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Abstract

Lie symmetries are fundamental properties of differential equations that are often

not actively considered in construction of numerical schemes relevant to computa-

tional fluid dynamics (CFD). While many of these numerical schemes in CFD are

constructed based on consideration of a desired order of accuracy and have shown

promising results, these schemes usually do not accurately represent fundamental

symmetry (or invariance) properties of underlying governing equations. The overall

objective of this dissertation is to address this limitation via development of nu-

merical schemes that not only preserve Lie symmetries of underlying differential

equations but also ensure a desired order of accuracy.

In this regard, novel methodologies for construction of high order accurate in-

variant numerical schemes, based on the method of equivariant moving frames, are

introduced. Formulation of high order accurate invariant schemes presented in this

work involves consideration of (a) modified equations (via perturbation or defect

correction) and/or (b) compact schemes. Modified forms of equations are used not

only to achieve a desired order of accuracy in associated invariant schemes but also

to systematically select convenient moving frames. Further, in the construction of

invariant compact schemes, extended symmetry groups of differential equations are

considered where point transformations based on these extended groups are used

to transform existing base schemes to their invariant forms. Construction and per-

formance of symmetry preserving numerical schemes are discussed for a variety of

linear and nonlinear canonical problems (such as linear advection-diffusion equa-

tion in 1D/2D, inviscid Burgers’ equation, viscous Burgers’ equation along with

application to Euler equations in 1D/2D). The overall quality of results obtained

xvi



from constructed invariant numerical schemes is often found to be notably better

than that of standard, non-invariant base numerical schemes. Such improvements

in results are particularly more significant when error measures based on symmetry

properties of underlying differential equations are considered.
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CHAPTER 1

Introduction

1.1 Motivation

In traditional computational fluid dynamics (CFD), fundamental symmetry prop-

erties of differential equations are not often considered in development of numerical

schemes as the focus is mostly on obtaining a desired order of accuracy in resulting

schemes. It is reasonable to expect that preservation of underlying symmetries in

numerical schemes could lead to better performance, in the context of accuracy and

computational efficiency. Recent developments in the study of geometric integrators

are good examples of how preservation of selected geometric properties of equations

(such as energy and symplecticity properties or Hamiltonian and Poisson structures

of equations) could enhance the quality of results obtained from numerical solu-

tions [1–13]. While Lie symmetries also represent important fundamental geometric

properties of differential equations, their inclusion in numerical schemes relevant to

CFD has been limited despite the expected benefits.

The primary objective of this dissertation is to address this limitation and to con-

tribute to the current state of knowledge in this regard via presentation of a detailed

framework for construction of high order accurate numerical schemes that retain

Lie symmetry properties of underlying differential equations relevant to problems

in CFD. The main motivation for this objective is that, by preserving symmetries

of differential equations (which are fundamental geometric properties) in associated

numerical schemes, accuracy and efficiency of these finite difference schemes can be

significantly enhanced, and hence these schemes would perform notably better than
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those that do not preserve symmetries. The secondary objective of this dissertation

involves demonstration of the procedure for an effective use of Lie symmetry analysis

to obtain group invariant solutions for a variety of problems ranging from boundary

layer flows to hypersonic flows.

For the remainder of this dissertation, we shall attempt to demonstrate how these

objectives are achieved starting from a brief description of Lie symmetry groups.

1.2 Historical Preface of Group Theory

In 19th century, the theory of equations was one of the main research topics in

mathematics. The French mathematician Evariste Galois (1811 - 1832) proposed

the first detailed classification of equations in the form of a0xn+a1xn−1 +a2xn−2 +

· · ·+anx
0 = 0. He explored general solutions of such equations by involving lower

order equations with roots that are functions of these equations [14, 15]. To this

end, Galois introduced the notion of "degree of symmetry" of algebraic equations

that is described by a set of special permutations of relations between the roots

of these equations. Such a set of permutations (that transform all the algebraic

relations between the roots of equations to other relations between the same roots)

was assumed to have certain properties such as containing an identity permutation,

an inverse permutation, and the permutation that is obtained from the product

of any two permutations contained in the set. Galois is accepted to be the first

mathematician to call such a special set a "group" which is the basic element of the

group theory in mathematics.

Marius Sophus Lie (1842 - 1899), a Norwegian mathematician, started his study

by investigating continuous groups of transformations (which are usually referred to

as Lie groups) that leave differential equations invariant. Lie was the first to use

the theory of continuous groups systematically for finding solutions and describing

symmetry properties of differential equations. At his time, Lie’s approach for solving
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differential equations was very highly valued by many mathematicians. However,

owing to the rise of computers around 1950s, the general approach for solving the

problem of differential equations was systematically transferred to computers, and

hence the notion of solvability of differential equations lost its previous importance

along with the Lie theory of differential equations. But in the beginning of 1970s,

the Lie group theory started to draw attention again when physicists realized that

Lie’s theory is not only about solving differential equations but also a tool that can

be used to systematically identify symmetry properties of differential equations and

physicists started to actively use Lie group theory in elementary particle physics [15].

Today, Lie group theory (or Lie symmetry analysis) is used in many different

areas of research due to its practical applications and the insight that it brings to

describe physical systems. In this regard, one of the main advantages of symmetry

analysis is that symmetry properties of equations can be exploited to achieve simpli-

fications in definitions of these equations. In the case of differential equations, these

simplifications could be in the forms of order and/or dimension reduction. Sym-

metries also represent fundamental information regarding conservation laws that

describe a physical phenomenon and hence provide a systematic means for an en-

riched understanding of the phenomenon and the associated conservation laws. Note

that, in this regard, Noether’s theorem states that every differentiable symmetry has

a corresponding conservation law [16]. As a result, knowledge of symmetry prop-

erties of equations often opens alternative pathways to approach problems when

searching for solutions. Therefore, it is usually a good practice to analyze symmetry

properties of equations before a solution strategy (whether it is analytic or numeric)

is decided.

In the following section, a more detailed description of the Lie symmetry groups

along with its usage in fluid dynamics is presented.
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1.3 Lie Symmetry Groups

In mathematics and related fields, an expression is said to possess a symmetry

property if one can transform every variable in the expression according to some

transformations such that the resulting expression reads exactly the same as the

original form of the expression. In this context, a group is an algebraic structure

that consists of a set of elements that are equipped with a binary operation that

satisfies the following group axioms:

i. existence of inverse element,

ii. existence of identity element,

iii. associativity property,

iv. and closure.

In particular, a Lie symmetry group is a group that is also a smooth manifold as it

consists of a set of continuous symmetries that correspond to smooth transformations

that, when implemented, map a system to itself in the transformed space. If these

symmetries are coordinate transformations, then such groups are called Lie point

symmetry groups.

Lie symmetry properties of equations (which are fundamental geometric proper-

ties) are frequently considered in many disciplines. In particular, in areas such as

finance, differential geometry, high energy physics, and fluid dynamics, Lie symme-

try analysis is a fundamental tool and has a wide range of applications [14,15,17–22].

For instance, Lie symmetry groups are often used to obtain group invariant solutions

and conservation laws for differential equations relevant to fluid dynamics [23–32].

These symmetry groups are also used for reduction purposes where high order dif-

ferential equations are usually simplified to lower orders with smaller number of

variables. Well-known examples in this area could be those relevant to boundary
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layer flows where self-similar solutions are obtained from similarity variables that are

determined through Lie symmetry analysis [33–36]. In this regard, Cantwell [33] pre-

sented a study where symmetry properties of the two-dimensional stream-function

equation were used to determine similarity transformations that lead to self-similar

solutions for the underlying PDE. The author also extended this work to the case

where kinematic viscosity in the stream-function equation is zero (ν = 0) correspond-

ing to the Euler equations. Additionally, a detailed discussion on other symmetry

groups associated with these equations was also included in this work.

In another work, Boutros et al. [34] investigated non-linear equations of motion

describing laminar, incompressible flow in a rectangular domain with porous walls

in the case of successive expansions and contractions with Lie symmetry analysis.

Symmetry properties of the relevant differential equations were used to obtain sim-

pler reduced forms for these equations which involve the use of similarity variables

determined from these symmetry groups. In a similar work, Avramenko et al. [35]

used Lie symmetry groups to investigate the differential equations relevant to the

process of heat, momentum, and concentration transport in a boundary layer of a

nanofluid near a flat wall. Self-similar solutions were identified for these differential

equations, and later these solutions were used to evaluate the effects of concen-

tration of nanoparticles on the velocity and temperature profiles as well as on the

skin-friction coefficients and relative Nusselt numbers. Further, in a more recent

study, Jalil and Asghar [36] presented a detailed work on boundary layer flow of a

power-law fluid over a permeable stretching surface. The authors used Lie symme-

try analysis to identify possible similarity transformations that lead to self-similar

solutions for the associated differential equations. They then evaluated the perfor-

mance of these self-similar solutions under various flow configurations. In addition

to the above examples, many other works exist in various fields where the benefits

of Lie symmetry analysis are realized.
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1.4 Symmetry Preservation in Numerical Schemes

In the area of numerical analysis, a great deal of effort has been devoted to construc-

tion of high order accurate and efficient numerical solutions for partial differential

equations as analytical solutions are rarely present [37–39]. Many different method-

ologies (i.e., finite-volume [39, 40], finite-element [41], and finite difference [42, 43]

methods) have been proposed in the literature to approximate solutions for such

differential equations. In fluid dynamics and related fields, high order accuracy and

efficiency are usually desired in numerical solutions, especially in numerical predic-

tion of complex flows. There exist different approaches to construct such high order

accurate and efficient numerical schemes. One approach to achieving high order

accuracy is through the method of modified equations, where numerical accuracy of

low order schemes is commonly enhanced by introduction of additional terms ob-

tained from truncation error analysis of these low order base schemes, which is also

known as defect correction [44–53]. A well-known study by Warming and Hyett [44]

is among the first examples of the method of modified equations. In this work,

the authors demonstrated the improvement in accuracy of finite difference schemes

for some linear and nonlinear PDEs by considering their modified forms. Here the

modified forms of difference equations were obtained by first expanding every term

of the equation in a Taylor series and then eliminating the time derivatives higher

than first order through algebraic manipulations. In another work, Chu [47] pre-

sented a method to improve accuracy of low order schemes by introducing special

discrete time steps along with non-iterative defect correction procedures. The author

successfully constructed high order schemes for some common linear and nonlinear

problems. In a more recent work, Razi et al. [49] proposed an approach for con-

struction of high order schemes that is based on modified equations and adaptive

grids. In this study, the leading error terms of difference equations are removed from
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schemes by non-iterative defect corrections, and the singular perturbations of mod-

ified equations are regularized by using adaptive grids. The authors demonstrate

the application of the method by developing high order accurate schemes for some

linear and nonlinear hyperbolic PDEs. Similarly, in a related work, Wasserman et

al. [51] proposed a robust multigrid method for simulation of chemically-reacting

turbulent flows where defect correction procedures are used to improve the coarse-

grid-correction in localized regions of high chemical activity. The defect correction

procedures considered in this work are based on use of alternative, stable discretiza-

tion of convection and diffusion operators on coarse levels where the desired order

of accuracy on fine-grids are still retained. Despite the common use of modified

equations for the purpose of achieving high order accuracy, this technique is not

always preferred in construction of high order schemes due to possible increase in

the computational cost and cumbersome numerical representations.

Compact finite differencing based on Padé approximants is another commonly

used method for construction of high order numerical schemes that is well-documented

in the literature. An important objective of this method is to achieve high order

accuracy with a relatively small number of stencil points by relating a weighted sum

of functions (or dependent variables) to a weighted sum of derivatives evaluated

at grid points [54–63]. Hence, numerical solutions based on compact schemes are

found to have good spectral-like resolutions (solutions that exponentially converge

with increasing resolution) especially in the case of short waves [54]. In this regard,

Hirsh [54] presented a detailed application of compact finite differencing which in-

cluded development and application of fourth order accurate compact schemes to

three test problems namely viscous Burgers’ equation, Howarth’s retarded boundary

layer flow, and the incompressible driven cavity problem. The author also provided

a brief discussion on how to treat boundary conditions when developing compact

finite difference schemes which could be problematic in some cases. The results ob-
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tained from the application of the fourth order scheme to the selected test problems

were found to be significantly more accurate than standard second order schemes.

In another well-known work, Lele [55] extended the earlier works on compact finite

differencing by presenting finite difference schemes that provide a better represen-

tation of shorter length scales for use on problems with a range of spatial scales.

In addition, the author provided a detailed discussion on how to obtain compact

finite difference schemes of different orders (up to tenth order) and treat the relevant

boundary conditions. In a more recent study, Shukla et al. [60] presented a family

of high order compact finite-difference schemes that are built on non-uniform grids

with spatial orders of accuracy ranging from 4th to 20th. These compact schemes

are constructed such that they maintain high order accuracy not only in the interior

of a domain but also at its boundaries. The authors demonstrated the application of

these compact schemes to the linear wave equation and two-dimensional incompress-

ible Navier-Stokes equations and verified the achievement of high order accuracy for

these problems. They further showed (via comparisons with benchmark solutions

for the two-dimensional driven cavity flow, thermal convection in a square box, and

flow past an impulsively started cylinder) that these high order compact schemes

are stable and produce highly accurate results on stretched grids with more points

clustered at boundaries.

Although the method of modified equations and compact finite difference schemes

can be used to construct high order accurate numerical schemes, in these methods,

the geometric properties of underlying differential equations are usually disregarded

as the focus is usually on the accuracy of resulting numerical schemes. Numerical

schemes that preserve certain geometric properties (i.e., energy, momentum, sym-

plecticity, Hamiltonian and Poisson structures) of equations are categorized under

geometric integrators. It is shown in many cases that the overall quality of results

obtained from such geometric integrators could be significantly better than those ob-
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tained from classical numerical schemes [1–13,64–67]. In an early work in the area,

Channell and Scovel [2] presented algorithms to numerically integrate trajectories

of Hamiltonian dynamical systems along with a detailed discussion of earlier works.

The algorithms presented in this work exactly preserve the symplectic 2-form (such

as all Poincaré invariants) and have been tested on a variety of examples. Results

obtained from these algorithms were found to possess long-time stability property

and preserve global geometrical structures in phase space. In a more recent work,

Gong et al. [10] introduced a systematic approach for discretizing general multi-

simplectic formulations of Hamiltonian PDEs, including a local energy preserving

algorithm, a class of global energy preserving methods and a local momentum pre-

serving algorithm. The implementation of the methods in this work is illustrated

by the nonlinear Schrödinger equation and Korteweg-de Vries equation where the

numerical experiments clearly verified the conservative properties of the proposed

methods. In a similar work, Li and Wu [13] proposed and analyzed some energy

preserving functionally fitted methods, in particular, trigonometrically fitted meth-

ods of an arbitrary high order for solving oscillatory nonlinear Hamiltonian systems

with a fixed frequency. Numerical experiments on oscillatory Hamiltonian systems

such as the FPU problem and the nonlinear Schrödinger equation were conducted to

evaluate the performance of these methods and results obtained from these solutions

were found to be highly accurate.

Lie symmetry groups of differential equations are also geometric properties that

could be preserved in numerical schemes. Various researchers have proposed meth-

ods for preserving symmetry groups of equations in associated numerical schemes

[68–92]. Most of the works in this subject could be categorized into two major

groups. In the first group [68–76], an approach based on Lie symmetry analysis is

used to determine finite difference invariants of difference equations. Next a set of

these invariants which converges to the original equation in the continuous limit is
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used to construct an invariant scheme. The latter could be difficult to achieve in

the case of multidimensional problems. In this regard, Dorodnitsyn [68] proposed

a method to construct finite difference equations together with difference grids that

admit the symmetry groups that are isomorphic to the symmetry groups of the orig-

inal differential model. Eventually, this leads to existence of exact invariant finite

difference schemes and conservation laws for invariant variation problem. The imple-

mentation of the method is demonstrated through examples such as heat equation

and wave equation.

In a related work, Bakirova et al. [69] presented three characteristic examples

of the construction of finite difference equations and meshes where Lie groups of

the original differential equation are preserved in these discrete models. A detailed

discussion on the application of the method is also provided in Bakirova et al. [69],

which uses heat equation with a source as an example. In a more recent work,

Xiang-Peng et al. [73] presented a procedure for constructing discrete models for

multidimensional nonlinear evolution equations that preserve all the Lie symmetry

groups of underlying differential equations. The main difference between this work

and earlier works is that in this work, the authors construct discrete models for

potential equations instead of original differential equations. As an example, the

authors consider the (2+1)-dimensional Burgers’ equation and constructed invariant

discrete models that preserve all continuous symmetries of this equation.

In the second group [83–94], invariant finite difference equations are constructed

via equivariant moving frames. The invariantization procedure involves determina-

tion of point transformations based on Lie symmetry groups and implementation

of these transformations in selected non-invariant base finite difference schemes to

find their invariant forms [83–86]. In this method, unknown symmetry parame-

ters that appear in the point transformations are usually determined via method

of moving frames [83, 95]. In this regard, the first work was published by Fels and
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Olver [83, 84] who introduced the theoretical aspects of general theory of moving

frames. The authors formulated a practical and easy implementation of explicit

methods to compute moving frames, invariant differential forms, differential invari-

ants and operators and hence solve for finite dimensional Lie group actions. A

detailed discussion on application of these methods ranging from differential equa-

tions to differential geometry were presented in this work as well. Almost a decade

later, Kim [85–87] introduced an invariantization method for difference equations

where the general theory of moving frames are used to determine unknown sym-

metry parameters in point transformations that are obtained from Lie groups of

relevant differential equations. The author also provided a detailed discussion on

practical application of the method where symmetry preserving numerical schemes

were constructed for heat equation and Viscous Burgers’ equation. The methods

(for construction of invariant numerical schemes) proposed in this dissertation are

also based on the method of equivariant moving frames. In this context, we extend

the earlier works by proposing different methods for construction of high order accu-

rate invariant finite difference schemes (including compact schemes) with a desired

order of accuracy. We show the implementation of the proposed methodologies in

a variety of problems, including the implementation in one- and two-dimensional

Euler equations.

1.5 Scope of the Dissertation

In the context of the previously mentioned objectives, the remainder of the disser-

tation is organized in the following manner. A comprehensive discussion on Lie

symmetry analysis that lays out the steps involved in the determination of Lie sym-

metry groups of differential equations is presented in Chapter 2. Further, to demon-

strate the implementation of Lie symmetry analysis, various test problems relevant

to incompressible boundary layer flows over different wall configurations and analy-
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sis of stagnation point state of an inviscid, compressible flow past a blunt-body are

also considered in this chapter, where similarity transformations determined from

Lie symmetry groups of underlying differential equations are used to obtain group

invariant solutions for these problems. Here it is important to note that, in most

cases, Lie symmetry analysis makes it possible to systematically identify similarity

transformations, for the purpose of finding self-similar solutions for differential equa-

tions, as opposed to predicting these similarity transformations based on intuition

and other more difficult approaches.

In Chapter 3, we propose a method to construct invariant finite difference schemes

for solution of partial differential equations (PDEs) via consideration of modified

forms of the underlying PDEs. The invariant schemes, which preserve Lie symme-

tries, are obtained based on the method of equivariant moving frames. While it

is often difficult to construct invariant numerical schemes for PDEs owing to com-

plicated symmetry groups associated with cumbersome discrete variable transfor-

mations, we note that symmetries associated with more convenient transformations

can often be obtained by appropriately modifying the original PDEs. In some cases,

modifications to the original PDEs are also found to be useful in order to avoid

trivial solutions that might arise from particular selections of moving frames. In

our proposed method, modified forms of PDEs can be obtained either by addition

of perturbation terms to the original PDEs or through defect correction procedures.

These additional terms, whose primary purpose is to enable symmetries with more

convenient transformations, are then removed from the system by considering mov-

ing frames for which these specific terms go to zero. Further, we explore selection

of appropriate moving frames that result in improvement in accuracy of invariant

numerical schemes based on modified PDEs. The proposed method is tested using

the linear advection equation (in 1D and 2D) and the inviscid Burgers’ equation.

Results obtained for these tests cases indicate that numerical schemes developed
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through the proposed method perform significantly better than existing schemes

not only by virtue of improvement in numerical accuracy but also due to preserva-

tion of qualitative properties or symmetries of the underlying differential equations.

In Chapter 4, we present a novel mathematical approach that is based on mod-

ified equations and the method of equivariant moving frames for construction of

high order accurate invariant finite difference schemes that preserve Lie symmetry

groups of underlying partial differential equations (PDEs). In the proposed ap-

proach, invariant (or symmetry preserving) numerical schemes with a desired (or

fixed) order of accuracy are constructed from some non-invariant (base) numerical

schemes. Modified forms of PDEs are used to improve order of accuracy of existing

schemes where modified forms are obtained through addition of defect correction

terms to the original forms of PDEs. These defect correction terms of modified

PDEs that are noted from truncation error analysis are either completely removed

from schemes or their representation is significantly simplified by considering conve-

nient moving frames. This feature of the proposed method can especially be useful

to avoid cumbersome numerical representations when high order schemes are de-

veloped from low order ones via the method of modified equations. The proposed

method is demonstrated via construction of invariant numerical schemes with fixed

(and higher) order of accuracy for some common linear and nonlinear problems

(including the linear advection-diffusion equation in 1D and 2D, inviscid Burgers’

equation, and viscous Burgers’ equation) and the performance of these invariant

numerical schemes is further evaluated. Results suggest that such invariant numer-

ical schemes obtained from existing base numerical schemes have the potential to

significantly improve the quality of results not only in terms of desired higher order

accuracy but also in the context of preservation of appropriate symmetry properties

of underlying PDEs.

In Chapter 5, we propose another novel method for development of high order
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accurate invariant compact finite difference schemes that retain Lie symmetry prop-

erties of underlying partial differential equations. In this method, variable trans-

formations that are obtained from the extended symmetry groups of underlying

PDEs are used to transform independent and dependent variables and derivative

terms of compact finite difference schemes (constructed for these PDEs) such that

the resulting compact numerical schemes are invariant under the chosen symmetry

groups. The unknown symmetry parameters that arise from the application of these

transformations are determined through selection of convenient moving frames. In

some cases, due to selection of convenient moving frames, numerical representa-

tions of the invariant (or symmetry preserving) compact numerical schemes that

are developed through the proposed method are found to be notably simpler than

those of the standard compact numerical schemes. Further, the order of accuracy

of these invariant compact schemes can be arbitrarily set to a desired order by

considering suitable compact finite difference algorithms. The application of the

proposed method is demonstrated through construction of invariant compact finite

difference schemes for some common linear and nonlinear PDEs (including the linear

advection-diffusion equation in 1D/2D, the inviscid equation in 1D, and the viscous

Burgers’ equation in 1D). Results obtained from these simulations indicate that the

invariant compact schemes not only inherit selected symmetry properties of under-

lying PDEs but are also comparably more accurate than the standard non-invariant

schemes.

In Chapter 6, one- and two-dimensional Euler equations of gas dynamics are

considered and symmetry preserving finite difference schemes are constructed for

these equations. Two different discretization methods, namely Lax-Friedrichs and

Van-Leer flux splitting schemes, are used to solve the Euler equations for various

initial conditions. Results obtained from these invariant schemes suggest that the

invariant schemes not only store important geometric properties of Euler equations
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but also yield accurate numerical results. The proposed schemes can be used as a

basis to further enhance the state of knowledge regarding the numerical solution of

the Euler equations by harvesting certain advantages that become available with

symmetry preservation.

The final chapter, Chapter 7, and appendices (Appendix B and Appendix C)

of this dissertation include a summary of the main results obtained from vari-

ous chapters of this dissertation along with a detailed discussion on possible is-

sues and ideas for future work. In the appendices, a discussion on preliminary

results regarding construction of invariant finite difference schemes for the solu-

tion of the three-dimensional Euler equations and multidimensional incompressible

Navier-Stokes equations is presented. Further, the full Lie symmetry groups of these

equations and the steps involved in determination of relevant point transformations

are also included in these appendices.
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CHAPTER 2

Lie Symmetry Analysis of Differential Equations

2.1 Scope of the Chapter

In this chapter, the standard procedure to determine Lie symmetry groups of differ-

ential equations is presented in detail. A discussion on the available computational

tools for determination of Lie symmetry groups of differential equations is also in-

cluded. Further, the use of Lie symmetry analysis to obtain group invariant solutions

and/or self-similar solutions for differential equations is demonstrated through three

examples. In the first test problem, Lie symmetry analysis is used to obtain self-

similar solutions for a chemically reactive, incompressible boundary layer flow over

a stretching flat surface. Similarly, in the second test problem, self-similar solutions

are found for incompressible boundary layer flow over a wedge with slip boundaries.

And finally, in the last test problem, group invariant solutions are obtained to de-

scribe the state of the stagnation point conditions in an inviscid, compressible flow

past a blunt-body. Results obtained from these solutions are also discussed in this

chapter.

2.2 Introduction to Lie symmetry Analysis

Recall that in mathematics, an expression is said to possess a symmetry property if

one can transform every variable (i.e., independent and dependent) in that expres-

sion according to a transformation such that the final form of the resulting output

reads exactly the same as the original form of the expression. This expression is
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also said to be invariant under the action of that particular transformation. In this

context, let the following be a one-parameter Lie symmetry group

x̃j = x̃j(x,u, s)

ũi = ũi(x,u, s)
(2.1)

where s is the symmetry parameter that defines a one-to-one invertible map from a

source space S : (x,u) to a target space T̃ : (x̃, ũ) as shown in figure 2.1. The func-

tions x̃j(x,u, s) and ũi(x,u, s) are continuous analytic functions of the symmetry

parameter s that are expandable in Taylor series about any value of s. Here, it is

important to note that, although both the source function E(x,u,s) and target func-

tion ε(x̃, ũ) are shown on different coordinate systems in figure 2.1, these functions

are expanded about the source point for only small values of s, hence the target

points are only infinitesimal distance away [14]. Therefore, the source and target

functions are considered to be on the same coordinate system. The one-parameter

Lie group given in Eq. (2.1) has infinitely many members corresponding to a possi-

ble value of the group parameter s. This property ensures that the transformation

functions x̃j(x,u, s) and ũi(x,u, s) are always differentiable and therefore, can be

expanded in Taylor series about any value of s. Further, the outcome curve formed

on the target space, ε(x̃, ũ), is strictly dependent on the symmetry parameter s.

Different values of s will lead to different curves. A particularly interesting case

occurs when the resulting function E(x,u,s) reads exactly the same as the target

function ε(x̃, ũ) with the symmetry parameter s vanishing from the expression:

ε(x̃, ũ) = E(x,u,s) = ε(x,u) .

For this particular case, all points on the curve ε are mapped to other point on the

same curve. In other words, the curve ε is mapped to itself, and therefore, said to

17



Fig. 2.1. Mapping of points on a curve from a source space to a target space.

be invariant under the action of the Lie group given in Eq. (2.1). Note that this

invariance condition does not only apply to independent and dependent variables

but also to every derivative term of the curve ε as shown below

ε(x̃, ũ, dũ
dx̃
, · · ·) = ε(x,u, du

dx
, · · ·) .

So far, we only demonstrated invariance of differential equations under a one-

parameter Lie group. Determination of such Lie groups that leave differential equa-

tions unchanged under the action of such groups is another aspect of Lie symmetry

analysis that is well-documented in the literature [15,20–22,33].

Let us briefly illustrate the procedure to determine Lie symmetry groups of

differential equations. In this regard, let the surface ε(x,u,u1,u2, · · · ,up) be a

pth-order differential equation associated with a Lie group G, where the vectors

x = (x1,x2, · · · ,xn) and u = (u1,u2, · · · ,un) represent the independent and depen-

dent variables, respectively, and up indicates the vector of all possible pth-order

derivatives. We seek the Lie group G that will leave the surface ε invariant as

follows:

ε(x̃, ũ, ũ1, ũ2, · · · , ũp) = ε(x,u,u1,u2, · · · ,up) (2.2)

In order for the relation in Eq. (2.2) to hold true, the following invariance condition
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must be satisfied

X[p] ε(x, u, u1, · · · ,up) = 0 , (mod ε= 0) (2.3)

where, X[p] is the pth order extended (or prolonged) group operator that is given by

X[p] = ξj
∂

∂xj
+ηi

∂

∂ui
+ · · ·+ηi[j1···jp]

∂

∂uij1j2···jp
. (2.4)

The group operator is usually extended such that it accounts for all the derivatives

in the surface ε. In the above equation, ξj and ηi are the coordinate functions (or

group infinitesimals) that determine how the coordinate variables (i.e., independent

and dependent variables) transform under the action of the group, and ηi[j1···jp] is pth

extended coordinate function that determines how the pth derivative is transformed

under the action of the applied group and is given by the following:

ηi[j1···jp] =Djpη
i
[j1···jp−1]−u

i
j1···jp−1kDjpξ

k (2.5)

where Djp represents total derivative operator [14]. Once these coordinate functions

are determined, the associated Lie groups can be inferred from these functions.

Let us illustrate this procedure through an example. Consider the one-dimensional

inviscid Burgers’ equations whose form is given by the following:

Ω(t,x,u,ut,ux) = ut + u ux = 0 . (2.6)

We seek for the Lie groupG that will satisfy the invariance condition Ω(t̃, x̃, ũ, ũt̃, ũx̃) =

Ω(t,x,u,ut,ux). Applying a once extended group operator of the form

X[1] = ζ
∂

∂t
+ ξ

∂

∂x
+η

∂

∂u
+η[t]

∂

∂ut
+η[x]

∂

∂ux
(2.7)
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to the inviscid Burgers’ equation given in Eq. (2.6)

X[1] Ω = 0, (mod Ω = 0)

yields the following relation:

η[t] + ux η + uη[x] = 0 (2.8)

where η[t] and η[x] are the once extended coordinate functions that determine how

the first derivatives of u (with respect to t and x) transform under the action of the

group and can be found from the following relations:

η[t] = ηt + ut ηu − ux (ξt + ut ξu)− ut (ζt + ut ζu)

η[x] = ηx + ux ηu − ux (ξx + ux ξu)− ut (ζx + ux ζu) .
(2.9)

By substituting Eq. (2.9) into Eq. (2.8), and replacing ut with −uux (which is

inferred from the invariance condition as it holds on Eq. (2.6)), the following relation

is obtained

η[t] + uxη+uη[x] = (u2ζx+uζt−uξx− ξt+η)ux+ (ηt+uηx) = 0 . (2.10)

In the above equation, x, t, and u are completely independent in the context of

infinitesimals and the coordinate functions (ζ, ξ, and η) are only functions of these

independent variables. As there is no restriction on the derivatives of u, the latter

equation can be considered as an identity in the powers of the derivatives ut and ux,

and therefore, setting the coefficients of these terms to zero results in the following

overdetermined set of linear PDEs that are commonly referred to as the determining
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equations:

u2ζx+uζt−uξx− ξt+η = 0

ηt+uηx = 0 .
(2.11)

The determining equations can be solved either analytically or through ansatz made

on the form of the coordinate functions, and the solution of these equations gives the

coordinate functions (ζ, ξ, and η) of the group G (that leaves the inviscid Burgers’

equation invariant). One approach to solve this set of linear PDEs is to assume the

coordinate functions of the group G are polynomials and therefore, a power series

solution is applicable (through the substitution of these coordinate functions into the

determining equations) [14]. Software modules capable of symbolic computations

are also available on various platforms (i.e., Mathematica, Maple, Macsyma) for ob-

taining solutions for such systems and for finding Lie symmetry groups of differential

equations [14,96,97]. For the inviscid Burgers’ equation, the related coordinate func-

tions (obtained from the solution of the associated determining equations) are found

to be

ζ = s1 t
2 + s2 tx+ 2s3 t+ s5x+ s6 (2.12)

ξ = s1 tx+ s2x
2 + s3x+ s4 t+ s7 (2.13)

η = s1 (x− tu) + s2u(x− tu)− s3u+ s4− s5u
2 (2.14)

where each symmetry parameter si=1,··· ,6 represents a subgroup of the group G and

can be associated to a specific group operator Xi=1,··· ,6. For this particular solution

of the coordinate functions, it can be seen that Eq. (2.10) is indeed satisfied as
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shown in the relation below:

η[t] + uxη+uη[x] =(u2(s2t+ s5) +u(2s1t+ s2x+ 2s3)−u(s1t+ 2s2x+ s3)

− (s1x+ s4) + (s1x− s1tu+ s2xu− s2tu
2− s3u (2.15)

+ s4− s5u
2))ux+ ((−s1u− s2u

2) +u(s1 + s2u)) = 0 .

