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Abstract

The goal of this dissertation is to investigate norm retrievable frames having

dynamical sampling structure, particularly those that fail the phase retrieval con-

dition. We give several classifications to show how to construct norm retrievable

frames dynamically, depending on the properties of the time-evolution operator.

We show that norm retrievable frames generated by a single vector from a self-

adjoint operator are most of the time phase retrievable frames. However, when

we allow more generating vectors, there exist norm retrieval frames that do not

do phase retrieval. We used two different subspace approaches to obtain these

structures in real Hilbert spaces.
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Chapter 1

Introduction

1.1 General Problem Formulation

A complete inner product space is called a Hilbert space. Given a signal x ∈ H in

a seperable Hilbert space with a given orthonormal bases {ei}i∈I in H, Parseval’s

identity allows us to reconstruct the signal x from the measurements {〈x, ei〉}i∈I .

The set of coefficients {〈x, ei〉} is unique. If a measurement is lost or scrambled,

we are not able to reconstruct the signal x from remaining measurements. We

can see the need for set of vectors that have a reconstruction property similar to

Parseval’s identity, while also allowing for some resilience to loss. If we have a

redundant set of vectors {xi}i∈I in H, reconstruction can be solved under proper

conditions. A frame {xi}i∈I for H allows for redundancy while preserving a struc-

ture so that reconstruction is possible. Now, the set of measurements {〈x, xi〉}i∈I

are not necessarily unique. We can think of frame vectors as generalization of or-

thonormal bases but the redundancy of frames makes them more adaptible than

the orthonormal bases.
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Frame vectors {xi}i∈I in H allows us to reconstruct the signal x from the mea-

surements {〈x, xi〉}. Suppose however, that the phase of the measurements have

been lost, or cannot be measured. Setting such as tomography or crystallogra-

phy can have such constraints. When we only have the phaseless measurements

{|〈x, xi〉|}, we are not able to construct the exact signal x. Casazza, Balan, and

Edidin ([8]) introduced the concept of phase retrieval for Hilbert space frames in

2006 to recover the phase of a signal given by its intensity measurements {|〈x, xi〉|}

from a redundant linear system. Note that we cannot distinguish x and cx with

|c| = 1 from the phaseless measurements. This means in a finite dimensional real

Hilbert spaces Rn, we cannot distinguish x and −x from the intensity measure-

ments. In Rn, they showed in [8] that we need at least 2n−1 vectors to have phase

retrieval. Phase retrieval is a stronger condition than being a frame. If a set of

vectors is not a frame, than it does not satisfy phase retrieval conditions. Another

condition, weaker than phase retrieval, is that of norm retrieval. Introduced in

[16], a set of vectors do norm retrieval if two vectors in the Hilbert space have the

same intensity measurements, then they have the same norm in the Hilbert space.

The norm retrieval property relaxes the phase retrieval conditions. Every phase

retrievable set is also norm retrievable set but there exits norm retrievable sets

that are not phase retrievable which we are interested in. Norm retrieval requires

fewer vectors than phase retrieval. Orthonormal bases for example are a norm

retrievable sets but not phase retrievable.

In this thesis, we will seek to produce norm retrievable sets within a certain

sampling structure. Suppose a vector x ∈ Rn is a sampled only on the orthonormal

basis {ei}ni=1. We have samples {〈x, ei〉}i∈Ω where Ω ⊂ {1, 2, ..., n}. This is not

enough information to consruct x. Suupose, though, that x is evolving in some

2



well-understood way over time. We can use repeated samples on Ω over time, and

try to reconstruct the signal x.

When Ω ⊆ {1, 2, ..., n} is the coarse sample points in Hn, the measurements

{〈x, ei〉 : i ∈ Ω} have insufficient information in general to recover the original

signal x. Given an operator A on H, suppose the signal x ∈ H varies in time

increments according to the operator A. That is the signal x ∈ H evolves through

the operator A over time to become A`x at time `. Now, we can have extra

information {A`x(i) : i ∈ Ω} about the signal x. How many iterations do we

need to reconstruct the signal x? Which sample points do we need to choose?

What is the operator A? Dynamical sampling problem answers all this questions.

The fundamental dynamical sampling problem ([2]) is to find conditions on Ω, A,

and the number L of time increments such that measurements on the components

given by course sample points Ω over times ` can be used to reconstruct x.

In other words, we want to construct x ∈ H from the measurements

{〈A`x, ei〉 : ` = 0, 1, . . . , L; i ∈ Ω}. (1.1.1)

In ([2]), Aldroubi and his collaborators recently showed that x can be recovered

from the measurements in (1.1.1) if and only if the time-space samples is a set of

frame vectors. In 2017, Aldroubi and his collaborators in ([4]) showed phaseless

reconstruction from space-time samples.

In this paper, we will examine the intersection of these two very recent devel-

opments in frame theory. We will use samples taken in the dynamical sampling

structure and attempt to show when norm retrieval is possible. Particularly, we

are interested in norm retrievable sets that has the dynamical sampling structure
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but fails phase retrieval.

We consider the norm retrieval problem in the dynamical sampling setting

in the finite dimensional real Hilbert space Rn. The norm retrieval problem in

dynamical sampling setting can be stated as follows:

The norm retrieval problem in dynamical sampling seeks to find conditions

on the operator A, the set of vectors {bi ∈ Rn : i ∈ Ω} and the time increments

li such that the set of vectors {A`ibi ∈ Rn : i ∈ Ω} will have the norm retrieval

property. That is, for two vectors in the Hilbert space which have the same

intensity measurements, they have the same norm in the Hilbert space.

1.2 Organization

In Chapter 2, we give basic information about frame theory, dynamical sampling,

phase retrieval and norm retrieval which are necessary to build our the norm

retrieval problem in dynamical sampling setting in finite dimensional real Hilbert

space Rn.

In Chapter 3, we find results based on the structure of the time-evolution oper-

ator A in the dynamical sampling system. We begin with a diagonal operator, then

give results when A is self-adjoint operator, normal operator or unitarily equiva-

lent to Jordan form. We find the set of vectors {bi ∈ Rn : i ∈ Ω} and the condition

on the time increments `i ∈ N such that the set of vectors {A`ibi ∈ Rn : i ∈ Ω} is

a dynamical sampling frame and it satisfies norm retrieval without doing phase

retrieval. We discover that, in some instances, norm retrieval is impossible with

only one measurement vector without doing phase retrieval. We also show that

if we make the iteration over more generating vectors, we can have dynamical

4



sampling frame which satisfies norm retrieval without doing phase retrieval.

We also describe the connection between norm retrievable projections and a

structure known in the frame theory literature as fusion frames. We explain how

projections onto subspaces that have dynamical sampling form can give structure

for finding norm retrievable vectors.
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Chapter 2

Preliminary Materials

2.1 Frames

Since frame vectors are a cornerstone in our research, we give an introduction

to frame theory in this chapter. In mathematics, physics and signal processing,

orthonormal bases are a very important tool to represent functions. This represen-

tation is unique and we have the following perfect reconstruction and Parseval’s

identity for orthonormal bases. In particular, recall that the coefficients come

from inner products.

Theorem 2.1.1. (Perfect Reconstruction) If {en}n∈I is an orthonormal bases for

a Hilbert space H, then

x =
∑
n∈I

〈x, en〉en for all x ∈ H. (2.1.1)

The sum converges in norm when H is infinite dimensional.

Theorem 2.1.2. (Parseval’s Identity) If {en}n∈I is an orthonormal bases for a

6



Hilbert space H, then

||x||2 =
∑
n∈I

|〈x, en〉|2 for all x ∈ H.

However, the conditions on orthonormal bases are very restrictive. Orthonor-

mal bases require the vectors to be linearly independent and orthogonal to each

other in an inner product space which makes it hard to satisfy any extra con-

ditions. A frame in an inner product space is a more flexible tool which allows

each element in the inner product space to be written as a linear combination

of the frame elements, but the linear independence between the frame vectors is

not necessary. Frames can be considered as generalizations of orthonormal bases

in Hilbert spaces and the redundancy of frames makes them very useful. Frames

are the vectors such that conditions are relaxed on orthonormal and have similar

properties to perfect reconstruction and Parseval’s identity.

Duffin and Schaeffer [23] first introduced frames for Hilbert spaces while work-

ing on a problem in non-harmonic Fourier series in 1952. Later (1986), Daubechies,

Grossmann and Meyer ([22]) observed that frames can be used to find series expan-

sions of functions in L2(R) which are similar to the expansions using orthonormal

bases.

We refer the reader to ([28], [15],[18]) for more details about frame theory and

its applications in Hilbert spaces.

Definition 2.1.3. [23] A family of vectors {xi}i∈I in a finite or infinite dimensional

Hilbert space H is said to be a frame for H if there exist constants A and B with

0 < A ≤ B <∞ such that

7



A||x||2 ≤
∑
i∈I

|〈x, xi〉|2 ≤ B||x||2, for all x ∈ H. (2.1.2)

The positive constants A and B are called lower and upper frame bounds, re-

spectively. They are not unique. The optimal lower frame bound is the supremum

over all lower frame bounds, and the optimal upper frame bound is the infimum

over all upper frame bounds.

• A frame is called a tight frame if the optimal upper and lower frame bounds

are equal; A = B.

• A frame is called a Parseval frame if A = B = 1.

• {xi}i∈I is called an equal norm frame if ||xi|| = ||xj|| for all i, j ∈ I and

is called a unit norm frame if ||xi|| = 1 for all i ∈ I.

• {xi}i∈I is called a Bessel sequence if it satisfies the upper frame inequality

in (2.1.2).

Let F = {xi}i∈I be a frame in a Hilbert space H and {ei}i∈I be the standard

orthonormal basis for `2(I). The operator Φ : H → `2(I) defined by

Φ(x) =
∑
i∈I

〈x, xi〉ei for all x ∈ H.

is called the analysis operator associated with F .

The adjoint Φ∗ of the analysis operator Φ is called the synthesis operator

of the frame F and is given by

Φ∗ : `2(I)→ H, Φ∗((ci)i∈I) =
∑
i∈I

cixi.
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The operator S = Φ∗Φ : H → H,

S(x) = Φ∗Φ(x) =
∑
i∈I

〈x, xi〉xi (2.1.3)

is called frame operator of the frame F .

Given a frame F , the frame operator S of F is a bounded, positive and in-

vertible operator satisfying the operator inequality AI ≤ S ≤ BI, where A and

B are upper and lower frame bounds and I denotes the identity operator on H.

Remark 2.1.4. The lower frame condition ensures that a frame is complete. On

the other hand, the upper frame condition ensures that the analysis operator is

well-defined.

For any x ∈ H, Parseval frames {xi}i∈I inH give us a specific set of coefficients

which allows us to recontruct x from the set of vectors {xi}i∈I . Similar to Equation

(2.1.1), the coefficients come from inner products.

Proposition 2.1.5. [18] A collection of vectors {xi}i∈I is a Parseval frame for a

Hilbert space H if and only if the following formula holds for every x ∈ H:

x =
∑
i∈I

〈x, xi〉xi (2.1.4)

Equation (2.1.4) is called the recontruction formula for a Parseval frame

{xi}i∈I in H similar to perfect reconstruction for an orthonormal basis. Even

though every orthonormal bases is a Parseval frame, there exist Parseval frames

which are not orthonormal bases.

Example 2.1.6. Consider the collection of vectors {x1, x2, x2} in R2

9



x1

x2

x3

Figure 2.1: Mercedes-Benz Frame
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
√
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 −1

2

−
√

3

2

 ,√2

3

1

0

 ,√2

3

−1

2√
3

2


 .

The set of vectors {x1, x2, x2} satisfies (2.1.4) and a Parseval frame but not an

orthonormal bases. For any x ∈ R2, x = 〈x, x1〉x1 + 〈x, x2〉x2 + 〈x, x3〉x3 but the

set of vectors {x1, x2, x2} is linearly dependent. Therefore, this set of vectors does

not form a basis in R2 and the coefficients {〈x, xi〉} are not unique.

