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Abstract 

Natural products have served as therapeutic agents in the treatment of many 

human health ailments for thousands of years. In order to find new therapeutic agents for 

future human health problems, those in the field of natural product drug discovery will 

need to take advantage of technological advances in screening capabilities such as high-

content imaging-based assays for the identification of promising lead compounds, as well 

as computational calculations to aid in natural product structure determination and 

chemical reactivity studies. The research reported in this dissertation demonstrates the 

applications of these methodological approaches in three applications.  

Trichomonas vaginalis is a sexually transmitted parasite that infects at least 170 

million people worldwide and current treatments are limited to a single therapeutic agent, 

metronidazole. As a result, there is a need for new drug leads to treat this as well as other 

anaerobic parasites. To address this need, a high-throughput imaging-based assay was 

developed to screen a fungal crude extract library for inhibition of T. vaginalis and 

Ect1/E6E7 human cervical cells. This information was used to determine selectivity 

indices (SIs), and bioassay-guided fractionation led to the purification of promising leads 

that inhibit T. vaginalis while remaining safe to human cells. We found that the quinone-

containing compounds fusarubin (SI=30) and xanthoquinodin A1 (SI=20) were 

promising leads, but as quinones are known to have indiscriminate activities, further 

protocols were developed to probe the potential liabilities of these compounds. 

Manipulation of oxygen levels led to a loss of potency in fusarubin, while 

xanthoquinodin A1 inhibited Lactobacillus acidophilus, a beneficial bacterium found in 

the vaginal tract. As such, we determined that while quinones show antitrichomonal 



xvii 

activities, these compounds should be approached with caution when considering them as 

leads. 

Aflatoxin B1 (AfB1) is a mycotoxin with tremendous health impacts as it is widely 

considered one of the most potent liver carcinogens known to humankind, and billions of 

people worldwide are exposed to it through their diets. While efforts have been made to 

find small molecules capable of protecting the liver from AfB1, there has been little 

success. In order to address this problem, we developed a high-throughput and high-

content screening assay to identify and test natural products that are capable of protecting 

HepG2 liver cells, grown as monolayers and spheroids, against AfB1 toxicity. The use of 

spheroids proved to be excellent for the production of in vivo sensitivity of HepG2 cells 

under in vitro conditions, and led to the identification of two promising compounds, 

alternariol-9-methyl ether (purified from an Alternaria alternata isolate) and 1-hydroxy-

3-methoxyxanthone, as potential future starting points for the development of new AfB1-

protective agents. 

Finally, Ewing sarcoma, while rare, is a debilitating disease affecting primarily 

children, teens, and young adults. Through a screening of fungal extracts, we identified a 

Rhizopus microsporus isolate containing the endosymbiotic partner Burkholderia 

rhizoxinica that produced an extract showing potent and selective inhibition of Ewing 

sarcoma cell lines. Bioassay-guided fractionation led to the purification of the known 

antimitotic agent rhizoxin and five new analogs. The structures of these analogs were 

determined through the use of NMR data analysis, and configurations of new 

stereocenters were established through the use of ROESY spectra in conjunction with 

computational calculations of chemical shifts and 3JHH coupling data. While rhizoxin was 
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determined to have selectivity for a subset of Ewing sarcoma cell lines, the new analogs 

were found to be inactive. However, one analog stood out chemically as it contained a 

15-membered macrolactone that was previously not reported for this class of compounds. 

Using a combination of degradation experiments and computational calculations, we 

determined that this compound likely arose through an acid-catalyzed Meinwald 

rearrangement of rhizoxin as a result of the mildly acidic environment created by R. 

microsporus and its bacterial endosymbiont.
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Chapter 1: An Introduction to Fungal and Bacterial Natural Products 

1.1 Natural Products from Terrestrial Sources 

Dating as far back as 2600 BC, chemical components from plant sources were 

utilized for medicinal purposes in the form of traditional medicines. Many civilizations 

used these plants as medicines including the Mesopotamians, Egyptians, Chinese, 

Indians, Tibetans, Greek, Mayan, and Aztecs, and some of these sources, including 

Papaver somniferum (opium poppy), Commiphora species (myrrhs), and Glycyrrhiza 

glabra (licorice), are still commonly used today.1 In addition to plant sources, fungi were 

used in Chinese traditional medicine including Calvatia craniiformis (brain puffball), 

Ganoderma lucidum (Lingzhi mushroom), Ophiocordyceps sinensis (caterpillar fungus), 

and Pulveroboletus ravenelii (Ravenel’s bolete).2-3 These terrestrial fungi were used to 

treat a variety of ailments including coughs, colds, inflammation, parasitic infections, and 

bleeding.2 

Beginning in the early 1800s, chemists began purifying organic compounds from 

medicinal plants, resulting in the birth of the scientific field of pharmacognosy, which is a 

field of study concerned with natural product molecules and their medicinal uses. In 

1816, Friedrich Wilhelm Adam Sertürner purified and described morphine from P. 

somniferum.4 Following this discovery, other secondary metabolites were isolated 

including strychnine in 1818,5 colchicine and quinine in 1820,6-7 and salicin in 1828 

(Figure 1.1).8 These compounds came to be known as natural products or secondary 

metabolites, which by definition, are organic compounds produced by organisms that do 

not play direct roles in growth, development or reproduction. Instead, secondary 
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metabolites are generally thought to play roles in protection, competition, and other 

interactions with organisms in their environment. 

 

 

Figure 1.1. Natural products isolated from plants in the early 1800s 
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Streptomyces mediterranei in 1959.14 In addition to the discovery of a vast assortment of 

antibacterial agents, the examination of microbial source organisms yielded many other 

therapeutics of note including immunosuppressive compounds (e.g., cyclosporins and 
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ivermectins), and chemotherapeutic agents (e.g., actinomycins and mitomycins) (Figure 

1.2). 

 

 

Figure 1.2. Examples of clinically relevant natural products isolated from microbial 
sources 
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acetic acid from carbon disulfide in 184516 and Charles Frédéric Gerhardt’s synthesis of 

acetylsalicylic acid in 1853.17 These early syntheses of the 19th century paved the way for 

many of the well-known chemists of the 20th and 21st centuries such as Robert Burns 

Woodward, who synthesized natural products such as quinine,18 cholesterol,19 

strychnine,20 and cephalosporin;21 E.J. Corey, who synthesized ginkgolide A22 and 

ecteinascidin 743;23 and K.C. Nicolaou, who synthesized paclitaxel,24 brevetoxin B,25 

amphotericin B,26 and vancomycin27 (Figure 1.3). In order to synthetically build the 

complex scaffolds of these molecules, organic chemists have had to develop new 

chemical reactions that have increased what can be accomplished through modern 

organic synthesis and have increased our understanding of organic structures and their 

biological functions. 

 

 

Figure 1.3. Examples of notable natural products synthesized during the 20th century and 
first synthesis 
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1.2 Natural Products in Modern Pharmaceuticals 

 In modern times, natural products make up a significant portion of clinically 

approved pharmaceuticals. It is estimated that approximately 50% of the drugs approved 

in the United States between 1981 and 2014 are natural products, natural product 

derivatives, natural product mimics, or synthetic compounds with natural product-derived 

pharmacophores.28 Moreover, natural products and natural product inspired compounds 

have typically made up 10-50% of small molecule drugs approved each year, with this 

figure typically being around 20%.28 As these naturally occurring compounds still make 

up such a large portion of drug approvals each year, natural products should remain a 

prominent focus in the development of new therapeutic agents. Despite the prominence 

of natural products in the modern pharmacopoeia, many pharmaceutical companies have 

focused more attention on developing synthesis-driven drug discovery programs. The 

primary driving force behind this shift in focus was the development of automated high 

throughput screening (HTS) programs, allowing for the testing of large libraries of pure 

compounds for bioactivity.29 This in turn led to a demand for the development of large 

chemical libraries, which could not feasibly be met with the isolation of natural products. 

Additionally, issues regarding the patentability of natural products makes them less 

attractive as drug candidates.30 Therefore, pharmaceutical companies began using 

techniques such as combinatorial chemistry to meet the demand instead.31  

Despite this shift in focus, new and successful pharmaceuticals continue to come 

from natural sources or be inspired by compounds from nature. Such pharmaceuticals 

include successful anticancer drugs such as paclitaxel, vinblastine, and topotecan; lipid-

lowering medications such as atorvastatin; and antifungals such as amphotericin B. In all, 
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between 1981 and 2014, 58% of antibacterial and 32% of anticancer new chemical 

entities were natural products or derived from natural products.28 

 

1.3 Fungi as a Source of Natural Products 

 Microbes have historically been a prolific source of natural product-based drugs. 

As of 2002, it was estimated that microbes were responsible for the production of 

approximately 22,500 bioactive secondary metabolites, with about 38% of those being 

produced by fungi. These bioactive secondary metabolites include 30% of the 

approximately 16,500 secondary metabolites produced by microbes that were known at 

that time to have antibiotic activities.32 As such, fungi are an important and prolific group 

of organisms with regards to the discovery of bioactive secondary metabolites. 

One of the most famous discoveries of a natural product from a fungus was that of 

penicillin by Alexander Fleming in 1929.33 This discovery has helped to save many 

millions of lives over the years and won Fleming, along with Howard Florey and Ernst 

Chain, the Nobel Prize in Physiology or Medicine in 1945.34 It also paved the way for the 

discovery of other classes of β-lactam antibiotics such as the cephalosporins, 

norcardicins, carbapenems, and monobactams.1 In addition to penicillin, another notable 

natural product that originated from fungi includes cyclosporine, an immunosuppressant 

used in the treatment of rheumatoid arthritis,35 psoriasis,36 Crohn’s disease,37 as well as to 

prevent rejection in organ transplants.38 Fungi are also responsible for the class of drugs 

known as the statins, which are used to treat cardiovascular disease,39 and naturally 

occurring statins have served as the inspiration for blockbuster drugs such as 

atorvastatin.40 



7 

 Recent advances in DNA sequencing and synthetic biology are currently 

providing new opportunities in the field of fungal natural product discovery. With these 

advances in DNA sequencing, it has been estimated that there could be as many as 

approximately 5.1 million fungal species on earth based on environmental DNA 

sequencing data. Of these, only 70,000, or 1.4%, have been described, leaving many 

fungi that have yet to be explored as potential sources for bioactive natural products and 

drugs.41 However, many fungi cannot be cultured under laboratory conditions, and many 

more have cryptic or silent biosynthetic gene clusters that are only expressed under yet-

to-be-determined growth conditions. For example, mining of the published genome from 

the fungus Aspergillus nidulans reveals a total of 53 putative biosynthetic gene clusters, 

but not all of the encoded secondary metabolites are produced under laboratory culture 

conditions.42 Accordingly, much work has been done recently in the heterologous 

expression of fungal biosynthetic pathways. One such development in this area that has 

occurred recently is that of the HEx (Heterologous Expression) platform developed by 

Harvey et al. in which fungal biosynthetic gene clusters are expressed in Saccharomyces 

cerevisiae, resulting in the production of the encoded secondary metabolites. In its first 

report, this technique was applied to 41 fungal biosynthetic gene clusters, resulting in the 

successful expression of 22, for a success rate of 58%.39 While the compounds produced 

were structurally relatively simple and of low molecular weight, this technique provides a 

basis for future work that may enable the expression of more complex biosynthetic gene 

clusters that are not active under laboratory conditions or from fungi that cannot yet be 

cultured.  
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1.4 Biosynthesis of Fungal Natural Products 

 Fungi possess a diverse set of biosynthetic machinery that enables them to 

produce many classes of secondary metabolites. The range of secondary metabolites 

produced by fungi can be broadly divided into polyketides, nonribosomal peptides, 

terpenes, and indole alkaloids based on differences in the biosynthetic precursors used to 

make these metabolites. 

 The polyketides make up the largest portion of secondary metabolites produced 

by fungi and are generated through the action of polyketide synthases (PKSs). Polyketide 

synthases are composed of various domains including a ketoacyl coenzyme A (CoA) 

synthase, acyltransferase, and acyl carrier domains. They may also contain structure-

modifying domains such as ketoreductases, dehydratases, and enoyl reductases, which 

allow for a greater variety of polyketide natural products to be produced. These PKS 

enzymes function by linking short-chain carboxylic acids such as acetyl CoA or malonyl 

CoA in an iterative process to form a carbon chain, which can undergo a variety of 

reductions by other domains of the PKS to allow for diversity in the compounds 

produced. The resulting carbon chain may then undergo further post-PKS modifications 

to yield the final secondary metabolite.43 Examples of polyketide natural products from 

fungi include compounds such as lovastatin, aflatoxin B1, xanthoquinodin A1, and 

asteltoxin (Figure 1.4). 
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Figure 1.4. Examples of polyketide natural products of fungal origin 
 

 Another group of fungal secondary metabolites are the nonribosomal peptides, 

which are constructed through the actions of nonribosomal peptide synthetases (NRPSs). 

These enzymes are composed of distinct domains that typically include adenylation, 

thiolation, and condensation domains, which together make up a single module. Each 

module is then responsible for incorporating an additional amino acid into a growing 

peptide chain.44 This is accomplished through recognition and activation of the substrate 

by the adenylation domain, transport of a specific amino acid by the thiolation domain, 

and finally, amide bond formation catalyzed by the condensation domain.45 While less 

numerous than fungal polyketide natural products, their nonribosomal peptide 

counterparts include many molecules with useful bioactivities such as beauvericin and 

cyclosporin A (Figure 1.5).   
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Figure 1.5. Examples of nonribosomal peptide natural products of fungal origin 
 

 A third class of natural products produced by fungi is that of the terpenoids, 

which are composed of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate 

(DMAPP). One to three units of IPP may undergo condensation with DMAPP, catalyzed 

by isoprenyl diphosphate synthase enzymes, leading to the formation of isoprenyl 

diphosphate molecules that are composed of ten (geranyl diphosphate), fifteen (farnesyl 

diphosphate), or twenty (geranylgeranyl diphosphate) carbons. Once these intermediates 

have formed, they may be further modified through the actions of prenyl transferases or 

cyclases to form a large assortment of possible terpenoid secondary metabolites,46 which 

include molecules such as paclitaxel, trichodermin, and fumagilin (Figure 1.6). 
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Figure 1.6. Examples of terpenoid natural products of fungal origin 
 

 A final class of secondary metabolites produced by fungi is the indole alkaloids. 

These compounds contain an indole or indoline moiety and are formed through a variety 

of pathways in fungi including decarboxylation of tryptophan to form tryptamine, 

prenylation of tryptophan to form 4-dimethylallyl tryptophan, activation of tryptophan by 

adenylation domains of NRPSs, or prenylation of indole-3-glycerol-phosphate. These 

different pathways are capable of leading to a variety of classes of indole alkaloids 

including peptide indole alkaloids and indole terpenoids.47 Overall, there are many 

molecules belonging to this class of fungal secondary metabolites including lysergic acid, 

chaetoglobosin A, and psilocybin (Figure 1.7). 
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Figure 1.7. Examples of indole alkaloid natural products of fungal origin 
 

 The diversity of chemical structures that fungi are capable of producing reflects 

the diversity of their biosynthetic machinery. As a result of the diversity of compounds 

that they produce, fungi continue to be of interest to natural product chemists with the 

hope that there are many new compounds that have yet to be discovered.  
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 An interesting phenomenon that occurs in nature is that of endosymbiosis, in 

which an organism lives symbiotically on or within another organism. Because of the 

close relationship between these organisms, there have been instances where the 

production of certain secondary metabolites has been attributed to the incorrect source. 

For example, the potent anticancer compound rhizoxin (Figure 1.8), which was initially 

isolated from the fungus Rhizopus microsporus, was thought to be produced by the 

fungus.48 However, subsequent studies of the biosynthesis of this compound that sought 

the putative genes for its production revealed that these genes are not found in the 

genome of the fungus. Instead, the compound is the product of a bacterial type I PKS 
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gene set. Further work led to the discovery that the biosynthetic genes are part of the 

genome of a bacterial endosymbiont belonging to the genus Burkholderia. Production of 

rhizoxin by this bacterial endosymbiont was further proven through isolation of the 

bacterium and analysis of its secondary metabolite production in culture.49-50 

 Another interesting secondary metabolite with anticancer activity that is of an 

endosymbiotic source is ecteinascidin 743 (Figure 1.8).51 This compound was initially 

isolated from a tunicate belonging to the species Ecteinascidia turbinata. Comparison of 

the structure of ecteinascidin 743 to other known secondary metabolites revealed that this 

compound bore many similarities to compounds belonging to the class of saframycins, 

which had been previously isolated from bacterial sources.52 While the endosymbiotic 

microbe could not be cultured under laboratory conditions, genomic efforts were 

effective in determining the source of this secondary metabolite as being Candidatus 

Endoecteinascidia frumentensis.53 
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Figure 1.8. Examples of bioactive natural products of endosymbiotic origin (the host 
organism and the microbial endosymbiont source are listed in parenthesis) 

 

While endosymbionts have proven to be a promising source for the discovery of 

novel secondary metabolites with interesting bioactivities, many suffer from an inability 

to be easily cultured under laboratory conditions. In some cases, this is believed to be due 

to the fact that these organisms are in such a close relationship with their host organism 

that they have diminished capacities for independent survival.52 Many obligate 

endosymbionts have undergone reduction in their genomes as a result of sustained, close 

relationships, and as such, are unable to survive outside of their hosts.54-55 The inability to 

culture many symbiotic organisms provides an obstacle to the study of these symbiotic 

assemblages and has led to a gap in our knowledge of the secondary metabolites that they 

are capable of producing. To fill this gap, efforts have gone into the genomic analysis of 

these organisms as well as the use of novel host cell culture tools to enable their growth 

N
O

O

O

O

O O

HO
O

H

O

H

H

rhizoxin
(Rhizopus microsporus/
Burkholderia rhizoxinica)

N
N

O

O

OHO

camptothecin
(Camptotheca acuminata/

Fusarium solani)

OH

H

O

OH

O

subglutinol A
(Tripterygium wilfordii/

Fusarium subglutinans)

ecteinascidin 743
(Ecteinascidia frumentensis/

Candidatus Endoecteinascidia frumentensis)

NH

HO

O

S

N
N

O

O

O

O

O
O

HO
O

OH

H



15 

in laboratory settings.56-57 As more effort is put into the study of these organisms, we may 

ultimately benefit from the discovery of new bioactive secondary metabolites from these 

species. 

 In addition to bacterial endosymbionts, many plant species contain endosymbiotic 

fungi, which collectively are known as endophytic fungi. Overall, it is believed that 

nearly every plant on earth may contain at least one species of endophytic fungus, and 

that this subset of fungi may comprise one million different species.58-59 A subset of these 

organisms have been studied with regard to their production of bioactive secondary 

metabolites, which include compounds such as paclitaxel from Taxomyces andreanae, 

camptothecin from Fusarium solani, and subglutinol A from Fusarium subglutinans 

(Figure 1.8).60-61 Despite the wealth of species belonging to the fungal endophytes, there 

is an overall lack of characterization of these endophytes, leaving a tremendous 

opportunity for the discovery of new fungal species within plants. As such, these 

endophytic fungi may present an additional area that is currently underexplored but may 

yield promising new secondary metabolites with interesting bioactivities. 

 

1.6 Prospects for Natural Product Discovery and Future Opportunities 

 While the pharmaceutical industry has largely abandoned the pursuit of 

discovering new bioactive natural products to fuel their drug development efforts, the 

structures of these compounds continue to serve as inspiration with about 35% of 

clinically approved drugs being made through either semisynthetic modifications of a 

natural product or total synthesis of compounds with pharmacophores found in natural 

products.28 Additionally, this decline in interest in natural product drug discovery led to 



16 

an overall decline in the number of clinically approved drugs.29 Therefore, I believe that 

academic research groups will need to play a larger role to maintain this field and support 

industrial drug development. 

 Recent advances in DNA sequencing and synthetic biology will also play larger 

roles in natural product drug discovery. These technologies are proving to be useful tools 

in the discovery of new natural products that were previously not accessible through 

traditional means and are the basis for many new pharmaceutical startups.39, 62-64 

Additionally, advances in culture techniques such as the iChip technology used in the 

discovery of the new antibiotic teixobactin65 may also play a prominent role in increasing 

the numbers of organisms that we will be able to investigate for their production of new 

natural products. 

 From the standpoint of structure elucidation, which is a vital part of natural 

product drug discovery, I believe that advances are being made with respect to traditional 

methods such as NMR spectroscopy, but also in the development of new methods that 

may improve the speed and accuracy with which structures of these complex molecules 

are determined. One such technology that is gaining attention is that of electron 

diffraction, which has allowed for the determination of structures from microcrystalline 

materials using a cryo-electron microscope.66-67 As this technology becomes more widely 

used, I believe that it will be a powerful technique for determining the structures of 

natural products and may serve as a viable alternative to x-ray diffraction experiments 

when adequate crystals cannot be obtained. 
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Chapter 2: Chapter Overviews 

2.1 Overview of Graduate Research, Development and Accomplishments 

 As a graduate student, my research focused very heavily on the purification and 

subsequent identification of fungal natural products with interesting bioactivities. As this 

discipline relies heavily on separations and spectroscopic techniques, I was able to master 

a variety of laboratory techniques including column chromatography, high-performance 

liquid chromatography (HPLC), mass spectrometry (MS), circular dichroism (CD) 

spectroscopy, vibrational circular dichroism (VCD) spectroscopy, nuclear magnetic 

resonance (NMR) spectroscopic experiments (1D and 2D), as well as computational 

calculations of CD, VCD, and NMR spectra using computational chemistry software 

packages. However, as our laboratory is also very cross disciplinary in nature, I was able 

to gain exposure and experience to other methods such as microbiology techniques, assay 

development, computational calculations of thermodynamic properties and reaction 

pathways, and organic synthesis. Therefore, I believe that my experience as a graduate 

student has made me very well rounded and better able to work with individuals from 

backgrounds differing from my own. 

 In addition to the technical skills gained through this experience, I have also 

gained many more soft skills. Time-management was a key skill in my graduate studies 

as I worked on a total of twenty projects, many of which were abandoned due to 

difficulties in pursuing the compounds that were purified for further study. Thus, being 

able to recognize that these projects were potentially difficult to move forward in the 

early stages was key. In addition to time-management, I believe that the experience of 

graduate school has led me to be a better communicator of my work. It has given me the 
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opportunity to present my research not only to the other members of my laboratory in the 

form of group meetings, but also to my colleagues in the department through colloquium 

presentations, and to other academic researchers through a poster presentation at the 

American Society of Pharmacognosy’s annual meeting. 

 As science is often a collaborative exercise, bringing in expertise from an 

assortment of backgrounds, much of the work presented in this dissertation is a result of 

collaboration with others. Therefore, each chapter will begin with a statement that clearly 

describes the contributions of others as well as my own contributions to the work being 

presented. 

 

2.2 Chapter 3. Creation of a High-Throughput, High-Content Screening Assay for 

the Human Parasite Trichomonas vaginalis  

In Chapter 3, I discuss the investigation of compounds that have potential 

application in the treatment of T. vaginalis infections. In this work, a new bioassay was 

developed to allow for high-throughput screening of our fungal extract library in T. 

vaginalis and Ect1/E6E7 human cervical epithelial cells. Screening of our fungal extract 

library resulted in the identification of two fungal isolates belonging to the species of 

Fusarium solani and Humicola grisea that exhibited selective inhibition of the parasite T. 

vaginalis. Further studies of the resulting bioactive secondary metabolites as well as 

structurally related compounds that were purchased or synthesized led to the 

development of new insights and counter screens to effectively eliminate compounds 

such as quinones that are notorious pan-assay interference compounds (PAINS) with 

indiscriminate activities.  
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2.3 Chapter 4. Natural-Product-Inspired Compounds as Countermeasures Against 

the Liver Carcinogen Aflatoxin B1 

In Chapter 4, the investigation of compounds with potential aflatoxin B1 (AfB1) 

toxicity mitigating effects is discussed. In these studies, a new bioassay was developed to 

allow high-throughput screening of fungal and bacterial extract libraries for extracts that 

afforded protection to HepG2 human hepatocellular carcinoma cells against the toxic 

effects of the mycotoxin AfB1. Screening of our fungal extract library led to the 

identification of a fungal isolate of the species Alternaria alternata, whose crude extract 

showed strong protection of HepG2 cells in the presence of AfB1. Isolation of the 

bioactive compounds was followed by identification of other active secondary 

metabolites from our laboratory’s pure compound repository and synthesis of structurally 

related compounds. To better approximate human physiological conditions, these 

compounds were also tested using HepG2 spheroids, which were significantly more 

sensitive to AfB1 exposure. In HepG2 spheroids, we found that compounds often 

exhibited protective effects with much greater potency. 

 

2.4 Chapter 5. In Situ Ring Contraction and Transformation of the Rhizoxin 

Macrocycle through an Abiotic Pathway  

Finally, Chapter 5 will discuss the isolation and investigations into the formation 

of a rhizoxin analog with a novel scaffold. In this work, a crude extract from the 

symbiotic system composed of the fungus Rhizopus microsporus and bacterium 

Burkholderia rhizoxinica exhibited potent anticancer activity that was selective for Ewing 
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sarcoma cell lines when tested in a panel of pediatric cancer cell lines. Bioassay-guided 

fractionation led to the isolation of five analogs of the known compound rhizoxin. 

Structure elucidation of these analogs was accomplished through the use of NMR 

spectroscopy experiments in conjunction with computational calculations of NMR 

parameters (chemical shifts and coupling constants). While rhizoxin exhibited the potent 

and selective anticancer activity observed in the crude extract, the five new analogs were 

significantly less potent than rhizoxin.  

Despite the lack of strong bioactivity, one analog was interesting from a structural 

standpoint as it contained a 15-membered macrolactone core that was previously 

unreported in this class of compounds. As a result, further work was performed to 

determine the mechanism through which this compound formed. While studying 

alternative culture conditions to increase yields of these new secondary metabolites, it 

was observed that formation of these compounds occurs only under mildly acidic media 

conditions. As a result, further investigations including degradation and computational 

studies were performed to identify the mechanism of formation of this compound.  
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Chapter 3: Creation of a High-Throughput, High-Content Screening 

Assay for the Human Parasite Trichomonas vaginalis 

This chapter was adapted from a manuscript that is currently being prepared for 

submission in 2018. The authors of that manuscript are Jarrod King, Adam C. Carter, 

Wentao Dai, Jin Woo Lee, Yun-Seo Kil, Lin Du, Sara Helff, Brandt Huddle, and Robert 

H. Cichewicz. 

 The work presented within this chapter was conducted as follows: Jarrod King 

performed preliminary work related to assay development and conducted bioassays; Sara 

Helff performed isolation of fungal isolates and large-scale fermentations; Adam C. 

Carter performed extractions, purifications of secondary metabolites, structure 

elucidation, and organic synthesis of select quinones 

 

3.1 Introduction 

 Trichomonas vaginalis is the most commonly encountered sexually transmitted 

parasite in the United States.68 Individuals who are infected by this parasite are at an 

increased risk of (i) miscarriage and low preterm birth weight, (ii) HIV transmission, (iii) 

susceptibility to cervical cancer, and (iv) infertility.69 Treatment of T. vaginalis infections 

typically involves the use of antiprotozoal nitroimidazoles (i.e., metronidazole and 

tinidazole), which are reported as having high levels of efficacy in the clinic (typically 

>90% of infections are cleared after a single course of treatment).70-72 However, there are 

concerns that, in addition to their reported side effects (e.g. nausea and vomiting), this 

class of drugs may exhibit carcinogenic and mutagenic effects, which leads to concerns 

regarding their use during pregnancy, as well as general concern regarding these potential 
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effects on the general population.73-74 Additionally, patients who receive treatment with 

nitroimidazoles experience high rates of recurrent and persistent infections, which have 

been reported to range from 5-31% in women.72 While many of the recurrent cases of T. 

vaginalis infections can be linked to continued contact with untreated sexual partners, 

persistent infections have led to concerns regarding the limitations of current 

nitroimidazole treatment options.75 Specifically, as many as 9.6% of clinical T. vaginalis 

isolates have been found to exhibit resistance to nitroimidazole drugs.76-77 Together, these 

factors showcase the current drawbacks of nitroimidazole therapies and the potential 

threat that T. vaginalis poses to human health as drug-resistance in this parasite becomes 

more widespread and severe. 

 Despite this rising threat, little information has been published, to date, regarding 

endeavors to identify alternative treatment options for T. vaginalis infections. Some of 

these studies have focused only on plant extracts,78-81 and as a result, uncover little 

regarding the molecules responsible for the anti-trichomoniasis activities observed. In a 

few cases, however, studies of plant extracts have led to the discovery of molecules 

showing anti-trichomoniasis activity such as berberine,82 (-)-usnic acid,83 emodin,84 

hamycin,85 hederagin,86 and mulinolic acid,87 all of which lack the potency and selectivity 

observed for metronidazole. While there are numerous studies focusing on natural 

product based discovery in plants, there is an overall lack of investigations into other 

sources for molecules that exhibit activity against T. vaginalis.88-89 While this perceived 

lack of research that pertains to the examination of natural sources for leads to fight T. 

vaginalis infections is worrisome, it does indicate the potential opportunities that exist to 

find new bioactive natural products that could potentially be developed into clinically 
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useful agents. As nature has been an exceptional source of new antiinfectious agents in 

the past,28 including the chief antiparasitic compounds that are currently used in the clinic 

(e.g., avermectins and artemisinin),28, 90 this expectation is very reasonable.  

 In addition to the shortage of published screening efforts to find secondary 

metabolites with anti-Trichomonas activities, there have been few reports regarding 

dependable assay methods for the discovery of new inhibitors of T. vaginalis. The 

methods that have been previously reported typically utilized either microscopic 

evaluation of trichomonads91 or dyes such as resazurin and propidium iodide,92-93 which 

suffer from incompatibilities with high-throughput screening or lack the sensitivity to 

detect low numbers of live trichomonads.94 With this overall lack of high-throughput 

screening efforts to find new fungal secondary metabolites with antitrichomonal activity, 

our team focused on developing a new assay system that was capable of (i) identifying 

antitrichomonal compounds, (ii) high-throughput screening of samples, (iii) could 

reliably distinguish between complete and partial inhibition of T. vaginalis, and (iv) could 

be utilized in the evaluation of a variety of sample types ranging from natural product 

extracts to pure compounds. In this work, we report the results of this assay development 

program, describe a group of natural products that exhibit inhibitory activities against T. 

vaginalis, and describe efforts made to probe their selectivity. 

 

3.2 Results and Discussion 

3.2.1 Development of an Assay for Detecting T. vaginalis Inhibitors 

 Colorimetric assays using resazurin dyes are used extensively to screen for 

bioactive compounds that inhibit cell viability and proliferation in both aerobic and 
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anaerobic environments.95 These assays function through the reduction of the resazurin 

dye by NADH, yielding the red, fluorescent molecule resorufin. While use of this dye has 

been reported for detecting T. vaginalis inhibitors, we found that this reagent was not as 

sensitive as desired for detecting live T. vaginalis. Under the anaerobic conditions used, 

we found that a population of ~10,000 trichomonads per well in a 96-well microtiter plate 

was necessary to consistently detect the presence of live T. vaginalis. As we determined 

that an initial population of 40,000 trichomonads per well was ideal for our screening 

efforts, this corresponded to an inability to distinguish between parasite-kill rates greater 

than ~75% (Figure 3.1). As such, we set out to develop a new assay system that was more 

sensitive than these previously reported resazurin-based approaches, while also 

maintaining an ability to be used with a variety of substances ranging from pure 

compounds to natural product extracts that contain fluorescent compounds. 

 

 

Figure 3.1. A comparison of the traditionally used resazurin fluorescence assay (red 
squares) and our newly developed imaging-based assay (green triangles). Using two 
fields per well, we determined the limit of detection of the Operetta to be 1,000 
trichomonads per well. This limit of detection arises as a result of whether a trichomonad 
appears in an image field. The resazurin assay was unable to detect less than 10,000 
trichomonads per well.  
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 A method that we believed could be an alternative to the use of resazurin was that 

of high-content imaging.96 We hypothesized that this methodology would provide a more 

sensitive tool to be used in the determination of live/dead-status of every trichomonad in 

a sample population. However, initial attempts led us to conclude that this approach was 

not well-suited for detecting live trichomonads as their rapid movement led to severe 

blurring of each cell, even when reasonably quick exposure times (10 ms) were used. To 

address this issue, we found that the trichomonads could be fixed through the use of 

glutaraldehyde, while a dual staining system of acridine orange, which is a cell-

permeable DNA stain, and propidium iodide, which is a DNA stain that is not able to 

permeate live cells, could be used for live/dead determination (Figure 3.2). Using this 

methodology, in conjunction with the Operetta (PerkinElmer) high-content imaging 

system, we found that we could detect as few as one live or dead trichomonad per image 

field (Figure 3.2), and the assay was reliable with a calculated Z-factor of 0.92. In 

addition to this sensitivity, we found this system to be well suited for high-throughput 

screening of T. vaginalis viability, while also offering the ability to store image files (i.e., 

two image fields recorded per well) for manual inspection to eliminate false-positive and 

false-negative hits arising from the presence of UV/VIS-active secondary metabolites. 
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Figure 3.2. (Left) Sample field from the Operetta of a fixed and stained (0.5% 
glutaraldehyde, 2.5 µM propidium iodide, and 2.5 µM acridine orange) population of 
healthy and growing T. vaginalis after 17 hours incubation. One dead trichomonad (red) 
can be seen. (Right) Sample screening image from the Operetta showing partial inhibition 
due to a fungal extract after 17 hours incubation. 
 

