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Abstract 

Diagnostic medical imaging is an important non-invasive tool in medicine. It 

provides doctors (i.e., radiologists) with rich diagnostic information in clinical practice. 

Computer-aided diagnosis (CAD) schemes aim to provide a tool to assist the doctors for 

reading and interpreting medical images. Traditional CAD schemes are based on hand-

crafted features and shallow supervised learning algorithms. They are greatly limited by 

the difficulties of accurate region segmentation and effective feature extraction. In this 

dissertation, our motivation is to apply deep learning techniques to address these 

challenges. We comprehensively investigated the feasibilities of applying deep learning 

technique to develop medical image segmentation and computer-aided diagnosis 

schemes for different imaging modalities and different tasks. First, we applied a two-

step convolutional neural network architecture for selection of abdomen part and 

segmentation of subtypes of adipose tissue from abdominal CT images. We 

demonstrated high agreement between the segmentation generated by human and by our 

proposed deep learning models. Second, we explored to combine transfer learning 

technique with traditional hand-crafted features to improve the accuracy of breast mass 

classification from digital mammograms. Our results show that the ensemble of hand-

crafted features and transferred features yields improvement of prediction 

performances. Third, we proposed a 3D fully convolutional network architecture with a 

novel coarse-to-fine residual module for prostate segmentation from MRI. State-of-art 

segmentation accuracy was obtained by using this model. We also investigated the 

feasibilities of applying fully convolutional network for prostate cancer detection based 

on multi-parametric MRI and obtained promising detection accuracy. Last, we proposed 
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a novel cascaded neural network architecture with post-processing steps for nuclear 

segmentation from histology images. Superiority of the model was demonstrated by 

experiments. In summary, these study results demonstrated that deep learning is a very 

promising technology to help significantly improve efficacy of developing computer-

aided diagnosis schemes of medical images and achieve higher performance.  

          



1 

Chapter 1. Introduction 

1.1 Background 

Diagnostic medical imaging is an important non-invasive tool in medicine. 

Imaging techniques including X-ray, ultrasound and magnetic resonance imaging (MRI) 

etc. provide rich information for radiologists to make diagnosis and/or treatment 

planning [1]. Traditionally, most image processing and interpretation processes were 

performed subjectively by radiologists. However, processing/analysis of medical 

images by human eyes and experience has a number of limitations including that (1) 

manual processes are always time-consuming and therefore cannot deal with current 

large-scale clinical datasets based data analysis tasks, and (2) the measurement or 

analysis may not be consistent because of the inter and intra reader variabilities in 

reading and interpreting medical images. As a result, development of computer-aided 

diagnosis (CAD) systems has been attracting great research interests in the last two to 

three decades. The motivation of developing CAD systems is to apply digital image 

processing and/or artificial intelligence techniques to assist the radiologists for more 

accurately and consistently reading, analyzing and interpreting the diagnostic images. 

CAD has been applied for a wide range of imaging modalities and diseases, as well as 

for conducting of variety of tasks (i.e., segmentation of regions of interest, detection of 

abnormalities, diagnosis of diseases or classification of malignant and benign lesions, 

and assessment of disease treatment results) [2].  

For example, Lee et al. employed a CAD scheme embedded with a Support 

Vector Machine (SVM) classifier for brain tumor segmentation [3]; Pal et al. developed 
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a multi-stage Artificial Neural Network (ANN) based CAD system for micro-

calcification detection from digitalized mammograms [4]; Gray et al. investigated the 

feasibility of using a CAD scheme with Random Forest based similarity measures for 

classification of Alzheimer’s disease [5]; etc. In these CAD systems of medical images, 

machine learning, especially supervised learning method, is one of the key 

computerized technologies and has been extensively applied in assisting detection 

and/or diagnosis of different human diseases. 

 Traditional supervised learning based CAD systems usually consists of a few 

steps. The first step is region of interest (ROI) segmentation and common segmentation 

methods include region-growing, graph-cut and level-set etc. The second step is hand-

crafted feature extraction, while the commonly used features include shape and texture 

features. Since the extracted features might be either redundant or unrelated to the 

classification task, the next step is to apply feature reduction method (e.g. principle 

component analysis (PCA) and recursive feature elimination (RFE)) to reduce the data 

dimensionality. The last step is to train a supervised learning model (e.g. SVM and 

ANN) to discriminate different classes. Although significant research efforts have been 

focused on the development of such CAD systems, the performance is greatly limited 

by the difficulties of (1) accurate ROI segmentation and (2) how to design effective 

features to discriminate different classes.  

 Recently, deep learning [6] technology has gained tremendous research efforts. 

The availability of large-scale data set and affordable high-speed computation resources 

(i.e. Graphics Processing Units (GPUs)) have greatly accelerated the development of 

deep learning methods in the last ten years. Compared to conventional machine learning 



3 

models, deep learning techniques provide a classification scheme that can automatically 

extract hierarchical feature representations from raw input data without knowledge of 

feature engineering [7]. Therefore, the difficulties of designing/selecting useful features 

can be avoided in developing deep learning based CAD systems. In computer vision 

area, deep learning has been proven to out-perform other conventional machine learning 

tools for ImageNet classification [8, 9] and object detection [10, 11] etc. Following the 

great success in computer vision area, deep learning is expected to be a promising tool 

for solving many difficult medical imaging problems, such as image segmentation, 

computer-aided diagnosis and image retrieval, and etc. 

1.2 Introduction to deep learning 

1.2.1 Logistic Regression and Artificial Neural Networks 

 Logistic Regression classifier is the simplest Neural Networks which contains 

only one single neuron. The concept of “a computational neuron” is a computation unit 

that takes the weighted summation of inputs and generates an output through a non-

linear activation function. Logistic Regression was proposed as a supervised learning 

model, which aims to solve classification problems with discrete outputs (i.e. labels). 

By using a single layer of neurons with a sigmoid activation function, the logistic 

regression model can map an input feature vector to a continuous output vector with 

values in the range of [0, 1], indicating the probability of the input belonging to each 

class. The formula for a two-class Logistic Regression model can be written as: 

 𝑓(𝑥) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑇𝑥 + 𝑏) =
1

1+exp(𝑊𝑇𝑥+𝑏)
 (1) 
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Where W is the weight vector which has the same size with the feature vector x, and b is 

the bias. The values of W and b are randomly initialized and then optimized by 

minimizing a cost function (e.g. negative log-likelihood) using gradient descent or 

stochastic gradient descent (SGD) methods. The model with optimized parameters can 

be applied to predict future inputs with unknown labels.  

 Logistic Regression is a “linear” classifier, which divided the input feature 

spaces into half-spaces and made predictions based on the linear combination of input 

features. Although linear classifiers have the advantages of low computational 

complexity and high robustness to over-fitting issues, they require sophisticatedly 

designed features that are linearly separable in the feature space, which is often quite 

difficult in many applications including medical imaging. 

 Alternatively, a non-linear classifier can be established by combining a number 

of simple neurons to form a Multiple Layer Perceptron (MLP) [12]. Due to the 

limitations of hardware and computerized techniques, traditional MLPs only have three 

layers. The first layer of the network is the input layer representing the input feature 

vectors. The second layer is called hidden layer since its values are not observable in the 

training set. Neurons in the input layer are fully connected to neurons in the hidden 

layer and the neurons in the hidden layer are connected to an output neuron with 

sigmoid activation function. The purpose of introducing a hidden layer is to non-

linearly map from the input feature space to a hidden feature space, with the hope that 

the optimized hidden features are linearly separable. The formula of a two-layer MLP 

can be written as [13]: 

 𝑓(𝑥) = 𝐺(𝑏(2) +𝑊(2)𝑇(𝑠(𝑏(1) +𝑊(1)𝑇𝑥))) (2) 
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Where b(1), W(1), b(2), and W(2) are the bias and weight matrix of the first layer and 

second layer respectively; G is the activation function of the output layer, which is 

usually a sigmoid function and s is the activation function of the hidden layer. Typical 

choices for s include tanh, sigmoid or rectified linear unit (ReLU). The set of 

parameters are optimized by minimizing the cost function (e.g. log-likelihood) through 

back-propagation algorithm and SGD, where back-propagation is a special form of 

chain-rule derivation. 

1.2.2 Convolutional Neural Network 

 In a regular MLP architecture, the units in the input layer are fully connected to 

units in the hidden layer. When using relatively large images (e.g. with size 96×96 

pixels) as the inputs of network, there is a lot of parameters in the fully connected 

neural networks. The computation of a back-propagation algorithm for learning such 

large amount of parameters is computationally expensive and over-fitting may occur 

due to the relatively small training set in particular in the medical imaging field.  

 Inspired by cat’s visual cortex that contains neurons with localized receptive 

fields [14], Convolutional Neural Network (CNN) was proposed as a variant version of 

standard MLP. Specifically, each hidden unit is only connected to a small sub-region of 

the previous layer (e.g. an 8×8 patch) instead of being fully connected to all the neurons 

in the previous layer. The “filters” corresponding to the local weight matrices are 

convolved with feature maps in the previous layer to obtain a new feature map 

representing feature activations at local positions in each image [12].  A standard CNN 

architecture consists of three types of layers including convolutional layer, pooling layer 

and fully connected layer. Convolutional layers are the core part of CNN. A number of 
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rectangular convolutional filters (i.e. weight matrices) are randomly initialized and 

learnable during the training process. The filters can be interpreted as local feature 

extractors that are automatically optimized from training data. Convolutional layer 

performs convolution operations between the input maps and the filters followed by a 

non-linear transformation to obtain output feature maps. The second type of layer is 

pooling layer, where max-pooling is most commonly used. Max-pooling operation takes 

the maximum values over sub-rectangular regions of features maps to form smaller 

feature maps. The spatial redundancy and number of parameters are greatly reduced by 

applying pooling layers. Several Convolutional-Pooling layer pairs are stacked to 

extract high level feature representations; these features are fed to standard MLP 

classifiers to generate prediction results. Different CNN architectures have been 

proposed such as LeNet 5 [15], Alex Net [8] and Google Net [16] etc. Standard back-

propagation methods can be applied for training CNNs. 

1.2.3 Transfer Learning 

 Training deep neural networks with many layers requires large scale training 

sets. However, in many real world applications including medical imaging, it is rare to 

have training set with sufficiently large size. The concept of transfer learning was 

proposed to overcome this limitation. Specifically, transfer learning consists of two 

steps including a “pre-training” step followed by a “fine-tuning” process. In the first 

step, the deep network was pre-trained using a large dataset with sufficient size but not 

necessarily similar to the target dataset (with limited size).  The network for classifying 

target dataset was initialized with the parameters of the pre-trained network. Standard 
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back-propagation algorithm was performed on the network to fine-tune the parameters 

in high-level layers.  

Transfer learning is motivated by the observation that low-level features at 

earlier layers of the network always contain generic features (e.g. edges or boundary in 

images) no matter how different the tasks are, while high-level features in the latter 

layers are more related to the specific task. By pre-training the network using large 

dataset, the parameters in earlier layers get sufficiently trained and can be transferred to 

new tasks without any changes. In the second step to fine-tune the network 

supervisingly, the parameters in later layers get to figure out how to integrate lower-

level features effectively for the specific task. During fine-tuning process, the first 

several layers are always fixed. As a result, the size of parameters is smaller and risk of 

over-fitting issues can be reduced. Transfer learning has been extensively applied in 

many different area including natural language processing [17], visual recognition [18, 

19] and medical image analysis [20], and etc. 

1.3 Objective 

 As stated previously, traditional CAD systems are limited by the challenges of 

accurate ROI segmentation and effective feature designing and selection. In order to 

overcome these limitations, the goal of this dissertation is to comprehensively 

investigate the feasibility of applying deep learning technology to develop medical 

image segmentation and computer-aided diagnosis systems for different imaging 

modalities and diseases/cancers. Several state-of-art deep learning architectures were 

adopted for building the CAD systems and we further improved the CAD performance 

by proposing and testing novel network structures.   
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1.4 Organization of Dissertation 

 In this dissertation, we present five applications of applying deep learning 

technology for different medical image analysis tasks (e.g. semantic segmentation, 

instance segmentation and classification) and different imaging modalities (e.g. CT, 

MRI, mammography and pathology images). In Chapter 2, a two-step convolutional 

neural network architecture was developed for selection of abdomen part and 

segmentation of subtypes of adipose tissues from abdominal CT images. In Chapter 3, 

we combined deep transfer learning technique with traditional hand-crafted features 

based method for improving the accuracy of mammographic mass classification. In 

Chapter 4, we proposed a novel 3D fully convolutional network architecture with 

coarse-to-fine residual module for prostate segmentation from MRI. In Chapter 5, we 

investigated the feasibilities of applying fully convolutional network for prostate cancer 

detection based on multi-parametric MRI. In Chapter 6, we proposed a novel cascaded 

neural network architecture with post-processing steps for nuclear segmentation from 

digital histology images. Last, in Chapter 7, we summarized these development and 

application studies to present a conclusion of the whole work in this dissertation. 
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Chapter 2. A two-step Convolutional Neural Network based 

Computer-aided detection scheme for automatically segmenting 

adipose tissue volume depicting on CT images 

2.1 Introduction 

Abdominal obesity is one of the most prevalent public health problems and over 

one third of adults were obese in the United States in recent years [21]. Obesity is 

strongly associated with many different diseases such as heart diseases, metabolic 

disorders, type 2 diabetes and certain types of cancers [21-23].  Inside a human body, 

there are subcutaneous fat areas (SFA) and visceral fat areas (VFA), which both 

contribute to the abdominal obesity. Studies have shown that in the clinical practice 

separate measurement or quantification of subtypes of adipose tissue in SFA and VFA 

is crucial for obesity assessment since visceral fat is more closely related to risk factors 

for hypertension, coronary artery disease, metabolic syndrome, and etc. [24, 25]. Other 

studies have also found that measurement of the total fat volume and/or the ratio 

between the VFA and SFA could generate useful clinical markers to assess response of 

cancer patients to the chemotherapies, in particular to many antiangiogenic therapies 

[26-28].  

 Among different imaging techniques for adiposity tissue detection and 

measurement, computed tomography (CT) has been most widely adopted because of its 

higher accuracy and reproducibility [29]. Accurate segmentation and quantification of 

SFA and VFA from CT slices is important for clinical diagnosis and prediction of 

disease (or cancer) treatment efficacy. Currently, manual or semi-automated 
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segmentation of SFA and VFA in a single subjectively chosen CT image slice has been 

adopted to determine fat areas and measure adiposity related features as demonstrated in 

the previous studies [27, 30]. However, this approach has a number of limitations 

including that 1) manual manipulations are time-consuming and cannot deal with large 

amount of data; 2) fat area measured from a single CT slice may not accurately 

correlate to the total fat volume of a human body; 3) measurement may also not be 

consistent due to the inter and intra reader variability in selecting CT slice and 

segmenting SFA and/or VFA areas. Therefore, developing a computer-aided detection 

(CAD) scheme for fully automated segmentation and quantification of SFA and VFA is 

necessary [10].    

 Recently, deep learning methods, especially deep convolutional neural networks 

(CNN), have gained extensive research interests and proven to be the state of art in a 

number of computer vision applications [7, 8, 15, 31, 32]. Following the tremendous 

applications of deep learning in computer vision area, there are a couple of previous 

works that successfully employed CNN methods to solve medical image analysis and 

CAD related problems [20, 33-39]. For example, Roth et al [38] developed a multi-level 

deep CNN model for automated pancreas segmentation from CT scans; Brebisson et al 

[33] used a combination of 2D and 3D patches as the input of CNN for brain 

segmentation; Yan et al [39] applied a multi-instance deep learning framework to 

discover discriminative local anatomies for body part recognition; etc.  

