EPOXY COATED REINFORCING 5 6208 10012 3084 IN BRIDGE DECKS

DISPLAY COPY DO NOT REMOVE

TE716 .P68 1981 OKDOT Library

E

RESEARCH AND DEVELOPMENT DIVISION OKLAHOMA DEPARTMENT OF TRANSPORTATION

EFFORT NO. I. GOVERNMENT ACCESSION NO. S. RECIPENT'S CARAGE NO. FHWA/OK-81(3) ITTER AND SUBTINE S. RECIPENT'S CARAGE NO. S. RECIPENT'S CARAGE NO. Epoxy Coated Reinforcing Steel in Bridge Decks I. REPORT DATE November 1981 S. RECIPENT'S CARAGE NO. AURINE IS Ghasem Pourkhosrow I. REPORTATION COMMUNICATION COMMUNICATION COMMUNICATION COMMUNICATION (Research & Development Division 200 NF 21st. I. TOOMENT NO. 200 NF 21st. Toology Communication Research & Development Division 200 NF 21st. Toology Communication 73-06-1 200 NF 10th, Room A54 0klahoma City, 0K 73102 Toology Communication 7-78 to 11-81 200 NF 10th, Room 454 0klahoma City, 0K 73102 Toology Communication 7-78 to 11-81 200 NF 21st. Toology Communication 7-78 to 11-81 200 NF 10th, Room 454 0klahoma City, 0K 73102 H. PROMONING COMMUNICATION 7-78 to 11-81 200 NF 21st. Sector A07 MORE Done in cooperation with the Federal Highway Administration corrosion. A monitoring system was established to measure electrical resistance for several years after installation. KEY WORDS I. DISTRIBUTION STATEMENT Pridge deck, corrosion, epoxy resin electrical resistance, rebars Sclamer CAMER FOR HIS BRORT None None T. No. OF FAGES [22, FRICE <th>TECHNICAL</th> <th>REPORT STANL</th> <th>ARD TITLE PA</th> <th>AGE</th> <th></th>	TECHNICAL	REPORT STANL	ARD TITLE PA	AGE	
FHWA/OK-81(3) A SEPORT DATE Epoxy Coated Reinforcing Steel in Bridge Decks A SEPORT DATE CARNAGE 15 A PERCENTING CREATED NAME AND ADDRESS CARNAGE 15 CREATED NAME AND ADDRESS CARNAGE CEANEZATION NAME AND ADDRESS A PERCENTING CREATED NAME AND ADDRESS COUNT 21 st Toommact or Beane OKIAhoma City, OK 73105 Toommact or Beane SPONSOME AGENCY NAME AND ADDRESS Final Report Federal Highway Administration 73-06-1 200 NV Fifth, Room 454 Nord Second Address Oklahoma City, OK 73102 The objective of this project is to study the application of fusion- Done in cooperation with the Federal Highway Administration A STRACT The objective of this project is to study the application of fusion- a structure agent	I. REPORT NO.	2. GOVERNMENT ACC	ISSION NO.	3. RECIPIENT'S CASALO	NG NO.
TTLE AND SUBTRIE Exercise Average and the second secon	FHWA/OK-81(3)				
Epoxy Coated Reinforcing Steel in Bridge Decks November 1981 Example is in Bridge Decks Intercomme Conversion Coordination Coordina	TITLE AND SUBTITLE			S. REPORT DATE	and the second second
Epoxy Coated Reinforcing Steel in Bridge Decks A PERCENNING CREATERNING CREAT				November 19	81
CANNOR 15) CHECONNES CREATERATION NAME AND ADDRESS Ghasem Pourkhosrow Chasem Pourkhosrow PERCENSING CREATERATION NAME AND ADDRESS Chasem Pourkhosrow Research & Development Division NORE UNIT NO. 200 NK 21st The objective of this project is to study the application of fusion- bonded epoxy coatings of rebars in bridge decks. A thin film of epoxy resin is fusion bonded to the reinforcing steel as a prevention against corrosion. A monitoring system was established to measure electrical resistance for several years after installation. CHEY WORDS None Bridge deck, corrosion, epoxy resin lectrical resistance, rebars None NAME NO. Proces Scename CAMER FOR THE REFORT The scename of the sename Scename CAMER FOR THE REFORT Scename CAMER FOR THE REFORT None The objective of this project is to study the application of fusion- bonded epoxy coatings of rebars in bridge decks. A thin film of epoxy resin is fusion bonded to the reinforcing steel as a prevention against corrosion. A monitoring system was established to measure electrical resistance for several years after installation.	Epoxy Coated Reinforcing	g Steel in Bri	dge Decks	6. PERFORMING ORGA	NIZATION CODE
Ghasem Pourkhosrow 73-06-1 Item /1/ PERCENTING CHEANTZATION NAME AND ADDRESS None Oklahoma Dept. of Transportation None Research & Development Division 1. Commact of Generation (Commark) 200 NK 21st 73-06-1 Oklahoma City, 0K 73105 1. Commact of Generation (Commark) Federal Highway Administration 200 NK 71fth, Room 454 Oklahoma City, 0K 73102 7-78 to 11-81 Procession Addition (Commark) 4. Stoneonex Addition (Commark) Subjective of this project is to study the application of fusion- bonded epoxy coatings of rebars in bridge decks. A thin film of epoxy resin is fusion bonded to the reinforcing steel as a prevention against corrosion. A monitoring system was established to measure electrical resistance for several years after installation. KEY WORDS Reference for several years after installation. Statement (Commark) None	7. AUTHOR (S)			8. PERFORMING ORGAN	ZATION REPORT
The objective of this project is to study the application of fusion- bonded epoxy coatings of rebars in bridge decks. A thin film of epoxy resin is fusion bonded to the reinforcing steel as a prevention against corrosion. A monitoring system was established to measure electrical resistance for several years after installation. The objective of this project is to study the application of fusion- bonded epoxy coatings of rebars in bridge decks. A thin film of epoxy resin is fusion bonded to the reinforcing steel as a prevention against corrosion. A monitoring system was established to measure electrical resistance for several years after installation. The objective of this project is not study the application of fusion- bonded epoxy coatings of rebars in bridge decks. A thin film of epoxy resin is fusion bonded to the reinforcing steel as a prevention against corrosion. A monitoring system was established to measure electrical resistance for several years after installation. TREY WORDS None Subjective of this BERGENT Bridge deck, corrosion, epoxy resin electrical resistance, rebars In. Mo. OF FAGES 22. FELE	Ghasem Pourkhosrow			73-06-1 It	em /1/
Oklahoma Dept. of Transportation Research & Development Division 200 NE 21st I. CONTRACT OF GRAPH NO. 73-06-1 Oklahoma City, OK 73105 I. The of Encor AND FRANCO CONTROL SCHOOL AGENCY NAME AND ADDERSS Federal Highway Administration 200 NW Fifth, Room 454 Oklahoma City, OK 73102 I. CONTRACT OF GRAPH NO. 73-06-1 Suprimentative Notes Final Report 7-78 to 11-81 The objective of this project is to study the application of fusion- bonded epoxy coatings of rebars in bridge decks. A thin film of epoxy resin is fusion bonded to the reinforcing steel as a prevention against corrosion. A monitoring system was established to measure electrical resistance for several years after installation. *REF WORDS None Suprimentation Suprimentation Suprimentation Suprimentation One in cooperation with the Federal Highway Administration Administration AMETACT The objective of this project is to study the application of fusion- bonded epoxy coatings of rebars in bridge decks. A thin film of epoxy resin is fusion bonded to the reinforcing steel as a prevention against corrosion. A monitoring system was established to measure electrical resistance for several years after installation. *REF WORDS Substructure Losse for this Proof None Substructure Losse for Proof None *Substructure for the BRORT None Substructure Losse for this Proof None Z. No. OF Proofs Z. PRICE	PERFORMING ORGANIZATION NAME A	ND ADDRESS		R. WORK UNIT NO.	
