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Alkali-silica reaction (ASR) causes the untimely degradation of concrete 
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concrete production.  Neutralization of these reactive aggregates was done by a 

pretreatments using LiOH or Ca(OH)2 to the aggregates. The pretreated aggregates 
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leading to the elimination of ASR.  

 

Additionally, the synthesis of bimetallic metal oxides were investigated for the 

use in arsenic remediation from aqueous media, as well as, for materials for potential 

photovoltaic applications. The synthesis of bimetallic pyruvic acid oxime precursors 

provides a low temperature decomposing single source precursors for the corresponding 

metal oxides. Controlling the stoichiometry of the metal salts in the precursor synthesis 

allows for retention of the desired stoichiometry in the final bimetallic metal oxide. 

Several Iron/zinc metal oxides of various stoichiometry were synthesized, characterized, 

and then used to treat arsenate (H2AsO4
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solutions. Maximum capacities were determined by using both Langmuir and Freundlich 

adsorption isotherm models. Real world samples were investigated to examine samples 
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detection limit of the microwave plasma atomic emission spectroscopy. The other 

bimetallic metal oxide system investigated was cobalt-doped zinc oxide for potential use 

in photovoltaic applications. ZnO is a wideband gap semiconductor that absorbs light in 
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the doping of ZnO with 5% and 10% cobalt through the decomposition of the pyruvic 

acid oxime precursors. Cobalt-doped ZnO was also synthesized in various doping 

percentages by a chemical bath method, which allows for growth of a film onto a glass 

slide. Films initially produced layered hydroxy salts that are easily converted to doped 

ZnO around 200 °C. 
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CHAPTER I 

 

 

Introduction 

The focus on this dissertation is the manipulation of the surface properties of 

multi-metallic oxides either to prevent unwanted reactions or to promote desired 

reactions. The alkali silica reaction was the one targeted for inhibition. This reaction 

leads to crumbling of concrete infrastructures as siliceous aggregates are attacked by 

alkali in the cement paste. As described in Chapter 1, the use of LiOH and Ca(OH)2 

treatments of an alkali silica reaction prone aggregate (Jobe sand) were tested as methods 

for prevention of this devastating reaction that leads to the premature failure of concrete 

structures.  

The desirable interfacial reaction explored in this research was the adsorption of 

arsenic from water and apple juice. As described in Chapter II, bimetallic iron/zinc 

oxides with varying ratios of the metals were investigated for the sorption of several 

arsenic species from water and apple juice. 

The single source precursor method was used to produce cobalt-doped zinc oxides 

as described in Chapter III. These materials also have potential applications in arsenic 

remediation and catalysis, but the targeted application in this research was for use in 

photovoltaic devices.   
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Complementing this effort was an investigation of a solution growth or chemical bath 

method for preparation of cobalt-doped zinc oxide.   

Alkali-Silica Reaction 

 Concrete is the most extensively used construction material in the world. It is a 

mixture of cement, coarse and fine aggregate, sand, and water mixed in specific ratios.1 Some 

of the earliest uses of concrete-like technology dates back to around 3,000 B.C. with the 

Egyptians using gypsum and lime mortars for the building of the pyramids.2 The major 

advance in concrete science was with the development of Portland cement by Joseph Aspdin 

in 1824 that drastically changed the approach for construction of infrastructure.3 As the needs 

of society evolved, the features and properties of concrete and cement needed to change. The 

performance of the material was improved and changed through a variety of chemical and 

mineral admixtures. These admixtures can improve air entraining, reduce the amount of 

water required, slow or speed up setting, improve permeability, and increase strength of the 

concrete.4 Improvement of the durability and performance of concrete is extremely important 

due to the cost and scale of use of concrete. Roads, bridges or dams need to have long 

lifespans to make these structures cost effective and practical. The cost of these projects are 

tied to the types of starting materials used in making of the cement and the concrete. The use 

of low cost aggregates are desirable, but could come with drastic issues such as early 

degradation or failure due to alkali-silica reaction.  

 Alkali-silica reaction takes place in concrete and is a chemical reaction between 

hydroxyl ions found within the cement and the siliceous aggregate used to make the 

concrete.5 This reaction causes the formation of a gel that expands to cause cracking and 



3 

 

damage to the concrete. This cracking allows further reactions to take place and this process 

can propagate until failure of the structure (Figure 1). Slowing or prevention of alkali-silica 

reaction can be accomplished by the addition of admixtures such as fly ash, slag, or lithium 

salts or the use cement with low alkali metal content.6  

 

Figure 1: Concrete damage caused be alkali-silica reaction.7 

 Bimetallic Oxide Materials 

 Metal oxide materials are used for an extensive list of applications. Major areas where 

metal oxides are used include sensing,8 catalysis,9 energy production and storage,10 and 

environmental applications.11,12 The desire to use metal oxides in these approaches comes 

from a variety of features that include their wide range of surface chemistry, interesting 

electronic properties, and their amenability for production on the nanoscale. The latter 

property allows for an alteration of properties to provide ones that are not found in the bulk 

material. Synthesis of metal oxides can be achieved by several conventional methods. Use of 

the ceramic method, sol-gel method, hydrothermal or solvothermal methods, and precursor 

method are some of the commonly used approaches to achieve various metal oxides. This 
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study will focus on the precursor method and chemical bath deposition technique for the 

synthesis of the bimetallic metal oxides. 

The Precursor Method 

 The precursor method allows for the synthesis of a metal containing precursor that 

then can be subsequently converted to the corresponding metal oxide. A typical synthetic 

route using this method consists of the reaction of a soluble metal salt with an organic ligand 

to produce a precursor complex.13 This approach allows metal cations to be mixed on the 

atomic level with a controlled stoichiometry in the metal-organic complex.14 The metals 

present within the precursor complex have short diffusion distances to combine with each 

other, thus allowing the formation of complex bimetallic oxides to form at relatively low 

temperatures.14 These precursor complexes can then be heated to remove organics resulting 

in deposition of the metal oxides. The organic ligands that are chosen are often used to 

provide sources of oxygen, but can also be used to influence the final materials particle size, 

shape, and surface properties.15 Issues with this method that need to be addressed includes 

the difficulty in controlling stoichiometry in mixed metal syntheses when the precipitation 

rates for the selected metals vary. Another issue that arises is in the choice of organic ligand. 

Choosing an organic ligand that will easily decompose leaving behind pure material is key.  

 Pyruvic acid oxime is the organic ligand used for this research. Apblett and 

coworkers published the initial work on this synthetic approach in an investigation into the 

capture of radioactive nuclides by complexation with sodium pyruvic acid oxime. This 

precipitation then allowed the formation of metal oxides through decomposition at low 

temperatures (< 300 °C).16  Pyruvic acid oxime metal complexes decompose at low 
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temperatures into the metal oxide and volatile fragments: water, carbon dioxide and 

acetonitrile.17 In this investigation, this synthetic method was used to develop iron/zinc 

mixed metal oxides for the use in arsenic remediation in aqueous systems and to develop 

cobalt-doped zinc oxide to be used in photovoltaic applications.  

Chemical Bath Deposition Technique 

 Chemical bath deposition is often used for the growth of semiconductor films onto 

substrates. This simple and easily reproducible process can be performed at low temperatures 

using cheap starting materials such as urea and hexamethylenetetramine.18  This synthesis 

undergoes two specific stages, nucleation and particle growth. 19 The film growth with this 

process is quite robust, being able to coat almost any type of substrate and any overall 

shape.19  Variable reaction parameters such as pH, temperature, total reaction time, and 

concentration can lead to variations in the final films. These parameters can effect crystal 

size, crystal shape, and film thickness.19,20   

 The chemical bath deposition used for this project involved the use of 

hexamethylenetetramine as the hydroxyl ion source. These hydroxyl ion react with the metal 

ions in solution and precipitate the metal hydroxide out of solution.21 This process was used 

to create films of cobalt-doped zinc oxide on glass slides.  

Removal of Arsenic from Contaminated Waters 

 Elemental arsenic is a metallic grey metalloid, but is usually found as a component of 

naturally occurring minerals.22 Arsenic is the 20th most abundant element in the Earth’s crust 

and is commonly found naturally in arsenates, metal arsenides, and sulfide minerals, with 

arsenopyrite (FeAsS) being the most abundant.23 Arsenic adopts a wide range of oxidation 
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states (-3, 0, +3, +5) in various organic and inorganic forms. Inorganic oxyanions of +3 and 

+5 arsenic exist mainly in water. Arsenite (AsO3
3-) and arsenate (AsO4

3-) are found as 

contaminants in water, that when ingested can cause serious illnesses and death (Figure 2). 

 

Figure 2: Black foot disease caused by long-term arsenic exposure.24 

 Both oxyanion species can be present within a water source due to the slow nature of 

the redox chemistry (Figure 3).23 The presence of both species in water provides difficulty 

for the development of a cheap and easy to use technique to target both species (Figures 4 & 

5). This difficulty arises primarily from a variance in overall charge of the species in waters. 
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At pH 7, arsenite is found as a neutral species (H3AsO3) while arsenate is found negatively 

charged (H2AsO4
- or HAsO4

2-). 

 

  

Figure 3: Pourbaix diagram for aqueous arsenic species.25 
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Figure 4: Aqueous arsenic (III) species distribution as a function of pH.25  

 

 

Figure 5: Aqueous arsenic (V) species distribution as a function of pH.25 
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 Current technologies that are utilized to combat arsenic contamination in aqueous 

waters includes oxidation/precipitation, coagulation, ion exchange, reverse osmosis, and 

adsorption.26 These technologies have a variety of shortcomings and often only target the 

arsenate species.26 Using the adsorption technique, materials, such as metal oxide 

nanomaterials, can be designed to have improved surface area and unique surface features 

that enable the efficient adsorption of both the arsenate and the arsenite species.  

 

Materials for Photovoltaic Applications 

 Photovoltaic materials absorb light and in return produce electricity. This effect is 

referred to as the photoelectric effect. This technology was initially developed for the space 

program, but eventually found terrestrial use during the 1970s oil embargo.27 The pioneering 

system that was explored for these devices was silicon wafers.27 These materials had high 

efficiency, but were very expensive to use. Next, the devices shifted to thin film processes 

that reduced the price of the devices, but lowered the overall efficiency. The third generation 

of photovoltaic devices uses thin film materials with varying bandgaps that when added 

together make several junctions. These multiple junctions improve efficiency by allowing for 

a wide range of the solar spectrum to be absorbed. In developing these multi-junction 

devices, there is a need for finding materials where the bandgap can be controlled or tailored 

to maximize the amount of light being absorbed.28 The interest in wide band gap 

semiconductors for use in photovoltaic applications stems from a broad choice of synthetic 

routes, an ability to achieve nanostructure morphologies, and a capability to tailor the 

bandgap.29  
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This study will discuss the use of zinc oxide that has a bandgap of 3.37 eV and 

absorbs in the near ultraviolet region of the electromagnetic spectrum.30 Zinc oxide can 

undergo doping with various transition metals to alter the bandgap and allow the material to 

absorb into the visible spectrum.31 This control of the material’s bandgap allows for 

absorption of a wider range of light.  

Scope of the Study 

 The topics being covered in this study includes the investigation into the 

neutralization of reactive aggregates of cement to prevent alkali-silica reaction and the 

development of bimetallic oxides for the use in the remediation of arsenic from aqueous 

samples and in photovoltaic devices.  

In Chapter II, this study covers the investigation into the neutralization of reactive 

aggregates used in cement to prevent alkali-silica reaction. The hypothesis was that 

treatments with lithium and calcium hydroxide, would pre-react active sites on the surfaces 

of the siliceous mineral to form non-expansive lithium or calcium silicates. This was 

predicted to prevent the formation of sodium or potassium silicates and the attendant damage 

they cause. The ability to prevent or reduce the expansion by alkali-silica reaction would 

allow for the use of inexpensive and much more readily available alkali-silica reaction prone 

aggregates for concrete. This can correlate to being able to use cheaper building materials 

that do not suffer from the premature degradation that is seen in concrete undergoing alkali-

silica reaction.  

The second part of this study involves the development of several bimetallic oxides through 

two different routes for environmental and photovoltaic applications. In Chapter III, iron-zinc 
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oxides were synthesized with varying iron and zinc molar ratios and these were used to treat 

various arsenic containing aqueous solutions. These bimetallic oxides were made through the 

decomposition of a pyruvic acid oxime precursor. Controlling the stoichiometry in the 

starting solutions allowed for control of the metal molar ratios in the final metal oxide. The 

investigation of mixed zinc-iron oxide was performed to improve the arsenate and arsenite 

adsorption capacities from what was possible using pure iron oxide. This improvement in the 

adsorption is expected to come from addition of zinc, which is a softer Lewis acid. In 

Chapter IV, the synthesis of cobalt-doped zinc oxide for the use in photovoltaic applications 

is discussed. The percentage of cobalt doping was varied to allow several different materials 

to be investigated for their photovoltaic properties. Syntheses of these materials were done by 

two methods. Initially, pyruvic acid oxime precursors were used to synthesize the final cobalt 

doped zinc oxide, but the desire for film growth led to the use of the chemical bath deposition 

method. This technique allowed for film growth onto glass slides at 90 °C. These films can 

be easily developed for use in photovoltaic devices.    
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CHAPTER II 

 

 

Development of Aggregate Coatings for Prevention of Alkali-Silica Reaction 

Introduction 

Concrete structures play a vital role within the world’s infrastructure. Concrete is 

used as a building material in our roads, bridges, dams and buildings. Failures within 

concrete can lead to significant property damage that can be expensive and put lives at 

risk. Concrete is made when cement and water is mixed with an aggregate, such as sand, 

gravel, or crushed rock.1 Cement is often manufactured through a dry method.1-2 This 

process involves the quarrying of the limestone, clay, shale, or other starting materials. 

The starting materials are then pulverized that reduce the rocks to under 3 inches.2 The 

material is then heated in a kiln at high temperatures (around 1500 °C).2 There are several 

ways that concrete can fail including corrosion of the steel rebar support, deterioration by 

water going through freeze-thaw cycles within the concrete, physical and chemical 

sulfate attack, and alkali-silica attack. Alkali-silica reaction (ASR) is a reaction that 

occurs within concrete between the reactive silica found within the aggregate and cement 

containing elevated levels of alkali metal ions. The high pH of the cement paste causes 

the silica to dissolve and a alkali metal silicate gel to form around the aggregate.  
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This gel, in the presence of moisture, expands and can lead to increased internal pressure 

that causes cracking as can be seen in Figures 1 and 2. This internal pressure and 

associated cracking can ultimately lead failure of the concrete. 