 In this study, we developed a two-step CNN based CAD scheme for automated 

segmentation and quantification of SFA and VFA from abdominal CT scans. The new 

CAD scheme consists of two different CNNs, while the first one is used to 
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automatically select and collect CT slices belonging to abdomen area from the whole 

CT scan series (i.e., the perfusion CT images acquired from ovarian cancer patients, 

which are scanned from lung to pelvis crossing the entire abdomen region), and the 

second CNN is used for automated segmentation of SFA and VFA in each single CT 

slice. While there has been a number of previously published studies that focused on 

automated quantification of visceral and subcutaneous adipose tissue by using 

combinations of traditional image processing techniques (e.g. thresholding, labelling 

and morphological operation) [25, 28, 40-45], previous works have a number of 

limitations including that: 1) the selection of CT slice range of interest (i.e. abdomen 

area in this study) is either manually processed or not mentioned; 2) the optimal values 

of some parameters (e.g. morphological operation kernel size) in some of these models 

may not be consistent for different patients and thus human intervention might be 

necessary for tuning these parameters. Our proposed CNN based CAD scheme aims to 

overcome these limitations and achieve fully automated segmentation since (1) the first 

CNN was developed for automated selection of CT slices belonging to abdomen area, 

and (2) there is no parameters needed to be tuned in our CAD scheme after the two 

CNNs are sufficiently trained. The details of this study including the development of 

CAD scheme and performance evaluation are presented in the following sections. 

2.2 Materials and Methods 

2.2.1 Overview of the CAD framework 

 Our proposed CAD framework consists of two steps with two CNNs, namely 

the Selection-CNN and Segmentation-CNN. The flowchart for demonstrating the whole 

process of this system is shown in Figure 1. The first Selection-CNN is applied to 
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automatically select and collect CT slices of interest (i.e. abdomen area in this study) for 

each patient. The selected slices will then be used as the input of the second 

Segmentation-CNN for automated segmentation of SFA and VFA. The SFA and VFA 

volumes segmented from all CT slices of interest will be combined to compute and 

measure the adiposity characteristics of the particular patient at the very end step. The 

proposed CAD system is fully automated and no human intervention is needed. In the 

next two sections we will discuss the details of the CNN architectures, training process 

and evaluation methods for the two CNNs, respectively. 

 

Figure 1: Overview of the two-step CNN based CAD scheme for adipose tissue 

quantification 

 

2.2.2 A CT image dataset 

 In this study, we randomly assemble an image dataset, which consists of CT 

images acquired from 40 ovarian cancer patients who underwent cancer chemotherapy 

treatment in the Health Science Center of our University. The detailed image 

acquisition protocol has been reported in our previous publication [27, 28]. In brief, all 

CT scans were done using either a GE LightSpeed VCT 64-detector or a GE Discovery 

600 16-detector CT machine. The X-ray power output was set at 120 kVp and a variable 
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range from 100 to 600mA depending on patient body size. CT image slice thickness or 

spacing is 5mm and the images were reconstructed using a GE “Standard” image 

reconstruction kernel. Next, these 40 patients were randomly and equally divided into 

two groups namely, a training patient group and a testing patient group. CT image data 

from training patient group were used to train two CNNs used in the CAD scheme and 

the data from the testing patient group were used to evaluate the performance of the 

trained CAD scheme. 

2.2.3 Training and testing dataset for Selection-CNN 

 In order to train Selection-CNN model to “learn” how to discriminate CT slices 

as belonging to abdomen area or not, an observer manually identified CT slices that 

belong to the abdomen area for each of the twenty patients in the training patient group. 

Specifically, an upper bound was subjectively placed just below the lung area and a 

lower bound was placed at the umbilicus level. All CT slices between the two bounds 

were labeled as positive (i.e. belong to slices of interest) and other CT slices were 

labeled as negative (i.e. not belong to slices of interest). By doing this, we can collect a 

sample of 2,240 CT slices as the training set of Selection-CNN. Among them, 757 are 

“positive slices” located inside the abdominal region and 1,483 are “negative slices” 

located outside the abdominal region.  

Although in order to optimally train a machine learning classifier, many 

previous studies chose to use “balanced” training datasets with the equal number of 

sample cases in two classes, the “balanced” approach has a limitation of potential 

sampling bias in selecting and removing part of sampling cases from the class with 

more samples. Thus, to maintain the diversity of all image slices, we used all 2,240 
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image slices in the training dataset although the number of “positive” and “negative” 

slices was different (or not balanced).  Next, to verify the advantage of using all 

available training samples, we also conducted experiments to compare the classification 

accuracy between using “balanced” and “non-balanced” training datasets with 50 

repeated training and validation tests in each training condition.  

2.2.4 Training and testing dataset for Segmentation-CNN 

 Similar to Selection-CNN, Segmentation-CNN also needs some subjectively 

processed images as the training samples to train the classifier. For each of the twenty 

patients in the training patient group, 6 CT slices from the abdomen area were randomly 

selected for the training purpose (totally 120 CT images). A previously developed and 

tested CT image segmentation method was applied to remove the background (e.g. air 

and CT bed) and generate a body trunk mask. All the pixels inside the body trunk mask 

with CT number between the threshold -40 HU and -140 HU were defined as adipose 

tissue pixels [30]. An observer manually drew a boundary that contains the entire 

visceral area. The adipose tissue pixels inside the visceral area were labeled as VFA 

pixels, whereas the adipose tissue pixels outside the visceral area were labeled as SFA 

pixels.  

A Matlab based graphic user interface (GUI) program is developed for 

implementation of image pre-processing step and manual segmentation process. Figure 

2 shows an example of the working procedure of the GUI. After loading a CT image 

from the local hard drive, the original image is shown in the left figure of the program. 

The “Body Seg” button has been designed to implement the body trunk segmentation 

algorithm and display the body trunk image in the middle figure of the program. Then, 
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an observer can draw a boundary (the blue line in the middle image) that contains the 

entire visceral area. The segmented SFA/VFA result is then shown in the right figure of 

the GUI window. 

 

Figure 2: Demonstration of the Matlab GUI program for implementation of image pre-

processing and manual segmentation process 

 

Subsequently, 700 adipose tissue pixels (belonging to either VFA or SFA pixel 

class) were randomly selected from each of the 120 CT images for training 

Segmentation-CNN. By doing this, we can collect a sample of 84,000 adipose tissue 

pixels as the training set. Among them, 64,691 are labeled as SFA pixels and 19,309 are 

VFA pixels. The goal is to train the Segmentation-CNN to recognize or distinguish 

pixels with the CT number between -40 HU and -140 HU into SFA or VFA areas. By 

using the same segmentation criterion, 120 CT images from the 20 patients in the 

testing patient group were randomly selected and manually labelled for the purpose of 

evaluating performance of this segmentation-CNN. 
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2.2.5 Selection-CNN 

 In the first step, Selection-CNN is developed and used to select the CT slices 

belonging to abdomen area, which will be collected for the computation of adipose 

tissue volume and features. We formulate this task as a binary classification problem. 

Specifically, we use each single CT slice image as the input of a classifier (Selection-

CNN) and determine whether the CT slice belongs to the abdomen area or not. In this 

way, each CT slice is processed independently; the location and spatial consistency are 

not considered. In order to overcome this limitation, a simple post-processing step is 

performed to ensure the spatial consistency and dependence after obtaining the raw 

Selection-CNN output. 

 

Figure 3: Architecture of Selection-CNN 

 

 The architecture of Selection-CNN is shown in Figure 2.3 and it was developed 

based on LeNet, which was designed by LeCun et al. for image recognition [15]. First, 

the original 512×512 CT images are resized to 64×64 using an 8×8 averaging kernel. 

This step can be interpreted as either a down-sampling based image pre-processing step 

or a “pooling” layer in CNN architecture. By doing this, the input size and number of 

parameters of Selection-CNN is greatly reduced, which can potentially improve the 
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training efficiency and reduce the risk of over-fitting. The down-sampled CT images are 

then used as input into a standard CNN architecture consisting of three convolutional-

pooling layers, one fully connected layer, and one soft-max layer. Convolutional layers 

are the core part of CNN architecture. They consist of a number of rectangular 

convolutional filters; the parameters of these filters are randomly initialized and 

learnable during the training process. Each convolutional layer performs two-

dimensional convolutional operations between the input image maps and the 

convolutional filters followed by a non-linear transformation. The convolutional layers 

can be interpreted as automatic feature extractors that are optimized from training data, 

and thus the outputs of convolutional layers are referred as “feature maps”.  

Following convolutional layers, max-pooling layers are commonly performed in 

a number of CNN architectures [7, 8, 15]. The operation of max-pooling layer is to take 

the maximum values over sub-windows of feature maps, which can greatly reduce the 

spatial redundancy and the number of parameters. Several convolutional-pooling layer 

pairs can be stacked to get high-level feature representations. These features are then 

used as input into a standard Multi-Layer Perceptron (MLP) classifier, which consists of 

a fully connected hidden layer and a soft-max layer. The Selection-CNN developed in 

this study contains three convolutional-pooling layers. The numbers of feature maps are 

15 for all the three layers and the filter sizes are 9×9, 5×5 and 5×5, respectively. A tanh 

function is applied for non-linear transformation. The size of max-pooling is 2×2 for all 

layers. The fully connected layer contains 80 hidden neurons and the soft-max layer 

contains 2 output neurons (i.e. positive or negative).  



18 

As a result, the Selection-CNN architecture maps each 512×512 CT image slice 

to a vector of two continuous numbers between 0 and 1, indicating the probabilities of 

the input image belonging to positive or negative classes. Considering that the size of 

training set of Selection-CNN is relatively small compared to many of other computer 

vision datasets using deep learning (e.g. MNIST and ImageNet), we take following 

measures to avoid the potential over-fitting problem, which include that (1) the numbers 

of filters for each convolutional layer and hidden layer are set to be smaller than the 

commonly used CNNs, and (2) an L2 regularization term is adopted as a part of loss 

function.  

2.2.6 Segmentation-CNN 

 After CT slices belonging to abdomen area are selected, the second step is to 

develop and apply a Segmentation-CNN based scheme to segment SFA and VFA 

depicted on each single CT slice. This task is also formulated as a binary classification 

problem. Specifically, an image pre-processing step including a previously developed 

body trunk segmentation scheme [46] and a well-defined thresholding process for 

adipose tissue identification [30] is applied to identify all the pixels belonging to the fat 

area (namely adipose tissue pixels) in each CT image; a classifier (Segmentation-CNN 

in this study) is then trained and applied to classify each adipose tissue pixel as 

belonging to SFA or VFA by using their neighborhood pixels and location information 

as input.  

 There have been a couple of previous works that applied CNN methods for 

medical image segmentation tasks [33, 34, 36-38]. The basic method is a patch-wise 

classification process. Specifically, in order to classify each single pixel into its correct 
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class, a 2-D rectangle patch centered at the specific pixel is extracted, resized and used 

as the input of a CNN classifier. The outputs of CNN indicates the probability of the 

center pixels belonging to each class. The advantage of patch-wise classification is that 

by extracting separate and possible overlapping image patches, we can collect a training 

set that is large enough for the requirement of deep CNN architectures. However, 

spatial consistency and pixel location information are lost to some degree in this basic 

method. Many approaches have been applied to overcome this limitation, including 

post-processing, increasing the size of image patches and using location information as 

part of the input of CNN, etc. [33, 34, 37, 38]. 

 

Figure 4: Architecture of Segmentation-CNN 

 

In this study, we developed the Segmentation-CNN architecture as shown in 

Figure 4. The objective of Segmentation-CNN is to classify an adipose tissue pixel as 

belonging to either SFA or VFA. It is a 2-scale CNN architecture where the patches 

with smaller size are used to represent fine details around the target pixel and patches 

with larger size are used to maintain global consistency. The patch sizes of 64×64 and 
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128×128 are used because experimental results indicated that using these two patch 

sizes yield better results than others. Multi-scale CNN architecture is not considered 

because it will generate larger network and take longer time to train and execute. In 

addition, it may also suffer from the over-fitting problems.  

The input of Segmentation-CNN consists of three parts. The first part is a 32×32 

rectangular patch obtained by down-sampling a 64×64 patch centered at the adipose 

tissue pixel depicted on the CT slice, which is the representation of fine details around 

the target adipose tissue pixel. Two convolutional-pooling layer pairs are stacked to get 

high-level image patch features. The numbers of feature maps are 50 for both two 

layers. The filter sizes are 5×5 and 3×3, respectively, while the sizes of max-pooling 

were 2×2. The second part of Segmentation-CNN input is a 32×32 rectangular patch 

obtained by down-sampling a 192×192 patch centered at the adipose tissue pixel, which 

is designed to preserve more spatial consistency. Same convolutional-pooling layer 

pairs are employed to get high-level features. The third part is a 3-D vector that 

contained the normalized and adjusted spatial location coordinates of the adipose tissue 

pixel. A fully connected layer with 2,000 hidden neurons is used to fuse the information 

and high-level features from the three parts of input. The dimension of the input of 

fully-connected layer is 50 (feature maps) × 6×6 (size of each feature map after two 

conv-pool layers) × 2 (two convolutional channel) + 3 (location coordinates). A soft-

max layer is finally applied to generate the likelihood based prediction scores.  

In addition, we also evaluate the performance of a baseline CNN for 

comparison. The baseline CNN only consists of one channel which is a resized to a 

32×32 rectangular patch obtained from a 64×64 patch in the image. Two convolutional-
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pooling layer pairs and one fully-connected layer were stacked to build the network. 

The numbers of feature maps were 50 for both the convolutional layers. The filter sizes 

were 5×5 and 3×3, respectively, and the fully-connected layer contained 1,000 hidden 

neurons. 

2.3 Experiments and evaluation 

2.3.1 Evaluation of Selection-CNN 

 The loss function of Selection-CNN is set to be the summation of a negative log-

likelihood term and a L2 regularization term. Mini-batch stochastic gradient descent 

(SGD) methods are applied to minimize the loss function. SGD is one of the most 

popular and widely used training methods in machine learning (especially in deep 

learning) applications [16]. It is more efficient for large-scale learning problems 

compared to some other training methods such as the second-order approaches.  

Specifically, the training set is split into a number of batches; the gradient of loss 

function was estimated over each batch instead of the whole training set. By using mini-

batch SGD, the parameters get more frequent updates and training efficiency can be 

greatly improved. In this study, we set mini-batch size equal to 50 and iteratively 

trained the Selection-CNN for 50 epochs aiming to obtain the optimal parameters. 

 After obtaining the raw Selection-CNN output, a post-processing step is 

performed to check and ensure the spatial consistency. Specifically, a one-dimensional 

median filter is performed to smooth the outputs (i.e. the probabilities of each CT slice 

belonging to positive or negative class). The longest consecutive CT slices with 

probabilities of being positive greater than 0.5 are predicted as positive and the 

remaining slices were predicted as negative. 
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 For each CT case in the testing group, we compare the manually processed 

labels and the results generated by Selection-CNN with the post-processing step. We 

compute the prediction accuracy, sensitivity and specificity for each testing case and 

averaged them over all 20 cases in the testing group for the selection-CNN performance 

evaluation.  

2.3.2 Evaluation of Segmentation-CNN 

Similar to Selection-CNN, a mini-batch SGD is employed to train the 

Segmentation-CNN network to get optimal parameters. The loss function of 

Segmentation-CNN is solely a negative log-likelihood function since we have collected 

enough training samples. The size of mini-batch was set to 500 and the iteration time 

was set to 400 epochs. 

For each input (i.e. a 512×512 CT image) in the testing dataset, CAD scheme applies 

the body trunk segmentation algorithm [46] to remove the background. The pixels 

inside the body trunk are scanned one by one. If the pixel has a CT number between the 

threshold -140 HU and -40 HU, a neighborhood patch and location information are 

extracted and used as input of Segmentation-CNN. A likelihood score generated by 

Segmentation-CNN is used to label the pixel as belonging to either SFA or VFA. In 

order to evaluate the performance of this Segmentation-CNN based scheme, 120 CT 

images from the 20 patients in the testing patient group are randomly selected and 

manually labelled. For each CT image, the segmentation results generated subjectively 

and by Segmentation-CNN based scheme are compared. Pixel-wise prediction accuracy 

and dice coefficients (DC) of SFA/VFA are calculated for each image and averaged 

over the 120 CT images for performance evaluation. Dice coefficient is a similarity 
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measurement index commonly used to evaluate the performance of image segmentation 

tasks. It calculates the ratio of overlapping volume between two segmented areas. The 

formula of DC with respect to two segmentation areas A and B is shown as below. 