The reconstruction formula for a general frame {xi}i∈I in H is a little bit

different. Let S be the frame operator of {xi}i∈I defined in (2.1.3), then for any

vector x ∈ H,

Sx =
∑
i∈I

〈x, xi〉xi

Theorem 2.1.7. [18] Let {xi}i∈I be a frame for a Hilbert space H with frame

operator S and the lower and upper frame bounds A and B. Then {S−1xi}i∈I is

also a frame for H that has the lower and upper frame bounds
1

B
and

1

A
.

Given a vector x ∈ H, the representation problem is to find coefficients cn

such that

x =
∑
i∈I

cnxi
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.

Since S is a self-adjoint, bounded and invertible operator on H, by replacing

x with S−1x in (2.1.3), the representation problem can be solved by setting

x =
∑
i∈I

〈x, S−1xi〉xi ∀x ∈ H.

Given the coefficient {〈x, xi〉}i∈I , the reconstruction problem attempts to find

x.

If we apply S−1 to both sides of (2.1.3), the reconstruction problem can be

solved by setting

x =
∑
i∈I

〈x, xi〉S−1xi ∀x ∈ H.

Combining these two results, we have a representation such that

x =
∑
i∈I

〈x, S−1xi〉xi =
∑
i∈I

〈x, xi〉S−1xi ∀x ∈ H. (2.1.5)

Definition 2.1.8. Let {xi}i∈I be a frame for a Hilbert space H. A sequence

{yi}i∈I inH is called a dual frame for {xi}i∈I if {yi}i∈I satisfies the reconstruction

formula:

x =
∑
i∈I

〈x, yi〉xi =
∑
i∈I

〈x, xi〉yi ∀x ∈ H. (2.1.6)

If yi = S−1xi ∀i ∈ I, (2.1.5) shows this is a dual frame. We call the frame

{S−1xi}i∈I the canonical dual of the frame {xi}i∈I . If {yi}i∈I is not the canon-

ical dual frame, then it is called an alternate dual frame.

We can state a relationship between frames and orthogonal projections as

follows:

11



Proposition 2.1.9. [18] Let {xi}i∈I be a sequence in a Hilbert space H, and let

P denote the orthogonal projection of H onto a closed subspace V . Then the

following hold:

1. if {xi}i∈I is a frame in H with frame bounds A,B, then {Pxi}i∈I is a frame

for V with frame bounds A,B.

2. if {xi}i∈I is a frame in V with frame operator S, then the orthogonal pro-

jection of H onto V is given by

Px =
∑
i∈I

〈x, S−1xi〉xi, x ∈ H.

Theorem 2.1.10. [28] Suppose thatHn is n-dimensional Hilbert space and {xi}mi=1

is a finite collection of vectors from Hn. Then

{xi}mi=1 is a frame for Hn if and only if span {xi}mi=1 = Hn.

Proof. (1)⇒ (2) : To prove by contrapositive, suppose {xi}mi=1 does not span Hn.

So, there exists a nonezero vector y ∈ Hn which is orthogonal to each vector in

span {xi}mi=1. This says that
m∑
i=1

|〈y, xi〉|2 = 0 and the set of vectors {xi}mi=1 would

not have a positive lower frame bound. Thus {xi}mi=1 would not be a frame in Hn.

(2) ⇒ (1) : Again to prove by contrapositive, suppose {xi}mi=1 is not a frame

in Hn. Since the upper frame bound condition always holds for finite sequences,

{xi}mi=1 is not a frame in Hn if the lower frame bound condition is violated. In

this case, for each positive integer k, there exists an element yk ∈ Hn such that

||yk|| = 1 and
m∑
i=1

|〈yk, xi〉|2 <
1

k

.

12



Since {yk}∞k=1 is a bounded sequence, {yk}∞k=1 must have a convergent subse-

quence, {ykj}∞j=1, from the Bolzano- Weierstrass Theorem.

Let y be the limit of {ykj}, so ||ykj − y|| → 0 as j →∞. Hence, we have

0 = lim
j→∞

m∑
i=1

|〈ykj , xi〉|2 =
m∑
i=1

|〈y, xi〉|2.

This shows that y is orthogonal to every vector in the set {xi}mi=1. In this case,

either y = 0 or span{xi}mi=1 6= Hn. Since each ||ykj || = 1 and ||ykj − y|| → 0, we

know that ||y|| = 1. This proves that {xi}mi=1 does not span Hn.

We see in Theorem (2.1.10) that in finite dimensions, the frames in Hn are

exactly the spanning sets.

We will use two particular frame constructions of fusion frames and scalable

frames in later sections. We give their definitions here for reference. A fusion frame

consists of subspaces rather than vectors that satisfy a frame-like condition.

Definition 2.1.11. [14] Let I be an index set and {vi}i∈I be a family of weights.

That is vi > 0 for all i ∈ I. Let {Wi}i∈I be a family of closed subspaces of a

Hilbert space H and PWi is the orthogonal projection onto the subspace Wi for

each i ∈ I. Then {(Wi, vi)}i∈I is a fusion frame for H, if there exists constants

0 < A ≤ B <∞ such that

A||x||2 ≤
∑
i∈I

vi
2||PWi

(x)||2 ≤ B||x||2, for all x ∈ H. (2.1.7)

A and B are called the fusion frame bounds. The family (Wi, vi) is called a

Parseval fusion frame if A = B = 1 and a tight fusion frame if A = B.

13



Definition 2.1.12. [33]

A frame {xi}i∈I for a Hilbert space H is called scalable frame if there exists

scalars {ci}i∈I such that {cixi}i∈I is a Parseval frame. If there exists δ > 0 , such

that ci > δ for all i ∈ I, then {xi}i∈I is called a strictly scalable frame.

Remark 2.1.13. It is easy to see that every tight frame is a strictly scalable frame.

If {xi}i∈I is a tight frame with bound A, then for any x ∈ H, we have

A||x||2 =
∑
i∈I

|〈x, xi〉|2 and x =
∑
i∈I

〈x, xi√
A
〉 xi√

A
.

This shows that

{
xi√
A

}
i∈I

is a Parseval frame in H and {xi}i∈I is a strictly

scalable frame with coefficients ci =
1√
A

for all i.

14



2.2 Dynamical sampling

Over the last 6 years, a new type of sampling, involving both space and time

samples, has been evolving. One motivation in the development of the dynamical

sampling framework is Wireless Sensor Networks (WSN). In WSN, a group of

spatially dispersed sensors are distributed to the field for monitoring and getting

information about the physical conditions of the environments like temperature,

wind, humidity, sound, pollution or many other conditions.

The place of sensors are very important in WSN to get an accurate information.

Sometimes, placing sensors at desired locations might not be possible or expensive.

By reducing number of sensor devices and activating them more frequently in time,

we might still get the same information. This idea of the spatiotemporal trade off

was studied in heat diffusion processes by Lu and Vetterli in ([34]).

The mathematical system was created by Aldroubi and his collaborators in

2012 with results appearing in ([2],[3]) and others.

In the dynamical sampling problem, a signal x ∈ H is reconstructed from a

set of fixed spatial that are represented at samples Ω at different time intervals

`. The idea is to place the sensors at location Ω and get the information over

multiple times ` to reconstruct an unknown status. The combination of space

and time samples makes the dynamical sampling problem different from standard

sampling.
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〈x, e1〉

〈Ax, e1〉

〈A2x, e1〉

〈x, e2〉

〈Ax, e2〉

〈x, e4〉

〈Ax, e4〉

〈A2x, e4〉

〈A3x, e4〉

` = 0

` = 1

` = 2

` = 3

Ω = {1, 2, 4}

` = time

Figure 2.2: Time-space dynamical sampling pattern

Let H be a real or complex Hilbert space. Suppose that a signal x ∈ H varies

in time increments according to the operator A on H. Knowing how the system

evolves over time is the crucial component in dynamical sampling.

x0 = x

x1 = Ax

x2 = A(Ax) = A2x

...
...

xL = ALx

The fundamental dynamical sampling problem ([2]) is to find conditions on Ω,

A, and the number L of time increments such that measurements on the compo-

nents given by course sample points Ω over times ` can be used to reconstruct x.

16



In other words, we want to construct x ∈ H from the measurements

{〈A`x, ei〉 : ` = 0, 1, . . . , L; i ∈ Ω}. (2.2.1)

shown in Figure 2.2

The dynamical sampling problem has a connection to the frame theory. Since

we want to construct x ∈ H from the measurements in (2.2.1), the set of vectors

in (2.2.2) must be a frame in H.

Lemma 2.2.1 ([2]). We can reconstruct x from the sampling set indexed by Ω

over times ` = 0, 1, . . . , L if and only if the set

{A∗`ei : i ∈ Ω, ` = 0, 1, . . . L} (2.2.2)

is a frame for Hn.

Proof. Let the set {A∗`ei : i ∈ Ω, ` = 0, 1, . . . L} be a frame for H and S be its

frame operator, then

S(x) =
∑

i∈Ω,`=0,1,...L

〈x,A∗`ei〉A∗`ei. (2.2.3)

Since the frame operator S is invertible, we have

x = S−1S(x) =
∑
i,`

〈x,A∗`ei〉S−1(A∗`ei) =
∑
i,`

〈A`x, ei〉S−1(A∗`ei). (2.2.4)

The result follows from the Equality in (2.2.4).

If A is a diagonazible operator, then it can be decomposed as A = B−1DB,
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where D is diagonal and B is invertible. In this case, we can state an equivalent

version of dynamical sampling:

We consider whether {D`bi} is a frame for Cn, where bi = Bei. We see this

by observing that:

A`ei = B−1D`Bei = B−1D`bi.

We have that frames are preserved under bounded invertible operators, for that

reason {A`ei}i∈Ω,`=0,1,...L is a frame if and only if {D`bi}i∈Ω,`=0,1,...L is a frame.

Let A be a matrix that can be writen as A∗ = B−1DB where D is diago-

nal and B is invertible. Let {λj} be distinct eigenvectors of D and Pj denote

the orthogonal projection in Hn onto the eigenspace Ej of D associated to the

eigenvalue λj. Then we have the following result.

Theorem 2.2.2. [2, Thm: 2.2] Let Ω ⊆ {1, 2, . . . , n} and {bi : i ∈ Ω} be vectors

in Cn. Let D be a diagonal matrix and ri be the degree of the D-annihilator of

bi. Then {Djbi : i ∈ Ω; j = 0, 1, ..., li; li = ri − 1} is a frame of Cn if and only if

{Pj(bi) : i ∈ Ω} is a frame of Ej for all j.

Theorem (2.2.2) states that when D is a diagonal operator with distinct non-

zero eigenvalues λj and b ∈ Cn with no zero components, then we can have

dynamical sampling frame with a single vector. Higher dimensional eigenspaces

require more vectors to have dynamical sampling frame. If the number of sampling

vectors |Ω| is less than maximum of the dimension of eigenspaces, we cannot have

dynamical sampling frame even if we increase time measurements.

The authors of ([2]) have also extended Theorem (2.2.2) to non-diagonalizable

operators. We use the same notation in ([2]).
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A matrix J ∈ Cnxn is in Jordan form if

J =



J1 0 · · · 0

0 J2 · · · 0

...
...

. . .
...

0 0 · · · Jn


(2.2.5)

For s = 1, 2, ..n, Js = λsIs +Ns where Is is an rs × rs identity matrix and Ns

is a rs × rs nilpotent block-matrix of the form:

Ns =



Ns1 0 · · · 0

0 Ns2 · · · 0

...
...

. . .
...

0 0 · · · Nsγs


(2.2.6)

Each Nsi is a rsi × rsi cyclic nilpotent matrix of the form:

Nsi =



0 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1


(2.2.7)

with rs1 ≥ rs2 ≥ ... , and rs1+rs2+...+rss = rs. The matrix J has distinct eigenvalues

λi, i = 1, 2, ..n and r1 + r2 + ...+ rn = N .

Let ksj denote the index corresponding to the first row of the cyclic nilpotent

matrix Nsj ( 3.5.3), and let eksj be the corresponding standard orthonormal basis

of Cn. We define Ws = span{eksj : j = 1, 2, ..., γs} and Ps denote the orthogonal
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projection onto Ws.

