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Abstract 

Hydrogel has been considered a promising material for many biomedical 

applicational researches due to its unique properties. One such promising hydrogel 

is a peptide-based hydrogel due to its excellent biocompatibility and bioinjectability, 

which are important properties for most biomedical applicative research. However, 

synthesis of peptide is a biohazardous, difficult, and expensive process. M13 phage 

can be a better alternative biomaterial as a monomer for constructing a good 

hydrogel because of easy amplification process, cost efficiency, and safe, bio-green 

chemical production. In this thesis article, copper-M13 phage hydrogel shows a good 

cytotoxicity to breast cancer cell lines via pH-controlled release of copper (II) ion-

phage complex at body temperature 37oC. Gold (III)-M13 phage hydrogel has been 

constructed via metal-beta amyloid peptide interaction in a stable form in various 

aqueous biochemical media. It induces fine gold nanoparticle synthesis after the 

reduction of gold (III) ion by phages in the hydrogel. M13 phage-based hydrogel has 

a great potential to become a next generation biopolymer in the near future. 
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Chapter 1. Introduction 

1.1 Introduction of general background information 

Biological polymer (hydrogel) is a promising biomaterial for many biomedical 

researches due to its biocompatibility, bio-injectability, biostability, and useful multiple 

functionality.1-3 Most hydrogels have been designed and used for tissue engineering 

research such as building up blood vessels4 and growing and differentiating stem 

cells in a controlled manner.5-6  

One of the best biological hydrogels is a peptide-based hydrogel because it 

generally shows higher values in those biocompatibility, bio-injectability, biostability, 

and useful multiple functionality than is present in other biological hydrogels.7-8 One 

of the methods to construct a peptide-based hydrogel is to use metal ion-peptide 

interaction. In most metal ion-peptide interactions, electrostatic force between 

cationic metal ions and the negatively charged side chains of a peptide generate a 

strong interaction to form a bond between them.9 Through this type of bonds, metal 

ions and certain peptides can form various types of hydrogels. However, synthesis of 

the peptides is a difficult, expensive, and biohazardous process. Peptide-based 

hydrogels cannot be easily used in a large quantities due to these reasons.10-12 

M13 phage is an easily genetically engineerable bacterial phage made of one 

single strand DNA and coat proteins. Except the single strand DNA in the phage, the 

phage is simply a complex of proteins.13 Through the similar metal ion-peptide 

interaction of peptide-based hydrogel, metal ion induced M13 phage-based hydrogel 

has been successfully made and has showed great potential in many biomedical 

applications. Additionally, the amplification process of engineered M13 phage is safer, 

easier, and cheaper than that of peptide-based hydrogel. In chapter 1, the unique 
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properties and possible benefits of using M13 phage for hydrogel formation, 

compared to peptide hydrogels, will be discussed, and the fundamental mechanism 

of M13 phage hydrogel formation will be introduced through similar examples of 

peptide hydrogels. 

 

1.1 General background of M13 phage 

M13 phage is a lysogenic bacterial phage that only infects its host cells (gram 

negative bacterial cells).14-15 Due to its many unique properties, M13 phage has 

been used for many biological researches. For instance, the morphology and liquid 

crystalline structure of M13 phage can be used as a Nano-scaled building block to 

construct a 2-dimensional (2D) structure such as a phage film for stem cell growth.16-

17 However, there are only a limited number of scientific journal articles that have 

reported a 3-dimensional (3D) structure of M13 phage.  

 

1.1.1 M13 phage structure and morphology 

Interestingly, the width and length of M13 phage are neither definite nor 

specifically uniform. The reported range of width is only 5-8 nm long, and the length 

one of M13 phage is 870-960nm long. Therefore, M13 phage has a long length-

changeable filament-like shape because M13 phage has 2700-2800 copies of its 

major coat proteins (pVIII) but only 5-6 copies of minor coat proteins at each end of 

the M13 phage; pVII and pIX coat proteins comprise one end, while pIII and pVI coat 

proteins comprise the other end of the M13 phage. (Figure 1.1) M13 phage contains 

a circular single-stranded DNA genome that can be easily engineered (ssDNA, 

usually 6.4kb).18-19  
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Figure 1.1 The morphology of M13 Bacteriophage, M13 bacteriophage has a 

filament like shape. It stores its single stranded DNA in its several coat proteins; pIII, 

pIV, pVI, pVII, pVIII, and pIX. The designed longer DNA genome size can generate 

the longer M13 phage, meaning more copies of pVIII coat proteins.  

 

The surface of WT phage contains chemically workable amino groups in N-

terminal alanine and in lysine (Lys8) and carboxylic acid groups in glutamic acid 

(Glu2) and aspartic acid (Asp4 and Asp5) on pVIII.20 By displaying the desired 

molecular structures on the phage, the molecular displayed phage can be utilized for 

many conventional biomedical applications of viruses without genetic manipulation of 

the virus surface. And, when genetic modification is needed, it can also expand its 

repertoire of biomedical applications. Both covalent and noncovalent chemical 

modifications, some in conjunction with genetic modifications, generate 

enhancements on natural functionalities such as targeting, imaging cells, cell 

cytotoxicity, gene delivery for treatment, and tissue regenerating functionalities for 

both specific diagnosis and treatment. (Figure 1.2)21 
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Figure 1.2 Chemically Modifying M13 phage, because of chemical modifiable 

properties of M13 phage, chemical modifications can be executed to imbue the M13 

phage more useful/active/stronger functions for many biomedical purposes. 

 

1.1.2 M13 phage liquid crystallinity and Phage display 

M13 phage has the unique property of self-assembly because M13 phage is 

able form the liquid-crystalline structure due to its dipole characteristics. The liquid-

crystalline property of these phages often empowers the self-assembly mechanism 

of the phage to transform into phage films.22 Due to this unique property alone, the 

M13 phage can be used as a potential bio-battery. It is reported that M13 phage can 

be possibly used as an actuator or energy harvester. In the article, a higher energy 

output can be obtained by combining ordered phage films in series or parallel 

configurations in gold coated substrate. (Figure 1.3)23  
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Figure 1.3 M13 phage film in AFM topography, a long-range ordered liquid-

crystalline film (in smectic phase) is shown. Inset: smectic-aligned phage bundles 

are in ~1 μm thick bands. 

 

Additionally, M13 phage can be more usefully fabricated for other biomedical 

researches with phage display including bio-panning methods. (Figure 1.4)24 

Lysogenic M13 phages do not break the host gram-negative bacterial E. coli cells 

during the process of infection and amplification. Rather than killing the host cells, 
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the M13 phage undergoes lysogeny, making the phage genome integrate with the 

host DNA and replicate. Therefore, nonlytic M13 phage is one of the best 

bacteriophages that can be used in recombinant DNA engineering for phage 

display.24 Phage display is a method to functionalize the liquid-crystalline M13 phage. 

Phage display broadens up the bio-application range of M13 phage.19 Beside the 

liquid-crystallinity of M13 phage, M13 phage can be even a better biomaterial with 

phage display for biomedical applications such as the identification of peptides, 

proteins, or antibodies with a high affinity for a specific target molecules or cells or 

tissue. Once bio-panned peptides are revealed, the peptide genetically fused M13 

phages can be utilized to bear target-specific peptides or proteins for biorecognition. 

The specific peptide can be genetically fused to the N-terminus ends of pVIII coat 

proteins.3 This means that a peptide can be displayed on the surface of M13 phage. 

 

Figure 1.4 Genetically engineered versions of filamentous phage (M13 

bacteriophage), the arrows show different genetic modifications that display a 
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peptide on the surface of the different phage coat protein by genetic fusion. Through 

the site-specific modification method to genetically alter the phage DNA, the foreign 

peptide (in red) can be fused to the coat protein. 

 

The displayed peptides are selected by the result of the biological 

evolutionary selection process mentioned earlier, biopanning. A library of billions of 

M13 phage clones can be used to identify one or more peptides that show a high 

affinity to a target such as molecules, peptides, cells, or even tissues. (Figure 1.5)24-

25 
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Figure 1.5 Schematic illustration of the biopanning process, a) The target analyte 

(blue circle) is immobilized on the dish by chemical or biological means; b) a library 

of billions of phage clones is adjusted to the target analyte for possible interactions; c) 

the unbound phages are washed/eluted away with a buffer and the bound phages 

stay bound to the target analyte; d) the bound phages are eluted away from the 

analyte with an elution buffer; e) the previously eluted phages are amplified by 

infecting E.coli bacteria in the Luria Broth (LB) medium culture to obtain an amplified 

library, which is used as an input for (b) in the next round of panning selection; f) 

after several rounds of selection (b↔e), the best target binding phage clones are 

proliferated; g) Through the DNA sequencing, the phage DNA is sequenced to 

identify the target-specific binding peptide. 

