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Abstract 

 

Microorganisms account for ~ 90 gigatons of carbon in terms of global biomass and are 

important drivers of elemental cycling especially in oligotrophic subsurface environments. 

Subsurface ecosystems remain poorly characterized in terms of understanding the roles 

microorganisms play in biogeochemical processes. While we are handicapped by our ability to 

cultivate the vast majority of microbial diversity, genomic approaches are rapidly expanding our 

understanding of the complex microbial communities that are found in these ecosystems. 

Anthropogenic sources are a major contributor to imbalances in natural systems primarily 

through the release of environmental contaminants, and changes in environmental geochemistry 

arising from increased contaminant levels has lasting impacts on microbial function. 

Contamination at the Oak Ridge Integrated Field Research Center (OR-IFRC) is centered around 

the waste byproducts of uranium refining operations and the site is defined by a subsurface 

plume with gradients in pH, uranium (U) and nitrate (NO3). 

In Chapter 2, I investigate the effect of changes in groundwater pH on the subsurface microbial 

community during a field treatment experiment designed to chemically sequester U(VI) in a 

highly contaminated zone (Area-3) at the OR-IFRC. A comprehensive microbial functional gene 

array (GeoChip 4.2) was used to infer changes in microbial community composition and 

functional potential during KOH amendment. Changes in subsurface geochemistry caused 

considerable shifts in the overall microbial community structure. Relative to pre-manipulation 

conditions, functional genes involved in carbon (C), nitrogen (N), sulfur (S), and phosphorus (P) 

cycling processes increased in relative abundance as pH shifted between 3.5 – 4.5 units before 

sharply decreasing as the groundwater reached the targeted pH of ~ 5.0 units. Microbial 

populations promoting metal reducing conditions and known U(VI) reducing species were 
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studied using nitrate reductase (nirK/S), dissimilatory sulfate reductase (dsrAB) and cytochrome 

c/hydrogenase probes on the array. However, weak responses in relation to pre-manipulation 

(PM) conditions were observed during KOH amendment. The small increases in gene abundance 

between pH 3.5 – 4.0 and the subsequent sharp decrease in the abundance of genes across 

functional categories near pH 5.0 point to the overarching inhibition in functional potential of a 

low pH adapted community due to changes in subsurface geochemistry. While the concentration 

of U(VI) was dramatically reduced and thereby rendered the abiotic sequestration successful, a 

net inhibitory effect of the complex changes in subsurface geochemistry on the microbial 

community was identified. 

Nitrate is primary groundwater contaminant at the OR-IFRC with large gradients observed in the 

subsurface. In Chapter 3, I examine the composition of subsurface microbial communities at the 

OR-IFRC along a nitrate gradient. 20 wells were selected from a groundwater survey conducted 

at the reservation in 2012-2013 and grouped in to three categories spanning low (< 1mgL-1 NO3), 

moderate (10-100 mgL-1 NO3) and high (> 100 mgL-1 NO3). Groundwater communities were 

studied using 16S rRNA amplicon sequencing and with the GeoChip 5.0 functional gene 

microarray. The taxonomic composition of groundwater communities exhibited stronger 

differences compared to the functional composition between the treatment groups. Overall 

functional potential for gene spanning C, N, S cycling and electron transfer processes were 

enriched under NO3 levels spanning 10-100 mgL-1. Microbial populations important to 

bioremediation of U(VI) were structured along the gradient based on the analysis of nirK/S, 

dsrAB and cytcochrome c/hydrogenase sequences with increased functional potential evident at 

moderate NO3. Apart from NO3, pH, carbon, anions and redox conditions influenced the 

taxonomic and functional composition across the treatment groups. 
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The acidic wastes that characterize the OR-IFRC have generated extremely acidic conditions in 

the subsurface near the former S-3 waste disposal ponds. However, the underlying geology also 

induces zones of alkalinity in the unconfined aquifer. Chapter 3 explores the microbial 

communities identified in 24 wells spanning acidic (pH < 6.0), circumneutral (pH 7.0 – 8.0) and 

alkaline (pH > 9.0) conditions at the site and the influence of groundwater geochemistry in these 

wells on microbial function. Groundwater communities were examined using 16S rRNA gene 

amplicon sequencing and the GeoChip 5.0 functional gene microarray. Differences in taxonomic 

community composition were not identified between ORA and ORCN wells while differences in 

functional composition were evident between all treatments. However, taxonomic differences 

were stronger compared to those based on functional gene content. The relative gene abundance 

of genes influencing C, N and S cycling and the transfer of electrons was enriched in ORALK 

wells compared to both ORA and ORCN wells. Populations important to U(VI) remediation 

efforts at the site were structured along the pH gradient and their functional potential was greatly 

reduced in ORA wells, though some sulfate reducing species were enriched under low pH 

conditions. Al, Ca, SO4 and DIC (Dissolved Inorganic Carbon) were other components of 

subsurface geochemistry that influenced both taxonomic and functional gene composition across 

the treatment groups.  

My research highlights how groundwater geochemistry can shape subsurface microbial 

communities at the OR-IFRC. The response to pH amendment and concomitant changes in 

geochemistry shed light on the dynamics and reduced functional potential seen in subsurface 

communities resulting from the first field implementation of this approach to abiotically 

sequester U(VI). Furthermore, nitrate and pH govern sitewide subsurface community 

composition and play an important role structuring microbial functional potential at the OR-

IFRC.
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Overview of the Oak Ridge Integrated Field Research Center 

The Oak Ridge Integrated Field Research Center (OR-IFRC) is situated on the Y-12 National 

Security Complex in Bear Creek Valley near Oak Ridge, TN. The site has served as a model 

location for research examining the fate and transport of subsurface contaminants which are 

remnants at nuclear legacy sites, established during the period between World War II and the 

Cold War. Like the Hanford Site in Hanford, WA and the Savannah River Site in Aiken, SC the 

OR-IFRC is one of many units that were established in the United States as part of the nuclear 

complex that fueled weapons production. In the nearly three decades that have followed since 

remediation efforts commenced, these sites are still characterized by high levels of radioactive 

wastes and other wastes produced from uranium refining processes. At this time, the remaining 

16 sites across the United States are currently undergoing clean-up operations managed by the 

US. DOE to mitigate the environmental legacy. (https://www.energy.gov/em/cleanup-sites). 

The OR-IFRC features a 243-acre contaminated area which has and continues to be the focus of 

both field and laboratory scale experiments furthering remediation efforts, and a 404-acre 

background area that serves as a location for comparison studies (Watson et al., 2004a). The 

former unlined Waste Disposal S-3 ponds are the source of the contaminant plume that has 

spread through the subsurface which has 5 defined contaminant areas and were a defining feature 

of the site. While the ponds were capped in 1988 and now feature a parking lot, contaminants 

including nitric acid wastes, uranium, Tc-99, volatile organic solvents and heavy metals have 

leached through the subsurface. The leaching process was aided by groundwater flow through 

the unconsolidated sediments and weathered (occurring through fracturing and karstification) 

rock which define the geology down to about 16m below the surface in the contaminated area 

(Solomon, 1992). Nitrate (~ 40,000 mgL-1), uranium (~40 mgL-1) and an extremely acidic pH (< 

4.0) are the main issues in Area-3 with their levels decreasing with distance from the S-3 ponds. 
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Area 3 is also characterized by very high levels of Al3+ (~700 mgL-1) and high levels of calcium, 

sodium, magnesium and manganese. The radionuclides and metals are the primary target for 

research from and various biological and chemical approaches have been evaluated to minimize 

their escape through the aquifer (Van Nostrand et al., 2011; Zhang et al., 2011). 

 

Radionuclide and Metal Sequestration in the Subsurface 

The hydraulic connectivity in the porous layer overlying the bedrock and groundwater flow at 

the OR-IFRC are the main drivers of contaminant migration through the subsurface (Jardine et 

al., 1993a; Jardine et al., 1993b; Wilson et al., 1993). Therefore, research has focused on better 

understanding the conditions that promote radionuclide sequestration. Two avenues for driving 

uranium sequestration have been evaluated; the first relies on the microbial potential for 

biological reduction of uranium and the second builds on the chemical sequestration of uranium 

within the sediment matrix given the unique geochemistry in the subsurface. Microbially driven 

bio-reduction is possible given the finding that certain metals (Fe(III), Mn(IV), Cr(VI) and 

U(VI)) can be utilized as terminal electron acceptors (TEAs) to conserve energy and support 

growth (Lovley, 1993). However, barriers that prevent the flow of electrons to metals in highly 

contaminated areas at the OR-IFRC are high nitrate concentrations and low pH. Given the 

availability of organic electron donors, nitrate is a preferentially utilized TEA due to the larger 

free energy change of the redox couple (Christensen et al., 2000). While the potential for U(VI) 

reduction has been documented at low pH, constraints stemming from maintaining pH 

homeostasis and combating acid stress are likely to limit the rates of dissimilatory metal 

reduction at low pH (Shelobolina et al., 2003). Additionally, apart from the high nitrate and 

acidic pH, the unconfined aquifer is an oligotrophic environment and microbial populations are 

therefore known to be carbon limited and restrained in their activity (Istok et al., 2004a). Given 
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the understanding for the conditions necessary for dissimilatory metal reduction to occur, field 

treatments driving bio-reduction rely on preconditioning the subsurface to remove inhibitory 

levels of nitrate and the addition of an electron donor. These manipulations allow terminal 

electron accepting processes to induce the anaerobic conditions that promote the activity of 

microbial species which can utilize metals as TEAs (Michalsen et al., 2006; Edwards et al., 

2007). 

Abiotic sequestration of U(VI) in OR-IFRC sediments is possible through chemical co-

precipitation with Al-hydroxides (Luo et al., 2009). This utility of implementing this process in 

the field builds on research which has highlighted following findings: (1) Analysis of the 

subsurface geochemistry has revealed a high concentration of Al3+ near the contaminant zone, 

(2) the speciation of UO22+ is pH dependent, (3) Al begins to precipitate from aqueous phase as 

pH is raised and (4) the precipitation productions formed as a result can serve as a sink for metals 

that co-precipitate concomitantly (Watson et al., 2004a; Zhang et al., 2010). The pH range and 

carbonate concentration over which the co-precipitation occurs is critical as at pH > 5.0 

carbonate can influence the formation of uranyl carbonate species which have increased mobility 

(Gu et al., 2003). While laboratory scale trials have successfully demonstrated the sequestration 

of U(VI) in result of co-precipitation reactions during titration of acidic sediments (Tang et al., 

2013a), this process has been implemented in the field as well (Chapter 2, unpublished data).  

  

 

Metagenomic Approaches to Investigating Microbial Communities 

Since Leeuwenhoek’s first foray into the microcosmos of ‘animalcules’ using a single-lensed 

microscope in the late 1600’s, microbiologists continue to grapple with linking the unseen 

majority and their roles in the many environments they inhabit (Martiny et al., 2006). Our 
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capacity to study microorganisms has greatly exceeded Leeuwenhoek’s comparatively 

elementary visual approach, yet we remain largely uninformed on the vast diversity of the 

microbial world estimated at ~ 90 Gt C (Prosser, 2015; Bar-On et al., 2018). While the 

application of microscopy in microbiology is certainly not a static technology, microbiologists 

have expanded their horizons in microbial ecology primarily through the rapid development and 

implementation of next generation sequencing technology paired with analytical tools (Cole et 

al., 2008; Caporaso et al., 2010; Mardis, 2013) . Another road-block hindering the 

characterization of microbes lies in ‘The Great Plate Count Anomaly’ given our ability to 

cultivate a tiny fraction of the estimated microbial diversity (Epstein, 2013). In this regard, 

challenges in obtaining pure cultures are related to replicating the environmental conditions, the 

importance of synergism for certain microbial species, slow growth and capturing the rare 

biosphere (Whang and Hattori, 1988; Schink, 2002; Vartoukian et al., 2010; Stewart, 2012). 

 

Given the rapid development of sequencing technologies, computing capacity and analytical 

software, the study of microbial ecology has moved to capture the information stored in 

sequence information via culture-independent methods. The greatest challenge in studying the 

microbiology of an environment presently is not so much addressing “Who is present?” but 

tackling the “What are they doing?” and the field of metagenomics has ushered a new era in 

holistically capturing the function of environmental microbes. The main avenues through which 

metagenomic information can be captured are by focusing on individual genes (gene-centric 

approaches) and through capturing whole genomes (genome centric) by assembly from sequence 

data or through single-cell genome sequencing. A metagenomic approach is described as having 

an open architecture (amplicon sequencing or shotgun sequencing), if  a priori information about 

the sequence targets is not required. When the platform can only capture information based on 
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specified targets (functional gene or phylogenetic microarrays) it is defined by a closed 

architecture.  Though the 16S rRNA gene continues to be the cornerstone of investigations into 

microbial community composition, other functional markers such as the amoA, nifH, nirK/S, 

dsrAB genes have been routinely employed in discerning the composition and function of the 

specific populations that encode them (Gubry-Rangin et al., 2011; Bentzon-Tilia et al., 2014; 

Wilkins et al., 2015; Zhang et al., 2017a). Targeted gene sequencing offers the advantages of  

detecting novel taxa in a sample and providing phylogenetic information on the taxa present. 

However, these approaches are limited in their capacity to generate functional diversity of 

communities, are hindered by biases arising from PCR amplification and sequencing error, tend 

to be skewed towards the dominant members of the community and can suffer from low 

reproducibility (Schloss et al., 2011; Lemos et al., 2012; Pinto and Raskin, 2012; Zhou et al., 

2013a).  

Whole genome shotgun sequencing (WGS) and metatranscriptomics are open architectures that 

generate large amounts of information describing a broader suite of functions (the metabolic 

pathways) from the community being examined. The former informs us on the community gene 

content while the latter sheds light on the contingent of expressed genes within a community. 

WGS of extracted community DNA does not require amplification prior to sequencing and thus 

circumvents the biases introduced from a PCR step, however the procedure can be plagued by 

insufficient sequence depth to cover complex communities. Metatranscriptomics generally 

involves the sequencing of mRNA from the RNA pool extracted from a sample. Once the 

sequence information is generated, the relative abundance of gene transcripts is then compared to 

metagenomic data from the same sample. Therefore, the inherent advantage of implementing the 

technique is the ability to discern what functions are being expressed and the rates these 

functions may be occurring in the environment under study. This is a significant advantage over 
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metagenomic and targeted gene approaches however challenges arise from purification of 

mRNA targets, preventing their turnover, construction of cDNA libraries and the need for a 

metagenome ‘scaffold’ to aid in describing which functions are expressed (Carvalhais et al., 

2012; Prosser, 2015). At this juncture, sample processing and data generation are increasingly 

less of a concern for methodologies leveraging an open architecture. The greater challenge arises 

from the capacity to extract information from raw data; large computational demands imposed 

during taxonomic binning, searching/mapping reference databases, annotation and assembly 

necessitate specialized hardware (Scholz et al., 2012; Thomas et al., 2012). 

Closed architecture metagenomic technologies encompass phylogenetic and functional gene 

microarrays. The former targets rRNA genes while the latter aims to capture functional genes 

(either from specific populations or entire communities) involved in various biogeochemical 

cycles (Loy et al., 2002; Franke-Whittle et al., 2009; Abell et al., 2012). The PhyloChip is a 

comprehensive phylogenetic microarray designed to capture all 9 variable regions of the 16S 

rRNA gene and version G3 of the array targets more than 50,000 OTUs across the domains 

Bacteria and Archaea (Brodie et al., 2006; Hazen et al., 2010). The GeoChip functional gene 

array targets functional genes using 50mer probes designed to cover important microbially 

driven (bacteria, archaea, fungi and protists) biogeochemical cycles. The latest version (GeoChip 

5.0) targets > 1,500 functional genes spanning 13 functional gene categories from element (C, S, 

N and P cycling) to antibiotic and metal resistance (He et al., 2007b; Zhou et al., 2015). These 

microarrays have the distinct advantages of a lower susceptibility to random sampling, limits to 

detection being less affected by target abundance, higher taxonomic resolution given the greater 

divergence of functional markers compared to phylogenetic markers and potential for 

quantification when amplification (either by whole genome amplification or PCR) of template 

material is not necessary (Tiquia et al., 2004; Wang et al., 2009; Zhou et al., 2010).  
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The limitations that circumscribe the application of microarrays primarily have to do with the 

designing specific oligonucleotide probes, variation arising from inconsistencies during the 

processing of material for hybridization, distinguishing background noise from true probe signals 

and the predetermined scope of target capture given that a limited number of probes can be 

accommodated. In addition, functional gene arrays cannot provide information on phylogenetic 

information (Wu et al., 2001; He et al., 2007b; Zhou et al., 2015).                
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CHAPTER 2: pH amendment influences aquifer microbial community dynamics during 
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Introduction 

 

Managing the off-site transport of radioactive wastes at the Oak Ridge Reservation has posed a 

challenge owing to the contamination plume emanating from the former unlined surface 

impoundments known as the S-3 Waste Disposal Ponds. The ponds received mixed wastes 

produced from processes fueling weapons and energy related research conducted at the 

industrialized sector of the reservation known as the Y-12 complex. The wastes, characterized by 

high levels of anionic nitrate and sulfate, cationic aluminum, calcium, magnesium and uranium 

and very acidic pH, have gradually contaminated the groundwater surrounding the source zone 

since the unlined disposal ponds were capped in 1983 (Watson et al., 2004). The preservation of 

natural resources and pressing need to mitigate further damage necessitates the implementation 

of effective strategies to minimize the environmental impact from uranium refining wastes 

generated at this U.S DOE weapons complex.  

