacobian and. Hessian matrices described in the appendices. The noisy
observation data are obtained by triangulating azimuth and elevation
angles from a number of optical trackers. The two models are discussed

in detail in this chapter.
2.1 Dynamic Model
The dynamic or message model is of the form
x(t) = £(x(t)) + q(t) (2-1)

where f(+) is a vector valued nonlinear function of the state x(t), and
q(t) is the plant noise vector which is used to account for modeling and
round off errors. The vector q(t) is assumed to be a zero mean,
Gaussian, white noise process. Basic assumptions in the dynamic model
are: (1) observations of the reentry vehicle location are referenced to
the earth surface fixed (x-y-z) system; (2) the reentry vehicle is a non-

lifting point mass; (3) atmospheric density is modeled by
p = py exp(-kh)

where h is the height of the reentry vehicle above mean sea level, and



°o and k, obtained from density data, are constant over several ranges of
altitude, This quantity is calculated in DENY subroutine mentioned in
Appendix E; and (4) the earth is an oblate spheroid.

The dynamic model is derived here in a manner following the proce-
dure in (16), in which range, azimuth and elevation (R,A,E) coordinates
were used. The basis of the present derivation is to equate the reentry
vehicle acceleration to the sum of the drag and gravitational specific
forces divided by the mass of the vehicle. Identical results can be ob-
tained using Lagrangian dynamics as in (17).

To derive the equations of motion, let (ﬁl’ﬁZ’ﬁ3) be the basis of an

earth centered inertial frame, and (ﬁi,ﬁé,ﬁé) be the basis of an x-y-z

frame located on the earth's surface. The situation is shown in Figure 3.

Y4

Figure 3. Relation Between Earth
Surface Fixed and Earth
Centered Inertial Frame
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Let R be the vector to the reentry vehicle in the x-y-z system,

R = wiit 3] oy _
R xd; + yu, + zug (2-2)
and if a is the vector from the earth's center to the primed origin
a= acosucoseﬁ1 + acosusineﬁ2 + asinuﬁ3 (2-3)
where
a=R +h
e s
Re = earth's radius
and
hs = height of ESF origin above mean sea level (MSL) .
In the inertial frame, the vector to the reentry vehicle is
T=32a+TR (2-4)

where T is the transformation matrix from the primed to the unprimed sys-

tem. To determine T, first rotate the primed system about the u! axis in

1
a counterclockwise direction by ©/2 - u; the resultant system is given by
it rl 0 0 uy
f' = 0 sinu  -cosyu ﬁé
ke 0 cosu siny 4!
L = - |3
where

¥ = geodetic latitude of ESF origin .

Now rotate the new (i,f,ﬁ) system about the k axis in a clockwise direc-

tion by m/2 + 8; the resultant coordinate system in terms of the original



system is then just the unprimed, or

ﬁlj -sin6 -cos® O 1

ﬁz = cosé -sin8 O 0

u 0 0 1 0

L—S_ . —d B
where

sinu

cosy

-COoSU

siny

8 = geodetic longitude of ESF origin

After multiplying the two matrices, it is seen that

-sin®é -sinucos®
T = cosb -sinusin®
0 cosu
The specific. force equation is
-
F —
—:r_
m

cosbcosu
sinBcosu

sinu

or
F ey - a;\ R ¥
== a + TR + 2TR + TR
where
x X
- - . 2
R = y » R= y R =
z z
cos®
= 2 .
a = -aw cosu sinb

0

> C‘.)l
Nomw

e

[F

11

(2-5)

(2-6)
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6 = wt
F = force acting on the reentry vehicle
w = mass of reentry vehicle and

T = acceleration of reentry vehicle

T has been given above and T and T are given below.,

0 -sinyu cosy
T = T sinu 0 0
-cosu 0 0
1 0 0
i 2 . 2 .
T=-uwT 0 sin u -sinucosu
. 2
0 ~S1nucosy cos
Combining the above
— — — . . ) —
cosf X - 2wysinp + 2wzZcoSU - w X
-t
F 2 . ., . . 2. .2 2_ .
o = -aw cosy siné + T |y + 2uxsinpy - wysin"u + w”zsinucosy| (2-7)
- . 2. . 2 2
0 N Z - 2wXCOoSu + w ysinucosu - w”zCos 5

The forces acting on the reentry vehicle are gravity and drag forces.

The 1ift forces are neglected. The specific forces are given by

= s
i

Bbqu
+

E!Q?L

(2-8)

where ?é is the force due to gravity and ?h is due to drag. For the

spherical earth

-
F
£ _ _ Gm =_ Gm =
= [?lsr ?[3 (a + TR)

or



. cosucosb X
F Gm
ﬁ& = - = a cosusin® + T y
| 7]
sinu z
L_ p—
where
T =TT @@ = (72 AR R = v a)? ekt ey

Gm = product of universal gravitational constant and earth's mass.

The drag force is

‘where

g = acceleration due to gravity at altitude h

p = atmospheric density at altitude h

1
o = =

B
R = ballistic coefficient

In the earth surface fixed system, the velocity relative to air is

X
- Jay .
v=TR=T y
z
L ]
and
I?/Alz = (T_\)T(T'RA) =R =x%+ )72 r 22 = v? .

Thus

13
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, X
F
Ao Lty DY |y
m 2

’

Combining the above results, the equations of motion become

., .. . 2 Gm 1 :
X = 2wsinpy - 2uwcosuz + (w~ - —30x - 5 geavx

T

y = -2usinux + (mzsinzu - E%Jy - wzsinucosu(z +a) - %-gpav§ (2-9)
r

. . 2. 2 2 Gm 1 .

z = 2ucosux - w sinucosuy + (w'cos”u - -39(2 + a) - = gpouvz

2
T

where

w = earth's sidereal rate

r = distance from earth's center to the reentry vehicle
= o7 vy s @ a)H?
v = velocity = (iz + 92 + 22)1/2

h =1 - Re

8 = ballistic coefficient

This model is used to derive the partial derivatives in the
Jacobian and Hessian matrices. Compared to the nonspherical earth model,
this approach significantly reduces program complexity and hence.the pro-
gram execution time. It does not however seriously affect the accuracy

of its results. In state variable form, the equations of motion are
4 (2-10)

c (2-11)



const
is us
That

mains
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Xe (2-12)
2wsinux5 - 2wcosux6 + (wz - E%Jxl - %—gpvx4x7 (2-13)
-2wsinux4 - wzsinucosu(x3 + a) + (wzsinzu - E%axz - %-gpvx5x7 (2-14)
2wcosux4 - wzsinucosux2 - %-gpvx6x7 + (wzcoszu - S%h(xs +a) (2-15)
0 (2-16)

Xl = X
Xz =Yy
X3 = Z
x, = %
XS =Yy
X6 = Z
X = Q = l—
7 B

The last differential equation assumes the ballistic coefficient is.
ant over one interval, but of course is updated as each data value
ed to generate a new estimate of the seven element state vector.

is, in the prediction stage of the filter, the drag parameter re-

unchanged. As new estimates of the state vector are generated,

estimates of acceleration components are calculated using the expressions

for i4, iS and x,. A fourth-order Runge-Kutta subroutine is used to

integ

6

rate the equations of motion between observations.
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2.2 Observation Model

In the system being considered, the observation vector consists of

noisy measurements of position, X5 X, and Xz These are obtained by

triangulating azimuth and elevation angle data from a network of optical

trackers. The linear observation sequence model can be described as

Zy = Hkxk * vy (2-17)

where

Zp = observation vector at time (3x1)
Hk = observation matrix (3x7)

vy = observation noise vector (3x1)

The observation matrix is

Hk = 0 1 0 0 0 0 0 (2-18)

The observation noise vector-vk is assumed to be a zero mean process

whose covariance matrix is given by

- 2 ham
cx Cx C
K Yk XZy
2
R = |C ¢ C (2-19)
e Yk Yy
CXZ C Z Gi
TR RA" k _

The fact that the observation model is linear significantly reduces the

complexity of the filter algorithm discussed in Chapter III.
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2.3 Summary

The dynamic model for the propogation of the state of the reentry
vehicle has been derived in this chapter. The assumptions and approxima-
tions made are stated. A linear observation model is adapted for the
present study. This simplifies the filter algorithm which significantly

reduces computation time.



CHAPTER III
SECOND-ORDER FILTER
3.1 Second-Order Filter With Plant Noise

The second-order filter as described in (8) is used in the program.
However, modifications to allow dynamic model noise are required since
the development in (8) assumes a noise free plant. The filter uses a
continuous dynamic model and a discrete observation model. The following
development is based on the assumption that the dynamic model (plant)
noise is a zero mean, Gaussian, white noise process. The plant is des-

cribed by
x(t) = £(x(t)) *+ q(t); x(ty) = x, (3-1)

where f(+) is a nonlinear function of the state vector x, and g is the
plant noise. Both x and f are seven component vectors,

The observation sequence (k = 1,2,+++) is

= h(xk) + Vv

Zy K

z. = Hz, + v . (3-2)
The observation noise Vi is a zero mean, Gaussian, white noise process
independent of the initial state vector x., thus

0,

E{q(t)} =0 Vt (3-3)

18
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E{vk} =0 vV k (3-4)

E{q(t)q (1)} = Q(t)8(t - 1) (3-5)
T

E{vkvj} = Rkskj . (3-6)

Covariance matrices Q(t) and Rk are assumed known. E is the "expected
value' operator.
Let ik represent the state estimate at a given observation time ty