 

 

Figure 1: ASR cracking on a bridge parapet in Illinois.3 

 

 

Figure 2: Extensive ASR cracking found in bridge columns (left). ASR damage in 

pavement slabs (right).4 
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The start of the cracking of concrete allows for water ingress which causes further 

formation and swelling of gel throughout the material leading to reduced strength and 

increased permeability that ultimately leads to a catastrophic failure of the concrete.5 The 

increase of permeability can also lead to further damage such as corrosion of rebar and 

freeze/thaw damage. Hydroelectric dams, bridges, highways and runways all can suffer 

from degradation caused by alkali-silica reaction. Typically, visible signs of ASR take 10 

to 15 years to appear but there have been documented cases of ASR damage appearing 

within six months. The onset of ASR depends strongly on the susceptibility of the 

aggregate and the alkali metal content of the cement.  

 Since the identification of ASR in 1940, there has been a large amount of research 

investigating the causes and methods for prevention of ASR. Thaulow and coworkers 

previously determined  that ASR gel contains calcium, silicon, potassium, sodium, and 

water.6 The ratio of the components of the ASR gel can be found in broad variation. The 

variation of the individual elements can determine how the ASR gel behaves within the 

concrete and determines the outcome of the ability to damage the concrete.  The 

mechanism for ASR gel formation is complex and not completely fully understood. The 

initial step of this reaction takes place with the highly alkaline cement dissolving the 

silica that is present within the aggregate. This step is accelerated by the presence of 

poorly crystalline hydrous silica that enables deeper penetration of hydroxyl and sodium 

or potassium ions into the silica causing increased cleavage of the silicon-oxygen bonds.7 

Aggregates with amorphous types of silica, such as opal, are especially prone to ASR.8 

The dissolved silica forms alkali metal silicates, also referred to as alkali silica gel.  
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Traditionally, five common methods that are used to control ASR gel formation 

within the concrete. The most obvious of these is to use aggregates that do not undergo 

ASR, but there is a high demand and a low availability of these aggregates. Further, 

aggregates that do not undergo ASR might have to be shipped a great distance causing an 

economic obstacle for the budgets of the target projects. The second method for 

combating ASR is to limit the amount of alkali in the cement. Manufacturers can produce 

low-alkali cement with a Na2O equivalent less than 0.6%. The low Na2O equivalent 

ensures low alkali content, thus limiting ASR and decreasing the damage, but these 

cements are expensive. The Na2O equivalent can be calculated from Equation 1, which 

correlates sodium and potassium as their respective oxides. Both Na2O and K2O can be 

assumed to have identical behavior under the conditions that are present in concrete that 

can undergo ASR.9 

Na2Oequivalent[wt%] = Na2O[wt%] + 0.658K2O[wt%] 

Equation 1: Equation to determine alkali content found within cement. 

 

The third approach is to reduce the amount of moisture in the concrete limiting 

the formation of the ASR gel. There are two approaches for limiting the moisture. The 

first is to apply a protective coating after the concrete has hardened, providing a barrier to 

protect the concrete from water permeation. The other approach to limit moisture is by 

using extensive curing or the addition of various admixtures. The use of admixtures and 

extensive curing produces a concrete with low permeability. This low permeability 

provides a barrier to prevent the migration of water into the concrete. Lastly, ASR can be 

minimized by the addition of pozzolanic materials. Pozzolanic materials are siliceous and 
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or aluminous materials that when hydrated can react with calcium hydroxide (Ca(OH)2), 

the alkalis in the pore solution, and reactive silica from the material to form secondary 

products.10   This approach introduces secondary cementitious materials (SCMs), such as 

fly ash and slag, into the cement to mitigate ASR. The SCMs can reduce the swelling 

capacity, lower the viscosity of the ASR gel, lower the ion diffusion coefficient, and 

reduce the long term permeability.11,12 On top of these possible property changes, the use 

of fly ash and slag are economically beneficial, as they are from waste streams from steel 

production and the combustion of coal.11 Another additive that can be used to stop ASR 

from propagating is lithium nitrate (LiNO3). Though the specific mechanism is not well 

understood, addition of large amounts of LiNO3 before or after the concrete has been 

cast, can stop ASR.13 This process is quite costly due to the large amount LiNO3 needed 

and the price. The amount of LiNO3 needed is the amount required to achieve a lithium to 

alkali molar ratio ([Li]/[Na + K]) of 0.74.14 

 The first part of the alkali-silica reaction involves the cleavage of the siloxane 

networks by the hydroxide (OH-) ions to form alkali silicate and silicic acid (Scheme 1). 

Silicic acid can further react with the hydroxide ions to be further converted into alkali 

silicate.  

 

Scheme 1: The alkali-silica reaction (M = Na+ or K+) 

The composition of the ASR gel plays a key role in whether swelling takes place. The 

hypothesis tested in this work is that pre-treatment of an ASR reactive aggregate with a 
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metal hydroxide (either LiOH or an alkaline metal hydroxide) can neutralize reactive 

sites before they are exposed to sodium or potassium hydroxide in the cement matrix. 

Support for this hypothesis is provided by the work done by Cannon and coworkers, in 

which pre-treatment of Jobe sand with a concentrated barium hydroxide (Ba(OH)2) 

solution led to a reduction of expansion in the mortar bar at 14 days by 23% for a single 

treatment.15 These positive results led them to treat the Jobe sand twice with concentrated 

Ba(OH)2 solutions reducing expansion by 45% at the end of the 14 day ASTM C1260 

test.15 

In this study, we investigated the effectiveness of treating Jobe sand, with LiOH 

and Ca(OH)2 solutions. Jobe sand was selected as the aggregate of choice due to its 

known ability to undergo ASR.16 Jobe sand is a product from the Jobe-Newman Quarry 

in El Paso, Texas and is readily available. It is considered to be a highly ASR reactive 

due to its specific composition of microcrystalline SiO2 (chert) and aluminosilicate 

(feldspar).17  LiOH and Ca(OH)2 were chosen due to the possibility of converting the 

reactive silica found within the aggregate to a more stable calcium or lithium silicate. In 

pre-treating the aggregate prior to the use in concrete our hypothesis is that it will be 

unnecessary to use additives, such as LiNO3, to stop or prevent ASR. Instead with no 

reactive silicates, the aggregate can be used like crystalline aggregates that do not exhibit 

any ASR.  

Experimental 

 The first approach to reactively neutralize the aggregate that was investigated 

utilized treatment with saturated Ca(OH)2 solution. 150 g of Jobe sand was treated with 
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200 mL of saturated Ca(OH)2 solution at 80 °C for 24 h. After the reaction, the sand was 

washed thoroughly with deionized water. Washing with deionized water was done until a 

constant reading was achieved with a conductivity meter. The sand was then dried at 60 

°C. The treatment cycle was repeated a total of 25 times to allow for more Ca(OH)2 to 

react with the aggregate. A large number of reactions were necessary to allow for a 

sufficient amount of the silica to be reacted due to the low solubility of Ca(OH)2. The 

treated sand was then analyzed by X-ray fluorescence (XRF) to identify any increase in 

calcium present within the sand. The sand was then used in testing for ASR reactivity by 

using the ASTM C 1260 test.18 ASTM C 1260 is an accelerated mortar bar test that 

measures the performance of the aggregate within concrete. This test is widely accepted 

and provides test results within 14 days. It involves the production of mortar bars that are 

immersed in 1 M sodium hydroxide (NaOH) at 80 °C. This environment provides 

conditions that lead to an accelerated rate of ASR.  The bars are removed at specific 

times and their lengths are measured. As ASR starts to develop, the length of the mortar 

bar will increase. To pass the test the mortar bar must have an average expansion of less 

than 0.10% over 14 days. If after the 14 days the sample has an average expansion of less 

than 0.20% but greater than 0.10%, the sample needs further investigation to determine if 

the expansion that is present is due to ASR. If the sample shows an expansion of greater 

than 0.20%, the aggregate is considered ASR prone.  

 The second approach to reactively neutralize the aggregate involved treatment 

with LiOH. Twelve plastic bottles were used as reaction vessels. Each plastic bottle held 

100 g of Jobe sand and was filled with 115 mL of 2 M LiOH. The bottles were placed in 

a hybridization oven and rotated for 4 days at 80 °C. After 4 days, the sand was then 
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washed thoroughly with tap water and then washed with deionized water until the 

conductivity remained constant. The sand was then dried overnight at 60 °C. The same 

procedure was completed for a second time, but this time the reaction was performed at 

room temperature. The sand was washed using the same procedure and then dried 

overnight at 60 °C. This allowed for the determination of the influence on an elevated 

reaction temperature and its results on the testing. Sand was also produced by using both 

the elevated temperature method and room temperature method twice. The sand was 

treated twice in order to provide a more completely neutralized aggregate. All sand 

samples were tested by the ASTM C 1260 test and the difference in ASR expansion when 

compared to uncoated Jobe sand is shown later in Table 2. 

Results and Discussion 

 Treatment with Ca(OH)2 solution was chosen as the means to replace the more 

reactive silicate with less reactive calcium silicate since it is known that gels produced by 

ASR high in calcium undergo a very low amount of swelling.19 Due to the low solubility 

of the Ca(OH)2, the reactions were repeated 25 times in order to neutralize a substantial 

amount of reactive aggregate. The 25 reactions led to an uptake of 8.6 g of Ca(OH)2, 

which if assumed the sand is pure silica (SiO2), we estimate a total reaction of 4.6% of 

the sand. The Ca(OH)2 treated sand was analyzed by XRF, a technique that allows for 

comparisons of amounts of individual elements by measuring counts of secondary X-rays 

produced by the excited material when bombarded with primary X-rays. XRF was used 

to follow the change in intensity of calcium from the untreated Jobe sand to the final 

treated material. The spectrum of the untreated Jobe sand shows a low intensity 

(<100,000 counts) for calcium (Figure 3) and a drastic increase of the calcium intensity 
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for the final treated material (Figure 4). This is mirrored in the solutions, of all 25 

treatments, with the intensity of Ca(OH)2 decreasing from the starting solution to the final 

solution after treatment (Figure 5). Comparing the Ca/Fe and K/Fe intensity ratios from 

the untreated and treated XRF spectra, there is a percent increase of 1068% for Ca/Fe 

intensity and a percent decrease of 11.9% for K/Fe upon the Ca(OH)2 treatment. Since 

iron is not lost into the alkaline solution, the XRF signal for iron is used as an internal 

standard to help quantify the changes in calcium and potassium content.   

 

Figure 3: XRF spectrum of the untreated Jobe sand. 
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Figure 4: XRF spectrum of the Ca(OH)2 treated Jobe sand. 

 

Figure 5: XRF spectrum of the change of intensities of the starting Ca(OH)2 solution to 

the final Ca(OH)2 solution. 
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Treatment of Jobe sand provided positive results in reducing ASR (Figure 6). The 

percent expansion versus time curves generally show a steep increase in expansion in the 

first 10 days. This increase is followed by a slower almost linear trend for both the 

control mortar bar and the bar made using the Ca(OH)2 treated sand. After 3 days, the 

mortar bar containing Ca(OH)2 treated sand begin to expand at a slower rate than the 

control. After the first 14 days, the Ca(OH)2 treated sand had an expansion of 0.46% 

(Figure 6). This expansion is an improvement from the untreated sand, but the sample is 

still showing symptoms of ASR, as it is over the 0.10% limit. At the end of the test, the 

Ca(OH)2 treated sample expanded only 0.82%, less than the control which expanded 

0.95%. In total, the treatment of the sand with Ca(OH)2 led to 14% reduction in 

expansion over the 80 day testing period (Figure 7).  

 

Figure 6: ASR test results for mortar bars using Ca(OH)2 treated sand after 14 days. 
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Figure 7: ASR test results for mortar bars using Ca(OH)2 treated sand after 80 days. 

 

 The treatment with LiOH was performed on the hypothesis that the neutralized 

aggregate would display similar properties to that of the addition of LiNO3. Incorporation 

of large amounts of LiNO3 into concrete must be performed in order to prevent ASR 

from taking place. Aggregate was reacted with 2 M LiOH at both room temperature and 

at an elevated temperature (80 °C) for 4 days. After the desired reaction times, the 

treatment solutions were diluted (1:100) with deionized water and analyzed. The lithium 

concentrations were determined by the use of flame photometry, a method that allows for 

concentration determination of alkali and alkali earth metals by use of a photodetector to 

capture emitted light from the excited metals. Lithium produces a red light  that is emitted 

at a wavelength of 670 nm.20 Calibration of the instrument was done with the use of Li 

standards diluted from a 1000 ppm stock solution made from LiOH·H2O (Figure 8). The 
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total available lithium available for reaction in 115 mL of each treatment solution is 1.6 

g. The room temperature treatments were only able to reach about 65% of reacted lithium 

compared to that of the treatments at elevated temperature. The percent change from the 

starting solutions to the reacting solutions of the room temperature treatments were 

around a 55% decrease in lithium concentration, whereas, in the 80 °C treatments the 

change was roughly 85%. Final concentrations and percent changes are summarized in 

Table 2. 

 

Figure 8: Standard calibration curve for Li using flame photometry. 
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Table 1: Lithium results from flame photometry. 

Treatment 
Flame 

Photometry 

Readout 

Final [Li+] 

(ppm) 
Change (%) 

 
25 °C Single 

Treatment LiOH 

 

1.8 720 -54% 

25 °C Double 
Treatment LiOH 

1.7 680 -57% 

80 °C Single 
Treatment LiOH 

0.7 260 -84% 

80 °C Double 
Treatment LiOH 

0.5 200 -87% 

 

  A single treatment with LiOH worked very well in reducing ASR, leading us to 

investigate multiple treatments of the sand with LiOH. All four samples had similar very 

steep increase in expansion over the first 2 days (Figure 9). However after two days, the 

mortar bars containing lithium treated sand deviated majorly from the control bar since 

their expansion is almost completely halted. After the first 14 days, 3 of the 4 mortar bars 

passed the 0.10% limit set by the ASTM C 1260 test (Figure 9). The room temperature 

single treatment mortar bar finished the 14 days slightly above the 0.10% threshold at 

0.117%. This suggests that this sample contains close to the threshold amount of lithium 

silicate sufficient to inhibit ASR expansion. The mortar bar made using the room 

temperature twice coated sand came in slightly below the threshold at 0.095% and the 

single and double treatment at the elevated temperature had an expansion of 0.080% and 

0.076%. These three mortar bars appear to act as if they contain aggregate that is not 
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prone to ASR. These mortar bars were then followed for an extended time to record any 

changes that might occur. The average expansion at the end of the 80 day test for the sand 

that was treated once at room temperature was 0.52% and it was 0.41% for the sand 

treated twice, a large reduction from the control that had an expansion of 0.95%. Note 

that in the two room temperature LiOH treated samples, the inhibited or flat phase of 

expansion ended after 15 days and then began to expand again at the same rate as the 

control mortar bar containing untreated sand. The tests performed with sand reacted at 80 

°C had a drastic reduction of ASR expansion and after the initial rise at 2 days, the 

growth was nearly flat throughout the whole 80 day test. The single treated sample had an 

average expansion of 0.20% and the doubly treated test had an average expansion of 

0.12% over the 80 days (Figure 10). We hypothesize the improved expansion in the 

elevated temperature samples is due to increasing the kinetics of the LiOH reaction with 

the sand in the initial treatments. This is borne out by the lithium analysis. Presumably, 

using longer reaction times for the room temperature treatments may also provide similar 

results. 
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Figure 9: ASR test results for mortar bars using LiOH treated sand at room temperature 

and 80°C over 14 days. 

