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Abstract 

 

The objective of the hydraulic fracturing stimulation is to create a large volume of fractured rock 

with enhanced permeability. The effectiveness of a hydraulic fracturing stimulation depends on 

maintaining the created fractures permeable so that proppant are used. The proppant placement 

process and the properties of the proppant bed strongly affects the productivity of the wells; hence, 

proppant transport and deposition is an essential component of the hydraulic fracture modeling. In 

hydraulic fracturing of low permeability unconventional reservoir, proppant transport and 

deposition are even more important because of the low viscosity of the fracturing fluid (usually 

slick water used in these treatments). The early proppant settling in low viscosity fluid may 

significantly reduce the effective propped length, fracture length, and therefore reduce the 

expected productivity of the stimulated well. Also, proppants might not be able to go through the 

very small natural fracture apertures which are intersected by the main hydraulic fracture. This 

study presents the development and verification of proppant flow and transport model for the 

deformable hydraulic fracture and natural networks. A proppant transport module is developed 

and is implemented in a 3D hydraulic fracture model “GeoFrac-3D”. The main considerations in 

this study is given to numerical modeling of proppant transport and deposition. The proppant flow 

and transport within the fracture is modeled by assuming incompressible and Newtonian fluid and 

representing the slurry as a mixture of fluid and proppant particles. The flow inside the fracture (s) 

is simulated using the finite element method. The proppant flow and transport equation is a 

convection dominated problem; which shows numerical instability or oscillations when using the 

standard Galerkin’s approach. To overcome this numerical instability of the proppant transport 

governing equation, the Streamline Upwinding Petrov Galerkin (SUPG) scheme  is used in this 
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work. Thedeposition of the proppant particles is modeled using the concept of the terminal velocity 

of a single particle which is calculated based on empirical relationships and later applying 

correction factors to account for the effect of the walls of the fracture and concentration of 

particles. The verifications of the numerical models against known analytical solutions are 

presented first, followed by detailed numerical examples. The numerical simulations of proppant 

flow and deposition in a single and multiple fractures from a horizontal well, and in  networks of 

hydraulic and natural fractures are carried-out. A sensitivity analysis is performed to investigate 

the impact of parameters such as proppant size,  fluid viscosity, and the discretized fracture grid 

sizes. The simulation results show that proppant transport and settling velocities are impacted by 

fluid velocity, proppant size, fluid rheology, fracture aperture, and hydraulic and natural fracture 

interaction angle. In case of the multiple interacting fractures, the proppant distribution is strongly 

impacted by the stress shadowing effect or mechanical interactions among the fractures. 

 



1 

Chapter 1. Introduction 

 

The most prominent technique for unconventional reservoir development is hydraulic fracturing. 

The main objective of hydraulic fracturing is to increase the permeability of reservoirs by injecting 

pressurized fluid until the rock is fractured, creating new channels of flow for the fluid that was 

trapped. When the fluid injection is stopped, the fracture tends to close. To avoid closure of 

fractures and to maintain its conductivity, solid particles known as proppant are pumped along 

with the fracturing fluid. It is safe to assume that the geometry of the fracture after closure is 

defined by the final proppant distribution; hence, it is important to assess proppant transport and 

distribution in fractures. The effectiveness of reservoir stimulation by hydraulic fracturing depends 

on flow area and proppant pack permeability. The proppant placement process and properties of 

the proppant beds strongly affects the productivity of the wells; hence, proppant transport and 

deposition are an essential component of the hydraulic fracture modeling. In hydraulic fracturing 

of the low permeability unconventional reservoir, proppant transport and deposition are even more 

important because of the low viscosity of the carrying fluid (usually slick water used in these 

treatments). The early proppant settling in the low viscosity fluid may significantly reduce the 

effective propped length, fracture length, and therefore reduce the expected productivity of the 

stimulated well. 

 

The existence of natural fractures in shale reservoirs is evident from the analysis of data gathered 

with techniques like micro-seismicity interpretation, core interpretation, tilt measurements 

interpretation and outcrops interpretation (Fisher et al., 2002; Gale et al., 2007). With these 

methods, they could determine that the hydraulic fracture generally intercept the natural fracture, 
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this complicated geometry adds complexity to the problem of estimating the rock deformation, the 

fluid flow and the proppant flow and transport.  

 

1.1.Problem Statement 

 

The objective of this work is to study proppant transport in a single hydraulic fracture as well as 

in fracture networks formed by hydraulic and natural fractures during reservoir stimulation. This 

is an important issue in hydraulic fracturing design and the need to optimize proppant placement 

through manipulation of injection rate, proppant concentration, size and fluid viscosity. To reach 

the project objectives, a proppant transport model is to be developed and implemented in 

“GeoFrac-3D”, the hydraulic fracturing platform of the Reservoir Geomechanics and Seismicity 

Research Group. Using the model, the conditions for optimum proppant placement are studied. 

 

1.2. Methodology 

 

The proppant transport in a hydraulic fracture it is not an isolated phenomenon, hence it needs to 

be studied as a complex system considering, the deformation of the rock mass and the flow of 

slurry. The slurry is a mixture of fracturing fluid and proppant particles.  The flow of slurry is 

estimated as a mixture, instead of each individual component and the proppant distribution is 

calculated using the concept of concentration, defined as the ratio of the volume of proppant and 

the total slurry volume, 푐 = 푣 /푣 . The proppant transport is treated using a loosely coupled 

approach i.e., the fluid properties are calculated at each time step using the concentration of 

proppant with velocity and pressure data from the previous time step. 
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The fracture deformation and fluid flow form a coupled system and are solved together using the 

Boundary Elements Method (BEM), and the Finite Element Method (FEM), respectively. The 

resultant fracture aperture and pressure distributions are then used to calculate the velocity field 

for calculating the proppant concentration distribution. The proppant transport equation in a 

hydraulic fracture governing equation is discretized with FEM, furthermore. To overcome the 

numerical instability characteristic of the advective type of equations, the Streamline Upwind 

Petrov Galerkin (SUPG) is applied. After the proppant concentration distribution is solved, the 

fluid properties are updated and used as input for the next time step. For numerical verification, 

eachequation (i.e., fracture deformation, fracture fluid flow, and proppant flow and transport)  is 

solved separately and the numerical results are compared with analytical solution to verify the 

correct implementation of the numerical scheme. 

The assumptions considered in this work to estimate fracture aperture, pressure distribution and 

proppant distribution are:  

 Static fracture networks with no propagation 

 All the fractures are completely open before the proppant is injected 

 Homogeneous and isotropic rock mass 

 The fracturing fluid is Newtonian 

 Fluid velocity in laminar regime (lubrication theory holds) 

 Proppant particles and fracturing fluid are incompressible 

 Proppant particles are spherical with equal sizes  

 The diameter of proppant particles is much smaller than the width of the fracture 
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1.3. Thesis Organization 

 

A literature review presenting previous experimental and numerical studies aiming to explain the 

behavior of proppant flow and transport in a single fracture and in fracture networks is presented 

in Chapter 2. The governing equations and their numerical implementation methodologies for the 

fracture deformation, the fracturing fluid flow and the proppant flow and transport are presented 

in Chapter 3. Additionally, the verifications of each component against known analytical solutions 

are also provided in Chapter 3. A detailed study of the proppant distribution in a single hydraulic 

fracture and a sensitivity analysis of the main parameters which impact the proppant distributions 

is presented in Chapter 4. The solution of the proppant transport model coupled with the Geo-Frac 

3D to solve the cases of multiple fracture networks is presented in Chapter 5. Finally, conclusions 

and recommendations are presented in the Chapter 6. 
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Chapter 2. Literature Review 

 

This chapter presents a brief view of the experimental and numerical studies on the proppant flow 

and transport.  Proppants are natural or synthetic granular materials that are injected into a 

hydraulic fracture after the fracture has been initiated with a clean fluid. Most commonly used 

proppants in the conventional hydraulic fracturing are shown in Fig. 2-1. Micropproppant also 

exist and are increasingly used in unconventional reservoir stimulation. The selection of the 

proppant type for a particular reservoir depends on its characteristics such as formation depth, in-

situ stress state, temperature, and rock type, and natural fractures. A slurry which is a mixture of 

proppant particles and fracturing fluid is transported through the wellbore to the hydraulically 

induced fracture in the formation. The proppant placement process can be mainly divided in two 

phases; firstly, a low viscosity fluid is injected from the wellbore to the rock formation to initiate 

and propagate the fracture to create a pathway for the proppant flow, and secondly a higher 

viscosity fluid that carries proppant is injected to the fracture. As a result, a propped hydraulic 

fracture or a system of fractures is formed in the rock formation. 

 

Figure 2-1. Commonly used proppant types in hydraulic fracturing stimulations. 
(Kullman, 2011). 
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In several black shale as well as in grey shale units which are gas reservoirs, there is evidence of 

the pre-existing joints. An example is the Marcellus shale whose joints are cataloged as J1 and J2 

sets as shown in Fig 2-2 (Engelder et al., 2009; Evans, 1994). 

 

Figure 2-2. J1 and J2 joints intersecting in the Marcellus black shale (Engelder et al., 
2009). 

 

Hydraulic fractures often intersect these natural fractures and create a network of fractures with 

potential for the flow of fracturing fluid and proppant. The fracture network formation has been 

affirmed using microseismic mapping (see, Figure 2.3) and interpretation of data from tiltmeters, 

core, etc. Prior to the execution of the hydraulic fracturing job, seismic receivers and tiltmeters are 

installed in wells adjacent to the zone to be stimulated, tiltmeters are also installed in the surface. 

The microseismic events and the deformation of the rock while the hydraulic fracture is being 

created are recorded by the sensor and the resultant data is later interpreted to produce maps not 

only of the hydraulic fracture just created but also of the preexisting natural fractures which were 

affected by the fracking job as shown in Fig. 2-3 (Fisher et al., 2002). 
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Figure 2-3. Fracture structure plot interpretation from microseismicity and tiltmeters 
data. Hydraulic fractures are shown in the direction NE-SW and natural 
fractures are shown in the direction NW-SE (Fisher et al., 2002).  

 

Several experimental and numerical studies on the proppant flow and transport have been 

presented. A general understanding of the proppant flow and transport in hydraulic fractures begins 

with the analysis of this phenomena in a single fracture to understand flow mechanism and 

constitutive relationships. With the findings of complex geometries in reservoirs where hydraulic 

fractures intersect natural fractures, the principles found for single fractures, needed to be extended 

to match such complicated cases. 
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2.1. Experimental Studies on Proppant Flow and Transport 

 

2.1.1. Experimental Studies for a Single Hydraulic Fracture 

 

One of the first proppant materials which is still in use is sand. The earliest experiments trying to 

explain the behavior of sand movement in a hydraulic fracture was reported by (Kern et al., 1959) 

in their setup the fracture was simulated with two parallel plexiglas plates, the slurry (i.e., mixture 

of fluid and sand) was injected from one end while restricting the flow in the upper and lower 

edges to ensure an horizontal flow. The slurry was recovered from the other end, and separated to 

form a closed system as shown in Fig. 2-4. They observed a limited growth in the sand bed height 

due to the poor transport properties of the water. Kern et al. (1959) defined the critical velocity as 

an equilibrium value that the system will automatically seek, if possible. Once the equilibrium 

velocity is reached, the injected sand, denoted as ‘sand injected later’ is deposited preferably in 

front of the previously formed sand bed denoted as ‘sand injected earlier’ as shown in Fig. 2-5. 

 

Figure 2-4. Equipment to study sand movement proposed by (Kern et al., 1959). 
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Figure 2-5. Result from the study of sand movement. The sand bed instead of been 
growing in height, it was growing in length (Kern et al., 1959). 

 

To help with a quantitative analysis of the sand transport injected through two parallel plates Wahl 

& Campbell (1963) filmed the process for further analysis. From the many parameters that could 

affect this phenomenon, they centered their attention on the sand concentration, fluid viscosity, 

and flow rate. The effect of fluid viscosity was controlled in the experiments using three kind of 

oils, 6.06, 57.8 and 487.9cp. They proposed the concept of two flow regimes; the first where the 

proppant is transported by direct action of the fluid movement and is dominated by suspended 

flow, and the second where the proppants settle to form a layer in the bottom of the fracture. These 

flow regimes are divided in regions considering the ratio oil viscosity – bulk velocity of the slurry 

(휇 푣 ) vs sand concentration as shown in Fig. 2-6. Region I, represents the mentioned suspended 

flow, Region II is divided in 3 sub regions, IIa, IIb and IIc. In Region IIa the solids are transported 

over a moving deposit. In Region IIb the particles are transported over a deposit which is 

experiencing sliding, and finally, in Region IIc, the solids are not transported or show small erratic 

movement.  
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Figure 2-6. Flow regimes regions considering the ratio oil viscosity - bulk velocity of the 
slurry vs sand concentration (Wahl & Campbell, 1963). 

 

The deposition of proppant in a hydraulic fracture was studied by Novotny (1977) using the 

concept of settling velocity of a single sphere in a Newtonian fluid in an unconstrained fluid, this 

parameter denoted with 푣  was divided according to the flow regime which was classified 

considering the Reynold’s number. As an analytical relation was not always possible, it was 

necessary to run several experiments using a plexiglass parallel plates apparatus to simulate the 

movement of the sand as well as experiments using rheometers to measure shear rates (Novotny, 

1977). More details about the results of this study are discussed in section 3.1.4. 

 

A settling velocity correlation validated with experimental data was proposed by Acharya (1984). 

They proposed a correlation for settling velocity of a single particle that best fit the experimental 

results considering an intermediate flow regime (i.e. Reynolds number (2<푁 <500)) in non-

Newtonian fluids expressed as (Acharya, 1984): 
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 푣 =
3휌

4 휌 − 휌 푔푑
24퐹(푛)
푅 +

퐹 (푛)

푅 ( )  (2.1) 

where 푛 is the pseudo plastic index of a power law fluid, 휌  is the fluid density,	휌  is the proppant 

density, 푔 is the gravitational force, 푑  is de proppant diameter, 푅 	is the particle Reynolds number 

and 퐹(푛), 퐹 (푛), 퐹 (푛) are functions defined as: 

 퐹(푛) = 3
33푛 − 63푛 − 11푛 + 97푛 + 16푛

4푛 (푛 + 1)(푛+ 2)(2푛+ 1)  (2.2) 

 F (푛) = 10.5푛 − 3.5 (2.3) 

 F (푛) = 0.32푛 − 0.13 (2.4) 

 

Proppant flow experiments in a parallel plate chamber were also performed by (Gadde et al., 2004), 

the results were recorded with a video camera allowing the study of proppant mechanisms 

variation with time. Additionally, to verify the results from other authors, they presented empirical 

factors aimed to correct the settling velocity modeled initially with Stokes’ law as proposed by 

(Novotny, 1977). The factors proposed accounts for proppant concentration and the effect of the 

fracture walls. The correction factor which accounts for the effect of proppant concentration is 

given as (Gadde et al., 2004): 

 푣 = 푣 (2.37휙 − 3.08휙 + 1) (2.5) 

where 푣  is the settling velocity and 휙 is concentration. The correction factor relating the effect of 

the fracture walls is: 

 푣 = 푣 1 −
9

16
푚

1 −푚 푙푛
9

16
푚

1−푚  (2.6) 

where 푚 = 푎/푙, 푎 is radius of a particle of proppant and 푙 is the distance of the particle form the 

walls. This equation is used in this thesis. 
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The importance of convection as a mechanism of flow movement in a hydraulic fracture was 

studied by (Clark, 1996). The results of experimental observations in a parallel plate apparatus 

which simulates a static hydraulic fracture, were analyzed with two non-dimensional parameters; 

one for Newtonian fluids and one for non-Newtonian fluids. The non-dimensional parameter for 

Newtonian fluids is given as (Clark, 1996): 

 푁 =
12휇푞
∆휌푔푤  (2.7) 

where 휇 is the fluid viscosity, 푞 is the fluid injection rate, ∆휌 is the difference between the densities 

of the fluid and the proppant material, 푔 is the gravitational force and 푤 is the fracture width. This 

non-dimensional number combines the horizontal and vertical forces, the values reported from the 

experiments showed that 푁 < 1, meaning that convective flow was predominant. In the case of 

the non-Newtonian fluid the non-dimensional parameter is: 

 푁 = 2 4 +
2
푛

퐾푞
∆휌푔푤( )		 (2.8) 

where 퐾 and 푛 are the power law coefficients. In this case the results suggested that convection 

was also a predominant mechanism in the proppant transport phenomenon. 

 

The rheology of fluids with suspended particles was studied by Boyer et al. (2011). In their work, 

they proposed a friction law for the shear stress 휏, and a volume-fraction law 휙 of the slurry. In 

the experimental setup to determine these laws, the slurry (i.e., a mixture of fracturing fluid and 

proppant particles) is placed in a rheometer with a conic shaped chamber, covered by a plate 

connected to a rheometer which apply simultaneously confining force, 퐹, torque, 푀, and the 

rotational speed, 휔 , as shown in Fig. 2-7a. The plate is free to compress or expands as needed. 
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Figure 2-7. Experiment setup proposed by (Boyer et al., 2011) to study the rheology of a 
mixture of Newtonian fluid and proppant particles. 

 

They found one dimensionless parameter describing the phenomenon called inertial number 퐼 

defined as: 

 퐼 = 푑
휌
푃 훾̇ (2.9) 

where 휌  is the density of suspended particles, 푃  is granular pressure, 푑 is proppant diameter and 

훾̇ is shear rate of the slurry. From their measurements they propose relationships between the 

friction coefficient and the inertial number 휇 vs 퐼 and the particles concentration with the inertial 

number 휙 vs 퐼. The behaviors describing the dimensionless shear stress can be mathematically 

described without the addition of any correction factor as: 

 휂 (휙) = 1 +
5
2휙 1−

휙
휙 + 휇 (휙)

휙
휙 − 휙  (2.10) 

with 휇 (휙) defined as: 

 휇 (휙) = 휇 +
휇 − 휇

1 + 퐼 휙 (휙 − 휙)  (2.11) 

where 휇 = 0.32, 휇 = 0.7, 휙 = 0.585 and 퐼 = 0.005 taken from experimental observations. 

And the dimensionless effective normal viscosity is described by: 
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 휂 (휙) =
휙
휙 − 휙  (2.12) 

 

2.1.2. Experimental Studies for Multiple Fractures and Fracture Networks 

 

The behavior of proppant flow in fracture networks has been studied by setting up experiments 

with a low pressure system in the laboratory. Many scenarios have been simulated by pumping 

sand slimy through a series of complex slot configurations while varying the slot complexity, pump 

rate, proppant concentration, and proppant size.  A total of 27 test cases were run in four types of 

slot configurations as shown in Fig. 2-8 (Sahai et al., 2014). The major conclusions of this study 

are: the effect of pump rate was found to be different in the case of primary and secondary slot 

configuration, the proppant transport in the primary vertical slot was observed to occur via 

sedimentation and fluidization in the form of a thin layer of high concentration of proppant, in 

sedimentology is referred as traction carpet, after the creation of a proppant dune. However, in the 

case of secondary vertical slots, the proppant transport was observed to be dependent on the pump 

rate, confirming that there is a minimum value of pump rate required to transport proppant inside 

the secondary slots, denominated threshold pump rate. Two mechanisms were observed to be 

transporting the proppant into the secondary vertical slots: I) when the fluid velocity inside the 

primary fracture was higher than the threshold velocity, the fluid could drag proppant into the 

secondary slot, and II) independently of the pump rate proppant was falling from the primary slot 

to the secondary slot due to the gravitational force effects. The fluid velocity inside the primary 

slot can be expected to dictate the proppant buildup in the secondary slot. It was also observed that 

the rate of proppant settling is highly affected by the proppant concentration, with a direct 

relationship with the  sediment height as shown in Fig. 2-9.  
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Figure 2-8. Schematic diagrams of the four different slot configurations. Top view (Sahai 

et al., 2014). 
 