The U.S. EPA has defined MCLs for uranium and nitrate of 0.03 mgL-1 and 10 mgL-1, whereas 

groundwater at Area 3 is characterized by extremely high levels of U(VI) and nitrate 

contamination (up to 50 mgL-1 and 100 mM, respectively) (Wu et al., 2006a; Wu et al., 2006b).  

Acidic dissolution of carbonate from limestone at the OR-IFRC complexes the uranyl ion 

(UO22+) forming highly mobile U-CO3 species that are a primary cause for concern and this 

process is governed by pH and CO2 partial pressure in the subsurface (Langmuir, 1997). At pH 

over 6.5 the U-CO3 complexes have little reactivity with the solid phase and demonstrate 

enhanced mobility in groundwater (Watson et al., 2004, Gu et al., 2003). The mobility of U-CO3 

complexes at alkaline pH is enhanced by the presence of Ca, furthermore Ca has been found to 

interfere with bacterial U(VI) reduction (Barnett et al., 2000; Brooks, 2001; Fox et al., 2006). 
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Reduction of U(VI) to U(IV) prevents these processes and is a strategy for contaminant 

immobilization (Langmuir, 1997).  

Biological remediation offers green, cost-effective options for the restoration of contaminated 

natural environments. These approaches span both sorption or accumulation of metals via 

phytoremediation and microbial bio-reduction (Salt et al., 1995; Wall and Krumholz, 2006). 

Restricting the spread of mobile uranium species through sequestration via microbial bio-

reduction and abiotic chemical co-precipitation has proven to be an effective technique (Xu et 

al., 2010; Van Nostrand et al., 2011; Zhang et al., 2011; Tang et al., 2013a) with the former 

being successfully implemented in field trials at the OR-IFRC. Microbial bio-reduction involves 

stimulating members of the native microbial community with electron donors (like lactate or 

ethanol) under conditions conducive to growth, with nitrate reducing bacteria (NRB) and sulfate 

reducing bacteria (SRB) generating anaerobic conditions and low redox potentials promoting the 

activity of dissimilatory metal reducing bacteria (DMRB). Bacterial genera such as Geobacter, 

Desulfovibrio, and Anaeromyxobacter facilitate electron transfer to U(VI), bringing about its 

reduction and subsequent immobilization (Wall and Krumholz, 2006; Xu et al., 2010; Van 

Nostrand et al., 2011).  

However prevailing conditions in the Area 3 subsurface are extremely unfavorable for microbial 

growth primarily due to the high levels of Al3+, NO3- and buffered acidic pH (3.5). For sediments 

with high levels of aluminum, like those at the OR-IFRC, U can be abiotically immobilized via 

co-precipitation with Al during base addition (Zhang et al., 2011; Tang et al., 2013a). Previous 

laboratory scale treatment of sediment from Area-3 with base amended groundwater, yielded 

promising results when quantifying U(VI) sequestration and removal from the re-circulated 

groundwater (Luo et al., 2009; Tang et al., 2013a). Ground water re-circulation loops have been 

successfully employed as delivery systems for carbon substrates that stimulate microbial growth 
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and bio-reduction (Van Nostrand et al., 2011; Zhang et al., 2015). Evaluation of field-scale 

treatments is through monitoring changes in geochemistry and microbial biomass (using culture 

based or molecular approaches) in groundwater harvested from borewells. In re-circulation field 

treatment systems like those driving subsurface microbial bio-reduction, an injection well 

delivers growth substrates to the subsurface, monitoring wells placed along the flow path of 

groundwater are used to evaluate the efficacy of treatment and an extraction wells serves to 

complete the loop by allowing water to be pumped back into the injection well.  

Comprehensive functional gene arrays are powerful tools for inferring changes in microbial 

community functional compositions because they target a wide range of genes involved in the 

geochemical cycling of C, N, and S, metal resistance and contaminant degradation (Li et al., 

2005; Liebich et al., 2006). We applied a microarray, GeoChip 4.2, building on its application in 

previous studies at the OR-IFRC (Xie et al., 2011; Zhang et al., 2013; Tu et al., 2014) to identify 

changes in functional microbial communities in response to KOH injection driving abiotic 

uranium sequestration through co-precipitation with the sediment solid phase. Doing so, we 

monitor the previously undescribed dynamics of groundwater microbial communities during a 

field titration experiment driving abiotic U(VI) sequestration and aim to address how changes in 

subsurface pH and geochemistry during base amendment influence subsurface microbial 

composition and the functional potential of NRB, SRB and DMRB. This study provides a 

detailed description of the microbial functional gene responses of populations known to promote 

bio-reduction and serves as a reference point for future studies that explore biotic and abiotic 

approaches for long-term sequestration of uranium at the OR-IFRC. 
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Materials and Methods 

 

Groundwater Recirculation System 

A recirculating well system was set-up in Area 3, near the former S-3 ponds at the Oak Ridge 

Integrated Field Research Center. The system consisted of an injection well FW128 (hereafter 

referred to as IW), an extraction well FW106 (hereafter referred to as EW) and three multilevel 

sampling wells FW115, FW129 and FW130 (hereafter referred to as MW1, MW2 and MW3 

respectively) located between IW and EW along the groundwater flow path (Figure S12). 

Hydraulic connectivity between the wells was established by running a Br- tracer study. 

Potassium hydroxide (KOH) was used as a titrant for the pH manipulation. Groundwater was 

first extracted from EW, base added and following removal of precipitates, reinjected into well 

IW. A computerized system ensured the desired elevation in pH was maintained over the course 

of the study. Groundwater circulation in the system commenced on October 22, 2010. KOH 

injection started on November 2, 2010 and ceased November 3, 2011. The system was operated 

for a total of 366 days. 

 

Groundwater Sampling and Sample Organization 

Groundwater was siphoned using peristaltic pumps and microbial biomass was harvested by 

passing 2 liters of groundwater through 3 µm and 0.2 µm filters that were immediately stored at -

80 °C until the time of DNA extraction. Samples were collected from each well in the re-

circulation loop prior to base amendment (day 0) and again on days 233, 303 and 352 during the 

titration experiment. Additionally, samples were collected from a well located outside the 

recirculation loop (FW126) that was not influenced by the base addition. Various geochemical 
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parameters were measured over the course of the titration experiment, including cations, anions, 

pH, inorganic carbon, total organic carbon and acetate as described previously (Wu et al., 2006a, 

Wu et al., 2006b).  

The pH measured in groundwater collected during base recirculation increased gradually due to 

the high buffering capacity in groundwater in Area 3 (Figure 1, Figure S2) (Watson et al., 2004). 

To aid in visualizing changes in groundwater geochemistry, Detrended correspondence analysis 

(DCA)  using 17 geochemical variables measured from the monitoring wells was performed 

(Figure 1D). The samples were grouped to reflect the pH increase observed during the 

experiment from ~3.5 to 5.0 as follows; PM (pH ~3.5; all samples collected prior to base 

addition and samples from FW126), pHa (samples with pH 3.5 - 4.0), pHb (samples with pH 4.0 - 

4.5) and pHc (samples with pH > 4.5).  

 

DNA Extraction and Sample Processing 

Whole community genomic DNA was extracted using a liquid nitrogen freeze-grinding method 

as detailed in previous work (Zhou et al., 1996). The concentration and quality (assessed by 

A260/280 and A260/230 ratios) of the extracted DNA were measured using a NanoDrop ND-

1000 spectrophotometer (NanoDrop Technologies Inc., Wilmington, DE). Multiple displacement 

amplification was performed using 1 µl of the eluted DNA from each sample using the 

TempliPhi kit (GE Healthcare) as described previously (Wu et al., 2006a). Amplified DNA was 

quantified with PicoGreen using a FLUOstar Optima microplate reader (BMG Labtech, Jena, 

Germany). 1ug of DNA was labeled with Cy-3 using the Klenow fragment and random primers 

as described previously (Van Nostrand et al., 2009). Finally, the labeled DNA was purified using 

the QIAquick purification kit (Qiagen, USA) per the manufacturer's instructions and dried in a 

SpeedVac (ThermoSavant, USA).  
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Microarray Hybridization, Scanning and Data Analysis 

The functional gene array employed here, GeoChip 4.2, is designed with 50-mer oligonucleotide 

probes (98,384 probes in all), which target more than 150,000 coding sequences (Tu et al., 

2014). The DNA was suspended in 40% formamide hybridization buffer and subsequently 

hybridized to the functional gene array (overnight; 14 to 16 hours) at 42°C with mixing on a 

MAUI hybridization station (BioMicro Systems, Salt Lake City, UT, USA). Each array was 

scanned (NimbleGen MS200, Roche NimbleGen) and pixel density was quantified from scanned 

images. Raw data was normalized via the data pipeline designed at the Institute for 

Environmental Genomics, University of Oklahoma (http://ieg.ou.edu/microarray/). Spots with 

signal-to-noise ratios [(signal mean-background mean)/background standard deviation] lower 

than 2 were removed prior to statistical analysis. A signal was categorized as positive when a 

probe was detected in at least 2 samples within a given replicate group. Probe signal intensity 

was normalized between and within groups using the mean-ratio method (Zhou et al., 2014).  

 

Selection of Environmental Variables 

A subset of environmental variables was selected for further analysis using principle component 

analysis and correlation analyses to help identify and remove strongly co-correlated variables. In 

conjunction with this, the BioEnv tool was used to identify variables that correlated with the 

gene abundance data and variance inflation factors (VIF < 20) were taken into consideration so 

as to identify collinearity between variables.  
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Statistical Analysis 

Probe information for the GeoChip 4.2 microarray used in this study is available at 

http://www.ou.edu/content/ieg/tools.html. α-diversity was estimated for functional genes based 

on positive probes numbers utilizing the Shannon-Weiner, Simpson and Peilou’s evenness 

indices (Hill, 1973). Diversity indices and DNA yields for each pair of pH categories were 

compared using Welsh’s t-tests. One-way ANOVAs were utilized to test the difference of means 

between pH categories for groundwater geochemistry variables, gene abundance data and DNA 

yields. Post-hoc Tukey’s HSD tests were used to test differences between treatments for 

geochemistry, DNA yields and a diversity estimates. Fisher’s LSD tests were used to test 

differences between treatments for gene abundance data. P values determined from LSD tests for 

each probe and gene were adjusted using Holm’s method (Holm, 1979).  Dissimilarity in 

functional gene content between pH categories was estimated by non-parametric multivariate 

statistics which included Multi-response Permutation Procedures (Van Sickle, 1997), Analysis of 

Similarity (ANNOSIM) (Clarke and Warwick, 1994) and Permutational Multivariate Analysis of 

Variance Using Distance Matrices (Adonis) (Anderson and Walsh, 2013). Pairwise distances 

among samples were assigned using the Bray-Curtis index. Detrended correspondence analysis 

was performed on gene abundance data with samples grouped according to pH category to 

identify clustering resulting from changes in environmental gradients. Canonical correspondence 

analysis (CCA) was used to identify the environmental variables which had the strongest 

influence on observed differences in functional gene abundance within each pH category. All 

statistical calculations were performed using R (v3.3.2; (Team, 2014) www.r-project.org/) using 

packages VEGAN and AGRICOLAE.    
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Results 

 

Changes in Groundwater Geochemistry During pH Amendment 

The concentrations of NO3- and SO42- which are important electron acceptors remained stable 

during base amendment (Figure 1, Figure S1, Figure S2). SO42- levels never dropped below 500 

mg/L- in the monitoring wells during the field treatment. There was no preconditioning of the 

site prior to the injection of KOH and without a barrier towards infiltrating groundwater 

contaminated by the plume, nitrate concentrations in the monitoring wells were at or above 5000 

mg L-1 and the redox potential remained high. Owing to the acidic nature of the mixed waste 

contaminants in the subsurface, prior to base amendment the pH measured in each of the 

monitoring wells was within a unit of 3.5. A gradual increase in the groundwater pH was evident 

as base was added to the circulating water. By the end of the experiment the pH in wells MW1, 

MW2 and MW3 ranged from 3.78 to 4.89. As the pH was raised to ~ 5.0 units, a decrease in the 

concentration of aqueous phase U mirrored the decrease seen in Al due to co-precipitation in the 

sediment.  DCA ordination using 17 geochemical variables measured from the wells revealed 

clustering in samples grouped by pH (Figure 2A) indicating clustering of samples based on 

changes in geochemistry as the pH was raised. 

 

Functional Gene Diversity and Overlap 

The average richness of functional genes detected in the subsurface communities at different 

phases of base addition was 35,877.25 (± 7543) and ranged between ~ 25,000 -  40,000 

functional genes depending on the treatment group (Table S1). In relation to functional diversity, 

following base addition, the Shannon index for category pHa (pH 3.5-4.0) was close to that of 

PM (pre-manipulation). Categories pHb (pH 4.0-4.5) and pHc (pH > 5.0) had lower diversity 
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indices in relation to PM but this decrease was not statistically significant (p > 0.05). While not 

statistically significant functional gene richness remained relatively stable between PM through 

pHb before decreasing in pHc. We observed a high overlap in the functional gene composition 

(54.3-79.6%) between the designated pH categories. Evidence for a response toward the 

changing pH and subsurface geochemistry was seen in the unique probes detected. Relative to 

PM, the percentage of unique genes detected increased from 4% up to 10% in pHb and then 

decreased sharply in pHc. Samples with more similar pH values had a higher overlap in 

functional gene content, suggesting a succession in the functional potential of the communities 

during the experiment. For example, the community in pHa had 79.6% similarity in detected gene 

content relative to PM but only 59.1% similarity when compared to the community composition 

of pHc. Though no direct measurement of microbial biomass was made, the mean DNA yield 

revealed an overall decrease in recovered DNA in samples collected after base addition (Figure 

S3). The highest DNA yield was seen in category PM whereas the lowest yields were seen in 

category pHc however the difference in yields between pH categories was not statistically 

significant. DCA ordination plots revealed functional gene composition of the microbial 

communities clustered with respect to pH treatment, reminiscent of microbial community 

succession (Figure 1B). Dissimilarity tests also indicated significant differences (p < 0.05) 

between groundwater communities in all pairwise comparisons except for the PM – pHa 

comparison (Table 1). 

 

Functional Gene Composition During pH Amendment 

48,190 microarray probes belonging to 14 gene categories influencing the major geochemical 

cycles (C cycling, N cycling, S cycling and P cycling), stress responses, organic contaminant 

degradation, antibiotic resistance and other functional categories were detected across all 
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samples. A large decrease in gene abundance was consistently observed in those samples 

grouped in pHc. Certain specific genes within the functional categories examined, revealed peaks 

in abundance in those samples representing conditions at pHb or pHc. 

 

Changes in C cycling genes 

Those genes detected involved in the breakdown of organic C revealed a capability to utilize a 

diverse range of labile and recalcitrant substrates by the microbial community (Figure S4). Of 

the 38 bacterial and archaeal C cycling genes detected, 34 showed a significant change (p < 0.05)  

in abundance over the course of the pH amendment with the least gene abundance in pHc. Nine 

genes involved in organic C degradation increased in abundance in pHa and pHb and suggest the 

utilization of primarily labile C and C derived from the breakdown of microbial biomass. cda, 

nplT, and endoglucanse had highest abundance in pHa, while endochitinase, ara, and xylanase 

were enriched at pHb. cellobiase was had highest abundance in pHa and pHb. mcrA genes 

involved in methanogenesis were seen to have an increased abundance in pHb while pmoA 

sequences responsible for methane monooxygenases were seen to have a significantly increased 

abundance at pHa and pHb (Figure S5). Forty-five fungal genes driving organic C degradation 

showed the least abundance in pHc (Figure S6). Seventeen genes (including amyA, glucoamylase, 

endoglucanase, exoglucanase, acetylglucosaminidase, cutinase and phenol oxidase) had highest 

abundance in pHb. These changes point to an increased functional potential for the degradation 

of both labile and recalcitrant C compounds as the pH in the groundwater increased before the 

sharp decrease observed at pHc.  
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Changes in Genes driving N cycling, S cycling and the Transfer of Electrons 

Sixteen N cycling genes showed a significantly reduced abundance in pHc (Figure S7). This 

included all the genes governing the denitrification pathway (narG, norB, nirK, nirS, and nosZ). 

However, nirS sequences representing nitrate reductases were seen to increase in abundance in 

pHb. There was an increased abundance of genes driving dissimilatory reduction of nitrate to 

ammonia, with napA enriched at pHa and pHb while nrfA was increased in pHb. Genes driving 

assimilatory nitrate reduction (nasA, and nir) did not show any significant changes in abundance 

in these categories. The amoA gene driving ammonium oxidation did show enrichment in pHa 

and pHb during the titration in contrast to the hao gene, which did not show any changes in 

abundance in these categories. The nifH gene did show maximum abundance during pHb 

indicating a potential increase in the fixation of inorganic N. Sequences covering glutamate 

dehydrogenases (gdh genes) driving ammonification, showed a similar pattern of enrichment to  

the nifH gene. Barring 3 genes representing sulfite reductases, most of the genes involved in S 

cycling processes were seen to have a significant decrease in abundance at pHc (Figure S8). sir 

sequences encoding the assimilatory sulfite reductase responsible for the production of sulfide 

from sulfite had the highest abundance at pHb. Though key genes (dsrA, dsrB) encoding subunits 

for sulfite reductases driving dissimilatory sulfate reduction did show an increase in abundance 

in pHb, the contingent of sequences encoding adenyl-sulfate reductases (aprA, aprB) responsible 

for the generation of sulfite did not follow this trend. cytochrome c sequences represent an 

important category of enzymes involved in the transfer of electrons during dissimilatory metal 

reduction. These sequences were enriched in pHb before decreasing in abundance in pHc (Figure 

S9).   
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Stress and Metal Resistance Genes 

Many metal and stress resistance conferring sequences were detected (5206 and 9756 genes, 

respectively) with sequences conferring resistance towards known metal contaminants at this site 

(As, Cd, Cr, Co, Ni, Pb, Hg etc.) (Figure S10). 11 genes were seen to have a significantly (p < 

0.05) increased abundance in pHa or pHb as the base amendment increased the pH in the 

subsurface. Metal resistance conferring transporters encoded by chrA, cadA, czcA, copA, and 

TehB genes were significantly increased in abundance in pHa. In category pHb, czcD, corC, 

merG, pbrT and zntA encoding transporters showed an enriched abundance. Within the 

component of stress response genes (Figure S11), significant increases in abundance in pHa or 

pHb were localized to those known to be involved in the stress response towards glucose 

limitation (bglP), nitrogen limitation (glnA, tnrA), phosphorus limitation (pstA, pstB, pstC, 

phoA), protein turnover (clpC, ctsR), oxygen stress (ahpC) and temperature shock (desR, grpE). 

