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Abstract

Shared decision making has become a very important solution in

order to build a consolidated healthcare system. While there is some

research in the healthcare literature discussing the advantages and dis-

advantages of the shared decision making, its efficiency has not been

addressed quantitatively. In this thesis, we propose a universal decen-

tralized decision-making architecture utilizing the Blockchain Technol-

ogy and Machine Learning (predictive and prescriptive analytics) to ad-

dress the compelling need for coordination among healthcare providers

and patients in an efficient and integrated manner. The healthcare pro-

cess considered is the assignment of a patient to the best physician and

hospital in consolidated hospital systems. After designing Decentral-

ized Patients Assignment System (DPAS), the model is simulated using

Agent-based models (ABM). The ABM consist of 4 agents including

patient, physician, hospital and miner (assignment algorithms) which

interact inside a decentralized integrated system. The proposed mecha-

nism introduces the importance of interoperability between healthcare

agents in the decision making process created by Blockchain Technology.

To illustrate the model efficiency, two scenarios have been simulated and

the results are compared. The results demonstrate the proposed model

efficiency in terms of the assignment rate, computational time, and cost.
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1 Introduction

One of the most important processes in consolidated hospital systems has been the

assignment/referral of the patient with a certain level of illness severity to the best

available physician at a hospital with the required facilities. This is a dynamic

problem in nature which needs interoperability among healthcare providers such

as hospitals and the physicians. In addition, multiple important parameters will

define the decision-making process of patients’ assignments, such as the patient’s

severity of illness, cost of transferring by ambulance, physicians’ availability, the

consent of healthcare providers and patients on sharing data and making the final

decision together. Currently, the major concern in this process is geared towards the

coordination and integration of the patients’ referral system. In a non-coordinated

system, the goal is maximizing the individual’s objective; however, in a coordinated

system, the goal is maximizing the whole system since locally optimal solutions do

not guarantee quality health services in the whole system. Hence, the coordination

level of the referral system will characterize the quality of the patients’ assignment,

which is to fulfill patients’ needs in the right time and in an integrated manner.

(Mohebbi, 2015).

A new solution to the patients’ assignment problem, proposed by the literature,

is the shared decision making process in which multiple healthcare parties such as

physicians, practitioners and patients make decisions jointly, using the best avail-

able evidences (Bai et al., 2014a). Shared decision making can improve both the
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efficiency of the decision making and the ethical imperative due to the patient’s

rights, while it reduces unwarranted healthcare practice variations (Légaré et al.,

2014). However, shared decision making can be effective only when the healthcare

providers can access the data in-time and they can collaborate through a fast and

trustable channel. This process will become more difficult if the health providers

use different health systems, databases, and communication network. Therefore,

lack of data availability and interoperability between healthcare providers are still

the huge hindrances to the effectiveness of shared decision making for the patients’

assignment problem. To tackle these issues, this paper is proposing a Decentralized

Patients Assignment System (DPAS) framework utilizing Blockchain Technology

and Machine Learning techniques (predictive and prescriptive analytics). DPAS

will employ Blockchain technology to make a decentralized decision system which

has secure data sharing, flexible interoperability, and the fast assignment mecha-

nism. Fig. 1 shows the analytical framework which is followed to build the DPAS

architecture. The goal is to assign a patient to the right physician and right hospi-

tal, with the minimum cost while the severity of illness is taken into account. For

this purpose, DPAS consists of two main design levels, including Patient Centric

Model (PCM) and the Blockchain Architecture. PCM will result in the optimized

assignment and Blockchain will make the assignment process efficient by increasing

the coordination and transparency. PCM contains two sub-level designs, including

the Machine Learning algorithms to identify the severity of the illness (predictive
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analytics) which will be fed into the mathematical model (prescriptive analytics),

and the TOPSIS Matching Algorithm to rank the best physicians to be assigned to

the patient. The output of both sublevel algorithms will be used as an input to the

optimization model which will minimize the cost of patients’ assignment and the

average cost of losing patients (the optimization model will be the mining algorithm

in the smart contract design). On the other parallel level, Blockchain Architecture

contains several smart contract layers which are used for gathering, sharing and sav-

ing data generated by DPAS. By embedding the optimization model as the mining

process into the Blockchain architecture, the smart contract can be ready to give the

patient data to the mining process and get the mining results (assignments solution)

from the optimization problem which is run by miners.

The analytical framework is modeled and implemented using the Agent-Based

models in Python. It considers the patients, physicians, hospitals and the miners as

the interacting agents. To build the Blockchain architecture, Ethereum platforms

which is based on smart contracts is utilized. The designed system will employ

Blockchain to connect multiple decision makers agents in a decentralized-transparent

environment. This will facilitate the coordination and the integrity of the system.

In addition, the optimization model will guarantee the quality of the patients’ as-

signment process.
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Figure 1: Analytical Framework for DPAS design

Following this section, the remainder of the work is organized as follows: In

section 2, the literature on three main streams of healthcare research including

Advanced Analytics, Blockchain Technology and decentralized systems, and Agent-

based Simulation is reviewed. Section 3 is devoted to defining the methodology and

the proposed DPAS framework. Section 4 provides the performance evaluations of

the DPAS framework for two scenarios. Finally, section 5 will give insights and

discussion about the cons and pros of the proposed framework and will provide

concluding remarks, limitations, and the future research directions.