 

Figure 10: ASR test results for mortar bars using LiOH treated sand at room temperature 

and 80°C over 80 days. 
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Table 2: Percent reduction in ASR expansion over 14 and 80 days. 

Treatment 14 days 80 days 

 
Single Treatment 

Ba(OH)2
15 

 

23% 17% 

Double Treatment 
Ba(OH)2

15 
45% 41% 

Ca(OH)2 14% 14% 

25°C Single 
Treatment LiOH 

78% 46% 

25°C Double 
Treatment LiOH 

81% 54% 

80°C Single 
Treatment LiOH 

84% 79% 

80°C Double 
Treatment LiOH 

86% 86% 

 

 Following the ASR expansion over 80 days, the expansion undergoes two 

separate rates of reactions. The initial reaction is a steep increase in expansion followed 

by the second rate that is a much slower increase in expansion. The various different 

minerals (chert and feldspar) that make up the Jobe sand could be the cause of these 

different rates of expansion.17 In the untreated material, we see an initial increase with a 

slope of 0.0380 over the first 14 days and gradual slope increase after 45 days until the 

end of the experiment (80 days) of 0.0047. The work done by Cannon using single and 

double treatments of Ba(OH)2 showed the slope over the first 14 days to flatten out, but 
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after 45 days slope for the single treatment is close to that of the untreated experiment 

and the double treatment has reduced 34% to 0.0031.15 This trend can be seen with the 

treatment of Ca(OH)2 and LiOH. These changes in expansion slopes can be found in 

Table 3. We can deduce that in terms of the Ca(OH)2, as well as within the Ba(OH)2 done 

by Cannon, that treatment of the aggregate impacts the initial highly reactive species on 

the surface of the aggregates, thus effects the sharpness of the expansion taking place 

over the first 14 days. It is not the same in the LiOH treatments. In these treatments, the 

slope was reduced significantly for the first 14 days and for the aggregate treated at room 

temperature there was an increase of slope as the reaction continues past the 45 day mark. 

In regards to the 80 °C treated aggregates, the change of slope was still significantly 

reduced from the untreated slope. The greatest slope reduction takes place with the LiOH 

double treatment at 80 °C. Table 3 summarizes the slopes of the treated materials over the 

different time frames, as well as the percent change from the untreated material.  
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Table 3: Slopes of ASR expansion and the percent change from the 

untreated material. 

Treatment 
 Slope over 

the first 14 

days 

Slope from 45 

days to 80 

days 

% change 

over 14 days 

% change 

from 45 to 80 

days 

Untreated 0.0380 0.0047 - - 

 
Single 

Treatment 
Ba(OH)2

15 

 

0.0302 0.0042 -20.5% -10.6% 

Double 
Treatment 
Ba(OH)2

15 
0.0206 0.0031 -45.8% -34.0% 

Ca(OH)2 0.0350 0.0045 -7.9% -4.3% 

25°C Single 
Treatment 

LiOH 
0.0043 0.0056 -88.7% +19.1% 

25°C Double 
Treatment 

LiOH 
0.0022 0.0053 -94.2% +12.8% 

80°C Single 
Treatment 

LiOH 
0.0012 0.0023 -96.8% -51.1% 

80°C Double 
Treatment 

LiOH 
0.0008 0.0008 -97.9% -83.0% 

 

Conclusion 

 It was possible to drastically reduce expansion due to the alkali-silica reaction 

within the mortar bars, and in some cases almost completely prevent ASR. Using 

Ca(OH)2 to reactively neutralize the reactive aggregate, which is responsible for ASR 

within the concrete, led to a reduction of expansion by 14% within the first 14 days and 



35 

 

14% over the total 80 day testing period. This positive result could possibly be improved 

with additional treatments of the aggregate, but the low solubility of the Ca(OH)2 leads to 

a difficulty of providing a highly-concentrated solution, requiring a large number of 

treatments. When the aggregate was treated with LiOH, as the neutralizing reactant, the 

ASR was limited even further. Since the use of LiNO3 is already a standard practice, 

neutralization using LiOH was hypothesized to provide a similar response to the 

formation of ASR expansion, but reducing the amount of chemical necessary. Over the 

first 14 days of the standardized test, 3 of the 4 samples were within the passing 0.10% 

limit. The single room temperature treatment was slightly above the limit at 0.12%. 

Extending the test to 80 days the single room temperature treatment saw a total expansion 

reduction of 46%, while the room temperature doubly treated sample was reduced 54%. 

The final reduction of expansion for the mortar bar made with the sand that was treated 

once with LiOH at 80 °C was 79% and 86% for the sand that was treated twice. To 

summarize, treatments using Ca(OH)2 showed positive results in limiting the effect of 

ASR on the mortar bars, but the solubility problems and the number of treatments 

necessary led us to investigate other metal hydroxides. The treatments with LiOH 

provided an aggregate that was shown to neutralize the reactive silica within known ASR 

prone sand into material that would not undergo ASR. This was all done with a small 

amount of chemical in a pre-treatment step. Long-term testing is needed on these treated 

aggregates to follow the expansion over a much longer period.   
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CHAPTER III 

 

 

Development of Single Source Mixed Metal Pyruvic Acid Oxime Complexes for the 

Synthesis of Mixed Metal Oxides for the Use in the Remediation of Aqueous Arsenic. 

 

Introduction 

 This chapter discusses the synthesis and characterization of mixed iron and zinc 

pyruvic acid oxime complexes and the mixed metal oxides derived from them. The metal 

oxides were used for sorption of arsenic species from aqueous solution. The synthesis of 

the single source precursors takes place via a ligand exchange reaction between a soluble 

metal salt and pyruvic acid oxime sodium salt (NaPAO). The synthesis of NaPAO can be 

achieved by the simple reaction of sodium pyruvate and hydroxylamine in water. The 

metal PAO complexes are thermally unstable and decompose at low temperature to small 

volatile organic fragments (CO2, CH3CN and H2O) and the corresponding metal oxide 

(Scheme 1).1 

It has been previously found that for many of the 3d transition metals (Fe2+, Co2+, 

Ni2+, Cu2+, and Zn2+) are isostructural and adopt the identical binding motif of a 5-

member metallocycle with chelation from the carboxylate oxygen to the metal ion center, 

as well as, from the nitrogen of the oxime group (Figure 1).2,3 
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Scheme 1: Decomposition of a metal pyruvic acid oxime complex. 

 

Figure 1: Crystal structure for ZnPAO2 ∙ 2H2O.2 
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The isostructural nature of the 3d transition metal pyruvic acid oxime complexes 

allows for the precipitation of the mixed metal complexes by use of a method described 

in the literature as the solid solution method.4 This method is based on the ability of 

homogeneous mixed metal solutions to undergo co-precipitation, and as long as the final 

complexes for the metals are isostructural, allowing both metal ions to be present within 

the same lattice with random occupation of the metal sites. The close proximity of the 

metals allows for reduced diffusion distances that allows for improved temperature for 

the formation of mixed metal oxides.5  

 The Apblett research group has previously demonstrated achieving highly porous, 

nanocrystalline metal oxide materials through the low temperature decomposition of 

metal pyruvic acid oxime complexes.2,3,6,7 Bagabas and coworkers investigated the 

thermal properties and spectroscopic characteristics of Zn(PAO)2 and the ZnO obtained 

after calcination. An average crystallite size of the ZnO produced at 290 °C, was 6.2 nm 

with a surface area of 150 m2/g.8 In addition, published work by Georgieva has shown the 

ability to produce ceria precursors doped with either Sm3+, Nd3+ or Th4+. Using the co-

precipitation method with NaPAO, the bimetallic precursor’s stoichiometry could be 

controlled by controlling the initial molar ratio of the metal salt solution.3  

 The contamination of ground water with arsenic has become a major concern in 

many communities around the world. The largest source of contamination of groundwater 

comes from naturally occurring sources. Soluble inorganic species of arsenic includes the 

arsenate (5+) and arsenite (3+) forms. Both these inorganic species exhibit toxicity, but 

arsenite is considered to be the most toxic, with a lethal dose in the range of 1 to 3 

mg/kg.9 In pH neutral waters, arsenite is found in its acidic form (H3AsO3) while arsenate 
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is found in ionic forms (H2AsO4
- and HAsO4

2-).10 The redox interconversion of arsenate 

and arsenite occurs naturally but at a very slow rate. This leads to contaminated waters 

having a variety of arsenic species present, making the development of a method for 

removal of arsenic difficult.11 Countries that suffer from arsenic contamination in their 

ground water due to natural sources include Bangladesh, Chile, China, and the United 

States of America to name a few.12 The exposure of people to this contaminated ground 

water results from drinking water, water used in food preparation, and water used for 

crops. Anthropogenic sources of arsenic in the environment come from a broad spectrum 

of industries including glass processing, textiles, pigments, and wood preservation.12 The 

health effects of arsenic for an acute exposure can include gastrointestinal problems, 

numbness or tingling of extremities, and death, if the concentration is high enough. The 

more common issues stem from the long term low-level exposure that can cause mild to 

severe skin issues (Figure 2), bladder cancer, cardiovascular disease, and increased 

adverse pregnancy outcomes and infant mortality.13 
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Figure 2: Hyperkeratosis caused by long term exposure to arsenic contaminated drinking 

water.13 

 

In 1993, the World Health Organization set water regulations for arsenic at a 

maximum contaminant level of 10 ppb. This guideline was put into place due to the 

evidence of arsenic being carcinogenic to humans.14 The United States, under the 

regulation of the Environmental Protection Agency, set their maximum contaminate level 

for drinking water to 10 ppb to match the WHO standard in 2001.15 

 Varieties of techniques have been used to remove arsenic from contaminated 

water supplies. Some of these techniques include precipitation, ion exchange, reverse 

osmosis and adsorption.16 Adsorption offers a cheap and effective method to remove 

arsenic by use of an insoluble material that takes advantage of specific surface features 

associated with the material. In most cases, the adsorption of the pollutant is achieved by 

physical attractions, but adsorption can also be achieved by weak chemical bonding.16 

Metal oxides are a cornerstone material for use in adsorption technologies because they 
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provide key features that are necessary for the adsorption process. These include 

insolubility, ease of synthesis, cost effectiveness, and the added advantage of the option 

of synthesizing these materials on the nanoscale.17 Nanomaterials are simply defined as 

materials that fall into the size range of 1 to 100 nm. These materials provide unique 

properties that might not be shown in the bulk material.17 Nano-scale metal oxides 

developed for remediation of pollutants provide additional benefits to a technique that is 

already widely used. Nano-scale metal oxides, like nanometric iron oxide, provide 

improved surface area, controlled morphology and magnetic properties. Synthesis of 

nanomaterials can be achieved through several routes, using physical methods such as 

high-energy ball milling, or chemical methods such as co-precipitation, the sol-gel 

method, or hydrothermal synthesis.16-18 Materials that are used to remove arsenic from 

water are numerous but iron oxides are common. Iron oxides consist of various natural 

forms, such as magnetite, hematite, and maghematite. These various forms of iron oxide 

provide diverse customization, low toxicity, and high abundance that have made iron 

oxides a perfect option for arsenic remediation.17,19 

 The goal for this project was to develop mixed iron and zinc precursors that when 

decomposed, at low temperatures, will lead to iron and zinc mixed metal oxide 

nanomaterials that could be used to remove arsenate and arsenite from stock aqueous 

solutions, real life samples, and fruit juice. Treating real life samples and fruit juice 

allowed for the investigation into how the materials would function in complex matrices 

or in the presence of different competing ions. Being able to control the stoichiometry of 

the iron and the zinc allows for the tailoring of the material to improve arsenic uptake and 

the determination of how composition affects the uptake of arsenate and arsenite. 
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Introducing softer zinc ions into the metal oxide was predicted to improve arsenic uptake, 

especially of arsenite. Lewis hard/soft acid/base rules define arsenite as being a soft 

Lewis base and arsenate as being a borderline Lewis base.20,21,22  

Materials 

 The pyruvic acid (Tokyo Chemical Industry, Co., LTD.), sodium carbonate 

(Malinckrodt), hydroxylamine hydrochloride (Alfa Aesar), zinc chloride (Alfa Aesar), 

iron (II) chloride tetrahydrate (Alfa Aesar), cobalt (II) chloride hexahydrate (Fisher 

Scientific) used in the synthesis of the iron/zinc pyruvic acid oxime precursors were used 

as purchased with no further purification. Arsenic trioxide (Mallinckrodt), sodium 

hydrogen arsenate heptahydrate (Alfa Aesar) and potassium dihydrogen arsenate (Sigma) 

were used, as purchased, to make stock solutions of arsenic for the remediation trials. 

1,000 ppm arsenic, iron and zinc standards were purchased from Ricca Chemical 

Company for making standards for the microwave plasma atomic emission spectrometer. 

Unless otherwise stated, all reactions take place at room temperature (23 °C) in deionized 

water (18 MΩ⋅cm) obtained from a Barnstead E-Pure System.  

Synthesis of the Metal Pyruvic Acid Oxime Complexes 

To produce the desired metal pyruvic acid oxime salts, a simple metathesis 

reaction was performed starting with sodium pyruvic acid oxime monohydrate 

(NaPAO∙H2O) and a soluble metal salt. NaPAO∙H2O was synthesized following the 

method previously reported by the Apblett research group.6 This involves slow addition 

of Na2CO3 to an aqueous solution of sodium pyruvate and hydroxylamine hydrochloride. 

The solution was stirred for 1 hour and left refrigerated at 10 °C for several days until 
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colorless needle-like crystals formed. The crystals were separated by vacuum filtration 

and rinsed with 100 mL of deionized H2O and left to dry in ambient air. Single metal 

pyruvic acid oxime complexes were prepared (Fe2+, Co2+, and Zn2+) by following 

previously published methodology, where the corresponding metal salt was mixed with a 

sodium pyruvic acid oxime solution in a 1:2 molar ratio. After 24 hours, a powder is 

precipitated that was subsequently analyzed using a variety of analytical techniques.2-3 

The synthesis of the mixed metal PAO complexes was achieved by controlling the 

stoichiometry of the metal salts in the initial reaction solution. By changing the metal 

ratios to 1:1 or 1:2 etc. while still keeping the overall molar ratio of metal to NaPAO∙H2O 

the same (1:2) final materials that exhibited specific metal ratios were produced. 