 
Figure 2-9. Schematic diagrams summarizing the results from the proppant flow and 

transport analysis- side view (Sahai et al., 2014). 
 

A set of experiments where transparent fracture slots, with bypass angles 45, 90 and 135, as shown 

in Fig. 2-10, were constructed to mimic intersections of natural fractures with hydraulic fractures 

by (Tong & Mohanty, 2016). The inlet is on the right, and the outlet is on the left. The length, 
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height and width of the main slot were 15”, 3” and 0.08”, respectively. The bypass slot was 7.5 in 

length, and had the same height and width as that of the main one. Typical hydraulic fracture width 

ranges from 1 mm to 5 mm. A typical proppant flow pattern in the main slot and the bypass slot is 

shown in Fig. 2-11. From the study, it was determine (as one would expect) that there is a direct 

relationship between the quantity of proppant entering the bypass slot and the angle of inclination 

of the bypass slot, it was also concluded that the shear rate of the fluid used to transport the 

proppant influences directly in the quantity of proppant allocated into the bypass slot (Tong & 

Mohanty, 2016). 

 

 
Figure 2-10. Top view of slot configurations to simulate hydraulic fracture networks, red 

arrows indicate the fluid flow pattern. (Tong & Mohanty, 2016). 

 

 
Figure 2-11. Results at different times of the experiment where the bypass slot inclination 

is 90° (Tong & Mohanty, 2016). 
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To get more insight of this phenomenon the variables measured in addition to the fracture 

orientation were: proppant size, proppant concentration and pump rate, the behavior was reported 

at 20 s, 40 s and 60 s to compare the cases of study. Three zones were observed in the sand bed 

that have a direct relationship with the water injection rate: the bottom immobile sand bed zone, 

the middle flowing slurry zone, and the top clear fluid zone. The bottom of the sand bed was mainly 

composed by the sand injected in earlier stages; the sand pumped after, forms the top part of the 

bed and continues the movement downstream.  

The sand bed length has a direct relationship with the shear rate, at higher injection rates the length 

was found to be substantially longer. Proppant placement in the bypass has a direct relationship 

with the injection rate and the shear rate and it is inversely affected with the angle. 

All these experimental studies are an effort to understand the proppant transport in a hydraulic 

fracture and the impact in the system of variables like, geometry of the system, fluid properties, 

fluid velocities, as well as geometry and properties of the proppant. The proppant transport is 

described qualitatively and relationships like settling velocity as well as other factors like wall 

effect and concentration factors are developed to mathematically describe the observed phenomena 

which can then be used in modeling. 

 

2.2.Numerical Studies on Proppant Flow and Transport 

 

2.2.1. Numerical Studies for a Single Hydraulic Fracture 

 

One of the first numerical attempts to solve the problem of proppant distribution in a hydraulic 

fractures, divided the domain representing the fracture in small element to calculate progressively 
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parameters like fluid volume loss, increase in sand concentration, sand settling velocity, the height 

of the deposited bed and volume of deposited sand as a function of fracture aperture, fracture 

length and injection rate (Daneshy, 1978). Among his results he showed a concept which aggress 

with the work exposed by (Kern et al., 1959), where after the equilibrium velocity was reached, 

the height of the sand bed tends to keep constant ℎ  and the proppant is deposited in front of the 

sand bed previously formed as shown in Fig. 2-12. 

 

Figure 2-12. Proppant accumulation pattern at different times (Daneshy, 1978).  
 

Several mathematical models have been proposed to simulate proppant flow and transport in a 

hydraulic fracture (Biot & Medlin, 1985; Clifton et al., 1988; Ouyang, 1994; Pearson, 1994). They 

are similar in that the governing equations are obtained using single phase flow of a slurry and 

applying the principle of mass balance, and the main parameters that appear are fracture width 

denoted by 푤, pressure distribution denoted by 푝, proppant concentration denoted by 푐, proppant 

velocity denoted by 푣 , fluid velocity denoted by 푣  and mixture velocity denoted by 푣. A detailed 
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description of the methodology proposed to describe the proppant transport in hydraulic fractures 

is presented in Chapter 3. The resultant expression for the transport of proppant is (Pearson, 1994): 

 휕(푐푤)
휕푡 +

휕 푐푣 푤
휕푥 +

휕 푐푣 푤
휕푧 = 0	 (2.13) 

This equation is derived in a later chapter. They also use the lubrication equation to approximate 

the velocity of the fluid in the fracture envisioned as smooth parallel plates:  

푣 = −
푤

12휇
휕푝
휕푥	 

(2.14) 

푣 = −
푤

12휇
휕푝
휕푧	 

(2.15) 

Finally they used the expression proposed by (Novotny, 1977) to include the effect of the settling 

velocity.  

An equation that governs the proppant transport in a hydraulic fracture which directly account for 

the fluid lost in the formation due to the Carter’s leak-off phenomenon was proposed by (Ouyang 

et al., 1997). Based on the principle of mass conservation they combine the equations of proppant 

transport and fluid flow in a hydraulic fracture to produce the following expression: 

 푤
휕푐
휕푡 −

(1− 푐)
휕푤
휕푡 −

휕[(1 − 푐)푤푣 ]
휕푥 −

휕 (1 − 푐)푤푣
휕푦 − 푞 	 (2.16) 

where 푤 is the fracture width, 푐 is the proppant concentration, 푣  and 푣  are proppant velocities 

in the 푥 and 푦 directions respectively. They also proposed a framework to discretize this type of 

differential equations using a Finite Element Method.  

Until this point, the proposed models to simulate the proppant transport in hydraulic fractures 

suggested to weakly couple the proppant concentration with the fracture aperture and fluid pressure 

phenomenon via the calculation of fluid properties. But the procedure and the constitutive 

equations were not clearly defined, furthermore the models did not address the phenomenon 
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proppant accumulation inside the fracture which resembles a porous medium with variable (in 

space and time) permeability which affects the flow of the slurry. Recently, a methodology to 

describe the proppant transport in a hydraulic fracture is presented by (Dontsov & Peirce, 2014a) 

whereby two phases (fluid and particles) are considered. Using the constitutive equation derived 

by (Boyer et al., 2011) which estimates particle pressure and the shear stresses in the slurry 

(mixture of fracturing fluid and proppant), they formulated the fluid velocity and the proppant 

velocity equations and obtained governing equation of fluid flow and proppant transport in a 

hydraulic fracture: 

 휕푤
휕푡 + ∇ ∙ 풒 + 푔 = 0	 (2.17) 

 휕푤휙
휕푡 + ∇ ∙ 풒 = 0	 (2.18) 

where 푤 is the fracture width, 휙 = 〈휙〉/휙푚 is the normalized proppant concentration (the ratio 

between proppant concentration averaged over the fracture width and the maximum concentration 

of proppant, the maximum concentration of proppant was measured in experiments with a 

customized rheometer by (Boyer et al., 2011), 휙 = 0.585, 푔  is the Carter’s leak-off, 풒  and 풒  

are the slurry and the proppant fluxes vectors: 

 풒 = −
푤

12휇 푄 휙,
푤
푎 ∇풑	 (2.19) 

 풒 = 퐵
푤
푎 푄 휙,

푤
푎 풒 − 퐵

푤
푎

푎 푤
12휇 (휌 − 휌 )푔퐺 휙,

푤
푎 	 (2.20) 

 

where 휇 is the viscosity of the fracturing fluid, 푝̂ is the fluid pressure, 휌  is the density of the 

proppant, 휌  is the density of the fracturing fluid, 푔 is the gravitational force, 푎 is the redius of a 

particle of proppant, 퐵 is a blocking function which considers the process of flow restriction due 

to proppant trapped in areas where the facture width is not large enough (greater than 3 times the 
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proppant diameter), i.e., proppant bridging. The blocking function is defined as (e.g., Dontsov & 

Peirce, 2014b): 

퐵
푤
푎 	=

1
2퐻

푤
2푎 − 푁 퐻

푤 −푤
2푎 1 + cos 휋	

푤 − 푤
2푎 + 	퐻

푤 − 푤
2푎  (2.21) 

where 푁 = 3 is suggested by Dontsov & Peirce (2014b), 퐻 is the Heaviside function and 푤 =

2푎(푁 + 1). The functions 푄 , 푄  and 퐺  are calculated from the slurry flow solution (Dontsov & 

Peirce, 2014a) and represented graphically for convenience as shown in Fig. 2-13. This model is 

suitable to describe proppant transport including the settling effect using the numerically 

calculated functions 푄  and 퐺 . The function 푄  modifies the result of slurry flux implying that 

the proppant particles have different velocity than the fluid. The numerically calculated function 

퐺  dictates the gravitational settling effect. Flow of slurry in the fracture can change as the as the 

concentration of proppant increases and forms a compact pack of particles. In this situation, the 

fluid is not flowing in an empty space (as in Poiseuille flow rather it occurs in a porous space  (i.e., 

Darcy flow). The change from Poiseuille to Darcy flow is captured with the function 푄 ; it takes 

on a value of 1 when the proppant concentration is zero, causing equation (2.19) to simplify as: 

풒 = −
푤

12휇 ∇풑	 
(2.22) 

when the concentration of proppant increases, the values of slurry flow will decrease as the values 

푄  are smaller than 1, simulating the decrease in velocity as the fluid is now flowing through a 

porous media, and when the proppant concentration reaches maximum values, this function takes 

on values tending to zero, therefor the movement of the slurry will tend to small values. The 

behavior of the function 푄  is also shown in Fig. 2-13. They also proposed a blocking function to 
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account for proppant bridging so the proppant is not transported beyond some imposed limit, 3 

proppant diameters as suggested in (Dontsov & Peirce, 2014a). 

  

 

Figure 2-13. Graphical representation of functions 푸풔, 푸풑 and 푮풑 calculated from the 
slurry flow solution (Dontsov & Peirce, 2014a). 
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Chapter 3. Model Development 

 

Hydraulic fractures are created by pumping fluid at high pressure into target reservoirs, as the fluid 

is being injected in the formation the rock deforms to the point that is fractured. These fractures 

are thin gaps (in the order of millimeters) that could extend meters until mechanical barriers, i.e. 

stronger rocks, are found. After some volume of fluid has been injected, a particulate material 

known as proppant is injected with the fracturing fluid, this material will ensure that the fracture 

remains open even after the injection of the fluid is stopped.  

The rock mass is subjected to a stress field as shown in Fig. 3-1 the vertical stress is denoted with 

휎  and the horizontal minimum and maximum stresses are denoted with 휎  and 휎 , 

respectively.This stress field is caused by the weight of the rock layers above the interest zone, 

tectonic regime, pressure of the fluids in the reservoir, properties of the rock and other phenomena 

(Goodman, 1989). The orientation of the stress field greatly dictates the geometry and direction of 

the fracture, as they open in the direction of the minimum stress 휎  and propagate in the other 2 

directions as shown if Fig. 3-2.  

 

Figure 3-1. Schematic of hydraulic fractures with stress field. 
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Figure 3-2. Hydraulic fracture showing the main geometrical dimensions with respect to 
the stress field, the fracture opens in the direction of the minimum stress 흈풉 and 
propagates in the other two directions 흈풗 and 흈푯. 

 

The proppant transport in a hydraulic fracture is not an isolated phenomenon, instead a coupled 

relationship between the rock deformation and the fracturing fluid pressure and proppant transport 

needs to be considered, since, the proppant concentration change alters the fluid rheology (i.e., its 

viscosity and density). A mixture of solid mechanics to estimate the fracture deformation and fluid 

mechanics to describe the fluid flow and proppant flow, is needed to perform a proper analysis. 

As the main focus of this work is to model the proppant flow and transport, a non-propagating 

fracture will be first analyzed which means that the fracture geometry, i.e., its length and height 

will remain constant thought the proppant flow simulation. Later, the module is implemented in a 

Boundary Elements Method (BEM) model so that the fracture aperture changes due to the impact 

of the fluid injection and the proppant concentration can be considered.  

The fracture deformation and the fluid flow, are strongly coupled as the fracture deformation 

influences in the pressure distribution and the pressure distribution heavily influences in the 
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fracture deformation, so a system of equations combining the coefficient matrices of BEM and 

FEM is formed to simultaneously calculate the fracture width 푤, and the pressure 푝. After these 

two parameters are calculated the velocity field in the fracture can be estimated for use in 

determining proppant concentration distribution. The slurry is a mixture of fracturing fluid and 

proppant particles, the flow of slurry is estimated as a mixture (instead of treating each individual 

component) and later the proppant distribution is calculated using the concept of concentration, 

which is a factor that relates the volume of proppant and the total volume 푐 = . To continue with 

the next time step, the fluid properties (i.e. viscosity and density) are updated and used as input. 

The assumptions considered in the models to estimate fracture aperture, pressure distribution and 

proppant distribution are:  

 Static fracture networks with no propagation 

 All the fractures are completely open before the proppant is injected. 

 Homogeneous and isotropic rock mass,  Newtonian, incompressible fracture fluid 

 Fluid velocity in laminar regime (lubrication theory holds). 

 Proppant particles are spherical with equal sizes and are incompressible, and the diameter 

of proppant particles is much smaller than the width of the fracture. 

. Fig. 3-3 shows the general framework of the coupled system. Details of each component of the 

methodology are discussed in the following sections. 
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Figure 3-3. General framework to estimate the proppant concentration distribution in a 
hydraulic fracture. 
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3.1. Theory and Governing Equations for Proppant Transport and Deposition in a 

Hydraulic Fracture 

 

3.1.1. Elastic Deformation of the Rock Matrix 

 

The stress state at a point of an elastic deformable material can be described with a stress tensor 

defined as (Timoshenko & Goodier, 1970): 

 
휎 휎 휎
휎 휎 휎
휎 휎 휎

 (3.1) 

where 휎 ; (푖, 푗) = (푥,푦, 푧) are the stress components acting on the faces of an infinitesimal 

elements as shown in Fig. 3-4. 

 

Figure 3-4. Infinitesimal volume subjected to stress state. 
 

The equilibrium equation derived from the fundamental concept of equilibrium of forces in the 

푥, 푦 and 푧 directions is expressed as: 

 
휕휎
휕푥 +

휕휎
휕푦 +

휕휎
휕푦 + 푓 = 0 (3.2) 

 
휕휎
휕푥 +

휕휎
휕푦 +

휕휎
휕푧 + 푓 = 0 (3.3) 
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휕휎
휕푥 +

휕휎
휕푦 +

휕휎
휕푧 + 푓 = 0 (3.4) 

 

where 푓 , 푓 , 푓  are the body forces applied to the system in the 푥,푦 and 푧 directions, respectively. 

In indicial notation the equilibrium equations are expressed as (Timoshenko & Goodier, 1970): 

 휎 , + 푓 = 0 (3.5) 

where the comma after the first index denotes partial derivate. In solid mechanics there are 

fundamental concept to describe the deformation of a body. The first one is displacement denoted 

by 푢 and is defined as the change in position of one reference point. The second one is strain 

denoted by 휀 and is defined as the change of displacement with respect to a reference coordinates 

system. Normal strains are mathematically expressed as: 

 휀 =
휕푢
휕푥 ; 	휀 =

휕푢
휕푦 ; 	휀 =

휕푢
휕푧 ; (3.6) 

 

And shear strains are defined as: 

 

휀 = 휀 =
1
2

휕푢
휕푦 +

휕푢
휕푥 ; 

휀 = 휀 =
1
2
휕푢
휕푧 +

휕푢
휕푥 ;		 

휀 = 휀 =
1
2

휕푢
휕푧 +

휕푢
휕푦 ;	 

(3.7) 

Normal and shear strains can be expressed in a single term using indicial notation as: 

 휀 =
1
2 (푢 , + 푢 , 	); (3.8) 

The constitutive relationship between stress and strain is given by: 
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⎩
⎪
⎨

⎪
⎧
휎
휎
휎
휎
휎
휎 ⎭

⎪
⎬

⎪
⎫

=
2퐺

1− 2푣

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 − 푣 푣 푣 0 0 0
푣 1− 푣 푣 0 0 0
푣 푣 1− 푣 0 0 0

0 0 0
1− 2푣

2 0 0

0 0 0 0
1− 2푣

2 0

0 0 0 0 0
1− 2푣

2 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
휀
휀
휀

2휀
2휀
2휀 ⎭

⎪
⎬

⎪
⎫

 (3.9) 

or in indicial notation 

 휎 =
2퐺푣

1 − 2푣 휀 훿 + 2퐺휀  (3.10) 

where 푣 is the Poisson’s ratio, 퐸 is the Young’s modulus, 훿  is the Kronecker delta operator and 

퐺 is the shear modulus defined as: 

 퐺 =
퐸

2(1 + 푣) (3.11) 

The equilibrium equation (3.5) can be rewritten in terms of displacements components using the 

relationship between stress equation (3.10) and the relationship between strain and displacement 

equation (3.8). This form is known as the Navier’s equations and is expressed as: 

 
1

1− 2푣 푢 , + 푢 , = −
푓
퐺 (3.12) 
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3.1.2.  Governing Equation of Fluid Flow Inside a Fracture  

 

A fundamental parameter to describe the movement of the fracturing fluid that is injected to create 

the hydraulic fracture is pressure, 푝. Taking advantage of the law of conservation of mass and 

analyzing the fluid flow in an infinitesimal control volume, an expression that governs the fluid 

flow in a hydraulic fracture can be derived. The mass conservation of proppant for the control 

volume in Fig. 3-5 is described by: 

 

푀푎푠푠	푎푐푐푢푚푢푙푎푡푖표푛	
푤푖푡ℎ푖푛	푎	푠푦푠푡푒푚 	=

푀푎푠푠	푒푛푡푒푟푖푛푔
푡ℎ푒	푠푦푠푡푒푚 − 푀푎푠푠	푙푒푎푣푖푛푔

푡ℎ푒	푠푦푠푡푒푚  (3.13) 

 

Figure 3-5. Infinitesimal control volume of fluid flowing in a hydraulic fracture. 
 

Considering the relationships  

푚푎푠푠	푓푙푢푥 =
푚푎푠푠

(푎푟푒푎)(푡푖푚푒) =
푚푎푠푠
푣표푙푢푚푒 ∙

푙푒푛푔ℎ푡
푡푖푚푒 = 푑푒푛푠푖푡푦 ∙ 푣푒푙표푐푖푡푦 (3.14) 

The mass flux of fluid entering the element at location 푥 through the face (푤 ∙ ∆푧) during a time 

interval ∆푡 is:  

 (휌푣 )(푤∆푧)∆푡 (3.15) 
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The mass flux of fluid leaving the element, at location 푥 + ∆푥 through the face 푤 ∙ ∆푧 during a 

time interval ∆푡 is:  

 휌푣 +
휕(휌푣 )
휕푥 ∆푥 (푤∆푧)∆푡 (3.16) 

 

The mass of fluid entering the element at location 푧, through the face 푤 ∙ ∆푥 during a time interval 

∆푡 is: 

  

 (휌푣 )(푤∆푧)∆푡 (3.17) 

 

The mass of fluid leaving the element, at location 푧 + ∆푧 through the face 푤 ∙ ∆푥 during a time 

interval ∆푡 is:  

 휌푣 +
휕(휌푣 )
휕푥 ∆푧 (푤∆푥)∆푡 (3.18) 

 

The fluid mass accumulation or depletion is represented with the change in mass of fluid per unit 

volume ∆푉 during the period of time ∆푡 expressed as: 

 
휌∆푉 +

휕(휌∆푉)
휕푡 ∆푡 − (휌)∆푉 

 

(3.19) 
 

Substituting equations (3.15) through (3.19) into equation (3.14) as: 

 

 
휕(휌푤∆푥∆푧)

휕푡 ∆푡 = (휌푣 )(푤∆푧)∆푡 − 휌푣 +
휕(휌푣 )
휕푥 ∆푥 (푤∆푧)∆푡 (3.20) 
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 +(휌푣 )(푤∆푧)∆푡 − 휌푣 +
휕(휌푣 )
휕푥 ∆푧 (푤∆푥)∆푡  

 

Dividing the equation by (∆푥∆푧∆푡) we obtain: 

 휕
휕푡

(휌푤) +
휕(휌푣 푤)

휕푥 +
휕(휌푣 푤)

휕푧 = 0 (3.21) 

If the rock mass is permeable, it is expected that some fluid mass without proppant is injected into 

the formation as shown in Fig. 3-5 in the perspective view, this phenomena is called leak-off and 

commonly denoted with 푞 . Considering, this leak-off coefficient the governing equation of the 

fluid flow in a hydraulic fracture is: 

 휕
휕푡

(휌푤) +
휕(휌푣 푤)

휕푥 +
휕(휌푣 푤)

휕푧 + 푞 휌 = 0 (3.22) 

The leak-off coefficient can be modeled with the Carter’s model of leak-off (Howard & Fast, 1970) 

expressed as: 

 푞 =
2퐶

√푡 − 휏
 (3.23) 

where 퐶  is the leak off coefficient which is found from experimental results and 푡 is the current 

time and 휏 is the time when the element gets in contact with the fracturing fluid. 