2 Literature Review

This study is focused on three main streams of healthcare literature: Advanced

Analytics, Blockchain Technology, and Agent-based Simulation. The healthcare lit-
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erature in Advanced Analytics presents two main categories : Prescriptive Analytics

and Predictive Analytics. The most employed techniques for simulation are based

on Markov chain and Agent-based simulation.

2.1 Prescriptive Analytics Review

Prescriptive analytics recommends a course of action and remains the most widely

used techniques in healthcare literature. Many attempts have been conducted to

improve the existing systems from different perspectives. Some research focused

in increasing the security of information-transition among the healthcare providers

while optimizing the healthcare workflow task assignment. This can be done by us-

ing two-stage optimization methodology to minimize the information disclosure risk

via a workflow system with optimal efficiency of the workflow task assignment and

a viable and effective control scheme (Bai et al., 2014b). The results showed that

it is possible to identify this risk, but the solution remains partial because it does

not propose a direct solution to tackle the security issue. Another area of Advanced

Analytics focuses on optimization techniques to optimally manage healthcare pro-

cesses. Bastian (2015) compared different decision-making tools applied to optimize

the accuracy and the fastness of the management in military healthcare. Applying

mathematical modeling to complex problems is sometimes limited by the assump-

tion made in the modeling even if it improves the existing system by proposing

a data-driven managerial support to the military healthcare decision makers. An-

5



other study applied a game theory framework to consolidated hospital systems with

a central referral center to enhance the coordination among physicians and hospi-

tal managers (Mohebbi, 2015). Other studies utilized metaheuristic algorithms for

accepting and scheduling patients dynamically for home healthcare or patient flows

in hospitals by using variables among nurses, patient, task and time (see Demir-

bilek et al. (2018); Niroumandrad and Lahrichi (2018)). Metaheuristic approach

offers an adaptable and fast method for integration in healthcare process and for

the large-scale patient flow problem. The aforementioned works have bridged some

gaps in the literature. However, they are mainly built on the assumption of a central

decision making procedure.

2.2 Predictive Analytics Review

Predictive analytics tries to address the literature gaps using real time data-driven

approaches. It uses statistics to analyze past and current facts hidden in the data to

make prediction about the future. Ganguly and Nandi (2016) proposed statistical

techniques to develop a forecasting model, using ANOVA techniques, for optimal

staff scheduling in healthcare organizations based on patient arrival rates. It was

found that personnel allocation can be anticipated, and the staff was correctly al-

located by analyzing patient arrival rates. Other applications, based on Machine

Learning techniques, offer unlimited possibilities for analyzing different data models

less visible or hidden to common analysis techniques to forecast, put diagnose, and
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set treatments for patients in healthcare organizations (see Agarap (2018); Hijazi

et al. (2016); Ţăranu et al. (2016)). The outcomes reach very high accuracy, near to

97 to predict disease. Nevertheless, the results remain very basic, because the mod-

els only predict binary outcomes: if there is an illness or not. The level of gravity of

the disease could be predicted also using multi integer outcome algorithms. Many

attempts were conducted to improve the decision making process using prescriptive

and predictive analytics and have shown great results to improve existing solutions

or to create new ones. However, these works mainly deal with centralized decision-

making processes and avoid the involvement of other actors such as patients. Thus,

the secure decentralization of the decision process could bring an acceptable solution

to involve more actors in an integrated decision-making framework.

2.3 Blockchain Review

Demand for decentralization of the digital information system (Al-Megren et al.,

2018) is growing in different domains including healthcare systems. There are sev-

eral decentralization mechanisms which have their own pros and cons, but the cur-

rent literature stream offers a new compelling secure way of decentralization known

as Blockchain technology. Blockchain technology proposes a peer to peer system

which guaranties a highly secured and fast transaction process (Nakamoto, 2008).

The technology was first introduced by Bitcoin as a cryptocurrency asset. Later,

with the creation of Ethereum (Buterin et al., 2014), Blockchain got the ability to
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represent the ownership protocol by implementing “smart-contract” which define

“smart properties.“ It supports a built-in fully-fledged Turing-complete program-

ming language to create “contracts” that can be used to encode arbitrary state

transition functions. This new technology has been adapted to many other field in

industry and especially in the healthcare industry. Blockchain is a revolutionary

technological breakthrough which has triggered a wide research interests in finding

the ways to integrate existing healthcare processes (Alla et al., 2018). The health-

care community has established multiple metrics to define the expectation regarding

to the Blockchain-based healthcare systems(Zhang et al., 2017a). Based on these

metrics, Blockchain with healthcare application must comply with the following

rules: the entire work flow is HIPAA compliant, the framework employed needs

to support Turing-complete operations, the support for user identification and au-

thentication must be significant, the support for structural interoperability must

be respected, the scalability across large populations of healthcare participants is

compulsory, the cost-effectiveness side must be reasonable and the support must be

a patient-centered care model. It proposes a set rules to respect for any Blockchain

related works in healthcare. E-health Blockchain (Liu et al., 2017), MedShare (Xia

et al., 2017) and MedRec (Ekblaw et al., 2016) are some examples of the Blockchains

were developed. E-health Blockchain proposes to build the chain of blocks for each

provider, but also each block is chained among providers to follow the exact path

for each patient through the network of providers. Regarding MedRec, it gives
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patients a comprehensive and immutable record and easy access to their medical

information across providers and treatment sites. Nevertheless, none of those new

