

SHRINK and SWELL of Excavated Earth Materials

TE 116

, +129

1983

JANUARY, 1983 Research and Development Division Oklahoma Department of Transportation

S

TECHNICAL REPORT STANDARD TITLE PAG

2 M A				
1. Report No.	2. Government Accession No.	3. Recipient's Catalog	No.	
FHWA/OK 83(01)	-			
4. Title and Subtitle		5. Report Date		
Shrink and Swell of Exc	avated Earth Materials	January, 19	83	
		6. Performing Organization Code		
7. Author(s)	ne en la completa de la completa de La completa de la comp	8. Performing Organiza	tion Report No.	
Curtis J. Hayes		71-16-1, Ite	em 236	
9. Performing Organization Name and Address Oklahoma Department of	Transportation	10. Work Unit No.		
Research & Development 200 N. E. 21st	Division	11. Contract or Grant N	lo.	
Cklahoma City, OK 7310	5	71-16-1, Ite		
12. Sponsoring Agency Name and Addrese		13. Type of Report and		
Federal Highway Adminis	tration	Final Repo		
Federal Building		January, 1	.905	
200 N. W. 5th, Room 454 Oklahoma City, OK 7310	2	14. Sponsoring Agency	Code	
15. Supplementary Notes				
Done in cooperation wit	h the Federal Highway A	dministration	•	
16. Abstract		*		
This study is an attemp	t to determine from lab	oratory tests	the shrink	
or swell characteristic	s of excavated pedologi	cal soils. T	wenty-six	
benchmark soils of varia	ous particle size class	es were selec	ted for	
study.				
It was found that sandy				
14 percent. Clay soils				
densities (AASHTO T99)				
the reduction in soil vo				
natural pore sizes and s limit values correlate :			Liquid	
	·			
This report will be use: of soil shrinkage or ver				
Savings of up to \$30,000) may be realized on a	tvpical grade	and	
drainage project, based				
	-		-	
<u>^</u>			•	
17. Key Words	18. Distribution State	ment		
shrink, swell, compactio				
particle sizes, porosity	, density No restric	ction		
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages	22. Price	
unclassified	unclassified	52		

THE SHRINK AND SWELL OF EXCAVATED

EARTH MATERIALS

by

Curtis J. Hayes Senior Project Engineer

Under the Supervision of:

C. Dwight Hixon, P.E. Research & Development Engineer Research & Development Division Oklahoma Department of Transportation

Oklahoma City, Oklahoma

January, 1983

The opinions, findings, and conclusions expressed in this report are those of the author and not necessarily those of the Oklahoma Department of Transportation or the Federal Highway Administration.

METRIC CONVERSION FACTORS

	Approximate Con	versions to Metric	Measures		e 	100000 1000000000000000000000000000000000000		App ^r oximate Conve	rsions from Met	^{tric} Measures	
Symbol	When You Knew	Multiply by	To find	Symbol		3	Symbol	When You Know	Multiply by	To Find	Symbol
					• 1.1.1.1.1.1.1	30			LENGTH	-	
		LENGTH				<u> </u>					
						51	mm	millimeters centimeters	0.04	inches	in in
	1					<u> </u>	Cm	meters	0.4	feet	
in	inchee	*2.5	Cantimators	cm			m m	meters	3.3	yards	yd.
ħ.	feet	30	centimeters	cm	4 -	Ē_ =	km	kilometers	1.1	miles	mi
Yd	ahay	0.9	meters	a a a a a a a a a a a a a a a a a a a					0.6	1	
mi	miles	1.6	kilometers	km		1					
		AREA						19 march -	AREA	_	
		ANEA				<u> </u>	_			5. C	
					in		cm ²	square centimeters	0.16	square inches	in ²
n ²	square inches	6.5	square centimeters			I S	m ²	square meters	1.2	square yards	yd ²
tt ²	square feet	0.09	square meters	m²	-		km ²	square kilometers	0.4	square miles	mi ²
yd ² mi ²	adnete Asida	0.8	square meters	m ²		= *	ha	hectares (10,000 m ²)	2.6	acres	
mi ²	square miles	2.6	square kilometers	km ²		<u> </u>					
	acres	0.4	hectares	ha					×		
	-				<u>ه</u>	= E		N	ASS (weight)		
		AASS (weight)									
						1		grams	0.036		30
50	OUNCES	28	grams	9			9	kilograms	2.2	ounces	ю
Nb.	pounds	0.45	kilograms	kg		= =	kg t	tonnes (1000 kg)	1.1	pounds	
	short tons	0.9	tonnes	L.			L.	Connes (1000 kg)		short tons	
	(2000 Ib)				·	≡			9071		
		VOLUME							VOLUME		
										16	
1 ⁸ P	teaspoons	5	milliliters	mi			mi	milliliters	0.03	fluid ounces	11 oz
Thep	tablespoons	16	millilitors	ml		= •	1	liters	2.1	pints	pt
1 02	fluid ounces	30	milliliters	mi	ω		1	liters	1.06	quarts	qt
6	Cups	0.24	liters			-	1	liters	0.26	gallons	gai fi ³
	pints	0.47	liters	i		Ξ "	"ĵ	cubic meters	36	cubic feet	f1*
pt q ^t	querte	0.96	liters		-		" 3	cubic meters	1.3	cubic yards	۲d3
Gal	gallons	3.8	liters	1		<u> </u>					
(1 ³	cubic feet	0.03	cubic meters	m ₃							
gal It3 yd3	cubic yards	0.76	cubic meters	۳ ₃	•	va		TEM	PERATURE (exa	ic ^t)	
	TEAN	DEDATUDE (avent)									
	TEM	PERATURE (exact)				2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	°c	Celsius	9/6 (then	Fahrenheit	*F
• F			0.45			<u> </u>		temperature	add 32)	temperature	
•	Fahranhait	5/9 (after	Celsius	°c		<u> </u>	A				F
	temperature	subtracting	temperature								F 22
		32)				•		°F 32	98.6	200	1
	and the second se					=		-40 0 40	00		4
	4 (exactly). For other exact con			Jul. 286,	ă —	= -		F F - T - T - T - T		r0 00 1	00
Units of We	ights and Measures, Price \$2.25,	SD Catalog No. C13.10:2	Bo.	3 * 3				-40 -20 0 •C	20 40 37	60 60	C
									31		

1 1

.

.د ۱۰ ۱۰

EXECUTIVE SUMMARY

This study is an attempt to determine from laboratory tests the shrink or swell characteristics of excavated pedological soils. Twenty-six benchmark soils of various particle size classes were selected for study.

It was found that sandy loam soils shrink the most. They shrink about 14 percent. Clay soils may not shrink at all. Standard Proctor densities (AASHTO T99) were used as the compactive effort to induce the reduction in soil volume. The amount of shrinkage relates to the natural pore sizes and shapes as well as moisture content. Liquid limit values correlate fairly well with shrinkage factors.

This report will be useful to design engineers when making estimates of soil shrinkage or verifying estimates derived from other information. Savings of up to \$30,000 may be realized on a typical grade and drainage project, based on the information provided in this report.

TABLE OF CONTENTS

		Page
PREFACE		vii
INTRODUCTION		1
Purpose Scope		1 1
MATERIALS AND METHODS		3
DISCUSSION		5
Soil Horizons Shrinkage Mechanism Particle Size Relationships Statistical Analysis		5 5 13 15
COST ANALYSIS		18
CONCLUSION		19
REFERENCES		21
APPENDIX A - Shrinkage Factors	A	- 1
USDA Classes Unified Classes AASHTO Classes Statistical Summary Particle Size Comparison Chart	A A A	-2 -13 -17 -20
APPENDIX B - Shrinkage and Common Laboratory Tests	В	- 1

LIST OF FIGURES

		Page
1.	Renfrow soil series profile	6
2.	A profile of pore volume	9
3.	Structure determining factors and processes	12
4.	Relationship of moisture-density to soil properties	16

e

j,

LIST OF TABLES

1.	The total porosity of various soils	7
2.	The relationship of total porosity to the size of aggregates	10
3.	Morphological classification of voids	11
4.	Size classification of voids	14

PREFACE

This constitutes the final report on Research Project 71-16-1, "Shrink and Swell of Excavated Earth Materials". Included are description and characterization information concerning densities of soils in their natural and compacted states. The soils are grouped into particle size classes with shrinkage factors related to each size class.

The author wishes to thank the Oklahoma Department of Transportation ODOT Materials Laboratory, Oklahoma Soil Conservation Service, and the ODOT Engineering Test Branch of the Research Division for their help in preparing this report.

INTRODUCTION

Purpose

This study is an attempt to determine more accurately the shrink or swell characteristics of excavated pedological soils. These soils are those excavated from road cuts, hauled, moistened, and compacted in fills. Particle size classes are related to the reduction in volume from the natural to the compacted condition.

This report provides the Design Engineer with a more accurate method of determining the amount of shrinkage or will help verify the results of other methods of calculating shrinkage. It could save up to \$30,000 in excavation costs for each project.