Preparation of 2:1 Fe:Zn(PAO)2. A FeCl2 solution (10 mmol) was combined with a 

ZnCl2 solution (5 mmol) and stirred. The mixed metal solution was added to a NaPAO 

solution (30 mmol) and mixed thoroughly. The solution was then left overnight to allow 

the reaction to reach completion. A bright greenish-yellow solid was precipitated. The 

solid was obtained by vacuum filtration and the air-dried and stored at room temperature. 

The reaction produced 4.70 g resulting in a yield of 77%. IR (cm-1): 3057(m, br), 2823(m, 

br), 2263(w, br), 1668(m), 1639(s), 1533(w), 1477(m), 1433(w), 1387(m), 1361(s), 

1212(m), 1041(s), 855(vs), 764(vs), 692(s), 559(m).  

Preparation of 1:1 Fe:Zn(PAO)2. A FeCl2 solution (5 mmol) was combined with a 

ZnCl2 solution (5 mmol) and mixed until homogenous. The mixed metal chloride 

solution was then added to a NaPAO solution (20 mmol) and thoroughly mixed. The 

solution was then left overnight to allow the reaction to reach completion. A bright 

greenish-yellow solid was precipitated out of the solution. The solid was vacuum filtered, 
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air dried and then stored at room temperature. The reaction produced 2.90 g resulting in a 

yield of 96.5%. IR (cm-1): 3061(m, br), 2825(m, br), 2257(w, br), 1669(m), 1641(s), 

1532(w), 1478(m), 1431(w), 1387(m), 1361(s), 1213(s), 1042(s), 854(s), 763(vs), 693(s), 

558(m). 

Preparation of 1:2 Fe:Zn(PAO)2. A FeCl2 solution (5 mmol) was combined and 

thoroughly mixed with a ZnCl2 solution (10 mmol). The mixed metal solution was then 

added to a NaPAO solution (30 mmol) and stirred. The solution was then left overnight to 

allow the reaction to reach completion. A greenish-yellow solid was precipitated out of 

solution. The solid was vacuum filtered, air-dried and then stored at room temperature. 

The reaction produced 4.23 g resulting in a yield of 87%. IR (cm-1): 3061(m, br), 2824(m, 

br), 2257(w), 1670(m), 1641(s), 1532(w), 1479(m), 1361(s), 1213(s), 1043(s), 854(vs), 

763(vs), 698(s), 558(m). 

Pyrolysis of Mixed Metal Pyruvic Acid Oxime Complexes 

Pyrolysis of the metal PAO complexes took place in a Vulcan temperature 

programmable muffle furnace. The pyrolysis was done in ambient air at temperatures that 

corresponded to the decomposition temperature determined by the TGA experiments. 

The solid was collected for characterization and further experiments. 

Pyrolysis of 2:1 Fe:Zn(PAO)2. A sample of 0.100 g of 2:1 Fe:Zn(PAO)2 was added to 

an empty 125 mL Erlenmeyer flask and loosely plugged with glass wool. The sample was 

placed in a muffle furnace and heated to 350 °C to produce .034 g (34%) of a brown 

solid. IR (cm-1): 3367(w, br), 1471(w), 1367(w), 551(w), 534(w). 
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Pyrolysis of 1:1 Fe:Zn(PAO)2. A sample of 0.107 g of 1:1 Fe:Zn(PAO)2 was added to 

an empty 125 mL Erlenmeyer flask that was loosely plugged with glass wool to reduce 

loss of sample. The sample was heated for 4 h to 350 °C in the muffle furnace to yield 

0.032 g (29.9%) of a brown solid. IR (cm-1): 3382(w, br), 1488(w), 1382(w), 541(w), 

526(w). 

Pyrolysis of 1:2 Fe:Zn(PAO)2. 0.103 g of 1:2 Fe:Zn(PAO)2 was heated for 4 h at 350 °C 

in a 125 mL Erlenmeyer flask that was loosely plugged with glass wool to reduce loss of 

sample. The pyrolysis yielded .031 g (30.1%) of a light brown powder. IR (cm-1): 

3347(w, br), 1474(w), 1382(w). 

Characterization 

Infrared spectra were obtained of both the PAO complexes and the thermal 

decomposition products using a Nicolet iS50 FT-IR spectrometer. Thermal gravimetric 

analysis was performed on a Mettler-Toledo TGA/DSC 1 instrument. Sample sizes used 

were between 7 and 12 mg and experiments were performed in flowing dry air. The 

temperature range used was 25 °C to 700 °C, unless otherwise stated, and a temperature 

ramp of 5 °C per minute was utilized. X-ray diffraction for both the metal pyruvic acid 

complexes and the oxides were collected at Oklahoma State University – Tulsa using a 

Bruker AXS D8 Discover X-ray diffractometer with a GADDS detector. Scanning 

electron microscope (SEM) images were obtained on a FEI Quanta 600 field emission 

gun environmental scanning electron microscope. An Agilent 4200 microwave plasma 

atomic emission spectrometer was used to determine concentrations of arsenic within the 

aqueous samples and the iron and zinc content of the mixed precursors. 
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Results and Discussion 

Synthesis of PAO complexes 

The synthesis of the metal PAO complexes starts with the synthesis of 

NaPAO∙H2O following a procedure from a previously published study by Apblett and 

coworkers.6 In this synthesis, hydroxylamine is produced in situ from the reaction of its 

hydrochloride with sodium bicarbonate. A second equivalent of sodium bicarbonate 

deprotonates the pyruvic acid. The pyruvate then reacts with hydroxylamine to produce 

NaPAO·H2O that crystallizes as long needle like crystals (Scheme 3). These crystals 

were collected by filtration and then air-dried.  

 

Scheme 2: Proposed mechanism of oxime formation in the reaction of sodium 

pyruvate and hydroxylamine. 
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Scheme 3: Synthesis of NaPAO∙H2O. 

 

 Metal PAO complexes were synthesized via a ligand exchange with the metal 

chlorides and NaPAO (Scheme 4). This method was adapted from work that was used by 

Georgieva and coworkers to produce bimetallic PAO complexes for the synthesis of 

Nd3+, Sm3+, and Th4+ doped ceria.3   

 

Scheme 4: Synthesis of iron and zinc PAO complex. 

 

Thermal gravimetric analysis of the precursors was performed to determine the 

decomposition temperatures. Apblett and coworkers have shown that the pyruvic acid 

oxime ligand decomposes at low temperatures.6 It was expected that the mixed metal 

PAO complexes would follow the same type of decomposition pathways that were 

observed for Fe(PAO)2 and the Zn(PAO)2 in previous work.2-3 This pathway involves a 

single decomposition step where the loss of both the ligands takes place at the same time 

in the case of Fe(PAO)2. Zn(PAO)2, however, appears to lose its ligands in stepwise 

fashion. When the ligand decomposes, it produces volatile organic fragments (CO2 and 

CH3CN) and water (Scheme 1).6 Decomposition for the three precursor materials starts at 

around the same temperature (100 °C) and around 350 °C the ligand is completely 

removed. Depending on the iron content, there is a small weight loss at higher 

temperature due to dehydroxylation. This weight loss is prominent in Fe(PAO)2, but is 
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absent for Zn(PAO)2. The temperature of 350 °C was chosen as the temperature used to 

calcine the precursors. There are visual color changes that take place as the precursors are 

calcined at 350 °C. All three precursors start out as a bright greenish-yellow powder 

(Figure 3) and after calcination they turn a shade of brown (Figure 4). 

 

Figure 3: 1:1 Fe:Zn PAO complex. 
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Figure 4: Visible color changes of the PAO precursors after calcination at 350 °C; 1:1 

Fe:Zn (A), 1:2 Fe:Zn (B), 2:1 Fe:Zn (C).   

 

 

Figure 5: TGA trace for 2:1 Fe:Zn PAO complex heated in air at 5 °C/min. 

A B 

C 
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Figure 6: TGA trace for 1:1 Fe:Zn PAO complex heated in air at 5 °C/min. 

 

 

Figure 7: TGA trace for 1:2 Fe:Zn PAO complex heated in air at 5 °C/min. 
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The molar ratios of zinc and iron in each of the three final mixed metal oxides 

was determined by MP-AES. Initially, 0.050 g of material was digested using 30 mL of 5 

M HCl at 80 °C until the volume of the flask was approximately 0.5 mL. When this 

volume was achieved, the sample was then diluted to 5 mL using deionized water. These 

samples were then diluted again to bring the concentration of the solution into the 

calibrated range of the instrument. The calibrated range was 1 to 20 ppm for both iron 

and zinc determinations. The MP-AES was calibrated using zinc standards that were 

diluted from stock Alfa Aesar 1,000 ppm zinc standard solutions. The analytical results 

for the molar ratios are summarized in Table 3. The 1:1 Fe:Zn ratio was determined to be 

zinc rich with a molar ratio of iron to zinc of 1:1.33. In the case of the 1:2 Fe:Zn and the 

2:1 Fe:Zn the found iron to zinc ratios were 1:1.86 and 1.90:1. The final mole percent of 

the material is affected by the solubility of the Fe(PAO)2 precursor. Fe(PAO)2 is slightly 

soluble in water (0.113 g/L) while Zn(PAO)2 has no measurable solubility. Surface areas 

were measured for all of the mixed metal oxides using nitrogen physisorption via the 

BET method. The surface areas are reported in Table 3. The composition has a marked 

effect on the surface area of the metal oxide. The samples with either higher or lower zinc 

composition either had significantly lower surface areas but were still high in comparison 

to normal third row transition metal oxides. 
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Table 1: Surface areas and the molar ratios of Fe and Zn within the mixed 

metal oxides. 

Mixed Metal Oxide Zn Mole Percent 
Surface Area 

(m2/g) 
Ceramic Yield 

Fe2O3 0 126 ± 11  28% 

2:1 Fe:Zn  35 52 ± 3 34% 

1:1 Fe:Zn  57 108 ± 22 30% 

1:2 Fe:Zn  71 83 ± 4 30% 

ZnO* 100 42 26% 

*Experimental values obtained from previously published work.7 

 

 The highest surface area was for the pure iron oxide, but this result may be 

skewed by the presence of FeOOH (Figure 8). Among the mixed metal oxides, there is a 

maximum at χZn = 0.57. The composition Fe0.29Zn0.71O1.15 is expected to have a low 

surface are because its proximity to the spinel composition. ZnFe2O4, is expected to allow 

it to sinter more easily. The sample, highest in zinc content, is expected to have a higher 

surface area then ZnO since the iron is expected to prevent sintering of zincite. 

Apparently, these phenomena reach the maximum in resistance to sintering at 

approximately 1 Zn : 1 Fe, where there is no clear preference for the formation of spinel 

or zincite nanocrystals.  

 Infrared spectra were obtained for the three PAO complexes to identify 

characteristic features of the precursors. The vibrational frequencies from the IR spectra 

of the corresponding single metal precursors and the mixed metal precursors are 
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summarized in Table 1. In all cases except the asymmetric carboxylate stretch, the 

infrared sorptions resembled those of Fe(PAO)2 more than they did Zn(PAO)2. 

Table 2:  Characteristic IR frequencies (cm-1) for the PAO complexes. 

Compound ν(C=N) νas (COO) νs (COO) ν(N―O) 

ZnPAO2 
7 1680 1650 1395 1060 

     
Fe0.29Zn0.71PAO2 1670 1641 1387 1042 

     

Fe0.43Zn0.57PAO2 1669 1641 1387 1042 
     

Fe0.65Zn0.35PAO2 1667 1638 1386 1040 
     

FePAO2 
2 1668 1650 1389 1045 

 

When comparing infrared spectra for molecules that contain a carboxylate 

functionality one key observation that can be made is an insight into the structure around 

the carboxylate functional group. Carboxylates adopt four different conformations 

depending on the overall structure of the carboxylate group, type of solvent used, nature 

of the ligand, and which metal ion is present.23,24 These conformations include 

uncoordinated, monodentate, bidentate, and bridging and are depicted in Scheme 5.  
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Scheme 5: The possible options for binding behavior of carboxylates. 

 

 The various binding modes leads to a measurable difference between the 

frequencies of the asymmetric carboxylate and symmetric carboxylate stretching bands.24 

The difference between these frequencies for the monodenate and uncoordinated modes 

tend to be the highest (>250 cm-1), followed by bidentate (>225 cm-1 but >250 cm-1), and 

finally bridging has the lowest difference (>225 cm-1).2 In Table 2, the differences of the 

asymmetric and symmetric carboxylate stretches are listed. The large value for all three 

complexes is strong evidence that the coordination of the carboxylate to the metal is 

monodentate.  
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Table 3: Change in νas (COO) and νs (COO). 

Compound Δν(COO)
* 

Fe0.65Zn0.35PAO2 252 cm-1 

Fe0.43Zn0.57PAO2 254 cm-1 

Fe0.29Zn0.71PAO2 254 cm-1 

*Δν(COO) was calculated from Δν(COO) = νas (COO) - νs (COO) 

 

 X-ray powder diffraction was performed on the oxide materials to identify the 

crystalline phases present, but the mixed metal oxide’s diffraction patterns showed that 

they were amorphous materials. This demonstrates the utility of the low temperature 

synthesis of mixed metal oxides where large scale diffusion of metal ions does not occur 

and formation of a crystalline product is prevented. Instead, a solid solution of zinc and 

iron oxides is derived from the solid solution present in the precursor. There may be some 

localized ordering of ions but there is definitely no long-range order. The XRD pattern of 

iron oxide from the decomposition of the Fe(PAO)2 precursor is shown in Figure 8. It can 

be seen that the material is crystalline and has a match in the database from the 

International Centre for Diffraction Data for γ-Fe2O3. The low intensity broad peaks not 

due to hematite are from the presence of FeOOH, possibly on the surface of the hematite. 

As noted earlier, this phase likely contributes to the elevated surface area of the product.  
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Figure 8: X-ray diffraction pattern for Fe(PAO)2 after decomposition at 275 °C and the 

matching PDF from the ICDD. 

 

 Scanning electron microscopy was used to provide insight on the morphological 

and surface features of the oxide materials and their precursors. All three precursor 

materials have ribbon or sea urchin type morphologies with smooth surfaces. After 

calcination, the morphology is retained but instead of the smooth surfaces, the surfaces 

have become severely cratered. This cratering helps to provide increased surface area for 

the final materials.  
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Figure 9: Scanning electron micrograph of 1:2 Fe:Zn PAO precursor.  

 

 

Figure 10: Scanning electron micrograph of 1:2 Fe:Zn after calcination at 350 °C. 
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Figure 11: Scanning electron micrograph of 1:2 Fe:Zn PAO precursor. 