  𝐷𝐶 = 
2|𝐴⋂𝐵|

|𝐴|+|𝐵|
 (3) 

2.4 Results 

 The training and evaluation process of CNNs were performed on a Dell T3610 

workstation equipped with a quadcore 3.00GHz processor, 8 Gb RAM and a NVidia 

Quadro 600 GPU card. The models were implemented in Python using Theano library 

[47]. Figure 5 shows an example of the comparison between the abdomen area labelled 

subjectively by an observer and generated by the optimized Selection-CNN. Table 1 

summarized and compared the quantitative performance evaluation results (i.e. 

accuracy and DC) of Selection-CNN with and without post-processing. Specifically, by 

using individual CT scans independently as the input of Selection-CNN, we can obtain 

averaged prediction accuracy and Dice Coefficients over 90%. Adding the post-

processing steps enabled to further improve performance by taking the spatial 

consistence into account. Finally, the study results yielded a mean prediction accuracy 

equal to 0.9582 with standard deviation 0.0268, mean sensitivity equal to 0.9481 with 

standard deviation 0.0595 and mean specificity equal to 0.9625 with standard deviation 

0.0521, respectively. The improvement is statistically significant by using paired t-tests 

(p < 0.005 for all three evaluation indices). 
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Figure 5: Examples of abdomen area selected by Selection-CNN. (a) A patient CT scan 

from vertical view. (b) Comparison of abdomen area selected by an observer (blue line) 

and by optimized Selection-CNN (red line) 

 

Table 1: Summarization of quantitative performance evaluation of Selection-CNN 

without and with post-processing 

                                                Prediction accuracy Sensitivity Specificity 

Selection-CNN 0.9352 ± 0.0344 0.9287 ± 0.0690 0.9362 ± 0.0722 

Selection-CNN with 

post-processing 

0.9582 ± 0.0268 0.9481 ± 0.0595 0.9625 ± 0.0521 

 

 Table 2 summarized and compared the performance evaluation results of the 

proposed Segmentation-CNN and a baseline CNN architecture which only used the 

64×64 neighborhood patches as input. It shows that the performance of Segmentation-

CNN is statistically significantly better than the baseline CNN (p < 0.005 for all the 
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three evaluation methods). Figure 6 shows two examples of segmentation results 

generated by Segmentation-CNN for segmenting SFA and VFA depicting on CT image 

slices. Figure 7 shows two scatter plots of the volumes of manually labelled SFA/VFA 

and CAD measured SFA/VFA among all the 120 testing CT images. The correlation 

coefficients are 0.9980 with 95% confidence interval (CI) (0.9972, 0.9986) for SFA and 

0.9799 with 95% CI (0.9712, 0.9859) for VFA respectively.  

Table 2: Summarization of quantitative performance evaluation of baseline CNN and 

Segmentation-CNN 

 

 

 

Pixel-wise 

prediction 

accuracy 

SFA Dice 

coefficient 

VFA Dice 

coefficient 

A baseline CNN 0.9535 ± 0.0253 0.9696 ± 0.0175 0.8890 ± 0.0563 

Segmentation-CNN 0.9682 ± 0.0218 0.9797 ± 0.0145 0.9150 ± 0.0624 

 

 

Figure 6: Examples showing the segmentation of VFA and SFA generated by 

Segmentation-CNN in two CT image slices. In these two images, SFA is shown in 

green color and VFA is represented by red color. 
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Figure 7: The scatter plots of the manually and automatically (i.e. by Segmentation-

CNN) measured (a) SFA and (b) VFA volume. 

 

 To evaluate the stability of our CAD scheme, following are the results of our 

two experiments. First, by repeated training the Selection-CNN with different random 

initialized weights for 50 times, the Selection-CNNs without post-processing steps 

yielded a mean prediction accuracy of 0.9324, which is quite similar to the result 

reported in Table 1 (0.9352). The highest, median and lowest accuracies among the 50 

experiments are 0.9456, 0.9328 and 0.9167, respectively. Second, the 50 pairs of 

repeated experiment that compared the performance of the trained Selection-CNN using 

balanced versus unbalanced datasets yielded an equal mean prediction accuracy of 

0.9324. However, the standard deviations were 0.0119 and 0.0066, when using 757 

pairs of “balanced” training samples and all available 2,240 “unbalanced” training 

samples, respectively, which indicates that using all available training samples increase 

diversity of training dataset and yielded more stable testing results. 
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2.5 Discussion 

 In this study, for the first time we developed a deep learning based fully-

automated CAD scheme and demonstrated its feasibility to automatically segment 

volumetric SFA and VFA data without any human intervention. This study and the new 

CAD scheme have a number of unique characteristics. First, a Selection-CNN with 

post-processing step was developed for automated selection of CT slices belonging to 

abdomen areas. This CNN based process can not only overcome the limitation of 

manual selection in most previous studies, which were quite difficult and time-

consuming to deal with large-scale datasets, and also generated high segmentation 

accuracy as compared to manually processed results or “ground-truth” (i.e. yielding a 

prediction accuracy and DC greater than 0.95). Therefore, the Selection-CNN for 

automated selection of abdomen CT slices is reliable and can be used to replace manual 

selection, which provide the capability of managing large-scale dataset based medical 

data analysis studies with high efficiency. 

Second, in most of the previously developed schemes, the segmentation of SFA 

and VFA was obtained by detecting visceral masks or abdomen wall masks using 

sequences of traditional image processing techniques such as morphological operations, 

pixel labelling and thresholding [25, 28, 40-45]. Therefore, the segmentation results 

might be sensitive to the selection of parameters (e.g. morphological operation kernels 

and distance thresholds); these parameters were mostly subjectively determined and the 

optimal values might be different for different patients. In this study, we developed a 

Segmentation-CNN based scheme to segment SFA and VFA, which was based on 

machine learning classifiers and thus provided a more “intelligent” way by considering 
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the location coordinates and neighborhood information. After sufficiently trained and 

optimized, the CNN model is free of parameters and no human intervention is required 

for getting optimal segmentation results. Therefore, the Segmentation-CNN provided a 

reliable CAD scheme for fully-automated segmentation of SFA and VFA from single 

CT slices. 

Third, the two tasks in this study (i.e. selection and segmentation) were both 

formulated as binary classification problems and Convolutional neural networks were 

employed as the classifier to solve the problems. In traditional machine learning 

classifiers (e.g. Support Vector Machines and random forests) based systems, how to 

design and select effective and discriminative features is a crucial but difficult task. The 

advantage of convolutional neural network is that it can automatically learn hierarchical 

feature representations from its raw input images and therefore, no manual feature 

extraction and selection process is needed [7]. Following the success of CNNs in many 

other computer vision and medical image analysis areas, this study demonstrated that 

CNN models are effective for recognizing CT slices that belong to abdomen areas and 

segmenting SFA and VFA from single CT slices.  

Fourth, we further investigated and employed new approaches of adding post-

processing and a 2-scale network to maintain global consistency and improve prediction 

accuracy. The study results showed that after using these new approaches CAD scheme 

enabled to yield significantly higher segmentation accuracy than the raw CNN outputs. 

Thus, this study provided an example of how to optimally apply CNN with 

consideration of spatial or location information in developing a deep learning based 

scheme. The stability of the deep learning based CAD scheme has also been tested and 
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approved by the experiments using repeated random initializations and different training 

datasets with balanced and unbalanced training samples in two classes. 

In addition, based on the experimental results, we also made several 

observations. For example, (1) although direct comparison of segmentation accuracy 

between using this new deep learning scheme (3D data) and previous semi-automated 

schemes (2D data) is difficult, the new automated scheme can achieve high 

segmentation accuracy as comparing to the general visual segmentation. (2) Unlike the 

conventional machine learning methods, which should be optimally trained using a 

balanced dataset with equal number of training samples in two classes, a deep learning 

based CAD scheme can be optimally trained without such a restriction. Thus, the deep 

learning scheme may have an advantage to build a more stable classification model 

using all available training samples with increased diversity. 

Despite the encouraging results, this is a preliminary technology development 

study with a number of limitations. First, we applied and evaluated a commonly used 

CNN architecture, activation functions, loss functions and the training methods in this 

study. The performance of this CAD system can be potentially improved by employing 

other advanced deep learning models and methodologies. Second, it took a relatively 

long time (i.e. a few minutes) to segment SFA and VFA in each single CT slice. This is 

because that each adipose pixel is used as an independent input of the deep network and 

the CAD scheme needs to scan all the pixels in the image. More research efforts should 

be devoted to investigate how to improve the computational efficiency of this system. 

For example, applying an optimal sampling and/or super-pixel concept might be helpful 

for reducing the amount of pixel-wise classification process in the system. Thus, at 
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current stage, this deep learning based CAD scheme can only be used offline to process 

the images and segment SFA and VFA from the images. Last, the clinical potential of 

this new technology needs to be evaluated in the clinical studies to validate whether 

using volumetric adiposity-related image features can significantly improve accuracy in 

predicting disease prognosis (e.g. response of ovarian cancer patients to 

chemotherapies) as compared to previous manual or semi-automated methods that 

measured adiposity from one selected single CT slice. 

In summary, in order to overcome the limitation of estimating SFA and VFA 

from one subjectively selected single CT image slice, we developed and tested a new 

CAD scheme for adipose tissue segmentation and quantification based on a sequential 

two-step process including (1) selecting CT slices belonging to abdomen areas and (2) 

segmenting SFA and VFA from each of the selected CT slices. We demonstrated that 

applying this new deep learning CNN based CAD scheme enabled to recognize specific 

body parts (abdomen in this study) from volumetric CT image data and segment SFA 

and VFA from each selected CT slice with high accuracy (i.e. >90%) or agreement with 

manual segmentation results. As a result, this study provided researchers a new and 

reliable CAD tool to assist processing volumetric CT data and quantitatively computing 

a new adiposity related imaging marker in the future clinical practice. 
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Chapter 3. Combining Transfer Learning and Hand-crafted Features 

for Breast Mass Classification from Mammograms 

3.1 Introduction  

Breast cancer is the most common cancer occurred in women population 

worldwide with high mortality rates. According to the 2016 cancer statistics provided 

by American Cancer Society [48], breast cancer accounted for 29% of women cancer 

diagnosis and the death rates were 36% in the United States. Scientific evidence has 

indicated that mortality and recurrence rates of breast cancer can be greatly reduced by 

early cancer detection and treatment [49]. Currently, mammography is an only 

clinically accepted population-based breast cancer screening tool aiming to early detect 

breast cancer. However, reading and interpreting mammograms is a difficult task for 

radiologists, in particular to accurately classify between benign and malignant lesions, 

because of the dense fibro-glandular tissues overlapping as well as the large 

heterogeneity of breast lesions, in particular the mass-like lesions [50]. As a result, 

currently the false positive recall rate of screening mammography and the associated 

negative biopsy rate are high in breast cancer screening practice, which generate both 

physical and psychosocial harms to many cancer-free women participating in the 

routine mammography screening [51]. Hence, how to reduce the false positive rates and 

improve the efficacy of screening mammography is an important clinical challenge for 

early breast cancer detection. 

 In the past twenty years, developing machine learning based computer-aided 

detection and/or diagnosis (CAD) systems of mammograms has gained extensive 



32 

research efforts [52]. The objective of developing CAD systems is to provide a “second 

reader” to assist radiologists in their decision making process when reading and 

interpreting mammograms. CAD schemes for mammographic lesion detection have 

been commercially available since later 1990s. Such CAD systems aim to detect 

suspicious areas containing either micro-calcification clusters or mass-like lesions 

depicting on the mammograms. These CAD schemes also generate a relatively higher 

false positive cueing rates. Therefore, developing CAD based classification schemes to 

distinguish between benign and malignant mammographic masses to reduce false-

positive recall rates has also been continuously attracting much research interest during 

last two decades [53-57]. Most of the previous CAD based classification schemes rely 

on hand-crafted feature extraction and traditional machine learning classifiers.  

Methodologically, the framework of such systems usually consists of four steps 

namely, lesion segmentation, feature extraction, feature selection and training a 

supervised machine learning model. First, automated image segmentations algorithms 

(e.g. region-growing and level-set) are applied to segment the suspicious lesion area 

from the background. Then hand-crafted features (e.g. morphology and/or texture 

features), which are subjectively designed with the hope that they can jointly distinguish 

different classes, are computed and extracted from the segmented area. Feature 

selection methods are subsequently applied to select the subset of extracted features 

which are most discriminatory. The selected feature subset is finally used to train a 

machine learning classifier (e.g. a support vector machine or artificial neural network) 

to classify suspicious lesions into benign and malignant classes. Despite significant 

research efforts have been focused on developing traditional machine learning based 
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CAD systems, how to design and select effective features to classify benign/malignant 

lesions still remains great challenge. No computer-aided lesion classification schemes 

are currently accepted and used in clinical practice.  

 Compared to traditional machine learning classifiers that have “shallow” 

architectures and cannot process the data in their original form [6], deep learning 

techniques can automatically learn hierarchical feature representations from raw input 

data. Therefore, deep learning techniques provide a classification scheme that does not 

require precise lesion segmentation, hand-crafted feature extraction and selection [7]. 

One outstanding issue of applying deep learning (e.g. CNN) for medical imaging tasks 

is that training a deep network usually requires a large dataset to avoid the potential 

over-fitting issue. For medical image segmentation tasks, the training set can be 

collected by cropping separate and partially overlapping image patches to satisfy the 

requirement of deep network architectures [58-61]. However, for image classification 

tasks such as mammographic mass-like lesion classification, which is the focus of this 

article, it is difficult to collect a training set that is large enough to train a complete deep 

learning network.  

Previous works investigated the feasibility of optimizing a relatively shallow 

CNN architecture (e.g. contain 2 or 3 Convolutional layers) to classify between benign 

and malignant masses [62-64]. Although employing shallow network with few or small 

number of parameters can reduce the risk of over-fitting, it may not be capable of 

extracting high level representations from the raw images. Instead of training a CNN 

from scratch, other works applied the concept of “transfer learning” to solve similar 

tasks. Transfer learning includes a supervised pre-training step that optimizes the 
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parameter of a deep CNN with an independent dataset of sufficient size (e.g. ImageNet) 

[65-67]. The pre-trained network can either be fine-tuned with the target dataset or fixed 

as a feature extractor, depending on the size of the specific data in hand. Transfer 

learning is motivated by the fact that earlier layers in the network usually learn some 

generic image features (e.g. edge detector), while later layers tend to learn the features 

that are more related to a specific task.  

Thus, the transfer learning based CAD schemes for mass classification have also 

been investigated in several previous studies. For example, Levy et al. compared the 

performance of training a baseline CNN with three convolutional layers and an Alex-

Net [8] architecture pre-trained on ImageNet dataset [68]. Their results show that the 

pre-trained Alex-Net can yield significantly higher performance than the baseline CNN 

with a relatively shallow architecture; Jiao et al. pre-trained a deep learning network 

with five convolutional layers on the ILSVRC datasets and then fine-tuned the network 

on mammogram images [69]. In another example, Huynh et al. employed a pre-trained 

Alex-Net as a fixed feature extractor and trained a support vector machine (SVM) 

classifier with the transferred CNN features [70].  

Although preliminarily satisfactory results were reported in these studies, we 

identified and/or highlighted several unsolved issues of how to optimally applying 

transfer learning for mammographic mass classification. First, the natural images (e.g. 

ImageNet) are color images with three channels (i.e. RGB), while mammograms are 

gray scale images with only one channel. Although gray scale images can be simply 

converted to color images by duplicating (as most previous studies did), it may provide 

redundant information to the pre-trained deep network. Second, large natural image 
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datasets (e.g. ImageNet) usually contain hundreds or thousands of image categories. 

The features learned in the mid-level layers may represent heterogeneous shape and 

color information, while most of them may not be actually related to mammogram 

images. Third, the interpretability of transfer learning is still poor for mammographic 

mass classification application. 