This project was done during the period of July, 1975 to January, 1983 by personnel of the Research Division of the Oklahoma Department of Transportation.

Twenty-six Soil Conservation Service "benchmark" soils were sampled and tested to determine their shrinkage factors.

Scope

The benchmark soil series of Oklahoma were selected for testing as a group of extensive representative soils. These soils are representative of a variety of soils of differing particle sizes. Shrinkage and other properties of soils other than benchmark soils may be inferred by use of particle size classifications. Benchmark soils are chosen from "Land Resource Areas". These are areas selected by the Soil Conservation Service (SCS) as groups of soils having similar potential for growing specific kinds of crops. Land resource areas may include areas as large as 10,000 mis² (26,000 km²). They are somewhat similar to geologic provinces (10).

Particle size classifications are useful tools in developing basic information for a characterization of soils. Three classifications are in common use by highway engineers. These include the American Association of State Highway and Transportation Officials (AASHTO), the Unified, and the Soil Conservation Service (SCS) classification systems (1), (2), (12). All of these systems may be used to relate soil particle size classes to shrinkage values.

MATERIALS AND METHODS

The soils selected for testing were the benchmark soils as established by the Oklahoma SCS as of 1976. The type localities as stated in the SCS Soil Series Description Sheets served as locations for sampling. Pits were dug with block samples taken, sealed, and transported to the ODOT Soils Laboratory for testing. Laboratory tests included: Atterberg limits (AASHTO T89 and T90), particle size analysis (T88), standard Proctor density (T99), and density of natural soil (T233). In cohesionless soils, nuclear (T238) and rubber balloon tests (T205) were used for determining natural densities. Shrinkage values were determined by the following method:

Standard density/natural density = shrinkage factor. For example, if the dry weight per cubic foot of Pratt loamy sand is 80 lbs/ft³ (1281 kg/m³) and the standard compaction test shows dry weight at optimum moisture to be 100 lbs/ft³ (1600 kg/m³), then it takes 1.25 ft³ (0.035 m³) of natural Pratt soil to equal 1.0 ft³ (0.028 m³) of compacted Pratt. The shrinkage factor is therefore 1.25 (11).

Most of the residual soils in Oklahoma are derived from shales. Shales comprise from 60 to 70 percent of the rock types exposed on the land surface (10). Thus, soils derived from shales dominate the landscape. Usually these are clayey. These fine textured USDA soil types include: clays, silty clays,

C

silty clay loams, sandy clays, and sandy clay loams. The less common more granular soil types include: loams, silt loams, sandy loams, loamy sands, silts, and sands derived mostly from sandstones or other granular rock types.

In order to reduce the amount of sampling and testing of over 300 soil series that occur in Oklahoma, 26 benchmark soils were sampled and tested. These soils represent the USDA classes mentioned above. Type locations for each of these soils were found so that the most representative (modal) soil profile would be tested. These soils, plus a few non-benchmark soils, were used to derive the data used in this report.

DISCUSSION

Soil Horizons

Pedological soils are composed of genetic soil layers called horizons. The horizons designated in this report are the A, B, C and R horizons. See Figure 1. The A horizon is considered the topsoil. Usually, the B horizon designation indicates conditions where the soil contains an accumulation of clay. The C horizon is considered to be highly weathered rock. It generally is thought of as that part of the soil not involved in major biological activity. Soils having R horizons are those formed from consolidated (indurated) bed rock e.g. limestone, granite. The R horizons generally were not tested unless the R soil material was soft enough to remove and test.

Shrinkage Mechanism

The ability of a natural soil to shrink under compactive effort is directly related to the initial void ratio or porosity. Soils with high porosities possess the potential for considerable consolidation or shrinkage when compacted. See Table 1. Conversely, soils with low porosities have less potential for shrinkage. The compactive effort test used for this study is that of a falling hammer as in AASHTO T99 "Moisture-Density of Soils Using 5.5 lb (2.5 kg) Rammer, 12 in (305 mm) Drop". This test is a laboratory simulation of the utilization of relatively light weight compaction equipment used

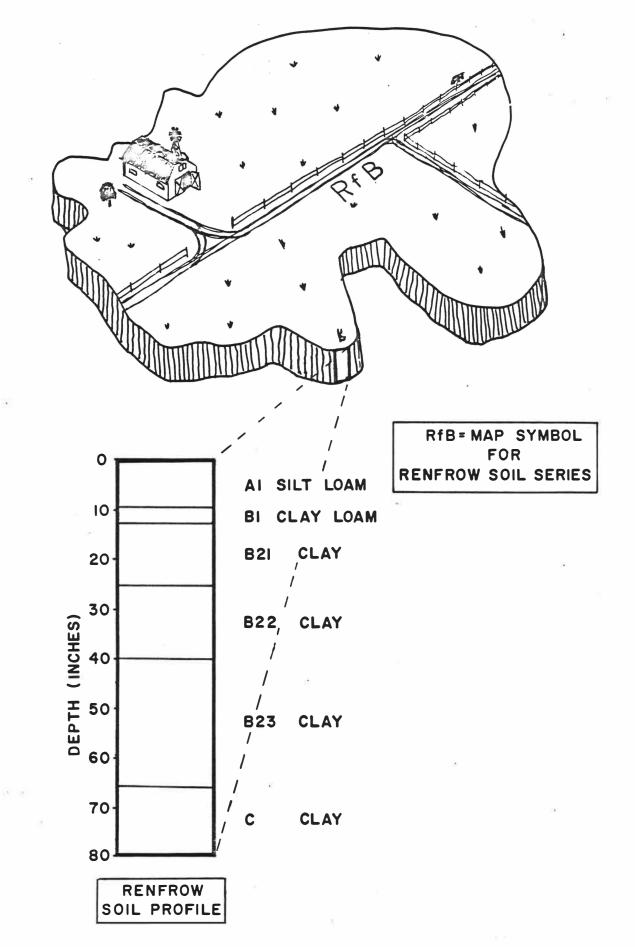
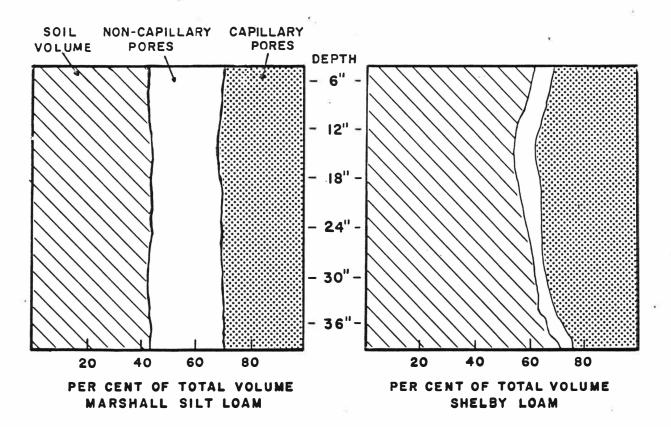


Figure 1. Profile of the Renfrow Soil Series.

The Total Porosity of Various Soils

Type of soil	Depth inches	Total porosity, per cent by volume
Chernozem-like fine sandy loam	0-3	60.6
Hardeman clay loam	12-10	44.4
Poncena clay	0-7	49.8
Nipe clay	0-5	56.6
Georgeville silt loam	¹ ⁄ ₂ −8	57.0
Kirvin fine sandy loam	at 6	35.7
Nacogdoches fine sandy loam	at 5	43.4
Vernon fine sandy loam	at 2½	41.5
Muskingum silt loam	at 3½	45.1
Muskingum silt loam	at 3½	31.3
Cecil sandy clay loam	at 3	45.3
Shelby silt loam	at 3½	45.4
Shelby silt loam	at 13	51.7
Shelby silt loam	at 54	31.7
Palouse silt loam	at 10	50.2
Colby silty clay loam	at 5	48.9
Clinton silt loam	at 4½	51.9
Marshall silt loam	at 6½	56.4
Marshall silt loam	at 18½	60.3
Houston black clay	at 4	61.9
Houston black clay	at 35	40.2

Taken from Baver et. al. and Middleton et. al.


in construction prior to 1940. An example of such equipment would be the 6 to 8 ton (5.5 to 7.3 metric ton) sheeps-foot roller (6).

The compaction curves of Johnson and Sallberg illustrate a density relationship between particle size and moisture contents (7). The ability of a soil to compact under a given load, from a high porosity to a lower porosity, is a function of soil fabric.

fabric is the physical constitution of a soil material Soil as expressed by the spatial arrangement of the solid particles and associated voids or pores (4). Natural soils contain porosities of about 50 percent (3). See Figure 2. This includes capillary and non-capillary pores. See Table 2. The percent of soil porosity that is non-capillary varies considerably, however, it decreases rapidly as soils become more clayey. Soils high in clay content may contain up to 10 percent non-capillary pores of a total porosity of 25 percent. The loamy soils contain about 25 percent capillary and 25 percent non-capillary pores of a total porosity of 50 percent. Pores are difficult to classify. They possess different shapes as well as sizes.