Research & Development DIVISION 73.06-1 200 NE 21st 73.06-1 Oklahoma City, OK 73105 13.704 Get BECOT AND FROD COVERD Secondamic Address Final Report Federal Highway Administration 7.78 to 11-81 200 NE 21st 7.78 to 11-81 Oklahoma City, OK 73102 14.504200000 Suprementative Notes Final Report Done in cooperation with the Federal Highway Administration Asstract The objective of this project is to study the application of fusion-bonded epoxy coatings of rebars in bridge decks. A thin film of epoxy resin is fusion bonded to the reinforcing steel as a prevention against corrosion. A monitoring system was established to measure electrical resistance for several years after installation. EXET WORDS 18.DISTRESUTION STATEMENT Bridge deck, corrosion, epoxy resin 18.DISTRESUTION STATEMENT Security CLASER for THIS REPORTI None 21. No. OF FAGES 22. FRICE None 55 21. PRICE 23. PRICE	Oklahoma Dept. of Irans	portation			
200 NK 21St 730001 SPONSOENKG AGENCY NAME AND ADDRESS 13. TWE OF EFFORT AND FENCE CONSERVE Federal Highway Administration 200 NK fifth, Room 454 Oklahoma City, 0K 73102 7-78 to 11-81 Suprimentative Notes 14. Sector and Fence Constant Done in cooperation with the Federal Highway Administration 4. Sector and Fence Constant ASTRACT The objective of this project is to study the application of fusion-bonded epoxy coatings of rebars in bridge decks. A thin film of epoxy resin is fusion bonded to the reinforcing steel as a prevention against corrosion. A monitoring system was established to measure electrical resistance for several years after installation. CKEY WORDS 18. DISTRENTION STATEMENT Bridge deck, corrosion, epoxy resin electrical resistance, rebars 18. DISTRENTION STATEMENT SECURITY CLASER OF THE REPORTIN NOTE 20. SECURITY CLASER OF THE REPORTIN NOTE None 21. NO. OF FAGES 22. FRICE	Research & Development I	JIVISION		73-06-1	
OK TAINONA CITY, UK 75103 IL IN COF PAGES Federal Highway Administration Final Report 200 NW Fifth, Room 454 IL INC OF PAGES Oklahoma City, OK 73102 IL INC OF PAGES Suprised additional city, OK 73102 IL INC OF PAGES Suprised additional city, OK 73102 IL INC OF PAGES Suprised additional city, OK 73102 IL INC OF PAGES Suprised additional city, OK 73102 IL INC OF PAGES Suprised additional city, OK 73102 IL INC OF PAGES Suprised additional city, OK 73102 IL INC OF PAGES Suprised additional city, OK 73102 IL INC OF PAGES Suprised additional city, OK 73102 IL INC OF PAGES Suprised additional city, OK 73102 IL INC OF PAGES Suprised additional city, OK 73102 IL INC OF PAGES Suprised additional city, OK 73102 IL INC OF PAGES Suprised additional city, OK 73102 IL INC OF PAGES Suprised additional city, OK 73102 IL INC OF PAGES Suprised additional city, OK 73102 IL INC OF PAGES Suprised additional city, OK 73102 IL INC OF PAGES Suprised additional city, OK 73102 IL INC OF PAGES Suprised additional city, OK 73102 IL I	200 NE 21St			75-00-1	
Federal Highway Administration 200 NW Fifth, Room 454 0klahoma City, 0K 73102 7-78 to 11-81 ASTRACT Is SCREDENKE AGENCY COOR Done in cooperation with the Federal Highway Administration ASTRACT The objective of this project is to study the application of fusion- bonded epoxy coatings of rebars in bridge decks. A thin film of epoxy resin is fusion bonded to the reinforcing steel as a prevention against corrosion. A monitoring system was established to measure electrical resistance for several years after installation. KEY WORDS Is DISTRIBUTION STATEMENT Bridge deck, corrosion, epoxy resin electrical resistance, rebars 18.DISTRIBUTION STATEMENT Security CLASSE for THIS REPORT None 20. SECURITY CLASSE for THIS FMGRD 21. NO. OF FMGRS 22. PRICE	UKIANOMA CITY, UK 73105	DESC		Final Repor	t
Pederal Highway Administration 200 NW Fifth, Room 454 Oklahoma City, 0K 73102 Astruct Done in cooperation with the Federal Highway Administration Astruct The objective of this project is to study the application of fusion-bonded epoxy coatings of rebars in bridge decks. A thin film of epoxy resin is fusion bonded to the reinforcing steel as a prevention against corrosion. A monitoring system was established to measure electrical resistance for several years after installation. Ker words Is.DISTRIBUTION STATEMENT Bridge deck, corrosion, epoxy resin electrical resistance, rebars Is.DISTRIBUTION STATEMENT Socuent CLASSE for THIS REPORT None 20. SECUENT CLASSE for THIS REPORT None	Endonal Highway Adminis	tration		7-78 to 11-	81
200 NW TITCH, NOW 73102 A. SPONSOR AGENCY CODE 3. SUPLEMENTARY NOTES Done in cooperation with the Federal Highway Administration 3. ADSTRUCT The objective of this project is to study the application of fusion- bonded epoxy coatings of rebars in bridge decks. A thin film of epoxy resin is fusion bonded to the reinforcing steel as a prevention against corrosion. A monitoring system was established to measure electrical resistance for several years after installation. CKEY WORDS None Thidge deck, corrosion, epoxy resin None The DISTRIBUTION STATEMENT SECURITY CLASHE FOR THIS REPORTI None 20. SECURITY CLASHE, FOR THIS FMGE) T. NO. OF FAGES 22. PRICE	200 NW Fifth Room 454	cracion			*
Supprised end of this project is to study the application of fusion-bonded epoxy coatings of rebars in bridge decks. A thin film of epoxy resin is fusion bonded to the reinforcing steel as a prevention against corrosion. A monitoring system was established to measure electrical resistance for several years after installation. CNEY WORDS 18.DISTRIBUTION STATEMENT Bridge deck, corrosion, epoxy resin, electrical resistance, rebars 18.DISTRIBUTION STATEMENT Security classe for two seports 20. SECURITY classe for two seports None 17. NO. OF PAGES 22. PRCE	Oklahoma City, OK 73102			14. SPONSORING AGEN	CY CODE
Done in cooperation with the Federal Highway Administration ASSTACT The objective of this project is to study the application of fusion-bonded epoxy coatings of rebars in bridge decks. A thin film of epoxy resin is fusion bonded to the reinforcing steel as a prevention against corrosion. A monitoring system was established to measure electrical resistance for several years after installation. INFY WORDS Image: Distribution statement Bridge deck, corrosion, epoxy resin electrical resistance, rebars Image: Distribution statement Security classit for THIS REPORT D. SECURITY classit for THIS FAGE: 1. PLOSE Image: 2. PRICE None 55	5. SUPPLEMENTARY NOTES				
ABSTRACT The objective of this project is to study the application of fusion-bonded epoxy coatings of rebars in bridge decks. A thin film of epoxy resin is fusion bonded to the reinforcing steel as a prevention against corrosion. A monitoring system was established to measure electrical resistance for several years after installation. INTER WORDS Is.DISTRIBUTION STATEMENT Bridge deck, corrosion, epoxy resin, electrical resistance, rebars Is.DISTRIBUTION STATEMENT Didge deck, corrosion, epoxy resin, electrical resistance, rebars Is.DISTRIBUTION STATEMENT Discussified to This REPORT 20. SECURITY CLASSIF. (of This PAGE) In No. of PAGES 12. PRICE	Done in cooperation wit	h the Federal	Highway Admin	istration	
KEY WORDS 18. DISTRIBUTION STATEMENT Bridge deck, corrosion, epoxy resin 18. DISTRIBUTION STATEMENT electrical resistance, rebars 20. SECURITY CLASSIF. (OF THIS PAGE) 21. NO. OF PAGES 22. PRICE None None 55	resin is fusion bonded corrosion. A monitori resistance for several	to the reinfo ng system was years after	orcing steel a established t installation.	s a preventio o measure ele	n against ctrical
None None 55	KEY WORDS Bridge deck, corrosion electrical resistance	n, epoxy resin , rebars	16. DISTRIBUTION STA	JEMENT	
None None 55				T NO OF MORE	
None 55	9. SECURITY CLASSIF. (OF THIS REPORT)	20. SECURITY CLASSIF. (UP THIS PAGE)		ad. FRIGE
	None	None		55	