 

 

Figure 12: Scanning electron micrograph of 1:2 Fe:Zn after calcination at 350 °C. 
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Mixed metal oxides for arsenic remediation 

 Stock arsenic solutions were made by dissolving the corresponding arsenic salts 

in deionized water. Sodium hydrogen arsenate was used for the monobasic stock solution, 

potassium dihydrogen arsenate was used for the dibasic stock solution, and arsenic 

trioxide was used for the arsenite stock solution. Both arsenate solutions were mixed until 

all of the solid material had dissolved. In the case of the arsenite solution, the solubility of 

As2O3 is low, making it necessary to let the solution mix for 3 to 5 days. This solution can 

also be heated to increase dissolution of the As2O3. After several days of stirring, the 

solution was filtered to remove any undissolved solid. The concentrations of the stock 

solutions were determined via MP-AES. The wavelength used on the MP-AES for 

arsenic determination was 193.70 nm. Initial concentrations for both arsenate and arsenite 

stock solutions along with starting pHs are reported in Table 4.  

Table 4: Initial concentration and pH of the stock arsenic solutions. 

Stock Solution Concentration (ppm) pH 

Monobasic Arsenate 102 4.5 

Dibasic Arsenate 109 8.1 

Arsenite 110 6.7 
 

 Calibration of the MP-AES was achieved using dilutions from 1,000 ppm 

standard solutions purchased from RICCA Chemical Company. The standard calibration 

range for high concentration solutions of arsenic was from 1 to 20 ppm. In the case of 

solutions that were below this standard calibration range, the use of a hydride generation 

was used to determine concentrations in the 10 to 500 ppb range. Hydride generator 
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involved the use 1% L-cysteine and 1% HCl for 1 hour as a pre-reductant to reduce any 

AsV species to AsIII and then further reduction is caused by NaOH stabilized sodium 

borohydride (1.25%) to produce arsine gas.25 This reduction to arsine has the advantage 

of being achieved with low acid concentrations. The accepted mechanism for the 

formation of the hydride is described below in Scheme 6. Producing arsine in this manner 

for low concentrations of arsenic allows for the reduction of any interference that might 

occur from high levels of acid within the sample as well as reduction of the amount of 

interference from other elements.26 

 

Scheme 6: Reduction from arsenate to arsine by pre-reduction step of L-Cysteine and 

BH4
-.26  

 

 Various amounts of the three bimetallic oxides as well as iron oxide from the 

decomposition of Fe(PAO)2 were used to treat 20 mL of the 100 ppm arsenic stock 

solutions. All treatments were carried out in 20 mL scintillation vials and were performed 

at room temperature (23 °C). The length of the treatments was determined to be 3 days by 

following the concentration of the solution and identifying the time required for 

equilibrium to be reached.  All experiments were performed without altering the pH or 

the temperature throughout the duration of the treatments. Samples were mixed by use of 

a mechanized rotor. At the end of the treatment all samples were filtered using 25 mm 

syringe filters with 0.2 μm nylon membranes and were then diluted to be analyzed by 
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MP-AES. 50 mg treatments are reported below to demonstrate the change in 

concentration after treatment of the arsenic containing solutions. Notably, the amount of 

H2AsO4
- removed increased linearly with the mole fraction of zinc in the sorbent (Figure 

14). 

 

Figure 13: The linear trend of the increase in H2AsO4
- removal with increasing mole 

fraction of zinc.  

 

  There was an increase of approximately 4.24 ppm of arsenic removed occurred 

with every 10% increase for zinc in the metal oxide. However, the sorption of the 

arsenate at higher pH (HAsO4
2-) showed no statistical differences between the different 

bimetallic oxides and these all performed poorly compared to pure Fe2O3. Fe2O3 was also 

the best performing sorbent for arsenite, but aside from Fe0.65Zn0.35O1.33, the differences 

were not statistically significant. It may be concluded that pH plays an important role in 

sorption by these metal oxides and only at lower pH is it possible to discern a change in 
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arsenic sorption with changing composition of the sorbent. Most notably, the higher the 

surface area of the sorbents corresponds to a higher arsenic adsorption. From this, it may 

be concluded that the sorption of the arsenic species relies on the concentration of active 

sites on the surface and the total surface area.  

 

Figure 14: Change in arsenate (H2AsO4
-) concentration after a 3 day treatment by 50 mg 

of the metal oxides. 
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Figure 15: Change in arsenate (HAsO4
2-) concentration after a 3 day treatment by 50 mg 

of the metal oxides. 

 

 

Figure 16: Change in arsenite (H3AsO3) concentration after a 3 day treatment by 50 mg 

of the metal oxides. 
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 To determine the sorption capacities of the sorbents, the amount of sorbent added 

was varied while keeping the concentration of the stock solution constant. After three 

days, the filtrate of the treated solution was diluted and analyzed by MP-AES. The 

Langmuir and Freundlich adsorption isotherm models were applied to this data to solve 

for maximum uptake capacity. The Langmuir adsorption model is often used to 

characterize the adsorption onto the surface of a material. The assumptions that the 

Langmuir model uses is that there are a fixed number of identical sites that can undergo 

adsorption. Each of these sites can adsorb only a single molecule, and due to this, a single 

monolayer is formed on the surface.27,28 The Langmuir adsorption model can be 

expressed by Equation 1.  

 

Equation 1: Langmuir adsorption isotherm equation.27 

 

Where, Qe is the amount adsorbed at equilibrium (mg/g), Qm is the maximum adsorption 

capacity (mg/g), Ce is the equilibrium concentration (mg/L), and KL is the Langmuir 

constant (L/mg). This equation can be linearized (Equation 2) to allow for plotting of 

Ce/Qe vs. Ce to provide both the maximum adsorption capacity (Qm) and the Langmuir 

constant (KL). The resulting maximum capacities achieved by using the Langmuir model 

are summarized in the Tables 5-7 below.  
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Equation 2: Linearized Langmuir adsorption model equation.29 

 

 The Freundlich adsorption isotherm describes adsorption onto a heterogeneous 

surface. This model deviates from the Langmuir model’s monolayer adsorption 

parameter and instead describes multilayer adsorption onto the surface.29,30 The non-

linear expression can be seen below in Equation 3.  

 

Equation 3: Non-linear equation for Freundlich adsorption model.30 

 

Where, qe is the amount adsorbed at equilibrium time (mg/g), Ce is the equilibrium 

concentration (mg/L), KF is the capacity of the adsorbent, and n is the Freundlich 

intensity constant. This equation can be linearized (Equation 4) to allow for plotting of 

log qe vs log Ce to solve for KF. If the concentration of the solution is kept constant and 

the variation is in the amount of adsorbent then the maximum uptake capacity (qm) can be 

calculated (Equation 5).31 The maximum uptake capacities and the range of the R2 values 

are summarized in Tables 5-7 below. The missing values within the tables did not 

correlate well with the isotherms. These samples gave R2 values of less than 0.5.  
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Equation 4: Linearized equation for the Freundlich adsorption model.29 

 

 

Equation 5: Freundlich maximum adsorption capacity.31 

 

Table 5: Monobasic arsenate (H2AsO4
-) treatment capacities from Langmuir 

and Freundlich adsorption isotherms.  

Isotherm Fe2O3 Fe0.65Zn0.35O1.33 Fe0.43Zn0.57O1.22 Fe0.29Zn0.57O1.15 

Langmuir 
qm (mg/g) 

R2 

    

22.9 ± 1.7    
0.98 – 0.99 

65.8 ± 5.6 
0.87 – 0.99 

- 
 

58.0 ± 6.5 
0.89 – 0.95 

Freundlich 
qm (mg/g) 

R2 

    

22.4 ± 1.2  
0.96 – 0.99 

- 
 

95.4 ± 7.0  
0.87 - 0.99 

74.3 ± 9.2  
0.98 – 0.99 

 

Table 6: Dibasic arsenate (HAsO4
2-) treatment capacities from Langmuir 

and Freundlich adsorption isotherms. 

Isotherm Fe2O3 Fe0.65Zn0.35O1.33 Fe0.43Zn0.57O1.22 Fe0.29Zn0.57O1.15 

Langmuir 
qm (mg/g) 

R2 

    

36.3 ± 3.1   
≥ 0.99 

- 
 

28.9 ± 5.1  
≥ 0.99 

18.0 ± 6.2 
0.80 – 0.97 

Freundlich 
qm (mg/g) 

R2 

    

27.5 ± 0.6   
0.97 - 0.99 

24.4 ± 2.6   
0.91 - 0.97 

23.1 ± 2.0   
0.92 - 0.99 

- 
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Table 7: Arsenite treatment (H3AsO3) capacities from Langmuir and 

Freundlich adsorption isotherms. 

Isotherm Fe2O3 Fe0.65Zn0.35O1.33 Fe0.43Zn0.57O1.22 Fe0.29Zn0.57O1.15 

Langmuir 
qm (mg/g) 

R2 

    

51.1 ± 0.4   
 ≥ 0.99 

29.6 ± 0.8   
≥ 0.99 

66.0 ± 2.3   
0.93 – 0.96 

50.8 ± 5.5   
≥ 0.99 

Freundlich 
qm (mg/g) 

R2 

    

57.0 ± 1.3   
0.95 – 0.99  

- 
68.4 ± 2.8   
0.95 – 0.96 

55.2 ± 8.6   
≥ 0.99 

 

 When inspecting the data from the monobasic arsenate treatments, the Freundlich 

model overall fits best for the materials, with the exception of Fe0.65Zn0.35O1.33. This 

suggests that there is potentially more than a monolayer forming on the surface of the 

materials or that the surface has more than one type of sorption site. In the case of the 

bimetallic sorbents, the latter is a safe assumption. There is heterogeneity of the surface 

sites due to iron and zinc both being present at the surface. There is a significant increase 

in capacity of the materials as they move from the iron only species to the iron/zinc 

mixed species. Zinc provides softer sorption sites, as described by the Pearson hard-soft 

acid base theory, which would be more attractive to the softer arsenate species. For all of 

the arsenic species, the maximum adsorption capacity was observed for Fe0.43Zn0.57O1.22 

indicating that there is a maximum in the amount of incorporated zinc to yield a material 

with the highest capacity. There were major differences observed in the relative behavior 

of the various sorbents in the 50 mg treatments as compared to the results from the 

sorption isotherms. This suggests that at higher relative concentrations of arsenic to 

sorbent molar ratios, additional sites on the sorbents are occupied by arsenic species. This 

conclusion is in keeping with the better fit of the Freundlich model to the isotherm.  
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When analyzing the dibasic arsenate treatments a significant decrease in the 

capacity was observed for all four materials in comparison to the monobasic arsenate 

capacities. This decrease in capacity is speculated to be due to the solution’s pH. In the 

monobasic arsenate solutions, the starting pH is acidic (4.5) leading to the surface of the 

adsorbent to be protonated, but with the dibasic arsenate solutions the starting solutions 

are basic (8.1). This basic environment leads to a surface covered in hydroxyls that are 

negatively charged. The presence of hydroxyls on the surface leads to repulsion of the 

negative anions, which reduces the adsorption process and lowers the material’s 

capacity.32  When modeling the adsorption, the Langmuir model best described all but 

one of the materials (Fe0.65Zn0.35O1.33). This model provides insight that there is a 

monolayer of adsorption and that the sites are homogenous. This deviation from what is 

seen in the monobasic arsenate modeling is hypothesized to be from the drastic change in 

pH. The pH for the treatments are all around the zero point charge for these materials. In 

previously published work, the zero point charge for iron oxide can be found in the range 

of around 8.5 and around 9.0 for zinc oxide.33,34 The zero point charge of a material is the 

point at which the surface of the material goes from an overall positive charge to an 

overall negative charge.34 This change in overall charge of the surface as the pH increases 

can lead to a homogeneity of the sites and in return, a more compatible fit to the 

Langmuir adsorption model.  It is possible that surface protonation masks one type of site 

(perhaps iron) more than the other(s).  

 In modeling the arsenite treatments, the Langmuir model provided the best fit for 

all four materials. The capacities calculated from the Langmuir model were all within the 

same capacity range, with the addition of the zinc not causing a decrease in capacity seen 
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within the iron oxide. Arsenite is known to be difficult to adsorb onto metal oxides due to 

it being a neutral species in pH below 9.2.35 The neutrality of the arsenite species means 

there is no electrostatic attraction to the metal oxide surface resulting in lower capacities.  

Arsenic uptake from wastewaters and natural waters 

 The metal oxides that were used to treat stock arsenic solutions were also used to 

treat two arsenic containing wastewater samples and one natural water sample that was 

reported to have an arsenic concentration above the EPA action limit (10 ppb). The two 

wastewater samples were from different industrial waste streams and the natural water 

sample was from an underground well source. The advantage of having these samples to 

treat is to allow for real life samples with a variety of compositional matrices to test 

against the samples. These samples were treated as received. The initial concentrations 

and pH are summarized in Table 8. 

Table 8: Initial concentrations and pH of wastewater and natural water 

samples. 

 Initial As Concentration 
(ppm) 

Initial pH 

Industrial 1 33.00 8.0 

Industrial 2 1.5 5.0 

Natural 1 0.014 7.6 
 

The sorbents were added to the contaminated waters in varying amounts with the 

goal to take the solution concentrations below detection limit of the MP-AES (2.5 ppb). 

20 mL samples of the selected waters were treated using various amounts of sorbent. The 

samples were treated at room temperature without adjustment of the pH and continuously 
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mixed by a motorized rotor. These treatments were carried out over 3 days, giving 

sufficient time for equilibrium to be reached. Samples were then filtered using 25 mm 

syringe filters with a 0.2 μm membrane and the filtrate was diluted for analysis by MP-

AES. The treatments were performed in the same manner described earlier in the 

treatments of the arsenic stock solutions. All of the treatments for all of the water samples 

were able to achieve an arsenic concentration below the detection limit of the MP-AES.  

 

Figure 17: Change in arsenic concentration from industrial produced water using various 

amounts of material. 
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Figure 18: Change of arsenic concentration from an industrially produced water using 

various amounts of material.  

 

 

Figure 19: Change of arsenic concentration from natural occurring water using various 

amounts of material.  
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 In the case of the pH 8.0 Industrial 1 wastewater, the Fe0.43Zn0.57O1.15 sorbent 

performed the best, reducing the arsenic concentration to 0.07 ppm with a 100 mg 

treatment. This is in accord with the sorption capacity measurements. Notably, both the 

zinc containing sorbents performed better than the Fe2O3. However, for the other 

wastewater (Industrial 2) that was acidic, the Fe0.29Zn0.71O1.15 sample performed far better 

than the other sorbents. Fe0.43Zn0.57O1.22 performed extremely poorly in this case, in 

comparison to the other two sorbents. If one considers the relative performance of the 

two zinc-containing sorbents, the results from the Industrial 2 wastewater treatment are in 

accord with the previously described experiments with H2AsO4
-. For the groundwater 

sample, Fe2O3 performed the best while Fe0.29Zn0.71O1.15 was the poorest performer.  This 

solution is slightly basic and cannot be easily compared to the previously described 

experiments. Nevertheless, it can be concluded that for all of the test waters, all of the 

sorbents were able to successfully remove the arsenic concentration below 2.5 ppb with 

the use of a small amount of sorbent for the treatment. The marked differences between 

the results for each water delineates the importance of both pH and competing ions in 

determining both the success of a treatment and how effective one sorbent is with respect 

with another. More importantly, the results show that varying the ratio of iron to zinc 

provides the means to tailor a sorbent for a particular application.  