Define the state error at t, to be

k
e Ax - X (3-7)
The associated error covariance matrix is then defined as
I, A E{eer} : (3-8)
k = k'k
In the time interval t St <t there is no additional informa-

tion until the next measurement occurs at ti .+ Hence if the state
equation were linear, it would be correct to estimate x(t), tk <t< tk+1’

using c(t) as an estimate of the dynamical system, where
c(t) = £(c(t))

which is the replica of the state dynamics of the plant. Because f(*) is
nonlinear, this model is modified by including a vector valued function
b(t) called a bias correction which will be specified so that the esti-

mate c(t) of x(t) will be generated by

c(t) = £(c(t)) + b(t); clty) = x(t)  t <t<t (3-9)

k+1

Let e(t) denote the error during the above interval; that is
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e(t) = x(t) - c(t); tk <t< tk+1

It follows that

n

e(ty) = xp - c(ty) = x - ik e . (3-10)
From (3-1) and (3-9)
e(t) = x(t) - c(t)
e(t) = £(x(t)) - £(c(t)) - b(t) + q(t) . (3-11)

If c(t) is '"near" x(t), £(x(t)) can be expanded about c(t) using a Taylor
series. Assume that by neglecting third- and higher-order terms in the
Taylor series, a sufficiently accurate representation of the error

dynamics is obtained. Thus

7
&(t) = J(e(t))e(t) + > I b e’ (£)F, (c(t))e(t) - b(t) + q(t)
i=

for t, <t <t (3-12)

k+1

where - is the ith natural basis vector of the state space, J is the
Jacobian matrix for the state model with the ijth element given by

of.
[J(xk)]lj A.’gx—l' i,j = 1,2,¢0°,7
J xk

and Fi’ the Hessian matrix for the ith row of the Jacobian matrix has its

jkth element given by

Bzf.
i

[Fi(xﬂ,)]jk .é.'é'x_‘a'x—' i,j,k =1,2,00°,7
j 7k

Now use can be made of the mean argument to determine the vector b(t).

Suppose'ik is an unbiased estimate of X, » SO that
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E{e(tk) 1= 0

c(t) is also required to be an unbiased estimate of x(t), so that

E{e(t)} = 0
. Voot St h
E{e(t)} = 0
By defining
S(t) = E{e(t)eT(t)} , (3-13)

the expression for the bias correction is
1 L
b(t) =5 [ ¢,trlF, (c(t))S(t)] . (3-14)
i=1

Next a matrix differential equation which can be used to generate S(t)

between observations is required. From the definition of the derivative

$(t) = Ble(t)el(t) + e(t)e (t)}

or,

+

1 Z T T
5L eger[F ct)le(tle (8) - S(E)} e (t)

i=1

$(t) = E{J(c(t))e(t)el (t)

e(t)el (£)I (c(t)) + e(t)q’ (t)

+

+ q(t)el (t)

p:tr[F (c(t)){e(t)e (1) - S(IIDY . (3-15)

+e(t) 5 ( 1

Il B~13

i

Now the assumption is made that e(t) is almost Gaussian with zero

mean. In this case terms of the form

E{tr[Fi(c(t))e(t)eT(t)]eT(t)} = 0 . (3-16)
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Hence the above differential equation reduces to
S(t) = J(c(t))S(t) + S(_t)JT(_c(t)) + E{q(t)eT(t)} + E{e(t)qT(t)}. (3-17)

The last two terms in this equation are yet to be evaluated. In

Equation (3-12)

7
b(t) =5 ] ¢ tr[F, (c(t))S(V)] ;
i=1

N =

and the second term in (3-12) is

13 R

7 T
5 1 ¢z (OF, (c(t))e(t)

i=1

During the small time interval (tk,tk+1), S(t) can be assumed to be an

unbiased estimate of e(t)eT(t). Hence
T T
S(t) = E{e(t)e (t)} = e(t)e (1)
This simplifies Equation (3-12) to
e(t) = J(c(t))e(t) + Q(t) . (3-18)
The solution of this equation is

t
e(t) = s (t,tydelty) + [ ¢(t,T)q(r)dt (3-19)
o
where ¢(t,t0) is the state transition matrix of J(c(t)). Then

t
E{e(t)q (8)} = ¢(t,to)Ele(z)a (81} + [ 4(e,mE(q()q’ (¢)
t
0

Since e(to) and q(t) are assumed independent, the preceding equation

reduces to

t .
E{e(t)q ()} = [ &(t,1)Q(r)8(t - 1)dr . (3-20)
t
0

Making use of the argument given in the appendix of (21), the above

equation reduces to
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E{e(t)q  (£)} = & Q(t) = E{q(t)e’ (£)} . (3-21)

o

Since
$(t,t) =1 )
incorporating Equation (3-21) into (3-17) gives
S(t) = J(c(t))S(t) + S(t)JTCC(t)) + Q(t) . (3-22)

Equations (3-9) and (3-22) are integrated to propagate the state vector
and error covariance matrix between observations. After propagating for

t:t, <t <t .the above integration gives Crsl and Sk+1’ the priori

k

state and covariance approximation estimates. These quantities are up-

k+1°?

dated based on the observation at tk+1=

The Jacobian matrix for the observation model is
H= =~ (3-23)

where H is the constant matrix given by Equation (2-18), since the
observation model is linear. The following expressions are based on the

fact that the observation model is linear. The updated state estimate is

given by
Xeal = Skal ¥ Oka1lZpsr ~ Bley,q)] (3-24)
where zk+1 is the observation vector at tk+1’ and Gk+1’ the gain matrix
is given by
Cps1 = Sk+1HT[HSk+1HT ¥ R1<+1]-1 » (3-25)

Rk+1 is the error covariance matrix associated with the observation

vector zk+1°
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The update covariance matrix is given by

T T

Zpep = [T - G yqHIS, ([T - G HI + G R G . (3-26)

3,2 Summary

A derivation of the second-order filtering algorithm in the presence
of dynamic model noise has been presented in this chapter. The message
model is nonlinear and continuous whereas the observation mode is linear
and discrete. A basic assumption made in the derivation is that the
state error vector is a Gaussian, zero mean, white noise process. The
effect of plant noise on the algorithm is that the differential Equation
(3-22), propagating the state error covariance matrix has the additive

term Q(t).



CHAPTER 1V
PLANT NOISE
4,1 Introduction

For a nonlinear system subjected to Gaussian, stochastic driving
functions with sampled measurements on the system corrupted by Gaussian
errors, the estimate of system states can be accomplished by the
recursive equations developed earlier. These equations lead to estimates
of the system states and values for the estimation error covariances,
provided the system is correctly and completely modeled, and the
statistical parameters of the driving functions and errors known.

The filter algorithm assumes that the dynamic and observation models
are completely known. The observation data consist of noisy position
fixqs and associated error covariance matrices.

During simulation, the second-order filter algorithm with no plant
noise, exhibited divergence. By divergence is meant that the residuals
(difference between observed and estimated state) keep increasing in
either a positive or negative direction.

The cause of this can be traced as follows. At some stage of the
filter operation, the state error covariance becomes quite small, causing
the filter gain matrix to also become small. This in turn causes the
difference between actual and expected observations to be weighed by a
very small amount. The result is that incoming data are not reflected in

the filter estimates, thereby causing divergence. A remedy to this

25
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problem is to increase the state error covariance matrix in some manner.
This will cause the gain matrix to increase and alleviate the divergence
problem,

One method of increasing the covariance matrix is accomplished by
adding plant noise to the dynamic model. This noise is assumed to be a
Gaussian, zero mean, white noise process. The modified second-order

filtering algorithm has been derived in Chapter III.
4,2 Discrete Adaptive Plant Noise
Let the dynamic model be

X (4-1)

kel = %ol Y Vi1, k% Y Ykel

where

X, = state vector (nxl)
¢k+1,k = state transition matrix (nxn)
U = uncertain parameter vector (pxl)

wk+1,k = weighing matrix (nxp) and

W1 = round off error vector (nxl) .

Here a linear, discrete dynamic model is considered. In this section the
effects of the presence of uncertain parameters Uy and round off errors
w, on the linear filtering algorithm.are studied. The results obtained
are extended to a nonlinear, continuous dynamic model in the next
section. The uncertain parameter vector Uy s contains those physical
parameters whose values are not known exactly. The round off error
vector, Wy s accounts for the computational errors and is dependent on the

machine and the complexity of the algorithm. A method of implementation
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of the algorithm developed here is given in Section 4.4,

Adjoining x, and Uy vectors results in an n + pth order system

k
X
_ k
Sl . 4-2)
Let
-V
wk = 10 xk

where v, the round off error parameter, is selected by simulations and is
dependent on the machine and complexity of the algorithm. Here it is
assumed that the round off error vector is proportional to the magnitude
of the state vector (12). Wy is assumed to be a zero mean process.

Round off errors in different components of the state vector are assumed

independent. The covariance matrix associated with Wy is

with off diagonal terms set equal to zero. Round off errors and uncer-
tain parameters are assumed to have no effect on the observation model.