Ovinhora Bept, of Transportation, Station
026 mm City, 0K 73102
The objective of this project in to study the automated expressions coatings of rebarm in bridge deck resin is fusion bonded to the minforcing stael corvosion. A conitoring system was established resistance for several years after installation

EPOXY COATED REINFORCING STEEL IN BRIDGE DECKS

By

Ghasem Pourkhosrow

Under the Supervision of

C. Dwight Hixon, P.E. Research and Development Engineer Research and Development Division Oklahoma Department of Transportation

Oklahoma City, Oklahoma

November, 1981

The opinions, findings, and conclusions expressed in this report are these of the author and not necessarily those of the Okiahoma Department of Transportation or the Federal Highway Administration.

POXY COATED REINFORCING STEEL IN BRIDGE DECKS

y8

Ghasan Pourkhosrow,

Under the Supervision of

C. Dwight Hinton, F.S. Research and Development Engineer Resourch and Development Division Oklahoma Department of Transportation

The opinions, findings, and conclusions expressed in this report are those of the author and not necessarily those of the Oklahoma Department of Transportation or the Federal Highway Administration.

... 23 -: Approximate Conversions to Metric Measures Approximate Conversions from Metric Measures -33 When You Know Multiply by To Find Symbol Symbol Shen You Know Symbol Symbol Multiply by To find ----3 LENGTH -8 -LENGTH millimeters 0.04 inches in **n**m 5 cm centimeters 0.4 inches in m meters 3.3 feet t ·2.5 In inches contimeters Cm yards meters 1.1 yd -= m -30 feet centimeters cm -1 hm kilometers 0.6 miles mi Yd yards 0.9 meters m -1.6 mi miles kilometers km 11 -AREA AREA -. ----cm square centimeters 0.16 in2 . square inches in² ft² cm2 m2 square inches 6.6 square centimeters square nieters square yards yd2 1.2 m² equare feet 0.09 square meters km2 square kilometers square miles mi2 0.4 I.I.I.I.I.I.I.I.I.I. yd² mi² m² square yards 0.8 square meters hectares (10,000 m²) ha 2.6 hm2 square miles 2.6 square kilometers 0.4 hectores he 2 MASS (weight) -MASS (weight) 2 0.035 ounces 30 amang 9 80 ounces 28 grams . 2.2 pounds 16 kg kilograms pounds Ib 0.45 kg kilograms tonnes (1000 kg) 1.1 short tons . short tons 0.9 . lonnes -----(2000 Ib) . 9 VOLUME VOLUME 11 02 aresitution 0.03 fluid ounces mi 180 leaspoons 5 milliliters ml liters 2.1 pints pt 15 . Thep tablespoons milliliters mi liters 1.06 quarts qt ti oz fluid ounces 30 milliliters ml . 0.26 gallons liters gal fi³ C cups 0.24 liters . -1 m cubic meters 35 cubic feet PI pints 0.47 liters cubic yards yd3 m3 1.3 0.95 liters cubic maters qt quarts -9al 11³ gallons 3.8 liters 0.03 cubic foet cubic meters TEMPERATURE (exact) yd3 "J = S cubic yards 0.76 cubic meters TEMPERATURE (exact) • 9/5 (then Fahrenheit "с Colsus add 32) temperature temperature °F Fahrenheit 6/9 (after Celsius °c 63 subtracting temperature temperature .F 32) 212 OF 32 98.6 24 120 200 | 40 .. 160 -40 0 ---10D 40 60 .. 20

5

- 40

- 20

37

METRIC CONVERSION FACTORS

*1 in + 2.54 (exactly). For other exact conversions and more detailed tables, see NBS Misc. Publ. 286, Units of Weights and Measures, Price 12.25, SD Catalog No. C13.10 286

TABLE OF CONTENTS

poor quality control of concrete, construction practices, improper drainage Abstract Introduction Purpose to be Site Description when a black of the base ("reacted") leads provide and Construction and notation of additional vibean at least and 4 and the second Coating Material Installation atvia Monitoring System Discussion and Problems of an instant and ended behavior of the state of the state of Cost Summary to reval bebaod vitrigit) mill evizes valuaize ent see 81 yeab entrad Conclusion and Recommendations Reference 10 corrosion product (rust) and since this corrosion product occupies about Specifications Appendix A 11 much volume as the purent material, very high pressure due to expansion is exc Appendix B Figures 21 locally. Pressures developed in excess of the compressive and tensile s Appendix C Measurements the concrete result in local disintegration, thus creating a weak spot internally in

Freeze-thaw damage, through a different mechanism, also results in disintegration of the concrete but the damage propagates from the deck surface towards the reinforcing steel. The net effect of both the processes is to weaken the concrete and increase its porosity. An increase in porosity lets more sait and water percolate down into the deck. This forces the correction activity to proceed at a much faster rate and also increases; the volume of the deck vulnerable to

INTRODUCTION

In the absence of preventive measures, the deterioration of concrete bridge decks can be a rapid process. The numerous variables causing this behavior include: poor quality control of concrete, construction practices, improper drainage systems, use of deicing salts, and the natural environmental exposure. Concrete being inherently a porous material, falls prey to freeze-thaw damage.

The reinforcing steel ("rebars") used in the bridge decks is an active (anodic) metal. Reinforcing steel is readily susceptible to corrosion due to its own metallurgical non-homogeneity, particularly with respect to oxygen and moisture concentrations. Under these conditions aerated wet concrete acts as an electolyte in spite of high pH (12.5-12.8). Chloride ions, present due to the salting of the bridge deck, break the existing passive film (tightly bonded layer of metal oxide on the surface of the rebar) and accelerate the corrosion activity.

The effective strength of the steel drops because of the material lost to the corrosion product (rust) and since this corrosion product occupies about twice as much volume as the parent material, very high pressure due to expansion is exerted locally. Pressures developed in excess of the compressive and tensile strength of the concrete result in local disintegration, thus creating a weak spot internally in the deck. With the passage of time, this process propagates away from the bar and eventually reaches the deck surface.

Freeze-thaw damage, through a different mechanism, also results in disintegration of the concrete but the damage propagates from the deck surface towards the reinforcing steel. The net effect of both the processes is to weaken the concrete and increase its porosity. An increase in porosity lets more salt and water percolate down into the deck. This forces the corrosion activity to proceed at a much faster rate and also increases the volume of the deck vulnerable to freeze-thaw deterioration. Both the activities aid each other in escalating their respective destructive attack on the deck and consequently the deck fails structurally and its replacement is necessitated.

A recent survey by the General Accounting Office (GAO) identified 32 states with 162,622 Federal-aid system bridges having a moderate to severe bridge deck problem. GAO estimated that about \$6.3 billion are needed to restore these bridges. These figures indicate an average cost to restore each bridge is about \$38,740. Based upon an average of 38 states (Better Roads, January 1980 issue), it is estimated that there is a total of about 635,000 bridges in the nation. If 40% of these bridges are assumed to be in distress, based upon the above restoration cost per bridge it will take about \$10 billion to restore these bridges. Even after incurring such an expense, the present day rehabilitation procedures provide no technical guarantee that the restoration will be effective for more than a decade.

For a bridge, under simultaneous attack of corrosion and freeze-thaw, it is difficult to proportion the respective rehabilitation costs. This is due primarily to the lack of a clear understanding of the inter-action mechanism involved under such conditions. For all the bridges in distress nationwide, one can estimate the rehabilitation cost from corrosion alone to be in billions of dollars. During the 1979 FCP annual meeting, Kenneth C. Clear (FHWA), indicated that presently annual maintenance costs of bridge decks damaged by reinforcing steel corrosion are over \$150 million. Both, the rehabilitation and maintenance costs are very high and should call attention to controlling the variables responsible for such high costs. Present day technology provides preventive techniques which can be adopted for both new decks and those old structures which require deck replacement. These techniques generally include use of impermeable concrete, membranes, steel coatings, heat pipe, and cathodic protection systems. Further evaluation and continued research is still warranted in each area.

Purpose

Epoxy coated rebars fall in the category of coating steel as a prevention against corrosion. A thin film $7 \stackrel{+}{-} 2$ mils (0.18 mm $\stackrel{+}{-} 0.05$ mm) of epoxy resin is fusion bonded to the reinforcing steel. How long this film can stay intact and continue to protect steel from corrosive influences needs to be evaluated. This investigation is aimed at that goal.

Site Description

The project site is a rehabilitated bridge on I-35, north bound lanes over Cow Creek, located one mile south of the Perry exit in Noble County, Oklahoma. Figure 1 (all photographs are in Appendix B) shows the exact location. The average daily traffic count in 1979 for this section of I-35 was 4800 vehicles in one direction. The original bridge was built in 1959 and it was overlayed with asphaltic concrete in 1967. Chloride evaluation done in October 1976, indicated that the salt content at the steel depth (top mat) averaged 4.6 lbs/cu. yd. (274 kg/m³) and ranged from a minimum of 1.4 lbs/cu. yd. (0.83 kg/m³) to a maximum of 7.6 lbs/cu. yd. (4.52 kg/m³). These figures are based upon 16 samples.

In 1978, the Bridge Division of the Oklahoma Department of Transportation (ODOT) rated the bridge deck condition at 1, in a range of 0-10, (10 being a new deck in excellent condition). It was decided to rehabilitate the bridge. Rehabilitation included one additional pier, a new wider deck, and use of epoxy coated rebars for the top steel mat. The construction was completed in April, 1979, and the bridge opened to traffic. The deck is 40 ft. (12.2 m) wide and 270 ft. (82.3 m) long and skewed at 45[°]. The deck slab has a thickness of 8 1/4 in. (210 mm).

The clearance of the top mat is 2 1/2 inches (63.5 mm) below the deck surface

(Figure 9).

CONSTRUCTION of base stew schoold as soloring?

pouring (Figures 15 and 15). The connections were covered with caulification

The epoxy resin used for coating the reinforcing steel is manufactured by the 3M Company and is marketed under the trade name of SCOTCH KOTE 213. Product data for this epoxy resin and recommended specifications for its application to reinforcing steel, published by the 3M Company, are presented in Appendix A. The Oklahoma Department of Transportation (ODOT), Special Provision 511-1(a-c), dated 2-24-78, stipulating the specifications for the epoxy coated reinforcing steel and the certificate of compliance with these provisions, issued by the Materials Division of ODOT, are included in Appendix A. Compliance with these Special Provisions is mandatory for an epoxy resin system installed in Oklahoma.

Installation

After the epoxy coated rebars, wires, and chairs were tested according to Oklahoma Standard Specification for Highway Construction, they were shipped to the project site. The handling and shipping of the coated material (Figures 3 to 8) and surface preparation of the bridge deck (Figure 9) was done according to ODOT Special Provision 511-1(a-c). See Appendix A. To protect the epoxy coating, padded slings and straps should be used along with wooden cribbings. The coated rebars were placed on the deck using epoxy coated supports and wires (Figures 10, 11, and 12).

The longitudinal rebars are No. 4 and transverse bars are No. 6. All epoxy coated steel rebars in the top mat were supported on epoxy coated high chairs. The uncoated bottom mat was supported on approved metal low chairs with no epoxy.

The clearance of the top mat is 2 1/2 inches (63.5 mm) below the deck surface (Figure 9).

Styrofoam blocks were used to cover the cell components during the concrete pouring (Figures 15 and 16). The connections were covered with caulking material in order to protect them from weathering (Figures 25, 26, and 27).

The bridge deck was poured and finished by standard procedures according to ODOT Specifications Section 502 (Figures 17, 18, 19, and 20). The concrete had a 2 to 3 inch (51 to 76 mm) slump (Figure 21). The air content of the plastic concrete was about 6 percent (Figure 22). Three cylinders were made for strength determinations (Figure 23). The cylinder strengths ranged from 3930 lbs/in² to 5590 lbs/in²(27.1 to 38.5 MPa) with an average of 5019 lbs/in² (34.6 MPa) at 28 days.