 

The displayed peptide on the surface of M13 phage can induce a desired 

function in their liquid-crystalline structure or interactions with various cells, tissues, 

enzymes, organic compounds, receptors, or peptides.26 For instance, the surface-

displayed M13 phages can be used as a template via the site-specific nucleation to 

grow specific nanocrystals. The BaTiO3-binding/nucleating peptide was identified via 

biopanning with CRGATPMSC (from a phage-displayed random peptide library). The 

novel peptide was displayed on the surface of M13 phage. On the exterior surface of 

the M13 phages, crystallographically oriented semiconducting nanowire in 

ferroelectric tetragonal barium titanate (BaTiO3) can be controlled in size, shape, 

aspect ratio, crystal orientation, and crystal structure (Figure 1.6)27  
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Figure 1.6 Synthesis of BaTiO3 (BT) Polycrystalline Nanowires at Room 

Temperature using the engineered M13 phage; (a) Selected BT-Binding Peptides via 

Biopanning method, (b) Construction of the pVIII-RS (CRGATPMSC (termed RS)) 

Phage via Displaying of BT-Binding Peptides on pVIII major coat proteins that dictate 

the nucleation of BT crystals in a form of polycrystalline nanowires 
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Engineered M13 phages can also be electrostatically conjugated to gold 

nanoparticles, forming a gold nanowire. The gold nanowires can form a film to 

measure humidity using the unique surface plasmon resonance spectra (SPR) 

pattern.28 For artificial bone biomaterials synthesis via bioinspired mineralization, two 

different peptides derived from Dentin Matrix Protein-1 were displayed on the surface 

of M13 phages and these two engineered phages were mixed together to form self-

assembled structures to achieve oriented nucleation and growth of HAP crystals to 

make a bone mimicking organic-inorganic hybrid scaffolds that may form artificial 

bone structures in the future.29 

Through the phage display, M13 phages can also bind to biological molecule-

inorganic material hybrids as well. For instance, glucose oxidase (Gox) conjugated 

gold-coated M13 phages were used as a template for making biofuel cells, exhibiting 

a good direct electron transfer (DET). Through an EDC-NHS chemical crosslinking 

method, glucose oxidases were covalently bound to gold nanoparticles. glucose 

oxidases-AuNPs were assembled onto genetically engineered M13 phage. This 

virus-based strategy induced a greater enzyme surface coverage than other DET 

attachment methods, resulting in the electrodes with improved electrical contact 

between the redox enzymes and the conductive metal support by introducing 

broader scaled, compactly packed, highly conductive “nanomesh” electrodes for 

biofuel cell applications.30 

In tissue engineering, the phage film can be manipulated to grow bone 

regenerative stem cells for the desired/controlled/manipulated differentiation and 

administration of orientation/morphological growth of the mesenchymal stem cells 

(MSC) growth. RDG and PHSRN peptide displayed phages were used to make a 



11 

 

biochemical/topographical artificial extracellular matrix (aECM) that can direct stem 

cell fate. Because of advantages of M13 phage, a virus-activated aECM with 

constant ordered ridge/groove nanotopography was generated utilizing the self-

assembly of easily genetically modifiable phage into a ridge/groove structure. (Figure 

1.7)16  

 

Figure 1.7 MSC adhesion on the phage film created from both low phage 
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concentration (a, c, e) and high phage concentration (b, d, f), The MSCs on the 

phage-based film (a, c, e) were significantly elongated and aligned along phage 

bundles (a, c, e) while those on the phage-based film (b, d, f) were randomly 

oriented and not elongated in the desired pattern (b, d, f). Bright field optical 

microscopy (a, b), SEM (c, d) and fluorescence microscopy (e, f) (Cell nuclei stained 

by DAPI (blue) and F-actin stained by FITC-labeled phalloidin (green)) 

 

 

1.2 Peptide hydrogel formation with metal ions 

Peptide hydrogel can be formed in strong metal ion-peptide interactions. 

Many Metal ions are very important for many biological activities in body. Many 

proteins are highly involved in various cellular mechanisms with metal cofactors and 

they often show a strong coordination bond between the metal ions and related 

proteins. Through the bonds, peptide hydrogel can be constructed. However, the 

process of synthesizing peptides or proteins is high in the cost, time, labor, and 

biohazard level.31 (Table 1.1) Alternatively, M13 phage can be a good peptide 

hydrogel that may induce better results in biocompatibility, biological injectability, and 

bio-safety than those of regular peptide hydrogels.32 
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Synthesis 
Condition 

(1mg) 
Cost Time Labor Biohazard 

Peptide 

Higher Longer Higher Higher 

$16.32-
$24.08 

per 
amino 
aicd 

(>98%) 

3-5 weeks 

Requires lots of 
chemical processes 

related to amide 
coupling 

Require lots of 
biohazardous 

organic 
chemicals 

M13 phage 

Lower Shorter Lower Lower 

~$2.73 4-5 days 
Simple biological 

amplification 
protocol 

Requires a few 
antibiotics 

 

Table 1.1 Relative Comparison between synthesis of peptide and M13 phage in cost, 

time, labor, and biohazard terms 

 

1.2.1 Metal-Peptide interactions 

Metal-peptide interaction is common and important in living organisms. Metal 

ion binding has been considered to offer a highly versatile means of generating self-

assembled peptide structures that are both specific and highly modular. For instance, 

the inclusion of metal-binding ligands specifically into synthetic coiled-coil peptides 

(GCN4-p2L) for hierarchical assembly has been proven in the process of creating 

nanospheres, nanofibers, and fibrils. The head-to-tail assembly of a trimeric coiled-

coil peptide can occur to provide microscale 3D crystals and nanoscale or 

microscale spheres through metal ion mediation. The metal-ligand interactions at the 

ends of the growing crystal could be linked to direct His-tagged fluorophores to 
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specific locations within the 3D peptide crystals, creating a notable feature of the 

head-to-tail crystallization. Metal-mediated directional assembly encourages the 

formation of trimeric coiled coil linear stacks. Surface exposed residues in the coiled 

coils can support an antiparallel packing arrangement to maximize the electrostatic 

interactions between a group of positive residues at the C-termini and negative 

residues at the N-termini of the coiled coils. (Figure 1.8)33 

 

Figure 1.8 Directing His-tagged fluorophore guest molecules to the Zn (II)/GCN4-

p2L (The coiled-coil helical peptide) crystals; (a) the hexagonal faces of the crystals 

containing free metal-binding ligands, N-terminal nitrilotriacetic Acid, (NTA) with 

metal ions that bind to His-tagged cargoes, (c) guests within the core of the crystals 
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in a His-tag-dependent fashion within the crystal during formation, or (e) at both the 

surface and within crystals. Bright-field (left) and confocal (right) microscopy images 

of (b) after hexagonal crystal treatment with Fl-His6 (fluorescein labeled histidine in 

Green), the fluorescence was located only at the hexagonal top and bottom faces of 

the crystal (0.1 mM), (d) Fl-His6 added during the formation of the crystals, and (f) 

crystals in the presence of Fl-His6 (0.1 mM) with Rh-His6 treatment (0.1 mM) after 

crystallization. 

 

Especially, metal cations are well-known to be important for cellular activities 

such as stabilization of protein structural folds (Mg2+, Ca2+, and Zn2+), oxidative 

catalysis via electron transfer (Mn2+, Fe2+, and Cu2+), and cellular signaling and 

metabolism (Na+, K+, and Ca2+). A third of all proteins (such as metalloproteins) are 

involved in cellular mechanisms that require a metal cofactor with the divalent metal 

cations of Mg2+, Ca2+, Zn2+, and Mn2+. The transition metal cations (Co2+, Ni2+, Cu2+, 

and Zn2+) are relatively softer borderline-acids that usually coordinate with the softer 

bases of nitrogen or sulfur-containing residue side chains of histidine or cysteine. 

The transition metal cations can also coordinate to harder moieties such as 

carboxylic acids in the side chains of aspartic acid and glutamic acid. The selectivity 

of the metal ion interactions is largely determined by the offered peptide functional 

groups. The preferred interaction for the transition-metal cations with specific amino 

acid residues was found. Metal ion (Mg2+) showed the selective interaction with 

certain residues (specifically His, Cys, Asp, and Met).34 

Among metal ions, transition-metal ions (such as copper) are essential 

elements in all living systems, but they can also trigger pathological disorders under 
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certain occasions. In vivo studies, copper can anchor to the sites of the thiol moieties 

of cysteines and the imidazole residues of histidine. All these interactions are highly 

dependent on reaction conditions. The other groups of a peptide can also be 

involved in the coordination-bond to copper. Several techniques (such as X-ray or 

nuclear magnetic resonance, mass spectrometry (MS), electrospray ionization (ESI) 

and matrix-assisted laser desorption/ionization (MALDI)) can be used for locating 

metal bindings with inorganic/organic/bioinorganic complexes, a Copper (II)-

histidine/arginine-containing peptide, angiotensin III (RVYIHPF). This peptide has 

been selected and used to form Cu-aniotensin III complex in the process of studying 

the relative complexation properties of the two oxidation states.35 

Peptides are operative and specific ligands for various metal ions (such as 

Cu2+) in the formation of protein-metal complexes, and they have a decisive 

influence on protein-folding mechanisms because they act as a regulator of copper 

concentration and reactive oxygen species. This might be the reason that the prion 

protein that binds Cu (II) ions makes the transition from the native to the pathological 

form of Platelet-rich plasma (PrP) due to the copper coordination in the structure of 

the prion protein. Cu2+ coordinately binds to the N-terminal domain, composed of 

four or more repeats of the eight-residue sequence PHGGGWGQ (octarepeat), 

confirmed in electron paramagnetic resonance (EPR) and circular dichroism (CD) 

experiments, X-ray diffraction (XRD) experiments.36 

Histidine-rich peptides have been considered widely as peptides with high 

affinities to metal ions. However, through histidine-metal complexation and protein 

deformation, such peptides can damage the central nerve system (CNS) to cause 

Parkinson’s and Alzheimer’s diseases. A nanotube-form of immobilized histidine-rich 
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peptides (AHHAHHAAD) was used as a template for metallic nanowire synthesis by 

mineralizing gold nanocrystals on the nanotubes in the uniform size distribution. The 

pH change fluctuates peptide-metal ion interactions, mainly because of the charge 

distribution variations in electron donor groups of peptides. The different interactions 

between peptides and metal ions make the chemical structure change of the ion-

peptide complexes. One of the main driving forces of metal-peptide binding is the 

electrostatic force. It eventually controlled the size and the morphology of 

nanocrystals after the reduction of the ions due to initial pH changes.37 

Tezcan and coworkers have reported another transition metal ion (Zn (II) ion) 

as an important ion for the metal ion-peptide interactions. Strategic placement of Zn 

(II)-binding motifs within cytochrome cb 562 protein allowed the formation of 2D and 

3D crystalline arrays.38 Metal ion (Zn (II) plays a role of linking the cytochrome motif 

derived peptides. 