Two transcriptional regulators were increased in pHb; The “housekeeping” σ70 factor 

(sigma_70) and fnr, encoding an Fe-S oxygen sensor. The abundance of pstA, pstB, pstC and 

cplC peaked in pHa, whereas the remaining genes had maximum abundance in pHb. desR was 

enriched at both pHa and pHb and did not decrease significantly in pHc.  

 

Changes in Functional Populations Relevant to U(VI) Reduction 

Changes in relative gene abundance during base amendment (relative to the PM conditions) 

revealed subtle changes within functional populations (NRB, SRB and DMRB) known to play an 

important role in promoting optimal growth conditions for U(VI) bio-reduction in the subsurface, 

respectively (Table 2). The total number of probes representing nitrate reduction (nirK/S), sulfate 

reduction (dsrAB) and electron transfer to metals (hydrogenase and cytochrome c) increased 

between pHa and pHb and then fell in pHc. The largest increase in unique probes detected in pHb 
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were the dsrAB, nirK/S and DMR sequences (15.9%, 12.9% and 11.6%, respectively). The 

percentages of unique probes in pHc was very small at less than 1% for nirK/S and around 1.5% 

for both dsrAB and DMR sequences. The largest percentage of unique probes detected in PM 

samples was identified in the PM-pHc comparison; close to 37% of nirK/S and dsrAB probes, and 

32.7% of DMR probes, indicating a large suppression in these functional populations when pH in 

the re-circulating groundwater reached the targeted pH 5.0.    

 

Influence of Geochemistry on Community Structure 

The following variables were identified as major drivers of changes in the functional structure of 

the microbial communities: pH (VIF = 9.69), K (VIF = 4.46), Al (VIF = 7.44), SO4 (VIF = 1.49)  

and NO3, VIF = 3.58). In an integrated model (p = 0.048) these five variables explained 29.66% 

of the variation in gene abundance during base addition with the first CCA axis contributing 

11.03% and the second CCA axis, 7.05% of the explained variation (Figure 3A). Though only 

pH (p = 0.005) was found to significantly impact the model when all the above variables were 

tested individually using Monte Carlo permutation tests. Potassium and pH both had strong 

positive correlations with the first CCA axis (the larger size of the vector indicating a stronger 

influence in the direction on ordination space) while each were negatively correlated with the 

second axis. Sulfate had the weakest correlation among the variables tested, being positively 

correlated along the first axis and negatively correlated along the second axis. Al3+ and NO3 were 

negatively correlated with both the first and second axes, with Al3+ showing the stronger 

correlation of the two. Nitrate had a strong negative influence along the first axis but induced a 

negligible influence along the second axis. Variance partitioning analysis (VPA) was utilized to 

identify how CCA variables accounted for variation in microbial community structure both 

individually and as a result of interactive effects (Figure 3B). Three categories of variables 
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comprising, base addition (pH and K), Al (many metal ions were strongly co-correlated with the 

change in Al concentration, likely due to precipitation) and redox conditions (SO42-, NO3-) 

explained 13.27%, 3.73% and 8.90% of the total variance, respectively. However, a large portion 

of the (70.34%) of the changes in community composition could not be explained by the 

environmental variables selected.  

 

Discussion 

 
Successful attenuation of subsurface contamination at nuclear legacy sites such as the OR-IFRC 

ultimately relies on employing efficient, cost effective solutions to immobilize or detoxify 

multiple contaminants. Efforts aimed at harnessing both the microbial component of the 

subsurface biota and chemical treatment have shown promise in facilitating U(VI) sequestration 

within the subsurface (Istok et al., 2004; Tang et al., 2013b). The nature of the mixed wastes at 

the OR-IFRC precludes the use of a single approach and instead necessitates a thorough 

understanding of the hydrogeology, abiotic factors and subsurface microbial populations that 

promote and drive U(VI) reduction. The objective of this field study was to track the dynamics 

and changes in functional potential within the subsurface microbial community during U(VI) co-

precipitation facilitated by base amendment. pH exerts a strong effect in controlling microbial 

community composition and function. This effect has been demonstrated in bacterial 

communities extracted from soils and those found in freshwater (Fernández-Calviño et al., 2011; 

Bååth and Kritzberg, 2015).  In these studies, the optimal pH for microbial growth closely 

tracked in situ pH, with pH optima for acid adapted communities seen to be slightly higher (< 2 

units) than in situ pH relative to those communities sampled from neutral or alkaline 

environments (Fernández-Calviño et al., 2011). This control has been emphasized with small 
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deviations in pH shown to rapidly constrain bacterial activity up to 50% (Fernandez-Calvinho, 

2010).  

A characteristic of field treatment experiments involving bio-stimulation to promote subsurface 

communities driving U(VI) reduction is the observed fluctuations in relative abundance of 

functional gene categories governing carbon utilization, metal resistance, sulfate metabolism, 

nitrate metabolism and electron transport stemming from favorable redox conditions and 

utilization of nutrients (Van Nostrand et al., 2011; Zhang et al., 2015).  However, in the current 

field treatment experiment, large increases in functional gene relative abundance were not 

observed and instead fell sharply when pH in the subsurface reached 5.0. Such changes were 

probably not induced in this field experiment as the pH was the only variable directly 

manipulated and the field site was not pre-conditioned to promote microbial growth with 

substrate addition under low-redox conditions. Though the communities identified here do not 

form distinct clusters on ordination plots, there are visible shifts in overall community structure 

as groundwater pH increased. The percentage of unique sequences detected increased in each pH 

category prior to decreasing in pHc and dissimilarity tests revealed significant differences in the 

overall composition of functional genes detected in each pH category. Without additional carbon 

input, the subsurface community monitored in this study was likely restricted to the breakdown 

of simple carbon sources derived from native organic matter permeating through the sediment 

(cellulose, pectin, lignin and chitin) or hydrocarbons introduced into the subsurface from the 

contaminant plume. Previous work has indicated subsurface communities affected by mixed 

waste contamination are metabolically restricted owing to the highly acidic and low nutrient 

conditions (Akob et al., 2007). Additionally, the repertoire of central carbon pathways identified 

in metagenomics data generated from highly contaminated FW106 groundwater, revealed a 

metabolically handicapped community constrained to nitrate respiration or oxidative utilization 
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of simple carbon substrates (Hemme et al., 2015). We observed few changes in the abundance of 

genes involved in the degradation of organic contaminants and aromatics in this study. While it 

is not possible to conclusively state these compounds are not actively catabolized, the results are 

representative of a reduced capacity for their utilization under prevailing conditions. 

NRB and SRB are known to play an important role in inducing conditions that are favorable for 

the reduction of U(VI) by DMRB such as Geobacter spp. and Desulfovibrio spp. This role has 

been demonstrated in microcosm experiments implicating the role of SRB in reducing the 

concentration of sulfate prior to U(VI) reduction (Tang et al., 2013c) and the role of NRB and 

SRB in utilizing nitrate and sulfate prior to the onset of U(VI) reduction in field experiments at 

the OR-IFRC (Van Nostrand et al., 2011; Tang et al., 2013b). It is important to note that during 

these experiments increased activity of these populations was seen when field conditions were at 

a circumneutral pH (pH 6.64 for the EVO field test) and when pretreatment of field conditions 

induced a circumneutral pH and minimized inhibitory levels of nitrate (Wu et al., 2006b, Van 

Nostrand et al., 2011).  

Microbial processes governing the reduction of nitrate are intimately linked to the pH of the 

environment under consideration, with pH influencing the production of intermediates including 

nitrite, nitrous oxide and di-nitrogen gas (Stevens et al., 1998; ŠImek and Cooper, 2002; Liu et 

al., 2010). During pH amendment in this study, functional populations driving the reduction of 

nitrate (narG), nitrite (nirK/S), nitric oxide (norB) and nitrous oxide (nosZ) lacked strong 

positive increases in abundance as pH increased during the manipulation but were seen to 

sharply decrease in abundance in pHc. This potentially indicates a relatively stable potential for 

these metabolic processes that was inhibited as pH reached 5.0. These findings are supported by 

evidence that N2 evolution is preferentially produced at an alkaline pH (ŠImek and Cooper, 

2002) and the finding that N20/N2 ratios were higher under acidic conditions due to the 
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sensitivity of N2O reductases to low pH (Liu et al., 2010). There is evidence for sulfate reduction 

occurring in highly acidic environments at pH<5 (Sánchez-Andrea et al., 2013; Sánchez-Andrea 

et al., 2014). However, optimum growth for SRB has been described as between pH 5-9 

(Postgate, 1979) with the activity of sulfate reducers at lower pH inhibited by the increased 

toxicity of H2S, higher energy requirements to export protons outside the cell and inhibition by 

dissociation of organic acids inside the cell (Matin, 1990; O'Flaherty et al., 1998). An additional 

requirement for active sulfate reduction is a negative redox potential, with more complete 

conversion to sulfide consistently documented to occur at more negative values (Connell and 

Patrick, 1968). As the pH was maintained below 5.0 and redox potentials remained around 400 

mV, it is reasonable to predict SRB activity to be constrained under prevailing conditions with 

the decrease in abundance of these communities in pHc likely indicative of a negative response 

of a population adapted to a lower pH.  DMRB capable of U(VI) reduction are naturally 

occurring in aquifer systems impacted by uranium mining, refining and processing such as those 

at Rifle, CO and Oak Ridge, TN (Wall and Krumholz, 2006). Through laboratory scale 

experiments and field trials at these sites, prime conditions for microbial dissimilatory metal 

reduction have been determined to occur after utilization of terminal electron acceptors with 

higher redox potential, when ample carbon substrate is available and under strict anaerobic 

conditions (Watson, 2013). In contrast, cytochrome c sequences detected in our study were seen 

to gradually increase before significantly decreasing in abundance in category pHc. 

In particular, sequences representing Shewanella spp. displayed this pattern as the pH increased. 

It is possible that with increasing pH, growth conditions favored some members within the 

community, but proliferation was ultimately curtailed by the high concentration of nitrate and the 

paucity of nutrients. Substrate quality has been identified as a factor in controlling both carbon 

mineralization and assimilation into biomass (Manzoni et al., 2012). Furthermore, the allotment 
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of energy towards biosynthesis and the maintenance of non-growth components constraints the 

proliferation of microbial cultures in oligotrophic environments (Morita, 1988) highlighting the 

fact that maintenance energy requirements far surpass that which can be supplied from carbon in 

the soil. When considering the activity of subsurface anoxic communities, DMRB and SRB 

being at lower trophic levels rely on the fermentative end products generated by species in higher 

trophic levels which catabolize organic monomers (Miller et al., 2010). Under the prevailing 

conditions of high redox potential, scarcity of readily available electron donors and low pH, it is 

reasonable to assume bacterial members at every tier of the energy pyramid associated with bio-

reduction were highly constrained, contributing to the small increases in gene abundance during 

base amendment. While high functional redundancy has been documented in diverse microbial 

communities, those with less diverse microbial communities are known to be more susceptible to 

environmental perturbation (Girvan et al., 2005). MPN estimates from groundwater samples 

collected prior to this experiment estimated bacterial cell density between 102-103 cells/ml and 

culture independent molecular surveys at the OR-IFRC aquifer, confirmed that groundwater 

collected from Area-3 source contamination zone harbored a less diverse community relative to 

groundwater from background samples (Cardenas et al., 2008; Green et al., 2012). These 

findings lend some support to the reduced DNA yields from filter samples collected after base 

amendment representing a reduction in subsurface microbial biomass during the field treatment.   

The increasing pH and subsequent changes in the subsurface geochemistry occurring during the 

co-precipitation of U(VI) appeared to be the most important factors influencing the community 

structure during the operation of the field treatment system. In contrast to the larger portion of 

variation in functional microbial populations accounted for in the ethanol bio-stimulation 

experiment at the site (Van Nostrand et al., 2011), close to 30% of variation in functional 

populations could be accounted for in this study. This is likely due to the pre-conditioning of the 
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site to induce favorable geochemistry for enhanced microbial activity and the addition of readily 

metabolizable electron donor in the form of ethanol. However, pH accounted for 14% within this 

component of explained variance. The complex changes in geochemistry occurring as a result of 

precipitation reactions involve the removal of trace metals in addition to metal contaminants 

(Tang et al., 2013a) with the resulting effect on microbial function hard to account for. 

Moreover, stochastic processes could influence which microbial species were detected on the 

closed-format microarray during the succession occurring in the subsurface (Stegen et al., 2012; 

Zhou et al., 2014).  

This study aimed to characterize the subsurface microbial communities’ response during the 

titration of acidic sediments promoting U(VI) sequestration. Distinguishable differences in 

functional potential were evident after analyzing the abundances of over 40,000 probes in 

groundwater samples collected prior to and during base addition. By the end of base injection, 

functional genes influencing microbial mediated biogeochemical cycling and those representing 

functional populations of NRB, SRB and DMRB were greatly reduced, likely indicative of 

reduced functional potential as environmental conditions changed in the subsurface with the 

increasing pH. Bio-stimulation field experiments at the OR-IFRC have shown that under 

favorable conditions, microbes capable of U(VI) sequestration can be stimulated to bolster U(VI) 

immobilization. At the end of this field trial, bacterial genera driving the active-reduction phases 

during bio-reduction were still present albeit at a lower abundance. While a convergence in the 

subsurface community composition was observed following nutrient depletion in a bio-

stimulation field experiment (Zhou et al., 2014), such findings could not be confirmed in this 

study as representative samples were not analyzed and remain to be confirmed. In trying to 

develop methodologies to effectively sequester U(VI) within highly contaminated areas at the 

OR-IFRC, utilizing a two-pronged approach of chemical sequestration followed by 
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preconditioning and bio-stimulation of functional populations to contain residual U(VI) could be 

one such promising approach. 
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Chapter 2 – Figure legends 

Figure 1. Geochemical measurements from well FW129 during base amendment. Groundwater 

concentrations of A) nitrate and sulfate B) redox potential and C) pH and uranium are shown. 

Subsurface biomass was harvested at T0 (prior to base addition) and 233, 303 and 352 days after 

amendment. 

Figure 2. Detrended correspondence analysis using A) 17 geochemical variables measured and 

B) functional genes detected prior to (PM) and during base amendment (pHa, pHb and pHc). 

Figure 3. A) Canonical correspondence analysis (CCA) for samples (symbols) grouped by pH 

measured in the groundwater during base amendment and B) variance partitioning analysis 

(VPA) for the subset of environmental variables selected for CCA. The VPA diagram represents 

the relative effect of the groups of variables upon the functional microbial community. All 

functional genes detected on the array were used for each procedure.  
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Figure 1.  
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Figure 2A. 
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Figure 3A.  
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Figure 3B. 
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Chapter 2 

Table 1.  

Significance of changes in overall microbial community composition after base amendment 

revealed by nonparametric multivariate analyses based on Bray-Curtis dissimilarity. MRPP, 

multiple response permutation procedure; ANOSIM, analysis of similarity and Adonis, 

permutational multivariate analysis of variance (MANOVA) using distance matrices. All 

functional genes detected on the array were utilized for each test. Differences between pH 

categories are considered significant when at least two tests yield a p value < 0.05 (bold). 

 
 
 
 
 
 
 
 

 

 

 

 

 

MRPP ANOISM Adonis
δ p R p F p

Among pH groups All 25 samples 0.298 0.001 0.39 0.001 2.483 0.001
PM vs pHa 15 samples 0.279 0.065 0.164 0.03 1.444 0.113
PM vs pHb 13 samples 0.359 0.015 0.368 0.014 1.623 0.138
PM vs pHc 13 samples 0.26 0.002 0.58 0.002 4.443 0.001
pHa vs pHb 12 samples 0.339 0.007 0.322 0.018 1.965 0.021
pHa vs pHc 12 samples 0.232 0.004 0.488 0.01 5.166 0.008
pHb vs pHc 10 samples 0.326 0.009 0.592 0.006 2.756 0.028

Comparison Sample set
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Table 2.  

Response of functional populations important to microbially driven U(VI) sequestration through 

bio-reduction; Nitrate reducing bacteria (NRB), Dissimilatory metal reducing bacteria (DMRB)  

and Sulfate reducing bacteria (SRB). Numbers in bold represent probes that were significantly 

increased or decreased in abundance during base amendment. 

 

 
 
 
 
 
 
 
 
 
 
 

(PM-pHa) (PM-pHb) (PM-pHc)
Total probes detected 656 656 656

Unique probes in control group 84 86 242
Unique probes in treatment group 49 85 4

Total up 238 208 139
Total down 218 246 159
90% CI up 11 0 6

90% CI down 0 0 3
Total probes detected 431 431 431

Unique probes in control group 37 35 141
Unique probes in treatment group 32 50 6

Total up 184 135 113
Total down 144 195 112
90% CI up 3 1 5

90% CI down 2 0 1
Total probes detected 1152 1152 1152

Unique probes in control group 138 132 435
Unique probes in treatment group 119 184 20

Total up 421 353 221
Total down 347 421 250
90% CI up 13 0 3

90% CI down 4 0 6

Comparison

DMRB 
(cytrochrome c 
& hydrogenase 

sequences )

Functional population

NRB (nirK/S 
sequences)

SRB (dsrAB 
sequences)
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Supplemental material 

 
Table S1.  