 In this study, we developed a new transfer learning based CAD system for 

mammographic mass classification. Specifically, we employed a pre-trained Alex-Net 

architecture as a fixed feature extractor; we generated pseudo-color images by 

combining the original mammogram images with their morphological and texture 

variations to incorporate more prior knowledges; we applied additional “filters” to 

eliminate un-related transferred CNN features in the network. Meanwhile, a traditional 

machine learning based CAD scheme was also performed in this study for (1) 

comparing the performance of traditional CAD and transfer learning based CAD 

systems; (2) investigating whether combination of these two types of classifiers can 

further improve the performance. The detailed methods and evaluation results of this 

study are presented as follows in the chapter. 

3.2 A patient dataset 

 In this study, a reference dataset was retrospectively collected from an existing 

full-field digital mammography (FFDM) database in our laboratory. The detailed 

information regarding our FFDM image database has been reported in our previous 

studies (e.g., [56, 57]). Mammogram images acquired from 301 women participated in 

mammography screening were included in the dataset. All of these women were 

previously recalled by radiologists because suspicious soft tissue masses were detected 
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in their mammograms. According to the biopsy and pathological diagnosis, 149 of them 

were negative (i.e. benign masses) and 152 cases were positive (i.e. malignant masses). 

The cranio-caudal (CC) view mammograms of these cases were used in this study and 

the center of each mass has been identified by the radiologists. 

3.3 A transfer learning based CAD system 

 In this study, we independently developed a transfer learning based mass 

classification system and a hand-crafted feature engineering based system for 

comparison purpose. The transfer learning based CAD system is introduced in this 

section. Building and running this system consists of four steps. First, Regions of 

Interest (ROIs) are extracted from the CC view mammogram images and pseudo-color 

ROIs with three channels are generated from the original gray-scale ROIs. Second, an 

Alex-Net which was pre-trained on the ImageNet dataset is employed and fixed as a 

feature extractor. Transferred CNN features are obtained by feeding the pseudo-color 

ROIs into the pre-trained Alex-Net. Third, dimensionality reduction methods are 

performed to eliminate the un-related transferred features and improve the system 

robustness. Last, a linear SVM is trained with the surviving features to discriminate 

between benign and malignant cases. Each of the four steps is further discussed 

accordingly in the following sections.  

3.3.1 Generation of three-channel pseudo-color ROIs 

 For each digital mammogram (image), a 64×64 patch centered at the point that 

was previously marked by the radiologists on the image is extracted as an ROI. 

However, Alex-Net takes color images with RGB channels as the input while the ROIs 

extracted from mammograms only have one channel. Two approaches are commonly 
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employed in order to overcome this issue in previous transfer learning based mass 

classification schemes. For the first approach, the gray-scale ROIs were duplicated and 

fed into the three channels simultaneously to obtain a three-channel image [70]. While 

for the second one, the natural images were transferred to gray-scale images and the 

Alex-Net was pre-trained with the transferred natural images [69]. Although these 

approaches can successfully fit the gray-scale ROIs to the Alex-Net architecture, the 

prediction power of Alex-Net is significantly reduced due to the information 

redundancy or parameter reducing. Alternatively, we propose an approach to generate 

pseudo-color ROIs by combining the original gray-scale ROIs with their variations. 

Similar approaches were previously applied for lung cancer diagnosis [71]. The 

advantages of using pseudo-color ROIs include (1) pseudo-color ROIs can fit the Alex-

Net architecture without providing redundant information or reducing the number of 

parameters in the model; (2) prior knowledges or additional information can be leaked 

to the deep network by designing different ROI variations.  

 Specifically, for each ROI, we first generate a binary image to indicate the 

segmented mass area by using a previously developed region-growing based mass 

segmentation scheme [57]. The segmentation scheme applies a basic region-growing 

algorithm on a Gaussian-constraint image and calculated circularity and sharpness of 

the segmented area for parameter selection (Please refer to [57] for further details). 

Then, a texture image is generated using a local standard deviation filter, where each 

pixel in the texture image contains the standard deviation of a 3×3 local patch centered 

at the corresponding pixel in the original ROI. The original ROI, segmentation ROI and 

texture ROI are fed into RGB channels, respectively, to generate a pseudo-color image. 
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Figure 8 shows an example of the three input ROIs and the finally combined pseudo-

color ROI. It should be noted that the segmentation ROI contains the information of the 

size and shape of the masses, while the texture ROI highlights the homogeneity and 

contrast characteristics of the masses. Therefore, by feeding the pseudo-color ROIs into 

the deep CNN network, we can provide additional information about the suspicious 

masses, which may potentially improve the performance of the transfer learning based 

system. 

 

Figure 8: An example of: (a) Original ROI, (b) Segmentation ROI, (c) Texture ROI and 

(d) Combined pseudo-color ROI 

 

 



39 

3.3.2 Deep CNN architecture 

 The next step of this system is to extract transferred CNN features using a pre-

trained Alex-Net. In traditional CAD systems, how to design effective and 

discriminatory hand-crafted features is a significant issue and great research efforts 

have been focused on it. Deep learning, especially deep CNN model provides an 

alternative approach for image classification where the optimal features can be 

automatically learned from the raw images without the process of feature engineering. 

Alex-Net is one of the most popular deep CNN architectures. It was originally 

developed for ImageNet classification and obtained state-of-art performance [8]. Figure 

9 shows the architecture of Alex-Net. It includes following steps. First, the Alex-Net 

takes inputs of color images with RGB channels and size of 227×227. Second, five 

Convolutional Layers (namely Conv 1-5) with different filter size are stacked to extract 

high level local features. Three max pooling layers are applied after Conv1, Conv2 and 

Conv5 respectively for redundancy reduction. Third, two fully connected layers 

(namely FC6 and FC7) with rectified linear units (ReLU) activation are applied 

consecutively after the last Convolutional layer (i.e. Conv5) to generate high level 

global features. Finally, the last layer (i.e. FC8) of Alex-Net contains a soft-max layer 

with 1000 units, which stand for the 1000 categories in ImageNet dataset.  
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Figure 9: Architecture of Alex-Net 

 

 Although Alex-Net has the capability of modelling highly complex non-linear 

function, it requires a large dataset to train the network to avoid over-fitting issues. In 

medical imaging background, it is often difficult to collect a dataset that is large enough 

for training an Alex-Net from scratch. As introduced in earlier part, transfer learning is 

a commonly used approach for addressing this problem. The early layers in a deep CNN 

usually represent generic image features and therefore can be transferred between 

different tasks. In this study, we used the Caffe software tool [72] and a publicly 

available Alex-Net model that is pre-trained on the ImageNet dataset 

(https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet) as a fixed feature 

extractor. Supervised fine-tuning is not performed here because our mammogram 

dataset only contains 301 cases and fine-tuning the parameters may lead to over-fitting 

concerns. Specifically, the pseudo-color ROIs obtained in previous steps are resized to 

224×224 and fed into the pre-trained Alex-Net. The activations of the hidden neurons in 

the FC6 and FC7 layers are calculated and extracted as transferred CNN features. We 

evaluate the performance of using the feature vector extracted from FC6 (i.e. 4096 

features), FC7 (i.e. 4096 features) and the combination of them (i.e. 8192 features), 

respectively. The activations in the Convolutional and pooling layers in Alex-Net are 

https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet
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not considered for feature extraction because they contain relatively low-level local 

information with relatively high dimensionalities. 

3.3.3 Dimensionality reduction 

  ImageNet dataset contains 1000 image categories with significantly different 

shape, texture and color. The neurons in the hidden layer of the pre-trained network 

may encode a large heterogeneity of features related to these characteristics. However, 

mammogram ROIs are relatively homogeneous to each other and therefore, many 

hidden neurons are actually not “activated” by the inputs of mammogram ROIs. Since 

ReLU activation function is applied in Alex-Net, we define that a hidden neuron or 

feature is “activated” if it has a strictly positive value and not activated if it has a zero 

value. Thus, we propose a simple activation-based feature selection approach for 

dimensionality reduction of transfer learning applied in CAD scheme. The hypothesis is 

that the transferred features that are activated by a majority of ROIs in the training set 

are more effective to describe the main characteristics of the input ROIs. Accordingly, 

the strategy of the activation-based approach is to eliminate the transferred features that 

are activated by less than one third of the ROIs in the training set, since these features 

are considerably un-related to the input ROIs.  

As a comparison, traditional univariate feature selection methods were also 

applied to select most discriminative transferred features based on univariate statistical 

tests (i.e. Student t-test in this study). It should be emphasized that although the 

transferred features do not substantially follow normal distributions, the t-tests are still 

quite robust since the sample sizes of the two classes are nearly equal and fairly large 

(i.e. >30) [73]. Multi-variate feature selection methods such as Joint Mutual Information 
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[74] and Quadratic Programming Feature Selection [75] are not applied in this study 

because it is difficult and time-consuming to model the mutual relationship of feature 

vectors with over 4000 dimensions. 

3.3.4 Training and evaluation 

 The last step of the CAD system is to train a machine learning classifier using 

the selected transferred CNN features. Considering that the feature vectors have a 

relatively high dimensionality and the size of training set is relatively small, a linear 

SVM classifier is trained to classify benign and malignant masses. A leave-one-case-out 

(LOCO) training and testing process is applied to evaluate the performance of the 

transfer learning based system. In each LOCO cycle, mammograms from 300 patients 

are collected for training the classifier, while the remaining one is used for performance 

evaluation. The processes of pseudo-color ROI generation, transferred CNN feature 

extraction and activation-based feature selection are performed consecutively over the 

training set that contains 300 ROIs. A linear SVM is then trained using the selected 

pseudo-color ROI based transferred CNN features and applied to the testing ROI to 

obtain a likelihood score. We repeat this cycle by 301 times and calculate the overall 

predication accuracy and area under receiver operating characteristic (ROC) curve 

(AUC) as performance evaluation indices of the system. 

3.4 A Traditional machine learning CAD scheme 

3.4.1 Hand-crafted feature extraction 

A traditional CAD system based on hand-crafted features is also implemented in 

this study. The system consists of four steps: (1) mass segmentation, (2) feature 
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extraction, (3) feature selection and (4) classifier optimization. For the first step, a 

region-growing based segmentation algorithm described in section 3.2.1 and [57] is also 

applied here to segment the suspicious area from the background. Subsequently, six 

categories of commonly used hand-crafted features for mass classification are 

calculated from the segmented area, including shape, contrast, size, spiculation, 

homogeneity and gray-level co-occurrence (GLCM) texture features. The following are 

brief descriptions of the computed features [57].  

1. Mass size: We compute 3 image features in this category. The first one is the mass 

area, which is computed by automatically counting the total number of pixels inside 

the segmented mass region, and then multiplying the pixel size (or spatial resolution 

of mammogram). In addition, since in clinical practice, radiologists use the radial 

length of the lesion to measure mass size (based on RECIST guidelines [76]), we 

compute the second feature that is the normalized mean radiant length computed by 

the mean radial length divide by the total number of pixels inside the mass region 

[77], and the third feature that is the maximum radial length. 

2. Mass shape: Radiologists typically rate mass shape into round, oval, or irregular. To 

quantify these ratings, we computed two most commonly used shape-related 

features [77]. The first one is a shape factor ratio defined as𝑃2/𝐴, where P and A 

are the perimeter and area of a lesion region, respectively. The second one is a 

radiant length coefficient of variation. Using the radial length (ri) that is the distance 

between the mass center and pixel (i) located at the mass boundary, this feature is 

defined as the coefficient of variation of ri, which can be computed by standard 

deviation of ri divided by mean value of ri.  
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3. Mass contrast: In order to compute the contrast related features, different types of 

mass outside surrounding area can be selected, which will have different impact on 

the computational results [78]. In this study, we use the method reported by te Brake 

et al [79] to define the mass surrounding area. First, a morphological dilation 

operation with a spherical kernel of size 0.6R is performed on the segmented mass 

region, where R is the mean radial length (�̅�) of the mass region. Then the pixels 

inside the dilated region but outside the mass region are labelled as “outside 

surrounding area.” Figure 10 shows an example of the outside surrounding area that 

was used to compute the contrast features. Next, three contrast related features are 

defined and computed [79]. The first one is computed by the difference between the 

average pixel values inside the segmented mass region and its surrounding (outside) 

area. The second one is computed based on a distance measure between the two 

pixel intensity histograms, which can be computed as: 

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑏𝑎𝑠𝑒𝑑𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 
(𝐸(𝐼)−𝐸(𝑂))2

𝑉𝑎𝑟(𝐼)+𝑉𝑎𝑟(𝑂)
 (4) 

Where I is denoted as the set of pixels in the mass region, O is denoted as the set of 

pixels in the outside surrounding area. The last contrast related feature is computed 

based on the average gradient vector magnitude of the boundary pixels, which is 

related to the sharpness of the boundary. 
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Figure 10: An example of a suspicious mass (a) and computed mass outside 

surrounding area (b), where the gray area is the outside surrounding area and the white 

area is the segmented mass area. 

 

4. Mass homogeneity: The degree of mass density heterogeneity phenotypes contains 

biologically important tumor development patterns including the degree of tumor 

stiffness variation and necrosis. To quantify mass density homogeneity, we compute 

four features. These are 1) standard deviation of pixel intensities inside the mass 

region. 2) Kurtosis of pixel intensities inside the mass region. 3) Average local pixel 

intensity fluctuation in the mass region as defined in our previous study [77], where 

the local pixel intensity fluctuation of a pixel is defined as the maximum absolute 

difference between the pixel intensity and the intensity of pixels inside a 5×5 square 

kernel centered at that pixel. 4) Standard deviation of the local pixel intensity 

fluctuation inside the segmented mass region. 

5. Mass spiculation: The degree of mass boundary spiculation is another primary 

characteristic indicating mass malignancy. In this study, we use two radial edge-

gradient analysis based features [80] to measure the spiculation of a segmented 
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mass. First, a 3×3 mean filtering is performed on the mammogram as a 

preprocessing step. A morphological dilation and erosion operation is then applied 

to the segmented mass region, respectively. The difference between the dilated and 

eroded image is extracted as the “lesion boundary area.” For each pixel inside the 

lesion boundary area, the maximum gradient at that pixel and the radial direction 

from the mass center to the boundary pixel are computed, respectively. Next, the 

“radial angle” is obtained by the angle between the two vectors (i.e. maximum 

gradient and radial direction). The radial angles of all pixels in the lesion boundary 

are collected to form a radial angle histogram. Based on the a priori knowledge that 

if a mass boundary is not spiculated, the radial angle histogram will tend to be 

compact and accumulate near 0°, we extracte the kurtosis of the distribution as the 

first spiculation-related feature. Then the number of pixels whose radial angles are 

between 60° and 120° or -60° and -120° are counted as “spiculated” pixel number. 

The spiculated pixel number divided by total pixel number inside the mass boundary 

area is calculated as the second feature. Figure 11 shows two examples of radial 

angle histograms, where the first one is from a less-spiculated mass and the second 

one is from a spiculated mass. 

6. Texture: GLCM texture features are commonly used for mammographic mass 

classification. GLCM calculates the frequencies of combinations of pixel intensities 

co-occurred in the images along different angles. 16 GLCM texture features are 

extracted, including the contrast, correlation, energy and homogeneity statistics of 

GLCMs along four different angles (i.e. 0º, 45º, 90º and 135º).  
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Figure 11: Example of radial angle histogram of two mammographic masses where (a) 

shows a less-spiculated mass with its radial angle histogram (b); while (c) shows a 

spiculated mass with its radial angle histogram (d). 

 

After feature extraction, a joint mutual information (JMI) [74] based multi-

variate feature selection algorithm is applied to eliminate redundant and useless 

features. The algorithm starts from an empty feature set and iteratively includes new 

features based on the measurement of conditional mutual information (MI). Similarly to 

the transfer learning based system, a LOCO process is performed to evaluate the 

performance of this traditional CAD scheme. In each training/testing iteration, JMI 

algorithm is performed for feature selection over the 300 training cases. A linear SVM 

is then optimized using the selected feature subsets and applied to predict the testing 
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case. Prediction accuracy and AUC value are finally obtained for assessment and 

comparison. 

3.5 Results 

3.5.1 Gray-scale ROIs vs. pseudo-color ROIs 

 We evaluated and compared the performance of applying the original gray-scale 

ROIs (i.e. feed the gray-scale ROIs into RGB channels respectively) and pseudo-color 

ROIs as the inputs of the pre-trained Alex-Net for extracting transferred CNN features. 