Monitoring System

Six coated rebars selected at random had copper conductors tied to them (Figures 13, 14, and 15) in order to measure resistance after installation. The copper wires were placed parallel and close to the bars. The two epoxy coated rebars and the two inner copper wires constitute a measurement cell (Figure 33). Each cell is used to evaluate the stability of the epoxy resin coating. The various resistances are measured by means of a BARNSTEAD, Model PM 70CB, A.C. conductivity bridge meter (Figure 30).

The a.c. measurement of all the resistances shown in Figure 34 are to be taken once a month and this schedule of measurement will continue until 1984.

For the sake of staying consistent with the type of data taken nationwide concerning epoxy coated rebars, wet mop a.c. resistance measurements will also be taken. Fourteen additional bars were at random chosen for the purpose of wet mop measurement and direct electrical connection with the lead wires was made on the west side of the bridge and connected to the junction box (Figures 24, 28, and 29).

The measurements are to be taken every six months until 1984. Figures 31 and 32 show a typical wet mop apparatus. The completed bridge deck was opened to traffic in May, 1979 (Figure 2).

The data collected so far from both the measurement cells and the wet mop procedure is presented in Appendix C.

or handling of epoxy coated rebars. The installation and concrete pourin noiseus

In order to determine the performance of epoxy coated rebars imbedded in Portland cement concrete, a monitoring system needed to be established. According to J. R. Clifton, et. al., (1) resistance measurements are probably more reliable indicators than electrical potential measurements. The resistance values are primarily dependent on the integrity of the coating films. Figure 34 shows a general arrangement of a typical measurement cell that will be used to evaluate the stability of the epoxy film. The rebars B1 and B2 are epoxy coated transverse bars. The bare copper wires C1 and C2 are placed parallel to the rebars B1 and B2 respectively. Resistance B1C1 or C2B2, measured between the epoxy rebar and the copper conductor, will indicate how well the epoxy film is performing.

The resistance readings other than B1C2 and C2B2 in the network should help in judging the accuracy of each resistance measurement.

Resistance C1C2 between the two copper wires will normally indicate the moisture content in the bridge deck. An increase in C1C2 resistance indicates a moisture decrease in the bridge deck or vice versa.

There are several mechanisms that could alter resistance readings. A rapid decrease in resistance can be attributed to emergence of "holidays", which are pinholes in the coating not normally visually discernible. An increase in resistance is a possible indication of some type of holiday healing mechanism (1). The peak in resistance readings noted in Appendix C indicates such an increase. Other possible explanations include the thorough drying of the deck – January is the driest month.

It is also possible that the freezing of the remaining free water in the voids in the concrete may raise the resistance - January is also the coldest month. The flat portion of the curve indicates stable conditions within the deck.

Problems

There were no problems encountered during application, fabrication, shipping, or handling of epoxy coated rebars. The installation and concrete pouring was accomplished without any difficulty. Epoxy paint was applied by hand to a few epoxy coated reinforcing steel rebars which were damaged during shipping and handling (Figure 12).

general arrangement of a typical measurement call that will be used to evaluate the stability of the epoxy film. The rebars B1 and B2 are epoxy coated theoretics pars. The bars cooper wires C1 and C2 are placed parallel to the rebars B1 and B2 respectively. Restricted B1C1 or C2B2, measured between the epoxy recorrect and the eposer concurrer, will indicate how well the epoxy film is performing. The resistance readings other than B1C2 and C2B2 in the network should help in judging the securacy of each resistance measurement. Resistance C1C2 between the two copper wires will normally indicate the moisture content in the tridge deck. An increase in C1C2 resistance indicates d

There are several mechanisms that could alter resistance reidings. A rapid decrease is reactance can be attributed to emergence of "holidays", which are ginholes is are resting not normally visually discernible. An increase in resistance is a possible indication of some type of holidey healing mechanism (1). The peak in resistance readings noted in Appendix 2 indicates such an increase. Other possible explanations include the thorough drying of the deck - January is the driest month.

COST SUMMARY

The table below reflects the costs of the epoxy rebars . It also includes the costs for the materials involved with the cell measurement procedures.

Although long teriment	Quantities	Unit Unit	Unit Price	Total
		DOOT (Appen	iot known, (
Standard Rebars	33,760	lb.	\$.28*	\$ 9,453
Epoxy Coated Rebars	34,220	lb.	\$.70*	\$23,954
Class AA Concrete	102.1	c.y.	\$170*	\$17,357
Miscellaneous				\$ 100
Conductivity Bridge Mete	er I rate of decrease in			\$ 444 ea.

* Lowest bid as of May 1978.

CONCLUSION AND RECOMMENDATION

There seemed to be no unusual difficulties in the procurement or installation of epoxy-resin coated reinforcing steel in a bridge deck. Although long term performance is not known, ODOT (Appendix C) feels that the inclusion of epoxy rebars in subsequent installations is desirable. The installation at Cow Creek will continue to be observed monthly for resistance readings.

Knowledge of the resistance readings will provide a means of determining the integrity of the epoxy coating. A failure in the coatings would signal the onset of deterioration. Hopefully, the manner and rate of decrease in resistance should be helpful in indicating the life of the bridge deck.

REFERENCE

J. R. Clifton, H. F. Beeghly, and R. G. Mathey, <u>Nonmetallic Coatings for</u> <u>Concrete Reinforcing Bars</u>, Report No. FHWA-RD-74-18, Federal Highway Administration, Washington, D.C. (1974).

APPENDIX A

 J. R. Durloo, H. P. Beeghly, and R. G. Mathey, Nonmetallic Coatings for Concrete Armitereing Bars, Report No. FHWA-RD-74-18, Federal Elgeway (Concrete Armitereing Bars, Report No. Contracting Contracting Contracting (Source Contracting Contrating Contracting Contracting Contracting Contracting Contractin (interconting fills correct The coating fills shall be fully cured. The applicator shall be fully cured. The applicator shall be fully cured.

OKLAHOMA DEPARTMENT OF TRANSPORTATION SPECIAL PROVISIONS FOR

EPOXY COATED REINFORCING STEEL

These Special Provisons revise, amend, and where in conflict, supersede applicable Sections of Standard Specifications for Highway Construction, 1976 Edition.

511.02 MATERIALS (Add the following) Epoxy Coated Reinforcing Bars. These special requirements cover organic protective coatings electostatically applied to steel bars, which meet the requirements of Section 723, and are to be used for concrete reinforcement.

(a) Coating Material. A list of prequalified coating materials may be obtained from the Materials Division. The prequalification testing is performed by the National Bureau of Standards to Specifications of the Federal Highway Administration.

The powdered resin shall comply with the specifications of the manufacturer and shall be of the same composition and quality as the resin samples submitted to and approved by the National Bureau of Standards.

The manufacturer of the powdered epoxy resin, hereinafter called the manufacturer, shall supply to the coating applications company, hereinafter called the applicator, essential information on the proper use and performance of the resin as a coating. The manufacturer shall also furnish the applicator written certification signed by a responsible officer that the material furnished for coating reinforcing bars is the same formulation approved by the National Bureau of Standards for prequalification.

The applicator shall supply to the Department two representative samples of four (4) ounces each of the resin powder used to coat each given lot of bars. Each sample shall be packaged in an airtight container with identification by lot number.

(b) Coating Process. 1. General. The coating material shall be applied as recommended by the manufacturer in a smooth, uniform coat. The applicator shall make a trial run of the coating process to insure that the process meets the specificed requirements. All required tests shall be performed on the trial specimens before production is started on the reinforcing bars for the project. The applicator shall notify the Department's Bridge Division at least 30 days before the date of the trial run.

2. Surface Preparation. The surface of bars to be coated shall be clean and free from rust, scale, oil, and grease and similar surface contaminants. The surface shall be blasted to near white metal in accordance with the requirements of Section 506.04 (d)1.5 of the Standard Specifications. All traces of grit and dust from the blasting shall be removed.

The coating material shall be applied to the cleaned surface of the bars as soon as possible after cleaning and before visible oxidation of the surface occurs.

3. Coating Thickness. The thickness of the coating after curing shall be 7 \pm 2 mils. Thickness of the coating film shall be measured on a representative number of bars from each production lot by the method outlined in ASTM G-12.

4. Curing. The coating film shall be fully cured. The applicator shall check a representative portion of each production lot by the method he has found most effective for measuring cure to insure that the entire coated production lot is supplied in a fully cured condition.

511-1(b·)

(c) Patching Material. The manufacturer shall supply suitable patching or repair material that is compatible with the coating and inert in concrete. Patching will be done in accordance with the manufacturer's recommendations and to the prescribed coating thickness.

(d) Continuity of Coating. The applicator shall check the coated bars after curing for continuity of coating. The coating shall be free from holes, voids, contamination, cracks, and damaged areas. A 67 1/2-volt holiday detector such as Tinker and Rasor Model M-1 or approved equivalent shall be used to check the coating for holidays. The shall be no more than two holidays (pinholes not visually discernible) in any linear foot of a coated bar. This holiday limitation will not apply to electrical contact points. Patching material shall be used to touch-up these contact points.

(e) Flexibility of Coating. The flexibility of coating will be evaluated by the Department Inspector on a representative number of bars selected from each production lot and subjected to the following bending test for acceptance of the lot:

The coated reinforcing bar to be tested shall be exposed to room temperature $(77\pm9^{\circ}F)$ for a sufficient time to reach thermal equilibrium. The bending test shall be conducted at room temperature.