In the coordinate functions (or group infinitesimals) given in Eqs. (2.12)–(2.14),

both s1 and s2 represent projection groups,

X1 = t2
∂

∂ t
+ x t

∂

∂ x
+ (x− tu) ∂

∂ u
(2.16)

X2 = tx
∂

∂ t
+ x2 ∂

∂ x
+u(x− tu) ∂

∂ u
(2.17)

s3 represents a scaling group,

X3 = 2 t ∂
∂ t

+x
∂

∂ x
−u ∂

∂ u
(2.18)

s4 represents a Galilean group,

X4 = t
∂

∂ x
+ ∂

∂ u
(2.19)

s6 and s7 represent translations in time and space,

X6 = ∂

∂ t
(2.20)

X7 = ∂

∂ x
(2.21)

and finally, s5 represents some special form of transformation,

X5 = x
∂

∂ t
− u2 ∂

∂ u
. (2.22)
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The point transformation, z̃ = (t̃, x̃, ũ), associated with each subgroup is determined

through the application of the Lie series expansion to the group operator as follows

z̃i = e(sjXj) zi = zi+ sj (Xj zi) +
s2
j

2! Xj(Xj zi) +
s3
j

3! Xj(Xj(Xj zi)) + · · · (2.23)

where z = (t,x,u). For instance, the transformation of x-variable through the sub-

group X1 can be found as

x̃= x+ s1 (x t) + s2
1

2! (2 x t2) + s3
1

3! (6 x t3) + · · · = x

1− s1 t
, for |s1 t|< 1 .

This latter step is repeated for all the variables and the selected subgroups to obtain

the global transformations associated with the differential equation under consider-

ation. More extensive information on the procedure to find Lie point symmetries of

equations can also be found in the literature [14,20,21].

2.3 Applications and Discussion

Let us illustrate the use of Lie symmetry analysis to obtain group invariant and/or

self-similar solutions for some common problems relevant to fluid dynamics.

2.3.1 Chemically Reactive Boundary Layer flow

In the first example, we consider a chemically reactive boundary layer flow over

an exponentially stretching porous flat surface (with partial slip) that was first de-

scribed in reference [98]. Boundary layer flow over stretching surfaces is important as

such flows are commonly encountered in engineering and related areas (i.e., electro-

chemistry, polymer processing). Obtaining self-similar solutions for such problems

has been a topic of many research efforts [98–102]. As opposed to the solution

procedure presented in reference [98], we investigate this problem via a more sys-
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tematic approach based on Lie symmetry analysis, where similarity transformations

are obtained from symmetries of the underlying differential equations.

In this regard, consider an incompressible, viscous fluid flow past a flat surface in

the half-plane y > 0 with two equal and opposite forces acting on the x-axis such that

the flat surface is stretched, and the origin is kept fixed. The governing equations

(such as continuity, momentum, and concentration equations) for this problem can

be written as

∂u

∂x
+ ∂v

∂y
= 0

u
∂u

∂x
+v

∂u

∂y
= ν

∂2u

∂y2 (2.24)

u
∂C

∂x
+v

∂C

∂y
=D

∂2C

∂y2 −k(C−C∞)

where u and v are velocity components in x and y directions, respectively, ν is the

kinematic viscosity, C is the concentration of the chemically reactive species, D is

the molecular diffusivity, and the parameter k is the rate of chemical conversion of

the irreversible reaction that is defined by k= (1/2)k0ex/L. The boundary conditions

for this problem are

u= U +Nν
∂u

∂y
, v =−V (x), C = Cw, at y = 0

u→ 0, C→ C∞, as y→∞
(2.25)

where Cw = C∞ +C0ex/2L is the concentration on the wall, U = U0ex/L is the

stretching velocity, C0 and U0 are reference concentration and velocity, respectively,

N = N0e−x/2L is the velocity slip factor where N0 is its initial value, and V (x) is

the velocity on the wall which is in the form of either suction V (x) > 0 or blowing

V (x) < 0. Also, V0 is the initial strength of suction/blowing, and k0 is a constant

that has the same dimensions as k.
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For simplicity reasons, let us rewrite the governing equations given in Eq. (2.24)

in the stream function notation as shown below:

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ
∂x

∂2ψ

∂y2 = ν
∂2ψ

∂y3

∂ψ

∂y

∂C

∂x
− ∂ψ
∂x

∂C

∂y
=D

∂2C

∂y2 −k(C−C∞)
(2.26)

where u= ∂ψ
∂y and v =−∂ψ∂x . A similar notation is also considered for the boundary

conditions. The above system of equations admits the following seven-parameter

Lie group:

ξx =−2Ls1

ξy = s2 + s1y+ s4x+ s5x
2 + s6x

3

ηψ = s3− s1ψ

ηC = s7
C∞−C
C∞

which corresponds to the following subgroups:

X1 =−2L ∂

∂x
+y

∂

∂y
−ψ ∂

∂ψ

X2 = ∂

∂y

X3 = ∂

∂ψ

X4 = x
∂

∂y

X5 = x2 ∂

∂y

X6 = x3 ∂

∂y

X7 = C∞−C
C∞

∂

∂C
.

The symmetry parameters si=1,··· ,7 are arbitrary, and can be chosen freely. Consid-
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ering a linear combination of subgroups X1 and X7 which correspond to setting s2,

s3, s4, s5, and s6 to zero, the coordinate functions can be simplified to the following.

ξx =−2Ls1

ξy = s1y

ηψ =−s1ψ

ηC = s7
C∞−C
C∞

.

(2.27)

At this point, the method of characteristics can be used to determine the similarity

variables associated to this particular system of equations for the selected subgroups

as shown below

dx

−2Ls1
= dy

s1y
= dψ

−s1ψ
= dC

s7(C∞−C)/C∞
. (2.28)

The first similarity variable can be obtained from the integration of the first two

terms on the left side of Eq. (2.28)

dx

−2Ls1
= dy

s1y

which eventually leads to the following similarity variable

α∗ = yex/2L .

Here we note that the variable α∗ is simply the integration constant of the above

operation and can be non-dimensionalized as follows:

α = yex/2L
√
U0

2νL . (2.29)
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Similarly, from the first and third terms of Eq. (2.28)

dx

−2Ls1
= dψ

−s1ψ

the following similarity variable can be obtained

F (α)∗ = ψe−x/2L

which can also be non-dimensionalized as

F (α) = ψe−x/2L
1√

2νU0L
. (2.30)

And finally, the last similarly variable can be found from the first and last terms of

Eq. (2.28) as

G(α) = s7(C−C∞) e−
s7x

2LC∞s1 . (2.31)

The unknown symmetry parameters s1 and s7 which appear in the last similarity

variable can be determined through the wall boundary condition (y = 0):

α = 0 : C = Cw = C∞+C0e
x/2L, G(0) = 1, s7 = 1/C0, s1 = 1

C0C∞
. (2.32)

The velocity components u and v can be re-expressed based on these similarity

variables as follows:

u= ∂ψ

∂y
= U0e

x/LF ′

v =−∂ψ
∂x

=−
√
ν

2L ex/2L (F +αF ′) .
(2.33)

By substituting Eq. (2.33) along with the similarity variables given in Eqs. (2.29)–

(2.31) into the governing equations given in Eq. (2.24), we reduce these equations
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Fig. 2.2. Stream function (F ), velocity (F ′), and concentration (G) versus the
distance from the surface (α). Parameter settings: left : S = 0, γ = 0, β = 0.1,
Sc= 0.7, right : S = 0.1, γ = 0.1, β = 0.1, Sc= 0.7 .

to the following self-similar form

F ′′′+FF ′′−2F ′ 2 = 0

G′′+Sc(FG′−F ′G−βG) = 0
(2.34)

where Sc= ν/D is the Schmidt number, and β = k0L/U0 is the reaction rate param-

eter. Similarly, the boundary conditions given in Eq. (2.25) can also be rewritten in

terms of the new similarity variables

F ′ = 1 +γF ′′ , F = S, G= 1, at α = 0

F ′→ 0, G→ 0, as α→∞
(2.35)

where γ = N0
√
U0ν/(2L) is the velocity slip constant, and S =

√
2LV 2

0
νU0

represents

the suction/blowing parameter.

The above equations, Eq. (2.34), and relevant boundary conditions, Eq. (2.35),

can be numerically solved by first converting this problem into an initial value

problem. Then a fourth order Runge-Kutta method with a step size ∆α = 0.01

is considered. Variations of the stream function F , horizontal velocity F ′, and

concentration of the chemically reactive species G with respect to the distance from
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the flat surface is demonstrated in figure 2.2 for cases: i) no suction/blowing or

partial slip (left), ii) with suction and partial slip (right) at the boundaries.

2.3.2 Boundary Layer flow over a Wedge with Slip

Similarly, in the second example, we consider an incompressible boundary layer flow

over a wedge, figure 2.3, with slip boundary conditions that was first described in

reference [103]. In contrast to reference [103], we consider a systematic approach

that is based on Lie symmetry analysis to investigate this problem. The governing

equations for this particular problem can be written as

∂u

∂x
+ ∂v

∂y
= 0 (continuity)

u
∂u

∂x
+v

∂u

∂y
=−1

ρ

dP (x)
dx

+ν
∂2u

∂y2 (x−momentum) (2.36)

u
∂T

∂x
+v

∂T

∂y
= α

∂2T

∂y2 (energy)

where P is the pressure, T is the temperature, and u and v denote velocity com-

ponents in x- and y-coordinates, respectively. The pressure gradient ∂P
∂x can be

expressed in terms of the external flow velocity U(x) as follows

∂P

∂x
=−ρU(x)dU(x)

dx
=−mρb2x2m−1 .

Note that in this work, we have considered an external velocity profile of the form

U(x) = bxm , where ρ is the density, b is a function of the wedge geometry, and the

exponent m= β/(2−β) is a function of the angle β (see figure 2.3). The governing

equations given in Eq. (2.36) can also be written in the stream function notation as

follows:

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ
∂x

∂2ψ

∂y2 = U
dU

dx
+ν

∂3ψ

∂y3 (x−momentum) (2.37)
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Fig. 2.3. Boundary layer flow over a Wedge.

∂ψ

∂y

∂T

∂x
− ∂ψ
∂x

∂T

∂y
= α

∂2T

∂y2 . (energy) (2.38)

The coordinate functions for the Lie symmetry group associated with the above

governing equations are found as

ξx = s1 + s2x

ξy = s3 + s4y+ s5x+ s6x
2 + s7x

3

ηψ = s8 + (s2− s4)ψ

ηU = (s2−2s4)U

ηT = s9 + s10T .

Setting s1, s3, s5, s6, s7, s9, and s10 to zero, the coordinate functions can be

simplified and used in the characteristics equations as follows:

dx

s2x
= dy

s4y
= dψ

(s2− s4)ψ = dU

(s2−2s4)U = dT

0 . (2.39)

Alternatively, Eq. (2.39) can be written as

dx

x
= dy

τy
= dψ

εψ
= dU

MU
= dT

0 (2.40)
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where

M = s2−2s4
s2

, τ = 1−M
2 , and ε= 1 +M

2 .

From the first and fourth terms of the above equation

dx

x
= dU

MU
, (2.41)

we can determine that U = ζxM where ζ is the integration constant. As the external

flow velocity is known to be only a function x and given by U(x) = bxm, we can

infer that ζ = b and M =m. From the first and second terms of Eq. (2.40), we can

identify the first similarity variable as η∗ = yx−τ which can be non-dimensionalized

as follows:

η = yx−τ
√
b
ε

ν
. (2.42)

Similarly, the non-dimensionalized version of the second similarity variable can be

determined from the integration of the first and third terms of Eq. (2.40) as shown

in the following:

ψ = xε
√
b
ν

ε
F (η,κ) . (2.43)

Here, a nonlinear parameter κ is included in the definition of the similarity vari-

able F (η,κ) to account for the velocity slips at boundaries which occur at suffi-

ciently large Knudsen numbers and, for an isothermal wall, is given by following

non-dimensionalized form [103]

κ= 2−σM
σM

√
b
ε

ν
λx−τ

where, σM is the tangential momentum accommodation coefficient, and λ is the

mean-free path of the gas. Here we note that, for this particular boundary layer

flow configuration, the classical no-slip boundary condition is replaced with the
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following slip condition [103]:

η = 0, ∂F

∂η
= κ

∂2F

∂η2 (2.44)

which also indicates that as κ approaches to zero, the no-slip boundary condition

will be recovered. Also, for large values of κ, free molecular flow will occur which

corresponds to following boundary conditions

κ→∞, F (η,κ→∞) = η ,
∂F

∂η
= 1 . (2.45)

Further, the last similarity variable can be found from the first and last terms of

Eq. (2.40) as follows:
T −Tw
T0−Tw

= Θ(η,κ) (2.46)

where the wall temperature Tw and the freestream temperature T0 is used to non-

dimensionalize T . The relevant boundary conditions can also be written in terms of

new similarity variables as shown below:

at η = 0 : Θ(0,κ) = 2γ
Pr(1 +γ) κ

∂Θ
∂η

∣∣∣∣∣
wall

(2.47)

as η→∞ or κ→∞ : Θ(∞,κ) = Θ(η,∞) = 1 . (2.48)

And finally, the governing equations given in Eq. (2.37) and Eq. (2.38) can be

reduced to the following differential system by using the above similarity variables

Fηηη +FFηη +β(1−F 2
η ) +K(1−β)(FηFηκ−FκFηη) = 0 (2.49)

Θηη +PrF Θη +κPr(1−β)(FηΘκ−FκΘη) = 0 (2.50)

where Pr is the Prandtl number and γ is the ratio of the specific heats.
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2.3.3 Analysis of Stagnation Point Conditions in an Inviscid, Compress-

ible Blunt-Body Flow

As our last example, we investigate the stagnation point conditions of an inviscid,

compressible blunt-body flow that were extensively studied in an early work by Vi-

nokur [104]. In equilibrium flows, the state of stagnation point is usually well-defined

and is known to solely depend on the free-stream conditions. However, this is not

the case for non-equilibrium flows [104]. It is known that in non-equilibrium inviscid

blunt-body flows, the gases at the stagnation points are usually in thermodynamic

equilibrium for finite relaxation times and the stagnation point enthalpy is equal to

the total free-stream enthalpy. Although stagnation point enthalpy of blunt-body

flows does not appear to be affected by the non-equilibrium processes and the body

shape, Vinokur [104] raised the question whether this was also true for other state

variables and proposed a resolution to this question. In this work, we propose an

alternative solution approach that is based on Lie symmetry analysis to study this

problem and provide some preliminary results.

In this context, let us consider a blunt-body flow in the Cartesian co-ordinate

system with origin at the stagnation point (as shown in figure 2.4) and let the shock

nose radius Rs, free-stream density ρ∞, and free-stream velocity U∞ be reference

quantities. The general conservation equations associated with an inviscid blunt-

body flow can be written as

(ρu)x+ (ρv)y = 0 (continuity) (2.51)

uux+vuy +px/ρ= 0 (x–momentum) (2.52)

uvx+vvy +py/ρ= 0 (y–momentum) (2.53)

h+ 1
2(u2 +v2) = h∞+ 1

2U
2
∞ (energy) (2.54)

where, u and v are velocity components in x and y directions, respectively, p is
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Fig. 2.4. Representation of stagnation point in a blunt-body flow.

the pressure, ρ is the density, and h refers to the enthalpy. Here we note that,

in non-equilibrium flows, the state variables such as the density ρ, specific entropy

S, temperature T , and frozen sound speed af are all functions of the independent

variables p, h, and q = (q1, q2, · · · , qn) where q represents n general non-equilibrium

variables (i.e., specific energy of vibrational, rotational, or electronic state of species

and concentration of species). The state variables are not independent but are

related through laws of thermodynamics [104] as

∂S

∂h

∣∣∣∣∣
p,qi

= 1
T
,

∂S

∂p

∣∣∣∣∣
h,qi

=− 1
ρT

,
∂ρ

∂p

∣∣∣∣∣
S,qi

≡ 1
ρ

∂ρ

∂h

∣∣∣∣∣
p,qi

+ ∂ρ

∂p

∣∣∣∣∣
h,qi

= 1
a2
f

(2.55)

and the non-equilibrium processes are governed by m coupled reactions (i.e., R =

(r1, r2, · · · , rm)). The rate of change of non-equilibrium variables due to a particular

reaction rj is given by

Dqi
Dt

∣∣∣∣∣
rj

=
(
u
∂qi
∂x

+v
∂qi
∂y

)∣∣∣∣∣
rj

= ωi,j(p,h,q) = χi,j(p,h,q)
τi,j(p,h,q) (2.56)

where τi,j refers to the local relaxation time. Similarly, the rate of change of

a particular non-equilibrium variable qi due to all reactions is simply equal to
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∑m
j=1 ωi,j . As in equilibrium flows, the thermodynamic state of a gas is only a

function of density and enthalpy, the variables qi = qei (p,h) are also function of

these independent variables. Hence the state variables at the equilibrium can be

redefined as ρe(p,h) = ρ(p,h,qe), Se(p,h) = S(p,h,qe), T e(p,h) = T (p,h,qe), and

aef (p,h) = af (p,h,qe) where qe = (qe1, qe2, · · · , qen). The latter indicates that ωi,j = 0

for all the variables and reactions at equilibrium and hence function χi,j must satisfy

χi,j(p,h,qe) = 0.

At this point, let us consider the special two-dimensional flow near the axis of

symmetry (i.e., near the stagnation point streamline in figure 2.4). It is assumed

that in the vicinity of the axis of symmetry [104]

u≈ xux, px ≈ xpxx, v ≈ v(y), ρ≈ ρ(y)

which also indicates that the first derivative of the function u with respect to x

is only a function of the independent variable y. Based on these assumptions, the

governing equations given in Eqs. (2.51)–(2.54) can be rewritten as

ρux+ d(ρv)
dy

= 0 (continuity) (2.57)

u2
x+v

dux
dy

=−1
ρ
pxx (x–momentum) (2.58)

v
dv

dy
=−1

ρ

dp

dy
(y–momentum) (2.59)

h+ 1
2v

2 = h∞+ 1
2U

2
∞ . (energy) (2.60)

The above equations admit the following 10 parameters Lie group

ξx = s2 + s1x

ξy = s3 + s1y

ηu = s6 + s4u+ s7y+ s8y
2 + s9y

3
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ηv = s4v

ηp = s10 + s5p+ s11x

ηρ = (s5−2s4)ρ .

Considering the symmetry groups corresponding to s1, s2, s3, s4, s5, s6, and s10,

the characteristics equations for this problem can be written as

dx

s1x+ s2
= dy

s1y+ s3
= du

s4x+ s6
= dv

s4v
= dp

s5p+ s10
= dρ

(s5−2s4)ρ (2.61)

which can also be simplified to

dx

x+xo
= dy

y+yo
= du

βu+uo
= dv

βv
= dp

εp+po
= dρ

(ε−2β)ρ (2.62)

where xo = s2/s1, yo = s3/s1, β = s4/s1, uo = s6/s1, ε= s5/s1, and po = s10/s1.

At this point, similarity variables can be obtained using the characteristics equa-

tions given in Eq. (2.62). Considering that the velocity component v and density ρ

are only functions of y, one can determine the relevant similarity transformations

as follows:

dy

y+yo
= dv

βv
⇐⇒ v = C2(y+yo)β (2.63)

dy

y+yo
= dρ

(ε−2β)ρ ⇐⇒ ρ= C4(y+yo)(ε−2β) (2.64)

where C2 and C4 are the integration constants. The parameter yo can be determined

from the boundary conditions, as on the stagnation point (x= 0, y = 0) the velocity

component v is equal to zero. Similarly, other similarity variables can be found
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through Eq. (2.62) as shown in the following

dx

x+xo
= dy

y
⇐⇒ α = y

x+xo
(2.65)

dx

x+xo
= du

βu+uo
⇐⇒ u= f1[α] (x+xo)β

β
− uo
β

(2.66)

dx

x+xo
= dp

εp+po
⇐⇒ p= f3[α] (x+xo)ε

ε
− po
ε
. (2.67)

On the stagnation point (x = 0, y = 0) the derivative of the velocity component v

with respect to y is assumed to be finite as shown below [104]

∂v

∂y
=−C

where C is a constant. From this relation, the parameters β and C2 can be found as

1 and −C, respectively. Further, the functions f1 and f3 can be found through the

implementation of the above similarity transformations to the governing equations

given in Eqs. (2.57)–(2.60). The function f1 can be found from the continuity

equation, Eq. (2.57), as follows

f1[α] = C1 α+C (ε−1) ⇔ u= C1 y+C(ε−1)(x+xo)−uo (2.68)

where C1 is a constant. We assumed that near the stagnation point u = xux, and

in order for this to hold true, the following must also be true

C1 = 0, xo = 0, u0 = 0 .

Similarly, from x-momentum, Eq. (2.58), we can find f3 as

f3[α] = C3 α
ε+C31 α

ε−1− CC4(ε−1)
ε
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and hence the pressure is

p= 1
ε

[
C3 y

ε+C31 x y
ε−1− CC4(ε−1)

ε
xε−po

]
.

Recall that we assumed that near the stagnation point px = xpxx. For this to hold

true, the constants C31 and ε must be equal to 0 and 2, respectively. Also from the

boundary condition (on stagnation point)

at x= 0, y = 0 , =⇒ p= pb , ρ= ρb ,

we find that po =−2pb and C4 = ρb. Further, from y-momentum, Eq. (2.59), we can

determine that

C3 =−C2 C4 .

At this point, the transformed variables are as follows:

u= Cx, v =−Cy, ρ= C4, p= pb−
1
2C

2 C4 y
2− 1

4CC4 x
2 . (2.69)

At the stagnation point, the derivative of the velocity component v with respect to y

is known to be finite which is satisfied by the above definition of v. The constant C2

is usually positive and must be determined from a global solution. Furthermore, at

the stagnation point, h is equal to hb and can be found through the energy equation,

Eq. (2.60), as

hb = h∞+ 1
2 U

2
∞ .

Hence, on the axial streamline (x = 0) where ρ = ρb, the final form of the system

variables simplifies to the following:

u= 0, v =−Cy, ρ= ρb, p= pb−
1
2C

2 ρb y
2, h= hb−

1
2C

2 y2 . (2.70)
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To conclude, we have demonstrated a systematic approach based on Lie sym-

metry analysis to investigate the stagnation point state of an inviscid, compressible

blunt-body flow. Further details on the subject can be found in reference [104].
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CHAPTER 3

Numerical Solution of Modified Differential Equations

based on Symmetry Preservation

3.1 Scope of the Chapter

In this chapter, we present a methodology that is based on the method of equivariant

moving frames to construct invariant numerical schemes for solution of PDEs via

consideration of their modified forms. Modified forms of equations are considered

due to several important practical advantages (including treatment of transforma-

tions obtained from symmetries and possible improvements in accuracy of invariant

numerical schemes) and are obtained either through addition of perturbation terms

to the original PDEs or by defect correction procedures (or leading error analysis of

truncation error). The new terms that are added to the original PDEs to obtain the

modified forms are later (either completely or partially) removed from the discrete

equation in the transformed space by considering equivariant moving frames for

which the numerical representation of these terms go to zero. This procedure that

is based on the method of equivariant moving frames is used to construct invariant

schemes for such modified forms of PDEs. To demonstrate the proposed method, we

consider some test cases (including linear advection equation in 1D and 2D and invis-

cid Burgers’ equation) and construct invariant (Lie symmetry preserving) schemes

considering modified forms of equations. Performance of these invariant numerical

schemes is evaluated in this dissertation and our studies suggest that preservation

of symmetries in numerical schemes has the potential to significantly improve accu-
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racy of some existing schemes besides embedding information about the geometric

structure of underlying PDEs.

Note that construction of invariant schemes as numerical solutions of PDEs

through the method of equivariant moving frames involves the mapping of every

discrete variable in related difference equations according to some transformations

that are obtained from symmetries of these PDEs. However, symmetry groups un-

derlying such PDEs often lead to discrete variable transformations that are difficult

to implement in many existing base schemes. In this work, we found that the use of

modified forms of equations in some cases result in symmetries that are associated

with more convenient transformations that are easy to apply on existing schemes. In

addition, we also found that the use of modified equations could be very practical for

identification of moving frames (among vast number of possibilities) that lead to sig-

nificant improvements on the accuracy of the resulting (invariant) schemes. Further,

for some problems, the selection of certain moving frames that are needed to ensure

improvements in accuracy of invariant schemes might result in trivial solutions that

can also be avoided by considering the modified forms of these PDEs.

3.2 Mathematical Formulation and Moving Frames

The method of equivariant moving frames presented by Fels and Olver [83, 84] can

be used to construct invariant numerical schemes [85,87]. In this method, a (right)

moving frame ρ is defined on a manifold M such that it is a topological map ρ :

M →G that satisfies the following relation:

ρ(g ·z) = ρ(z)g−1 ∀g ∈G (3.1)

where G is the symmetry group acting on the manifold M , and g represents the ac-

tion of a particular element of the groupG on the local variables. Let L(z, p) = 0 be a
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general form of a partial differential equation where z = (x, u). Here, x = (x1, · · · ,xn)

and u = (u1, · · · ,um) denote the independent and dependent variables, respectively,

and p = (u[x],u[x,x], · · · ,u[x,x,··· ,x]) represents the derivatives of the dependent vari-

ables with respect to the independent variables. A numerical scheme, Ñ(z) = 0, and

stencil equation, φ̃(z) = 0, constructed as an approximation for a surface L(z, p) = 0

are said to be invariant under the group G if the following is true:

Ñ(ρ(z) ·z) = 0 ⇔ Ñ(z) = 0

φ̃(ρ(z) ·z) = 0 ⇔ φ̃(z) = 0 .
(3.2)

There is a large family of moving frames that satisfy the invariance condition

given in Eq. (3.2), and not all of them will result in a more accurate numerical

scheme. Therefore, a careful selection of cross-sections (or normalization condi-

tions) is necessary [85,87]. For any given (non-invariant) numerical scheme N(z) = 0

associated with L(z, p) = 0, a corresponding invariant scheme can be obtained as

Ñ(z)≡N(ρ(z) ·z) = 0 [85,87,88]. Note that in some cases, the equation system un-

der consideration has cumbersome symmetry structures which make it very difficult

to preserve them in a numerical algorithm due to coupling between the independent

and dependent variables in the transformation relations. The proposed work seeks

to address such limitations through the use modified equations and appropriate

selections of cross-sections.

In this context, consider a differential equation L0(z, p) = 0 that is associated

with an r-dimensional symmetry group G0. And let N0(z) = 0 be a numerical

approximation for L0(z, p). In some cases, it is difficult to determine the action

of the group element g0 ∈ G0 on the local variables of the differential equation

L0(z, p) = 0 which is required to form the related point transformations as g0 ·z =

z̃(s1, . . . , sr; z), where z̃ represents the transformation relation and s1, . . . , sr are the

related symmetry parameters. In contrast to previous works in the literature, in this
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dissertation, we propose to address such limitations through the use of a modified

equation Lm(z, p) = 0, which (in some cases) is associated with more convenient

point transformations (in comparison to the original PDE, L0(z, p) = 0), and given

by

Lm(z, p)≡ L0(z, p) +κ(z, p) = 0 . (3.3)

Here, κ(z, p) is a (sufficiently small) regularization term introduced to the system

(either through truncation error analysis or via convenient perturbations) for various

practical advantages. And let Gm be the point symmetry group associated with

the modified equation Lm(z, p). Corresponding to the latter equation, we then

construct an invariant numerical scheme as Ñm(z) = Nm(gm ·z), ∀gm ∈ Gm, where

Nm(z) = N0(z) +Nκ(z) = 0. Here, we note that the action of the group element

gm on the local variables z can be chosen (through convenient selection of moving

frames) such that Nκ(gm ·z) = 0, and therefore, Nm(gm ·z) = N0(gm ·z). In some

cases, the invariant scheme constructed for the modified equation, Nm(gm ·z), is

found to be more accurate than the base (non-invariant) numerical scheme N0(z).

Further, recall that there is a large family of moving frames that satisfy Eq. (3.2).

However, an improvement in accuracy of the constructed invariant numerical scheme

could be observed, if one chooses moving frames that are more likely to reduce

the truncation error associated with any given numerical scheme N0(z). In some

cases, the use of such moving frames (required to ensure an improvement in the

accuracy) could result in trivial solutions and could pose challenges for construction

of invariant schemes (with improved accuracy). Such trivial solutions could also be

avoided if modified forms of underlying equations are considered for discretization.

In this context, let us consider Nh(z)≡N0(z)+Nκ(z) to be a higher order numerical

scheme (in comparison to N0(z)) where the form of the term Nκ(z) is prescribed

through the truncation error analysis. Note that Nh(z) can be associated with a

corresponding modified equation (similar to Lm(z, p) = 0). An invariant form of this
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scheme can be constructed as Ñh(z) = Nh(g0·z) which could be significantly more

accurate than the base scheme N0(z). Such a construction of an invariant scheme

is especially preferred when the action of a group element g0 on z (corresponding

to a particular moving frame) results in an invariant scheme N0(g0·z) = 0 with a

trivial solution. Here, we also note that, in the transformed space, the form of the

additional term Nκ(g0·z), and in some cases the form of the base scheme N0(g0·z)

as well, are more convenient for programming as the moving frames associated with

g0 are chosen such that it reduces the truncation error via setting the numerical

representation of certain terms in the truncation error to zero.

More details on the application of the proposed method for construction of invari-

ant numerical schemes are given in the following sections where symmetry preserving

schemes are constructed for some linear and nonlinear problems.

3.3 Method of Modified Equations

In this section, procedures to modify equations either through addition of pertur-

bation terms or through defect correction are presented in detail. In particular,

modified forms for the linear advection equation and the inviscid Burgers’ equation

are presented.