Additionally, if there is a well adding or subtracting mass from the system, it can be represented 

with an extra parameter as follows: 

 휕
휕푡

(휌푤) +
휕(휌푣 푤)

휕푥 +
휕(휌푣 푤)

휕푧 + 푞 휌 + 휌푄 = 0 (3.24) 

where 푄 is the source term. The pressure distribution in the hydraulic fracture can be calculated 

combining the governing equation (3.22), and the relationship between fluidities and pressure 

found with the parallel plates flow model, equations (A.27) and (A.28) are rewritten here for 

convenience as: 
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 푣 = −
푤
12휇

휕푝
휕푥	 

(3.25) 

푣 = −
푤

12휇
휕푝
휕푧	 

(3.26) 

 

Substituting equations (3.25) and (3.26) into equation (3.22) yields to (Gu, 1987): 

 
휕
휕푡

(휌푤) −
휕
휕푥

휌
푤
12휇

휕푝
휕푥

+
휕
휕푧

휌
푤
12휇

휕푝
휕푧

+ 푞 휌 + 휌푄 = 0 (3.27) 

 

To classify the derived expression, the most general form of a second order partial differential 

equation for a stationary process is considered: 

 퐴
휕 푢
휕푥 + 퐵

휕 푢
휕푥휕푦 + 퐶

휕 푢
휕푦 + 퐷

휕푢
휕푥 + 퐸

휕푢
휕푦 + 퐹푢 + 퐺 = 0 (3.28) 

 

where 퐴,퐵, … ,퐺 are constants and 푢 is the dependent variable. In the resultant governing equation 

(3.27) the dependent variable contains only spatial partial derivatives of order two, making the 

coefficients of equation A = C = G = 1 and B = D = E = F = 0. As the determinant 퐵 − 4퐴퐶 < 0 

then this governing equation is a elliptic type differential equation (Fritz, 1982). The two boundary 

conditions are the fluid flux (injection rate) 푄. An additional boundary condition required relates 

to the fracture front which is usually assumed as a no-flow boundary condition or zero fluid flux 

condition. The zero fluid flux condition at the fracture front is valid only for the cases where there 

is no lag between the fracture and fluid fronts, which is a prevalent condition in most of the 

hydraulic fracturing problems (Dontsov & Peirce, 2014a). If we consider a domain describing a 

hydraulic fracture surface (훺) as shown in Fig. 3-6 and recognize that at the tip of the fracture is 
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close, a no flow boundary condition at the tip is appropriate to describe the phenomenon, which is 

mathematically expressed as (Gu, 1987): 

 휌
푤

12휇
휕푝
휕푛 = 0	표푛	훤 (3.29) 

where 훤 represents the boundary enclosing the domain 훺 and 푛 represents the normal vector to 

the fracture boundary as shown in Fig. 3-6. 

 

 

Figure 3-6. Idealized square shaped fracture. Length and height are in meters while the 
fracture aperture represented by section A-A’ is in millimeters. Ω represents the 
domain of the fracture, Γ represent the boundary of the fracture which are set to 
no flow boundaries and 풏 represents the outward normal vector to the fracture. 

 

3.1.3. Proppant Transport Governing Equation 

 

To derive a governing equation for the proppant flow and transport inside a hydraulic fracture, the 

flow of slurry (i.e., mixture of fracturing fluid and proppant particles) through an infinitesimal 

volume as shown in Fig. 3-7 is analyzed following an approach similar to (Ouyang et al., 1997). 

Applying the law of conservation of mass, a differential equation is obtained. Instead of solving 
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the problem for each component of the mixture, only one expression is used to solve the proppant 

distribution which relates the volume of the mixture and the volumetric concentration of proppant 

(Adachi et al., 2007; Gadde & Sharma, 2005; Ouyang et al., 1997; Pearson, 1994). 

The following assumption are made: (a) The proppant particles are spherical with equal sizes (b) 

The diameter of proppant particles is much smaller than the fracture width (c) proppant particles 

and fracturing fluid are incompressible. 

 

Figure 3-7. Infinitesimal control volume for conservation of mass to studry the proppant 
transport in a hydraulic fracture. 

 

The volume concentration of proppant can be defined as the volume of proppant per unit volume 

of slurry as (Ouyang et al., 1997): 

 
푐 =

푉
푉  

 

(3.30) 

where 푉  is the volume of proppant and 푉 is the volume of slurry. The mass density of proppant 

consisting of particles of uniform size can be defined as: 

 휌 =
푀
푉  (3.31) 
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where 푀  is the proppant mass. The density of proppant in fracturing fluid, defined as the mass of 

proppant per unit volume of slurry (푉) is: 

 휌 =
푀
푉  (3.32) 

 

a correlation among 푐, 휌  and 휌  is then 

 휌 =
푀
푉 =

푉
푉
푀
푉 = 푐휌  (3.33) 

Recalling that 푚푎푠푠	푓푙푢푥 = 푑푒푛푠푖푡푦 ∙ 푣푒푙표푐푖푡푦 as shown in equation (3.14), the mass flux of 

proppant then relates density of the proppant in as follows: 

 푚푎푠푠	푓푙푢푥	표푓	푝푟표푝푝푎푛푡 = 푐휌 푣 (3.34) 

The mass flux of proppant entering the element at location 푥 through the face (푤 ∙ ∆푧) during a 

time interval ∆푡 is:  

 푐휌 푣 (푤∆푧)∆푡 (3.35) 

The mass flux of proppant leaving the element, at location 푥 + ∆푥 through the face 푤 ∙ ∆푧 during 

a time interval ∆푡 is given as:  

 푐휌 푣 +
휕 푐휌 푣

휕푥 ∆푥 (푤∆푧)∆푡 (3.36) 

 

The mass of proppant entering the element at location 푧, through the face 푤 ∙ ∆푥 during a time 

interval ∆푡 is given as: 

  

 푐휌 푣 (푤∆푥)∆푡 (3.37) 
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The mass of proppant leaving the element, at location 푧 + ∆푧 through the face 푤 ∙ ∆푥 during a time 

interval ∆푡 is given as: 

 푐휌 푣 +
휕 푐휌 푣

휕푧 ∆푧 (푤∆푥)∆푡 (3.38) 

 

The proppant mass accumulation is represented with the change in mass of proppant per unit 

volume ∆푉 during the period of time ∆푡 expressed as  

 
푐휌 ∆푉 +

휕 푐휌 ∆푉
휕푡 ∆푡 − 푐휌 ∆푉 

 

(3.39) 

Substituting equation (3.35) through (3.39) into equation (3.13) results as: 

 

휕 푐휌 푤∆푥∆푧
휕푡 ∆푡 = 푐휌 푣 (푤∆푧)∆푡 − 푐휌 푣 +

휕 푐휌 푣
휕푥 ∆푥 (푤∆푧)∆푡 

																																			+ 푐휌 푣 (푤∆푧)∆푡 − 푐휌 푣 +
휕 푐휌 푣

휕푥 ∆푧 (푤∆푥)∆푡 

(3.40) 

 

Dividing the equation by (∆푥∆푧∆푡) we obtain, 

 휕
휕푡 푐휌 푤 +

휕 푐휌 푣 푤
휕푥 +

휕 푐휌 푣 푤
휕푧 = 0 (3.41) 

 

If we assume that the proppant density is constant, the above equation can be further simplified. 

The final form on the governing equation is given as (Adachi et al., 2007; Gadde & Sharma, 2005; 

Pearson, 1994): 

 휕(푐푤)
휕푡 +

휕(푐푣 푤)
휕푥 +

휕(푐푣 푤)
휕푧 = 0 (3.42) 
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The dependent variable in the resulting governing equation (3.42) contains only partial derivatives 

of order one, if we consider the general form of a second order partial differential equation, the 

coefficients of the equation (3.28), are D = E = 1 and A = B = C = F = G = 0. As the determinant 

퐵 − 4퐴퐶 = 0, then this governing equation is a parabolic type differential equation (Fritz, 1982), 

also known as the pure advection equation, The first term in Eq. (3.42) is referred to as the 

accumulation term and the second and third terms are referred to as the advective terms (Donea & 

Huerta, 2004). 

The boundary conditions can be described by considering that there is no flow of proppant (and 

fluid) beyond the boundary (i.e., the fracture surface and edge or tips) so that a Newman type 

boundary condition is set: 

 
휕푐
휕푛 = 0	표푛	훤 (3.43) 

 

where 푛 represents the normal direction to the boundary and 훤 represents the boundary of the 

domain 훺 as shown in Fig. 3-8. Considering zero proppant concentration as initial condition which 

is mathematically represented as: 

 푐(푥,푦, 0) = 0	표푛	훺 (3.44) 
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Figure 3-8. Idealized square shaped fracture. Length and height are in meters while the 
fracture aperture represented by section A-A’ is in millimeters. Ω represents the 
domain of the fracture, Γ represent the boundary of the fracture which are set to 
no flow boundaries and 풏 represents the outward normal vector to the fracture. 

 

3.1.4.  Proppant Settling in a Hydraulic Fracture  

 

In equation (3.42), the proppant concentration would vary with fluid velocity and fracture aperture; 

hence, to be able to solve for the proppant concentration, the pressure and fracture aperture 

distributions need to be determined. This is usually done by solving a fracture deformation and 

fluid flow model where the pressure and fracture aperture are calculated using a coupled scheme. 

Then, assuming that the change in aperture and in pressure is not affected within each time step, 

i.e. a quasi-steady state, implies that the concentration of the proppant does not affect the velocity 

field in a small time increment (compared with the total injection time) the proppant concentration 

is determined. The proppant concentration is considered to only affect the fluid properties and not 

the pressure and width directly. As a result, these relationships are considered as weakly coupled 

whereby the proppant concentration is calculated at the end of each time step. A similar approach 
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is adopted by other investigators (Adachi et al., 2007; Dontsov & Peirce, 2015; Lavrov, 2011; 

Ouyang et al., 1997; Tang et al., 2016).  

Considering, the parallel plates flow model, the average velocities in a fracture with respect to the 

aperture 푤 and pressure 푝 are expressed by equations (A.27) and (A.28) shown in Appendix A, 

these equations are rewritten here for convenience: 

 푣 = −
푤
12휇

휕푝
휕푥 (3.45) 

 

 푣 	 = −
푤

12휇
휕푝
휕푧 (3.46) 

 

Substituting the fluid velocities in the governing equation (3.42) results as: 

 
휕(푐푤)
휕푡 −

휕
휕푥	 푐

푤
12휇

휕푝
휕푥 −

휕
휕푧	 푐

푤
12휇

휕푝
휕푧 = 0 (3.47) 

 

To account for the proppant settling phenomenon in the model, the velocity field is modified by 

adding the settling velocity to the vertical (i.e., z-component) of the fluid velocity (Novotny, 1977): 

 푣 = 푣 + 푣  (3.48) 

The settling velocity 푣  is determined based on the calculations of the terminal velocity and 

additional empirical correction factors that account for the effect of the fracture width, and 

proppant concentration (Adachi et al., 2007; Gadde et al., 2004; Novotny, 1977). When the 

gravitational force (퐹 ), the drag force (퐹 ) and the buoyancy force (퐹 ) acting in a particle 

moving in a fluid as shown in Fig. 3-9 are in equilibrium, an expression to calculate the terminal 

velocity can be estimated. The gravitational force is defines as (Batchelor, 1967; Stokes, 1905): 
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 퐹 =
1
2휌푣 퐶 퐴 (3.49) 

where 휌 is the density of the fluid, 푣 is the flow velocity relative to the object, 퐴 is the cross 

sectional area of the object and 퐶  is the drag coefficient. The reference area of a sphere is: 

 퐴 =
휋푑

4  (3.50) 

Replacing equation (3.50) into equation (3.49), the result is: 

 퐹 =
휋휌푣 퐶 푑

8  (3.51) 

The gravitational force is defined as: 

 퐹 = 푚푔 = 휌 푉 푔 = 휌
1
6휋푑 푔 (3.52) 

where 푚 is the mass of the particle, 푔 is the gravity, 휌  is the density of the particle and 푉  is the 

volume of the particle. The buoyancy force is the weight of the displaced fluid expressed as: 

 퐹 = 휌 푉 푔 = 휌
1
6휋푑 푔 (3.53) 

where 휌  is the density of the fluid and 푉  is the volume of the displaced fluid. The force 

equilibrium is expressed as: 

 퐹 + 퐹 = 퐹  (3.54) 

 

Figure 3-9. Forces and Streamlines for flow due to a moving spherical particle (Batchelor, 
1967). 
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Substituting equations (3.51), (3.52) and (3.53) into equation (3.54), the result is: 

 휋휌푣 퐶 푑
8 =

1
6휋푑 (휌 − 휌 )푔 (3.55) 

The Reynolds number is define as (Stokes, 1905): 

 
푅푒 =

휌 ∗ 푣 ∗ 푑
휇  

 

(3.56) 

For 푅푒 < 2 (Stokes’ law region) the inertial effects can be neglected and 퐶 = 24/푅푒, resulting in 

the terminal velocity (Stokes, 1905): 

 푣 =
푔 휌 − 휌 푑

18휇  (3.57) 

If 2 < 푅푒 < 500 (intermediate region) then 퐶 = 18.5/푅푒 . , this drag coefficient was obtained 

experimentally, resulting in the terminal velocity (Novotny, 1977): 

 푣 =
20.34 휌 − 휌

.
푑 .

휌 . 휇 .  (3.58) 

If 푅푒 > 500 (turbulent flow) then 퐶 = 0.44, this drag coefficient was also obtained 

experimentally, resulting in the terminal velocity (Novotny, 1977): 

 푣 = 1.74
푔 휌 − 휌 푑

휌  (3.59) 

The behavior of a particle transported in an infinite fluid and a particle transported between rough 

parallel walls is different, hence an empirical correction factor that account for this phenomenon 

needs to be considered. As shown in Fig. 3-10, if the particle is relatively large with respect to the 

fracture width, the correction factor tends to smaller values, restricting the settling velocity. This 

correction factor is expressed as (Gadde et al., 2004): 
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 푓 = 0.563
푑
푤 − 1.563

푑
푤 + 1  (3.60) 

The particle concentration also affects the behavior of the movement of the particles and an 

additional correction factor is needed, it was found that the higher concentrations lead to a decrease 

in the settling velocity, as shown in Fig. 3-11. The correction factor is expressed as (Gadde et al., 

2004): 

 푓 = (2.37푐 − 3.08푐 + 1) (3.61) 

 

Finally, combining all of the above effects, the corrected settling velocity is given as: 

 푣 = 푣 ∗ 푓 ∗ 푓  (3.62) 

   

 

Figure 3-10. Wall effect correction factor behavior as expressed with equation (3.60)
(Gadde et al., 2004). 
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Figure 3-11. Concentration effect correction factor behavior as expressed with equation 
(3.61) (Gadde et al., 2004). 

 

Figure 3-12 shows an example of an idealized hydraulic fracture where the injection point is 

located at the center (wellbore). The fluid velocity field is calculated in two cases, in the first case 

the settling velocity is neglected and in a second case the settling velocity is added to the y- 

component to study the effect in the velocity field. It can be noticed that in the first case the vectors 

follow a radial path while in the second case after some distance of the injection point the trajectory 

of the vectors is downwards.  

0
0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6
f c

C (Vp/Vt)



45 

 

Figure 3-12. Example of velocity field calculations in an idealized rectangular hydraulic 
fracture. A) Injection into a hydraulic fracture showing the injection point and 
zoom area, B) Zoom in showing the resultant velocity field disregarding the settling 
velocity. B) Zoom in showing the resultant velocity field considering the settling 
velocity with equation (3.62) . 
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3.1. Numerical Procedures 

 

In this section, detailed descriptions of the numerical implementation procedures for the model are 

presented. A coupled scheme is applied to simultaneously solve the solid rock and fracture 

deformation described by equation (3.12).The fluid flow equation inside the hydraulic fracture is 

described by equation (3.27) so the coupling of fracture width (푤) and fluid pressure (푝)	is	strong. 

The fracture deformation is solve for by  using the Displacement Discontinuity Method,  and the 

fluid flow equation is discretized using the Finite Element Method (FEM), the resultant matrices 

from the discretization are solved simultaneously using a coupled scheme (Kumar & Ghassemi, 

2016). With the solutions of fracture width and fluid pressure as input, the proppant flow and 

transport equation, equation (3.42) is discretized using the Finite Element Method with Streamline 

Upwinding Petrov Galerkin (SUPG) (Brooks & Hughes, 1982).  

 

The finite difference method (FDM) and the finite volume method (FVM) are the other commonly 

used techniques for the numerical solution of the proppant flow and transport in a hydraulic 

fracture equation, equation (3.42) (Anderson, 1995). In the Finite Difference Method (FDM) each 

derivative in the differential equation is approximated with difference formulas derived based on 

the Taylor series expansions (Anderson, 1995). The FDM has flexibility to choose the flow 

direction, and allows explicit discretization in time. Usually domain is discretized using either 

square or rectangular elements, a downside when it comes to model problems with complex 

geometries. Although an iso-parametric formulation could be implemented, the formulation 

becomes complicated and in many cases impractical (Anderson, 1995). For the complex fracture 

geometries, the finite element and finite volume offers more flexibility; since, a wide variety of 

elements (i.e., triangular or quadrilateral elements) can be used to fit a given complex fracture 
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geometry. The Finite Element Method (FEM) being the most generalized method, brings a 

systematic framework to discretize and solve any type of differential equation. The FEM is based 

on variational method where the differential equation is written in an integral form called weak 

form. The solution is approximated by the addition of piecewise functions and minimizing the 

residual error. The objective is to reduce the demands of continuity of the functions, called shape 

functions, which are used to approximate the solution.  

 

The fluid flow and proppant transport governing equation are first solved for simple and fixed 

geometries that could be discretized with squares. However, the proppant transport solution is then 

used in a more robust simulator (Kumar and Ghassemi,2016) to treat more complex problems. 

With these objectives in mind, the FEM seems to be the most reasonable choice to develop the 

complementary module to solve the proppant flow and transport equation. 

3.1.1.  Weak Form of the Fluid Flow Inside a Fracture Equation 

 

In the Finite Element Method (FEM), the governing equation in differential form, in this case 

equation (3.27), is commonly referred as the strong form of the problem. The first step of the FEM 

is to derive an integral equation equivalent to the strong form, known as weak form. To obtain the 

weak form, the strong form of the governing equation is multiplied by an arbitrary weight function 

휀(푥, 푦), and integrated over the domain in which they hold, the result is expressed as (Gu, 1987): 

 

 
휀
휕
휕푡

(휌푤) −
휕
휕푥

휌
푤
12휇

휕푝
휕푥

+
휕
휕푧

휌
푤
12휇

휕푝
휕푧

+ 푞 휌 + 휌푄 푑푥푑푧
	

= 0 

 

(3.63) 
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To apply Neumann or flux boundary conditions, further manipulation is required, second 

derivatives of the primary unknown, in this case pressure (푝), are integrated by parts using Green’s 

lemma (Donea & Huerta, 2004).  