The test specimen shall be bent 120 degrees (after rebound) around a pin having a diameter equal to eight times the bar diameter. The bend shall be made at a uniform rate and may take up to one minute to complete. The two longitudinal deformations may be placed in a plane perpendicular to the pin radius.

No cracking of the coating shall be visible to the naked eye on the outside radius of the bent bar.

(f) Accessories. Tie wire shall be plastic coated. Chairs, supports, and clips shall be one of the following:

- 1. Steel, fully coated with epoxy or plastic.
- 2. Galvanized steel, with the cradle and the upper three inches
 - of the chair, support, or clip coated with epoxy or plastic.
 - 3. The plastic or epoxy coating shall be of sufficient thickness to prevent physical damage to the coated rebars during installation. The coating of accessories will be visually inspected and approved by the Engineer prior to use.

by the Engineer prior to use. (g) Inspection and Testing. The applicator shall furnish a Certificate of Compliance for each shipment of coated bars. The Certificate shall state that representative samples of the coated bars have been tested and that the test results comply with the requirements of this Subsection. Test results shall be retained and made available as provided in Section 9.1 of AASHTO M-218.

Sample lengths of coated bars may be taken by the Engineer from the production run at the point of coating application for testing and evaluation purposes.

511.04 CONSTRUCTION METHODS. (Add the following) Epoxy Coated Reinforcing Bars. (a) Fabrication. Where fabrication damages the epoxy coating, the fabricator shall repair the bars with patching material complying with the requirements given above for "Patching Material" in accordance with proceedures recommended by the manufacturer of the powdered epoxy resin. RECOMMENDED SPECIFICATION FOR

610 MI030 AUX OR 131 AUX PAR

511-1(c)

(b) Handling. In order to protect epoxy coated reinforcing bars from damage, the Contractor shall use padded or non-metallic slings and padded straps for handling. The bars shall not be dropped or dragged and shall be stored on wooden cribbing.

(c) Placing Reinforcing Bars and Concrete. Accessories and hardware used for placing, supporting, or tying epoxy coated reinforcing bars shall comply with the requirements given above for "Accessories". Reinforcing shall be placed, supported, and tied carefully to avoid damage to the epoxy coating. Concrete shall be placed and vibrated with care.

(d) Patching. Sheared ends and other cuts and exposed areas shall be patched promptly before detrimental oxidation occurs. Areas to be repaired shall be clean and free from surface contaminants. Patching material shall be applied at the coating shop or fabricating shop or in the field, as required. Damaged areas shall be patched as soon as possible and before visible oxidation of the steel occurs.

Coating breaks on coated bars shall be patched if the total damaged area is not more than ten (10) percent of the total coated area. If more than ten percent of the total coated area of the bar is damaged it shall be rejected for use. Rejected materials shall be removed in accordance with Section 106.09.

511.05 METHOD OF MEASUREMENT. (add the following) Epoxy coated reinforcing steel will be measured by the pound, based on the theoretical number of pounds calculated on the nominal weight before application of the epoxy coating materials. No allowance will be made for the epoxy coating material, the coating process, accessories, or the testing required by the manufacturer or applicator as specified above.

511.06 BASIS OF PAYMENT. (add the following) The accepted quantities of epoxy coated reinforcing steel, as measured above, will be paid for at the contract unit price per pound for:

EPOXY COATED REINFORCING STEEL ----- LB

which shall be full compensation for furnishing all materials, equipment, labor, and incidentals to complete the work as specified.

dry sand as grit blasted to remove all dirt, mill scale, rust, corrosion products, oxides, paint and other foreign matter. Very light shadows, very slight streaks or slight discolorations shall be acceptable; however, at least 90% of the surface shall have the uniform gray appearance of a white metal biast cleaned surface. Oil and grease shall be removed with a non-oily solvent prior to blasting.

- 2.2.1 The cleaning models shall be selected to achieve an anchor pattern profile of not lass than 1.5 mile (.038 mm) nor more than 2.5 mile (.064 mm). Standards for comparison shall be made evailable by contractor.
- 2.2.2 For consistent surface finish a stabilized working mix of the cleaning media shall be maintained by frequent small additions of new grit commensurate with consumption; inflequent large additions shall be avoided.

RECOMMENDED SPECIFICATION FOR PLANT APPLICATION OF "SCOTCHKOTE" BRAND RESIN 213 ON REINFORCING BARS

1.0 GENERAL

- 1.1 This specification covers the requirements for plant application of "SCOTCHKOTE" Brand 213 to reinforcing bars. "SCOTCHKOTE" is a product trademark of 3M Company.
- 1.2 The work includes the furnishing of all plant, labor, materials, tools and equipment, and the performance of all operations and incidentals necessary for the coating, handling, storing and shipping of plant coated reinforcing bars.
 - 1.3 Coating materials shall be handled, stored, and applied in accordance with the manufacturer's specifications, or as directed by an authorized representative of the coating manufacturer.
 - 1.4 All references to SSPC shall be interpreted as Steel Structures Painting Council.
 - 1.5 All references to NACE shall be interpreted as National Association of Corrosion Engineers.

2.0 SURFACE PREPARATION

- 2.1 Prior to blast cleaning, surfaces shall be inspected and precleaned according to SSPC-SP1-63 to remove oil, grease and loosely adhering deposits. Visible oil and grease spots shall be removed by solvent wiping. Only approved safety solvents which do not leave a residue shall be used.
- 2.2 The exterior bar surface shall be blast cleaned to NACE near-white finish using steel grit after preheating of bar to sufficient temperature to remove all moisture.

NACE near-white finish is interpreted to mean that all metal surfaces shall be dry sand or grit blasted to remove all dirt, mill scale, rust, corrosion products, oxides, paint and other foreign matter. Very light shadows, very slight streaks or slight discolorations shall be acceptable; however, at least 95% of the surface shall have the uniform gray appearance of a white metal blast cleaned surface. Oil and grease shall be removed with a non-oily solvent prior to blasting.

- 2.2.1 The cleaning media shall be selected to achieve an anchor pattern profile of not less than 1.5 mils (.038 mm) nor more than 2.5 mils (.064 mm). Standards for comparison shall be made available by contractor.
- 2.2.2 For consistent surface finish a stabilized working mix of the cleaning media shall be maintained by frequent small additions of new grit commensurate with consumption; infrequent large additions shall be avoided.

- 2.2.3 The cleaning media working mix shall be maintained clean of contaminants by continuous effective operation of blasting machine scalping and air wash separators.
- 2.3 Prior to coating, the cleaned bar shall be inspected to ensure that all cleaning steps have been adequately performed. Presence of contaminants indicates a malfunction of the cleaning equipment, which shall be corrected immediately.
- 2.4 The cleaned bar surfaces shall be protected from conditions of high humidity, rainfall, or surface moisture. The bar surface shall not be allowed to flash rust before coating.

3.0 COATING APPLICATION

3.1

3.2

3.3

Bars which have been cleaned shall be preheated. The optimum bar temperature at the entrance of the coating station is between 450°F (232°C) and 463°F (239°C). The heat source shall not leave a residue or contaminant on the bar surface. Graduated "Tempilstik"* crayons may be used to measure the temperature. Only a small spot of bar shall be touched with the "Tempilstik". Optical pyrometers may be used in addition to, or in lieu of, "Tempilstik"s. The calibration of the optical pyrometer shall be checked at least twice daily. Oxidation of the steel prior to coating in the form of "blueing" or other apparent oxide formation is not acceptable. If such oxidation occurs, the bar shall be cooled to ambient temperature and recleaned.

"SCOTCHKOTE" 213 shall be applied to the bar at 7 ± 2 mils (.178 \pm .05 mm) thickness (unless otherwise specified by the customer) using electrostatic spray. The powder shall be applied over the full length of the bar.

Seven (7) seconds after application at optimum coating temperature, the coated bar may be supported on wetted rubber rollers. The coated bar shall not be force cooled sooner than 28 seconds after the application of "SCOTCHKOTE" 213 at the optimum application temperature.

During the period of coating and curing, the bar shall be handled so as to avoid damage to the coating.

3.5

ilade dated enali 3.4

> After the coating has cured it shall be cooled with air or water spray to a temperature not to exceed 250°F (121°C) for inspection and repair.

> > 8.0 STORAGE, HANOLING & SHIPPING

1 Bars shall be handled and stored in a manner to prevent damage to bars or coating. Bars or coating damaged in handling or other operations shall be satisfactorily repaired.

*"Tempilstick" is a registered trademark of the Tempil Corporation.

4.0 INSPECTION

- 4.1 Upon completion of the coating operation, but prior to storage, the coating shall be inspected for continuity using a 67-1/2 volt DC detector to check for holidays, pinholes, and discontinuities.
- 4.2 The thickness of the coating shall be checked with a properly calibrated "Mikrotest" magnetic gauge.