3.2.2 Testing Purified Natural Products 

 To evaluate the capabilities of the newly developed T. vaginalis imaging-based 

assay, we first tested a library of chemically diverse natural products consisting of 430 

metabolites from marine organisms, plants, bacteria, and fungi. Initially, these 

compounds were screened at a single high-dose concentration (100 µM) to allow for the 

evaluation of challenging screening scenarios involving potential false-positives or false-

negatives as a result of compound precipitation and UV/VIS-interference. This imaging-

based assay proved to be extremely helpful, as all potential hits (i.e., compounds that 

provided inhibition greater than the 25 µM metronidazole control) could be inspected 

visually to confirm that the number of live trichomonads had been reduced. This 

preliminary screening led to the identification of 64 natural products that exhibited 

activities better than or equal to that of the metronidazole control. As this set of pure 

compounds largely was composed of bioactive substances that had previously exhibited 

cytotoxicity toward mammalian cells and/or inhibited the proliferation of 
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microorganisms, the large number of hits observed did not surprise us. However, these 

results also indicated the need for a mammalian-cell-based cytotoxicity counter screen to 

be used to eliminate any undesirable non-specific cellular toxins. To further narrow the 

list of natural products, the 64 hit compounds were screened at 25 µM, leading to a subset 

of 9 compounds with bioactivities comparable to 25 µM metronidazole. These nine 

compounds were then tested over a range of concentrations (0.25-25 µM) against both T. 

vaginalis as well as a normal mouse fibroblast NIH/3T3 cell line. From this data, the 

LC50 values for each compound with respect to the parasite and the mammalian cells 

were estimated. The LC50 values were then used to calculate a selectivity index (SI) value 

[SI3T3 = (LC50 for 3T3 cells)/(LC50 for T. vaginalis)] for each of the active natural 

products (Figure 3.3). While the SI3T3 values revealed that most of the natural products 

identified were non-selective inhibitors, one compound of note was 2-bromoascididemin, 

which was found to have slight selectivity (SI3T3 = 14) (Figure 3.3). Thus, we were 

encouraged that the newly developed assay was capable of testing structurally diverse 

natural products across a wide range of concentrations and could be used to measure each 

compound’s ability to selectively inhibit the parasite species being targeted. 
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Figure 3.3. Nine pure natural products evaluated for SI3T3 values in initial pure 
compound screening against T. vaginalis. Compound sources were diverse and are shown 
under the compound names. LC50 values were determined in T. vaginalis and 3T3 
mammalian cells to obtain the SI3T3 values shown. Notably, 2-bromoascididemin 
exhibited a SI3T3 value of 14.0, which was much higher than any of the other compounds 
tested. 
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3.2.3 Testing Fungal Natural Product Extracts 

 At the University of Oklahoma, the Natural Products Discovery Group has 

generated a library of over 50,000 fungal extracts that consist of the organic residue 

remaining after a fungal isolate is cultured for four weeks on Cheerios breakfast cereal, 

extracted with ethyl acetate, and partitioned against water. A set consisting of 1,748 of 

these fungal extracts were tested using our newly developed high-content imaging assay 

system. Initially, each extract was tested in duplicate at a concentration of 15 µg/mL, 

resulting in a total of 111 hits, which were defined as having equal or greater inhibition of 

T. vaginalis compared to metronidazole tested at a concentration of 25 µM. These 111 

hits were then tested over a range of concentrations (0.15-15 µg/mL), resulting in a total 

of 71 samples that maintained potent anti-Trichomonas activity and showed sigmoidal 

dose-response curves. The LC50 value for each of these extracts against T. vaginalis was 

determined, along with LC50 values obtained for each in an Ect1/E6E7-cell-line 

cytotoxicity counter screen. These values were plotted as shown in Figure 3.4, enabling 

us to prioritize extracts with favorable SIEct1 values. These extracts are those that 

exhibited both potent antiparasitic activity and low mammalian cytotoxicity, 

corresponding to points found in the upper right quadrant of Figure 3.4. Accordingly, we 

chose to proceed with a Fusarium solani isolate (plate 55 well F11; SIEct1=36) and 

Humicola grisea (plate 78 well A3; SI3T3=25). 
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Figure 3.4. Selectivity indices of 71 fungal crude extract library hits with activity 
exceeding that of 25 µM metronidazole. All hits indicated with arrows were later found 
to be strains of the species Fusarium solani. The isolate corresponding to plate 55 well 
F11 (internal strain designation Tree 400 EW+PNGP-3) was grown in large scale to yield 
active compounds 1-2. 
 

3.2.4 Bioassay-Guided Purification of Natural Products from a F. solani Isolate 

 The isolate of the fungus F. solani that was responsible for the fungal extract 

showing the greatest SIEct1 value was grown on Cheerios breakfast cereal supplemented 

with a 0.3% sucrose solution with 0.005% chloramphenicol for a total of four weeks. The 

F. solani fungal extract was subjected to bioassay-guided fractionation using silica gel 

vacuum liquid chromatography (VLC), HP-20SS VLC, and C18 HPLC, yielding three 

known quinone-containing natural products: fusarubin (1) (1.5 mg),97 javanicin (2) (1.8 

mg),98 and solaniol (3) (3.0 mg)99 (compounds were identified based on comparisons of 

experimental LC-ESIMS and NMR data to published data) (Figure 3.5).100-101 These three 

metabolites exhibited a range of potencies against T. vaginalis, with 1 and 2 having the 
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greatest potencies (LC50 values of 2.5 µM and 1.3 µM, respectively), while 3 showed 

greatly reduced activity (LC50 of 40 µM). However, compound 1 notably also exhibited 

an SIEct1 value of 30, which greatly exceeded the SIEct1 values for 2 and 3, which were 

determined to be 3.1 and 0.4, respectively. These results suggested that changes to the 

quinone-containing scaffolds might result in dramatic alterations in the activities of 

structurally similar molecules.  

 

 

Figure 3.5. Structures of isolated secondary metabolites 1-3 from Fusarium solani. LC50 
values for each compound against T. vaginalis and Ect1 mammalian cells are also listed, 
as well as their calculated SIEct1 values. 

 

3.2.5 Structure-Activity Relationship Study of Quinones 

 Our previous observation with quinone-containing secondary metabolites 1-3 

prompted us to test an additional 38 natural and synthetic quinone-containing compounds 

(compounds 4-41, Appendix A) to determine if other selective T. vaginalis inhibitors 

could easily be identified. Although many of these compounds exhibited low-to-mid-

micromolar inhibition of T. vaginalis viability, none of the additional compounds tested 

showed an SI value comparable to metabolite 1 (SIEct1 values ≤4.5). The most promising 

of these hits are summarized in Figure 3.6. Interestingly, we observed a poor SIEct1 value 

of <0.1 for the clinically available antiparasitic drug atovaquone (33).102-103 A lack of a 

clear relationship between the structure of the quinones tested and their activity as well as 
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the fact that none showed as great of an SIEct1 value as 1 led us to reevaluate quinone-

containing compounds as viable candidates for inhibitors of T. vaginalis. 

 

 

Figure 3.6. Structures and biological activity of synthetic and commercially available 
quinone-containing compounds with SIEct1 values calculated to be greater than 1. LC50 
values for each compound in T. vaginalis and Ect1 cells are listed. 

 

As quinones have a tendency to be redox-active and act as electrophiles toward 

nucleophilic amino acid residues of proteins, these compounds are typically classified as 

having indiscriminate reactivity (i.e., PAINS).104 As such, we next investigated the 

possibility of redox cycling as the mechanism of action for compound 1. Dose-response 

curves were generated for 2-methoxynaphthazarin (5), compound 1, and metronidazole 

under three different levels of oxygen (anaerobic, microaerophillic, and aerobic). 

Compound 5 was selected due to its structural similarity to compound 1. In comparing 

the activities of 1 and 5 to metronidazole under these varying oxygen conditions, 1 lost its 

potency when incubated under anaerobic conditions (Figure 3.7). As T. vaginalis is 

typically encountered in low-oxygen environments, this loss of potency is detrimental, 
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and this compound was not pursued further. Metronidazole, on the other hand, 

maintained an LC50 that was relatively constant over the wide range of oxygen 

concentrations tested. 

 

 

Figure 3.7. Bioactivity of compounds 1, 5, and metronidazole against T. vaginalis in 
atmospheres of varying oxygen levels. Numbers shown are calculated from two fields in 
each well, three replicate wells per condition. Notably, potency of 1 and 5 decreases as 
oxygen level decreases, while metronidazole maintains approximately the same level of 
potency under all conditions tested. 
 

3.2.6 Bioassay-Guided Purification of Natural Products from a Humicola grisea 

Isolate  

 An isolate of the species Humicola grisea was grown on Cheerios breakfast cereal 

supplemented with a 0.3% sucrose solution containing 0.005% chloramphenicol for four 

weeks. The fungal extract was subjected to bioassay-guided purification using silica gel 

VLC, HP20SS VLC, and C18 HPLC, yielding the known xanthone-anthraquinone dimer 

xanthoquinodin A1 (42) (52.2 mg) as confirmed by comparison of its 1H and 13C NMR 

spectra, LC-ESIMS data, and specific rotation to values found in the literature.105 

Compound 42 was evaluated for T. vaginalis inhibitory activity and counter-screened 

against Ect1/E6E7 cells, yielding a favorable SIEct1 value of about 20. As we had 

previously encountered issues with quinone-containing compounds, 42 was tested under 



34 

varying levels of oxygen as done previously for compound 1. As a result of this testing, 

we found that 42, unlike 1, retained its potency under anaerobic conditions (average 

LC50=3 µM), suggesting that this compound functioned in a manner that was different 

from the other metabolites that were prone to redox-transformations under assay 

conditions and spurring further interest in this compound as a potential lead for further 

work. 

 

3.2.7 Reduction of Xanthoquinodin A1 

 To further evaluate the inhibitory activity of compound 42 on T. vaginalis, we set 

out to reduce the molecule using a sodium borohydride reduction. Compound 42 was 

treated with sodium borohydride in methanol and allowed to react such that one of the 

carbonyls present on the molecule was reduced to the corresponding secondary alcohol 

43. Following the reaction, analysis of the 13C NMR spectrum revealed the loss of a 

carbonyl chemical shift when compared to the spectrum of 42 with a corresponding 

addition of a new spin at ∂C 71.9 ppm. Follow-up HSQC and HMBC experiments [e.g., 

correlation from H-10’ (5.04 ppm) to C-13 (30.5 ppm)] and ROESY (e.g., cross-peak 

observed between H-10’ and H-4’ (6.47 ppm)) confirmed that the C-10’ carbonyl in 42 

was stereospecifically reduced to an alcohol yielding a single isomer as the product 43. 

 

 

Scheme 3.1. Chemical structure of natural product 42 obtained from a Humicola grisea 
isolate and its reduction through the use of sodium borohydride to yield the secondary 
alcohol 43. 
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 Compound 43 was tested for activity against T. vaginalis and was found to be 

equally potent to compound 42 (LC50 of approximately 3 µM, Figure 3.8). This 

observation led us to conclude that the anthraquinone moiety of 42 is not essential for its 

T. vaginalis inhibition and does not appear to act through a non-specific redox pathway. 

 

 

Figure 3.8. Comparison of anti-trichomoniasis activity of 42 and 43 under anaerobic 
conditions. Numbers shown are calculated from two fields in each well, three replicate 
wells per concentration tested. Error bars are equal to 1 S.D. (n=3). 
 

3.2.8 Counter-Screen with Lactobacillus acidophilus. 

 While the antitrichomonal activity of compound 42 appeared to be encouraging, it 

was unclear whether this compound could adversely affect a person’s native vaginal 

microflora, since further disrupting the microbiome can be detrimental to patient recovery 

after antibiotic treatment.106 For this reason, we tested compound 42 against 

Lactobacillus acidophilus as this bacterium is representative of desirable vaginal 

microflora species.107 Unfortunately, compound 42 showed nearly equal potency against 

L. acidophilus compared to T. vaginalis, while metronidazole showed no inhibition of the 
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bacterium. As a result, 42 was dropped from further testing with the hope of finding a 

natural product lead that would not be expected to adversely affect vaginal microflora. 

 

3.2.9 Conclusions and Discussion 

 A quick and sensitive assay for T. vaginalis was developed and used to screen a 

range of substances from pure compounds to complex fungal extracts. By screening a 

portion of our library of fungal extracts, we were able to isolate and identify pure natural 

products that exhibit selective activity in T. vaginalis with respect to Ect1/E6E7 human 

cells. Compounds containing quinones were found to interfere with the Trichomonas 

assay, which is in agreement with their reputation as compounds with indiscriminate 

reactivity. By testing compounds belonging to this class in variable oxygen atmospheres, 

we were able to remove many quinone-containing compounds from further consideration. 

Additional screening against L. acidophilus, which is typically found in the female 

reproductive tract, allowed us to further refine the quality of lead compounds by adding 

an additional requirement that compounds selectively kill T. vaginalis, while not 

disrupting the bacterial flora naturally present in the reproductive tract. As quinones were 

a prominent class of compounds found in our initial screening efforts for this assay, 

appropriate caution should be taken when deciding to pursue these compounds for anti-

trichomoniasis activity in the future. 
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3.3 Materials and Methods 

3.3.1 General Experimental Procedures 

 Optical rotation measurements were made on an AUTOPOL® III automatic 

polarimeter. The LC-ESIMS analyses were performed on a Shimadzu UFLC system with 

a quadrupole mass spectrometer using a Phenomenex Kinetex C18 column (3.0 mm × 75 

mm, 2.6 µm) and MeCN-H2O (0.1% HCOOH) gradient solvent system. NMR spectra 

were obtained on Varian spectrometers (500 or 400 MHz for 1H and 100 or 125 MHz for 

13C) using CDCl3 (Cambridge Isotope Laboratories, Inc.) as solvent. Column 

chromatography was performed using silica gel and Diaion® HP-20SS. HPLC was 

performed on a Waters system equipped with a 1525 binary HPLC pump coupled to a 

2998 PDA detector with a Phenomenex C18 column (21.2 × 250 mm or 10 × 250 mm, 5 

µm particle size). Commercially available compounds tested in assays were obtained 

from Sigma-Aldrich, TCI, Alfa-Aesar, Santa Cruz Biotechnology, ICC, EMD, Fluka, 

Selleckchem, Biovision, or the National Cancer Institute. 

 

3.3.2 Culture of Organisms 

Trichomonas vaginalis Donne (PRA-98) were purchased from the American Type 

Culture Collection (ATCC, Bethesda, MD). They were grown in Keister’s Modified TYI-

S33 medium108 with pH adjusted to 6.0 for optimal growth. Only Sigma B8381 bovine 

bile resulted in successful execution of assays. Trichomonads were propagated at 37°C in 

sealed screw cap vials. All 96-well plate assays were performed in an air incubator (21% 

O2, 0.04% CO2), candle jar (10% O2, 5% CO2), with BD GasPak EZ Campy sachets (6-

16% O2, 2-10% CO2), or with EZ Anaerobe sachets (<1% O2, >13% CO2), depending on 
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the oxygen levels being tested. Ideal growth of trichomonads is achieved with added 

carbon dioxide as it acts to stimulate T. vaginalis growth.109  

 NIH/3T3 (CRL-1658) mouse fibroblast and Ect1/E6E7 (CRL-2614) human 

ectocervical cell lines were purchased from ATCC. NIH/3T3 cells were maintained using 

Dulbecco’s Modified Eagle’s Medium with 5% FetalClone III (Hyclone). Ect1/E6E7 

cells were maintained in either keratinocyte-serum free medium (K-SFM, GIBCO-BRL 

17005-042) or Roswell Park Memorial Institute (RPMI) 1640 medium supplemented 

with 5% FetalClone III and epidermal growth factor (EGF) (10 ng/mL, Novoprotein 

#C029). 

 Lactobacillus acidophilus (ATCC 4356) were purchased from ATCC and grown 

on de Man, Rogosa & Sharpe (MRS) agar and broth at 37°C under anaerobic conditions 

using BD GasPak EZ Anaerobe sachets. 

 

3.3.3 Trichomonas vaginalis Assays 

 A 250 µL aliquot of T. vaginalis that had been cryopreserved in a 5% DMSO 

solution and stored in liquid N2 was rapidly thawed at 37°C and added to a screw cap 

tube containing 12 mL of Modified TYI-S33 medium that had been warmed to 37°C 

previously. Following incubation for 24 hours, live trophozoites were counted, typically 

yielding greater than 30 million trophozoites per tube. A total of 100 µL of TYI-S33 

medium containing 40,000 trophozoites was added to each well of a 96-well plate. Using 

a pin tool or pipet tip, extracts or pure compounds dissolved in dimethyl sulfoxide 

(DMSO) were added to appropriate wells. As controls, DMSO and 25 µM metronidazole 

were also tested. If testing in candle jar conditions, plates were placed into a humidified 
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candle jar, the candle was lit, and the lid was sealed. The jar was then placed into a 37°C 

incubator and allowed to incubate for 17 hours. If testing in anaerobic conditions, BD 

GasPak instructions were followed and plates were incubated in either the provided 

pouch or the BD Anaerobe Container System. 

 After 17 hours of incubation, plates were removed from the incubator and 100 µL 

of room temperature Trichomonas and Giardia assay and fixation (TGAF) solution was 

added to each well. TGAF solution is composed of 1% glutaraldehyde, 5 µM propidium 

iodide, and 5 µM acridine orange HCl salt in phosphate-buffered saline (PBS). Plates 

were then shaken in a plate reader for 30 seconds to break up any aggregations of 

trichomonads and placed in the incubator for three hours to allow enough time for proper 

staining and fixation. The plates were then quantitatively imaged using the PerkinElmer 

Operetta with the Harmony 3.5.1 software package. Quantitation was performed by 

differentiating live trophozoites, which were green only, from dead trophozoites, which 

stained green and red. The threshold for propidium iodide was set to 6500 units to allow 

optimal differentiation between live and dead trophozoites. 

 As a comparison, traditional resazurin-based assays were performed using the 

plate reader.93 For these assays, known numbers of trichomonads were added to each well 

of a 96-well plate, followed by 10 µL of a resazurin stock (0.1 mg/mL) in PBS. The 

plates were then allowed to incubate for one hour at room temperature in the dark. After 

incubation, plates were shaken and analyzed with a fluorescence plate reader (Tecan 

Infinite M200) using an excitation wavelength of 556 nm and an emission wavelength of 

590 nm. 
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3.3.4 Mammalian Cell Cytotoxicity Assays 

 Mammalian cell cytotoxicity assays were performed by exposing mammalian 

cells to DMSO solutions of extracts or pure compounds 48 hours prior to analyzing using 

either MTT assay110 or calcein AM and Hoechst 33342 live cell area assay using the 

Operetta. For the calcein AM/Hoechst 33342 based assay, a 1:5 dilution of a 40 µM 

calcein AM and 160 µM Hoechst 33342 DMSO solution was prepared in PBS. Aliquots 

of 5 µL of the diluted solution were then added to each well of the 96-well plate and 

allowed to incubate for 30 minutes. After incubation, the plates were analyzed using the 

Operetta and Harmony software package to first detect all nuclei that had been labeled by 

the Hoechst 33342 dye, followed by determination of cell viability based on green 

fluorescence. This green fluorescence is a result of acetoxymethyl ester cleavage of 

calcein AM by intracellular esterases. 

 

3.3.5 Lactobacillus acidophilus Viability Assays 

 L. acidophilus viability assays were performed by first adding a single colony of 

L. acidophilus to 10 mL of MRS broth and vortexing. A 100 µL aliquot of the resulting 

solution was added to each well of a 96-well plate. Compounds in DMSO were added to 

the wells such that a final DMSO concentration of 0.05% was achieved. An optical 

density at 600 nm (OD600) for each well was determined to obtain a baseline value, 

followed by incubation of the plate for 18 hours at 37°C. After incubation, OD600 values 

for each well were obtained, followed by subtraction of the initial value to determine a 

change in OD600. 
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3.3.6 Fungal Procurement and Culture Conditions 

 A fungal isolate with internal strain designation Tree 400 EW+PNGP-3 was 

obtained from a soil sample collected from beneath a tree in the Oliver Wildlife Preserve 

in Norman, Oklahoma. Using internal transcribed spacer (ITS) sequencing data, this 

isolate was identified as belonging to the species Fusarium solani. An additional fungal 

isolate with internal strain designation Mystery-9 SEA-2 was obtained from a soil sample 

and identified as belonging to the species Humicola grisea based on ITS sequence data. 

 

3.3.7 Isolation of Quinone-Containing Natural Products 1-3 

 A fungal isolate Fusarium solani (internal designation Tree 400 EW+PNGP-3) 

was grown for four weeks on Cheerios breakfast cereal supplemented with a 0.3% 

sucrose solution with 0.005% chloramphenicol in three large mycobags (Unicorn Bags, 

Plano, TX). After four weeks, the fungus was homogenized and extracted using EtOAc. 

The resulting EtOAc extract (40.4 g) was then separated using silica gel VLC with 

elution steps consisting of 1:1 hexanes/DCM, DCM, 10:1 DCM/MeOH, and MeOH, 

resulting in the collection of four fractions, Fractions A-D. The 10:1 DCM/MeOH 

fraction (Fraction C, 7.8 g) was then further separated using VLC with HP-20SS resin as 

the stationary phase. The elution steps used consisted of a step gradient of MeOH in 

water (30%, 50%, 70%, 90%, 100%) and a final 1:1 DCM/MeOH wash, which yielded a 

total of six fractions, Fractions E-J. Bioassays were performed to assess the anti-

trichomoniasis activity of the resulting fractions, indicating that the 90% MeOH fraction 

(Fraction H) exhibited strong anti-trichomoniasis activity. This fraction was further 

separated using C18 preparative HPLC (21.2 mm × 250 mm, 5 µm) with a MeOH/H2O 
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gradient (30:70 to 100:0), followed by isocratic C18 semipreparative HPLC (10 mm × 250 

mm, 5 µm) with 50:50 MeCN/H2O (0.1% HCOOH). This resulted in the isolation of 

three known bioactive naphthoquinones: fusarubin (1) (1.5 mg), javanicin (2) (1.8 mg), 

and solaniol (3) (3.0 mg).  

 

3.3.8 Further Screening of Purchased and Synthesized Quinones 

 Compounds 4-41 used in this study are shown in Table A.1, Appendix A. The 

identities of synthesized compounds were confirmed through 1H NMR and comparison to 

spectroscopic data found in the literature. 

 

3.3.9 Synthesis of Naphthopurpurin (4) 

 Naphthopurpurin (4) was synthesized according to a previously reported 

protocol.111 Specifically, 153 mg of naphthazarin (0.80 mmol), dissolved in 45 mL of 

aqueous potassium hydroxide (2 M), was stirred vigorously and heated to boiling for four 

hours. The reaction mixture was allowed to cool to room temperature, followed by 

addition of glacial acetic acid to neutralize the reaction mixture. This was accompanied 

by a change in color of the solution from purple to red. Following neutralization, the 

mixture was partitioned with 40 mL of chloroform a total of four times. The aqueous 

phase that resulted was acidified with the addition of 5 mL of hydrochloric acid (1 M), 

followed by partitioning with 50 mL of ethyl acetate a total of four times. The organic 

phases were combined and dried in vacuo, yielding compound 4 (130 mg, 78% yield).  

1H NMR (400 MHz, CDCl3) 12.74 (s, 1H), 11.47 (s, 1H), 7.34 (d, J=9.5 Hz, 1H), 7.21 (d, 

J=9.5 Hz, 1H), 6.37 (s, 1H) 
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3.3.10 Synthesis of 2-methoxynaphthazarin (5) 

 2-methoxynaphthazarin (5) was synthesized according to a previously reported 

protocol.112 More specifically, 120 mg of naphthopurpurin (0.58 mmol), dissolved in 5 

mL of absolute methanol, was mixed with 80 µL of hydrochloric acid (12 M) and heated 

to boiling for four hours. After four hours, the reaction mixture was allowed to cool to 

room temperature and dried in vacuo. The reaction mixture was then purified by silica gel 

VLC using hexanes, 3:1 hexanes/EtOAc, 2:1 hexanes/EtOAc, 1:1 DCM/MeOH, and 

MeOH as eluents in a stepwise fashion. From the 3:1 hexanes/EtOAc fraction, compound 

5 was obtained (17 mg, 13% yield).  

1H NMR (400 MHz, CDCl3) 12.63 (s, 1H), 12.16 (s, 1H), 7.27 (d, J=9.5 Hz, 1H), 7.20 (d, 

J=9.5 Hz, 1H), 6.16 (s, 1H), 3.93 (s, 3H) 

 

3.3.11 Synthesis of 1,4-dihydro-5,8-dihydroxy-2-methyl-9,10-anthracenedione (6) 

 1,4-dihydro-5,8-dihydroxy-2-methyl-9,10-anthracenedione (6) was synthesized 

according to a previously reported protocol.113 Specifically, 157 mg of naphthazarin (0.83 

mmol), dissolved in 5 mL glacial acetic acid, was mixed with 200 µL of isoprene (2.0 

mmol) and heated to 70°C for 48 hours. The resulting reaction mixture was cooled and 

dried in vacuo, followed by purification with silica gel VLC. Using 25:1 hexanes/EtOAc 

as an eluent, a crude mixture of products was obtained. This mixture was dissolved in 5 

mL of aqueous potassium hydroxide (2 M) and stirred vigorously for 30 minutes at room 

temperature. The reaction mixture was then acidified using hydrochloric acid (1 M) and 

filtered by gravity to give compound 6 (38 mg, 18% yield) as a powder.  
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1H NMR (400 MHz, CDCl3) 12.54 (s, 1H), 7.21 (s, 2H), 5.55 (m, 1H), 3.25 (m, 2H), 3.14 

(m, 2H), 1.82 (s, 3H) 

 

3.3.12 Synthesis of 1,4-dihydro-2-methyl-9,10-anthracenedione (7) 

1,4-dihydro-2-methyl-9,10-anthracenedione (7) was synthesized according to a 

previously reported protocol.113 Specifically, 187 mg of 1,4-naphthoquinone (1.2 mmol), 

dissolved in 5 mL glacial acetic acid, was mixed with 200 µL of isoprene (2.0 mmol) and 

heated to 70°C for 48 hours. After 48 hours, 5 mL of water was added to the reaction 

mixture, which was cooled to 0°C. Filtration of the cooled reaction mixture yielded a 

crude mixture of products, which was dissolved in 5 mL of aqueous potassium hydroxide 

(2 M) and stirred vigorously for 15 minutes at room temperature. The reaction mixture 

was then acidified using hydrochloric acid (12 M) and filtered by gravity to give 

compound 7 (95 mg, 35% yield) as a powder.  

1H NMR (400 MHz, CDCl3) 8.07 (m, 2H), 7.69 (m, 2H), 5.54 (m, 1H), 3.23 (m, 2H), 

3.12 (m, 2H), 1.80 (s, 3H) 

 

3.3.13 Isolation of Xanthoquinodin A1 (42) 

A fungal isolate Humicola grisea (internal designation Mystery-9 SEA-2) was 

grown for four weeks on Cheerios breakfast cereal supplemented with a 0.3% sucrose 

solution with 0.005% chloramphenicol in three large mycobags (Unicorn Bags, Plano, 

TX). After four weeks, the fungus was homogenized and extracted using EtOAc. The 

resulting EtOAc extract (57.5 g) was then separated using silica gel VLC with elution 

steps consisting of 1:1 hexanes/DCM, DCM, 10:1 DCM/MeOH, and MeOH, resulting in 
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the collection of four fractions, Fractions A-D. The 10:1 DCM/MeOH fraction (Fraction 

C, 8.0 g) was then further separated using VLC with HP-20SS resin as the stationary 

phase. The elution steps used consisted of a step gradient of MeOH in water (30%, 50%, 

70%, 90%, 100%) and a final 1:1 DCM/MeOH wash, which yielded a total of six 

fractions, Fractions E-J. Bioassays were performed to assess the anti-trichomoniasis 

activity of the resulting fractions, indicating that Fractions B, I, and J exhibited strong 

anti-trichomoniasis activity. Fraction I was further separated using C18 preparative HPLC 

(21.2 mm × 250 mm, 5 µm) with a MeOH/H2O gradient (50:50 to 100:0, with 0.1% 

HCOOH). This resulted in the isolation of the known bioactive compound 

xanthoquinodin A1 (42) (52.2 mg). 

 

3.3.14 Borohydride Reduction of Compound 42 

 In a flask, 7.6 mg of sodium borohydride (0.20 mmol), dissolved in 1 mL 

methanol, was added to 9.0 mg of compound 42 (0.016 mmol), dissolved in 4 mL 

methanol, over a five-minute interval. The reaction was allowed to proceed for 45 

minutes with stirring, followed by addition of 500 µL of hydrochloric acid (1 M). The 

acidified mixture was allowed to stir for an additional ten minutes and dried in vacuo to 

yield compound 43 (8.8 mg, 96% yield).  

1H NMR (500 MHz, CDCl3) 14.44 (s, 1H), 13.94 (s, 1H), 11.91 (s, 1H), 11.44 (s, 1H), 

7.04 (s, 1H), 6.70 (s, 1H), 6.47 (m, 2H), 6.08 (s, 1H), 5.04 (s, 1H), 4.74 (dd, J=5.5, 2 Hz, 

1H), 4.26 (dd, J=4, 2 Hz, 1H), 3.68 (s, 3H), 3.05 (d, J=18 Hz, 1H), 2.81 (m, 1H), 2.58 (d, 

J=18 Hz, 1H), 2.40 (s, 3H), 2.37 (m, 1H), 2.12 (m, 1H), 1.91 (m, 1H)  
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13C NMR (125 MHz, CDCl3) 188.5, 186.7, 184.6, 179.4, 171.1, 161.4, 158.5, 155.9, 

148.3, 147.6, 141.8, 134.9, 131.8, 117.5 (2), 111.7, 111.3, 106.5, 104.6, 100.1, 83.8, 71.9, 

66.8, 53.4, 43.6, 37.6, 30.5, 24.4, 23.0, 22.4 

 

Note: Research reported in this chapter was supported by the National Institutes of 

Health (5R33AI119713). 
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Chapter 4: Natural-Product-Inspired Compounds as Countermeasures 

Against the Liver Carcinogen Aflatoxin B1 

This chapter was adapted from a manuscript that is currently being prepared for 

submission in 2018. The authors of that manuscript are Adam C. Carter, Jarrod King, 

Allison O. Mattes, Shengxin Cai, Narender Singh, and Robert H. Cichewicz. 

 The work presented within this chapter was performed by the following: Jarrod 

King performed preliminary work related to assay development and conducted 

bioassays; Adam C. Carter performed extractions, purifications of secondary metabolites 

1-3, structure elucidation of 1-3, and organic synthesis of select compounds; Shengxin 

Cai isolated and determined the structure of compound 4.  

 

4.1 Introduction 

 Aflatoxins are a class of highly potent and carcinogenic natural products produced 

by several species of fungi including Aspergillus flavus and Aspergillus parasiticus.114-115 

Since this class of mycotoxins was discovered in the 1960s following the death of over 

100,000 turkeys and other poultry in England,114, 116 extensive research has focused on 

this family of toxins with a particular focus on their effects on the health of humans and 

animals. Of the aflatoxins that have been reported to date, aflatoxin B1 (AfB1) is widely 

believed to be one of the most carcinogenic naturally occurring chemical compounds 

known to man.117 AfB1 and related aflatoxins are thought to be a cause of elevated 

hepatocellular carcinoma rates observed in many parts of the world including Africa, 

eastern Asia, and parts of South America.118 An estimated 4.5 billion people worldwide 

are exposed to aflatoxin in their diet, and it is estimated that aflatoxin is responsible for 
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up to 28% of all hepatocellular carcinoma cases around the world.119 The potency and 

ease with which it can be obtained have also generated concern that this class of 

mycotoxins may be developed and used as biological warfare agents, as was the case in 

Iraq in the 1980s.120 In addition to their negative impacts on human health, contamination 

of agricultural products with aflatoxin leads to millions of dollars in losses in the United 

States annually.121 As a result, AfB1 and its carcinogenic analogs have continued to have 

major impacts on human and animal health safety around the world. 

 

 

Figure 4.1. Oxidative toxification of aflatoxin B1 to form aflatoxin B1-8,9-epoxide 
 

 Of note is the fact that AfB1 itself does not pose a hazard to human health, as it 

must first be metabolized to the active toxin ‘AfB1-8,9-epoxide’ by certain isoforms of 

cytochrome P450 (CYP) enzymes. The most significant CYP isoforms thought to be 

involved in this metabolic activation of AfB1 include the isoforms CYP3A4 and 

CYP1A2, which are found in the liver (Figure 4.1). However, there is still some 

uncertainty with regards to which CYP isoform(s) are most significant in the observed in 

vivo toxicity of this mycotoxin.122-123 Once metabolized to the active electrophilic form, 

this metabolite can form covalent bonds with cellular (e.g., DNA, RNA, and proteins) 

targets. Of these covalent modifications, the most problematic in the context of human 

health are those involving the reaction between AfB1-8,9-epoxide with DNA, which can 

lead to mutations and increased risk for tumor development, especially in the liver.115 
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 As a result of its severe toxic effects, efforts have been taken to develop 

protective measures to reduce the carcinogenic properties of AfB1, generally through (i) 

reduction of exposure to the mycotoxin and (ii) blocking the metabolism of AfB1 to form 

the activated toxin. Of the compounds that have been reported to reduce the negative 

effects of AfB1 exposure, the two most promising are chlorophyllin and oltipraz, which 

appear to have partial efficacy in humans who are at high risk for exposure to AfB1 

through their diet.124-126 While these compounds have been limited in terms of their 

protection against AfB1 toxicity, they do provide a precedent for the development of new 

and more effective agents to protect against the negative effects of AfB1 exposure. 

 To address the threat posed by AfB1 on human health, we have worked to develop 

a bioassay system to identify new secondary metabolites that are able to reduce the 

cellular toxicity of AfB1 toward human liver-derived cells (HepG2). The HepG2 cell line 

has been used in the past as a representation for hepatocyte function and drug metabolism 

as it is known to express several CYP isoforms found in the liver, though at levels lower 

than those observed in intact human liver tissues.127 In this work, we report the 

development and testing of our new assay system, which resulted in the identification of 

several molecules of natural and synthetic origin exhibiting protective effects against 

AfB1 toxicity. 