 휀
휕
휕푥 휌

푤
12휇

휕푝
휕푥 푑푥푑푧

	
= −

휕휀
휕푥 휌

푤
12휇

휕푝
휕푥 푑푥푑푧

	
+ 휀휌

푤
12휇

휕푝
휕푥 푛 	푑훤

	
 (3.64) 

 

 

휀
휕
휕푧 휌

푤
12휇

휕푝
휕푧 푑푥푑푧

	

= −
휕휀
휕푧 휌

푤
12휇

휕푝
휕푧 푑푥푑푧

	
+ 휀휌

푤
12휇

휕푝
휕푧 푛 	푑훤

	
 

(3.65) 

 

where 푛  and 푛  are the components of the normal vectors in 푥 and 푧 direction respectively and 훤 

represents the boundary of the fracture. Substituting equations (3.64) and (3.65) in the equation 

(3.63) results as: 

 

휌 휀
휕(푤)
휕푡 −

푤
12휇

휕휀
휕푥

휕푝
휕푥 +

휕휀
휕푧
휕푝
휕푧 + 휀푞 휌 + 휀휌푄 푑푥푑푧

	
+ 휀휌

푤
12휇

휕푝
휕푥 푛 	푑훤

	

+ 휀휌
푤
12휇

휕푝
휕푧 푛 	푑훤

	
= 0 

 

(3.66) 

As mentioned earlier, a no flow boundary condition at the fracture front (훤) needs to be imposed 

to appropriately simulate the behavior of a hydraulic fracture, which can be mathematically 

rewritten as: 

 휌
푤
12휇

휕푝
휕푥 = 0 (3.67) 
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휌
푤
12휇

휕푝
휕푧 = 0 

 

(3.68) 

Using above no-flow boundary conditions, equation (3.66) reduces to 

 
휌 휀

휕(푤)
휕푡 −

푤
12휇

휕휀
휕푥

휕푝
휕푥 +

휕휀
휕푧
휕푝
휕푧 + 휀푞 휌 + 휀휌푄 푑푥푑푧

	
= 0 

 

(3.69) 

As the continuity of the equations needed to approximate the solution are split between the weight 

function and the unknown, in this case pressure, this final equation is known as the weak form  

 

3.1.2.  Spatial Discretization of the Fluid Flow Inside a Fracture Equation 

 

The continuous function representing the pressure, 푝, in the fluid flow governing equation (3.27), 

is approximated with the summation of the product of piecewise continuous functions and the 

nodal values of the function as follows (Zienkiewicz & Taylor, 2000): 

 푝 = 휙 (푥, 푦)푝  (3.70) 

 

where 휙 is the shape function and 푁푛 is the number of nodes per element. If, the weight function 

is chosen to be the same as the shape function, then the weak form of the fluid flow governing 

equation (3.69) is semi-discretized with the Galerkin finite element method as follows (Gu, 1987; 

Ouyang et al., 1997): 
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 휌 휙
휕(푤)
휕푡 −

푤
12휇

휕휙
휕푥

휕휙
휕푥 푝 +

휕휙
휕푧

휕휙
휕푧 푝 + 휙 푞 휌 + 휙 휌푄 푑푥푑푧

	
= 0 (3.71) 

Equation (3.71) can be written in compact form as:  

 [퐵]{푝} + {푓 } + {푓 } + 푓 = 0 (3.72) 

 

where the coefficient matrix 퐾  is known as the stiffness matrix and is defined as: 

 퐵 = 휌
푤

12휇
휕휙
휕푥

휕휙
휕푥 +

휕휙
휕푧

휕휙
휕푧 푝 푑푥푑푧

	
 (3.73) 

 

And 푓  are the forcing vectors defined as: 

 푓 = 휌휙
휕(푤)
휕푡 푑푥푑푧

	
 (3.74) 

 

 푓 = 휙 푞 휌 	푑푥푑푧
	

 (3.75) 

 

 푓 = 휙 휌훿(푥, 푦)푄	푑푥푑푧
	

 (3.76) 

 

Furthermore the derivative of fracture aperture (푤) with respect to time is approximated with a 

backward finite difference as (Ouyang et al., 1997) 

  

 
휕(푤)
휕푡 =

푤 −푤
∆푡  (3.77) 
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where 푠 denotes the time step in which the derivative is being evaluated, 푤  is the fracture aperture 

in the current time step, 푤  is the fracture aperture in the previous time step, and ∆푡 denotes the 

time increment. 

 

3.1.3. Weak Form of the Proppant Flow and Transport Equation 

 

Following a similar strategy as in section (3.1.1) the weak form of the proppant flow equation 

(3.42) is found multiplying by an arbitrary weight function 휀(푥, 푧), and integrated over the domain 

in which they hold, given as (Ouyang et al., 1997): 

 

 
휀 푤

휕푐
휕푡 + 푐

휕푤
휕푡 +

휕(푐푤푣 )
휕푥 +

휕(푐푤푣 )
휕푧 푑푥푑푧

	
= 0 

 

(3.78) 

In this case to apply Neumann or flow boundary conditions, further manipulation is needed in the 

third and fourth terms also known as the advective terms. They are integrated by parts using 

Green’s lemma as (Donea & Huerta, 2004): 

 휀
휕(푐푤푣 )
휕푥 푑푥푑푧

	
= −

휕휀
휕푥 푐푤푣 푑푥푑푧
	

+ 휀푐푤푣 푛 	푑훤
	

 (3.79) 

 

 휀
휕(푐푤푣 )
휕푦 푑푥푑푧

	
= −

휕휀
휕푧 푐푤푣 푑푥푑푧
	

+ 휀푐푤푣 푛 	푑훤
	

 (3.80) 
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where 푛  and 푛  are the components of the normal vectors in 푥 and 푧 direction respectively and 훤 

represents the boundary of the fracture. Substituting equations (3.79) and (3.80) into equation 

(3.78) results: 

 

휀푤
휕푐
휕푡 + 휀푐

휕푤
휕푡 −

휕휀
휕푥 푐푤푣 −

휕휀
휕푧 푐푤푣 푑푥푑푧

	
+ 휀푐푞 푛 	푑훤

	
+ 휀푤푣 푛 	푑훤

	

= 0 

 

(3.81) 

 

3.1.4.  Spatial Discretization of the Proppant Flow and Transport Equation 

 

Similar to the fracture fluid pressure interpolation in an element, the continuous function 

representing the proppant concentration, 푐, is approximated with the summation of the product of 

piecewise continuous functions and the nodal values of the function as follows (Zienkiewicz & 

Taylor, 2000): 

 푐 = 휙 (푥, 푦)푐  (3.82) 

 

where 휙 is the shape function and 푁푛 is the number of nodes per element. If, the weight function 

is chosen to be the same as the shape function, then the weak form of the governing equation is 

semi-discretized with the Galerkin finite element method as follows: 

 

푤휙 휙
휕푐
휕푡 +

휕푤
휕푡 휙 휙 푐 − 푤푣

휕휙
휕푥 휙 푐 − 푤푣

휕휙
휕푧 휙 푐 푑푥푑푧

	

+ 푤푣 휙 휙 푐 푛 	푑훤
	

+ 푤푣 휙 휙 푐 푛 	푑훤
	

= 0 

(3.83) 
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In the physical model the boundary integrals vanish as the velocities prescribed on the tip elements 

is zero, imposing naturally the boundary condition of no flow. In the verification case, these 

integrals need to be calculated since the velocity is being specified at the boundary. Equation (3.83) 

can be written in compact form as: 

 [퐴]
휕{푐}
휕푡 + [퐵]{푐} = 0 (3.84) 

 

where the coefficient matrix 퐴  is known as the mass matrix and is defined as: 

 퐴 = 푤휙 휙 푑푥푑푧
	

 (3.85) 

 

and the coefficient matrix 퐵  is known as the stiffness matrix and is defined as: 

 

퐵 =
휕푤
휕푡 휙 휙 − 푤푣

휕휙
휕푥 휙 − 푤푣

휕휙
휕푧 휙 푑푥푑푧

	
+ 푤푣 휙 휙 푛 	푑훤

	

+ 푤푣 휙 휙 푛 	푑훤
	

 

(3.86) 

 

3.1.5. Time Discretization of the Proppant Flow and Transport Equation 

 

The backward difference scheme or implicit scheme, is used to discretize in time the semi 

discretized equation (3.84). This scheme is unconditionally stable and larger ∆푡 could be used 

(Ouyang et al., 1997).  

 휕{푐}
휕푡 =

{푐} − {푐}
∆푡  (3.87) 
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where {푐}  is the concentration in the current time step, {푐}  is the concentration in the previous 

time step, and ∆푡 is the increment on time. Replacing in the proppant concentration equation (3.84) 

results: 

 [퐴]	
{푐} − {푐}

∆푡 + [퐵] {푐} = {푓 }  (3.88) 

 

Rearranging the equation as: 

 
[퐴]	

{푐}
∆푡 + [퐵] {푐} = {푓 } +

[퐴]	{푐}
∆푡  

 

(3.89) 

Factorizing and solving for {푐}  

 {푐} = ([퐴]	 + ∆푡[퐵] ) (∆푡{푓 } + [퐴]	{푐} ) (3.90) 

 

 

3.1.6. Coupled Solution of Rock Deformation and Fluid Flow inside a Hydraulic 

Fracture  

 

While the fluid is injected in the formation to create a hydraulic fracture, the pressure exerted 

against the walls changes the geometry of the fracture, the change in the fracture aperture is 

modeled using the Displacement Discontinuity (DD) Method. In the case of a single fracture only 

the normal DD denoted with 퐷 ̅ is considered as the tractions affecting the system are those exerted 

by the fluid pressure 푝 and by the minimum in situ stress 휎  both of these stresses are applied in a 

normal direction with respect to the faces of the fractures as shown in Fig 3-28. Note that this DD 
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normal component 퐷 ̅ is equal to the fracture aperture 푤. The pressure distribution in the fracture 

can be solved using the fluid flow in a fracture governing equation, however among the parameters 

needed to perform this calculation there is 푤, the same variable that we are aiming to solve with 

the DD method, such dependency is denoted as strongly coupled. A methodology for the coupled 

solution is presented next. 
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Figure 3-13. Small element of the fracture, pressure 풑 and the minimum in situ  stress are 
applied in the faces, the global coordinate is rotated to be consistent with the 
notation proposed in (Crouch & Starfield, 1983). 

 

As discussed in Appendix B, Equation (B.17) simulates the deformation of the rock matrix and is 

rewritten here for convenience:  

 휎
,
̅ ̅ = 퐴

, ; ,

̅ ̅
	 퐷

,

̅
	  (3.91) 

where 퐴
, ; ,

̅
	  횥,̅푘 = (푥̅,푦, 푧̅) are defined as the influence coefficients, 퐷

,

̅
	  is the DD normal to 

the surfaces of the fracture, equal to the fracture width 푤 and 휎
,
̅ ̅ are the tractions applied in the 

normal direction to the faces of the fracture. A short notation for equation (3.91) is: 

 {휎 } = [퐴 ]{퐷 ̅} = [퐴 ]{푤 } (3.92) 

where 푤  is the fracture aperture in the current time step. As mention before, the tractions applied 

to the surfaces are represented by: 

 {휎 } = {푝 } − {휎 } (3.93) 
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where 푝  is the injection pressure in the current time step, and 휎  is the stress normal to the fracture. 

Replacing equation (3.93) into equation (3.92) results: 

 [퐴 ]{푤} = {푝 } − {휎 } (3.94) 

 

Rearranging knowns in the RHS and unknowns in the LHS: 

 [퐴 ]{푤} − [푇 ]{푝 } = −{휎 } (3.95) 

where [푇 ] is a transformation matrix which interpolates nodal values of the fluid pressure to 

centroid values in an element (Chakra, 2012). The pressure can be calculated using the fluid flow 

in a fracture governing equation, its discretized form, equation (3.72) is rewritten here for 

convenience: 

 [퐵]{푝 } = −{푓 } − {푓 } + 푓  (3.96) 

where [퐵]	is the stiffness matrix. Recalling that 푓  is the forcing vector which describes the 

fracture deformation, defined as: 

 

 푓 =
푤 − 푤

∆푡 휌휙 푑푥푑푦
	

 (3.97) 

Rearranging the terms of equation (3.96) where knowns are in the RHS and unknowns in the LHS 

as: 

 

 [퐵]{푝} + [퐵 ]푤 =
푤
∆푡 휌휙 푑푥푑푦

	
− {푓 } + 푓  (3.98) 

The matrix [퐵′] is defined as: 

 [퐵 ] = [푇 ]′
1
∆푡 휌휙 	푑푥푑푦

	
 (3.99) 
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where	[푇 ]′ is the transpose of the [푇 ] array. Defining the vector 푓  as: 

 푓 =
푤
∆푡 휌휙 푑푥푑푦

	
− {푓 } − 푓  (3.100) 

The coupled system of differential equations can be solved assembling a complete system of linear 

equations in the form: 

 
[퐵] × [퐵′] ×
[푇 ] × [퐴 ] ×

푝
푤

= 푓
−휎  (3.101) 

 

where 푁푛 is number of nodes and 푁푒 is number of elements. The matrix of coefficients [퐴 ] 

depends only in geometrical terms and it is calculated only once, in the other hand the matrix [퐵] 

is function of the unknown width, then, an initial guess is required to solve the system of equations 

in the first time step. The initial guess is usually a small number representing the hydraulic aperture 

of the fracture. The resultant width is compared with the previous value to check convergence with 

the following relationship: 

 
∑ |푤 −푤 |

∑ |푤 |
< 휖 (3.102) 

where 푁푒 is number of elements, 푤  is fracture aperture in the current time step, 푤  is the 

fracture aperture in the previous time step and 휖 is a given tolerance. If the error is greater than the 

tolerance then the sub-indices matrix [퐵] is calculated again and the coupled system of linear 

equation is evaluated once more. The process is repeated until the method converges. A flow chart 

describing the process is shown in Fig. 3-14. 
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Figure 3-14. Flow chart describing the methodology to solve the coupled system of 
equations of deformation and fluid flow in a hydraulic fracture. 
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3.1.7.  Coupling Proppant Flow and Transport inside a Hydraulic Fracture Model 

 

After the pressure and fracture aperture are calculated simultaneously with the coupled scheme, a 

quasi-steady state within each time step is assumed implying that the concentration of the proppant 

does not affect the velocity field until the next time step. The proppant concentration equation is 

then loosely coupled and it is used to update the slurry properties of viscosity, μ, and density, ρ, 

that are function of proppant concentration. The dynamic viscosity 휇  of the slurry can be 

calculated using the empirical formulation proposed by Shook (1991), in Fig. 3-15 is shown how 

the viscosity of the slurry will substantially increase with larger values of concentration as the solid 

particles require more force to flow: 

 휇 = 휇 [1 + 2.5푐 + 10푐 + 0.00273푒 . ] (3.103) 

where 휇  is the dynamic viscosity of the carrying fluid and 푐 is the volume fraction of proppant. 

The density of the slurry is updated with the relationship (Ouyang, 1994): 

 휌 = 	푐휌 	+ (1− 푐)휌  (3.104) 

These values are calculated at the end of the time step and are input for the next time step (a flow 

chart describing the process is shown in Fig. 3-16). 

 

Figure 3-15. Dynamic Viscosity as expressed with equation (3.60) (Shook & Roco, 1991). 
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Figure 3-16. Flow chart describing the methodology to solve the coupled system of 
equations of proppant transport, deformation and fluid flow in a hydraulic 
fracture. 
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3.1.8. Instability of the Finite Element Solution for the Proppant Transport 

Governing Equation 

 

Applying the Galerkin FEM spatial discretization to the advective terms of hyperbolic differential 

equations like the governing equation (3.42), leads to the product of the shape function and the 

derivative of the shape function expressed as (Donea & Huerta, 2004; Zienkiewicz & Taylor, 

2000): 

 푤푣
휕휙
휕푥 휙 푑푥푑푧

	
 (3.105) 

 

This product results in an unsymmetrical element matrix which contains zero values in the main 

diagonal, once the element matrix is assembled into the global matrix to form the final system of 

equations, the zero values in the diagonal cause  a spurious and unstable solution (Donea & Huerta, 

2004). In Fig. 3-17, an example of the proppant concentration distribution after solving the 

equation (3.42) is shown. Although the domain was geometrically discretized with a fine mesh 

containing 1600 elements, the solution is erratic and unreasonable. 
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Figure 3-17. Proppant concentration distribution at t=239 s. In a 30m by 30m idealized 
fracture, discretized with a fine mesh consisting of 1600 square elements. The 
solution with Galerkin FEM shows instability and erratic behavior. 

 

3.1.9. SUPG FEM Stabilization of the Proppant Transport Governing Equation 

 

To overcome the solution instability of the governing equation (3.42) shown in Fig. 3-17, the 

Streamline Upwinding Petrov Galerkin (SUPG) was implemented. The main objective is to modify 

the weight function to give more weight to the upwind flux, this change in the shape function leads 

to more symmetric systems of equation and consequently stabilizing the approximate solution. 

This can be accomplish by adding an extra term to the standard shape functions, From the many 

options available, one term that has been implemented with success is (Brooks & Hughes, 1982): 

 푁 = 휙 +
훼

푣 + 푣
푣
휕휙
휕휉 + 푣

휕휙
휕휂  (3.106) 

 

where 휙 is the standard shape function, 푖 is the 푖  node in the element and 훼 is defined as: 
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 훼 =
휉푣 ℎ + 휂푣 ℎ

2  (3.107) 

where 

 휉 = coth훼 −
1
훼 ,						휂 = coth훼 −

1
훼  (3.108) 

 

 훼 =
푣 ℎ

2휅 ,					훼 =
푣 ℎ

2휅  (3.109) 

푣  and 푣  are the velocities in 휉 and 휂 directions, ℎ  and ℎ  are the characteristic lengths as shown 

in Fig. 3-18, 휅 is the slurry diffusivity coefficient. Note that when the domain is discretized with 

square elements, the directions 휉 and 휂 coincide with the global directions 푥 and 푦. 

 

Figure 3-18. Recommended characteristic element lengths 풉휼 and 풉흃 in the 흃 and 휼
directions which are parallel to the lines (흃,휼 = ퟎ) and (흃 = ퟎ,휼). In case of a square 
elements these lengths coincide with the element side length. 

 

The fact that the choice of the weight function is different from the shape function used to 

approximate the solution, and that the weigh function now accounts for the upwinding flow, gives 

the name to the method Streamline Upwind Petrov Galerkin (SUPG). To implement the SUPG 

stabilization into the formulation, the mass matrix 퐴  from equation (3.85) is modified as follows: 
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 퐴 = 푤푁 휙 푑푥푑푧
	

 (3.110) 

And the stiffness matrix 퐵  in equation (3.86) is modified as follows. 

 

퐵 =
휕푤
휕푡 푁 휙 −푤푣

휕휙
휕푥 휙 − 푤푣

휕휙
휕푧 휙 푑푥푑푧

	
+ 푤푣 푁 휙 푛 	푑훤

	

+ 푤푣 푁 휙 푛 	푑훤
	

 

(3.111) 

To test the SUPG stabilization technique, the numerical example in Fig. 3-17 is performed again 

using the stabilization technique. The resultant proppant distribution is shown in Fig. 3-18, it can 

be observed that the proppant concentration distribution is smoothed. 

 

Figure 3-19. Proppant concentration distribution in at t=239 (s) In a 30m by 30m idealized 
fracture. The application of the SUPG FEM improves the solution as compared 
with Fig. 3-17. 
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3.2. Models Verification 

 

In this section, verifications of each module separately are presented. In well-defined domains, the 

governing equations for fracture deformation, Eq. (3.12), fluid flow inside a fracture, Eq. (3.27) 

and proppant transport in a fracture, Eq. (3.42) are solved numerically. The results from this 

numerical analysis are compared against analytical solutions to verify the correctness of the 

implementation. The verification of the coupled scheme to calculate fracture aperture and fluid 

pressure can be found elsewhere (Kumar & Ghassemi, 2016, 2018) and is not repeated here. 