Several pore (void) types are listed by Brewer (4). See Table 3. Some of the larger pores such as chambers, planes, channels, vesicles, and vughs are probably the only ones that are affected by compaction. In Figure 3 Mitchell explains some of the factors affected by compaction of soils (9). Brewer also

-

Taken from Baver

Figure 2. A Profile of Pore Volume.

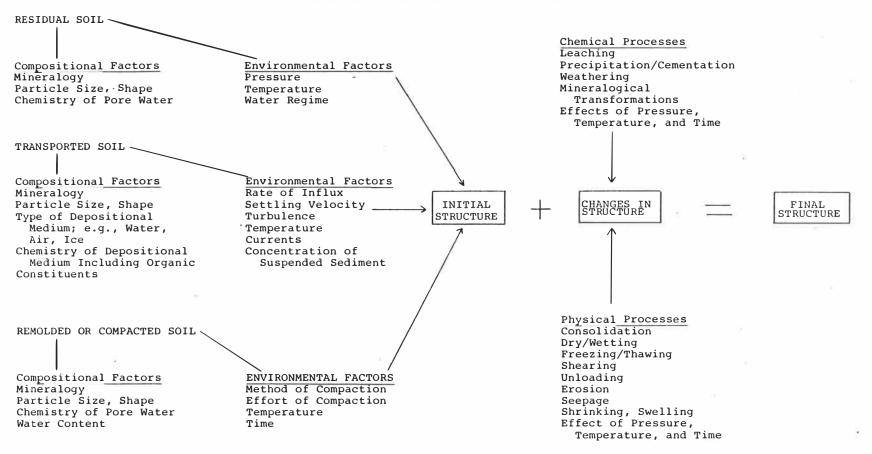
TABLE 2

The Relationship of Soil Porosity to the Size of Aggregates

Diameter of aggregates in mm.

Soil property	Smaller than 0.5	0.5-1.0	1.0-2.0	2.0-3.0	3.0-5.0
Total porosity, per cent	47.5	50.0	54.7	59.6	62.6
Non-capillary porosity, per cent	2.7	24.5	29.6	35.1	38.7
Capillary porosity, per cent	44.8	25.5	25.1	24.5	23.9
0 ₂ content of soil air, per cent	5.4	18.6	19.3	19.4	• • • •
0 ₂ content of soil, per cent	0.1	4.5	5.7	6.7	7.5
Nitrate formation, mg. N per kg. soil	9.0	19.1		34.0	45.8

Taken from Doiarenko (Krause, 1931)


TABLE 3

Void Type	Distribution Pattern	Orientation Pattern	Shapes (ratios of axes)	Conformation (of walls)	Smoothness (of walls)
Packing voids: (i) Simple (ii) Compound	Between solid individuals Between single grains Between unaccomodated peds (interpedal	Random	Usually equant to prolate	Irregular	Orthovoids or metavoids Orthovoids Orthovoids or metavoids (smoothed)
Vughs*	Random	Random	Usually equant to prolate	Irregular to mammillated	Orthovoids or metavoids (smoothed)
Vesicles	Usually random, but some- times a specific referred distribution	Random or parallel	Usually equant to prolate, or arcuate	A specific form	Usually metavoids (smoothed)
Chambers	Random	Random	Usually equant to prolate	Usually a specific form	Usually metavoids (smoothed)
Joint planes	Random or interpedal	Parallel to subparallel sets with specific referred orientation	Planar	Regular	Usually metavoids (smoothed; sometimes slickensided)
Skew planes	Random	Random	Planar	Regular or irregular	Orthovoids or metavoids (smoothed; sometimes slickensided)
Craze planes	Interpedal (between accom- modating equant to pro- late peds) or random	Random	Planar	Irregular due to compound nature; small individual planes may be regular	Orthovoids or metavoids (smoothed)
Channels	Branchin	g patterns	Usually acicular; sometimes prolate	Regular with specific cross- sectional shapes	Metavoids (smoothed)

MORPHOLOGICAL CLASSIFICATION OF VOIDS

÷.,

*When vughs are very numerous they may intersect, thus forming a network of large voids; these are interconnected vughs. Taken from Brewer.

STRUCTURE DETERMINING FACTORS AND PROCESSES

Taken from Mitchell.

Figure 3. Structure Determining Factors and Processes.

has developed a pore (void) size classification showing the sizes that occur in natural soils. These range from his cryptovoids, of less than 0.1 μ m, to coarse macro voids, of greater than 5 mm. See Table 4. Most likely, only the macro voids (pores) could be affected by compaction efforts. Such pores are derived from grain packing (arrangement), gas movement, ice formation, root systems, worm activity, insect activity, burrowing animals, shrink and swell, wetting and drying, and inherited bedding planes and joints of the parent rock.

Compaction occurs as pores are reduced in size. Baver says that the fluid-like flow of moistened clay particles under stress will cause destruction of the larger pores in a natural soil (3). Collins and McGowan have noted that single particle (grain) interaction is rare (5). This concept indicates that in soil with even small amounts of clay, only the clay is contiguous, not the grains. Thus, soil strengths, or resistance to shear, comes from bridges or "connections" of clay or grain-clay assemblages in a soil. A reduction in porosity occurs as the connections are sheared by compaction.

Particle Size Relationships

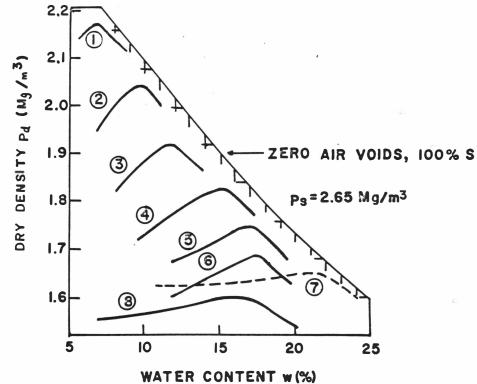
The loamy soils, such as loam, silt loam, sandy loam (USDA); SM-SC, ML-CL, SM (Unified); A-2-6, A-2-4, A-4, (AASHTO); show the greatest average shrinkage factors. See Appendix A. This is thought to be due to an "open" or high porosity soil fabric.

Size Classification of Voids

Class Name	Subclass	Class Limits	
Macrovoids		75u	
	Very fine macrovoids	75-1000u	\sim
	Fine macrovoids	1000-2000u	
	Medium macrovoids	2000-5000u	
	Coarse macrovoids	5000u	
Mesovoids		30 - 75u	
Microvoids		5-30u	
Ultramicrovoids		5u	
Cryptovoids*		0.lu 📼	

* The water in cryptovoids is generally accepted as being unavailable to plants.

Taken from Brewer


The open fabric is easily disturbed by compactive effort when the soil is at optimum moisture content. See Figure 4. The opposite is true for the clay soils. Usually, these soils cannot be compacted as well as Mother Nature has done. In many cases these soils appear to swell slightly when excavated and compacted in a fill.

As mentioned above, the degree of compaction is strongly related to soil moisture content. Water in the soil acts as a lubricator to allow a closer proximity of grains and a consequent alteration of fabric as compression of the soil mass. occurs. At optimum moisture content the soil particles may be brought as close together as possible with normal compaction efforts.

Statistical Analysis

One of the problems when using a limited number of soil samples, is the degree of scatter of test values. When dealing with soils the scatter is sometimes considerable and sometimes reasonably narrow. See Appendix A.

A regression analysis was used to determine the relationship between particle size systems and shrinkage factors. The graphs in Appendix A show the relationship between the three particle size systems and shrinkage factors. The trend is for clayey soil to approach a shrinkage factor of 1.00 or somewhat less. This means that large pores are few. Soils high in silt and sand show shrinkage factors of 1.10 or more. These soils

SOIL TEXTURE AND PLASTICITY DATA

No.	Description	Sand	Silt	Clay	LL	ΡI
1	Well-graded loamy sand	88	10	2	16	N.P.
2	Well-graded sandy loam	72	15	13	16	N.P.
3	Med-graded sandy loam	73	9	18	22	4
4	Lean sandy silty clay	32	33	35	28	9
5	Lean silty clay	5	64-	31	36	15
6	Loessial silt	5	85	10	26	2
7	Heavy clay	6	22	72	67	40
8	Poorly graded sand	94	(5	N.P.	

Taken from Johnson and Sallberg

Figure 4. The relationship of moisture-density to soil properties.

contain relatively high percentages of large pores that can be collapsed to reduce the soil volume.

Among the usual laboratory tests, liquid limit serves best when estimating soil shrinkage. Note that the liquid limit test was not run on non-plastic soils. See Figure B-1 in Appendix B. Neither the plasticity index nor the clay content correlate well with shrinkage factors. Soils that are granular, with just a small amount of clay, seem to shrink the most. These are soils that have very low plasticity indices or are non-plastic. Very clean cohesionless sands do not shrink as much as soils of very low plasticities. Highly plastic soils may not shrink at all.