5.0 COATING REPAIR

- 5.1 Bars requiring limited repair due to scars, slivers, coating imperfections and other minor defects shall be repaired as follows:
 - 5.1.1 Areas requiring small spot repairs shall be cleaned to remove dirt, and damaged coating using surface grinders or other suitable means. All dust shall be wiped off. For pinholes only, surface preparation is not required other than removing surface dirt, oil, grease and other detrimental contaminants which impair the adhesion of the repair material.
 - 5.1.2 The 100 percent solids liquid epoxy compound "SCOTCHKOTE" 309 shall be applied in small areas to a minimum thickness of 10 mils (0.254 mm). The freshly coated area shall be allowed to properly cure prior to handling and storage. Liquid epoxy shall not be applied if the pipe temperature is 55°F (13°C) or less, except when manufacturer's recommended heat curing procedures are followed. Alternatively, the heat bondable polymeric hot melt patch compound "SCOTCHKOTE" 202P shall be applied in small areas to a minimum thickness of 15 mils (0.381 mm). A non-contaminating heat source shall be used to heat the area to be repaired to approximately 350°F (177°C). While continuing to heat the cleaned and prepared area, the patch compound shall be applied by rubbing the stick on the area to be repaired in a circular motion to achieve a smooth neat appearing patch. The patch shall be allowed to cool before handling.
- 5.2 Bars with major coating defects such as partially coated joints, unbonded coating, or inadequate film thickness shall be set aside for a decision by the Purchaser to accept, repair or reprocess.

6.0 STORAGE, HANDLING & SHIPPING

- 6.1 Bars shall be handled and stored in a manner to prevent damage to bars or coating. Bars or coating damaged in handling or other operations shall be satisfactorily repaired.
- 6.2 Stacking in the yard shall be in accordance with good safety practices or in accordance with Purchaser's specifications. Sufficient spacers and padding shall be used to prevent damage to the bars and coating.

Bars will be transported from the coating yard to the jobsite by truck, rail or barge as specified in the purchase order. Bars shall be shipped using sufficient dunnage to adequately protect the bars and their external coating. Chains or steel bands shall not be used without sufficient padding to prevent damage to the coating.

Bars shall be loaded for shipping in compliance with existing shipping standards and 6.4

regulations.

Scotchk

6.3

ance properties are to be achieved:

Time to Quench	
28 seconds	450° F - 468° F

IMPORTANT NOTICE

All statements, technical information and recommendations contained herein are based on tests we believe to be reliable, but the accuracy or completeness thereof is not guaranteed, and the following is made in lieu of all warranties, express or implied:

Seller's and manufacturer's only obligation shall be to replace such quantity of the product proved to be defective. Neither seller nor manufacturer shall be liable for any injury, loss or damage, direct or consequential, arising out of the use of or the inability to use the product. Before using, user shall determine the suitability of the product for his intended use, and user assumes all risk and liability whatsoever in connection therewith. No statement or recommendation not contained herein shall have any force or effect unless in an agreement signed by officers of seller and manufacturer.

3M CENTER · SAINT PAUL, MINNESOTA 55101

Electro-Products Division

COMPANY

FHWA bending requirements

1. Product Description

"SCOTCHKOTE" Brand 213 Fusion Bonded Epoxy Coating is a one-part, heat curable, thermosetting powdered epoxy coating designed to provide maximum corrosion protection of pipe, girthwelds and rebars.

Features:

- -Can be used on reel barge girthwelds, accepts bend without cracking
- -Superior flexibility, exceeds FHWA bending requirements for rebars
- -Self priming
- -Economical
- -Fast curing for high speed application
- -Protects over a wide temperature range
- -Long term storage in all climatic conditions
- -Can be shipped with minimum damage
- -Is not damaged by concrete imbedment
- -Resistant to cathodic disbondment
- -Lightweight for lower shipping costs
- -Will not sag, cold-flow, or become soft in storage
- -Easy visual inspection

2. Properties

Property	Value
Color	Green
Specific gravity	1.22
Coverage .	156 ft ² /lb/ mil thickness

.724 m²/kg/ millimeter thickness

Gel time at 400° F (204°C) Explosibility (minimum explosive concentration)

5-8 seconds $.03 \text{ oz/ft}^3$ $30.6 \,\mathrm{gms/m^3}$

3. General Application Steps

- A. Remove oil, grease and loosely adhering deposits
- B. Abrasive blast to NACE near-white
- C. Preheat to approximately 450° F - 463° F (232° C -239° C)
- D. Deposit "SCOTCHKOTE" 213 powder electrostatically to the thickness required

Scotchk

213**FUSION BONDED** EPOXY COATING

- E. Allow to cure according to Section 4
- F. Electrically inspect for holidays after coating has cooled to 250° F (121° C) or lower
- G. Repair all holidays

4. Cure Specifications

"SCOTCHKOTE" 213 must be cured according to the following schedule if maximum performance properties are to be achieved:

Application	Minimum
Temperature	Time to Quench
450° F - 463° F (232° C - 239° C)	28 seconds

Cure by residual heat, post bake normally not required; however, if applied at lower temperatures, or on light weight metal, additional curing may be necessary.

5. Test Data – Coating

Property	Test Description	Results
mpact	ASTM G-14-72 1/8 in. x 3 in. x 3 in.	Passes 160 in. lbs. (1.8 kg meters)
	(.32 cm x 7.6 cm x 7.6 cm) steel panel 5/8 in. (1.6 cm) radius tup	
	FHWA-NEEP No. 16	Passes 80 in. lbs. (.9 kg meters)
Abrasion Resistance	ASTM D-1044 CS 17, 1000 gm wgt 5000 cycles	0.1013 gm loss
Penetration	ASTM G-17-72 -40° F to 240° F (-40° C to 116° C)	0

5. Test Data — Coating (Cont.)

Salt Crock

90 day, 5 volt, 5% NaCl

90 day, 1.5 volt 3% ASTM G-8-72 salt solution

FHWA-NEEP No. 16 2 volt 7% NaCl 30 days @ 70° F (21° C) No intentional holidays until last 24 hours

Chemical Resistance

45 days @ 70° F (21° C)

FHWA-NEEP No. 16

3 molar (25%) CaCl

3 molar (10.7%) NaOH

Saturated Ca(OH)₂

Bendability

Weld seam bend

Rebar Bend

6. Handling Precautions

As with any finely divided organic material, dust clouds of resin can be ignited by open flames or weak electrical sparks. Resin dust collection equipment should be provided with adequate explosion release. Adequate ventilation should be provided and possible sources of ignition should be eliminated. To avoid build-up of static electricity, equipment should be grounded. Inhalation of the dust or of vapors arising during cure should be avoided.

Disbondment dia. 37 mm average 35 - 40 mm range

Disbondment dia.

33 mm average

Anode: No

disbondment

disbondment

holiday

or peeling

or peeling

cracking

wall pipe.

Pass 9.2

(-7° C)

Cathode: Slight

around intentional

No blistering, cracking

No blistering, cracking

Slight reduction in

adhesion. No sign of

blistering, peeling or

.325 in. (8.25 mm)

.500 in. (12.7 mm)

thick weld seam:

Pipe diameters

3.75 in. (95 mm)

diameter mandrel,

1 minute bending time.

Passes 180° at 20° F

27 - 44 mm range

Use only in well-ventilated areas. Many of the reactive materials used with epoxy resins have been reported to cause skin irritation to sensitive skin. If contact occurs, the skin should be washed with mild soap and water. In case of eye contact, flush immediately with water and secure medical attention.

IMPORTANT NOTICE

All statements, technical information and recommendations contained herein are based on tests we believe to be reliable, but the accuracy or completeness thereof is not guaranteed, and the following is made in lieu of all warranties, express or implied:

Seller's and manufacturer's only obligation shall be to replace such quantity of the product proved to be defective. Neither seller nor manufacturer shall be liable for any injuiry, loss or damage, direct or consequential, arising out of the use of or the inability to use the product. Before using, user shall determine the suitability of the product for his intended use, and user assumes all risk and liability whatsoever in connection therewith. No statement or recommendation not contained herein shall have any force or effect unless in an agreement signed by officers of seller and manufacturer.

5 Test Data - Coastar (Cast.)

Sall Crock

DeVide . New & reals 00

90 day: 1.6 wak ** ASTM G-F-72 vase solution

Milli A-MEEP No. 10 1 eds PE NaCl Mildaya & 70° F (21° C) No internioral helidaya no 1 hat 2-i hears

Statistical Instruments - FERVIN NEED No. 16 45 david @ 78° F 131° C

DeC (2942) nations 3

BCall (ST.DC) telena 2.

. (SCHO) betermine

bried more bird?

Land Barada

6. Hundling Presentions

As with any firmly divided argunic managed, due clouds of each can be ignited by one discoss or vesk siscurical sparies. Reals due provided with a sparies maintain be provided with a sparies employing should be provided and peaking sources of ignition should be offer itseed. To evold build and bould be provided.

innates of the dust of al vegate states distant auto should be stated.

One only in well ventilized areas, blatty of the reactive materials used will spory reams have been reported to cause sha infantion to sensitive thin. If control occurs the sign should be weated with sails ways and water in crea of sys contract, finch immediately with water and sense madical with water and sense madical

Distendenens die 37 mm overege 33 - 40 wee range

APPENDIX B

disbondroent Carboder Slight

FIGURES

a distang process a postag

No biterering, cracking or perfuse

Nile is constant in adiraton. No algu af bliataring, posting or onesting

> . 255 m. (6.25 mm) wall pipe. ,500 ia. (12.7 cm) blass 9.2 Pass 9.2

2.70 in (95 mm) diameter mandrol 1 minute bending time Pratees 180° at 20° 7 1-7° C3

KOUDOW, TALA ZHO PHIL

All statements portioned informatica and record could attant concasing increte are based on tests we believe to be related by the activities of the masked and the filterent is not concenteed, and the following in maske in iteo of all warrentik even war inmided:

Selicer and terretectorer's only childrenes of an activation sector quantity (a data activated activated bo anterna data activated activated are unjoir contracted to bable for attraction remains to be institute to attract or contracted be institute to attract on a contracted by a state attracted activation activated attract or an attracted to be attracted attracted activation activated attracted be attracted and activated attracted activation activation activated attracted activation activation activation activation activaactivation activation activ

Figure 1: The project site is located on the northbound lanes of the Cow Creek Bridge on I-35 south of Perry, Oklahoma.