Unique and overlapping genes identified during base amendment. a Values in bold and italic are 

unique genes identified in each group. b Values not in bold or italic are genes overlapping 

between two pH categories. c Values in bold are the total number of genes detected in each pH 

category. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PM (39,244) pHa (39,441) c pHb (40,244) pHc (24,580)
PM 1,637(4.17%) a 34,894(79.68%) b 33,696(73.58%) 23,721(59.15%)
pHa 2,160(5.48%) 33,228(71.52%) 24,147(60.56%)
pHb 4,250(10.56%) 22,838(54.39%)
pHc 54(0.22%)

Shannon 10.176 10.251 9.863 9.901
I Simpson 28009.42 28731.81 28736.85 20160.85
Simpson E 0.994 0.993 0.994 0.992

Group
No. (%) of overlapping genes
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Chapter 2 – Supplementary figure legends 

 

Figure S1. Geochemical measurements from well FW130 during base amendment. Groundwater 

concentrations of A) nitrate and sulfate B) redox potential and C) pH and uranium are shown. 

Figure S2. Geochemical measurements from well FW115 during base amendment. Groundwater 

concentrations of A) nitrate and sulfate B) redox potential and C) pH and uranium are shown. 

Figure S3. Mean DNA yield from samples grouped in each respective pH category. PM, 

samples collected prior to base addition (pH ~3.5); pHa, samples with groundwater pH 3.5 – 4.0; 

pHb, samples with groundwater pH 4.0 – 4.5; pHc, samples with groundwater pH > 4.5. 

Figure S4. Normalized relative abundance of detected archaeal and bacterial C cycling genes. 

Significant differences (p < 0.05) between group means are indicated by different letters. C 

cycling categories: A, Starch; B, Cellulose; C, Hemicellulose; D, Chitin; E, Lignin; F, Pectin; G, 

Vanillin; H, Others. 

Figure S5. Normalized relative abundance of genes involved in A, methane cycling (mcrA, mmoX 

and pmoA); B, acetogenesis (fthfs) and C, carbon fixation (aclB, codh, rubisco and pcc). Significant 

differences (p < 0.05) between group means are indicated by different letters. 

Figure S6. Normalized signal intensity of fungal C cycling genes detected in each treatment 

group. C cycling  categories: A, starch; B, cellulose; C, hemicellulose; D, Chitin; E, cutin; F, 

pectin; G, lignin; H, aromatic carboxylic acid. Significant differences (p < 0.05) between means 

are indicated by different letters. 

Figure S7. Normalized signal intensity of N cycling genes detected in each treatment group. N 

cycling  categories: A, ammonification; B, anammox; C, assimilatory N reduction; D, 

denitrification; E, nitrification; F, dissimilatory N reduction; G, nitrogen fixation. Significant 

differences (p < 0.05) between means are indicated by different letters. 
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Figure S8. Normalized signal intensity of S cycling genes detected in each treatment group. S 

cycling categories: A, adenylylsulfate reductase; B, sulfite reductase; C, sulfur oxidation; D, 

sulfide oxidation. Significant differences (p < 0.05) between means are indicated by different 

letters. 

Figure S9. Normalized signal intensity of genes involved in transfer of electrons. Significant 

differences (p < 0.05) between means are indicated by different letters.  

Figure S10.  Normalized signal intensity of metal resistance genes detected in each treatment 

group. Significant differences (p < 0.05) between means are indicated by different letters. 

Figure S11. Normalized signal intensity of stress response genes detected in each treatment 

group. Stress categories: A, heat shock; B, nitrogen limitation; C, oxygen stress; D, phosphate 

limitation; E, protein stress; F, sigma factor; G, cold shock; H, glucose limitation. Significant 

differences (p < 0.05) between means are indicated by different letters. 

Figure S12. Groundwater re-circulation loop employed in the Area 3 field treatment system at 

the OR-IFRC. 
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Figure S1. 
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Figure S2.  
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Figure S3.  
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Figure S4.  
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Figure S5.  
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Figure S6A.  
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Figure S6B. 
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Figure S7. 
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Figure S8.  
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Figure S9.  
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Figure S10. 
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Figure S11.  
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Figure S12. 
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CHAPTER 3: Influence of NO3 on groundwater microbial communities at the OR-IFRC: a 

unimodal functional response along a NO3 gradient. 
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Introduction 

Nitrate is contaminant of primary concern in many natural systems due to the imbalance in N 

cycling stemming from increased anthropogenic activity. From a human health perspective, 

exposure to excessive nitrate is linked with methemoglobinemia and increased risk of various 

cancers though the action of genotoxic N-nitroso compounds (Ward, 2005). While fertilizer 

runoff is the primary contributor to the migration of nitrate into water resources worldwide, other 

sources encompass landfill leachate, discharge of animal and human wastes and the combustion 

of fossil fuels (e.g. for utilities and energy generation) (Kendall et al., 2007; Burow et al., 2010; 

Sebilo et al., 2013). While much more localized in terms of their environmental impact, the 

operation of nuclear facilities such as the Y-12 complex Oak Ridge Reservation has contributed 

to considerable environmental damage given the nature of wastes generated from refining and 

processing operations. 

At peak operation during the latter part of the 1940s, uranium refining facilitating weapons 

production at the Y-12 Plant resulted in the disposal of large amounts of mixed wastes in the S-3 

Waste Disposal Ponds (Watson et al., 2004b). The unlined surface impoundments continued to 

receive wastes till they were closed and capped in 1983 and 1988 respectively. Overtime, a large 

contaminant plume has spread through the aquifer, driven by the natural groundwater flow and  

higher porosity of the saprolite layer above the bedrock (Cook et al., 1996; Ward, 2005). Nitrate 

is a main constituent of the plume, with levels of up to ~50,000 mg/L-1 measured in the 

subsurface adjoining the former S-3 ponds (Gasperikova et al., 2012).  

Microbially driven nitrate removal is an important pathway in the N cycle which contributes to 

the removal of excess nitrate from the environment (Burgin and Hamilton, 2007; Lind et al., 

2013). The biological processes driving the cycling of nitrate include dissimilatory nitrate 

reduction, assimilatory and dissimilatory reduction of nitrate to ammonia (ANRA and DNRA), 
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chemoautotrophic denitrification and anaerobic ammonia oxidation (annamox). While there is 

considerable capacity for biological nitrate removal in natural systems, the activity of microbial 

populations driving the reduction of nitrate is tightly governed by environmental factors 

spanning pH, oxygen concentration and the availability of suitable electron donors (Kraft et al., 

2014). Another constraint on microbial growth stemming from the process of nitrate reduction to 

dinitrogen gas is the through the action of intermediates from the denitrification process. In this 

regard, inhibition occurs through the buildup of nitrite and nitric oxide. Nitric oxide is a reactive 

nitrogen species and exerts cytotoxicity through the disruption of iron centers in proteins, the 

production of strongly oxidizing species and via mutagenesis resulting from nucleotide 

transitions in DNA (Zumft, 1997; Lilja and Johnson, 2017). Meanwhile the buildup of NO2- has 

also been attributed to drive bacterial inhibition though mechanisms involving the generation of 

nitrous acid (Glass et al., 1997). 

The study of microbial communities important to denitrification has been a focus at the OR-

IFRC given the unique conditions characterized by the extremely high levels of nitrate in areas 

adjacent to the S-3 ponds. Molecular characterization of nirK/S sequences targeting denitrifying 

communities has revealed them to be structured depending on geochemical conditions (i.e.- pH, 

nitrate level) along the flow path and in the background area (Yan et al., 2003; Spain et al., 

2007). In addition, a comparison of groundwater metagenomes constructed from contaminated 

and background wells revealed the metabolic capability of the denitrifying genus Rhodanobacter 

was predominantly responsible for metabolic processes under extreme levels of nitrate (Hemme 

et al., 2015).    

Given the potential for microbially induced U(VI) sequestration in contaminated sediments at 

sites like the OR-IFRC, establishing parameters promoting the activity of subsurface microbial 

communities during in situ bio-reduction has been the focus of laboratory and field scale 
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experimentation (Wu et al., 2006b; Van Nostrand et al., 2009a; Tang et al., 2013b). Findings 

from these studies highlight that nitrate is an important factor contributing to the suppression of 

the succession of terminal electron acceptor processes (TEAPs), which need to proceed to reach 

anaerobic conditions favoring metal reduction in the subsurface (Wu et al., 2006b). Such field 

treatments driving U(VI) sequestration in the sediment proceed to metal reducing conditions 

when competition from nitrate as a terminal electron acceptor is removed and electron donors are 

supplied. Furthermore, microcosms evaluating the potential for denitrification revealed that 

while the process occurred at a slower rate, high nitrate was not a potent barrier to denitrification. 

(Edwards et al., 2007).  

Subsurface communities at the Oak Ridge Integrated Field Research Center have been studied by 

molecular surveys targeting the 16S rRNA gene and functional genes (dsrAB, nirK/S) (Spain and 

Krumholz, 2011; Zhang et al., 2017b) and metagenomic approaches leveraging the GeoChip 

functional gene array have primarily been employed to trace microbial functional potential 

primarily during field experiments evaluating how subsurface respond during and after treatment 

(Van Nostrand et al., 2009b; Van Nostrand et al., 2011). Here we used a tandem approach 

pairing 16S rRNA gene sequencing with metagenomic analysis using the comprehensive 

functional gene array (GeoChip 5.0) to address i) How groundwater NO3 levels spanning a 

gradient of < 1mgL-1 to > 100 mgL-1 influence community functional gene composition and 

abundance at circumneutral pH? ii) What is the taxonomic composition of these communities? 

and iii) What other environmental factors contribute to influencing both the taxonomic and 

functional gene profiles across the wells sampled in this study? 
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Materials and Methods 

 

Site Description and Subsurface Geochemistry 

The Oak Ridge Integrated Field Research Center (OR-IFRC) is situated on the Y-12 complex in 

Oak Ridge, TN. Currently under United States Department of Energy management, the Y-12 

complex served as a site for uranium processing that fed nuclear weapons production during the 

cold war and consists of a 243-acre contaminated site and a 402-acre background 

uncontaminated site. The disposal of mixed wastes generated from processing ore, has led to 

subsurface contamination that has come to define this site and the unlined former S-3 ponds 

which were capped in 1988, have contributed to a contaminant plume that has characterized by 

uranium, nitrate and pH gradients (Watson et al., 2004b). Detailed information on site can be 

found at http://www.esd.ornl.gov.orifrc/.  Between 2012 and 2013, extensive sampling was 

undertaken from 100 borewells across the OR-IFRC in support of a groundwater microbial 

survey so as to better understand the geochemical variables that contributed to shaping microbial 

community structure. An array of geochemical parameters spanning 38 variables including 

dissolved gasses, cations and anions were measured from the groundwater collected from each of 

the wells surveyed. A detailed description of the procedures employed to obtain these parameters 

can be found here (Smith et al., 2015b). 

 

DNA Extraction and Sample Processing 

DNA was extracted using a modified Miller method as described (Miller et al., 1999). Briefly the 

process involved bead beating with a mixture of phosphate-Tris buffer and phenol-chloroform-

isoamyl alcohol. Following this the samples were processed using the MoBio Power Soil Kit 
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(MoBio Laboratories Inc., Carlsbad, CA) as per the manufacturer’s instructions.  100µl of 

solution S5 was used as the eluent for all samples. Once extracted, DNA was stored at -80°C till 

the samples were processed for microarray hybridization and 16S rRNA gene sequencing. 

Multiple displacement amplification (MDA) was performed using 10 ng of the eluted DNA from 

each sample using the TempliPhi kit (GE Healthcare) as described previously (Wu et al., 2006a). 

0.1 mM spermidine and 267 ng ml-1 single stranded binding protein was incorporated into the 

standard buffer to increase the efficiency of amplification. Samples were amplified for 6 

h.  Samples for which DNA amplification proved troublesome, were concentrated to a volume of 

10 µL before using 2-5 µL of the sample for amplification.  Amplified DNA was quantified with 

Quant-iT PicoGreen (Molecular Probes, Eugene, OR) using a FLUOstar Optima microplate 

reader (BMG Labtech, Jena, Germany) and labeled with Cy-3 using the Klenow fragment and 

random primers. Finally, the labeled DNA was purified using the QIAquick purification kit 

(Qiagen, USA) per the manufacturer's instructions and dried in a SpeedVac (ThermoSavant, 

USA). The DNA was suspended in a cocktail containing hybridization HI-RPM hybridization 

buffer, Acgh blocking agent, Cot-1 DNA, universal standard DNA and formamide (10%) and 

subsequently hybridized to a functional gene array, GeoChip 5.0, over 24hrs at 67°C on a MAUI 

hybridization station (BioMicro Systems, Salt Lake City, UT, USA). The GeoChip is a high-

density functional gene array and version 5.0 used in this study, has 4 arrays containing 50-mer 

oligonucleotide probes (1670.44 probes in all). Detailed information on the probes used on the 

array is available at www.ou.edu/ieg/tools.html/. 

 

Microarray Scanning and 16S rRNA amplicon processing 

Arrays were scanned on an Agilent SureScan microarray scanner (Agilent Technologies, Santa 

Clara, CA) and pixel density quantified from scanned images and spots with signal-to-noise 
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ratios lower that 2 were removed prior to statistical analysis. Positive signals were classified 

based on a signal-to-nose criterion ≥2 ({signal mean-background mean}/background standard 

deviation). A positive signal in a minimum of 2 probes was the threshold for a signal to be 

categorized a positive. Signal intensity of each spot was normalized by the mean-ratio method 

(He et al., 2007a). Data normalization was performed on raw microarray data generated from 

custom scripts incorporated on a pipeline designed at the IEG. Sequence data from the V4 

hypervariable region of the 16S rRNA gene was trimmed using BTRIM (Kong, 2011)with a 

quality score threshold of 25 over a 5bp sliding window size. Minimum length for trimmed 

sequences was 100bp. FLASH (Magoč and Salzberg, 2011) was used to join forward and reverse 

reads with a minimum 50bp overlap and 25% mismatch threshold. Sequences with joined length 

between 245-260bp were subjected to chimera removal using UCHIME (Edgar et al., 2011) and 

the SILVA 132 Ref NR database (Quast et al., 2013)  after removal of ambiguous bases (i.e. Ns). 

OTU clustering was performed at the 97% similarity level using UPARSE (Edgar, 2013) and 

singletons were removed resulting in a final dataset with 8854 OTUs. Each sample was 

randomly resampled to 21,800 sequences to account for differences in sequencing depth between 

each sample. The above steps pertaining to 16S rRNA sequence processing were performed on 

the Galaxy Amplicon Sequence Pipeline (https://zhoulab5.rccc.ou.edu/) Taxonomic assignment 

of representative sequences was performed using the RDP Classifier (Wang et al., 2007) 

available at https://rdp.cme.msu.edu/classifier/classifier.jsp with a confidence threshold of 0.5. 

Sequences assigned taxonomic ranks with bootstrap values below 50% were assigned an 

‘Unclassified’ rank. To examine correlations between detected OTUs and environmental 

variables only those OTUs that were present in more than 50% of all samples were used.  
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Statistical Analysis 

All statistical tests and ordination analysis were performed using R (v3.4.0; www.r-project.org/). 

Unique and overlapping probes detected on the microarray and OTUs detected by 16S rRNA 

gene amplicon sequencing were determined using custom R scripts. Comparisons estimating the 

difference in means for geochemical variables and a diversity indices were estimated using one-

way ANOVAs. Post-hoc Tukey’s honest significant difference (HSD) tests were implemented to 

test differences between treatments for geochemical variables and a diversity estimates. Post-hoc 

Fisher’s least significant difference (LSD) tests were paired with ANOVAs fort the analysis of 

functional gene abundance data and p values were adjusted using Holm’s method. Non-

parametric multivariate analysis based on dissimilarities between samples in different groups 

estimated using Bray-Curtis distances were used to determine the dissimilarity of microbial 

taxonomic composition and functional gene profiles. This was performed using Multiresponse 

Permutation Procedures (MRPP) (Van Sickle, 1997), Analysis of Similarity (ANOISM) (Clarke, 

1993) and Permutational Multivariate Analysis of Variance using Distance Matrices (Adonis) 

(Anderson, 2001). Canonical correspondence analyses (CCA) (Ter Braak, 1986) was performed 

to identify the correlations between groundwater geochemistry and microbial community 

composition. BIOENV (Clarke and Ainsworth, 1993) and forward selection were used to 

identify the subset of variables used for CCA analysis. R packages used for statistical analysis 

included VEGAN (Oksanen et al., 2013) and AGRICOLAE (De Mendiburu, 2014). Plots were 

prepared in R or SigmaPlot 13.0 (Systat Software, Inc., San Jose, CA).      