 

1.2.2 Metal-peptide hydrogels 

The term hydrogel can be defined as a three-dimensional hydrophilic polymer 

network system that can absorb certain amount of water through the hydration in an 

aqueous solvent.39 Gelation (sol-gel transition) is the process of linking of monomers 

to form progressively larger branched yet soluble polymers from the structure and 

conformation of the starting material. Continuation of the gelation process eventually 

increases the size of the branched polymer with decreasing solubility. After the 

critical point (gel point), a gel starts to appear. Hydrogels can be stimuli sensitive and 

respond to the surrounding environmental stimuli such as temperature, pH, electric 

field, and light. Any pH-sensitive polymer structurally contains hanging acidic or basic 
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groups that respond to the pH changes in their environment by gaining or losing 

protons. 

Certain peptides can be used as monomers to form peptide-based hydrogels. 

Peptide hydrogel has unique properties. Peptide hydrogel shows a high 

biocompatibility and bioactivity because of its biological structure. This is the reason 

novel peptide-based hydrogels can be used in biomedical research utilizing these 

unique properties.40  

Peptide hydrogel can be categorized into several types. The most common 

type of peptide hydrogel is a self-assembled peptide hydrogel through peptide-

peptide interactions.41 Self-assembly peptide can form a hydrogel alone or with an 

inducer (such as pH, temperature, and ions).42 For instance, Various β-hairpin 

forming peptide-based hydrogels can intermolecularly self-assemble into nanofibrillar, 

physical hydrogels after intramolecular folding. These β-hairpin peptide hydrogels 

showed injectable-solid properties and exhibited shear-thinning flow during syringe 

injection before rapid solid recovery. Gelation time, stiffness, and network mesh size 

can be modified via molecule design and solution conditions that control the 

intermolecular self-assembly into a hydrogel polymerized system.43  

Some peptides can form a hydrogel through metal-peptide interactions. 

These peptide based-hydrogels often become novel biological platforms for local, 

injectable applications because of the capability of their encapsulation and 

distribution properties of materials such as drugs, large proteins, and even cells with 

bio-injectability properties.8, 44 After the biological injection, the hydrogel may 

continuously release chemotherapeutical molecules, remaining in the desired 

location for a desired time period, possibly replacing dangerous surgeries and 
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invasive procedures. Many injectable hydrogels are constructed to be precursors 

that assembles in vivo when the reaction conditions reach the desired temperature, 

ions, pH, or certain radiations. (Figure 1.9)45-46 The injectable hydrogel can be made 

in a solid form within a syringe without the need for additional external interactions.47 

 

Figure 1.9 MAX1 (self-assembly peptide) intramolecular folding mechanism with 

consequential intermolecular assembly, A desired trigger can be a change in salt 

concentration, pH or temperature (figure 1.9) to order the peptides to fold and form 

lateral and facial self-assembled structures of fibrils even whole hydrogel network 

structure 

 

1.2.3 Alternative of Metal-peptide hydrogel 

M13 phage hydrogel can be a good alternative for peptide hydrogel. Peptide 

hydrogel synthesis requires difficult and expensive processes with biohazardous 

chemicals. However, M13 phage hydrogel is an easily creatable and cheap 

biomaterial that can contains every advantage of peptide hydrogel. M13 phage is 

made of several coat proteins and single stranded DNA.  

Most filamentous biopolymers (such as DNA and protein filaments) are highly 
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charged polyelectrolytes in compact and highly ordered forms in body. The net force 

between two adjacent polyions can be attractive due to the correlated fluctuations in 

the ion clouds around the polyions, following Poisson-Boltzman treatment with an 

introduced correlation between counterions by Asakura-Oosawa approximate 

analytical treatment. At smaller distances between filaments, the Manning 

condensation of ions on the surface of charged rod-like filaments may induce strong 

spatial correlations of ions or even the formation of Wigner crystals. Electrostatic 

attraction for rod like polyelectrolytes was also found in Monte Carlo (MC) 

simulations for a system of hexagonally ordered rod like polyelectrolytes (such as 

DNA and filamentous phages). Filamentous bacteriophages (fd and M13) are both 

long and stiff rod-like biological filamentous particles, each with different surface 

charge density. The protein based viral particles is atomic-resolutive structurally 

stable in solution over a wide range of ionic conditions. The filament viruses are 

good model systems to examine theoretical predictions of interactions between rod-

like polyelectrolytes with ions. Lateral aggregation of fd and M13 viruses induced by 

several divalent metal ions (Ca2+ and Mg2+) was experimentally found as expected in 

grand canonical MC simulations considering parameters such as the size of ions and 

surface charge distributions of the virus particles beside unexpected solubilization at 

certain ion concentrations. These counterion-mediated electrostatic interactions are 

primarily responsible for bundle formation induced by the alkali earth-metal ions. 

Weak ion-specific bonds play a dominant role in the aggregation induced by the 

transition-metal ions (Mn2+, Zn2+, Co2+, and Cu2+). The exact location and mode of 

coordination of the divalent ions inside the large bundles is still poorly understood. 

Filamentous bacteriophages have been widely used as vectors for molecular 
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genetics.48 Their aggregation properties under various solution conditions can be 

used for many biomedical applications. 

 

 

Figure 1.10 Phase contrast microscopy images of filament (A) fd and (B) M13 

bacteriophage bundles, fd and M13 phage bundles are induced by 100 mM CaCl2 
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solution. Each bundle was determined to contain thousands of virus filaments, and 

the average diameter of the tubular bundles is approximately 0.2μm. M13 bundles 

are shorter and occasionally branch open toward the ends, indicative of weaker 

interfilament association. 
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Chapter 2. M13 bacteriophage-based Hydrogel for Inhibition of 

Breast cancer growth through pH-controlled release of Cu2+-

bioorganic complex at body temperature 

 

2.1 Introduction 

Breast cancer is cancer that originates from breast tissues in the body. 

Breast cancer is one of the biggest health concerns in women.49 According to 

American Cancer Society, Inc., Surveillance Research, 40,610 American female 

patients died from breast cancer in 2017. To cure breast cancer, the related 

scientists and researchers have been studied several breast cancer cell lines.50-52 As 

a result, currently, there are several breast cancer therapies to cure and treat breast 

cancer. However, despite the invested effort and time, there are still many 

challenging problems facing the complete cure of breast cancer.39 Some scientists 

are considering copper as a possibly good agent for overcoming these current 

challenging problems.  

Copper is an important element for many types of cells and tissues in the 

body.53-54 There are many critical enzyme proteins (such as such as cytochrome 

oxidase55, zinc-copper superoxide dismutase56, and lysyl oxidase57) that require 

certain amounts of copper for their activities.47 These activities are highly involved in 

cellular growth regulation.58 It means that adequate amount of copper can help the 

cells and tissues grow in a regulated manner.  

Copper concentration is high in the body of cancer patients.59 Copper 

becomes even more important for cancer cells because it is not only a growth factor 

stimulator, but also a critical angiogenesis inducer.60 Cancer typically shows a high 
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angiogenesis property to obtain necessary oxygen and nutrients.60 Tumor copper 

plays a great role as a mandatory cofactor for many key proteins inducing 

angiogenesis. It means that copper depletion can cause a serious problem in the 

growth of cells and tissues in the body.61 Indeed, copper depletion have already 

been successfully proven to be as one of promising cancer therapeutic methods.62 

Intriguingly, copper overaccumulation has also been known to be potentially harmful 

for cells and used to treat cancer cells.63-64 Copper salts and complexes can kill cells 

by damaging DNA strands at high concentration.65 Among other copper-complexes, 

copper-peptide complexes can be formed through the interaction of copper with one 

or more peptides to form a type of metal-complex.66-67 

In this article, we demonstrate the virus-based hydrogel that can release 

copper-bioorganic complexes (phage or phage coat proteins) in a controlled manner. 