The dynamic model for uncertain parameter vector, Uy is

(4-3)

k+1 = Yk ;

hence,

e . (4-4)

Zk = Hkxk + Vk , (4-5)
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where

T
E [vkvj ]l = Rkakj

In terms of the augmented state vector, the observation equation becomes
|
2) = [Hk | O]yk * vy . (4-6)

The linear filtering algorithm is applicable to the system given by

Equations (4-4) and (4-6). The filtered estimate is

| *x/k
Tk T Ta T ’

where the notation X /k implies the estimate of the state x at time ty
given observation up to and including ty This is an n + pth order sys-
tem and hence requires increased computations. An alternate method is to
account for uncertain parameters without actually estimating these
parameters. To accomplish this, u is assumed to be a zero mean process

with covariance matrix given by

U =E{[u - uk/k][u - uk/k]T}

The error covariance matrix for the augmented system is of the form

where

Cu = E{[xk -

k/%

and
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T
ey = BLDGq - X0 10 - % 010}

From the linear filter algorithm the prediction of the state vector is

given by
X1/k = Y1, k% (4-7)
and the covariance matrix is extrapolated by
P = E[y Ve ]
k+1/k k+1/k’k+1/k
K Py L, . | Cu 5 i g
_ k+1,k + k+1,k k/k | k/k k+1,k 1
I R R A SR B Cu, 770507 117 T T
o : k/k : k/k wk+1,k : I
Qu 10
+ _?_Etl_u___
0 1 O
- |
This yields
T = ¢ N ¢T + ¥ Cu ¢T
k+1/k k+1,k"k/k"k+1,k k+1,kk/k"k+1,k
T T T
* 0t ko1 kT Vil K%k ke 1,k Y Qe (4-8).
Coper/i ™ e, K%k * Yre1, KK/ (4-9)
Uk+1/k = Uk/k (4-10)

The measurement matrix for the augmented system is

Mk+1 = [Hk+1 1 0]

so that the matrix to be inverted in the filter gain expression is

T . T
MertPro1 /o1 * Biel = Bo1Pke1/ilke1 * Risl '
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Now the filter estimates are given by

xk+1/k+1 - xk+1/k * Kk+1[zk+1 - H‘k+1xk+1/k] (4-11)
Teal/kel T Pe1/k T Mot tre 1/ (4-12)
Cuprr/iel = Pe1/k ™ KeerBe1 a1/ (4-13)
where
T T -1

Kee1 = Za/kBie1 1B ier * Rier - (4-14)

4.3 Continuous Adaptive Plant Noise

Let the dynamic model be

x(t) = £(x(£)) + d(t)) + w(t) (4-15)

where d(*) is a vector valued function representing the effect of p

uncertain parameters on the dynamic model, and is approximated by

ax

d(u(t)) = Yu(t); ¥ = u | (x,u)

An n component vector w(t) is included to account for round off

errors. This vector is approximated as
-V
w(t) = 10 "x(t)
The error covariance matrix associated with w(t) is
Q(t) = 10 Vx()x (1)

The round off errors in various components of x are assumed to be
independent of each other making Quw a diagonal matrix. The value of the

constant v is determined empirically and will vary depending on the word
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length of the machine used.

The effect of including plant noise in the filter algorithm is a
modified differential equation for the state error covariance matrix.
The derivation is analogous to the discrete case. The new differential
equation is

& =05+ 83T+ scuy’ + acu’s! + vo¥l 4+ Qu ,  (4-16)

where
R ayT
U=E{[u-u]lu-ul} (pxp)
T
Cu = E{[x - x]u’} (nxp)

Equation (4-16) is a modified form of Equation (3-22) given earlier. The
propagation and uptdate of the Cu matrix is given by Equation (4-9) and

(4-13), respectively.
4.4 Plant Noise Implementation

When the adaptive plant noise model of Section 4.3 is to be
implemented, the following quéﬁtities must be calculated oxr chosen,

(1) Elements of the uncertain parameter vector. This can be
accomplished by inspecting the dynamic model to see what are the
parameters for which exact values (within reasonable tolerance) are not

available. For the present application the only element selected is

density, p, hence p is one.

(2) The expressions for the elements of the Wk+1 K matrix.
’

aii i=1,+"+,n
[y l.. = — (4-17)
k+1,k du, .
PO legu) G = L,eenp :
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(3) The covariance matrix of the u vector. A suggested form of

this matrix.is

P
- N
o
- N

NN

NN
o

u
U= (4-18)

where the ki's must be selected by simulation.

4 CuO/O’ the initial covariance matrix between the state and the

uncertain parameter vector, is assumed to be zero.

(5) Qu = 10'2kax£. This is a diagonal matrix; that is

— —
2
xlk , 0
x2k
Qu, = 10”2 (4-19)
)
0 x7k

where v is a constant found by simulations. A typical range for v is
three to six.
For the present application p = 1. The elements of the wk+1,k
matrix are
3.

1 .
a1 (g =5 = 0 fori=1,2,3,7.
H

a.
__4__1 "
Yye1 xdap = 55— = - 7 govx
. (4-20)
¥, . ). = —== - = gavy
k+1,k?50 ~ 3p 7 8ovY
9x
6 1 -
[wk+l,k]6p =% T 78wz
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The correlation between the uncertain parameters is assumed to be

zero and the cross covariance term WCu¢T + ¢CuTWT is set equal to zero.

In order to prevent divergence in the drag parameter estimate

az x§
00— = To0— for simulated data, and
2
o’a = 2 > (4 -21)
az x7
— = for actual data

n
[
o
8]
o
o

is added to the corresponding element of the extrapolated state error
covariance matrix. This choice is based on a chi-square test as shown
below,

Let Ao be the error in the drag parameter o at any time step, tk, of
the filter algorithm. The variance term for the drag parameter is Z,.

Then compute

2
Ao)™ 2
% —&

e

(say)

From chi-square tables, for one degree of freedom and 99.5% confidence

interval, the value of &2 is 7.88. Assume

Ao = 0,20

2 _ 0.040L2 - az

o 7.88 200

g

Addition of oi improves the drag parameter estimate significantly.

A chi-square test is made for consistency between position residuals
and the corresponding portion of the state error covariance matrix. If
the test fails, plant noise is added to insure that the residual vector
is consistent withithe modified error covariance matrix. Let the-

residual vector at tk be
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DELS, = [zk -_h(ck)] (3x1)

and the updated estimation error covariance matrix at ty be

3 —%—4— 2
T, | .71 3
k|
. = |medefpeee
k[.r-if
4

where only Tk’ the covariance matrix for the position components of the

state vector, is of interest here. Define

2

(DELS, )" (T 1 DELS. ) = k . 4-22)

k)- k)
From the chi-square tables, for three degrees of freedom and 99.5% confi-
dence interval, the value of k2 is 12.84. Thus if K < 12.84, no plant
noise is added. If k2 > 12,84, plant noise is required to insure con-
sistency between the estimation error covariance matrix and the actual

error distribution. Let Qc be the diagonal plant noise matrix added to

achieve this consistency; that is

[, O 0]
Q. = 0 U 0
0 0 q
Cc
el —J
where
(DELS, ) T (DELS, )
- kK k 4-23
Q@ = 12.84 (4-23)

The above matrix Qc satisfies the equality

= 12.84

T, -1
(DELS,)" (Q,) ™ (PELS,)

and since.
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-1 -1
|, + 1) <l

where both Qc and T, are positive definite symmetric matrices. It

k
follows that

(DELSk)T(Qc . Tk)’l(DELsk) < (DELsk)T(Qc)'l(DELsk) = 12.84 . (4-24)

Thus the addition of Qc enforces consistency between the residual vector

and the new matrix (Qc + Tk).
4.5 Summary

This chapter starts with tracing the origin of divergence in the
filter algorithm. The main cause is that the state error covariance
matrix becomes unrealistically small, leading to a small gain matrix.
This results in the observations having very little effect on.the esti-
mates. A remedy to this problem is to increase the error covariance
matrix so as to increase the filter gain and thus alleviate the diver-
gence problem. Simulation results have indicated that the error
covariance matrix can not be increased by arbitrary amounts.

In Section 4.2 an adaptive plant noise algorithm for the discrete
case is developed. This has been adopted from reference (26). This
procedure accounts for errors due to uncertain parameters and round off.
In Section 4.3, the algorithm is extended to the continuous case. In
Section 4.4, a method is suggested as to how the plant noise is imple-
mented for the present problem. A method is given to select various
parameters.,

The estimates of drag parameter are of crucial interest. Based on a.
chi-square test a quantity (a2/100 or a2/200) is added to the variance

term of the drag parameter to prevent divergence in drag parameter
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estimates. At every step of the filter algorithm, a chi-square test is
made for consistency between the position residual vector and the
corresponding portion of the error covariance matrix. If the test fails,
plant noise is added to make the residual vector consistent with the
modified error covariance matrix.

The plant noise algorithm improves the second-order filter estimates

significantly as described in Chapter VI.



CHAPTER V
FIXED-INTERVAL SMOOTHING
5.1 Introduction

The smoothing problem consists of estimating the state of a process
at some time t, given noisy measurements related to the process over a
measurement interval which includes the time t. For tracking of reentry
vehicles, the smoothing problem is the post-flight estimation of the
trajectory based on noisy measurements. If the estimate of the state at
any intermediate point is desired, it can be based on all the measure-
ments including those made after the point of interest. In the present
application, the smoothing process has shown to greatly improve the
filter estimates. In essence, the smoothing process runs backwards in
time. The fixed-interval technique of smoothing is adapted for the

present problem. The estimate

Xy /N? k =1,2,-*,N

z
]

fixed point integer

is termed the fixed-interval smoothed estimate. The symbol Xk/N is the
estimate of the state x at any point k based on the N observed data.
points.

In this chapter, a linear fixed-interval smoothing algorithm is
presented and then extended for a nonlinear process. An implementation

technique is given that results in a considerable saving in computation
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5.2 Linear Fixed-Interval Smoother

Consider a discrete linear system model given by

Xeel T Ppe1, 1t %

where

X = state vector at time instant tk

¢k+1,k = state transition matrix, and

q = plant noise vector

38

(5-1)

Meditch (18) has presented an algorithm for fixed-interval smoothing for

linear systems. This algorithm can be summarized by

LN T Mokt AN T X i
) T -1
A = ka1, KBk 1/Kk
L= 3 . + A [z _x 1AL
k/N k/k k""k+1/N k+1/k" 'k

where

xk/N = the smoothed state estimate at time tk’
Ak = smoother gain matrix, (7x7)

z = smoothed error covariance matrix,

k/N
xk/k = filtered state estimate at instant tk,

Xeel/k = extrapolated value of state 3t instant
te1 given observations up to tys

zk/k = state error covariance matrix corresponding

to xk/k’ and

(5-2)

(5-3)

(5-4)
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Xk+1/k = state error covariance matrix correspond-

ing to Xeel/k*

The quantities xk/k’ Xpe1/k? zk/k and Zk+1/k are calculated in the filter

algorithm.