 

Sample Selection 

Since DNA yields from many of the samples were very low, a subset of 69 wells which covered 

the broad geochemical gradients observed in the wells sampled during the survey could be used 
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to generate metagenomic information using the functional gene array (He et al., 2018). 16S 

rRNA gene sequence data generated from 0.2um filters was available for all 100 wells sampled 

during the comprehensive survey (Smith et al., 2015a).  For this study, wells were selected which 

covered a gradient in nitrate and for which data was available from both the GeoChip 5.0 

functional gene array and from 16S rRNA gene sequencing datasets. These wells were selected 

such that each had a circumneutral pH (pH 6.0 – 8.0) at the time of sampling and were organized 

into three groups- ORLN (< 1mgL-1 NO3-, 6 wells), ORMN (10 – 100 mgL-1 NO3-, 8 wells) and 

ORHN (> 100 mgL-1 NO3-, 6 wells) (Table S3, Figure S1). These groups were established 

according to Maximum Contaminant Levels (MCL) established by the United States 

Environmental Protection Agency (https://www.epa.gov/ground-water-and-drinking-water/table-

regulated-drinking-water-contaminants#two). For nitrate, the MCL is 10 mgL-. 

 

Results 

 

Groundwater Microbial Composition and Structure 

Acridine orange direct counts (AODC) measurements revealed lower average cell counts in the 

ORMN and ORHN treatments, however the differences in counts between treatments was not 

significant (Figure S2). There were no significant differences identified either in the number of 

OTUs or probes detected in wells across the three treatments (Table S1). Furthermore, α 

diversity estimates based on analysis of the 16S rRNA genes and detected functional genes 

revealed insignificant differences between treatments. While a clear grouping of samples by 

treatment was absent in DCA ordination plots when analyzing the 16S rRNA gene, stronger 

clustering of samples was evident in ordination plots using functional gene data (Figure S3). 

DCA plots representing functional populations important to remediation efforts (NRB, SRB and 
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DMRB), revealed each of these populations forming distinct clusters in ORLN, ORMN and ORHN 

wells (Figure S4). Dissimilatory tests (MRPP, Adonis and ANOSIM) revealed differences in 

composition based on taxonomy to be significant (p < 0.05) between ORLN and ORHN wells and 

ORMN and ORHN wells respectively. Additionally, differences in functional gene composition 

based on all genes detected were significant for comparisons between all three treatments (Table 

1). The highest percentage of unique OTUs were identified in the ORHN wells (38%) while the 

ORLN and ORMN wells had similar numbers of unique OTUs present. 25 – 39% of the ~ 4000 

OTUs detected across treatments were shared between groups (Table S2). Over 80% of the 

functional genes detected were shared between treatment groups with the highest number of 

genes detected in the ORMN wells. The ORMN wells also had a higher percentage of unique 

functional genes (7.13%) when compared to the ORLN and ORHN wells. Between 22 – 43% of 

OTUs could not be assigned accurately to a class across the treatment groups (Figure S11). Nine 

taxonomic classes were found to differ significantly (p < 0.05) in relative abundance between at 

least two treatment groups. From those taxonomic classes that were present >1% in each 

treatment, OTUs assigned to Sphingobacteria, Chlamydiia and Nitrospira were most abundant in 

ORLN wells and those assigned to Alphaproteobacteria were found at highest abundance in 

ORMN wells. Those taxonomic classes (Anaerolineae, Ignavibacteria, Acidobacteria_Gp15, 

Acidobacteria_Gp17) with significantly higher abundance in the ORHN wells were found to be 

present at <1% RA of those detected. At the OTU level (Figure S10), 12 OTUs of which 5 could 

be assigned to the genera Nitrosopumilus (9.6%), Pseudomonas (3.4%), Sediminibacterium 

(2.4%), Brevundimonas (1%) and Sideroxydans (1%) were at >1% of the total OTUs in ORLN 

wells. 15 OTUs were found to be >1% RA in ORMN wells, 9 of these could be assigned to the 

genera Brevundimonas (7.5%), Rhodopseudomonas (3.6%), Massilia (2.6%), Arthrobacter 

(1.9%), Cupriavidus (1.9%), Roseateles (1.8%), Malikia (1.3%) and Afipia (1.2%). The ORHN 
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wells contained the highest number (11) of OTUs at >1% RA for which a taxonomic rank at the 

genus level could not be assigned. Sideroxydans (8.9%), Pseudonomas(2.6%), 

Acidobacteria_Gp6 (1.18%) and two members identified as Nitrospira (2% and 1%) made up the 

remainder of these OTUs.  

 

Changes in Functional Genes Involved in Important Microbial Processes 

C Cycling Genes 

A total of 7201 bacterial and archaeal probes, representing 34 genes associated with the 

metabolism of labile and recalcitrant C compounds were detected across the treatment groups 

(Figure S5). Twenty-three of these genes had the highest abundance in the ORMN wells and were 

significantly different (p < 0.05) between at least two of the treatment groups. From those genes 

that differed between all three treatment groups, lmo involved in the breakdown of terpenes was 

found to have the lowest relative abundance in the ORHN wells. aceB, amyA, pulA, cellobiase, 

ara, xylA, acetylglucosaminidase, chitinase and vdh had the lowest relative abundance in the 

ORLN wells. Methane cycling was evaluated using 84 probes covering genes involved in 

methanogenesis and 70 probes representing methane oxidation genes detected in all treatment 

groups. mcrA, had peak relative abundance in ORMN wells and was significantly different 

between all groups of wells. pmoA was the only gene involved in methane oxidation that 

significantly deferred between two treatments with highest abundance in ORMN wells. 

 

N Cycling Genes 

Nitrate is a major contaminant and serves as an electron acceptor in the groundwater. Eighteen of 

the 25 genes involved in N cycling were found to be significantly different (p < 0.05) across the 

three treatment groups with the highest relative gene abundance detected in the ORMN group 
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(Figure 1). Eight of the genes were found to have lowest relative abundance in the ORLN group. 

ureC and gdh encoding urease and glutamate dehydrogenase respectively are involved in the 

generation of ammonia for biosynthesis. Denitrification genes that followed this trend included 

narG encoding nitrate reductase, nirK/S encoding nitrite reductases and nosZ encoding nitrous 

oxide reductase. Finally, nrfA and nifH encode a nitrate reductase involved in dissimilatory 

nitrate reduction and dinitrogen reductase respectively. Nitrate reductase enzymes encoded by 

nasA, narB, nirA, nirB and NiR involved in assimilatory nitrate reduction and napA encoding a 

dissimilatory nitrate reductase had highest relative abundance in ORMN wells. norB encoding 

nitric oxide reductase involved in denitrification and amoA and hao genes involved in 

nitrification also followed this trend. Overall, functional potential for assimilatory processes and 

N mineralization were relatively equal in ORLN and ORHN wells. The functional potential for 

genes responsible for N ammonification, denitrification and N fixation were lowest in the ORLN 

group. Significant (p < 0.05) correlations between key genes involved in denitrification revealed 

25 nirK/S sequences to be positively correlated with nitrate while 52 nirK/S sequences to be 

negatively influenced by the nitrate gradient.   

 

S Cycling Genes 

Four genes involved in S cycling that significantly (p < 0.05) differed in abundance were 

detected at highest relative abundance in the ORMN wells and relatively equal abundance in both 

ORLN and ORHN wells (Figure 2). dmdA encoding a transferase involved in DMSP degradation, 

cysI/J encoding sulfite reductase subunits, a sulfide dehydrogenase (fccAB) and sox encoding a 

sulfide oxidase enzyme for H2S reoxidation. 5f1_DMSP_lyase encoding a DMSP lyase gene, sir 

encoding a sulfite reductase and sqr encoding a sulfide reductase were at highest relative 

abundance in ORMN wells. Sequences representing dissimilatory adenosine-5’-phospho-sulfate 
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reductase (aprAB) and sulfite reductase (dsrAB), which are key genes in dissimilatory sulfate 

reduction were detected at highest relative abundance in ORMN wells and lowest relative 

abundance in ORLN wells. Further analysis of dsrAB sequences (Figure S6) revealed 

Desulfatibacillum, Desulfobacterium, Desulfobulbus, Thioalkalivibrio like sequences were found 

at highest relative abundance in ORLN wells. Desulfohalobium, Desulfomicrobium, 

Desulfosporosinus, and Pleodictyon had highest functional potential in ORMN wells. Ammonifex, 

Chlorobium, and Methanosarcina like species were detected at highest relative abundance in 

ORHN wells. Pyrobaculum like sequences were enriched in ORLN and ORHN wells while 

sequences from Desulfovibrio species were enriched in wells with higher nitrate levels. 

Desulfotomaculum like sequences were enriched in each of the treatment groups. 34 dsrAB 

sequences were found to be significantly (p < 0.05) positively correlated with the gradient in 

nitrate across the wells. Sequences from identified genera among those positively correlated 

belonged to Chlorobium, Desulfotomaculum, Methanohalophilius, Methanosarcina and 

Pyrobaculum. 100 dsrAB sequences were negatively correlated with the nitrate gradient. These 

included sequences belonging to 15 genera which included Acetobacterium, Chlorobium , 

Clostridium, Desulfacinum, Desulfoglaeba, Desulfohalobium, Desulfotomaculum, Desulfovibrio, 

Geobacter, Methanohalophilus, Methanoregula, Pyrobaculum Syntrophobacter, 

Thermodesulfobacterium and Thermoproteus.    

 

Genes Involved in Metal Reduction 

Cytochrome c and some hydrogenase genes are known to be involved in electron transfer driving 

dissimilatory metal reduction. 212 cytochrome c and 66 hydrogenase probes were detected 

across the three treatments (Figure S7, Figure S8). cytochrome c sequences from Pseudomonas, 

were seen to be enriched in either ORLN or both ORMN and ORHN wells. Those from Geobacter 
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were enriched in ORLN wells while those from Shewanella species were found to be enriched in 

either ORMN or ORHN wells. hydrogenase sequences from Geobacter and Desulfovibrio were 

found to be enriched in wells with higher nitrate concentrations while Shewanella like 

hydrogenase sequences were enriched in ORLN wells. 6 cytochrome c sequences were 

significantly (p < 0.05) positively correlated while 28 cytochrome c sequences showed the 

opposite trend in relation to the nitrate gradient. None of the hydrogenase sequences were 

positively correlated with the nitrate gradient.  

 

Influence of Groundwater Geochemistry on Microbial Community Structure 

CCA analysis using OTUs detected revealed pH (VIF = 2.15), NO3- (VIF = 2.32), Ca (VIF = 

2.39), Eh (VIF = 1.72), S2- (VIF = 1.82), DOC (VIF = 1.46) and Mn (VIF = 1.67) to best explain 

the variation in taxonomic composition (Figure 4A) however, the model was only marginally 

significant (p < 0.1). Higher pH, Mn and Eh exerted the strongest influence on composition in 

most of the wells across the treatment groups. These 7 variables accounted for 39.99% of the 

taxonomic variation. The first axis accounted for 7.42% and the second 6.67% respectively. DO 

(VIF = 1.32), Eh (VIF = 1.40), DIC (VIF = 1.79), NO3- (VIF = 2.32), SO4 (VIF = 1.77), Na (VIF 

= 2.33) and pH (VIF = 1.53) were identified to play an important role in influencing the 

groundwater microbial community structure based on functional gene composition (Figure 4A). 

The CCA model incorporating these 7 environmental variables was able to explain (42.16%) of 

the total variation in gene abundance across the three treatments. The first CCA axis contributed 

11.66% and the second axis contributed 9.78% of the explained variation. Eh, DO and pH were 

seen to exert the strongest influence for samples in the ORLN and ORMN wells. Na, K and NO3- 

had the strongest influence on the microbial composition in the ORHN wells. Variance 
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partitioning analysis (VPA) indicated NO3 explained a greater percentage of the variation seen in 

functional gene composition compared to taxonomy in the wells (Figure S9A, Figure S9B).   

 

Discussion 

Microbial communities play a key role in supporting ecosystem function and it is important to 

understand the effects anthropogenic disturbances have on them. In this study we examine the 

effects of contaminants along a nitrate gradient on subsurface microbial community composition 

at the OR-IFRC. Additionally, we describe the effects this gradient has on the functional 

potential of groundwater microbial communities driving C, N and S cycling and those 

populations playing an important role in remediation efforts at the site (i.e. NRB, SRB and 

DMRB). The results indicate that community function is structured along the nitrate gradient 

whereas taxonomic composition is less clearly defined by this gradient. Furthermore, at 

extremely high nitrate levels overall functional potential was reduced and similar to that seen in 

wells with low nitrate. 

Studies exploring the influence of mixed contamination on microbial function and diversity, 

consistently report a negative correlation in relation to increased contamination in a given 

environment (Kandeler et al., 1996; Pérez-Leblic et al., 2012; Thavamani et al., 2012). This is 

also evident at the OR-IFRC site where a previous 16S rRNA gene clone library survey 

identified a limited consortium in contaminated sediments to be defined by the high levels of 

nitrate, toxic metals (e.g., U, Cr and Ni) and highly acidic pH (Fields et al., 2005). Furthermore, 

an analysis of the diversity of sediment associated SS rRNA gene clones similarly revealed the 

negative correlation between bacterial diversity and co-contaminants (low pH and high nitrate) in 

sediments from the site (Akob et al., 2007). Our findings did not identify any significant 

differences for either taxonomic or functional α diversity between wells while stronger 
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differences in taxonomic composition were evident in wells with higher nitrate when compared 

to the functional composition in these wells. The greater evenness in function and overlapped 

genes compared to taxonomic profiles points to function being conserved across the nitrate 

gradient. This could indicate that different species contribute to the same functions which take 

advantage of changing conditions along the nitrate gradient in the subsurface. The similar 

number of unique OTUs and functional genes detected in each of the groups of wells also lends 

support to this explanation, but further tests are required to conclusively prove this. 

For those genera that were present at > 1% relative abundance (RA) in ORLN wells, members 

belonging to the genus Nitrosopumilus are known to play important roles in nitrogen and carbon 

cycling. They have also been described to grow chemoautotrophically by aerobically oxidizing 

ammonia to nitrite (Mosier et al., 2012). Members belonging to the genus Pseudomonas are 

frequently encountered in sediment and groundwater at the OR-IFRC and along with those 

belonging to Brevundimonas have been described to be important in nitrate cycling at the site 

(Spain and Krumholz, 2011; Techtmann and Hazen, 2016). Most of the genera present at > 1% 

RA in the ORMN wells belong to the order Burkholderiales which are common soil bacteria, 

frequently encountered at the site (Hemme et al., 2015; Wu et al., 2018) and are capable of 

denitrification. Of those OTUs from the ORHN wells that could be assigned taxonomy to the 

genus level, Sideroxydans sp. are iron oxidizing bacteria, Pseudomonas sp. are capable of 

denitrification. The coupling of Fe(II) oxidation to nitrate reduction has been described for a 

close relative of Sideroxydans lithotrophicus (Blöthe and Roden, 2009). While there is no clear 

role for subdivision 6 Acidobacteria members in key N cycling processes, they have been 

described in a variety of ecosystems (Kielak et al., 2016).  An OTU assigned to genus 

Sideroxydans was also abundant in ORLN wells and this could possibly be linked to the higher 

concentration of Fe(II) that was present in ORLN and ORHN wells.     
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Without the addition of exogenous carbon, groundwater microbial communities at the OR-IFRC 

are known to be electron donor limited due to the oligotrophic nature of the aquifer (Istok et al., 

2004b). Electron donors available in aquifers predominantly constitute organic carbon from 

decaying microbial biomass and organic matter available from plant material (Christensen et al., 

2000; McMahon et al., 2011). The highest functional potential for C utilization occurs in wells 

with moderate nitrate levels and is spread across genes involved in the breakdown of labile and 

recalcitrant forms of available C. Since the AODC measurements from the wells utilized here 

were similar, the higher functional potential observed under moderate levels of nitrate points to 

an enhanced ability to use these substrates given the availability of suitable TEAs. Based on free 

energy released, electron acceptors in groundwater systems are sequentially utilized in the order 

O2, NO3, Mn, Fe, SO4 and finally CO2 (Christensen et al., 2000; McMahon and Chapelle, 2008). 

The utilization of nitrate, Fe and SO4 has been experimentally verified during bio-stimulation 

experiments conducted at the OR-IFRC and contaminated aquifers in Rifle, CO and Hanford, 

WA (Van Nostrand et al., 2011; Liang et al., 2012; Tang et al., 2013b; Zhang et al., 2015a). As 

both NO3 and SO4 levels were higher and comparable in the ORMN wells (Table S3), the higher 

functional potential in this group of wells could be attributed to the greater availability of TEAs 

known to be utilized by groundwater communities at this site. 

Nitrite and nitric oxide are two intermediates of the denitrification process that are known to 

inhibit bacterial activity (Glass et al., 1997; Glass and Silverstein, 1998; Choi et al., 2006) and 

the mechanism of action has been proposed to occur though the disruption of the proton gradient 

and electron transport chain by the buildup of nitrous acid (Rowe et al., 1979; Yarbrough et al., 

1980; Almeida et al., 1995). Inhibition due to nitrite accumulation has been demonstrated to 

disrupt denitrification at high levels of nitrate in in pure cultures and activated sludge processes 

at circumneutral pH (Baumann et al., 1997; Krishna Mohan et al., 2016). Inhibition stemming 
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from a buildup of nitrite could be a reason behind the decreased functional potential in wells with 

extremely high levels of nitrate in relation to those with moderate nitrate. Another factor that 

could be contributing to the buildup of nitrite is the documented finding that nitrate can 

outcompete nitrite for the active site of nitrite reductase as described in studies examining nitrate 

reduction in Azospirillum brasilense SP7 (Chauret and Knowles, 1991). Nitrate inhibition of 

nitrite reduction has also been described in Pseudomonas stutzeri, where the addition of excess 

nitrate was determined to repress the nitrite reducing activity of the cells (Kodama et al., 1969). 

In addition to the above, metal co-factors are important for the activity of enzymes involved in 

the denitrification pathway with Cu, Fe and Mo all being identified as key to their activity 

(Tavares et al., 2006). A recent study relating the effect of groundwater Mo on denitrification 

activity under high nitrate at OR-IFRC brought to light the finding that minimal Mo 

concentrations in wells with highest NO3 levels was responsible for restricting the use of nitrate 

as a TEA (Thorgersen et al., 2015). The reduction in functional potential for denitrification 

enzymes in wells with high nitrate is in line with this finding.   