COST ANALYSIS

The information presented in this report provides a means for a more accurate prediction or verification of the changes in soil volume that result from earthwork construction operations. In a typical six mile long grade and drainage project, about 500,000 to 1,000,000 yd^3 (382,000 to 765,000 m³) of soil material are excavated (8). Current methods of estimating shrinkage are based on the history of adjacent or close-by projects.

For example: Plans indicate that a six mile project will require 700,000 yd^3 (535,000 m³) of excavation. The soil survey indicates that a USDA class of sandy clay loam is predominant. Without this information, design engineers probably would use the standard shrinkage factor of 1.20. Table A-1 in Appendix A shows a shrinkage factor of 1.11 should be used to compute changes in volume. This difference in the method of calculating shrinkage would produce an error of 63,000 yd^3 (48,000 m³). In terms of dollars this would be an error of \$126,000 (assuming \$2.00/yd³ for excavation). While it is not expected that the use of this report would save over \$100,000 on every project, it could assist in saving about \$20,000 to \$30,000 for each project of this magnitude.

CONCLUSION

The results of this study are based on the shrinkage in volume occurring as soils are compacted to standard Proctor density (AASHTO T99). Modern heavy construction equipment, heavier than an 8 ton (7.3 metric tons) roller is capable of compacting soils to a greater density than standard Proctor. For example: This report indicates that sandy loam has a shrinkage factor of 1.14. It is very probable that modern equipment will compact the soil more than this - perhaps up to a shrinkage factor of about 1.20.

The information in this report indicates the relative differences in shrinkage based on particle size classes. The coarser soils such as sandy loam (USDA), ML-CL(Unified), and A-2-6(AASHTO) will shrink the most, usually about a 1.14 shrinkage factor. The finer soils such as clay (USDA), CH(Unified), and A-7-6(AASHTO) shrink the least, usually near a 1.00 shrinkage factor.

Liquid limit test (AASHTO T89) values are a fairly good indicator of shrinkage.

The results of the soil tests as provided in this report will allow a more accurate method of determining soil shrinkage factors. It can also assist in verifying the results of other methods of calculating shrinkage.

This report should be helpful in producing savings of up to \$30,000 for each project.

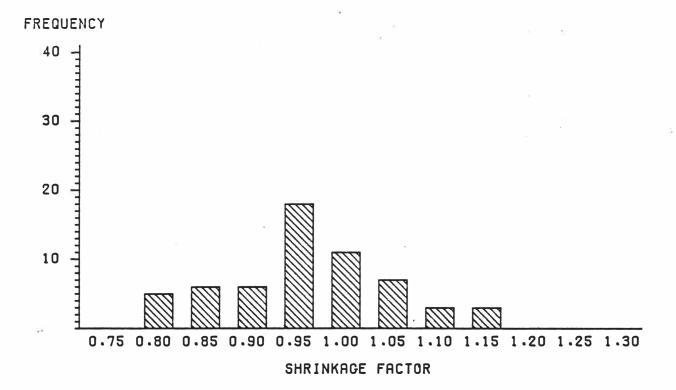
RECOMMENDATIONS

In order to implement properly the results of this study, the following steps should be taken:

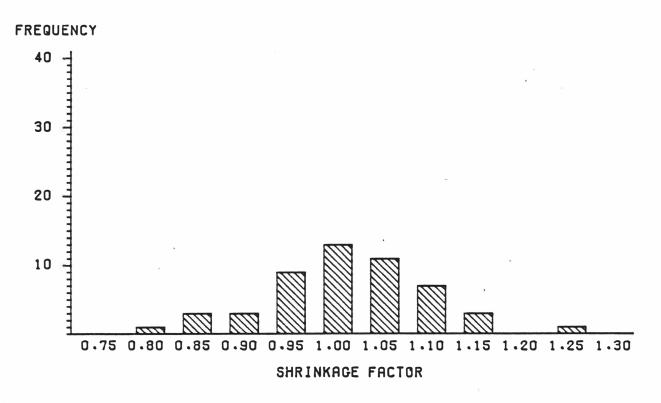
- A manual should be developed incorporating the steps outlined below. This manual should include a method to assure that soil test information is available for making shrinkage factor determinations.
- 2. A table listing the soil series of Oklahoma and their particle size relationship to the tested benchmark soils should be compiled.
- A method for making soil shrinkage determinations from soil maps should be provided.

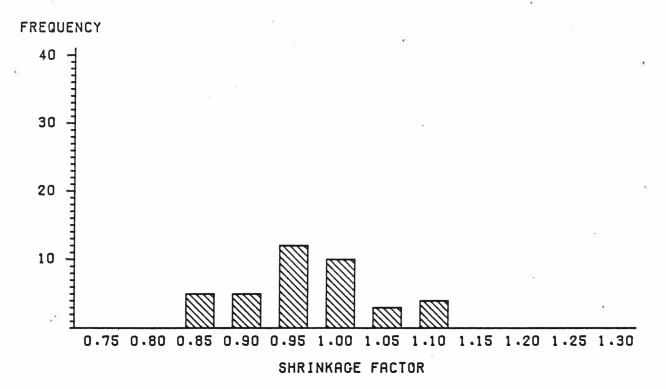
REFERENCES

- 1. American Association of State Highway Officials, <u>Standard</u> <u>Specifications for Transportation Materials and Methods of</u> <u>Sampling and Testing</u>, Part 1, Julý, 1982.
- 2. American Society for Testing and Materials, <u>Natural</u> <u>Building Stones; Soil and Rock</u>, Part 19, 1982.
- 3. Baver, L.D., Soil Physics, John Wiley, New York, 1956.
- 4. Brewer, R. <u>Fabric and Mineral Analysis of Soils</u>, John Wiley, New York, 1964.
- 5. Collins, K. and McGowan, A. <u>The Form and Function of</u> <u>Microfabric Features in a Variety of Natural Soils</u>, Geotechnique, Vol. 24, No. 2, 1974.
- 6. Hough B. K., <u>Basic Soils Engineering</u>, Ronald Press, New York, 1957.
- Johnson, A. W. and Sallberg, J. R., <u>Factors that Influence</u> <u>Field Compaction of Soils</u>, Highway Research Board, Bulletin 272, 1960.
- 8. Martin, E., Design Project Engineer, Oklahoma Department of Transportation, verbal communication, 1982.
- 9. Mitchell, J. K., <u>Fundamentals of Soil Behavior</u>, John Wiley, New York, 1976.
- 10. Oklahoma Geological Survey Staff, Geology and Earth Resources of Oklahoma, 1979.
- 11. Saville, V. B., and Davis, W. C., <u>Geology and Soils Manual</u>, Missouri State Highway Commission, 1962.
- 12. U. S. Department of Agriculture, Soil Conservation Service, <u>Soil Taxonomy - A Basic System of Soil Classification for</u> <u>Making and Interpreting Soil Surveys</u>, Agricultural Handbook No. 436, 1975.

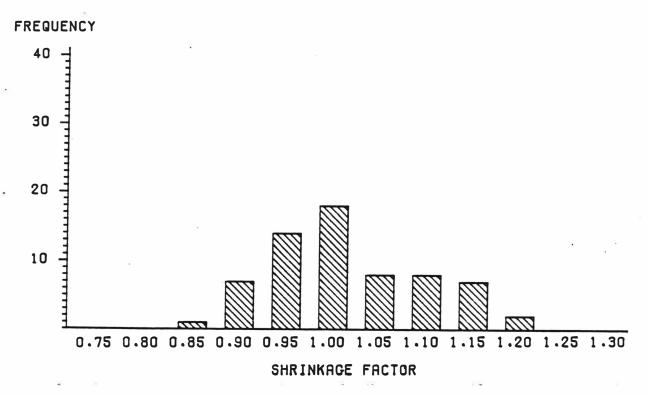

APPENDIX A

SHRINKAGE FACTORS

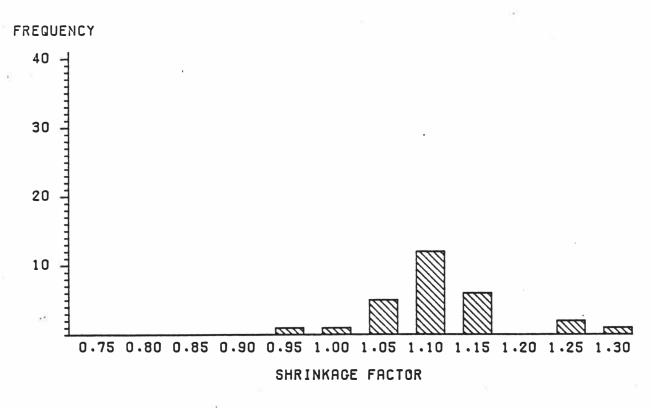

This appendix describes and illustrates the relationship of the number of tests and the resulting shrinkage factors for each particle size class. The distribution of test values is shown graphically. Also, a statistical summary is given. The particle size class, horizon, number of observations, mean, standard deviation, minimum, and maximum values are presented in the table on page A-17 to A-19. A chart comparing the particle sizes of the USDA, Unified, and AASHTO classes is on page A-20.