 

4.2 Results and Discussion 

4.2.1 Assay Development and Optimization 

 To begin development of our assay system, we first identified a small number of 

published peer-reviewed methods that had been used previously for the identification of 
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compounds with in vivo protective activity against AfB1 toxicity.128-129 In finding these 

previous reports, we were able to identify that they exclusively utilized colorimetric assay 

systems to measure cellular metabolic activity (i.e., alamar blue, MTT, intracellular ATP) 

to assess cell viability. Using these methods, we found them to be insensitive to low 

levels of AfB1 toxicity and unable to be used to evaluate the health of the cells (e.g., cell 

morphology). Specifically, in using microscopy to observe cells treated with AfB1 alone 

as well as with putative protective agents led us to discover two problems with the 

methods used traditionally: (i) cells treated with low (non-toxic) concentrations of AfB1 

typically showed significant changes in their morphology that were not immediately 

recognizable through assessment of metabolic activity alone, and (ii) in some cases, 

application of putative protective compounds to AfB1-treated cells resulted in viable 

cells, but their morphologies were significantly altered compared to healthy control cells 

(e.g., reduced cell areas, cells are angular in shape rather than rounded, isolated cell 

development rather than in aggregates). As a result of these observations, we realized the 

need for an alternative method to identify molecules capable of maintaining the viability 

of the cells, while also sustaining healthy morphologies in the cells. As such, we 

determined that high-content imaging using our Operetta (PerkinElmer) system could 

provide a viable alternative approach. Specifically, high-content imaging allows one to 

collect quantitative cell viability data and qualitative assessments of cell morphologies 

simultaneously.130 

 To optimize cell density for use in our high-content imaging assay system, 

experiments were performed to assess different cell-seeding methods on assay 

performance. Through these experiments, we found that 20,000 HepG2 cells per well in a 
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96-well microtiter plate yielded sufficient numbers of cells per field to reliably quantify 

their viability, but prevented overcrowding of cells such that cell morphologies could be 

assessed as well. Under these seeding conditions, we could observe the HepG2 cells as 

growing in “islands” of polygonal-shaped cells. Using the Operetta Harmony image 

analysis software, we automated the analysis of cell shape and area, which led to two 

benefits from our assay design. The first benefit was that the method allowed us to find 

minor changes in cell shape, and the second was that cell area could be used to estimate 

the cell viability. In our preliminary studies comparing this method to traditional methods 

(MTT and SRB assays), we found that cell viability following AfB1 exposure was very 

strongly correlated to the average cell size. As a result, cell area was selected to be a new 

alternative metric for testing as it relates both to viability and cell health. 

 Finally, the dose-response relationship of AfB1 on HepG2 cell viability (as 

measured by cell area) was explored with the intention of determining the LC50 value of 

the toxin following 48 hours of exposure. An LC50 value of 30 µM was determined for 

AfB1, which was reasonably close to the values reported in other in vitro assay 

systems.128-129 We determined that the Z-factor for this assay system was 0.82, which 

indicates that the system is highly likely to detect bioactive samples when used for high-

throughput screening. 

 

4.2.2 Testing Two Putative AfB1 Protective Compounds: Oltipraz and N-

Acetylcysteine 

Previous reports that we found for two compounds, namely oltipraz and N-

acetylcysteine, suggested that these compounds may exhibit protective properties in cells 
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exposed to AfB1.131-132 However, these reports have been disputed by later 

investigations,124 which showed that oltipraz can lead to adverse effects in human 

patients that include gastrointestinal symptoms, phototoxicity, thermal sensitivity, and 

paresthesia. It has also been found that N-acetylcysteine can have adverse side effects that 

range from nausea to death.133 When tested using our assay system, we found that neither 

of these compounds afforded protection against the toxic effects of AfB1, and that 

oltipraz increased the toxicity of AfB1 slightly (Figure 4.2). Interestingly, we did observe 

increases in HepG2 cell area when each of these compounds was administered alone, 

which may explain the confounding prior test results. Nevertheless, we cannot rule out 

the possibility that oltipraz and N-acetylcysteine may exhibit protective effects strictly in 

vivo, where other biological processes at the system-level are involved. 

 

 

Figure 4.2. Effect of oltipraz and N-acetylcysteine on AfB1 toxicity in HepG2 cells. Error 
bars represent one standard deviation, calculated from a total of two replicate 
measurements of live cell area. 

 

4.2.3 Screening of Natural Product Extracts 

 An exploratory screening process was performed to test natural product extracts 

that were derived from both bacteria and fungi for the presence of compounds that could 
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afford protection against AfB1 toxicity. In this investigative screening process, 276 

bacterial extracts (tested at concentrations of 33.4 and 66.8 µg/mL) and 644 fungal 

extracts (tested at 16.7 µg/mL) were screened using our newly optimized assay system. 

While none of the bacterial extracts tested were found to be active, 21 of the fungal 

extracts (3.3%) were found to exhibit protective activities (protection was assessed on the 

basis of the live cell area relative to control cells not treated with AfB1; compounds 

resulting in >50% relative live cell areas were considered “protective”). A second 

screening was performed to reconfirm the protective activities observed, resulting in a 

total of 17 extracts that showed repeatable protective activities at 16.7 µg/mL (i.e., 

increased live cell area and partial restoration of normal HepG2 cell morphology). 

 The seven fungal extracts showing the greatest improvements in HepG2 cell 

morphology (AfB1-treated cells appeared to cells not exposed to AfB1) were chosen, and 

the source fungal isolates were subjected to small-scale fermentation. The fungal isolates 

were grown for four weeks in 250 mL flasks on monolayers of Cheerios breakfast cereal, 

followed by extraction of the resulting cultures with ethyl acetate and subsequent 

partitioning with water. The resulting organic phases were retained, subjected to LC-

ESIMS analysis, and tested in the assay to generate dose-response curves covering a 

range of concentrations from 1.25 to 50 µg/mL. Three of the seven extracts (laboratory 

codes 58B1, 55C11, and 59E6) displayed good dose-response protective effects, but LC-

ESIMS analysis revealed that two of these samples (58B1 and 55C11) were nearly 

identical in their composition. As such, 58B1 and 59E6 were selected for further study 

(Figure 4.3). Both fungal isolates were subjected to ITS sequencing, leading to likely 

identifications as Alternaria alternata (58B1) and Aspergillus niger (59E6). 
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Figure 4.3. Top bioactive samples (hits) from screening fungal and bacterial extracts 
using HepG2 monolayers. Plate 58 well B1 (source of compound 1-3) preserved cell 
morphologies reasonably well to appear similar to the no AfB1 control. For comparison, 
the cells in plate 59 well E6, exhibited increased cell area, but lacked the morphological 
similarities of 58B1. 
   

4.2.4 Purification of Compounds 1-3 from A. alternata 

 The small-scale extract produced by the A. alternata isolate (58B1) was subjected 

to HPLC over C18, and the resulting fractions were collected in a deep-well 96-well plate. 

After removal of the solvent, the resulting residues were resuspended in DMSO and 

aliquots were transferred using a pin tool to new 96-well microtiter plates for bioassay 

testing. Our group has employed this methodology as a means of accelerating the process 

of identifying bioactive secondary metabolites from microbes and plants.134 Three wells 

were found to exhibit protection from AfB1 toxicity, and their contents were analyzed 

using LC-ESIMS. The first two active wells were composed of a mixture of two major-

component molecules, while the third active well contained only one major-component 
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molecule. By dereplicating against our lab’s internal database of fungal metabolites, we 

were able to immediately identify all three major-component compounds as being 

alternariol-9-methyl ether (1), altenuisol (2), and alternariol (3) (Figure 4.4). Using the 

supplies of these compounds that were readily available in our pure compound library, 

we were able to confirm that compounds 1-2 exhibited high levels of protection against 

AfB1 toxicity, resulting in 67 and 66% maximum relative live cell areas (MRLCAs) after 

AfB1 exposure. Compound 3, on the other hand, was not found to be protective of the 

HepG2 cells as it only yielded a MRLCA of 15% (Table 4.1). Further testing of 

compounds 1 and 2 in the absence of AfB1, showed that compound 2 was slightly 

cytotoxic to the HepG2 cell line, while 1 showed no adverse cytotoxic effects at the 

concentrations tested. 

 

 

Figure 4.4. Structures of secondary metabolites 1-3 from Alternaria alternata 
 

 When comparing the structures of compounds 1 and 2 versus compound 3, we 

were able to observe that the most prominent difference between these metabolites was 

the presence of a methoxy substituent at the 9-position of 1 and 2. As a result of this 

difference and the differential protection afforded by 1-3, we hypothesized that the 

presence of this methoxy substituent may play an important role in the protective effects 

observed for 1-2.  
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4.2.5 Assessing the Protective Properties of Compounds 4-12 

 In addition to the methoxy substituent noted for compounds 1 and 2, we also 

noted that compounds 1-3 were all relatively small, planar, and aromatic molecules, 

which are typical attributes of substrates reported as inhibitors of CYP1A2.135 These 

types of compounds are believed to more easily fit in the relatively narrow binding 

pocket of this CYP isoform.136 Based on this observation, we next screened a series of 

structurally similar molecules for protecting HepG2 cells against AfB1-induced toxicity. 

As we observed weak activity for compound 3, the m-methoxyphenol moiety found in 1-

2 was also further investigated. As a result, we next looked at the known secondary 

metabolite monomethyl sulochrin (4), which is characterized as belonging to the class of 

benzophenones. Compound 4 showed a MRLCA of 68%, which was comparable to the 

activities observed in 1-2. However, when testing a smaller compound, 3,5-

dimethoxyphenol (5), we saw low activity as evidenced by the low MRLCA (37%), 

suggesting that compound 5 may be too small and/or that at least two rings may be 

needed to provide protection against AfB1. Since benzophenones are known substrates of 

CYP1A2137-138 and are easier to access through organic synthesis than the polycyclic 

systems observed for 1-3, we decided to explore additional benzophenones with m-

methoxyphenol rings as part of their structure. As such, oxybenzone (6) and 

benzophenone-6 (7) were tested using our assay system. These compounds yielded 

MRLCAs of 62% and 54%, respectively, suggesting that an increase in the number of m-

methoxyphenol units in the structure of benzophenones did not necessarily lead to further 

increases in the protection observed. Of importance, however, was that the observation of 
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protection with these compounds provided evidence that benzophenones might serve as 

an additional scaffold for protective compounds against AfB1 toxicity. 

 

 

Scheme 4.1. Synthesis of compounds 8 and 9 from vanillin 
  

Previously published work exploring other classes of compounds (e.g., flavonoids 

and stilbenoids) that also exhibit protective effects against AfB1 suggest that small-

molecule dependent inhibition of CYP1A2 is dependent on the placement of each 

molecule’s pendant hydroxy and alkoxy substituents.139-141 To assess alternative 

arrangements of substituents on the benzophenone’s aromatic rings and the resulting 

effect on protective activity, we synthesized and tested the molecule 4-hydroxy-3-

methoxybenzophenone (8) by first converting vanillin to vanillonitrile through a 

chemoselective Schmidt reaction using sodium azide and triflic acid,142 followed by a 

Grignard reaction using phenylmagnesium bromide (Scheme 4.1). This compound 

resulted in a MRLCA of 60%, suggesting that o-methoxyphenol moieties are also 

tolerated for protection with the benzophenone scaffold. However, when testing 4-

hydroxy-3-methoxybenzhydrol (9), where the ketone has been reduced to the secondary 
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alcohol, we observed a drop in the MRLCA to a level of 41%, suggesting that the 

carbonyl group contributes to the protective activity of this class of compounds.  

 

 

Scheme 4.2. Synthesis of compound 10 from 2,4,6-trihydroxybenzoic acid 
 

Given the planarity of compounds 1 and 2, we hypothesized that testing other 

planar aromatic scaffolds might also be of value to our studies. As a result, we recognized 

1-hydroxy-3-methoxyxanthone (10) as an interesting xanthone to probe as it contained 

many structural similarities to 6, but with the added benefit of increased planarity. 

Compound 10 was synthesized by first methylating 2,4,6-trihydroxybenzoic acid using 

dimethyl sulfate, followed by reacting the resulting methyl ester with benzyne, generated 

in situ using cesium fluoride and 2-(trimethylsilyl)phenyl triflate (Scheme 4.2). 

Compound 10 showed comparable MRLCA (64%) when compared to 6; however, this 

compound also showed slight cytotoxicity at higher concentrations, limiting our further 

interest in this compound series. 
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Figure 4.5. Structures of additional compounds (4-12) tested. 
 

While reviewing published reports of CYP inhibitory small-molecules, the 

compound ritonavir (11)143 attracted our attention as it was significantly different in 

structure from the aromatic systems we had investigated. In addition to this, 11 has been 

reported to inhibit the other major CYP isoform involved in AfB1 activation to its toxic 

form, CYP3A4. However, the role of these CYP isoforms in the in vivo activation of 

AfB1 is still disputed in the literature.115 To test our hypothesis that 13 may protect cells 

from AfB1, we tested this compound in our assay system. In doing so, we found that 13 

offered a strong protection against AfB1 toxicity (72% relative live cell area at 5 µM), 
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suggesting that CYP3A4 may also be contributing to the conversion of AfB1 to its toxic 

form in vitro, as has been observed in previous studies.122 

 

 

Scheme 4.3. One-pot synthesis of compound 12 
 

Combining this observation with other reports citing nitrogen-containing 

heterocycles as inhibitors of CYPs,144-147 we next decided to see if a combination of the 

aromatic scaffolds investigated earlier with a nitrogen-heterocyclic moiety could confer 

further protection against AfB1 toxicity. Accordingly, we next prepared the compound 2-

hydroxy-4-methoxy-N-(3-pyridinylmethyl)benzamide (12) via a one-pot reaction starting 

with 2-hydroxy-4-methoxybenzoic acid and 3-picolylamine in the presence of thionyl 

chloride and triethylamine (Scheme 4.3), and tested it in our assay system. Despite the 

inclusion of a nitrogen heterocycle, this molecule offered little to no protection (34% 

MRLCA), and as a result, we did not pursue this combination further.  
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Table 4.1. Maximum protection afforded by pure compounds 1-12 from AfB1 toxicity in 
HepG2 monolayers, expressed as relative live cell area ± 1 S.D. with respect to no AfB1 
controls. As AfB1 exposure alone typically resulted in relative live cell areas of 
approximately 30%, we considered values >50% to be “protective”. 

 

 
4.2.6 Testing a HepG2 Spheroid Model for Assessing AfB1 Protection 

 Despite the fact that our assay system allowed us to detect compounds that 

afforded protection to HepG2 cells exposed to AfB1, we were aware of limitations that 

remained in our approach. In particular, CYP expression in HepG2 monolayers is known 

to be lower than levels detected in vivo.127, 129, 148-149 Additionally, methods to reliably and 

consistently upregulate the expression of CYPs in vitro remain difficult,149 with our own 

efforts proving unreliable or only yielding minute increases in CYP activity. These lower 

CYP expression levels were readily seen in our assay, as well as in virtually every 

Compound

Maximum	Relative	
Live	Cell	Areaa																					

(%	of	No	AfB	Control)

Concentration	Tested	to	
Obtain	Maximum	Live	Cell	

Area	Observed	(µM)
1 67.0	±	1.1 50
2 65.7	±	4.7 50
3 15.2	±	5.8 0.5b

4 68.3	±	14.5 50
5 37.0	±	0.1 5b

6 61.6	±	6.1 12.5
7 53.9	±	1.5 50
8 60.2	±	8.2 50
9 41.0	±	3.4 50
10 63.9	±	0.7 5c

11 72.0	±	4.6 0.5c

12 33.5	±	0.3 0.5b

bProtection	did	not	increase	at	higher	concentrations	tested
cToxicity	observed	at	50µM

aMaximum	protection	(greatest	live	cell	area	relative	to	no	AfB1	
control)	calculated	as	a	percentage		±	1	S.D.,	n=2



62 

published account of in vitro toxicity of AfB1, as can be seen by the fact that more toxin 

is needed to cause cell death than the amounts needed to see toxicity in vivo.148, 150 

 With this limitation in mind, we were interested in reports that CYP expression is 

increased in HepG2 cells when they are grown in the form of spheroids rather than 

monolayers.151-152 Spheroids, which are a form of 3D cell culture where cells are allowed 

to form aggregates without the use of a non-cellular substrate,153 have been used in assay 

systems previously due to their ability to better represent in vivo cellular characteristics 

(e.g., gene expression, drug susceptibility, drug penetration, drug metabolism, 

morphology).151-155 Because of this, we decided to proceed with further experiments 

using HepG2 spheroids in place of the HepG2 monolayers used previously. 

 
Figure 4.6. Relative live cell areas of HepG2 spheroids resulting from the application of 
selected compounds at a concentration of 10 µM and exposure to AfB1. Compounds were 
considered “protective” if they achieved >50% relative live cell areas. Error bars are 
expressed as ± 1 S.D., n=3. 
 

 First, we carried out tests to determine sensitivity of these spheroids to AfB1, and 

were amazed to observe a 15-fold increase in the sensitivity to AfB1 (LC50 of 2 µM in 

spheroids versus 30 µM in monolayers). This increased sensitivity was in agreement with 



63 

reported observations that CYP1A2 is upregulated significantly in HepG2 spheroids 

when compared to monolayers.151, 155 We next tested a subset of compounds previously 

evaluated using HepG2 monolayers to find that compounds 1, 6, and 10 showed 

protection of the HepG2 spheroids against AfB1 toxicity. We further tested two of the 

top-performing compounds, 1 and 10 (Figure 4.7) at a range of concentrations (0.01 to 10 

µM), which revealed that both showed strong protection (95% and 72% relative live cell 

areas, respectively, at 10 µM) (Figure 4.7). In addition to the live cell area, we also 

observed that the treated spheroids looked virtually identical to the healthy spheroid 

controls when inspected using the high-content imaging system. 

 

 

Figure 4.7. Protection from aflatoxin in HepG2 spheroids by compounds 1 and 10. In 
live spheroids, calcein AM is converted to calcein, which fluoresces green, after 
hydrolysis by intracellular esterases. Pure blue spheroids are dead and only fluoresce due 
to Hoechst staining of DNA. 
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4.2.7 Conclusions 

With this newly developed assay for screening chemoprotective qualities of 

fungal extracts in HepG2 cells, we were able to screen libraries of bacterial and fungal 

crude extracts and identify secondary metabolites responsible for the protective activities 

observed. We found that the images provided by the Operetta high-content imaging 

system allowed us to utilize the preservation of healthy cell morphology to further filter 

active extracts as well as pure compounds. From the structures of the natural products 

isolated, we were able to identify structurally similar natural products that also exhibit 

protective activity. Finally, we were able to find protective compounds that are easier to 

prepare synthetically than the structurally more complex natural products tested. While 

we do not know the mechanism by which these compounds confer protection to HepG2 

cells, the increased sensitivity of HepG2 spheroids to AfB1 as well as the increased 

protection observed in HepG2 spheroids suggests that they may be acting through 

inhibition of CYP1A2. This mechanism, in addition to the protective activity seen for 11, 

a known CYP3A4 inhibitor, leads us to believe that the use of CYP1A2 and CYP3A4 

inhibitors could be a viable route for chemoprotection in the case of exposure to AfB1 to 

prevent lasting liver damage and increased risk of hepatocellular carcinoma. 

 

4.3 Materials and Methods 

4.3.1 General Experimental Procedures and Chemicals Used 

 NMR data was collected on Varian NMR spectrometers (400 or 500 MHz for 1H 

and 125 or 100 MHz for 13C). LC-ESIMS data was obtained on a Shimadzu LC-MS 2020 

system (ESI quadrupole) coupled to a PDA detector, and equipped with a Phenomenex 
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Kinetex C18 column (3.0 mm × 75 mm, 2.6 µm). The preparative HPLC system utilized 

SCL-10A VP pumps and system controlled and was equipped with a Phenomenex Luna 

C18 column (21.2 mm × 250.0 mm, 5 µm), while analytical and semipreparative HPLC 

was performed on HPLC systems with Waters 1525 binary pumps and Waters 2998 PDA 

detectors. For the semipreparative and analytical systems Phenomenex Gemini C18 

columns (4.6 mm × 250.0 mm, 5 µm; or 10.0 mm × 250.0 mm, 5 µm) were used. All 

solvents were of ACS grade or better. Thionyl chloride and 2-hydroxy-4-methoxybenzoic 

acid were purchased from Alfa Aesar; benzophenone-6 (7), 3-picolylamine, 2-

(trimethylsilyl)phenyl trifluoromethansulfonate, and 2,4,6-trihydroxybenzoic acid were 

purchased from TCI America; cesium fluoride, vanillic acid, and oxybenzone (6) were 

purchased from Beantown Chemicals; oltipraz, dimethyl sulfate, vanillin, and 

phenylmagnesium bromide were purchased from Sigma Aldrich; sodium azide was 

purchased from Fluka; potassium carbonate was purchased from Fisher Scientific; 

ritonavir (11) was purchased from Selleck Chemicals; N-acetylcysteine was purchased 

from VWR; 3,5-dimethoxyphenol (5) was purchased from Chem Impex International. 

 

4.3.2 Aflatoxin Protection Assay 

 The human hepatocellular carcinoma HepG2 (HB-8065) cell line was purchased 

from ATCC. Cells were maintained in Eagle’s Minimum Essential Medium (EMEM, 

Gibco) with 5% FetalClone III (Hyclone) and penicillin/streptomycin (50 U/mL and 50 

µg/mL, respectively) in a humidified incubator in 5% CO2. Monolayer cell assays were 

performed by first adding approximately 20,000 cells in 100 µL of medium to each well 

of a 96-well plate. Cells were allowed to attach to the plate overnight, after which, 
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DMSO stocks of extracts, fractions or test compounds were added to the wells. 

Immediately following this initial addition, 100 µL of a stock solution made by adding 

aflatoxin B1 (AfB1) in DMSO to EMEM was added to each well in order to bring the 

total volume to 200 µL and yield a final concentration of 30 µM AfB1. The plates were 

allowed to incubate for 48 hours, after which, viability was determined using a calcein 

AM and Hoechst 33342 live cell area assay on the PerkinElmer Operetta. To do this, a 

stock solution in DMSO was prepared such that calcein AM was at a concentration of 40 

µM, while Hoechst 33342 was at a concentration of 160 µM. The stock solution was then 

diluted at a ratio of 1:5 in PBS, and 5 µL of the diluted solution was added to each well of 

the 96-well plate. After allowing the plate to incubate for 30 minutes, the Operetta was 

used to image each well of the plate. The Harmony software package was used to locate 

all Hoechst-labeled nuclei and assign a live/dead assessment based on the magnitude of 

green fluorescence (threshold of 350 units) detected for each cell. This assessment was 

possible due to the fact that live cells contain esterases that are capable of cleaving the 

acetoxymethyl (AM) ester group from calcein AM, resulting in a bright green 

fluorescence. DMSO controls without AfB1 were used to determine appropriate 100% 

viability levels. The protection afforded by each compound tested was expressed as the 

live cell area of the treated cells relative to the live cell area of the DMSO controls not 

exposed to AfB1, given as a percentage. A compound was considered to be “protective” if 

the relative live cell area was determined to be >50%. This level was chosen as 30% 

relative live cell area was typically observed in the AfB1 treated controls. 

 Spheroid cell assays were performed in ultra-low attachment plates (Corning 

7007). To each well, 1,000 cells were seeded in 100 µL of EMEM and allowed to grow 



67 

for a total of four days. This resulted in the formation of tight spheroids of cells. After the 

four days, DMSO stock solution of extract, fractions, or compounds being tested were 

added at appropriate concentrations. Additionally, 100 µL aliquots of a stock solution of 

AfB1 in EMEM were added to each well such that the final volume was 200 µL, and the 

AfB1 concentration was 2 µM. Spheroids were allowed to incubate for three additional 

days, after which, viability and live spheroid size determination was performed using the 

Operetta. 

 

4.3.3 Screening Natural Product Extracts 

 A collection of 644 fungal extracts dissolved in DMSO at a concentration of 16.7 

µg/mL was screened using a 1 µL pin tool to add these extracts to 96-well plates. In 

addition to these fungal extracts, 276 mammalian microbiome-derived bacterial156 

extracts were prepared at concentrations of 33.4 µg/mL and 66.8 µg/mL in DMSO. These 

bacterial extracts were screened by using a 2 µL pin tool to add each extract to the 96-

well plates. Two fields per well were imaged for analysis using the Harmony software 

package. Live cell areas were compared to the no AfB1 controls of each plate to assess 

protection afforded by each extract. Active extracts were considered to be those offering 

at least 75% relative live cell areas. 

 

4.3.4 Purification of Compounds 1-3 

 A fungal isolate Alternaria alternata (internal designation 58B1) was identified 

by ITS sequence analysis (GenBank accession number MK038723). The isolate was 

cultured from an oral swab of a roadkill opossum.156 The isolate was grown for four 
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weeks on Cheerios breakfast cereal supplemented with a 0.3% sucrose solution with 

0.005% chloramphenicol in a 250 mL flask. After four weeks, the contents of the flask 

were extracted with EtOAc to yield a total mass of 55.2 mg. The extract was dissolved at 

a concentration of 100 mg/mL, after which, approximately 5 mg of material (50 µL 

injection volume) was separated using semi-preparative C18 HPLC (250 mm x 10 mm, 5 

µm) with a MeOH/H2O gradient from 10% to 100% MeOH over 30 minutes with a 10 

minute MeOH wash. Fractions were collected in the wells of a 96-well plate and dried in 

vacuo. Contents of each well of the plate were tested for protective activity in HepG2 

cells exposed to AfB1, leading to the identification of three peaks observed by LC-ESIMS 

coinciding with bioactivity. Comparison with an internal database of fungal natural 

products previously isolated in our lab resulted in the identification of alternariol-9-

methyl ether (1), altenuisol (2), and alternariol (3) as the compounds contained within the 

active wells. Pure samples of compounds 1-3 were tested in the aflatoxin protection 

assay, resulting in the confirmation of 1 and 2 as the active compounds.  

 Following this initial identification from a small-scale fermentation, the fungal 

isolate was grown for four weeks on Cheerios breakfast cereal that was supplemented 

with a 0.3% sucrose solution with 0.005% chloramphenicol in three large mycobags 

(Unicorn Bags, Plano, TX) prior to being homogenized and extracted with EtOAc. The 

resulting crude extract (28.3 g) was separated using silica gel VLC with stepwise elution 

using 1:1 hexanes/DCM, DCM, 10:1 DCM/MeOH, and MeOH to yield four fractions 

(Fractions A-D). Fraction C (7.3 g) was further separated using HP-20SS VLC and a step 

gradient of MeOH in water (30%, 50%, 70%, 90%, and 100%), followed by a 

DCM/MeOH rinse, to yield six additional fractions (Fractions E-J). Upon storage of the 
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fractions in MeOH at -20°C, a precipitate was observed in Fraction I and was removed by 

centrifugation. The precipitate was dissolved and underwent purification with semi-

preparative C18 HPLC under isocratic conditions (60:40 MeCN/H2O) to produce 

compound 1 (126 mg), whose structure was confirmed through comparison of 1H and 13C 

NMR data to the literature.157 

 

4.3.5 Synthesis of 4-hydroxy-3-methoxybenzophenone (8) 

 1.0 g of vanillin (6.6 mmol) and 800 mg of sodium azide (12.3 mmol) were 

dissolved in 15 mL of acetonitrile. This mixture was allowed to stir for five minutes, after 

which, 2 mL of trifluoromethanesulfonic acid (22.6 mmol) was added slowly over a five-

minute interval. The reaction mixture was allowed to stir for 30 minutes at room 

temperature. After stirring, 15 mL of acetonitrile was added and the crude reaction 

mixture was dried in vacuo. The dried material was redissolved in 80 mL of EtOAc and 

partitioned three times with 35 mL of water. The organic phase was dried in vacuo to 

yield 1.0 g of crude vanillonitrile. To a dry vial, 2 mL of phenylmagnesium bromide in 

diethyl ether (3 M, 6 mmol) was mixed with 1 mL of dry THF. The vial was cooled to 

0°C in an ice bath, and 100 mg of crude vanillonitrile in 0.6 mL of dry THF was added 

dropwise over a five-minute interval. The reaction mixture was removed from the ice 

bath and allowed to stir while warming to room temperature. After reaching room 

temperature, the reaction was allowed to proceed for 25 hours. At this point the reaction 

was low yielding, so the mixture was heated to reflux for 21 hours. After refluxing, the 

vial was allowed to cool and quenched with 3 mL of saturated sodium bicarbonate. The 

mixture was then partitioned with EtOAc (three times, 10 mL each), and the organic 
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phase was dried in vacuo. The resulting material was then purified by silica gel VLC 

using a stepwise gradient of 10:1 hexanes/EtOAc, 1:1 DCM/hexanes, DCM, 10:1 

DCM/MeOH, and MeOH. The DCM fraction was further purified by C18 semi-

preparative HPLC using isocratic conditions of 45% acetonitrile in water to yield 

compound 8 (9.2 mg, 6.7% overall yield). The identity of 8 was verified through 

comparison of its 1H and 13C NMR spectra to the literature.158 

1H NMR (400 MHz, CDCl3) 7.75 (dd, J=8, 1 Hz, 2H), 7.56 (t, J=7 Hz, 1H), 7.51 (d, J=2 

Hz, 1H), 7.48 (t, J=7.5 Hz, 2H), 7.33 (m, 1H), 6.95 (d, J=8 Hz, 1H), 3.94 (s, 3H) 

13C NMR (100 MHz, CDCl3) 195.7, 150.2, 146.7, 138.3, 131.9, 129.8 (2C), 128.2 (2C), 

126.3, 113.6, 111.9, 56.1 

 

4.3.6 Synthesis of 4-hydroxy-3-methoxybenzhydrol (9) 

 Compound 9 was prepared according to a protocol described previously in the 

literature.159 More specifically, 290 mg of vanillin (1.9 mmol) dissolved in 1.5 mL of dry 

THF was added to a dry vial. The vial was cooled to 0°C, after which, 2.9 mL of 

phenylmagnesium bromide in diethyl ether (1.5 M, 5.7 mmol) was added to the vial 

dropwise over a five-minute interval with stirring. The mixture was allowed to stir for 10 

minutes at 0°C, then allowed to warm to room temperature. The reaction was stirred an 

additional 21 hours at room temperature, then quenched with a slow addition of 2 mL of 

methanol. C18 semi-preparative HPLC was used to purify compound 9 (14.9 mg, 3.4% 

yield). The identity of 9 was verified through comparison of its 1H and 13C NMR spectra 

to the literature.159 
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1H NMR (400 MHz, CDCl3) 7.39-7.24 (m, 5H), 6.89-6.77 (m, 3H), 5.77 (s, 1H), 3.79 (s, 

3H) 

13C NMR (100 MHz, CDCl3) 146.8, 145.5, 143.9, 135.6, 128.4 (2C), 127.4, 119.8, 114.3, 

109.1, 76.1, 55.8 

 

4.3.7 Synthesis of 1-hydroxy-3-methoxyxanthone (10) 

 The preparation of compound 10 began by adding 160 mg of 2,4,6-

trihydroxybenzoic acid (0.94 mmol) and 240 mg of potassium carbonate (1.7 mmol) to 5 

mL of acetone in a glass vial. To this mixture, 0.16 mL of dimethyl sulfate (1.7 mmol) 

was added and allowed to stir for 19 hours at room temperature. After 19 hours, 10 mL of 

water was added to the reaction mixture, followed by partitioning with 10 mL of EtOAc, 

three times. The resulting organic phase was dried in vacuo, then purified using C18 semi-

preparative HPLC with isocratic conditions (40:60 MeCN/H2O) to yield methyl 2,6-

dihydroxy-4-methoxybenzoate (88 mg, 47% yield), whose identity was verified by 

comparison of its 1H NMR spectrum to the literature.160 

 9 mg of methyl 2,6-dihydroxy-4-methoxybenzoate (0.045 mmol), 110 mg cesium 

fluoride (0.73 mmol), and 25 µL of 2-(trimethylsilyl)phenyl trifluoromethanesulfonate 

(0.10 mmol) were added to 1 mL THF in a glass vial. The mixture was stirred and heated 

to reflux for 24 hours. After cooling, methanol and DCM were added and the crude 

mixture was dried in vacuo. The residue was redissolved in diethyl ether and partitioned 

with water three times. The organic phase was dried in vacuo and purified by C18 semi-

preparative HPLC using a 10-100% gradient of MeCN in water with 0.1% formic acid 
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added to yield compound 10 (1.1 mg, 10% yield). The identity of 10 was confirmed 

through comparison of its 1H NMR spectrum to the literature.161 

1H NMR (400 MHz, CDCl3) 12.89 (s, 1H), 8.27 (dd, J=8, 2 Hz, 1H), 7.73 (dd, J=9, 7 Hz, 

1H), 7.45 (dd, J=8, 1 Hz, 1H), 7.39 (dd, J=8, 7 Hz, 1H), 6.46 (d, J=2 Hz, 1H), 6.38 (d, 

J=2 Hz, 1H), 3.91 (s, 3H) 

 

4.3.8 Synthesis of 2-hydroxy-4-methoxy-N-(3-pyridinylmethyl)benzamide (12) 

 14 mg of 2-hydroxy-4-methoxybenzoic acid (0.08 mmol), 20 µL of 3-

picolylamine (0.20 mmol), 80 µL of triethylamine (0.57 mmol), and 20 µL of thionyl 

chloride (0.27 mmol) were added to 400 µL of DCM in a glass vial. The mixture was 

allowed to stir at room temperature for 23 hours, and then dried in vacuo. The residue 

was redissolved in DCM and washed three times with an equal volume of 1 M 

hydrochloric acid. The organic phase was dried and purified using C18 semi-preparative 

HPLC (gradient 10-100% MeCN in water with 0.1% formic acid) to yield compound 12 

(1.4 mg, 7% yield). The identity of 12 was verified through comparison of its 1H NMR 

spectrum to the literature.162 

1H NMR (400 MHz, CDCl3) 12.50 (s, 1H), 8.63 (s, 1H), 8.58 (d, J=4 Hz, 1H), 7.72 (d, 

J=8 Hz, 1H), 7.14 (d, J=8 Hz, 1H), 6.82 (d, J=8 Hz, 1H), 6.49 (d, J=2.5 Hz, 1H), 6.42 

(dd, J=9, 2.5 Hz, 1H), 4.68 (d, J=6 Hz, 2H), 3.83 (s, 3H) 

 

Notes: This chapter is based upon work supported by the Army Contracting Command - 
Aberdeen Proving Ground - Natick Contracting Division (ACC-APG NCD) under 
Contract No. W911QY-17-C-0008. Any opinions, findings and conclusions or 
recommendations expressed in this material are those of the author(s) and do not 
necessarily reflect the views of the Army Contracting Command - Aberdeen Proving 
Ground - Natick Contracting Division (ACC-APG NCD). 	
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Chapter 5: In Situ Ring Contraction and Transformation of the 

Rhizoxin Macrocycle through an Abiotic Pathway 

This chapter was adapted from a manuscript that is currently being prepared for 

submission in 2018. The authors of that manuscript are Adam C. Carter, Cora L. 

Petersen, April L. Risinger, Karen Wendt, Sara Helff, Susan Mooberry, and Robert H. 