Sulfate reducing bacteria are known to be inhibited by the nitrite produced from nitrate reduction 

(Greene et al., 2003) and this nitrite inhibition of SRBs has been demonstrated to successfully 

limit the evolution of sulfide in the environment (Davidova et al., 2001). Furthermore, oxidative 

stress responses are known to be triggered by reactive nitrogen species (Mukhopadhyay et al., 

2004). Along these lines, transcriptomic analysis has previously identified the upregulation of 

oxidative stress response genes to be triggered in response to nitrite stress in D. vulgaris and that 

genes involved in the generation of ATP were downregulated while under nitrite stress (He et al., 

2006). Inhibition of the DsrAB complex in D. vulgaris by nitrite, which is slowly reduced to 

ammonia and the loss of periplasmic protons has also been attributed to the reduction in 

utilization of sulfite and ultimate growth inhibition under nitrate stress (Haveman et al., 2004). 
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These findings lend support to the decreased functional potential for sulfate reduction at extreme 

levels of nitrate observed here. The reduced functional potential for cytochrome c genes in wells 

with high nitrate, is supported by dissimilatory metal reducing conditions at the OR-IFRC being 

contingent on electron donor amendment and nitrate removal (Istok et al., 2004b; Edwards et al., 

2007; Akob et al., 2008). Nitrate utilization is more energetically favorable than redox active 

metals (e.g. Fe(III), Mn(IV) and U(VI)) and this can inhibit the progression towards deriving 

energy from metal reduction (DiChristina, 1992). Progressive metal reduction was observed in 

sediment microcosms with 100mM nitrate only after buffering to circumneutral pH and delayed 

until substantial nitrate removal occurred (Thorpe et al., 2012). Furthermore, metal reduction 

occurring at this stage did so at alkaline pH.  

In summation, the combination of nitrite toxicity under high nitrate levels in an electron donor 

limited environment is likely to inhibit the activity of dissimilatory metal reducing species. DO, 

Eh and SO42- were seen to be the most important geochemical variables influencing groundwater 

community structure in the ORLN and ORMN wells whereas higher levels of NO3- and Na 

governed community structure in the ORHN wells. Given the availability of electron donors and 

conditions favoring growth, TEAs (e.g. SO4, NO3), groundwater Eh and the presence of metals 

in high concentrations (e.g. U(VI), Fe(III), Cr(VI)) have been identified to influence subsurface 

microbial composition (Van Nostrand et al., 2009a; Van Nostrand et al., 2011; Liang et al., 2012; 

Zhang et al., 2015a). That these observations came to light during field experiments exploring 

microbial community changes during bio-reduction and reoxidation of aquifer environments 

across sites in Hanford, WA; Rifle, CO and the OR-IFRC support the important role of these 

variables in determining groundwater microbial composition. Since over 50% of the variation in 

community structure was unaccounted for, the unexplained variation in this study is higher than 

the range (~30-50%) reported in these studies. Aquifer systems are known to be oligotrophic 
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(Jones et al., 2018) and in conjunction with high nitrate levels one can expect microbial 

dormancy to facilitate persistence under prevailing conditions. This unexplained variation could 

arise from measured environmental variables representing conditions at the time of sampling and 

therefore not able to capture conditions shaping the sites over time. In addition, stochastic 

processes are known to influence community succession and could contribute to opportunistic 

species which were detected across the treatment wells (Zhou et al., 2013b; Zhou et al., 2014). 

Interactions between geochemical variables that cannot be accounted for could also contribute to 

the higher percentage of unexplained variation in community structure.  

By analyzing relative abundances of ~ 76,000 functional genes and ~ 8,800 OTUs from 

groundwater samples at the OR-IFRC across a nitrate gradient, we identified distinct differences 

in the functional potential and taxonomic composition in the three treatment groups. The highest 

functional potential for genes driving C, N, S cycling and electron transfer processes was 

detected in ORMN wells, while functional potentials were similar in wells with < 1mgL1- NO3 and 

> 100 mgL-1 NO3. Taxonomic profiles of the most abundant members identified distinct species 

to be present, with little overlap between treatments. Apart from nitrate, heterogeneity in 

groundwater geochemistry across the wells was important in influencing community 

composition with anions (SO4, S2-), cations (Na, Ca, Mn), carbon and pH governing composition 

across the wells. However, whether these communities represent a steady state or change over 

time needs to be tested. Further studies on process rates across spatial and temporal scales are 

needed to better characterize the complex response of the subsurface microbial community to 

geochemical gradients at the OR-IFRC.  
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Chapter 3 – Figure legends 

Figure 1. Normalized signal intensity representing the relative abundance for detected N cycling 

genes. Significant differences identified between means are indicated by different letters. 

Calculation based on ANOVA followed by Fisher’s LSD test. N cycling categories: A) Anammox; 

B) Denitrification; C) Assimilatory N Reduction; D) Nitrification; E) Ammonification; F) 

Dissimilatory N Reduction; G) Nitrogen Fixation. 

Figure 2. Normalized signal intensity representing the relative abundance for detected S cycling 

genes. Significant differences identified between means are indicated by different letters. 

Calculation based on ANOVA followed by Fisher’s LSD test. N cycling categories: A) DMSP 

degradation; B) Sulfide Oxidation; C) Adenylylsulfate reductase; D) Sulfite Reduction; E) Sulfur 

Oxidation. 

Figure 3. Normalized signal intensity representing the relative abundance for detected genes 

influencing electron transfer. Significant differences identified between means are indicated by 

different letters. Calculation based on ANOVA followed by Fisher’s LSD. 

Figure 4. Canonical correspondence analysis (CCA) using (A) taxonomic composition and (B) 

functional gene profiles from wells surveyed. Environmental variables were selected using 

forward selection procedure and variance inflation factors (VIFs < 20) calculated during CCA 

procedure. Environmental variables included: Eh, Redox potential; DO, Dissolved oxygen; DIC, 

Dissolved Inorganic Carbon; DOC, Dissolved Organic Carbon; Na, Sodium; pH, Mn, Manganese; 

Ca, Calcium; S2-, Sulfide; NO3-, Nitrate; SO42-, Sulfate; SO42-. 
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Figure 1A. 
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Figure 1B. 
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Figure 2. 
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Figure 3. 
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Figure 4A.  
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Figure 4B. 
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Chapter 3 

Table 1. 

Summary of nonparametric multivariate dissimilarity tests of functional gene and 16S rRNA gene 

profiles between pairs of treatments. MRPP, multiresponse permutation procedures; Adonis, 

permutational multivariate analysis of variance using distance matrices; ANOISM, analysis of 

similarity. Distances calculated are based on Bray-Curtis index. P values < 0.1 are in bold. 

 

 

 

 

 

 

 

 

 

 

 

 

δ p R p F p
ORLN ORMN 14 samples 0.169 0.008 0.288 0.016 2.711 0.015
ORLN ORHN 12 samples 0.209 0.076 0.176 0.04 1.350 0.197
ORMN ORHN 19 samples 0.196 0.054 0.190 0.049 1.635 0.087
ORLN ORMN 14 samples 0.885 0.185 0.031 0.279 1.142 0.18
ORLN ORHN 12 samples 0.879 0.003 0.402 0.009 1.731 0.003
ORMN ORHN 14 samples 0.864 0.009 0.369 0.009 1.957 0.01

MRPP Adonis ANOSIM

GeoChip

16s rRNA 
gene 

sequencing

Dataset Comparison Sample set
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Supplemental material 

 

Table S1.  

Indices capturing measures of α diversity for both functional genes detected by GeoChip and 

taxonomic profiles determined by 16S rRNA amplicon sequencing. ± indicate standard error. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dataset Indices ORLN ORMN ORHN

Probe number 52300 ± 3458 58636 ± 1896 54111 ± 6220
Shannon 10.84 ± 0.066 10.96 ± 0.033 10.84 ± 0.142
Simpson 0.999980 ± 0.0000013 0.999982 ± 0.0000006 0.9999793 ± 0.0000035
Evenness 0.99948 ± 0.0000839 0.999393 ± 0.0000576 0.999466 ± 0.0000529

OTUs 1104 ± 251 1109 ± 206 1313 ± 266
Shannon 4.253 ± 0.626 4.101 ± 0.503 4.587 ± 0.465
Simpson 0.875 ± 0.061 0.871 ± 0.075 0.935 ± 0.025
Evenness 0.607 ± 0.076 0.585 ± 0.061 0.647 ± 0.045

GeoChip

16s rRNA 
gene 

sequencing
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Table S2.  

Gene overlap among sampling wells. a Numbers and percentages not in italic or bold indicate 

functional genes or OTUs that overlapped between two treatment groups. b Total number of 

functional genes or OTUs detected in treatment group. c Numbers and percentages in bold and 

italic are unique functional genes or OTUs detected in each treatment group.   

 

 

 

 

 

 

 

 

 

 

 

ORLN (4,247)b ORMN (4,981) ORHN (4,497)
ORLN 1,256(29.57%) c 2,604(39.31%) 1,752(25.05%)
ORMN 1,383(27.76%) 2,359(33.13%)
ORHN 1,751(38.93%)

ORLN (63,139)b ORMN (71,345) ORHN (68,046)

ORLN 1,387(2.20%) c 60,647(82.14%) 59,531(83.08%)
ORMN 5,088(7.13%) 64,036(84.98%)

ORHN 2,905(4.27%)

Well Group No. (%) of overlapping OTUsa

Well Group No. (%) of overlapping genesa
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Table S3.  

Mean values for groundwater geochemical variables collected from wells in ORLN, ORMN and 

ORHN groups. DIC, dissolved inorganic carbon; DOC, dissolved organic carbon. 

Ag 0.009 0.010 0.018
Al 0.039 0.068 0.790
As 0.005 0.007 0.009
Ba 0.180 0.108 4.013
Be 0.037 0.039 0.046
Bi 0.022 0.017 0.008
Ca 60.599 142.815 1268.599
Cd 0.003 0.003 0.006
Co 0.003 0.004 0.013
Cr 0.004 0.005 0.012
Cu 0.022 0.008 0.049
Fe 0.179 0.015 1.096
Ga 0.012 0.008 0.126
K 2.305 2.753 12.856
Li 0.132 0.045 0.201

Mg 25.284 32.639 87.059
Mn 0.795 0.423 3.048
Na 29.178 22.669 281.075
Ni 0.010 0.030 0.057
Pb 0.003 0.003 0.004
Se 0.007 0.007 0.007
Sr 0.238 0.275 9.615
U 0.027 0.186 0.213
Zn 0.047 0.051 0.073
Cl 35.208 53.9949 41.64249

NO3 0.36293 38.4013 2214.95
SO4 33.2624 145.81 23.13896

S2- 0.054 0.03463 0.0135
DIC 49.48 65.9788 64.69833
DOC 1.12267 9.77638 1.972667
CH4 0.00333 0 0.008333
CO2 2.75167 3.48375 3.835
N2O 0 0 0.215
DO 1.64167 0.875 0.338333

Eh (mV) 203.5 187.75 79.16667
pH 6.94833 6.855 6.855

Temperature (°C) 14.7883 18.0425 16.26333

ORLN ORMN ORHN

Anions 
(mg/L)

Carbon 
(mg/L)

Gases 
(mM)

Other

Cations 
(mg/L)

Geochemical variable
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Chapter 3 – Supplementary figure legends 

Figure S1. GPS co-ordinates of the 20 wells at OR-IFRC. Color intensity indicates the NO3 

concentration measured in the groundwater. Low, < 1mgL-; High, > 100mg/L-. 

Figure S2. Mean values for A) acridine orange direct cell counts (AODC) and B) DNA yield for 

wells grouped in ORLN, ORMN and ORHN groups. DNA yield represents amount recovered from 

biomass harvested from 4 liters of groundwater. 

Figure S3. Detrended correspondence analysis (DCA) of all (A) functional genes and (B) 16S 

rRNA amplicon sequences detected in the groundwater samples in each of the treatment groups. 

ORLN (< 1 mg/L-1 NO3-), ORMN (10-100 mg/L-1 NO3-), ORHN (>100 mg/L-1 NO3-). 

Figure S4. Detrended correspondence analysis (DCA) of (A) cytochrome c gene sequences 

representing dissimilatory metal reducing bacteria (DMRB), (B) nirK/S gene sequences 

representing denitrifying bacteria (NRB) and (C) dsrAB gene sequences representing 

dissimilatory sulfate reducing bacteria (SRB). ORLN (< 1 mg/L-1 NO3-), ORMN (10-100 mg/L-1 

NO3-), ORHN (>100 mg/L-1 NO3-). 

Figure S5. Normalized signal intensity representing the relative abundance for detected C 

cycling genes. Significant differences identified between means are indicated by different letters. 

Calculation based on ANOVA followed by Fisher’s LSD test. C degradation gene categories: A) 

Cellulose, B) Chitin, C) Cutin, D) Glyoxylate Cycle, E) Hemicellulose, F) Lignin, G) Pectin, H) 

Starch, I) Vanillin/Lignin, J) Camphor, K) Inulin, L) Terpenes. 

Figure S6. Normalized signal intensity representing the relative abundance for detected dsrAB 

sequences determined to differ significantly between treatments. Signal intensities represent the 

sum of the gene sequences detected from each organism. Significant differences identified 
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between means are indicated by different letters. Calculation based on ANOVA followed by 

Fisher’s LSD test. 

Figure S7. Normalized signal intensity representing the relative abundance for detected 

cytochrome c sequences determined to differ significantly between treatments. Signal intensities 

represent the sum of the gene sequences detected from each organism. Significant differences 

identified between means are indicated by different letters. Calculation based on ANOVA 

followed by Fisher’s LSD test. 

Figure S8. Normalized signal intensity representing the relative abundance for detected 

hydrogenase sequences determined to differ significantly between treatments. Signal intensities 

represent the sum of the gene sequences detected from each organism. Significant differences 

identified between means are indicated by different letters. Calculation based on ANOVA 

followed by Fisher’s LSD test. 

Figure S9.  Variance partitioning analysis (VPA) of environmental variables analyzed by CCA 

explaining relative effect of variables on A) functional gene content and B) taxonomic 

composition across samples grouped by NO3. Circles represent the effects of variables by 

partitioning out the effects of other variables. Values between circles represent combined effect 

of circle on either side. 

Figure S10. Relative abundance of OTUs identified at >1% mean RA across samples in ORLN, 

ORMN and ORHN wells. OTU_17, OTU_2, OTU_211 and OTU_4 were detected at >1% RA in 

more than one treatment group. Taxonomic levels presented: OTU; Genus; Order 

Figure S11. Relative abundance of 16s rRNA sequences at class level determined to be present 

at >1% RA in ORLN, ORMN and ORHN groups of wells. 
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Figure S1. 
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Figure S2A. 
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Figure S2B.  
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Figure S3A. 
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Figure S3B. 
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Figure S4A. 
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Figure S4B.  
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Figure S4C. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 118 

Figure S5A. 
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Figure S5B. 
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Figure S6. 
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Figure S7. 
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Figure S8. 
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Figure S9A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 124 

Figure S9B. 
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Figure S10. 
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Figure S11. 
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CHAPTER 4: pH and groundwater microbial communities at the OR-IFRC: alkaline 

conditions reveal enhanced microbial functional potential. 
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Introduction 

 
Microbes are highly adaptable and our understanding of their ubiquity in natural environments 

has been enhanced by high throughput techniques in microbial ecology (Keller and Zengler, 

2004). While  a suite of environmental factors in conjunction with stochastic processes 

contribute to governing microbial community assembly, pH is one of the most environmental 

important factors that defines natural microbial communities (Rousk et al., 2009; Inskeep et al., 

2010). This finding can be linked to the fact that pH exerts a strong influence on both cell 

function and geochemistry and therefore plays an important role in the microbiology of any 

ecosystem (Madshus, 1988; Bigham et al., 1996; Kalbitz et al., 2000; Krulwich et al., 2011) .  

The Oak Ridge Integrated Field Research Center (OR-IFRC) has lent itself to the study of 

subsurface microbial communities owing to the unique nature of mixed waste contaminants 

occurring in the subsurface (Watson et al., 2004a). Given the hazards posed to the environment 

following the identification of a subsurface contaminant plume emanating from the former S-3 

ponds, research has centered on mitigating the spread of radionuclides (uranium, Tc-99 and Th-

230) and other heavy metals in the subsurface. Natural attenuation through microbial bio-

reduction, has proved a feasible approach to sequester radionucleotides provided conditions in 

the subsurface are favorable for microbial growth (Wu et al., 2006b; Gihring et al., 2011; Van 

Nostrand et al., 2011). One major barrier to the successful implementation of field bio-reduction 

is the extremely acidic pH in highly contaminated areas, with preconditioning of subsurface 

conditions identified as a necessary prerequisite prior to microbial bioproduction occurring in the 

subsurface (Wu et al., 2006c; Tang et al., 2013c). While the effect of high nitrate, acidic pH and 

toxic metals in unison restrict microbial function in highly contaminated areas, oligotrophic 

conditions due to the limited availability of electron donors and acceptors in aquifer 
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environments define the limited microbial activity in these terrestrial ecosystems (Griebler and 

Lueders, 2009).  

The most acidic pH levels are seen in areas adjoining the former S-3 ponds. The main 

contributor to the low pH in the subsurface being the infiltration of liquid nitric acid uranium 

refining wastes which have seeped through the S-3 unlined surface impoundments (Brooks, 

2001; Watson et al., 2004a). The ponds received approximately 10 million liters/year before 

efforts were made to neutralize and reduce nitrate levels prior to their eventual capping in 1988. 