3.3.1 Linear Advection Equation

We consider the following form of the linear advection equation or first order wave

equation:

∂ u(t,x)
∂t

+α
∂ u(t,x)
∂x

= 0 (3.4)

which describes transport of a property (or quantity) u(t,x) with a constant char-

acteristic speed α. Generalizations of this form of advection equation are commonly

44



found in many disciplines relevant to transport phenomena (including fluid dynam-

ics). One approach to solve Eq. (3.4) is through approximation of the temporal

and spatial derivatives using finite difference approximations with a certain order

of accuracy. In this work, we consider a (first order accurate) forward in time and

upwind in space finite difference scheme as our base scheme, as shown below, from

which higher order invariant numerical schemes are constructed:

u(t+ τ,x)−u(t,x)
τ

+α
u(t,x)−u(t,x−h)

h
= 0 + O(τ,h) . (3.5)

Here, the symbols τ and h are the discrete time and space variables, respectively,

and O(τ,h) denotes the order of the truncation error. The objective is to construct a

numerical scheme that preserves the symmetries of Eq. (3.4) in addition to increasing

numerical accuracy. However, the present form of Eq. (3.4) results in symmetries

with transformations that are difficult to apply to the discrete algorithm given in

Eq. (3.5). More convenient transformations can be obtained if an artificial diffusion

is introduced to the system as a perturbation term as given in the following

∂ u(t,x)
∂t

+α
∂ u(t,x)
∂x

= f
∂2 u(t,x)
∂ x2 . (3.6)

We observe that Eq. (3.6) has symmetries that result in more convenient transfor-

mations, and further details on this can be found in the next section where the

symmetry methods are discussed. The RHS of Eq. (3.6) represents a perturbation

term that can be removed from the system by choosing a moving frame for which

the numerical approximation of that term goes to zero in the transformed space.

Although the perturbation term is removed from the system, the artificial diffusion

coefficient f still appears in the discrete variable transformations obtained from the

symmetries of Eq. (3.6). The main reason for the addition of the perturbation term

to the system is to obtain more convenient transformations. Therefore, the coeffi-
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cient f can be considered to have a sufficiently small and arbitrary value which in

this work is chosen to be of the order of machine precision, as εmach = 2.22×10−16.

A discrete form of the modified equation, Eq. (3.6), with this choice for the artificial

diffusion coefficient f is used to construct an invariant numerical scheme (referred

to as SYM-1), which will be discussed further in the subsequent sections.

Another approach to prescribe the value of the diffusion coefficient f is through

the analysis of the truncation error of the discrete equation constructed from the

original PDE. It can be shown (using Taylor series expansion) that the accuracy

of the first order accurate upwind scheme given by Eq. (3.5) can be improved by

considering a modified form of the advection equation that includes a defect correc-

tion term as shown in Eq. (3.6). In this case, the defect correction term (on RHS)

includes the artificial diffusion coefficient f ≡ f(τ,h), that depends on τ and h. Note

that the use of an upwind scheme for the LHS and a second order (or more) accu-

rate discretization for the defect term on the RHS would make the overall numerical

scheme more accurate. In particular, we obtain a scheme (referred to as MOD-1)

with O(τ2,h) accuracy when f = 1
2τα

2. A discrete form of the modified equation

with this particular selection of f is used to construct an invariant numerical scheme

(referred to as SYM-2). As the modified form of equation is used only to obtain sym-

metries that are associated with more convenient transformations, this particular

selection of f is deemed to be sufficient for obtaining an accurate solution. As dis-

cussed in the results section, this selection of f can result in an invariant numerical

scheme that has improved accuracy O(τ2,h2), in comparison to MOD-1 scheme that

is non-invariant and is only O(τ2,h) accurate. A non-invariant numerical scheme

(referred to as MOD-2) based on Eq. (3.6), where, f = 1
2α (τα−h) is also considered

for the sake of comparison with our invariant numerical scheme (SYM-2), as both

schemes are second order accurate (O(τ2,h2)).
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3.3.2 Inviscid Burgers’ Equation

The inviscid Burgers’ equation (IBE) is another commonly used PDE that models

nonlinear wave propagation and takes the following (non-conservative) form

∂ u

∂t
+u

∂ u

∂x
= 0 , u(0,x) = u0 (3.7)

that can also be written in the conservative form as

∂ u

∂t
+ ∂ f

∂x
= 0 (3.8)

where f = 1
2 u

2. In this nonlinear PDE, in contrast to the linear advection equation,

the characteristic wave speed is dependent on the solution u(t,x). Exact analytical

solutions for the inviscid Burgers’ equation, Eq. (3.7), are rare and those available

solutions are usually obtained through the method of characteristics. Hence, nu-

merical methods are often used for the solution of the inviscid Burgers’ equation. In

our computations, we consider a forward in time and backward in space (or upwind)

finite difference scheme

u(t+ τ,x)−u(t,x)
τ

+u(t,x) u(t,x)−u(t,x−h)
h

= 0 + O(τ,h) (3.9)

as our base scheme from which invariant numerical schemes associated with modified

forms of the equation are derived. Employing a similar procedure as before, the

modified form of the inviscid Burgers’ equation on the continuous domain can be

approximated through a defect correction procedure as following

∂ u

∂t
+u

∂ u

∂x
= τ u

(
∂ u

∂x

)2
− 1

2(h− τ u)u ∂
2 u

∂ x2 + O(τ2,h2) . (3.10)
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Similarly, the modified equation for the conservative form of the inviscid Burgers’

equation, Eq. (3.8), is found to be

∂ u

∂t
+ ∂ f

∂x
= τ

2u

(
∂ f

∂x

)2
− 1

2 (h− τ u) ∂
2 f

∂ x2 + O(τ2,h2) . (3.11)

3.4 Construction of Invariant Modified Schemes

In this section, we briefly outline the method to construct invariant numerical

schemes, using (modified forms of) the linear advection equation (in 1D and 2D)

and the inviscid Burgers’ equation as examples.

3.4.1 Linear Advection Equation in 1D

The modified advection equation given in Eq. (3.6) admits the following six param-

eter Lie group:

X1 = 2 t2 ∂

∂ t
+ 2x t ∂

∂ x
− u (t+ (x−αt)2

2f ) ∂

∂ u

X2 = 4 t ∂
∂ t

+ 2(x+αt) ∂

∂ x

X3 = t
∂

∂ x
− u (x−αt)

2f
∂

∂ u

X4 = u
∂

∂ u

X5 = ∂

∂ x

X6 = ∂

∂ t
.

(3.12)

Next, we use the following Lie series approximation for each group to determine the

related point transformations z̃j = (z̃1, z̃2, z̃3) = (t̃, x̃, ũ):

z̃j = zj + si (Xi z
j) + s2

i

2! Xi(Xi z
j) + s3

i

3! Xi(Xi(Xi z
j)) + · · · (3.13)
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where si=1,··· ,6 and Xi=1,··· ,6 are the specific group parameters and operators, re-

spectively. Here the unknown group parameters (related to each subgroup) in the

transformations are determined through the method of equivariant moving frames

by selection of convenient moving frames.

For the sake of simplicity, the scaling groups X2 and X4 are ignored and not

considered in the determination of the point transformations. For all the other sym-

metries of Eq. (3.12), the Lie series approximation, Eq. (3.13), is used to find the

transformation relations for each system variable. Once these transformations are

known, we can combine them in an arbitrary order to obtain a general transforma-

tion relation that includes all the desired symmetries as given in the following:

t̃ = t+ s6
1−2 s1 (t+ s6) (3.14)

x̃ = x+ s5
1−2 s1 (t+ s6) (3.15)

ũ = u
√

1−2 s1 (t+ s6) exp
[
−s1 ((x+ s5)−α (t+ s6))2

2f (1−2 s1 (t+ s6))

]
. (3.16)

Using a forward in time backward in space (or upwind) finite difference scheme,

Eq. (3.6) can be discretized as shown in the following

un+1
i −uni
τ

+α
uni −uni−1

h
−f

uni+1−2uni +uni−1
h2 = 0 (3.17)

where un+1 and ui±1 represent u(t+ τ,x) and u(t,x± h), respectively. And the

discrete step variables are defined as τ = tn+1− tn and h = xi−xi−1. The invari-

antization procedure starts with transforming each variable in Eq. (3.17) according

to the point transformations given in Eqs. (3.14)–(3.16) as

ũn+1− ũn

τ̃
+α

ũi− ũi−1
h̃

− f̃ ũi+1−2 ũi+ ũi−1
h̃2 = 0 (3.18)
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where τ̃ = t̃n+1− t̃n and h̃= x̃i− x̃i−1. These transformations have three undefined

components: the symmetry parameters s1, s5, and s6. The unknown symmetry

parameters can be determined using Cartan’s method of normalization. There is a

large family of cross-sections (or normalization conditions) that can be used to define

the symmetry parameters. Not all choices will result in a more accurate numerical

scheme. Therefore, the normalization condition must be chosen carefully. We first

choose the normalization conditions for the independent variables that result in

simple stencils in the transformed space. Then we seek for conditions that will

remove the leading error terms in the truncation error of the numerical scheme. If

complete removal of the leading order term in the truncation error is unachievable,

then we can choose a cross-section that would lead to a reduction in the truncation

error (by removing as many terms as possible). For this specific problem, we choose

the following cross-sections:

t̃n = 0 ⇒ s6 =−tn

x̃i = 0 ⇒ s5 =−xi

∂x̃x̃ ũ= 0 ⇒ ũi+1−2 ũi+ ũi−1
h̃2 = 0 ⇒ s1 =−2f

h2 ln
[

2uni
uni+1 +uni−1

] (3.19)

where ∂x̃x̃ in this case represents the numerical discretization for the second order

derivative in the transformed space. Next, we use these specific moving frames to

re-express each term in Eq. (3.18):

ũn+1
i = un+1

i λ0.5
(

2uni
uni+1 +uni−1

)R2/λ

ũni±1 = uni±1

(
2uni

uni+1 +uni−1

)

ũni = uni

h̃= x̃i− x̃i−1 = h
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τ̃ = t̃n+1− t̃n = τ

λ

λ = 1−2 s1 τ

R = α
τ

h
. (3.20)

And finally, we obtain the invariant numerical scheme for the modified advection

equation by substituting Eq. (3.20) into Eq. (3.18) which simplifies to

un+1 = uni λ
−1.5

(
uni+1 +uni−1

2uni

)R2/λ [
λ−R

(
uni+1−uni−1
uni+1 +uni−1

)]
. (3.21)

The invariance condition is checked by transforming Eq. (3.18) one more time ac-

cording to the transformations defined in Eq. (3.14)–Eq. (3.16)

˜̃un+1− ˜̃un
˜̃τ +α

˜̃ui− ˜̃ui−1
˜̃h

− ˜̃f
˜̃ui+1−2 ˜̃ui+ ˜̃ui−1

˜̃h2
= 0 . (3.22)

If Eq. (3.18) is invariant under the considered symmetries then transforming this

equation according to transformations given in Eq. (3.14) – Eq. (3.16) will result in

the same equation. This can be verified by applying these transformations to every

member of Eq. (3.22) and simplifying the results according to the definitions given

in Eq. (3.20) as

s̃1 =−2f̃
h̃2 ln

[
2ũni

ũni+1 + ũni−1

]
= 0

λ̃ = 1−2 s̃1 τ̃ = 1

˜̃h= h̃

˜̃τ = τ̃

λ̃
= τ̃

˜̃un+1
i = ũn+1

i λ̃0.5
(

2 ũni
ũni+1 + ũni−1

)R̃2/λ̃

= ũn+1
i (3.23)

˜̃uni±1 = ũni±1

(
2 ũni

ũni+1 + ũni−1

)
= ũni±1

51



˜̃uni = ũni .

Considering the relations in Eq. (3.23), it can be seen that Eq. (3.22) reads exactly

the same as Eq. (3.18) verifying invariance under the considered symmetry groups.

3.4.2 Linear Advection Equation in 2D

In the case of two-dimensional linear advection equation, the symmetries of the

system also have complicated structures which make them cumbersome to use in

numerical algorithms. Instead we propose a slightly different approach to preserve

the symmetries and invariantize the existing numerical scheme. It is known that the

advection equation in 2-D with initial condition u0

∂u

∂t
+α

∂u

∂x
+β

∂u

∂y
= 0 (3.24)

can be split into two equations,

∂u

∂t
+α

∂u

∂x
= 0 (3.25)

∂u

∂t
+β

∂u

∂y
= 0 (3.26)

by using dimensional splitting techniques, without introducing any splitting error

to the system [105–107]. However, we still have the numerical error due to the

truncation error of the discretization. Both split equations can be treated separately

for the invariantization procedure. We have already obtained an invariant numerical

scheme for the modified version of Eq. (3.25). Similarly, we can modify Eq. (3.26) by

introducing an artificial diffusion to the RHS of the equation as a single perturbation

52



term

∂u

∂t
+β

∂u

∂y
= g

∂2u

∂ y2 . (3.27)

Here, the artificial diffusion coefficient g is also considered to be equal to machine

precision εmach. The symmetry structures and transformation formulas of both

Eq. (3.27) and Eq. (3.6) are identical except that they are defined in different spatial

dimensions as given in the following

t̃ = t+p6
1−2p1 (t+p6) (3.28)

ỹ = y+p5
1−2p1 (t+p6) (3.29)

ũ = u
√

1−2p1 (t+p6) exp
[
−p1 ((y+p5)−β (t+p6))2

2g (1−2p1 (t+p6))

]
. (3.30)

The symmetry parameters (p1, p5 and p6) are obtained by considering the same

normalization conditions as before but this time using (t,y) coordinates instead of

(t,x) as

t̃n = 0 ⇒ p6 =−tn

ỹj = 0 ⇒ p5 =−yj (3.31)

∂ỹỹ ũ= 0 ⇒ p1 =−2g
k2 ln

[ 2unj
unj+1 +unj−1

]
.

And finally, we can construct an invariant upwind numerical scheme for Eq. (3.27)

as

un+1
j = unj Λ−1.5

(
unj+1 +unj−1

2unj

)C2/Λ [
Λ−C

(
unj+1−unj−1
unj+1 +unj−1

)]
(3.32)
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where, Λ = 1−2p1τ , and C = βτ/k is the CFL number. After constructing invariant

numerical schemes for both Eq. (3.25) and Eq. (3.26), we use a Strang splitting

algorithm [106] to combine both equations.

3.4.3 Inviscid Burgers’ Equation

Similarly, the inviscid Burgers’ equations is associated with the following Lie group:

X1 = t2
∂

∂ t
+ x t

∂

∂ x
+ (x− tu) ∂

∂ u

X2 = tx
∂

∂ t
+ x2 ∂

∂ x
+u(x− tu) ∂

∂ u

X3 = 2 t ∂
∂ t

+x
∂

∂ x
−u ∂

∂ u

X4 = x
∂

∂ t
− u2 ∂

∂ u
(3.33)

X5 = t
∂

∂ x
+ ∂

∂ u

X6 = ∂

∂ t

X7 = ∂

∂ x
.

Based on the above Lie group, we first construct an invariant numerical scheme

for the non-conservative form of the inviscid Burgers’ equation (Eq. (3.7)) that

preserves certain symmetries of the equation. Note that for this particular problem,

determination of the discrete variable transformations that are associated with all

the symmetries of the inviscid Burgers’ equation, Eq. (3.33), may not be achievable

as the forms of these transformations are strongly affected by these symmetries and

become complex if more symmetries are considered. Therefore, we ignore some of

the symmetries and only consider the symmetry groups X1, X6, and X7 in this

work. For these specific groups, the application of Eq. (3.13) to each group in an
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arbitrary order results in the following variable transformations

t̃ = t+p6
1−p1 (t+p6)

x̃ = x+p7
1−p1 (t+p6) (3.34)

ũ = u [1−p1(t+p6)] + p1(x+p7) .

The symmetry parameters p1, p6, and p7 are defined by choosing the following

normalization conditions:

t̃n = 0 ⇒ p6 =−tn

x̃i = 0 ⇒ p7 =−xi
(3.35)

and

ũx̃ = 0 ⇒ ũi− ũi−1
x̃i− x̃i−1

= 0 ⇒ p̃1 =−ux =−ui−ui−1
h

. (3.36)

The above normalization condition (ũx̃ = 0) is chosen because it simplifies the non-

conservative form of the modified IBE, Eq. (3.10), in the transformed space by

removing all the terms that include ũx̃. In other words, the numerical approximation

of the first spatial derivative goes to zero for this specific selection of the moving

frame, simplifying Eq. (3.10) such that it reads as

∂ ũ

∂t̃
= 1

2(τ̃ ũ− h̃) ũ ∂
2 ũ

∂ x̃2 + O(τ̃2, h̃2) . (3.37)

And finally, the finite difference scheme constructed for the modified IBE, Eq. (3.10),

that is invariant under the symmetry groups X1, X6 and X7 is given as

ũn+1
i − ũni
τ̃

= 1
2(τ̃ ũni − h̃) ũni

ũni+1−2ũni + ũni−1
h̃2 (3.38)
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where

h̃= x̃i− x̃i−1 = 0− (−h) = h

τ̃ = t̃n+1− t̃n = τ

1− τ p1
−0 = τ

1− τ p1

ũi±1 = ui±1±hp1 (3.39)

ũni = uni

ũn+1
i = un+1

i [1− τ p1] +p1 (xn+1−xn) .

The quantity xn+1−xn is zero when a solution grid that is regular in time and space

is used in computations.

As for the conservative form of the inviscid Burgers’ equation, Eq. (3.8), the

procedure to construct an invariant scheme is similar to that of the previous (non-

conservative) case. The moving frames defined in Eq. (3.35) and Eq. (3.36) are

applicable to this problem as well. Note that the latter moving frame which was

used to set the numerical representation of the spatial first derivative to zero (ũx̃ = 0)

also indicates that the numerical approximation of the spatial first derivative of f

is zero (f̃x̃ = 0). Hence, the final form of the invariant scheme constructed through

the modified form of the (conservative) IBE, Eq. (3.11), in the transformed space is

found as

∂ ũ

∂t̃
= 1

2(τ̃ ũ− h̃) ∂
2 f̃

∂ x̃2 + O(τ̃2, h̃2) (3.40)

where f̃ = 1
2 ũ

2 .

In order to check if Eq. (3.38) and Eq. (3.40) are invariant under the considered

symmetry groups, each member of both equations is transformed again per variable

transformations given in Eq. (3.34). If these equations are invariant under these

symmetry groups, the resulting equations must read exactly the same as Eq. (3.38)
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and Eq. (3.40) as shown in the following

p̃1 =−ũx̃ = 0

˜̃h= h̃= h

˜̃τ = τ̃

1− τ̃ p̃1
= τ̃

˜̃un+1
i = ũn+1

i [1− τ̃ p̃1] + p̃1 (x̃n+1− x̃n) = ũn+1
i

˜̃uni±1 = ũni±1± p̃1 (x̃n+1− x̃n) = ũni±1 (3.41)

˜̃uni = ũni

˜̃fni = f̃ni

˜̃fni±1 = 1
2(ũni±1)2± p̃1 h̃ ũ

n
i±1 + (p̃1h̃)2 = f̃ni±1 .

3.5 Numerical Experiments

In this section, we discuss the performance of the proposed invariant numerical

schemes constructed for the linear advection (in 1D and 2D) and the inviscid Burg-

ers’ equations. Comparisons are also made with the analytical solutions. In all the

test problems considered here, the proposed invariant numerical schemes were found

to be more accurate than the corresponding (base) classical numerical schemes.

3.5.1 Linear Advection Equation in 1D

We first evaluate the performance of the proposed invariant numerical scheme con-

structed for the modified advection equation in one-dimension, Eq. (3.21), over the

domain Γ = [−4,8]. The exact analytical solution for this problem is given by

uexact = co+ 1
σ
√

2π
exp

[
−(x−αt)2

2σ2

]
(3.42)
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Fig. 3.1. Advection equation (1D). Comparison of profiles of u (at t= 2) obtained
from the exact solution, first order upwind scheme, and proposed invariant scheme
is shown in the left figure. Spatial distributions of percentage errors are shown in
the right figure. Parameter settings: τ = 0.05, h= 0.2, α = 1, and f = εmach.

where, σ represents the characteristic width of the kernel (analogous to standard

deviation), α represents the characteristic (constant) wave speed and the parameter

co represents a simple shift (or translation). For all our test cases, we assume σ = 1,

α = 1 and co = 0.1. The initial and boundary conditions can be inferred from the

above exact solution.

In figure 3.1 (left), snapshots of the propagating wave u, at t= 2, obtained using

the exact analytical solution (Eq. (3.42)), first order upwind scheme (Eq. (3.5)), and

proposed invariant scheme (Eq. (3.21)) are shown. The artificial diffusion coefficient

f needed for the invariant solution (SYM-1) is assumed to be equal to the machine

precision εmach. Although a coarse mesh with 61 spatial grid nodes is used for this

specific run, the invariant (or symmetric) scheme (SYM-1) predicts the evolution

of u with a high degree of accuracy in contrast to the upwind scheme which is not

as accurate, and the latter especially fails to reliably capture the behavior near the

wave crest. The spatial distribution of percentage error of both numerical schemes,

100× (ua− un)/ua, along x axis is presented in figure 3.1 (right), where ua and

un denote the analytical and numerical solutions respectively. In this figure, we

note that the invariant scheme has enhanced accuracy by virtue of preservation of
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Fig. 3.2. L∞ errors associated with numerical solutions of advection equation (1D)
versus number of grid points for a fixed Courant number, C = 0.5.

symmetries in the discrete formulas. The L∞ errors, estimated as max(|ua−un|),

of both the upwind and invariant solutions in this case are found to be 0.049 and

0.007, respectively. Similarly, the root mean square errors, estimated as RMSE =√∑(ua−un)2/N , corresponding to both methods are noted to be 0.013 (UPW)

and 0.002 (SYM-1). Based on the error comparisons presented here (along with

figure 3.1), it appears that the proposed invariant scheme performs better than the

classical first order upwind scheme.

Figure 3.2 shows the variations of the L∞ errors of both numerical schemes with

respect to number of spatial grid nodes for a constant Courant number (C = 0.5).

From this figure, it appears that the proposed invariant scheme (SYM-1) is at least

one order more accurate than the classical first order upwind scheme (UPW). Such

improvement in accuracy due to symmetry preservation, is also useful for extension

to development of high order accurate schemes for multidimensional problems.

Recall that the artificial diffusion term is only added to the linear advection

equation to obtain symmetries associated with more convenient discrete variable

transformations, Eq. (3.14) – Eq. (3.16). The behavior of various discrete schemes
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Table 3.1
Root mean square error (RMSE) and L∞ error in numerical solutions of advection
equation obtained from various numerical schemes for τ = 0.01, h= 0.2, and α= 1.

Error UPW MOD-1 MOD-2 SYM-1 SYM-2
RMSE 1.58×10−2 1.65×10−2 2.20×10−3 2.30×10−3 2.40×10−3

L∞ 5.92×10−2 6.16×10−2 7.00×10−3 8.00×10−3 6.00×10−3
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Fig. 3.3. Advection equation (1D). Comparison of profiles of u (at t= 2) obtained
from the exact solution, and the numerical solutions is shown in the left figure.
Spatial distributions of percentage errors are shown in the right figure. Parameter
settings: τ = 0.01, h= 0.2, and α = 1.

for different values of the artificial diffusion coefficient f is shown in figure 3.3. The

cases considered here include numerical solutions obtained from the upwind scheme,

modified upwind-1 (MOD-1, f = 0.5 α2 τ) scheme, modified upwind-2 (MOD-2,

f = 0.5α2 [τ −h/α]) scheme, proposed invariant-1 (SYM-1, f = εmach) scheme and

proposed invariant-2 (SYM-2, f = 0.5α2 τ) scheme. Note that the modified upwind-

2 scheme, with this particular selection of the artificial diffusion coefficient f , is a

second order accurate scheme in space and time. Snapshots of numerical solutions

obtained from these numerical schemes are shown in figure 3.3 (left). It appears

that both invariant schemes (SYM-1 and SYM-2) perform comparably better than

the upwind scheme and modified upwind-1 scheme in terms of numerical accuracy.

The proposed invariant schemes also predict the evolution of the quantity u at least

as accurate as the modified upwind-2 scheme which is known to be second order

accurate in time and space. On the right plot in figure 3.3, the spatial distribution

60



of percentage errors for all these numerical schemes are plotted against the x-axis.

The invariant solutions have significantly less numerical error compared to the clas-

sical upwind and modified solutions and captures the wave propagation significantly

better (with less error), particularly around the wave crest. The root mean square

errors and L∞ errors of these numerical schemes for this specific test run are given in

Table 3.1. The table of errors shows that both (proposed) invariant schemes are one

order of magnitude more accurate than the classical upwind and modified upwind-1

solutions whereas they are at the same order of magnitude as the modified upwind-2

solution.

3.5.2 Linear Advection Equation in 2D

Further, we evaluate the performance of the proposed invariant scheme constructed

for the two-dimensional advection equation over the domain Γ = [−4,6] (in both x-

and y-coordinates). The analytical solution for this problem is given by

uexact = 1
σ
√

2π
exp

[
−(x−αt)2 + (y−β t)2

2σ2

]
(3.43)

where, α and β represent characteristic wave speeds and σ represents the character-

istic width of the kernel. For simplicity reasons only, we assume α= β = 0.5, σ = 1,

and used a mesh that is regular in space (h= k) in all numerical tests.

The spatial distribution of numerical errors, ε = ua− un, obtained from both

the upwind scheme (left) and proposed invariant scheme (right) constructed for the

advection equation (in 2D) are depicted in figure 3.4. As it was the case for

the one-dimensional advection equation, the proposed invariant scheme developed

for this particular problem also performs significantly better than the classical first

order upwind solution in terms of numerical accuracy. For this specific test case,

the root mean square errors of both the upwind and invariant schemes are found
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Fig. 3.5. L∞ errors associated with numerical solutions of two-dimensional advec-
tion equation as a function of number of grid points. Parameter settings: h = k,
α = β = 0.5, and τ/h= 0.25.

to be 0.008 and 0.001, respectively. Similarly, the L∞ error of solutions are noted

as 0.061 (upwind) and 0.006 (invariant). As it is obvious from the error analysis,

the invariant scheme has significantly less error compared to the classical upwind

scheme in this case as well.

Furthermore, the comparisons of L∞ errors of both the classical upwind and pro-

posed invariant schemes (developed for two-dimensional advection equation) with
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Table 3.2
Root mean square error (RMSE) and L∞ error in numerical solutions of inviscid
Burgers’ equation obtained from various schemes, with τ = 0.01, and h= 0.05 .

t Error UPW Lax-W MOD SYM-NC
0.5 RMSE 1.85×10−3 1.20×10−4 1.10×10−4 8.01×10−5

0.5 L∞ 5.56×10−3 4.70×10−4 4.30×10−4 2.90×10−4

1.5 RMSE 8.90×10−3 1.46×10−3 1.40×10−3 1.18×10−3

1.5 L∞ 5.12×10−2 1.12×10−2 1.17×10−2 1.02×10−2

respect to the number of grid points are displayed in figure 3.5. The order of ac-

curacy of numerical schemes obtained from the slopes of these plots indicate that

the proposed invariant scheme is at least one order more accurate than the clas-

sical first order upwind scheme. This implies that the computation time required

to successfully simulate multidimensional problems with high numerical accuracy

can be significantly shortened when a standard scheme is modified to preserve Lie

symmetries of the associated continuous differential equation.

3.5.3 Inviscid Burgers’ Equation

Finally, the performance of the classical upwind scheme, Eq. (3.9), modified up-

wind scheme, Eq. (3.10), Lax-Wendroff scheme, and proposed invariant schemes,

Eq. (3.38) and Eq. (3.40), constructed for the inviscid Burgers’ equation are eval-

uated. Two different kinds of initial conditions are considered including (a) a con-

tinuous (Gaussian) profile and (b) a discontinuous profile. In the former case, the

initial and boundary conditions can be noted from the following analytical solution:

u= 1
σ
√

2π
exp

[
−(x− t u)2

2σ2

]
. (3.44)

Snapshots of the profile u (at t = 0.5, 1.5) obtained from the analytical solu-

tion, classical upwind solution, modified upwind solution, Lax-Wendroff solution,

and proposed (non-conservative) invariant solution are displayed in figure 3.6 (left
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Fig. 3.6. Inviscid Burgers’ equation. Comparison of profiles of u (at t = 0.5, 1.5)
obtained from the exact and numerical solutions is shown in the left figures. Spatial
distribution of percentage errors is shown in the right figures. Parameter settings:
τ = 0.05, and h= 0.05.

plots). The spatial distribution of percentage errors for these particular numerical

solutions are also displayed in figure 3.6 (right plots). It appears that the invariant

scheme performs significantly better than the upwind, and slightly better the mod-

ified upwind and the Lax-Wendroff (which are known to be second order accurate)

schemes. This improvement in numerical accuracy is particularly visible around the

crest of the nonlinear wave where the behavior of the proposed invariant scheme

is comparably better than the other classical schemes. The error analysis of these

schemes given in table 3.2 also verify that the invariant scheme performs with less

error in comparison to the other schemes. Although, the proposed invariant scheme

and the other classical schemes appear to capture the wave propagation at a later

time (closer to a breaking time), t = 1.5, it appears that these methods fail to ob-
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Fig. 3.7. L∞ errors of numerical solutions of inviscid Burgers’ equation versus
number of grid points for fixed τ/h= 0.5.

tain a numerical solution (for this particular initial profile) past a breaking time.

We attribute the inability of the proposed invariant scheme (relevant to obtaining

a solution past a breaking time) to the limitations inherited from the (considered)

base numerical scheme. This limitation of the proposed invariant scheme could per-

haps be mitigated by choosing base numerical schemes that are better equipped to

capture the evolution of such initial (Gaussian) profiles (e.g., WENO schemes [108]).

To further investigate the performance of the numerical schemes constructed for

the inviscid Burgers’ equation with the Gaussian initial profile, the L∞ errors of

these schemes (at t = 0.5) are plotted against the number of spatial grid points

(figure 3.7). Similar to the cases relevant to the advection equation (in 1D and 2D),

it appears that, in this case as well, the proposed invariant scheme performs much

better than the classical first order upwind scheme as the accuracy is increased from

the first to second order. The invariant scheme also generates slightly better results

than the second order modified upwind and Lax-Wendroff schemes.

Further, the performance of the selected numerical schemes is evaluated in the

case of a shock problem where the initial discontinuity is given by the following
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Table 3.3
Root mean square error (RMSE) and L∞ error in numerical solutions of invis-
cid Burgers’ equation (in the case of a Riemann problem) obtained from various
schemes for τ = 0.01, and h= 0.05 .