Cichewicz. 

 The work presented within this chapter was performed by the following: Adam C. 

Carter performed extractions, purifications of secondary metabolites 1-6, structure 

elucidation of 1-6, degradation experiments, and DFT calculations; Cora L. Petersen 

and April L. Risinger conducted biological evaluations of all rhizoxin analogs. Karen 

Wendt and Sara Helff prepared fungal isolates and performed ITS and 16S sequencing 

analysis. 

 

5.1 Introduction 

 Ewing sarcoma is a rare form of cancer that primarily impacts children, teens, and 

young adults. Despite the fact that only 6-8% of bone cancers are classified as Ewing 

sarcomas, it still is the second most common type of bone cancer in children and young 

adults and is diagnosed at a rate of about 225 children per year in the United States.163-165 

Recently, advances in how Ewing sarcoma is treated have resulted in an increase in the 

five-year survival rate, which currently stands at ~75% for patients with localized 

tumors;165 however, in the case of patients with a disseminated form of the disease, the 

five-year survival rate drops tremendously to about 13-30%.165 To further complicate 

matters, the rate of recurrence in Ewing sarcoma patients following treatments is ~30-
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40% for patients with localized tumors and ~60-80% for those with disseminated forms 

of the disease.165 Today, the standard of care for Ewing sarcoma patients includes 

aggressive combinations of chemotherapy, surgery, and radiation treatment, which may 

lead to long-term health issues for these young patients.163 Genomic studies of Ewing 

sarcoma patients have revealed that in about 85% of these patients, the tumors carry a 

mutation resulting from a cross-over event involving the EWSR1 gene on chromosome 22 

and the FLI1 gene on chromosome 11, which has been termed the EWSR1/FLI1 fusion 

gene. Efforts to understand how the EWSR1/FLI1 fusion gene results in gains and losses 

of molecular functions offers hope for the development of new disease-specific 

therapeutics that exploit the cellular defects of these Ewing sarcoma cells.166-167 

 Strategies targeting the manipulation of microtubules have been the basis for the 

development of several successful cancer treatments.168-172 The efficacy of these 

treatment options depends on the crucial role that microtubules play in cell division; 

however, recent developments in the field indicate that other mechanisms are likely 

involved in their anticancer efficacy.173-174 One approach in microtubule-targeted 

therapies is the destabilization of the polymerized protein, which prevents the formation 

of the mitotic spindle and ultimately leads to mitotic arrest. An interesting microtubule 

depolymerizing agent of natural origin is the antimitotic natural product rhizoxin (1).175 

First isolated in 1984 by Iwasaki et al., 1 was proposed to be produced by fungi 

belonging to the species Rhizopus microsporus, which is responsible for rice seedling 

blight.48, 176 Subsequent studies into its mechanism of action supported the theory that 1 

acts as an antimitotic agent by binding to β-tubulin at the maytansine site, inhibiting 

microtubule polymerization.175, 177-178 Further studies into the biosynthesis of this 
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compound in 2006 by the Hertweck group established that 1 is not produced by R. 

microsporus, but rather by a bacterium, Burkholderia rhizoxinica, that lives as an 

intracellular symbiont within fungal cells.50, 179 

 Compound 1 and its analogs have generated clinical interest as a result of their in 

vitro sub-nanomolar potency against several types of cancer cells.50, 180-182 These results 

ultimately led to the initiation of several clinical trials in Europe during the early 1990s, 

focusing primarily on the treatment of breast, melanoma, non-small-cell-lung, and 

squamous-cell-head-and-neck cancers.183-185 Unfortunately, these tests failed to show 

clinical efficacy as a result of low bioavailability and rapid clearance of the molecule 

from the bloodstream of patients, which ultimately resulted in the suspension of clinical 

trials prior to phase III.183-187 Subsequent work has focused on improving in vivo 

bioavailability of 1 through chemical modifications,188-189 production of new analogs 

through culturing the bacterial endosymbiont B. rhizoxinica outside of its fungal host,49-50 

and genome mining of the root-associated Pseudomonas fluorescens Pf-5.181 While these 

efforts have successfully produced many natural and synthetic analogs of 1, none of these 

resulting compounds have been successfully translated into a therapeutic agent approved 

for use in the clinic.190-191 

 In this work, we disclose the identification of a fungal isolate and its 

corresponding extract obtained from our lab’s Citizen Science Soil Collection Program192 

that was found to show markedly potent inhibitory activities against a subset of Ewing 

sarcoma cell lines bearing the ESWR1/FLI1 fusion gene. Chemical studies of this fungal 

extract led to the isolation and subsequent structure elucidation of 1 along with several 

previously undescribed analogs, including a novel ring-contracted compound (Figure 5.1) 
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This work provides detailed investigation of the chemical structures and biological 

activity of 1 and its analogs, as well as an exploration of the process leading to the 

formation of these compounds. 

 

 

Figure 5.1. Structures of isolated natural products 1-6 
 

5.2 Results and Discussion 

5.2.1 Isolation and Structure Elucidation of Rhizoxins 1-6 

 A set of fungal extracts prepared from our collection of sediment- and soil-

derived fungal isolates were evaluated for antiproliferative and cytotoxic activity in a 

panel of pediatric (including Ewing sarcoma) and triple-negative breast cancer cell lines. 

This led to the identification of several fungal extracts exhibiting desirable bioactivity, 
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including one very potent extract (78% cytotoxicity in the A-673 Ewing sarcoma cell line 

at 2 µg/mL) that was produced by a fungal isolate that was identified as a likely Rhizopus 

microsporus. This isolate was obtained as a result of our Citizen Science Soil Collection 

Program from a soil sample originating in Tucson, Arizona.193 A scale-up fermentation 

and bioassay-guided purification of the resulting crude extract led to the isolation of 1, 

which was identified on the basis of 1H and 13C NMR spectra, as well as LC-ESIMS data 

matching published values.48, 176 In addition to this active natural product, analysis of the 

extract by LC-ESIMS suggested the presence of several analogs of 1 (2-6), which could 

not be dereplicated. As a result, efforts were made to purify these analogs and determine 

their chemical structures. 
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Table 5.1. 1H NMR [∂, mult. (J in Hz)] spectroscopic data (500 MHz, CD3OD) for 
rhizoxin analogs 2-6 

 

No. 

2 3 4 5 6 

∂H, mult. (J in Hz) ∂H, mult. (J in Hz) ∂H, mult. (J in Hz) ∂H, mult. (J in Hz) ∂H, mult. (J in Hz) 

2 3.35, d (1.8) 3.30, d (1.6) 3.33, d (1.6) 3.40, d (1.9) 3.47, d (1.8) 

3 3.01, dt (10.3, 1.8) 3.05, dt (9.9, 1.6) 3.05, dt (9.9, 1.7) 3.10, m 3.01, dt (9.8, 2.3, 1.8) 

4 2.30, m 2.19, m 2.20, m 1.61, m 2.16, m 

 
0.93, d (11.2) 0.99, m 0.99, m 1.61, m 0.96, m 

5 2.27, m 2.22, m 2.28, m 2.23, m 2.06, m 

5a 2.79, dd (17.8, 6.6) 2.70, dd (17.7, 5.4) 2.74, dd (17.6, 6.5) 2.55, dd (15.2, 5.3) 2.60, m 

 
2.16, dd (17.8, 9.2) 2.13, m 2.13, m 2.32, dd (15.2, 8.5) 2.12, m 

5c 
   

3.68, s 
 6 2.04, m 1.99, d (13.8) 2.07, m 1.69, m 2.19, m 

 
1.16, m 1.14, m 1.17, m 1.31, m 1.32, m 

7 3.92, td (10.7, 2.0) 4.07, ddd (11.9, 9.9, 2.5) 4.10, ddd (11.7, 9.9, 2.3) 3.77, dt (10.5, 2.0) 4.25, ddd (11.4, 7.8, 3.4) 

8 2.30, m 2.34, m 2.40, m 1.37, m 1.85, m 

8a 1.10, d (6.5) 1.16, d (6.5) 1.16, d (6.5) 1.04, d (6.8) 1.15, d (7.0) 

9 5.30, dd (15.3, 9.9) 5.44, m 5.70, m 3.93, dd (9.0, 5.1) 4.15, ddd (5.0, 3.5, 1.2) 

10 5.64, dd (15.2, 9.9) 5.48, m 5.73, m 5.91, dd (15.9, 5.6) 6.04, dd (15.5, 3.5) 

11 3.56, dd (10.0, 3.8) 4.25, d (8.2) 4.04, d (2.2) 5.95, d (15.8) 5.99, dd (15.5, 1.2) 

12a 2.25, s 1.07, s 1.08, s 1.24, s 1.16, s 

13 3.29, dd (10.9, 3.9) 3.31, m 3.63, dd (10.3, 3.2) 3.14, d (10.7) 3.09, d (9.7) 

14 1.86, dd (15.0, 10.5) 1.82, ddd (13.0, 11.7, 2.3) 1.70, m 1.72, m 1.83, m 

 
1.43, dd (15.0, 10.4) 1.70, ddd (14.2, 11.2, 2.0) 

 
1.63, m 1.57, dd (14.6, 9.7) 

15 5.15, dd (10.5, 4.4) 5.08, dd (11.7, 3.9) 5.11, dt (10.8, 3.9) 5.26, dd (10.6, 6.1) 5.25, dd (10.7, 5.2) 

16 1.98, m 2.25, m 2.19, m 2.04, q (6.2) 2.03, m 

16a 1.00, d (6.9) 1.03, d (6.9) 1.00, d (6.8) 0.95, d (6.9) 0.99, d (6.8) 
17 3.41, d (7.5) 3.34, m 3.34, m 3.47, d (6.1) 3.44, d (7.0) 

17-OMe 3.17, s 3.18, s 3.17, s 3.20, s 3.18, s 

18a 1.79, s 1.84, s 1.81, s 1.80, s 1.80, s 

19 6.20, d (11.0) 6.19, d (10.7) 6.17, d (10.8) 6.18, d (11.0) 6.19, d (11.5) 

20 6.68, dd (15.2, 10.9) 6.65, dd (15.2, 10.8) 6.65, dd (15.1, 10.8) 6.67, dd (15.2, 10.9) 6.66, dd (15.1, 10.9) 

21 6.42, d (15.2) 6.45, d (15.2) 6.42, d (15.2) 6.42, d (15.2) 6.41, d (15.2) 

22a 2.12, s 2.09, s 2.09, s 2.11, s 2.09, s 

23 6.22, s 6.24, s 6.22, s 6.23, s 6.22, s 

25 7.82, s 7.82, s 7.81, s 7.82, s 7.82, s 

26a 2.45, s 2.45, s 2.43, s 2.45, s 2.45, s 
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Table 5.2. 13C NMR spectroscopic data (125 MHz, CD3OD) for rhizoxin analogs 2-6 

 

No. 

2 3 4 5 6 

∂c, mult. ∂c, mult. ∂c, mult. ∂c, mult. ∂c, mult. 

1 169.2, C 168.8, C 168.7, C 169.0, C 169.1, C 

2 54.1, CH 53.8, CH 53.7, CH 53.2, CH 53.2, CH 

3 56.3, CH 56.4, CH 56.4, CH 57.6, CH 56.6, CH 

4 37.5, CH2 37.2, CH2 37.8, CH2 36.9, CH2 36.6, CH2 

5 28.8, CH 29.0, CH 28.6, CH 30.5, CH 28.5, CH 

5a 35.4, CH2 35.6, CH2 35.5, CH2 41.1, CH2 36.5, CH2 

5b 172.6, C 172.1, C 172.5, C 173.4, C 172.2, C 

5c 
   

50.6, CH3 
 

6 32.2, CH2 32.3, CH2 32.6, CH2 40.9, CH2 33.8, CH2 

7 82.9, CH 83.7, CH 83.5, CH 69.6, CH 83.4, CH 

8 43.3, CH 44.0, CH 43.6, CH 47.3, CH 46.6, CH 

8a 16.4, CH3 18.0, CH3 18.0, CH3 8.6, CH3 13.4, CH3 

9 135.8, CH 135.8, CH 131.6, CH 73.5, CH 72.5, CH 

10 127.4, CH 130.3, CH 130.0, CH 136.1, CH 128.0, CH 

11 62.6, CH 75.5, CH 79.8, CH 131.3, CH 134.7, CH 

12 210.0, C 75.8, C 73.9, C 73.9, C 74.0, C 

12a 31.4, CH3 16.2, CH3 20.5, CH3 20.1, CH3 19.9, CH3 

13 72.6, CH 69.0, CH 70.0, CH 74.7, CH 73.6, CH 

14 33.9, CH2 28.9, CH2 28.6, CH2 32.6, CH2 33.4, CH2 

15 74.7, CH 73.6, CH 73.1, CH 74.2, CH 74.8, CH 

16 39.8, CH 38.5, CH 38.8, CH 39.7, CH 39.5, CH 

16a 10.2, CH3 9.2, CH3 9.1, CH3 9.1, CH3 9.1, CH3 

17 87.5, CH 88.3, CH 88.0, CH 86.6, CH 87.0, CH 

17-OMe 55.3, CH3 55.1, CH3 55.1, CH3 55.6, CH3 55.4, CH3 

18 135.4, C 135.9, C 135.5, C 135.4, C 135.4, C 

18a 11.2, CH3 10.7, CH3 10.9, CH3 11.9, CH3 11.5, CH3 

19 129.4, CH 129.3, CH 129.1, CH 127.9, CH 128.5, CH 

20 124.4, CH 124.2, CH 124.3, CH 124.4, CH 124.4, CH 

21 137.0, CH 137.0, CH 137.5, CH 136.6, CH 136.7, CH 

22 138.1, C 137.5, C 136.9, C 137.6, C 137.6, C 

22a 13.2, CH3 13.2, CH3 13.2, CH3 13.3, CH3 13.3, CH3 

23 119.5, CH 119.6, CH 119.4, CH 119.3, CH 119.3, CH 

24 137.5, C 138.1, C 138.1, C 137.8, C 138.1, C 

25 136.4, CH 136.3, CH 136.3, CH 136.2, CH 136.3, CH 

26 161.5, C 161.5, C 161.5, C 161.5, C 161.5, C 

26a 12.0, CH3 12.0, CH3 11.9, CH3 12.0, CH3 12.0, CH3 
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Rhizoxin K1 (2) was obtained as a white, amorphous powder and was assigned 

the molecular formula C35H47NO9 on the basis of HRESIMS data ([M+H]+ ion at m/z 

626.3325, calcd 626.3329). Comparison of the 1H and 13C NMR spectra to those of 1 

implied that this metabolite was most likely an analog of 1. A series of continuous COSY 

correlations spanning from H-6 to H-15 indicated the quaternary C-12 carbon found in 1 

was missing from 2. This observation was further reinforced by the appearance of the H-

11 spin as a doublet of doublets (3.56 ppm; 3JHH = 10, 4 Hz) in 2, indicating vicinal 

coupling of H-11 to H-10 and H-13. Additionally, a new exocyclic ketone (210.0 ppm) 

was determined to be attached to C-11 based on the presence of an HMBC correlation 

between H-11 and C-12 (Figure 5.2). The remaining fragments of 2 appear extremely 

similar to 1 in terms of the 1H and 13C NMR spectra (Table C.1, Appendix C), indicating 

that the remainder of the molecule remained unchanged from 1. This was confirmed 

through the use of 1D and 2D NMR data to establish the connectivity of atoms in 2. 

 

 

Figure 5.2. Key COSY and HMBC correlations for 2 
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 By analyzing coupling constants in the 1H NMR spectrum of 2, many similarities 

to those observed in 1 become readily apparent (Tables 5.1, and C.1, Appendix C) As 

these molecules are of the same biosynthetic origin,50 we commenced our investigations 

of the relative and absolute configuration of 2 on the reasonable belief that chiral centers 

C-2, C-3, C-5, C-7, C-8, C-15, C-16, and C-17 were unchanged from 1. This allowed us 

to focus on the assignment of configuration for the C-11 and C-13 chiral centers of the 

molecule. To begin, a ROESY spectrum of 2 was acquired (Figure C.7, Appendix C) and 

analyzed, revealing ROE cross-peaks between H-15 and H-13 (5.15 and 3.29 ppm, 

respectively), which supported a 13S assignment of configuration. Additional ROESY 

cross-peaks were observed between H-11 (3.56 ppm) and H-13 (3.29 ppm), which was 

consistent with an 11R assignment. However, given the novel structural motifs in 2, we 

developed a second line of complementary evidence to support these assignments. 
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Figure 5.3. 13C calculation results of two plausible stereoisomers at the mPW1PW91/6-
311G(d,p)-IEFPCM (methanol)//mPW1PW91/6-31G(d)-IEFPCM (methanol) level. 
Includes relative errors of selected carbon nuclei (top) and corrected mean absolute 
deviations (CMAD) and R2 values (bottom) for calculated vs. experimental 13C and 1H 
NMR chemical shift values of (a-e) 2-6 and (f) rhizoxin (1). 
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Consequently, an investigation of compound 2 was performed using gauge-

independent atomic orbital (GIAO) NMR calculations at the mPW1PW91/6-311G(d,p) 

level of theory with Integral Equation Formalism Polarizable Continuum Model 

(IEFPCM) continuum dielectric solvation modeling with methanol as the solvent.194 As 

we were most uncertain with the configuration at C-11, we prepared and analyzed 

calculated results for both the 11R and 11S diastereomers. To reduce the computational 

expenses of these experiments, the structure of 2 was truncated at C-19. 1H and 13C NMR 

chemical shift values and 3JHH coupling constant values were calculated for each of the 

two diastereomers and compared to experimentally determined values. The calculated 

data corresponding to the 11R diastereomers (i.e., chemical shift and coupling constants, 

Figure 5.3a and Tables C.14-C.15, Appendix C) showed a much stronger match with the 

experimental data for 2 than calculated values for the 11S diastereomer. Therefore, the 

structure of the new ring-contracted rhizoxin analog, rhizoxin K1, was established as 

shown for 2 (Figure 5.1). 

 Rhizoxin T1 (3) and rhizoxin T2 (4) were each obtained as white, amorphous 

powders and both were assigned molecular formulas of C35H49NO10 on the basis of 

HRESIMS data ([M+H]+ ions at m/z 644.3436 and 644.3435, respectively, calcd 

644.3435), which corresponds to one less degree of unsaturation when compared to 1. 

Comparison of the 1H and 13C NMR spectra to those for 1 showed that the majority of the 

structure for 3 and 4 matched that of 1, with the exception of the region near C-12 and C-

13. Both C-12 (75.5 and 75.8 ppm, respectively) and C-13 (79.8 and 73.9 ppm, 

respectively) appeared more deshielded in comparison to 1, which in conjunction with 
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the one fewer degree of unsaturation was suggestive of the 11,12-epoxide in 1 being 

replaced by diol moieties in 3 and 4. Further analysis of the 1D and 2D NMR data for 3 

and 4 provided confirmation that both of these compounds were new diol-containing 

analogs of 1.176  

 Through a comparison of coupling constants observed in the 1H NMR spectra of 3 

and 4, we noted many similarities to those seen in 1 except a difference in those observed 

between H-10 and H-11. As these coupling constants varied dramatically (3JHH = 8 Hz 

and 2 Hz, respectively, for 3 and 4), it was hypothesized that these two compounds were 

diastereomers that differed in their configurations at C-11. To further explore this 

hypothesis, the ROESY spectra of 3 and 4 were analyzed (Figures C.14 and C.21, 

Appendix C), which revealed cross-peaks between H-13 and H-15 in both molecules that 

were consistent with 13S configurations. Additionally, a ROESY cross-peak between H-

11 (4.25 ppm) and H-13 (3.31 ppm) in 3 supported an 11R configuration; while ROESY 

cross-peaks between H-12a and H-13 in both 3 and 4 were consistent with 12R 

configurations. However, the presence of ROESY cross-peaks between H-12a and H-11 

in both molecules led to uncertainty in regards to the configurations of these molecules 

for C-11. As such, GIAO NMR calculations were used to give further interpretive 

insights into the NMR data obtained for these two diasteromeric molecules. 

 Comparison of calculated 1H and 13C NMR chemical shift values for the 11R and 

11S diastereomers to the experimental NMR data for 3 showed lower corrected mean 

absolute deviations (CMAD) in the chemical shifts and greater R2 values, and as a result, 

better correlated with the 11R diastereomer (Figure 5.3b and Tables C.18-C.19, 

Appendix C). To support these stereochemical assignments, the experimentally 
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determined vicinal couplings between H-10 and H-11 for 3 and 4 were compared with 

calculated values. This approach gave calculated coupling constants of 9.9 Hz for the 

11R diastereomer and 2.3 Hz for the 11S, which were both extremely similar to their 

experimentally determined values (vide supra). 

 Rhizoxin M3 (5) was obtained as a white, amorphous powder, and was assigned a 

molecular formula of C36H53NO11 based on HRESIMS data ([M+H]+ ion at m/z 676.3690, 

calcd 676.3697), which yields a total of two fewer degrees of unsaturation compared to 1. 

A preliminary analysis of the 1H NMR data revealed that the resonances close in 

proximity to the tetrahydro-2H-pyran-2-one system varied greatly from those of 1-4. 

Further analysis of the 1H and 13C NMR data for this region of 5 to NMR data reported 

for other rhizoxin analogs revealed strong similarities in the C-5 – C-7 region of rhizoxin 

M2, which contains an esterified ring-opened lactone moiety.50 The identity of this 

structural motif was further confirmed through an HMBC experiment, which revealed 

correlations between H-5c (3.68 ppm) and H-5a (2.55 and 2.32 ppm) and C-5b (173.4 

ppm). Further inspection of the HMBC data showed correlations between H-8a (1.04 

ppm) and C-9 (73.5 ppm), as well as between H-12a (1.24 ppm) and C-11 (131.3 ppm), 

suggesting the presence of the olefinic bond in 5 between C-10 and C-11. 

 A comparison of coupling constants in 5 versus those found for 1 and rhizoxin 

M2,50 showed that the largest inconsistencies among these data sets corresponded to the 

region spanning H-7 to H-9. Focusing on this region, we began our determination of the 

configurational assignment of C-7 through the analysis of the ROESY spectrum obtained 

for 5 (Figure C.28, Appendix C). This analysis revealed a cross-peak between H-5 (2.23 

ppm) and H-7 (3.77 ppm), which supported a 7R configuration. Cross-peaks were also 
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observed from H-8a (1.04 ppm) to H-7 (3.77 ppm) and H-9 (3.93 ppm) and from H-7 to 

H-9. This set of cross-peaks was suggestive of an 8S, 9S configuration for 5. Finally, 

ROESY cross-peaks from H-13 (3.14 ppm) to H-12a (1.24 ppm) and H-15 (5.26 ppm) 

supported the assignment of 12S, 13S configurations. 

 With these tentative conformational assignments, we next prepared a set of 

calculated NMR data to evaluate the configuration assigned for C-9. GIAO NMR 

calculations were performed and the resulting chemical shift values for the 9S and 9R 

diastereomers were compared to experimentally determined chemical shifts for 5. 

Comparison of these data sets revealed lower deviations in the calculated chemical shifts, 

lower CMAD values, and higher R2 values for the proposed 9S diastereomer compared to 

the 9S diastereomer (Figure 5.3d and Tables C.20-C.21, Appendix C). Additional 

comparisons of the calculated vicinal coupling values between H-8 and H-9, as well as 

between H-9 and H-10 (8.4 Hz and 3.7 Hz, respectively, for the 9S diastereomer) proved 

the 9S diastereomer to be an excellent match with the experimentally determined 

coupling values. Therefore, the absolute configuration of this compound was proposed as 

illustrated for 5 (Figure 5.1). 

 Rhizoxin T3 (6) was obtained as a white, amorphous powder, and was found to 

have a molecular formula of C35H49NO10 based on HRESIMS data ([M+H]+ ion at m/z 

644.3441, calcd 644.3435). This led to a calculation of one less degree of unsaturation 

compared to 1. Analysis of the 1H and 13C NMR data revealed that like in compounds 1-

4, the tetrahydro-2H-pyran-2-one remained intact; however, the C-11, C-12 epoxide was 

missing with the olefin being shifted from C-9 to C-10 as was observed in 5. Further 

analysis of data from an HMBC experiment (Figure C.27, Appendix C) provided further 



87 

evidence in support of this assignment. This structure was found to match a partial data 

set reported for a 11,12-deepoxy-10,11-didehydro-9,10-dihydro-9,12-dihydroxy 

derivative of 1; however, no stereochemical analyses appear to have been performed for 

this compound.182 

 In comparing the vicinal coupling constants between H-9 (4.15 ppm) and H-10 

(6.04 ppm) in 6 versus 5, we observed considerable similarities (3JHH values of 3.5 Hz 

and 5 Hz, respectively). This led to an initial proposal of a 9S configuration for 6, but 

further support was desired to confirm this assignment. GIAO NMR calculations were 

performed and the resulting chemical shift values for the 9S and 9R diastereomers were 

compared to experimental chemical shift data. This analysis resulted in lower deviations 

in the calculated shifts versus the experimental data, lower CMAD values, and higher R2 

values for the 9S diastereomer (Figure 5.3e and Tables C.22-C.23, Appendix C). 

Additionally, the key H-9 and H-10 vicinal coupling constant was calculated as 3.9 Hz 

for the 9S diastereomer, which was found to be in strong agreement with the 

experimentally determined coupling value (3.5 Hz). As a result, the configuration of this 

compound was proposed as shown for 6 (Figure 5.1). 

 

5.2.2 Biological Evaluation of Rhizoxins 1-6 

 Next, we evaluated rhizoxins 1-6 in terms of their biological activity by testing 

these compounds against a panel of pediatric cancer cell lines and evaluating their 

antiproliferative and cytotoxic activities. While we did not observe any cytotoxicity in the 

cell lines tested for compounds 2-6 up to a concentration of 2 µM, we did observe 
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notably potent cytotoxicity for compound 1 in the Ewing sarcoma cell lines that were 

tested.  

 

Figure 5.4. Antiproliferative and cytotoxic activity of rhizoxin in a panel of pediatric 
cancer cell lines. (a) Concentration-response curves for antiproliferative and cytotoxic 
activity of rhizoxin using the SRB assay. (b) Percent cytotoxicity of rhizoxin at 40 nM in 
a panel of cell lines. Using a one-way ANOVA with Tukey’s post hoc test for multiple 
comparisons, we observe no significant difference among cell lines in the Ewing’s and 
non-Ewing’s groups. However, each comparison between a cell line in the Ewing’s group 
and a cell line in the non-Ewing’s group is significant with p ≤ 0.035. Results are 
represented as the mean ± SEM. (n=3) 
 

This compound exhibited total growth inhibition values in the sub-nanomolar 

range (Figure 5.4a) and showed significantly greater cytotoxicity in the Ewing sarcoma 

cell lines at a concentration of 40 nM, when compared to other, non-Ewing pediatric 

cancer cell lines such as D283 medulloblastoma, SJCRH30 rhabdomyosarcoma, and 

HEP293TT hepatoblastoma cell lines (Figure 5.4b). While we do observe this selective 

cytotoxicity for 1, its failure to show efficacy in vivo during previous clinical trials183-185 

makes it less appealing, overall, as a reasonable lead for future studies. 

 

5.2.3 Computational and Degradation Studies of the Formation of 2 

 Despite the lack of bioactivity observed for compound 2, this molecule was of 

interest due to its novel 15-membered macrolactone core, which has not been previously 
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reported as a natural or synthetic analog of 1. Wanting to study this compound further, 

we examined the possibility that 2 could have arisen through a rearrangement of the C-

11, C-12 epoxide of 1. In light of a recent publication by Zou et al., which revealed that 

some cationic epoxide rearrangements of fungal metabolites are catalyzed by enzymes 

produced by Aspergillus nidulans and Penicillium sp.,195 we believed that it was possible 

that this rearrangement could be happening either enzymatically or chemically. To assess 

whether this could be occurring enzymatically, we planned to perform experiments in 

which 1 would be incubated with R. microsporus to determine if 2 formed as a result. In 

the process of optimizing culture conditions (Discussion C.2, Appendix C) for the 

production of additional quantities of 1, we were surprised to find that we could detect 

compound 2 only in solid-state Cheerios and potato-dextrose broth (PDB) cultures. 

Additionally, we determined that 2 as well as analogs 3-6 began to appear only when the 

pH of the culture medium had significantly decreased (pH ~2-3), while the other media 

were unable to reach the same levels in pH due to the inclusion of buffers, leaving the pH 

of these media near neutral levels. These observations led us to reformulate our previous 

hypothesis, and to consider whether compound 2 and the other isolated rhizoxin analogs 

may have resulted from the acidic conditions created during the growth of the symbiotic 

fungus-bacterium system. 
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Figure 5.5. Degradation of compound 1 incubated in acidified aqueous methanol for one 
day. Peak heights are expressed as a percentage relative to the peak height of compound 1 
± 1 S.D. (n=3). Peak heights were taken at a wavelength of 310 nm. 
 

With this new hypothesis, we believed that the chemical transformation to form 2 

could be accomplished through either a pinacol rearrangement or a Meinwald 

rearrangement. Since a pinacol rearrangement would require that compounds 3 and/or 4 

would serve as precursors for the formation of 2, we set out to determine if 1, 3, and 4 

can serve as suitable reactants to produce 2. Compounds 1, 3, and 4 were incubated 

separately for 7 days in aqueous methanolic solutions treated with hydrochloric acid (1 

mM final concentration), and the resulting reaction mixtures were sampled daily and 

monitored by LC-ESIMS for the formation of 2. While we could detect 2 in as little as 24 

hours when starting with 1 (Figure 5.5), we were unable to identify 2 from the samples 

starting with either 3 or 4. As a result, we proposed that 2 arises from a probable 

Meinwald rearrangement of the C-11, C-12 epoxide of 1 under the acidic conditions 

produced through the culture of the fungus with its endosymbiont partner (Scheme 5.1). 
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Scheme 5.1. Proposed pathway for the formation of rhizoxin 2 from 1 under mildly 
acidic conditions 
 

To provide further evidence for the mechanism of this rearrangement, we used 

DFT calculations to approximate the energetics of the reaction steps required for this 

transformation to occur. Electronic and Gibbs energies were calculated for the protonated 

form of 1 (1H+), the carbocation intermediate 7, and the protonated form of 2 (2H+), 

following an initial optimization at the M06-2X/6-31G(d) level of theory. Solvent effects 

were approximated through the use of IEFPCM solvation modeling with water as the 

solvent. Additional calculations of single point energies at the M06-2X/6-311++G(d,p)-

IEFPCM (water) level of theory were used to correct the Gibbs free energies obtained 

using the 6-31G(d) basis set.195 Following these optimization and energy calculations, 

transition states were determined at the M06-2X/6-31G(d)-IEFPCM (water) level of 

theory and were determined through intrinsic reaction coordinate calculations. Gibbs free 

energies were determined for each transition state, leading us to determine the 

approximate energy barriers to be 1.3 kcal/mol and 7.2 kcal/mol for the formation of 7 

and 2H+, respectively. Based on this analysis, we also found that 2H+ is approximately 

32.4 kcal/mol lower in energy than 1H+, suggesting that its formation is energetically 

favorable under acidic conditions (Figure 5.6).  

 

HO OH

7

HO
HO

1H+

OH

HO

2H+



92 

 

Figure 5.6. DFT calculations for the acid-catalyzed formation of 2 from 1. Reaction 
pathway was calculated at M06-2X/6-311++G(d,p)-IEFPCM (water)//M06-2X/6-31G(d)-
IEFPCM (water) level. All energies are given in kcal/mol. 
 

 To further address the apparent stereoselectivity in the formation of 2, we further 

examined the calculated structure for allylic carbocation intermediate 7. In order for the 

alkyl group to migrate to yield 2, it would be expected to be oriented in the same plane as 

the empty p-orbital of the carbocation.196-197 As such, two possible faces for migration 

exist. In intermediate 7, it appeared that the si face of the carbocation was much more 

accessible for migration. To further support this observation, a scan of the energy with 

respect to rotation about the bond between C-11 and C-12 was carried out to examine the 

possibility of a re face migration. From this calculation, we found that the orientation 

favoring si face migration was approximately 16 kcal/mol lower in energy (Figure C.41, 

Appendix C), lending further support for the stereoselective formation of the 11R 

configuration in 2.  
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5.2.4 Conclusions 

Through the use of NMR and GIAO NMR calculations, the absolute structures of 

five rhizoxin analogs were determined (compounds 2-6). Compound 1 was confirmed as 

exhibiting potent sub-nanomolar cytotoxic activity in a panel of pediatric cancer cell lines 

and significant cytotoxic selectivity for Ewing sarcoma cell lines in comparison to cell 

lines originating from other types of pediatric cancers. In contrast, compounds 2-6 did not 

show similar cytotoxic activity for any of the pediatric cancer cell lines tested or in a 

panel of triple negative breast cancer cell lines up to 2 µM.  

Despite this lack of comparable cytotoxicity, compound 2 was of interest due to 

its novel skeleton when compared to other known rhizoxins. Through degradation 

experiments, we conclude that 2 most likely forms through an acid-catalyzed Meinwald 

rearrangement of rhizoxin, which is further supported by computational calculations 

using density functional theory. These studies found that formation of 2 from 1 is highly 

favorable thermodynamically under acidic conditions. Additionally, this study further 

emphasizes the importance and necessity of investigating the chemical and/or 

biochemical basis for the formation of unusual compounds and their analogs that are 

obtained from natural sources, and also demonstrates the power of applying DFT 

calculations when examining their non-enzymatic origins. 

 

5.3 Materials and Methods 

5.3.1 General Experimental Procedures 

 Optical rotation data was obtained using a Rudolph Research AUTOPOL III 

automatic polarimeter. NMR data were obtained using Varian NMR spectrometers (400 
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or 500 MHz for 1H and 100 or 125 MHz for 13C). Accurate mass (HRESIMS) data were 

obtained using a Waters SYNAPT G2-Si mass spectrometer. LC-ESIMS data were 

obtained on a Shimadzu LC-MS 2020 system (ESI quadrupole) coupled to a PDA 

detector, with a Phenomenex Kinetex C18 column (75 × 3.0 mm, 2.6 µm). The 

preparative HPLC system used SCL-10A VP pumps and system controller with a 

Phenomenex C18 column (250 × 21.2 mm, 5 µm), and the analytical and semi-preparative 

HPLC system utilized Waters 1525 binary pumps with a Waters 2998 PDA detector and 

a Phenomenex C18 column (250 × 4.6 mm, 5 µm; and 250 × 10 mm, 5 µm). All solvents 

were of ACS grade or better. 