Blockchains respects completely the metrics. The e-health Blockchain remains too

provider-centered to record patient but presents a structural interoperability, while

the med-rec presents a reasonable patient-centered skill but few structural inter-

operability when it comes to release inputs for Intelligent Systems. Thus, many

researches focus on the decentralization of healthcare process and Blockchain tech-

nology has been adapted to tackle this major issue. Nonetheless, existing works

struggle to be validated by the two most important metrics, which are the patient

centered and structural interoperability criteria simultaneously. To address this gap,

we propose a new Blockchain architecture responding to those two major require-

ments in hospital networks.

2.4 Agent-Based Modelling Review

The third stream of the healthcare literature is the modeling and simulation of the

healthcare processes. As discussed before, it is recommended to test the resilience

and the scalability of the decentralized healthcare systems. Markov chain modeling

provides suitable techniques to study the different behaviors of a system under

uncertainty. Among other studies, Zhang et al. (2017b) utilized Markov chains to

simulate decision making for the treatment decision for a type 2 diabetes. They

demonstrated the effectiveness of this decision-making process using variation in a
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patient’s glycated hemoglobin use case, where the transition probability is subject

to uncertainty. The study bases its metric on QALYS and Medical Cost to assess its

efficiency. Another technique of simulation is Agent-Based modeling. It describes

and models a complex system in totality as a set of multiple autonomous agents

who have their own objectives, behavior and interactions with other agents and the

environment. This set of different individual behaviors generates a global behavior

as in the real world. There are a growing number of research works utilizing Agent-

Based simulation in healthcare. Liu and Wu (2016) focused on accountable care

organization (ACO) in hospital. They developed an Agent-Based simulation model

to study ACOs that considers payers, healthcare providers, and patients as agents

under the shared saving payment model of care for congestive heart failure. They

demonstrated that the major factor of an acceptable ACO is the payment model.

When the cost-effectiveness implemented by the ACO varies, the behavior of the

medical team varies accordingly. Agent-based simulation has also been utilized

to model the interaction of a multidisciplinary healthcare team and its scheduling

(see Othman et al. (2016); Wilk et al. (2016)). The simulation process allows the

model to be similar to the real world. Lopes et al. (2018) focused on the medical

workforce in Portugal using Agent-Based simulation. The study shows that the

medical workforce will not be enough to address the aging population issue.

All in all, the analytics stream of the literature has not addressed the decentral-

ization of the decision-making in healthcare processes deeply. In addition, due to the
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models’ assumptions, actors such as patients are mainly overlooked in the modeling

process. Blockchain technology literature suggests two most important metrics for

Blockchain adoption in healthcare, which are the patient centered and structural

interoperability criteria. In an attempt to bridge these gaps in the literature, this

paper proposes a Blockchain-based analytics framework for integrated healthcare

system. To demonstrate its feasibility and efficiency, we utilize Agent-Based model-

ing to simulate the interaction among main decision makers, mimicking the real life

behavior of the different human or machine, and decision makers.

3 Analytical modeling

The proposed Decentralized Patient Assignment System (DPAS) connects differ-

ent intelligent systems which boost the interoperability between differeFnt health-

care providers while it enables considering the patient preference in the decision-

making process. In fact, the Blockchain architecture is added to the patient as-

signment/referral system designed to bridge two main aforementioned gaps in the

literature. As shown in Fig. 1, DPAS consist of two design layers; Blockchain Archi-

tecture and the Patient Centric Model which are integrated to create a decentralized,

secured, optimal and patient-involved assignment system.
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3.1 Blockchain Architecture

Blockchain technology is defined as distributed ledger technology, which records

transactions in a secure, transparent, decentralized, and efficient manner with low

cost. The Blockchain is the technology underlies bitcoin, which was introduced

by pseudonym Satoshi Nakamoto in 2008 (Nakamoto, 2008). The idea of applying

Blockchain to the healthcare systems stems from the need for decentralization of

referral systems and efficient decision-making process. Blockchain can distribute the

decision process by connecting decision makers to the distributed healthcare network

including patients, hospitals, and physicians. This will create a transparent system

in which all the healthcare actors are involved in decision making, confirming and

implementing it. The overall mechanism of Blockchain architecture and the roles’

distribution is as follow. The hospitals focus on gathering and computing local data

for the patient transfer process and they make these data accessible to miners. The

role of the miners is to bring consensus and find the best assignments solution by

solving the consensus problem. The first miner who finds the solution, publish it

to the network. When the generated solution is confirmed by other miners in the

network, the solution is accepted, and the miner gets a reward in Ethereum. At

this point, patients assignment happens according to the validated solution, and a

new block (including the data about the assignment solution and process) will be

generated and chained to the previous latest block. As shown in Fig. 2, the proposed

Blockchain architecture is built on the Ethereum which uses multiple layers of the

12



smart contract such as Blockchain state contract (BSC), network state contract

(NSC) and Transfer Block Contracts (TBC).