Error UPW Lax-W MOD SYM-NC SYM-C
RMSE 3.07×10−2 3.05×10−2 2.22×10−2 2.28×10−2 2.20×10−2

L∞ 2.08×10−1 2.02×10−1 1.51×10−1 1.61×10−1 1.24×10−1
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Fig. 3.8. Inviscid Burgers’ equation. Comparison of shock profiles of u (at t =
0.5) obtained from the exact solution, first order upwind scheme, Lax-Wendroff
scheme, modified upwind scheme, and proposed (conservative and non-conservative)
invariant schemes. Parameter settings: τ = 0.01, and h= 0.05.

profile

u(0,x) =


1.0 if x≤ 2.0 ,

0.6 if x > 2.0 .
(3.45)

Snapshots of the propagating shocks (at t = 0.5) obtained from the exact, up-

wind (UPW), Lax-Wendroff (Lax-W), modified (MOD), proposed non-conservative

invariant (SYM-NC), and proposed conservative invariant (SYM-C) solutions are

given in figure 3.8. In addition, the root mean square errors and L∞ errors of these

schemes are presented in table 3.3. Although all the numerical schemes successfully

generate a solution for this particular problem, the Lax-Wendroff, modified upwind,
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and both proposed invariant schemes develop oscillations near the discontinuity

(which is commonly referred to as Gibbs phenomenon). However, error analysis of

these numerical solutions shows that the proposed invariant schemes have less er-

rors compared to the other schemes. Note that, as mentioned earlier, when dealing

with problems where shocks exist/develop, it is important to choose base numer-

ical schemes (for construction of invariant schemes) that are more convenient for

capturing such discontinuities as certain limitations of these base schemes might

be inherited by the constructed invariant schemes. The improvement in numerical

accuracy encountered in the solution of this nonlinear problem also verifies that sym-

metry preservation can improve the quality of results obtained from existing (base)

schemes for both linear and nonlinear problems in addition to retaining qualitative

properties of associated continuous differential equations.

3.6 Chapter Summary

In this chapter, we presented a method to develop invariant (or Lie symmetry pre-

serving) finite difference schemes for solution of PDEs based on modified forms

of these PDEs and the method of equivariant moving frames. Our focus was not

only to construct invariant schemes but also to improve the accuracy of numerical

schemes using modified forms of PDEs. These modified forms that are obtained ei-

ther through addition of perturbation terms to the original PDEs or through defect

correction procedures can lead symmetry groups that are associated with transfor-

mations that are more convenient to handle. The additional terms that appear in

the modified forms of PDEs are either completely or partially removed from the

system via selection of appropriate moving frames. The performance of these in-

variant schemes was found to be considerably better than the existing base schemes,

based on tests conducted for the linear advection equation (in 1D and 2D) and the

nonlinear advection equation.

67



We first applied the proposed method to construct an invariant numerical scheme

for the one-dimensional linear advection equation. In this case, the modification pro-

cedure involves addition of an artificial diffusion term (f ∂xxu) to the partial differen-

tial equation. Each variable of the equation is transformed according to symmetries

of the modified equation. The artificial diffusion term is removed from the system by

choosing a convenient normalization condition for which the discrete representation

of this diffusion term goes to zero (i.e., ∂x̃x̃ũ = 0). Although the resulting discrete

form of the modified equation in terms of new variables (i.e., the proposed invariant

form) is identical to the discrete form of original advection equation (e.g. the classi-

cal first order upwind scheme), a significant improvement in accuracy (from first to

second order) was achieved through the use of the proposed invariant scheme. Fur-

ther, we constructed an invariant numerical scheme for the two-dimensional linear

advection equation and found similar improvement in accuracy.

Moreover, to test the proposed method for a nonlinear problem, invariant nu-

merical schemes were constructed for the non-conservative and conservative forms

of the inviscid Burgers’ equation as well. For this nonlinear problem, although the

particular normalization condition ũx̃ = 0 that removes terms from the leading order

truncation error (by setting the discrete representation of the first derivative to be

zero) appears to have the potential to increase accuracy, this condition results in

a trivial solution when applied to the original form of the PDE. This obstacle is

easily avoided by considering a modified form of the PDE that includes additional

terms obtained via defect correction (or analysis of leading order truncation error).

By consideration of symmetry preservation in numerical schemes, it was found that

invariant numerical schemes with improved accuracy can be constructed based on

modification of classical schemes. In particular, we constructed second order accu-

rate invariant numerical schemes for the inviscid Burgers’ equation by modifying the

first order accurate (non-conservative and conservative) base schemes. The perfor-
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mance of these numerical schemes was found to be better than the other schemes in

terms of numerical accuracy. We also note that for cases where initial profiles have

discontinuities (or where discontinuous solutions emerge past a certain time), the

performance of the invariant schemes (constructed through our proposed method)

appears to depend on the chosen base (non-invariant) numerical schemes as certain

limitations of these base schemes are inherited by the invariant schemes.

We conclude that construction of invariant numerical schemes with the proposed

method which is based on method of moving frames has the potential to offer sig-

nificant improvements (in accuracy and qualitative properties or symmetries) over

classical finite difference schemes. The proposed approach for construction of invari-

ant numerical schemes using defect correction techniques can also be extended to

generation of high order accurate invariant numerical schemes with a desired order

of accuracy.
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CHAPTER 4

High Order Accurate Finite Difference Schemes based on

Symmetry Preservation

4.1 Scope of the Chapter

In this chapter, we introduce a mathematical approach that is based on the method

of equivariant moving frames for development of high order accurate invariant nu-

merical schemes (for solution of PDEs) with desired order of accuracy. We propose

the use of modified forms of PDEs for construction of invariant schemes not only

to improve the quality of numerical solutions (by virtue of invariance) but also to

fix the accuracy of the invariant numerical scheme to any desired order. The lat-

ter feature is a novel aspect of the work presented in this chapter, unlike previous

works on invariant schemes [68, 77, 88]. Further, the modified forms of equations

are found be very useful for identifying moving frames (among infinite possibilities)

that lead to invariant schemes with enhanced accuracy. Note that modified forms of

PDEs are obtained by addition of defect correction terms (obtained from truncation

error analysis) to the original forms of PDEs, and these additional terms are then

either completely removed from schemes or significantly simplified by considering

appropriate moving frames. In some cases, appropriate choice of moving frames also

removes selected terms of the discrete form of the PDE (besides defect correction

terms). This is an attractive feature of the proposed method that simplifies the rep-

resentation of defect correction terms and their implementation in simulation codes

for attaining higher order accuracy (besides symmetry preservation). In contrast,
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traditional high order methods developed from some lower order (non-invariant)

base schemes through the method of modified equations can be cumbersome to im-

plement due to the presence of multiple defect correction terms. To demonstrate the

application of the proposed method, we consider some linear and nonlinear problems

and construct high order accurate invariant numerical schemes for these problems.

In all the test cases, the proposed invariant schemes appear to be performing sig-

nificantly better in terms of numerical accuracy than the considered non-invariant

base schemes, thereby verifying the potential advantages of symmetry preservation

in numerical schemes.

As our first test case, we consider the linear advection-diffusion equation in

1D and construct a fourth order accurate invariant numerical scheme that is ob-

tained (via the proposed method) from a classical second order (non-invariant) base

scheme. The modified form of the linear advection-diffusion equation contains multi-

ple defect correction terms that include first, second, third, and fourth order spatial

derivatives in various configurations. By considering convenient moving frames,

along with a special time step, all the defect terms of the modified equation are

completely removed from the scheme in the transformed space. Moreover, with

this particular selection of moving frames, the diffusion term of the original linear

advection-diffusion equation is also removed from the scheme. The final form of the

fourth order accurate invariant scheme is found to be of the form of a linear advec-

tion equation in the transformed space. This indicates that a fourth order accurate

invariant scheme is constructed only on a three-point stencil which can be consid-

ered as a major simplification in the numerical representation of the scheme. We

further test the proposed method by constructing several different invariant numeri-

cal schemes for the inviscid Burgers’ equation. Two second order accurate invariant

schemes that preserve different symmetry groups of the inviscid Burgers’ equation

are constructed and some important measures of their performance are compared.
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The objective is to evaluate the effect of the choice of preserved symmetries on the

accuracy of the resulting invariant schemes. Results indicate that both invariant

schemes (although one of them preserves more symmetries and has a much more

complex numerical representation) perform similar and the differences are minor.

Another fourth order accurate invariant numerical scheme was constructed for the

inviscid Burgers’ equation by considering only selected symmetries. As our next

problem, we consider the viscous Burgers’ equation, another commonly used equa-

tion, and construct a fourth order invariant numerical scheme. Similar to the linear

advection-diffusion case, the modified form of the equation includes spatial deriva-

tive terms of various orders. Therefore, applying a similar procedure as before, all

the defect terms except one are removed from the scheme in the transformed space.

Additionally, the nonlinear transport term in the original form of the viscous Burg-

ers’ equation is also eliminated from the scheme. The final form of the fourth order

invariant scheme constructed for the viscous Burgers’ equation is found to be of the

form of a nonlinear diffusion equation. We conclude our tests by constructing two

fourth order accurate invariant numerical schemes for the two-dimensional linear

advection-diffusion equation. Each invariant scheme is constructed by considering

different set of moving frames for the purpose of evaluating the effect of the selected

moving frames on the accuracy of invariant schemes. It is seen that both schemes

are fourth order accurate and the effect of choice of selected moving frames on the

accuracy of the schemes appears to be minor.

4.2 Construction of High Order Invariant Schemes

In this section, we present a method that is based on modified equations and equiv-

ariant moving frames to construct fourth order accurate invariant numerical schemes

for the linear advection-diffusion equation in 1D and 2D, the inviscid Burgers’ equa-

tion, and the viscous Burgers’ equation. Note that the order of accuracy of these
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invariant schemes can be arbitrarily fixed by considering modified forms of under-

lying equations which are also covered in this section.

4.2.1 Linear Advection-Diffusion Equation in 1D

As our first test case, we consider the one-dimensional linear advection-diffusion

equation of the form

ut + αux = ν uxx (4.1)

which describes the evolution of a quantity u(t,x) due to linear advection and dif-

fusion processes. Here, the symbols α and ν represent the constant characteristic

speed and the diffusion coefficient, respectively. To test our proposed method for

construction of invariant numerical schemes, we consider a forward in time and cen-

tral in space (FTCS) finite difference scheme (that is first order accurate in time

and second order in space) given by

un+1
i −uni
τ

+α
uni+1−uni−1

2h = ν
uni+1−2uni +uni−1

h2 +O(τ,h2) (4.2)

as our non-invariant base scheme. Here, the symbols τ and h represent the discrete

time step and spatial step, respectively. The objective is to construct an invariant

scheme with a desired order of accuracy, therefore, we first modify the equation such

that its accuracy improves to second order in time and fourth order in space. For

this particular problem, we add the following defect correction terms recovered from

the truncation error analysis of Eq. (4.2),

dc = 1
2τα

2uxx+ 1
12(6ντ −h2) [νuxxxx−2αuxxx] +O(τ2,h4) (4.3)
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to the original discrete equation, Eq. (4.2), to obtain the following discrete form of

the modified equation

un+1
i −uni
τ

+α
uni+1−uni−1

2h = ν
uni+1−2uni +uni−1

h2 +dc . (4.4)

Note that any improvement in order of accuracy of finite difference schemes can

be arbitrarily set by consideration of appropriate defect correction terms based on

truncation error analysis. Once the modified forms of PDEs are obtained, one

then determines the symmetries of the linear advection-diffusion equation through

Lie symmetry analysis as discussed in the previous section. The application of

this procedure to the one-dimensional linear advection-diffusion equation yields the

following symmetry groups

X1 = 2 t2 ∂

∂ t
+ 2x t ∂

∂ x
− u (t+ (x−αt)2

2ν ) ∂

∂ u

X2 = 4 t ∂
∂ t

+ 2(x+αt) ∂

∂ x

X3 = t
∂

∂ x
− u (x−αt)

2ν
∂

∂ u
(4.5)

X4 = u
∂

∂ u

X5 = ∂

∂ x

X6 = ∂

∂ t

where each group operator, Xi=1,··· ,6, represents different subgroups. The next step

is to preserve these symmetries in the associated numerical algorithms. Transfor-

mations obtained from the symmetries of equations are used to transform every

discrete variable of the considered base scheme such that the resulting scheme is

invariant under those symmetries. However, in some cases, it might not possible

or practical to preserve all the symmetries of equations in the related numerical

algorithms as it could result in cumbersome representations without significantly
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improving accuracy. This is covered in more detail in the next section. For these

particular reasons, we ignore some of these symmetries and construct a scheme that

only preserves X1, X5, and X6 (which represent projection, translation in time, and

translation in space) subgroups of the linear advection-diffusion equation, Eq. (4.1).

The discrete variable transformations related to the selected symmetry groups are

obtained by substituting each group operator in the Lie series given by Eq. (2.23).

For these particular symmetry groups, the following transformations

t̃ = t+ s6
1−2 s1 (t+ s6)

x̃ = x+ s5
1−2 s1 (t+ s6) (4.6)

ũ = u
√

1−2 s1 (t+ s6) exp
[
−s1 ((x+ s5)−α (t+ s6))2

2ν (1−2 s1 (t+ s6))

]

are obtained. Here, the unknowns s1, s5, and s6 are arbitrary symmetry parameters

that are related to the corresponding group operators. These unknown parameters

are determined through Cartan’s method of normalization. Recall that there exist

infinite number of applicable normalization conditions (or moving frames), and not

all of them improve quality of results obtained from numerical schemes. It is conve-

nient to choose normalization conditions that lead to a simple computational stencil.

Therefore, the following normalization conditions are found to be very practical for

determining s5 and s6 as the selections

t̃n = 0 ⇒ s6 =−tn

x̃i = 0 ⇒ s5 =−xi

lead to a simple computational stencil. Here, the discrete spatial step in the trans-

formed space h̃ is equal to h, and similarly, the time step in the transformed space

τ̃ is equal to τ/(1− 2τs1) for these particular moving frames. Further, the pro-
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jection parameter s1 is determined by considering a normalization condition that

corresponds to a moving frame for which the discrete definition of the second order

spatial derivative goes to zero as shown below

∂x̃x̃ ũ= 0 ⇒
ũni+1−2 ũni + ũni−1

h̃2 = 0 ⇒ s1 =−2ν
h2 ln

[
2uni

uni+1 +uni−1

]
. (4.7)

By considering this particular normalization condition, all the terms in the following

modified equation, Eq. (4.4),

un+1
i −uni
τ

+α
uni+1−uni−1

2h =ν
uni+1−2uni +uni−1

h2 + 1
2τα

2uxx

+ 1
12(6ντ −h2) [νuxxxx−2αuxxx] +O(τ2,h4)

(4.8)

that include the second order spatial derivative of u(t,x) can be removed from the

scheme in the transformed space. Besides, Eq. (4.8) can be further simplified by

considering a special discrete time step as given in the following relation:

(6ν τ −h2) = 0 ⇒ τsp = h2

6ν . (4.9)

The use of such a special discrete time step and the particular moving frame given in

Eq. (4.7) allows us to completely remove all the defect terms from the scheme in the

transformed space. Additionally, the viscous term of the original one-dimensional

linear advection-diffusion equation is also removed from the scheme. The viscosity

information is included in the definition of the particular moving frame. The final

form of the fourth order accurate discrete modified equation in the transformed

space is

ũn+1− ũn

τ̃
+α

ũi+1− ũi−1
2h̃

= 0. (4.10)
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We can also express Eq. (4.10) in terms of the original discrete variables by applying

the transformations given in Eq. (4.6) as

un+1 = uni λ
−1.5

(
uni+1 +uni−1

2uni

)4R2/λ
λ−2R

uni+1−uni−1
uni+1 +uni−1

 (4.11)

where

R = ατ

2h and λ= 1−2 τ s1 .

Eq. (4.11) is invariant under the selected symmetries, and this property can be

verified by applying the transformations given in Eq. (4.6) to this equation. The

resulting scheme will be identical to Eq. (4.11).

4.2.2 Inviscid Burgers’ Equation

As our second test case, we consider the inviscid Burgers’ equation (IBE) which is

a model that describes nonlinear wave propagation as

ut + uux = 0 . (4.12)

To numerically solve this equation, we construct several high order accurate invariant

numerical schemes (that preserve different symmetries). A forward in time and

central in space finite differencing technique

un+1
i −uni
τ

+uni
uni+1−uni−1

2h = 0 + O(τ,h2) (4.13)

is used as the non-invariant base scheme to approximate a numerical solution for

the inviscid Burgers’ equation, Eq. (4.12). The symmetry groups associated with
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this PDE are

X1 = t2
∂

∂ t
+ x t

∂

∂ x
+ (x− tu) ∂

∂ u

X2 = tx
∂

∂ t
+ x2 ∂

∂ x
+u(x− tu) ∂

∂ u

X3 = 2 t ∂
∂ t

+x
∂

∂ x
−u ∂

∂ u

X4 = x
∂

∂ t
− u2 ∂

∂ u
(4.14)

X5 = t
∂

∂ x
+ ∂

∂ u

X6 = ∂

∂ t

X7 = ∂

∂ x
.

We first construct a second order accurate invariant numerical scheme (referred

to as SYM-1) that preserves the symmetry groups X1, X6, and X7 (corresponding to

projection, translation in time, and translation in space, respectively). The discrete

variable transformations associated with these particular symmetry groups are found

to be

t̃ = t+ s̃6
1− s̃1 (t+ s̃6)

x̃ = x+ s̃7
1− s̃1 (t+ s̃6) (4.15)

ũ = u [1− s̃1(t+ s̃6)] + s̃1(x+ s̃7) .

We then construct another second order accurate invariant numerical scheme (re-

ferred to as SYM-2) that preserves the projection symmetry X2 in addition to the

earlier symmetries (X1, X6, and X7). The transformations related to these partic-

ular symmetry groups are noted as

t̂ = t+ ŝ6
1− ŝ2 (x+ ŝ7)− ŝ1 (t+ ŝ6)
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x̂ = x+ ŝ7
1− ŝ2 (x+ ŝ7)− ŝ1 (t+ ŝ6) (4.16)

û = u+ ŝ1 [x+ ŝ7− (t+ ŝ6)u]
1− ŝ2 [x+ ŝ7− (t+ ŝ6)u] .

Here, the dimensions of the symmetry parameters ŝ1 and ŝ2 are [T ]−1 and [L]−1,

respectively. As the symmetry parameters can be chosen arbitrarily, we set ŝ1 to

be equal to S ·a and ŝ2 to be S · b where S is a dimensionless parameter, and a and

b are equal to unity, with dimensions [T ]−1 and [L]−1, respectively. The objective

is to investigate how the preservation of the additional projection symmetry X2

affects the numerical representation and accuracy of the resulting invariant scheme.

All the other symmetries of the IBE are ignored as their inclusion (in addition to

already chosen symmetries) would result in a cumbersome numerical scheme that

might not always lead to a substantial improvement in accuracy. Similar to the

one-dimensional linear advection-diffusion equation case, in order to fix the order

of accuracy of both invariant numerical schemes (to second order accuracy in time

and space), the following defect correction terms

dc = τ

2(u2 uxx+ 2uu2
x) + O(τ2,h2) (4.17)

obtained from the truncation error analysis are added to the base numerical scheme,

Eq. (4.13), as shown in the following

un+1
i −uni
τ

+uni
uni+1−uni−1

2h = 0 + dc . (4.18)

The unknown symmetry parameters s1, s6, and s7 in the transformation expressions

given in Eq. (4.15) and Eq. (4.16) are determined through the method of equivariant

moving frames. For both cases, we first consider normalization conditions that
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generate simple solution stencils such as

t̃n = 0 ⇒ s̃6 =−tn

x̃i = 0 ⇒ s̃7 =−xi

t̂n = 0 ⇒ ŝ6 =−tn (4.19)

x̂i = 0 ⇒ ŝ7 =−xi .

We then consider moving frames for which numerical representation of modified

equations simplifies significantly. For this particular problem, the normalization

conditions

ũx̃ = 0 ⇒ ũi+1− ũi−1
x̃i+1 + x̃i−1

= 0 ⇒ s̃1 =−ui+1−ui−1
2h

ûx̂ = 0 ⇒ ûi+1− ûi−1
x̂i+1 + x̂i−1

= 0 ⇒ S =− ui+1−ui−1
bh (ui+1 +ui−1) + 2ah

(4.20)

are found to be very effective for simplifying the discrete modified equation given

in Eq. (4.18) as the numerical representation of all the terms in the equation that

include the first order spatial derivative are removed from the scheme for these

particular moving frames. In the case of SYM-1, by considering these particular

moving frames, the discrete modified equation can be simplified to the following

ũn+1
i − ũni
τ̃

= τ̃

2

(
(ũni )2 ũ

n
i+1−2ũni + ũni−1

h̃2

)
+ O(τ̃2, h̃2) (4.21)

in the transformed space, where

ũn+1
i = η̃ un+1

i + s̃1 (xn+1−xn)

ũni = uni

ũi±1 = ui±1± s̃1 h (4.22)

η̃ = 1− s̃1 τ̃
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τ̃ = t̃n+1− t̃n = τ/η̃

h̃= x̃i+1− x̃i = x̃i− x̃i−1 = h .

The final form of the second order accurate numerical scheme SYM-1 (which is

invariant under the symmetry groups X1, X6, and X7) in terms of the original

discrete variables is obtained (by substituting Eq. (4.22) into Eq. (4.21)) as

un+1
i = uni

η̃

[
1 + τ2

2h2 η̃2 u
n
i (uni+1−2uni +uni−1)

]
+ O(τ2,h2) . (4.23)

Similarly, the discrete modified equation can be simplified to the following

ûn+1
i − ûni
τ̂

= τ̂

4

(
(ûni )2 û

n
i+1−2ûni + ûni−1

ĥ2
+ + ĥ2

−

)
+ O(τ̃2, h̃2) (4.24)

when the transformations and moving frames considered for SYM-2 are considered.

Every discrete variable in Eq. (4.24) can be expressed in terms of the original discrete

variables by using the transformations given in Eq. (4.16) as

ûn+1
i = η̂ un+1

i

1 + ŝ2 τ u
n+1
i

ûni = uni (4.25)

ûni±1 =
uni±1± ŝ1 h

µ±

where

τ̂ = t̂n+1− t̂n = τ/η̂

ĥ+ = x̃i+1− x̃i = h/µ+

ĥ− = x̃i− x̃i−1 = h/µ−
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and

η̂ = 1− ŝ1 τ

µ+ = 1− ŝ2 h

µ− = 1 + ŝ2 h .

Hence, the final form of the second order accurate numerical scheme that is invariant

under the symmetry groups considered for SYM-2 in terms of the original variables

is found by substituting Eq. (4.25) into Eq. (4.24)

un+1
i = κ

η̂− ŝ2 τ κ
(4.26)

where

κ= uni + µ+µ−
µ2

+ +µ2
−

(τu
n
i

h
)2 [(uni+1 + 1)µ−−2(uni + 1)µ+µ−+ (uni−1 + 1)µ+] . (4.27)

Note that we use a solution grid that is regular in time and space, and therefore,

the quantity xn+1−xn that appears when transforming discrete variables is always

assumed to be zero.

For this problem setup, results obtained from both invariant numerical schemes,

Eq. (4.23) and Eq. (4.26), suggest that preserving only the symmetry groups X1,

X6, and X7 is enough to achieve a desired order of accuracy. More discussion on

the performance of these proposed invariant schemes are presented in Section 6.5

where the results are evaluated. To further investigate the influence of the choice

of symmetry groups, we construct a third invariant numerical scheme that is fourth

order accurate in time and space and preserves only X1, X6, and X7. The following
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defect correction terms

dc =τ2(u2uxx+ 2uu2
x)− τ

2

6 (6uu3
x+ 9u2uxuxx+u3uxxx) + h2

6 uuxxx

+ τ3

24(24uu4
x+ 72u2u2

xuxx+ 12u3u2
xx+ 16u3uxuxxx+u4uxxxx) + O(τ4,h4)

(4.28)

are added to the base numerical scheme to obtain the discrete form of the modified

equation,

un+1
i −uni
τ

+uni
uni+1−uni−1

2h = 0 + dc . (4.29)

Next, the discrete form of the modified equation (Eq. (4.29)) in the transformed

space based on transformations and moving frames considered for the SYM-1 case

is obtained as

ũn+1
i − ũni
τ̃

= τ̃

2(ũ2ũx̃x̃)− τ̃
2

6 ũ
3ũx̃x̃x̃+ h̃2

6 ũũx̃x̃x̃+ τ̃3

24(12ũ3ũ2
x̃x̃+ ũ4ũx̃x̃x̃x̃) + O(τ̃4, h̃4) .

Hence, the final form of the numerical scheme that is fourth order accurate in both

time and space and is invariant under the symmetry groups X1, X6, and X7 is

obtained as

un+1
i =1

η̃

uni + 1
2

(
τuni
hη̃

)2(
1 + τ2uni

h2η̃2

)
(uni+1−2uni +uni−1)

+ 1
12
τuni
hη̃

(
1− τ

2(uni )2

h2η̃2

)
(uni+2−2uni+1 + 2uni−1−uni−2) (4.30)

+ 1
24

(
τuni
hη̃

)4
(uni+2−4uni+1 + 6uni −4uni−1 +uni−2)

 .
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4.2.3 Viscous Burgers’ Equation

As our next test case, we consider the viscous Burgers’ equation which is of the form

ut + uux = ν uxx (4.31)

and construct a fourth order accurate invariant numerical scheme for the solution of

this PDE. Similar to previous test problems, we use a forward in time and central

in space finite difference scheme,

un+1
i −uni
τ

+u
uni+1−uni−1

2h = ν
uni+1−2uni +uni−1

h2 +O(τ,h2) (4.32)

as our base scheme for the construction of a fourth order accurate invariant scheme.

Next, we add the following defect correction terms obtained from truncation error

analysis

dc = τ

2 (2uu2
x+u2uxx−4νuxuxx) + 1

12(6ντ −h2) [νuxxxx−2uuxxx] +O(τ2,h4)

(4.33)

to the base scheme, Eq. (4.32), to obtain the following discrete form of the modified

equation

un+1
i −uni
τ

+α
uni+1−uni−1

2h = ν
uni+1−2uni +uni−1

h2 +dc . (4.34)

The defect correction terms can be further simplified by considering a special time

step (as before) which is obtained from the following relation

(6ντ −h2) = 0 ⇒ τsp = h2

6ν . (4.35)
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Next, we determine the Lie point symmetries of the viscous Burgers’ equation via

Lie symmetry analysis which results in the following symmetry groups

X1 = t2
∂

∂ t
+ x t

∂

∂ x
+ (x− t u) ∂

∂ u

X2 = t
∂

∂ x
+ ∂

∂ u

X3 = 2t ∂
∂ t

+x
∂

∂ x
−u ∂

∂ u
(4.36)

X4 = ∂

∂ t

X5 = ∂

∂ x
.

For simplicity, we only consider the symmetry groups X1, X4, and X5 (which cor-

respond to projection, translation in time, and translation in space symmetries) for

preservation in the related numerical algorithm. The transformations associated to

these symmetries are found to be

t̃ = t+ s4
1− s1 (t+ s4)

x̃ = x+ s5
1− s1 (t+ s4) (4.37)

ũ = u [1− s1 (t+ s4)] + s1 (x+ s5)

where the unknown symmetry parameters are determined by considering the follow-

ing normalization conditions

t̃n = 0 ⇒ s4 =−tn

x̃i = 0 ⇒ s5 =−xi

and

∂x̃ ũ= 0 ⇒
ũni+1− ũni−1

2 h̃
= 0 ⇒ s1 =−

uni+1−uni−1
2h . (4.38)
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The normalization condition in Eq. (4.38) ensures that all terms in the modified

equation, Eq. (4.34), that includes the first order spatial derivative will be removed

from the scheme in the transformed space. Therefore, by considering these particular

moving frames along with the special time step given in Eq. (4.35), the discrete form

of the modified equation in the transformed space can be significantly simplified as

its final form is given as

ũn+1− ũn

τ̃
=
ν+ 1

2 τ̃ (uni )2

 ũi+1−2 ũi+ ũi−1
h̃2 . (4.39)

And finally, the fourth order accurate invariant scheme (constructed for the vis-

cous Burgers’ equation) is obtained in terms of the original discrete variables by

transforming every variable in Eq. (4.39) according to the transformations given in

Eq. (4.37)

un+1 = 1
λ

uni −
(
R

λ
+ 2C

2 (uni )2

λ2

)
(uni+1−2uni +uni−1)

 (4.40)

where

λ= 1− τ s1 , C = τ

2h , and R = ν τ

h2 .

4.2.4 Linear Advection-Diffusion Equation in 2D

As our last test case, we consider the two-dimensional linear advection-diffusion

equation

ut + αux + β uy = ν (uxx+uyy) (4.41)

and construct a couple of fourth order accurate invariant numerical schemes that

preserve the same symmetry groups but defined on different moving frames. Here,
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α and β represent (constant) characteristic wave speeds along x- and y-coordinates,

respectively. We use a forward in time and central in space (FTCS) scheme

un+1
i,j −uni,j

τ
+α

uni+1,j−uni−1,j
2h +β

uni,j+1−uni,j−1
2k =

ν

(
uni+1,j−2uni,j +uni−1,j

h2 +
uni,j+1−2uni,j +uni,j−1

k2

)
+O(τ,h2,k2)

(4.42)

as our base scheme for this problem as well. To improve the accuracy of the base

scheme to fourth order, the following defect correction terms noted from the trun-

cation error analysis

dc =τ2 [2ν2uxxyy−2ν(αuxyy +βuxxy) +α2uxx+ 2αβuxy +β2uyy]

+ 1
12(6ντ −h2)(νuxxxx−2αuxxx) + 1

12(6ντ −k2)(νuyyyy−2βuyyy)

+O(τ2,h4,k4)

(4.43)

are added to the classical base scheme, Eq. (4.42), as

un+1
i,j −uni,j

τ
+α

uni+1,j−uni−1,j
2h +β

uni,j+1−uni,j−1
2k =

ν

(
uni+1,j−2uni,j +uni−1,j

h2 +
uni,j+1−2uni,j +uni,j−1

k2

)
+dc .

(4.44)

If for simplicity reasons, a regular mesh (h = k) is used in computations, then dc

can be further simplified to read

dc =τ2 [2ν2uxxyy−2ν(αuxyy +βuxxy) +α2uxx+ 2αβuxy +β2uyy]

+ 1
12(6ντ −h2)(ν(uxxxx+uyyyy)−2αuxxx−2βuyyy) +O(τ2,h4) .

(4.45)
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As in the previous example, the second term in RHS of Eq. (4.45) can be eliminated

by choosing a special time step τsp as

(6ντ −h2) = 0 ⇒ τsp = h2

6ν . (4.46)

To start the invariantization procedure, we first determine the symmetries of the

two-dimensional linear advection-diffusion equation

X1 = 4ν t2 ∂

∂ t
+ 4ν x t ∂

∂ x
+ 4ν y t ∂

∂ y
−u [(x−αt)2 + (y−β t)2 + 4νt] ∂

∂ u

X2 = 2ν t ∂
∂ x

+ 2ν t ∂
∂ y
−u(x−αt+y−β t) ∂

∂ u

X3 = 2ν y ∂

∂ x
−2ν x ∂

∂ y
−u(β x−αy) ∂

∂ u

X4 = 4ν t ∂
∂ t

+ 2ν x ∂

∂ x
+ 2ν y ∂

∂ y
+u[α(x−αt) +β(y−βt)] ∂

∂u
(4.47)

X5 = u
∂

∂ u

X6 = ∂

∂ t

X7 = ∂

∂ x

X8 = ∂

∂ y
.