3.2.1. Verification of the Solution of Rock Deformation 

 

For the first verification, the width distribution in a penny-shaped fracture subjected to a constant 

pressure is calculated with the constant DD method. The domain is discretized with squares as 

shown in Fig. 3-20, the numerical result is compared with the analytical solution of a penny shaped 

fracture subjected to a constant pressure proposed by (Sneddon, 1945): 

 푤(푟) =
4푝 (1− 푣)푅

휋퐺 1−
푟
푅  (3.112) 

where 푤(푟) is the fracture width, 푝  is the net fluid pressure, R is the radius of the fracture and 

푟 is the radial distance of any point on the fracture surface. The verification simulation was 

performed considering the input data as listed in Table 3-1. A distribution of the fracture aperture 

and its comparison against the analytical solution are presented in Fig. 3-21 and 3-22, respectively. 

The results from the DD model and the analytical solution show a close agreement as shown in 

Fig. 3-22 
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Table 3-1. Data considered to perform the DD model verification. 
Property Value Units 

Young modulus (퐸) 27 GPa 

Poisson’s ratio (푣) 0.25  

Fluid pressure (푝) 3.42 MPa 

 

 

Figure 3-20. Penny shape fracture geometry discretized with squares, ∆풙 = ∆풚 =
ퟎ.ퟎퟒퟓ	풎, 1528 elements. 
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Figure 3-21. Fracture aperture distribution of a penny shaped fracture subjected to 
constant fluid pressure equal to 3.42 MPa. 

 

 

Figure 3-22. A comparison of the fracture aperture for a pressurized penny shaped 
fracture from the DD model and analytical solution (Sneddon, 1945). The results 
show a close agreement. 
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3.2.2. Verification of the Fluid Flow inside a Fracture Equation  

 

For the second verification, the fluid flow inside a fracture equation (3.27) is solved in a circular 

fracture with an injection and a production well system as shown in Fig 3-23. A plan-view of the 

fracture with the injector and producer wells is shown in Fig. 3-24.  

 

Figure 3-23. Scheme of the Penny shaped horizontal fracture intercepted by two wells, one 
injector and one producer. 
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Figure 3-24. Penny shaped horizontal fracture discretized with rectangles oriented 
arbitrarily. The injector well is located at x=-25, y=0 and the producer is located at 
x=25, y=0. Additionally there is an arbitrary line where the analytical and 
numerical solutions are plotted for comparison. 

 

An analytical solution for the fluid distribution for this case is given as (Ghassemi and Tarasov, 

2003; Strack, 1989): 

 

 푞 =
1

2휋 푄
푥 − 푥

(푥 − 푥 ) + (푦 − 푦 ) +
푟 (푥푟 − 푥 푅 )

(푥푟 − 푥 푅 ) + (푦푟 − 푦 푅 ) 	  (3.113) 

 

 푞 =
1

2휋 푄
푦	 − 푦

(푥 − 푥 ) + (푦 − 푦 ) +
푟 (푦푟 − 푦 푅 )

(푥푟 − 푥 푅 ) + (푦푟 − 푦 푅 ) 	  (3.114) 

 

where 푞 , 푞  are the discharges per unit width in 푥 and 푦 directions respectively, 푄  is the fluid 

extraction rate of the 푖  well, the summation of all the rates must be equal to zero since this 

solution doesn’t account for the fluid leak-off. 푛  is the number of wells, (푥 , 푦 ) are the 
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coordinates of the 푖  well, 푅 is the radius of the circular fracture and the radial distance 푟  is 

defined as: 

 푟 = 푥 + 푦  (3.115) 

The comparison is possible considering the relationship between pressure and velocity given in 

Appendix A by equation (A.31) and (A.32) rewritten here for convenience as: 

 푞 = −
푤

12휇
휕푝
휕푥 (3.116) 

 푞 	 = −
푤

12휇
휕푝
휕푦 (3.117) 

 

The input data used to perform the comparison is listed in Table 3-2.  

 

Table 3-2. Input parameters for the fluid flow verification. 
Property Value Units 

Fracture radius (푅) 50 푚 

Fluid injection rate (푄 ) 1 × 10  푚 /푠 

(푥 ,푦 ) location of injection well (−25,0) 푚 

Fluid extraction rate	(푄 ) −1 × 10  푚 /푠 

(푥 ,푦 ) location of extraction well (25,0) 푚 

 

In Fig. 3-25 the numerical results calculated using FEM model show a close agreement with the 

analytical solution, Both solutions are compared over an arbitrary line traced in the domain of the 

fracture as shown in Fig. 3-24.  
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Figure 3-25. Comparison of the numerical and analytical solutions for the penny shaped 
fracture with two wells problem. The data is plotted over the line traced as shown 
in Fig. 3-24. 

 

3.2.3. Verification of the Proppant Flow and Transport Equation 

 

For the last verification, the governing equation of the proppant flow and transport (3.42) is 

rewritten here for convenience: 

 

휕(푤푐)
휕푡 −

휕(푐푤푣 )
휕푥 −

휕(푐푤푣 )
휕푧 = 0 

 

(3.118) 

where 푤 is the fracture aperture, 푐 is the concentration of proppant and 푣  and 푣  are the velocities 

in 푥 and 푦 directions, respectively. 
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To verify the FEM solution for the proppant flow and transport, in the absence of an analytical 

solution that could test all the terms in the governing equation, a solution is created using the 

method of manufactured solutions. The method, used for many time without an specific name, was 

finally formalized by (Roache, 1998, 2002) and (Salari & Knupp, 2000). The terms of the left hand 

side of the differential equation are replaced by smooth known functions (i.e. fracture width (푤), 

proppant concentration (푐), proppant velocity (푣 	푎푛푑	푣 )) , after solving the differentiations in 

the equation, a force term is produced. To test the numerical scheme, the input would be the forcing 

vector; the objective is then to match as close as possible the known functions that were used as 

input in the first place. The selected functions do not imply a physical meaning as the main 

objective is to make sure that the differential equation is solved correctly with the discretization 

scheme selected, in this case FEM. The geometry chosen to represent the hypothetical fracture is 

a unit square as shown in Fig. 3-26. 

 

Figure 3-26. A schematic of fracture geometry with prescribed boundary conditions to 
verify the solution of the proppant flow and transport inside a hydraulic fracture
equation. 
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The initial and boundary conditions, and concentration variation is (Ouyang, 1994): 

 푤 = 푒  (3.119) 

 푣 = 1 (3.120) 

 푣 = 0 (3.121) 

 푐 = 푒  (3.122) 

 

Replacing equations (3.119) through (3.122) into equation (3.118) the result is: 

 

 푓 =
휕(푒 푒 )

휕푡	 −
휕(푒 푒 )

휕푥  (3.123) 

After solving the differentiations, the result is: 

 푓 = (5푒 )푒  (3.124) 

 

The hypothetical equation that needs to be solved for the concentration to test the numerical 

implementation is given as: 

 휕(푤푐)
휕푡 −

휕(푐푤푣 )
휕푥 −

휕(푐푤푣 )
휕푧 = (5푒 )푒  (3.125) 

 

With the boundary condition: 

 푐 = 1	푎푡	(0, 푧, 푡) (3.126) 

by setting 푐 = 1 at 푥 = 0, the nodes in the left edge of the fracture are considered to be injection 

nodes. Also the velocity is prescribed in the outer nodes with a physical meaning of flow leaving 

the system, to appropriately simulate this condition a Neumann boundary condition is set as:  
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 휕(푐푤푣)
휕푛 = 푐푒 	푎푡	(1, 푧, 푡) 	∪ (푥, 0, 푡) ∪ (푥, 1, 푡) (3.127) 

 

When the injection of proppant begins, there is a hypothetical concentration distribution 

represented with the initial conditions: 

 푐 = 푒 	푎푡	(푥, 푧, 0) (3.128) 

 

 As the chosen function 푐 is independent of time, expressed in equation (3.122), the result is 

expected not to change as in Fig. 3-27: 

 

 

Figure 3-27. Expected numerical solution of equation (3.118) taken from (Ouyang, 1994)
as a reference of a published solution. This plot represents the proppant 
concentration distribution after solving the hypothetical problem defined by 
equations (3.125) – (3.127). The simulation was run for 1s, the size of the side of the 
square in the geometrical discretization is ∆풙 = ퟎ.ퟎퟓ and the time discretization 
was perform with 	∆풕 = ퟎ.ퟎퟏ.  

 

After the forcing vector from equation (3.124) was given as input in the solution scheme the 

concentration distribution was run for 1 s with time increments of 0.01 s. The concentration 

function chosen was independent of time as shown in equation (3.122) so that the solution is 
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expected not to change compared with the initial condition shown in equation (3.128). The 

solutions shown in Fig. 3-28. and 3-29. are in good agreement with the constructed analytical 

solution.  

 

Figure 3-28. Numerical solution of equation (3.118) after 1s (∆풙 = ퟎ.ퟎퟓ,∆풕 = ퟎ.ퟎퟏ	퐬). 
 

 

Figure 3-29. Comparison of the FEM solution at z = 0 against the analytical solution of 
equation (3.118). 
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Chapter 4. Modeling Proppant Transport and Deposition in Hydraulic 

Fracture (s) 

 

This chapter presents a number of example simulations of the proppant flow and transport in a 

hydraulic fracture from a horizontal well. Though, the 3D fractures from a horizontal well can 

have a complex geometry (Kumar & Ghassemi, 2016, 2018, Sesetty & Ghassemi, 2017, 2018), to 

illustrate basic physics of the proppant behavior inside the hydraulic fractures, a simplified fracture 

geometry (i.e., rectangular shape fracture) as shown in Fig. 4-1 is considered first. The horizontal 

well is aligned with the minimum horizontal stress direction (i.e., along x-axis in this case). The 

hydraulic fracture is in the YZ-plane and has the half-length equal to 90 (m) and fracture height is 

equal to 30 (m). For numerical implementation, the fracture surface is discretized using 2400 

constant square elements as shown in Fig. 4-2.  The reservoir rock parameters and in-situ stresses 

are listed in Table 4-1. Two cases of the proppant concentration distributions (i.e., with and without 

proppant settling) are considered. A detailed sensitivity analysis of the impacts of various 

parameters such as the proppant size, carrying fluid viscosity, and simulation mesh size is carried-

out. 
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Figure 4-1. Schematic of a hydraulic fracture simulation. 
 

 

Figure 4-2. Mesh representing the domain of the fixed fracture. 180m wide, 30m 
high, 120 elements in the Y axis and 20 elements in Z axis. The injection 
point is centered in the domain at z=0, y=0. 

 

Table 4-1. Parameters used to test the concentration distribution model 
Rock Properties  

Poisson’s ratio (푣) 0.25    
Young’s modulus (퐸) 27.1  GPa 

 Stress field 
Vertical stress (휎 ) 10   MPa 
Maximum horizontal stress (휎 ) 7   MPa 
Minimum horizontal stress (휎 ) 5   MPa 
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4.1. Proppant Concentration Distribution without Proppant Settling 

 

In this section the proppant concentration distribution without considering the proppant settling is 

presented. In this first simulation, the velocity field is calculated disregarding the settling velocity 

to study an idealized behavior. To study the behavior of the numerical scheme used to solve the 

proppant transport in a hydraulic fracture governing equation, some parameters were taken from 

(Gadde et al., 2004). The mesh representing the domain of the fracture is shown in Fig. 4-2. The 

input parameters are listed in Table 4-2. The proppant flow and transport governing equation (3.42) 

is solved for an injection time of 1295 s. The snap-shot of the proppant concentration distribution 

for four different simulation times (i.e., 545 s, 795 s, 1045 s, and 1295 s) are shown in Figs. 4-4 a, 

b, c, and d, respectively.  

The parameters necessary to calculate the thickness of the proppant pack in each element of the 

discretized hydraulic fracture are: element proppant concentration (푐), element area (퐴), element 

volume (푉), element fracture width (푤), number of proppant layers (푁 ) which can be estimated 

using the relationship in equation (4.3) , and the propped width (푤 ). A schematic of a propped 

element of a hydraulic fracture showing these parameters is presented in Fig 4-3. To find a 

relationship to estimate the proppant layers distribution, first the proppant concentration definition 

is considered, the equation of concentration is rewritten here for convenience: 

 푐 =
푉
푉 =

퐴푤
퐴푤  (4.1) 

where 푉  is volume of proppant, 푉 is total volume, 퐴 is element area, ℎ  is element proppant height 

and 푤 is element fracture width as shown in Fig. 4-3 Noting that the element proppant height is 

expressed as: 
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 푤 = 푁 푑  (4.2) 

Replacing equation (4.2) into equation (4.1) and solving for 푙 , results in: 

 푁 =
푐푤
푑  (4.3) 

 

Figure 4-3. Schematic of a propped element of a hydraulic fracture. 
 

An study that considers the proppant placement behavior and the closure of the fractures can be 

found in (Kumar, D., Gonzalez, R.A., and Ghassemi, 2018). 

 

In this run the velocity field is calculated disregarding the settling velocity to study an idealized 

behavior. As shown in Fig. 4-4, the proppant front is symmetric and smooth as it is increasing with 

injection time. The maximum concentration corresponds to the injection point located at z=0, y =0 

and is subjected to a radial distribution. 
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Table 4-2. Parameters used to test the concentration distribution model 
Injection Parameters 

Injection rate (푄) 0.02   m3/s 
Injection proppant concentration (Vp/V) 0.3     
Fluid viscosity (휇) 0.001  Pa.s 
Fluid density (휌 ) 1000   kg/m3 
Proppant density (휌 ) 2500   kg/m3 
Proppant diameter (푑 ) 300   µm 
Time step (∆푡) 5   s 

 

  



82 

 

 

 

 

Figure 4-4. Proppant concentration distribution. Due to symmetry only half fracture is 
shown. The source point is located at y = 0, z = 0. Injection times are a) t=545 s b)
t=795 s c) t=1045 s d) t=1295 s. 

 

 

a) 

b) 

c) 

d) 
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4.2.Proppant Concentration Distribution with Settling Velocity 

 

In this section the proppant flow and transport governing equation (3.42) is solved for an injection 

time of 1295 s. In this run the velocity field was modified to account for the settling effect. The 

proppant front, as shown in Figure 4-5, is now tilted downwards and most of the concentration is 

being deposited in the lower part of the fracture. In the transition zone of high concentration and 

low concentration represented by the yellow color some fingering is noticed. It is also observed 

that after some time the extent of the proppant front is reduced at the top of the “layer”, these 

phenomena are explained later in this report when the sensitivity analysis is being performed. The 

maximum concentration corresponds to the injection point located at z=0, y =0 and is subjected to 

a radial distribution: 
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Figure 4-5. Proppant concentration distribution with settling effect. Due to symmetry half
of the fracture surface is shown. The injection point is located at y = 0, z = 0  a)
solution at t=545 s b) solution at t=795 s c) solution at t=1045 s d) solution at t=1295
s. 

  

a) 

b) 

c) 

d) 
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4.3. Sensitivity Analysis for the Parameters Affecting the Proppant Concentration 

 

In this section, a detailed sensitivity analysis of the various parameters such as the proppant particle 

size, carrying fluid viscosity, and simulation grid size which impact the proppant flow and 

transport inside a hydraulic fracture is presented. 

 

4.3.1. Effect of Proppant Size 

 

The proppant particle size is one of the most important parameters for the proppant concentration 

distribution. Typically, proppants are classified based on the particle size. For example, 16/30 

mesh size (i.e., the proppant diameter (푑 ) ranges from 600 µm – 1180 µm), 20/40 mesh size 

(i.e.,	푑  ranges from 420 µm - 840 µm), 30/50 mesh size (i.e.,	푑  ranges from 300 µm – 600 µm), 

40/70 mesh ( i.e.,	푑  ranges from 212 µm - 420 µm) or 70/140 mesh size (i.e.,	푑  ranges from 106 

µm - 212 µm).  Simulations for two different type of proppant sizes 20/40 mesh (푑 = 600휇푚) 

and 40/70 mesh (푑 = 300휇푚) were carried out to study the effect of this parameter in the 

evolution of the proppant front. Recently, micro-proppants are being used, this small particles 

classified as 100 mesh (푑 = 150휇푚) had two major advantages, the first is that they can be placed 

in fractures with small apertures such as secondary and tertiary fractures, and the second is that 

less amount of viscosifier is needed to efficiently transport the micro-proppant into these fractures 

thereby reducing the formation damage that the viscosifier may cause. In a hydraulic fracturing 

job, micro proppant would be pumped first in an effort to prop open the micro fractures and then 

larger proppant like 20/40 mesh or 40/70 mesh is pumped to prop open the main hydraulic fracture 

(Dahl et al., 2015).  
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The results of the fluid pressure distribution, fracture aperture distribution, and proppant 

concentration distribution for the four simulation times (i.e., 545 s, 795 s, 1045 s, and 1295 s) are 

shown in Figs. 4-6, 4-7, 4-8 and 4-9, respectively. It is observed that when the proppant size is 

increased, there is more tendency for settling down due to the increase in the hydrodynamic drag 

forces. 

 

For the proppant size 20/40 (푑  = 600휇푚), the proppant front reaches a maximum propped 

distance equal to 34.5m in y axis at t=795 s, in later times, while the horizontal distance of the 

proppant front is reduced, the area under the curve increases showing accumulation in the proppant 

concentration in a more compact front. This behavior with time can be better understood by 

checking Figs. 4-13 and 4-14. In the color plots,  of Fig. 4-6a, Fig. 4-7a, Fig. 4-8a and Fig. 4-9a it 

can be noted that the pressure tends to equalize in the fracture with time, implying a reduction in 

the horizontal proppant velocity so that a reduction in the horizontal distance reached by the 

proppant is to be expected. The horizontal distance reached by the proppant is greatly affected by 

the change in proppant diameter. A comparison of the fluid pressure distribution at z=0 for two 

different proppant sizes (i.e., 40/70 and 20/40 mesh size) is shown in Figs. 4-11 a, b, c and d, 

respectively. In all the solution times considered, the slope of the curves for 푑 = 300휇푚 is always 

greater that those curves for 푑 = 600휇푚 implying a higher horizontal velocity, and as a result, a 

greater transport distance in the y axis.  
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20/40 mesh 40/70 mesh 

 
 

  

  

Figure 4-6. Comparison of simulation results at t = 545 s, left column with a 
proppant size of 600 μm and right column with a proppant size of 300 μm, 
only half fracture is being shown. The source point is located at y = 0, z = 
0  a) pressure distribution in the fracture, b) width distribution in the 
fracture c) concentration distribution. 

 

  

a) 

b) 

c) 
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20/40 mesh 40/70 mesh 

 
 

 

  

  

Figure 4-7.Comparison of simulation results at t = 795 s, left column with a proppant 
size of 600 μm and right column with a proppant size of 300 μm, only half 
fracture is being shown. The source point is located at y = 0, z = 0  a) pressure 
distribution in the fracture, b) width distribution in the fracture c)
concentration distribution. 

 
  

a) 

b) 

c) 
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20/40 mesh 40/70 mesh 

 

 
 

  

  

Figure 4-8. Comparison of simulation results at t = 1045 s, left column with a 
proppant size of 600 μm and right column with a proppant size of 300 μm, 
only half fracture is being shown. The source point is located at y = 0, z = 0  
a) pressure distribution in the fracture, b) width distribution in the fracture 
c) concentration distribution. 

 
  

a) 

b) 

c) 
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20/40 mesh 40/70 mesh 

  

  

  

Figure 4-9. Comparison of simulation results at t = 1295 s, left column with a 
proppant size of 600 μm and right column with a proppant size of 300 μm, 
only half fracture is being shown. The source point is located at y = 0, z = 0  
a) pressure distribution in the fracture, b) width distribution in the fracture 
c) concentration distribution. 