5.3 Nonlinear Fixed-Interval Smoother
Consider the nonlinear system model given by
x(t) = £(x(t)) + q(t) (5-5)
where

x(t) is an n-dimensional state vector,
£f(*) is n-dimensional vector valued nonlinear
function of the state, and

q(t) is the plant noise vector .

In order to develop equations for the fixed-interval nonlinear
smoothing algorithm, a linear equivalent of the Equation (5-5) is
developed so that results of the linear smoothing theory can be applied.
The linearization is accomplished in the following manner. The right
hand side of Equation (5-5) is expanded in a Taylor series about a

nominal state vector Xy 3 that is

. of
X(t) = £(x) + 5=

x, (x - xk) + HOT + q(t)

Neglecting the higher order terms (HOT) and noting that

f(xk) = X ,
. . of
X - X =51y (x - xk) + q(t) .
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By defining 6x = x - X the above equation becomes

§x = J(x,)8x + q(t) (5-6)
where
of
J(x ) =
k ax Xg

is the Jacobian matrix for function f evaluated at. the state vector Xy .
For the system defined by the above linear differential equation, the

state transition matrix satisfies the following differential equation.
¢(t:tk) = J(xk)¢(t’tk); o(t,t) =1

where ¢(t,tk) represents the state transition matrix between the time
instants tk and t. Next expand ¢(t + At,t) in a Taylor series about t,

so that
6(t + At,t) = 6(t,t) + (t,t)At + HOT(At)?

Neglecting the higher order terms,

d(t + At,t) = d(t,t) + J(*)d(t,t)At
= (I + J(-)at)e(t,t)
Since
o(t,t) =1
d(t + At,t) = I + J(-)At
Letting t + At =t and t = ts this equation becomes

Plteg,Bid = T+ I (g - 80
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Using the notation

o1,k = @ (opan, B)

the expression for the state transition matrix becomes

a1,k T T IO (e - 8y G-7
Hence, the linearized model of Equation (5-5) can be expressed as
X (5-8)

kel = Pke1 kK% T %

where

X, is n-dimensional state vector,

k

¢k+l,k is given by Equation (5-7), and

q.k = Q(t)'t=tk

Now the linear fixed-interval smoother algorithm given by Equations (5-2)
through (5-4) is used. The boundary conditions for these equations are
xN/N and EN/N' xk/k is the filter state estimate at time instant k,

given observations up to k. is the extrapolated state vector in

Xk+1/k

the filter algorithm at time instant k+1 given observation data up to k.
zk/k and zk+1/k are state error covariance matrices corresponding to the
state xk/k and xk+1/k’ respectively. xk+l/k and Ek+l/k are obtained in
the filter routine by integrating Equations. (3-9) and (3-22), with xk/k
and Ek/k as initial conditions. The updated values of the state xk/k and

error covariance matrix I /k are obtained by using Equations (3-24) and

k

(3-26). In Chapter III the symbols used are x, and I, compared to X

k k k/k

and zk/k here. The index k decrements from N-1 to 0 in the implementa-

tion of the smoother algorithm,
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The linear fixed-interval smoothing algorithm presented in Section
5.2 is applied to obtain smoothed state estimates and corresponding error
covariance matrices. As explained before, the priori and posteriori
estimates and covariance matrices,xk+l/k, xk/k’ zk+1/k and zk/k from the
filtering algorithm are used for obtaining the smoothed estimates. There
are two advantages of this method of implementation. First the nonline-
arities of the system are taken into consideration since the linearized
dynamic model of Equation (5-7) is used only to evaluate the state
transition matrix. Second, this technique results in a considerable

saving in computation time.
5.4 Summary

This chapter commences with the reasons for using fixed-interval
smoothing for the present problem. An algorithm for fixed-interval
smoothing in the lienar case is presented. For the nonlinear case, a
method is presented where the dynamic model can be linearized and the
linear algorithm adapted. The filtered estimates are stored and used in
the smoother algorithm which results in a considérable saving in computa-
tion time, The simulation results when the smoothing algorithm is

implemented, are presented in Chapter VI.



CHAPTER VI
SIMULATION AND NUMERICAL RESULTS
6.1 Introduction

The performance of the computer software package developed for
estimating the state of the reentry vehicle using optical tracking data
has been evaluated by extensive simulations. Three types of data
(position x,y and z observations and associated error covariance matrix,
Rk) were used to test the package. Two cases used simulated data where
the true trajectory and noise were known. The third case was. an actual
data set (unknown true trajectory). The trajectories of the first two
cases were similar, except in one case the reentry vehicle had a constant
ballistic coefficient and in the other it was a parabolic function of
altitude. The sample rate for the first two cases were 30 and 25 samples
per second, respectively, while for the actual data set it was 30 samples
per second.

Before presenting the performance of the filter and smoother algo- )

rithms with and without plant noise, a method of choosing program

constants and parameters is presented.

6.2 Selection of Program Constants

and Parameters

(1) The number of data points, N, used by XNTIAL for initializing

the filter algorithm.is selected by a test program; a test program is

43
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used to select N. The criterion is that the ballistic coefficient should
be positive and be in a predetermined range, and when N is raised any
further, should stay. essentially constant. For the three cases,
N = 45, 50 and 61, respectively, are selected by this method.

(2) The atmospheric density model is required by XNTIAL, DERFUN,
JACN and SHMT routines. The density model that was used to generate the
simulated data is also used when processing (generating filter and
smoother estimates) simulated data. The U. S. standard atmospheric
density model was used (22). In the case of actual data the density
versus altitude information is obtained from a rawindsonde and an

eXponential model fitted to the results. The standard density model used

is

p = poexp(-kh)
where 0 and k are constants and h is altitude. For the simulated data
cases,

0 = 0.002377; k= 0.41X10"% for all h

For actual data

b = 0.002244;  k = 0.3207x10™*  h < 45,000
py = 0.005010;  k = 0.4992x10™% 45,000 < h < 107,000
P, = 0.001930; k = 0.41x107% h > 107,000

where the English system of units is used.
(3) The uncertain parameter as described in Section 4.4 is density,

p then u, = p. The elements of the V¥

1 matrix are evaluated using

k+1,k
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Equation (4-17). The constant kf, chosen by simulation, describes the U
matrix. The criterion of choosing ki is that it should improve the
filter and smoothed state estimates for all three cases. The value of

ki selected is

ki = 0.0025 .

(4) The parameter describing the round off error is chosen to be 3,

thus giving

with diagonal elements zero. This is described in Equation (4-19).
(5) Simulation results indicate that the variance term correspond-

ing to x,, the drag parameter a, varies by four orders of magnitude.

7’
This is because the gain matrix becomes very small and hence observations
do not affect the a estimates. As a remedy to this problem, another

term is included as plant noise. This is

2

57 el

100 ~ 100
for the simulated trajectories and,
2

7l

200 ~ 200

for the actual data set. The above choice is based on a chi-square test
as explained in Section 4.4. This quantity is added to the variance term
of the drag parameter. The inclusion of this noise term makes
considerable improvement in drag parameter estimates for all data sets,
(6) The position plant noise matrix defined in Equation (4-23) is

added when the chi-square test fails. This improves position estimates
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significantly.

6.3 Simulation of Observation Noise and

Error Covariance Matrix

The nominal trajectory.is obtained by integrating the dynamic model
(equations of motion) with the initial state vector as initial condi-
tions. The simulated observations and error covariance matrices are
generated by using RCON, ADNZ, RMGN, and EIGEN subroutines. The purpose
of these routines is briefly given in Appendix E. The process can be
explained as follows.,

(1) Consider the nominal state vector at any time
LN N T
tj : (xyzxyza) .

The error characteristics of the sensors (zero mean and ¢ standard
deviation) are known.

(2) Using the»opfical station coordinates
((XOi,YOi,ZOi), i=1,,K) s
the azimuth and elevation angles
((Ai,Ei), i=1,,K) s

as would be observed in the absence of any noise, are calculated. K is
the number of optical stationms.

(3) Two random numbers.(zero mean and ¢ standard deviation) per
optical station are generated. These numbers are added to the respective
values of azimuth and elevation to obtain simulated tracker observationms.

(4) Using simulated observations Ai’ Ei and the optical station
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coordinates, the noisy position components are obtained using the trianu-
lation algorithm. (15).

(5) The difference between the noisy positions obtained in step
four and the nominal position elements gives the error vector.

Steps three, four and five are repeated MCL (selected to be 60)
times. MCL is the number of Monte Carlo runs needed for generating Rj'
The sample covariance matrix, Rj’ associated with the MCL error vectors
is the observation error covariance matrix for time instant tj°

The next step is to generate an error vector that is consistent with
the Rj matrix. The following steps are executed to achieve this.

(6) The eigenvalue vector ) (3x1) and the corresponding modal
matrix Q for the Rj matrix is evaluated by using EIGEN subroutine.

(7) Three dimensional random vector (RN) with zero mean and
variance A is generated by RMGN routine.

(8) RN vector is transformed by the modal matrix to obtain the

error vector NOIS.
NOIS = Q x RN .

(9) The noise vector, when added to the corresponding position
components of the nominal trajectory yields the simulated observation

vector, OBS.

0BS = |y | + NOIS :

Steps one through nine are repeated at each time step of the tra-

jectory. A flow chart of this process is given in Figure 4.
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Figure 4. Generation of Simulated Observation
Data
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CALCULATE SAMPLE COVARIANCE MATRIX »
OF ERROR VECTORS Rj
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)
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Y

TRANSFORM RANDOM VECTOR BY Q MATRIX
NOIS = Q x RN

Y

NOISY OBSERVATION VECTOR
X
0BS = |y | + NOIS
Z

Figure 4. (Cont.)
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Figures 5 through 7 show the simulated noise (observed - true)
trajectories of x,y and z components for the varying ballistic coeffi
cient case. The vehicle descends from an altitude of 82,000 feet, and
its velocity reduces from 24,000 feet per second during the tracking time
of approximately eleven seconds. In Table I, the nominal state vector
components for simulated data, varying ballistic coefficient case, at
the interval of 0.6 seconds are given. The position and velocity
components of the nominal trajectory, for simulated data with constant
ballistic coefficient (B8 = 2000 lbs/ftz), are similar to the state
components in Table I.