 

5.3.2 Fungal Isolate Procurement and Identification 

 The fungal isolate (internal designation AZ3401 RBM-3) was obtained from a 

soil sample collected from Tucson, Arizona. The isolate was identified as belonging to 

the species Rhizopus microsporus based on sequence analysis of the ribosomal internal 

transcribed spacer region and 5.8S rRNA genes (ITS1-5.8S-ITS2)198 (GenBank accession 

MK037287). Additional 16S ribosomal RNA sequence analysis led to the identification 

of the endosymbiotic bacterium as belonging to the species Burkholderia rhizoxinica 

(GenBank accession MK041213). 

 

5.3.3 Extraction and Purification of Rhizoxin Analogs 

 The isolate of R. microsporus was grown for a total of four weeks on Cheerios 

breakfast cereal that was supplemented with a 0.3% sucrose solution with 0.005% 

chloramphenicol added in six large mycobags (Unicorn Bags, Plano, TX). After four 
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weeks, the fungus was homogenized and extracted with EtOAc. The EtOAc extract (70 

g) was separated using silica gel VLC with elution steps using 1:1 hexanes/DCM, DCM, 

10:1 DCM/MeOH, and MeOH as eluents, yielding four fractions (Fractions A-D). 

Fraction C (22 g) was further separated using HP-20SS VLC and a step gradient of 

MeOH in water (30%, 50%, 70%, 90%, 100%) followed by a wash step of 1:1 

DCM/MeOH as elution conditions, yielding six fractions (Fractions E-J). Following 

testing of Fractions A-J in bioassay, anticancer activity was observed for Fractions H and 

I. These fractions were further purified using C18 HPLC (250 × 21.2 mm, 5 µm) with a 

MeOH-H2O gradient (50:50 to 100:0), followed by isocratic C18 HPLC (250 × 10 mm, 5 

µm) with MeCN-H2O (45:55) to yield rhizoxin analogs 1 (13.0 mg), 2 (3.4 mg), 3 (15.3 

mg), 4 (8.1 mg), and 5 (5.7 mg), and 6 (2.9 mg). 

 

Rhizoxin K1 (2): white, amorphous powder; [α]20
D -60.0 (c 0.03, MeOH); 1H and 13C 

NMR, see Tables 5.1 and 5.2; HRESIMS [M+H]+ m/z 626.3325 (calcd for C35H48NO9, 

626.3329) 

 

Rhizoxin T1 (3): white, amorphous powder; [α]20
D +19.6 (c 0.48, MeOH); 1H and 13C 

NMR, see Tables 5.1 and 5.2; HRESIMS [M+H]+ m/z 644.3436 (calcd for C35H50NO10, 

644.3435) 

 

Rhizoxin T2 (4): white, amorphous powder; [α]20
D -8.0 (c 0.15, MeOH); 1H and 13C 

NMR, see Tables 5.1 and 5.2; HRESIMS [M+H]+ m/z 644.3435 (calcd for C35H50NO10, 

644.3435) 
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Rhizoxin M3 (5): white, amorphous powder; [α]20
D +38.2 (c 0.11, MeOH); 1H and 13C 

NMR, see Tables 5.1 and 5.2; HRESIMS [M+H]+ m/z 676.3690 (calcd for C36H54NO11, 

676.3697) 

 

Rhizoxin T3 (6): white, amorphous powder; [α]20
D +60.3 (c 0.07, MeOH); 1H and 13C 

NMR, see Tables 5.1 and 5.2; HRESIMS [M+H]+ m/z 644.3441 (calcd for C35H50NO10, 

644.3435) 

 

5.3.4 DFT NMR Calculations 

 Molecular mechanics calculations were performed using the MacroModel199 

software package within the program Maestro.200 A Monte Carlo multiple minimum 

(MCMM) conformational search was performed using Merck molecular force fields 

(MMFFs) and structures were minimized using the truncated Newton Conjugate 

Gradients (TNCG) method with 500 iterations and a gradient convergence criterion of 

0.05. Conformers that were within 21.0 kJ/mol of the lowest energy conformer found 

were stored. Each conformational search was performed with a sufficiently large number 

of steps to allow each conformer within 10.0 kJ/mol of the lowest energy conformer to be 

found an average of at least ten times. Conformers with an identical conformation of the 

macrolactone were eliminated using redundant conformer elimination. 

 Geometry optimizations, frequency calculations, and NMR calculations were 

done using the Gaussian 09201 software package. All conformers remaining following 

redundant conformer elimination were optimized using DFT geometry optimization, 
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followed by a frequency calculation. These calculations were done using the 

mPW1PW91 functional and a 6-31G(d) basis set with Integral Equation Formalism 

Polarizable Continuum Model (IEFPCM) continuum dielectric solvation modeling using 

methanol as the solvent (ε=32.63).194  

 The calculated values of Gibbs free energy for each conformer were used to 

perform a Boltzmann analysis of the population of conformers. All conformers 

comprising ≥1% of the total population were considered for gauge-independent atomic 

orbitals (GIAO) method NMR chemical shift calculations at the mPW1PW91/6-

311G(d,p) level of theory with IEFPCM solvation modeling using methanol as the 

solvent.194 Additionally, 1H-1H coupling constants were calculated using the B3LYP/6-

31G(d,p) level of theory.202 

 

5.3.5 Biological Evaluations 

 The D283 (medulloblastoma), SJCRH30 (rhabdomyosarcoma), A-673 and SK-

ES-1 (Ewing’s sarcoma) pediatric cancer cell lines used were obtained from ATCC. The 

TC-32 Ewing’s sarcoma cell line was obtained from the lab of Dr. Alex Bishop, and the 

HEP293TT hepatoblastoma cell line was obtained from the lab of Dr. Gail Tomlinson.203 

D283 cells were cultured in IMEM (Gibco) supplemented with 5% fetal bovine serum 

(Corning) and 50 µg/mL gentamycin (Gibco). All other cell lines were cultured in RPMI-

1640 (Corning) with 5% fetal bovine serum and 0.5% gentamycin. Cells were grown 

using a humidified incubator at 37°C with 5% CO2. All experiments were performed on 

cells within four months of being revived from liquid nitrogen. 
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 Compounds were evaluated for cytotoxic and antiproliferative efficacy using a 

sulforhodamine B (SRB) assay.204-205 Cells were initially added to tissue-culture treated 

96-well plates (Falcon) at a density of 4,000-6,000 cells per well. These cells were 

allowed to adhere to the wells overnight. The plates were then treated with compound 

and allowed to incubate for 48 hours. After 48 hours, cells were fixed with 10% 

trichloroacetic acid (TCA). D283 medulloblastoma cells showed lower adherence, and as 

such, were treated with 180 µL of 20% TCA added to 200 µL media for fixation. Cell 

growth in the presence of the compound was calculated relative to the growth of the 

vehicle-treated cells. Cytotoxicity was evaluated by measuring the decrease in cell 

density as compared to density at the time of compound addition. Results were calculated 

with the GraphPad Prism 6 software package and analyzed using a one-way ANOVA 

with Tukey’s post hoc test for multiple comparisons. Data are from three independent 

experiments, each of which was performed in triplicate. Compounds were dissolved in 

DMSO (Fisher) and stored at -20°C. 

 

5.3.6 Chemical Transformation Studies 

 250 µL aliquots of 0.1 M HCl, 0.001 M HCl, or distilled water were added to 

glass vials, followed by an additional 200 µL of methanol. Compounds 1, 3, and 

compound 4, were dissolved at 10 mg/mL in methanol, and 25 µL (0.25 mg) was added 

to each vial adjusted to a predefined pH. Samples were allowed to incubate in the dark at 

room temperature, and 50 µL aliquots were removed at predetermined time points (0, 1, 

3, and 7 days) and mixed with 50 µL of methanol. These diluted samples were analyzed 

by LC-ESIMS for the presence of compound 2. All conditions and time points were 
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tested and sampled in triplicate. Mean measurements were used to determine the relative 

quantity of 2 that was present (averaged peak heights determined at 310 nm by PDA). 

 

5.3.7 DFT Calculations for Formation of 2 

 All calculations were carried out with the Gaussian 09 software package.201 

Geometry optimizations and frequency calculations were performed at the M06-2X/6-

31G(d) level of theory with IEFPCM solvation with water as the solvent. Transition state 

calculations were carried out at the M06-2X/6-31G(d) level of theory using the Berny 

algorithm, followed by confirmation using intrinsic reaction coordinate calculations at the 

same level of theory. Single point energy calculations at the M06-2X/6-311G++(d,p) 

level of theory with IEFPCM solvation with water as the solvent were used to yield a 

correction factor for Gibbs free energies obtained at the M06-2X/6-31G(d) level of 

theory.195 

 

Note: Research reported in this chapter was supported by the National Institutes of 

Health (R01GM107490). 

 

 

 



100 

References 

1. Dias, D. A.; Urban, S.; Roessner, U., A historical overview of natural products in 
drug discovery. Metabolites 2012, 2, 303-336. 
2. Dai, Y.; Yang, Z.; Cui, B.; Yu, C.; Zhou, L., Species diversity and utilization of 
medicinal mushrooms and fungi in China (Review). Int. J. Med. Mushrooms 2009, 11, 
287-302. 
3. Sullivan, R.; Smith, J.; Rowan, N., Medicinal mushrooms and cancer therapy: 
translating a traditional practice into Western medicine. Perspect. Biol. Med. 2006, 49, 
159-170. 
4. Schmitz, R., Friedrich Wilhelm Sertürner and the discovery of morphine. Pharm. 
Hist. 1985, 27, 61-74. 
5. Pelletier, P.; Caventou, J., Note sur en nouvel alkalai. Annales de Chimie et de 
Physique 1818, 8, 323-324. 
6. Pelletier, P.; Caventou, J., Suite: des recherches chimiques sur les quinquinas. 
Annales de Chimie et de Physique 1820, 15, 337-365. 
7. Pelletier, P.; Caventou, J., Examen chimique des plusieurs végétaux de la famille 
des colchicées, et du principe actif qu'ils renferment. Annales de Chimie et de Physique 
1820, 14, 69-81. 
8. Buchner, A., Ueber das rigatallische fiebermittel und über eine in der widenrinde 
entdeckte alcaloidische subtanz. Repertorium für die Pharmacie 1828, 29, 405-420. 
9. Schatz, A.; Bugle, E.; Waksman, S., Streptomycin, a substance exhibiting 
antibiotic activity against Gram-positive and Gram-negative bacteria. Exp. Biol. Med. 
(London, U.K.) 1944, 55, 66-69. 
10. Duggar, B. M. Aureomycin and preparation of same. 1949. 
11. Rebstock, M.; Crooks, H.; Controulis, J.; Bartz, Q., Chloramphenicol 
(chloromycetin). IV. Chemical studies. J. Am. Chem. Soc. 1949, 71, 2438-2462. 
12. Garrod, L., The erythromycin group of antibiotics. Br Med J 1957, 2, 57-63. 
13. Levine, D., Vancomycin: a history. Clin. Infect. Dis. 2006, 42, S5-S12. 
14. Sensi, P.; Margalith, P.; Timbal, M., Rifomycin, a new antibiotic; preliminary 
report. Farmaco Sci. 1959, 14, 146. 
15. Wöhler, F., Ueber künstliche bildung des harnstoffs. Ann. Phys. Chem. 1828, 88, 
253-256. 
16. Kolbe, H., Beiträge zur kenntniß der gepaarten verbindungen. Ann. Chem. Pharm. 
1845, 54, 145-188. 
17. Gerhardt, C., Untersuchungen über die wasserfreien organischen säuren. Ann. 
Chem. Pharm. 1853, 87, 149-179. 
18. Woodward, R.; Doering, W., The total synthesis of quinine. J. Am. Chem. Soc. 
1945, 67, 860-874. 
19. Woodward, R.; Bloch, K., The cyclization of squalene in cholesterol synthesis. J. 
Am. Chem. Soc. 1953, 75, 2023-2024. 
20. Woodward, R.; Cava, M.; Ollis, W.; Hunger, A.; Daeniker, H.; Schenker, K., The 
total synthesis of strychnine. J. Am. Chem. Soc. 1954, 76, 4749-4751. 
21. Woodward, R.; Heusler, K.; Gosteli, J.; Naegeli, P.; Oppolzer, W.; Ramage, R.; 
Ranganathan, S.; Vorbrüggen, H., The total synthesis of cephalosporin C1. J. Am. Chem. 
Soc. 1966, 88, 852-853. 



101 

22. Corey, E.; Ghosh, A., Total synthesis of ginkgolide A. Tetrahedron Lett. 1988, 
29, 3205-3206. 
23. Corey, E.; Gin, D.; Kania, R., Enantioselective total synthesis of ecteinascidin 
743. J. Am. Chem. Soc. 1996, 118, 9202-9203. 
24. Nicolaou, K.; Yang, Z.; Liu, J.; Ueno, P.; Nantermet, R.; Guy, C.; Claiborne, C.; 
Renaud, J.; Couladouros, E.; Paulvannan, K.; Sorensen, E., Total synthesis of taxol. 
Nature 1994, 367, 630. 
25. Nicolaou, K., The total synthesis of brevetoxin B: a twelve-year odyssey in 
organic synthesis. Angew. Chem., Int. Ed. Engl. 1996, 35, 588-607. 
26. Nicolaou, K.; Daines, R.; Chakraborty, T.; Ogawa, Y., Total synthesis of 
amphotericin B. J. Am. Chem. Soc. 1987, 109, 2821-2822. 
27. Nicolaou, K.; Mitchell, H.; Jain, N.; Winssinger, N.; Hughes, R.; Bando, T., Total 
synthesis of vancomycin. Angew. Chem., Int. Ed. 1999, 38, 240-244. 
28. Newman, D. J.; Cragg, G. M., Natural products as sources of new drugs from 
1981 to 2014. J. Nat. Prod. 2016, 79, 629-661. 
29. Li, J.; Vederas, J., Drug discovery and natural products: end of an era or an 
endless frontier? Science 2009, 325, 161-165. 
30. Kartal, M., Intellectual property protection in the natural product drug discovery, 
traditional herbal medicine and herbal medicinal products. Phytother. Res. 2007, 21, 113-
119. 
31. Baker, D.; Chu, M.; Oza, U.; Rajgarhia, V., The value of natural products to 
future pharmaceutical discovery. Nat. Prod. Rep. 2007, 24, 1225-1244. 
32. Bérdy, J., Bioactive microbial metabolites: A personal view. J. Antibiot. 2005, 58, 
1-26. 
33. Fleming, A., On the antibacterial action of cultures of a Penicillium, with special 
reference to their use in the isolation of B. influenzæ. Br. J. Exp. Pathol. 1929, 10, 226-
236. 
34. Ligon, B., Penicillin: its discovery and early development. Semin. Pediatr. Infect. 
Dis. 2004, 15, 52-57. 
35. Tugwell, P.; Bombardier, C.; Tugwell, P.; Gent, M.; Bennett, K.; Roberts, R.; 
Ludwin, D.; Bensen, W.; Carette, S.; Chalmers, A.; Klinkhoff, A.; Esdaile, J.; Kraag, G., 
Low-dose cyclosporin versus placebo in patients with rheumatoid arthritis. Lancet 1990, 
335, 1051-1055. 
36. Ellis, C.; Gorsulowsky, D.; Hamilton, T.; Billings, J.; Brown, M.; Headington, J.; 
Cooper, K.; Baadsgaard, O.; Duell, E.; Annesley, T.; Turcotte, J.; Voorhees, J., 
Cyclosporine improves psoriasis in a double-blind study. JAMA, J. Am. Med. Assoc. 
1986, 256, 3110-3116. 
37. Brynskov, J.; Freund, L.; Rasmussen, S.; Lauritsen, K.; de Muckadell, O.; 
Williams, N.; MacDonald, A.; Tanton, R.; Molina, F.; Campanini, M.; Bianchi, P.; Ranzi, 
T.; di Palo, F.; Malchow-Møller, A.; Thomsen, O.; Tage-Jensen, U.; Binder, V.; Rus, P., 
A placebo-controlled, double-blind, randomized trial of cyclosporine therapy in active 
chronic Crohn's disease. N. Engl. J. Med. 1989, 321, 845-850. 
38. Cohen, D.; Loertscher, R.; Rubin, M.; Tilney, N.; Carpenter, C.; Strom, T., 
Cyclosporine: a new immunosuppressive agent for organ transplantation. Ann. Intern. 
Med. 1984, 101, 667-682. 



102 

39. Harvey, C.; Tang, M.; Schlecht, U.; Horecka, J.; Fischer, C.; Lin, H.; Li, J.; 
Naughton, B.; Cherry, J.; Miranda, M.; Li, Y.; Chu, A.; Hennessy, J.; Vandova, G.; 
Inglis, D.; Aiyar, R.; Steinmetz, L.; Davis, R.; Medema, M.; Sattely, E.; Khosla, C.; St. 
Onge, R.; Tang, Y.; Hillenmeyer, M., HEx: a heterlogous expression platform for the 
discovery of fungal natural products. Sci. Adv. 2018, 4, eaar5459. 
40. Roth, B., The discovery and development of atorvastatin, a potent novel 
hypolipidemic agent. In Prog. Med. Chem., King, F.; Oxford, A.; Reitz, A.; Dax, S., Eds. 
Elsevier: 2002; Vol. 40, pp 1-22. 
41. Blackwell, M., The fungi: 1, 2, 3 ... 5.1 million species? Am. J. Bot. 2011, 98, 
426-438. 
42. Bergmann, S.; Funk, A.; Scherlach, K.; Schroeckh, V.; Shelest, E.; Horn, U.; 
Hertweck, C.; Brakhage, A., Activation of a silent fungal polyketide biosynthesis 
pathway through regulatory cross talk with a cryptic nonribosomal peptide synthetase 
gene cluster. Appl. Environ. Microbiol. 2010, 76, 8143-8149. 
43. Keller, N.; Turner, G.; Bennett, J., Fungal secondary metabolism -- from 
biochemistry to genomics. Nat. Rev. Microbiol. 2005, 3, 937-947. 
44. Stack, D.; Neville, C.; Doyle, S., Nonribosomal peptide synthesis in Aspergillus 
fumigatus and other fungi. Microbiology 2007, 153, 1297-1306. 
45. Schwarzer, D.; Finking, R.; Marahiel, M., Nonribosomal peptides: from genes to 
products. Nat. Prod. Rep. 2003, 20, 275-287. 
46. Schmidt-Dannert, C., Biosynthesis of terpenoid natural products in fungi. In 
Biotechnology of Isoprenoids, Schrader, J.; Bohlmann, J., Eds. Springer, Cham: 2014; 
Vol. 148, pp 19-61. 
47. Xu, W.; Gavia, D.; Tang, Y., Biosynthesis of fungal indole alkaloids. Nat. Prod. 
Rep. 2014, 31, 1474-1887. 
48. Iwasaki, S.; Kobayashi, H.; Furukawa, J.; Namikoshi, M.; Okuda, S.; Sato, Z.; 
Matsuda, I.; Noda, T., Studies on macrocyclic lactone antibiotics VII. Structure of a 
phytotoxin "rhizoxin" produced by Rhizopus chinensis. J. Antibiot. 1984, 37, 354-362. 
49. Partida-Martinez, L.; Hertweck, C., Pathogenic fungus harbours endosymbiotic 
bacteria for toxin production. Nature 2005, 437, 884-888. 
50. Scherlach, K.; Partida-Martinez, L.; Dahse, H.; Hertweck, C., Antimitotic 
rhizoxin derivatives from a cultured bacterial endosymbiont of the rice pathogenic fungus 
Rhizopus microsporus. J. Am. Chem. Soc. 2006, 128, 11529-11536. 
51. Erba, E.; Bergamaschi, D.; Bassano, L.; Damia, G.; Ronzoni, S.; Faircloth, G.; 
D'Incalci, M., Ecteinascidin-743 (ET-743), a natural marine compound, with a unique 
mechanism of action. Eur. J. Cancer 2001, 37, 97-105. 
52. Schofield, M.; Jain, S.; Porat, D.; DIck, G.; Sherman, D., Identification and 
analysis of the bacterial endosymbiont specialized for the production of the 
chemotherapeutic natural product ET-743. Environ. Microbiol. 2015, 17, 3964-3975. 
53. Rath, C.; Janto, B.; Earl, J.; Ahmed, A.; Hu, F.; Hiller, L.; Dahlgren, M.; Kraft, 
R.; Yu, F.; Wolff, J.; Kweon, H.; Christiansen, M.; Håkansson, K.; Williams, R.; Ehrlich, 
G.; Sherman, D., Meta-omic characterization of the marine invertebrate microbial 
consortium that produces the chemotherapeutic natural product ET-743. ACS Chem. Biol. 
2011, 6, 1244-1256. 



103 

54. Sabater-Muñoz, B.; Toft, C.; Alvarez-Ponce, D.; Fares, M., Chance and necessity 
in the genome evolution of endosymbiotic bacteria of insects. ISME J. 2017, 11, 1291-
1304. 
55. Manzano-Marín, A.; Latorre, A., Snapshots of a shrinking partner: genome 
reduction in Serratia symbiotica. Sci. Rep. 2016, 6, 32590. 
56. Kikuchi, Y., Endosymbiotic bacteria in insects: their diversity and culturability. 
Microbes Environ. 2009, 24, 195-204. 
57. Stewart, E., Growing unculturable bacteria. J. Bacteriol. 2012, 194, 4151-4160. 
58. Strobel, G.; Daisy, B., Bioprospecting for microbial endophytes. Microbiol. Mol. 
Biol. Rev. 2003, 67, 491-502. 
59. Deshmukh, S.; Verekar, S.; Bhave, S., Endophytic fungi: a reservoir of 
antibacterials. Front. Microbiol. 2015, 5, 715. 
60. Guo, B.; Wang, Y.; Sun, X.; Tang, K., Bioactive natural products from 
endophytes: a review. Appl. Biochem. Microbiol. 2008, 44, 136-142. 
61. Kusari, S.; Zühlke, S.; Spiteller, M., Effect of artificial reconstitution of the 
interaction between the plant Camptotheca acuminata and the fungal endophyte 
Fusarium solani on camptothecin biosynthesis. J. Nat. Prod. 2011, 74, 764-775. 
62. Hover, B.; Kim, S.; Katz, M.; Charlop-Powers, Z.; Owen, J.; Ternei, M.; Maniko, 
J.; Estrela, A.; Molina, H.; Park, S.; Perlin, D.; Brady, S., Culture-independent discovery 
of the malacidins as calcium-dependent antibiotics with activity against multidrug-
resistant Gram-positive pathogens. Nat. Microbiol. 2018, 3, 415-422. 
63. Milshetyn, A.; Schneider, J. S.; Brady, S. F., Mining the metabiome: identifying 
novel natural products from microbial communities. Chem. Biol. 2014, 21, 1211-1223. 
64. Branca, M.; Garber, K.; DeFrancesco, L., Nature Biotechnology's academic 
spinouts of 2017. Nat. Biotechnol. 2018, 36, 297-306. 
65. Ling, L.; Schneider, T.; Peoples, A.; Spoering, A.; Engels, I.; Conlon, B.; 
Meuller, A.; Schäberle, T.; Hughes, D.; Epstein, S.; Jones, M.; Lazarides, L.; Steadman, 
V.; Cohen , D.; Felix, C.; Fetterman, K.; Millett, W.; Nitti, A.; Zullo, A.; Chen, C.; 
Lewis, K., A new antibiotic kills pathogens without detectable resistance. Nature 2015, 
517, 455-459. 
66. Gruene, T.; Wennmacher, J.; Zaubitzer, C.; Holstein, J.; Heidler, J.; Fecteau-
Lefebvre, A.; De Carlo, S.; Müller, E.; Goldie, K.; Regeni, I.; Li, T.; Santiso-Quinones, 
G.; Steinfield, G.; Handschin, S.; van Genderen, E.; van Bokhoven, J.; Clever, G.; 
Pantelic, R., Rapid structure determination of microcrystalline molecular compounds 
using electron diffraction. Angew. Chem., Int. Ed. Engl. 2018, Accepted Author 
Manuscript. 
67. Jones, C.; Martynowycz, M.; Hattne, J.; Fulton, T.; Stoltz, B.; Rodriguez, J.; 
Nelson, H.; Gonen, T., The cryoEM method MicroED as a powerful tool for small 
molecule structure determination. ACS Cent. Sci. 2018, 4, 1587-1592. 
68. Sutton, M.; Sternberg, M.; Koumans, E. H.; McQuillan, G.; Berman, S.; 
Markowitz, L., The prevalence of Trichomonas vaginalis infection among reproductive-
age women in the United States, 2001-2004. Clin. Infect. Dis. 2007, 45, 1319-26. 
69. Kissinger, P., Trichomonas vaginalis: a review of epidemiologic, clinical and 
treatment issues. BMC Infect. Dis. 2015, 15, 307. 
70. Gabriel, G.; Robertson, E.; Thin, R. N., Single dose treatment of trichomoniasis. 
J. Int. Med. Res. 1982, 10, 129-30. 



104 

71. Aubert, J. M.; Sesta, H. J., Treatment of vaginal trichomoniasis. Single, 2-gram 
dose of metronidazole as compared with a seven-day course. The Journal of reproductive 
medicine 1982, 27, 743-745. 
72. Howe, K.; Kissinger, P. J., Single-dose compared with multidose metronidazole 
for the treatment of trichomoniasis in women: a meta-analysis. Sex. Transm. Dis. 2017, 
44, 29-34. 
73. Bendesky, A.; Menéndez, D.; Ostrosky-Wegman, P., Is metronidazole 
carcinogenic? Mutat. Res. 2002, 511, 133-144. 
74. Dobiás, L.; Černá, M.; Rössner, P.; Šrám, R., Genotoxicity and carciogenicity of 
metronidazole. Mutat. Res. 1994, 317, 177-194. 
75. Centers for Disease Control and Prevention 2015 sexually transmitted diseases 
treatment guidelines: trichomoniasis. https://www.cdc.gov/std/tg2015/trichomoniasis.htm 
(accessed June 28, 2018). 
76. Kirkcaldy, R. D.; Augostini, P.; Asbel, L. E.; Bernstein, K. T.; Kerani, R. P.; 
Mettenbrink, C. J.; Pathela, P.; Schwebke, J. R.; Secor, W. E.; Workowski, K. A.; Davis, 
D.; Braxton, J.; Weinstock, H. S., Trichomonas vaginalis antimicrobial drug resistance in 
6 U.S. cities, STD Surveillance Network, 2009-2010. Emerging Infect. Dis. 2012, 18, 
939-43. 
77. Schwebke, J. R.; Barrientes, F. J., Prevalence of Trichomonas vaginalis isolates 
with resistance to metronidazole and tinidazole. Antimicrob Agents Chemother 2006, 50, 
4209-10. 
78. Desrivot, J.; Waikedre, J.; Cabalion, P.; Herrenknecht, C.; Bories, C.; 
Hocquemiller, R.; Fournet, A., Antiparasitic activity of some New Caledonian medicinal 
plants. J. Ethnopharmacol. 2007, 112, 7-12. 
79. Calzada, F.; Yepez-Mulia, L.; Tapia-Contreras, A., Effect of Mexican medicinal 
plant used to treat trichomoniasis on Trichomonas vaginalis trophozoites. J. 
Ethnopharmacol. 2007, 113, 248-251. 
80. Lara-Díaz, V.; Gaytán-Ramos, A.; Dávalos-Balderas, A.; Santos-Guzmán, J.; 
Mata-Cárdenas, B.; Vargas-Villarreal, J.; Barbosa-Quintana, A.; Sanson, M.; López-
Reyes, A.; Moreno-Cuevas, J., Microbiological and toxicological effects of Perla black 
bean (Phaseolus vulgaris L.) extracts: in vitro and in vivo studies. Basic Clin. Pharmacol. 
Toxicol. 2009, 104, 81-86. 
81. Moon, T.; Wilkinson, J.; Cavanagh, H., Antiparasitic activity of two Lavandula 
essential oils against Giardia duodenalis, Trichomonas vaginalis, and Hexamita inflata. 
Parasitol. Res. 2006, 99, 722-728. 
82. Kaneda, Y.; Tanaka, T.; Saw, T., Effects of berberine, a plant alkaloid, on the 
growth of anaerobic protozoa in axenic culture. Tokai J. Exp. Clin. Med. 1990, 15, 417-
423. 
83. Wu, J.; Zhang, M.; Ding, D.; Tan, T.; Yan, B., Effect of Cladonia alpestris on 
Trichomonas vaginalis in vitro. Chinese Journal of Parasitology and Parasitic Diseases 
1995, 13, 126-129. 
84. Wang, H., Antitrichomonal action of emodin in mice. J. Ethnopharmacol. 1993, 
40, 111-116. 
85. Bhagwat, P.; Gokhale, B.; Sane, H.; Thirumalachar, M., Assessment of 
antitrichomonal activity of hamycin. Indian J. Med. Res. 1964, 52, 36-37. 



105 

86. He, W.; VanPuyvelde, L.; Maes, L.; Bosselaers, J.; DeKimpe, N., 
Antitrichomonas in vitro activity of Cussonia holstii Engl. Nat. Prod. Res. 2003, 17, 127-
133. 
87. Loyola, L.; Bórquez, J.; Morales, G.; Araya, J.; González, J.; Neira, I.; Sagua, H.; 
San-Martín, A., Diterpenoids from Azorella yareta and their trichomonicidal activities. 
Phytochemistry 2001, 56, 177-180. 
88. Scopel, M.; dos Santos, O.; Frasson, A.; Abraham, W.; Tasca, T.; Henriques, A.; 
Macedo, A., Anti-Trichomonas vaginalis activity of marine-associated fungi from the 
South Brazilian Coast. Exp. Parasitol. 2013, 133, 211-216. 
89. Duarte, M.; Seixas, A.; de Carvalho, M.; Tasca, T.; Macedo, A., Amaurocine: 
anti-Trichomonas vaginalis protein produced by the basidiomycete Amauroderma 
camerarium. Exp. Parasitol. 2016, 161, 6-11. 
90. Kayser, O.; Kiderlen, A.; Croft, S., Natural products as antiparasitic drugs. 
Parasitol. Res. 2003, 90, S55-S62. 
91. Meingassner, J.; Thurner, J., Strain of Trichomonas vaginalis resistant to 
metronidazole and other 5-nitroimidazoles. Antimicrob. Agents Chemother. 1979, 15, 
254-257. 
92. Campos Aldrete, M.; Salgado-Zamora, H.; Luna, J.; Meléndez, E.; Meráz-Ríos, 
M., A high-throughput colorimetric and fluorometric microassay for the evaluation of 
nitroimidazole derivatives anti-Trichomonas activity. Toxicol. in Vitro 2005, 19, 1045-
1050. 
93. Duarte, M.; Giordani, R.; De Carli, G.; Zuanazzi, J.; Macedo, A.; Tasca, T., A 
quantitative resazurin assay to determinate the viability of Trichomonas vaginalis and the 
cytotoxicity of organic solvents and surfactant agents. Exp. Parasitol. 2009, 123, 195-
198. 
94. Humphreys, M.; Allman, R.; Lloyd, D., Determination of the viability of 
Trichomonas vaginalis using flow cytometry. Cytometry 1994, 15, 343-348. 
95. Chen, J. L.; Steele, T. W. J.; Stuckey, D. C., Modeling and application of a rapid 
fluorescence-based assay for biotoxicity in anaerobic digestion. Environ. Sci. Technol. 
2015, 49, 13463-13471. 
96. Forestier, C.; Späth, G.; Prina, E.; Dasari, S., Simultaneous multi-parametric 
analysis of Leishmania and of its hosting mammal cells: a high content imaging-based 
method enabling sound drug discovery process. Microb. Pathog. 2015, 88, 103-108. 
97. Ruelius, H.; Gauche, A., Fusarubin, a naphthoquinone coloring matter from 
Fusaria. Justus Liebigs Ann. Chem. 1950, 569, 38-59. 
98. Arnstein, H.; Cook, A., Production of antibiotics by fungi. Part III. Javanicin. An 
antibacterial pigment from Fusarium javanicum. J. Chem. Soc. 1947, 1947, 1021-1028. 
99. Arsenault, G., Fungal metabolites. III. Quinones from Fusarium solani D2 purple 
and structure of (+)-solaniol. Tetrahedron 1968, 24, 4745-4749. 
100. Kurobane, I. Z., N.; Fukuda, A, New metabolites of Fusarium martii related to 
dihydrofusarubin. J. Antibiot. 1985, 39, 205-214. 
101. Hashimoto, J.; Motohashi, K.; Sakamoto, K.; Hashimoto, S.; Yamanouchi, M.; 
Tanaka, H.; Takahashi, T.; Takagi, M.; Shin-ya, K., Screening and evaluation of new 
inhibitors of hepatic glucose production. J. Antibiot. 2009, 62, 625-629. 