The groundwater in the underlying aquifer at the OR-IFRC can fall into the alkaline pH range ( > 

pH 7.0) as a result of the diverse lithologic composition. Cation exchange and reactions driving 

silicate hydrolysis have been attributed as possible mechanisms for the production of alkaline 

Na-HCO3 groundwater at the site (Toran and Saunders, 1999). Very few studies have examined 

the functional potential of microbial communities under acidic conditions in the field at the OR-

IFRC and of the work has focused on evaluating functional potential over the course of field 

experiments involving bio-stimulation or using microcosms. During field treatments 

incorporating bio-stimulation of the subsurface microbial community, increased microbial 

activity is associated with circumneutral pH along with readily metabolizable carbon sources and 

the removal of inhibitory levels of nitrate (Wu et al., 2006c; Cardenas et al., 2008; Van Nostrand 

et al., 2011). Work using microcosms has identified the progression of terminal electron 

accepting processes (TEAPs) to coincide with increases in pH or to be enhanced at circumneutral 

pH (Michalsen et al., 2006; Edwards et al., 2007). Efforts focusing on microbial function under 

alkaline conditions in the subsurface haven’t been explored at the OR-IFRC given the focus on 

microbiology in highly contaminated areas. However, microbial activity related to TEAPs 

involving the utilization of NO3, Fe(III) and SO4 in has been identified in the study of alkaline 

aquifers in Hanford, WA(Stevens et al., 1993). In addition, these TEAPs have also been 
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documented to occur in microcosms evaluating alkali-tolerant communities evaluated for their 

application in the remediation of alkaline wastes (Rizoulis et al., 2012). While these processes 

can occur at alkaline pH there are limits given the observed decreases in free energy yields as pH 

increases beyond pH 8.0 (Rizoulis et al., 2012). 

Amplicon sequencing of the 16S rRNA gene and functional genes (dsrAB, nirK/S) have been 

used to study the composition of microbial communities important to natural attenuation efforts 

at the OR-IFRC (Spain and Krumholz, 2011; Zhang et al., 2017b). The GeoChip functional gene 

array has primarily been employed to trace microbial functional potential primarily during field 

experiments evaluating how subsurface respond during and after treatment (Van Nostrand et al., 

2009a; Van Nostrand et al., 2011). In this study we specifically utilize a combination of 16S 

rRNA gene sequencing and the functional gene array (GeoChip 5.0) to address i) How does 

groundwater pH spanning acidic, circumneutral and alkaline pH influence community functional 

gene composition and abundance when accounting for the effects of other stressors (high NO3, 

high Uranium)? ii) What is the taxonomic composition of these communities? and iii) What are 

the environmental factors in addition to the pH which influence the taxonomic and functional 

gene profiles across the wells sampled in this study?   

 

Materials and methods 

Procedures for nucleic acid extraction, sample processing for GeoChip 5.0 hybridization, 16S 

rRNA gene amplicon sequencing and statistical analysis are described in detail in Chapter 3. 

 

Sample Selection 

For this study, a subset of the wells from the 100 well survey conducted previously (Smith et al., 

2015, Zhou et al., 2018), were selected which covered a gradient in pH and for which data was 
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available from both the GeoChip 5.0 functional gene array and from 16S rRNA gene sequencing 

datasets. These wells were selected such that each had NO3 less that 10 mgL-1  at the time of 

sampling and were distributed among three groups- ORA (pH < 6.0, 5 wells), ORCN (pH 7.0 – 

8.0, 10 wells) and ORALK (pH > 9.0, 9 wells) (Table S3, Figure S1). 

Results 

 

Groundwater Microbial Composition and Structure 

Cell counts determined by the AODC method revealed similar readings with no significant 

differences observed between ORA, ORCN and ORALK wells, average DNA yield (total DNA 

recovered from 4 liters groundwater) was highest from group ORALK  (Figure S2). α diversity 

estimates using 16S rRNA sequencing data revealed a marginally significant (p < 0.1) difference 

between the ORCN and ORALK wells for the Shannon index and a significant (p < 0.05) difference 

in OTU richness between these wells (Table S1). However, when comparing α diversity 

estimates using probes detected on the functional gene array, no significant differences were 

observed between treatments for the probe richness or the Shannon, Simpson and Peilou indices. 

While strong clustering of samples was absent in treatment groups (Figure S2), significant 

differences were observed between ORA – ORALK and ORCN – ORALK comparisons based on 

dissimilatory tests (MRPP, Adonis and ANOSIM) using the component of 16S rRNA gene 

sequences detected in these wells (Table 1). DCA ordination plots based on functional genes 

detected, revealed clustering of samples assigned to the ORA and ORCN wells while those in the 

ORALK wells formed a cluster (Figure S3). In addition, dissimilarity tests using all functional 

genes detected in the treatment groups revealed significant differences between all three 

treatments. Ordination using genes identifying NRB, and DMRB did not yield a clear separation 

or grouping of samples based on treatment group; however the SRB, were seen to cluster based 
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on the three treatment groups (Figure S4). The highest percentage of unique OTUs (47.92%) 

were detected in the ORCN wells while the ORA wells had the least number of unique OTUs 

(15.17%) (Table S2). Between 17 – 40% of the OTUs detected were shared between the 

treatment groups with the ORA and ORCN wells sharing 40% of their taxonomic composition. 76 

– 85% of the functional genes detected were shared between treatments (Table S2). The ORA 

wells had the fewest unique functional genes (<1%) while the ORCN wells had the highest 

number of unique functional genes at 7.17% of those detected. Between 15 – 24% of the OTUs 

detected across the three groups could not accurately be assigned to a taxonomic class. Eleven 

taxonomic classes comprising Acidobacteria_Gp2, Acidobacteria_Gp3, Acidobacteria_Gp5, 

Alphaproteobacteria, Chlaymdiia, Microgenomates, Nitrososphaerales, Pacearchaeota Incertae 

Sedia AR13, Planctomycetia, Spartobacteria and Spirochaetia were found to differ significantly 

between at least two of the treatment groups (Figure S11). Most of these taxa were present at 

<1% in the samples across the treatment groups. Of those taxonomic classes that were detected at 

>1% RA, Alphaproteobacteria (18.77%) and Chlamydiia (1.03%) were present at the highest 

relative abundance in the ORA wells. Pacearchaeota Incertae Sedia AR13 and Planctomycetia 

were found to have the highest relative abundance in ORCN wells however these taxa were at 

<1% RA of those detected. Similarly, while Microgenomates_genera_incertae_sedis and 

Spartobacteria were at significantly higher relative abundance in ORA and ORCN wells they 

made up <1% of those taxonomic classes identified in these wells. Twelve OTUs comprised 

>1% RA of those detected in ORA wells and 6 of these were assigned to Dechloromoas (OTU_2; 

12.65%), Variovirax (OTU_25; 2.38%), Sediminibacterium (OTU_18; 2.05%), Reyranella 

(OTU_23; 1.83%), Acidobacteria _Gp24(OTU_33; 1.44%), and Paludibacter (OTU_52; 

1.02%). Two OTUs belonged to Brevundimonas (OTU_5; 3.85% and OTU_4115; 2.20%) and 

the remaining 4 OTUs (OTU_1, OTU_15, OTU_26 and OTU_36   were ‘Unclassified’ at the 
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OTU level. Of the 10 OTUs detected at >1% RA in ORCN wells, 3 were assigned to 

Streptococcus (OTU_3; 8.49%), Acinetobacter (OTU_24; 1.80%), Brevundimonas (OTU_5; 

1.58%). Two OTUs were classified as Pseudonomas(OTU_20; 2.08% and OTU_2139,1.54%) 

and 5 (OTU_6, OTU_8, OTU_10, OTU_41 and OTU_588)  could not be assigned a genus. 

Finally in the ORA wells, 19 OTUs were detected at >1% RA. Thiobacillus (OTU_13; 8.98%), 

Nitrospira( OTU_12; 6.01%), Hydrogenophaga (OTU_19; 5.12%), Aridibacter (OTU_17; 

1.59%), Truepera (OTU_42; 1.16%), Bradyrhizobium (OTU_46; 1.09%) and Brevundimonas 

(OTU_5; 1.01%) could be assigned taxonomy to the genus level and the other 10 OTUs 

(OTU_4, OTU_7, OTU_8, OTU_9, OTU_11, OTU_16, OTU_21, OTU_28, OTU_29, OTU_43 

were ‘Unclassified’ at the genus level (Figure S10).       

 

Changes in Functional Genes Involved in Important Microbial Processes 

C Cycling Genes 

Genes responsible for the breakdown of labile and recalcitrant organic carbon were detected in 

the microbial community (Figure S5). From a total of 8549 bacterial and archaeal probes 

representing 35 genes, 17(48%) were detected at highest abundance in the ORALK wells and were 

significantly different (p < 0.05) between at least two treatment groups. Of these genes, amyA, 

cellobiase, chitinase, endoglucanase, xylA and xylanase had lowest relative abundance in the 

ORA wells. acetylglucosaminidase, cda, exoglucanase, mannase, pme and pulA were seen to 

have similar functional potentials in the ORCN and ORALK wells. ara, aceA, phenol oxidase, vdh 

and glucoamylase had enriched functional potential in the ORALK wells. Methane cycling was 

studied using 84 probes covering methanogenesis and 70 probes targeting methane oxidation 

genes and both processes had least functional potential in the ORA wells. mcrA was identified to 
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have similar relative abundance in ORCN and ORALK wells. pmoA also followed this trend while 

mmox genes had highest relative abundance in ORALK wells.   

      

N Cycling Genes 

Genes responsible for N cycling processes were found to increase in relative abundance from 

ORA to ORALK treatment groups (Figure 1). 11 genes were found to be significantly different 

between at least two treatment groups. Assimilatory nitrate reductase nirA, dissimilatory nitrate 

reductase nrfA, denitrification pathway genes nirS, nosZ and nifH encoding dinitrogen reductase 

were found to have the lowest functional potential in ORA wells. Sequences representing nitrate 

reductase (narG), nitric oxide reductase (norB) and nitrite reductase (nirK) involved in the 

denitrification pathway did not differ in relative abundance between ORA and ORCN wells. nasA, 

nir and ureC encoding reductases driving assimilatory N reduction and the urease gene also 

followed this trend. 

 

S Cycling Genes 

Six genes involved in sulfur metabolism were identified to significantly (p < 0.05) differ in 

relative abundance between at least two groups (Figure 2). A key enzyme in dissimilatory sulfate 

reduction, aprAB encoding dissimilatory adenosine-5’-phospho-sulfate reductase, sir and cysI/J 

encoding sulfite reductases and fccAB encoding a sulfide dehydrogenase had the highest 

functional potential in ORALK wells. 896 probes representing dsrAB sequences were identified in 

the samples. ORA wells had the lowest relative abundance for these sequences and they were 

enriched in both ORCN and ORALK wells. The sox gene which codes and enzyme for a H2S 

oxidizing also followed the same trend from ORA to ORALK. Analysis of 869 probes targeting 

dsrAB like sequences revealed 8 genera to be significantly different between at least two 
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treatment groups. dsrAB like sequences belonging to Desulfovibrio, were enriched in both ORA 

and ORALK wells while those from Desulfatibacillum, Geobacter and Thioalkalivibrio were 

enriched in both ORCN and ORALK wells. Acetohalobium, Ammonifix, Desulforhabdus, and 

Thioalkalivibrio were only enriched in ORALK wells. dsrAB sequences from Magnetospirillum 

were detected at highest relative abundance in ORA and ORALK wells. 

 

Genes Involved in Metal Reduction 

Cytochrome c and some hydrogenase genes are known to be involved in the reduction of metals. 

cytochrome c sequences were lower in relative abundance in ORA wells while hydrogenase 

sequences were lower in both ORA and ORALK wells respectively (Figure 3). Analysis of 211 

cytochrome sequences from known metal reducing general that differed significantly between at 

least two treatment groups revealed Geobacter to be depleted in ORA wells. Sequences from 

Anaeromyxobacter were enriched in ORALK wells and those from Pseudomonas were enriched in 

both ORA and ORALK wells. hydrogenase like sequences from Geobacter were found to be 

enriched in ORCN and ORALK wells. 

 

Influence of Groundwater Geochemistry on Microbial Community Structure 

8 geochemical variables were identified to have the strongest influence on the subsurface 

microbial community based on functional gene composition (Figure 4B). These were, DO (VIF 

= 3.07), pH (VIF = 2.96), Eh (VIF = 2.09), Ca (VIF = 1.87), Al (VIF = 1.82), DIC (VIF = 1.72), 

SO4 (VIF = 1.67) and Zn (VIF = 2.97). Together, these variables were able to explain 35.97% of 

the variation in functional gene abundance seen across the three treatments (p < 0.05). The first 

axis accounted for 10.7% while the second axis accounted for 8.32% of the explained variation 

respectively. Eh, Zn and DO exerted a strong influence in the ORA wells. Ca and SO4 had the 
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strongest influence in the ORCN samples while pH, Al and Na were seen to exert the strongest 

influence in the ORALK wells. Partitioning of explanatory variables to determine the contribution 

of pH alone revealed Al, Zn and Ca contributed to variation in functional gene content (Figure 

S9A). 7 environmental variables were selected to explain the taxonomic composition of the 

microbial community (Figure 4A). DIC (VIF = 1.70), pH (VIF = 2.01), Al (VIF = 1.50), SO4 

(VIF = 1.75), Ca (VIF = 2.12), NO3 (VIF = 1.18) and Mn (VIF = 1.97) contributed to explaining 

38.17% of the variation in OTUs (p < 0.001) detected across the treatment groups. The first axis 

accounted for 7.0 % while the second axis accounted for 6.17% of the variation in taxonomic 

composition across the wells. Variance partitioning to separate out the contribution of pH 

indicated that NO3 accounted for a slightly larger percentage of variation in taxonomic 

composition across the wells (Figure S9). 

 

Discussion 

Both deterministic and stochastic factors contribute to defining the microbial composition in any 

given environment. pH is an important environmental variable that influences microbial 

diversity, abundance and function, and this has been described in studies spanning a range of 

ecosystems including grasslands, coastal habitats, agricultural systems and contaminated 

environments (Rousk et al., 2009; Lu et al., 2012; Bai et al., 2013; Yang et al., 2013). In this 

study we examined the subsurface microbial taxonomic composition and functional potential 

across a gradient in pH at the OR-IFRC. We found shifts in both the taxonomic and functional 

composition from samples representing acidic, circumneutral and alkaline conditions in the 

subsurface while α diversity was not seen to change in samples assigned to these treatments. 

Overall, the functional potential for genes across most categories detected was negatively 

influenced by acidic pH. While few of the previous studies at the OR-IFRC explore how 
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gradients in pH, NO3 and U(VI) influence microbial composition across the site,  a previous 

study identified inverse relationships between contamination and both functional potential and 

diversity (Wu  et al., 2006). However, the contaminated wells in question were characterized by 

high nitrate and low pH and each well was studied individually without replicates for treatment 

conditions. In a similar way, a 16S rRNA molecular survey also identified this inverse 

relationship between contamination and microbial diversity in sediments from contaminated 

(acidic pH) and background (neutral pH) wells (Akob et al., 2007).  

The greater numbers of unique OTUs and functional genes in the ORCN and ORALK wells support 

the taxonomic and functional differences identified when these groups were compared to ORA 

wells. The larger taxonomic overlap between ORA and ORCN wells likely contributes to the 

insignificant differences in taxonomic composition observed between these two well groups. 

Previous studies examining functional gene overlap and taxonomic composition have also 

reported samples more similar in geochemistry to be more similar in terms of their microbial 

composition (Gihring et al., 2011; Zhang et al., 2015b). Of the classified genera determined to be 

present at >1% across the treatment groups, Dechloromoas Sediminibacterium, Variovorax and 

genera belonging to the metabolically diverse Acidobacteria have been previously identified at 

the OR-IFRC (Barns et al., 2007; Cardenas et al., 2008; Bollmann et al., 2010; Chourey et al., 

2013). The genus Reyranella has been identified in oligotrophic environments (Parfenova et al., 

2013), Paludibacter is a genus known to be capable of fermentation and has been identified in an 

aquifer environment (Kuppardt et al., 2014) and members belonging to the genus Acinetobacer 

are capable of degrading hydrocarbons (Vanbroekhoven et al., 2004). Species classified as 

Brevundimonas, Thiobacillus and Pseudomonas have all been described as playing key roles to 

denitrification at the OR-IFRC (Cardenas et al., 2010; Gihring et al., 2011; Spain and Krumholz, 

2011). Nitrospira and Bradyrhizobium species are implicated as important players in N cycling 
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given their capability for nitrite oxidation and denitrification respectively while Hydrogenophaga 

species are known to drive hydrogen oxidation (Daims et al., 2015, Hwang et al., 2006, Torres et 

al., 2011). The detection of Truepera sequences in the ORALK wells can be attributed to its 

association with alkaline environments (Tiago and Veríssimo, 2013).  Though no significant 

differences between OTUs present at >1% RA were identified it is notable that the overlap 

between these abundant OTUs is minimal. Only OTU_5 was present above 1% RA in all three 

treatment groups. Therefore, it is reasonable to conclude that different players could be 

responsible for nutrient cycling and mediating energy exchange in the wells.         