For the constant 8 simulated trajectory the error trajectory is

very similar to the varying B case.
6.4 Filtering and Smoothing

The objective of the development of the software package is that it
should produce smoothed state estimates which are ''close'" to the true
state. In the case of actual data, where the true trajectory is not
known, the software package performance is judged by the size of position
residuals ‘and error covariance matrices.

Selection of program constants and parameters constitutes.a signifi-
cant part of the software package development. Considerable effort is
required for the calculation and programming of the Jacobian and Hessian
matrix elements of the present seventh-order problem.

The second-order filter and smoother with no plant noise exhibited
divergence. For the simulated observations, varying ballistic coeffi-
cient case, without plant noise, the filtered and smoother error

trajectories for the B component of the state vector are shown in
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TABLE I

NOMINAL TRAJECTORY FOR SIMULATED DATA, VARYING B CASE

t X y z X y z B
Dels&0 131997e4 817281 80862el ~1681Ce0 —-10293e9 -~1007044 1988.1
De64C 12195946 7155811 T4842e3 =16641e3 =10190.7 -9989.9 20121
16240 11203543 6950344 6887862 —16431e3 1006243 -98844.4 202443
leB84C 1042514 53512.,C 62986e4 -—16170.8 ~-G5903.0 -974842 20202
2¢44C 926418 5762761 571875 —15849.4 -9706e3 -9574.9 20080
3040 8324640 518731 5150543 ~—1545640 —-946546 -9357.6 1988.1
34640 14110e4 4627845 4556844 —14980.1 -917463 -9089.8 1953.1
Lol ©5287Te2 4087560 40608e7 ~—1l441344 -8827.4 ~876641 1912.0
44840 5683360 356972 3546048 -—13751e4 ~842261 ~838345 186547
5440 488U4e3 307799 305606l ~1299640 ~795947 ~794249 1811.6
6eU40 4125444 2615548 2553968 =—=12157e5 ~T44662 -7450a1 175444
6¢56540 342281 218L2e3 21628e¢2 -1ll254e& ~6893.2 -6916.1 165445
Tel&( 2175740 L7s88e7 1764546 —1C31240 -631642 635644 163440
Te840 21855606 14727460 1400260 ~-9360.1 -5733e2 —-578848 157448
ettt 1652069 110UbBe4 .LU69700 -8427e7 "5162.2 —523101 1517.5
9e6540 746060 545663 505067 -6715e7 -411367 420440 141064

10.24C 365945 312842 26659 -596545 -365443 -3753.0 1362¢4
10.840 28547 106145 52767 -5293.6 ~-324248 -3348.9 13175
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Figure 8. All elements of the state vector diverged. Similar divergence
is also exhibited in other data sets..

The divergence problem has been solved to a large extent with the
inclusion of the plant noise algorithm of Chapter IV. Figures 9 through
15 show filter and smoother error trajectories for components of the
state vector for the simulated trajectory, varying B8 case, with plant
noise included. Figures 16 through 22 contain similar graphs for the
simulated trajectory, constant 8 case. The position residuals and the
ballistic coefficient estimate for the actual data set are shown in

Figures 23 through 26.
6.5 Summary

For the simulated trajectories, the package performance for position
and velocity estimation is quite good. The ballistic coefficient error
is large for the filter estimates but as seen in Figures 15 and 22, the.
smoothing algorithm improves the ballistic coefficient estimates consid-
erably. For the actual data set, the size of the position residuals is
small and ballistic coefficient estimates are close to the expected
value.

Theoretically, the filtering algorithm produces increasingly accu-
rate estimates as additional data are processed. This is reflected by a
reduction in the magnitude of the determinant of the error covariance
matrix. But in actual operating conditions it is observed that the size
of the residuals tends to increase with the number of observations. This
is the divergence problem. A solutien to this problem is to increase the
covariance matrix by incorporation of the adaptive plant noise algorithm.

The drag parameter depends on the position, velocity and
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acceleration of the vehicle as described in Appendix A. The assumptions
that the vehicle is a point mass and in between observations, the drag
parameter stays constant, are not quite true. The density varies by four
orders of magnitude from an initial altitude of 80 kilofeet to the ground
level. An error in density model would be reflected in the ballistic
coefficient estimates. These are.some of the factors that make the
ballistic coefficient very difficult to estimate.

A comparison of the performance of the software package to the
results published by Athans et al. (8), Mehra (9), Jazwinski (11) and
Schlee et al. (12) is made. In (8), a comparison of the performance of a
first- and second-order filter as applied to a third-order problem is
presented. In (9) a number of linear, extended and nonlinear filtering
algorithms and their performance have been presented. Nonlinear filter
performance using radar data has been presented in (11). The divergence
problem is discussed in (12). The results here are comparable to those
published in the literature even though the filtering problem using
optical tracking data is inherently more difficult than the radar data
filtering problem. The primary reason the optical tracking problem
treated here is more difficult than the radar tracking problem is that
when using radar, the reentry vehicle can be acquired exoatmospherically
when the trajectory is still ballistic. Conseqeuntly much better initial
estimates can be generated than if the reentry is acquired endoatmos-
pherically as is the case for optical trackers. In the present problem
initial estimates are generated using tracking data taken when the
reentry vehicle is in a highly dynamic, nonlinear area in which the drag
forces are beginning to take effect and the vehicle is oscillating about

its roll, pitch and yaw axis. Also, several of the radar filtering
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problems treated in the literature involved doppler radars so that in
addition to position fixes, range rate data was also available.

In the present study a seventh-order nonlinear problem is treated.
The divergence problems encountered are solved to a large extent using an
adaptive plant noise algorithm. A method based on chi-square test is
presented and applied to solve the divergence problem. Also nonlinear

smoothing estimates are presented along with the filter estimates.



CHAPTER VII
STATISTICAL ANALYSIS
7.1 Introduction

A second-order filtering and smoothing algorithm that exhibits
satisfactory performance for three different noisy observation data sets,
has been developed. An inherent question involved is how well the soft-
ware package would perform when it processes some different noisy obser-.
vation data set. A Monte Carlo analysis was performed to answer this
question. A statistical evaluation of the program performance is the
objective of this chapter. N runs of the filter and smoother each using
a different noisy data set were made, and the sample means and variances
of the difference between smoothed estimate and true state were computed.
The results were as expected, although the small sample size required
because of financial (computer time) constraint caused some noisiness in
the sample means and variances. The adaptive plant noise algorithm was

used for all runs.
7.2 Statistical Analysis Method

In order to evaluate the performance of the computer software
package, the simulated observation data set for the varying drag vehicle
was selected. The covariance matrices, Rys for all the observation

instants were held unchanged. Using the R, matrices, a position error

k

trajectory was generated by Monte Carlo technique. The observation
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position data were obtained by adding error to the nominal trajectory.
This process yields a position observation data set whose covariance

matrices are R Different position observation data sets are obtained

1
by using a different generator seed, or starting parameter for each Monte
Carlo run. The noisy observations and the error covariance matrices are
inputs to the software package. After obtaining the smoothed state
vector X the smoothed error Vectorrxs - X as a function of time is
generated and stored, where Xe is the true state vector.

The smoothed state error trajectory 1s-obtained for N sets of posi-
tion observations, where N is the number of Monte Carlo runs made for the
statistical analysis. In particular, the value of N was nine due to the
stated constraint. Then based on these error trajectories the statistical
performance of the package is evaluated, at least to the extent possible
with the small sample size. As was stated earlier, the plant noise
algorithm was the same for each run, but initial estimates of the state
and estimation error covariance matrix were different. The number of
observations used to generate the initial values was selected separately
for each Monte Carlo run.

The sample means and variances for different elements of the:

smoothed state vector were calculated. The sample mean of k state error

trajectories 1s computed by.

k
z ei(tj)
- i=1

where, ei(tj) is the error vector at time tj on the i-th run. Eight
sample mean trajectories for each component of the state vector were
calculated based on two through nine runs. The sample variance of the

state error trajectories is computed by
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X - 2
DENCHCR IR A CRY

2 _ i=1 -
ok(tj) - (7 2)

k -1

where, E;(tj) is calculated by Equation (7-1). As before, eight sample
variance trajectories for each component of the state vector were

calculated.
7.3 Analysis Results

As explained in the previous section, the sample means and variances
of various components of the state error vector are calculated using k
Monte Carlo runs. These quantities are plotted for two, six and nine
runs. The curves for three position and velocity elements show the same
trend. Thereby the results for the x component of position and velocity
are presented instead of all the three x, y and z components.

Figures 27 through 29 show the sample mean error trajectories for x
components of position and velocity and ballistic coefficient, B, ele-
ments of the state vector. There are three curves on each graph, identi-
fied by the number of Monte Carlo runs, as the parameter. An examination
of these figures indicates that average errors become decreasingly small
as more runs are made.

Figures 30 through 32 show the sample variance trajectories for
three elements: x position, x velocity and the ballistic coefficient, B,
of the state vector. These figures show that as more runs are made the
sample variance at first increases with the number of Monte Carlo runs .
but later decreases. The confidence in the estimates increases with the

sample size as indicated by the decrease in the sample variances.
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7.4 Summary

In this chapter, the statistical analysis of the software package
was performed within the stated financial constraints. Nine Monte Carlo
runs were made and the sample means and variances of the smoothed error
trajectories were calculated and plots made. Based on this analysis, it
is concluded that if a noisy data set 1s processed by the software
package, the smoothed state estimates would be 'close' to the true state

with a high degree of confidence..