This hydrogel can be formed by simply adding Cu2+ ions to genetically engineered 

M13 phage solution displaying a new novel peptide (AGTGAGTGTGAGIRTG) on the 

major coat protein VIII. M13 bacteriophage (also called phage) is a filamentous virus 

(870nm-960 nm long and 6-8 nm wide) that specifically infects bacteria. The M13 

phage is non-toxic to humans, and it is genetically modifiable in a monodisperse 

polymer form via phage display method.24 Interestingly, decomposition rate of the 

hydrogel (GT2 Hydrogel) is pH-dependent. This pH sensitive decomposition of GT2 

hydrogel can show a controlled release of copper-phage complex in the cancer 

microenvironment at pH 6.5-6.9 at 37 oC. The released copper-phage complex 

showed a high cytotoxicity to two breast cancer cell lines. (MCF-7 and MDA-MB-231) 

The MCF-7 and MDA-MB-231 cell lines were chosen for this study because they 

have been some of the most well-documented cell lines in previously published 
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studies for their characteristics. The MCF-10A cell line was selected as a healthy cell 

line to determine the safety level and selectivity of the use of Cu2+ ions at different 

concentrations and Cu2+ ion-phage complex.68-70 

 

2.2 Materials and Methods 

2.2.1 Preparation of the engineered M13 phage 

Through previously published methods of phage display29, a peptide 

sequence (AGTGAGTGTGAGIRTG) was genetically fused on the pVIII coat proteins 

on the surface of genetically engineered M13 phage (GT2 phage). (Figure 2.1) The 

GT2 phage was amplified via the previously published protocol to fulfill the 

experimentally obtained critical concentration of the engineered M13 phage (2 x 1014 

phage/ml). The concentration of phage solution was measured using the 

spectrometer, considering optical density (OD) 0.1 in 1mm pathlength (OD =1 in 1cm 

pathlength) was unit-converted in to the phage concentration of 1 x 1013 phages/ml 

based on the previously calculated data. The engineered phage solution was 

microfiltered with a microfilter syringe (CORNING®) whose pore size was 0.2μm. 

The phage solution was also purified via desalting process to remove ions and small 

undesired molecules in the phage solution by dialysis with a spectra/Por® 6 dialysis 

membrane (MW 50kD). Presence of M13 phage was confirmed by bio-AFM imaging 

using a biological atomic force microscope (Bruker Catalysis). (Figure 2.2) 
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Figure 2.1 The pVIII major coat protein structure from PDB (Protein Data Bank) 

website, the tip of pVIII coat protein (pink dotted area) is where the novel peptide 

was genetically fused on the surface of M13 bacteriophage. 

 

Figure 2.2 GT2 M13 bacteriophage in AFM image, GT2 bacteriophage has also a 

long filamentous shape like the native form of M13 bacteriophage. 

 



27 

 

2.2.2 Copper-phage Hydrogel Formation 

50μl of 20mM copper (II) was added to 300μl of GT2 phage solution (2 x 1014 

phage/ml). After 2-3 hours, Cu2+ ions were passively and homogenously dispersed in 

the GT2 phage solution at 37oC and formed a hydrogel with the GT2 phage at room 

temperature (20 oC). Another method to form GT2 hydrogel can be done by injecting 

GT2 phage solution into copper (II) chloride solution at 3-25mM (Best Cu2+ ion 

concentration is 20mM). The injection orientation and rate were used to change the 

morphology of hydrogels. To test water insolubility of GT2 hydrogel at different pH 

levels, 300μl of GT2 hydrogels were transferred into water in each glass vial. Each 

glass vial with hydrogel was shaken vigorously. Hydrochloric acid and sodium 

hydroxide were used to alter the pH level in each solution at a different pH. 

 

2.2.3 Phage film formation (thin layer of Cu2+ ion-phage aggregations) 

GT phage film and WT phage film were prepared by adding 5μl of 5mM 

CuCl2 solution to each 50μl of GT2 phage solution (5.0 x 1013 phage/ml) and air-

dried (2-3 hours) on the glass coverslips. A Zeiss NEON High Resolution Scanning 

Electron Microscope was used to visualize the arrangements of M13 phage in the 

film with Cu2+ ions. The aggregations of Cu2+ ions-GT2 phage were detected and 

recorded in the SEM images. WT phage was also processed in the same method to 

make a WT phage film as a control group. 

 

2.2.4 Cu2+ ion-Phage Interaction 

Agarose gel electrophoresis was performed for Cu2+ ion-phage complex in 

sol-gel status in TAE buffer. 20μl of GT2 phage solution (5.0 x 1013 phages/ml) was 
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placed in each well of the agarose gel with a different Cu2+ ion concentration (0mM – 

120mM). With an applied electric current (at 30 voltages for 3-4 hours), negatively 

charged Cu2+ ion-phage migrated towards the positively charged electrode. 

Coomassie blue staining was performed to locate the migrated M13 phage coat 

proteins in the agarose gel. The agarose gel was treated in Coomassie ® R-250 

staining solution for 3-5 minutes in a gentle shaking manner and treated in wash 

(destaining) buffer (10% acetic acid and 5% ethanol) overnight to remove blue 

staining in the background agarose gel (to clearly see the blue bands for phage coat 

proteins). 

 

2.2.5 Evaluation of Hydrogel in mechanical properties 

Torsional rheometry (Discovery Hybrid Rheometer, DHR-2) was used to 

measure the rheological behaviors of the hydrogels. Hydrogel samples were tested 

on the geometry, steel parallel plate (diameter 40 mm), under the conditions of a 

time sweep at 37 oC with a 700-750 μm gap, and frequency sweep at 0.5-40 rad/s. 

Storage modulus and loss modulus values were obtained to measure elasticity and 

viscosity of gel-like WT aggregate/GT2 hydrogel respectively. Hydrogel Mass (mg), 

water content ratio, gel fraction, and swelling ratio were measured after 50μl of WT 

and GT2 phage solution were added to Dulbecco Modified Eagle Media (DMEM) at 

20mM Cu2+ ion. The mass of the hydrogels was taken by a scoopula to be measured 

after they were formed in the media with Cu2+ ion. Water content ratio was measured 

using ((wet hydrogel-dried hydrogel)/dried hydrogel). Gel fraction was measured by 

((hydrogel mass/(phage mass + Cu2+ mass)*100). Swelling ratio was measured by 

((swollen hydrogel-dried hydrogel)/dried hydrogel) 
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2.2.6 Copper Cytotoxicity 

AlamarBlue® (Cell Viability Assay from Bio-Rad company) assay was used to 

measure copper cytotoxicity to two breast cancer cell lines (MCF-7, MDA-MB-231). 

MCF-7 and MDA-MB-231 cells were cultured in wells in 96-well plate (5-7 days) and 

treated at the concentrations of Cu2+ ions (50μM, 100μM, 200μM, 500μM, 1mM, 

2mM, 5mM, and 10mM) and 50μl of GT2 hydrogel (created by inserting 50μl of GT2 

phage solution (2 x 1014 phages/ml) into 20mM Cu2+ ion solution) was transferred to 

one of the sample groups to treat the cancer cells. The cell viability was measured at 

three different time points; Day 1, Day 2, and Day 3. The cell viability of the positive 

control (No Cu2+ ion nor GT2 hydrogel) was regarded as 100% for comparing to 

ones of the samples. Cell viability was confirmed and compared to breast 

endothelium cells ((MCF-10A), Normal cell control) by Live-Dead cell assay kit from 

Thermo Fisher (The LIVE/DEAD® Cell Imaging Kit).  

 

2.2.7 Fluorescent Imaging of Nucleus and Actin Filaments in Breast Cancer 

cells (MCF-7 and MDA-MB-231) 

DAPI (4′,6-diamidino-2-phenylindole) was used as a blue fluorescent stain to 

image DNA in the nucleus and Phalloidin (Alexa 488) was used to stain actin 

filaments in green for both MCF-7 and MDA-MB-231 breast cancer cell lines. MCF-7 

and MDA-MB-231 cells were both cultured in different 96-well plates (5-7 days) and 

treated at the same concentrations of Cu2+ ions (50μM, 100μM, 200μM, 500μM, 

1mM, 2mM, 5mM, and 10mM) and 50μl of GT2 hydrogel (created by inserting 50μl 

of GT2 phage solution (2 x 1014 phages/ml) into 20mM Cu2+ ion solution) was 

transferred to one of the sample groups to treat the cancer cells. DAPI-Phalloidin 
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images were merged for the same group by ImageJ software. 

 

2.2.8 pH-Controlled Release of Copper-phage complex 

ICP-AES method was used to detect and count the numbers of released 

Cu2+ ions from each GT2 hydrogel (50μl) in the media (3 samples per group) at a 

different pH (6.5 and 7.4) at different time points; 5 minutes, 30 minutes, 1 hour, 2 

hour, 3 hour, 6 hour, 12 hour, 24 hour in Soil, Water, and Forage Analytical 

Laboratory (SWFAL) at Oklahoma State University. ICP-AES was also used to detect 

and count the numbers of released Cu2+ ions from GT2 hydrogel (300μl) in the 

media (pH 6.5) at body temperature (37 oC); 5 minutes, 30 minutes, 1 hour, 2 hour, 3 

hour, 6 hour, 12 hour, 24 hour, 2 day, 5 day, 7 day, 14 day, and 30 day. 