Notably, the dimensionality reduction approaches were not performed to this end. The 

features extracted from the FC6 layer, FC7 layer of the Alex-Net and their combination 

were evaluated respectively using linear SVM classifiers and LOCO process. Figure 12 

shows the performance assessment of using different ROIs (i.e. gray-scale vs. pseudo-

color) and different features (i.e. FC6, FC7 and FC6+FC7). It can be observed that the 

pseudo-color ROIs based classifiers outperform the gray-scale ROIs based classifiers 

for both the two assessment indices and the three feature sets. It also shows that the 

transferred CNN features extracted from the FC6 layer have better prediction 

performance than the features from FC7 layer. Combining the features from FC6 layer 

and FC7 layer slightly decreased the performance level as compared to using FC6 layer 

only. Therefore, we only applied the pseudo-color ROI based CNN features extracted 

from the FC6 layer for the following analysis and results. 
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Figure 12: (a) AUC values and (b) Predication accuracies of using gray-scale ROIs and 

pseudo-color ROIs with features extracted from different layers of Alex-Net. 

 

3.5.2 Effects of dimensionality reduction 

 In this section we evaluate whether dimensionality reduction approaches can 

improve the performance of the classifiers by removing un-related transferred features. 

Two methods were implemented and compared including a traditional t-test based 

univariate feature selection method and a novel activation based method. Table 3 

summarizes the performance of the classification system without feature selection, 

using t-test feature selection with different p-value thresholds and using activation-

based feature selection respectively. Notably, the features used in this section were 

extracted from the FC6 layer of the pre-trained Alex-Net that took pseudo-color ROIs 

as inputs. The results show that the activation-based feature selection method obtained 

best performance in terms of both AUC and prediction accuracy, while t-test method 

did not substantially improve the performance of the classifier. Therefore, traditional 

univariate statistics based methods may not be effective for dimensionality reduction of 

transfer learning systems.  
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Table 3: Performance of the transfer learning based classification system with different 

dimensionality reduction methods 

 

Dimensionality reduction method AUC Accuracy 

Original feature set (no feature selection) 0.784 0.694 

T-test (p-value threshold = 0.05) 0.765 0.688 

T-test (p-value threshold = 0.1) 0.782 0.704 

T-test (p-value threshold = 0.2) 0.761 0.681 

Activation-based method 0.792 0.711 

 

 For better visualization, we also plotted the distribution of the transferred 

features according to the number of non-zero activations over the 301 cases as shown in 

Figure 13. We observed that near three quarters of the transferred features are activated 

by less than 100 pseudo-color ROIs and about half of the features are activated by less 

than 40 cases. It demonstrated that only a small fraction of the transferred features is 

strongly related to the input ROIs and contributes to the classification between benign 

and malignant masses. 
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Figure 13: Distribution of the transferred features according to the number of non-zero 

activations over the 301 cases 

 

3.5.3 Comparison with hand-crafted features based CAD system 

 We independently optimized a transfer learning based CAD system and a 

traditional hand-crafted featurebased CAD system for comparison. An ensemble 

classifier was also developed by simply averaging the two classification scores 

generated by the two classifiers. Figure 14 shows the ROC curves of the two classifiers 

as well as the ensemble classifier. The AUC values and prediction accuracies are shown 

in Table 4. The results indicate that the transfer learning based classification system can 

yield better results (i.e. higher AUC) than traditional hand-crafted features based 

classifier. The performance can be further improved by combining the classification 

scores generated by the two classifiers. The AUC value of the ensemble classifier is 
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statistically significantly higher than the AUC value obtained by the traditional 

classifier (p<0.02), while the difference between the ensemble classifier and the transfer 

learning based scheme is not statistically significant (p>0.05). 

 

Figure 14: ROC curves of the transfer learning based classifier, hand-crafted features 

based classifier and the ensemble classifier. 

 

Table 4: Performance assessment of the transfer learning based classifier, hand-crafted 

features based classifier and the ensemble classifier. 

 

 AUC Accuracy 

Transfer learning 0.792 0.711 

Hand-crafted features 0.762 0.718 

Ensemble 0.813 0.718 
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3.6 Discussions 

 Developing CAD systems for mammographic mass classification may play a 

crucial role assisting radiologists in breast cancer diagnosis by reducing high false-

positive recall rates and the unnecessary biopsies. Traditional machine learning 

classifier based CAD systems are limited by the difficulties of designing and selecting 

the effective hand-crafted image features to capture the intra-class variations of the 

mass-like lesions. Although deep learning technology can overcome this challenge by 

automatically learning feature representations, it cannot be directly applied for mass 

classification due to the limited size of mammogram dataset. In this study, we 

investigated the feasibility of developing a deep transfer learning based CAD system for 

benign and malignant breast mass classification. The new CAD system employed a 

deep CNN model (i.e. Alex-Net) that is well-trained with a large natural image dataset 

(i.e. ImageNet). Therefore, we can take advantages of automatic high-level feature 

extraction of deep networks without considering the limitation of image dataset size. 

Comparing to previous deep transfer learning based classification schemes, the new 

CAD scheme reported in this study has several unique characteristics. 

 First, instead of directly feeding the gray-scale ROIs into the pre-trained Alex-

Net, we investigated a new approach to obtain pseudo-color ROIs to fill in RGB 

channels from the original gray-scale ROIs. Our results demonstrated that the pseudo-

color ROIs based classifier can yield significantly higher performance than the gray-

scale ROI based classifier. There are two possible reasons: (1) redundant information 

was provided to the Alex-Net by using gray-scale images and therefore we cannot take 

full advantages of the pre-trained parameters; (2) we incorporated additional shape and 
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texture characteristics into the pseudo-color ROIs and these characteristics are helpful 

for extracting effective image features. We also demonstrated that the features extracted 

from FC6 layer are more effective than the features from FC7 layer which are high-

level but more specifically related to the natural images in ImageNet dataset. 

 Second, a simple activation-based feature selection approach was applied to 

eliminate un-related transferred features and the results show that the new method 

outperforms traditional univariate statistical test based feature selection methods. The 

activation-based method is motivated by the observation in which a large fraction of 

hidden neurons in the pre-trained Alex-Net may not necessarily represent the characters 

of the pseudo-color mammographic ROIs (as shown in Figure 3). We demonstrated that 

the classifier trained with about 1200 strongly related transferred features outperformed 

the classifier trained using the whole transferred feature set. 

 Third, how to combine deep learning technologies with prior knowledge and 

hand-crafted features is also attracting significant research interests recently. In medical 

imaging area, two previous studies have shown that the prediction performance was 

improved by combining the traditional hand-crafted features with the automatic features 

learned by deep network [70, 81]. In this study, we investigated to incorporate prior 

knowledge into the transfer learning system in two ways: (1) the subjectively designed 

morphological or texture variations of the original ROI were used to form the pseudo-

color ROIs; (2) an ensemble classifier was developed by averaging the classification 

score generated by the hand-crafted features based classifier and the transfer learning 

based classifier. We demonstrate that incorporating additional information into deep 

learning systems potentially enables to obtain the improved performance. 
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 In summary, we proposed and tested a novel deep transfer learning based CAD 

system for mammographic mass classification in this study. We investigated to 

incorporate prior knowledge and hand-crafted features into the CAD system, which 

enables to obtain significantly higher classification performance (e.g., AUC value) than 

using the traditional CAD scheme to classify between benign and malignant 

mammographic masses. Hence, this study provides a reliable framework for developing 

transfer learning systems based on gray-scale images and/or small image datasets.  

Although the experiment result is encouraging, this study still has a number of 

limitations and can be further improved in the future. First, the dataset used in this study 

only contains 301 mammogram images. As a result, the pre-trained Alex-Net was fixed 

as a feature extractor in the CAD system. The performance of the system can be 

potentially improved by collecting a larger dataset and performing a fine-tune process 

on the pre-trained network. Second, a relatively simple method (i.e. averaging) was 

applied to combine the transferred CNN features and hand-crafted features in this study. 

More sophisticated fusion approaches need to be developed and further evaluated in 

future studies. 
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Chapter 4: Automated prostate segmentation in MR images using 3D 

Fully Convolutional Network with a coarse-to-fine residual module 

4.1 Introduction 

Prostate cancer is the most common cancer occurred and second common cause 

of cancer mortality in men population in United States [48]. It was estimated that 

180,890 cases were diagnosed with prostate cancer in 2016, which accounts for 21% of 

new cancer diagnoses [48]. Accurate segmentation of prostate area from Magnetic 

Resonance (MR) images is an important pre-processing step for diagnosis and treatment 

planning of prostate cancer as well as other prostate diseases [82]. Manual segmentation 

of prostate area from MR slices is time-consuming and suffers from large intra- and 

inter-reader variability. As a result, developing automatic or semi-automatic prostate 

segmentation schemes has potentially clinical utility and thus has gained significant 

research interests in the recent decade. However, it is difficult to accurately segment the 

prostate area from MR images due to the large variation of prostate size and shape 

between patients, as well as the different scanning protocols and unclear prostate 

boundaries [83]. Traditional methods for automatic MR prostate segmentation include 

multi-atlas based [84, 85] and deformable model based [86] approaches. These methods 

are limited by the challenges of how to design effective features to identify 

correspondence between images or discriminate prostate areas and background tissues 

[87], and therefore cannot achieve the performance level of human segmentation. 

 Recently, deep convolutional neural network (CNN) models have gained great 

research efforts in machine learning and computer vision society. CNN models contain 
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many hidden layers that can automatically extract high level representations from the 

raw input images [6]. As a result, the challenges of designing effective hand-crafted 

features can be avoided by employing deep learning methods (e.g. CNN). State-of-art 

performances have been obtained and reported by using deep CNN models in many 

applications such as natural image classification [9], object detection [11] and 

segmentation [88]. Following that, deep learning technique has been demonstrated to 

outperform traditional machine learning algorithms for solving various medical imaging 

problems [1, 89, 90]. As a result, deep learning is also expected as a promising and 

powerful tool for developing an automatic prostate segmentation system. 

 In this study, our motivation is to investigate new approaches based on Fully 

convolutional network (FCN) architecture [91] to improve the performance of existing 

MR prostate segmentation schemes. Specifically, we modify the basic 3D U-Net 

structure [92] by adding a coarse-to-fine residual module together with a deep 

supervision training strategy to improve the segmentation performance as well as the 

training efficiency. We then apply a densely connected convolutional module [93] to 

refine the initial segmentation results in an auto-context manner. The performance of 

the proposed method is evaluated using a publically available prostate MR image 

dataset, which aims to demonstrate accurate segmentation and fast convergence. 

4.2 Related works 

4.2.1 CNN for medical image segmentation 

  Deep learning has been demonstrated its feasibility to overcome difficulties of 

the traditional segmentation systems in a number of applications such as brain 

segmentation [58, 94] and pancreas segmentation [95, 96] etc. In these frameworks, the 
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segmentation problem is modeled as a pixel/voxel-wise classification task. Early works 

applied a sliding window to extract small patches near each pixel/voxel and applied 

CNN to predict the label of the targeted pixel/voxel. Such approach has the drawback of 

low computational efficiency due to the repeating computation of the overlaps between 

image patches [89]. Alternatively, Fully Convolutional Network (FCN) provides an 

end-to-end neural network architecture that can generate dense predictions with high 

efficiency by significantly reducing the repeating computations [91]. Based on FCN, U-

net [92] was proposed to improve the segmentation performance by adding skip-

connections between up and down paths, which has been extensively applied in medical 

image segmentation studies. 

4.2.2 Prostate segmentation 

 Multi-atlas based segmentation methods have been commonly adopted for 

prostate segmentation from the volumetric MR images [85, 97]. These methods are 

based on an image set with pre-labelled masks of prostate area. Non-rigid registration 

methods are employed to register the template images with respect to targeted images, 

and the corresponding registered prostate masks are fused together to generate the target 

segmentations. Deformable model based approach is another type of popular prostate 

segmentation method. For example, Toth et al. proposed an Active Appearance Model 

(AAM) based segmentation method that utilized the level-set implementation [86]. 

There are a number of recent studies that focused on applying deep learning for prostate 

segmentation from MR images. For example, Milletari et al. proposed a V-Net structure 

with a novel dice coefficient objective function [98]; Yu et al. added long and short 

mixed residual connections to FCN structure [99]; Cheng et al. developed a holistically 
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nested network based prostate segmentation system [100]. 3D convolutional networks 

were applied in these studies since they can process volumetric MR images and take full 

use of 3D spatial information.  

4.3 Materials and Methods 

4.3.1 Dataset and pre-processing 

 The MR image data acquired and downloaded from the existing NCI-ISBI 2013 

Challenge – Automated Segmentation of Prostate Structure 

(https://wiki.cancerimagingarchive.net/display/Public/NCI-ISBI+2013+Challenge+-

+Automated+Segmentation+of+Prostate+Structures) are used in this study to train and 

evaluate the proposed deep neural network [101]. The training set contains prostate MR 

images acquired from 60 patients, which were obtained with different equipment and 

scanning protocols (e.g. 1.5T vs. 3T and endo-rectal receiver coil vs. surface coil). 

Another 10 cases in the “Leaderboard” set were used to evaluate the performance of the 

model. For each case, T2-weighted (T2W) MRI axial pulse sequences were obtained 

with different size and spacing. The corresponding prostate masks marked by 

radiologists are also provided. It should be noted that in this study, we aimed to segment 

the whole prostate area from the background, which was different from the original 

motivation of NCI-ISBI 2013 challenge. 

 It is necessary to pre-process the image data due to the variations of the gray 

value range, image size and spacing. Linear interpolation is applied to resize the images 

and masks to obtain a fixed spatial resolution of 1×1×3 millimeters. A 3D patch with 

size of 128×128×24 is then cropped for each patient. A z-score normalization is finally 

performed to standardize the voxel gray values with zero mean and unit standard 

https://wiki.cancerimagingarchive.net/display/Public/NCI-ISBI+2013+Challenge+-+Automated+Segmentation+of+Prostate+Structures
https://wiki.cancerimagingarchive.net/display/Public/NCI-ISBI+2013+Challenge+-+Automated+Segmentation+of+Prostate+Structures
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deviation. The normalized 3D patches are then used as the input of the proposed neural 

network.  

4.3.2 The proposed network 

 We address the prostate segmentation problem using a two-stage FCN. The first 

stage is a 3D U-Net architecture which takes the pre-processed 3D MR images as input 

and generates a binary mask with the same size for segmentation. Deep supervision and 

residual module strategies are investigated to accelerate the training process and 

improve the segmentation accuracy. The second stage is a densely connected 

convolutional module which takes the MR images together with the segmentation 

results generated by the first stage as the input. The motivation of adding the second 

stage is to refine the initial segmentation results by incorporating auto-context features. 

Details of the U-Net structure, residual module with deep supervision, and refinement 

network are described in the following sections.  

4.3.3 3D U-Net 

 U-Net was proposed by Ronneberger et al. for various biomedical image 

segmentation tasks [92]. The original U-Net is a 2D convolution operation based FCN. 

Recent studies have demonstrated the effectiveness of 3D FCN for accurate 

segmentation of volumetric medical images by fully utilizing the 3D spatial information 

[94, 98, 99, 102]. Therefore, a U-Net with 3D convolution units (i.e. 3D U-Net) is 

employed in this study as the basic network structure. Figure 15 shows the architecture 

of the 3D U-Net. The network takes the MR image patches with size 128×128×24 as 

input. The left side of the network is a contracting path that gradually reduces the 

resolution of the feature maps. At each resolution level, two 3D convolutional layers 
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with rectified-linear unit (ReLU) non-linearity are stacked, followed by a max-pooling 

layer with 2×2 sliding window to down-sample the feature maps. Small kernel size (i.e. 

3×3×3 voxels) is adopted in the convolutional layers and the number of filters is 

doubled as the resolution halving. Batch Normalization mechanism is introduced 

between convolutional operations and ReLU, in order to accelerate the training process.  