CHAPTER VIII
SUMMARY AND CONCLUSIONS
8.1 Summary

In the present study a solution to the problem of estimating the
state of reentry vehicles using the optical tracking data has been pre-
sented. This involved development of a dynamic model as described in
Chapter II. A linear observation model is obtained by making use of
triangulated position observations.

Initially, the extended Kalman filter was found to provide unsatis-
factory results because of the highly nonlinear nature of this problem,
The second-order filter algorithm of Chapter III, with the plant noise
algorithm improves the estimates considerably. The plant noise accounts
for unmodeled errors and computation round off errors. The program was
converted to double-precision to reduce effects of computational errors.
A chi-square test is used to insure consistency between the position
residuals and corresponding error covariance matrix. Divergence of the
drag parameter estimates is eliminated by adding ci (Equation (4-21)) to
the corresponding variance element of the state error covariance matrix.
The above choice is based on a chi-square test for one degree of freedom
and is explained in Section 4.4. In Chapter V, a nonlinear fixed-
interval smoother algorithm has been developed. An efficient method of
implementation of this algorithm is also described.

The simulation and numerical results chapter describes the
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performance of the filter and smoother algorithms with and without the
plant noise. The software package performance is described by the

results obtained by its application to three data sets. A statistical
method of evaluating the performance of the software package has been

presented in Chapter VII.

8.2 Conclusions

The computer software package developed has shown the ability to
generate much better estimates than those generated by linearized filters
applied to the highly nonlinear problem of reentry. This package
includes a second-order filter and a fixed-interval smoother. One main
feature of the program is the incorporation of the adaptive plant noise
to prevent filter divergence. The plant noise accounts for uncertainties
in model parameters, unmodeled errors, incomplete dynamic model and round
off errors. The parameters involved in the adaptive plant noise algo-
rithm are selected on the basis of simulations. The fixed-interval
smoother improves the filtered estimates as is shown in Chapter VI.

If a software package for some other nonlinear estimation problem is
to be developed, an approach similar to the present problem is recommend-
ed. The salient features of this development would be:

(1) development of dynamic and observation models;

(2) evaluation of the Jacobian and Hessian matrix elements for
dynamic and observation models;

(3) identification of uncertain and round off error parameters from
simulations; and

(4) filtering and smoothing with and without plant noise.

Depending on the order of the system, the amount of computations may
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vary. If the order of the system is small the calculation of elements in
step two may be trivial, but for any reasonable order system a large
number of elements must be calculated. For example in the present
seventh-order system 49 Jacobian matrix elements and 343 Hessian matrices
elements must be computed. Identification of uncertain parameters and
associated constants may not be a trivial matter.

The techniques developed for estimating the state of the seventh-
order nonlinear system by the use of a second-order filter with adaptive
plant noise and fixed-interval smoothing is a contribution to the area of

nonlinear filtering applied to reentry estimation.

8.3 Suggestions for Further Work

There are many obvious extensions of this work and a few important
topics are suggested here.

The development of the dynamic model with 1ift forces accounted for.
The elliptical earth model rather than spherical, could be incorporated.
Both would add to the complexity of the system and possibly call for an
increase in the order of the state vector.

Further recommendations are to use as inputs the sensor angle data
directly instead of the triangulated position fixes. This would have a
disadvantage of increased complexity since the observation model would no
longer be linear,

The parameters for the adaptive plant noise algorithm are presently
chosen based on extensive simulations. If the dynamic model was more
precisely known in that the above refinements were incorporated, a less

complex plant noise algorithm would be required.
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APPENDIX A
INITIALIZING SUBROUTINE XNTIAL

The subroutine XNTIAL is used to generate estimates of the initial
state vector and corresponding error covariance matrix. For the present
problem, the observation data consists of noisy positions and associated
error covariance matrices. As stated in Chapter II, the state vector has
three position components (x,y,z), three velocity components (i,i,i), and
drag parameter (o). The inverse of the drag parameter is a quantity
commonly known as ballistic coefficient, 8. This is a number associated
with a.vehicle in motion. It is a measure of the '"'slipperiness' of the
vehicle as it moves through air. The force on the reentry vehicle can be
written as a wind pressure Q times the cross-sectional area A on which
the pressure acts. Since the vehicle is not a flat plate, the coeffi-

cient of drag, C_ , to account for shape effects is used. Hence the drag

D’
force acting on the vehicle is QCDA° The mass of the vehicle is w/gO

where w is the vehicle weight at sea level. If the decerleation caused

by the drag is ap, then
W
QCLA = —a
D g9 D
w gOQ
CD ap

The left hand side of the above equation is defined to be the ballistic

coefficient 8. That 1is
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8

B a

D
when the air is sufficiently dense, the pressure Q can be written as
1/2 pV2 where p is the mass density of the air and v is the vehicle

velocity relative to air. Then

The drag acceleration is

a, = gsiny - a

D T

where ar is the acceleration along the velocity vector and y is the angle
between local horizontal and the velocity vector. The drag parameter
depends on the position, velocity and acceleration of the. vehicle,
gravity and atmospheric density.

At the initial time the geometry of the situation is shown in

Figures 33 and 34. The quantities estimated by XNTIAL are the initial

state vector
X = (x,y.2 X § Z. )T
1/1 1717171717171

and the associated error covariance matrix based on the first N observa-
tions. Here subscript 1 indicates the initial time. During early
reentry, the trajectory is assumed to be very close to ballistic, there-

fore the position components can be.approximated by

_ 2

x(t) = a; + a2t + a3t

y(t) = b. + b.t + bt
1 2 3

2

z(t) = c, + c,t + c,t
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where t represents time and the coefficients a1, 35, 35, b., b

17 P20 Pgs €y

c c., are to be estimated.

2’ 73

The least-squares method of curve fitting is used to evaluate the
coefficients and associated covariance matrix. The x component of N

observations can be written in matrix form as

X A n
xl 1 t1 t1 _ n1
2 al
x2 1 t2 t2 n2
= a, + (A-1)
2 __as__
X 1 t t n

where n, is assumed to be zero mean, Gaussian, uncorrelated noise with

. 2 . . . . .
variance ¢~ . Then the covariance matrix associated with the vector n is

2
R=o¢ INXN
and
-1 1
R = =1
02 NXN
Then by the least square method, the estimate of coefficients (al, 3y,
as) is
— -
]
52 = (ATR'lA)'lATR'lx .

This expression can be simplified to



= afay1aTx
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In terms of the observed values of x position and the instants of time

the preceding expression can be written as

and the error covariance matrix associated with this estimate is

.
a

>

a
.

3

st

1

—

N

it

It.

He N

it.
1

ot
1

ot;

He 3

271 [

It.
i

It.

He 3

It,

e

aTalay! - o2aTay L

(A-2)

The x component of position, velocity and acceleration at initial time

can be calculated by

2
g
X

c .
XX

Cooe
XX

c -
XX

ce
XX

4\

2 .
tl a1
2t1 a2
2 i —?3_

o2 atayt

(A-3)
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where matrix A has been given in Equation (A-1). 02, the variance

associated with n, is approximated by the sample variance
2

. (x; - E&] .

N -1.
i

N
=
LI e 1=

The mean at any time ts is calculated by using the value of time and the
coefficients given by Equation (A-2).

The procedure to evaluate initial estimates of (xl,il, il] and the
associated error covariance matrix has been described in detail. This
procedure is repeated to estimate (y1,§1,§1], and (zl,il,zl] and their
associated error covariance matrices at the initial time.

At the initial point in time, the position, velocity and accelera-

tion estimates in the x, y, z directions,
[x,y)21%)Y121 %Y, %]

have been evaluated and their covariance matrix (9x9) is given by

02 0 0 c_* 0 0 0 0
X XX XX
0 o2 0 0 c+ 0 0 ¢ 0
Yy Yy Yy
0 0 % 0 0 c+ 0 0 c
z 77 ZZ
cxi 0 0 oi 0 0 Ci§ 0 0
0 c ¢ 0 0 g’ 0 0 ce: 0
Yy y Yy
0 0 c 0 0 cg 0 0 Ce
ZZ z ZZ
0 0 ce: 0 0 cg 0 0
XX XX X
0 c - 0 0 ce 0 0 c% 0
Yy Yy Yy
0 0 c 0 0 ce 0 0 cg
| zZZ ZZ z | .
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Here all the elements are given by Equation (A-3) and similar expressions
for y and z components.

The drag parameter is given by the expression

-

gsiny - %v- v
o = T > (A-5)
7 &PV

where g is the acceleration due to gravity at altitude h;
Yy is the angle between velocity vector and local horizontal;

v is the unit velocity vector;
—

% is given by Equation (2-7);
g9 is the acceleration due to gravity at mean sea level;
p 1s the atmospheric density at height h; and

v is the velocity of the vehicle,
The acceleration due to gravity at the altitude h is approximated by
2h
g =g, -3

where

Re = radius of spherical earth
hs = altitude of ESF system-origin. .
Siny is approximated as follows. From Figure 34
é-G = |§|[G‘cosn = cosn = siny (A-6)

where g is a unit vector in the direction from the vehicle to the center

of the earth. g can be written as
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.. -
£=T= 1T
where T is given by Equation (2-4),

r=a+T

Using Equations (2-3) and (2-5) for a and T, respectively, the above

equation can be written as

acosucosé X

R
"

acosusing | + T |y

asinu z

and

T = /QZ + y2 + (z + a)2

>

The unit velocity vector v is given by

2
v = o=
V]
where
X
v=T |y
z
and
o2 °2 «2
vl = A2
Equation (A-6) can be written as
TV

iy = = TTNT
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or
. XX + yy + i(z + a) _
Sln‘Y - = lr' [VI . (A 7)
%-is given by Equation (2-7). Thus

. v %{{i - 2ywsinu + 2zwcosy - wixix

sl

+ {¥ + 2xwsinu - wzsinzuy + (z + a)w2sinucosu}§ (A-8)

{7 - 2xwcosy + wzsinucosuy - (z + a)w2coszu}2] .