Removal of arsenic from apple juice 

 Consumer Reports reported in 2011 that they had tested almost 90 different 

brands of apple juice and that 10% of these juices contained arsenic concentrations that 

exceeded the federal standards for arsenic within water (10 ppb). Within the Consumer 

Reports study, they found arsenic concentrations as high as 14 ppb in some brands of 
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apple juice.36 At the time, the Food and Drug Agency (FDA) currently had a level of 

concern limit for juice set to 23 ppb but Consumer Reports urged the FDA to adopt a 

similar standards set by the EPA for drinking water (10 ppb). In July of 2013, the FDA 

set a new action limit for arsenic in juice matching the 10 ppb action limit of the EPA.37  

Investigation into arsenic contamination from juice sold at local grocers in the Stillwater, 

Oklahoma area provided us with several samples that when tested all had arsenic 

concentrations below the newly set 10 ppb action limit. The highest sample tested was 

determined to contain a concentration of 9 ppb of arsenic.   

 Treatments of the apple juice were performed using 10 mg of the various metal 

oxide materials to treat 20 mL of apple juice. The samples were mixed on a vertical 

rotator for 24 h and then filtered using a 25 mm syringe filter with 0.2 μm nylon 

membrane. Samples were then digested using a benchtop digestion method of 

concentrated nitric acid and 30% hydrogen peroxide at 80 °C. This is necessary to 

remove the complex matrix of the juice. The treated samples were then analyzed by MP-

AES. After the 1 day treatments, all the samples were below the detection limit of the 

MP-AES.  

Conclusion 

 The synthesis of mixed metal oxides was done by a simple decomposition of the 

corresponding pyruvic acid oxime precursors. This simple precipitation reaction is done 

using soluble metal salts and sodium pyruvic acid oxime. These precursors’ 

decompositions were investigated by thermal gravimetric analysis and they demonstrated 

relatively low decomposition temperatures while producing only the metal oxide and 
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small volatile organic fragments. These metal oxides were then used in treatments of 

arsenic containing waters. The goal was to use these insoluble metal oxides for the uptake 

of both arsenate and arsenite species. This feat is often difficult for a single material to 

accomplish due to varying charge and pH environments that the arsenic species are found 

in. The mixing of the iron and zinc metal species was hypothesized to allow for a softer 

character to the material making it more attractive to the arsenate species, while also 

allowing to keeping the natural arsenite uptake ability found in iron oxide. Batch 

treatments were then modeled using both Langmuir and Freundlich adsorption isotherms 

to provide some insight into the possible mechanism of the adsorption process and to 

allow for the calculation of a maximum uptake capacity. Monobasic arsenate, found 

predominately in acidic environments, provided the highest uptake for the mixed 

iron/zinc species with the 1:1 metal ratio performing the best. A significant reduction in 

uptake capacity is seen when analyzing for uptake of dibasic arsenate. This species being 

found in basic environments, has natural electrostatic repulsion to the surface of the 

material and in return lowers the overall uptake capacity. Finally, analysis of the arsenite 

uptake was performed. This arsenic species is found around neutral pH and unlike both 

the monobasic and dibasic arsenates, it is a neutral species. These materials were all able 

to show good adsorption to arsenite.  

 In addition to the work done in arsenic uptake from stock solutions, the 

investigation into three “real world” samples were also conducted. These three samples 

came from different sources with two being industrial waste streams and one coming 

from a known well source with an elevated arsenic concentration. These samples 

provided insight into how the materials would function in a more realistic distribution of 
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arsenic, as well as, competing ions and varying pH ranges. These experiments were 

performed using the same methodology that was used in the treatment of the stock 

solutions. Treatment loadings were increased until solutions had an arsenic concentration 

below the detection limit of the instrumentation. The materials showed an ability to 

uptake arsenic in real life conditions. Purification of apple juice was also investigated as 

several reporting agencies documented elevated arsenic levels in this juice. Several 

brands of apple juice purchased locally showed low levels of arsenic, with the highest 

having 9 ppb. 10 mg of the metal oxides were used to treat 20 mL of the apple juice 

overnight to attempt to remove the arsenic from the juice. After 1 day the juice was then 

filtered, digested and analyzed showing the reduction of the arsenic concentration from 9 

ppb to below detection limit.  
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CHAPTER IV 

 

 

Synthesis of Cobalt-Doped Zinc Oxide for the Use in Photovoltaic Applications. 

 

Introduction 

This chapter addresses the development of cobalt-doped zinc oxide that has 

potential applications in several areas including photovoltaics and pigments. Interest in 

semiconductor materials has expanded to a wide variety of applications such as 

photovoltaics, photocatalysis, and gas sensing that take advantage of a semiconductor’s 

unique properties. A key distinguishing property becomes apparent when comparing the 

conduction character for the three classes of electronic materials, namely insulators, 

semiconductors, and metals. According to Hoffman’s band theory (Figure 1), a metal has 

its bonding band (valence band) and anti-bonding band (conduction band) overlapping 

allowing electrons to easily flow from band to band.1,2 A hallmark of a metallic 

conductivity is a the temperature of the metal increases.2 In an insulator, the valence and 

conduction bands have a large gap (band gap) between the valence and conduction bands 

preventing the flow of electrons.     
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With a semiconductor, there is a band gap between the valence and the conduction bands 

but it is small enough that the electrons can be excited and jump from the valence band 

into the conduction band allowing for a flow of electrons.2 The defining property of a 

semiconductor is that its conduction increases as the temperature increases.2  

 

Figure 1: Energy Band separation within an insulator, semiconductor, and metal. 

 

Semiconductors are described as either intrinsic or extrinsic type. Intrinsic 

semiconductors are pure materials, such as silicon, that exhibit semiconductor behavior 

naturally. Extrinsic type semiconductors are materials that have a defect or a dopant that 

provide the material with an excess of electrons or vacancies that allows for conductivity 

(Figure 2).2,3 Doping is a term used when a small amount of impurities are added to the 

crystal lattice. The dopant can have either more or less electrons than the atoms within 

the crystalline lattice, which in return provides either an excess of electrons or an excess 

of vacancies. If the dopant has an excess of electrons then it is considered an n-type 

dopant and results in an n-type semiconductor. The excess of electrons are found in the 

band gap and allow for less energy to be needed to promote them into the conduction 
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band.2 If the dopant is electron deficient, providing an excess of vacancies, it is 

considered a p-type dopant and the resulting material is called a p-type semiconductor. 

These excess vacancies lie within the band gap and provide holes at low energy for the 

electrons to be promoted, thus increasing conductance.2 

 

Figure 2: Band diagram for n-type and p-type semiconductors. 

 

 Photovoltaics take advantage of the photoelectric effect that allows them to 

absorb light and convert that energy into electrical conduction, as the electrons are 

promoted from the valence band to the conduction band (Figure 3). This production of 

electricity has inspired researchers to work on adapting these devices to our everyday 

lives and to start advancing towards these devices replacing the dependence on more 

finite energy sources. During the 1950’s, photovoltaic cells were used in the space 
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program for  power sources and then in the 1970’s the technology transitioned into use at 

the ground level during the oil embargo.4  First generation photovoltaics were made using 

single crystal or multi-crystal silicon wafers. These devices were quite expensive with 

both the materials and the manufacturing leading to this high price, but had high 

efficiency of 16 to 21%.5 Second generation photovoltaics reduced cost by adopting thin 

film technology. Materials such as amorphous silicon and cadmium telluride were 

suitable for thin film applications but the resulting efficiency suffered and was lowered to 

5 to 15%. The current generation of photovoltaics consists of multi-layer cells and 

quantum dots. These materials aim to take advantage of the complete visible light 

spectrum to increase the efficiency reaching over 23% while using cheap materials.5,6  

 

Figure 3: The photoelectric effect.  
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The semiconductor that will be discussed within this chapter will be zinc oxide. It 

is commonly found in either wurtzite (hexagonal) or zincblende (cubic) crystalline form. 

Wurtzite is more common due to it being a more stable structure under ambient 

conditions.3  Zinc oxide is considered an n-type wide band gap semiconductor. A 

semiconductor with a wide band gap is said to have a band gap around 2.2 – 4.0 eV.7 At 

room temperature, zinc oxide has a band gap of 3.37 eV.8 This energy gap corresponds to 

that of the near ultraviolet region (300-400 nm), so there is a lot of interest in doping ZnO 

to alter the band gap to allow for absorption into the visible spectrum.3 The n-type feature 

of ZnO comes with some debate since there are two main hypotheses. The first 

hypothesis is that either there are oxygen vacancies within the crystal lattice or extra zinc 

ions are trapped in the interstitial areas.8,9 This would lead to an excess of electrons and 

provide the n-type character. The second hypothesis is that hydrogen impurities are 

unintentionally introduced into the interstitial areas of the ZnO crystal lattice.8,10 Zinc 

oxide also shows other promising features for semiconductor use with attractive features 

such as  high electron mobility, high thermal conductivity, low toxicity, and ready 

availability.3,11 

 Due to ZnO’s band gap corresponding to the near ultraviolet region, there is a 

significant amount of the solar spectrum unused. Being able to alter this band gap and 

move the energy required to promote an electron by use of light in the visible spectrum 

would allow for a more efficient use of natural light. Band gap engineering is a term 

given to the exploration of the effects of dopants and defects to change the natural band 

gap of a specific material to a more desired band gap.12 Band gap engineering in 

materials for photovoltaics aims to provide a wider or a more specific range of absorption 
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of light with the desired material to improve the efficiency of the device. The goal for this 

project was to develop ZnO and cobalt-doped zinc oxide with varying extents of doping. 

Cobalt doping will allow for the alteration of the band gap of ZnO allowing for the 

absorption of light to be moved from the near ultraviolet range to the visible region. This 

synthesis was done using two different approaches; the first was by the low temperature 

single source precursor method, introduced in Chapter 3, to produce cobalt-doped zinc 

oxide powder. The second approach involved the use of a low temperature chemical bath 

deposition to produce films on glass substrates. Exploration of various cobalt-doping 

percentages was performed using both synthetic methods. 

Materials 

All chemicals were purchased commercially and used with no further purification.  

Pyruvic acid (Tokyo Chemical Co.),   sodium carbonate (Malinckrodt), hydroxylamine 

hydrochloride (Alfa Aesar), zinc chloride (Alfa Aesar), and cobalt chloride hexahydrate 

(Alfa Aesar) were used in the synthetic steps for the single source precursor method. The 

chemical bath deposition used zinc chloride (Alfa Aesar), zinc nitrate heptahydrate (Alfa 

Aesar), cobalt chloride hexahydrate (Fischer Scientific), cobalt nitrate hexahydrate (Alfa 

Aesar), and hexamethylenetetramine (Sigma Aldrich) in the development of the films. 

Films were grown on 3x1 inch plain microscope slides from Sargent-Welch. These were 

cleaned prior to use with a 5 M HCl solution, followed by acetone, and finally deionized 

water. Standards employed for elemental analysis using the MP-AES were purchased 

from Alfa Aesar. Unless otherwise stated, all reactions took place at room temperature 

(23 °C) in deionized water (18 MΩ⋅cm) obtained from a Barnstead E-Pure System. 
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Experimental 

Single Source Precursor Approach 

The synthetic method for the synthesis of the NaPAO has been previously 

described in Chapter 2. The synthesis of the cobalt-doped zinc oxide precursors involves 

the precipitation of the metal pyruvic acid oxime complex using various concentrations of 

aqueous zinc and cobalt salts and NaPAO in a 1:2 total molar ratio. The ratios targeted in 

this study were pure zinc as well as doping with 5% and 10% cobalt. The doping was 

achieved by controlling the stoichiometry of the initial solution when synthesizing the 

precursor. For example, for the 5% cobalt sample the molar ratio of cobalt to zinc used 

was 0.05 to 0.95 moles. In all cases, these precursors were collected by vacuum filtration 

and washed with 250 mL of deionized H2O. These materials were then air-dried and 

stored at room temperature for further investigation.  

Chemical Bath Deposition Approach 

The method for this approach was adapted from previously published work by 

Vayssieres and Hari.13,14 In this method, hexamethylenetetramine (5.62 g, 40 mmol) was 

dissolved in 20 mL of deionized H2O. This was reacted with an equimolar solution of 

metal ions produced by dissolving anhydrous ZnCl2 and CoCl2∙6H2O in 20 mL of H2O. In 

the case of these reactions, varying percentages of CoCl2∙6H2O were used to produce the 

corresponding final material. The two solutions are then stirred for 1 hour. With the 

addition of the hexamethylenetetramine to the metal salt solution, a precipitation of the 

metal-hexamethylenetetramine complex occurs.15,16 After 1 hour, the reaction was 

vacuum filtered and the filtrate was transferred to a reaction jar. A small hole was drilled 
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into one of the ends of a pre-cleaned glass slide to allow its suspension into the filtrate by 

a nylon string. The lid of the jar was then screwed on to tightly seal the chemical bath. 

The jar was then placed into a 95 °C oven for 6 hours. The hexamethylenetetramine used 

in this reaction was a source for hydroxyl ions that can react with the Zn2+ in solution 

ultimately producing ZnO (Scheme 1). After 6 hours, the glass slide was removed from 

the reaction solution and gently rinsed with deionized water and left to air dry for further 

analysis. These film growth experiments were performed using several different dopant 

percentages along with several different metal salts including chlorides, nitrates, acetates 

and sulfates. Uniform film growth was achieved using the nitrate and chloride salts, but 

the acetate and sulfate solutions produced non-uniform films and were not further 

explored.  

 

Scheme 1: Reaction mechanism for the growth of ZnO film using 

hexamethylenetetramine. 

 

Results and Discussion 

Characterization 

 Infrared spectra were collected for the PAO precursors and their decomposition 

products using a Nicolet iS50 FT-IR spectrometer. Thermal gravimetric analyses were 
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performed using a Mettler-Toledo TGA/DSC 1. The TGA traces of the PAO precursors 

were used to determine decomposition temperatures. Elemental analysis was performed 

using an Agilent 4200 microwave plasma atomic emission spectrometer for the digested 

solutions of the PAO decomposition products and the films grown on the glass slides. An 

Orbis micro X-ray fluorescence analyzer was used to analyze the films grown on the 

glass slides to determine the presence of cobalt within the films. Powder X-ray diffraction 

was performed on the final products of the PAO precursors and the films grown on the 

glass slides. This was done to determine crystallinity, crystallite size and identify crystal 

structure. Identification of crystalline phases was achieved by matching with published 

structures in the International Centre for Diffraction Data (ICDD) database. A JM 

magnetic susceptibility balance was used to measure the magnetic susceptibility for the 

PAO calcined products.  