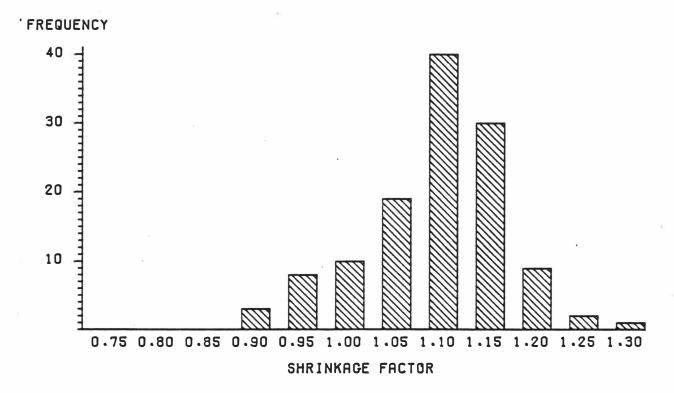

USDA Classification

CLASS=C

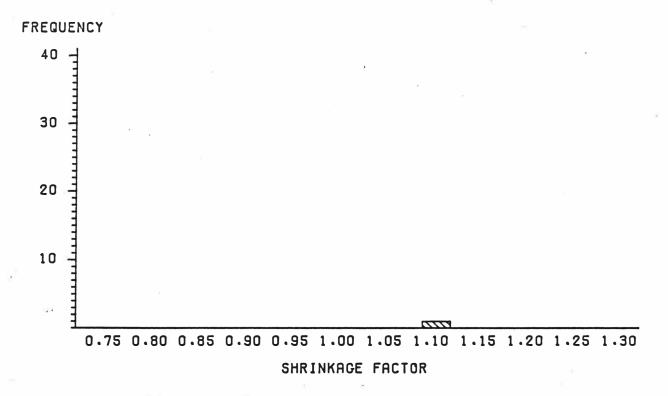


CLASS=CL

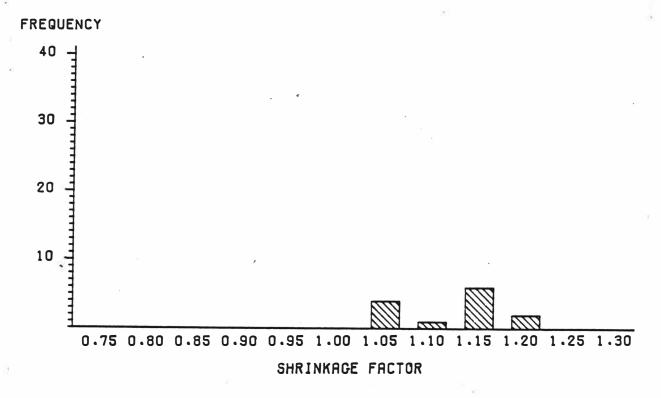




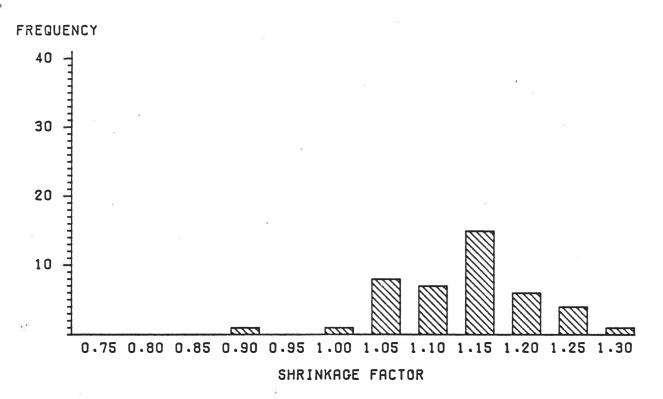
CLASS=SIC

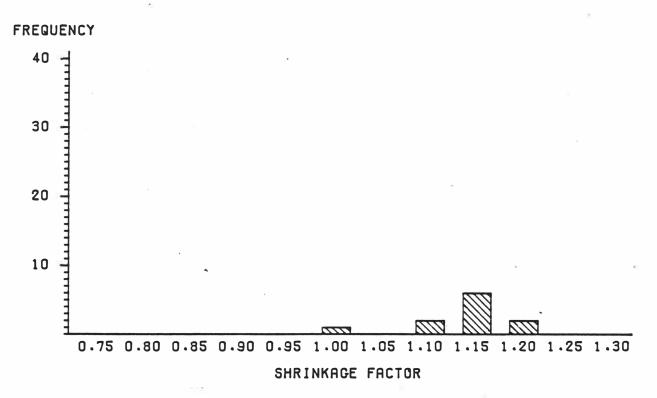


CLASS=SIL

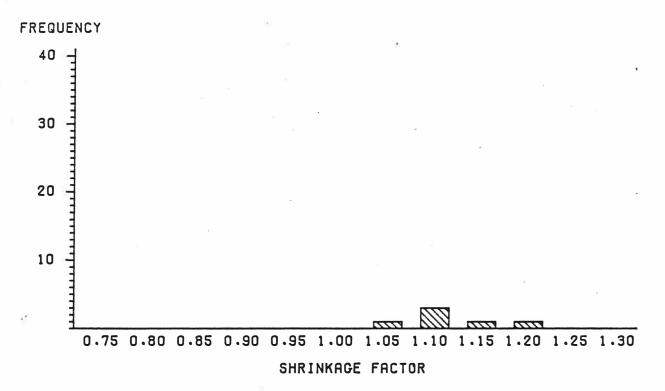


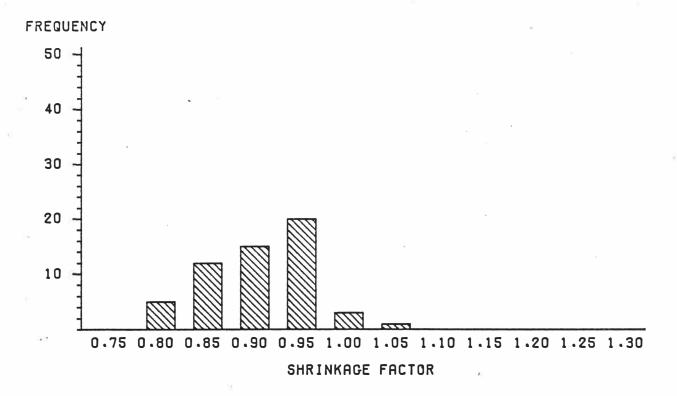
CLASS=L


CLASS=SC

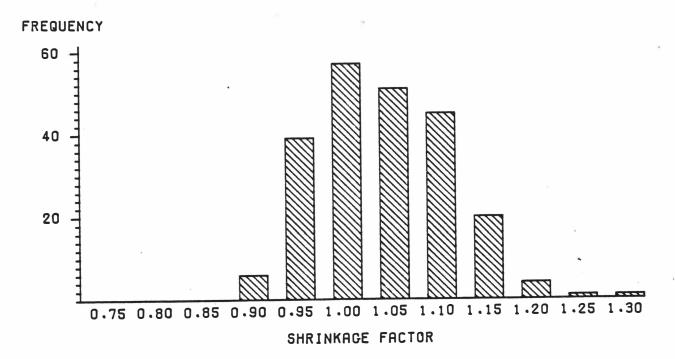

CLASS=SCL

CLASS=SL

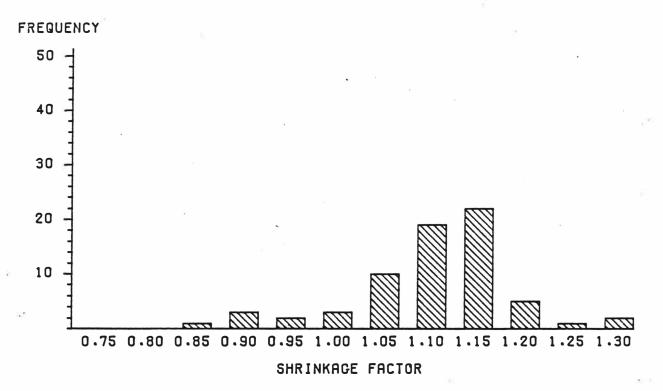


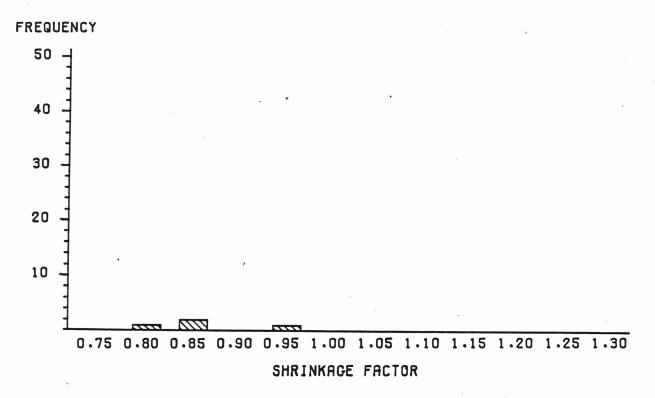

USDA Classification (Continued)