+

The altitude at the initial time can be.evaluated from the following

expression using initial position estimates.

2 2 2
h = J/xl Y|+ (zl + a)" - Re .

The atmospheric density is calculated by using the subroutine DENY. With
this all the quantities in Equation (A-5) are known and the initial
estimate of drag parameter can be found.

At this stage all the elements of the initial state vector have been
estimated. All elements of the state error covariance matrix are known
except the variance of the drag parameter. It is assumed that error in
the drag parameter is uncorrelated with the error in other elements of
the state vector. From Equations (A-5) through (A-8), it is clear that
the drag parameter is a function of all nine positions, velocity and

acceleration components; that is

------

a = L(xyzi}éxyz) .

The error in the drag parameter is given by
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where A is a nine component gradient vector of function L, and X is a
nine component error vector with position, velocity and acceleration as

elements. Then the variance of o is evaluated by

o° = BE{AXX A}

* (A-9)

where E{iiT} is given by Equation (A-4). The next step is to evaluate
the gradient vector A using the estimates of position, velocity and

acceleration at the initial time.

From Equation (A-5) the expression for the drag parameter can be written.

as
-g(xx + yy + z(z + a)) A
L=aqs= TV v
1 )
7 PgyY
where

A= V[ - V]

is given by Equation (A-8). Hence

Lo BOx+yy+z(z+a)) + A
%— pgovsr

By defining
oN = g(ix + §y + i(z + a)) + Ar

and
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aD = pvsr
the expression for L reduces to
L = - aN )
L aD
7 &0

By using the formula for derivative of a quotient,

JaN oD - aN 3aD
9X. 3X.
3L 2 i i
o 2 (A-10)
i ) aD

where X represents x, y, Z, i, 9, 2, i, ;, z. The Equation (A-10)

requires BaN/Bxi and BotD/’c)x.l given below.

daN _ 3g ¢ . . . A or
T [xx + yy + z(z + a)] + gx + == T+ A
daN _ dg = . . . IA ar
3y 3y [xx + yy + z(z + a)] + gy + 5;—r + A 3y
daN _ 9g = . . : L or
Prantial [xx + yy + z(z + a)] + gz + 57T ¢ A 5
E%—I\!—= gx + Kl T
9X X
oy dy
E%H-= gz + a) + E%—r
oz 9Z
9N _ 3A
3x  ax
daN A
et
oy gy
daN _ 9A
=T
9z 9z

The nonzero partial derivatives of aD are

-————aaD = -a—p-vsr -+ VS 9—1—‘-
39X X P ox
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daD 3p .3 or
——— I e T + V ——
ay y P 3y
9aD _ 93p Ry
5z 3z Y Tt VP 37
3aD 2 v
—— = 3vor —
ax ax
—-—a?D = 3v2pr 9—‘—’-
3y oy
daD 2 av
= 3vr —
3z 3z

The derivatives of aN and oD require the following set of equations.

From Equation (A-8)

2. 2 ¢ 2_. .
- wsin"yy + w sinucosuz

2. . 2 2
W sinucosuy - w coS UZ

n

3\
9x
3%
3y
a
9z
3\

.- 2

= X - WX

e 2 .2 2 .

=y - w'sin"yy + (z + a)w“sinpcosu

- 2 . 2 2
= z + w sinucosuy - w cos u(z + a)

X
3A

oy

oA _ ¢
—= 7

3z

The gravity model is
_ 2h
g = go (1 - Z‘)

The nonzero derivatives of gravity are given by the following expressions.
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N
o
o

g, _ 0x
X a r
g B0y
oy a r

Q

g Bozra)

z a T

The atmospheric density model is
p = poexp(—kh)

and its nonzero derivatives are given by

ap _ X

3x - T KT

3p _ _ Y

3y ke T

3p _ (z + a)
577 ke T

The velocity expression is

v/ ey 32

and its nonzero derivatives are given by

Vv

9X

[{]
<

Vv

——— =
.

3y
v
3z

1|
<<

|
<jrae

The distance from the. vehicle to the center of the earth is

T = v/xz + y2 + (z + a)2

and its nonzero derivatives are given by

h
&
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3r _ X
ax T
E:X
3y T

or _ (z + a)
92 T

With these expressions, all the elements of the gradient vector A are
known and Equation (A-9) is used to evaluate the variance of the drag
parameter at the initial time. Hence the covariance matrix corresponding

to the initial state vector becomes

o2 0 0 c. 0 0 0
X XX
0 o2 0 0 c+ 0 0
y yy
0 0 o 0 0 ¢+ 0
Z 2z
c+ 0 0 o? 0 0 0
XX X
0 e+ 0 0 o 0 0
yy y
0 0 ¢+ 0 0 o 0
2z Z
0 0 0 0 0 0 o2
- a—J

This algorithm is programmed in subroutine XNTIAL.

The method of selecting N, the number of data points used in the
initializing routine for any particular trajectory should be explained.
The procedure is to select N which gives initial estimate of B positive
and in the approximate range of (1750, 2250) and when N is increased

further B should stay essentially constant.



APPENDIX B

JACOBIAN MATRIX

As discussed in the Section 2.1, the following quantities are chosen

as the state variables:

, X1=X

: ¥2 =7
X3=Z
X4=X
x5=§r
x6=i
o easl
7~ B

X1 7 %
Xy = Xg
X3 = Xg
. _.._ . _ 2 _GLH,
x4 = X = 2w51nux5 2wcosux6 + W xl - =3 x1
1 T
T 7 BPVX Xy
. . ] 2 .2 2 .
X =y = —2w51nux4 * W SIn X, - W SINuCOsuX,
- EE-x 1 VX_ X, - awzsin cos
372 7 BPVX Xy HEOSH
. 2 . 2 2
x6 =z = 2wcosux4 - W sinpcosux, + w'cos HX g
- EE-(a + X,) - L VX, X, + awzcos2
3 3} T 7 BPVXgXy H
x7 = 0
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All quantities in these equations are defined in Section 2.1.

Jacobian matrix for the above dynamic model is given by:

J(x) = Jex

J&x

JZX

Sy
Iyy
iy

Ixz

J&Z
j.

ik
J&i
33k
0

Ji&

joo

Ji&

The dynamic model can be written symbolically as:

where x is a 7-component vector and f is a 7-component vector valued

function of x; that is

The ijth element of the Jacobian matrix is given by:

£ =

[J‘(X)]ij

The elements of J denoted by

e =

Jiy

Ixz =

I xx

x = £(x)

[£

axX.
J

j__, are found to be:

of.
~L

l’fz"

oo’f

.1

T

Ixz

J&i

22
0

1,5 = 1,2,04,7

Ixa

3ya
20
0

w2 - Gm L1 (g'o +go') x o  3Cm 2
3 2 B T
T
3Gm 1(g'p+ge')y .2
-———5 X)’-2 ) rVX
T
1 1 .
36m sy - 80+ gol) (2+a) o
5 2 B T
T
1 1 gp x°
-8, 28X
28 2B v

The

108
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Cve = owsiny - LEOXY
j 2wsinu > v

Xy 8

v e _lgoxz

Ixz © Zwcosk 28 v

jo = - & vx

Jxa 2 govx.

.. _ 3Gm 1l (g'o + go') * X
Jyx '-rs ¥y -3 8 VY T

c.oo 2 Gm _ 1l (g'p *go') o Y
jo, = w7sin’u - =+ =y R vy &

oL 2. 1l (g'p + gp') ¢ (z + a) 3Gmy
Jyz w sinucosu - > 3 vy = + rs (z + a)
jes = - 2wsinu - l_gpi‘

yX 2 Bv

1 go 92

R A
j..:_i&ﬁ

yz 28 v

‘. =_-1|—& y
Jya z 8 W

.. _ 3Gm 1 (g'p +go') X
Jizx =5 x (2 *a) -3 B T V*
T
oo 2. 3Gm 1l (g'o + g0y .2
jsy = - wsinucosu +k;§-y(a t2) -5 3 T V?
... .2 .2 Gm _ 3Gm 2 _1(g'p+gp') (z+a) -
Jy, = wCosTU - =+ = (a + z2)7 - > 5 = vz
T T
°-o: _l&p--.i_%-
J2x Zucosy 2B v
'..=-l&p_'ﬁ
Izy 2B V
‘ 1gp 22

i T 3E vy
Jia = - 7 B0V '

In the above expressions, the following quantities are used:
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X 2
p =P, h, p' = - kp; p" = k'p
2g
- _2hy v 200w s
g go(l a)) = alg 0
IX r  9x
dr _y _3h
dy r ay
or_(z+a) dh
9z T Y
W _x
ax YV
W Y
ay ¥
sz ¥V

These expressions are programmed in the subroutine JACN., The Jacobian
is used in both the second-order filter and the fixed-interval smoother

©
algorithm.



APPENDIX C
HESSIAN MATRICES

The Hessian matrix for each row of the Jacobian of the dynamic model
is required for evaluating the second-order filter bias correction term,

b(t). These are given by

2 .
3 fi i=1,2,***,n

[Fi(x)]Zm = 3Xx._9x
A |

L,m=1,2,**,n .
For i = 1, 2, 3 and 7, the elements of the corresponding rows of the

Jacobian matrix are constants. This leads to the 7x7 matrix
[Fi(x)] = 0 for i=1,2,3,7

The following notation will be used in giving elements of the Hessian

matrices for other rows.

5%,
j = —
1XX 3%
3°f,
j = 1
1x2xm szaxm

X, and x, are elements of the state vector. The Hessian matrix is sym-
metric, hence it is required to calculate the n(n+1)/2 elements in the
upper triangle matrix. Thus for n = 7, 28 elements of the Hessian
matrices must be calculated for each of the fourth, fifth and sixth rows
of the Jacobian matrix.