106 

102. Hughes, W.; Gray, V.; Gutteridge, W.; Latter, V.; Pudney, M., Efficacy of a 
hydroxynaphthoquinone, 566C80, in experimental Pneumocystis carinii pneumonitis. 
Antimicrob. Agents Chemother. 1990, 34, 225-228. 
103. Baggish, A.; Hill, D., Antiparasitic agent atovaquone. Antimicrob. Agents 
Chemother. 2002, 46, 1163-1173. 
104. Baell, J. B., Feeling nature's PAINS: Natural products, natural product drugs, and 
pan assay interference compounds (PAINS). J. Nat. Prod. 2016, 79, 616-28. 
105. Tabata, N.; Tomoda, H.; Matsuzaki, K.; Omura, S., Structure and biosynthesis of 
xanthoquinodins, anticoccidial antibiotics. J. Am. Chem. Soc. 1993, 115, 8558-8564. 
106. Sobel, J., Is there a protective role for vaginal flora? Curr. Infect. Dis. Rep. 1999, 
1, 379-383. 
107. Ma, B.; Forney, L.; Ravel, J., The vaginal microbiome: rethinking health and 
diseases. Annu. Rev. Microbiol. 2012, 66, 371-389. 
108. Davids, B.; Gillin, F., Methods for Giardia culture, cryopreservation, encystation, 
and excystation in vitro. In Giardia A Model Organism, Luján, H.; Svärd, S., Eds. 
SpringerWienNewYork: Wien, Austria, 2011; pp 381-394. 
109. Paget, T.; Lloyd, D., Trichomonas vaginalis requires traces of oxygen and high 
concentrations of carbon dioxide for optimal growth. Mol. Biochem. Parasitol. 1990, 41, 
65-72. 
110. Hansen, M.; Nielsen, S.; Berg, K., Re-examination and further development of a 
precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods 
1989, 119, 203-210. 
111. Fieser, L., The tautomerism of hydroxy quinones. J. Am. Chem. Soc. 1928, 50, 
439-465. 
112. Sreelatha, T.; Kandhasamy, S.; Dinesh, R.; Shruthy, S.; Shweta, S.; Mukesh, D.; 
Karunagaran, D.; Balaji, R.; Mathivanan, N.; Perumal, P., Synthesis and SAR study of 
novel anticancer and antimicrobial naphthoquinone amide derivatives. Bioorg. Med. 
Chem. Lett. 2014, 24, 3647-3651. 
113. Burns, C.; Gill, M.; Saubern, S., Pigments of fungi. XXI. Synthesis of (±)-6-
demethoxyaustrocortirubin. Aust. J. Chem. 1991, 44, 1427-1445. 
114. Asao, T.; Büchi, G.; Abdel-Kader, M.; Chang, S.; Wick, E.; Wogan, G., The 
structures of aflatoxins B and G1. J. Am. Chem. Soc. 1965, 87, 882-886. 
115. Eaton, D.; Gallagher, E., Mechanisms of aflatoxin carcinogenesis. Annu. Rev. 
Pharmacol. Toxicol. 1994, 34, 135-172. 
116. Monson, M.; Coulombe, R.; Reed, K., Aflatoxicosis: lessons from toxicity and 
responses to aflatoxin B1 in poultry. Agriculture 2015, 5, 742-777. 
117. Squire, R., Ranking animal carcinogens: a proposed regulatory approach. Science 
1981, 214, 877-880. 
118. Kew, M., Aflatoxins as a cause of hepatocellular carcinoma. J. Gastrointestin. 
Liver Dis. 2013, 22, 305-310. 
119. Liu, Y.; Wu, F., Global burden of aflatoxin-induced hepatocellular carcinoma: a 
risk assessment. Environ. Health Perspect. 2010, 118, 818-824. 
120. Bennett, J.; Klich, M., Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497-516. 
121. Klich, M., Aspergillus flavus: the major producer of aflatoxin. Mol. Plant Pathol. 
2007, 8, 713-722. 



107 

122. Gallagher, E.; Kunze, K.; Stapleton, P.; Eaton, D., The kinetics of aflatoxin B1 
oxidation by human cDNA-expressed and human liver microsomal cytochromes P450 
1A2 and 3A4. Toxicol. Appl. Pharmacol. 1996, 141, 595-606. 
123. Ramsdell, H.; Parkinson, A.; Eddy, A.; Eaton, D., Bioactivation of aflatoxin B1 by 
human liver microsomes: role of cytochrome P450 IIIA enzymes. Toxicol. Appl. 
Pharmacol. 1991, 106, 436-447. 
124. Sudakin, D., Dietary aflatoxin exposure and chemoprevention of cancer: a clinical 
review. Clin. Toxicol. 2003, 41, 195-204. 
125. Kensler, T.; He, X.; Otieno, M.; Egner, P.; Jacobson, L.; Chen, B.; Wang, J.; Zhu, 
Y.; Zhang, B.; Wang, J.; Wu, Y.; Zhang, Q.; Qian, G.; Kuang, S.; Fang, X.; Li, Y.; Yu, 
L.; Prochaska, H.; Davidson, N.; Gordon, G.; Gorman, M.; Zarba, A.; Enger, C.; Muñoz, 
A.; Helzlsouer, K., Oltipraz chemoprevention trial in Qidong, People's Republic of 
China: modulation of serum aflatoxin albumin adduct biomarkers. Cancer Epidemiol., 
Biomarkers Prev. 1998, 7, 127-134. 
126. Egner, P.; Wang, J.; Zhu, Y.; Zhang, B.; Wu, Y.; Zhang, Q.; Qian, G.; Kuang, S.; 
Gange, S.; Jacobson, L.; Helzlsouer, K.; Bailey, G.; Groopman, J.; Kensler, T., 
Chlorophyllin intervention reduces aflatoxin-DNA adducts in individuals at high risk for 
liver cancer. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 14601-14606. 
127. Gerets, H.; Tilmant, K.; Gerin, B.; Chanteux, H.; Depelchin, B.; Dhalluin, S.; 
Atienzar, F., Characterization of primary human hepatocytes, HepG2 cells, and HepaRG 
cells at the mRNA level and CYP activity in response to inducers and their predictivity 
for the detection of human hepatotoxins. Cell Biol. Toxicol. 2012, 28, 69-87. 
128. Chen, X.; Murdoch, R.; Shafer, D.; Ajuwon, K.; Applegate, T., Cytotoxicity of 
various chemicals and mycotoxins in fresh primary duck embryonic fibroblasts: a 
comparison to HepG2 cells. J. Appl. Toxicol. 2016, 36, 1437-1445. 
129. Yokoyama, Y.; Sasaki, Y.; Terasaki, N.; Kawataki, T.; Takekawa, K.; Iwase, Y.; 
Shimizu, T.; Sanoh, S.; Ohta, S., Comparison of drug metabolism and its related 
hepatotoxic effects in HepaRG, cryopreserved human hepatocytes, and HepG2 cell 
cultures. Biol. Pharm. Bull. 2018, 41, 722-732. 
130. Ang, M.; Pethe, K., Contribution of high-content imaging technologies to the 
development of anti-infective drugs. Cytometry, Part A 2016, 89, 755-760. 
131. Bammler, T.; Slone, D.; Eaton, D., Effects of dietary oltipraz and ethoxyquin on 
aflatoxin B1 biotransformation in non-human primates. Toxicol. Sci. 2000, 54, 30-41. 
132. Valdivia, A.; Martínez, A.; Damián, F.; Quezada, T.; Ortíz, R.; Martínez, C.; 
Llamas, J.; Rodríguez, M.; Yamamoto, L.; Jaramillo, F.; Loarca-Piña, M.; Reyes, J., 
Efficacy of N-acetylcysteine to reduce the effects of aflatoxin B1 intoxication in broiler 
chickens. Poult. Sci. 2001, 80, 727-734. 
133. Sandilands, E.; Bateman, D., Adverse reactions associated with acetylcysteine. 
Clin. Toxicol. 2009, 47, 81-88. 
134. Cai, S.; Risinger, A.; Nair, S.; Peng, J.; Anderson, T.; Du, L.; Powell, D.; 
Mooberry, S.; Cichewicz, R., Identification of compounds with efficacy against malarial 
parasites from common North American plants. J. Nat. Prod. 2016, 79, 490-498. 
135. Sansen, S.; Yano, J.; Reynald, R.; Schoch, G.; Griffin, K.; Stout, C.; Johnson, E., 
Adaptations for the oxidation of polycyclic aromatic hydrocarbons exhibited by the 
structure of human P450 1A2. J. Biol. Chem. 2007, 282, 14348-14355. 



108 

136. Dutkiewicz, Z.; Mikstacka, R., Structure-based drug design for cytochrome P450 
family 1 inhibitors. Bioinorg. Chem. Appl. 2018, 2018, 1-21. 
137. Watanabe, Y.; Kojima, H.; Takeuchi, S.; Uramaru, N.; Sanoh, S.; Sugihara, K.; 
Kitamura, S.; Ohta, S., Metabolism of UV-filter benzophenone-3 by rat and human liver 
microsomes and its effect on endocrine-disrupting activity. Toxicol. Appl. Pharmacol. 
2015, 282, 119-128. 
138. Takemoto, K.; Yamazaki, H.; Nakajima, M.; Yokoi, T., Genotoxic activation of 
benzophenone and its two metabolites by human cytochrome P450s in SOS/umu assay. 
Mutat. Res. 2002, 519, 199-204. 
139. Shimada, T.; Tanaka, K.; Takenaka, S.; Murayama, N.; Martin, M.; Foroozesh, 
M.; Yamazaki, H.; Guengerich, F.; Komori, M., Structure-function relationships of 
inhibition of human cytochromes P450 1A1, 1A2, 1B1, 2C9, and 3A4 by 33 flavonoid 
derivatives. Chem. Res. Toxicol. 2010, 23, 1921-1935. 
140. Mikstacka, R.; Wierzchowski, M.; Dutkiewicz, Z.; Gielara-Korzańska, A.; 
Korzański, A.; Teubert, A.; Sobiak, S.; Baer-Dubowska, W., 3,4,2'-trimethoxy-trans-
stilbene - a potent CYP1B1 inhibitor. MedChemComm 2014, 5, 496-501. 
141. Takemura, H.; Itoh, T.; Yamamoto, K.; Sakakibara, H.; Shimoi, K., Selective 
inhibition of methoxyflavonoids on human CYP1B1 activity. Bioorg. Med. Chem. 2010, 
18, 6310-6315. 
142. Rokade, B.; Prabhu, K., Chemoselective Schmidt reaction mediated by triflic 
acid: selective synthesis of nitriles from aldehydes. J. Org. Chem. 2012, 77, 5364-5370. 
143. Zeldin, R.; Petruschke, R., Pharmacological and therapeutic properties of 
ritonavir-boosted protease inhibitor therapy in HIV-infected patients. J. Antimicrob. 
Chemother. 2004, 53, 4-9. 
144. Sevrioukova, I.; Poulos, T., Understanding the mechanism of cytochrome P450 
3A4: recent advances and remaining problems. Dalton Trans. 2013, 42, 3116-3126. 
145. Riley, R.; Parker, A.; Trigg, S.; Manners, C., Development of a generalized, 
quantitative physicochemical model of CYP3A4 inhibition for use in early drug 
discovery. Pharm. Res. 2001, 18, 652-655. 
146. Kaur, P.; Chamberlin, A. R.; Poulos, T.; Sevrioukova, I., Structure-based inhibitor 
design for evaluation of a CYP3A4 pharmacophore model. J. Med. Chem. 2016, 59, 
4210-4220. 
147. Halpert, J., Structural basis of selective cytochrome P450 inhibition. Annu. Rev. 
Pharmacol. Toxicol. 1995, 35, 29-53. 
148. Nakamura, K.; Aizawa, K.; Aung, K.; Yamauchi, J.; Tanoue, A., Zebularine 
upregulates expression of CYP genes through inhibition of DNMT1 and PKR in HepG2 
cells. Sci. Rep. 2017, 7, 41093. 
149. Herzog, N.; Katzenberger, N.; Martin, F.; Schmidtke, K., Generation of 
cytochrome P450 3A4-overexpressing HepG2 cell clones for standardization of 
hepatocellular testosterone 6β-hydroxylation activity. Journal of Cellular Biotechnology 
2015, 1, 15-26. 
150. Lauschke, V.; Hendriks, D.; Bell, C.; Anderson, T.; Ingelman-Sundberg, M., 
Novel 3D culture systems for studies of human liver function and assessment of the 
hepatotoxicity of drugs and drug candidates. Chem. Res. Toxicol. 2016, 29, 1936-1955. 
151. Terashima, J.; Goto, S.; Hattori, H.; Hoshi, S.; Ushirokawa, M.; Kudo, K.; 
Habano, W.; Ozawa, S., CYP1A1 and CYP1A2 expression levels are differentially 



109 

regulated in three-dimensional spheroids of liver cancer cells compared to two-
dimensional monolayer cultures. Drug Metab. Pharmacokinet. 2015, 30, 434-440. 
152. Takahashi, Y.; Hori, Y.; Yamamoto, T.; Ohara, Y.; Tanaka, H., 3D spheroid 
cultures improve the metabolic gene expression profiles of HepaRG cells. Biosci. Rep. 
2015, 35, e00208. 
153. Fennema, E.; Rivron, N.; Rouwkema, J.; van Blitterswijk, C.; de Boer, J., 
Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol. 2013, 31, 
108-115. 
154. Sant, S.; Johnston, P., The production of 3D tumor spheroids for cancer drug 
discovery. Drug Discovery Today: Technol. 2017, 23, 27-36. 
155. Shah, U.-K.; Mallia, J. d. O.; Singh, N.; Chapman, K. E.; Doak, S. H.; Jenkins, G. 
J. S., A three-dimensional in vitro HepG2 cells liver spheroid model for genotoxicity 
studies. Mutat. Res. 2018, 825, 51-58. 
156. Motley, J.; Stamps, B.; Mitchell, C.; Thompson, A.; Cross, J.; You, J.; Powell, D.; 
Stevenson, B.; Cichewicz, R., Opportunistic sampling of roadkill as an entry point to 
accessing natural products assembled by bacteria associated with non-anthropoidal 
mammalian microbiomes. J. Nat. Prod. 2017, 80, 598-608. 
157. Lou, J.; Yu, R.; Wang, X.; Mao, Z.; Fu, L.; Liu, Y.; Zhou, L., Alternariol 9-
methyl ether from the endophytic fungus Alternaria sp. Samif01 and its bioactivities. 
Braz. J. Microbiol. 2016, 47, 96-101. 
158. Huang, J.; Guo, Y.; Jiang, J.; Liu, H.; Ji, Y., An eco-friendly Co(OAc)2-catalyzed 
aerobic oxidation of 4-benzylphenols into 4-hydroxybenzophenones. Res. Chem. 
Intermed. 2015, 41, 7115-7124. 
159. Cohrt, A.; Jensen, J.; Nielsen, T., Traceless azido linker for the solid-phase 
synthesis of NH-1,2,3-triazoles via Cu-catalyzed azide-alkyne cycloaddition reactions. 
Org. Lett. 2010, 12, 5414-5417. 
160. Yuen, T.; Brimble, M., Total synthesis of 7',8'-dihydroaigialospirol. Org. Lett. 
2012, 14, 5154-5157. 
161. Genoux-Bastide, E.; Lorendeau, D.; Nicolle, E.; Yahiaoui, S.; Magnard, S.; Di 
Pietro, A.; Baubichon-Cortay, H.; Boumendjel, A., Identification of xanthones as 
selective killers of cancer cells overexpressing the ABC transporter MRP1. 
ChemMedChem 2011, 6, 1478-1484. 
162. Petrlikova, E.; Waisser, K.; Palat, K.; Kunes, J.; Kaustova, J., A new group of 
potential antituberculotics: N-(2-pyridylmethyl)salicylamides and N-(3-
pyridylmethyl)salicylamides. Chem. Pap. 2011, 65, 52-59. 
163. Twardziok, M.; Kleinsimon, S.; Rolff, J.; Jäger, S.; Eggert, A.; Seifert, G.; 
Delebinski, C., Multiple active compounds from Viscum album L. synergistically 
converge to promote apoptosis in Ewing sarcoma. PLoS One 2016, 11, e0159749. 
164. Amaral, A.; Ordóñez, J.; Otero-Motta, A.; García-Domínguez, D.; Sevillano, M.; 
de Álava, E., Innovative therapies in Ewing sarcoma. Advances in Anatomic Physiology 
2014, 21, 44-62. 
165. Stahl, M.; Ranft, A.; Paulussen, M.; Bölling, T.; Vieth, V.; Bielack, S.; Görtitz, I.; 
Braun-Munzinger, G.; Hardes, J.; Jürgens, H.; Dirksen, U., Risk of recurrence and 
survival after relapse in patients with Ewing sarcoma. Pediatr. Blood Cancer 2011, 57, 
549-553. 



110 

166. Taylor, B.; Barretina, J.; Maki, R.; Antonescu, C.; Singer, S.; Ladanyi, M., 
Advances in sarcoma genomics and new therapeutic targets. Nat. Rev. Cancer 2011, 11, 
541-557. 
167. Lessnick, S.; Ladanyi, M., Molecular pathogenesis of Ewing sarcoma: new 
therapeutic and transcriptomal targets. Annu. Rev. Pathol.: Mech. Dis. 2011, 7, 145-159. 
168. Bates, D.; Eastman, A., Microtubule destabilising agents: far more than just 
antimitotic anticancer drugs. Br. J. Clin. Pharmacol. 2017, 83, 255-268. 
169. Mukhtar, E.; Adhami, V.; Mukhtar, H., Targeting microtubules by natural agents 
for cancer therapy. Mol. Cancer Ther. 2014, 13, 275-284. 
170. Dumontet, C.; Jordan, M., Microtubule-binding agents: a dynamic field of cancer 
therapeutics. Nat. Rev. Drug Discovery 2011, 9, 790-803. 
171. Risinger, A.; Giles, F.; Mooberry, S., Microtubule dynamics as a target in 
oncology. Cancer Treat. Rev. 2008, 35, 255-261. 
172. Jordan, M.; Wilson, L., Microtubules as a target for anticancer drugs. Nat. Rev. 
Cancer 2004, 4, 253-265. 
173. Komlodi-Pasztor, E.; Sackett, D.; Fojo, A., Inhibitors targeting mitosis: tales of 
how great drugs against a promising target were brought down by a flawed rationale. 
Clin. Cancer Res. 2012, 18, 51-63. 
174. Field, J.; Kanakkanthara, A.; Miller, J., Microtubule-targeting agents are clinically 
successful due to both mitotic and interphase impairment of microtubule function. 
Bioorg. Med. Chem. 2014, 22, 5050-5059. 
175. Takahashi, M.; Iwasaki, S.; Kobayashi, H.; Okuda, S.; Murai, T.; Sato, Y., 
Rhizoxin binding to tubulin at the maytansine-binding site. Biochim. Biophys. Acta 1987, 
926, 215-223. 
176. Iwasaki, S.; Namikoshi, M.; Kobayashi, H.; Furukawa, J.; Okuda, S.; Itai, A.; 
Kasuya, A.; Iitaka, Y.; Sato, Z., Studies on macrocyclic lactone antibiotics VIII. Absolute 
structures of rhizoxin and a related compound. J. Antibiot. 1986, 39, 424-429. 
177. Takahashi, M.; Iwasaki, S.; Kobayashi, H.; Okuda, S., Studies on macrocyclic 
lactone antibiotics XI. Anti-mitotic and anti-tubulin activity of new antitumor antibiotics, 
rhizoxin and its homologues. J. Antibiot. 1987, 40, 66-72. 
178. Prota, A.; Bargsten, K.; Diaz, J.; Marsh, M.; Cuevas, C.; Liniger, M.; Neuhaus, 
C.; Andreu, J.; Altmanna, K.; Steinmetz, M., A new tubulin-binding site and 
pharmacophore for microtubule-destabilizing anticancer drugs. Proc. Natl. Acad. Sci. U. 
S. A. 2014, 111, 13817-13821. 
179. Scherlach, K.; Busch, B.; Lackner, G.; Paszkowski, U.; Hertweck, C., Symbiotic 
cooperation in the biosynthesis of a phytotoxin. Angew. Chem., Int. Ed. Engl. 2012, 51, 
9615-9618. 
180. Kato, Y.; Ogawa, Y.; Imada, T.; Iwasaki, S.; Shimazaki, N.; Kobayashi, T.; 
Komai, T., Studies on macrocyclic lactone antibiotics XIII. Anti-tubulin activity and 
cytotoxicity of rhizoxin derivatives: synthesis of a photoaffinity derivative. J. Antibiot. 
1991, 44, 66-75. 
181. Loper, J.; Henkels, M.; Shaffer, B.; Valeriote, F.; Gross, H., Isolation and 
identification of rhizoxin analogs from Pseudomonas fluorescens Pf-5 by using a 
genomic mining strategy. Appl. Environ. Microbiol. 2008, 74, 3085-3093. 
182. Takahashi, M.; Iwasaki, S.; Kobayashi, H.; Okuda, S.; Murai, T.; Sato, Y.; 
Haraguchi-Hiraoka, T.; Nagano, H., Studies on macrocyclic lactone antibiotics XI. Anti-



111 

mitotic and anti-tubulin activity of new antitumor antibiotics, rhizoxin and its 
homologues. J. Antibiot. 1987, 40, 66-72. 
183. Hanauske, A.-R.; Catimel, G.; Aamdal, S.; ten Bokkel Huinink, W.; Paridaens, 
R.; Pavlidis, N.; Kaye, S.; te Velde, A.; Wanders, J.; Verweij, J., Phase II clinical trials 
with rhizoxin in breast cancer and melanoma. Br. J. Cancer 1996, 73, 397-399. 
184. Kaplan, S.; Hanauske, A.; Pavlidis, N.; Bruntsch, U.; te Velde, A.; Wanders, J.; 
Heinrich, B.; Verweij, J., Single agent activity of rhizoxin in non-small-cell lung cancer: 
a phase II trial of the EORTC Early Clinical Trials Group. Br. J. Cancer 1996, 73, 403-
405. 
185. Verweij, J.; Wanders, J.; Gil, T.; Schöffski, P.; Catimel, G.; te Velde, A.; de 
Mulder, P., Phase II study of rhizoxin in squamous cell head and neck cancer. Br. J. 
Cancer 1996, 73, 400-402. 
186. McLeod, H.; Murray, L.; Wanders, J.; Setanoians, A.; Graham, M.; Pavlidis, N.; 
Heinrich, B.; ten Bokkel Huinink, W.; Wagener, D.; Aamdal, S.; Verweij, J., Multicentre 
phase II pharmacological evaluation of rhizoxin. Br. J. Cancer 1996, 74, 1944-1948. 
187. Bissett, D.; Graham, M.; Setanoians, A.; Chadwick, G.; Wilson, P.; Koier, I.; 
Henrar, R.; Schwartsmann, G.; Cassidy, J.; Kaye, S.; Kerr, D., Phase I and 
pharmacokinetic study of rhizoxin. Cancer Res. 1992, 52, 2894-2898. 
188. Tokui, T.; Maeda, N.; Kuroiwa, C.; Sasagawa, K.; Inoue, T.; Kawai, K.; Ikeda, 
T.; Komai, T., Tumor selective effect of RS-1541 (palmitoyl-rhizoxin) in M5076 
sarcoma and host tissues in vivo. Pharm. Res. 1995, 12, 370-375. 
189. Kusebauch, B.; Scherlach, K.; Kirchner, H.; Dahse, H.; Hertweck, C., 
Antiproliferative effects of ester- and amide-functionalized rhizoxin derivatives. 
ChemMedChem 2011, 6, 1998-2001. 
190. Hong, J.; White, J., The chemistry and biology of rhizoxins, novel antitumor 
macrolides from Rhizopus chinensis. Tetrahedron 2004, 60, 5653-5681. 
191. Ottmann, C.; van der Hoorn, R.; Kaiser, M., The impact of plant-pathogen studies 
on medicinal drug discovery. Chem. Soc. Rev. 2012, 41, 3168-3178. 
192. Du, L.; Robles, A. J.; King, J. B.; Powell, D. R.; Miller, A. N.; Mooberry, S. L.; 
Cichewicz, R. H., Crowdsourcing natural products discovery to access uncharted 
dimensions of fungal metabolite diversity. Angew. Chem., Int. Ed. 2014, 53, 804-809. 
193. SHAREOK - Citizen Science Soil Collection Program - Sample ID 13401. 
https://shareok.org/handle/11244/29495 (accessed November 19, 2018). 
194. Wu, J.; Lorenzo, P.; Zhong, S.; Ali, M.; Butts, C.; Myers, E.; Aggarwal, V., 
Synergy of synthesis, computation and NMR reveals correct baulamycin structures. 
Nature 2017, 547, 436-440. 
195. Zou, Y.; Garcia-Borràs; Tang, M.; Hirayama, Y.; Li, D.; Li, L.; Watanabe, K.; 
Houk, K.; Tang, Y., Enzyme-catalyzed cationic epoxide rearrangements in quinolone 
alkaloid biosynthesis. Nat. Chem. Biol. 2017, 13, 325-332. 
196. Fraile, J.; Mayoral, J.; Salvatella, L., Theoretical study on the BF3-catalyzed 
Meinwald rearrangement reaction. J. Org. Chem. 2014, 79, 5993-5999. 
197. Bock, C., Ab initio molecular orbital studies on C2H5O+ and C2H4FO+: oxonium 
ion, carbocation, protonated aldehyde, and related transition-state structures. J. Org. 
Chem. 1993, 58, 5816-5825. 



112 

198. Schoch, C.; Seifert, K.; Huhndorf, S.; Robert, V.; Spouge, J.; Levesque, C.; Chen, 
W., Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA 
barcode marker for fungi. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 6241-6246. 
199. Schrödinger Release 2018-2: MacroModel, Schrödinger, LLC: New York, NY, 
2018. 
200. Schrödinger Release 2018-2: Maestro, Schrödinger, LLC: New York, NY, 2018. 
201. Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; 
Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.; Nakatsuji, H.; Caricato, M.; Li, 
X.; Hratchian, H.; Izmaylov, A.; Bloino, J.; Zheng, G.; Sonnenberg, J.; Hada, M.; Ehara, 
M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, 
O.; Nakai, H.; Vreven, T.; Montgomery, J., JA; Peralta, J.; Ogliaro, F.; Bearpark, M.; 
Heyd, J.; Brothers, E.; Kudin, K.; Staroverov, V.; Kobayashi, R.; Normand, J.; 
Raghavachari, K.; Rendell, A.; Burant, J.; Iyengar, S.; Tomasi, J.; Cossi, M.; Rega, N.; 
Millam, J.; Klene, M.; Knox, J.; Cross, J.; Bakken, V.; Adamo, C.; Jaramillo, J.; 
Gomperts, R.; Stratmann, R.; Yazyev, O.; Austin, A.; Cammi, R.; Pomelli, C.; Ochterski, 
J.; Martin, R.; Morokuma, K.; Zakrzewski, V.; Voth, G.; Salvador, P.; Dannenberg, J.; 
Dapprich, S.; Daniels, A.; Farkas, Ö.; Foresman, J.; Ortiz, J.; Cioslowski, J.; Fox, D. 
Gaussian 09, revision B.01, Gaussian, Inc.: Wallingford, CT, 2010. 
202. Bally, T.; Rablen, P., Quantum-chemical simulation of 1H NMR spectra. 2. 
Comparison of DFT-based procedures for computing proton-proton coupling constants in 
organic molecules. J. Org. Chem. 2011, 76, 4818-4830. 
203. Chen, T.; Rakheja, D.; Hung, J.; Hornsby, P.; Tabaczewski, P.; Malogolowkin, 
M.; Feusner, J.; Miskevich, F.; Schultz, R.; Tomlinson, G., Establishment and 
characterization of a cancer cell line derived from an aggressive childhood liver tumor. 
Pediatr. Blood Cancer 2009, 53, 1040-1047. 
204. Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; 
Warren, J.; Bokesch, H.; Kenney, S.; Boyd, M., New colorimetric cytotoxicity assay for 
anticancer-drug screening. J. Natl. Cancer Inst. 1990, 82, 1107-1112. 
205. Vichai, V.; Kirtikara, K., Sulforhodamine B colorimetric assay for cytotoxicity 
screening. Nat. Protoc. 2006, 1, 1112-1116. 
206. Iwasaki, S.; Namikoshi, M.; Kobayashi, H.; Furukawa, J.; Okuda, S., Studies on 
macrocyclic lactone antibiotics. IX: Novel macrolides from the fungus Rhizopus 
chinensis: precursors of rhizoxin. Chem. Pharm. Bull. 1986, 34, 1387-1390. 

 

 



113 

Appendix A: Supporting Data for Chapter 3 

Appendix Table of Contents 

Table A.1. Structures and therapeutic indices for quinones and related structures ..... 114 

Figure A.1. 1H NMR spectrum of fusarubin (1) .......................................................... 120 

Figure A.2. 1H NMR spectrum of javanicin (2) ........................................................... 120 

Figure A.3. 1H NMR spectrum of solaniol (3) ............................................................. 121 

Figure A.4. 1H NMR spectrum of naphthopurpurin (4) ............................................... 121 

Figure A.5. 1H NMR spectrum of 2-methoxynaphthazarin (5) ................................... 122 

Figure A.6. 1H NMR spectrum of 1,4-dihydro-5,8-dihydroxy-2-methyl-9,10-

anthracenedione (6) ........................................................................................... 122 

Figure A.7. 1H NMR spectrum of 1,4-dihydro-2-methyl-9,10-anthracenedione (7) ... 123 

Figure A.8. 1H NMR spectrum of reduced xanthoquinodin A1 (43) ........................... 123 

Figure A.9. 13C NMR spectrim of reduced xanthoquinodin A1 (43) .......................... 124 

Figure A.10. COSY spectrum of reduced xanthoquinodin A1 (43) ............................ 124 

Figure A.11. HSQC spectrum of reduced xanthoquinodin A1 (43) ............................ 125 

Figure A.12. HMBC spectrum of reduced xanthoquinodin A1 (43) ........................... 125 

Figure A.13. 1D ROESY spectrum (500 MHz, CDCl3) irradiated at 5.04 ppm for 

reduced xanthoquinodin A1 (43). ..................................................................... 126 

 

 

 
 
 
 
 
 



114 

Table A.1. Structures and therapeutic indices for quinones and related structures.  
Trichomonas LC50 values were obtained in a candle jar.  

 

Cpd.	No. Structure Ect1	IC50	(µM) T.	vaginalis 	IC50	(µM) SIEct1

1 75 2.5 30

2 4.0 1.3 3.1

3 15 40 0.4

4 50 20 2.5

5 0.9 2.0 0.5

6 3.0 15 0.2

7 N.D. >50 N.D.

8 4.3 20.9 0.2
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9 N.D. >50 N.D.

10 N.D. >50 N.D.

11 N.D. >50 N.D.

12 N.D. >50 N.D.

13 9.9 3.1 3.2

14 N.D. >50 N.D.

15 N.D. >50 N.D.

16 N.D. >50 N.D.

17 17.0 3.8 4.5
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18 1.0 5.1 0.2

19 5.4 28.9 0.4

20 N.D. >50 N.D.

21 17.0 6.5 2.6

22 1.0 8.7 0.1

23 N.D. >50 N.D.

24 N.D. >50 N.D.

25 N.D. >50 N.D.

26 N.D. >50 N.D.
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27 N.D. >50 N.D.

28 N.D. >50 N.D.

29 12.5 7.5 1.7

30 N.D. >50 N.D.

31 N.D. >50 N.D.

32 1.9 5 0.4

33 <4 >50 <0.1

34 <1 7.5 <0.1
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35 N.D. >50 N.D.