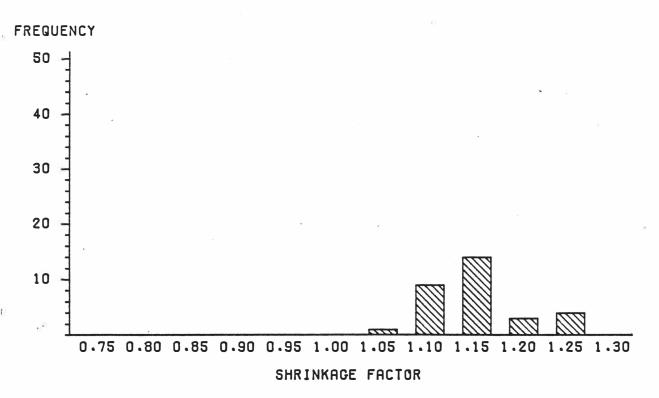
CLASS=S

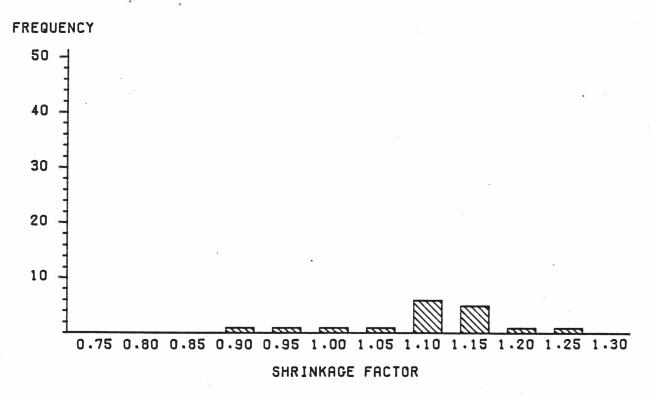


Unified Classification

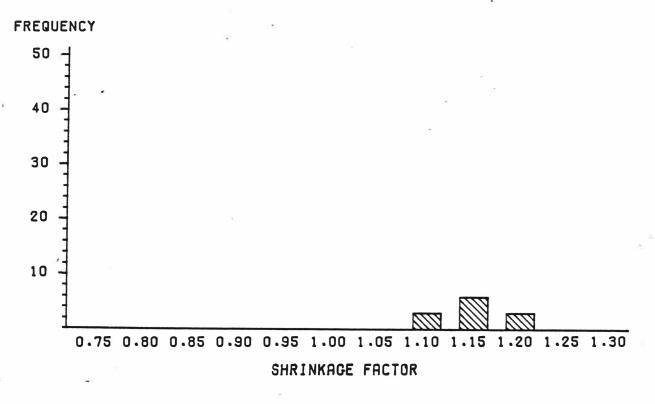

CLASS=CH


CLASS=CL

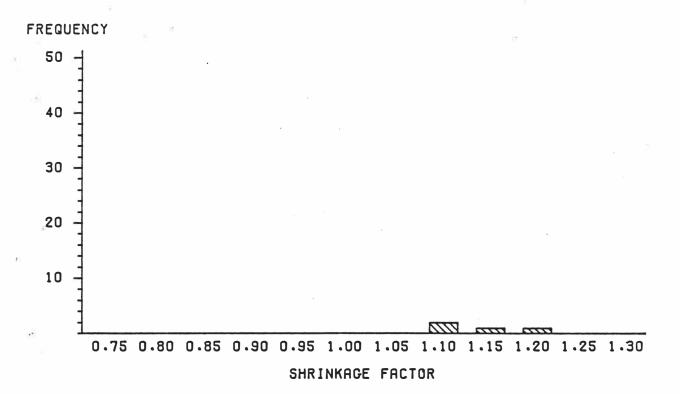

CLASS=ML



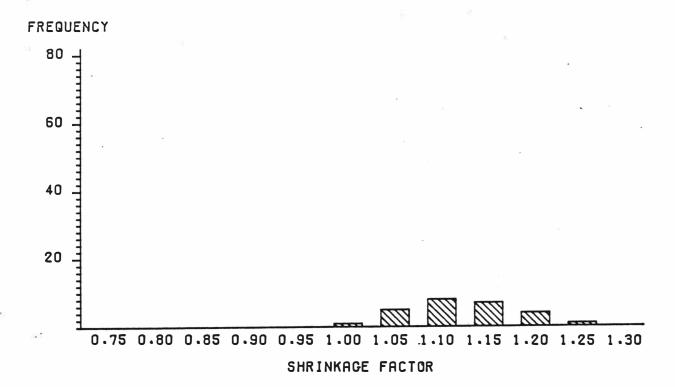
<u>م</u> _ ۵



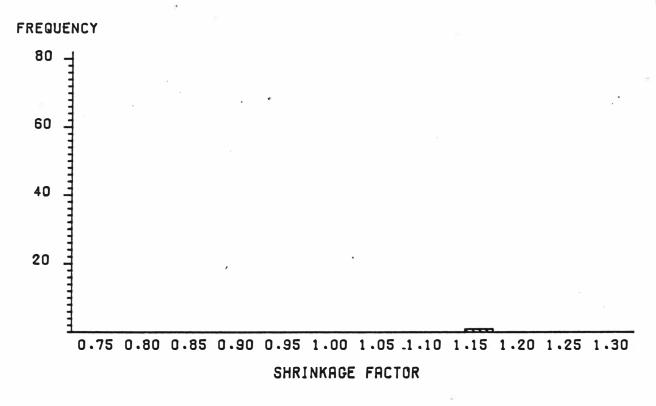
CLASS=ML-CL

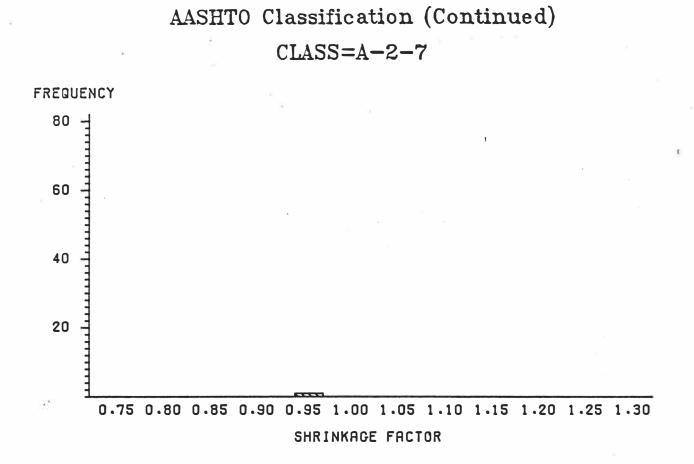

FREQUENCY 50 40 30 20 10 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 SHRINKAGE FACTOR