For this particular problem, we only consider the symmetry groups X1, X6, X7,

and X8 for preservation in the related numerical algorithms. The transformation

expressions obtained from these symmetry groups are

t̃ = t+ s6
1−4ν s1 (t+ s6)

x̃ = x+ s7
1−4ν s1 (t+ s6)

ỹ = y+ s8
1−4ν s1 (t+ s6) (4.48)

ũ = u (1−4ν s1 (t+ s6)) exp
[
−s1 ((x+ s7−α (t+ s6))2 + (y+ s8−β (t+ s6))2)

1−4ν s1 (t+ s6)

]
.
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We employ a similar procedure as before (the previous test problems) and deter-

mine the unknown symmetry parameters s6, s7, and s8 by considering the following

normalization conditions

t̃n = 0 ⇒ s6 =−tn

x̃i = 0 ⇒ s7 =−xi

ỹj = 0 ⇒ s8 =−yj

that result in a simple computational stencil. As for the projection parameter s1,

there are multiple convenient normalization conditions that can be used. Recall

that one of the objectives is to choose a normalization condition that significantly

simplifies the discrete form of the modified equation. However, for this particular

problem, there are multiple number of normalization conditions that can be used in

that context. In order to investigate the effect of selected normalization conditions

on the accuracy of constructed invariant schemes, two different (fourth order accu-

rate) invariant numerical schemes are constructed for this problem. Both schemes

are defined on regular grids (h= k) and special selections of discrete time steps are

used when applicable. In the first case, an invariant scheme (referred to as SYM-1)

is developed by considering the following normalization condition

∂x̃x̃ ũ= 0 ⇒
ũni+1,j−2 ũni,j + ũni−1,j

h̃2 = 0 ⇒ s1 =− 1
h2 ln

[ 2uni,j
uni+1,j +uni−1,j

]
.

(4.49)

This particular normalization condition removes all the terms that include the sec-

ond derivative with respect to x on the transformed space leading to the following
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fourth order accurate invariant scheme

ũn+1
i,j − ũni,j

τ̃
+α

ũni+1,j− ũni−1,j
2h̃

+β
ũni,j+1− ũni,j−1

2k̃
= ν

ũni,j+1−2ũni,j + ũni,j−1
k̃2

+ τ̃ [ν2ũx̃x̃ỹỹ−ν(αũx̃ỹỹ +βũx̃x̃ỹ) +αβũx̃ỹ +β2ũỹỹ] .
(4.50)

As for the second case, an invariant scheme (referred to as SYM-2) is constructed

on a regular mesh (h = k) for the linear advection-diffusion equation in 2D with

identical characteristic speeds (α = β) in both x- and y-coordinates. The unknown

projection parameter s1 is determined from the following normalization condition

∂x̃x̃ ũ+∂ỹỹ ũ= 0 ⇒ s1 =− 1
h2 ln

[ 4uni,j
uni+1,j +uni,j+1 +uni−1,j +uni,j−1

]
. (4.51)

By considering this moving frame along with the special time step given in Eq. (4.46),

a fourth order accurate scheme is obtained as

ũn+1
i,j − ũni,j

τ̃
+α

ũni+1,j + ũni,j+1− ũni−1,j− ũni,j−1
2h̃

=

τ̃ [ν2ũx̃x̃ỹỹ−να(ũx̃ỹỹ + ũx̃x̃ỹ) +α2ũx̃ỹ] .
(4.52)

Both Eq. (4.50) and Eq. (4.52) are invariant under the chosen symmetries and can

be expressed in terms of the original variables by using the transformations given in

Eq. (4.48).

Note that in all the examples considered here, nuances associated with ini-

tial/boundary conditions of PDEs (and associated exact solutions) especially in

the context of their smoothness and compatibility with the chosen subgroups are

not fully considered as part of the procedure for construction of invariant schemes.

We believe that this limitation (which will be addressed as part of future work)

might have some effects on the accuracy of constructed invariant schemes. However,

as these schemes are constructed based on defect correction and moving frames, it
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might be possible to choose moving frames and appropriate base numerical schemes

such that the order of accuracy of these invariant schemes is unaffected for different

selections of initial/boundary conditions of a given PDE.

4.3 Numerical Experiments

In this section, we evaluate the performance of the proposed invariant numerical

schemes constructed for the linear advection-diffusion equation in 1D and 2D, the

inviscid Burgers’ equation, and the viscous Burgers’ equation. In all the linear and

nonlinear problems considered here, the results obtained from the proposed invariant

schemes (constructed from lower order, non-invariant base schemes) were found to be

significantly more accurate than that of the corresponding base numerical schemes.

We already noted the advantage associated with the ease of implementation of the

proposed invariant schemes, due to the simplifications in numerical representation

of the modified form of the equation.

4.3.1 Linear Advection-Diffusion Equation in 1D

We first test the performance of the proposed invariant numerical scheme developed

for the one-dimensional linear advection-diffusion equation, Eq. (4.11), over the

computational (spatial) domain Γ where x ∈ [−2,4]. The following analytical solu-

tion is used to evaluate the quality of results obtained from the numerical schemes

(proposed invariant, FTCS, and modified-FTCS)

u(t,x) = 1√
4π (L2 +ν t)

exp
[
− (x−αt)2

4 (L2 +ν t)

]
(4.53)

where L represents the characteristic width of the kernel and assumed to be equal

to 0.4 in all test runs. The initial and boundary conditions can be noted from the

analytical solution.
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Table 4.1
Root mean square error (RMSE) and L∞ error associated with numerical
solutions for linear advection-diffusion equation.

Error FTCS MOD-FTCS SYM
L∞ 2.5×10−2 5.0×10−4 6.0×10−4

RMSE 9.0×10−3 2.0×10−4 4.0×10−4
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Fig. 4.1. Linear advection-diffusion equation (1D). Comparison of profiles of u(t,x),
at t = 1, obtained from the analytical solution (Exact), the classical base scheme
(FTCS), the modified scheme (MOD-FTCS), and the proposed invariant scheme
(SYM) is shown in the left figure. Spatial distribution of errors obtained from these
schemes is displayed in the right figure. Parameter settings: τ = 0.025, h = 0.05,
α = 1, and ν = 1/60.

Snapshots of the propagating wave u(t,x), at t = 1, that are obtained from

the analytical solution (Exact, Eq. (4.53)), the proposed invariant scheme (SYM,

Eq. (4.11)), the classical base numerical scheme (FTCS, Eq. (4.2)), and the mod-

ified equation (MOD-FTCS, Eq. (4.4)) are shown in figure 4.1 (left). The spatial

distribution of errors in these numerical solutions, ε = ua−un, is also displayed in

this figure (right), where ua and un denote the analytical and numerical solutions,

respectively. It appears that the proposed invariant scheme (SYM) performs signifi-

cantly better than the classical base scheme (FTCS), in terms of numerical accuracy,

especially around the wave crest where the classical scheme seems to be failing to

generate reliable results. The invariant scheme also appears to be nearly overlap-

ping with the modified FTCS scheme (MOD-FTCS) that is known to be fourth
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Fig. 4.2. Linear advection-diffusion equation (1D). Comparison of L∞ errors of
numerical schemes as a function of number of grid points.

order accurate. Further error analysis is performed to evaluate the performance of

these numerical schemes. L∞ errors, estimated as max(|ua−un|), and root mean

square errors (RMSE), estimated as
√∑(ua−un)2/N , obtained from the proposed

invariant scheme, classical base scheme, and the modified scheme, for this particular

run, are given in table 4.1. As expected, the proposed invariant scheme performs

significantly better than the classical base scheme (FTCS) in terms of numerical

accuracy (by two orders of magnitude) and the accuracy of the invariant scheme is

comparable to that of the modified scheme. Besides, for this particular simulation,

the ratio of simulation times corresponding to the base, modified, and invariant

schemes was found to be 0.95 : 1.07 : 1.

The variations of L∞ errors, obtained from the proposed invariant scheme, clas-

sical base scheme, and the modified equation, with respect to number of spatial grid

points are presented in figure 4.2. In this figure, it appears that the proposed invari-

ant scheme is at least two orders more accurate than the classical forward in time

and central in space (FTCS) scheme (which is known to be second order accurate),

and this increase in numerical accuracy can be attributed to symmetry preservation.
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Both the invariant scheme and the numerical scheme for the modified equation ap-

pear to be generating fourth order accurate results. However, we note that the

proposed invariant scheme has a significantly simpler numerical representation and

is constructed on a three-point stencil whereas the numerical scheme developed for

the modified equation has a cumbersome numerical representation and is built on a

five-point stencil. This feature of invariant schemes, relevant to relative simplicity

in numerical representation and implementation along with significant improvement

in accuracy, can also be very useful for extensions to development of high order

accurate schemes for multidimensional problems.

4.3.2 Inviscid Burgers’ Equation

Further, we evaluate the performance of the proposed invariant schemes constructed

for the inviscid Burgers’ equation by comparing the results with the following ana-

lytical solution

u(t,x) = 1√
2πσ2

exp
[
−(x−u(t,x) t)2

2σ2

]
(4.54)

where the symbol σ is the characteristic width of the kernel. The problem is de-

fined over the computational domain Γ where x ∈ [−3,3]. The initial and boundary

conditions can be noted from the analytical solution given in Eq. (4.54).

Evolution of the profile u(t,x), from a Gaussian initial condition, obtained

from the analytical solution (Exact, Eq. (4.54)), the classical base scheme (FTCS,

Eq. (4.13)), the modified scheme (MOD-FTCS, Eq. (4.18)), the first proposed in-

variant scheme that preserves X1, X6, and X7 (SYM-1, Eq. (4.23)), and the second

proposed invariant scheme that preserves X1, X2, X6, and X7 (SYM-2, Eq. (4.26))

is shown in figure 4.3 (left). Numerical errors, along x-coordinate, obtained from

these numerical schemes are also shown in this figure (right). It is clear that both
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Table 4.2
Root mean square error (RMSE) and L∞ error associated with numerical solutions
for inviscid Burgers’ equation.

Error FTCS MOD-FTCS SYM-1 SYM-2
L∞ 6.03×10−2 3.68×10−2 3.66×10−2 2.93×10−2

RMSE 1.99×10−2 8.20×10−3 8.00×10−3 7.40×10−3
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Fig. 4.3. Inviscid Burgers’ equation. Comparison of profiles of u(t,x), at t = 0.5,
obtained from the analytical solution (Exact), the classical base scheme (FTCS),
the modified scheme (MOD-FTCS), the proposed invariant scheme SYM-1, and the
proposed invariant scheme SYM-2 is shown in the left figure. Spatial distribution
of errors is displayed in the right figure. Parameter settings: τ = 0.1, h= 0.2.

proposed invariant schemes (SYM-1 and SYM-2) perform better than the classical

base scheme (FTCS) and the modified scheme (MOD-FTCS) in terms of numer-

ical accuracy. The invariant schemes capture the wave propagation particularly

well around the wave crest in contrast to the classical base scheme. L∞ error

and root mean square error comparisons of these numerical solutions for this par-

ticular run are given in table 4.2. The data presented here also verifies that the

invariant schemes are comparably more accurate than other non-invariant schemes.

For this particular case, the ratio of simulation times corresponding to the FTCS,

MOD-FTCS, SYM-1 and SYM-2 schemes was found to be 0.68 : 1.23 : 0.72 : 1.

Figure 4.4 shows the variation of L∞ errors, obtained from each numerical

scheme, with respect to the number of grid points for a constant ratio of discrete

time and space variables, τ/h= 0.5. The classical base scheme (FTCS) is first order
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Fig. 4.4. Inviscid Burgers’ equation. Comparison of L∞ errors of numerical schemes
as a function of number of grid points for a constant ratio of discrete step variables,
τ/h= 0.5.

accurate in time and second order accurate in space. However, the discrete time step

variable τ is chosen to be the at the same order of magnitude as the spatial variable

h. Therefore, the FTCS scheme is expected to be first order accurate as verified in

this figure. On the other hand, the modified equation and both proposed invariant

schemes are expected to be second order accurate in time and space. Figure 4.4

clearly shows this improvement. Both invariant schemes are also found to preform

slightly better than MOD-FTCS scheme in terms of accuracy. Moreover, recall that

SYM-2 represents the invariant scheme that preserves symmetry groups X1, X2,

X6, and X7 and has a very cumbersome numerical algorithm. On the other hand,

SYM-1 only preserves X1, X6, and X7, but it has a comparably simpler numer-

ical algorithm. Although SYM-2 performs better than SYM-1, this improvement

is negligible. As numerical schemes that preserve more symmetries of underlying

continuous equations are likely to have more laborious numerical algorithms, one

must consider all advantages and disadvantages of preserving more symmetries in

numerical schemes as not all of them will result in significant improvement in numer-

ical accuracy. For this specific test problem (IBE), it appears that preserving one
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Fig. 4.5. Inviscid Burgers’ equation. Comparison of L∞ errors of numerical schemes
as a function of number of grid points for a constant ratio of discrete step variables,
τ/h= 0.01.

extra projection symmetry does not improve numerical accuracy notably. Hence, it

may be sufficient to only preserve symmetries considered in SYM-1 case if numerical

accuracy is the main concern.

Recall that we also constructed a third invariant scheme that is fourth order

accurate and only preserves the symmetry groups considered in SYM-1 case. The

objective was to check if it was possible to construct a fourth order accurate invariant

scheme by only preserving these symmetry groups. As it is clearly seen in figure

4.5 which displays L∞ error of each numerical scheme against the number of spatial

grid points, the invariant scheme (SYM-1) successfully generates accurate results

that are slightly better than the results obtained from the modified scheme (MOD-

FTCS) which is known to be fourth order accurate. We also note that the invariant

scheme, not only generates slightly better results but also has a significantly less

complex numerical algorithm compared to the modified scheme which has a very

cumbersome numerical algorithm.
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4.3.3 Viscous Burgers’ Equation

In our next case, we evaluate the performance of the proposed invariant scheme

developed for the viscous Burgers’ equation over the periodic computational domain

Γ where x ∈ [0,2π]. The following analytical solution

u(t,x) =−2ν
φ

∂φ

∂x
+ 4 (4.55)

where

φ= exp
− (x−4t)2

4ν(t+ 1)

+ exp
−(x−4t−2π)2

4ν(t+ 1)


is used to evaluate the accuracy of numerical schemes. For this particular problem,

periodic boundary condition, u(0) = u(2π), is considered and the initial condition is

noted from the analytical solution.

Snapshots of the propagating shock, at t = 0.25, obtained from the analytical

solution (Exact), the proposed invariant scheme (SYM, Eq. (4.40)), the classical

base scheme (FTCS, Eq. (4.32)), and the modified scheme (MOD-FTCS, Eq. (4.34))

are shown in figure 4.6 (left). The spatial distribution of errors in each numerical

solution is also displayed in this figure (right). Similar to the previous test problems,

the performance of the proposed invariant scheme is found to be significantly better

than the classical base scheme (FTCS) and slightly better than the modified scheme

(MOD-FTCS). Although a coarse grid with 121 grid points is considered for this

simulation, the proposed invariant scheme captures the wave propagation with a

high degree of accuracy in contrast to the classical base scheme which is not as

accurate, and especially fails to reliably capture the numerical behavior around the

shock front. Root mean square error and L∞ error measures corresponding to

the proposed invariant scheme, the non-invariant base scheme, and the modified
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Table 4.3
Root mean square error (RMSE) and L∞ error associated with numerical
solutions for the viscous Burgers’ equation.

Error FTCS MOD-FTCS SYM
L∞ 2.61×10 0 7.29×10−1 6.50×10−1

RMSE 2.75×10−1 8.80×10−2 8.01×10−2
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Fig. 4.6. Viscous Burgers’ equation. Comparison of shock formation profiles, at
t = 0.25, obtained from the analytical solution (Exact), the classical base scheme
(FTCS), the modified scheme (MOD-FTCS), and the proposed invariant scheme
(SYM) is shown in the left figure. Spatial distribution of errors is displayed in the
right figure. Parameter settings: h= 0.05, τ = 0.005, ν = 1/12.

equation are given in table 4.3. The data shown in this table indicates that the

proposed invariant scheme performs significantly better (in terms of accuracy) than

the non-invariant base scheme and only slightly better than the modified scheme.

Further, for this particular run, the ratio of simulation times corresponding to the

base, modified, and invariant schemes was noted as 0.98 : 1.15 : 1.

L∞ errors (obtained from the proposed invariant scheme, the classical base

scheme, and the modified scheme) with respect to number of spatial grid points

is shown in figure 4.7. It appears that the proposed invariant scheme is at least two

orders more accurate than the classical base scheme which is known to be second

order accurate. Although the results obtained from both the modified scheme and

the invariant scheme appear to be nearly overlapping, considering the simplicity of

the numerical representation of the latter scheme (which is constructed on a three-
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Fig. 4.7. Viscous Burgers’ equation. Comparison of L∞ errors of numerical schemes
as a function of number of grid points.

point stencil as opposed to a five-point stencil used for the modified scheme), the

advantages of symmetry preservation in numerical algorithms become more evident.

4.3.4 Linear Advection-Diffusion Equation in 2D

In our last test case, we evaluate the performance of the proposed invariant schemes

constructed for the two-dimensional linear advection-diffusion equation by compar-

ison with the analytical solution given by the following relation:

u(t,x) = 1
4π (L2 +ν t) exp

[
−(x−αt)2 + (y−β t)2

4 (L2 +ν t)

]
. (4.56)

Recall that, for this problem, two invariant schemes are constructed by considering

different moving frames. In the first invariant scheme which we referred to as SYM-

1, the unknown projection parameter s1 was determined by using the normalization

condition given in Eq. (4.49). On the other hand, in the second invariant scheme

(referred to as SYM-2), the moving frame given in Eq. (4.51) is used to determine

s1. We test these invariant numerical schemes for accuracy over the computational

domain Γ where both x and y are defined in the range [−2,2]. The initial and
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Fig. 4.8. Linear advection-diffusion equation (2D). Spatial distributions of nu-
merical errors, at t = 0.5, obtained from the classical base scheme (left) and the
proposed invariant scheme (right). Parameter settings: h = 0.05, τ = 0.005,
α = 0.5, β = 0.5, ν = 1/60.

boundary conditions considered for this problem can be noted from the analytical

solution given in Eq. (4.56).

Spatial distributions of numerical errors, at t= 0.5, obtained from the proposed

invariant scheme (SYM-1) and the classical base scheme are shown in figure 4.8.

From this figure, it appears that the invariant scheme performs significantly bet-

ter than the classical forward in time and central in space finite difference scheme

(FTCS). This improvement in numerical accuracy is also verified by error analysis

of these schemes. The proposed invariant scheme appears to be two orders of mag-

nitude more accurate than the classical base scheme when we consider L∞ errors

(which are noted as 2×10−4 for SYM-1, and 1×10−2 for FTCS schemes). Similar

results are also observed from comparisons of root mean square errors (which are

noted as 2.7×10−5 for SYM-1 and 1.3×10−3 for FTCS schemes).

We also compared the invariant schemes SYM-1, Eq. (4.50), and SYM-2, Eq. (4.52),

constructed for the two-dimensional linear advection-diffusion equation in terms of

numerical accuracy. In figure 4.9, L∞ errors obtained from these invariant schemes,

the classical base scheme (FTCS, Eq. (4.42)), and modified scheme (MOD-FTCS,

Eq. (4.44)) are illustrated. Both invariant schemes appear to perform significantly
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Fig. 4.9. Linear advection-diffusion equation (2D). Comparison of L∞ errors of
numerical schemes as a function of number of grid points.

better than the classical base scheme. The proposed invariant scheme SYM-2 also

appears to be perform slightly better than both the invariant scheme SYM-1 and the

modified scheme (which is known to be fourth order accurate). Although different

selection of moving frames resulted in invariant schemes with different accuracy, we

consider this improvement to be negligible for this particular problem. Therefore,

we conclude that both moving frames can be considered for construction of high

order accurate invariant schemes for this particular problem.

4.4 Chapter Summary

In this chapter, we presented a methodology to construct high order accurate in-

variant finite difference schemes that inherit Lie symmetry properties of underlying

partial differential equations. In contrast to other approaches based on moving

frames, the method proposed in this work offers a systematic approach to develop

invariant (or Lie symmetry preserving) numerical schemes with desired order of

accuracy. The order of accuracy of invariant schemes can be arbitrarily fixed by

considering the difference equations associated to the modified forms of equations
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instead of their original forms. Modified forms of equations are obtained by addi-

tion of defect correction terms (noted from truncation error analysis) to the original

forms of equations. These additional terms are then significantly simplified (if not

completely eliminated) in the transformed space by considering convenient mov-

ing frames. We also found that convenient moving frames (among vast number of

possibilities) that increase accuracy of resulting invariant schemes can be systemat-

ically identified when the modified forms of equations are considered. This feature

of the proposed method suggests that high order accurate invariant schemes with

significantly simplified numerical representations can be constructed from standard,

low order, non-invariant finite difference schemes. This is particularly important, as

high order schemes that are obtained from lower order schemes through defect cor-

rection procedures often have cumbersome numerical representations. In this work,

high order accurate invariant numerical schemes were developed for some canonical

linear and nonlinear PDEs and their performance was evaluated.

In the first test case, a fourth order accurate invariant numerical scheme that

is built on a three-point stencil was constructed for the one-dimensional linear ad-

vection diffusion equation. In this case, a discrete form of the modified equation

in the transformed space was simplified to a discrete form of a linear advection

equation through selection of convenient moving frames for which numerical repre-

sentations of all the defect terms along with the diffusion term of the original linear

advection-diffusion equation go to zero. Hence, a fourth order accurate (in space)

numerical scheme that is not only invariant but also has a much simpler numerical

representation was constructed for the linear advection-diffusion equation in 1D.

Based on our implementation of the invariant numerical scheme for this problem,

fourth order accuracy (in space) was demonstrated and significant improvement in

performance over the classical second order accurate base scheme was also observed

(as expected).
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As our second test case, we considered the inviscid Burgers’ equation and con-

structed three different high order accurate invariant schemes by modifying some

non-invariant base schemes. The first invariant scheme (referred to as SYM-1) which

is set to be second order accurate was constructed such that only three symmetries of

the original inviscid Burgers’ equations are preserved. The second invariant scheme

(referred to as SYM-2) which is also set to be second order accurate was developed

to preserve one more projection symmetry in addition to the three symmetries pre-

served in the first invariant scheme. The objective was to understand the effect of

different configurations of symmetry preservation on accuracy of schemes and the

level of complexity of their numerical representations. Preservation of the extra

projection symmetry in the base scheme resulted in an invariant scheme that has a

more cumbersome numerical representation compared to the first invariant scheme.

However, the numerical results obtained from both invariant schemes show minor

differences (that can be ignored) and suggest that preservation of more symmetries

in schemes may not always improve numerical accuracy. Furthermore, for the sake

of simplicity, the symmetries considered for the first invariant scheme (SYM-1) were

used to construct a third invariant scheme for the solution of the inviscid Burgers’

equation that is set to be fourth order accurate in both time and space. Results ob-

tained from this scheme indicate that preservation of the symmetries considered for

the first invariant scheme (which were projection, translation in time, and transla-

tion in space symmetries) was enough to construct a fourth order accurate invariant

scheme that has a significantly simplified numerical representation.

We considered the viscous Burgers’ equation as our third test case and con-

structed a fourth order accurate invariant scheme that is built on a three-point

stencil. By considering appropriate moving frames, defect correction terms were

significantly simplified (leaving only a single term that is of the form of a diffusion)

in the transformed space. In addition, the nonlinear transport term of the original
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viscous Burgers’ equation was also eliminated. The final form of the fourth order

accurate invariant scheme in this case contains only a temporal derivative term and

a nonlinear diffusion term which has a much simpler discrete representation. As

expected, the performance of the proposed invariant scheme was similar to that of

the previous problems.

In our last test case, we considered the two-dimensional linear advection dif-

fusion equation and constructed two different fourth order accurate invariant nu-

merical schemes for this problem. The objective was to develop invariant schemes

for different choices of moving frames and to compare the results for the effects of

these selections. Results indicate that both sets of moving frames lead to invariant

numerical schemes that are fourth order accurate with negligible differences.
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CHAPTER 5

Construction of Invariant Compact Finite Difference

Schemes

5.1 Scope of the Chapter

In this chapter, we propose a novel mathematical approach for construction of high

order accurate compact finite difference schemes that preserve Lie symmetry groups

of underlying differential equations. In this method, extended symmetry groups

of partial differential equations are used to obtain point transformations not only

for independent and dependent variables of differential equations, but also for their

derivative terms (which is a novel aspect of this work that was not considered in

earlier works [85, 87, 91]). Once point transformations for derivatives of differential

equations are determined, then these transformations are applied to some (non-

invariant) base compact finite difference schemes (of a desired order of accuracy) to

obtain the final invariant (or symmetry preserving) forms of these schemes. Here we

note that the unknown symmetry parameters that appear in these point transfor-

mations are determined by choosing convenient moving frames for which numerical

representations of base schemes simplify notably and their accuracy improves. The

proposed method is applied to some commonly used linear and nonlinear problems

and for all the test problems, these invariant schemes appear to perform significantly

better than the selected non-invariant base compact schemes in terms of numerical

accuracy verifying the potential advantages of symmetry preservation.

We demonstrate the implementation of the proposed method by considering
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fourth order accurate invariant compact finite difference schemes for one- and two-

dimensional linear advection-diffusion equations and Burgers’ equations (i.e., invis-

cid, viscous). For numerical simplicity, we use forward differencing to discretize

temporal derivatives and fourth order compact schemes based on central differ-

encing to discretize spatial derivatives. Note that the proposed construction of

invariant schemes can also be extended to arbitrarily high order temporal and spa-

tial discretization. Results obtained from the proposed invariant compact schemes

developed for these test problems suggest that symmetry preservation can lead to

significant improvements in numerical accuracy besides storing important geometric

information (regarding the underlying differential equations) in associated numerical

schemes.

5.2 Mathematical Formulation

In this section, the procedure for construction of invariant compact schemes is pre-

sented in detail.

5.2.1 Construction of Compact Schemes

Compact finite difference methods are widely used for high order computations and

in some cases are favored over standard finite difference methods due to their ability

to achieve high order accuracy over smaller stencils. For instance, while a standard

central difference approximation of the first derivative of a function on a three-point

stencil is second order accurate, an approximation based on a compact scheme (that

is also derived through central differencing) of the same derivative could be of higher

orders. The implementation of compact schemes is rather simple. To illustrate

construction of compact schemes through an example, let us develop fourth order

accurate compact finite difference schemes for the first and second derivatives of a

function U . Consider the following Taylor series expansion of the function U at grid
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points (i±1):

U i±1 =U i±hU ix+ h2

2 U
i
xx±

h3

6 U
i
xxx+ h4

24U
i
(IV)±O(h5) (5.1)

where h is the discrete spatial step and the symbol (·)x denotes derivative with

respect to variable x. Similarly, the first and second derivative of U can be expanded

in a Taylor series as

U i±1
x =U ix±hU ixx+ h2

2 U
i
xxx±

h3

6 U
i
(IV) + h4

24U
i
(V)±O(h5) (5.2)

U i±1
xx =U ixx±hU ixxx+ h2

2 U
i
(IV)±

h3

6 U
i
(V) + h4

24U
i
(VI)±O(h5). (5.3)

In order to eliminate the higher order derivatives (Uxx,Uxxx,U(IV), and U(V)) and

obtain an implicit relationship between the first derivative Ux and the function U

at nodes (i± 1), one can multiply Eq. (5.1) with constant a (at point i+ 1) and

with constant b (at point i−1), and multiply Eq. (5.2) with quantity c×h (at point

i+1) and with quantity d×h (at point i−1) and sum up these resulting quantities

which eventually simplifies to the following:

aU i+1 + bU i−1+chU i+1
x +dhU i−1

x = (a+ b)U i+ (a− b+ c+d)hU ix

+ (a+ b+ 2c−2d)h
2

2 U
i
xx+ (a− b+ 3c+ 3d)h

3

6 U
i
xxx

+ (a+ b+ 4c−4d)h
4

24U
i
(IV) + (c+d)h

5

24U
i
(IV) +O(h5). (5.4)

Here, a, b, c, and d are arbitrary constants. A particular set of solutions for these

constants (for which the higher order derivatives are eliminated) is found as

{a,b,c,d}= {3
4 ,−

3
4 ,−

1
4 ,−

1
4} .
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Hence the final form of Eq. (5.4) (which implicitly relates the function U to its first

derivative) can be written as

1
6U

i+1
x + 2

3U
i
x+ 1

6U
i−1
x = U i+1−U i−1

2h +O(h4) . (5.5)

Through similar algebraic manipulations, one can obtain the following fourth order

accurate implicit approximation for the second derivative of the function U as well

1
12U

i+1
xx + 5

6U
i
xx+ 1

12U
i−1
xx = U i+1−2U i+U i−1

h2 +O(h4). (5.6)

Both Eqs. (5.5)–(5.6) yield tridiagonal matrices that can easily be solved to accu-

rately approximate the first and second derivatives of U at all grid points. More

information on compact schemes along with compact algorithms for derivatives with

higher orders of accuracy and a discussion on the treatment of boundary conditions

in this method can be found in the literature [54, 55].

5.2.2 Invariantization of Compact Schemes

In this work, a compact finite difference scheme (corresponding to a surface L(z) = 0)

is considered as an invariant compact scheme if its form remains unchanged under

the action of a point symmetry group G associated with the surface L(z) = 0. In

this context, let Ñc(z) = 0 be an invariant compact finite difference scheme, and

φ̃c(z) = 0 be a stencil equation for the surface L(z) = 0 where z = (x,u,p) is the

vector of the independent/dependent variables and derivatives, respectively. The

compact scheme Ñc(z) = 0 and the stencil equation φ̃c(z) = 0 are said to be invariant

under the action of the group element g (where g ∈G) if the following condition is
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satisfied:

Ñc(ρ(z)·z) = 0 ⇐⇒ Ñc(z) = 0

φ̃c(ρ(z)·z) = 0 ⇐⇒ φ̃c(z) = 0
(5.7)

where ρ(z) represents right moving frames defined on a manifold M such that it is

a topological map (ρ :M →G) that satisfies the following condition:

ρ(g ·z) = ρ(z)g−1

for ∀g ∈ G. For any given non-invariant compact finite difference scheme Nc(z) = 0

(constructed for a surface L(z) = 0), an invariant form of this scheme Ñc(z) = 0

can be obtained by simply transforming every coordinate variable and derivative

of the base (non-invariant) compact scheme according to the symmetry group G

as Ñc(z) = Nc(g · z) for all g ∈ G. The unknown group parameters (that appear

when the action of a particular group element g on the coordinate variables and

derivatives is evaluated) can be determined via Cartan’s method of normalization.

5.3 Development of Invariant Compact Schemes

In this section, the invariantization of compact finite difference schemes is illustrated

through examples. In particular, fourth order accurate invariant compact schemes

are constructed for some linear and nonlinear problems.