Theorem 2.2.3. [2, Thm 2.6] Let J be a matrix in Jordan form as in 3.5.1.

Let Ω ⊆ {1, 2, . . . , n} and {bi : i ∈ Ω} be vectors in Cn, ri be the degree of the

J-annihilator of the vector bi and li = ri− 1 . Then the following propositons are

equivalent.

1. The set of vectors {J jbi : i ∈ Ω, j = 0, 1, ..., li, } is a frame for Cn.

2. For every s = 1, .., n, {Ps(bi) : i ∈ Ω} is a frame for Ws.

Theorem (2.2.3) gives a necessary and sufficient condition for dynamical sam-

pling reconstruction for any operator A on Cn.
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2.3 Phase Retrieval and Norm Retrieval

Signal reconstruction has a wide variety of application in many engineering areas

but recovering a signal when there is a partial loss of information is a big challenge.

The signal reconstruction in the case of partial loss of information is only possible

under special conditions.

If the frame vectors are redundant, they have the advantage of possibly recon-

structing the signal in the case of partial loss of information, which is not possible

using orthonormal bases. The signal reconstruction problem has been studied

widely in physics, signal processing and mathematics. Recovering the phase of

a signal given by its intensity measurements from a redundant linear system is

different then signal reconstruction. Casazza, Balan, and Edidin ([8]) introduced

the concept of phase retrieval for Hilbert space frames in 2006 to recover the phase

of a signal given by its intensity measurements from a redundant linear system.

The problem occurs in speech recognition ([27]), optics applications such as

X-ray crystallography ([17],[37]), quantum state tomography ([35]), and electron

microscopy ([40], [31]). The notion of norm retrieval is more recent construction.

It was introduced in ([5]) as a relaxation of phase retrieval. The idea is to be

able to reproduce the norm of a vector x given its phaseless measurements. Norm

retrieval is a very new concept and we are just beginning to understand the

possible applications.

In this chapter, we will give basic informations about phase retrieval and norm

retrieval. We refer the reader ([26],[6],[10],[9],[11],[16]) for more information about

phase retrieval and norm retrieval for Hilbert spaces.

Definition 2.3.1. [8] A set of vectors {xi}Mi−1 in Rn yields phase retrieval if for
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all x, y ∈ Rn satisfying |〈x, xi〉| = |〈y, xi〉| for all i = 1, ..,M , then x = cy where

c = ±1 in Rn.

Definition 2.3.2. [5] A set of vectors {xi}Mi−1 in Rn does norm retrieval, if for

x, y ∈ Rn satisfying |〈x, xi〉| = |〈y, xi〉| for all i = 1, ...,M , then ||x|| = ||y||.

Here, we only ask to recover the magnitude of the vector from phaseless mea-

surements.

There is also a notion of phase retrieval and norm retrieval by projections which

align with our previous definitions when the projections are one-dimensional. is

similar to one dimensional case.

Definition 2.3.3. [5] Let {Wi}Mi=1 be a collection of subspaces in Rn and de-

fine {Pi}Mi=1 to be the orthogonal projections onto each of these subspaces. We

say that {Wi}Mi=1 (or {Pi}Mi=1) yields phase retrieval if for x, y ∈ Rn satisfying

||Pix|| = ||Piy|| for all i = 1, ...,M , then x = cy for some scalar c with c = ±1.

Definition 2.3.4. [5] Let {Wi}Mi=1 be a collection of subspaces in Rn and de-

fine {Pi}Mi=1 to be the orthogonal projections onto each of these subspaces. We

say that {Wi}Mi=1 (or {Pi}Mi=1) yields norm retrieval if for x, y ∈ Rn satisfying

||Pix|| = ||Piy|| for all i = 1, ...,M , then ||x|| = ||y||.

Definition 2.3.5. [8] A frame {xi}Mi−1 in Rn satisfies the complement property

if for any index set I ⊂ {1, ...M}, either span{xi}i∈I = Rn or span{xi}i∈Ic = Rn.

In the real Hilbert space, a fundamental paper ([8]) classifies phase retrieval

by the complement property as follows.
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Theorem 2.3.6. [8] A frame {xi}Mi=1 in Rn yields phase retrieval if and only if it

has the complement property. In particular, a full spark frame with 2n−1 vectors

yields phase retrieval. If {xi}Mi−1 yields phase retrieval in Rn, then M ≥ 2n − 1.

In other words, there is no set of 2n− 2 vectors that yields phase retrieval.

Norm retrieval differs from phase retrieval. A set of vectors in Rn needs at

least 2n− 1 vectors to satisfy phase retrieval but we can have norm retrieval with

less number of vectors. For example, orthonormal bases are norm retrievable sets,

but they are not sets that accomplish phase retrieval.

Lemma 2.3.7. [13] If the set of vectors {xi}ni=1 does norm retrieval in Rn, then

the vectors {xi}ni=1 are orthogonal.

A classification of norm retrievable vectors in Rn is given by author of ([29]) in

Theorem (2.3.8). Since this classification plays an important role in our problem,

we also include the proof to make it clear for readers.

Theorem 2.3.8. [29] A frame set {xi}Mi=1 ∈ Rn is a norm retrievable frame if

and only if any partition of I ⊂ [1..M ] index set, we have

span{xi}⊥i∈I ⊥ span{xi}⊥i∈Ic . (2.3.1)

Proof. (=⇒) Suppose {xi}Mi=1 ∈ Rn be a norm retrievable frame and I ⊂ [1..M ]

be a partition of index set. For any x ∈ span{xi}⊥i∈I and y ∈ span{xi}⊥i∈Ic , we

have

〈x, xi〉 = 0 for all i ∈ I and 〈y, xi〉 = 0 for all i ∈ Ic
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which gives us

〈x+y, xi〉 = −〈x−y, xi〉 for all i ∈ I and 〈x+y, xi〉 = 〈x−y, xi〉 for all i ∈ Ic.

Now, we can write

|〈x+ y, xi〉| = |〈x− y, xi〉| for all i ∈ [1..M ].

Since {xi}Mi=1 ∈ Rn is a norm retrievable frame, by definition (2.3.2), we have

||x+ y|| = ||x− y|| and

||x||2 + 2〈x, y〉+ ||y||2 = ||x+ y||2 = ||x− y||2 = ||x||2 − 2〈x, y〉+ ||y||2

which implies that 〈x, y〉 = 0 and span{xi}⊥i∈I ⊥ span {xi}⊥i∈Ic .

(⇐=) Suppose span{xi}⊥i∈I ⊥ span {xi}⊥i∈Ic for any partition I ⊂ [1..M ] of

index set and

|〈x, xi〉| = |〈y, xi〉| for all i ∈ [1..M ].

Then we can make a partition I = {i ∈ [1, 2, ..M ] : 〈x, xi〉 = −〈y, xi〉} and

Ic = [1, 2, ..M ] \ I so that

x+ y ∈ span{xi}⊥i∈I and x− y ∈ span{xi}⊥i∈Ic

By assumption, we have span{xi}⊥i∈I ⊥ span {xi}⊥i∈Ic . Hence, we can write

0 = 〈x+ y, x− y〉 = ||x||2 − ||y||2 and ||x||2 = ||y||2
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.

Remark 2.3.9. Let I ⊂ [1..M ] be a partition of index set. Theorem (2.3.8) implies

that {xi}Mi=1 ∈ Rn does norm retrieval if and only if (span {xi}i∈I)⊥ ⊂ span{xi}i∈Ic

as shown in ([13]). The condition of phase retrieval has a defining property in Rn

parallel to (2.3.1). If the complementary property (2.3.5) is satisfied, we can see

that (2.3.1) is also satisfied, so phase retrieval is a stronger condition than norm

retrieval.

n2

n1

F1

F2

Figure 2.3

Example 2.3.10. We want to understand the condition in (2.3.1) better.

Let F = {xi ∈ R3 : i ∈ I; |I| = 4} be a set of full spark vectors that spans

R3. Theorem (2.3.8) states that F does norm retrieval in R3 if and only if for

any partition F1, F2 of F into two subsets, (spanF1)⊥ ⊥(spanF2)⊥.

For any partition F1, F2 of F , we have two possibilities for dimension of spanFi

for i = 1, 2.

Either dim(spanF1) = dim(spanF2) = 2 or dim(spanFi) = 3 for one of i = 1

or i = 2. Without lose of generality, assume dim(spanF1) = 3. Then spanF1 = R3

and the complementary condition in (2.3.5) is satisfied. Hence, F may possibly

do norm retrieval in R3.
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If dim(spanF1) = dim(spanF2) = 2, then the complementary condition in

(2.3.5) fails. So we must check the condition (2.3.1).

The norm retrieval property in (2.3.1) states that if normal vectors n1, n2 of

the planes spanF1 and spanF2 respectively are orthognal as shown in Figure 2,

then F = {xi ∈ R3 : i ∈ I; |I| = 4} does norm retrieval in R3. If, on the other

hand, normal vectors n1, n2 of spanF1 and spanF2 are not orthogonal as shown in

Figure 3, then F = {xi ∈ R3 : i ∈ I; |I| = 4} does not do norm retrieval in R3.

n1

n2

F1

F2

Figure 2.4

Given a set of vectors {xi}Mi=1 in Rn. The complementary property in (2.3.5)

gives a classification of phase retrievable vectors in Rn. Theorem (2.3.8) also gives

a classification of norm retrievable vectors in Rn.

We now move on to describe the conditions for phase and norm retrieval of

subspaces.

Let {Wi}Mi=1 be a collection of subspaces in Rn and define {Pi}Mi=1 to be the

orthogonal projections onto each of these subspaces. Phase retrieval and norm

retrieval definitions for projections {Pi}Mi=1 are defined in (2.3.3) and (2.3.4) re-

spectively.

The classification of phase retrieval by projections in Rn were found by Edidin

in ([24]) in terms of the spans of {Pix}Mi=1, for x ∈ Rn.
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Theorem 2.3.11. [24] Let {Wi}Mi=1 be a collection of subspaces in Rn and define

{Pi}Mi=1 to be the orthogonal projections onto each of these subspaces. The col-

lection of projections {Pi}Mi=1 does phase retrieval if and only if for any nonzero

vector x ∈ Rn, span{Pix}Mi=1 = Rn.

Authors in [12] gave a classification of norm retrieval by projections in Rn

similar to the Edidin Theorem 2.3.11. This classification generalizes Theorem

2.3.8 from norm retrieval of vector to do norm retrieval of projections.

Theorem 2.3.12. [12] Let {Pix}Mi=1 be projections on Rn, then the following are

equivalent:

1. The projections {Pi}Mi=1 do norm retrieval.

2. For every nonzero vector x ∈ Rn, (span{Pix})⊥ ⊂ {x}⊥.

3. For every nonzero vector x ∈ Rn, x ∈ span{Pix}Mi=1.

Proof. (1)=⇒(2): To prove by contrapositive, suppose there exists a nonzero

vector u ∈ Rn such that (span{Piu})⊥ 6⊂ u⊥. Then there exists a nonzero vector

w ∈ (span{Piu})⊥ such that u and w are not orthogonal and w ⊥ Piu for all i.

Let x =
1

2
(u + w) and y =

1

2
(u − w). Since u and w are not orthogonal, we

have ||x|| 6= ||y||. Since w ⊥ Piu for all i, we have

||Pi(u+ w)||2 = 〈Piu+ Piw,Piu+ Piw〉

= ||Piu||2 + ||Piw||2

= 〈Piu− Piw,Piu− Piw〉

= ||Piu||2 − ||Piw||2
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Hence, ||Piu|| = ||Piw|| for all i but ||x|| 6= ||y||. Which says that the projec-

tions {Pi}Mi=1 does not do norm retrieval.

(2)=⇒(1): Again by contrapositive, suppose the projections {Pi}Mi=1 does not

do norm retrieval. Then there are vectors x, y ∈ Rn such that ||Piu|| = ||Piw||

for all i but ||x|| 6= ||y||. Let u = x + y and w = x − y, then u and w are not

orthogonal. Which implies that w 6∈ u⊥ but w ∈ (span{Piu})⊥. So, property (2)

fails.