The BSC is a unique smart contract which stores the block’s information on the

Blockchain. In other words, it keeps the address of the latest block chained to the

Blockchain and the address of the potential new block. The NSC is also a unique

smart contract which detains all the information about the hospital and physicians.

For instance, it contains the number of patients that we can attribute to a physician

in the current block, the number of beds available per hospital, the service that each

hospital and the physicians provide in the hospital. Finally, the TBC is not unique

and it contains the address of the previous TBC and all the patients’ data and

their transfer requests’ information, such as the ambulance cost or the physicians

matched with each patient. Every hour a new smart contract, which defines a

new Blockchain for patients transfer among hospitals in the network, is created

and published. The information shared on each smart contract is not sensitive

information; hence, the privacy concern is fulfilled. Moreover, the confidentiality of

the information is fulfilled by the actor’s authentication and authorization in the

network. For instance, hospitals are only allowed to submit the patient’s information

to the Blockchain system. The consensus protocol, defined in the smart contract,

pushes the solution given by the miners to be always cross-checked. This process is

a validation of the global solution which satisfies all parties in the network. Miners

will solve the mining problem (Nakamoto, 2008) which is the optimization model

13



derived from the patient centric model (PCM) described in the next section.

Figure 2: Blockchain Architecture

The Blockchain architecture is HIPAA (Health Insurance Portability and Ac-

countability Act of 1996) compatible as it offers a high flexibility to fit with a pa-

tient centered decision-making framework. Also, this architecture is cost-effective,

as it attempts to give an optimal solution to the assignment problem minimizing

the cost for the hospitals and patients. Hence, this system is a secure decentralized

patient-centered decision-making process providing patients with the best possible

physicians, while taking into account their decisions and the involved costs.
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3.2 Patient Centric Model (PCM)

Patient centric model is a mechanism to find the optimal assignments minimizing

the cost of assignment and losing patients. PCM contains three layers; TOPSIS

matching algorithm, Machine Learning algorithm (predictive analytics), and the

optimization model which combines the first two algorithms to reach the optimal

solutions.

3.2.1 Matching Algorithm

Mohebbi (2015) proposed an intelligent matching algorithm to match patients with

physicians across the hospitals network. The matching algorithm utilizes two sets of

attributes to define the requirements, similarities, and properties of each assignment

case: critical attributes and bilateral attributes. The former includes the attributes

defining exclusive criteria related to the scope of the hospitals’ services so that any

decisions are compatible with the critical attributes. The latter are the attributes

assigned to the physicians as a common viewpoint about their level of specialty

and quality of the services they provide. In this study, we adopt the same health

attributes and apply TOPSIS method to rank physicians for each patient. The

matching algorithm implement three main steps:

• Step 1: Defining the relative importance of each criterion

Let E = {e1, e2, . . . , en} be the set of physician, C = {c1, c2, . . . , cm} the set

of criteria for treatment choice and Mm×n the matrix defining the relative

15



importance of each criterion. Here, we add the patient P to the set E, as an

indicator for the patient preference to choose the physician or the hospital.

Therefore, the dimension of the matrix Mm×n changes to Mm×(n+1). Let A

be a vector of size m with ai ∈ {0, 1} such that:

Mm∗(n+1) =



p e1 ... en

c1 a1 ∗ x11 (1− a1) ∗ x12 ... (1− a1) ∗ x1n

c2 a2 ∗ x21 (1− a2) ∗ x22 ... (1− a2) ∗ x2n

... ... ... ... ...

cm am ∗ xm1 (1− am) ∗ xm2 ... (1− am) ∗ xmn



where xij is the importance of criteria j assigned to each expert i. The impor-

tance level is defined based on the verbal definition given by Saaty (1977), but

modified to the range between 1 and 5 as follow: Very important (1), Low (2),

Medium (3), High(4), Very high(5). Vector A also considers the contribution

of the patient preference to the relative importance of each criterion (weights

w).

• Step 2: Prioritizing the physician choice for patient

Let P = {p1, p2, . . . , pk, . . . , pd} be the set of physicians presenting the spe-

cialty required to treat the patient. For each physician, we can define the

matrix Mk
i,j :

16



Mk
i,j =



e1 e2 ... en

c1 xk11 xk12 ... xk1n

c2 xk21 xk22 ... xk2n

... ... ... ... ...

cm xkm1 xkm2 ... xkmn



where xki,j is the rank of physician k given by the expert i based on the criteria

j.

• Step 3: Matching Patient and Physician

In the matching process, TOPSIS method calculates the final ranking of physi-

cians for each patient. Decision matrix is first formed based on the obtained

results from the first two steps. The weighted normalized decision matrix is

then calculated. The worst and best solutions, closeness to ideal solutions for

each physician are calculated based on the TOPSIS method procedure. The

physician selected for every patient is the physician with the highest score,

presenting the closeness to the ideal solution.

When the ranking of physicians is established, a threshold is set to define the min-

imum acceptable closeness to the ideal solution. If the physician’s rank is larger

than this threshold, then she is considered as a candidate to treat the patient. The

threshold values are inputs to the assignment problem.
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3.2.2 Intelligent Diagnosis Algorithm

The aim of the PCM is to minimize the cost of assignment and losing patients. One

of the criteria that can lead to a tremendous cost in the patient assignment problem

is the cost of transferring a patient from one hospital to the other hospital. This

cost depends on the ambulance type which is chosen based on the patient’s severity

of illness. In this study, the severity of illness and the ambulance cost are calculated

as below.