CLASS=SM-SC

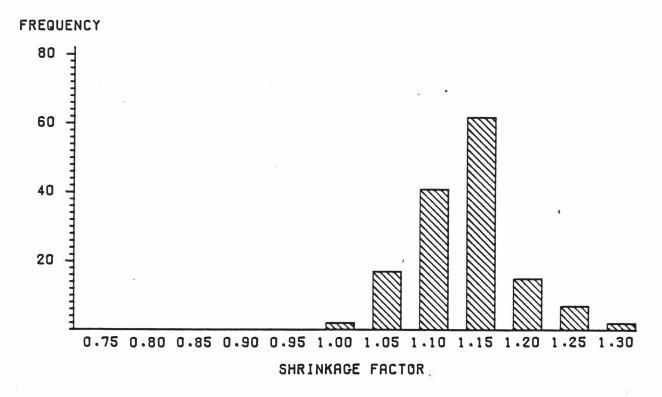

CLASS=SM

CLASS=SP

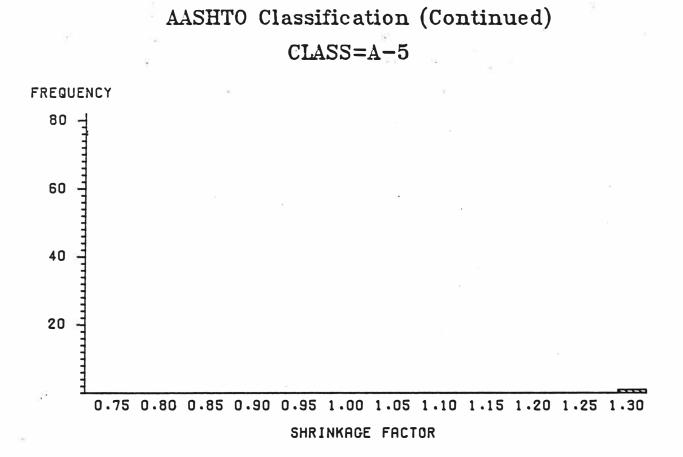


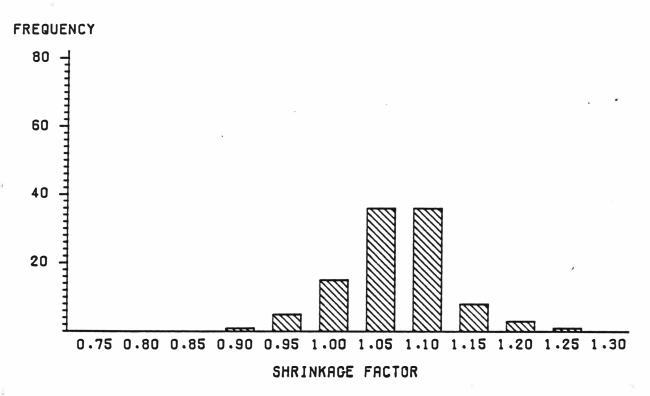

AASHTO Classification

CLASS = A - 2 - 4

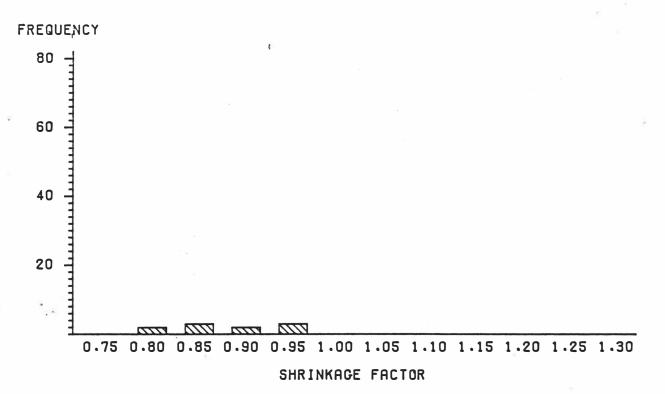


CLASS = A - 2 - 6

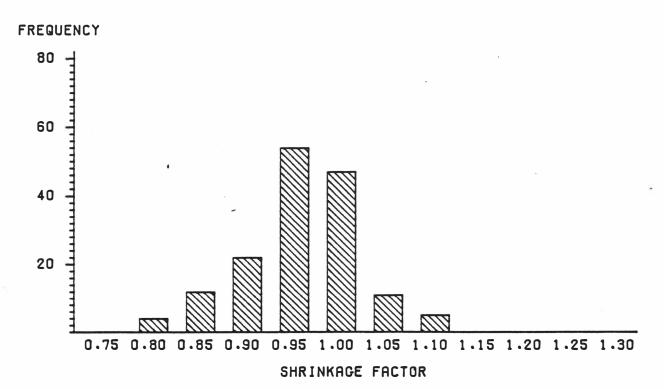



CLASS = A - 4

- 7 A



CLASS=A-6



AASHTO Classification (Continued)

CLASS = A - 7 - 5

CLASS = A - 7 - 6

3 1 C

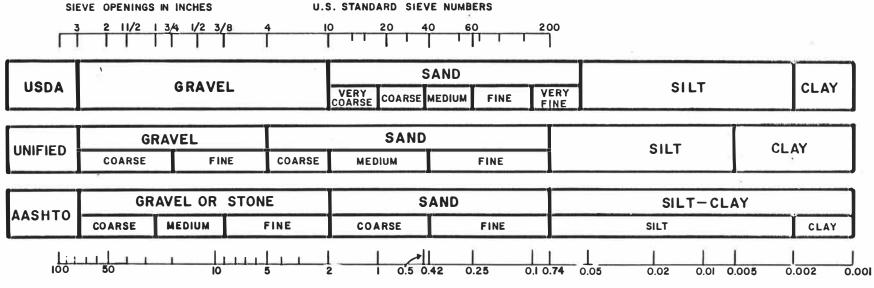
SHRINKAGE FACTORS

Summary Statistics for USDA Soil Classification

USDA Class	Horizon	Number of Observations	Mean	Standard Deviation	Minimum Value	Maximum Value
C C C C C C L L L L L S S S S S S C C L C L	A B C A B C C/R A B C C/R A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C C/R A B C C A B C A A B C A B B C A B B B A B B C A A B B C A B B B A B B B B	$ \begin{array}{r} 59\\ 8\\ 44\\ 7\\ 51\\ 7\\ 34\\ 9\\ 1\\ 28\\ 17\\ 7\\ 3\\ 1\\ 12\\ 42\\ 6\\ 1\\ 2\\ 3\\ 1\\ 1\\ 13\\ 39\\ 4\\ 33\\ 2\\ 65\\ 12\\ 42\\ 11\\ 122\\ 97\\ 20\\ 5\\ 43\\ 18\\ 1\\ 12\\ 12\\ \end{array} $	0.96 1.03 0.94 1.01 1.01 1.04 1.01 1.04 1.01 1.09 0.94 1.11 1.12 1.19 1.14 1.17 1.19 1.14 1.17 1.09 1.11 1.10 1.09 1.01 1.09 1.01 1.01 1.10 1.09 1.11 1.10 1.09 1.01 1.01 1.12 1.11 1.10 1.09 1.01 1.01 1.12 1.11 1.10 1.09 1.01 1.01 1.12 1.11 1.10 1.09 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00	0.09 0.08 0.09 0.05 0.09 0.11 0.08 0.09 0.07 0.06 0.09 0.07 0.05 0.09 0.07 0.05 0.08 0.01 0.04 0.07 0.04 0.07 0.04 0.07 0.04 0.07 0.04 0.07 0.04 0.07 0.04 0.07 0.04 0.07 0.04 0.07 0.04 0.07 0.04 0.07 0.04 0.07 0.04 0.07 0.09 0.08 0.07 0.09 0.08 0.07 0.09 0.08 0.07 0.09 0.08 0.07 0.09 0.08 0.07 0.09 0.08 0.07 0.09 0.08 0.07 0.09 0.08 0.07 0.09 0.08 0.07 0.09 0.08 0.07 0.09 0.08 0.07 0.07 0.09 0.08 0.07 0.07 0.09 0.08 0.07 0.07 0.09 0.08 0.07 0.07 0.09 0.08 0.07 0.09 0.08 0.07 0.09 0.08 0.07 0.09 0.08 0.07 0.07 0.09 0.08 0.07 0.09 0.08 0.07 0.09 0.08 0.07 0.07 0.09 0.07 0.07 0.09 0.07 0.08 0.07 0.08 0.07 0.07 0.07 0.07 0.08 0.07 0.07 0.07 0.07 0.08 0.07 0.07 0.07 0.08 0.07 0.07 0.08 0.07 0.07 0.07 0.07 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.07 0.07 0.07 0.07 0.07 0.08 0.07 0.07 0.07 0.07 0.08 0.07 0.07 0.07 0.08 0.07 0.07 0.07 0.08 0.07 0.07 0.07 0.08 0.07 0.07 0.08 0.07 0.07 0.07 0.07 0.08 0.07 0.07 0.08 0.07 0.07 0.08 0.07 0.07 0.08 0.07 0.07 0.07 0.08 0.07 0.07 0.07 0.07 0.07 0.08 0.07 0.08 0.07 0.07 0.07 0.07 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07	0.79 0.90 0.79 0.95 0.80 0.93 0.80 0.93 0.94 0.96 1.03 1.12 1.14 0.98 1.12 1.14 0.98 1.15 1.05 1.05 1.09 1.05 1.09 1.03 1.03 0.83 0.84 0.91 0.90 1.01 0.92 1.18 1.05 1.03	1.17 1.15 1.17 1.09 1.24 1.24 1.17 1.12 0.94 1.28 1.17 1.25 1.28 1.17 1.25 1.28 1.14 1.22 1.22 1.15 1.15 1.15 1.15 1.15 1.18 1.11 1.18 1.11 1.18 1.11 1.18 1.13 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.10 1.09 1.10 1.19 1.14 1.19 1.15 1.29 1.26 1.29 1.20 1.18 1.29 1.27