 

 

Figure 4-10. Line traced at z=0 where the data for the scatter plots is taken. 
 

a) 

b) 

c) 
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In Fig. 4-11 the difference in the pressure profile traced at 푧 = 0 for four different time steps is 

presented, in Fig. 4-11a, the difference between the two curves is more noticeable that in the other 

time steps, this can be explained if we consider that at in early time steps the zones of high 

concentration are transported longer distances. For the case of 20/40 mesh size, the zone of 

concentration higher than 0.25 reaches approximately 17 m, in the y-direction, as compared with 

27 m for the case of 40/70 mesh size (see Fig. 4-6c). The fluid pressure is weakly coupled with the 

proppant concentration via fluid properties like fluid viscosity and fluid density, so at higher 

concentration values the fluid viscosity is higher (equation (3.103) and a fluid with higher viscosity 

needs more energy to be transported leading to higher pressure values. In later time steps, although 

the proppant front is transported to longer distances (Figs. 4-7c, 4-8c and 4-9c), the zones of high 

proppant concentration are also transported to similar distances explaining the similitude in the 

pressure curves. 
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Figure 4-11. Comparison of pressure distribution in the fracture at z = 0 for two different 
diameters of proppant a) t = 545 s, b) t = 795 s, c) t = 1045 s, d) t = 1295 s. 
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Fig. 4-12 shows the fracture aperture profile, traced at 푧 = 0, at four time steps, comparing two 

cases of 20/40 mesh size and 40/70 mesh size. In all the time steps, the difference in the width 

profiles between the cases is negligible. This can be explained if we analyze the difference between 

the pressure profiles. Take for example the pressure curves in Fig. 4-11a, the maximum difference 

in values in this comparison is only 0.25%, as the difference in pressure is not substantial, so 

similar values of fracture width are expected. 
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Figure 4-12. Comparison of fracture width distribution at z = 0 for two different diameters 
of proppant. a) t = 545 s, b) t = 795 s, c) t = 1045 s, d) t = 1295 s. 
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Figure 4-13. Comparison of the proppant concentration front at z=0 at various times when 
the proppant diameter is 600흁. At t=795 the velocity is higher than in later times, 
then the concentration front travels a longer distance. At t=1295 the fracture width 
increases and as a consequence the velocity reduces, the concentration front reaches 
a shorter distance however the area under the curve increases, indicating proppant 
accumulation.  
 

 

Figure 4-14. Comparison of the proppant concentration front at z=0 at various times when 
the proppant diameter is 300흁. At t=795 the velocity is higher than in later times, 
then the concentration front reaches a longer distance. At t=1295 the fracture width 
increases and as a consequence the velocity reduces, the concentration front reaches 
a shorter distance however the area under the curve increases, indicating proppant 
accumulation. 
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4.3.1. Effect of Fracturing Fluid Viscosity 

 

To study the difference in behavior when the fracturing fluid viscosity is changed, the viscosity is 

varied from 1 × 10  Pa.s (1 cp) to 1 × 10  Pa.s (10 cp). Compared with Case 1 in section 4.3.1, 

the horizontal distance of the proppant front is greater as can be noted from the color plots from 

Figs. 4-15c, Fig. 4-16c, Fig. 4-17c, and Fig. 4-18c, respectively. In this case, the proppant front 

does not experience the same reduction in the proppant front distance as compared with the case 

of 1 × 10  Pa.s viscosity, as can be noted from Fig.4-19 and Fig. 4-20. The fluid pressure 

distribution in different times, show higher slope and consequently a higher proppant velocity 

compared with the case where the viscosity is 1 × 10  Pa.s (1 cp). The fracture aperture is not 

significantly affected with the change in proppant diameter as can be noted from Figs. 4-15b, Fig. 

4-16b, Fig. 4-17b, and Fig. 4-18, respectively. 
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흁 = ퟏ × ퟏퟎ ퟑ Pa.s 흁 = ퟏ × ퟏퟎ ퟐ Pa.s 

  

  

   

Figure 4-15. Comparison of simulation results at t = 545 sec, left column with a 
proppant size of 600 μm and right column with a proppant size of 300 μm, 
only half fracture is being shown. The source point is located at y = 0, z = 0  
a) pressure distribution in the fracture, b) width distribution in the fracture 
c) concentration distribution. 

 

  

a) 

b) 

c) 
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흁 = ퟏ × ퟏퟎ ퟑ Pa.s 흁 = ퟏ × ퟏퟎ ퟐ Pa.s 

 

 

   

Figure 4-16. Comparison of simulation results at t = 795 sec, left column with a 
proppant size of 600 μm and right column with a proppant size of 300 μm, 
only half fracture is being shown. The source point is located at y = 0, z = 0  
a) pressure distribution in the fracture, b) width distribution in the fracture 
c) concentration distribution. 
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흁 = ퟏ × ퟏퟎ ퟑ Pa.s 흁 =× ퟏퟎ ퟐ Pa.s 

  

  

   

 
Figure 4-17. Comparison of simulation results at t = 1045 sec, left column with a 

proppant size of 600 μm and right column with a proppant size of 300 μm, 
only half fracture is being shown. The source point is located at y = 0, z = 0  
a) pressure distribution in the fracture, b) width distribution in the fracture 
c) concentration distribution. 
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흁 = ퟏ × ퟏퟎ ퟑ Pa.s 흁 =× ퟏퟎ ퟐ Pa.s 

   

  

  

Figure 4-18. Comparison of simulation results at t = 1295 sec, left column with a 
proppant size of 600 μm and right column with a proppant size of 300 μm, 
only half fracture is being shown. The source point is located at y = 0, z = 0  
a) pressure distribution in the fracture, b) width distribution in the fracture 
c) concentration distribution. 

 

 

a) 
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c) 
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Figure 4-19. Comparison of the proppant concentration front at z=0 at various times when 
the fracturing fluid viscosity is 흁 = ퟏ × ퟏퟎ ퟑ. 
 

 

Figure 4-20. Comparison of the proppant concentration front at z=0 at various times when 
the fracturing fluid viscosity is 흁 = ퟏ × ퟏퟎ ퟐ. 
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4.3.1. Effect of Simulation Grid Size 

 

To study the mesh dependency, the case of fluid viscosity = 1 × 10  Pa.s (1 cP) and proppant 

diameter = 300	휇푚 was chosen, the meshes are defined as coarse, medium and fine as shown in 

Fig. 4-21. The fracture front was calculated at z = 0 and selected times, 545 s, 795 s, 1045 s, and 

1295 s. From Figs. 4-22a, b, c, and d, respectively,  it can be noted that the change in mesh size 

does not affect significantly the behavior of the solution. 

  

  

 

  

Figure 4-21. Different mesh sizes in the proppant distribution problem. a) fine mesh, the 
number of elements in y direction = 120 and z direction = 20. b) medium mesh, 
number of elements in y direction = 90 and z direction = 15 c) coarse mesh, the 
number of elements in y direction = 60 and z direction = 10. 
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Figure 4-22. Proppant concentration distribution at z = 0 comparing different sizes of 
mesh. a) t = 545 s, b) t = 795 s, c) t = 1045 s, d) t = 1295 s 
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4.4. Proppant Concentration in Multiple Parallel Hydraulic Fractures 

 

In this case, three parallel hydraulic fractures have extended from a horizontal well. Each fracture 

is assigned an injection point (Fig. 4-24). The fluid injection rate is distributed among the multiple 

fractures to account for the dynamic fluid flow partitioning as shown in Fig. 4-23. The boundaries 

of the fractures are assigned no flow conditions. The values of the parameter used in this simulation 

are listed in Table 4-3 and the total injection time is 110 s. The fluid pressure and aperture  

distributions are shown in Figures…The proppant fronts in the fractures are small and just begun 

to develop as shown in 4-36. Lower values of fracture aperture distribution can be observed in the 

central hydraulic fracture (HF2) as compared with the other outer fractures. This phenomenon is 

due to the fact that the development of the external hydraulic fractures will tend to restrict the 

opening of the inner fracture due to stress shadowing effect as shown in Fig. 4-25, Fig. 4-26, Fig 

4-27 and 4-28, respectively. As the fracture aperture is restricted in the central hydraulic fracture, 

higher pressures are expected compared with the external hydraulic fractures as shown in the Fig. 

4-29, Fig. 4-30, Fig. 4-31 and Fig. 4-32, respectively. 

Table 4-3. Data considered to perform the proppant transport simulations. 
Property Value Unit 
Fluid injection rate (Q) 0.15  m3/sec 
Poisson's ratio (푣) 0.29   
Fluid density (휌 ) 1000  Kg/m3 
Fluid viscosity (휇 ) 0.1  N.s/m2 
Proppant density (휌 ) 2400  Kg/m3 
Proppant injection volume fraction 0.2   
Carter's leak-off coefficient  1.50E-07  m/s0.5 
Vertical stress (휎 ) 48 MPa 
Minimum horizontal stress (휎 ) 38 MPa 
Maximum horizontal stress (휎 ) 39.5 MPa 
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Figure 4-23. Proportions of injection rate assigned to each hydraulic fracture. 
 

Perspective Top View 

 

 

Side View 

 

Figure 4-24. Geometry and boundary conditions for the multiple hydraulic fractures 
network. 
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Figure 4-25. Fracture aperture distribution (perspective view) after an injection time of 
110 s. 
 

 

Figure 4-26. Fracture aperture distribution in the first hydraulic fracture after an 
injection time of 110 s. 
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Figure 4-27. Fracture aperture distribution in the second hydraulic fracture after an 
injection time of 110 s. 
 

 

Figure 4-28. Fracture aperture distribution in the third hydraulic fracture after an 
injection time of 110 s. 
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Figure 4-29. Pressure distribution (perspective view) after an injection time of 110 s. 
 

 

 

Figure 4-30. Pressure distribution in the first hydraulic fracture after an injection time 
of 110 s. 
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Figure 4-31. Pressure distribution in the second hydraulic fracture after an injection time 
of 110 s. 
 

 

 

Figure 4-32. Pressure distribution in the in the third hydraulic fracture after an injection 
time of 110 s. 
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Figure 4-33. Proppant concentration distribution (perspective view) after an injection 
time of 110 s. 
 

 

Figure 4-34. Proppant concentration distribution in the first hydraulic fracture after an 
injection time of 110 s. 
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Figure 4-35. Proppant concentration distribution in the second hydraulic fracture after 
an injection time of 110 s. 
 

 

 

Figure 4-36. Proppant concentration distribution in the third hydraulic fracture after an 
injection time of 110 s. 
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Chapter 5.  Proppant Flow and Transport Modeling in Hydraulic and 

Natural Fracture Networks 

 

This chapter presents a detailed numerical study of the proppant flow and transport inside fracture 

networks formed by the intersection of hydraulic and natural fractures. In these cases, the 

deformation of the rock matrix is fully coupled with the fluid flow in the fracture, and the resultant 

fracture width and fluid pressure are subsequently used as input for the proppant concentration 

calculations. For the single fracture case, only the normal DD component, 퐷 ̅, was considered. 

However, for cases of multiple fractures, and hydraulic and natural fractures networks, the shear 

components of the DD (i.e., in-plane shear DD and out-of-plane shear DD) are also required. 

Hence, for all the simulations in this chapter a coupled 3D model “GeoFrac3D” was used. The 

mathematical details and numerical implementation procedure of the “GeoFrac3D” can be found 

elsewhere(Kumar & Ghassemi, 2015, 2016; Safari, 2013). Numerical examples of the proppant 

flow and transport in multiple fractures, and in fracture networks, where hydraulic and natural 

fractures interact, are discussed in the following sections. In this study it was assumed that there 

were pre-existing fracture networks, an study that considers the propagation of the hydraulic 

fractures can be found in (Kumar, D., Gonzalez, R.A., and Ghassemi, 2018) 

 

5.1. Proppant Concentration Distribution in a Hydraulic Fracture and a Natural 

Fracture Intersection 

 

In this section, numerical examples of the proppant flow and transport in the fracture networks 

including intersection of a hydraulic and natural fracture are presented. A 3D schematic of a 
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hydraulic fracture and natural fracture intersection is shown in Fig. 5-1. The model input 

parameters are listed in Table 5-1. 

 

 

Figure 5-1. Proppant concentration distribution (perspective view) for the case 1 after an 
injection time of 125 s. 

 

Table 5-1. Data considered to perform the proppant transport simulations 
Property Value Unit 
Fluid injection rate (푄) 0.05  m3/sec 
Poisson's ratio (푣) 0.29   
Young’s modulus (퐸) 27.1  GPa 
Fluid density (휌 ) 1000  Kg/m3 
Fluid viscosity (휇) 0.1  N.s/m2 
Proppant density (휌 ) 2400  Kg/m3 
Proppant injection volume fraction (푉 /푉) 0.2   
Carter's leak-off coefficient 1.50E-07  m/s0.5 
Vertical Stress (휎 ) 48.0 MPa 
Minimum horizontal stress (휎 ) 38.0 MPa 
Maximum horizontal stress (휎 ) 39.5 MPa 
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5.1.1.  Case 1. Orthogonal Intersection of Hydraulic Fracture and Natural 

Fracture with no Flow Boundaries 

 

In this case a preexisting static fracture network was assumed, the system is initially set to a 

fracture aperture value of 1e-5 m representing hydraulic aperture, then injection of clean fluid is 

simulated until the fracture aperture in the hydraulic fracture is enough to ensure proppant transport 

(greater than 3 times the proppant diameter). The network is composed of one hydraulic fracture 

that has intersected one natural fracture in a perpendicular manner, forming a T-shaped network, 

and the wellbore is located at the center of the hydraulic fracture as shown in Fig. 5-2. The values 

of the parameter used in this simulation are listed in Table 5-1 and the total injection time is 125 

s. The proppant front is fully developed in the hydraulic fracture as shown in Fig. 5-9. Inside the 

natural fracture the proppant is poorly transported, this can be explained if we consider two factors: 

(a) the exposure of the natural fracture to a higher stress 휎  resulting in lower values of fracture 

aperture compared with the hydraulic fracture as shown in Fig. 5-4 and 5-5; and (b) the use of no 

flow boundaries (closed system). The latter means that the flow in the natural fracture reaches 

steady state faster, resulting in small differential pressure as shown in Fig.5-8 with small values of 

fluid velocity. In all figures, the white dashed lines show the intersection of the hydraulic and the 

natural fracture. 

  



116 

Perspective Top View 

 

 

Side View 

 

Figure 5-2. Geometry and boundary conditions of a T-shaped fracture network. 
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Figure 5-3. Fracture aperture distribution (perspective view) for the case 1 after an 
injection time of 125 s. 
 

 

Figure 5-4. Fracture aperture distribution in the hydraulic fracture for the case 1 after 
an injection time of 125 s. 
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Figure 5-5. Fracture aperture distribution in the natural fracture for the case 1 after an 
injection time of 125 s. Dotted white line shows intersection of the hydraulic and 
natural fracture. 
 

 

Figure 5-6. Pressure distribution (perspective view) for the case 1 after an injection time 
of 125 s. 
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Figure 5-7. Pressure distribution in the hydraulic fracture for the case 1 after an injection 
time of 125 s. 
 

 

Figure 5-8. Pressure distribution in the natural fracture for the case 1 after an injection 
time of 125 s. Dotted white line shows intersection of the hydraulic and natural 
fracture. 
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Figure 5-9. Proppant concentration distribution (perspective view) for the case 1 after an 
injection time of 125 s. 
 

 

Figure 5-10. Proppant concentration distribution in the hydraulic fracture for the case 1 
after an injection time of 125 s. 
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Figure 5-11. Proppant concentration distribution in the natural fracture for the case 1 
after an injection time of 125 s. Dotted white line shows intersection of the 
hydraulic and natural fracture. 
 

 

  



122 

 

5.1.2.  Case 2. Orthogonal Intersection of Hydraulic and Natural Fracture with 

Wellbore close to the Natural Fracture and no Flow Boundary condition 

 

In Case 2 a preexisting static fracture network was assumed, the system is initially set to a fracture 

aperture value of 1e-5 m representing hydraulic aperture, then injection of clean fluid is simulated 

until the fracture aperture in the hydraulic fracture is enough to ensure proppant transport (greater 

than 3 times the proppant diameter). The network is composed of one hydraulic fracture that has 

intersected one natural fracture in a perpendicular manner, forming a T-shaped network. One 

possible argument of the small amount of proppant transported into the natural fracture in the Case 

1 is that the distance between the injection point and the interception with the natural fracture is 

too large, then the injection point is moved closer to the natural fracture to study this condition. 

The geometry is identical to the Case 1 except the distance of the injection point to the natural 

fracture, which is 10 m instead of 25 m, as shown in Fig. 5-12. The values of the parameters used 

in this simulation are listed in Table 5-1 and the total injection time is 125 s. Again, the proppant 

front is developed in the hydraulic fracture as shown in Fig. 5-20 but inside the natural fracture the 

proppant is poorly transported again as shown in Fig. 5-21. This can be explained if we consider  

that the system is closed, i.e., no flow boundaries are used so that the fluid flowing into the natural 

fracture reaches steady state faster, resulting in a small differential pressure as shown in Fig.5-18, 

hence small values of fluid velocity are expected. 
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Perspective Top View 

 

 

Side View 

 

Figure 5-12. Geometry and boundary conditions for a T-shaped fracture network 
with wellbore close to natural fracture. 
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Figure 5-13. Fracture aperture distribution (perspective view) for the case 2 after an 
injection time of 125 s. 
 

 

Figure 5-14. Fracture aperture distribution in the hydraulic fracture for the case 2 after 
an injection time of 125 s. 
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Figure 5-15. Fracture aperture distribution in the natural fracture for the case 2 after an 
injection time of 125 s. Dotted white line shows intersection of the hydraulic and 
natural fracture. 
 

 

Figure 5-16. Pressure distribution (perspective view) for the case 2 after an injection time 
of 125 s. 
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Figure 5-17. Pressure distribution in the hydraulic fracture for the case 2 after an 
injection time of 125 s. 
 

 

Figure 5-18. Pressure distribution in the natural fracture for the case 2 after an injection 
time of 125 s. Dotted white line shows intersection of the hydraulic and natural 
fracture. 
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Figure 5-19. Proppant concentration distribution (perspective view) for the case 2 after 
an injection time of 125 s. 
 

 

Figure 5-20. Proppant concentration distribution in the hydraulic fracture for the case 2 
after an injection time of 125 s. 
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Figure 5-21. Proppant concentration distribution in the natural fracture for the case 2 
after an injection time of 125 s. Dotted white line shows intersection of the 
hydraulic and natural fracture. 
 

 

5.1.3.  Case 3. Orthogonal Intersection of Hydraulic Fracture with Prescribed 

Fluid Pressure Boundary Condition in the NF 

 

In this case, a preexisting static fracture network was assumed, the system is initially set to a 

fracture aperture value of 1e-5 m representing hydraulic aperture, then injection of clean fluid is 

simulated until the fracture aperture in the hydraulic fracture is enough to ensure proppant transport 

(greater than 3 times the proppant diameter). The network is composed of one hydraulic fracture 

which is intersecting the natural fracture perpendicularly and the injection point is located at the 

center of the hydraulic fracture. In Case 1 and Case 2, the proppant was poorly transported into 

the natural fracture, mainly due to the low pressure gradient in this portion of the network. To 

ensure a steeper pressure gradient, a fixed value of pressure is prescribed at the boundary of the 

natural fracture as shown in Fig. 5-22. The value was chosen to be 푝 = 1.09휎 , where 휎  is the 

closure stress and it is calculated by the simulator “GeoFrac-3D” based on the stress field. The 
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values of the parameters used in this simulation are listed in Table 5-1 and the total injection time 

is 150 s. In this case the proppant front in the hydraulic fracture is fully developed as well as in the 

natural fracture in despite the fact that the values of fracture aperture are smaller compared with 

Case 1 or Case 2 as shown in Fig. 5-24 and 5-25. This can be explained if we analyze the pressure 

distribution in the network as shown in Fig. 5-27 and 5-28, the pressure gradient is steeper as the 

contrast in values is high.  