• Step 1: Classifying the severity of illness

One of the novel aspects of this study pertains to the use of Machine Learning

algorithms, as a support tool, for automatic diagnosis of the severity of illness.

For each level of acuity, a specific level of medical care is needed, and the level

of medical care will determine the necessary ambulance type for transferring

a patient. According to the Medicare Payment Advisory Commission (2017),

medical care level can range from 1 to 6. In order to get an accurate prediction

of the ambulance cost, a classifier is trained to predict the belonging of a new

patient to one of these medical cares. Depending on the prediction, established

by the classifier, it is possible to find a correspondence between the prediction

and the level of medical care as an index of severity of illness. Predicted

severity of illness is not a direct input to the assignment problem but remains

compulsory to compute the ambulance cost in the next step.
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• Step 2: Computation of the ambulance cost

Obtaining the level of medical care needed to transfer the patient (Step 1), we

can compute the ambulance cost (C). According to the Medicare Payment

Advisory Commission (2017), the cost of transferring patient using a specific

ambulance type can be calculated as follow:

C = RV U ∗ACF ∗AGPC +MI ∗MIR (1)

where RV U is the Relative Value Unit (Table 1), determines the level of

patient’s emergency situation, and is considered as the severity of illness.

ACF is the Ambulance Conversion Factor, AGPC is the Adjusted Geographic

Practice Cost. MI and MIR are the Mileage and Mileage Rate, respectively.

The intelligent diagnosis algorithm automates the computation of the ambu-

lance cost by classifying the severity of illness accurately.

3.3 Mining Process: Optimization Model

The result of the matching algorithm and the intelligent diagnosis algorithm are in-

put parameters to the optimization model. Having a set of best feasible physicians

and the transferring cost for each patient, the mathematical model can be formu-

lated. The global optimization function is defined as a linear mathematical model

with the set of parameters, decision variables and constraints which are presented
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Service RVU

1:BLS non emergency 1

2:BLS emergency 1.6

3:ALS non emergency 1.2

4:ALS emergency (level 1) 1.9

5:ALS emergency (level 2) 2.75

6:Specialty care transport 3.25

Table 1: Relative Value Unit scale

(ALS: Advanced Life Support, BLS: Basic Life Support)

as follows.

3.3.1 Decision variables

Xijh =


1, if patient i is accepted by physician j at hospital h during each time block

0, Otherwise

Pijh =


1, if patient i is not accepted by physician j at hospital h during each time block

0, Otherwise

3.3.2 Parameters

• I : Set of Patient
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• J : Set of Physicians

• Fi: Subset of feasible physicians for patient i

• Wi,j∈Fi : Weight of physician j if it is assigned to patient i, derived from

TOPSIS algorithm. If the physician is not in the subsetFi, the value is 0

• H: Set of Hospitals

• Cih: Ambulance cost to transfer patient i to hospital h

• ρi: Severity of illness for patient i derived from the intelligent diagnosis algo-

rithm. It is equal to 0 if there is no severity of illness. Otherwise, it goes in a

range from 1 to 6

• ψs: Average cost of losing a patient requiring specialty s

• Bh: Number of bed at hospital h

• mj : Maximum number of patients to be assigned to physician j at each time

block.

• ps: Number of patient requiring service s.

3.3.3 Global objective function

Min Z = A(X) +R(X) + P (X),

where,
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A(X) =
∑

i, j∈Fi,h

Xijh ∗ Cih (2)

R(X) =
∑
s

(ps −
∑

h,i,j∈Fi

Xijh)ψs. (3)

P (X) = M ∗
∑

i, j∈Fi

Pijh (4)

The global objective function consists of three main terms: A(X) represents the

cost of transferring a patient which depends on the distance between a patient and

physician’s hospital. This cost also includes the ambulance fee given in equation

1. R(X) penalizes the loss of a patient based on a particular specialty/service.

Eventually, P (X) penalizes the rejection of patients’ transfer. M is a large penalty

associated with the slack variable Pijh.

3.3.4 Operational Constraints

The operational constraints are defined to guarantee that (i) beds are available

to patients at a hospital after transfer (equation 5), (ii) only one physician can

be assigned to the patient from the set of possible physicians (equation 6) and

(iii) maximum number of patients assigned to a physician is less than the defined

threshold (equation 7).

∑
i, j∈Fi

Xijh ≤ Bh ∀h (5)

∑
h, j∈Fi

Xijh + Pijh = 1 ∀i (6)
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∑
i

Xijh ≤ mj ∀j ∈ Fi, h (7)

Since there is a network of hospitals, each hospital tries to use the same variables to

solve the model to get the best possible solutions for their patients transfer problem.

This will make a challenge for the optimization model as a patient may assign to

two different hospitals/physicians. Thus, we must add the consensus concept to

the system which ensures that all parties in the network have the most UpToDate

results and they confirm that results are valid. The optimization model in the PCM

layer plays the role of mining process in the Blockchain architecture. In fact, miners

run the optimization model to find the solution for the assignment problem for each

patient, and the first miner who find the solution for the optimization model will

publish it to the network. Parties in the network will see the results, confirm the

optimum solution and take action according to their role as a hospital manager or

physician. The assignment process will continue for other patients and the result

will form the blocks of the Blockchain.