SHRINKAGE FACTORS

Summary Statistics for Unified Soil Classification


			262			
Unified Class	Horizon	Number of Observations	Mean	- • • •		Maximum Value
CH CH CH CL CL CL CL CL CL CL CL CL CL CL CL CL	A B C A B C C/R B A B C C/R A B C C/R A B C C/R A B C C/R A B C C/R A B C C/R B C C R A B C C R B C C C R B C C R B C C R B C C R B C C R B C C C R B C C R B C C R B C C R B C C R B C C R B C C R B C C R B C R B C C R B C C R B C R C R	56 3 49 4 224 72 121 30 1 4 4 68 52 7 9 31 23 6 1 17 5 12 2 7 3 4 3 1 1 7 5 12 7 3 4 3 1 1 1 12 2 7 3 4 3 1	0.90 0.90 0.97 1.04 1.05 1.05 1.05 0.94 0.87 1.10 1.11 1.12 1.14 1.14 1.15 1.15 1.14 1.15 1.15 1.14 1.15 1.15 1.14 1.15 1.15 1.14 1.15	0.06 0.04 0.05 0.06 0.07 0.07 0.07 0.07 0.06 0.06 0.09 0.07 0.09 0.15 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.79 0.86 0.79 0.91 0.88 0.91 0.88 0.95 0.94 0.80 0.80 0.80 0.85 0.90 1.03 0.85 1.06 1.00 1.03 0.85 1.06 1.00 1.13 1.14 0.90 0.90 0.95 1.27 0.98 1.06 1.13 1.06 1.18 0.98 1.05 1.11 1.11 1.12 1.08 1.08 1.08	1.05 0.93 0.99 1.05 1.29 1.18 1.29 1.19 0.94 0.96 0.96 1.29 1.22 1.22 1.22 1.23 1.26 1.26 1.26 1.23 1.13 1.14 1.27 1.13 1.21 1.23 1.22 1.23 1.22 1.23 1.22 1.23 1.22 1.23 1.22 1.23 1.22 1.23 1.22 1.23 1.22 1.23 1.22 1.13 1.20 1.27 1.23 1.22 1.18 1.20 1.21 1.23 1.22 1.18 1.20 1.21 1.23 1.22 1.18 1.20 1.21 1.23 1.22 1.18 1.20 1.21 1.23 1.23 1.23 1.23 1.23 1.23 1.21 1.23 1.23 1.23 1.21 1.23 1.21 1.23 1.23 1.21 1.23 1.21 1.23 1.23 1.23 1.21 1.23 1.23 1.23 1.21 1.23 1.23 1.21 1.23 1.23 1.23 1.21 1.23 1.23 1.23 1.23 1.23 1.21 1.23 1.23 1.23 1.23 1.23 1.21 1.23 1.23 1.23 1.21 1.23 1.23 1.21 1.23 1.21 1.23 1.21 1.23 1.21 1.23 1.21 1.23 1.21 1.23 1.20 1.17 1.20 1.16 1.18 1.13

SHRINKAGE FACTORS

Summary Statistics for AASHTO Soil Classification

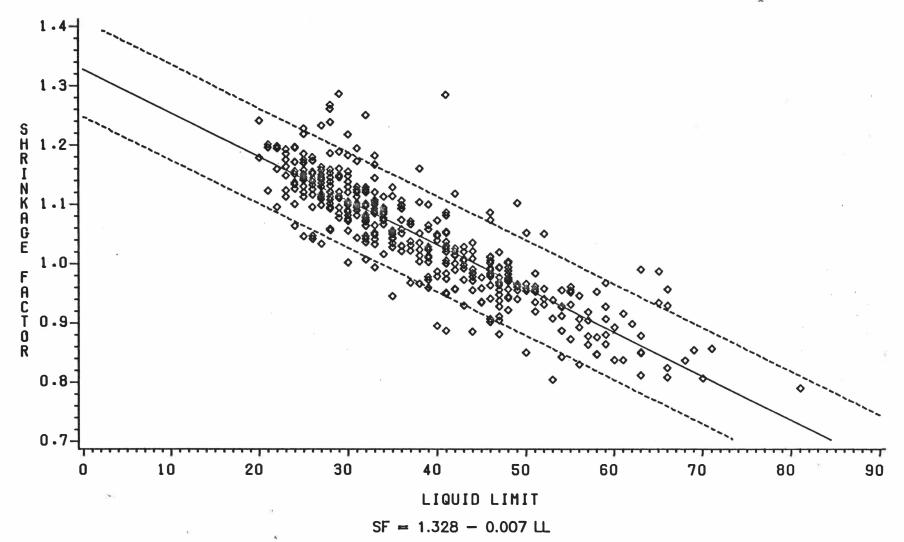
AASHTO Class	Horizon	Number of Observations	Mean	Standard Deviation	Minimum Value	'Maximum Value
Class A-2-4 A-2-4 A-2-4 A-2-6 A-2-6 A-2-6 A-2-7 A-2-7 A-2-7 A-2-7 A-4 A-4 A-4 A-4 A-4 A-4 A-4 A-4 A-5	A B C B A A/C B C C/R	26 10 9 7 1 1 1 1 1 1 96 1 35 13 1	1.12 1.13 1.12 1.11 1.15 1.15 0.95 1.13 1.13 1.13 1.18 1.15 1.15 1.14 1.28	Deviation 0.06 0.05 0.08 0.05	Value 0.98 1.06 0.98 1.05 1.15 1.15 0.95 0.95 1.00 1.00 1.00 1.18 1.03 1.03 1.14 1.28	Value 1.23 1.22 1.23 1.18 1.15 1.15 0.95 0.95 1.29 1.26 1.18 1.29 1.26 1.18 1.29 1.27 1.14 1.28
A-5 A-5 A-6 A-6 A-6 A-7-5 A-7-5 A-7-5 A-7-5 A-7-6 A-7-6 A-7-6 A-7-6	C A B C C/R A B C A B C	1 105 43 47 14 10 3 6 1 155 20 116 19	1.28 1.07 1.05 1.08 1.08 0.94 0.88 0.94 0.86 0.94 0.85 0.96 0.95 0.99	0.06 0.05 0.05 0.05 0.06 0.02 0.06 0.06 0.06 0.06 0.06 0.05	1.28 1.28 0.90 0.99 0.98 0.94 0.79 0.92 0.79 0.85 0.81 0.81 0.89	1.28 1.25 1.18 1.25 1.19 0.94 0.96 0.96 0.96 0.96 0.85 1.12 1.10 1.12 1.09

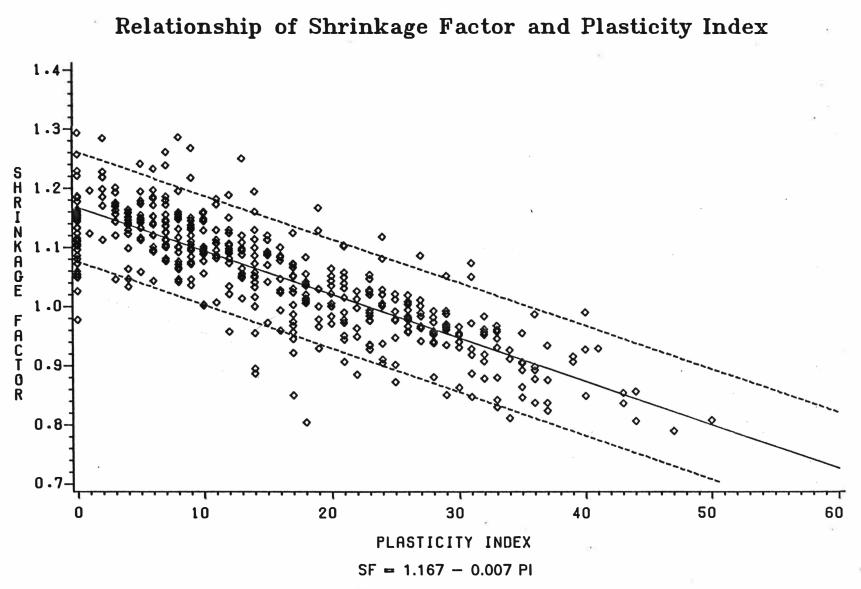
٦Ô

ט ר

COMPARISON OF PARTICLE SIZE SCALES

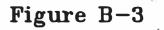
GRAIN SIZE IN MILLIMETERS

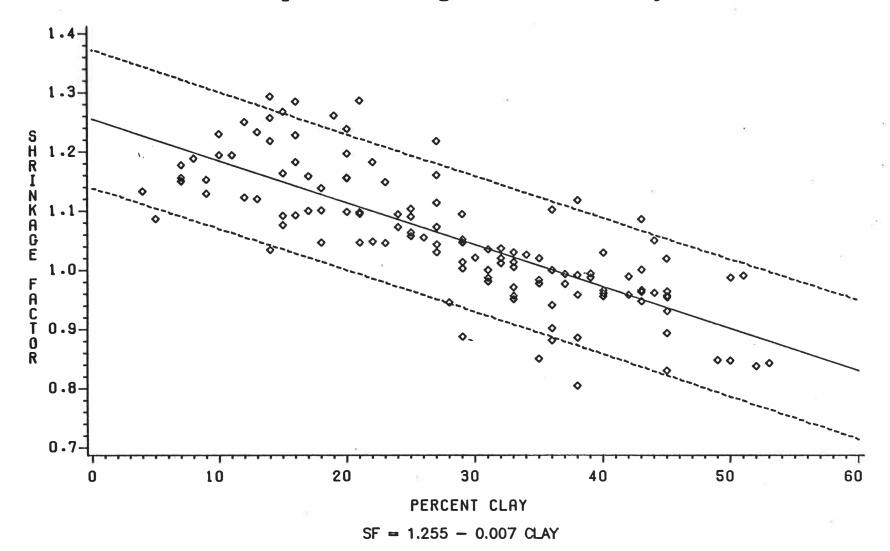

APPENDIX B


SHRINKAGE AND COMMON LABORATORY TESTS

This appendix demonstrates the reliability of liquid limit, plasticity index, and clay content tests AASHTO T89, T90, and T88 respectively, to predict shrinkage factors.

Figure B-1.





Р-3

Figure B-2.

Relationship of Shrinkage Factor and Clay Content