 

2.2.9 Cu2+-GT2 phage complex Imaging 

Confocal imaging and SEM imaging were performed to visualize the 

morphological changes of breast cancer cells. Leica SP8 Scanning 

Confocal/Multiphoton/FLIM Microscope was used to perform Confocal imaging in 

Confocal Microscopy/Advanced Light Imaging at the University of Oklahoma. Fixed 

breast cancer cells, previously fluorescently dyed in Phalloidin Alexa 488 (green) and 

DAPI (blue) were collected by micro-pipetting and viewed on the coverslip under the 

microscope. Zeiss NEON High Resolution Scanning Electron Microscope was used 

to make SEM images of critical point dried breast cancer cells (MCF-7 and MDA-MB-

231 cell lines) on the coverslip (coverslips were 20 minute-sonicated and 75% 

ethanol treated and placed under 6 hour-UV radiation for sterilization) after 4% 

paraformaldehyde fixation and gradual ethanol dehydration process. 
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2.3 Results and Discussion 

2.3.1 Cu2+-Engineered M13 phage Hydrogel 

300μl of phage solution and 50μl of 20mM copper (II) chloride solution were 

mixed to form GT2 hydrogel. GT2 hydrogel showed a good water insolubility in a 

slightly weak acidic condition. GT2 hydrogel was elastic enough to be picked up by 

forceps. WT-M13 phage can also form a gel-like aggregate with Cu2+ ion. However, 

gel-like Cu2+ ion-WT aggregate (WT aggregate) shows less copper sensitivity and 

less aggregation of phage with Cu2+ ion. (Figure 2.3 and 2.4) Cu2+ ion can make a 

coordination bond to nitrogen in the N-terminus of peptides.71-73 The coordination 

bond may induce the formation of gel-like structure of M13 phage. GT2 phage can 

potentially make stronger coordination bonds with more Cu2+ ions because of 

possible additional coordination bonds between Cu2+ ions and the threonine/arginine 

residues in the displayed peptide sequence (AGTGAGTGTGAGIRTG).74-76 

 

 

Figure 2.3 GT2 Hydrogel in water at pH 6, GT2 hydrogel shows a good water 

insolubility at a weak acidic condition. Viscoelastic GT2 hydrogel can be picked up 

by forceps. 
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Figure 2.4 GT2 Hydrogel and WT aggregate at Cu2+ 20mM (A), 3mM (B), (A) Once 

GT2 hydrogel and WT aggregate were formed in Cu2+ solution, the glass vials were 

vigorously shaken. GT2 hydrogel shows a higher mechanical strength than that of 

WT aggregate. (B) GT2 hydrogel shows a higher aggregation than that of WT 

aggregate at a low Cu2+ ion concentration (3mM). 

 

Water insolubility of GT2 hydrogel was tested at different pH levels. GT2 

Hydrogel showed the best water insolubility at pH 5.7. GT2 hydrogel starts to 

dissolve completely in water out of the pH range (5 - 8). (Figure 2.5) 

 

Figure 2.5 pH sensitivity of GT2 Hydrogel, GT2 hydrogel shows the best water 

insolubility at pH 6. GT2 hydrogel seems to be semi-soluble at pH 7. Beside the pH 

range of 5.7-7, GT2 hydrogel becomes soluble in water at the other pH levels. 
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2.3.2 Cu2+-M13 phage interaction 

The interaction between Cu2+ ions and M13 phage can be shown in SEM 

images. (Figure 2.6) GT2 phage aggregated massively with Cu2+ ions to form larger 

bundles and even created a micro-millimeter large bioorganic complex. However, 

WT phage showed less aggregation with Cu2+ ions than that of GT phage. Copper 

salts were found near Cu2+-WT phage complex. (Figure 2.7) It suggests that WT 

phage did not fully interact with all the Cu2+ ions, therefore it could not form a large 

Cu2+-WT phage complex. Cu2+ ion-GT2 phage aggregations appeared larger with 

phage bundling structures interacting with more Cu2+ ions. (Figure 2.8) To confirm 

the reactivity and interaction strength of GT2 phage and Cu2+ ions, GT2 phage was 

separately inserted into agarose gel for electrophoresis with a different Cu2+ ion 

concentration at each trial. GT2 phage showed a stronger interaction with Cu2+ ions 

and a small fraction of GT2 phage was migrated at high Cu2+ ion concentration 

conditions due to its aggregation and formation of larger bioorganic complexes for 

resisting migration in the agarose gel. Cu2+ ion-GT2 phage complexes were found in 

their initial positions at > Cu2+ ion 15mM with naked eye. (Figure 2.9), meaning GT2 

phage still has a high affinity to Cu2+ ions below its critical concentration for hydrogel 

formation.  
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Figure 2.6 M13 phage alignments in the phage films, (A) WT phage shows isotropic 

arrangement in the film, (B) GT2 phage shows isotropic mesh network in the film, 

however in the thicker phage bundle form. 
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Figure 2.7 Cu2+ ion induced M13 phage aggregations in a thin layered film, (A) GT2 

phage made one large aggregated layer with Cu2+ ions, (B) WT phage aggregations 

with Cu2+ ions were shown in a scattered pattern lacking a cross-linking property. 
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Figure 2.8 Cross-linking property of Cu2+ ion-GT2 phage, Cu2+ ion-GT2 phage 

bundles are strongly linked and bound together. 

 

 

Figure 2.9 Electrophoretic mobility shift assay for Cu2+ ion-GT2 phage, when GT2 

phage forms a complex with Cu2+ ions, the large complex resists to migrate in the 

agarose gel during the electrophoresis. At the higher Cu2+ ion concentration, the 

lower amount of GT2 phage proteins migrate. 
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2.3.3 Characteristics of Cu2+-phage hydrogel/aggregate 

Elastic GT2 hydrogel and gel-like WT aggregate can be formed in DMEM 

medium at 20mM Cu2+ ion. GT2 hydrogel and WT aggregate can be both picked up 

by forceps. However, after formation of hydrogel structure, GT2 hydrogel and WT 

aggregate decomposes slowly at pH 7.4 in the DMEM media. GT2 hydrogel shows 

superior hydrogel properties in water content ratio, gel fraction, and swelling ratio to 

those of WT aggregate. Because of higher water content/swelling/gel fraction 

properties of GT2 hydrogel, it has higher mass than WT aggregate under same 

conditions. This means when WT aggregate and GT2 hydrogel were formed in 

DMEM medium at 20 mM Cu2+ ion, GT2 phage could build a larger and heavier 

hydrogel from the equivalent amount of initial phage solution than ones in WT phage. 

(Figure 2.10) GT2 hydrogel also shows higher storage modulus and loss modulus 

than ones of WT aggregate. GT2 hydrogel is more elastic and viscous than WT 

aggregate. (Figure 2.11) This may suggest that, due to the higher water content and 

gel fraction, more GT2 phages were able to interact with a higher number of Cu2+ 

ions to form a polymer structure, absorbing a larger amount of water than WT 

phages do in WT aggregate formation with copper (II) ions. Due to the weak 

mechanical properties of WT aggregate to fulfill the requirements of good hydrogel 

unlike GT2 hydrogel, WT aggregate was not easily moveable with forceps. 
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Figure 2.10 Hydrogel properties of GT2 hydrogel and WT aggregate, GT2 hydrogel 

mass is higher than one of WT aggregate because GT2 hydrogel has higher values 

in gel fraction, water content ratio, and swelling ratio. 

 

 

Figure 2.11 Mechanical properties of GT2 hydrogel and Gel-like WT aggregate, GT2 

hydrogel has higher storage and higher loss modulus than ones of WT aggregate. It 

indicates that GT2 hydrogel is >2-fold more elastic and viscous (at certain angular 
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frequencies) than ones of WT aggregate. GT2 hydrogel is significantly higher in 

mechanical strength than WT aggregate. (storage modulus in blue and loss modulus 

in green) 

 

2.3.4 Cytotoxicity of Cu2+ and GT2 Hydrogel on Breast cancer cells 

Copper (II) ions show a high cytotoxicity on breast cancer cells (MCF-7 cell 

line) at a high concentration (20 mM) while neither GT2 phage nor PBS solution are 

toxic to MCF-7 cells after 72-hour incubation. However, addition of GT2 phage into 

MCF-7 cells in DMEM media at 20 mM Cu2+ ion showed a higher cytotoxicity than 

that of only Cu2+ ions. (Figure 2.12) To clarify the cytotoxicity of Cu2+ ions and GT2 

hydrogel in detail, the cytotoxicity of Cu2+ ion at different concentrations and GT2 

hydrogel on MCF-7 cells was measured at three different time points; Day 1, Day 2, 

and Day 3. At day 3, the growth of MCF-7 breast cancer cells was significantly 

repressed by >500μM Cu2+ ion or 50 μl of GT2 hydrogel. (Figure 2.13) Live/Dead cell 

imaging results also support the cell viability data. (Figure 2.14) The copper toxicity 

on MDA-MB-231 in the same conditions was also obtained. The growth of MDA-MB-

231 was significantly suppressed by >500μM Cu2+ and GT2 hydrogel. GT2 hydrogel 

showed a lower cytotoxicity on MDA-MB-231 cells at day 1 and day 2 than those on 

MCF-7 cells. (Figure 2.15 and Figure 2.16) The copper toxicity on MCF-10A, Breast 

endothelium cells (normal cell control), in the same conditions was also attained to 

compare to those of MCF-7 and MDA-MB-231. Surprisingly, the growth of MCF-10A 

was suppressed by >1 mM Cu2+ and GT2 hydrogel. GT2 hydrogel showed a lower 

cytotoxicity on MCF-10A cell line than that on MCF-7 and MDA-MB-231 cell lines. 

(Figure 2.17) Interestingly, the cell growths (MCF-7, MDA-MB-231, and MCF-10A) 
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were highly inhibited by 50μl of GT2 hydrogel as they were at high Cu2+ ion 

concentration despite of that GT2 hydrogel can only release a low amount of Cu2+ 

ions, creating a low Cu2+ ion concentration (~178μM) in the DMEM media. 