4 Validation and Performance Evaluation

In order to validate and evaluate the proposed system, an Agent-Based simulation

is designed. We define two scenarios: (i) baseline scenario which mimics the current

practice for patients assignments (a central referral system handles transfers based

on geographical distances and/or the referring physician’s suggestion), (ii) proposed
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scenario which is designed based on the DPAS system. There are four different

types of agents which have different attributes and dynamic behavior, and interact

through the Blockchain network. The definition of each agent is given below.

• Patient Agent: Represents the patient which has specific severity of illness

and specific preferences. In the DPAS system, patients can participate in the

decision making process and the matching algorithm. They are transferred

from a hospital to another after receiving the final assignment decision. In

the baseline scenario, patients can accept or reject the assigned physician,

according to their preferences.

• Physician Agent: Represents the physician who receives the result of pa-

tient assignments and decide to accept or reject assigned patients. Physicians

participate in the matching algorithm as experts, but cannot take part in the

intelligent diagnosis of the severity of illness.

• Hospital Agent: Represents the hospital which is in charge of submitting

patient data to the Blockchain network. Matching algorithm and the intelli-

gent diagnosis algorithm is run by the hospitals and the result will be sent to

a library which interact with the Blockchain (see algorithm 1). Afterwards,

miners will get the data from the Blockchain network according to the smart

contract protocol . Physicians and patients can be in different hospital agents.

24



Procedure: Committing Hospital Nodes to Patients

Request Physicians with the required specialty on the Blockchain;

for All patients to be transferred to this hospital do

Perform the TOPSIS analysis for the patient;

Issue the severity of illness and compute the ambulance cost ;

Commit the results on the Blockchain;

end

Algorithm 1: Hospital agent

• Miner Agent: Represents the miner which is in charge of solving the op-

timization problem/ mining algorithm and sending the solution back to the

Blockchain network according to the smart contract protocol (see algorithm

2). Each hour, a new problem is solved, and a new block of solutions will be

published. The first miner solving each problem will publish the new block

and gets the reward in Ether. Every result is verified by ten other agents. If

ten other agents get the same result, then the result is accepted (they reach to

consensus) and added to network as a new block. The hospital agent and min-

ers are both nodes of the network that have the right of sending and getting

data from the Blockchain network (see Fig. 3).
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Figure 3: Blockchain and Agent-Based framework

In this study, two sets of data (Oncology and Cardialogy) are used in the simu-

lation model. The oncology data, derived from the Breast Cancer Wisconsin (Diag-

nostic) Data Set from the UCI Machine Learning Repository, is reviewed to assess

the possibility of the automated computation of severity of illness. The features are

the characteristics of the cell nuclei presents in the breast image. Ten values are

computed from the nuclei like the radius of the nuclei or the perimeter. The target

variable is the nature of the tumor which is either malignant (1) or benignant (0).

When predicted, the result would be matched with the necessary ambulance service.

Malignant would raise the level of medical care to an ALS non-emergency while a

benignant tumor would match it with a BLS non-emergency. The cardiology data,

derived from the Heart Disease Data Set from the UCI Machine Learning Reposi-

tory, is also reviewed to assess the possibility of finding several levels of illness in the
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targeted prediction. The features are mainly about characteristics of the patient as

the age, the pain location, if the patient has antecedent, and etc. The target variable

is a level of illness between 0 and 4, that can be segmented in three different levels.

The level of ambulance service can be adjusted to the level of acuity. For the level

of 1 to 2, we can match it with an ALS non-emergency, if the level is 3, then it is

identified as an ALS emergency (level 1) and if the level is 4, it is an ALS emergency

(level 2). According to El-Bialy et al. (2015), the accuracy of the prediction heart

illness is up to 78% with decision tree.
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Procedure: Mining Process

Request information about patients to be transferred from the TBC on

the Blockchain ;

Request physicians information on the network from the NSC on the

Blockchain ;

Request hospitals information from the NSC on the Blockchain ;

for All Patients do

Request the outcomes of the matching algorithm from the TBC;

Request the calculated ambulance costs from the TBC;

end

for All Hospitals do

Request hospital’s capacity from the TBC ;

Request services each hospital can provide from the NSC;

for Each hospital’s service do

Request physicians information providing the required service ;

end

end

for All Services do

Request costs of losing a patient;

end

for All Physicians do
Request the maximum number of patients to be accepted per

physician;

end

Compute the optimal transfer solutions ;

Send Back the result on the Blockchain;

Algorithm 2: Miner agent
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Multiple software packages are connected and used to model different layers of

the proposed DPAS. The intelligent diagnosis algorithm and Agent-Based simulation

are coded in Python. For building the Blockchain architecture, Python (for building

the Blockchain), Solidity (for building smart contract) and Geth (command line

interface to run the Ethereum Blockchain) are used. The optimization algorithm is

solved by the Gurobi platform.