Figure 2: The completed bridge deck as it was opened to traffic.

Figure 3: Epoxy coated rebars were shipped from a Tulsa firm on a flat bed semi-trailer truck. To avoid damaging the epoxy coating, the rebars were placed on carpet covered studs and held by nylon attached to the truck.

Figure 4: Unloading was accomplished by an overhead crane also using nylon slings.

Figure 5: Carefully guiding bundled rebars to the wooden beams.

Figure 7: Individual rebar groups were bundled together with rubber sleeves and bound with steel straps. The only handling nicks found in the spoxy coatings were the few shown in this photograph.

Figure 6: Coated rebar bundles were shipped and stored on wooden 2 x 4's.

Figure 7: Individual rebar groups were bundled together with rubber sleeves and bound with steel straps. The only handling nicks found in the epoxy coatings were the few shown in this photograph.

Figure 8: Debris such as pieces of glass, occasional dirt, and wooden slivers did not harm the coatings.

Figure 9: Overall view of the site while concrete was being poured.

Figure 11: Epoxy coated thes were used.

Figure 10: Epoxy coated chairs were used to electrically insulate the top mat of steel from the bottom mat.

Figure 11: Epoxy coated ties were used.

Figure 12: The contractor paints additional chairs with epoxy resin after running out of coated chairs.

mitten in the He

ted in the origge tents were covered e was poured and

Figure 13: Shown here is the formation of a resistance measurement cell. A typical measurement cell consists of two epoxy coated rebars and two bare copper conductors. Shown here are the bare copper conductors, each placed as close as possible to the respective epoxy bar.

Figure 14: A close view of copper conductors tied to coated rebars.

Figure 15: Three measurement cells were installed in the bridge. The ends of each of the cell components were covered with styrofoam. After the concrete was poured and set, the foam was removed leaving free access for direct electrical connection.

Figure 16: Fourteen epoxy coated rebars were randomly chosen for wet mop measurements. For direct electrical connection, these bars were prepared like the bars for the measurement cell in Figure 14.

e 14: A close view of copper conductors tied to

Figure 17: Bucket supported by an overhead crane pours concrete into the bridge deck grid.

Figure 18: Concrete was distributed by means of an auger.

Figure 19: Concrete covers styrofoam placed at the end of one of the rebars. Vibrator tip is at right.

Figure 20: Concrete finish was done with a roller plus some additional handfinishing.

Figure 21: Inspector measures 3 inches of slump.

bosic sector basic sector basic

Figure 23: Cylinders were cast for strength measurements.

Figure 24: Cable containing individual connecting wires from the ends of the various epoxy coated rebars and copper conductors is attached to the west side of the bridge and continues to the junction box placed at the southwest corner of the bridge.

Figure 25: Direct electrical connections to a resistance measurement cell are insulated with caulking material. (A measurement cell consists of two copper conductors and two coated rebars).

Figure 26: A close up of half of a resistance measurement cell. The copper conductor is to the right and the epoxy coated rebar is to the left.

Figure 27: An epoxy coated rebar is connected for wet mop measurement.

Figure 28: Junction Box.

Figure 29: Wooden junction box can be padlocked for safety.

Figure 30: The conductivity bridge meter used for A.C. resistance measurements. It operates @ 400 cycles and uses a wheat stone bridge circuit to identify null deflection measurements.

igure 32: Detail of the wet mop used. Sponges were fastened to the copper plate by means of a few rubber bands

Figure 31: Typical wet mop apparatus.

a.c. rearsonne as and uses a whea deflection

Figure 32: Detail of the wet mop used. Sponges were fastened to the copper plate by means of a few rubber bands.

 $B_1 B_2$ are epoxy coated rebar. $C_1 C_2$ are bare copper wires.

To establish the accuracy of each resistance measurement, the following five

I	 				 *	 1.100	a			 			C2	10	ci		-	
														c ₂	C2	10		10
			 			 		1.1.1.1.		 1.1.1	s ^a	C ₂		10	C1			
1													82		C			
10		*		*	 *			-	*	 					.0			

Figure 33. A typical measurement cell used to evaluate the stability of epoxy.

 $B_1 C_1, B_1 C_2, B_1 B_2, C_1 C_2, C_1 B_2$, and $C_2 B_2$ are various resistance as shown in the network and can be measured individually.

To establish the accuracy of each <u>resistance measurement</u>, the following five equations should be satisfied:

0

$B_1 C_2 = B_1 C_1 + C_1 C_2$	•	•	•	•	•	•	•	•	•	0	0	•	•	•	•	1
$C_1 B_2 = C_1 C_2 + C_2 B_2$	0	•	•	•	0	•	•	•	•	•	•	۰	•	•	•	2
$B_1 B_2 = B_1 C_1 + C_1 C_2 + C_2 B_2$	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
$= B_1 C_1 + C_1 B_2$	•	•	•	•	•	•	•		•	•	•	•	•	•	•	4
$= B_1 C_2 + C_2 B_2$	•	•	•	•	•	•	e	•	•	•	•	•	•	•	•	5

Figure 34. Equivalent resistance network and constraints on measured values of resistance.

DETAIL AT B

2

SECTION AT AA

FIG. 35. A TYPICAL ELECTRICAL LAYOUT FOR MONITORING ELECTRIC RESISTANCE OF EPOXY COATED REBARS.

APPENDIX C

RESISTANCE MEASUREMENTS

and

DATA PRESENTATION

Schematic and Tables of Resistance Measurements from 11-79 to 4-80

			$\begin{array}{c} B_1 C \\ B_1 C \\ B_1 B \\ B_1 B \\ B_1 B \\ M \end{array}$	2 2 2 2 2 2 2 2		B ₂	2.0	Healing try dec freezin
		th OHMS	A.C. Re	sistance M	leasured in	OHMS		·
Dat	e O	11-79	12-79	01-80	02-80	03-80	04-80	
C	B.C.	439 88	470	603	416	388	354	
E	BaCo	442	479	615	425	394	359	
	B ₁ B ₂	1470	1096	1970	1330	1278	1230	
	6.6	16	17.7	23.6	16.2	14.5	12.9	
	C.B.	1049	637	1360	918	890	868	
1	C2B2	1036	628	1350	909	885	859	

	C	B.C.	559	629	877	564	512	457
	F	B.C.	568	639	892	575	525	466
-		B ₁ ²	1330	1500	2110	1370	1238	1090
	L	C_1C_2	20.0	21.6	28.6	20.0	19.4	16.2
	-	C_1B_2	761	867	1210	807	722	628
	2	C ₂ B ₂	750	856	1200	799	712	621

IC	B.C.	478	510	720	485	460	426
F	B	478	501	709	477	436	384
	B ₁ ²	1062	1100	1560	1072	960	853
	C.C.	20.0	22.3	28.8	20.8	19.2	17.5
	C.B.	583	589	845	588	548	492
3	C _a B _a	591	598	858	596	530	470
Ľ	222	1 1				I a	21 61

Schematic and Tables of Resistance Measurements from 5-80 to 8-80

		A	.C. Resist	ance Measu	ured in O	HMS	
Dat	te	05-80	06-80	07-80	08-80	09-80	10-80
С	B ₁ C ₁	390	419	556	389	A CONTRACTOR	
Ε	B_1C_2	392	424	434	393	norman annan an a	in straight
L	B_1B_2	1170	1109	1920	1490		151.11
L	C_1C_2	12.2	11.8	31.3	11.1		51.14
	C_1B_2	778	683	1480	1080	01	807
1	C_2B_2	770	673	1430	1080	01	8 7 1

							and the second se
C	B ₁ C ₁	450	438	482	443		
E	B ₁ C ₂	456	444	488	448	and the second	4
L	B ₁ B ₂	1150	1108	1190	1093	1 5470	
L	C_1C_2	15.8	15.3	15.8	14.6	5	
. 0.5	C ₁ B ₂	630	631	698	635	1.1.1	
2	C ₂ B ₂	622	624	690	629	ster.	
11		11 9	1	Contraction of the local division of the loc	and a survey of the survey of		and a fair fair and the

C	B ₁ C ₁	410	392	454	393		
E	B ₁ C ₂	385	384	432	398	all the second second	
L	B_1B_2	845	839	994	837	S I I I	
L	$C_1 C_2$	18.1	18.6	31.9	61.4		
	C ₁ B ₂	475	453	567	479	571	
3	C ₂ B ₂	462	456	558	494	A States	