Synthesis of Cobalt-Doped Zinc Precursors 

 The synthesis of the cobalt-doped zinc pyruvic acid oximes was realized by 

simple ligand exchange reaction of NaPAO with CoCl2 and ZnCl2 in specific molar ratios 

(Scheme 2). The target molar ratios were 5% and 10% cobalt.  

 

Scheme 2: Synthesis of cobalt zinc pyruvic acid oxime. x = 0.05 or 0.10. 

 

 Thermal gravimetric analysis performed over a temperature range of 25 °C to 500 

°C with a heating ramp of 5 °C/min. When pyruvic acid oxime complexes decompose, 

they produce into small organic fragments and leave behind the corresponding metal 
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oxide. Decomposition of the ligand produces CO2, CH3CN, and H2O. Decomposition of 

the doped precursors both began around 120 °C and the final metal oxide was produced 

around 300 °C (Figures 4 & 5). 350 °C was chosen as the temperature used to produce the 

cobalt doped metal oxide by bulk pyrolysis.  

 

Figure 4: TGA trace for the decomposition of 5% Co doped ZnPAO2 heated in air at 5 

°C/min. 
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Figure 5: TGA trace for the decomposition of 10% Co doped ZnPAO2 heated in air at 5 

°C/min. 

 

A major physical change that occurred through the decomposition of the 

precursors was a evident change in color. The starting precursor is light pink in color 

(Figure 6) and after the decomposition; a dark green powder is produced (Figure 7). The 

hue of the green appears to become darker as the cobalt concentration increases. This 

drastic color change from the white color of pure ZnO is caused by the alteration of the 

band gap. This red shift into the visible spectrum is attributed to the addition of cobalt 

within the tetrahedral holes of the ZnO.17 Notably, the cobalt-doped oxides appear to be 

excellent green pigments.  
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Figure 6: Cobalt-doped zinc pyruvic acid oxime precursors; (A) 5% cobalt, (B) 10% 

cobalt. 

 

Figure 7: Cobalt-doped zinc oxide after pyrolysis at 350 °C; (A) 5% cobalt, (B) 10% 

cobalt. 

 



96 

 

 Infrared spectra were recorded for the two starting PAO materials to identify any 

characteristic peaks for the complexes. The distinctive peaks are shown below in Table 1. 

Comparing the symmetrical and asymmetrical stretches for the carboxylate group, we can 

observe a difference in frequencies (Table 2) greater than 250 nm corresponding to 

monodentate coordination.  

Table 1:  Characteristic IR frequencies (cm-1) for the PAO complexes. 

Compound ν(C=N) νas (COO) νs (COO) ν(N―O) 

 
5% Co ZnPAO2 

 
1671 

 
1643 

 
1388 

 
1048 

     
10% Co ZnPAO2 

 
1671 1643 1388 1047 

 

Table 2: Change in νas (COO) and νs (COO) 

Material Δν(COO)
* 

5% Co ZnPAO2 255 cm-1 

10% Co ZnPAO2 255 cm-1 

*Δν(COO) was calculated from Δν(COO) = νas (COO) - νs (COO) 

 

X-ray powder diffraction patterns were obtained for the cobalt-doped zinc PAO 

complexes. The products were determined to be crystalline, but there were no matches in 

the International Center for Diffraction Database (Figure 8 & 9). Diffraction patterns 

were also recorded for the doped metal oxides after calcination. These patterns show 

broadening of the peaks that can be attributed to the nanocrystallinity of the materials 

(Figure 10 & 11).18 These powder patterns match that of wurtzite ZnO found within the 

ICDD database (PDF = 00-036-1451).  Increasing the amount of cobalt doping into the 
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zinc oxide wurtzite structure leads to a distortion of the wurtzite crystal lattice causing the 

powder pattern to display broadening of the peaks. The crystallite size for the cobalt 

doped zinc oxide materials were calculated using the Scherrer equation (Equation 1) and 

are summarized in Table 3.19 The crystallite size is calculated by using a size factor (K) 

of 0.9 and the wavelength of the copper radiation source (λ) (1.5405 Å) and dividing that 

by the full width at half maximum (β) of a specific peak multiplied by the Bragg angle 

(θ) (Equation 1). 

 

Equation 1: Scherrer Equation.  

 

Table 3: Crystallite Size for Co doped ZnO. 

Material Crystallite Size (nm) 

5% Co ZnO 18.5 

10% Co ZnO 13.2 
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Figure 8: Powder X-ray diffraction pattern of 5% cobalt-doped zinc pyruvic acid oxime 

complex. 

 

 

Figure 9: Powder X-ray diffraction pattern of 10% cobalt-doped zinc pyruvic acid oxime 

complex. 
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Figure 10: Powder X-ray diffraction pattern of 5% cobalt-doped zinc oxide matched with 

wurtzite ZnO (PDF=00-036-1451). 

 

Figure 11: Powder X-ray diffraction pattern of 10% cobalt-doped zinc oxide matched 

with wurtzite ZnO (PDF=00-036-14510). 
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The morphology of the complexes before and after the pyrolysis was investigated 

by scanning electron microscopy. Similar to results for other PAO complexes presented 

in Chapter 2, ribbon or sea urchin type motifs are present within the micrographs (Figure 

12). These shapes are retained after the materials undergo decomposition (Figure 13) 

with the significant change being severe cratering (Figure 14).  

Figure 12: Scanning electron micrographs of Co doped ZnPAO2; (A) 5% Co, (B) 10% 

Co. 

 

Figure 13: Scanning electron micrographs of Co doped ZnO after decomposition at 

350°C; (A) 5% Co, (B) 10% Co. 
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Figure 14: Scanning electron micrograph of 5% Co doped complexes before (A) and 

after (B) decomposition at 350°C. 

 

 Magnetic susceptibility measurements were performed to identify the oxidation 

state of the cobalt within the final ceramic material. These were measured using a 

Johnson Matthey Auto magnetic susceptibility balance (Evans balance). This balance 

uses a stationary sample and movable magnets that are positioned opposite to each other 

on a balanced beam. Inserting a sample into the balance causes force to be put on the 

magnets which tips the beam. The balance then provides an electric current to 

compensate for the off balanced beam. This current is proportional to the sample’s 

magnetic force on the magnets.20 Using the readings from the Evans balance, mass 

susceptibility can be solved (Equation 2). In a solid sample, the volume susceptibility of 

air term is ignored and the equation is replaced with Equation 3. 

 

Equation 2: The general expression for mass magnetic susceptibility. 
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Equation 3: Mass magnetic susceptibility equation ignoring the volume susceptibility of 

air. 

 

The mass magnetic susceptibility can be solved by the multiplication of the 

balance calibration constant (C) with the sample length in cm (L) and the difference of 

the sample reading (R) and the reading from a empty sample tube (Ro) and then dividing 

that total by the sample mass in grams (m) multiplied by 1 x 109. The balance calibration 

constant is calculated from the instrument by running an experiment with a standard with 

a known mass susceptibility. The standard used was mercury (II) 

tetrathiocyanatocobaltate (II) (Hg[Co(SCN)4]), that has a known mass magnetic 

susceptibility of 1.644 x 10-5 erg·G-2cm-3. Once the mass magnetic susceptibility is found, 

the molar mass susceptibility (χM) can be calculated by multiplication of the mass 

magnetic susceptibility and the molecular weight of the sample (Equation 4).  

 

Equation 4: Molar magnetic susceptibility. 

 

 At this time, the molar magnetic susceptibility includes contributions from both 

the paramagnetic (unpaired electrons) and diamagnetic (paired electrons) sources. 

Diamagnetic contributions are often found tabulated and can be summed and subtracted 
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from the molar magnetic susceptibility to provide only the paramagnetic component of 

the molar susceptibility. This is shown in Equation 5 and results in the term χA, which is 

called the corrected magnetic susceptibility.  

 

Equation 5: Equation for the corrected magnetic susceptibility.  

 

The corrected magnetic susceptibility can be used to solve for the effective magnetic 

moment (μeff) shown in Equation 6. The effective magnetic moment is a representation of 

how many unpaired electrons are present within the material. If the material is 

paramagnetic, meaning that there are unpaired electrons present, then their value for the 

μeff will be a positive value. In a diamagnetic material, where there are no unpaired 

electrons, the value for μeff will be negative value.  

 

Equation 6: Equation to determine the effective magnetic moment. 

 Analysis of the cobalt-doped zinc oxide samples is of interest to help determine 

the oxidation state of the cobalt present in the material. Cobalt will be paramagnetic, 

having unpaired d electrons, unlike zinc, which is diamagnetic and has no unpaired d 

electrons. Co2+ has 7 total d electrons that when in a high spin configuration have a total 

of 3 unpaired electrons or when it is in a low spin configuration have a total of 1 unpaired 

electron. Co3+, on the other hand, will have four unpaired electrons in the high spin 
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orientation and be diamagnetic if it is low spin. These high spin and low spin states are 

affected by the field splitting caused by ligands attached to the metal as well as other 

factors such as geometry. In the case of the materials developed in these experiments, we 

expect Co2+ to be present in high spin orientation due to the low position of oxide in the 

spectrochemical series and the tetrahedral geometry. The spin-only magnetic moment is 

equal to √(n)(n+2). Thus for Co2+, the magnetic moment would be 3.87 (n = 3) while for 

Co3+ it would be 2.82 (n = 2). Thus it may be concluded that the cobalt is present as Co2+ 

and the cobalt ions are not predominantly adjacent to each other. If the latter were the 

case, antiferromagnetic ordering would lower the magnet moment.  Notably, the effective 

magnetic moments that were found experimentally (Table 4) also correspond to that 

published for other high spin Co2+ complexes.21  

 

Figure 15: Orbital occupancy for d electrons in a d7 tetrahedral complex. 

 

Table 4: Effective magnetic moments. 

Material µeff 

5% Co ZnO 3.95 

10% Co ZnO 3.85 
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The elemental composition of the cobalt-doped zinc oxide was determined by 

microwave plasma atomic emission spectroscopy. Acid digestion was carried out on the 

oxide powder to solubilize the sample. This method involves dissolving 50 mg of the 

cobalt-doped zinc oxide in 30 mL of 5 M HCl. This solution was then heated at 80 °C 

until the solution reaches almost complete dryness (total sample weight > 0.5 g). When 

this final weight is achieved, the solution was initially diluted with deionized H2O to a 

total volume of 5 mL and then can be further diluted with deionized H2O to move the 

metal concentrations into the range of the machine calibration. The calibration range used 

in both the cobalt and zinc determinations was 1 to 20 ppm and standards were made 

using dilutions from 1,000 ppm stock solutions purchased from Alfa Aesar. Analysis of 

the elements on the MP-AES was conducted at 340.51 nm for cobalt and 213.85 nm for 

zinc. The findings of the specific molar ratios of Co and Zn are given in Table 5. In both 

materials, the achieved dopant level was within a mole percent of the theoretical goal.  

Table 5: Molar ratio of Co and Zn within the mixed metal oxides. 

Material Co Mole Percent 

5% Co ZnO 6.2 

10% Co ZnO 9.8 

 

 Development of a sputtering target was the original goal for these materials. The 

dimensions of these targets were 2.44” in diameter and .125” thick. This size was chosen 

to allow for further design and development of the target for photovoltaic applications. 

The targets were made using a pressing die that was manufactured on-site at Oklahoma 

State University (Figure 16). 10 g of each material was used for the fabrication of the 
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targets. The targets were formed under 2 tons of pressure that was achieved by use of a 

hydraulic press. Images of the final targets are shown in Figure 17. Sputtering of a copper 

backing was required to allow these targets to be further developed for the photovoltaic 

device. Unfortunately, the sputtering process resulted in severe cracking that destroyed 

the targets. Since these targets were material intensive, the shift of research emphasis to 

developing cobalt doped ZnO films on glass slides was determined to be a better use of 

materials.  

 

 

Figure 16: Dry press die for fabrication of the Co doped ZnO targets.  
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Figure 17: Fabricated Co doped ZnO targets: (A) 5% cobalt, (B) 10% cobalt. 

 

Characterization of Products from the Chemical Bath Method 

 X-ray fluorescence spectroscopy was used initially to check for the presence of 

cobalt within the films on the glass slides. The cobalt containing slides, in fact, show the 

presence of a cobalt peak in the expected range of 6.93 keV (Figure 20) when compared 

to a pure ZnO film (Figure 21). The presence of cobalt can also be seen visually by the 

changes of the overall color of the films. When using the chloride salts, the final film is a 

green hue (Figure 18) while the film from the nitrate salts was pink in color (Figure 19).  
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Figure 18: 5% cobalt-doped Zn film grown using chloride salts on glass. 

 

 

Figure 19: 10% cobalt-doped Zn film grown using nitrate salts on glass. 
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Figure 20: XRF spectrum of the 5% cobalt-doped ZnO film grown on glass. 

 

 

Figure 21: XRF spectrum of the pure ZnO film grown on glass. 
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X-ray powder diffraction was used to further investigate the crystallinity of the 

films. The first series of films investigated were those made by the use of zinc and cobalt 

nitrate salts. This pink film provided a crystalline diffraction pattern and using the ICDD 

database it was found that this pattern corresponded to the diffraction pattern of zinc 

hydroxide nitrate (Zn5(OH)8(NO3)2·2H2O) (Figure 22).22,23 This material has a layered 

structure where the double chains are built from edge-sharing octahedral 

Zn(OH)(NO3)(H2O) units.23,24 In this structure, the divalent metal occupies three of the 

four octahedral sites and the two tetrahedral sites (Figure 23).25 The nitrates in the system 

are found between the layers and do not take part in any bonding or coordination with the 

other species present. Due to the proximity in size of the ionic radii of Zn2+ (0.74 Å) and 

high spin Co2+ (0.75 Å) the cobalt ions can replace the zinc ions within the crystal 

structure.25 

 

Figure 22: X-ray diffraction pattern of 10% cobalt-doped zinc film grown by nitrate 

metal salts with matching PDFs from the ICDD. 
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Figure 23: Crystal structure for Zn5(OH)8(NO3)2.
23 

 

 The diffraction pattern for the green films that were produced using chloride salts 

(Figure 24) matched that of zinc hydroxide chloride monohydrate (Zn5(OH)8(Cl)2·H2O). 
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This compound can be found naturally as the mineral Simonkolleite. Its crystal structure 

is quite similar to that of the material produced by the use of the nitrate salts. It is a 

layered hydroxide structure with the Zn2+ being found in three of the four octahedral sites 

as well as the two tetrahedral sites (Figure 25). The major difference within this crystal 

structure is that unlike the NO3
-, the Cl- is within the layers where it is coordinated to the 

Zn2+ found in the tetrahedral sites.26  

 

Figure 24: X-ray diffraction pattern of 10% cobalt-doped zinc film grown by chloride 

salts matched using ICDD for Zn5(OH)8(Cl)2·H2O (PDF : 00-007-0155). 
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Figure 25: Crystal structure for Zn5(OH)8(Cl)2.
27 

 

 The differences in color between these two different films can be attributed to the 

position occupied by Co2+ in the structures. Neilson et al. has shown that the color of 

these layered hydroxide cobalt materials depends on what sites the cobalt occupies. Co2+ 
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found within the octahedral sites produces final materials that are pink in color and when 

the Co2+ ions are found within the tetrahedral sites the material is found to be a green-

blue color.28,29  This color change due to the spatial occupancy of the cobalt ions provides 

an explanation as to why there are differences in color between the final materials for 

both the chloride and the nitrate films. Notably, the cobalt-doped zinc oxide produced 

from the PAO complexes is also green and has Co2+ in tetrahedral sites.   