5.3.1 Inviscid Burgers’ Equation

As our first test problem, we consider the inviscid Burgers’ equation (IBE) which is

of the form

ut + uux = 0. (5.8)
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A non-invariant compact scheme can be constructed for the IBE using the com-

pact algorithms developed for the spatial first, Eq. (5.5), and second, Eq. (5.6),

derivatives. As for the time derivative, for simplicity, a classical first order forward

differencing technique can be considered. The order of accuracy can be improved

from first to second order via truncation error analysis or defect correction. Hence

the final form of the compact scheme develop for the inviscid Burgers’ equation can

be found as

Nc(z) = u(i,n+1)−u(i,n)

τ
+uux+dc = 0 . (5.9)

Here, dc represents the defect correction terms (obtained from truncation error anal-

ysis) that are added to the scheme to improve accuracy and is given by

dc =−τ2(u2 uxx+ 2uu2
x) + O(τ2,h4) (5.10)

where τ and h denote the discrete time and space steps, respectively.

Considering the Lie group, Eq. (4.14), associated with the IBE, extended point

transformations are found for the independent/dependent variables and derivative

terms. Here, we note that in order to find the extended point transformations

p̃ = (ũx̃, ũx̃x̃), one should extend the group operators given in Eq. (4.14) such that

it accounts for all the derivative terms before these groups are used in the Lie series

given in Eq. (2.23). Alternatively, one can use the chain rule to find the extended

point transformations. For instance, the transformation expression for the spatial

first derivative can be found using

∂ũ

∂x̃
= ∂ũ

∂x

∂x

∂x̃
+ ∂ũ

∂t

∂t

∂x̃

once the point transformations for the independent and dependent variables are
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found. Similarly, point transformations associated with a multiple number of sub-

groups can be obtained by substituting each subgroup into Eq. (2.23) in an arbitrary

order. Although it is possible to consider the full Lie algebra and obtain global trans-

formations for the coordinate variables and derivatives, it is sometimes practical to

choose only certain subgroups as the form of the point transformations obtained

from the full Lie algebra could be cumbersome and not practical for preservation in

associated compact finite difference schemes [91]. Hence, for this particular problem,

we only choose the subgroups X1, X3, X6, and X7 for preservation in the associ-

ated (non-invariant) compact scheme given in Eq. (5.9). The global transformations

obtained from these particular subgroups are found via Eq. (2.23) as

t̃= e2s3 (t+ s6)
λ

x̃= es3 x+ s7
λ

ũ= e−s3(λu+ s1(x+ s7)) (5.11)

ũx̃ = e−2s3(λ2ux+ s1λ)

ũx̃x̃ = e−3s3λ3uxx

where λ= 1−s1(t+s6). The compact scheme constructed for the inviscid Burgers’

equation, Eq. (5.9), can be invariantized by transforming every coordinate variable

and derivative according to the above transformations

Ñc(z) =Nc(g ·z) = ũ(i,n+1)− ũ(i,n)

τ̃
+ ũũx̃−

τ̃

2(ũ2 ũx̃x̃+ 2 ũ ũ2
x̃) + O(τ̃2, h̃4) = 0 .

(5.12)

Based on the point transformations given in Eq. (5.11), it appears that the symme-

try parameter s3 does not appear in the transformed scheme given in Eq. (5.12).

All the other symmetry parameters can be determined through Cartan’s method
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of normalization. First, we consider convenient normalization conditions that lead

to simple stencils. For instance, the particular normalization conditions t̃(i,n) = 0

and x̃(i,n) = 0, among infinite possibilities, yield a simple stencil where the symmetry

parameters s6 and s7 are−t(i,n) and−x(i,n), respectively. Second, we choose normal-

ization conditions that remove terms from the truncation error of compact schemes

under consideration and hence lead to a considerable improvement in numerical ac-

curacy besides simplifying the numerical representations [91]. In this context, the

normalization condition ũ(i,n)
x̃ = 0 can be used to determine the symmetry parameter

s1

ũ
(i,n)
x̃ = 0 ⇒ u(i,n)

x + s1 = 0 ⇒ s1 =−u(i,n)
x (5.13)

and remove all the terms that include the spatial first derivative from the compact

scheme given in Eq. (5.12) in the transformed space as shown in the following:

Ñc(z) =Nc(g ·z) = ũ(i,n+1)− ũ(i,n)

τ̃
− τ̃2 ũ

2 ũx̃x̃ + O(τ̃2, h̃4) = 0 . (5.14)

The compact scheme given in Eq. (5.14) is invariant under the symmetry groups

X1, X3, X6, and X7 and can also be expressed in original variables as

u(i,n+1) = 1
λn+1

(
u(i,n) + τ2

2λ2
n+1

(u(i,n))2uxx

)
(5.15)

where λn+1 = 1− s1τ . Note that for most of the test problems considered in this

work, we use a time-space orthogonal mesh, t(i+1,n)− t(i,n) = 0 and x(i,n+1)−x(i,n) =

0, and hence, for simplicity, we will replace t(i,n) with tn, and x(i,n) with xi in the

following examples. Invariance of the compact scheme constructed for the inviscid

Burgers’ equation, Eq. (5.15), can be verified by transforming every variable in

this scheme according to the transformations given in Eq. (5.11) and the resulting
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transformed scheme should be identical to Eq. (5.15).

Here we also note that for this particular problem, for simplicity, we considered

first order forward differencing for the time derivative and used the method of mod-

ified equations to improve the accuracy of the approximation from first to second

order. However, one could also use higher order approximations or other discretiza-

tion techniques (e.g. Runge-Kutta algorithms) for the time derivative if desired.

A particularly interesting case occurs when a TVD-RK2 discretization technique

is used for the time derivative in Eq. (5.8). In this case, the final form of the in-

variant compact scheme constructed using the transformations and moving frames

considered for the IBE would be identical to the invariant compact scheme given in

Eq. (5.15).

5.3.2 Linear Advection-Diffusion Equation in 1D

As our second test problem, we choose the one-dimensional linear advection-diffusion

equation of the form

ut + αux = ν uxx. (5.16)

which describes the evolution of a quantity u due to linear advection and diffusion

processes. The symbols α and ν denote the constant characteristic speed and dif-

fusion coefficient, respectively. A non-invariant compact numerical scheme can be

developed for Eq. (5.16) as

u(i,n+1)−u(i,n)

τ
+αux = ν uxx (5.17)

where forward differencing is considered for the time derivative, and the spatial

first and second derivatives are approximated according to Eq. (5.5) and Eq. (5.6),

respectively. The symmetry group G associated with the one-dimensional advection-
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diffusion equation is given in Eq. (4.5). Considering the subgroups X1, X5, and X6,

the following point transformations can be obtained

t̃ = t+ s5
λ

x̃ = x+ s6
λ

ũ = λ
1
2u exp

(
−s1 γ2

2λν

)
(5.18)

ũx̃ = λ
1
2ν−1(s1γu+λνux) exp

(
−s1 γ2

2λν

)

ũx̃x̃ = λ
1
2ν−2(s2

1γ
2u− s1λνu−2s1λγνux+λ2ν2uxx) exp

(
−s1 γ2

2λν

)

where λ = 1− 2 s1 (t+ s5) and γ = x+ s6−α (t+ s5). The other subgroups are

neglected as their inclusion leads to point transformations of cumbersome structures

that are difficult to implement. The normalization conditions t̃n = 0 and x̃i = 0

can be used to determine the symmetry parameters s5 and s6, respectively. The

symmetry parameter s1 (corresponding to the projection group X1) can be found

by considering the normalization condition

ũ
(i,n)
x̃x̃ = 0 ⇒ s1 = ν

u(i,n) u
(i,n)
xx . (5.19)

As all the unknown symmetry parameters are defined, the point transformations

given in Eq. (5.18) can be implemented to the base compact numerical scheme,

Eq. (5.17). This implementation appears to reduce the scheme to a form of linear

advection equation in the transformed space as

ũ(i,n+1)− ũ(i,n)

τ̃
+α ũ

(i,n)
x̃ = 0 (5.20)

where the spatial second derivative is removed from the scheme owing to the normal-

ization condition given in Eq. (5.19). Hence, the transformed compact scheme given
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in Eq. (5.20) that is constructed for the one-dimensional linear advection-diffusion

equation and is invariant under the subgroups X1, X5, and X6 can be expressed in

the original discrete variables as follows

u(i,n+1) = λ
− 3

2
n+1 (λn+1u

(i,n)− τ αu(i,n)
x ) exp

(
s1α2τ2

2νλn+1

)
(5.21)

where λn+1 = 1−2s1τ .

5.3.3 Viscous Burgers’ Equation

As our third test problem, let us consider the viscous Burgers’ equation that is of

the form

ut + uux = ν uxx (5.22)

and develop an invariant compact numerical scheme for this particular PDE. Similar

to the one-dimensional linear advection-diffusion equation, we consider forward dif-

ferencing for the time derivative and use Eqs. (5.5)–(5.6) for the spatial derivatives

to construct the non-invariant base compact scheme for the solution of this PDE as

shown in the following

u(i,n+1)−u(i,n)

τ
+uux = νuxx . (5.23)

The symmetry group G associated with the viscous Burgers’ equation is noted in

Eq. (4.36). The point transformations that account for the projection group X1,

Galilean transformation group X2, scaling group X3, and translation groups X4

and X5 can be found as

t̃= e2s3 (t+ s4)
λ
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x̃= es3 x+ s5 + s2(t+ s4)
λ

ũ= e−s3(λu+ s1(x+ s5) + s2) (5.24)

ũx̃ = e−2s3(λ2ux+ s1λ)

ũx̃x̃ = e−3s3λ3uxx

where λ = 1− s1(t+ s4). As similar to the inviscid Burgers’ equation, the scaling

symmetry parameter s3 does not occur when these transformations are implemented

to the compact scheme given in Eq. (5.23). The symmetry parameters associated

with the translation groupsX4 andX5 can be found by considering the same normal-

ization conditions used for the previous problems. The Galilean parameter s2 can

be found by using the normalization condition ũ(i,n) = 0. And finally, the projection

parameter s1 can be found by choosing a moving frame for which the approximation

for the first derivative goes to zero in the transformed space

ũ
(i,n)
x̃ = 0 ⇒ s1 =−u(i,n)

x . (5.25)

The above normalization condition indicates that all terms in the base (non-invariant)

compact scheme, Eq. (5.23), that include the spatial first derivative will be removed

from the compact scheme in the transformed space leading to the following reduced

form

ũ(i,n+1) = ν τ̃ ũx̃x̃ (5.26)

where τ̃ = t̃(i,n+1). The transformed compact numerical scheme, Eq. (5.26), that is

invariant under all the symmetry groups of the viscous Burgers’ equation can also
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be expressed in the original variables as

u(i,n+1) = 1
λn+1

(
u(i,n)− s1(x(i,n+1)−x(i,n)) + τν

λn+1
u(i,n)
xx

)
(5.27)

where λn+1 = 1− s1τ .

5.3.4 Linear Advection-Diffusion Equation in 2D

As our last test problem, we choose the two-dimensional linear advection-diffusion

equation that is of the form

ut + αux + β uy = ν (uxx+uyy) (5.28)

to demonstrate the applicability of the proposed method to a multidimensional

problem. Here α and β denote constant characteristic wave speeds along x- and y-

coordinates, respectively. For this particular PDE, two different compact numerical

schemes that are invariant under the same symmetry groups but are constructed

using different moving frames are developed. Similar to the previous problems,

the base (non-invariant) compact numerical scheme considered for this PDE is also

developed considering forward differencing for the temporal derivative and fourth

order compact finite difference algorithms, given in Eq. (5.5)–(5.6), for the spatial

derivatives as shown in the following:

u(i,j,n+1)−u(i,j,n)

τ
+αux+β uy = ν (uxx+uyy) . (5.29)

Considering the symmetry group associated with the two-dimensional linear advection-

diffusion equation given in Eq. (4.47), the following point transformations that are
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based on the subgroups X1, X6, X7, and X8, are found

t̃ = t+ s6
λ

, x̃ = x+ s7
λ

, ỹ = y+ s8
λ

ũ = λu exp
[
−s1 (γ2 + θ2)

λ

]

ũx̃ = (2λγ s1 u + λ2 ux) exp
[
−s1 (γ2 + θ2)

λ

]

ũỹ = (2λθ s1 u + λ2 uy) exp
[
−s1 (γ2 + θ2)

λ

]
(5.30)

ũx̃x̃ = (4λγ2 s2
1 u − 2λ2 s1 u + 4λ2 γ s1 ux + λ3 uxx) exp

[
−s1 (γ2 + θ2)

λ

]

ũỹỹ = (4λθ2 s2
1 u − 2λ2 s1 u + 4λ2 θ s1 uy + λ3 uyy) exp

[
−s1 (γ2 + θ2)

λ

]

where

λ= 1−4ν s1 (t+ s6)

γ = x+ s7−α (t+ s6)

θ = y+ s8−β (t+ s6) .

The base compact scheme given in Eq. (5.29) can be transformed according to the

above transformations as follows

ũ(i,j,n+1)− ũ(i,j,n)

τ̃
+αũx̃+β ũỹ = ν (ũx̃x̃+ ũỹỹ) . (5.31)

Here we note that, for simplicity, we ignore the Galilean (X2 and X3) and scal-

ing (X4 and X5) groups and do not consider them for determination of the point

transformations as their inclusion (besides the other symmetry groups) result in

transformations that are laborious to implement. The symmetry parameters s6, s7,

and s8 can be determined by considering the normalization conditions t̃n = 0, x̃i = 0,

and ỹj = 0, respectively. As for the determination of the symmetry parameter s1,
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we consider two different normalization conditions to evaluate the effect of these

selections on the numerical accuracy of the resulting invariant schemes. We choose

∂x̃x̃ũ
(i,j,n) = 0 ⇒ s1 = ∂xxu

(i,j,n)

2u(i,j,n) (5.32)

as the first normalization condition and construct an invariant compact scheme

(referred to as SYM-1) as follows

ũ(i,j,n+1)− ũ(i,j,n)

τ̃
+αũx̃+βũỹ = νũỹỹ . (5.33)

In the second case, we consider the normalization condition

∂x̃x̃ũ
(i,j,n) +∂ỹỹũ

(i,j,n) = 0 ⇒ s1 = ∂xxu
(i,j,n) +∂yyu

(i,j,n)

4u(i,j,n) (5.34)

and construct another invariant compact scheme (referred to as SYM-2) as

ũ(i,j,n+1)− ũ(i,j,n)

τ̃
+αũx̃+βũỹ = 0 . (5.35)

Here we note that both Eq. (5.33) and Eq. (5.35) can also be expressed in the original

variables by implementing the transformations given in Eq. (5.30).

5.4 Results and Discussion

In this section, the performance of the proposed invariant compact finite differ-

ence schemes developed for the inviscid Burgers’ equation, linear advection-diffusion

equation (in 1D and 2D), and viscous Burgers’ equation are evaluated. Results ob-

tained from these invariant schemes are compared with standard schemes for nu-

merical accuracy.

120



Table 5.1
Root mean square error (RMSE) and L∞ error associated with numerical
solutions (based on compact schemes) for the inviscid Burgers’ equation.

Error FTCS COMP SYM
L∞ 4.0×10−2 5.8×10−3 5.1×10−3

RMSE 9.7×10−3 1.3×10−3 1.1×10−3

5.4.1 Inviscid Burgers’ Equation

We first evaluate the performance of the invariant compact scheme constructed

for the inviscid Burgers’ equation, Eq. (5.15), by comparing the results with the

analytical solution given in Eq. (4.54) over the spatial domain Γ where x ∈ [−3,3].

The initial and boundary conditions are noted from the analytical solution.

Snapshots of the propagating wave that are obtained from the exact solution,

the proposed invariant (compact) scheme (SYM), standard fourth order accurate

compact scheme (COMP), and the classical second order accurate forward in time

central in space (FTCS) scheme are shown in figure 5.1 (left plot). The associated

numerical errors of these schemes, which are estimated as Nexact−Nnumeric, are also

given in this figure 5.1 (right plot). It appears that the results obtained from the

proposed invariant compact scheme (SYM) are significantly more accurate than the

results obtained from classical finite difference (FTCS) scheme and are slightly better

than those obtained from the compact finite difference (COMP) scheme. Further,

the root mean square error (RMSE), estimated as
√∑(ua−un)2/N , and L∞ error,

estimated as max(|ua−un|), of these numerical schemes, for this particular run, are

given in table 5.1. According to the error analysis presented in this table, the L∞

errors obtained from the FTCS scheme, compact finite difference scheme, and the

invariant scheme are 4.0×10−2, 5.8×10−3, and 5.1×10−3, respectively. Similarly,

the root mean square errors for these numerical schemes are found as 9.7× 10−3

(FTCS), 1.3× 10−3 (COMP), and 1.1× 10−3 (SYM). As expected, the proposed

invariant scheme (SYM) which preserves the symmetries of the underlying PDE has
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Fig. 5.1. Inviscid Burgers’ equation. Comparison of velocity profiles, at t = 0.5,
obtained from the analytical solution (Exact), the classical forward in time central
in space (FTCS) scheme, the standard compact scheme (COMP), and the proposed
invariant compact scheme (SYM) is shown in the left plot. Spatial distribution
of errors for these numerical schemes is shown in the right figure. Parameter set-
tings: h= 0.2, τ = 0.001, and σ = 0.5 .
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Fig. 5.2. Inviscid Burgers’ equation. Comparison of L∞ errors of numerical schemes
versus number of grid points.

significantly less error compared to the standard FTCS scheme ans has slightly less

error than the standard compact finite difference scheme.

The variation of L∞ errors (obtained from the standard FTCS scheme, stan-

dard compact finite difference scheme, and the invariant scheme) with respect to

the number of spatial grid points is demonstrated in figure 5.2. The proposed in-

variant scheme (SYM) appears to be two orders more accurate than the standard
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second order FTCS scheme and is at the same order as the standard compact finite

difference scheme which is known to be fourth order accurate. Here, we note that

a sufficiently small time step is considered for this simulation as the fourth order

compact algorithms (given in Eq. (5.5) and Eq. (5.6)) are only considered for the

spatial derivatives.

5.4.2 Linear Advection-Diffusion Equation in 1D

Further, we evaluated the performance of the proposed method by developing a

fourth order accurate invariant compact finite difference scheme for the one-dimensional

linear advection-diffusion equation and compared the results with the analytical so-

lution given in Eq. (4.53).

For this particular problem, evolution of the profile u(t,x) (from a given Gaussian

initial profile) obtained from the proposed invariant scheme (SYM), standard FTCS

scheme and compact finite difference (COMP) scheme is depicted in figure 5.3 (left

plot). The spatial distribution of errors obtained from these particular numerical

solutions is also shown in this figure (right plot). The invariant compact scheme

appears to be capturing the wave propagation significantly better than the FTCS

scheme and slightly better than the compact scheme. Additionally, L∞ error and

root mean square error measures corresponding to the proposed invariant compact

scheme, FTCS scheme and standard compact finite difference scheme are presented

in table 5.2. It appears that the invariant compact scheme is two orders of magnitude

more accurate than the FTCS scheme and is one order of magnitude more accurate

than the standard compact finite difference scheme.

Additionally, figure 5.4 shows the variation of L∞ errors associated to the in-

variant compact scheme, FTCS scheme and standard non-invariant compact scheme

with respect to the number of spatial grid points. The invariant scheme appears to

be two orders more accurate than the standard second order FTCS scheme. More-

123



Table 5.2
Root mean square error (RMSE) and L∞ error associated with numeri-
cal solutions (based on compact schemes) for the one-dimensional linear
advection-diffusion equation.

Error FTCS COMP SYM
L∞ 2.9×10−2 1.2×10−3 4.6×10−4

RMSE 1.2×10−2 3.7×10−4 2.1×10−4
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Fig. 5.3. Advection-diffusion equation (1D). Snapshots of velocity profiles, at t =
1.0, obtained from the analytical solution (Exact), the classical forward in time
central in space (FTCS) scheme, the standard compact scheme (COMP), and the
proposed invariant compact scheme (SYM) are displayed in the left figure. Spatial
distribution of errors is displayed in the right figure. Parameter settings: h= 0.2, τ =
0.001, ν = 1/60. .

over, although both the invariant and standard non-invariant compact schemes are

fourth order accurate, the invariant scheme appears to have slightly less numerical

error.

5.4.3 Viscous Burgers’ Equation

In our next test case, we considered the viscous Burgers’ equation and developed a

fourth order accurate invariant compact scheme that preserves the whole symmetry

group, Eq. (4.14), associated with this PDE. The results are compared with the

analytical solution given in Eq. (4.55).

Snapshots of the propagating shock, at t= 0.25, along with the spatial distribu-

tion of numerical errors, obtained from the fourth order accurate invariant compact

scheme (SYM), standard second order FTCS scheme, and non-invariant fourth or-
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Fig. 5.4. Advection-diffusion equation (1D). Comparison of L∞ errors of numerical
schemes versus number of grid points.

der compact finite difference scheme (COMP) are depicted in figure 5.5. Although a

coarse grid with 101 nodes is used for this particular run, it appears that the invari-

ant scheme performs well and captures the shock propagation significantly better

than the standard FTCS scheme, particularly near the shock-front. Further, L∞

error and root mean square error analysis given in table 5.3 also confirms that the

invariant compact scheme performs better than the standard FTCS scheme. For

this particular run, root mean square errors corresponding to the invariant compact

scheme, standard FTCS scheme, and non-invariant compact finite difference scheme

are found to be 0.0140, 0.1251, and 0.0143, respectively. Similarly, L∞ errors of these

schemes were determined as 0.1060 (SYM), 0.8962 (FTCS), and 0.0994 (COMP).

The variation of L∞ errors obtained from these numerical schemes with respect

to number of spatial grid points is shown in figure 5.6. As expected, the results

obtained from the invariant scheme are indeed fourth order accurate and are two

orders more accurate than the standard FTCS scheme which is known to be a second

order accurate scheme. Also, both the invariant scheme and the standard fourth

order compact scheme yield results of comparable order of accuracy with negligible
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Table 5.3
Root mean square error (RMSE) and L∞ error associated with
numerical solutions (based on compact schemes) for the viscous
Burgers’ equation.

Error FTCS COMP SYM
L∞ 0.8962 0.0994 0.1060

RMSE 0.1251 0.0143 0.0140

0 1 2 3 4 5 6
1

2

3

4

5

6

7 Exact
FTCS
COMP
SYM

3 3.5 4 4.5 5
-1

-0.5

0

0.5

1
FTCS
COMP
SYM

Fig. 5.5. Viscous Burgers’ equation. Left: snapshots of shock formation profiles,
at t = 0.25, obtained from the analytical solution, the classical FTCS scheme, the
standard compact scheme (COMP), and the proposed invariant compact scheme
(SYM). Right: spatial distribution of errors for these numerical schemes (right).
Parameter settings: h= 0.063, τ = 0.0001, ν = 1/12. .

differences.
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Fig. 5.6. Viscous Burgers’ equation. Comparison of L∞ errors of numerical schemes
versus number of grid points.
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Table 5.4
Variation of RMSE and L∞ errors as-
sociated with numerical solutions pre-
sented in figure 5.7 (left) with respect
to the Galilean parameter c.

c Error FTCS COMP SYM

0
L∞ 0.1157 0.0100 0.0120

RMSE 0.0213 0.0023 0.0022

0.5
L∞ 0.5543 0.5131 0.0120

RMSE 0.2424 0.2417 0.0022

1.0
L∞ 0.9033 0.9166 0.0120

RMSE 0.3232 0.3206 0.0022

Table 5.5
Variation of RMSE and L∞ errors as-
sociated with numerical solutions pre-
sented in figure 5.7 (right) with respect
to the Galilean parameter c.

c Error FTCS COMP SYM

0
L∞ 0.2384 0.0269 0.0217

RMSE 0.0339 0.0041 0.0034

0.3
L∞ 2.1117 2.0058 0.0217

RMSE 0.7521 0.7451 0.0034

0.75
L∞ 2.2750 2.0118 0.0217

RMSE 1.2066 1.2027 0.0034
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Fig. 5.7. Viscous Burgers’ equation. Snapshots of numerical solutions, obtained
from the analytical solution (Exact), classical forward in time central in space
(FTCS) scheme, standard compact scheme (COMP), and proposed invariant com-
pact scheme (SYM), evolving from various initial profiles for different values of the
Galilean parameter c. Left: h = 0.1, τ = 0.0001, ν = 0.05, Right: h = 0.02, τ =
0.0005, ν = 0.01.

As the proposed invariant compact scheme given in Eq. (5.27) preserves all the

symmetry groups of the viscous Burgers’ equation, under transformations based on

these symmetry groups, the invariant scheme is expected to perform significantly

better than the standard numerical schemes that do not preserve these symmetry

groups. For instance, under a Galilean transformation of the form

x̂= x+ c t, t̂= t, û= u+ c (5.36)
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the proposed invariant scheme (SYM) is likely to capture the evolution of the veloc-

ity profile significantly better than both the standard FTCS and compact schemes.

This is expected as the invariant scheme preserves the Galilean transformation group

X2 given in Eq. (4.36) whereas the standard schemes do not. To test this particular

advantage of the invariant scheme, we applied the Galilean transformation given in

Eq. (5.36) to these numerical schemes and presented the snapshots of the evolution

of the numerical solutions from (two different) given initial profiles in figure 5.7.

Additionally, root mean square errors and L∞ errors associated with these numeri-

cal solutions are given in table 5.4 and table 5.5. These particular initial conditions

along with the associated analytical solutions considered for the left and right plots

in figure 5.7 can be found in reference [88]. Based on figure 5.7 and relevant error

tables, it appears that when the Galilean parameter c is equal to zero, all the numer-

ical schemes capture the evolution of the solution well which is expected. However,

for the cases when the Galilean parameter c is nonzero, both the standard FTCS

scheme and compact finite difference scheme appear to overpredict the solution lead-

ing to a significant lag in the solution, particularly for large values of c. On the other

hand, the invariant scheme, as it preserves the Galilean symmetry group, captures

the evolution of the solution well even for nonzero values of the Galilean parameter

c. In fact, in the case of a numerical precision considered in table 5.4 and table 5.5,

the results obtained from the invariant scheme for nonzero values of c are found to

be identical to the results of the case where c = 0. The latter indicates that the

Galilean invariance property of the viscous Burgers’ equation is indeed preserved

in the relevant difference equation. This property of symmetry preservation in nu-

merical schemes can be particularly useful when differential equations associated to

more complex symmetries are solved through difference equations.
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Table 5.6
Root mean square error (RMSE) and L∞ error associated with numerical solu-
tions (based on compact schemes) for two-dimensional linear advection-diffusion
equation.

Error FTCS COMP SYM-1 SYM-2
L∞ 2.4×10−3 3.8×10−5 3.4×10−5 3.3×10−5

RMSE 2.7×10−4 3.4×10−6 3.3×10−6 3.1×10−6

Fig. 5.8. Linear advection-diffusion equation (2D). Spatial distributions of nu-
merical errors, at t = 0.1, obtained from the classical base scheme (left) and the
proposed invariant scheme (right). Parameter settings: h = 0.16, τ = 0.0001,
α = 1.0, β = 1.0, ν = 1/60.

5.4.4 Linear Advection-Diffusion Equation in 2D

As our last test case, we considered the two-dimensional linear advection-diffusion

equation and constructed two different fourth order accurate invariant compact finite

difference scheme (SYM-1 and SYM-2) for this PDE. The main difference between

the constructed invariant schemes are that both are developed via selections of

different moving frames and the details of these selections are given in Section 5.3.

The objective is to investigate the effect of these selections on the accuracy of the

resulting invariant schemes. The analytical solution given in Eq. (4.56) is used

to evaluate the quality of results obtained from the invariant SYM-1 and SYM-2

schemes.

Spatial distribution of numerical errors corresponding to the proposed invariant

129



50 100 150 200 250
10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

FTCS

COM

SYM-1

SYM-2

Fig. 5.9. Advection-diffusion equation in 2D. Comparison of L∞ errors of numerical
schemes versus number of grid points.

compact finite difference scheme (SYM-2) and standard non-invariant FTCS scheme

is given in figure 5.8. Based on this figure, it appears that the invariant scheme has

significantly less numerical error compared to the standard non-invariant FTCS

scheme in this case as well. This improvement in numerical accuracy is also verified

by the error analysis given in table 5.6 where both invariant schemes (SYM-1 and

SYM-2) perform better than the standard schemes. L∞ errors obtained from the

invariant scheme SYM-1, invariant scheme SYM-2, FTCS scheme, and standard

non-invariant compact scheme are noted as 3.4× 10−5, 3.3× 10−5, 2.4× 10−3, and

3.8× 10−5, respectively. It appears that the invariant schemes are at least two

orders of magnitude more accurate than the standard FTCS scheme. Root mean

square error measures of these numerical schemes also yield similar results that are

3.3×10−6 and 3.1×10−6 for the invariant schemes SYM-1 and SYM-2, 2.7×10−4

for the FTCS scheme, and 3.4×10−6 for the non-invariant compact finite difference

scheme.

The variation of L∞ errors (obtained from the proposed invariant schemes, stan-

dard FTCS scheme, and non-invariant compact scheme) with respect to the number
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of spatial grid points is presented in figure 5.9. As expected, both of the proposed

invariant compact schemes constructed for the two-dimensional linear advection-

diffusion equation are indeed fourth order accurate and perform significantly better

than the second order standard forward in time central in space (FTCS) finite dif-

ference scheme. Moreover, these invariant schemes also perform with slightly less

error compared to the non-invariant compact scheme which is known to be fourth

order accurate. Further, the invariant scheme SYM-2 appears to be slightly more

accurate than the invariant scheme SYM-1 which indicates that the selection of

moving frames could affect the accuracy of resulting invariant schemes. Although

for this particular problem, the differences in the results obtained from the invariant

schemes appear to be minor, in general the moving frames must be chosen carefully.

5.5 Chapter Summary

In this chapter, we presented a method, that is based on moving frames, for con-

struction of invariant compact finite difference schemes that preserve Lie symmetry

groups of underlying partial differential equations. In this method, we first de-

termine the extended symmetry groups of PDEs and obtain point transformations

based on these symmetry groups. These transformations are then applied to some

(non-invariant) base compact finite difference schemes such that all the system vari-

ables (i.e., independent and dependent variables) and derivatives of these compact

schemes are transformed. We then determine the unknown symmetry parameters

that exist in these symmetry-based point transformations by considering convenient

moving frames that are obtained through Cartan’s method of normalization. In

most cases, such convenient moving frames not only result in significant improve-

ment in numerical accuracy but also notably simplify the numerical representations

of the resulting invariant schemes and eventually make them easier to program.

The performance of the proposed method was evaluated via construction of high or-
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der accurate invariant compact finite difference schemes (built on simple three-point

stencils) for some linear and nonlinear PDEs. Based on our evaluation, we concluded

that symmetry preservation has the potential to significantly improve numerical ac-

curacy of compact schemes besides embedding important geometric properties of

underlying PDEs.