The reduced functional potential in the ORA samples can be explained by the energy investment 

needed to counter the damage of intracellular biomolecules (e.g. proteins and nucleic acids) 

caused by increased intracellular H+ concentration (Madshus, 1988; Beales, 2004). As a result, 

maintaining intracellular pH is vital under acidic conditions as imbalances in pH homeostasis can 

affect physiology by negatively influencing DNA transcription and enzyme activity. However, 

the active mechanisms employed to counter the intracellular influx of protons which include 

proton efflux systems, organic acid degradation, synthesis of acid resistant membrane 

components, decarboxylase enzymes and molecular chaperons involved in protein refolding 

(Cronan, 2002; Stancik et al., 2002; Baker-Austin and Dopson, 2007) require the investment of 

energy under the prevailing conditions. While the investment of maintenance energy in 

combating acid stress in subsurface environments is less examined, the positive correlation 

between bacterial biomass and pH and decreased bacterial activity under acidic conditions is 

well documented in soils (Blagodatskaya and Anderson, 1999; Bååth and Anderson, 2003). 

Furthermore, the increased bacterial respiration rate post acid challenge is implicated as evidence 

of fulfilling the energy requirements for cell maintenance functions (Anderson and Domsch, 

1993). While the potential to degrade a broad range of labile and recalcitrant carbon was detected 
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across the treatments, DOC and TEAs (NO3 and SO4) were low in ORA wells. Additionally, the 

availability of DOC in soils has been identified to be negatively influenced by pH (Kalbitz et al., 

2000) . Therefore, having to meet maintenance energy requirements at low pH in an oligotrophic 

setting is a plausible explanation for reduced functional potential in the ORA wells. 

Remediation efforts in the most contaminated areas at the OR-IFRC have focused on optimizing 

growth conditions for NRB, SRB and DMRB to promote succession of TEAPs which ultimately 

generates anaerobic conditions favoring bio-reduction (Van Nostrand et al., 2011; Tang et al., 

2013; Wu et al., 2006). Our findings indicate similar functional potentials for denitrification at 

low and circumneutral pH ranges at the OR-IFRC. Previous work at using microcosms 

established with OR-IFRC sediments monitoring TEAPs at low pH revealed denitrification to 

proceed in acidic microcosms, albeit at a lower rate compared to microcosms established at 

circumneutral pH (Shelobolina et al., 2003; Edwards et al., 2006). Furthermore, denitrifying 

species were present when characterizing metabolically active members in the same sediment 

(Akob et al., 2007). Biological denitrification has also been determined to proceed at lower rates 

in other studies using unbuffered microcosms established from acidified sediments (Thorpe et 

al., 2012).   

Since SO4 is not a contaminant of concern, the study of sulfate reducing populations at the OR-

IFRC has primarily focused on their diversity and activity during bio-reduction experiments. 

Through the analysis of dsrAB gene sequences recovered from contaminated and 

uncontaminated wells revealed their ubiquitous distribution across the site (Bagwell et al., 2006). 

Given that nitrate is a thermodynamically more favorable electron acceptor, sulfate reduction in 

contaminated sediments is observed to proceed freely given the availability of electron donors 

and nitrate consumption either by denitrification or removal via pre-treatment (Van Nostrand et 

al., 2011; Tang et al., 2013). While nitrate levels in the acidic wells incorporated in this study 
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were low compared to highly contaminated areas, the increased toxicity of H2S and organic acids 

at low pH could be an explanation for the overall reduced functional potential based on dsrAB 

sequences (Koschorreck, 2008). The study of active SRBs at alkaline pH has predominantly 

focused on hypersaline soda lake environments, with their activity documented at pH > 9.0 (Foti 

et al., 2007; Sorokin et al., 2008). While SRB activity has not been profiled under alkaline 

conditions at the OR-IFRC, the above findings lend support for the increased functional potential 

we observed in alkaline wells. However definite conclusions regarding the activity of these 

populations cannot be drawn based on signal intensity data from target functional genes.      

The study of metal reducing bacteria has been of great interest given their role in controlling the 

mobility of toxic metals and radionuclides in groundwater at sites like the OR-IFRC (Wall, 

2006). Research into the activity of these populations has identified that at the OR-IFRC, 

pretreatment is necessary to induce more permissive growth conditions prior to significant metal 

sequestration occurring in the subsurface. Overall, these findings pinpoint high nitrate and highly 

acidic pH to inhibit microbial activity, with active biological metal reduction occurring after the 

removal of nitrate and at circumneutral pH (Wu et al., 2006c; Van Nostrand et al., 2011). Given 

the carbon limited nature of the aquifer, the addition of readily metabolizable electron donors are 

also important in influencing the activity of species driving dissimilatory metal reduction or 

through indirect reduction (e.g. via electron transfer from hydrogenases) as a result of metabolic 

activity under prevailing conditions (Madden et al., 2007). The reduced functional potential of 

known metal reducing species previously described to bring about metal reduction, indicates that 

lower pH restricts the capacity for metal reduction across the gradient examined in this study. 

pH was found to exert a stronger influence compared to NO3 and SO4 on both the taxonomic and 

functional microbial populations across the ORA, ORCN and ORALK wells. pH, NO3 and SO4 have 

been identified as important in explaining the variation seen in subsurface microbial populations 
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during active bio-reduction phases at the OR-IFRC (Van Nostrand et al., 2011). Their 

importance stemming from the changes in the concentrations of these anions during the 

succession of TEAPs in the subsurface. While NO3 and SO4 did contribute to the variation in the 

subsurface community based on taxonomic and functional gene data, it is notable that they 

influenced the subsurface microbial community to a lesser degree. The lower concentration of 

these TEAs is reflected in the small size of their vectors (Figure 4A) compared to the other 

environmental factors. The Al-mediated disruption of cell function is greater at acidic pH given 

the more prevalent Al3+ ions which contribute to the loss of membrane fluidity, increased 

oxidative stress and reduced ATP synthesis (Auger et al., 2013). The average concentration of Al 

in the ORA and ORALK wells was similar (0.10mg/L-1), thus Al3+ is likely to have been more 

toxic in the ORA wells and its toxicity in ORALK wells would depend on the amount that was 

bioavailable. The strong influence of higher DIC and pH on ORALK samples can be explained by 

the finding that dissolution of carbonate minerals and silicate hydrolysis can occur as a result of 

bicarbonate driven reactions which increase groundwater alkalinity (Toran and Saunders, 1999). 

Overall, the portion of unexplained variation given the subset of variables selected, is higher than 

findings from previous studies at the OR-IFRC (Waldron et al., 2009; Xu et al., 2010). The 

portion of unaccounted variation can be attributed to stochastic processes, unmeasured variables 

(subsurface lithology, age of groundwater, etc.)  and the inability to measure effects arising from 

the interaction of geochemical variables, which both contribute to influencing microbial 

communities (Zhou et al., 2014). 

We analyzed the taxonomic ( ~ 7,200 OTUs) and functional ( ~ 75,000 probes) profiles of 

groundwater communities collected from the OR-IFRC across a gradient in pH covering acidic, 

circumneutral and alkaline pH and identified distinct patterns in the functional potential and 

taxonomic composition. The highest functional potential for genes driving C, N and S cycling as 
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well as electron transfer processes were under conditions in alkaline wells while the lowest 

functional potential were observed in wells with acidic pH. Additionally, taxonomic composition 

was markedly different across each of the treatment groups with a large proportion of OTUs 

found to occur at low abundance. Groundwater geochemistry varied across the pH gradient with 

heterogeneity in metals, carbon and redox conditions also governing community composition 

and function. However further studies examining process rates and microbial activity across 

spatial and temporal scales are required to confirm the complex responses to subsurface 

conditions across pH gradients at the OR-IFRC. 
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Chapter 4 – Figure legends 

 
Figure 1. Normalized signal intensity representing the relative abundance for detected N cycling 

genes. Significant differences identified between means are indicated by different letters. 

Calculation based on ANOVA followed by Fisher’s LSD test. N cycling categories: A) Anammox; 

B) Denitrification; C) Assimilatory N Reduction; D) Nitrification; E) Ammonification; F) 

Dissimilatory N Reduction; G) Nitrogen Fixation. 

Figure 2. Normalized signal intensity representing the relative abundance for detected S cycling 

genes. Significant differences identified between means are indicated by different letters. 

Calculation based on ANOVA followed by Fisher’s LSD test. N cycling categories: A) DMSP 

degradation; B) Sulfide Oxidation; C) adenylylsulfate reductase; D) Sulfite Reduction; E) Sulfur 

Oxidation. 

Figure 3. Normalized signal intensity representing the relative abundance for detected genes 

influencing electron transfer. Significant differences identified between means are indicated by 

different letters. Calculation based on ANOVA followed by Fisher’s LSD test. 

Figure 4. Canonical correspondence analysis (CCA) using (A) taxonomic composition and (B) 

functional gene profiles from wells surveyed. Environmental variables were selected using 

forward selection procedure and variance inflation factors (VIFs < 20) calculated during CCA 

procedure. Environmental variables included: Eh, Redox potential; DO, Dissolved oxygen; DIC, 

Dissolved Inorganic Carbon; DOC, Dissolved Organic Carbon; Na, Sodium; pH, Mn, Manganese; 

Ca, Calcium; S2-, Sulfide; NO3-, Nitrate; SO42-, Sulfate. 
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Figure 4B. 
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Chapter 4 

Table 1.  

Summary of nonparametric multivariate dissimilarity tests of functional gene and 16S rRNA 

gene profiles between pairs of treatment groups. MRPP, multiresponse permutation procedures; 

Adonis, permutational multivariate analysis of variance using distance matrices; ANOISM, 

analysis of similarity. Distances calculated are based on Bray-Curtis index. P values < 0.1 are in 

bold. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

δ p R p F p
ORA ORCN 15 samples 0.192 0.005 0.135 0.158 2.149 0.03
ORA ORALK 14 samples 0.178 0.007 0.241 0.061 2.481 0.02
ORCN ORALK 19 samples 0.209 0.052 0.082 0.087 1.670 0.12
ORA ORCN 15 samples 0.885 0.157 0.031 0.306 1.142 0.17
ORA ORALK 14 samples 0.879 0.006 0.402 0.006 1.731 0.01
ORCN ORALK 19 samples 0.864 0.01 0.369 0.01 1.957 0.004

16s rRNA 
gene 

sequencing

Comparison MRPP Adonis ANOSIMSample setDataset

GeoChip
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Supplemental material 

 

Table S1.  

Indices capturing measures of α diversity for both functional genes detected by GeoChip and 

taxonomic profiles determined by 16S rRNA amplicon sequencing. ± indicate standard error. 

Differences between means from two treatments were tested using ANOVA. Different letters 

denote significant difference. **, p < 0.05; * p < 0.1 

 

 

 

 

 

 

 

 

 

 

 

 

Dataset Indices ORA ORCN ORALK

Probe number 49168 ± 589 51503 ± 2969 53642 ± 3298
Shannon 10.796 ± 0.01 10.827 ± 0.06 10.866 ± 0.06
Simpson 0.99997937 ± 0.0000003 0.99997966 ± 0.0000014 0.99998043 ± 0.0000014
Evenness 0.999394 ± 0.0000712 0.9995472 ± 0.0000456 0.999402 ± 0.0000362
OTUs ** 921 ± 420 ab 1225 ± 387 a 361 ± 120 b

Shannon * 3.836 ± 0.81 ab 4.276 ± 1.352 a 2.729 ± 0.909 b

Simpson 0.837 ± 0.071 0.861 ± 0.272 0.813 ± 0.271
Evenness 0.570 ± 0.087 0.604 ± 0.191 0.464 ± 0.154

GeoChip

16s rRNA 
gene 

sequencing
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Table S2.  

Gene overlap among sampling wells. a Numbers and percentages not in italic or bold indicate 

functional genes or OTUs that overlapped between two treatment groups. b Total number of 

functional genes or OTUs detected in treatment group. c Numbers and percentages in bold and 

italic are unique functional genes or OTUs detected in each treatment group.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

ORA (3,303)b ORCN (6,108) ORALK (1,556)
ORA 499(15.17%) c 2729(40.84%) 755(18.39%)
ORCN 2927(47.92%) 1132(17.33%)

ORALK 349(22.42%)

ORA (55,655)b ORCN (69,500) ORALK (68,731)
ORA 546(0.98%) c 54405(76.90%) 54247(77.34%)
ORCN 4987(7.17%) 63656(85.36%)

ORALK 4371(6.36%)

No. (%) of overlapping OTUsa
Well Group

Well Group
No. (%) of overlapping genesa
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Table S3.  

Mean values for groundwater geochemical variables collected from wells in ORA, ORCN and 

ORALK groups. DIC, dissolved inorganic carbon; DOC, dissolved organic carbon. 

Ag 0.01 0.01 0.01
Al 0.11 0.03 0.11
As 0.01 0.01 0.01
Ba 0.39 0.23 0.12
Be 0.04 0.04 0.04
Bi 0.01 0.02 0.01
Ca 15.14 73.12 7.36
Cd 0.00 0.00 0.00
Co 0.02 0.00 0.00
Cr 0.01 0.01 0.01
Cu 0.05 0.02 0.02
Fe 0.07 0.35 0.01
Ga 0.02 0.01 0.01
K 2.60 2.33 4.18
Li 0.05 0.10 0.15

Mg 38.82 27.95 43.13
Mn 0.61 0.38 0.02
Na 27.74 26.18 202.21
Ni 0.04 0.02 0.02
Pb 0.00 0.00 0.00
Se 0.01 0.01 0.01
Sr 0.10 0.34 0.24
U 0.01 0.03 0.01
Zn 0.14 0.04 0.05
Cl- 66.30 38.57 36.20

NO3 9.26 2.88 1.64
SO4 9.96 33.55 20.29

S2- 0.02 0.01 0.30
CH4 0.01 0.00 0.04
CO2 2.87 2.10 3304.33
DO 3.72 1.20 0.20
N2O 0.00 0.00 0.00
DIC 16.89 55.94 78.81
DOC 0.72 4.57 1.04
pH 5.05 7.26 9.62

Eh (mV) 316.60 250.30 57.00
Temperature (°C) 14.86 16.37 14.38

ORA ORCN ORALK

Carbon 
(mg/L)

Others

Gases (mM)

Geochemical variable

Cations 
(mg/L)

Anions 
(mg/L)
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Chapter 4 – Supplementary figure legends 

Figure S1. Locations of the 24 wells at the OR-IFRC based on GPS co-ordinates. Color intensity 

indicates the pH concentration measured in the groundwater. Acidic, < pH 6.0; Alkaline, > pH 8.0. 

Figure S2. Mean values for A) acridine orange direct cell counts (AODC) and B) DNA yield for 

wells grouped in ORA, ORB and ORC groups. DNA yield represents amount recovered from 

biomass harvested from 4 liters of groundwater. 

Figure S3. Detrended correspondence analysis (DCA) of all (A) functional genes and (B) 16S 

rRNA amplicon sequences detected in groundwater samples from each treatment groups. ORA (pH 

< 6.0), ORCN (pH 7.0 - 7.9), ORALK (pH > 9.0). 

Figure S4. Detrended correspondence analysis (DCA) of (A) cytochrome c gene sequences 

representing dissimilatory metal reducing bacteria (DMRB), (B) nirK/S gene sequences 

representing denitrifying bacteria (NRB) and (C) dsrAB gene sequences representing dissimilatory 

sulfate reducing bacteria (SRB). ORA (pH < 6.0), ORCN (pH 7.0 – 7.9), ORALK (pH > 9.0). 

Figure S5. Normalized signal intensity representing the relative abundance for detected C cycling 

genes. Significant differences identified between means are indicated by different letters. 

Calculation based on ANOVA followed by Fisher’s LSD test. C degradation gene categories: A) 

Cellulose, B) Chitin, C) Cutin, D) Glyoxylate Cycle, E) Hemicellulose, F) Lignin, G) Pectin, H) 

Starch, I) Vanillin/Lignin, J) Camphor, K) Inulin, L) Terpenes. 

Figure S6. Normalized signal intensity representing the relative abundance for detected dsrAB 

sequences determined to differ significantly between treatments. Signal intensities represent the 

sum of the gene sequences detected from each organism. Significant differences identified between 

means are indicated by different letters. Calculation based on ANOVA followed by Fisher’s LSD 

test. 
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Figure S7. Normalized signal intensity representing the relative abundance for detected 

cytochrome c sequences determined to differ significantly between treatments. Signal intensities 

represent the sum of the gene sequences detected from each organism. Significant differences 

identified between means are indicated by different letters. Calculation based on ANOVA 

followed by Fisher’s LSD test. 

Figure S8. Normalized signal intensity representing the relative abundance for detected 

hydrogenase sequences determined to differ significantly between treatments. Signal intensities 

represent the sum of the gene sequences detected from each organism. Significant differences 

identified between means are indicated by different letters. Calculation based on ANOVA 

followed by Fisher’s LSD test. 

Figure S9. Variance partitioning analysis (VPA) of environmental variables analyzed by CCA 

explaining relative effect of environmental variables on A) functional gene content and B) 

taxonomic composition across samples grouped by pH. Circles represent the effects of variables 

by partitioning out the effects of other variables. Values between circles represent combined effect 

of circle on either side. 

Figure S10. Relative abundance of OTUs identified at >1% mean RA across samples in ORA, 

ORCN and ORALK wells. OTU_8 and OTU_5 were detected at >1% RA in more than one treatment 

group. Taxonomic levels presented: OTU; Genus; Order. 

Figure S11. Relative abundance of 16s rRNA sequences at class level determined to be present 

at >1% RA in ORA, ORCN and ORALK groups of wells.  
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Figure S1. 
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Figure S2A. 
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Figure S2B. 
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Figure S3A. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 168 

Figure S3B. 
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Figure S4A. 
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Figure S4B. 
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Figure S4C. 
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Figure S5A. 
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Figure S5B. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 174 

Figure S6. 
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Figure S7. 
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Figure S8. 
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Figure S9A. 
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Figure S9B. 
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Figure S10.  
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Figure S11. 

 

 
 
 