Additionally, as proven in Figure 2.12, M13 phage is non-toxic to cells.77 It proposes 

that strong inhibition of breast cancer cell growth can only occur with the presence of 

both Cu2+ ions and GT phages. 

 

Figure 2.12 Growth Inhibition (%) of Cu2+ ion and GT2 phage, Copper (II) ions inhibit 

the MCF-7 cell growth significantly at a high concentration. GT2 phage (50μl), itself, 

does not inhibit the growth of MCF-7 cells. However, GT2 phage shows a synergetic 

cytotoxicity on MCF-7 cells with Cu2+ ions. 
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Figure 2.13 MCF-7 cell growth on different concentrations of Cu2+ ion and GT2 

hydrogel, MCF-7 cancer cell growth was suppressed by > 5mM Cu2+ ion at Day 1, 

1mM Cu2+ ion at Day 2 and 3, MCF-7 cancer cell growth was suppressed by GT2 

hydrogel at all Day 1, 2, and 3 (50 μl) 
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Figure 2.14 Live/Dead MCF-7 Cell Imaging, Live cells were stained in green color 

and dead cells were stained red color after 3-day incubation.  

 

 

Figure 2.15 MDA-MB-231 cell growth on different concentrations of Cu2+ ion and 
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GT2 hydrogel, the growth of MDA-MB-231 Breast cancer cell is significantly 

suppressed by >500μM Cu2+ ion or 50μl of GT2 hydrogel. 

 

 

Figure 2.16 Live/Dead MDA-MB-231 Cell Imaging, Live cells were stained in green 

color and dead cells were stained red color after 3-day incubation. 

 

 

Figure 2.17 Live/Dead MCF-10A Cell Imaging, Live cells were stained in green color 

and dead cells were stained red color after 3-day incubation. 

 

2.3.5 Nucleus and Actin Filaments in MCF-7 and MDA-MB-231 with Cu2+ and 

GT2 hydrogel 

MCF-7 cells were immunofluorescent stained in DAPI and phalloidin (Alexa 

488) to locate and visualize DNA (in the nucleus) and actin filaments in MCF-7 cells 
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after 3-day incubation in Cu2+ ion at various concentrations and 50μl of GT2 hydrogel. 

MCF-7 cells (at <1mM Cu2+ ion) did not show any noticeable change in the size of 

shape of nucleus and actin filaments, compared to ones of MCF-7 cells in positive 

control except those at 500μM Cu2+. The size of the nucleus and the actin filament 

network in MCF-7 cells at 500μM Cu2+ became larger than that in the positive control. 

However, actin filaments in MCF-7 cells were significantly contracted at >1mM Cu2+, 

compared to those in the positive control (Figure 2.18) MDA-MB-231 breast cancer 

cells were also immunofluorescent stained in DAPI and phalloidin (Alexa 488) to 

locate and visualize DNA (in the nucleus) and actin filaments in MDA-MB-231 cells 

after 3-day incubation in Cu2+ at various concentrations and 50μl of GT2 hydrogel. 

MDA-MB-231 cells (at <1mM Cu2+ ion) did not show any noticeable change in the 

size and shape of nucleus and actin filaments, compared to those of MCF-7 cells in 

the positive control. However, actin filaments in MDA-MB-231 cells were significantly 

contracted at >1mM Cu2+, compared to those in the positive control (Figure 2.19) In 

both MCF-7 and MDA-MB-231 cells, the actin filaments are strongly inhibited with 

the presence of >1mM Cu2+ ion and 50μl of GT2 hydrogel. It is possible that actin 

filaments are damaged by oxidative stress from added Cu2+ ions in the medium. An 

excess of Cu2+ ions can cause oxidative stress that mainly targets actin monomers in 

all living organism in water-based medium. In the presence of Cu2+ ions, hydroxyl 

radicals can oxidize most of amino acid residues (such as K, R, P, and T) in protein. 

Hydroxyl radical can steal a hydrogen on a carbon in the side chain of amino acid 

residue in actin protein. After hydrogen abstraction of hydroxyl radicals, Cu2+ ion can 

accept the lone pair of a radical carbon. A radical carbon on the side chain of the 

protein may be later led to a possible carbonylation pathway (carbon radical 
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carbonylation). The modification of actin monomer structure may destabilize the actin 

polymerization. It may also cause a serious problem for actin monomers to be re-

formed in actin filaments. Eventually, oxidative stress (from Cu2+ ions) can induce 

many biochemical processes that suppress a stable formation of actin filaments.78-79 

 

Figure 2.18 DAPI and Phalloidin staining of MCF-7 cells after 3-day incubation with 

GT2 hydrogel treatment besides various Cu2+ ion concentrations, DNA in the nucleus 

and actin filaments (MCF-7) were stained in DAPI and phalloidin (Alexa 488) 

respectively at various Cu2+ concentrations and GT2 hydrogel. Nucleus in MCF-7 

cells seems to increase at <500μM Cu2+ ion and decreased at >500μM Cu2+ ion. The 

signs of actin filament activity/expression in green color is inhibited at >1mM Cu2+ ion 

and GT2 hydrogel (50μl) 

 

Figure 2.19 DAPI and Phalloidin staining of MDA-MB-231 cells after 3-day 

incubation with GT2 hydrogel treatment besides various Cu2+ ion concentrations, 



46 

 

DNA in the nucleus and actin filaments (MDA-MB-231) were stained in DAPI and 

phalloidin (Alexa 488) respectively at various Cu2+ concentrations and GT2 hydrogel. 

Nucleus in MCF-7 cells seems to increase at <500μM Cu2+ ion and decreased at 

>500μM Cu2+ ion. The signs of actin filament activity/expression in green color is 

inhibited at >1mM Cu2+ ion and GT2 hydrogel (50μl) 

 

2.3.6 pH-Controlled Release of Copper-phage complex 

GT2 hydrogel (50 μl) decomposition was observed in PBS solution (pH 7.4) 

during 1-5 days at room temperature (20 oC). GT2 hydrogel was slowly decomposed 

over 5 days. Stimulatingly, released Cu2+-phage complex was seen in the form of a 

haze at the bottom of the glass vial by naked eye. At day 5, GT2 hydrogel was 

almost completely decomposed and completely dissolved in PBS solution following 

one vigorous shaking. (Figure 2.20) The decomposition rate of GT2 hydrogel in 

DMEM was also tested. GT2 hydrogel disappeared in DMEM at pH 7.4 (room 

temperature) rapidly (within 5 minutes) to the naked eye. However, GT hydrogel 

seemed to decompose slowly at pH 6.5 in DMEM (room temperature). (Figure 2.21) 

Based on ICP-AES data, Cu2+ ions were released completely in 12 hours from GT2 

hydrogel in DMEM at pH 7.4 (room temperature). It might suggest that GT2 hydrogel 

can be fully dissolved in 12 hours at pH 7.4. Even if GT2 hydrogel disappears in 5 

minutes in DMEM at pH 7.4, GT2 hydrogel was still not fully dissociated in 12 hours. 

This might indicate that GT2 hydrogel becomes transparent within 5 minutes, slowly 

dissociating over 12 hours. GT2 hydrogel decomposed at a slow rate at pH 6.5. 

(Figure 2.22) GT2 hydrogel showed a slower rate of releasing Cu2+ ions at pH 6.5 

and at body temperature (37 oC). This might also indicate that GT2 hydrogel 
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decomposes slowly at 37 oC. (Figure 2.23) The controlled Cu2+ ion release of GT2 

hydrogel was maintained over 1 month. (Figure 2.24) In a longer time period, GT2 

hydrogel can release and decompose slowly at pH 6.5 at 37 oC. 

 

Figure 2.20 Decomposition of GT2 hydrogel at pH 7.4, The images of GT hydrogel 

in PBS solution at (pH 7.4) were obtained at different time points (1 min, 3 min, 5 min, 

10 min, 30 minutes, 1 hour, 2 hour, 4 hour, 6 hour, 12 hour, 24 hour, 36 hour, 48 hour, 

60 hour, 72 hour, 84 hour, 4 day, 4 day 12 hour, 5 day, and 5 day 12 hour) 
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Figure 2.21 Decomposition of GT2 hydrogel in DMEM at two different pH, GT2 

hydrogel disappear in DMEM less than 5 minutes at pH 7.4 by naked eyes. However, 

GT2 hydrogel disappear slowly at pH 6.5, compared to the one at pH 7.4 to the 

naked eye. 