 

Perspective Top View 

 

 

Side View 

 

Figure 5-22. Geometry and boundary conditions for a T-shaped fracture network. 
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Figure 5-23. Fracture aperture distribution (perspective view) for the case 3 after an 
injection time of 150 s. 
 

 

Figure 5-24. Fracture aperture distribution in the hydraulic fracture for the case 3 after 
an injection time of 150 s. 
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Figure 5-25. Fracture aperture distribution in the natural fracture for the case 3 after an 
injection time of 150 s. Dotted white line shows intersection of the hydraulic and 
natural fracture. 
 

 

Figure 5-26. Pressure distribution (perspective view) for the case 3 after an injection time 
of 150 s. 
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Figure 5-27. Pressure distribution in the hydraulic fracture for the case 3 after an 
injection time of 150 s. 
 

 

Figure 5-28. Pressure distribution in the natural fracture for the case 3 after an injection 
time of 150 s. Dotted white line shows intersection of the hydraulic and natural 
fracture. 
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Figure 5-29. Proppant concentration distribution (perspective view) for the case 3 after 
an injection time of 150 s. 
 

 

Figure 5-30. Proppant concentration distribution in the hydraulic fracture for the case 3 
after an injection time of 150 s. 
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Figure 5-31. Proppant concentration distribution in the natural fracture for the case 3 
after an injection time of 150 s. Dotted white line shows intersection of the 
hydraulic and natural fracture. 
 

 

5.1.4.  Case 4. Non-orthogonal Intersection of Hydraulic and Natural Fracture with 

Prescribed Fluid Pressure Boundary Condition in the NF (Intersection Angle = 

30°) 

 

This case is set up to study the behavior of the system when the natural fracture is not perpendicular 

to the hydraulic fracture. In this case, a preexisting static fracture network was assumed, the system 

is initially set to a fracture aperture value of 1e-5 m representing hydraulic aperture, then injection 

of clean fluid is simulated until the fracture aperture in the hydraulic fracture is enough to ensure 

proppant transport (greater than 3 times the proppant diameter). The hydraulic fracture is placed 

in the 푥 − 푧 plane and the natural fracture is not perpendicular but instead it is inclined 30° to the 

푦 axis, the injection point is located at the center of the hydraulic fracture. To ensure a steeper 
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pressure gradient, a fixed value of pressure is prescribed at the boundary of the natural fracture as 

shown in Fig. 5-32. The value was chosen to be 푝 = 휎	 , where 휎  is the closure pressure and is 

calculated by the simulator GeoFrac-3D based on the stress field. The values of the parameters 

used in this simulation are listed in Table 5-1 and the total injection time is 135 s. The proppant 

front is fully developed in the hydraulic fracture and in the natural fracture the accumulation 

pattern is not symmetric as shown in Fig. 5-40 and Fig. 5-41, this can be explained if we consider 

asymmetric fracture aperture distribution as shown in Fig. 5-35. When the natural fracture is 

inclined, the proximity with the hydraulic fracture restricts the opening more on the low angle side, 

affecting the symmetry of fracture aperture distribution in the natural fracture. This phenomenon 

can be better appreciated in Fig. 5-42 where the stress component 휎  has higher values over the 

portions of the natural fracture more distant from the hydraulic fracture, experiencing less stress 

shadow. It is also important to note that the pressure distribution in the natural fracture is not much 

different than the previous case as shown in Fig. 5-38. 
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Perspective Top View 

 

 

Side View 

 

Figure 5-32. Geometry and boundary conditions for a T-shaped fracture network. 
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Figure 5-33. Fracture aperture distribution (perspective view) for the case 4 after an 
injection time of 135 s. 
 

 

Figure 5-34. Fracture aperture distribution in the hydraulic fracture for the case 4 after 
an injection time of 135 s. 
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Figure 5-35. Fracture aperture distribution in the natural fracture for the case 4 after an 
injection time of 135 s. Dotted white line shows intersection of the hydraulic and 
natural fracture. 
 

 

 

 

Figure 5-36. Pressure distribution (perspective view) for the case 4 after an injection time 
of 135 s. 
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Figure 5-37. Pressure distribution in the hydraulic fracture for the case 4 after an 
injection time of 135 s. 
 

 

Figure 5-38. Pressure distribution in the natural fracture for the case 4 after an injection 
time of 135 s. Dotted white line shows intersection of the hydraulic and natural 
fracture. 
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Figure 5-39. Proppant concentration distribution (perspective view) for the case 4 after 
an injection time of 135 s. 
 

 

Figure 5-40. Proppant concentration distribution in the hydraulic fracture for the case 4 
after an injection time of 135 s. 
 



141 

 

Figure 5-41. Proppant concentration distribution in the natural fracture for the case 4 
after an injection time of 135 s. Dotted white line shows intersection of the 
hydraulic and natural fracture. 
 

 

 

Figure 5-42. Top view showing the horizontal stress (흈풙풙) distribution along x direction 
for the case 4 after an injection time of 135 s. 
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5.1.5.  Case 5. Non-orthogonal Intersection of Hydraulic and Natural Fracture with 

Prescribed Fluid Pressure Boundary Condition in the NF (Intersection Angle = 

45°) 

 

In this case a preexisting static fracture network was assumed, the system is initially set to a 

fracture aperture value of 1e-5 m representing hydraulic aperture, then injection of clean fluid is 

simulated until the fracture aperture in the hydraulic fracture is enough to ensure proppant transport 

(greater than 3 times the proppant diameter). The hydraulic fracture is placed in the 푥 − 푧 plane 

and the natural fracture is not perpendicular but instead it is inclined 45° to the 푦 axis, the injection 

point is located at the center of the hydraulic fracture as shown in Fig. 5-43. The values of the 

parameters used in this simulation are listed in Table 5-1 and the total injection time is 135 s. At 

higher inclination angles, the restriction in aperture at one side of the natural fracture is more 

evident as shown in Fig. 5-46, as a consequence the proppant front is fully developed in the 

hydraulic fracture and the proppant is being transported to only one of the sides of the natural 

fracture as shown in Fig. 5-52. It is also interesting to note that the pressure distribution in the 

natural fracture is similar to those in Case 3 and Case 4 as shown in Fig. 5-49.  
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Perspective Top View 

 

 

Side View 

 

Figure 5-43. Geometry and boundary conditions for a T shaped fracture network. 
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Figure 5-44. Fracture aperture distribution (perspective view) for the case 5 after an 
injection time of 135 s. 
 

 

Figure 5-45. Fracture aperture distribution in the hydraulic fracture for the case 5 after 
an injection time of 135 s. 
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Figure 5-46. Fracture aperture distribution in the natural fracture for the case 5 after an 
injection time of 135 s. Dotted white line shows intersection of the hydraulic and 
natural fracture. 
 

 

Figure 5-47. Pressure distribution (perspective view) for the case 5 after an injection time 
of 135 s. 
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Figure 5-48. Pressure distribution in the hydraulic fracture for the case 5 after an 
injection time of 135 s. 
 

 

Figure 5-49. Pressure distribution in the natural fracture for the case 5 after an injection 
time of 135 s. Dotted white line shows intersection of the hydraulic and natural 
fracture. 
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Figure 5-50. Proppant concentration distribution (perspective view) for the case 5 after 
an injection time of 135 s. 
 

 

Figure 5-51. Proppant concentration distribution in the hydraulic fracture for the case 5 
after an injection time of 135 s. 
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Figure 5-52. Proppant concentration distribution in the natural fracture for the case 5 
after an injection time of 135 s. Dotted white line shows intersection of the 
hydraulic and natural fracture. 
 

 

 

Figure 5-53. Top view showing the horizontal stress (흈풙풙) distribution along x direction 
for the case 5 after an injection time of 135 s. 
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5.1.6. Comparison of Cases 3, 4, and 5  

 

In cases 3, 4 and 5 a hydraulic fracture in the plane (푥, 푧) is intercepting a natural fracture which 

is rotated to the y axes 0° for case 3, 30° for case 4 and 45° for case 5, the injection point 

represented by a horizontal wells is located at (푥 = 0,푦 = 0, 푧 = 0) in all the cases. To study the 

effect of the rotation angle to the y axes, fracture width distribution, fluid pressure distribution and 

proppant concentration distribution are compared. The data are plotted at a simulation time of 150 

s, for the point (푥, 푦, 푧 = 0); these coordinates are represented by the red line shown in Fig. 5-54.  

 

Figure 5-54. Fracture network composed by a hydraulic fracture and a natural fracture, 
the red line represents z=0 where the data from cases 3, 4 and 4 are compared. 
 

 

The comparison of the three cases of the fracture width distributions is shown in Fig. 5-56, it can 

be noted that the aperture increases when the rotation angle of the natural fracture is higher, this 

behavior can be explained if we consider the fracture width distribution in the natural fractures as 

shown in Fig 5-56 with higher rotation angle the width of one of the wings of the natural fractures 

is restricted due to the effect of the stress shadow or the effect of growth of the hydraulic fracture 

in the natural fracture, then the system will tend to equilibrate with higher values of fractures width 
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in the hydraulic fracture. Additionally, the pressure tends to be higher in all the system if the 

rotation angle of the natural fracture is higher as shown in Fig. 5-57 and Fig. 5-58, note that the 

boundary condition at the tip of the natural fracture imposed in these simulations is 1.09휎  (1.09 

times closure stress), it was observed that the closure stress increases when the rotation of the 

natural fracture is higher, since the stress shadow was impeding the opening of one of the wings 

of the natural fracture, resulting in the increase in pressure in the whole system. 

 

As all the boundaries of the hydraulic fracture are prescribed with the no flow boundary conditions, 

it can be noted that the pressure is constant from the tip of the hydraulic fracture at 푥 = −25 to 

the injection point at 푥 = 0, the absence of pressure differential in this zone of the fracture implies 

that the proppant would be poorly transported in this area. As mention before the closure pressure 

푝  increases with higher values of the rotation of the natural fracture, this explains the increase in 

pressure in all the system as shown in Fig. 5-57. The shape of the curves of pressure are similar in 

the natural fractures as shown in Fig. 5-58, this can be explained if we consider that both edges of 

the natural fracture are prescribed with the boundary condition 1.09푝 , the closure pressure is 

different among the cases but the length of the fractures is the same allowing this similitude in the 

behavior. 

 

It can be noted in Fig 5-59 that the difference in the proppant distribution in the hydraulic fracture 

is almost negligible, this can be explained if we consider the pressure curves shown in Fig. 5-57, 

although the values of pressure show some difference, the shape of the curves are very similar, 

implying that the pressure differential would have similar values, leading to values of proppant 

velocities also similar. The proppant distribution in the natural fractures show big differences 
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among cases as presented in Fig. 5-60, this is due to the difference in fracture apertures in the 

natural fractures, in despite the fact that the pressure profiles are similar in this zone. 

 

Figure 5-55. Fracture width in the hydraulic fracture traced at z=0. 
 

 

Figure 5-56. Fracture width in the natural fractures traced at z=0. 
 

 

2

3

4

5

6

7

-30 -20 -10 0 10 20 30

Fr
ac

tu
re

 W
id

th
 (

m
m

)

x (m)

Case 3 (0°)
Case 4 (30°)
Case 5 (45°)

0

1

2

3

4

5

6

-15 -10 -5 0 5 10 15

Fr
ac

tu
re

 W
id

th
 (

m
m

)

Distance (m)

Case 3 (0°)
Case 4 (30°)
Case 5 (45°)

A A’ 



152 

 

Figure 5-57. Fluid pressure in the hydraulic fracture traced at z=0. 
 

 

Figure 5-58. Fluid pressure distribution in the natural fractures traced at z=0. 
 

 

43

43.5

44

44.5

45

45.5

-30 -20 -10 0 10 20 30

Pr
es

su
re

 (M
pa

)

x (m)

Case 3 (0°)
Case 4 (30°)
Case 5 (45°)

41

41.5

42

42.5

43

43.5

44

44.5

-15 -10 -5 0 5 10 15

Pr
es

su
re

 (M
pa

)

Distance (m)

Case 3 (0°)
Case 4 (30°)
Case 5 (45°)

A A’ 



153 

 

Figure 5-59. Proppant concentration in the hydraulic fracture traced at z=0. 
 

 
Figure 5-60. Proppant concentration in the natural fractures traced at z=0. 
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5.2. H-shaped Network, Centered Injection Point and Prescribed Pressure in the NF 

Boundaries 

In this case a preexisting static fracture network was assumed, the system is initially set to a 

fracture aperture value of 1e-5 m representing hydraulic aperture, then injection of clean fluid is 

simulated until the fracture aperture in the hydraulic fracture is enough to ensure proppant transport 

(greater than 3 times the proppant diameter). The network is composed of one hydraulic fracture 

which is intersecting two natural fractures perpendicularly, forming an H-shape fracture network, 

and the injection point is located at the center of the hydraulic fracture as shown in Fig. 5-61. The 

values of the parameters used in this simulation are listed in Table 5-1 and the total injection time 

is 212s. At the boundaries of the natural fractures the pressure is prescribed to be 1.09푝 , where 푝  

is the closure pressure. The proppant front is completely developed in the hydraulic fracture and, 

as expected for this situation, the proppant transport into the natural fractures is symmetric as 

shown (see Figs. 5-70, 5-71 and 5-72). The symmetry is also evident in the fracture aperture 

distribution as shown in Fig. 5-63, Fig. 5-64, Fig. 5-65 and in the pressure distribution as shown 

in Fig. 5-67, Fig. 5-68 and Fig. 5-69. 
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Perspective Top View 

 

 

Side View 

 

Figure 5-61. Geometry and boundary conditions for an H-shaped fracture network. 
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Figure 5-62. Fracture aperture distribution (perspective view) after an injection time of 
212 s. 
 

 

Figure 5-63. Fracture aperture distribution in the hydraulic fracture after an injection 
time of 212 s. 
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Figure 5-64. Fracture aperture distribution in the first natural fracture after an injection 
time of 212 s. Dotted white line shows intersection of the hydraulic and natural 
fracture. 
 

 

Figure 5-65. Fracture aperture distribution in the second natural fracture after an 
injection time of 212 s. Dotted white line shows intersection of the hydraulic and 
natural fracture. 
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Figure 5-66. Pressure distribution (perspective view) an injection time of 212 s. 
 

 

 

Figure 5-67. Pressure distribution in the hydraulic fracture an injection time of 212 s. 
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Figure 5-68. Pressure distribution in the first natural fracture an injection time of 212 s. 
Dotted white line shows intersection of the hydraulic and natural fracture. 
 

 

 

Figure 5-69. Pressure distribution in the second natural fracture an injection time of 212 
s. Dotted white line shows intersection of the hydraulic and natural fracture. 
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Figure 5-70. Proppant concentration distribution (perspective view) at an injection time 
of 212 s. 
 

 

Figure 5-71. Proppant concentration distribution in the hydraulic fracture at an injection 
time of 212 s. 
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Figure 5-72. Proppant concentration distribution in the natural fractures at an injection 
time of 212 s. Dotted white line shows intersection of the hydraulic and natural 
fracture. 
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5.3. A Fracture Network Consisting of  Three Hydraulic Fractures Intersecting Two 

Natural Fractures with Prescribed Fluid Pressure Boundary Condition in the 

NFs 

 

In this example a preexisting static fracture network was assumed, the system is initially set to a 

fracture aperture value of 1e-5 m representing hydraulic aperture, then injection of clean fluid is 

simulated until the fracture aperture in the hydraulic fracture is enough to ensure proppant transport 

(greater than 3 times the proppant diameter). The network is composed of three hydraulic fractures 

simulating a hydraulic fracturing cluster from the same horizontal well which intercept two natural 

fractures. The spacing between hydraulic fractures is assumed equal to 20 m. The hydraulic 

fractures HF1 and HF2 are intersecting the natural fracture NF1 and the hydraulic fractures HF2 

and HF3 are intersecting the natural fracture NF2 as shown in Fig. 5-74. The fluid injection rate is 

divided among the fractures in the proportion shown in Fig. 5-73. The pressure at the tips of the 

natural fractures are prescribed to be 1.09푝 , where 푝  is the closure pressure calculated by the 

simulator, this boundary condition is set to ensure a steep pressure gradient. The values of the 

parameter used in this simulation are listed in Table 5-2, and the total injection time is 320 s. In 

the hydraulic fractures, the proppant front is fully developed but in contrast, in the natural fractures 

there is a small amount of proppant being transported form the central hydraulic fracture (HF2). 

Also, the proppant contributed by hydraulic fractures HF1 and HF3 to the natural fractures NF1 

and NF2 are flowing preferably away from the center of the system as shown in Figures 5-87 

through 5-92, respectively. This can be explained if we consider the pressure distribution in the 

system. Note that in the natural fracture NF1 in the area between the intersections of the hydraulic 

fractures HF1 and HF2, the pressure gradient is not very steep, this is represented by the 

predominant yellow color as shown in Fig. 5-81, Fig. 5-85 and Fig. 5-86. Recall that the velocity 
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of the fluid and proppant is a function of the pressure gradient so that low velocity values are 

expected. As a consequence, small amount of proppant are transported to this area. In the area of 

the natural fracture NF1 between the intersection of the hydraulic fracture HF1 and the end of NF1, 

the pressure gradient is steeper assuring more efficient transport of proppant to this area. It is also 

instructive to note that the values of fracture aperture in the natural fractures are large enough to 

let the proppant flow into these areas as shown if Figures 5-75 through 5-80. In this case the 

decisive parameter affecting the proppant transport is the pressure distribution. 

Table 5-2. Data considered to perform the proppant transport simulations 
Property Value Unit 
Fluid injection rate (Q) 0.15  m3/s 
Poisson's ratio (푣) 0.29   
Young’s modulus (퐸) 27.1  GPa 
Fluid density (휌 ) 1000  Kg/m3 
Fluid viscosity (휇 ) 0.1  Pa.s 
Proppant density (휌 ) 2400  Kg/m3 
Proppant injection volume fraction 0.2   
Carter's leak-off coefficient  1.50E-07  m/s0.5 
Vertical stress (휎 ) 48 MPa 
Minimum horizontal stress (휎 ) 38 MPa 
Maximum horizontal stress (휎 ) 39.5 MPa 

 

 

Figure 5-73. Proportions of injection rate assigned to each hydraulic fracture. 
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Perspective  

 

Top View 
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Side View 

 

Figure 5-74. Geometry and boundary conditions for a complex fracture network. 
 

 

 

Figure 5-75. Fracture aperture distribution (perspective view) after an injection time of 
320 s. 
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Figure 5-76. Fracture aperture distribution in the first hydraulic fracture after an 
injection time of 320 s. 
 

 

 

Figure 5-77. Fracture aperture distribution in the second hydraulic fracture after an 
injection time of 320 s. 
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Figure 5-78. Fracture aperture distribution in the third hydraulic fracture after an 
injection time of 320 s. 
 

 

 

Figure 5-79. Fracture aperture distribution in the first natural fracture after an injection 
time of 320 s. Dotted white line shows intersection of the hydraulic and natural 
fracture. 
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Figure 5-80. Fracture aperture distribution in the second natural fracture after an 
injection time of 320 s. Dotted white line shows intersection of the hydraulic and 
natural fracture. 
 

 

 

Figure 5-81. Pressure distribution (perspective view) after an injection time of 320 s. 
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Figure 5-82. Pressure distribution in the first hydraulic fracture after an injection time 
of 320 s. 
 

 

Figure 5-83. Pressure distribution in the second hydraulic fracture after an injection time 
of 320 s. 
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Figure 5-84. Pressure distribution in the in the third hydraulic fracture after an injection 
time of 320 s. 
 

 

 

Figure 5-85. Pressure distribution in the first natural fracture after an injection time of 
320 s. Dotted white line shows intersection of the hydraulic and natural fracture. 
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Figure 5-86. Pressure distribution in the in the second natural fracture after an injection 
time of 320 s. Dotted white line shows intersection of the hydraulic and natural 
fracture. 
 

 

 

Figure 5-87. Proppant concentration distribution (perspective view) after an injection 
time of 320 s. 
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Figure 5-88. Proppant concentration distribution in the first hydraulic fracture after an 
injection time of 320 s. 
 