36 4.6 12.7 0.4

37 <1 >10 <0.1

38 <1 >10 <0.1

39 <1 >10 <0.1

40 <1 >10 <0.1
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41 <1 >10 <0.1

42 20.0 1.0 20.0
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Figure A.1. 1H NMR (400 MHz, CDCl3) of fusarubin (1) 
 

 
Figure A.2. 1H NMR (400 MHz, CDCl3) spectrum of javanicin (2) 
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Figure A.3. 1H NMR (400 MHz, CDCl3) spectrum of solaniol (3) 
 

 
Figure A.4. 1H NMR (400 MHz, CDCl3) spectrum of naphthopurpurin (4) 
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Figure A.5. 1H NMR (400 MHz, CDCl3) spectrum of 2-methoxynaphthazarin (5) 
 

 
Figure A.6. 1H NMR (400 MHz, CDCl3) spectrum of 1,4-dihydro-5,8-dihydroxy-2-
methyl-9,10-anthracenedione (6) 
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Figure A.7. 1H NMR (400 MHz, CDCl3) spectrum of 1,4-dihydro-2-methyl-9,10-
anthracenedione (7) 
 

 
Figure A.8. 1H NMR (500 MHz, CDCl3) spectrum of reduced xanthoquinodin A1 (43) 
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Figure A.9. 13C NMR (100 MHz, CDCl3) spectrum of reduced xanthoquinodin A1 (43) 
 

 
Figure A.10. 1H-1H COSY (500 MHz, CDCl3) spectrum of reduced xanthoquinodin A1 
(43). 
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Figure A.11. HSQC (500 MHz, CDCl3) spectrum of reduced xanthoquinodin A1 (43) 
 

 
Figure A.12. HMBC (500 MHz, CDCl3) spectrum of reduced xanthoquinodin A1 (43) 

123456789101112131415
f2	(ppm)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

f1
	(p
pm
)

123456789101112131415
f2	(ppm)

0

20

40

60

80

100

120

140

160

180

200

220

f1
	(p
pm
)



126 

 
Figure A.13. 1D ROESY spectrum (500 MHz, CDCl3) irradiated at 5.04 ppm for 
reduced xanthoquinodin A1 (43). 
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Appendix B: Supporting Data for Chapter 4 
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Figure B.1. 1H NMR spectrum (400 MHz, d6-DMSO) of alternariol-9-methyl ether (1) 
 

 
Figure B.2. 13C NMR spectrum (100 MHz, d6-DMSO) of alternariol-9-methyl ether (1) 
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Figure B.3. 1H NMR spectrum (400 MHz, CDCl3) of 4-hydroxy-3-
methoxybenzophenone (8) 
 

 
Figure B.4. 13C NMR spectrum (100 MHz, CDCl3) of 4-hydroxy-3-
methoxybenzophenone (8) 
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Figure B.5. 1H NMR spectrum (400 MHz, CDCl3) of 4-hydroxy-3-methoxybenzhydrol 
(9) 
 

 
Figure B.6. 13C NMR spectrum (100 MHz, CDCl3) of 4-hydroxy-3-methoxybenzhydrol 
(9) 
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Figure B.7. 1H NMR spectrum (400 MHz, CDCl3) of methyl 2,6-dihydroxy-4-
methoxybenzoate 
 

 
Figure B.8. 13C NMR spectrum (100 MHz, CDCl3) of methyl 2,6-dihydroxy-4-
methoxybenzoate 
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Figure B.9. 1H NMR spectrum (500 MHz, CDCl3) of 1-hydroxy-3-methoxyxanthone 
(10) 
 

 
Figure B.10. 1H NMR spectrum (500 MHz, CDCl3) of 2-hydroxy-4-methoxy-N-(3-
pyridinylmethyl)benzamide (12) 
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Appendix C: Supporting Data for Chapter 5 

Appendix Table of Contents 

Figure C.1. HRESIMS spectrum of rhizoxin K1 (2) ................................................... 137 

Figure C.2. 1H NMR spectrum of compound 2 ........................................................... 137 

Figure C.3. 13C NMR spectrum of compound 2 .......................................................... 138 

Figure C.4. COSY NMR spectrum of compound 2 ..................................................... 138 

Figure C.5. HSQC NMR spectrum of compound 2 ..................................................... 139 

Figure C.6. HMBC NMR spectrum of compound 2 .................................................... 139 

Figure C.7. ROESY NMR spectrum of compound 2 .................................................. 140 

Figure C.8. HRESIMS spectrum of rhizoxin T1 (3) .................................................... 140 

Figure C.9. 1H NMR spectrum of compound 3 ........................................................... 141 

Figure C.10. 13C NMR spectrum of compound 3 ........................................................ 141 

Figure C.11. COSY NMR spectrum of compound 3 ................................................... 142 

Figure C.12. HSQC NMR spectrum of compound 3 ................................................... 142 

Figure C.13. HMBC NMR spectrum of compound 3 .................................................. 143 

Figure C.14. ROESY NMR spectrum of compound 3 ................................................ 143 

Figure C.15. HRESIMS spectrum of rhizoxin T2 (4) .................................................. 144 

Figure C.16. 1H NMR spectrum of compound 4 ......................................................... 144 

Figure C.17. 13C NMR spectrum of compound 4 ........................................................ 145 

Figure C.18. COSY NMR spectrum of compound 4 ................................................... 145 

Figure C.19. HSQC NMR spectrum of compound 4 ................................................... 146 

Figure C.20. HMBC NMR spectrum of compound 4 .................................................. 146 

Figure C.21. ROESY NMR spectrum of compound 4 ................................................ 147 



134 

 

Figure C.22. HRESIMS spectrum of rhizoxin M3 (5) ................................................ 147 

Figure C.23. 1H NMR spectrum of compound 5 ......................................................... 148 

Figure C.24. 13C NMR spectrum of compound 5 ........................................................ 148 

Figure C.25. COSY NMR spectrum of compound 5 ................................................... 149 

Figure C.26. HSQC NMR spectrum of compound 5 ................................................... 149 

Figure C.27. HMBC NMR spectrum of compound 5 .................................................. 150 

Figure C.28. ROESY NMR spectrum of compound 5 ................................................ 150 

Figure C.29. HRESIMS spectrum of rhizoxin T3 (6) .................................................. 151 

Figure C.30. 1H NMR spectrum of compound 6 ......................................................... 151 

Figure C.31. 13C NMR spectrum of compound 6 ........................................................ 152 

Figure C.32. COSY NMR spectrum of compound 6 ................................................... 152 

Figure C.33. HSQC NMR spectrum of compound 6 ................................................... 153 

Figure C.34. HMBC NMR spectrum of compound 6 .................................................. 153 

Table C.1. NMR spectral data of rhizoxin (1) ............................................................. 154 

Discussion C.1. General computational information for NMR calculations ................ 155 

Figure C.35. Possible truncated diastereomers for 2 ................................................... 157 

Table C.2. Calculated energies and populations for 2a ............................................... 157 

Table C.3. Calculated energies and populations for 2b ............................................... 157 

Figure C.36. Possible truncated diastereomers for 3 and 4 ......................................... 158 

Table C.4. Calculated energies and populations for 3a ............................................... 158 

Table C.5. Calculated energies and populations for 3b ............................................... 158 

Figure C.37. Possible truncated diastereomers for 5 ................................................... 159 



135 

Table C.6. Calculated energies and populations for 5a ............................................... 159 

Table C.7. Calculated energies and populations for 5b ............................................... 159 

Figure C.38. Possible truncated diastereomers for 6 ................................................... 160 

Table C.8. Calculated energies and populations for 6a ............................................... 160 

Table C.9. Calculated energies and populations for 6b ............................................... 160 

Figure C.39. Possible truncated diastereomers for 1 ................................................... 161 

Table C.10. Calculated energies and populations for 1a ............................................. 161 

Table C.11. Calculated energies and populations for 1b ............................................. 161 

Figure C.40. 13C NMR calculation results and statistics for 1-6 ................................. 162 

Table C.12. Calculated ∂H for 1a and 1b vs. experimental ∂H for 1 .......................... 163 

Table C.13. Calculated ∂C for 1a and 1b vs. experimental ∂C for 1 ........................... 164 

Table C.14. Calculated ∂H for 2a and 2b vs. experimental ∂H for 2 .......................... 165 

Table C.15. Calculated ∂C for 2a and 2b vs. experimental ∂C for 2 ........................... 166 

Table C.16. Calculated ∂H for 3a and 3b vs. experimental ∂H for 3 .......................... 167 

Table C.17. Calculated ∂C for 3a and 3b vs. experimental ∂C for 3 ........................... 168 

Table C.18. Calculated ∂H for 3a and 3b vs. experimental ∂H for 4 .......................... 169 

Table C.19. Calculated ∂C for 3a and 3b vs. experimental ∂C for 4 ........................... 170 

Table C.20. Calculated ∂H for 5a and 5b vs. experimental ∂H for 5 .......................... 171 

Table C.21. Calculated ∂C for 5a and 5b vs. experimental ∂C for 5 ........................... 172 

Table C.22. Calculated ∂H for 6a and 6b vs. experimental ∂H for 6 .......................... 173 

Table C.23. Calculated ∂C for 6a and 6b vs. experimental ∂C for 6 ........................... 174 

Discussion C.2. Liquid culture condition screening ..................................................... 174 

Discussion C.3. General computational information for DFT calculations ................. 175 



136 

Table C.24. Cartesian coordinates for optimized structure of 1H+ ............................. 176 

Table C.25. Cartesian coordinates for optimized structure of TS1 ............................. 177 

Table C.26. Cartesian coordinates for optimized structure of 7-1 ............................... 178 

Table C.27. Cartesian coordinates for optimized structure of 7-2 ............................... 179 

Table C.28. Cartesian coordinates for optimized structure of TS2 ............................. 180 

Table C.29. Cartesian coordinates for optimized structure of 2H+ ............................. 181 

Table C.30. DFT calculated thermodynamic data for optimized strcutures ................ 181 

Figures C.41. Potential energy scan for rotation about C11-C12 bond of 7 ................ 182 

 

 

 

 

 

 

 

 

 

 

 



137 

 

Figure C.1. HRESIMS spectrum of rhizoxin K1 (2) 

 

Figure C.2. 1H NMR spectrum (500 MHz, d4-methanol) of compound 2 
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Figure C.3. 13C NMR spectrum (100 MHz, d4-methanol) of compound 2 

 

Figure C.4. COSY NMR spectrum (500 MHz, d4-methanol) of compound 2 
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Figure C.5. HSQC NMR spectrum (500 MHz, d4-methanol) of compound 2 

 

Figure C.6. HMBC NMR spectrum (500 MHz, d4-methanol) of compound 2 
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Figure C.7. ROESY NMR spectrum (500 MHz, d4-methanol) of compound 2 

 

Figure C.8: HRESIMS spectrum of rhizoxin T1 (3). 
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Figure C.9: 1H NMR spectrum (500 MHz, d4-methanol) of compound 3. 

 

Figure C.10: 13C NMR spectrum (125 MHz, d4-methanol) of compound 3. 
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Figure C.11: COSY NMR spectrum (500 MHz, d4-methanol) of compound 3. 

 

Figure C.12: HSQC NMR spectrum (500 MHz, d4-methanol) of compound 3. 
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Figure C.13: HMBC NMR spectrum (500 MHz, d4-methanol) of compound 3. 

 

Figure C.14: ROESY NMR spectrum (500 MHz, d4-methanol) of compound 3. 
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Figure C.15: HRESIMS spectrum of rhizoxin T2 (4). 

 

Figure C.16: 1H NMR spectrum (400 MHz, d4-methanol) of compound 4. 
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Figure C.17. 13C NMR spectrum (100 MHz, d4-methanol) of compound 4 

 

Figure C.18. COSY NMR spectrum (500 MHz, d4-methanol) of compound 4 
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Figure C.19. HSQC NMR spectrum (500 MHz, d4-methanol) of compound 4 

 

Figure C.20. HMBC NMR spectrum (500 MHz, d4-methanol) of compound 4 
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Figure C.21. ROESY NMR spectrum (500 MHz, d4-methanol) of compound 4 

 

Figure C.22: HRESIMS spectrum of rhizoxin M3 (5). 
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Figure C.23. 1H NMR spectrum (500 MHz, d4-methanol) of compound 5 

 

Figure C.24. 13C NMR spectrum (100 MHz, d4-methanol) of compound 5 
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Figure C.25. COSY NMR spectrum (500 MHz, d4-methanol) of compound 5 

 

Figure C.26. HSQC NMR spectrum (500 MHz, d4-methanol) of compound 5 
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Figure C.27. HMBC NMR spectrum (500 MHz, d4-methanol) of compound 5 

 

Figure C.28. ROESY NMR spectrum (500 MHz, d4-methanol) of compound 5 
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Figure C.29. HRESIMS spectrum of rhizoxin T3 (6) 

 

Figure C.30. 1H NMR spectrum (400 MHz, d4-methanol) of compound 6 
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Figure C.31. 13C NMR spectrum (100 MHz, d4-methanol) of compound 6 

 

Figure C.32. COSY NMR spectrum (500 MHz, d4-methanol) of compound 6 
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Figure C.33. HSQC NMR spectrum (500 MHz, d4-methanol) of compound 6 

 

Figure C.34. HMBC NMR spectrum (500 MHz, d4-methanol) of compound 6 
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Table C.1. NMR spectroscopic data (500 MHz, d4-methanol) of rhizoxin (1) 
  Rhizoxin (1) 

No. δC, type δH (J in Hz) 
1 168.4, C 

 2 53.9, CH 3.15, d (2.0) 
3 55.1, CH 3.26, dt (10.5, 2.0, 2.0) 
4 35.1, CH2 2.26, m 

  
0.86, q (11.0, 11.0, 11.0) 

5 37.0, CH 2.04, m 
5a 35.7, CH2 2.99, m 

  
2.05, m 

5b 171.7, C 
 5c 

  6 29.5, CH2 1.93, m 

  
1.08, m 

7 83.0, CH 4.02, ddd (12.0, 9.5, 3.0) 
8 45.1, CH 2.34, m 
8a 15.9, CH3 1.17, d (6.5) 
9 139.2, CH 5.68, dd (15.0, 10.0) 
10 126.8 CH 5.45, dd (15.0, 9.0) 
11 62.2, CH 3.20, d (9.0) 
12 64.3, C 

 12a 10.5, CH3 1.39, s 
13 77.1, CH 3.20, m 
14 28.8, CH2 2.04, m 

  
1.87, m 

15 76.2, CH 4.54, dd (8.5, 3.5) 
16 37.7, CH 2.37, m 
16a 8.3, CH3 0.99, d (6.7) 
17 89.2, CH 3.33, d (9.0) 
17-OMe 56.0, CH3 3.17, s 
18 137.3, C 

 18a 11.9, CH3 1.81, s 
19 129.6, CH 6.15, d (11.0) 
20 123.8, CH 6.65, dd (10.5, 15.0) 
21 123.8, CH 6.44, d (15.0) 
22 136.4, C 

 22a 15.9, CH3 2.11, s 
23 120.0, CH 6.24, s 
24 137.5, C 

 25 136.0, CH 7.82, s 
26 161.5, C 

 26a 13.2, CH3 2.44, s 
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Discussion C.1. General computational information for NMR calculations 

Molecular mechanics calculations were performed using MacroModel199 within 

the Maestro200 software. Conformation searches were carried out using a Monte Carlo 

multiple minimum (MCMM) search with a Merck molecular force field (MMFFs). 

Structures were minimized using a truncated Newton conjugate gradients (TNCG) 

approach with 500 iterations and a convergence criterion of 0.05. Conformation searches 

were performed such that all conformers within 10.0 kJ/mol of the lowest energy 

conformer were found an average of at least 10 times, and all conformers within 21.0 

kJ/mol of the lowest energy conformer were retained. Additionally, conformers having 

the same conformation of the macrolactone backbone were eliminated using a redundant 

conformation elimination step using a threshold of 0.5Å for displacement and 1 kJ/mol 

for energy. 

 All geometry optimizations, frequency calculations, and NMR calculations were 

performed using Gaussian 09.201 All conformations retained following redundant 

conformer elimination were subjected to geometry optimization and subsequent 

frequency calculations using the mPW1PW91 functional and 6-31G(d) basis set with 

IEF-PCM solvation modeling setting methanol as the solvent. Gibbs free energies from 

these optimizations and frequency calculations were then used to perform a Boltzmann 

population analysis. Any conformers making up ≥1% of the total population were then 

subjected to GIAO NMR calculations using the mPW1PW91 functional and 6-311G(d,p) 

basis set with IEF-PCM solvation with methanol. Additionally, NMR coupling constants 

were calculated for each of these conformers using the B3LYP functional and 6-31G(d,p) 

basis set. 
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 Shielding tensor constants were extracted for each conformer and a weighted 

average was calculated for each nucleus of interest using the Boltzmann population 

distribution for the conformers. The shielding tensor values for proton (31.92128) and 

carbon (189.5456) nuclei calculated for TMS using the same level of theory were used as 

a reference to determine the chemical shift values for each nucleus. Additionally, the 

calculated chemical shifts (y-axis) were plotted against the experimentally determined 

chemical shifts of each compound (x-axis) in order to obtain a best-fit line that was used 

to scale the calculated chemical shift values for each possible diastereomer.194 To 

evaluate the computational methodology used to support the stereochemical assignments 

of 2-6, an analysis of 13S and 13R configurations of 1 by GIAO NMR calculations was 

performed, correctly determining the configuration as 13S. 
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Figure C.35. Possible truncated diastereomers for 2 studied computationally. 
 
 
Table C.2. Calculated energies and populations for the major conformers of 2a. All 
conformers with the combined population of 98.73% were used to calculate NMR 
properties of 2a. 

Conformer 
∆EMMFFs, gas 

(kJ/mol) 
∆GDFT 

(kcal/mol) Population % 
2a-1 14.4 0.0 32.54 
2a-2 9.6 0.1 29.76 
2a-3 19.8 0.4 16.95 
2a-4 0.0 0.5 12.95 
2a-5 2.2 1.0 5.54 
2a-6 20.7 2.1 0.99 

 

Table C.3. Calculated energies and population for the major conformers of 2b. All 
conformers with the combined population of 98.88% were used to calculate NMR 
properties of 2b. 

Conformer 
∆EMMFFs, gas 

(kJ/mol) 
∆GDFT 

(kcal/mol) Population % 
2b-1 16.7 0.0 28.92 
2b-2 10.1 0.1 25.74 
2b-3 17.7 0.5 12.01 
2b-4 11.1 0.5 11.94 
2b-5 9.0 1.0 5.73 
2b-6 14.2 1.0 5.60 
2b-7 7.2 1.0 5.08 
2b-8 13.2 1.7 1.58 
2b-9 15.6 1.9 1.14 
2b-10 10.3 1.9 1.14 
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Figure C.36. Possible truncated diastereomers for 3 and 4 studied computationally. 
 

Table C.4. Calculated energies and populations for the major conformers of 3a. All 
conformers with the combined population of 99.40% were used to calculated NMR 
properties of 3a. 

Conformer 
∆EMMFFs, gas 

(kJ/mol) 
∆GDFT 

(kcal/mol) Population % 
3a-1 19.6 0.0 21.17 
3a-2 16.3 0.0 19.76 
3a-3 18.7 0.0 19.72 
3a-4 8.4 0.3 12.74 
3a-5 12.0 0.3 12.72 
3a-6 12.7 0.5 9.58 
3a-7 10.5 1.3 2.37 
3a-8 16.5 1.6 1.34 

 

Table C.5. Calculated energies and population for the major conformers of 3b. All 
conformers with the combined population of 98.27% were used to calculate NMR 
properties of 3b. 

Conformer 
∆EMMFFs, gas 

(kJ/mol) 
∆GDFT 

(kcal/mol) Population % 
3b-1 6.5 0.0 53.26 
3b-2 14.8 0.5 23.15 
3b-3 11.4 1.5 4.51 
3b-4 14.8 1.5 4.50 
3b-5 11.0 1.6 3.79 
3b-6 6.4 1.6 3.76 
3b-7 3.6 1.8 2.65 
3b-8 8.1 1.8 2.64 
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Figure C.37. Possible truncated diastereomers for 5 studied computationally. 
 

Table C.6. Calculated energies and population for the major conformers of 5a. All 
conformers with the combined population of 98.22% were used to calculate NMR 
properties of 5a. 

Conformer 
∆EMMFFs, gas 

(kJ/mol) 
∆GDFT 

(kcal/mol) Population % 
5a-1 17.6 0.0 26.02 
5a-2 0.7 0.0 25.85 
5a-3 13.5 0.3 16.77 
5a-4 6.4 0.4 13.54 
5a-5 12.0 0.7 7.78 
5a-6 13.2 1.1 3.73 
5a-7 18.2 1.3 2.83 
5a-8 7.1 1.6 1.69 

 

Table C.7. Calculated energies and population for the major conformers of 5b. All 
conformers with the combined population of 99.15% were used to calculate NMR 
properties of 5b. 

Conformer 
∆EMMFFs, gas 

(kJ/mol) 
∆GDFT 

(kcal/mol) Population % 
5b-1 4.7 0.0 31.85 
5b-2 11.0 0.1 28.59 
5b-3 15.8 0.6 12.40 
5b-4 17.0 0.6 12.25 
5b-5 11.9 1.3 3.28 
5b-6 6.2 1.4 2.81 
5b-7 1.6 1.4 2.78 
5b-8 12.4 1.5 2.52 
5b-9 9.8 1.8 1.58 
5b-10 15.5 2.0 1.08 
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Figure C.38. Possible truncated diastereomers for 6 studied computationally. 
 

Table C.8. Calculated energies and population for the major conformers of 6a. All 
conformers with the combined population of 96.18% were used to calculate NMR 
properties of 6a. 

Conformer 
∆EMMFFs, gas 

(kJ/mol) 
∆GDFT 

(kcal/mol) Population % 
6a-1 20.3 0.0 28.48 
6a-2 20.2 0.2 21.32 
6a-3 18.7 0.6 10.34 
6a-4 10.5 0.8 7.74 
6a-5 0.0 0.9 6.67 
6a-6 4.5 0.9 6.64 
6a-7 18.9 1.1 4.40 
6a-8 7.5 1.2 3.77 
6a-9 12.5 1.4 2.50 
6a-10 18.0 1.6 2.03 
6a-11 2.6 1.8 1.31 
6a-12 16.5 2.0 1.00 

 
Table C.9. Calculated energies and population for the major conformers of 6b. All 
conformers with the combined population of 96.23% were used to calculate NMR 
properties of 6b. 

Conformer 
∆EMMFFs, gas 

(kJ/mol) 
∆GDFT 

(kcal/mol) Population % 
6b-1 14.5 0.0 36.27 
6b-2 13.9 0.3 23.06 
6b-3 19.7 0.4 18.32 
6b-4 17.9 1.0 6.86 
6b-5 7.4 1.3 3.86 
6b-6 13.7 1.5 2.77 
6b-7 8.3 1.6 2.61 
6b-8 11.5 2.0 1.34 
6b-9 18.3 2.1 1.13 
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Figure C.39. Possible truncated diastereomers for 1 studied computationally. 
 

Table C.10. Calculated energies and population for the major conformers of 1a. All 
conformers with the combined population of 98.70% were used to calculate NMR 
properties of 1a. 

Conformer 
∆EMMFFs, gas 

(kJ/mol) 
∆GDFT 

(kcal/mol) Population % 
1a-1 11.3 0.0 49.48 
1a-2 6.6 0.0 49.22 

 

Table C.11. Calculated energies and population for the major conformers of 1b. All 
conformers with the combined population of 97.27% were used to calculate NMR 
properties of 1b. 

Conformer 
∆EMMFFs, gas 

(kJ/mol) 
∆GDFT 

(kcal/mol) Population % 
1b-1 17.3 0.0 78.78 
1b-2 6.3 1.4 7.52 
1b-3 0.0 1.4 7.10 
1b-4 7.1 2.1 2.19 
1b-5 0.9 2.3 1.69 
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Figure C.40. 13C calculation results of two plausible stereoisomers at the mPW1PW91/6-
311G(d,p)-IEFPCM (methanol)//mPW1PW91/6-31G(d)-IEFPCM (methanol) level. 
Includes relative errors (top) and linear regressions (bottom) of calculated vs. 
experimental 13C NMR chemical shift values for (a-e) 2-6 and (f) rhizoxin (1). 

a
b

c

d
e

f
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Table C.12. Calculated Boltzmann averaged 1H chemical shifts (∂H) for 1a and 1b and 
experimental 1H chemical shifts for 1 with mean absolute deviations (MAD) and standard 
deviations (StDev). Calculated 1H chemical shifts for 1a and 1b were scaled using 
experimental 1H chemical shifts of 1. 

 

 

  Exp. ∂H of 1 Calc. 1a Deviation Exp. ∂H of 1 Calc. 1b Deviation 
H2 3.15 3.04 -0.11 3.15 2.96 -0.19 
H3 3.26 3.21 -0.05 3.26 3.04 -0.22 

H4a 0.86 0.97 0.11 0.86 0.90 0.04 
H4b 2.26 2.20 -0.06 2.26 2.09 -0.17 
H5 2.04 2.05 0.01 2.04 1.97 -0.07 

H5a-a 2.99 2.52 -0.47 2.99 1.95 -1.04 
H5a-b 2.05 2.07 0.02 2.05 2.38 0.33 
H6a 1.08 1.06 -0.02 1.08 1.80 0.72 
H6b 1.93 1.82 -0.11 1.93 1.01 -0.92 
H7 4.01 3.91 -0.10 4.01 3.80 -0.21 
H8 2.34 2.41 0.07 2.34 2.32 -0.02 

H8a 1.17 1.34 0.17 1.17 1.28 0.11 
H9 5.68 5.80 0.12 5.68 5.68 0.00 

H10 5.45 5.65 0.20 5.45 5.59 0.14 
H11 3.20 3.27 0.07 3.20 3.26 0.06 

H12a 1.40 1.55 0.15 1.40 1.61 0.21 
H13 3.20 3.18 -0.02 3.20 3.83 0.63 

H14a 1.87 1.78 -0.09 1.87 1.80 -0.07 
H14b 2.04 2.16 0.12 2.04 2.10 0.06 
H15 4.54 4.53 -0.01 4.54 5.15 0.61 

  
MAD 0.11   MAD 0.29 

  
StDev 0.15   StDev 0.44 
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Table C.13. Calculated Boltzmann averaged 13C chemical shifts (∂C) for 1a and 1b and 
experimental 13C chemical shifts for 1 with mean absolute deviations (MAD) and 
standard deviations (StDev). Calculated 13C chemical shifts for 1a and 1b were scaled 
using experimental 13C chemical shifts of 1. 

 

  Exp. ∂C of 1 Calc. 1a Deviation Exp. ∂C of 1 Calc. 1b Deviation 
C1 168.4 170.3 1.9 168.4 171.8 3.4 
C2 53.9 53.3 -0.6 53.9 53.6 -0.3 
C3 55.1 57.1 2.0 55.1 58.2 3.1 
C4 35.1 35.0 -0.1 35.1 35.9 0.8 
C5 37.0 29.3 -7.7 37.0 29.2 -7.8 
C5a 35.7 35.5 -0.2 35.7 35.6 -0.1 
C5b 171.7 168.1 -3.6 171.7 169.8 -1.9 
C6 29.5 32.5 3.0 29.5 32.2 2.7 
C7 83.0 81.1 -1.9 83.0 81.9 -1.1 
C8 45.1 46.2 1.1 45.1 46.3 1.2 
C8a 15.9 15.3 -0.6 15.9 15.5 -0.4 
C9 139.2 140.9 1.7 139.2 141.7 2.5 
C10 126.8 128.0 1.2 126.8 129.8 3.0 
C11 62.2 65.1 2.9 62.2 59.1 -3.1 
C12 64.3 65.3 1.0 64.3 66.0 1.7 
C12a 10.5 10.7 0.2 10.5 13.7 3.2 
C13 77.1 75.8 -1.3 77.1 66.9 -10.2 
C14 28.8 30.3 1.5 28.8 35.6 6.8 
C15 76.2 75.5 -0.7 76.2 73.0 -3.2 

  
MAD 1.7   MAD 3.0 

  
StDev 2.5   StDev 4.0 
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Table C.14. Calculated Boltzmann averaged 1H chemical shifts (∂H) for 2a and 2b and 
experimental 1H chemical shifts for 2 with mean absolute deviations (MAD) and standard 
deviations (StDev). Calculated 1H chemical shifts for 2a and 2b were scaled using 
experimental 1H chemical shifts of 2. 

 

  Exp. ∂H of 2 Calc. 2a Deviation Exp. ∂H of 2 Calc. 2b Deviation 
H2 3.35 3.13 -0.22 3.35 3.11 -0.24 
H3 3.01 2.86 -0.15 3.01 2.90 -0.11 
H4 0.93 1.06 0.13 0.93 1.00 0.07 
H4 2.30 2.23 -0.07 2.30 2.24 -0.06 
H5 2.27 2.21 -0.06 2.27 2.10 -0.17 

H5a 2.16 2.07 -0.09 2.16 2.08 -0.08 
H5a 2.79 2.67 -0.12 2.79 2.60 -0.19 
H6 2.04 2.09 0.05 2.04 2.00 -0.04 
H6 1.16 1.06 -0.10 1.16 1.10 -0.06 
H7 3.92 3.80 -0.12 3.92 3.78 -0.14 
H8 2.30 2.35 0.05 2.30 2.41 0.11 

H8a 1.10 1.31 0.21 1.10 1.30 0.20 
H9 5.30 5.48 0.18 5.30 5.41 0.11 

H10 5.64 5.87 0.23 5.64 6.03 0.39 
H11 3.56 3.37 -0.19 3.56 3.22 -0.34 

H12a 2.25 2.40 0.15 2.25 2.35 0.10 
H13 3.29 3.66 0.37 3.29 3.46 0.17 
H14 1.43 1.45 0.02 1.43 1.79 0.36 
H14 1.86 1.80 -0.06 1.86 1.83 -0.03 
H15 5.15 4.97 -0.18 5.15 5.09 -0.06 

  
MAD 0.14   MAD 0.15 

  
StDev 0.16   StDev 0.19 
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Table C.15. Calculated Boltzmann averaged 13C chemical shifts (∂C) for 2a and 2b and 
experimental 13C chemical shifts for 2 with mean absolute deviations (MAD) and 
standard deviations (StDev). Calculated 13C chemical shifts for 2a and 2b were scaled 
using experimental 13C chemical shifts of 2. 

 

  

  Exp. ∂C of 2 Calc. 2a Deviation Exp. ∂C of 2 Calc. 2b Deviation 
C1 169.2 169.6 0.4 169.2 168.5 -0.7 
C2 54.1 53.5 -0.6 54.1 54.3 0.2 
C3 56.3 57.7 1.4 56.3 57.1 0.8 
C4 37.5 38.3 0.8 37.5 38.2 0.7 
C5 28.8 28.8 0.0 28.8 30.2 1.4 
C5a 35.4 35.3 -0.1 35.4 36.3 0.9 
C5b 172.6 169.1 -3.5 172.6 167.5 -5.1 
C6 32.2 33.7 1.5 32.2 32.6 0.4 
C7 82.9 79.4 -3.5 82.9 80.9 -2.0 
C8 43.3 45.4 2.1 43.3 46.2 2.9 
C8a 16.4 17.2 0.8 16.4 17.6 1.2 
C9 135.8 138.1 2.3 135.8 140.0 4.2 
C10 127.4 129.5 2.1 127.4 128.2 0.8 
C11 62.6 61.2 -1.4 62.6 57.2 -5.4 
C12 210.0 211.9 1.9 210.0 213.6 3.6 
C12a 31.4 31.9 0.5 31.4 30.6 -0.8 
C13 72.6 71.7 -0.9 72.6 71.7 -0.9 
C14 33.9 32.5 -1.4 33.9 33.6 -0.3 
C15 74.7 72.4 -2.3 74.7 72.9 -1.8 

  
MAD 1.5   MAD 1.8 

  
StDev 1.8   StDev 2.5 
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Table C.16. Calculated Boltzmann averaged 1H chemical shifts (∂H) for 3a and 3b and 
experimental 1H chemical shifts for 3 with mean absolute deviations (MAD) and standard 
deviations (StDev). Calculated 1H chemical shifts for 3a and 3b were scaled using 
experimental 1H chemical shifts of 3. 

 

  Exp. ∂H of 3 Calc. 3a Deviation Exp. ∂H of 3 Calc. 3b Deviation 
H2 3.05 3.09 0.04 3.30 3.13 -0.17 
H3 3.30 3.10 -0.20 3.05 3.03 -0.02 
H4 0.99 1.10 0.11 0.99 1.09 0.10 
H4 2.19 2.12 -0.07 2.19 2.14 -0.05 
H5 2.22 2.11 -0.11 2.22 2.14 -0.08 

H5a 2.13 2.03 -0.10 2.13 2.05 -0.08 
H5a 2.70 2.50 -0.20 2.70 2.53 -0.17 
H6 1.99 1.85 -0.14 1.99 1.88 -0.11 
H6 1.14 1.16 0.02 1.14 1.19 0.05 
H7 4.07 3.88 -0.19 4.07 3.93 -0.14 
H8 2.34 2.44 0.10 2.34 2.46 0.12 

H8a 1.16 1.30 0.14 1.16 1.34 0.18 
H9 5.44 5.59 0.15 5.44 5.65 0.21 

H10 5.48 5.74 0.26 5.48 5.66 0.18 
H11 4.25 4.04 -0.21 4.25 4.30 0.05 
H12a 1.07 1.16 0.09 1.07 1.26 0.19 
H13 3.31 3.57 0.26 3.31 3.18 -0.13 
H14 1.82 1.98 0.16 1.70 1.65 -0.05 
H14 1.70 1.65 -0.05 1.82 1.80 -0.02 
H15 5.08 5.02 -0.06 5.08 5.01 -0.07 

  
MAD 0.13   MAD 0.11 

  
StDev 0.15   StDev 0.13 
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Table C.17. Calculated Boltzmann averaged 13C chemical shifts (∂C) for 3a and 3b and 
experimental 13C chemical shifts for 3 with mean absolute deviations (MAD) and 
standard deviations (StDev). Calculated 13C chemical shifts for 3a and 3b were scaled 
using experimental 13C chemical shifts of 3. 

 

  Exp. ∂C of 3 Calc. 3a Deviation Exp. ∂C of 3 Calc. 3b Deviation 
C1 168.8 173.5 4.7 168.8 170.4 1.6 
C2 53.8 53.7 -0.1 53.8 54.3 0.5 
C3 56.4 58.1 1.7 56.4 57.9 1.5 
C4 37.2 34.5 -2.7 37.2 36.5 -0.7 
C5 29.0 29.9 0.9 29.0 30.1 1.1 
C5a 35.6 34.9 -0.7 35.6 35.7 0.1 
C5b 172.1 168.8 -3.3 172.1 168.3 -3.8 
C6 32.3 30.6 -1.7 32.3 31.7 -0.6 
C7 83.7 81.7 -2.0 83.7 81.8 -1.9 
C8 44.0 44.9 0.9 44.0 45.1 1.1 
C8a 18.0 16.6 -1.4 18.0 17.8 -0.2 
C9 135.8 132.8 -3.0 135.8 140.3 4.5 
C10 130.3 131.3 1.0 130.3 130.2 -0.1 
C11 75.5 81.8 6.3 75.5 75.5 0.0 
C12 75.8 72.1 -3.7 75.8 75.0 -0.8 
C12a 16.2 18.3 2.1 16.2 15.7 -0.5 
C13 69.0 69.5 0.5 69.0 66.6 -2.4 
C14 28.9 29.6 0.7 28.9 29.2 0.3 
C15 73.6 73.3 -0.3 73.6 73.8 0.2 

  
MAD 2.0   MAD 1.2 

  
StDev 2.6   StDev 1.7 
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Table C.18. Calculated Boltzmann averaged 1H chemical shifts (∂H) for 3a and 3b and 
experimental 1H chemical shifts for 4 with mean absolute deviations (MAD) and standard 
deviations (StDev). Calculated 1H chemical shifts for 3a and 3b were scaled using 
experimental 1H chemical shifts of 4. 

 

  Exp. ∂H of 4 Calc. 3a Deviation Exp. ∂H of 4 Calc. 3b Deviation 
H2 3.05 3.14 0.09 3.33 3.18 -0.15 
H3 3.33 3.16 -0.17 3.05 3.08 0.03 
H4 0.99 1.09 0.10 0.99 1.08 0.09 
H4 2.2 2.14 -0.06 2.20 2.17 -0.03 
H5 2.28 2.13 -0.15 2.28 2.16 -0.12 

H5a 2.13 2.05 -0.08 2.13 2.07 -0.06 
H5a 2.74 2.54 -0.20 2.74 2.56 -0.18 
H6 2.07 1.86 -0.21 2.07 1.89 -0.18 
H6 1.17 1.15 -0.02 1.17 1.17 0.00 
H7 4.1 3.96 -0.14 4.10 4.02 -0.08 
H8 2.4 2.48 0.08 2.40 2.49 0.09 

H8a 1.16 1.30 0.14 1.16 1.33 0.17 
H9 5.7 5.73 0.03 5.70 5.81 0.11 

H10 5.73 5.88 0.15 5.73 5.82 0.09 
H11 4.04 4.12 0.08 4.04 4.40 0.36 
H12a 1.08 1.15 0.07 1.08 1.25 0.17 
H13 3.63 3.64 0.01 3.63 3.24 -0.39 
H14 1.7 2.00 0.30 1.70 1.65 -0.05 
H14 1.7 1.65 -0.05 1.70 1.81 0.11 
H15 5.11 5.14 0.03 5.11 5.13 0.02 

  
MAD 0.11   MAD 0.12 

  
StDev 0.13   StDev 0.16 
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Table C.19. Calculated Boltzmann averaged 13C chemical shifts (∂C) for 3a and 3b and 
experimental 13C chemical shifts for 4 with mean absolute deviations (MAD) and 
standard deviations (StDev). Calculated 13C chemical shifts for 3a and 3b were scaled 
using experimental 13C chemical shifts of 4. 