 

Figure 2.22 Decomposition of GT hydrogel in DMEM at pH 6.5 and 7.4 (20 oC), GT2 

hydrogel decomposed faster at pH 6.5. GT2 hydrogel was completely decomposed 

in 12 hours. 
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Figure 2.23 GT2 hydrogel decomposition at pH 6.5 in hours (37 oC), GT2 hydrogel 

decomposed slower at body temperature (37 oC) 

 

 

Figure 2.24 GT2 hydrogel decomposition at pH 6.5 in days (37 oC), GT2 hydrogel 

decomposed slower at body temperature (37 oC) for a longer period. 
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2.3.7 Encapsulation of Breast cancer cells by Cu2+-Phage complex 

In confocal images of MCF-7 and MDA-MB-231 cells with GT2 hydrogel, 

filament-like structures (located on the surface of both MCF-7 and MDA-MB-231 

cells) were not identified due to the low resolution of the images. SEM imaging was 

used to create the images of breast cancer cells at a higher resolution. (Figure 2.25, 

Figure 2.26, and Figure 27) In the SEM images (Figure 2.25 g,h, 2.26 g,h, and 

Figure 27), MCF-7 and MDA-MB-231 cells (previously treated with GT2 hydrogel, 

Cu2+-phage complex) were surrounded by Cu2+-GT2 phage complex. However, GT2 

phages were not found on the surface of the breast cancer cells without Cu2+ ions. It 

suggests that only when GT2 phages are loaded with Cu2+ ions (Cu2+-) can GT2 

phage complex have a high affinity to both MCF-7 and MDA-MB-231 cell 

(membrane). Cu2+-GT2 phage complex enclosed breast cancer cells may suffer from 

poor oxygen and nutrient absorption, and eventually led to apoptosis pathway.80-82 

Cu2+-GT2 phage complex confinement might cause even a more serious damage for 

the breast cancer cells by preventing them from interacting and responding to ECM 

and signal proteins, essential for their survival in in vivo study.83-84 It also suggests 

that surrounding the cancer cell with Cu2+ ion-GT2 phage complex may induce an 

effective and efficient delivery of Cu2+ ions into the cell85, and eventually it also lead 

the cells to apoptosis pathway due to Cu2+ ion-induced oxidative stress.  
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Figure 2.25 MCF-7 SEM images, (A) MCF-7 at 0μM Cu2+ ion, (B) MCF-7 at 50μM 

Cu2+ ion, (C) MCF-7 at 200μM Cu2+ ion, (D) MCF-7 at 1mM Cu2+ ion, (E) MCF-7 at 

5mM Cu2+ ion, (F) MCF-7, treated with 50μl of GT2 phage, (G) MCF-7, treated with 

50μl of GT2 hydrogel, (H) a MCF-7 cell (cell surface), treated with 50μl of GT2 

hydrogel at higher magnification. 
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Figure 2.26 MDA-MB-231 SEM images, (A) MDA-MB-231 at 0μM Cu2+ ion, (B) 

MDA-MB-231 at 50μM Cu2+ ion, (C) MDA-MB-231 at 200μM Cu2+ ion, (D) MDA-MB-

231 at 1mM Cu2+ ion, (E) MDA-MB-231 at 5mM Cu2+ ion, (F) MDA-MB-231, treated 

with 50μl of GT2 phage, (G) MDA-MB-231, treated with 50μl of GT2 hydrogel, (H) a 

MDA-MB-231 cell, treated with 50μl of GT2 hydrogel at higher magnification. 

 

 

Figure 2.27 MCF-7/MDA-MB-231 SEM images at high magnifications, ((A), (B)) 

MDA-MB-231 covered with Cu2+ ion loaded GT2 phages, ((C), (D)) MCF-7 covered 

with Cu2+ ion loaded GT2 phages 
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2.4 Conclusion 

Copper seems to be an important cell growth factor particularly for cancer 

cells due to its role as an inducer of angiogenesis and several important growth 

mechanism boosters. However, copper overaccumulation causes serious problem in 

the growth of breast cancer cell lines (MCF-7 and MDA-MB-231). GT2 hydrogel 

shows the release of the copper-phage complex in a pH-dependent manner at body 

temperature. Released (strongly linked) Cu2+ ion-GT2 phage complexes can 

surround the breast cancer cell membranes and eventually kill the cancer cells 

(MCF-7 and MDA-MB-231). This pH-controlled release mechanism may enable us to 

treat and kill cancer cells specifically in the body over a long time period (>1 month). 

Due to the cell confinement of Cu2+ ion-GT2 phage complex and direct delivery of 

Cu2+ ion into cytoplasm of cells, breast cancer cells may die from the lack of oxygen 

and nutrients and oxidative stress. It may also cause a synergetic effect on killing 

breast cancer cells with their lack of interaction and response to ECM and signal 

proteins, critical for their growth and survival in in vivo study.86 Eventually, Cu2+ ion-

bioorganic complex-surrounding mechanisms may lead cancer cells to the apoptosis 

pathway more efficiently and effectively. (Figure 2.28) This new novel method might 

brighten up the field of cancer therapeutic studies in the future, and it can also 

potentially be utilized for other studies such as the measurement of copper ion 

concentrations in water-based solutions and the removal of toxic organic complex as 

well as many other Cu2+ ion related organic chemical studies. 
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Figure 2.28 Schematic Image of overall process of building a breast cancer 

therapeutic Cu2+ ion-Phage hydrogel 
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Chapter 3. Gold (III) ion-M13 Phage Based Hydrogel Formation for 

Potential Green Biochemical Synthesis of Fine Gold Nanoparticles 

3.1 Introduction 

Nanotechnology has been advanced rapidly for many scientific researches 

such as the nanoprobes development for detecting metal ions, RNA, peptides or 

proteins so on.87-89 Nanoparticles with the appealing properties have dominated the 

area of sensing and detective device development.90-91 Particularly, sensors with 

gold nanoparticles (AuNPs) have been studied and advanced by a lot of great 

researchers using the AuNPs’ feasible applicability with the high surface to volume 

ratio and fascinating optical properties of AuNPs enabling highly sensitive and 

selective detection.92-94  

Especially, small sized Au NPs is more attractive for biomedical use in 

sensing, cellular imaging, drug delivery, and cancer therapy, chemical analysis, 

catalysis, electronics, and nonlinear optical processes.95-97 The unique plasmon and 

optical properties of AuNPs significantly are subject to its morphological and 

physiological characteristics. Its size, shape and aggregation state determine the 

optical proprieties that can be fine-tuned by the appropriate synthesizing and 

stabilizing agent(s). Colloidal AuNPs normally show red or pink color and when it 

aggregates, its color changes to purple-blue.87 Bottom-up assembly of AuNPs in the 

efficient way with an elegant control at the nanoscale is one of the key ambitions of 

nanoscience and nanotechnology.98-100 AuNPs ,as metal nanomaterials, can also 

have the flexibility of surface modifications and the physicochemical properties 

generated from quantum size effects. Histidine-containing peptides have been 

reported for their high affinities to metal ions damaging central nervous systems by 
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changing peptide conformations into irregular forms. Through histidine-metal 

complexation and the protein deformation may cause human brain diseases such as 

Parkinson’s and Alzheimer’s diseases. Metallic nanowires were synthesized by 

applying the sequenced histidine-rich peptides as a template in a form of a nanotube. 

The specific sequenced peptides mineralizing specific metals/semiconductors can 

produce highly crystalline nanocrystals. The peptide conformational charges on 

nanotubes can control the size and the packing density of nanocrystals. M13 

bacteriophage has been also used to electrostatically interact with AuNPs to form a 

hydrogel. Hydrogels composed of genetically engineered highly negative filamentous 

M13 phages and AuNPs. 

Gold Nanoparticles have been used to make a various type of hydrogels. In 

this article, gold ions (Au3+ from HAuCl4) are used to make a genetically engineered 

M13-phage based hydrogel by fusing a beta-amyloid peptide on the surface of the 

phage. It also produces fine gold nanoparticles (mostly <50nm) due to reducing 

power of M13 phage after the formation of hydrogel. The Au3+ ion-M13 phage 

hydrogel with embedded fine gold nanoparticles (B31 hydrogel) can be potentially 

used for many biomedical researches because of the unique properties of gold 

nanoparticle/ions and biosafe M13 phage.  
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3.2 Materials and Methods 

3.2.1 Preparation of the engineered B31 phage 

Through the previously published methods of phage display, a peptide sequence 

(HQKLVFFAED) was genetically fused on the pVIII coat proteins on the surface of 

genetically engineered M13 phage (B31 phage). (Figure 3.1) 

 

 

Figure 3.1 The pVIII major coat protein structure from PDB (Protein Data Bank) 

website, the tip of pVIII coat protein (pink dotted area) is where the novel peptide 

sequence (HQKLVFFAED) was genetically fused. 

 

The B31 phage was amplified via the previously published protocol to fulfill 

the experimentally obtained critical/minimum concentration of the engineered M13 

phage (2 x 1014 phage/ml).29 The concentration of phage solution was measured, 

using the spectrometer, considering optical density (OD) 0.1 ((OD=0.1 in 1mm) (OD 

=1 in 1cm pathlength)) was unit-converted in to 1 x 1013 phages/ml based on the 

previously calculated data. The engineered phage solution was microfiltered with 

microfilter syringe (CORNING®) whose pore size was 0.2μm. The phage solution 
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was also purified via desalting process to remove ions and small undesired 

molecules in the phage solution by dialysis with a spectra/Por® 6 dialysis membrane 

(MW 50kD). Presence of B31 phages was confirmed by bio-AFM imaging using a 

biological atomic force microscope (Bruker Catalysis). (Figure 3.2) 

 

 

Figure 3.2 AFM images of B31 phage, B31 phage has also a filamentous virus 

shape like native M13 phage. 

 

3.2.2 Au3+ ion-B31 phage Hydrogel Formation 

50μl of 10mM Au3+ ions (in HAuCl4, Chloroauric acid) was added to the 300μl 

of B31 phage solution (2.0 x 1014 phage/ml). After 2-3 hours at a room temperature 

(20 oC), Au3+ ions were passively/homogenously dispersed in the B31 phage solution 

and formed a hydrogel. Parts of B31 hydrogel were transferred into PBS, DMEM 
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media and hMSC media in the conical tubes for testing insolubility of B31 hydrogel in 

common biochemical cell culturing media. 