As our first test case, we considered the inviscid Burgers’ equation and con-

structed a high order accurate invariant compact finite difference scheme for this

PDE. Although the order of accuracy of compact schemes can be arbitrarily set by

considering suitable compact finite difference algorithms, for this particular prob-

lem, we chose fourth order accurate compact algorithms to approximate the spatial

derivatives and constructed an invariant scheme based on these algorithms. In all

the test problems, the temporal derivatives were handled through standard forward

differencing. For this particular PDE, in order to improve the numerical accuracy

from first to second order in time, the base scheme was modified using defect cor-

rection techniques. The results obtained from this fourth order accurate invariant

compact scheme were found to be slightly better than the results obtained from

the standard compact scheme and notably better than those of the standard FTCS

scheme. For all the test cases, the computation times required to run a simulation

with a numerical error of comparable order were found to be similar for both the

proposed invariant scheme and standard compact scheme and the differences were

negligible.

As our next test problem, we considered the one-dimensional linear advection-

diffusion equation and developed a fourth order accurate invariant compact scheme

for this problem as well. For this particular problem, through the use of convenient

moving frames (i.e., ũx̃x̃ = 0), the numerical representation of the base scheme were

reduced to a form of the linear advection equation (ũt̃+αũx̃ = 0) in the transformed

space. Similar to the previous problem, the quality of results obtained from this
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invariant compact scheme (in terms of numerical accuracy) was found to be better

than that of the standard FTCS and compact schemes.

Next we constructed a fourth order accurate invariant compact finite difference

scheme for the viscous Burgers’ equation (which is of the form of a linear heat

equation, ũt̃ = νũx̃x̃, in the transformed space for the normalization condition ũx̃ =

0) that preserves all the symmetries of the Burgers’ equation and compared our

results with the standard schemes. As expected, the proposed invariant compact

scheme developed for this problem yielded more accurate results than standard

schemes in this case as well. In particular, the performance of the proposed invariant

scheme was significantly better than that of the standard schemes when a Galilean

transformation is applied to these schemes (see figure 5.7 and tables 5.4–5.5) to test

how these schemes are affected by such transformations that are based on symmetries

of the underlying differential equation. This is due to the fact that the invariant

scheme preserves the Galilean symmetry group of the viscous Burgers’ equation,

whereas the standard schemes do not.

In order to demonstrate the implementation of the proposed method to a mul-

tidimensional problem, as our last test case, we considered the two-dimensional

linear advection-diffusion equation and constructed a couple of fourth order accu-

rate invariant compact schemes for this problem where different moving frames are

used in the construction of each invariant scheme to evaluate how this action ef-

fects the accuracy of the resulting schemes. For the first invariant scheme SYM-1,

a normalization condition of the form ũx̃x̃ = 0 is used to determine the projection

group parameter s1 whereas for the other invariant scheme (SYM-2), this particular

parameter was determined using the normalization condition ũx̃x̃ + ũỹỹ = 0. Al-

though both normalization conditions simplify the base compact scheme considered

for this PDE notably, the latter condition reduces the base scheme to the form of

two-dimensional linear advection equation (ũt̃+αũx̃+βũỹ = 0) in the transformed
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space. As for the results obtained from these invariant schemes, SYM-2 appears to

be slightly more accurate than SYM-1 where both of these schemes are notably more

accurate than standard schemes. Although for this particular problem, selection of

different moving frames in the construction of invariant schemes did not affect the

accuracy of these schemes significantly, this may not be the case for other problems

as there are usually infinitely many applicable moving frames and not all of them

will result in accurate invariant schemes.
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CHAPTER 6

Construction of Invariant Schemes for Euler Equations

6.1 Scope of the Chapter

In this chapter, we put forth a procedure for construction of symmetry preserving

numerical schemes for the solution of one- and two-dimensional Euler equations.

Point transformations derived from the Lie symmetry groups underlying the Euler

equations are implemented into some selected non-invariant base numerical schemes

to obtain their invariant forms. The unknown symmetry parameters that occur in

the definition of the derived point transformations are fully resolved through Car-

tan’s method of normalizations where convenient normalization conditions are used

to determine each symmetry parameter. The proposed procedure is implemented in

two different standard, non-invariant, base numerical schemes namely Lax-Friedrichs

and van Leer flux splitting schemes developed for the one- and two-dimensional Eu-

ler equations. The performance of these numerical schemes is evaluated through

implementations to several different shock-tube problems (in 1D and 2D). Based

on our results, it appears that these invariant numerical schemes not only preserve

geometric properties of the underlying equations, which could be quite beneficial

in some cases, but also accurately predict approximate numerical solutions for the

selected multidimensional test problems as well.
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6.2 Introduction

For the past several decades, a great deal of effort was devoted to design of high order

accurate numerical schemes for solutions of nonlinear hyperbolic conservation laws

[109–130]. The main challenge in the design of such numerical schemes is due to the

presence of discontinuities that are commonly encountered in solutions of hyperbolic

equations. Several methodologies have been proposed for constructions of numerical

schemes that are capable of capturing discontinuities (up to a certain degree) that

might be present in solutions of such systems [131–151]. Among these methods,

there are approaches based on traditional low order schemes such as the first order

Godunov scheme [132], Lax-Friedrichs scheme [39], or the Roe scheme [115]. There

are also approaches based on second (or higher) orders schemes such as the Lax-

Wendroff, MacCormack’s, Richtmyer schemes, or upwind schemes (i.e., van Leer,

Steger-Warming, Osher schemes) that are usually based on vector flux-splitting

algorithms [39, 152]. The performance of most of these numerical schemes when

implemented to the Euler equations in one- and two-dimensions is well-reviewed in

the literature [39,111,118,126,149,152,153].

In this chapter, we present a systematic approach for construction of Lie sym-

metry preserving numerical schemes for the numerical solution of the one- and two-

dimensional Euler equations which, to the best of our knowledge, has never been

considered in earlier works. Point transformations obtained from selected Lie sym-

metry groups associated with the one- and two-dimensional Euler equations are

implemented to some non-invariant base numerical schemes, namely Lax-Friedrichs

scheme and van Leer flux vector splitting scheme, constructed for these equations

to obtain their symmetry preserving forms. Note that we consider the method of

equivariant moving frames and Cartan’s method of normalization to fully resolve

the unknown symmetry parameters that occur in point transformations when these
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transformations are determined through Lie series approach [83,84,93,95]. Although,

in this work we choose Lax-Friedrichs and van Leer schemes for the invariantiza-

tion procedure, there is no such specific requirement and one can always choose

some other base numerical schemes for the invariantization procedure. We evalu-

ate the performance of the proposed invariant schemes in the case of various initial

value configurations and compare our results with those obtained from standard,

non-invariant based schemes considered in this work.

For the one-dimensional Euler equations, we implement the constructed invariant

Lax-Friedrichs and van Leer schemes to three different shock-tube problems. Sim-

ilarly, for the two-dimensional case, we evaluate the performance of the invariant

Lax-Friedrichs scheme through implementations to four different two-dimensional

shock-tube problems. For both one- and two-dimensional cases, the proposed in-

variant schemes lead to accurate numerical predictions for the solution of considered

shock-tube problems. Additionally, these invariant schemes were found to be also

more accurate than their non-invariant counterparts.

This chapter is organized as follows. The mathematical formulation of the one-

and two-dimensional Euler equations along with a detailed discussion of associated

Lie symmetry groups are discussed in Section 6.3. A discussion on construction of

invariant numerical schemes is also included in this section. In the following section,

Section 6.4, a systematic approach for construction of invariant schemes for the Euler

equations is presented in detail. This is followed by Section 6.5 which includes some

results and a discussion on the performance of the constructed numerical schemes.

And finally, concluding remarks are noted in Section 6.6.
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6.3 Mathematical background and Symmetry Methods

6.3.1 Euler Equations in 1D

Let us first consider the one-dimensional Euler equations given by the following

conservative form

Ut+ F(U)x = 0 , (6.1)

where the vector of conserved variables U and fluxes F(U) are given by

U =


ρ

ρu

E

 , F(U) =


ρu

ρu2 +p

u(E+p)

 . (6.2)

Here, u is the particle velocity, ρ is the density, p is the pressure, and E is the total

energy per unit volume that is given by

E = p

γ−1 + 1
2ρu

2 ,

where the parameter γ = cp/cv represents the ratio of specific heats.

The one-dimensional Euler equations given in Eq. (6.1) admits the following 6

parameters Lie group [14]:

X1 = ∂

∂t

X2 = ∂

∂x

X3 = t
∂

∂x
+ ∂

∂u

X4 = x
∂

∂x
+ t

∂

∂t
(6.3)
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X5 = t
∂

∂t
−u ∂

∂u
+ 2ρ ∂

∂ρ

X6 = p
∂

∂p
+ρ

∂

∂ρ
,

where X1 and X2 represent invariance under translations in time and space, re-

spectively, X3 represents invariance under Galilean transformation, and finally, X4,

X5, and X6 represent invariance under scaling transformations. For simplicity, let

us linearly combine the above scaling groups, X4− 2X5 +X6, to obtain a general

scaling group of the form

X7 = x
∂

∂x
− t ∂

∂t
+ 2u ∂

∂u
+p

∂

∂p
−3ρ ∂

∂ρ
. (6.4)

The conservative form of the Euler equations given in Eq. (6.1) also admits the

following projection group

X8 = tx
∂

∂x
+ t2

∂

∂t
+ (x− tu) ∂

∂u
−3tp ∂

∂p
− tρ ∂

∂ρ
, (6.5)

for the special case where γ = 3 which corresponds to isentropic flow of a monatomic

gas with one degree of freedom where molecules are constrained to move on a line.

This particular value of γ is obtained from the relation

γ = n+ 2
n

, (6.6)

where n represents the degree of freedom [151]. The occurrence of the projection

symmetry group X8 for this specific value of γ indicates that the Lie symmetry

groups associated with the Euler equations is somehow connected to the relation

given in Eq. (6.6) which is systematically obtained from the kinetic theory. Similarly,

for the two- and three-dimensional Euler equations, additional projection groups are

obtained for specific values of γ = 2 (for 2D) and γ = 5/3 (for 3D). Although the
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particular type of one-dimensional flow that corresponds to γ = 3 is not physically

realizable, it has been the subject of numerous studies in discrete particle simulations

[14].

6.3.2 Euler Equations in 2D

As our second problem, we consider the two-dimensional Euler equations given by

Ut+ F(U)x+ G(U)y = 0 . (6.7)

Here, the vectors U, F(U), and G(U) denote the conserved variables, and fluxes in

x- and y -directions, respectively, and are given as

U =



ρ

ρu

ρv

E


F(U) =



ρu

ρu2 +p

ρuv

u(E+p)


G(U) =



ρv

ρuv

ρv2 +p

v(E+p)


. (6.8)

Further, u and v represents particle velocities in x- and y-coordinates, respectively,

and the total energy per unit volume in this case is given by the following relation

E = p

γ−1 + 1
2ρ(u2 +v2) .

The conservative form of the two-dimensional Euler equations given in Eq. (6.7)

admits the following 9 parameters Lie group [14]:

X1 = ∂

∂t
, X2 = ∂

∂x
, X3 = ∂

∂y

X4 = t
∂

∂x
+ ∂

∂u
, X5 = t

∂

∂y
+ ∂

∂v

X6 = x
∂

∂x
+y

∂

∂y
+ t

∂

∂t
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X7 = t
∂

∂t
−u ∂

∂u
−v ∂

∂v
+ 2ρ ∂

∂ρ

X8 = p
∂

∂p
+ρ

∂

∂ρ
(6.9)

X9 = y
∂

∂x
−x ∂

∂y
+v

∂

∂u
−u ∂

∂v

where X1, X2, and X3 represent invariance under translations in time and space,

respectively, X4 andX5 represent invariance under Galilean transformation, X6, X7,

and X8 represent invariance under scaling transformations, and finally, X9 represent

invariance under rotation. Let us combine the scaling groups, X6− 2X7 +X8, to

obtain a general scaling group as given in the following

X10 = x
∂

∂x
+y

∂

∂y
− t ∂

∂t
+ 2u ∂

∂u
+ 2v ∂

∂v
+p

∂

∂p
−3ρ ∂

∂ρ
. (6.10)

(6.11)

Similar to the one-dimensional case, the two-dimensional Euler equations given in

Eq. (6.7) admit the following additional symmetry group

X11 = tx
∂

∂x
+ ty

∂

∂y
+ t2

∂

∂t
+ (x− tu) ∂

∂u
+ (y− tv) ∂

∂v
−4tp ∂

∂p
−2tρ ∂

∂ρ
(6.12)

for the special case of γ = 2 which corresponds to isentropic flow of a monatomic gas

with two-degrees of freedom where molecules are constrained to move on a plane.

6.4 Invariant schemes

In this section, we show the implementation of the proposed procedure for con-

struction of symmetry preserving numerical schemes for solution of one- and two-

dimensional Euler equations. As our non-invariant base numerical schemes, we

consider a Lax-Friedrichs scheme and a van Leer flux vector splitting scheme for one-
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dimensional Euler equations, and a Lax-Friedrichs scheme for the two-dimensional

Euler equations. However, the implementation of the proposed procedure is straight-

forward and could be applied to other numerical schemes of choice as well.

6.4.1 Invariant Lax-Friedrichs Scheme

As our first non-invariant base scheme, we choose the standard Lax-Friedrichs

scheme which is of the form

Ui,n+1 = 1
2
(
Ui+1,n+ Ui−1,n

)
− τ

2h
(
Fi+1,n−Fi−1,n

)
(6.13)

for the conservative form of the one-dimensional Euler equations where τ and h

are discrete time and space steps. The point transformations associated with the

selected symmetry groups of the one-dimensional Euler equations can be obtained

through the Lie series expansion given in Eq. (2.23). In this particular case, for

simplicity, we ignore the Galilean group X3 and determine point symmetries based

on all the other groups of the one-dimensional Euler equations, given in Eq. (6.3),

as follows:

t̃= t+ s1
λ

e−s7

x̃= x+ s2
λ

es7

ũ= [λ u+ s8(x+ s2)] e2s7 (6.14)

p̃= λ3 p es7

ρ̃= λ ρ e−3s7

where λ = 1− s8(t+ s1). The unknown symmetry parameters s1, s2, s7, and s8

in the above point transformations could be determined through convenient selec-

tions of moving frames. As discussed in the previous section, there are infinitely
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many applicable moving frames. However, not all of these moving frames will result

in accurate numerical solutions. We suggest the use of moving frames that lead

to convenient grids and remove the leading error terms from truncation error of

difference equations. For instance, for this particular problem of one-dimensional

Euler equations, the normalization conditions t̃i,n = 0 and x̃i,n = 0 lead to a grid

that is practical and easy to implement. From these normalization conditions, the

symmetry parameters s1 and s2 are found as

s1 =−ti,n, s2 =−xi,n .

The symmetry parameter s7 does not appear in the transformed form of the Lax-

Friedrichs scheme. As for the last symmetry parameter s8, we can choose two

different normalization conditions to investigate the effect of these choices on the

accuracy of the final invariant scheme. We first choose a normalization condition

for which the discrete definition of the spatial derivative of the first element of the

flux vector F(U) goes to zero as shown in the following:

∂ (ρ̃ũ)
∂x̃

∣∣∣∣i,n ≡ (ρ̃ũ)i+1,n− (ρ̃ũ)i−1,n

x̃i+1,n− x̃i−1,n = 0 ⇔ s8 =−(ρu)i+1,n− (ρu)i−1,n

h(ρi+1,n+ρi+1,n) (6.15)

where x̃i+1,n− x̃i−1,n = xi+1,n−xi−1,n = 2h. The invariant scheme constructed for

the Euler equations based on this particular normalization condition is referred to

as SYM -1. Similarly, we select another normalization condition (that leads to the

invariant scheme SYM -2) for which only the spatial first derivative of the velocity

goes to zero

∂ ũ

∂x̃

∣∣∣∣i,n ≡ ũi+1,n− ũi−1,n

x̃i+1,n− x̃i−1,n = 0 ⇔ s8 =−u
i+1,n−ui−1,n

2h . (6.16)

As all the unknown symmetry parameters are determined, the fully defined point
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transformations given in Eq.(6.14) can be implemented to the standard non-invariant

Lax-Friedrichs scheme, Eq (6.13), to obtain its invariant form as follows:

Ũi,n+1 = 1
2
(
Ũi+1,n+ Ũi−1,n

)
− τ̃

2h̃
(
F̃i+1,n− F̃i−1,n

)
. (6.17)

The above difference equation, Eq. (6.17), is invariant under the selected symmetries

of the one-dimensional Euler equations.

Similarly, for the two-dimensional Euler equations, the Lax-Friedrichs scheme is

given by

Ui,j,n+1 =1
4
(
Ui+1,j,n+ Ui−1,j,n+ Ui,j+1,n+ Ui,j−1,n

)
− τ

2hx

(
Fi+1,j,n−Fi−1,j,n

)
− τ

2hy

(
Gi,j+1,n−Gi,j−1,n

)
, (6.18)

where hx and hy are discrete space steps for x- and y-coordinates, respectively.

Similar to the one-dimensional case, for simplicity, we ignore the rotation group X9

and the Galilean groups X4 and X5. We then construct point transformations based

on the rest of the symmetry groups given in Eq. (6.9) through Lie series expansion

as

t̃= t+ s1
λ

e−s10

x̃= x+ s2
λ

es10

ỹ = y+ s3
λ

es10

ũ= [λ u+ s11(x+ s2)] e2s10 (6.19)

ṽ = [λ v+ s11(y+ s3)] e2s10

p̃= λ4 p es10

ρ̃= λ2 ρ e−3s10 ,
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where λ= 1− s11(t− s1). Recall that the scaling parameter s10 does not appear in

the Lax-Friedrichs scheme in the transformed space. Additionally, the translation

parameters s1, s2, and s3 can be found by considering the following normalization

conditions

t̃i,j,n = 0, x̃i,j,n = 0, ỹi,j,n = 0 .

And the projection parameter s11 can be found by setting the sum of discrete defi-

nition of spatial first derivatives to zero as shown in the following:

∂ ũ

∂x̃
+ ∂ ṽ

∂ỹ
≡ ũi+1,j,n− ũi−1,j,n

x̃i+1,j,n− x̃i−1,j,n + ṽi,j+1,n− ṽi,j−1,n

ỹi,j+1,n− ỹi,j−1,n = 0

s11 =−2dy(ui+1,j,n−ui−1,j,n) + 2dx(vi,j+1,n−vi,j−1,n)
8hxhy

.

Finally, the invariant form of the Lax-Friedrichs scheme for the two-dimensional

Euler equations can be found as

Ũi,j,n+1 =1
4
(
Ũi+1,j,n+ Ũi−1,j,n+ Ũi,j+1,n+ Ũi,j−1,n

)
− τ̃

2h̃x

(
F̃i+1,j,n− F̃i−1,j,n

)
− τ̃

2h̃y

(
G̃i,j+1,n− G̃i,j−1,n

)
. (6.20)

6.4.2 Invariant van Leer Flux Splitting scheme

In order to show the applicability of the proposed method to an arbitrary base

numerical scheme, we constructed an invariant form of the van Leer flux splitting

scheme for the one-dimensional Euler equations as well. The non-invariant form of

the van Leer scheme for this particular problem is as follows:

∂U
∂t

+ ∂F+

∂x
+ ∂F−

∂x
(6.21)
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where the fluxes are defined as

F+ = ρc

4 (M + 1)2


1

2c
γ

(
1 + γ−1

2 M
)

2c2

γ2−1

(
1 + γ−1

2 M
)2



F− =−ρc4 (M −1)2


1

2c
γ

(
−1 + γ−1

2 M
)

2c2

γ2−1

(
1− γ−1

2 M
)2

 ,

where c =
√
γp/ρ is the speed of sound and M = u/c is the Mach number. Hence

the final form of the van Leer upwind scheme can be found as

Un+1
i = Un

i −
τ

h

[
(F+)ni − (F+)ni−1 + (F−)ni+1− (F−)ni

]
. (6.22)

The point transformations obtained for the one-dimensional Euler equations in the

previous subsection, Eq. (6.14), can be directly implemented to the above van Leer

scheme as well. Hence the final invariant form of the van Leer flux splitting scheme

can be found as

Ũn+1
i = Ũn

i −
τ̃

h̃

[
(F̃+)ni − (F̃+)ni−1 + (F̃−)ni+1− (F̃−)ni

]
. (6.23)

6.5 Results and Discussion

In this section, performance of the invariant numerical schemes developed for the

one- and two-dimensional Euler equations are evaluated. In the case of one-dimensional

Euler equations, three different Riemann problems are considered, and results ob-

tained from standard Lax-Friedrichs scheme, van Leer flux vector splitting scheme,

and proposed invariant schemes (SYM-1 and SYM-2) are compared with available

exact solutions for accuracy. As expected, the invariant schemes that preserve se-
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Table 6.1
Initial configurations for one-dimensional Euler equations.

ρL ρR uL uR pL pR

case 1 : 1.0 0.125 0.0 0.0 1.0 0.1
case 2 : 1.0 1.0 0.0 0.0 7.0 10.0
case 3 : 1.0 2.5 −2.0 −2.0 40.0 40.0

Fig. 6.1. Representation of a shock-
tube in 1D (top) and 2D (bottom) at
t= 0.
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Fig. 6.2. Euler equations in 1D
(case 1). Snapshots of exact solution
(solid line) and numerical solution based
on Lax-Friedrichs scheme (+) at t= 0.1.
Parameter settings: h = 0.0025, CFL =
0.4.

lected Lie symmetry groups of the one-dimensional Euler equations lead to accu-

rate approximate solutions for the considered shock-tube configurations given in

table 6.1. Similarly, for two-dimensional Euler equations, an invariant form if the

Lax-Friedrichs scheme is constructed and implemented to four different Riemann

problems. Similar to the one-dimensional case, the proposed invariant scheme con-

structed for this case also leads to accurate approximate solutions for each Riemann

problem (considered in this work) as well.

As our first test problem in the one-dimensional case, we consider the well-known

Shock-Tube problem of Sod [111] that is demonstrated in figure 6.1 (top plot). Initial

values for this case are noted in case 1 of table 6.1. Additionally, for this particu-

lar problem configuration, numerical tests are performed on a mesh with 400 grid

points and the CFL number is set to be 0.4. Snapshots of the density ρ, velocity
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Table 6.2
L∞ and RMSE errors (based on velocity u) for Euler equations in 1D.

case 1 case 2 case 3
L∞ RMSE L∞ RMSE L∞ RMSE

Lax-Friedrichs : 0.4884 0.0536 0.2001 0.0437 0.8512 0.2298
Lax-Friedrichs (SYM-1) : 0.2882 0.0459 0.1964 0.0433 0.7848 0.2380
Lax-Friedrichs (SYM-2) : 0.3959 0.0416 0.1966 0.0433 0.7736 0.2345

van Leer : 0.4726 0.0380 0.2514 0.0376 0.8431 0.1546
van Leer (SYM-2) : 0.2582 0.0177 0.2465 0.0367 0.7783 0.1514
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Fig. 6.3. Euler equations in 1D
(case 1). Snapshots of exact solution
(solid line) and numerical solution based
on invariant Lax-Friedrichs scheme (+),
SYM-1, at t = 0.1. Parameter set-
tings: h= 0.0025, CFL= 0.4.
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Fig. 6.4. Euler equations in 1D
(case 1). Snapshots of exact solution
(solid line) and numerical solution based
on invariant Lax-Friedrichs scheme (+),
SYM-2, at t = 0.1. Parameter set-
tings: h= 0.0025, CFL= 0.4.

u, pressure p, and energy e (at t= 0.1) obtained from the exact solution (solid line)

and the standard non-invariant Lax-Friedrichs scheme (+), Eq. (6.13), is shown in

figure 6.2. Similarly, the results obtained from the proposed invariant Lax-Friedrichs

schemes, Eq. (6.17), that are constructed using the normalization conditions given

in Eq. (6.15) (SYM-1), and Eq. (6.16) (SYM-2), are demonstrated in figures 6.3 and

6.4, respectively. Further, figures 6.5 and 6.6 depict numerical solutions obtained

from the standard non-invariant van Leer scheme, Eq. (6.21), and the proposed

invariant scheme, Eq. (6.23), that is constructed based on the standard van Leer

scheme through the use of normalization condition given in Eq. (6.16). Further-

more, root mean square error (RMSE), estimated as
√

1
N

∑(uexact−unumeric)2, and
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Fig. 6.5. Euler equations in 1D
(case 1). Snapshots of exact solution
(solid line) and numerical solution based
on van Leer flux vector splitting scheme
(+), at t= 0.1. Parameter settings: h=
0.0025, CFL= 0.4.
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Fig. 6.6. Euler equations in 1D
(case 1). Snapshots of exact solution
(solid line) and numerical solution based
on invariant van Leer flux vector split-
ting scheme (+), SYM-2, at t = 0.1.
Parameter settings: h = 0.0025, CFL =
0.4.

L∞ error, estimated as max(|uexact−unumeric|), measurements obtained from these

numerical schemes are presented in table 6.2. Based on these results, it appears that

the proposed invariant schemes accurately capture shock propagations evolving from

considered initial conditions. In particular, the L∞ and root mean square error mea-

surements given in table 6.2 indicate that both invariant Lax-Friedrichs scheme and

invariant van Leer scheme perform notably better than their non-invariant coun-

terparts. This improvement in numerical accuracy is particularly significant in the

case of van Leer scheme. As our second test problem for the one-dimensional Euler

equations, we again consider a shock-tube problem for which initial conditions are

noted in case 2 of table 6.1. Similar to the previous case, a grid with 400 points

is considered for this case as well and simulations are run until t = 0.05. Profiles

of density (ρ), velocity (u), pressure (p), and internal energy (e) are shown in fig-

ure 6.7 through figure 6.10. In particular, numerical solution obtained from the

Lax-Friedrichs scheme and invariant scheme based on the moving frames given in

Eq. (6.16) (SYM-2) and their comparisons with the exact solution are shown in

figure 6.7 and figure 6.8, respectively. Similarly, numerical solutions obtained from
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Fig. 6.7. Euler equations in 1D
(case 2). Snapshots of exact solu-
tion (solid line) and numerical solution
based on Lax-Friedrichs scheme (+),
at t = 0.05. Parameter settings: h =
0.0025, CFL= 0.4.
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Fig. 6.8. Euler equations in 1D
(case 2). Snapshots of exact solution
(solid line) and numerical solution based
on invariant Lax-Friedrichs scheme (+),
SYM-2, at t = 0.05. Parameter set-
tings: h= 0.0025, CFL= 0.4.

the standard van Leer scheme and its proposed invariant form are demonstrated

in figure 6.9 and figure 6.10, respectively. Root mean square error and L∞ error

measurements obtained from these numerical solutions (which are computed based

on velocity u) are presented in case 2 of table 6.2. From these results, it appears

that the proposed invariant Lax-Friedrichs scheme and invariant van Leer schemes

perform better than standard non-invariant lax-Friedrichs and van Leer schemes in

terms of numerical accuracy.

As our last test problem for one-dimensional Euler equations, we consider the

shock-tube problem, figure 6.1 (top plot), with initial configuration given in case 3

of table 6.1. Similar to previous cases, a mesh with 400 grid points is used for this

case as well. Numerical solutions obtained from the standard Lax-Friedrichs and

invariant Lax-Friedrichs schemes are demonstrated in figure 6.11 and figure 6.12,

respectively. Similarly, figure 6.13 and figure 6.14 show the numerical solutions

obtained from the standard van Leer scheme and the proposed invariant van Leer

scheme. Additionally, RMSE and L∞ error measurements for this case are also pro-

vided in the table 6.2 under case 3. As expected, both the invariant Lax-Friedrichs

scheme and invariant van Leer scheme accurately capture the propagation of density,
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Fig. 6.9. Euler equations in 1D
(case 2). Snapshots of exact solution
(solid line) and numerical solution based
on van Leer flux vector splitting scheme
(+), at t= 0.05. Parameter settings: h=
0.0025, CFL= 0.4.
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Fig. 6.10. Euler equations in 1D
(case 2). Snapshots of exact solution
(solid line) and numerical solution based
on invariant van Leer flux vector split-
ting scheme (+), at t= 0.05. Parameter
settings: h= 0.0025, CFL= 0.4.

velocity, pressure, and internal energy in this case as well. Similar to the previous

cases, these invariant schemes also appear to be slightly more accurate than standard

non-invariant schemes considered in this work.

In this study, we also demonstrated the procedure for construction of an in-

variant MUSCL scheme with minmod limiter for the solution of one-dimensional

Euler equations. The details of this procedure and the results obtained from the

constructed invariant MUSCL scheme can be found in Appendix A.

Next, we evaluate the performance of the proposed invariant Lax-Friedrichs

scheme, Eq. (6.20), developed for the two-dimensional Euler equations. In this

case, four different Riemann problems are considered, and results obtained from the

standard and invariant Lax-Friedrichs schemes are compared with high-resolution

numerical solutions for accuracy (as no analytical solution exists for these cases).

Here we note that, the Riemann problems are defined on a square domain that is

divided into four regions as shown in figure 6.1 (bottom plot).

As our first test problem (case 1) for numerical solution of the two-dimensional

Euler equations, we consider the Riemann problem with initial data given in table

6.3. For further discussion on this particular Riemann problem, the reader is re-
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Fig. 6.11. Euler equations in 1D
(case 3). Snapshots of exact solu-
tion (solid line) and numerical solution
based on Lax-Friedrichs scheme (+),
at t = 0.02. Parameter settings: h =
0.0025, CFL= 0.4.
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Fig. 6.12. Euler equations in 1D
(case 3). Snapshots of exact solution
(solid line) and numerical solution based
on invariant Lax-Friedrichs scheme (+),
SYM-2, at t = 0.02. Parameter set-
tings: h= 0.0025, CFL= 0.4.

0.0 0.2 0.4 0.6 0.8 1.0
0.5

1.0

1.5

2.0

2.5

0.0 0.2 0.4 0.6 0.8 1.0
-2.0

-1.0

0.0

1.0

2.0

0.0 0.2 0.4 0.6 0.8 1.0

20

30

40

0.0 0.2 0.4 0.6 0.8 1.0

5

10

15

20

Fig. 6.13. Euler equations in 1D
(case 3). Snapshots of exact solution
(solid line) and numerical solution based
on van Leer flux vector splitting scheme
(+), at t= 0.02. Parameter settings: h=
0.0025, CFL= 0.4.
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Fig. 6.14. Euler equations in 1D
(case 3). Snapshots of exact solution
(solid line) and numerical solution based
on invariant van Leer flux vector split-
ting scheme (+), at t= 0.02. Parameter
settings: h= 0.0025, CFL= 0.4.

ferred to the reference [153]. For this simulation, a constant CFL = 0.475 number

is considered and a stencil with 800× 800 grid points is utilized. The snapshots

(for density) of the numerical solutions (at t = 0.2) obtained from the standard

non-invariant Lax-Friedrichs scheme given in Eq. (6.18) and the proposed invariant

Lax-Friedrichs scheme given in Eq. (6.20) developed for the two-dimensional Euler

equations are shown in figure 6.15. We also included a relatively high-resolution

(with 1500×1500 grid points) solution as a reference solution in this figure as well.
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Table 6.3
Two-dimensional Euler equations. Initial data for case 1.