(2)=⇒(3): To prove by contrapositive, suppose x /∈ span{Pix}Mi=1. Then

x = x1 + x2 where x1 ∈ span{Pix}Mi=1 and x2 /∈ span{Pix}Mi=1. This shows that

〈x, x2〉 6= 0 and the condition (span{Pix})⊥ ⊂ {x}⊥ fails. This proves (2)=⇒(3).

(3)=⇒(2): Since x ∈ span{Pix}Mi=1 implies (span{Pix})⊥ ⊂ {x}⊥. This part

is obvious.

The set of projections {Pi}Mi=1 onto Wi which does norm retrieval gives us

opportunity to construct norm retrievable vectors in Rn using orthonormal bases

in Wi.

By using projections, the authors of [13] have an extended version of the

classification of norm retrieval as shown in the following theorem.

Theorem 2.3.13. [13] Let {Pi}Mi=1 be the projections onto subspaces {Wi}Mi=1 of

Rn. The set of projections {Pi}Mi=1 does norm retrieval if and only if for any

orthonormal bases {uij}rij=1 of Wi, the set of vectors {uij}(i,j) does norm retrieval

in Rn.

Norm retrieval is preserved under rescaling. That is, if we rescale each vector

in any norm retrievable set, we will have a new norm retrievable set.
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Lemma 2.3.14. [13] All scalable frames do norm retrieval.

Proof. Let {xi}i∈I be a scalable frame in a real or complex Hilbert space H. To

show that {xi}i∈I does norm retrieval in H, suppose given x, y ∈ H, we have

|〈x, xi〉| = |〈y, xi〉| for all i ∈ I.

Since {xi}i∈I is a scalable frame in H, by Definition (2.1.12), there exists

scalars {ci}i∈I such that {cixi}i∈I is a Parseval frame. Parseval identity shows

that for any x ∈ H, we have

||x||2 =
∑
i∈I

|〈x, cixi〉|2 for all i ∈ I.

For any scalar ci, we have

|〈x, cixi〉| = |〈y, cixi〉| for all i ∈ I.

This implies that ||x|| = ||y||.

Authors in [1] showed that when A is a unitarily diagonalizable normal oper-

ator, we can get a scalable frames with the dynamical sampling structure under

proper conditions. In Chapter 3, we show a similar structure to build norm re-

trievable sets in the dynamical sampling setting that is not scalable frame.
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In the next example, we show a set of vectors in Rn for any n ≥ 2 that does

norm retrieval. In each set, there are 2n−2 vectors, so these sets cannot do phase

retrieval in Rn.

Example 2.3.15. Let {ei}ni=1 be the standard orthonormal basis in Rn. Then the

set of vectors {αen ± ei}n−1
i=1 does norm retrieval when α = ± 1√

n− 1
.

Proof. Given x = [x1.x2, ...xn]T , y = [y1, y2, ..., yn]T ∈ Rn, suppose we have

|〈x, αen ± ei〉| = |〈y, αen ± ei〉| for all i = 1, 2, ..n− 1 . Then,

|〈x, αen ± ei〉|2 = |〈y, αen ± ei〉|2
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α2xn
2 + xi

2 = α2yn
2 + yi

2

for i = 1, 2, ..n− 1. This shows that

(n− 1)α2xn
2 +

n−1∑
i=1

xi
2 = (n− 1)α2yn

2 +
n−1∑
i=1

yi
2

and

((n− 1)α2 − 1)xn
2 + ||x||2 = ((n− 1)α2 − 1)yn

2 + ||y||2.

If (n−1)α2−1 = 0, then ||x||2 = ||y||2. Hence, {αen ± ei}n−1
i=1 does norm retrieval

when α = ± 1√
n− 1

.

In R3, the set of vectors {αe3 ± ei}2
i=1 is full spark. We know in reference that

the set of vectors {αe3 ± ei}2
i=1 does norm retrieval if and only if for any partition

F1, F2 of the set of vectors {αe3 ± ei}2
i=1, (spanF1)⊥ ⊥ (span F2)⊥. Since the set

of vectors {αe3 ± ei}2
i=1 is full spark, when cardinality of |F1| = 3 or |F2| = 3,

then spanF⊥1 ⊥ span F⊥2 and we are done.

When cardinality of |F1| = 2 and |F2| = 2, as shown in Figure 5, normal

vectors n1, n2 of the planes spanF1 and spanF2 respectively will be orthogonal

with α =
1√
2

. This holds for all pairs of planes.

Remark 2.3.16. In Example 2.3.15, we show that the set of vectors {αen ± ei}n−1
i=1

in Rn does norm retrieval when α = ± 1√
n− 1

. Actually, the set of vectors

{αen ± ei}n−1
i=1 also has a dynamical sampling structure. To see this, define an

operator A on Rn such that
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Aei = ei+1 for i = 1, 2, ..., n− 2

Aen−1 = −e1

Aen = en.

Now, we can write the set of vectors {αen ± ei}n−1
i=1 in Rn in the dynamical

sampling structure by a single generator. For b = αen − e1, we have

A`b = αen − e`+1 for ` = 0, 1, 2, ..., n− 3

A`b = αen + e`+1 for ` = n− 2, ..., 2n− 3.

Hence, {αen ± ei}n−1
i=1 = {A`b}2n−3

`=0 when b = αen − e1. Since |`| = 2n− 2, we

do not have enough vectors to do phase retrieval. Recall that we need at least

2n− 1 vectors in Rn to have a phase retrievable set.
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Figure 2.6: lllustration of Example 2.3.15 in R3.
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Chapter 3

Norm Retrieval of Vectors in

Dynamical Sampling Form

3.1 Description of Problem

We begin by setting up a classical dynamical sampling system in Rn with an

operator A. Suppose that A is a linear operator on Rn and the signal x ∈ Rn

varies in time increments according to the operator A. At time ` ∈ N, the signal

x ∈ Rn evolves through the operator A to become A`x = x`. Let Ω ⊆ {1, 2, ..., n}

be the sample points and {ei}ni=1 be the standard orthonormal bases in Rn.

We represent A`x(i) as the time-space sample at time ` ∈ N and location

i ∈ Ω. That is

A`x(i) = 〈A`x, ei〉.

Then Ω ⊆ {1, 2, ..., n} gives the sample points. As we showed in Chapter 2, the

measurements {x(i) : i ∈ Ω} have insufficient information in general to recover the

original signal x. Representing samples over time from fixed positions in space,
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we will have extra information {A`x(i) : i ∈ Ω} about the signal x. We give basic

informations about the dynamical sampling problem in chapter 2. Figure (2.2)

gives an illustration of time-space samples in dynamical sampling.

The fundamental dynamical sampling problem ([2]) is to find conditions on Ω,

A, and the number L of time increments such that measurements on the compo-

nents given by coarse sample points Ω over times ` can be used to reconstruct x.

In other words, we want to construct x from the measurements

{〈A`x, ei〉 : ` = 0, 1, . . . , L; i ∈ Ω}. (3.1.1)

In ([2]), Aldroubi and his collaborators recently showed that x can be recov-

ered from the measurements {〈A`x, ei〉 : ` = 0, 1, . . . , L; i ∈ Ω} if and only if

{A∗`ei : ` = 0, 1, . . . , L; i ∈ Ω} is a frame in H (real or complex Hilbert space).

They gave the conditions on A,Ω, and ` in Theorem (2.2.2) and Theorem (2.2.3),

which are stated in Chapter 2, such that {A∗`ei : ` = 0, 1, . . . , L; i ∈ Ω} is a frame

in H.

In this paper, we show constructions of norm retrievable sets that arise from

dynamical sampling system in the finite dimensional real Hilbert space Rn. By

the Definition (2.3.2), a set of vectors {xi}i∈I ∈ Rn does norm retrieval if any

given x, y ∈ Rn, |〈x, xi〉| = |〈y, xi〉| for all i ∈ I implies that ||x|| = ||y||.

The norm retrieval problem in a dynamical sampling setting can be stated as

follows:

Problem: The norm retrieval problem in dynamical sampling seeks to find

conditions on the operator A, the set of vectors {bi ∈ Rn : i ∈ Ω} and the time

increments `i such that the set of vectors {A`ibi ∈ Rn : i ∈ Ω} will have the
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norm retrieval property as stated in Definition (2.3.2). Recall that the collection

must necessarily be a frame. We are particularly interested in the set of vectors

{A`ibi ∈ Rn : i ∈ Ω} which does norm retrieval but not phase retrieval.

We show in the Theorem (3.1.1) that a set of vectors F does norm retrieval in

Rn if the identity operator in Rn is in the spanning set of the rank one projections

of the vectors in F .

Theorem 3.1.1. Let A be an operator on Rn, {ej}nj=1 be the standard orthonormal

bases and {bi ∈ Rn : i ∈ Ω, |Ω| < n}. The set of vectors {A`bi}{`∈{1,2,...,`i},i∈Ω} does

norm retrieval in Rn if there is a solution {C`,i} to the system of linear equations:

∑
`,i

C`,i|〈ej, A`bi〉|2 = 1 (3.1.2)∑
`,i

C`,i〈ej, A`bi〉〈ek, A`bi〉 = 0 (3.1.3)

for all j, k = 1, 2, ..n with j 6= k.

Proof. Suppose given the operatorA on Rn and the set of vectors {bi ∈ Rn : i ∈ Ω},

we know the measurements |〈x,A`bi〉| = |〈y, A`bi〉| ∀ ` ∈ {0, 1, .., `i}, i ∈ Ω for

fixed x, y ∈ Rn.

Then,

〈x− y, A`bi〉 = 0 or 〈x+ y, A`bi〉 = 0 ∀`, i

So,

〈x− y, 〈x+ y, A`bi〉A`bi〉 = 〈x− y, A`bi(A
`bi)
∗(x+ y)〉 = 0 ∀`, i

Given any scalar value C`,i, we have C`,i〈x− y, A`bi(A
`bi)
∗(x+ y)〉 = 0 ∀`, i.
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If I ∈ span{A`bi(A
`bi)
∗}{`,i}, then 〈x− y, x+ y〉 = 0 and ||x|| = ||y||.

Now, we show that I ∈ span{A`bi(A
`bi)
∗}{`,i} if and only if equations (3.1.2)

and (3.1.3) have a solution.

Let {ej}nj=1 be the standard orthonormal bases in Rn. Any vector A`bi ∈ Rn

can be writen as,

A`bi =



〈e1, A
`bi〉

〈e2, A
`bi〉

...

〈en, A`bi〉


, then we have

A`bi(A
`bi)
∗ =



|〈e1, A
`bi〉|2 〈e1, A

`bi〉〈e2, A
`bi〉 · · · 〈e1, A

`bi〉〈en, A`bi〉

〈e2, A
`bi〉〈e1, A

`bi〉 |〈e2, A
`bi〉|2 · · · 〈e2, A

`bi〉〈en, Akbi〉
...

...
...

〈en, A`bi〉〈e1, A
`bi〉 〈en, A`bi〉〈e2, A

`ibi〉 · · · |〈en, A`bi〉|2



The system of linear equations in (3.1.2) and (3.1.3) has a solution if and

only if I ∈ span{A`bi(A
`bi)
∗}{`,i}. In that case, we also have {A`bi}`,i does norm

retrieval in Rn as shown in Example (3.5.4).

When A is an n×n diagonal operator, the authors in ([1, Thm.3]) showed that

the set of vectors {A`bi}{`,i} is a scalable frame if and only if there exists a positive

solution {C`,i} to the system of equations in (3.1.2) and (3.1.3). We know that

all scalable frames do norm retrieval by the Theorem (2.3.14). Theorem (3.1.1)

shows that there exists norm retrievable frames {Akbi}{k,i}, that are not scalable
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frames, whenever the solution {Ck,i} to the system of equations in (3.1.2) and

(3.1.3) is not a positive solution. Theorem (3.1.1) does not give the conditions

on the operator A, the set of sample points {bi ∈ Rn : i ∈ Ω, |Ω| < n} and time

increments ` but we show later how it works to obtain dynamical sampling frame

which does norm retrieval .