 

3.2.3 Evaluation of B31 Hydrogel in mechanical properties 

Torsional rheometer (Discovery Hybrid Rheometer, DHR-2) was used to 

measure the rheological behaviors of the hydrogels. B31 Hydrogel samples (300μl) 

were tested for storage modulus (elasticity) and loss modulus (viscosity) on steel 

parallel plate (geometry diameter = 40 mm) under the conditions of a time sweep at 

37 oC with a 750 μm gap, and frequency sweep at 0.5-40 rad/s. Au3+ ion-WT 

aggregates were also tested as a control group in the same conditions. 

 

3.2.4 AFM/TEM Imaging of AuNPs in Au3+-B31 phage Hydrogel  

After the Brightfield imaging for confirming the presence of AuNPs, AFM and 

TEM imaging methods were performed to visualize gold nanoparticles (AuNPs) in 

B31 hydrogel at higher magnifications and resolutions. ZEISS 10A Conventional 

Transmission Electron Microscope was used to perform TEM imaging in Microscopy 

Imaging lab at the University of Oklahoma. Bio-AFM imaging method was also used 

to visualize AuNPs in B31 hydrogel in the biological atomic force microscope (Bruker 

Catalysis). UV-vis Absorption spectrum was reviewed as a conformation. Absorption 

spectrum was also performed to find a peak at a certain wavelength to indicate an 

average size of AuNPs by following the data with Nano-spectrometer, compared to 

the related reference data.101-103 (Table 3.1) 

AuNP 
size 

10nm 20nm 30nm 40nm 50nm 80nm 100nm 
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Peak 
Location 

(λ) 
~515nm ~520nm ~530nm ~540nm ~550nm ~560nm ~580nm 

Table 3.1 UV-vis absorption data for average gold nanoparticle (AuNP) size, the 

peak location moves to the left (lower wavelength (nm)) when AuNP size decreases 

and the peak location moves to the right (higher wavelength (nm)) when AuNP size 

increases. (average AuNP size (0.5nm – 100nm) range to correspond to peak 

wavelength (500nm – 600nm) range) 

 

 

3.3 Results and Discussion 

3.3.1 Au3+ ion-B31 phage Hydrogel 

Peptide sequence (HQKLVFFAED) displaying M13 phage (B31 phage) was 

successfully amplified and mixed with Au3+ ions to form a hydrogel after 2-3 hours at 

a room temperature (20 oC) while WT phage did not form a hydrogel with Au3+ ions.  

After 24 hours, Au3+ ion-B31 hydrogel (Formed at Au3+ ion 1.5mM) turned light brown, 

indicating the formation of fine gold nanoparticles (fine AuNPs). Because of 

negatively charged amino acid resides (E and D) of displayed peptide 

(HQKLVFFAED), the overall surface net charge of B31 phages can be negative.23, 27, 

104 When B31 phages were engaged by Au3+ ions through metal ion-peptide 

interaction in a hydrogel structure, some Au3+ ions were reduced to form AuNPs due 

to a possible reducing effect of tightly bound negative side chains of amino acid 

residues in B31 phages. Additionally, the displayed peptide is an amyloid β-peptide 

motif that shows antiparallel alignments.105 The antiparallel alignments among B31 

phages with Au3+ ions will create small and tight spaces in B31 hydrogel inner 

network, and it may make a strong reducing power of B31 phages onto Au3+ ions 
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trapped in B31 hydrogel due to their proximate contacts. (Figure 3.3 and Figure 3.4) 

B31 hydrogel also show an excellent insolubility in water, PBS, and any other 

biochemical media. (Figure 3.5 and Figure 3.6) 

 

Figure 3.3 B31 hydrogel formation at different Au3+ ion concentrations, A critical 

concentration for Au3+ ion is 450μM. B31 phage showed a stronger interaction with 

Au3+ ions forming a light brown B31 hydrogel at Au3+ 1.5mM. Each different color of 

B31 hydrogel represents a different size of formed AuNPs in B31 hydrogel. 

 

Figure 3.4 B31 hydrogel, (A) Top-down view of B31 hydrogel, (B) Side view of B31 

hydrogel 
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Figure 3.5 B31 hydrogel in distilled water, (A) B31 hydrogel is stable in water, (B) 

and (C) Freshly made B31 hydrogel is almost transparent without any color beside 

light white cloudiness due to B31 phage aggregations with Au3+ ions in the hydrogel. 

It indicates that there is almost no AuNPs formed in newly made B31 hydrogel. 

 

 

Figure 3.6 B31 hydrogel stability in biochemical media, a piece of B31 hydrogel was 
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inserted into each different medium. (hMSC basal medium, DMEM medium, and 

PBS buffer) B31 hydrogel showed a good insolubility in these three conditions 

regardless of time period. 

 

3.3.2 B31 hydrogel mechanical properties 

Au3+ ion-B31 hydrogel show higher values in storage modulus and loss 

modulus than ones of Au3+ ion-WT phage solution (a control) at all frequency sweeps 

at 0.5-40 rad/s. (Figure 3.7) B31 hydrogel is >8-fold more elastic and >2-fold more 

viscus than Au3+ ion-WT phage solution. It suggests that the interaction between 

Au3+ ions and B31 phages is stronger than one between Au3+ ions and WT phages. 

 

Figure 3.7 Mechanical strength of B31 hydrogel, the graph clearly indicates that WT 

phage does not interact with Au3+ ions as strong as B31 phage. 

 

3.3.3 Fine AuNPs synthesis in Au3+-B31 phage Hydrogel  

The presence of fine AuNPs were first identified by brightfield imaging. 

(Figure 3.8) The dark regions in the phage hydrogel locate the AuNPs, formed in B31 

hydrogel. AFM images confirmed that AuNPs in B31 hydrogel are smaller than ones 
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in Au3+ ion-WT phage complex. Based on the parameters in AFM software, the 

largest AuNPs in B31 hydrogel images were <50nm while there were AuNPs whose 

sizes were <200nm in Au3+ ion-WT phage complex. (Figure 3.9) In TEM images of 

B31 hydrogel and Au3+ ion-WT phage complex, the sizes of AuNPs were also smaller 

in B31 hydrogel than ones in Au3+ ion-WT phage complex. (Figure 3.10) The crystal 

structure of embedded AuNPs in B31 phage network in B31 hydrogel were found. 

(Figure 3.11) AuNPs in B31 hydrogel showed a peak around 529nm indicating the 

size of most AuNPs is 30nm. AuNPs in Au3+ ion-WT phage complex showed a low 

broad peak ranging 539nm, indicating the size of most AuNPs is >50nm. UV-vis 

absorption spectrum were obtained to confirm the size of AuNPs in B31 hydrogel. 

Absorption spectrum results also indicates the small AuNPs, formed in B31 hydrogel. 

(Figure 3.12)  
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Figure 3.8 Brightfield Images of B31 hydrogel and Au3+ ion-WT phage complex, (A) 

B31 hydrogel has fine AuNPs, (B) WT phage complex has also AuNPs, that are 

larger than ones in B31 hydrogel. 
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Figure 3.9 AFM images of B31 hydrogel and Au3+ ion-WT phage complex, (A) Fine 

AuNPs are found with B31 phage, (B) Many large AuNPs (>200nm) were found with 

WT phage. 
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Figure 3.10 TEM images of B31 hydrogel and Au3+ ion-WT phage complex, AuNPs 

in B31 hydrogel (A) are smaller than AuNPs in Au3+ ion-WT phage complex (B). 
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Figure 3.11 AuNPs, formed in Au3+ ion-B31 phage linkages in B31 hydrogel inner 

network structure, the strong interaction between B31 phage and Au3+ ions induces 

fine AuNP synthesis possibly due to B31 phage encapsulating lower numbers of Au3+ 

ions in B31 hydrogel for later reduction to create AuNPs from captured Au3+ ions. 

 

 

 

 

 

 



71 

 

 

Figure 3.12 Absorption spectrum of (A) Au3+ ion, (B) B31 phage, (C) Au3+ ion-WT 

aggregated complex, a peak at 539nm, (D) B31 hydrogel, a peak at 529nm, the 

average size of AuNPs in B31 hydrogel (~30nm) is smaller than the average size of 

AuNPs in Au3+ ion-WT aggregated complex (~40nm-50nm). 

 

3.4 Conclusion 

Nanotechnology has been continuously developing with novel nanomaterials such as 

functionalized AuNPs for certain applications. Here is a novel green biochemical 

synthesis of AuNPs, that do not require a complex chemical reactions and toxic 

chemical reagents. Engineered M13 phage (B31 phage) can be a great 

reducing/stabilizing/capping agent of AuNPs. In comparison to WT phage, B31 

phage can make finer AuNPs (>30-40nm) for a shorter time period (1-2 days). The 

Au3+ ion-B31 phage hydrogel with embedded fine gold nanoparticles (B31 hydrogel) 
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can be potentially used for many biomedical researches because of the better and 

unique properties of gold nanoparticle/ions and biosafe M13 phage hydrogel. (Figure 

3.13) 

 

 

Figure 3.13 Schematic Image of overall process of green biochemical synthesis of 

fine AuNPs in Au3+ ion-B31 phage hydrogel 
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