 

  Exp. ∂C of 4 Calc. 3a Deviation Exp. ∂C of 4 Calc. 3b Deviation 
C1 168.7 172.5 3.8 168.7 169.6 0.9 
C2 53.7 54.0 0.3 53.7 54.6 0.9 
C3 56.4 58.4 2.0 56.4 58.1 1.7 
C4 37.8 35.1 -2.7 37.8 36.9 -0.9 
C5 28.6 30.5 1.9 28.6 30.6 2.0 
C5a 35.5 35.4 -0.1 35.5 36.1 0.6 
C5b 172.5 167.8 -4.7 172.5 167.5 -5.0 
C6 32.6 31.2 -1.4 32.6 32.2 -0.4 
C7 83.5 81.7 -1.8 83.5 81.9 -1.6 
C8 43.6 45.3 1.7 43.6 45.4 1.8 
C8a 18.0 17.3 -0.7 18.0 18.5 0.5 
C9 130.0 132.3 2.3 131.6 139.8 8.2 
C10 131.6 130.8 -0.8 130.0 129.8 -0.2 
C11 79.8 81.8 2.0 79.8 75.6 -4.2 
C12 73.9 72.2 -1.7 73.9 75.1 1.2 
C12a 20.5 19.0 -1.5 20.5 16.3 -4.2 
C13 70.0 69.6 -0.4 70.0 66.8 -3.2 
C14 28.6 30.2 1.6 28.6 29.7 1.1 
C15 73.1 73.4 0.3 73.1 73.9 0.8 

  
MAD 1.7   MAD 2.1 

  
StDev 2.1   StDev 3.0 
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Table C.20. Calculated Boltzmann averaged 1H chemical shifts (∂H) for 5a and 5b and 
experimental 1H chemical shifts for 5 with mean absolute deviations (MAD) and standard 
deviations (StDev). Calculated 1H chemical shifts for 5a and 5b were scaled using 
experimental 1H chemical shifts of 5. 

 

  Exp. ∂H of 5 Calc. 5a Deviation Exp. ∂H of 5 Calc. 5b Deviation 
H2 3.40 3.08 -0.32 3.10 3.07 -0.03 
H3 3.10 3.18 0.08 3.40 3.15 -0.25 
H4a 1.61 1.49 -0.12 1.61 1.57 -0.04 
H4b 1.61 1.56 -0.05 1.61 1.55 -0.06 
H5 2.23 2.13 -0.10 2.23 2.09 -0.14 

H5a-a 2.32 2.49 0.17 2.55 2.45 -0.10 
H5a-b 2.55 2.46 -0.09 2.32 2.43 0.11 
H5c 3.68 3.68 0.00 3.68 3.63 -0.05 
H6-a 1.69 1.62 -0.07 1.69 1.60 -0.09 
H6-b 1.31 1.43 0.12 1.31 1.52 0.21 
H7 3.77 4.17 0.40 3.77 3.78 0.01 
H8 1.37 1.45 0.08 1.37 1.43 0.06 
H8a 1.04 1.12 0.08 1.04 1.16 0.12 
H9 3.93 4.06 0.13 3.93 4.06 0.13 
H10 5.95 6.33 0.38 5.95 6.42 0.47 
H11 5.91 5.72 -0.19 5.91 5.90 -0.01 
H12a 1.24 1.30 0.06 1.24 1.32 0.08 
H13 3.14 3.39 0.25 3.14 3.39 0.25 

H14-a 1.72 1.41 -0.31 1.63 1.53 -0.10 
H14-b 1.63 1.59 -0.04 1.72 1.66 -0.06 
H15 5.26 4.78 -0.48 5.26 4.77 -0.49 

  
MAD 0.17   MAD 0.14 

  
StDev 0.22   StDev 0.19 
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Table C.21. Calculated Boltzmann averaged 13C chemical shifts (∂C) for 5a and 5b and 
experimental 13C chemical shifts for 5 with mean absolute deviations (MAD) and 
standard deviations (StDev). Calculated 13C chemical shifts for 5a and 5b were scaled 
using experimental 13C chemical shifts of 5. 

 

  Exp. ∂C of 5 Calc. 5a Deviation Exp. ∂C of 5 Calc. 5b Deviation 
C1 169.0 167.0 -2.0 169.0 167.6 -1.4 
C2 53.2 54.5 1.3 53.2 54.3 1.1 
C3 57.6 56.4 -1.2 57.6 56.1 -1.5 
C4 36.9 38.3 1.4 36.9 39.2 2.3 
C5 30.5 29.6 -0.9 30.5 29.8 -0.7 
C5a 41.1 40.7 -0.4 41.1 40.8 -0.3 
C5b 173.4 173.6 0.2 173.4 174.7 1.3 
C5c 50.6 51.3 0.7 50.6 51.3 0.7 
C6 40.9 37.8 -3.1 40.9 39.0 -1.9 
C7 69.6 70.1 0.5 69.6 69.4 -0.2 
C8 47.3 45.2 -2.1 47.3 48.3 1.0 
C8a 8.6 11.6 3.0 8.6 10.5 1.9 
C9 73.5 77.3 3.8 73.5 72.8 -0.7 
C10 136.1 137.3 1.2 136.1 137.0 0.9 
C11 131.3 133.7 2.4 131.3 132.6 1.3 
C12 73.9 73.7 -0.2 73.9 73.9 0.0 

C12a 20.1 21.1 1.0 20.1 21.2 1.1 
C13 74.7 73.2 -1.5 74.7 73.1 -1.6 
C14 32.6 30.6 -2.0 32.6 30.9 -1.7 
C15 74.2 72.1 -2.1 74.2 72.6 -1.6 

  
MAD 1.5   MAD 1.2 

  
StDev 1.9   StDev 1.3 
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Table C.22. Calculated Boltzmann averaged 1H chemical shifts (∂H) for 6a and 6b and 
experimental 1H chemical shifts for 6 with mean absolute deviations (MAD) and standard 
deviations (StDev). Calculated 1H chemical shifts for 6a and 6b were scaled using 
experimental 1H chemical shifts of 6. 

 

  Exp. ∂H of 6 Calc. 6a Deviation Exp. ∂H of 6 Calc. 6b Deviation 
H2 3.47 3.23 -0.24 3.47 3.19 -0.28 
H3 3.01 2.92 -0.09 3.01 2.91 -0.10 

H4a 0.96 1.08 0.12 0.96 1.09 0.13 
H4b 2.16 2.27 0.11 2.16 2.23 0.07 
H5 2.06 2.07 0.01 2.06 2.02 -0.04 

H5a-a 2.12 2.19 0.07 2.12 2.17 0.05 
H5a-b 2.60 2.48 -0.12 2.60 2.46 -0.14 
H6a 2.19 1.83 -0.36 2.19 1.82 -0.37 
H6b 1.32 1.40 0.08 1.32 1.46 0.14 
H7 4.25 4.44 0.19 4.25 4.22 -0.03 
H8 1.85 1.99 0.14 1.85 1.79 -0.06 

H8a 1.15 1.28 0.13 1.15 1.30 0.15 
H9 4.15 4.31 0.16 4.15 4.18 0.03 

H10 6.02 6.33 0.31 6.02 6.44 0.42 
H11 6.02 5.93 -0.09 6.02 6.07 0.05 
H12a 1.16 1.29 0.13 1.16 1.35 0.19 
H13 3.09 3.00 -0.09 3.09 3.04 -0.05 
H14a 1.57 1.44 -0.13 1.57 1.65 0.08 
H14b 1.83 1.71 -0.12 1.83 1.77 -0.06 
H15 5.25 5.05 -0.20 5.25 5.06 -0.19 

  
MAD 0.14   MAD 0.13 

  
StDev 0.17   StDev 0.17 
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Table C.23. Calculated Boltzmann averaged 13C chemical shifts (∂C) for 6a and 6b and 
experimental 13C chemical shifts for 6 with mean absolute deviations (MAD) and 
standard deviations (StDev). Calculated 13C chemical shifts for 6a and 6b were scaled 
using experimental 13C chemical shifts of 6. 

 

 

Discussion C.2. Liquid Culture Condition Screening 

Three media types were screened for increased production of rhizoxin analogues in 

Rhizopus microsporus. 

1. Potato Dextrose Broth: 10 g/L instant mashed potatoes, 5 g/L glucose 

2. Literature media recipe (substitute yeast extract for Pharmamedia):206 30 g/L 

maltose, 10 g/L peptone, 2.5 g/L KH2PO4, 7.5 g/L K2HPO4, 2.5 g/L MgSO4 7H2O, 2.0 

g/L (NH4)2SO4, 40 g/L yeast extract 

  Exp. ∂C of 6 Calc. 6a Deviation Exp. ∂C of 6 Calc. 6b Deviation 
C1 169.1 170.6 1.5 169.1 170.0 0.9 
C2 53.2 54.1 0.9 53.2 53.4 0.2 
C3 56.6 58.3 1.7 56.6 57.7 1.1 
C4 36.6 38.0 1.4 36.6 36.9 0.3 
C5 28.5 31.1 2.6 28.5 30.2 1.7 

C5a 36.5 37.6 1.1 36.5 36.9 0.4 
C5b 172.2 167.7 -4.5 172.2 167.4 -4.8 
C6 33.8 33.7 -0.1 33.8 33.6 -0.2 
C7 83.4 79.4 -4.0 83.4 78.4 -5.0 
C8 46.6 47.2 0.6 46.6 49.7 3.1 

C8a 13.4 12.2 -1.2 13.4 11.9 -1.5 
C9 72.5 73.7 1.2 72.5 71.6 -0.9 

C10 128.0 134.8 6.8 128.0 136.0 8.0 
C11 134.7 138.5 3.8 134.7 136.0 1.3 
C12 74.0 64.3 -9.7 74.0 73.8 -0.2 
C12a 19.9 21.6 1.7 19.9 20.8 0.9 
C13 73.6 73.5 -0.1 73.6 73.2 -0.4 
C14 33.4 32.1 -1.3 33.4 31.2 -2.2 
C15 74.8 72.3 -2.5 74.8 72.2 -2.6 

  
MAD 2.5   MAD 1.9 

  
StDev 3.5   StDev 2.8 
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3. Literature media recipe (substitute yeast extract and glucose): 30 g/L glucose, 10 

g/L peptone, 2.5 g/L KH2PO4, 7.5 g/L K2HPO4, 2.5 g/L MgSO4 7H2O, 2.0 g/L 

(NH4)2SO4, 40 g/L yeast extract 

 

Discussion C.3. General computational information 

All geometry optimizations, frequency calculations, and intrinsic reaction 

coordinate (IRC) calculations were performed using Gaussian 09.201 All calculations 

were performed using IEF-PCM solvation modeling with water as the solvent. The 

lowest energy conformations for 1 and 2 were used as starting structures for protonated 

species 1H+, 7-1 and 2H+. Geometry optimization and frequency calculations were 

performed using the M06-2X functional and 6-31G(d) basis set. Following geometry 

optimization, single point energies were calculated for each optimized structure using 

M06-2X/6-311++G(d,p). The difference between the single point electronic energy and 

the electronic energy obtained through the geometry optimization at a lower level of 

theory was calculated and used to adjust the Gibbs free energy.195 

 Following optimization of 1H+, 7, and 2H+, transition states for each 

transformation step were determined. To determine the optimized structure of TS1, the 

Berny algorithm was used with M06-2X/6-31G(d) basis set. Frequency calculations were 

conducted to confirm the presence of one imaginary frequency, and IRC calculations 

were performed to verify the transition state. The use of the Berny algorithm to determine 

TS2 ultimately failed to yield a valid transition state for the transformation of interest. 

However, from the obtained structure, a lower energy conformer of 7 (7-2) was 

discovered.  Using 7-2, as well as the structure of 2H+, QST2 calculations at the M06-
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2X/6-31G(d) level of theory led to a valid transition state, confirmed through IRC 

calculations. Single point energies for TS1 and TS2 were obtained as previously 

described for 1H+, 7-1, and 2H+, and corrected Gibbs free energies were determined as 

previously described. 

 
Table C.24. Cartesian coordinates for the optimized structure of 1H+ 

  

RH+ Symbol X Y Z
1 C -5.031407 0.965231 2.013465
2 C -4.671138 -0.270375 1.663972
3 C -4.873707 -0.763592 0.243783
4 C -4.042303 -1.250491 2.616303
5 C -3.55228 -1.078869 -0.480706
6 O -5.610772 -1.974812 0.21892
7 C -6.948454 -1.815203 0.643729
8 C -2.505508 0.02743 -0.266122
9 C -3.802096 -1.372449 -1.960147
10 C -2.883816 1.328119 -0.95613
11 O -1.234817 -0.393326 -0.830561
12 H -2.351234 0.187694 0.806004
13 C -0.604431 -1.395226 -0.200522
14 C 0.556816 -1.920327 -0.997722
15 O -0.943248 -1.857092 0.862992
16 C 1.522311 -2.805527 -0.317562
17 C 2.950126 -2.921777 -0.785671
18 C 3.877261 -2.041183 0.055721
19 O 0.515121 -3.334748 -1.160776
20 C 5.316313 -2.104868 -0.444809
21 C 6.244831 -1.060714 0.141995
22 O 5.727688 0.082553 0.634868
23 C 4.325065 0.270383 0.907051
24 C 3.434471 -0.585642 0.029919
25 O 7.445966 -1.178464 0.120958
26 C 4.062745 1.775426 0.722331
27 H 3.845362 -2.394348 1.096062
28 H 4.172514 -0.000319 1.960795
29 C 2.600828 2.051034 0.916451
30 C 4.905267 2.617675 1.685112
31 C 1.753981 2.311554 -0.086901
32 C 0.333975 2.530017 0.181612
33 C -0.70089 2.662595 -0.858103
34 C -2.177175 2.5853 -0.465527
35 O -0.198781 3.951413 -0.211436
36 C -0.39177 2.511966 -2.316852

37 O -2.840224 3.66828 -1.076959
38 H -4.873814 1.3412 3.020856
39 H -5.501055 1.642718 1.303465
40 H -5.432524 0.002323 -0.320561
41 H -4.627619 -2.17603 2.645856
42 H -3.030901 -1.522678 2.288576
43 H -3.981815 -0.837626 3.625865
44 H -3.159982 -1.984313 -0.005782
45 H -7.438318 -2.782787 0.524309
46 H -7.006127 -1.507177 1.695524
47 H -7.469311 -1.066195 0.031495
48 H -2.864564 -1.583951 -2.482864
49 H -4.455127 -2.242089 -2.055535
50 H -4.291827 -0.52895 -2.458973
51 H -3.945339 1.521109 -0.775362
52 H -2.764012 1.229416 -2.040279
53 H 0.849126 -1.350863 -1.87717
54 H 1.339524 -2.985022 0.742792
55 H 3.009353 -2.632453 -1.842724
56 H 3.264018 -3.969896 -0.715375
57 H 5.77848 -3.080053 -0.274045
58 H 5.332193 -1.930939 -1.530176
59 H 3.447524 -0.207826 -1.003728
60 H 2.411098 -0.485394 0.400446
61 H 4.332468 2.014667 -0.314093
62 H 2.223377 2.00528 1.939672
63 H 4.730139 3.683512 1.519345
64 H 4.651091 2.384155 2.724625
65 H 5.966292 2.410259 1.533032
66 H 2.106494 2.345538 -1.114588
67 H -0.005876 2.363421 1.200139
68 H -2.252022 2.646391 0.629481
69 H -0.417756 1.442906 -2.548282
70 H -1.155764 3.027509 -2.901817
71 H 0.592737 2.893261 -2.59185
72 H -2.565681 4.488484 -0.637431
73 H 0.457312 4.425722 -0.769777
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Table C.25. Cartesian coordinates for the optimized structure of TS1 

  

TS1 Symbol X Y Z
1 C -4.939606 1.198661 2.07355
2 C -4.587911 -0.041752 1.7325
3 C -4.785264 -0.540808 0.313612
4 C -3.970692 -1.021361 2.692923
5 C -3.460831 -0.860969 -0.403677
6 O -5.524016 -1.75121 0.290782
7 C -6.863187 -1.587625 0.709125
8 C -2.411811 0.243445 -0.18556
9 C -3.704382 -1.155487 -1.884018
10 C -2.785903 1.541275 -0.883981
11 O -1.137722 -0.1866 -0.739161
12 H -2.265027 0.404877 0.88757
13 C -0.528014 -1.20213 -0.111033
14 C 0.626044 -1.745536 -0.906497
15 O -0.875275 -1.660794 0.951343
16 C 1.58175 -2.637275 -0.220678
17 C 3.011002 -2.759636 -0.682748
18 C 3.93073 -1.862421 0.150267
19 O 0.572166 -3.159984 -1.064124
20 C 5.367707 -1.903804 -0.359506
21 C 6.282988 -0.841498 0.214424
22 O 5.748611 0.299306 0.705413
23 C 4.349044 0.462498 0.979332
24 C 3.464228 -0.414561 0.118125
25 O 7.484559 -0.935842 0.188641
26 C 4.063433 1.966759 0.762301
27 H 3.910138 -2.210062 1.192408
28 H 4.201158 0.214371 2.038469
29 C 2.606157 2.208068 0.944035
30 C 4.87745 2.83765 1.729034
31 C 1.735277 2.433451 -0.079198
32 C 0.36903 2.604297 0.215424
33 C -0.662977 3.026884 -0.757769
34 C -2.136239 2.817371 -0.366727
35 O -0.346052 4.354142 -0.228698
36 C -0.382736 2.865746 -2.231296

37 O -2.874765 3.875086 -0.93622
38 H -4.783948 1.578446 3.079836
39 H -5.398605 1.876998 1.357385
40 H -5.341218 0.223188 -0.255938
41 H -4.56205 -1.942972 2.724209
42 H -2.95962 -1.301635 2.370985
43 H -3.912148 -0.603871 3.700716
44 H -3.076022 -1.767759 0.074417
45 H -7.354141 -2.554983 0.592176
46 H -6.924902 -1.274585 1.759255
47 H -7.380369 -0.840698 0.091235
48 H -2.765388 -1.374323 -2.401165
49 H -4.362865 -2.0208 -1.981805
50 H -4.185021 -0.309289 -2.387102
51 H -3.85851 1.705189 -0.742771
52 H -2.627903 1.44513 -1.96326
53 H 0.924637 -1.182495 -1.788003
54 H 1.394603 -2.811066 0.839883
55 H 3.073126 -2.484627 -1.743362
56 H 3.329229 -3.80495 -0.59592
57 H 5.846903 -2.870012 -0.185227
58 H 5.374031 -1.736593 -1.445931
59 H 3.460042 -0.046618 -0.919015
60 H 2.443308 -0.330131 0.502146
61 H 4.338359 2.191649 -0.274749
62 H 2.220677 2.176431 1.964884
63 H 4.69017 3.898332 1.548661
64 H 4.620312 2.607859 2.767831
65 H 5.940394 2.6394 1.579709
66 H 2.087202 2.463523 -1.106242
67 H 0.04818 2.528259 1.252897
68 H -2.206177 2.847264 0.732188
69 H -0.354505 1.801327 -2.480364
70 H -1.181737 3.349094 -2.7974
71 H 0.571603 3.312967 -2.520059
72 H -2.501723 4.707943 -0.604147
73 H 0.338723 4.777394 -0.7814



178 

Table C.26. Cartesian coordinates for the optimized structure of 7-1 

  

6-1 Symbol X Y Z
1 C -4.953627 0.919316 1.85465
2 C -4.601594 -0.334615 1.567213
3 C -4.760087 -0.88344 0.161685
4 C -4.011023 -1.281081 2.576485
5 C -3.413444 -1.20296 -0.51431
6 O -5.477895 -2.106337 0.162688
7 C -6.828762 -1.951209 0.544948
8 C -2.380969 -0.085496 -0.283995
9 C -3.613232 -1.518486 -1.996469
10 C -2.758946 1.207203 -0.995477
11 O -1.093928 -0.508816 -0.810755
12 H -2.255243 0.080247 0.790888
13 C -0.489323 -1.514778 -0.165226
14 C 0.680397 -2.056148 -0.938846
15 O -0.846889 -1.966988 0.896983
16 C 1.664145 -2.89038 -0.22027
17 C 3.097006 -2.977359 -0.680098
18 C 3.980633 -2.010198 0.113128
19 O 0.673177 -3.476045 -1.042919
20 C 5.415067 -2.000658 -0.408184
21 C 6.282802 -0.868808 0.104472
22 O 5.697593 0.261014 0.570056
23 C 4.300171 0.353569 0.862531
24 C 3.449598 -0.587078 0.035749
25 O 7.485883 -0.896859 0.052948
26 C 3.918524 1.832118 0.602129
27 H 3.983527 -2.321549 1.166664
28 H 4.176843 0.131644 1.930329
29 C 2.463444 1.969878 0.817949
30 C 4.683099 2.782072 1.542715
31 C 1.54893 2.268797 -0.170617
32 C 0.214838 2.386106 0.18215
33 C -0.851351 2.974482 -0.690609
34 C -2.293039 2.514002 -0.362574
35 O -0.791702 4.286237 -0.097023
36 C -0.5575 2.988727 -2.177366

37 O -3.167304 3.504367 -0.856524
38 H -4.820295 1.333305 2.850629
39 H -5.386301 1.576448 1.102862
40 H -5.316178 -0.148328 -0.444628
41 H -4.605564 -2.199689 2.627384
42 H -2.99396 -1.575453 2.286996
43 H -3.972735 -0.827676 3.569666
44 H -3.036208 -2.099923 -0.012269
45 H -7.30089 -2.930665 0.453655
46 H -6.91958 -1.600312 1.581036
47 H -7.344347 -1.237324 -0.112071
48 H -2.664907 -1.779425 -2.475362
49 H -4.297615 -2.36279 -2.101939
50 H -4.044989 -0.665708 -2.532099
51 H -3.849937 1.286836 -0.991944
52 H -2.463377 1.153265 -2.048212
53 H 0.964371 -1.517591 -1.840134
54 H 1.4825 -3.030915 0.846273
55 H 3.146848 -2.743778 -1.751177
56 H 3.457371 -4.004274 -0.550572
57 H 5.944419 -2.932115 -0.194078
58 H 5.405573 -1.884609 -1.501074
59 H 3.425601 -0.251117 -1.011421
60 H 2.426902 -0.53322 0.424589
61 H 4.161533 2.051395 -0.443021
62 H 2.094402 1.817318 1.834729
63 H 4.440442 3.8237 1.325201
64 H 4.442999 2.571744 2.588831
65 H 5.752743 2.628621 1.387952
66 H 1.880868 2.431249 -1.191778
67 H -0.067906 2.197048 1.21779
68 H -2.37987 2.443691 0.734293
69 H -0.384758 1.973267 -2.545046
70 H -1.415011 3.418359 -2.699705
71 H 0.325636 3.591306 -2.407748
72 H -2.850763 4.357839 -0.515891
73 H -0.088153 4.805137 -0.523804
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Table C.27. Cartesian coordinates of the optimized structure of 7-2 

  

6-2 Symbol X Y Z
1 C 5.281931 1.081501 -1.664733
2 C 5.280736 -0.106196 -1.058664
3 C 5.166456 -0.20466 0.451532
4 C 5.399997 -1.410512 -1.800214
5 C 3.913808 -0.965237 0.917247
6 O 6.265387 -0.910405 1.002397
7 C 7.49204 -0.224695 0.857181
8 C 2.659573 -0.441408 0.212884
9 C 3.800763 -0.948214 2.441406
10 C 2.263047 0.986886 0.573213
11 O 1.567415 -1.320709 0.595135
12 H 2.792777 -0.5246 -0.867756
13 C 0.768555 -1.785741 -0.359478
14 C -0.341588 -2.621183 0.199018
15 O 0.881175 -1.54257 -1.545579
16 C -1.592027 -2.709201 -0.589006
17 C -2.930707 -2.968466 0.060951
18 C -3.961127 -1.889454 -0.278092
19 O -0.653907 -3.7688 -0.57258
20 C -5.29252 -2.203366 0.39962
21 C -6.320344 -1.095401 0.354715
22 O -5.906649 0.17734 0.152872
23 C -4.596669 0.511494 -0.319963
24 C -3.538166 -0.48147 0.135317
25 O -7.492082 -1.280307 0.564087
26 C -4.351617 1.955522 0.198451
27 H -4.108149 -1.891815 -1.367326
28 H -4.642877 0.530025 -1.416853
29 C -3.102579 2.477505 -0.389071
30 C -5.509413 2.89188 -0.20015
31 C -1.920925 2.637531 0.304273
32 C -0.790556 2.997647 -0.406596
33 C 0.605076 2.896215 0.124848
34 C 0.947065 1.383689 -0.088656
35 O 1.482097 3.68464 -0.640151
36 C 0.715888 3.340646 1.581341

37 O 0.987076 1.271276 -1.499992
38 H 5.354691 1.169882 -2.745515
39 H 5.216606 2.007799 -1.098043
40 H 5.147805 0.815774 0.872683
41 H 6.19474 -2.023172 -1.361347
42 H 4.472854 -1.993824 -1.731472
43 H 5.619224 -1.246021 -2.857361
44 H 4.032958 -2.006184 0.588373
45 H 8.24865 -0.809375 1.382738
46 H 7.778652 -0.124408 -0.197271
47 H 7.435635 0.77887 1.300871
48 H 2.871172 -1.42162 2.768928
49 H 4.640878 -1.489414 2.879723
50 H 3.824998 0.075367 2.830379
51 H 3.051812 1.669155 0.237097
52 H 2.162708 1.074633 1.659198
53 H -0.361542 -2.748734 1.278011
54 H -1.602177 -2.166139 -1.535607
55 H -2.813563 -3.054983 1.147925
56 H -3.301263 -3.934828 -0.301336
57 H -5.76491 -3.099398 -0.010266
58 H -5.122184 -2.395809 1.468268
59 H -3.410453 -0.425796 1.22517
60 H -2.581546 -0.207486 -0.326083
61 H -4.256327 1.901435 1.288245
62 H -3.119563 2.728611 -1.45131
63 H -5.31303 3.913362 0.131534
64 H -5.649525 2.891387 -1.285106
65 H -6.424485 2.535901 0.274123
66 H -1.869757 2.379386 1.358221
67 H -0.896649 3.299226 -1.4483
68 H 0.133083 0.777059 0.333945
69 H 0.174936 2.672183 2.255288
70 H 1.771346 3.342194 1.857909
71 H 0.325902 4.354671 1.694248
72 H 1.017014 0.329372 -1.754333
73 H 1.645292 3.201722 -1.471339
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Table C.28. Cartesian coordinates of the optimized structure of TS2 

  

TS2 Symbol X Y Z
1 C 5.271504 0.96078 -1.396156
2 C 5.2226 -0.239132 -0.816662
3 C 4.954516 -0.370976 0.671359
4 C 5.433962 -1.524977 -1.569347
5 C 3.637109 -1.098046 0.993756
6 O 5.96702 -1.127967 1.310657
7 C 7.223921 -0.482543 1.308579
8 C 2.475661 -0.54319 0.163968
9 C 3.361935 -1.082639 2.497149
10 C 2.102324 0.903396 0.503011
11 O 1.331813 -1.386679 0.440101
12 H 2.705205 -0.618592 -0.901382
13 C 0.540711 -1.751383 -0.567988
14 C -0.565279 -2.638918 -0.082741
15 O 0.662248 -1.390161 -1.720277
16 C -1.806706 -2.719832 -0.882174
17 C -3.135157 -3.016393 -0.229354
18 C -4.098268 -1.833131 -0.358653
19 O -0.844374 -3.756874 -0.910797
20 C -5.377094 -2.079883 0.437475
21 C -6.27435 -0.873912 0.632231
22 O -5.761878 0.364822 0.477652
23 C -4.497658 0.605792 -0.163128
24 C -3.500317 -0.508 0.106468
25 O -7.419047 -0.973932 0.999108
26 C -4.030565 1.9872 0.322949
27 H -4.356011 -1.72458 -1.421583
28 H -4.691187 0.663566 -1.243968
29 C -2.754562 2.319416 -0.374467
30 C -5.077926 3.071963 0.01915
31 C -1.600845 2.669549 0.23864
32 C -0.451175 2.941929 -0.560372
33 C 0.865931 3.14751 -0.082547
34 C 1.005745 1.352358 -0.450361
35 O 1.821518 3.710909 -0.872853
36 C 1.107472 3.490968 1.364143

37 O 1.422021 1.336194 -1.763555
38 H 5.447457 1.071197 -2.462836
39 H 5.139708 1.87635 -0.823373
40 H 4.928509 0.638781 1.116772
41 H 6.217467 -2.120309 -1.088489
42 H 4.525591 -2.140454 -1.574924
43 H 5.719745 -1.332844 -2.605776
44 H 3.762383 -2.140437 0.672329
45 H 7.903605 -1.107637 1.889632
46 H 7.618331 -0.36502 0.29138
47 H 7.155769 0.510211 1.774085
48 H 2.406186 -1.562344 2.723996
49 H 4.154965 -1.619159 3.020621
50 H 3.337877 -0.058985 2.886875
51 H 2.98015 1.541234 0.359673
52 H 1.767221 0.963246 1.540146
53 H -0.593793 -2.823115 0.987994
54 H -1.829107 -2.134321 -1.802689
55 H -2.978796 -3.269947 0.826066
56 H -3.576368 -3.896289 -0.712184
57 H -5.992132 -2.87265 0.004299
58 H -5.115604 -2.404251 1.454449
59 H -3.25287 -0.544502 1.176843
60 H -2.57683 -0.283701 -0.439613
61 H -3.858084 1.93256 1.404206
62 H -2.775265 2.276241 -1.465968
63 H -4.735271 4.044177 0.379976
64 H -5.259441 3.143605 -1.057997
65 H -6.017043 2.821167 0.515442
66 H -1.544382 2.729771 1.321306
67 H -0.579925 2.906537 -1.64256
68 H 0.087757 0.787855 -0.279672
69 H 0.527646 2.869217 2.046197
70 H 2.168375 3.389478 1.594887
71 H 0.821957 4.536169 1.51138
72 H 0.99596 0.582662 -2.214553
73 H 1.724749 3.397178 -1.790847
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Table C.29. Cartesian coordinates of the optimized structure of 2H+ 

 

 
Table C.30. Thermodynamic data calculated for optimized structures. All energies are 
given in Hartrees. 

 

 

1H+ Symbol X Y Z
1 C 5.095909 0.519364 -1.517539
2 C 4.87229 -0.586308 -0.80797
3 C 4.55649 -0.500185 0.672524
4 C 4.900458 -1.970546 -1.396999
5 C 3.162577 -1.043591 1.02482
6 O 5.467443 -1.270038 1.440257
7 C 6.788694 -0.773455 1.393637
8 C 2.082673 -0.475023 0.099892
9 C 2.842945 -0.814541 2.501398
10 C 1.752316 0.998165 0.303517
11 O 0.84032 -1.163986 0.369015
12 H 2.351559 -0.654434 -0.945377
13 C 0.599872 -2.305037 -0.286911
14 C -0.683961 -2.899636 0.203624
15 O 1.296462 -2.773747 -1.153555
16 C -1.78619 -3.133655 -0.753466
17 C -3.213878 -3.133672 -0.274861
18 C -3.94722 -1.809523 -0.503504
19 O -0.973101 -4.19451 -0.277429
20 C -5.370616 -1.929528 0.044897
21 C -6.12038 -0.636584 0.286965
22 O -5.431591 0.513991 0.385364
23 C -4.088344 0.644268 -0.123934
24 C -3.269341 -0.606749 0.152341
25 O -7.311075 -0.613455 0.487791
26 C -3.504345 1.92467 0.489565
27 H -3.997289 -1.619141 -1.584397
28 H -4.177603 0.789434 -1.210712
29 C -2.258696 2.293749 -0.265052
30 C -4.496687 3.093607 0.411688
31 C -1.043022 2.454488 0.255228
32 C 0.13538 2.78819 -0.621509
33 C 0.965693 3.952643 -0.166713
34 C 1.020724 1.550304 -0.915407
35 O 2.122683 4.1088 -0.651216
36 C 0.479359 4.945836 0.802099

37 O 2.040614 1.907247 -1.864258
38 H 5.305572 0.480548 -2.583321
39 H 5.068522 1.504424 -1.057003
40 H 4.628867 0.555444 0.987888
41 H 5.544201 -2.623801 -0.798178
42 H 3.897397 -2.41673 -1.396338
43 H 5.268256 -1.955271 -2.425469
44 H 3.192562 -2.124891 0.831849
45 H 7.383675 -1.385276 2.073593
46 H 7.211836 -0.839089 0.383333
47 H 6.827361 0.274937 1.72035
48 H 1.846289 -1.191316 2.74756
49 H 3.575365 -1.330446 3.124681
50 H 2.880192 0.251972 2.751848
51 H 2.670081 1.577134 0.460701
52 H 1.139781 1.097408 1.204881
53 H -0.927461 -2.702212 1.245857
54 H -1.603302 -2.87366 -1.797042
55 H -3.216928 -3.37923 0.794758
56 H -3.75408 -3.937901 -0.789514
57 H -6.003824 -2.559736 -0.584365
58 H -5.336269 -2.412349 1.032001
59 H -3.188472 -0.756506 1.238728
60 H -2.25545 -0.457963 -0.236836
61 H -3.255243 1.725343 1.539592
62 H -2.39916 2.464859 -1.335684
63 H -4.037827 4.000029 0.814898
64 H -4.781228 3.287675 -0.62868
65 H -5.401516 2.872519 0.979473
66 H -0.867955 2.286956 1.316773
67 H -0.256246 3.133237 -1.59411
68 H 0.365311 0.7853 -1.34293
69 H 0.460434 4.464236 1.789565
70 H 1.126335 5.820992 0.828036
71 H -0.556603 5.206882 0.564805
72 H 1.67928 1.91207 -2.767451
73 H 2.343341 3.330638 -1.291495

 
M06-2X/6-31G(d) - IEFPCM=water 

M06-2X/6-311++G(d,p) - 
IEFPCM=water// M06-2X/6-31G(d) - 

IEFPCM=water 

 Electronic Energy Free Energy Electronic Energy 
1H+ -1615.10009938 -1614.529241 -1615.57991139 
TS1 -1615.09599816 -1614.526229 -1615.57671100 
7-1 -1615.09677424 -1614.528220 -1615.57876878 
7-2 -1615.10750107 -1614.540339 -1615.58946855 
TS2 -1615.09754221 -1614.529506 -1615.57884300 
2H+ -1615.14824789 -1614.581254 -1615.62771307 
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Figure C.41. Potential energy scan examining rotation about the C11-C12 bond of 7. 
Dihedral angle is between C13-C11-C10-H10, with -90° being optimal for si face 
migration to yield the 11R product, while +90° is best aligned for re face migration to 
yield the 11S product. Calculation was performed at the M06-2X/6-31G(d)-IEFPCM 
(water) level. 
 

 

 

 