Recall our definitions of norm retrieval of vectors and projections given in

(2.3.2) and (2.3.4) respectively. In 2017, Peter G. Casazza and his research group

in ([13]) give a classification of norm retrievable sets in Rn in terms of projections

as follows: Let {Pi}Mi=1 be the projections onto subspaces {Wi}Mi=1 of Rn. The set

of projections {Pi}Mi=1 does norm retrieval if and only if for any orthonormal bases

{uij}rij=1 of Wi, the set of vectors {uij}(i,j) does norm retrieval in Rn.

We are able to write a more general version of the norm retrieval classification

in ([13]), we will use this extensively to obtain dynamical sampling frames which

do norm retrieval in Rn.

Proposition 3.1.2. Let {Pi}Mi=1 be the projections onto the subspaces {Wi}Mi=1 of

Rn. If the set of vectors {bij}nij=1 does norm retrieval in Wi for all i = 1, 2, ..,M

and the projections {Pi}Mi=1 do norm retrieval in Rn, then the set of vectors

{bij : i = 1, 2, ..,M, j = 1, 2, ..ni} does norm retrieval in Rn.

Proof. Given x, y ∈ Rn, suppose |〈x, bij〉| = 〈y, bij〉| for all i, j. Then

|〈x, bij〉| = 〈y, bij〉| for all j = 1, 2, .., ni. By assumption, {bij}nij=1 does norm

retrieval in Wi for all i = 1, 2, ..,M . This implies that ||Pix|| = ||Piy|| for all

i = 1, 2, ..,M . Since the projections {Pi}Mi=1 do norm retrieval in Rn, we have

||x|| = ||y||.
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This Proposition allows for many of our constructions of norm retrievable

frames in dynamical sampling setting.

3.2 Self Adjoint Operators

In this section, we are interested in obtaining dynamical sampling frames which

are norm retrievable sets but not phase retrievable. We assume that A is a self-

adjoint operator and try to find conditions on the set of vectors {bi ∈ Rn : i ∈ Ω}

and the time increments ` such that {A`bi}{`∈{0,1,..,`i},i∈Ω} does norm retrieval in

Rn but fails to do phase retrieval.

First, we show when it is possible to obtain norm retrievable sets by a sin-

gle generator. Given a vector b ∈ Rn, the subspace spanned by the vectors

{b, Ab,A2b, ...Ar−1b} is called the Krylov subspace K(A, b) generated by an oper-

ator A on Rn, where r is the degree of the A-annihilator of b.

K(A, b) = span{b, Ab, ...Ar−1b}

Since self-adjoint operators are unitarily equivalent to diagonal operators, we

can restrict our efforts to finding diagonal operators that give norm retrieval. We

begin with D on R2 and a single generating vector b.

Lemma 3.2.1. Let

D =

λ1 0

0 λ2

 , b =

b1

b2


with non-zero λ1, λ2, b ∈ R2. Then {b,Db} does norm retrieval but not phase

retrieval in R2 if and only if λ1b
2
1 + λ2b

2
2 = 0.
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Proof. (=⇒) Since we only have two vectors {b,Db} in Rn, they do norm retrieval

if they are orthogonal to each other by the Lemma (2.3.7). This implies that

0 = 〈b,Db〉 = λ1b
2
1 + λ2b

2
2.

(⇐=) If λ1b
2
1 + λ2b

2
2 = 0, then {b,Db} are orthogonal to each other. This says

that

{
b

||b||
,
Db

||Db||

}
are orthonormal bases in Rn. Hence, they do norm retrieval

in Rn.

The set {b,Db} fails the complementary property (2.3.5) since it does not have

enough vectors, hence fails to do phase retrieval in Rn.

Lemma (3.2.1) is unique in that the 2 × 2 case is the only diagonal operator

that generates norm retrievable sets which are not phase retrievable from one

generating vector. When n ≥ 3 and D is a diagonal operator on Rn, for any

non-zero vector b ∈ Rn, we do not have norm retrievable sets which are not phase

retrievable in Rn by a single generator b.

Lemma 3.2.2. Let D be a diagonal operator

D =


λ1 0 0

0 λ2 0

0 0 λ3


with λ1, λ2, λ3 in R3. For any non-zero vector b inR3, the set of vectors

F = {b,Db,D2b, .., D`b}
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cannot do norm retrieval when ` ≤ 3.

Proof. Let b = [b1 b2 b3]T be a nonzero vector in R3.

For the set F = {b,Db,D2, .., D`b} to be able to do norm retrieval in R3, they

first should span R3 by the Theorem (2.1.10), hence ` ≥ 2.

Suppose F = {b,Db,D2b} spans R3. By Lemma (2.3.7), F = {b,Db,D2b}

does norm retrieval if the vectors are pairwise orthogonal to each other. However,

〈b,D2b〉 = 〈Db,Db〉 = ||Db||2 > 0

for any D and b 6= 0. Thus, F = {b,Db,D2b} does not do norm retrieval in R3.

Next, consider the set of vectors F = {b,Db,D2b,D3b}. By the complement

property (2.3.5), the set of vectors does norm retrieval if and only if for any

partition {F1, F2} of F , we have (spanF1)⊥ ⊥ (spanF2)⊥. In particular, consider

F1 = {b,Db} and F2 = {D2b,D3b}. Taking the cross products, we see

(spanF1)⊥ = span


(λ3 − λ2)b2b3

−(λ3 − λ1)b1b3}

(λ2 − λ1)b1b2

 , (spanF2)⊥ = span


(λ2

2λ
3
3 − λ3

2λ
2
3)b2b3

−(λ2
1λ

3
3 − λ3

1λ
2
3)b1b3

(λ2
1λ

3
2 − λ3

1λ
2
2)b1b2

 .

and (spanF1)⊥ ⊥ (spanF2)⊥ if and only if we have

(λ2λ3)2(λ3 − λ2)2(b2b3)2 + (λ1λ3)2(λ3 − λ1)2(b1b3)2 + (λ1λ2)2(λ2 − λ1)2(b1b2)2 = 0.

This implies that λ1 = λ2 = λ3. But in this case, F = {b,Db,D2b,D3b} does not

span R3 and thus fails to do norm retrieval. Hence, we do not have any vector

b ∈ R3 such that F = {b,Db,D2b, .., D`b} does norm retrieval when ` ≤ 3.
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When ` ≥ 3, F has 5 or more vectors. In this situation, it is possible to have

phase retrieval, hence norm retrieval.

We can generalize the Lemma (3.2.2) to self-adjoint operators as follows.

Theorem 3.2.3. Let A be a self-adjoint operator on Rn. For any given non-zero

vector b ∈ Rn with n ≥ 3, the following conditions hold;

1. If n is odd and k ≤ 2n − 3, then the set F = {b, Ab,A2b, ..., Akb} does not

do norm retrieval in Rn.

2. If n is even and k ≤ 2n− 4, then the set F = {b, Ab,A2b, ..., Akb} does not

do norm retrieval in Rn.

Proof. The set F = {b, Ab,A2b, ..., A`b} does norm retrieval in Rn if and only if

the norm retrieval condition (2.3.1) holds. That is for any partition F1, F2 of F ,

(spanF1)⊥ ⊥ (spanF2)⊥. An equivalent statement to (2.3.1) in the Remark (2.3.9)

is that the set F = {b, Ab,A2b, ..., Akb} does norm retrieval if for any partition

F1, F2 of F , we have (span F1)⊥ ⊆ span F2.

If a set does norm retrieval, by adding more vectors to this set we still have

norm retrieval. Therefore, we cannot obtain a norm retrievable set by removing

vectors from a set which does not do norm retrievel. For that reason, it is enough

to look at the cases ` = 2n− 3 when n is odd and ` = 2n− 4 when n is even.

Case 1: When n is odd and ` = 2n − 3 , we can have the following partition

of the set F .

F1 = {b, Ab, ..., An−2b}

F2 = {An−1b, Anb, ..., A2n−3b}
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For any nonzero x ∈ span F2, let x = An−1(c0b+ c1Ab+ ...+ cn−2A
n−2b) for some

scalars {cj}n−2
j=0 . Take y = c0b+ c1Ab+ ...+ cn−2A

n−2b. Then y ∈ span F1 and,

〈x, y〉 = 〈An−1y, y〉 = 〈A(n−1)/2y, A(n−1)/2y〉 = ||A(n−1)/2y||2 > 0.

This implies that we cannot have any non-zero vector x ∈ F2 that can be in (span

F1)⊥. There is a maximum of n−1 linearly independent vectors in span F1. That

is (span F1)⊥ 6= {∅} and span F1 6= Rn. This contradicts (span F1)⊥ ⊆ span F2.

Case 2: When n is even and k = 2n− 4 , similar to the first case, we have the

following partition of the set F .

F1 = {b, Ab, ..., An−2}

F2 = {An−1b, Anb, ..., A2n−4}

For any x ∈ span F2, x = An−2(d1Ab+ ...+ dn−2A
n−2b) for some scalars {dj}n−2

j=1

and z = d1Ab + ... + dn−2A
n−2b ∈ span F1 but 〈x, z〉 = ||A(n−2)/2z||2 > 0. Again

this contradicts (span F1)⊥ ⊆ span F2 since (span F1)⊥ 6= {∅} and every non-zero

vector x ∈ F2 has some y ∈ F1 with 〈x, y〉 > 0 .

This theorem eliminates a number of possibilities , but only applies to dynam-

ical sampling systems with a single generating vector.

Next, we describe properties from the recent paper ([4]) that found conditions

for phase retrieval in dynamical sampling structure.

Definition 3.2.4. [4] Suppose that a bounded operator A ∈ B(H) has a minimal

polynomial pA. A nonzero polynomial p is a k-partial annihilator of A, k ∈ N,

if p and pA have a common divisor of degree k.
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Definition 3.2.5. [4] Let A be an n × n matrix. If for all k ∈ N, any k-partial

annihilator of A which has degree at most r = max {1, 2k − 2} has at least k + 1

nonzero coefficients,then the matrix A is called iteration regular.

In ([4]), the authors show that A being iteration regular ensures that the

vectors {x,Ax,A2x, ...} are full spark, as shown here.

Proposition 3.2.6. [4] Let K = span{x,Ax,A2x...} with dim = k in Rn. If A

is iteration regular, then any k vectors from the system of {x,Ax, ...Arx} with

r = max {1, 2k − 2}, form a basis in K(A, x).

Proof. Assume that A is iteration regular and x ∈ Rn is a nonzero vector. Let

pAx be the A-annihilator of x. That is pAx is the monic polynomial of the smallest

degree such that pAx (A)x = 0. The dimension k of the maximal Krylov subspace

Km(A, x) = {x,Ax,A2x, ...} is equal to the degree of the polynomial pAx .

When k = 1, r = 1 and the claim is obvious.

When k ≥ 2, suppose we have the k vectors {A`ix : i = 1, 2, ...k} from the set

{x,Ax,A2x, ...A2k−2x}. We want to show that the set of vectors {A`ix : i = 1, ...k}

is linearly independent. Suppose there exists some coefficients {ci} such that

k∑
i=1

ciA
`ix = 0.

Then
∑k

i=1 ciA
`ix = q(A)x is a polynomial of degree ≤ 2k − 2. Since q(A)x = 0

and pAx be the A-annihilator of x, pAx divides q. Therefore, q has k roots in

common with pAx . The polynomial q has at most k non-zero coefficients. Since A

is iteration regular, this implies that all its coefficients {ci} must be zero. Hence,

any k vectors from the system {x,Ax, ...Arx}, r = max {1, 2k − 2}, form a basis

44



in K(A, x).

Remark 3.2.7. As shown in Proposition (3.2.6), any partition of {x,Ax, ...A2k−2x}

will have a spanning set for K(A, x) when A is iteration regular. This shows that

we can still get norm retrievable frame generated by a single vector b in Rn with a

self-adjoint operator A if we get F = {b, Ab,A2b, ..., Akb} to be a phase retrievable

frame. In this case, the number of iterations k is at least 2n− 2.