The motivation of using contracting path is to increase the receipt field of each 

voxel in the feature maps and thus incorporate more spatial information. An expansive 

path in the right side of the network is applied to generate high-resolution feature maps 

for voxel-level prediction. De-convolution operations with 2×2×2 trainable kernels are 

employed to increase the size of input feature maps by a factor of 2. The output of de-

convolution layers is concatenated with the corresponding feature maps generated in the 

contracting path with same resolution (shown as the horizontal connection in Figure 

15).  

The connection from the contracting path aims to provide complementary high-

resolution information, since the de-convolution layers only take coarse features from 

the low-resolution layers as input. The concatenation is then processed by stacking a 

number of convolutional layers, ReLU and Batch Normalization to generate high-

resolution image feature maps. A convolution operation with kernel size of 1×1×1 is 

performed on the feature maps with highest resolution to generate a single feature map, 

which is fed into a sigmoid activation function to generate voxel-wise binary 

classification probabilities. Due to the limitation of the size of the training image 

dataset, we apply a relatively small U-Net architecture. The network consists of 15 

convolutional layers, 3 max-pooling layers and 3 de-convolutional layers. The first 
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convolutional layer has the same resolution with the input images containing 16 

convolutional kernels.  

 

Figure 15: U-Net architecture 

 

4.3.4 Deep supervision and residual module 

 Deep neural networks are always difficult to train with the gradient descent 

based algorithms because of the vanishing gradient problem [103, 104], which makes 

the convergence rate slow in early neural layers. This challenge can be addressed by 

adding auxiliary classifiers in the intermediate layers to increase the back-propagated 

gradient signals in early layers [16]. Based on this strategy, Dou et al. integrated a deep 
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supervision mechanism in a FCN for medical image segmentation [102]. Specifically, 

auxiliary convolutional layers are injected to the hidden layers of the FCN at different 

resolution level to generate auxiliary predictions; the auxiliary predictions are then 

interpolated to the size of input images for computing losses. It has demonstrated that 

the deep supervision mechanism can accelerate the training process and improve the 

segmentation accuracy simultaneously in various previous studies [94, 102]. However, 

the auxiliary coarse predictions at low resolution level are not effectively propagated to 

the final segmentation in these approaches, since the auxiliary convolutional layers and 

corresponding predictions are simply abandoned in the testing phase and the 

convolutional layers in the main path need to re-formulate the information encoded in 

the auxiliary layers.  

Inspired by the studies of deep residual learning [9] and image super-resolution 

[105], we propose a new 3D U-Net based FCN architecture with coarse-to-fine residual 

module and deep supervision, as shown in the left part of Figure 16 (i.e. stage-1). The 

left side of the stage-1 network is a basic 3D U-Net. Auxiliary convolutional layers with 

kernel size of 1×1×1 are connected to the hidden feature maps with different resolution 

in the expansive path of the U-Net, in order to generate single feature maps which are 

then up-sampled and fed into a sigmoid function to obtain auxiliary predictions. The 

single feature maps are obtained by the summations of the up-sampled single feature 

maps from lower resolution levels and residual feature maps generated by the current 

resolution levels. In this way, the coarse auxiliary predictions can be effectively 

propagated to higher resolution levels and the convolutional layers in the main path are 

applied to extract the residual features which contain rich fine details of the images. 
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Therefore, our proposed coarse-to-fine architecture takes the advantages of both 

residual learning and deep supervision, in attempt to improve the segmentation 

performance and training efficiency.  

 

Figure 16: Proposed FCN architecture. Stage-1 is a 3D U-Net with deep supervision 

and coarse-to-fine residual module; stage-2 is a densely connected convolutional 

module for refinement. 

 

 

4.3.5 Auto-context refinement 

 The stage-2 network shown in Figure 16 aims to refine the segmentation 

generated by the stage-1 network using an auto-context [106] strategy, which integrates 

low-level voxel values and high-level context information to generate new feature maps 

[94]. A residual learning strategy similar to the previous work of Xu et al. [107] is 



65 

adopted in this study. Specifically, the original input MR images are concatenated with 

the segmentation results of the stage-1 network at different resolution levels, forming 

4D images with 5 channels. The 4D images are then fed into a densely connected 

convolutional (DenseConv) module to extract auto-context features. The densely 

connected architecture has the advantages of feature re-using and propagation 

strengthening [93]. Figure 17 shows the architecture of DenseConv module, which 

consists of 6 convolutional layers. The single feature map generated in main prediction 

path of the stage-1 network is summated with the feature map obtained by the 

DenseConv module, and then fed into a sigmoid function to generate final 

segmentation. In this way, the DenseConv module learns a residual function that 

highlights the refinement of the initial segmentation results. 

 

Figure 17: Architecture of densely connected convolutional (DenseConv) module for 

refinement 
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4.3.6 Implementation 

 Due to the size limitation of the prostate MR image dataset, an on-the-fly data 

augmentation strategy is applied to enlarge the training set and avoid the potential over-

fitting problems. The original images are randomly shifted (± 4 mm), rotated (± 15 º) 

and scaled (a factor of 0.9 – 1.1) to generate augmented images as the input of the 

network for every two training epochs. All weights used in the network are randomly 

initialized with a normal distribution. We adopt dice coefficient (DC) loss [98] as the 

objective function to train the network. The DC loss between the ground truth 

segmentation and predicted segmentation is defined as: 

 𝐷𝐶𝑙𝑜𝑠𝑠 = 
2∑ 𝑔𝑖𝑝𝑖

𝑁
𝑖

∑ 𝑔𝑖+
𝑁
𝑖 ∑ 𝑝𝑖

𝑁
𝑖

 (5) 

Where N is the total number of voxels, gi is the ground truth label of a particular voxel 

and pi is the predicted probability of the corresponding voxel. The advantage of DC loss 

over cross-entropy or weighted cross-entropy loss is that it can address the problem of 

imbalance between the number of background and foreground voxels without setting 

any hyper-parameters [98]. Adam algorithm [108] is implemented to optimize the 

parameters and minimize the objective function. The neural network models are 

implemented in Python with TensorFlow library [109].  

We adopt a 3-step process to train the two-stage FCN, which is similar to the 

previous work by Xu et al. [107]. First, the stage-1 network is trained with the objective 

function set as the weighted summation of DC losses of the main prediction and the 

auxiliary predictions. The weights are 0.3, 0.3, 0.6 and 1 for the predictions from coarse 

to fine. Second, we fix the parameters of the stage-1 network and optimize the 
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parameters of the stage-2 network with respect to the DC loss until convergence. Last, 

we fine-tune the entire network using a smaller learning rate. In the testing phase, 10 

cases of unseen prostate MR images were fed into the two-stage network in a feed-

forward manner. The outputs of the stage-2 network are binarized with a threshold of 

0.5 to obtain the predicted masks of prostate area.  

4.4 Results 

  We first compared the convergence rate and segmentation performance of the 

baseline 3D U-Net and our proposed stage-1 network, which is a U-Net with deep 

supervision and coarse-to-fine residual module. Figure 18 shows the curve of testing 

losses of these two networks at different training epochs. It demonstrates that our 

proposed network structure achieves faster convergence and lower DC loss in the 

testing dataset than the original 3D U-Net. Comparing to the baseline 3D U-Net that 

may require approximately 300 epochs to yield a relatively stable and converged result, 

the convergence was achieved after approximately 100 epochs using the new module.  

Table 5 summarizes and compares the dice coefficients of different network 

components including the baseline U-Net, stage-1 network and the entire two-stage 

network with DenseConv module for refinement. Specifically, by integrating the deep 

supervision and coarse-to-fine residual mechanism, the average DC of the 3D U-Net 

was improved from 0.892 to 0.902. The stage-2 network which employs a DenseConv 

module further improved the performance and yielded an average DC of 0.909 with a 

standard deviation of 0.011. Figure 19 shows three qualitative examples of the prostate 

MR segmentation results generated by the proposed new methods. 
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Figure 18: Testing loss of 3D U-Net and our proposed Stage-1 network with deep 

supervision and residual module 

 

Table 5: Dice coefficients of different network components 

Method DC mean  

3D U-Net 0.892 ± 0.018 

Stage-1 network 0.902 ± 0.017 

Entire network  0.909 ± 0.011 
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Figure 19: Three examples showing the segmentation of prostate area obtained by 

radiologists (top, green) and by the proposed two-stage network (bottom, red) 

 

 We also performed a comprehensive quantitative comparison between our 

proposed approach and existing state-of-art prostate segmentation systems using deep 

neural networks. Four metrics were used to evaluate and compare the performance of 

the systems, which include the Dice coefficient (DC), the Intersection over Union 

(IoU), the percentage of the absolute difference between volumes (aRVD) and the 95% 

Hausdorff distance (95HD). Three state-of-art deep neural network architectures were 

implemented and evaluated with the same prostate MR image dataset used in this study. 

The networks include V-Net [98], Holistically-Nested Networks (HNN) [100] and 

Volumetric ConvNet [99]. Table 6 shows the segmentation performance of different 

networks and it demonstrates that the new method tested in this study outperforms the 

three existing methods for all the four evaluation metrics by yielding not only higher 
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accuracy values, and also smaller standard deviations, which indicates that the results 

generated by the new method are more robust. Furthermore, we performed paired t-tests 

to statistically analyze the differences of dice coefficients between our proposed 

methods with the baseline U-Net, V-Net, HNN and Volumetric ConvNet. The results 

also demonstrate that our method yields significant improvement compared to baseline 

U-Net and previous state-of-art methods with p-value < 0.03. 

Table 6: Segmentation performance of different network structures 

Method DC IoU aRVD 95HD (mm) 

Our method 0.909 ± 0.011 0.833 ± 0.018 0.061 ± 0.033 5.065 ± 0.998 

V-Net 0.866 ± 0.019 0.764 ± 0.030 0.114 ± 0.075 6.477 ± 1.154 

HNN 0.865 ± 0.044 0.765 ± 0.065 0.236 ± 0.136 9.425 ± 4.755 

Volumetric 

ConvNet 

0.885 ± 0.017 0.794 ± 0.027 0.086 ± 0.048 7.781 ± 5.305 

Note: For DC and IoU, higher values are better; for 95HD and aRVD, lower values are better. 

4.5 Discussions 

 Developing automated schemes for prostate segmentation from MR images 

plays an important role in computer-aided diagnosis of prostate cancer and other 

prostate diseases. Traditional segmentation methods are greatly limited by the 

challenges of how to design effective hand-crafted features. Recently, with the 

availability of big data and fast parallel computation resources, deep learning techniques 

have been applied for addressing various challenges in computer vision and medical 

image analysis field. In this study, we proposed a novel neural network architecture for 

the automated prostate MR image segmentation. The proposed model consists of two 

stages of FCNs, where the first stage applied a 3D U-Net based network structure to 

obtain an initial segmentation and the second stage employed a densely connected 
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convolutional module to refine the details of the segmentation results. The proposed 

method demonstrates a number of unique characteristics. First, we propose a novel 

coarse-to-fine residual module and integrate it with the basic 3D U-Net structure. The 

residual module enables effective propagation from coarse segmentation to fine 

segmentation and also avoids feature re-formulating in the expansive path of U-Net. 

Auxiliary convolutional layers and predictions are applied to address the vanishing 

gradient problems and provide additional regularization as well. As a result, we 

demonstrate by experiments that our proposed structure can greatly accelerate the 

training efficiency of U-Net and yield better segmentation accuracy.  

Second, we adopt an auto-context strategy by developing a stage-2 network to 

combine features from input images and initial segmentations at different resolution 

level. The stage-2 network aims to integrate low level features with high level features 

and refine the segmentation of stage-1 network by learning a residual/refinement 

function. We apply a state-of-art densely connected convolutional module, which yields 

further improvement of the segmentation performance.  

Last, we compare the proposed method with previous state-of-art 2D (i.e. HNN) 

and 3D (i.e. V-Net and Volumetric ConvNet) deep neural network architectures for 

prostate segmentation. We highlight the main limitations of the previous methods 

compared to our new method. (1) V-Net does not adopt batch normalization strategy, 

which limits the prediction power of the network; (2) HNN is a 2D convolutional 

operation based network and cannot integrate 3D information; (3) Volumetric ConvNet 

adopts standard cross-entropy as loss function and might be affected by data-unbalance 

of prostate area and background area. Our method enables to overcome these limitations 
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and integrate novel modules to improve the performance. As a result, our experimental 

results demonstrate that our method outperforms previous models by a large margin for 

all the four evaluation metrics with higher segmentation accuracies and smaller standard 

deviations. 

While applying deep learning for computer vision problems usually requires 

large amount of training data to avoid over-fitting, the limitation of MR image set (i.e. 

60 cases for training) is not a big issue in our study since (1) the objective function is 

obtained over each voxel of a 3D image for medical image segmentation problems and 

each volumetric MR image scan contain large number of voxels and rich appearances of 

background; (2) we perform extensive on-the-fly data augmentation strategy to increase 

the diversity of training data and avoid over-fitting. 

In summary, we presented and tested a novel deep neural network architecture 

for accurate prostate segmentation from MR images in this study. We demonstrate 

state-of-art segmentation performance using the proposed network. Our method can be 

potentially applied as a pre-processing step for development of new computer-aided 

detection/diagnosis systems of MR images of prostate cancer and other prostate 

diseases. The proposed new deep learning framework is not only limited to segment 

prostate regions from MR image, it can also be easily adopted and applied to fulfill 

other medical image or natural image segmentation tasks.  
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Chapter 5. Applying a fully convolutional neural network for prostate 

segmentation and cancer detection using multi-parametric magnetic 

resonance images: an initial investigation1 

5.1 Introduction 

 Since prostate cancer is one of the leading causes of cancer mortality in men in 

the United States [48], early detection and diagnosis of prostate cancer is important for 

reducing mortality rate and improving treatment efficacy. In current clinical practice, 

prostate specific antigen (PSA) and transrectal ultrasound (TRUS) biopsy are 

commonly used for prostate cancer detection and diagnosis. Such methods are invasive 

and yield relatively high false-positive rates. Alternatively, magnetic resonance imaging 

(MRI) provides a noninvasive imaging tool that enables more accurate detection and 

diagnosis of prostate cancer [110]. Especially, multi-parametric MRI (mpMRI) with 

various MRI modalities including T2-weighted (T2W), diffusion-weighted imaging 

(DWI), and dynamic contrast-enhanced (DCE) etc. has demonstrated to be more 

effective for prostate cancer detection than using single MRI modalities [111-113]. 

However, reading and interpreting MR images for prostate cancer detection by 

radiologists is often difficult because it requires substantial expertise of the radiologists 

and the reading process is also tedious and time consuming due to the large amount of 

3D MR slices. Therefore, developing computer-aided detection (CAD) schemes for 

automated detection of prostate cancer from the MR images has attracted great research 

interests in the recent twenty years [114]. Such CAD schemes usually consist of two 

                                                 
1 Works of this chapter were done during an internship at 12 Sigma Technologies. 
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steps, which first segment the prostate area from the background tissues and then detect 

lesions within the prostates. 

Traditional machine learning based CAD systems for prostate cancer detection 

usually adopt a two-stage framework, which consists of a candidate generation stage 

followed by a false-positive reduction stage. For example, Litjens et al. extracted voxel 

based features for candidate generation and then calculated region based statistical 

features for candidate classification [115]. Linear discriminant classifier and ensemble 

learning models were adopted for both two stages. A number of recent studies also 

investigated to apply deep learning techniques to address the detection task. Tsehay et 

al. applied a holistic nested network with deep supervision strategy for pixel-level 

prediction [116]. Zhu et al. employed stacked auto-encoders to extract high level 

representations from image patches and trained a random forest for patch classification 

[117]. Kohl et al. proposed a network architecture with FCN and adversarial network to 

improve detection performance [118]. The multi-parametric MRI (mpMRI) with 

different modalities was used in these studies. 