 

 

Figure 5-89. Proppant concentration distribution in the second hydraulic fracture after 
an injection time of 320 s. 
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Figure 5-90. Proppant concentration distribution in the third hydraulic fracture after an 
injection time of 320 s. 
 

 

 

Figure 5-91. Proppant concentration distribution in the first natural fracture after an 
injection time of 320 s. Dotted white line shows intersection of the hydraulic and 
natural fracture. 
 

 



174 

 

Figure 5-92. Proppant concentration distribution in the second natural fracture after an 
injection time of 320 s. Dotted white line shows intersection of the hydraulic and 
natural fracture. 
 

 

 

Figure 5-93. Fluid velocity distribution in the first hydraulic fracture after an injection 
time of 320 s. 
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Figure 5-94. Fluid velocity distribution in the second hydraulic fracture after an injection 
time of 320 s. 
 

 

 

Figure 5-95. Fluid velocity distribution in the in the third hydraulic fracture after an 
injection time of 320 s. 
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Figure 5-96. Fluid velocity distribution in the first natural fracture after an injection time 
of 320 s. 
 

 

 

Figure 5-97. Fluid velocity distribution in the in the second natural fracture after an 
injection time of 320 s. 
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 Summary and Conclusions 

 

A module to estimate the proppant transport and deposition inside a hydraulic fracture has been 

developed. Instead of solving the flow of fracturing fluid and the flow of proppant separately, the 

movement of a composed system, the slurry, was analyzed, and then the volume of fracturing fluid 

and the volume of proppant was estimated with the variable concentration. The governing equation 

for the proppant transport inside a hydraulic fracture was derived using the principle of mass 

balance, the domain describing the fractures was discretized geometrically using rectangles, and 

later the governing equation was spatially semi-discretized with the Finite Element Method (FEM), 

this governing equation is classified as an advective equation then the Streamline Upwind Petrov 

Galerkin (SUPG) stabilization was implemented to smooth the numerical instability characteristic 

of this type of equations, finally for the time discretization and implicit scheme was implemented 

which is more stable and allows bigger time steps. This study considered the following assumption 

(1) Static fracture networks with no propagation, (2) All the fractures are completely open before 

the proppant is injected, (3) Homogeneous and isotropic rock mass, (4) The fracturing fluid is 

Newtonian, (5) Fluid velocity in laminar regime (lubrication theory holds), (6) Proppant particles 

and fracturing fluid are incompressible, (7) Proppant particles are spherical with equal sizes and 

(8) The diameter of proppant particles is much smaller than the width of the fracture. The model 

was first verified using the method of manufactured solutions and additionally the model was 

tested varying the elements sizes of the grid used to discretize the fractures to verify convergence 

and stability. A sensitivity analysis was performed to investigate the limits of the model and the 

impact in the solutions of fracture width, fluid pressure and proppant distribution of parameters 

like proppant size, fluid viscosity and simulation grid size. The proppant transport inside a 
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hydraulic fracture is not an isolated phenomena, to solve it, the parameters fractured width 

distribution and fracturing fluid pressure are needed as input. For cases of single fractures, a 

coupled scheme using the Displacement Discontinuity method (DD) and Finite Element Method 

(FEM) was used to estimate fracture width and fracturing fluid pressure distributions. To study 

more complex cases where the system is a fracture network composed by hydraulic fractures and 

natural fractures, the proppant transport algorithm was then implemented in a 3D hydraulic 

fracture model (GeoFrac-3D) which calculates rock matrix deformation and fluid flow in fractures 

and can handle the physics involved in a fully 3D hydraulic fracturing problem. The conclusions 

of this project are: 

1. In the cases studied, higher values of fluid viscosity led to better distribution of the 

proppant. When the simulation was performed with lower values of fluid viscosity, the 

velocity field was more affected by the settling velocity leading to shorter proppant fronts 

with higher concentration of proppant towards the bottom of the fracture 

2. In the cases studied, larger proppant size such as 20/40 mesh size are more affected by the 

settling velocity, creating a shorter proppant front with higher values of proppant 

concentration towards the bottom of the systems of fractures. Smaller sizes of proppant 

like 40/70 mesh size, showed a longer and more homogeneous proppant front. 

3. The proppant is transported in the path traced by the velocity field, the velocity field is 

affected by the pressure gradient and the width of the fracture. Simulation showed that the 

velocity field is affected by the settling velocity in a greater measure in zones of low fluid 

velocity. In high fluid velocity zones, especially close to the injection point, the effect of 

the settling velocity is limited. In the cases studied the pressure drop caused by the 
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perforation roughness was not considered, this additional pressure drop might cause 

proppant settling. 

4. In the cases studied, the model captures deposition in zones of low velocities. Low 

velocities are caused either by small values of fracture aperture or small values in pressure 

gradient. Small values of fracture aperture can be found in areas closer to the tip of the 

fracture, inside natural fractures, or in zones greatly affected by the stress shadow produced 

by adjacent fractures. Small values of pressure gradient can be found in intermediate zones 

from the injection point inside hydraulic fractures or in zones where the flow from two 

fractures are meeting and canceling each other. 

5. In the cases studied, the stress shadow among fractures greatly affected the final width 

distribution. This phenomenon was more pronounced in cases were the interception 

between hydraulic fractures and natural fractures was not perpendicular. Three different 

rotation angles were studied, 0°, 30° and 45°; comparing the case of 0° and the case of 45°, 

the volume of proppant entering the natural fracture was cut down almost by half  for the 

case of 45°, as shown in Fig. 5-60. 

 

 Recommendations 

 

As stated in Chapter 3, a number of simplifying assumptions have been considered in this study to 

solve the fracture aperture, fracturing fluid pressure and proppant concentration. The major ones 

are: static fracture networks with no propagation with all fractures are completely open before 

proppant injection; the fracturing fluid is Newtonian, incompressible and the flow is laminar with 

uniform proppant size and incompressible particles and after all the experience gathered in the 
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analysis of single fractures and fractures networks carried out in this work, the following 

recommendations are appropriate to enhance the understanding of the proppant transport in 

deformable networks composed by hydraulic fractures and natural fractures: 

1. Proppant distribution calculation inside hydraulic fractures while they propagate 

2. Consider non-Newtonian fluid 
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Appendix A.  Parallel Plates Flow Model 

The dimensional variables to describe a hydraulic fracture are: height, length and width, and 

pressure. The width is significantly smaller compared to height and length so that flow is at most 

two-dimensional. If a low rate of fluid injection and high fluid viscosity are assumed, then the flow 

regime in the fracture is laminar. These considerations allow to apply the lubrication 

approximation to solve for pressure and flow rates calculating the local uniform flow between 

parallel plates separated by the local fracture width (Pearson, 1994). The parallel plates flow model 

is widely accepted to estimate the relationship between the velocity and the pressure of the 

fracturing fluid in a hydraulic fracture (Lavrov, 2011; Osiptsov, 2017). This relationship is 

fundamental to describe the movement of fracturing fluid or proppant. 

Assuming, a Newtonian, incompressible, and single phase fluid, the mass conservation for the 

flow of slurry leads to the governing equation as (Irwin, 1957): 

 
휌퐷푽
퐷푡 = 휌푭 − ∇푝 + 휇∇ 푽 + (휇 + 휆)∇(∇ ∙ 푽) (A.1) 

 
where 퐷()/퐷푡 is the material derivative, ∇ is de divergence operator, ∇  is the Laplacian operator, 

푽 = (푣 ,푣 ,푣 ) is the velocity vector, 푭 = (푓 ,푓 ,푓 ) is the body force vector, 휌 is fluid density, 

푝 is the fluid pressure, 휇 is the fluid viscosity and 휆 is the second viscosity coefficient. If the body 

forces are neglected and considering the assumption of incompressible fluid where the rate of fluid 

volume dilation ∇ ∙ 푽 vanishes the equation (A.1) reduces to:  

 
휌퐷푽
퐷푡 = −∇푝 + 휇∇ 푽 (A.2) 

Expanding the material derivative 퐷()/퐷푡, the divergence operator ∇, and the  ∇  Laplacian 

operator equation (A.2) takes the form: 
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 휌
휕푣
휕푡 + 푣

휕푣
휕푥 + 푣

휕푣
휕푦 + 푣

휕푣
휕푧 = −

휕푝
휕푥 + 휇

휕 푣
휕푥 +

휕 푣
휕푦 +

휕 푣
휕푧  (A.3) 

 

 휌
휕푣
휕푡 + 푣

휕푣
휕푥 + 푣

휕푣
휕푦 + 푣

휕푣
휕푧 = −

휕푝
휕푦 + 휇

휕 푣
휕푥 +

휕 푣
휕푦 +

휕 푣
휕푧  (A.4) 

 

 휌
휕푣
휕푡 + 푣

휕푣
휕푥 + 푣

휕푣
휕푦 + 푣

휕푣
휕푧 = −

휕푝
휕푧 + 휇

휕 푣
휕푥 +

휕 푣
휕푦 +

휕 푣
휕푧  (A.5) 

The dimensions, height and length of the fracture, are in the order of meters, while the fracture 

width is only in the order of millimeters as can be seen in Fig. A-1, then 푣  can be neglected as it 

is much smaller than 푣  and 푣   

 

Figure A-1. Rectangular fracture schematic showing the principal geometrical 
dimensions and the fluid velocity profile. 

 

Substitution of 푣 = 0, equations (A.3), (A.4) and (A.5) reduce to: 



188 

 휌
휕푣
휕푡 + 푣

휕푣
휕푥 + 푣

휕푣
휕푧 = −

휕푝
휕푥 + 휇

휕 푣
휕푥 +

휕 푣
휕푦 +

휕 푣
휕푧  (A.6) 

 
휕푝
휕푦 = 0 (A.7) 

 휌
휕푣
휕푡 + 푣

휕푣
휕푥 + 푣

휕푣
휕푧 = −

휕푝
휕푧 + 휇

휕 푣
휕푥 +

휕 푣
휕푦 +

휕 푣
휕푧  (A.8) 

Considering the no slip condition, which means zero fluid velocity at the fracture walls and a 

maximum fluid velocity at the center of the fracture, as shown in the velocity profile in the Fig. 

A-1. The changes of the velocity in the directions 푧 and 푥 which are the directions along the 

fracture can be neglected, then = = = = 0. Additionally, if a fully developed flow 

steady-state flow (it does not change with time), is considered then = = 0. Equations (A.6), 

(A.7) and (A.8) are further simplified as: 

 

 
휕푝
휕푥 = 휇

휕 푣
휕푦  (A.9) 

 
휕푝
휕푦 = 0 (A.10) 

 
휕푝
휕푧 = 휇

휕 푣
휕푦  (A.11) 

 

Integrating twice equations (A.9) and (A.11) and with respect to 푦 yields: 

 푣 =
푦
2휇

휕푝
휕푥 + 푐 푦 + 푐  (A.12) 

 푣 =
푦
2휇

휕푝
휕푧 + 푐 푦 + 푐  (A.13) 
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Considering 푦 = 0 at the center of the fracture due to the symmetry of the fluid flow velocity 

profile, letting 푤 be the fracture width, and considering the slip condition 푣 = 푣 = 0 at the 

fracture walls or 푦 =  and 푦 = − , substituting these boundary conditions into equation (A.12): 

 

 0 =
푤
2
2휇

휕푝
휕푥 + 푐

푤
2 + 푐  (A.14) 

 0 =
−푤2

2휇
휕푝
휕푥 − 푐

푤
2 + 푐  (A.15) 

Adding equations (A.14) and (A.15) results: 

 2푐 = −
푤
4휇

휕푝
휕푥 (A.16) 

 푐 = −
푤
8휇

휕푝
휕푥 (A.17) 

Following the same procedure, 푐  is calculated: 

푐 = −
푤
8휇

휕푝
휕푧 (A.18) 

 

To find 푐 , equation (A.17) is replaced into equation (A.14): 

0 =
푤
8휇

휕푝
휕푧 + 푐

푤
2 −

푤
8휇

휕푝
휕푧 (A.19) 

Solving for	푐  

푐 = 0 (A.20) 

Similarly 

푐 = 0 (A.21) 

Replacing 푐 , 푐 , 푐  and 푐  into equations (A.12) and (A.13) 푣  and 푣  are: 
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 푣 =
푦
2휇

휕푝
휕푥 −

푤
8휇

휕푝
휕푥 (A.22) 

 푣 =
푦
2휇

휕푝
휕푧 −

푤
8휇

휕푝
휕푧 (A.23) 

The average velocities over the distance 푤 are calculated by integrating 푣  and 푣  from −  to  

and divide by 푤: 

 푣̅ =
1
푤

푦
2휇

휕푝
휕푥 −

푤
8휇

휕푝
휕푥 푑푦

/

/
=

1
2휇푤

휕푝
휕푥

푦
3 −

푤 푦
4

/

/

 (A.24) 

 푣 =
1

2휇푤
휕푝
휕푥

푤
24 −

푤
8 +

푤
24 −

푤
8 				 (A.25) 

 푣 =
1

2휇푤
휕푝
휕푥

푤
12 −

푤
4 				 (A.26) 

 푣 = −
푤
12휇

휕푝
휕푥	 

(A.27) 

Following the same procedure 푣  is: 

푣 = −
푤

12휇
휕푝
휕푧	 

(A.28) 

The cross-sectional area open to flow for a hydraulic fracture is the product of the fracture width 

푤 and the height of the fracture ℎ, the flow rate is then defined as: 

푞 = −
푤 ℎ
12휇

휕푝
휕푥	 

(A.29) 

푞 = −
푤 ℎ
12휇

휕푝
휕푧	 

(A.30) 

 

Then the flow rate per unit height is: 
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푞 = −
푤

12휇
휕푝
휕푥	 

(A.31) 

푞 = −
푤

12휇
휕푝
휕푧	 

(A.32) 

 

 

  



192 

Appendix B. Numerical Solution of the Rock Deformation Governing 

Equation 

 

For the sake of completeness the calculation of rock deformation using the displacement 

discontinuity method (DD) is listed here. The DD method is based on the fundamental solution of 

the stress-strain relation of an infinite elastic medium. It is assumed that a discrete approximation 

of a continuous distribution of DD can be made along a fracture surface. The concept of the DD 

was first proposed by Crouch and Starfield (1983) based on the constant line DD formulation for 

an infinite elastic medium for 2D or 3D problems. The DD formalization was later generalized the 

point load DD solutions based on the Kelvin’s fundamental solution for elasticity by several 

authors developed (Vandamme & Curran, 1989; Wiles & Curran, 1982). In this work, the 

generalized DD model is used to simulate multiple fracture and fracture network problems in 

Chapter 5. The DD method is a computationally efficient numerical technique for the rock 

deformation modeling; since; it reduces the problem dimensionality by one and only the fracture 

surfaces discretization is required. Additionally, since the DD method is indirect boundary element 

method, it allows to represent the fracture with a single surface instead of two separated surfaces. 

The surface. A schematic representing the fracture surface is geometrically discretized with 

squares of sides 2a as shown in Fig. B-1. 
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Figure B-1. Schematic of hydraulic fractures geometrical discretization using DD 
method, instead of the entire domain only the fracture discretization is required. 

  

The constant DD components over a square element, which are defined as the difference of 

displacement of each face relatively to the local axis 푧	̅ = 0 mathematically expressed as (Crouch 

& Starfield, 1983): 

 
 퐷 ̅ = 푢 ̅(푥̅	,푦	, 0 ) − 푢 ̅(푥̅	,푦	, 0 ) (B.1) 

 퐷 = 푢 (푥̅	,푦	, 0 ) − 푢 (푥̅	,푦	, 0 ) (B.2) 

 퐷 ̅ = 푢 ̅(푥̅	,푦	, 0 ) − 푢 ̅(푥̅	,푦	, 0 ) (B.3) 

where 푢 ̅ ,푢 , 푢 ̅ are the displacements in the 푥̅	,푦	, 푧	̅ local coordinate plane respectively, 퐷 ̅ ,퐷 ,퐷 ̅ 

represents the three components of the DD in the local plane. The three components of the DD, 

the normal opening 퐷 ̅, in-plane shear ride 퐷  and out-off plane shear ride 퐷 ̅  are shown in Fig. 

B-2. 
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Figure B-2. Fracture in elastic solid arbitrarily oriented with magnification of constant 
DD components. 

 

The tractions acting on the plane of fracture as shown in Fig. B-2, are related to the DD as follows 

(Crouch & Starfield, 1983): 

 휎 =
퐺

4휋(1− 푣)
휕 퐼
휕푧̅ + 푣

휕 퐼
휕푦 퐷 ̅ − 푣

휕 퐼
휕푥̅휕푦퐷  (B.4) 

 

 휎 =
퐺

4휋(1 − 푣) −푣
휕 퐼
휕푥̅휕푦퐷 ̅ +

휕 퐼
휕푧̅ + 푣

휕 퐼
휕푥̅ 퐷  (B.5) 

 

 휎 =
퐺

4휋(1− 푣)
휕 퐼
휕푧̅ 퐷 ̅  (B.6) 

where 퐺 is the shear modulus, 푣 is the Poisson’s ratio.  
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Figure 5-1. Hydraulic fracture and tractions acting on the plane of fracture, a local 
coordinate system is imposed for the analysis. 

 

The derivatives of the function 퐼(푥̅,푦, 푧̅) are evaluated at 푧̅ = 0, the results are given as: 

 

 
휕 퐼
휕푥̅

̅
=

1
휌̅ −

1
휌̅ +

1
휌̅ −

1
휌̅  (B.7) 

 

 
휕 퐼
휕푥̅

̅
= −

푦 − 푎
푥̅ − 푎

1
휌̅ +

푦 − 푎
푥̅ + 푎

1
휌̅ −

푦 + 푎
푥̅ + 푎

1
휌̅ +

푦 + 푎
푥̅ − 푎

1
휌̅  (B.8) 

 

 
휕 퐼
휕푦

̅
= −

푥̅ − 푎
푦 − 푎

1
휌̅ +

푥̅ + 푎
푦 − 푎

1
휌̅ −

푥̅ + 푎
푦 + 푎

1
휌̅ +

푥̅ − 푎
푦 + 푎

1
휌̅  (B.9) 
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휕 퐼
휕푧̅

̅
=

휌̅
(푥̅ − 푎)(푦 − 푎) −

휌̅
(푥̅ + 푎)(푦 − 푎) +

휌̅
(푥̅ + 푎)(푦 + 푎) −

휌̅
(푥̅ − 푎)(푦 + 푎) (B.10) 

where 푥̅ and 푦 are the local coordinates of the element (푖, 푗) where the tractions are been induced. 

The coefficients 휌̅ , 휌̅ , 	휌̅ , 	휌̅  in the above equations are defined as: 

 휌̅ , = 푥̅ , − 푎 + 푦 , − 푎  (B.11) 

 

 휌̅ , = 푥̅ , + 푎 + 푦 , − 푎  (B.12) 

 

 휌̅ , = 푥̅ , + 푎 + 푦 , + 푎  (B.13) 

 

 휌̅ , = 푥̅ , − 푎 + 푦 , + 푎  (B.14) 

The relationship between the induced tractions at the midpoint of element (푖, 푗) and the DD 

components at all elements (푘, 푙) is given as: 

 

 휎
,
̅ ̅ = 퐴

, ; ,

̅ ̅
	 퐷

,

̅
	 + 퐴

, ; ,

̅
	 퐷

,
	  (B.15) 

 

 휎
,

̅ = 퐴
, ; ,

̅
	 퐷

,

̅
	 + 퐴

, ; ,
	 퐷

,
	  (B.16) 

 

 휎
,
̅ ̅ = 퐴

, ; ,

̅ ̅
	 퐷

,

̅
	  (B.17) 
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where 퐴
, ; ,

̅
	 , 횥,̅ 푘 = (푥̅,푦, 푧̅) are defined as the influence coefficients. The resultant system of 

equations size is (푀 + 푁) × (푀 + 푁). 