However, there exist invertible operators A that do generate norm retrievable

frames which are not phase retrievable by iteration on a single vector:

Example 3.2.8. Consider the operator A and vector b in R2,

A =

 1 1

−3 1

 and b =

1

1


Then

F = {b, Ab} =


1

1

 ,
 2

−2




and

I =
1

2
bb∗ +

1

8
Ab(Ab)∗

This implies that F = {b, Ab} does norm retrieval because the vectors are orthog-

onal, but we do not have enough vectors to do phase retrieval in R2 .

We showed that a self-adjoint operator A on Rn cannot produce a norm re-

trievable frame in Rn with fewer than 2n − 3 iterations on a single generating

vector b ∈ Rn.
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If span{b, Ab,A2b, ...} = Rn and A is iteration regular as defined in the Defi-

nition (3.2.5), then the set F = {b, Ab,A2b, ..., Akb} does norm retrieval in Rn for

k = 2n− 2 as shown in Proposition (3.2.6).

A self-adjoint operator A on Rn can generate norm retrievable frames with

fewer than 2n− 2 iterations if we use more generating vectors. (This corresponds

to using more than one sensor to sample).

Suppose we have 4 vectors {zi}4
i=1 that are full spark in R3. If we want them

to do norm retrieval, any partition must satisfy condition (2.3.1). This means

any subset of 3 vectors spans the space. In addition, we must also have partitions

that split into 2 dimensional spaces satisfy (2.3.1). Since the set is full spark,

we know any 2 vectors are linearly independent, hence span a plane. The spans

of the vectors in one of these partitions yield 2 planes. Recall from our earlier

Example (2.3.10) that property (2.3.1) means that the normal vectors to these 2

planes must be orthogonal as shown in Figure 7.

n2

n1

F1

F1

Figure 3.1

Example 3.2.9. We now give an explicit example of a set of 4 vectors that do

norm retrieval in R3. We can use two of the coordinate planes as our spans for

one set of partitions. We accomplish this by choosing the 4 vectors to be of the
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form:

{zi}4
i=1 =




1

1

0

 ,


1

α

0

 ,


1

0

1

 ,


1

0

β




By construction 〈z1× z2, z3× z4〉 = 0. We now need to find conditions on α, β

to make the two remaining pairs of planes have orthogonal normal vectors.

Computing the necessary cross products gives

z1 × z3 =

[
−1 1 1

]T
z2 × z4 =

[
−αβ α β

]T
z1 × z4 =

[
−β 1 β

]T
z2 × z3 =

[
−α α 1

]T

Taking appropriate inner products shows that we have orthogonal inner prod-

ucts of the planes when we satisfy:

αβ + α + β = 0.

Solutions to this equation form a hyperbola in α and β, but there are nonzero

integer solutions α = β = −2.

The vectors {zi}4
i=1 do not contain an orthonormal basis, and are not a tight

frame. It is clear from observation that the set does not contain an orthonormal

basis. To see that it is not a tight frame, we compute the frame operator by
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recalling that the analysis operator Φ is represented by the matrix with the vectors

as rows. The analysis operator is S = Φ∗Φ.

S = Φ∗Φ =


4 −1 −1

−1 5 0

−1 0 5


Since the frame operator is not a multiple of the identity, the frame {zi}4

i=1 is

not tight.

Remark 3.2.10. The vectors {zi}4
i=1 in our example (3.2.9) can be expressed as a

set coming from dynamical samples with a diagonal operator.

Let b1, b2, and diagonal matrix D be the following:

b1 =


1

0

1

 , b2 =


1

1

0

 , D =


1 0 0

0 −2 0

0 0 −2


Then the vectors {b1, Db1, b2, Db2} make up the elements of our example for

norm retrieval frame in R3 with α = −2 and β = −2.

Example (3.2.9) shows that when A is a self-adjoint operator on Rn, there ex-

ists some vectors {bi ∈ Rn : i ∈ Ω; |Ω| < n} such that {A`ibi : i ∈ Ω, `i = 0, 1, ...l}

does norm retrieval in Rn.

Now, we will show for which vectors {bi ∈ Rn : i ∈ Ω; |Ω| < n}, the set of vec-

tors {A`bi : i ∈ Ω, ` = 0, 1, ...`i} does norm retrieval in Rn.

We start with a diagonal operator D on Rn with n ≥ 3.
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Lemma 3.2.11. Let D be a diagonal operator on Rn

D =



λ1I1

λ2I2

. . .

λsIs


(3.2.1)

with distinct eigenvalues λj for all j = 1, 2, ..., s. Ii is a rj× rj identity matrix

for j = 1, 2, ..s. If D is iteration regular, then there exists orthogonal vectors

{bi ∈ Rn : i ∈ Ω} such that {D`bi ∈ Rn : i ∈ Ω ` = 2ti − 2} does norm retrieval

but not phase retrieval in Rn where ti is the degree of D-annihilator of bi.

Proof. Suppose D be a diagonal operator on Rn given by (3.2.1).

By rearranging the order if it is necessary, we can write r1 ≥ r2 ≥ r3 ≥ ... ≥ rs.

Let Ej be the eigenspace corresponding to the real eigenvalue λj for all j = 1, 2, ..., s.

We have dimEj = rj for all j = 1, 2, ..., s. Let {ejk}
rj
k=1 be the standard

orthonormal basis vectors such that Ej = span{ejk}
rj
k=1. Assume ejk = 0 when

k > rj. For 1 ≤ i ≤ r1, we define

bi =
∑

j=1,2,..s

eji (3.2.2)

Hence, we have a set of orthogonal vectors {bi}r1i=1 such that

D`bi ∈ span{e1k, ...esk} for all ` ∈ N. The Krylov subspace of bi satisfies that

K(D, bi) = span{e1i, ...esi}. Let ti be the degree of the D-annihilator of bi. By

proposition in (3.2.6), whenD is iteration regular, then {D`bi} does phase retrieval

(hence norm retrieval) for ` = 2ti − 2 in K(D, bi) for all i.

Rn = K(D, b1)⊕ ...⊕K(D, br1) by choice of vectors bi. Let Pi be the orthogonal
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projection onto K(D, bi) for all i. Then

r1∑
i=1

Pi = I. (3.2.3)

To show that {D`bi; i ∈ Ω, ` = 2ti − 2} does norm retrieval in Rn, suppose

|〈x,D`bi〉| = |〈y,D`bi〉| ∀i, `

for given x, y ∈ Rn, Then |〈x,D`bi〉| = |〈y,D`bi〉| for all i and {D`bi}` does phase

retrieval (hence norm retrieval) in K(D, bi) for all i since D is iteration regular.

Hence, we have ||Pix|| = ||Piy|| for all i. Since ||x||2 =
∑r1

i=1 ||Pix|| for all x ∈ Rn

by the equality in (3.2.3). The set of vectors {D`bi; i ∈ Ω, ` = 2ti − 2} does

norm retrieval in Rn.

Remark 3.2.12. The set of vectors {D`bi; i ∈ Ω, ` = 2ti − 2} defined in Lemma

(3.2.11) does norm retrieval but it fails the complementary property to do phase

retrieval in Rn.

Next, we give an explicit example in R4 to demonstrate this construction.

Example 3.2.13. Let D be a diagonal operator on R4 with nonzero distinct eigen-

values λ1, λ2.

D =



λ1

λ1

λ2

λ2


∈Mn(R) (3.2.4)

Choose b1 = e1 + e3, b2 = e2 + e4 as described in Lemma (3.2.11). The
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set of vectors {bi, Dbi, D2bi} is full spark and does phase retrieval in K(D, bi)

for i = 1, 2. The Krylov subspaces K(D, bi) are 2-dimensional and orthogonal to

each other. For that reason, the orthogonal projections Pi onto K(D, bi) do norm

retrieval. By Lemma (3.1.2), the set of vectors F = {b1, Db1, D
2b1, b2, Db2, D

2b2}

does norm retrieval in R4. Since the number of vectors in F is less then 2n−1 = 7

for n = 4, F does not do phase retrieval in R4.

This example shows that phase retrieval does not have an analog to our Propo-

sition 3.1.2.

Let A be a self-adjoint operator defined on Rn. Then there exists vectors

{bi ∈ Rn : i ∈ Ω} such that Rn can be written as orthogonal direct sum of Krylov

subspaces {K(A, bi) : i ∈ Ω} that are generated as follows.

Choose an arbitrary vector b1 ∈ Rn. The Krylov subspace generated with A

and b1 can be written as

K(A, b1) = span{b1, Ab1, ...A
r1−1b1}

where r1 is the degree of A-annihilator of b1. Since K(A, b1) is a closed subspace

of Rn, we can write Rn = K(A, b1) ⊕ K(A, b1)⊥ as orthogonal direct sum of

K(A, b1) andK(A, b1)⊥.

If K(A, b1)⊥ 6= {∅}, then choose a nonzero vector b2 ∈ K(A, b1)⊥.

Since A is a self-adjoint operator and 〈Ak1b1, A
k2b2〉 = 〈Ak1+k2b1, b2〉 = 0 for

any k1, k2 ∈ N, we have K(A, b2) ⊂ K(A, b1)⊥. Now, we have the orthogonal

direct sum K(A, b1)⊕K(A, b2).

If Rn = K(A, b1) ⊕K(A, b2), then we are done. Otherwise, choose a nonzero

vector b3 ∈ Rn such that b3 is orthogonal to both K(A, b1) andK(A, b2). Since A
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is a self-adjoint operator, we have K(A, b1) ⊕K(A, b3) and K(A, b2) ⊕K(A, b3).

Thus, K(A, b1)⊕K(A, b2)⊕K(A, b3).

Since Rn is finite dimensional, we can continue to write orthogonal direct sum

of Krylov subspaces until Rn = K(A, b1)⊕K(A, b2)⊕...⊕K(A, br) for some r ∈ N.

Theorem 3.2.14. Let A be a self-adjoint operator defined on Rn that is iteration

regular. Given the set of vectors {bi ∈ Rn : i ∈ Ω}, if Rn = K(A, b1)⊕K(A, b2)⊕

...⊕K(A, br) for some r ∈ N, then {A`bi : i ∈ Ω = {1, 2, ..., r}; 0 ≤ ` ≤ 2ri − 2}

does norm retrieval in Rn where ri is degree of the A-annihilator of bi.

Proof. Suppose Rn = K(A, b1) ⊕ K(A, b2) ⊕ ... ⊕ K(A, br) for the set of vectors

{bi ∈ Rn : i ∈ Ω}. Since A is iteration regular, for each nonzero vector bi ∈ Rn,

any ri vectors from the system {bi, Abi, ...A`bi}, ` = max {1, 2ri− 2}, form a basis

in K(A, bi) by Proposition (3.2.6). This says that the set {A`bi}2ri−2
`=0 is full spark

in K(A, bi) with 2ri − 1 vectors and satisfies complement property. Hence the

set of vectors {A`bi}2ri−2
`=0 does phase retrieval (hence norm retrieval) in K(A, bi)

for all i. Let Pi be the orthogonal projections onto the subspaces K(A, bi), then∑r1
i=1 Pi = I and

∑r1
i=1 ||Pix||2 = I||x||2 for any x ∈ Rn. Which implies that

{A`bi : i ∈ Ω = {1, 2, ..., r}; 0 ≤ ` ≤ 2ri − 2} does norm retrieval in Rn where ri

is degree of the A-annihilator of bi.

3.3 Normal Operators

Let A be a normal operator on Rn. That is AA∗ = A∗A, and A∗ = A> in Rn.

The eigenvalues of A are not necessarily all real values. For that reason, in

the Jordan decomposition of A = BJB−1, B may not be a real matrix when we
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have a real normal matrix A. A strictly real version of Schur decomposition will

have that desired preservation of real entries.

Theorem 3.3.1. [30] (Real Schur decomposition) If A is a real n × n matrix,

there is a real orthogonal matrix B such that A = BTB>

B> is transpose of B and T is an upper triangular matrix given by

T =



T1 ∗ ∗ · · · ∗

T2 ∗ · · · ∗
. . .