ρ p u v

Region 1 : 1.1 1.1 0.0 0.0
Region 2 : 0.5065 0.35 0.8939 0.0
Region 3 : 1.1 1.1 0.8939 0.8939
Region 4 : 0.5065 0.35 0.0 0.8939

Fig. 6.15. Euler equations in 2D (case 1). Snapshots of numerical solutions,
at t = 0.2, obtained from a high resolution reference scheme (left), standard Lax-
Friedrichs scheme (middle), and invariant Lax-Friedrichs scheme (right). Parameter
settings: h= 0.00125, CFL= 0.475.

Based on these results, it appears that the proposed invariant schemes are success-

fully capturing an approximate solution for the two-dimensional Euler equations as

well. Further, the L∞ error measurements that are obtained through comparisons

with the high-resolution solution are determined to be 6.22×10−1 and 3.815×10−1

for the standard and invariant Lax-Friedrichs schemes, respectively. Similarly, the

root mean square error measurements obtained from these schemes, in the same

order, are noted as 2.77× 10−2 and 1.28× 10−2. Although, for this particular test

problem, the improvement in numerical accuracy with respect to the standard non-

invariant Lax-Friedrichs scheme appears to be minor, we believe that the potential

advantages owing to symmetry preserving nature of the proposed invariant Lax-

Friedrichs scheme are quite valuable.

As our second test problem (case 2) for the numerical solution of the two-

dimensional Euler equations, we again consider the two-dimensional shock-tube
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Table 6.4
Two-dimensional Euler equations. Initial data for case 2.

ρ p u v

Region 1 : 1.5 1.5 0.0 0.0
Region 2 : 0.5323 0.3 1.206 0.0
Region 3 : 0.138 0.029 1.206 1.206
Region 4 : 0.5323 0.3 0.0 1.206

Fig. 6.16. Euler equations in 2D (case 2). Snapshots of numerical solutions,
at t = 0.2, obtained from a high resolution reference scheme (left), standard Lax-
Friedrichs scheme (middle), and invariant Lax-Friedrichs scheme (right). Parameter
settings: h= 0.00125, CFL= 0.475.

problem demonstrated in figure 6.1 (bottom plot) with initial data given in table

6.4. For this simulation, the parameter settings are identical to the previous case.

Snapshots of the propagating shocks (based on density computation) obtained from

the standard and invariant Lax-Friedrichs schemes and a reference high resolution

solution are depicted in figure 6.16. Moreover, L∞ error measurements computed

for the standard and invariant Lax-Friedrichs schemes (based on this reference solu-

tion) are determined to be 5.60×10−1 and 2.18×10−1, respectively. And similarly,

the root mean square error measurements for these numerical schemes are noted as

5.56×10−2 (standard) and 1.21×10−2 (invariant). Similar to the previous case, the

invariant scheme performs slightly better than the standard scheme for this case as

well. Further discussions on the numerical solution of this Riemann problem can

also be found in reference [153].

As our next test problem (case 3), we consider the shock-tube problem with ini-
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Table 6.5
Two-dimensional Euler equations. Initial data for case 3.

ρ p u v

Region 1 : 0.5313 0.4 0.0 0.0
Region 2 : 1.0 1.0 0.7276 0.0
Region 3 : 0.8 1.0 0.0 0.0
Region 4 : 1.0 1.0 0.0 0.7276

Fig. 6.17. Euler equations in 2D (case 3). Snapshots of numerical solutions, at
t = 0.15, obtained from a high resolution reference scheme (left), standard Lax-
Friedrichs scheme (middle), and invariant Lax-Friedrichs scheme (right). Parameter
settings: h= 0.0025, CFL= 0.475.

tial data given in table 6.5. For this case, a grid with 400×400 points is considered

and the CFL number is kept at 0.475. The snapshots of the numerical approxima-

tions for the density (ρ) at t= 0.15 are presented in figure 6.17. Further, L∞ errors

for these schemes are noted as 3.92× 10−1 (standard) and 5.46× 10−1 (invariant).

And similarly, the root mean square errors are found as 1.15×10−2 (standard) and

1.83× 10−2 (invariant). The invariant scheme still appears to accurately capture

the density profile for this problem as well.

And as our last test problem (case 4), we again consider the shock-tube problem

with initial data given in table 6.6. For this simulation, the parameter settings are

identical to the first two Riemann problems (case 1 and case 2). The numerical

solutions for density obtained from the standard and invariant schemes are given

in figure 6.18. Similar to the previous cases, a high-resolution solution is again

included in this figure as reference solution. For this case, the L∞ error measure-
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Table 6.6
Two-dimensional Euler equations. Initial data for case 4.

ρ p u v

Region 1 : 0.5197 0.4 0.1 0.1
Region 2 : 1.0 1.0 −0.6259 0.1
Region 3 : 0.8 1.0 0.1 0.1
Region 4 : 1.0 1.0 0.1 −0.6259

Fig. 6.18. Euler equations in 2D (case 4). Snapshots of numerical solutions,
at t = 0.2, obtained from a high resolution reference scheme (left), standard Lax-
Friedrichs scheme (middle), and invariant Lax-Friedrichs scheme (right). Parameter
settings: h= 0.00125, CFL= 0.475.

ments obtained from the standard and invariant Lax-Friedrichs schemes are found

as 2.29× 10−2 and 2.27× 10−2, respectively. And similarly, the root mean square

errors are found as 4.4× 10−3 (standard) and 4.28× 10−3 (invariant). Based on

these results, it appears that the invariant scheme is still performing slightly better

that the standard non-invariant base scheme in terms of numerical accuracy.

The numerical solutions of the one- and two-dimensional Euler equations through

invariant schemes further verified that the proposed method for symmetry preserva-

tion in numerical schemes could be effectively used to improve numerical accuracy

of some arbitrary base schemes besides retaining important geometric properties

of the underlying differential equations in associated schemes. Although we only

considered standard Lax-Friedrichs and van Leer schemes as base schemes in this

work, it is important to note that the proposed method is not limited to these base

schemes.
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6.6 Chapter Summary

In this chapter, we presented a method for construction of invariant numerical

schemes (for the solution of one- and two-dimensional Euler equations) that in-

herit Lie symmetry properties of the underlying equations. The proposed method

is based on the method of equivariant moving frames and involves implementation

of point transformations (that are derived through Lie symmetry groups of Euler

equations) to arbitrarily selected non-invariant base numerical schemes such as Lax-

Friedrichs and van Leer schemes. Although in this work we selected Lax-Friedrichs

and van Leer schemes as our non-invariant base numerical schemes, these selections

are arbitrary, and one can always choose other (more convenient) base schemes.

For the one-dimensional Euler equations, we evaluated the performance of the

proposed invariant schemes via implementation to three different shock-tube prob-

lems. For each of these test problems, the proposed invariant schemes successfully

captured solutions that were more accurate than considered non-invariant base nu-

merical schemes. Here we also note that, for the one-dimensional Euler equations,

we constructed two different forms of invariant schemes that are based on different

moving frames to investigate the effects of these selections on the accuracy of the

resulting invariant schemes. Similarly, we tested the performance of the invariant

scheme constructed for the two-dimensional Euler equations via implementation to

four different shock-tube problems. As expected, the proposed invariant scheme

performed better than the standard non-invariant base scheme in this case as well.

Based on these results, it appears that symmetry preservation in numerical schemes

might lead to significant improvements in quality of results obtained from these

schemes not only in terms of numerical accuracy but also in terms of error measures

that might be related to geometric properties (such as symmetries) of the underlying

differential equations.
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CHAPTER 7

Summary and Future Work

7.1 Scope of the Chapter

In this chapter, we will attempt to summarize the main highlights of this disser-

tation and relate them to the primary objectives of the research. To this end, in

the following section, the main results of the dissertation will be briefly discussed.

This will be followed (in Section 7.3) with recommendations for future work where

possible shortcomings of the proposed methodologies are discussed and ideas for

future research are briefly explored.

7.2 Research Highlights

In this dissertation, we investigated Lie symmetry groups in the context of their

applications in computational fluid dynamics. Recall that most numerical schemes

do not consider Lie symmetry properties of associated differential equations as order

of accuracy is usually the primary concern in the development of these schemes. In

this dissertation, we addressed this limitation, and proposed novel methodologies for

construction of invariant finite difference schemes with a desired order of accuracy,

including compact schemes, that inherit Lie symmetry properties of underlying dif-

ferential equations. We demonstrated the implementation of the proposed method-

ologies through linear and nonlinear canonical problems, including implementations

for Euler equations (in 1D and 2D), that are commonly used in fluid mechanics. For

the selected test problems, invariant (or symmetry preserving) numerical schemes
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with a desired order of accuracy were constructed. In all the test cases considered

in this work, the proposed invariant schemes were found to be more accurate than

the standard non-invariant numerical schemes. In some cases, this improvement in

the accuracy/performance was found to be quite significant. Based on our observa-

tions, we concluded that the proposed procedures for Lie symmetry preservation in

finite difference schemes can be used not only for retaining geometric properties of

differential equations in relevant numerical approximations but also for achievement

of significant improvements in numerical accuracy of these approximations.

7.2.1 Chapter Summaries

We provided a detailed discussion on Lie symmetry analysis in Chapter 2, where a

step by step guide for determination of symmetry groups of differential equations

was presented. Use of Lie groups for obtaining group invariant solutions through

similarity variables based on these groups was also discussed in this chapter. To

demonstrate the implementation of Lie symmetry analysis for identification of group

invariant solutions, we considered three different flow problems such as a) a bound-

ary layer flow over an exponentially stretching porous flat surface, b) a boundary

layer flow over a wedge with slip boundaries, and c) analysis of stagnation point

state of an inviscid blunt-body flow. For all these test problems, similarity variables

that lead to self-similar solutions were identified from relevant Lie symmetry groups.

These similarity variables were implemented in the associated governing equations

to obtain reduced form solutions for all these cases. Results obtained based on

Lie symmetry analysis were found to be in good agreement with those available in

the literature. Further, as Lie symmetry analysis allows for a systematic approach

of determining similarity variables for underlying differential equations, identifica-

tion of other reduced forms (for these equations) with this method is notably more

convenient.
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In the following chapter (Chapter 3), an effective method for construction of finite

difference schemes that retain certain Lie symmetry groups of underlying differential

equations is presented in detail. Our method for such constructions is based on the

method of equivariant moving frames and modified equations. In order to contribute

to the current state of knowledge regarding symmetry preservation through moving

frames, several questions related to the use of moving frames for this purpose are

addressed thoroughly. The implementation of the proposed method is demonstrated

via application to some linear and nonlinear canonical problems (i.e, linear advec-

tion equation in 1D/2D and inviscid Burgers’ equation). Numerical tests were also

conducted in this chapter where results were compared with available analytical so-

lutions (to verify the benefits of symmetry preservation in numerical schemes) and

found to be promising. More details on this topic can also be found in reference [90].

In Chapter 4, a novel method for construction of high order accurate invariant

finite difference schemes (those that inherit symmetry properties of associated dif-

ferential equations) is proposed. The novelty of this method relies on the notion that

it enables construction of high order accurate invariant numerical schemes with a

desired order of accuracy. To achieve this goal, the advantages of the method of mod-

ified equations and equivariant moving frames are conveniently utilized. The high

order accurate invariant schemes that were constructed (via the proposed method)

on base schemes with cumbersome numerical representations were often found to

have comparably simpler numerical representations. The application of this method

to some commonly used linear and nonlinear PDEs (such as linear advection diffu-

sion equation in 1D/2D and inviscid/viscous Burgers’ equations) is also presented in

this chapter. Results obtained from these high order invariant schemes indicate that

symmetry preservation could lead to significant improvements in accuracy besides

improvements in the overall quality of results. Further details on this work can also

be found in reference [91].
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Another approach (besides the method of modified equations) for construction of

high order schemes is the use of compact finite difference schemes where high order

accuracy is usually achieved with smaller stencils. In Chapter 5, a novel method-

ology for construction of high order accurate invariant compact finite difference

schemes that preserve Lie symmetry groups of underlying equations up to a desired

order of accuracy is proposed. The construction of such invariant compact schemes

involves the use of extended symmetry groups of differential equations to determine

point transformations not only for independent and dependent variables of relevant

compact schemes but also for their spatial derivatives. The latter is a novel aspect

of the proposed method that was not considered in earlier works. Numerical tests

were conducted to evaluate the performance of the constructed invariant compact

numerical schemes, using one- and two-dimensional linear advection diffusion equa-

tions and inviscid/viscous Burgers’ equation. As expected, the proposed invariant

compact schemes were found to be significantly more accurate than their standard

non-invariant counterparts.

In Chapter 6, we considered one- and two-dimensional Euler equations and pro-

posed a procedure to construct numerical schemes that preserve selected Lie sym-

metry groups of the Euler equations. We considered two non-invariant numerical

schemes (i.e, Lax-Friedrichs and Van Leer schemes) as our base schemes and con-

verted them into their symmetry preserving forms through point transformations

obtained from the underlying symmetries. To evaluate the performance of the con-

structed invariant schemes, we conducted numerical experiments where well-known

problems (i.e., Sod’s shock-tube problem) were successfully simulated through these

invariant schemes.
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7.3 Future Research

In this section, we briefly summarize the recommendations for addressing limita-

tions of the available methods (for symmetry preservation in numerical schemes)

along with a discussion on extensions to more general problems. In the latter, we

discuss possible implementation of the proposed methods in the three-dimensional

Euler equations, ENO/WENO schemes, and compressible/incompressible Navier-

Stokes equations. We also briefly discuss possible implementations of Lie symmetry

analysis in turbulence, where symmetry preserving subgrid-scale turbulence models

and symmetry-based identification of exact coherent structures in turbulent flows

are mentioned.

7.3.1 Extensions of Scope to Address Limitations

While the proposed methods appear to be very effective for construction of invariant

(or symmetry preserving) numerical schemes with a desired (or fixed) order of ac-

curacy, there are several issues that need to be investigated in more detail. Further

research is needed to understand how accuracy of these invariant numerical schemes

for PDEs is affected by the following considerations:

i. choice of subgroups (or subalgebras),

ii. choice of moving frames (for any selected subgroup),

iii. choice of base numerical discretization schemes,

iv. and nature of initial/boundary conditions (and associated exact solutions) of

PDEs, in context of their compatibility with the selected subgroups and chosen

base numerical discretization schemes.

Based on our simulations presented in Chapter 4 and Chapter 5, we observed that

although it is possible to consider the whole symmetry group of a PDE for preser-
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vation in difference equations, this often leads to cumbersome numerical represen-

tations without notably enhancing numerical accuracy. For instance, in the case of

the viscous Burgers’ equation in Chapter 5, the whole symmetry group of the PDE

is preserved in the related difference equation. However, the advantages owing to

the inclusion of the Galilean subgroup only become significant when the invariant

scheme is actually transformed under a Galilean transformation (as demonstrated

in figure 5.7). Further, the choice of moving frames which are used to determine the

unknown group parameters could affect the accuracy of resulting invariant schemes.

To our knowledge, there is no systematic approach to select the best moving frame

and one must consider all the pros and cons of a particular moving frame before

making a selection. Based on our observations, we found that a moving frame that

removes the leading order terms from truncation error of a difference equation is

usually a good choice, as such a moving frame also simplifies the base scheme (in

the transformed space). Moreover, the performance of the constructed invariant

schemes might be affected by the chosen initial/boundary conditions, especially if

these conditions are not compatible with the chosen subgroups. This might be due

to the fact that some of the limitations of base difference equations carry over to the

constructed invariant schemes. For instance, for cases where discontinuities develop

in solutions, the performance of the constructed invariant schemes will undoubt-

edly depend on the chosen base numerical schemes. This obstacle could be avoided

by selecting base schemes that are better suited to handle such discontinuities. In

this context, conservative numerical schemes could be chosen as base schemes for

construction of invariant schemes.

7.3.2 Extensions to More General Problems

In Chapter 6, we demonstrated the implementation of the proposed methods to

selected problems. In particular, we developed invariant numerical schemes for
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the one- and two-dimensional Euler equations (in Chapter 6) with consideration

of different shock-tube configurations as initial conditions. However, the proposed

methods could also be implemented in more general problems such as the three-

dimensional Euler equations. Future work, in this regard, involves construction of

Lie symmetry preserving (invariant) numerical schemes (including compact schemes)

for this problem. We expect that these invariant schemes would perform better

than standard schemes in this case as well, especially when error measures based on

symmetries underlying the three-dimensional Euler equations are considered. Some

preliminary results in this regard are presented in the Appendix B, where we note

the Lie symmetry groups and relevant point transformations for these equations.

Additionally, the methods proposed in this dissertation could also be imple-

mented to numerical schemes that are proven to be ideal for simulations of prob-

lems that include discontinuities (i.e., shocks) in solutions. For instance, Essentially

Non-Oscillatory (ENO) schemes andWeighted Essentially Non-Oscillatory (WENO)

schemes are among the first examples that are showed to be well suited for capturing

discontinuities [108, 121, 145, 154]. In ENO schemes, approximate solutions are ob-

tained from essentially non-oscillatory piecewise polynomial reconstructions where

a highly nonlinear adaptive procedure is used to automatically choose the locally

smoothest stencil among several candidates. Such a reconstruction procedure natu-

rally results in a high order accurate solution in smooth regions and leads to a stable

solution at discontinuities by avoiding oscillations (i.e., Gibbs phenomena). Simi-

larly, WENO schemes are also developed via piecewise polynomial reconstruction

procedures. Although WENO schemes are fundamentally based on ENO schemes,

the main difference is attributed to the use of a weighted combination of multiple

number of stencils in the reconstruction process of schemes. Smoothness indicators

and weighted coefficients are used to increase the order of accuracy in smooth regions

of solutions. Construction of high order ENO or WENO schemes that also account
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for the Lie symmetry properties of underlying differential equations could be of sig-

nificant interest to the fluid dynamics community. In addition, through selection

of convenient moving frames, invariant ENO/WENO schemes could be constructed

such that these schemes are not only arbitrarily high order accurate but also have

notably simpler numerical representations (as observed for the invariant schemes

developed in Chapter 4). Such schemes would also be expected to perform notably

better than their non-invariant forms when an error measure based on symmetries

of underlying equations are considered.

Implementation of the proposed methods to compressible/incompressible Navier-

Stokes equations could also be of great interest. Navier-Stokes equations are partic-

ularly important as these equations describe the physics of many important phenom-

ena in science and engineering related fields. Considering the Lie symmetry groups

associated with the Navier-Stokes equations, numerical schemes could be developed

for these equations that are more compatible with the underlying physics. The ad-

vantages that become available with such invariantization operations could be quite

significant. For instance, in the case of turbulent flows, direct numerical simulations

(DNS), that are usually based on Navier-Stokes equations, are often used to simulate

such flows. It is widely accepted that the computational cost of such simulations

can be quite expensive. To avoid such computational loads, various approaches

based on large-eddy simulation (LES) or reduced-order models (ROM) have been

proposed and successfully tested in the literature. Simulation of such turbulent flows

on symmetry preserving stencils could be significantly more accurate and efficient

as such behaviors were observed in simulations of simpler cases (as presented in

Chapter 4 and 5). Further research is needed to investigate possible advantages in

the numerical solution of the Navier-Stokes equations through symmetry preserving

high order accurate (invariant) schemes. To this end, some preliminary results on

Lie groups and point transformations associated with the multidimensional, incom-
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pressible Navier-Stokes equations are presented in Appendix C.

Further, in the context of turbulence modeling, attempts have been made to de-

velop subgrid-scale models that are compatible with the symmetries of the Navier-

Stokes equations [155–158]. The primary motivation behind these approaches is that

such models would preserve fundamental properties of the Navier-Stokes equations

and hence be more accurate than those that ignore such properties. In this context,

Lie symmetry analysis could be systematically used to develop subgrid-scale models

that inherit symmetry properties of the underlying equations. In the sparse liter-

ature on symmetry preserving models, the symmetry groups associated with the

Navier-Stokes equations are considered instead of the symmetries of the relevant

filtered equations. More accurate models could be developed based on symmetries

of the filtered equations that are essentially derived from the Navier-Stokes equa-

tions. In this regard, symmetry methods could be connected to modern tools such

as artificial neural networks (ANN) and data-driven machine learning frameworks.

These methods that are shown to be quite useful for turbulence modeling [159–163]

could be used to developed symmetry preserving subgrid-scale models where ma-

chine learning strategies are used to determine relevant model parameters.

Furthermore, a great deal of effort has been devoted to the study of coherent

structures observed in near-wall regions of turbulent flows at low Reynolds num-

bers [164–166]. These coherent structures are known to be self-sustaining mech-

anisms and are usually in the form of traveling-waves [167–169]. The procedure

for identification of such coherent states involve determination of traveling-wave

solutions for the Navier-Stokes equations. In general, traveling-wave solutions for

equations can be systematically identified via Lie symmetry analysis. Hence, a

symmetry-based approach could lead to significant advancements on the current

state of knowledge regarding the coherent structures in turbulent flows. As sym-

metry methods are concerned with geometric properties of equations, such methods
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could be used not only to identify traveling-wave solutions but also other invariant

solutions that are based on different symmetry groups which will eventually lead to

different coherent states.
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APPENDIX A

An Invariant MUSCL Scheme for Solution of Euler

Equations in 1D

In this appendix, we extend the work presented in Chapter 6 to include the procedure

for construction of an invariant form of a standard MUSCL (monotonic upstream-

centered scheme for conservation laws) scheme with minmod limiter for the solution

of one-dimensional Euler equations. For the conservative form of one-dimensional

Euler equation given in Eq. (6.1),

Ut+ F(U)x = 0 (A.1)

the standard form of a slope limited MUSCL scheme, which involves use of piecewise

linear reconstructions of cells, can be written as follows:

Un+1
i = Un

i + τ

h

[
F(U∗i+1/2)−F(U∗i−1/2)

]
(A.2)

where

U∗i+1/2 = U∗i+1/2(UL
i+1/2,U

R
i+1/2)

U∗i−1/2 = U∗i−1/2(UL
i−1/2,U

R
i−1/2)

are scheme dependent functions and are given by

UL
i+1/2 = Ui+ 0.5φ(ri)(Ui+1−Ui)

UR
i+1/2 = Ui+1−0.5φ(ri+1)(Ui+2−Ui+1)
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Table A.1
Initial configurations for one-dimensional Euler equations.

ρL ρR uL uR pL pR

case 1 : 1.0 1.0 0.0 0.0 7.0 10.0
case 2 : 1.0 2.5 −2.0 −2.0 40.0 40.0

UL
i−1/2 = Ui−1 + 0.5φ(ri−1)(Ui−Ui−1)

UR
i−1/2 = Ui−0.5φ(ri)(Ui+1−Ui) .

Here, the function φ(ri) is the limiter function that limits the slope such that the

solution obtained from this scheme is always TVD (total variation diminishing). In

this study, we consider a minmod limiter which is given as

φ(ri) =



0, if ri ≤ 0,

ri, if 0≤ ri ≤ 1,

1, if ri ≥ 1,

where ri is

ri = Ui+1−Ui

Ui−Ui−1
.

The invariant form of the above MUSCL scheme is simply obtained by implementing

the point transformations given in Eq. 6.14 to this scheme as shown in the following:

Ũn+1
i = Ũn

i + τ̃

h̃

[
F(Ũ∗i+1/2)−F(Ũ∗i−1/2)

]
. (A.3)

Snapshots of density (ρ), velocity, pressure, and internal energy obtained from the

exact analytical solution (slid line) and the invariant MUSCL scheme with minmod

limiter, Eq. (A.3), (+) are given in figures A.1 and A.2. The initial conditions

used for these figures are noted in table A.1. Similar to the previously considered

base numerical schemes (i.e., Lax-Friedrichs scheme, van Leer scheme), the proposed
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Fig. A.1. Euler equations in 1D (case 1). Snapshots of exact solution (solid line)
and numerical solution based on the invariant MUSCL scheme with minmod limiter
(+). Parameter settings: h= 0.002, CFL= 0.25, t= 0.05.
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Fig. A.2. Euler equations in 1D (case 2). Snapshots of exact solution (solid line)
and numerical solution based on the invariant MUSCL scheme with minmod limiter
(+). Parameter settings: h= 0.002, CFL= 0.25, t= 0.02.
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invariant MUSCL scheme with minmod limiter, given in Eq. (A.3), also accurately

captures approximate solutions for one-dimensional Euler equations.
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APPENDIX B

Lie Symmetry Groups of Euler Equations in 3D

The conservative form of the three-dimensional Euler equations can be written as

Ut+ F(U)x+ G(U)y + H(U)z = 0 (B.1)

where the vectors U, F, G and H represent the conserved variables and fluxes in

x-, y- and z-directions, respectively, and are given by

U =



ρ

ρu

ρv

ρw

E


F =



ρu

ρu2 +p

ρuv

ρuw

u(E+p)


G =



ρv

ρuv

ρv2 +p

ρvw

v(E+p)


.H =



ρw

ρuw

ρvw

ρw2 +p

w(E+p)


.

Also, u, v, and w represents fluid velocities in x-, y-, and z-coordinates, respectively,

and total energy per unit volume is given by

E = p

γ−1 + 1
2ρ(u2 +v2 +w2) .

The Lie symmetry groups associated with the three-dimensional compressible Euler

equations, Eq. (B.1), are found to be [14]

X1 = ∂

∂t
, X2 = ∂

∂x
, X3 = ∂

∂y
, X4 = ∂

∂z

X5 = t
∂

∂x
+ ∂

∂u
, X6 = t

∂

∂y
+ ∂

∂v
, X7 = t

∂

∂z
+ ∂

∂w
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X8 = y
∂

∂x
−x ∂

∂y
+v

∂

∂u
−u ∂

∂v

X9 = z
∂

∂x
−x ∂

∂z
+w

∂

∂u
−u ∂

∂w

X10 = z
∂

∂y
−y ∂

∂z
+w

∂

∂v
−v ∂

∂w

X11 = t
∂

∂t
+x

∂

∂x
+y

∂

∂y
+ z

∂

∂z

X12 = t
∂

∂t
−u ∂

∂u
−v ∂

∂v
−w ∂

∂w
+ 2ρ ∂

∂ρ

X13 = p
∂

∂p
+ρ

∂

∂ρ
.

Here, the groups X1, X2, X3, and X4 represent invariance under translations in

time and space, respectively, the groups X5, X6 and X7 represent invariance under

Galilean transformation, the groupsX8,X9, andX10 represent rotations about z-, y-

and x-coordinates, and finally, the groups X11, X12, and X13 represent invariance

under scaling. Scaling groups (X11, X12, and X13) can be linearly combined to

obtain a more general group of the form

X14 = x
∂

∂x
+y

∂

∂y
+ z

∂

∂z
− t ∂

∂t
+ 2u ∂

∂u
+ 2v ∂

∂v
+ 2w ∂

∂w
+p

∂

∂p
−3ρ ∂

∂ρ
.

Similar to the one- and two-dimensional cases, the three-dimensional Euler equations

given in Eq. (6.7) admit the following additional symmetry group

X11 = tx
∂

∂x
+ ty

∂

∂y
+ tz

∂

∂z
+ t2

∂

∂t
+ (x− tu) ∂

∂u
+ (y− tv) ∂

∂v

+ (z− tw) ∂
∂w
−5tp ∂

∂p
−3tρ ∂

∂ρ

for the special case of γ = 5/3 which corresponds to isentropic flow of a monatomic

gas with three-degrees of freedom. Similar to the previous cases, we ignore the

Galilean and rotation groups and determine point transformations based on the
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remaining subgroups as follows:

t̃= t+ s1
λ

e−s10

x̃= x+ s2
λ

es10

ỹ = y+ s3
λ

es10

z̃ = z+ s4
λ

es10

ũ= [λ u+ s11(x+ s2)] e2s10 (B.2)

ṽ = [λ v+ s11(y+ s3)] e2s10

w̃ = [λ w+ s11(z+ s4)] e2s10

p̃= λ5 p es10

ρ̃= λ3 ρ e−3s10 .

Recall that the unknown symmetry parameters in the above point transformations

can be determined by considering convenient moving frames as demonstrated in ear-

lier chapters (i.e., Chapters 3, 4, 5 and 6). Once the point transformations are fully

defined, one can chose a non-invariant base numerical scheme for the solution of the

three-dimensional Euler equations and implement the above point transformations

to obtain the invariant form of that particular numerical scheme (similar to the

presentation in Chapter 5 for the 1D/2D Euler equations). Detailed studies on per-

formance of such high order invariant schemes for solution of the three-dimensional

compressible Euler equations will be pursued as part of future work.
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APPENDIX C

Lie Symmetry Groups of Incompressible Navier-Stokes

Equations

The governing (Navier-Stokes) equations describing the motion of incompressible

fluid flows are given by

∂uj
∂xj

= 0, (sum over j = 1,2,3)

∂ui
∂t

+uj
∂ui
∂xj

+ 1
ρ

∂p

∂xi
−ν ∂2ui

∂xj∂xj
= 0, (i= 1,2,3)

(C.1)

where ui = (u,v,w) represents fluid velocity components, p is the pressure, ρ is the

density, and ν = µ/ρ is the kinematic viscosity. The Lie symmetry properties of

these equations have been extensively studied [14, 20, 21, 155, 156, 170]. Hence it is

known that the Navier-Stokes equations admit the following Lie groups:

X1 = ∂

∂t

X2 = g[t] ∂
∂p

X3,i,j = xj
∂

∂xi
−xi

∂

∂xj
+uj

∂

∂ui
−ui

∂

∂uj
, i= 1,2, j > i= 1,2,3 (C.2)

X4,i,k = ai[t]
∂

∂xj
+a′i[t]

∂

∂uj
−a′′i [t]

∂

∂p
, i= j, and i= 1,2,3

X5 = 2t ∂
∂t

+xi
∂

∂xi
−ui

∂

∂ui
−2p ∂

∂p
i= 1,2,3

where ai[t] is a twice differentiable, arbitrary function of time and the notation (·)′

represents differentiation with respect to time. For simplicity, let us consider the

function ai[t] (associated with the symmetry group X4,i,k) to be a constant for one
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case (i.e., k = 1), and be equal to t for another (i.e., k = 2). This would indicate

two different group operators corresponding to spatial translations for k = 1 and

Galilean transformations for k= 2. In the above Lie symmetry groups: X1 represents

invariance under translation in time, X2 represents invariance under translation

in pressure (when g[t] is a constant), Xi,j represents invariance under rotations,

X4,i represent invariance under Galilean transformations, and finally X5 represents

invariance under scaling.

The general form of the point transformations associated with the symmetry

group given in Eq. (C.2) are as follows

t̃= (t+ s1) e2s5

x̃i = [xj + s4,i,1 + s4,i,2(t+ s1)] es5 , i= 1,2,3

ũi = (ui+ s4,i,2) e−s5 , i= 1,2,3 (C.3)

p̃= (p+ s2) e−2s5

when the rotation groups given in X3,i,j are ignored for simplicity reasons. After

determination of the unknown symmetry parameters through convenient selections

of moving frames, these point transformations can be implemented in a non-invariant

base numerical of scheme of choice to obtain its invariant form as demonstrated

throughout various chapter of this dissertation (i.e., Chapters 4, 5 and 6).
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