4.1 Performance of intelligent diagnosis algorithm

The intelligent diagnosis algorithm from the PCM layer predicts the nature of a

tumor (malignant or benign) as the level of acuity. We applied four different super-

vised machine classifiers (logistic regression, decision tree, random forest, gradient

boosting) to the dataset, and selected the best model which has the best perfor-

mance.
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4.1.1 Data Preparation

Figure 4: concavity se distribution before transformation

The first part of this task was to prepare the data. We analyzed it and transformed

it if necessary. First,there was no missing data.Concerning the distributions of the

variables, a few were skewed on the the left. For example, one of the variable

distribution, concavity se, was very skewed on the left (Figure 4). Thus, it was

necessary for this one to apply a log transformation to tend to a normal distribution

(Figure 5).
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Figure 5: concavity se distribution after transformation

Moreover, we studied the correlation among the data. After noting some high

correlations (>0.75), it was decided to remove one of the two variable among the

correlated couple.

Concerning the Heart Data values, no special transformation were necessary,

because the variable weren’t correlated, there was no missing data and there was no

need to transform it because the distribution were all similar to normal distribution.
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4.1.2 Training Phase

For the Breast Cancer, the results are assessed by full 10 folds cross validations and

as it is shown in Table 2, Boosting Tree is giving 99 % accurate prediction on the

training set.

Algorithms AUC Scores

Logistic Regression 0.9881348

Decision Tree 0.9245608

Random Forest 0.9804228

Boosting Tree 0.9784824

Table 2: 10-fold cross validated AUC scores on the training set

The results are very close and highly accurate. To assess the superiority of the

Boosting Tree over the Logistic Regression model, we performed a re-sampling on

the results and a statistical t-test. The null hypothesis refers to the equal mean.

The p-value (Table 3) suggests the rejection of the null hypothesis. Therefore, the

results of the two methods are statistically different and the Boosting Tree model is

selected as the most accurate model.
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p-value Mean Logistic Regression Mean Random Forest

p<2.2 e-16 0.9948313 0.9846181

Table 3: Statistical Analysis of the AUC scores with resampling

NB: the results presented in Table 3 are issued after resampling to fall in a

normal distribution.

Concerning the Heart Diseases dataset, we perform the same method but the

results remained very different and this time the cross validation is performed with

5-folds. We based our metric on the accuracy measure this time. The task was a

little bit harder because it is a multiclass prediction task.

Algorithms Accuracy Scores

Logistic Regression 0.6447368

Decision Tree 0.6052632

Random Forest 0.6710526

Boosting Tree 0.6578947

Table 4: 5-fold cross validated Accuracy scores on the training set

Those average scores from the scores on the validation set of each rotation for

each classifier show that this multitask classification is not very efficient (Table 4).

We never have higher score than 0.7, wich is quite low for classifier. Nevertheless,
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we also checked the accuracy score to assess whether the binary classification (0 =

No Heart Disease / {1,2,3,4}= There is an Heart Disease) is doable.

Algorithms Accuracy Scores

Logistic Regression 0.8684211

Decision Tree 0.7368421

Random Forest 0.8815789

Boosting Tree 0.8815789

Table 5: 5-fold cross validated Accuracy scores on the training set for binary

classification

Here we can see that the accuracy scores are pretty high so our problem is mainly

about the few number of data (Table 5). The use of neural network was irrelevant

also regarding the quantity of data. Actually, this kind of technic remains very

gourmand in data to outperform more ”classics” technics.

4.1.3 Testing Phase

As show in Figure 6, the best number of iterations for the Boosting Tree method is

15064 and this method can predict the severity of the breast cancer efficiently. To

confirm the high efficiency of this model, we applied it a final time on the testing

set. The result was an AUC score of 0.9760522, which is still very high.

34



Figure 6: Bernoulli Deviance for Boosting Tree model

Concerning the other dataset, as the scores for multitarget claassification reamined

low, it was judged irrelevant to go further without more data.

4.2 Performance of Mining Algorithm

We assume that the hospitals only provide two types of services, cardiology and

oncology, the number of physicians in the network is 5 times the number of the

hospitals, and they are distributed randomly at each hospitals (Table 6).
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Specification Values

Specialty {Oncology, Cardiology}

Number of Hospitals n

Number of Physician n ∗ 5

Distance Between Hospitals in miles uniform [|10, 20|]

Table 6: Network Specifications

Concerning the computational power, we assume that the power of computation

for the baseline scenario is inferior to what miners could provide. Hence, the baseline

scenario for this experiment is run with a processor, less powerful than that of the

proposed scenario. For the proposed scenario, miners are competing to get the

rewards and they always try to provide the highest computational power possible.

Intel Core I7-8550U with a frequency of 1.8GHz is chosen for the baseline scenario,

and Intel Core Xeon E5-16070 with a frequency of 3.1 GHz is chosen for the proposed

scenario.

For the baseline scenario, the objective function only includes the transportation

cost and the penalty associated with the slack variables. We assume that a nurse,

in charge of the diagnosis, determines the severity of illness (urgent or non-urgent)

and assigns only one physician to each patient. The nurse can be doubtful about

the real acuity with the chance of 10%. As a result, the maximum severity of illness

(urgent) will be assigned to the patient. Patients can then accept or reject the
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assigned physician, according to their preferences.

4.2.1 Computational time

The computational power required by the mining is always provided by miners. The

higher power a miner uses, the higher is the chance to find the solution before other

miners and get rewards. Here, we compute the time it takes to solve the optimization

model (mining algorithm). The parameters used in the model are given in Table 7.