...

Tk


∈Mn(R), 1 ≤ k ≤ n (3.3.1)

where each Tj is either a real 1× 1 matrix or a real 2× 2 matrix Tj =

 αj βj

−βj αj


corresponding to the complex eigenvalues λj = αj + iβj and λ̄j = αj − iβj of A

for which αj, βj ∈ R.

Example 3.3.2. For the given normal operator N on R3, there does not exist

any b ∈ R3 such that F = {b,Nb,N2b,N3b} does norm retrieval in R3.

N =


1 −1 0

1 1 0

0 0 1

 , b =


b1

b2

b3


F does norm retrieval if and only if for any partion F1, F2 of F ,

spanF⊥1 ⊥ spanF⊥2 . For F1 = {b,Nb} and F2 = {N2b,N3b}, we have

spanF⊥1 ⊥ spanF⊥2 if and only if 5(b2
1 + b2

2)b2
3 + 8(b2

1 + b2
2)2 = 0.

There are no nonzero solutions, hence no b ∈ R3 such that F = {b,Nb,N2b,N3b}
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does norm retrieval in R3. However, for b1 = e1, b2 = e3 F = {b1, Nb1, N
2b1, b3}

does norm retrieval in R3 but does not do phase retrieval since it fails complemen-

tary property.

We are trying to find norm retrievable sets which are not phase retrievable. For

that reason, we have the following theorem for real normal operators as a result of

the real Schur decomposition. Since U is orthogonal, we reduce the normal case

to operators of the form J in (3.3.2).

Theorem 3.3.3. [30] Let A be an n × n matrix with real entries. Then A is

normal if and only if there is a real orthogonal matrix U and a block diagonal

matrix J such that U>AU = J . U> is the transpose of the operator U .

J is given by

J =



J1

J2

. . .

Jk


∈Mn(R), 1 ≤ k ≤ n (3.3.2)

where each Jj is either a real 1× 1 matrix or a real 2× 2 matrix of the form

Jj =

 αj βj

−βj αj

 , αj, βj ∈ R.

We may restrict our work on operators in the block diagonal form J , since U

is real orthogonal (unitary).

Since the main diagonal blocks Jj in (3.3.2) can be arranged in any order, we

can write

J =

D1 0

0 D2


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where D1 is a diagonal matrix with real eigenvalues λ1, λ2, ...λs of A

D1 =



λ1I1

λ2I2

. . .

λsIs


(3.3.3)

For j = 1, 2, ..s, Ii is a rj × rj identity matrix.

D2 is a block diagonal matrix with each block has the from Jj =

 αj βj

−βj αj


with respect to pair of complex eigenvalues λj = αj +βj , λ̄j = αj−βj of A where

αj, βj ∈ Rn.

D2 =



 α1 β1

−β1 α1

  α2 β2

−β2 α2


. . .  αs βs

−βs αs





(3.3.4)

Note: In the notation we used in (3.3.4), if we have repeated complex eigen-

values, λj = λs, then the respective block diagonal matrixes Jj and Js in (3.3.4)

are same .

Lemma 3.3.4. Let D2 be a block diagonal matrix on R2n which has the form

in (3.3.4) and {ei}2n
i=1 be the orthonormal bases in R2n. Then {bk, Dbk, D2bk}nk=1
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does norm retrieval in R2n if bk = e2k−1 or bk = e2k.

Proof. Let Nj = span{D2e2j−1, D2e2j} in R2n for 1 ≤ j ≤ n .

Then R2n = N1 ⊕N2 ⊕ ...⊕Nn. If αj = 0 for all j, then {bi, Dbi, D2bi}ni=1 is

an orthogonal set in R2n for bi = e2i−1 or bi = e2i and hence does norm re-

trieval. If αj 6= 0, then {e2j−1, De2j−1, D
2e2j−1} is a full spark set in Nj. Then

{e2j−1, De2j−1, D
2e2j−1} does phase retrieval (and hence norm retrieval) in Nj.

By the Lemma (3.1.2), the set of vectors {e2j−1, De2j−1, D
2e2j−1}nj=1 does norm

retrieval in R2n.

Theorem 3.3.5. Let A be a normal operator on Rn with the decomposition in

the Theorem (3.3.3). Then {A`ibi, A
`jcj} does norm retrieval in Rn if the set of

vectors {A`ibi} does norm retrieval in diagonal D1 part of A and {A`jcj} does

norm retrieval in the non-diagonal D2 part of A.

Proof. The proof follows from Lemma (3.2.11) and Lemma (3.3.4).

Next, we show a different method to show that there exist set of vectors

W = {bi ∈ Rn} such that {A`bi ∈ Rn} does norm retrieval in Rn. In this case,

the sum of orthogonal projections onto A`W does not need to be the identity.

Theorem 3.3.6. ([5]) Let {xi}Mi=1 be a set of vectors in a Hilbert space Hn. The

following are equivalent:

(1) {xi}Mi=1 yields phase retrieval in Hn.

(2) {Axi}Mi=1 yields phase retrieval for all invertible operators A on Hn.

(3) {Axi}Mi=1 yields norm retrieval for all invertible operators A on Hn.

Remark 3.3.7. We have that phase retrieval is preserved under invertible operators

as shown in Theorem (3.3.6). This is another instance where norm retrieval is
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harder to manage. We can see readily that norm retrieval is preserved under

unitary operators but not all invertible operators.

For example, orthonormal bases do norm retrieval. An invertible operator A

might send an orthonormal basis to a non-orthogonal set. This illustrates that A

does not preserve norm retrieval since it fails Lemma (2.3.7).

Given a finite set of vectors {bi ∈ Rn; i ∈ Ω, |Ω| < n} in a Hilbert space.

Let W = span{bi ∈ Rn; i ∈ Ω} be a subspace of Rn. For each ` ∈ N,

we can define; A`W = span{A`bi ∈ Rn; i ∈ Ω} ⊂ Rn. Let P` be orthogonal

projection from Rn onto A`W for each ` ∈ N. The previous theorem tells us that

if the set of vectors {bi ∈ Rn; i ∈ Ω, |Ω| < n} does phase retrieval in W , then

{A`bi ∈ Rn; i ∈ Ω, |Ω| < n} does phase retrieval in A`W for each ` ∈ N when A

is an invertible operator on Rn.

Suppose there exist m ∈ N such that Rn = span{A`bi}i∈Ω, `=0,1,...m. The set of

vectors {A`bi}i∈Ω is phase retrievable in A`W for each ` = 0, 1, ...m but it does

not imply that {A`bi}i∈Ω `=0,1,...m does phase retrieval in Rn.

Example 3.3.8. Let {ei}3
i=1 be the standard orthonormal basis in R3.

Define W = span{e1, e2, e1 + e2}.

Let A be an invertible operator on R3 such that Ae1 = e2 andAe2 = e3. Then

we have AW = span{e2, e3, e2 + e3}. Both {e1, e2, e1 + e2} and {e2, e3, e2 + e3} do

phase retrieval in W and AW respectively but {e1, e2, e3, e1 + e2, e2 + e3} fails the

complementary property (2.3.5), and thus not do phase retrieval in R3.

The following theorem gives us sufficient conditions on the set of vectors

{bi ∈ Rn; i ∈ Ω, |Ω| < n} and the orthogonal projections P` onto A`W such that

{A`bi}i∈Ω `=0,1,...m does norm retrieval in Rn.
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Theorem 3.3.9. Let the set of vectors {bi ∈ Rn; i ∈ Ω, |Ω| < n} do phase re-

trieval in W ⊂ Rn and let A be an invertible operator on Rn. Then the set of

vectors {A`bi}i∈Ω `=0,1,...m does norm retrieval in Rn if the set of orthogonal pro-

jections {P`}m`=0 onto the subspaces A`W = span{{A`bi}i∈Ω} does norm retrieval

in Rn.

Proof. Given x, y ∈ Rn, suppose |〈x,A`bi〉| = |〈y, A`bi〉| for all i ∈ Ω, ` = 0, 1, ...m.

For fixed `, define P` to be the orthogonal projection onto A`W .

We have P`A
`bi = A`bi and |〈P`x, P`A

`bi〉| = |〈P`y, P`A
`bi〉| for all i ∈ Ω.

By Theorem (3.3.6), since A is an invertible operator and the set of vectors

{bi ∈ Rn; i ∈ Ω, |Ω| < n} does phase retrieval inW , {A`bi}i∈Ω does phase retrieval

(hence norm retrieval) in A`W for each `. This implies that ||P`x|| = ||P`y|| for

all ` = 0, 1, ...M . Since we assumed the set of orthogonal projections {P`}m`=0 does

norm retrieval in Rn, we have ||x|| = ||y||.

3.4 Unitary operator iteration

If our dynamical sampling operator is unitary, this gives us a smoother way to do

norm retrieval. Let Ω ⊂ {1, 2, ..., n} be an index set and {ei}ni=1 be an orthonormal

bases of Rn. Assume U is a unitary operator on Rn.

Let W = span{ei; i ∈ Ω} and U jW = span{U jei; i ∈ Ω} for any j ∈ N. For

any given j ∈ N, since U is an unitary operator and unitary operators preserve

the inner product, we have 〈U jei, U
jek〉 = 〈ei, ek〉 = 0 for any i 6= k. That is

{U jei}i∈Ω is an orthonormal basis for U jW for each j.

Lemma 3.4.1. Let Rn be the real Hilbert space and W = span{ei; i ∈ Ω} ,
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U jW = span{U jei; i ∈ Ω} for any integer j ≥ 0 and Pj be the orthogonal pro-

jection onto U jW for any j ≥ 0. Suppose U is a unitary operator on Rn. If

the set of projections {Pj}Mj=0 does norm retrieval on Rn, then the set of vectors

{U jei}i∈Ω,j=0,1,..M does norm retrieval in Rn.

Proof. For any given vectors x, y ∈ Rn

Suppose |〈x, U jei〉| = |〈y, U jei〉| for any i ∈ Ω and j = 0, 1, ..M . Since U jei ∈ U jW

for any j = 0, 1, ..M , we have PjU
jei = U jei, and hence

|〈x, U jei〉| = |〈y, U jei〉| =⇒ |〈x, PjU
jei〉| = |〈y, PjU

jei〉|

=⇒ |〈Pjx, U
jei〉| = |〈Pjy, U

jei〉|.

Since Pj is a projection on U jW . For each fixed j, Since {U jei}i∈Ω is an

orthonormal basis in U jW , we have

||Pjx|| =
∑
i∈Ω

| < Pjx, U
jei > |2 =

∑
i∈Ω

| < Pjy, U
jei > |2 = ||Pjy|| (3.4.1)

By assumption, Since the projections {Pj}Mj=0 do norm retrieval on Rn, we have

||x|| = ||y||.

Note: In the above lemma, we used orthonormality of {U jei}i∈Ω in U jW to

show norm retrievability using that U is a unitary operator. Hence, this lemma

also holds for any operator which is an isometry.

U being a unitary is a strong condition, however we can relax this assumption

as shown in the following lemma.
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Corollary 3.4.2. Let U be a unitary operator on Rn and {bi ∈ Rn : i ∈ Ω} be

a set of vectors in Rn. Define W = span{bi ∈ Rn; i ∈ Ω}. If the set of vectors

{bi ∈ Rn : i ∈ Ω} does norm retrieval in W , then for any given k ∈ N, {Ukbi}i∈Ω

does norm retrieval in UkW .

Proof. Fix k ∈ N, supose we have

|〈x, U jbi〉| = |〈y, U jbi〉| ∀i ∈ Ω for given x, y ∈ UkW.

Then,

|〈x, U jbi〉| = |〈U∗jx, bi〉| = |〈U∗jy, bi〉| = |〈x, U jbi〉|.

Since the set of vectors {bi ∈ Rn : i ∈ Ω} does norm retrieval in W , we have

||U∗jx|| = ||U∗jy|| and therefore ||x|| = ||y|| (Since U is a unitary operator, U∗ is

also a unitary operator).