The Hessian matrix corresponding to the fourth row of the Jacobian
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matrix is:
3%f 2;
1 1 - 1t 1At
e 4_gfmx L glo+getyv . ,o6m.3 L g+ 280"y X xv
XX 8x2 r5 2 8 T r7 2 B r2

1 g'po + go!' xzxv
5 ( g )

3
r
3%¢ .
. - 4 _ 3m Gm 2 1 gp'" + 2g'p's Xyxv
Sayx T - B Y - B T xy -7 B ) =
r T r
_1_ glo + go' xy;cv
M Sy e M
T
azf »
. - 4 _ 3Gm 156m _2 1 gp" + 2g'p'. x(z + a)xv
Jazx T 3px - 5 (ra) - ==—x(z +a) - 5 (% ) 2
r T r
1l g'p +gp's x(z + a)iv
vy O 3
T
3%f .2
s .o 4 . Lgloregelyx ., X,
J4xx %9 B v
2
8 f o
joe = 4=_1(g'o+go') XXy
4yx 3y8x 2 TV
2
. - _a_fi_ _ 1 (g'p + gp') XXZ
4zx 37.9x 2 8 ™v
2
j - 3 f4 - L _jL (g'p + gp') XXV
4o0.x dudX 2 R T

L ogellr2glely >’2>°<V + L gle *goly y_ziv
2 ) r2 2 B rS



J4zy

J4xy
J4iy
J4cxy

J4zz

j4;cz
j4).'2
j7422
j4oLz

J4xx

J4yx
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2
o7 f
T4 _ 1 got+ 20t y(z+a)s 1 glo+go'sy(z+oa):
3zdy 2 ( B ) 2 xv + = ( g ) 3 XV
_156m s v a)
T
32f4 1 o + ! iz
=—-—(g—.p___—g2-—).z-(v+__)
. 2 B8 T v
X3y
2
0 f .o
—4__1 (g'p + gp') Yxy
3).’3)’ 2 B rv
2
"4 L glo + go'y yxz
320y 2 8 v
2
o f .
4. L "y YXV
3¢ .
1 1
4 _ 3Gm x - l_cg p + gp ) xv _ 15Gm x(z + a)2
3 2 5 2 8 T 7
z T T
2 2.
_ _l_ (gpu + 2g!p1) (Z + a) XV . }_ (g1p + gp|) (Z + a) XV
2 B 2 2 3] 3
r T
2
o f *2
1 g '
Lol ER By, X
0X02Z
2
af ' ' L 3
4. l.(g p_*+ 8P )(Z + a)xy
dydz  Z 8 v
2
= E_fi =L gl go')Cz + a)xz
323z 2 8 v
2
o f .
4 1 . . XV
=wxar - -7 (8o get)(z v a) 2
2
3 f . 3
_._2:4.= _3gex, Lgo_z_s_
x 28 v 28 v
2
3°f . Do
4. . l.EE.(X._ L34
2B v 3
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2
Lot 1oz %2
4zx 32 . 2 8B v 3
2
TR SN T
J4ax -7 8 7 8P 5
909X
2
3°f *2
J4'.=———i=-l&p—-xc\—]}-—2—_—)
Yy a)',Z 28 V3
2
af LI B 3
J..:-—J—-:—l&e——i—
4zy 8289 28 VS
2
Jo:iﬂ-:—}_gpﬂ
4oy 3ady 2 v
2
U NN W TS
Y477 o2 28 (V 3
oz v
2
A N Y 1
J4az ra52 2 v
32f

The Hessian matrix corresponding to the fifth row of the Jacobian

matrix is:
3Gm 1 o + ! . 15Gm 2
y -3 @2 gl Yy 1%n,.2,
T

j =
5xx % T

_L oot 20y x’yv . 1 &lo + g0’y xZyv
2 B r2 2 B r3

2

0 fS _ 3Gm 156m 2 1 gp" + 2g'p's Xyyv

X - ==y -7 B ) =3
T

Isyx = Byex 5 -

1 g'p + go'. xyyv
S G ) -3




I5zx T

JSzy

T dzdy 5 (z

2
° f5 15Gm

XY(Z +a) - _;- (g_D" ; 2&'0'] x(z +za]yv

3z8x 7
r

1 g'o + go'. x(z + a)yv

r
2
" 55 = - l.(gfp *go'y Xxy
XX 2 B TV
82f 1 ' .2
S = l. ge +gp X Y
. -—2 ( B )T(V+V)
dyox
2
° 5 = - l.(g'P * gD') Xyz
9z9X 2 ) v
2
3°fF .
5" }. 1 ' Xyv
soox - "7 (@0t g’ =
2%s _
5=9Gm -15Gm 3-l(|p+ p')ﬂ
ayz rs d r7 Y 2 8 T
2' 2.
S Logetr2gety vy Loglo gty yyv
2 8 272 B 3
T T
2
i f5 _ 3Gm 15Gm 2

*a) - ==y (z+a)
T

T

_L g +2gtoty y(z+a) s .1l glo+ go'y y(z+ a)yv
7 &3 ) yvor g ) 3

2
T
2
af * e
S._ Llgermyry
vy 26 B )Ty
IXoYy
82f t ' °2
s 2. _Llglo e’y y Y
—=-5C ) (v + &)
2 8 T v
ayay
2
- 1 g'o +go'\ yyz
=_._( )_
9z3y 2 B TV
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These expressions are programmed in the subroutine SHMT.
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APPENDIX D
INPUT DATA AND PARAMETERS

There are a number of physical parameters and program inputs that
must be specified. These are listed below.

NX: The number of differential equations in the dynamic model which
is the order of the state equations (NX=7).

E: A constant step size. The interval between successive
observations.

NST: Number of observation data to be processed.

NC: NC-1 is the number of observations skipped in processing. Thus
if NC=1, every data point is used; if NC=2, every other data point is
used, etcetera.

N: Number of data points used by XNTIAL for initializing the filter
algorithm, This is separately determined by a test program for the data
to be processed.

w: Earth's sidereal rate (radians/sec).

Gm: Gravitational constant times earth's mass (fts/secz).

hs: Height above mean sea level of origin of x-y-z coordinate
system (feet).

u: Geodetic latitude of the origin of coordinate system (degrees).

Re: Earth's radius (feet).

gy Acceleration due to gravity at mean sea level (ft/secz).

The parameters specifying the exponential atmospheric density model
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are specified by the subroutine DENY. These may vary with the data and
are critical in the state estimation.

The observation sequence

Z, = {ti; Xss Yio zi}, i=1,2,+++,NST ,

and associated observation error covariance matrices Ri' This data is
processed by the filter and smoother algorithms to generate the state

estimates.



APPENDIX E

SUBROUTINE DESCRIPTION

The software package development involved a number of subroutines.
The purpose of each of the program subroutines is briefly states in this
appendix.

XNTIAL: This subroutine generates the initial state vector and the
corresponding error covariance matrix. The inputs to this subroutine
are physical constants and the first N observations.

DENY: The atmospheric density model is given in this subroutine.
Atmospheric density and the first and second derivatives of density with
respect to altitude are evaluated in this routine.

SHMT: Hessian matrices for the dynamic model are evaluated by this
routine. The elements of the matrices are calculated using the state
vector input to the subroutine.

AWRIT: This routine takes a matrix stored in a one dimentional
array and prints it in the standard matrix form.

RK4: Fourth-order Runge-Kutta method of integration is implemented
in this routine. It is used for integrating the state model.

RK2: The modified Euler's method of integration is implemented in
this routine. It is used to integrate a set of first order differential
equations when a large number of equations are involved.

DERFUN: A description of the dynamic model is given in this

routine. Derivatives of the state vector are evaluated.
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SUMS: This routine forms the differential equations for propagating
the covariance matrix of the state vector. The derivatives of the
covariance matrix elements are calculated by evaluating the Jacobian
matrix and making use of GMTRA and MPRD routines.

SBRT: This routine generates additive bias correction terms for the
nonlinear dynamic model. It uses Hessian matrices generated by SHMT.

JACN: The Jacobian matrix of the dynamic model is evaluated in this
routine.

CROF: CROF adds a diagonal matrix to the extrapolated state error
covariance matrix to account for round off errors.

CHTN: CHIN tests the consistency of the position residual vector
with the corresponding portion of the state error covariance matrix. If
the consistency requirement is not met, the error covariance matrix is
increased by the amount necessary to insure that the residual vector is
consistent with the new error covariance matrix.,

CMPN: CMPN adds plant noise to the state error covariance matrix
due to uncertain parameters. Atmospheric density is the uncertain
parameter used in this routine.

SYSY: SYSY replaces a square matrix by a symmetric matrix. The
corresponding off diagonal terms are replaced by their average. This is
used to enforce symmetry of covariance matrices.

MPRD: The purpose of MPRD is to multiply two matrices to form a
resultant matrix. This requires a subroutine LOC.

LOC: LOC computes a vector subscript for an element in a matrix of
specified storage mode.

MINV: MINV inverts a matrix. The determinant of the matrix is also

obtained.
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GMTRA: GMTRA is used to obtain the transpose of a matrix.
EIGEN: EIGEN computes eigen values and eigen vectors of a real
symmetric matrix.
MPRD, LOC, MINV, GMTRA and EIGEN subroutines have been adopted from

IBM-Scientific Subroutine Package Library.

E.1 Other Programs Used for Simulation

RCON: RCON generates the estimate of position of vehicle in space
based on the observed azimuth and elevation angle data collected by the
optical trackers. Inputs to this program are position coordinates of the
optical trackers and the azimuth and elevation angle observations.

ADNZ: This subroutine generates an error vector whose 3X3
covariance matrix is denoted by R. This is used to generate simulated
noisy observation data.

RMGN: RMGN generates an array of pseudo random numbers with

specified mean and standard deviation.
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