The morphology of these films was probed using scanning electron microscopy. 

Due to these materials being semiconductors, carbon was sputtered onto the film to 

reduce the amount of charging in the electron beam. Looking at the films grown from 

chloride salts, micrographs of the pure Zn films grown showed unoriented hexagonal 

particles of various sizes (Figure 26). The introduction of cobalt into the system shows 

similar unoriented hexagonal particles, but it appears that the particles are uniform in size 

(Figure 27). When growing films using the nitrate salts, there is a shift in morphology 

from the hexagonal particles to fuzzy balls of what appears to be clusters of very fine 

plate-like particles. Both the pure ZnO film and the cobalt-doped zinc hydroxyl nitrate 

films have very similar particles present with no noticeable variation from the pure 

material to the doped (Figure 28 & 29).  
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Figure 26: Scanning electron micrograph of a pure zinc film grown using chloride salts 

on a glass slide.   

 

 

Figure 27: Scanning electron micrograph of a 5% Co doped zinc film grown using 

chloride salts on a glass slide.  
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Figure 28: Scanning electron micrograph of a pure zinc film grown using nitrate salts on 

a glass slide. 

 

 

Figure 29: Scanning electron micrograph of a 5% Co doped zinc film grown using nitrate 

salts on a glass slide.  
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 The elemental composition of the films was determined by microwave plasma 

atomic emission spectroscopy. These films were solubilized by digestion using 5M HCl 

at 80 °C. This digestion was followed by evaporation to almost complete dryness (> 0.5 

g) and then the final volume was raised to 5 mL in total. The solubilized solutions were 

then diluted into the range of the standard calibration curve of cobalt and zinc. In both 

cases, the range of 1 to 20 ppm was used with standards made from 1,000 ppm standards 

purchased from Alfa Aesar. Table 6 & 7 summarizes the mole percent of cobalt found 

within the range of films investigated.  

Table 6: Mole percent of cobalt within the films grown by chloride salts. 

Target Material Co Mole % 

1.25% CoZn5(OH)8(Cl)2 3.8 ± 0.7 

2.50% CoZn5(OH)8(Cl)2 6.0 ± 0.8 

3.75% CoZn5(OH)8(Cl)2 9.9 ± 0.7 

8.00% CoZn5(OH)8(Cl)2 17.4 ± 2.6 
 

 

Figure 30: Cobalt mole percent trend within the chloride films. 
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Table 7: Mole percent of cobalt within the films grown by nitrate salts. 

Target Material Co Mole % 

5% CoZn5(OH)8(NO3)2 2.7 ± 0.4  

10% CoZn5(OH)8(NO3)2 6.4 ± 2.1  

20% CoZn5(OH)8(NO3)2 11.4 ± 1.1 

  

 

Figure 31: Cobalt mole percent trend within the nitrate films. 

 

There is a linear dependence between the cobalt mole percent in the films and the 

amount used in the original bath. The doping concentrations for cobalt within the films 

that were made using the chloride salts were elevated from the initial metal ratio used 

(Table 6). The hydroxyl chloride film’s slope is close to 2.3 meaning that the final χ
Co

 in 

the film is 2.3 times that of the original solution suggesting a bias in the system (Figure 

30). On the other hand, the films derived from nitrate solutions are depleted in cobalt as 
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shown in Table 7 and Figure 31. The slope of the actual vs. theoretical cobalt 

concentration graph for the nitrate films is 0.58 and the intercept is zero. In this case, the 

solution after filtration is still enriched in cobalt (much less so than the chloride). 

However, the deposited film is much diminished in cobalt compared to the concentration 

in the deposition solution (Table 9). Considering that the opposite was true for the 

chloride salts, it must be concluded that the differences arise from the solubility of the 

cobalt in the zinc hydroxide host. As indicated by color, cobalt adopts the tetrahedral sites 

and these are (OH)4 sites in the nitrate salts and Cl(OH)3 in the chloride salt. Thus, the 

difference in cobalt incorporation likely arises from favored incorporation into tetrahedral 

Cl(OH)3 sites. Presumably the fit in the tetrahedral (OH)4 sites is poor for the Co2+ in 

comparison to the Zn2+ leading to the low incorporation of Co2+ in the hydroxy nitrate 

film.   

 The origin of the stark difference between the original solution and the final film 

was determined to be a difference in the solubility of the MCl2·HMTA complexes. The 

synthetic procedure uses excess reagents so that the chemical bath is saturated in the 

HMTA complexes. The excess complex is filtered off before the deposition step. 

Analysis of the starting solution and the filtered solution for the 5 mole percent cobalt 

deposition. After filtration, the solution was enriched in cobalt by a factor of 2.43, 

reflecting the lower solubility of the zinc HMTA complex versus the cobalt complex 

(Table 8). The deposition also produces films enriched slightly further with cobalt. This 

may be due to the higher solubility of cobalt hydroxide in an ammonia solution or a slight 

selectivity of the zinc hydroxide structure for cobalt over zinc.  
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Table 8:  Following the reaction of 5% cobalt doping using the metal 

chlorides. 

Compound 
Mole % 

Starting 

Solution 

Mole % 

Filtered 

Solution 

Mole % Film 

 
5% Cobalt 

 
4.9 

 
11.9 

 
12.7 

    

 

Table 9:  Following the reaction of 5% cobalt doping using the metal 

nitrates. 

Compound 
Mole % 

Starting 

Solution 

Mole % 

Filtered 

Solution 

Mole % Film 

 
5% Cobalt 

 
4.9 

 
6.0 

 
2.4 

    

 

 The layered structure being synthesized by the chloride salts can be easily 

converted to ZnO by simple calcination at 200 °C for 2 hours (Figure 32). The film 

produced by the nitrate salts requires a calcination temperature of 250 °C for 2 hours to 

convert it to ZnO (Figure 34). In these decomposition pathways, there is loss of water and 

evolution of either HCl or NO2 as the layered hydroxide convert to ZnO (Schemes 3 & 

4). 

 

Scheme 3: Thermal decomposition of Zn5(OH)8(NO3)2 · 2H2O.30,31 
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Scheme 4: Thermal decomposition of Zn5(OH)8(Cl)2 · H2O.32 

 

 

Figure 32: X-ray diffraction pattern for the 10% Co doped Zn film from chloride salts 

after calcination at 200 °C for 2 hours. 
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Figure 33: 10% Co doped Zn film from chloride salts after calcination at 200 °C. 

 

 

Figure 34: X-ray diffraction pattern for the 10% Co doped Zn film from nitrate salts after 

calcination at 250 °C for 2 hours. 
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Figure 35: 10% Co doped Zn film from nitrate salts after calcination at 250 °C. 

 

 Analysis of films produced by collaborators at the University of Tulsa lead to an 

interesting observation of the film’s composition. Instead of using a nylon, string to 

suspend the glass slides into the chemical bath, copper wire was used. Throughout the 

deposition process, copper was solubilizing and found to be incorporating copper ions 

into the zinc lattice. In researching the process of the copper being incorporated into the 

zinc oxide lattice, an ion exchange process was discovered whereby solid ZnO can be 

used for uptake of both copper and cobalt from aqueous solutions. Exploring this process, 

200 mg samples of nanocrystalline ZnO, made through the decomposition of the pyruvic 

acid oxime precursors, was used to treat 20 mL solutions of 1,000 ppm copper and cobalt 

solutions. These samples were mixed for 24 hours and then were filtered using 0.45 μm 

nylon syringe filters. The treated solutions were then diluted into a standard calibration 

range for the microwave plasma atomic emission spectrometer. Standards for the 

calibration curves were made from 1,000 ppm standard solutions purchased from Alfa 

Aesar. The data from the microwave plasma shows a significant decrease in the cobalt 

and copper solutions along with a concomitant increase of zinc ions in the solutions 
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(Figures 34 & 35). In both cases, there is about a 1:1 molar exchange of cobalt or copper 

for zinc. ZnO blank samples were analyzed to determine Zn2+ concentration in just the 

presence of deionized water. It was determined that after the 24 hour period, the 

concentration of Zn2+ in solution was 103 ppm. There is also an obvious color change to 

both of these treated solids. ZnO starts as a white solid and after the reaction with copper 

the resulting powder is bright blue (Figure 36). A color change is also evident when 

reacting the ZnO with the cobalt solutions resulting in the formation of a pink solid 

(Figure 37). It may be concluded that nanocrystalline zinc oxide has the ability to 

undergo ion exchange with divalent metal ions. Notably, bulk zinc oxide does not show 

such reactivity as expected for a material without channels for ion exchange. Further 

investigation into this process is needed and may allow for post synthesis doping of ZnO 

powders and films by simple immersion into corresponding divalent metal solutions.  

 

Figure 36: Concentration change for copper treated with ZnO powder. 
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Figure 37: Concentration change for cobalt treated with ZnO powder.  

 

 

Figure 38: Visual change that occurs after treatment with 1,000 ppm Cu2+ solution. 
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Figure 39: Visual change that occurs after treatment with 1,000 ppm Co2+ solution. 

 

Conclusion 

 Two different synthetic routes were successfully used to synthesize cobalt-doped 

zinc oxide with a range of cobalt doping percentages. Using the single source precursor 

method, 5% and 10% cobalt doped ZnO was synthesized through decomposition of a 

pyruvic acid oxime precursor. This approach provided an easy synthetic method to 

produce precursors that decompose at low temperatures producing the doped metal oxide, 

H2O, CO2, and CH3CN. The stoichiometry of the material was retained from the starting 

solutions through the final material allowing for easy tailoring of the concentration of 

cobalt doped into the ZnO crystal structure. The produced powder was pressed into 

sputtering targets for possible use for preparation of photovoltaic devices. The difficulty 

in the application of a copper backing onto the targets led to the desire to investigate a 

chemical bath deposition method. In this method, hexamethylenetetramine and either 

metal chlorides or metal nitrates were mixed and then filtered. This filtrate was then used 

to make a chemical bath that was used to grow films on suspended glass slides. In the 

chloride chemical baths, the cobalt concentration had an increased final concentration of 
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roughly 2.3x the expected theoretical concentration. The films made using the metal 

nitrate salts had a decreased level of cobalt doping. These final concentrations were about 

half the expected cobalt mole percent.   Deposition of these films onto glass slides will 

allow for easy future device development for photovoltaics. An interesting discovery 

made during the development of these films was ZnO ability to undergo ion exchange 

with Co2+ or Cu2+ solutions. This could lead to a fast and simple method to introduce 

dopants into ZnO films.  
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CHAPTER V 

 

 

Conclusion and Future Work 

 

In the first chapter of this dissertation, neutralization of reactive aggregate for the 

use in cement was investigated to reduce or prevent the expansion caused by alkali-silica 

reaction. Neutralization was carried out by treatments of the aggregate with Ca(OH)2 and 

LiOH solutions. Ca(OH)2 treatments reduced the expansion of the ASR 14% over the 

initial 14 days, as well as, over the whole 80 day experiment. This treatment needed to be 

carried out multiple times due to the low solubility of Ca(OH)2. Possible improvement of 

the reduction of expansion by this treatment could be increased through additional 

treatments of the aggregate. LiOH was used to treat the aggregate at room temperature 

and an elevated temperature. Single and double treatments of the aggregates were also 

done to try to reach complete neutralization. Overall, the double treatments outperformed 

their single treatment counterparts. Significant reduction of ASR is seen over the first 14 

days with continuation of the significant reduction over the whole 80 day experiment. All 

the treatments, except for the room temperature single treatment, passed the ASTM C 

1206 standardized test for ASR expansion over the first 14 days. Further studies should 

focus on improving the LiOH neutralization of the aggregate and then investigate mortar 

bar studies using the ASTM C 1293 test. 
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The ASTM C 1293 is a long-term mortar bar test that measures expansion over a year. 

This test would give better insight into how these treatments would work in real life 

applications.  

 The second chapter of this dissertation covered the synthetic approach to develop 

mixed metal oxides via the decomposition of the corresponding mixed metal pyruvic acid 

oxime precursors. This synthetic approach allows for good control of the molar ratios of 

the desired metals that allows for controlled stoichiometry in the final mixed metal oxide. 

Low decomposition temperatures and the nanocrystallinity of final products provide 

added incentive in the production of these mixed metal oxides. These mixed iron and zinc 

metal oxides were then used as sorbents for arsenic remediation from aqueous samples. 

Interest in mixed iron and zinc metal oxides were probed for the increased arsenic uptake 

capacity for the bimetallic oxides compared to that of iron oxide. These targeted samples 

included stock solutions, industrial wastewaters, naturally occurring well water, and 

commercially available apple juice. When comparing the bimetallic iron/zinc oxide’s 

uptake capacity to that of the pure iron oxide produced the same way, significant increase 

is showed in arsenate uptake capacity in acidic environments for the bimetallic materials. 

Maximum uptake capacity is decreased when targeting the dibasic arsenate, which is 

found in basic solutions. These materials were also able to show good uptake capacity for 

the neutral arsenite species. Using these materials to then treat industrial and naturally 

occurring samples showed excellent arsenic removal ability in the presence of competing 

ions in a range of pHs. Finally, commercial apple juice found with an elevated arsenic 

concentration (9 ppb) was treated and in 1 d treatments, the arsenic concentration was 

below detection limits of the instrumentation. Future studies should focus on identifying 
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an ideal pH range for maximum uptake capacity. In addition, uptake kinetics and 

competing ion studies should be completed to further compare these materials to 

commercially available products.  

 Finally, it was shown that cobalt doped zinc oxide was synthesized through two 

separate routes leading to a fine powders or films grown on glass substrates. Synthesis of 

the cobalt-zinc pyruvic acid oxime precursor complex was achieved through a simple 

precipitation reaction. These precursors can be decomposed at low temperature resulting 

in the corresponding doped zinc oxide. The second approach used the chemical bath 

deposition technique to produce films of cobalt doped zinc oxide at various cobalt 

percentages onto glass slides. This approach was used to address the difficulty seen in 

transitioning the previously synthesized powder material to a photovoltaic device. The 

film would lead to an easier transition to the final device construction. Materials made by 

both approaches produced colored solids, which is expected as the bandgap of zinc oxide 

is shifted into the visible spectrum. Doping of cobalt was successfully controlled in target 

ranges of 2.5% to 20%. Future research should be done investigating the electrical 

properties of the films and development of the final photovoltaic device. 
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