Let {Pj} be an orthogonal projection onto the subspace U jW for each j. We

can now give a condition that will ensure that the set of projections {Pj}j does

norm retrieval in Rn. It connects to the fusion frames we defined in (2.1.11).

Recall that fusion frames are the set of projections {Pj}j with positive weights

{vj} such that there exist constants 0 < A ≤ B <∞ and

A||x||2 ≤
∑
i∈I

vi
2||PWi

(x)||2 ≤ B||x||2, for all x ∈ Rn.

Theorem 3.4.3. Let U be a unitary operator on Rn and {bi ∈ Rn : i ∈ Ω |Ω| < n}

be a set of orthonormal vectors in Rn. The set of vectors {U jbi : i ∈ Ω, j =

0, 1, ...`} does tight frame in Rn if and only if the set of projections {Pj}j onto the
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subspaces U jW = {U j bi : i ∈ Ω} is a tight fusion frame with weights vj = 1 for

all j.

Proof. (=⇒) Suppose the set of vectors {U jbi : i ∈ Ω, j = 0, 1, ...`} does tight

frame in Rn with frame bound C > 0. Then given any x ∈ Rn, we can write

||x||2 =
1

C

∑
i,j

|〈x, U jbi〉|2.

Since {bi ∈ Rn : i ∈ Ω} is a set of orthogonarmal vectors in Rn and U is a unitary

operator, {U jbi : i ∈ Ω} is also orthonormal set of vectors in U jW for each j.

Hence, the orthogonal projection Pj onto the subspaces U jW = {U j bi : i ∈ Ω}

can be written as

Pj(x) =
∑
i∈Ω

〈x, U jbi〉U jbi.

Thus,

||x||2 =
1

C

∑
i,j

|〈x, U jbi〉|2 =
1

C

∑
j

||Pj(x)||2

and the set orthogonal projections {Pj}j is a C -tight fusion frame with weights

vj = 1 . (⇐=) This follows from definition of tight fusion frame with weights

vk = 1 for all k.

If {bi ∈ Rn : i ∈ Ω} is a set of vectors that are orthogonal but not orthonormal

in Rn, then {U jbi : i ∈ Ω, j = 0, 1, ...`} is not necessarily a tight frame in Rn

anymore. In this case, we have the following corollary that follows from Theorem

(2.3.12), Lemma (3.1.2) and Lemma (2.3.7).

Corollary 3.4.4. Let U be a unitary operator on Rn and {bi : i ∈ Ω} be a set
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of orthogonal vectors in Rn. The set of vectors {U jbi : i ∈ Ω, j = 0, 1, ...`} does

norm retrieval in Rn if x ∈ span{Pj(x)}`j=0, for any x ∈ Rn.

3.5 Jordan Form

In this section, we are interested in the linear operator A on Rn which has all real

eigenvalues and unitarily similar to Jordan form. We want to construct subspaces

in Rn which are not necessarily orthogonal to each other but projections onto

these subspaces will do norm retrieval in the dynamical sampling structure. We

use the notation from ([2]) to set up our next construction.

Let J ∈ Rnxn be Jordan matrix which has all real eigenvalues, then we have

J =



J1 0 · · · 0

0 J2 · · · 0

...
...

. . .
...

0 0 · · · Js


(3.5.1)

For j = 1, 2, ..s, Jj = λjIj +Nj where Ij is an rj × rj identity matrix and Nj

is a rj × rj nilpotent block-matrix of the form:

Nj =



Nj1 0 · · · 0

0 Nj2 · · · 0

...
...

. . .
...

0 0 · · · Nji


(3.5.2)
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Each Nji is a rij × rij cyclic nilpotent matrix of the form:

Nji =



0 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1


(3.5.3)

with r1
j ≥ r2

j ≥ ... ≥ rij and r1
j + r2

j + ... + rij = rj. The matrix J has distinct

eigenvalues λj, j = 1, 2, ..s and r1 + r2 + ...+ rs = n.

Let kji denote the index corresponding to the first row of the cyclic nilpotent

matrix Nji in (3.5.3), and let ekji be the corresponding standard orthonormal

bases vector of Rn corresponding to index kji.

We define Wj = span{ekji : j = 1, 2, ..., s}.

Example 3.5.1. Let J = λI +N ∈ R4,

N =

N1 0

0 N2


where

Ni =

0 0

1 0


for i = 1, 2 and W = span{e1, e3}. Then
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JW = span{λe1 + e2, λe3 + e4}

J2W = span{λ2e1 + 2λe2, λ
2e3 + λe4}

J3W = span{λ3e1 + 3λ2e2, λ
3e3 + 3λ2e4}

J4W = span{λ4e1 + 4λ3e2, λ
4e3 + 4λ3e4}

Let P` be the orthogonal projection onto the subspace J `W for each ` ∈ N. For

fixed ` ∈ N,

||J `We1||2 = λ2` + `2λ2(`−1) = ||J `We3||2.

Let c` = λ2` + `2λ2(`−1) for each ` ∈ N, then the orthogonal projection P` onto

the subspace J `W for each ` ∈ N can be written as:

P`(x) =
1

c`

∑
i=1,3

〈x, J `Wei〉J `Wei and ||P`(x)||2 =
1

c`

∑
i=1,3

|〈x, J `Wei〉|2.

This implies that the set of vectors {J `Wei}i,` does norm retrieval in Rn if and

only if I =
∑̀
c`P` since the coefficients {c`} are independent from choice of x.

Theorem 3.5.2. Let Wj = span{ekji : j = 1, 2, ..., s} , l = 0, 1, ..., rij and {P `
i } be

the orthogonal projection onto J lWi. Suppose order rij of Nji are same for all i, j.

Then the set of vectors {J lekij} does norm retrieval in Rn if I =
∑̀
c`iP

`
i .

Proof. By choice of ekji as standard basis corresponding to the first row of Nji ,

J lekji forms an orthogonal basis for J lWi. As shown on Example (3.5.1), for fixed
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l, ||J lekij || = cl for all i, j.

The orthogonal projection {P `
i } onto J lWi can be define as

P i
` (x) =

1

c`i

∑
`,i

〈x, J `Wekji〉J `Wekji .

This implies {J lekij} does norm retrieval in Rn if and only if I =
∑̀
c`,iP

i
` .

Let A be a linear operator on Rn and p be the annihilator polynomial of A.

That is p(A)x = 0 for all x ∈ Rn.

Lemma 3.5.3. Let F = {xi}mi=1 be a frame in Rn and p be the annihilator polyno-

mial of A. Let F1, F2 be a partition of F and p1, p2 be the annihilator polynomial

of F1, F2 respectively. If p/p1p2 , then the set of vectors F = {xi}mi=1 does norm

retrieval in Rn.

Proof. F = {xi}mi=1 does norm retrieval in Rn if and only if for any partition

I ⊆ {1, ...,m}, (spanF1)⊥ ⊂ (spanF2). For that reason, its enough to show that

if p/p1p2, then (spanF1)⊥ ⊂ (spanF2).

To prove by the contrapositive, suppose there exists x ∈ (spanF1)⊥ such that

x 6∈ spanF2. Since x ∈ spanF⊥1 , we also have x 6∈ spanF1 . The set of frames

F = {xi}mi=1 spans the space Rn and we have Rn = (spanF1) + (spanF2). Hence,

such an x will exists if we can write x = x1 + x2, where x1 ∈ (spanF1) and

x2 ∈ (spanF2) but x2 /∈ (spanF1) , where both x1, x2 are non-zero vectors.

On the other hand, p(A)x = 0 but p1(A)x 6= 0, and p2(A)x 6= 0 since

x 6∈ spanF1 , x 6∈ spanF2 and p1, p2 are annihilator polynomials of the sets F1, F2

respectively. So, p does not divide p1p2.

65



We give the theorems that diagonal and self-adjoint operators on Rn do not

have any norm retrievable frame generated from a single vector for fewer vec-

tors than phase retrieval. On the other hand, the following example shows the

existence of operators which do norm retrieval with a single generator.

Example 3.5.4. Let

A =


0 0 0

1 1 0

0 1 −2

 b =


1

0

0


then the set

F = {b, Ab,A2b, A3b} =




1

0

0




0

1

0

 ,


0

1

1




0

1

−1




contains an orthogonal basis, and hence it does norm retrieval. Since the number

of vectors is less then 5, it does not do phase retrieval in R3. We know from

Lemma (2.3.14) that scalable frames all do norm retrieval. F is a scalable frame

but it does not a stricly scalable frame. To see this , note that span of the rank one

operators generated by the vectors {b, Ab,A2b, A3b} contains the identity operator.

bb∗ =


1 0 0

0 0 0

0 0 0

 , Ab(Ab)∗ =


0 0 0

0 1 0

0 0 0


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A2b(A2b)∗ =


0 0 0

0 1 1

0 1 1

 , A3b(A3b)∗ =


0 0 0

0 1 −1

0 −1 1


and

I = bb∗ +
1

2
A2b(A2b)∗ +

1

2
A3b(A3b)∗.
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Chapter 4

Future Work

4.1 Future Work

Norm retrieval and dynamical sampling are two newly-emerging research areas

in the frame theory. In this paper, we give a method in real Hilbert spaces to

construct norm retrievable sets with dynamical sampling structure.

We now describe some areas for future work. We see that the dynamical sam-

pling structure also exists in infinite dimensional Hilbert spaces in ([19],[20],([21]).

Authors in ([20]) proved that every frame can be represented in the dynamical

sampling form with finitely many vectors and bounded operators if the frame is

norm-bounded below. In other words, there exist finitely many vectors bi and

bounded operators Ai for any given frame that is norm bounded below such that

the frame can be represented as a finite union of sequences {(Ai)
nbi}∞n=0 for some

i = 1, 2, ...,m. Recently, Aldroubi and his collaborators in ([4]) also showed that

phase retrieval is possible in the dynamical sampling structure in the infinite di-

mensional Hilbert spaces. Our next research project will be looking for norm
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retrievable sets in the infinite dimensional real Hilbert spaces that is generated

by dynamical sampling method.

Norm retrieval in complex Hilbert spaces requires a different set of criteria

to verify that a set of vectors do norm retrieval, as described in paper [25].

Finite or infinite dimensional complex Hilbert spaces are another places where

we can construct norm retrievable sets in the dynamical sampling form. In

real Hilbert spaces, the complementary property completely classify phase re-

trievable conditions but in complex Hilbert spaces, complementary property is

necessary but not sufficient to classify phase retrievable sets. Similar problems

occurs when we try to figure out which sets do norm retrieval in finite com-

plex Hilbert spaces. The authors in [25] have defined a classification of norm

retrievable frames in finite dimensional complex Hilbert spaces as follows: Let

{xi}mi=1 be a frame in Cn. Given a bounded linear operator K : B(H) −→ Cm

defined by K(H) := [〈Txi, xi〉]1≤i≤m, the set of vectors {xi}mi=1 does norm re-

trieval in Cn if and only if any operator T ∈ Ker(K)∩ S1,1 has trace zero. Where

S1,1 = {T ∈ B(H) : T = T ∗, rank(T ) ≤ 2, and σ(T ) is the set of eigenvalues of T

and λmax, λmin are largest and smallest eigenvalues of T . In [7], Balan showed that

the set of vectors {xi}mi=1 in Cn do phase retrieval if and only if Ker(K) ∩ S1,1 = 0.

These two classification are quite challenging to generate dynamical sampling

frames that are phase retrievable and norm retrieval.

The authors in ([32],[38],[39]) have defined frames in Quaternionic Hilbert

spaces. Many frame properties carry over to the quaternionic setting. This means

that phase retrievable and norm retrievable sets also can be obtain in the Quater-

nionic Hilbert spaces. The author in [36] showed that phase retrievable is possible

in Quaternionic Hilbert spaces but norm retrieval is still an open question in these
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spaces. We will examine conditions for vectors to do norm retrieval and phase

retrieval on these spaces and perhaps also try to set up dynamical sampling. One

might hope to get dynamical sampling frames in Quaternionic Hilbert spaces.
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