5						WET MOP	MEASURE	MENTS 79						
						(Read	lings in	~)						
36'	513	833	268	412	704	405	494	647	635	770	736	1036	241	834
31'	525	860	312	438	749	422	540	643	646	787	768	1086	243	843
26'	2529	846	335	462	779	444	590	668	669	834	796	1114	264	835
21'	2532	877	337	461	787	487	585	668	663	816	780	1126	292	880
16'	632	909	324	710	783	658	549	940	687	799	836	1380	483	933
11'	2 561	909	345	478	791	438	597	699	670	797	831	1154	281	895
50 6'	.551	917	332	461	788	419	583	674	674	790	813	1143	299	878
31 1'	500	875	310	454	743	404	556	662	599	783	782	1095	245	846
38,	5	8'4"	21'5"	48'7"	69'7"	81'7"	110'2"	128'4"	138'11"	165'10"	193'11"	215'10"	228'	231'
	-7-8-				Di	stance f	rom Sout))						5

C

(1)

						WET MOI	P MEASURE May 1980	: MENTS	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- 20 - 00 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -		meter		wet
						(Rea	dings in.	<u>n)</u>						in inco
36 '	534	600	204	337	592	332	398	495	477	600	598	802	179	589
31 '	523	620	238	344	621	323	430	499	500	621	620	822	198	597
26 '	532	633	254	361	638	354	474	518	515	637	622	815	218	606
21'	529	642	286	383	658	346	461	514	513	627	614	850	228	610
16'	579	781	318	554	757	638	541	884	640	722	753	1168	459	745
11'	524	777	320	432	750	415	558	635	619	712	750	974	263	742
6'	545	785	320	404	755	403	549	636	624	727	737	985	273	740
1'	490	740	275	392	720	388	523	612	547	710	715	930	224	722
38.	5'	8'4"	21'5"	48'7"	69'7"	81'7"	110'2"	128'4"	138'11"	165'10"	193'11"	215'10"	228'	231'2"
	36' 31' 26' 21' 16' 11' 6' 1'	36' 534 31' 523 26' 532 21' 529 16' 579 11' 524 6' 545 1' 490 5'	36' 534 600 31' 523 620 26' 532 633 21' 529 642 16' 579 781 11' 524 777 6' 545 785 1' 490 740 5' 8'4"	36 ' 534 600 204 31 ' 523 620 238 26 ' 532 633 254 21 ' 529 642 286 16 ' 579 781 318 11 ' 524 777 320 6 ' 545 785 320 1 ' 490 740 275 5 ' 8 '4" 21 '5"	36 ' 534 600 204 337 31 ' 523 620 238 344 26 ' 532 633 254 361 21 ' 529 642 286 383 16 ' 579 781 318 554 11 ' 524 777 320 432 6 ' 545 785 320 404 1 ' 490 740 275 392 5 ' 8'4" 21'5" 48'7"	36 ¹ 534 600 204 337 592 31 ¹ 523 620 238 344 621 26 ¹ 532 633 254 361 638 21 ⁴ 529 642 286 383 658 16 ⁴ 579 781 318 554 757 11 ⁴ 524 777 320 432 750 6 ⁴ 545 785 320 404 755 1 ⁴ 490 740 275 392 720 5 ⁴ 8 ⁴ 4 ⁴ 21 ⁴ 5 ⁴ 48 ⁴ 7 ⁴ 69 ⁴ 7 ⁴	WET MOI 36 ' 534 600 204 337 592 332 31 ' 523 620 238 344 621 323 26 ' 532 633 254 361 638 354 21 ' 529 642 286 383 658 346 16 ' 579 781 318 554 757 638 11 ' 524 777 320 432 750 415 6 ' 545 785 320 404 755 403 1 ' 490 740 275 392 720 388 5 ' 8'4" 21'5" 48'7" 69'7" 81'7"	MET MOP MEASURE May 1980 (Readings in. 36' 534 600 204 337 592 332 398 31' 523 620 238 344 621 323 430 26' 532 633 254 361 638 354 474 21' 529 642 286 383 658 346 461 16' 579 781 318 554 757 638 541 11' 524 777 320 432 750 415 558 6' 545 785 320 404 755 403 549 1' 490 740 275 392 720 388 523 5' 8'4" 21'5" 48'7" 69'7" 81'7" 110'2"	Sector Sector<	WET MOP MEASUREMENTS May 1980 (Readings in) 36' 534 600 204 337 592 332 398 495 477 31' 523 620 238 344 621 323 430 499 500 26' 532 633 254 361 638 354 474 518 515 21' 529 642 286 383 658 346 461 514 513 16' 579 781 318 554 757 638 541 884 640 11' 524 777 320 432 750 415 558 635 619 6' 545 785 320 404 755 403 549 636 624 1' 490 740 275 392 720 388 523 612 547 5' 8'4" 21'5" 48'7" 69'7" 81'7" 110'2" 128'4" 138'11"	WET MOP MEASUREMENTS May 1980 (Readings in_L) 36 ¹ 534 600 204 337 592 332 398 495 477 600 31 ⁴ 523 620 238 344 621 323 430 499 500 621 26 ⁴ 532 633 254 361 638 354 474 518 515 637 21 ⁴ 529 642 286 383 658 346 461 514 513 627 16 ⁴ 579 781 318 554 757 638 541 884 640 722 11 ⁴ 524 777 320 432 750 415 558 635 619 712 6 ⁴ 545 785 320 404 755 403 549 636 624 727 1 ⁴ 490 740 275 392 720 388 523 <	WET MOP MEASUREMENTS May 1980 (Readings in _A-) 36 ¹ 534 600 204 337 592 332 398 495 477 600 598 31 ⁴ 523 620 238 344 621 323 430 499 500 621 620 26 ⁴ 532 633 254 361 638 354 474 518 515 637 622 21 ⁴ 529 642 286 383 658 346 461 514 513 627 614 16 ⁴ 579 781 318 554 757 638 541 884 640 722 753 11 ⁴ 524 777 320 432 750 415 558 635 619 712 750 6 ⁴ 545 785 320 404 755 403 549 636 624 727 737 1 ⁴ 490 740 275 392 720 388 523 612 547 <td>WET MOP MEASUREMENTS May 1980 (Readings in A.) 36¹ 534 600 204 337 592 332 398 495 477 600 598 802 31¹ 523 620 238 344 621 323 430 499 500 621 620 822 26¹ 532 633 254 361 638 354 474 518 515 637 622 815 21¹ 529 642 286 383 658 346 461 514 513 627 614 850 16¹ 579 781 318 554 757 638 541 884 640 722 753 1168 11¹ 524 777 320 432 750 415 558 635 619 712 750 974 6⁴ 545 785 320 404 755 403 549 636 624 727 737 985 1¹ 490 740<td>WET MOP MEASUREMENTS May 1980 (Readings in .C.) Side 600 204 337 592 322 98 802 179 31⁴ 523 620 238 344 621 323 430 499 500 621 620 822 198 26¹ 523 620 238 344 621 323 430 499 500 621 620 822 198 26¹ 523 633 254 361 638 354 474 518 515 637 622 815 218 21¹ 529 642 286 383 658 346 461 514 513 627 614 850 228 16¹ 579 781 318 554 757 638 541 884 640 722 753 1168 459 11¹ 524 777 320 432 750 415 558 635 619 712 750</td></td>	WET MOP MEASUREMENTS May 1980 (Readings in A.) 36 ¹ 534 600 204 337 592 332 398 495 477 600 598 802 31 ¹ 523 620 238 344 621 323 430 499 500 621 620 822 26 ¹ 532 633 254 361 638 354 474 518 515 637 622 815 21 ¹ 529 642 286 383 658 346 461 514 513 627 614 850 16 ¹ 579 781 318 554 757 638 541 884 640 722 753 1168 11 ¹ 524 777 320 432 750 415 558 635 619 712 750 974 6 ⁴ 545 785 320 404 755 403 549 636 624 727 737 985 1 ¹ 490 740 <td>WET MOP MEASUREMENTS May 1980 (Readings in .C.) Side 600 204 337 592 322 98 802 179 31⁴ 523 620 238 344 621 323 430 499 500 621 620 822 198 26¹ 523 620 238 344 621 323 430 499 500 621 620 822 198 26¹ 523 633 254 361 638 354 474 518 515 637 622 815 218 21¹ 529 642 286 383 658 346 461 514 513 627 614 850 228 16¹ 579 781 318 554 757 638 541 884 640 722 753 1168 459 11¹ 524 777 320 432 750 415 558 635 619 712 750</td>	WET MOP MEASUREMENTS May 1980 (Readings in .C.) Side 600 204 337 592 322 98 802 179 31 ⁴ 523 620 238 344 621 323 430 499 500 621 620 822 198 26 ¹ 523 620 238 344 621 323 430 499 500 621 620 822 198 26 ¹ 523 633 254 361 638 354 474 518 515 637 622 815 218 21 ¹ 529 642 286 383 658 346 461 514 513 627 614 850 228 16 ¹ 579 781 318 554 757 638 541 884 640 722 753 1168 459 11 ¹ 524 777 320 432 750 415 558 635 619 712 750

C) NOL NEV2118ELEVIC

45

1C

TIME SCALE answer

TIME SCALE

T

TIME SCALE

RESISTANCE VARIATION WITH TIME FOR CELL NO. 2 • - SOUTH REBAR AND COPPER • -NORTH REBAR AND COPPER

5

6

49

10

6

TIME SCALE

50

()

C

EPOXY COATED REINFORCING 5 6208 10012 3084 IN BRIDGE DECKS

DISPLAY COPY DO NOT REMOVE

98

TE716 .P68 1981 OKDOT Library

E

RESEARCH AND DEVELOPMENT DIVISION OKLAHOMA DEPARTMENT OF TRANSPORTATION