Fig. 7 shows the result of computational time for two scenarios when the number of

hospitals differ. The proposed scenario, using the Xeon processor, has the shorter

computational time for different number of hospitals.

Parameters Values

Hospital [|4, 32|]

Patient 5 by hospital [|20, 160|]

Number of CPU used per processor 1

Beds Available per Hospital 50

Cost of Loosing patient for a Service $800

Physician Capacity 5

Table 7: Additional parameters for the simulation of computational power
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Figure 7: Computational Time for our model with two different processors

To statistically assess the difference, we computed the p-value for the obtained

results. It can be observed that there is a significant difference between the baseline

and proposed scenarios (Table 8). As a matter of fact, receiving the reward for

computing the optimal solution is highly related to the computational power that

the miners provide. Hence, the mining process can emulate the competition among

the providers of computational power and gives a quality of service to the hospitals.

p-value Mean for proposed scenario Mean for baseline scenario

1.265e-05 302.4114 (sec) 556.1588 (sec)

Table 8: Statistical analysis of the computational time
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4.2.2 Rejection rate

Another important measure of the system is the transfer rejection rate as our sys-

tem is patient-centered. In other words, we measure the ratio of patients that are

assigned to a physician and are not rejected by the physician to the total number

of patients that need a transfer at a certain time block (equation 8).

PAR = 1− (PAM/TNP ) (8)

Where PAR is the patient rejection rate, PAM is the number of patients as-

signed by the model and TNP is the total number of patients to be assigned. We

measure the rejection rate over 24 hours for the baseline and proposed scenarios.

Figure 8: Hourly rejection rate for the baseline and proposed scenarios
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Fig. 6 shows the rejection rates for both scenarios. It can be observed that

the proposed system has less rejection rate compared to the baseline scenario. This

is mainly due to the intelligent matching and diagnosis algorithms, embedded into

the Blockchain architecture, which allow for exploring all possible options in the

decentralized hospitals network. A t-test analysis has been performed to investigate

the statistical difference between two scenarios. The results demonstrate that the

proposed scenario outperforms the baseline scenario (Table 9).

p-value Mean for baseline scenario Mean for proposed scenario

0.0003646 0.10648148 0.05740741

Table 9: Statistical analysis of rejections rates

5 Conclusion

We designed a secure decentralized patient assignment system using the Blockchain

technology, offering several contributions to the literature. The first and main con-

tribution is applying the Blockchain framework to improve the existing patient re-

ferral procedures in consolidated hospital systems. In current practices, the referral

process begins with receiving a call from referring hospitals. The central referral

system processes the request by collecting clinical information. The nurse in the

referral system identifies a physician or hospital if the referring physician has not

suggested any particular physician. This initial decision can considerably influence
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the quality of care during the transfer process. Blockchain technology, through its

technical features, boosts the security and privacy of the patient information, while

it improves the interoperability between different actors in the system. Since all

actors are connected in a peer-to-peer manner inside the Blockchain network, the

information flow is highly fast. The actors receive the most UpToDate records from

the system, meaning that any new patient assignment can be traced by the autho-

rized actor through the Blockchain network. While most works in the literature

propose a centralized system to decides about the patients transfer/assignment, our

proposed system decentralized the decision making processes by providing access

to the consensus algorithm and miner agents. This is accomplished through smart

contracts such that all healthcare agents have agreed on its consensus protocol. The

protocol is fully defined and controlled by the healthcare agents such as hospitals.

Furthermore, the existence of the miners in the network ensures the sustainability

of the system as miners invest time and energy to solve the assignment problem in a

shorter time. Subsequently, miners get paid for their effort. The second important

contribution is designing a patient centric system in which patients are involved in

the decision making process. The integration of TOPSIS (to account for patients’

preferences) and the Machine Learning algorithm (for automatic and accurate diag-

nosis of illness severity) results in an enhanced optimal solutions. Machine learning

algorithms can help physician with providing more accurate diagnosis based on the

data gathered from the previous cases.
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In summary, the proposed system is a universal decentralized decision making

architecture utilizing the Blockchain technology, relevant predictive and prescriptive

analytics for a secure and efficient patient assignment system. Compared to a cen-

tralized system with subjective diagnosis system, the proposed system guarantees

higher assignment rates and patients’ satisfaction. Simulation results demonstrated

that the proposed system has a high level of efficiency and accuracy compared to

the current practice. Nevertheless, there are some limitations in this study. First,

the size of datasets was not large enough (569 observations for the breast cancer

data and 303 observations for the cardiology data). Hence, we trained basic algo-

rithms to predict the severity of illness rather than more complex structures (e.g.

neural networks). Secondly, the smart contract model on the Blockchain could be

expensive in Ethereum if the amount of data skyrockets in real world applications.

Therefore, a cost-benefit analysis would be required to ensure the scalability and

the proficiency of the proposed system.

Future research may consider improving the the intelligent matching and diagno-

sis algorithms as well as the mathematical model. For instance, we only considered

the cost of losing patients and ambulance costs. The proposed system needs to be

investigated within a consolidated healthcare system for an extensive empirical anal-

ysis. In addition, more comprehensive behavior for agents involved in the decision

process can improve the performance of the DPAS and make the architecture evolve

to decrease the smart contract cost on the Blockchain.
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