 In this study, we investigate the feasibility of developing a new prostate cancer 

detection scheme implemented with a deep neural network model. The proposed 

scheme consists of two consecutive networks for prostate segmentation and tumor 

detection, respectively. Fully convolutional network (FCN) architecture is adopted for 

both steps since it can be trained end-to-end and provide efficient pixel/voxel level 

prediction. The scheme extracts information from mpMRI for both prostate region 

segmentation and lesion detection, since a number of previous studies have 

demonstrated the effectiveness of mpMRI based CAD schemes [115-117].  
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The motivation of conducting this study is because (1) to our best knowledge, 

this is the first study that applies mpMRI for prostate area segmentation, which is 

different from the previous studies only focusing on T2W based segmentation; (2) we 

are able to introduce a state-of-art deep learning model to address the challenges of 

prostate cancer detection. Thus, we conduct following experiments to evaluate 

performance of prostate region segmentation and tumor detection using our proposed 

method with a prostate MR dataset. 

5.2 MpMRI based Prostate segmentation 

5.2.1 Dataset and pre-processing 

 A dataset containing volumetric prostate MR images acquired from 195 patients 

was used for development of prostate segmentation step. The dataset was randomly 

separated into a training set with 160 cases and a testing set with 35 cases. For each 

case, multi-parametric modalities including T2W, T1 and DWI with highest b-value 

were obtained. The masks of prostate areas were marked in T2W images by an 

experienced radiologist as ground truth. Standard affine registration was performed to 

register T1 and DWI images to T2W images for correction of patient movement and 

magnetic distortion. The volumes of interest together with the ground truth masks were 

resized to a fixed spacing of 1×1×3 millimeters. A 3D patch of 128×128×24 was 

cropped for each MR imaging modality and the voxel values were normalized to zero 

mean and unit variation. The pre-processed patches from different modalities were 

concatenated together to form a 4D matrix with 3 channel, which is the input of our 

proposed FCN. 
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5.2.2 Network architecture 

 We adopt a 3D FCN architecture which is similar to V-Net developed by 

Milletari et al. [98]. Figure 20 shows the architecture of the network. The input of the 

network is a multi-channel MR volume data with four dimensions representing the 

height, width, depth and channel. The network consists of a contracting path in the left 

and an expansive path in the right. In the contracting path, convolutional layers with 

3×3×3 convolution kernels and restricted linear unit (ReLU) activation function are 

stacked to extract high-level features. Convolution layers with strides greater than 1 are 

applied to gradually reduce the resolution of feature maps and increase the receptive 

field to incorporate more spatial information. At each resolution level, the input signals 

are directly added to the output feature maps, which enables the stacked convolutional 

layers to learn a residual function [9]. The contracting path generates feature maps with 

low resolution and the expansive path is applied to up-sample the feature maps to 

generate dense prediction. De-convolution operations are employed to increase the 

resolution of feature maps. The feature maps generated in the contracting path are 

concatenated with the output of de-convolutional layers to incorporate high-resolution 

information. Residual connections are also adopted in the expansive path. The final 

feature maps which have the same size with the input MR volumes are processed by a 

convolutional layer with 1×1×1 kernel and sigmoid activation function to generate 

binary predictions. Dice loss [98] is adopted as the objective function at the training 

phase. Post-processing steps are then applied to refine the initial segmentation generated 

by FCN. Specifically, we use a 3D Gaussian filter to smooth the predicted probability 

maps and a connected component analysis to remove small isolated components. 
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Figure 20: The FCN architecture applied for mpMRI based prostate segmentation 

 

5.2.3 Implementation and evaluation 

 We implemented the network with Tensorflow library [109]. Since the dataset is 

relatively limited, we adopted an on-the-fly data augmentation process to randomly 

shift, rotate and scale the original volumes during the training phase. The weights were 

randomly initialized and Adam optimizer [108] was used to train the network. When 

testing, the optimized network took the mpMRI volume data in the testing set as input 

and performed feed-forward calculation. The output probability maps were then refined 

by the post-processing steps and binarized with a threshold of 0.5. We calculated the 

dice coefficients between the ground truth and predicted segmentation for performance 

evaluation. 
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5.3 Tumor detection 

5.3.1 Dataset and pre-processing 

 The dataset used for development of tumor detection step contains volumetric 

prostate MR images acquired with multi-modalities including T2W, DWI, apparent 

diffusion coefficient (ADC) and K-trans from 79 patients. ADC maps were calculated 

from DWI and K-trans images were obtained using dynamic contrast enhanced (DCE) 

MR perfusion. Similar to the previous step we applied affine registration to register 

different modalities to T2W volume data. For each patient, at least one tumor was 

identified by radiologists and the boundary of the tumor area was also marked.  

The dataset was randomly divided into a training set with 60 cases and a testing 

set with 19 cases. Different from the segmentation step, we adopted 2D network for 

tumor detection since the sizes of marked tumors are relatively small with respect to the 

resolution in vertical direction. 400 slices from the 60 cases in the training set were 

selected for training the network. Among them, 260 slices contain tumors and the other 

140 slices are negative. For each slice, a patch containing prostate area was cropped and 

interpolated to a fixed size of 176×176. Z-score normalization was applied to normalize 

the pixel values. We enlarged the training set by 30 times using random shift, rotation 

and scaling.  

5.3.2 Network architecture 

 Figure 21 shows the architecture of FCN used for tumor detection. It is similar 

to the previous network for prostate segmentation, since both networks aim to generate 

voxel-level predictions. Due to the limitation of annotated data, we apply a relatively 
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small network with 3 down-sampling layers in the contracting path. The network takes 

2D images with 4 channels (i.e. T2W, DWI, ADC and K-trans) as input and outputs the 

predicted tumor masks. Weighted cross-entropy loss is employed as the objective 

function to train the network. Specifically, voxel-level cross entropy loss was first 

calculated for each single voxel. The losses of the positive voxels were multiplied by a 

hyper-parameter w and then summed with the losses of negative voxels to form the 

objective function. By tuning w, we can adjust the weights between losses of positive 

and negative predictions. We also apply L2 regularization to avoid overfitting. 

 

Figure 21: The FCN architecture applied for mpMRI based tumor detection 

 

5.3.3 Implementation and evaluation 

 We applied a cascaded two-stage process to train the network. First, we used a 

large w value to train the network for a number of epochs. The motivation is to obtain 

initial detection with relatively high sensitivity. For the second stage, we calculated the 

objective function over the candidates (i.e. positive voxels generated by the initial 

detection) and used a smaller w value to train the network, aiming to further reduce the 

number of false-positives. In the testing phase, we fed 2D mpMRI slices into the 
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network and stacked 2D predictions to obtain 3D detection. We plot a performance 

curve (i.e. detection rate versus false positive rate) operated at different thresholds to 

evaluate the proposed detection method. Specifically, we calculated the detection rate 

according to the overlap between the ground truth masks and the predicted masks. If 

over 10% of voxels in a tumor are labelled as positive, it is considered as a success 

detection. The false positive rate is simply calculated by dividing the number of false 

positive voxels by the number of all negative voxels inside the prostate.  

5.4 Results 

5.4.1 Segmentation 

 We trained the mpMRI based FCN for 500 epochs for prostate segmentation. 

We also built another FCN with same architecture which only takes T2W image data as 

input. Table 7 summarizes the performance of mpMRI and T2W based FCNs. It 

demonstrates that the segmentation performance can be improved by combining 

information from multiple MR modalities as compared to using single T2W image data 

only. Meanwhile, mpMRI based FCN also achieves faster convergence than T2W based 

FCN.  

Table 7: Segmentation performance of T2W and mpMRI based FCN 

FCN input Training epochs Average Dice coefficient 

T2W 2000 0.8818 

T2W, DWI, T1 500 0.8935 
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5.4.2 Tumor detection 

 Figure 22 shows two performance curves, where the red one is obtained by 

training the network with the first stage and the blue one is obtained by the two-stage 

training strategy. It shows that the detection performance can be improved by the 

cascaded training process with candidate generation stage and false-positive reduction 

stage, which yield 100% detection rate with false-positive rate smaller than 0.2. Figure 

23 shows two examples of detection results that are generated at the level of detection 

rate of 0.85.  

 

Figure 22: Performance curves of the proposed FCN. Red line represents the single-

stage training and blue line represents the cascaded training strategy 
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Figure 23: Two examples of detection results generated by the FCN with cascaded 

training. The upper example demonstrates two successful detections, while the lower 

one demonstrated one successful detection, one false-positive and one undetected tumor 

 

5.5 Conclusions 

 In this study, we developed and tested a mpMRI based CAD scheme for prostate 

cancer detection. The CAD scheme consists of a prostate segmentation stage and a 

tumor detection stage. We employed state-of-art deep learning models to address the 

challenges of hand-crafted feature extraction. The proposed scheme demonstrates a 
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number of unique characteristics. First, instead of using single T2W modality for 

segmentation, we developed a FCN model to combine imaging information from 

multiple MR modalities, which enables faster convergence and more accurate 

segmentation performance. It demonstrates that T1 and DWI volumes may provide 

complementary information for defining prostate boundary. Second, we investigated the 

feasibility of applying a FCN based network architecture to generate voxel-level 

prediction for prostate tumor detection. We proposed a cascaded training strategy and 

demonstrated its effectiveness by experiments. Despite the encouraging results, this is a 

preliminary study with a relatively small dataset. The performance of the proposed 

CAD scheme needs to be further evaluated with a larger dataset in the future.  
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Chapter 6: Cascaded fully convolutional network for nuclear 

segmentation from histology images2 

6.1 Introduction 

6.1.1 Background 

 In current clinical practice, histopathology data analysis plays an important role 

for cancer diagnosis and prognosis. Tissue histology images can be saved as digital 

images using whole slide imaging scanner. These images provide rich diagnostic 

information for different aspects of the diseases and cancers [119]. Subjective reading 

and interpreting histology specimens using microscopes or digital images generated by 

whole slide scanners by pathologists has relatively limited reproducibility due to the 

inconsistency to identify the regions of interest in the large image searching area of the 

whole slide, as well as inter and/or intra-observer variability [119, 120]. Therefore, in 

the recent two decades, developing computer-aided detection and diagnosis (CAD) 

schemes of digital pathology has attracted extensive research interests to overcome the 

limitation of manual assessment [121]. Among the many CAD tasks in digital 

pathology, accurate segmentation of nuclear is an important prerequisite step in a 

number of computational pathology pipelines. Some characteristics of nuclear such as 

density, size and nucleus-to-cytoplasm ratio etc. are informative for cancer grading and 

assessment of treatment effectiveness [122, 123]. Cell nuclei counting is also helpful for 

diagnosis of a few cancerous diseases [124]. Therefore, development of automated 

nuclei segmentation algorithm from histology images is important in computational 

                                                 
2 Works of this chapter were done during an internship at Sensetime. 
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pathology. However, accurate detection and segmentation of nuclei is difficult because 

of (1) the great variation of appearances among different diseases and organs, and (2) 

the challenges of accurately separating crowded and adjacent nuclei into individual 

ones.  

6.1.2 Related work 

 Traditional image processing based segmentation methods have been 

extensively explored in previous nuclei segmentation studies. Commonly used 

techniques include watershed segmentation algorithm, active contour model, level-set 

algorithm and graph based models etc. [125-129]. The performance of such methods is 

relatively poor because of the large variation of appearances between different nuclei 

and different images. The challenges can be addressed by applying machine learning 

based techniques, which can significantly improve the segmentation accuracy by 

recognizing different appearances of nuclei through training. Shallow classifiers with 

hand-crafted features were commonly used in earlier works. For example, Kong et al. 

extracted local neighborhood based color-texture features and applied an expectation 

maximization linear discriminant analysis (EMLDA) classifier for cell segmentation 

[130]. However, how to design effective hand-crafted features to discriminate nuclei 

and background still remains a great challenge.  

 Recently, deep learning models, especially Convolutional Neural Networks 

(CNNs) have been extensively investigated for object detection and segmentation for 

both natural images and medical images. Standard CNN for binary classification cannot 

be directly applied for nuclear segmentation because it cannot separate touching nuclei. 

There are a number of recent studies that proposed CNN based models with extra post-
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processing steps for nuclei segmentation [131-133]. Kumar et al. developed a CNN 

architecture with three convolutional layers to classify each pixel as belonging to nuclei 

internal, nuclei contour or background, in order to segment nuclei area and separate 

adjacent nuclei [131]. The efficiency of this method is low because of repeated 

computations. Among CNN architectures, fully convolutional network (FCN) is 

extensively used for semantic segmentation because it is efficient for pixel-level 

prediction [91]. Therefore, in another work, Chen et al. proposed a multi-tasked FCN 

model namely deep contour-aware network (DCAN) for the nuclear segmentation task 

[132]. The DCAN model enables to predict the nuclei areas and contours 

simultaneously. Instead of directly predicting the contour, Naylor et al. proposed a FCN 

architecture for regression of distance maps and applied post-processing (i.e. watershed 

transformation) to separate touching nuclei [133].  

6.1.3 Objective 

 In deep learning based nuclear segmentation frameworks, how to accurately 

separate adjacent nuclei still remains a great challenge although various approaches 

have been proposed to address it. In this study, our motivation is to investigate novel 

approaches to improve the segmentation accuracy of nuclear from histology images. 

Specifically, we proposed a deep neural network architecture with cascaded two-stage 

FCNs. For the first FCN, we employ the state-of-art image classification and 

segmentation model namely deep layer aggregation (DLA) [134] to predict the nuclei 

mask and an intermediate direction mask for additional supervision. The second FCN is 

a standard U-Net [92], which is used to generate the adjacent contour information. The 
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performance of the proposed method is evaluated using a public histology dataset and 

we demonstrated promising experimental results. 

6.2 Dataset and pre-processing 

 In this study, we used the data acquired from the image dataset published by 

Kumar et al. [131] for evaluation of our proposed nuclear segmentation method. The 

dataset consists of hematoxylin and eosin (H&E) stained tissue images captured at 40x 

magnification. 30 whole slide images (WSIs) were downloaded from The Cancer 

Genomic Atlas (TCGA) website. The histology images were obtained from different 

organs and different hospitals to maximize the variation of the dataset. Tissue samples 

from seven organs are included in the dataset, including breast, liver, kidney, prostate, 

bladder, colon and stomach. A sub-image with size of 1000 x 1000 was cropped for 

each WSI and the nuclear boundaries were annotated as ground truth. Totally there are 

about 21,000 annotated nuclei in the 30 histology images [131].  

 The images are normalized using the mean and standard deviation values 

obtained from ImageNet dataset for each color channel. Due to the limitation of the size 

of the dataset, extensive data augmentation is employed to avoid the potential over-

fitting issues. The data augmentation includes random cropping of 512 x 512 patches 

from the original images, contrast-limited adaptive histogram equalization (CLAHE), 

scaling, up/down and right/left flip, rotation, color jitter, Gaussian noise and elastic 

transformation. Figure 24 shows an example of an original histology image patch and 

its augmented images. The augmentation is performed on-the-fly with the training 

process, in order to maximize the variation of training set. 
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Figure 24: An example of an original image patch (up-left image) and its augmented 

images. 

 

6.3 The proposed two-stage FCN 

 In this section we introduce our novel approach for nuclear segmentation. 

Previous studies have demonstrated the effectiveness of building multi-task deep neural 

networks to predict nuclei area and nuclei contours simultaneously [131, 132]. The 

nuclei contours can be further divided into two classes, including nuclei/background 

boundary and the boundary between adjacent nuclei. While most of the contour pixels 

belong to the first class, the pixels belonging to the second class are what we need to 

separate touching nuclei. Therefore, one potential limitation of the previous studies is 

that the pixels of nuclei/background boundary may dominate the training of the deep 

networks, leading to some failure for recognizing the boundary between adjacent nuclei. 

Instead of predicting the whole nuclear contour, we investigated to only predict the 
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boundary between adjacent nuclei in this study. In order to generate the ground truth 

label of such boundary, we apply a morphological dilation operation to enlarge the 

nuclei area, followed by a watershed algorithm to separate different nuclei. The dilated 

watershed lines are adopted as the label of boundary between adjacent nuclei. Figure 25 

shows an example of an original image patch, the entire contour and the adjacent-

boundary obtained by this process.  

 

 

Figure 25: An example of (a) original image patch, (b) nuclei area, (c) nuclei contour 

and (d) boundary between adjacent nuclei 

 

 While predicting the nuclei area (i.e. semantic segmentation) is relatively 

straightforward, directly learning the boundary between adjacent nuclei is more 

complex and challenging. Inspired by the work of deep watershed transform for 

instance segmentation [135], we propose a cascaded two-stage FCN architecture with 

additional supervision of intermediate signals. Specifically, we adopt the state-of-art 

semantic segmentation architecture namely fully convolutional deep layer aggregation 

(DLA) [91] as the first stage FCN to predict the nuclei areas and the direction vectors 

from positive pixels to the centers of nuclei they belong to. The direction vectors are 

used as auxiliary supervision to assist the network for prediction of adjacent boundaries. 
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The feature maps in the last layer of stage-1 FCN as well as the outputs of stage-1 FCN 

are then fed into a stage-2 FCN, which is a standard U-Net [92] to predict the 

boundaries between adjacent nuclei. A few post-processing steps are applied on the 

predicted nuclei areas and adjacent boundaries to obtain the final instance segmentation 

results. Figure 26 shows an overview of the entire cascaded FCN architecture. 

 

 

Figure 26: Our proposed cascaded FCN architecture. Blue blocks are general 

convolution blocks; yellow blocks are aggregation nodes; orange blocks are prediction 

layers and green block are copying nodes. 

 

6.3.1 Stage-1 FCN 

 Deep layer aggregation model was proposed by Yu et al. with state-of-art 

performance for classification and segmentation [134]. Therefore, we adopt DLA model 

as our stage-1 network. In this section we first briefly introduce the architecture of 

DLA. The term “aggregation” is defined as the combination of feature maps from 

different layers. The skip connections in ResNet [9], DenseNet [136] and U-Net are 

considered as shallow aggregation because they are simple and linear. Instead of 

shallow aggregation, hierarchical deep aggregation (HDA) and iterative deep 
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aggregation (IDA) were developed in DLA, where the aggregation is non-linear and 

organized as a tree structure.  

The architecture of a DLA for classification applications or backbone of 

detection/segmentation applications is shown in Figure 27 (a). The network consists of 

a number of stages and different stages correspond to different resolutions of feature 

maps. Inside single stages, HDA aggregates features from shallower and deeper hidden 

layers into a tree structure to generate richer information hierarchy. Between stages, 

IDA is applied to progressively integrate information from earlier stages and later 

stages. The residual blocks with cardinality which was proposed in ResNeXt model 

[137] are applied as the basic convolution blocks in DLA. The aggregation node is a 

concatenation operation followed by a standard convolution – batch norm – ReLU 

operation. Figure 27 (b) shows the comparison between a standard U-Net with shallow 

aggregations and the fully convolutional DLA architecture with additional IDAs for 

semantic segmentation.  

In U-Net, the aggregations from encoder to decoder are skip connections which 

are simple and linear, resulting that the high resolution features aggregated to the 

decoder are relatively shallow. In fully convolutional DLA, the convolution blocks of 

standard DLA for classification are used as backbone and additional IDAs are applied 

to increase depth and resolution for pixel-level prediction. In this way, the high-

resolution features from the encoder are aggregated more for obtaining stronger 

semantic information. We refer the readers to reference [134] for more details of DLA 

and fully convolutional DLA. 
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Figure 27: (a) Architecture of DLA. (b) Comparison of U-Net (left) and fully 

convolutional DLA (right) 

 

 While the deep watershed transform model takes the semantic mask as the input, 

our proposed model aims to generate the semantic segmentation and instance 

segmentation results simultaneously. The stage-1 FCN which is a fully convolutional 

DLA takes the augmented histology image patches as input and predicts a three-channel 

output. The first channel is the semantic mask of the nuclei area and the remaining two 

channels correspond respectively to the first and second dimension of the unit direction 

vector pointing from each positive pixel to the center of the nuclei it belongs to. The 

direction signals are not directly used for obtaining the instance segmentation results, 

but they provide auxiliary information to supervise the fully convolutional DLA to learn 
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useful features. The pixels which are close to each other but belongs to adjacent nuclei 

will have opposite direction vectors. Assigning such pixels to wrong nuclei center will 

cause a large regression error and get a heavy penalty [135]. Hence, the fully 

convolutional DLA is forced to put more attention on the pixels belonging to the 

boundary of adjacent nuclei. The learned features are then fed into the stage-2 FCN to 

predict the boundary of adjacent nuclei. Due to the limitation of training set, we 

initialized the encoder of fully convolutional DLA using the parameters of a 

classification DLA pre-trained on ImageNet dataset. This transfer learning approach 

greatly improves the efficiency of training the network. 

6.3.2 Stage-2 FCN 

 The feature maps from the last layer of the fully convolutional DLA are 

concatenated with the three-channel output of the stage-1 FCN as the input of stage-2 

FCN. The motivation of stage-2 FCN is to learn the boundary of adjacent nuclei from 

the hidden features and intermediate outputs of stage-1 FCN. Since the fully 

convolutional DLA in stage-1 has already extracted very deep features with strong 

semantic information and large receptive field, we only apply a relatively simple 

network for the second stage, which is a U-Net architecture. Compared to the original 

U-Net proposed by Ronneberger et al. [92], we made a few changes to improve the 

performance, including batch normalization and spatial dropout [138]. The difference 

between spatial dropout and standard dropout is that the spatial dropout randomly drops 

the entire feature maps instead of single neurons. The U-Net is randomly initialized 

without any pre-trained parameters, since the input has a relatively large dimensionality. 
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6.3.3 Implementation 

 We train the fully convolutional DLA in stage-1 and U-Net in stage-2 jointly. 

The loss function is the summation of three parts: the segmentation loss of semantic 

mask from the output of stage-1, the pixel-level regression loss of direction vectors 

from the output of stage-1, and the segmentation loss of adjacent boundary from the 

output of stage-2. Due to the imbalance of the positive area and background area, we 

use the summation of a cross entropy loss term and an intersection over union (IOU) 

loss term as the segmentation loss. The regression loss is a standard mean square error 

(MSE) term. The neural network is implemented in Python with PyTorch library. Adam 

optimizer with a learning rate of 1e-4 is applied to optimize the two-stage network to 

minimize the objective function. 

6.3.4 Post-processing 

 By thresholding the probability maps generated by the proposed network, we 

can obtain a predicted nuclei mask and a predicted adjacent-boundary mask for each 

input image. The next step is to apply post-processing steps to obtain instance 

segmentation results. First, we aim to generate a marker mask. In an ideal marker mask, 

one nuclear corresponds to exactly one connected component namely a marker, and the 

markers of different nuclei are not connected to each other. The marker mask can be 

simply obtained by subtracting the adjacent-boundary mask from the nuclei mask. 

However, in some cases, the prediction of boundary is not accurate enough to separate 

adjacent nuclei. Figure 28 (a) shows such an example, where red color is the prediction 

of nuclei area and yellow is the prediction of boundary between adjacent nuclei. 

Therefore, we apply a few image processing steps to address this problem. Specifically, 
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we calculate the shortest distance from each positive pixel to the background and 

normalize it with the radius of the connected component it belongs to. Next, we 

threshold the normalized distance map and only keep the positive pixels which are 

relatively far away from the background as the marker mask. Figure 28 shows an 

example of the process for generating marker mask. A connected component analysis is 

then applied on the marker mask to label different markers with different IDs. Last, the 

instance segmentation results are obtained by applying a marker-based watershed 

algorithm that takes the nuclei mask and labelled marker mask as input. 

 

 

Figure 28: Illustration of post-processing.  (a) An example of a probability map. (b) 

Marker mask obtained by subtracting adjacent boundary from the nuclei mask. (c) 

Normalized distance map. (d) Labelled marker mask by thresholding on normalized 

distance map. 
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6.4 Experiments and Results 

 In order to compare our model with previously reported methods using the same 

dataset, we use Aggregated Jaccard Index (AJI) as the evaluation metric [131]. In order 

to compute AJI, each ground truth nuclear is associated with a predicted nuclear which 

has the maximum IOU. The intersection of the two nuclear areas is added to the 

aggregated intersection while the union is added to the aggregated union. The areas of 

all unpaired predicted nuclei are also added to the aggregated union to penalize the false 

positives. The readers are referred to reference [131] for more details of AJI. 

 A 3-fold cross validation process is performed to evaluate the performance of 

our method. Table 8 shows the comparison of our proposed method with two previously 

published studies, including the 3-class CNN [131] and deep distance regression model 

[133]. We also implemented a few other neural network models for comparison purpose 

or ablation experiments. The models include: (1) Mask R-CNN [10], which is the state-

of-art end-to-end model for instance segmentation in natural images; (2) Multi-task U-

Net, which applies a standard U-Net to predict nuclei and adjacent-boundary 

simultaneously; (3) Multi-task fully convolutional DLA, which applies a pre-trained 

fully convolutional DLA to predict nuclei and adjacent-boundary simultaneously. 

Notable that the multi-task U-Net/fully convolutional DLA is a single-stage model 

without auxiliary supervision of direction signals, which is an ablated version of our 

proposed model. The results demonstrate that our proposed two-stage FCN outperforms 

all the other models. The fully convolutional DLA yields better results than standard U-

Net, because of the superiority of network architecture. Using intermediate direction 

vector for supervision can further improve the segmentation accuracy of fully 



97 

convolutional DLA. We also demonstrate that Mask R-CNN performs relatively poor 

for the problem of nuclear segmentation, due to the differences between the natural 

images and histology images. The differences include the large amount of objects with 

small size and the unclear or fuzzy boundary between the touching instances in the 

digital histology images. Therefore, how to adapt Mask R-CNN architecture to the 

problem of nuclear segmentation still remains a great challenge and needs further 

investigations. Figure 29 shows several visualization examples of applying our method 

for nuclear segmentation. 

 

Table 8: Comparison of different methods for nuclear segmentation 

Method Train/test set AJI 

3-class CNN [131] 14 images for testing 0.508 

Deep distance regression 

[133] 14 images for testing 0.560 

Multi-task UNet 3-fold cross validation 0.588 

Multi-task FC-DLA 3-fold cross validation 0.610 

Two-stage FCN 3-fold cross validation 0.621 

Mask R-CNN 3-fold cross validation 0.576 
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Figure 29: Three examples of the segmentation results. The left figures show the 

ground truth annotations while the right figures show the nuclei masks predicted by the 

two-stage FCN. 
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6.5 Conclusion 

 Developing automated CAD-type scheme for nuclear segmentation from 

histology images plays an import role in computational pathology. Due to the 

differences between natural images and histology images, the state-of-art instance 

segmentation models (e.g. Mask R-CNN) cannot be directly employed for nuclear 

segmentation. Alternatively, the feasibility of applying multi-task semantic 

segmentation models with post-processing steps has been demonstrated in previous 

studies. In this study, we continue the investigation of applying semantic segmentation 

models for addressing the task of nuclear segmentation. We proposed a novel network 

architecture which consists of two cascaded FCNs. Our method demonstrates a number 

of advantages over previous semantic segmentation based approaches. First, most 

previous works train the network to learn the entire contour of the nuclei, resulting that 

the majority of pixels belonging to the nuclei-background boundary dominate the 

training. Instead of using the entire contour, we investigate to focus on predicting the 

boundaries of adjacent nuclei. Second, we adopt the fully convolutional DLA, which is 

a state-of-art architecture for semantic segmentation, as our stage-1 FCN. We 

demonstrate by experiments that the fully convolutional DLA out-performs standard U-

Net in a large margin. Last, we introduce intermediate supervision signals which are the 

direction vectors pointing from nuclei area to nuclei centers. This auxiliary supervision 

can also greatly improve the segmentation accuracy according to our results. Therefore, 

our study provides a reliable neural network architecture for instance segmentation in 

medical images. 
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Chapter 7. Conclusions and future works 

7.1 Conclusions 

 Deep learning techniques have revolutionized many image or vision based areas 

including computer vision and medical image analysis. From the studies reported in this 

dissertation, we demonstrated the feasibility of applying deep learning for a wide range 

of medical image analysis tasks. One important step of developing computer-aided 

diagnosis (CAD) scheme is ROI segmentation, including organ/mass from radiology 

images and gland/nuclei from pathology images. Development of accurate automated 

image segmentation scheme can greatly alleviate the tedious and repeating works of the 

doctors. Patch-based classification methods were commonly adopted in earlier deep 

learning based segmentation methods. We investigated the feasibility of this method for 

adipose tissue segmentation in Chapter 2 and further demonstrated that the multi-scale 

context and position information can improve the segmentation accuracy. One 

outstanding issue of patch-based segmentation scheme is that the execution is time-

consuming due to large amount of repeating computations. Therefore, fully 

convolutional network architecture is usually considered as a better model for semantic 

segmentation. Different from computer vision applications where the natural images are 

2D images, many radiology images are 3D images. Optimally extracting, computing 

and including the information from all dimensions in CAD-type image processing and 

feature analysis schemes is clinically important. In Chapter 4 we adopted a 3D fully 

convolutional network architecture for prostate segmentation from MRI, which is an 

important pre-processing step for detection of prostate cancer. In order to improve the 

performance, we proposed a coarse-to-fine residual module to utilize the information 
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from low-solution outputs and a densely connected convolutional module to combine 

auto-context information. In Chapter 5, we formulated the problem of prostate tumor 

detection as a semantic segmentation problem. While the tumor segmentation is visually 

more difficult, we applied a two-step training process with hard negative mining to 

address this challenge. Different from organ segmentation problems which are semantic 

segmentation tasks, nuclear segmentation is an instance segmentation problem, where 

we not only need to predict the label of each pixel, but also need to separate adjacent 

instances. In Chapter 6, we illustrated that the state-of-art instance segmentation (i.e. 

Mask RCNN) is not suited for nuclear segmentation due to the differences between 

natural images and histology images. We demonstrated the superiority of a cascaded 

fully convolutional network architecture with intermediate signal for auxiliary 

supervision. This approach adopts state-of-art semantic segmentation models with post-

processing steps for the problem of instance segmentation.   

 Other than ROI segmentation, another challenge of developing CAD scheme is 

how to design and compute effective image features for cancer/disease classification. 

Although using deep learning can avoid design and/or identification of hand-crafted 

image features, it is often difficult to directly apply deep learning models to extract 

effective features for medical image classification because of the limitation of medical 

image dataset sizes. In Chapter 3, we explored to combine transfer learning technique 

with traditional hand-crafted features to improve the classification accuracy of breast 

masses from mammography. We demonstrated that the hand-crafted image features and 

the image features transferred from ImageNet dataset may provide complementary 

information to each other. In Chapter 6, we also adopted the concept of transfer learning 



102 

by initializing the parameters with a pre-trained model, in order to improve the training 

efficiency.  

 In summary, this dissertation presents a number of new approaches to make 

deep learning technologies being optimally applied to develop CAD schemes of 

medical images and demonstrates the superiority of applying deep learning based CAD 

for addressing a wide range of medical image analysis problems. These studies also 

provide a number of novel and reliable deep neural network frameworks for organ 

segmentation, dense instance segmentation and image classification with small datasets. 

7.2 Future works 

 Training deep learning models usually requires a large training set. However, in 

the field of medical image analysis, it is difficult and expensive to obtain high quality 

annotations. As a result, the medical image datasets are relatively small compared to 

natural image datasets. How to effectively apply deep neural networks on limited 

medical image datasets still remains a great challenge and needs future research efforts. 

Transfer learning is considered as a common approach for tackling the problems of 

small training set. For example, Liu et al. [139] proposed a 3D Anisotropic Hybrid 

Network to transfer 2D features to 3D features recently. Due to the differences between 

natural images and medical images (e.g. color v.s. gray-scale, 2D v.s. 3D etc.), how to 

effectively transfer knowledges from natural images to medical images needs to be 

further explored in the future. 

In another aspect, semi-supervised learning and weakly-supervised learning 

techniques also provide a potentially promising machine learning mechanism that can 

extract useful information from both annotated image data and un-annotated/weakly-
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annotated image data. In medical imaging field, Zhu et al. [140] proposed a DeepEM 

algorithm to use weakly-labelled data to improve the performance of pulmonary nodule 

detection system. More research efforts should also be devoted for development of 

novel and powerful semi-supervised and weakly-supervised learning algorithms, 

especially for medical imaging applications.  
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