

HOT RECYCLING of ASPHALT PAVEMENT

I-40 near Hydro, Oklahoma

TE270 .P692h 1982 OKDOT Library

> Research & Development Division Oklahoma Department of Transportation

H

HOT RECYCLING OF ASPHALT PAVEMENT

bу

Ghasem Pourkhosrow

Under the Supervision

of

C. Dwight Hixon, P.E. Research & Development Engineer Research & Development Division Oklahoma Department of Transportation

Oklahoma City, Oklahoma

March, 1982 Revised October, 1982

THE AND SUBTLE Intervention of Asphalt Pavements Intervention of Revised October Hot Recycling of Asphalt Pavements Revised October AUTHOR IS: Chaster Pourkhosrow 79-14-1 Item 401 Percense of Asphalt Pavement of Transportation Revised October Research & Development Division 0.0005 UNF MOM 0.0005 UNF MOM 200 NE 21st, Room 2A2 DOT-FH-15-391 0.0005 UNF MOM Schoold Bend Mark Mod Addets DOT-FH-15-391 0.0005 UNF MOM 200 NW 5th, Room 454 DOT-FH-15-391 DOT-FH-15-391 Sufficient Mark MOTES Final Report Final Report Pone in cooperation with the Federal Highway Administration. Astract The objective of this report is to evaluate the feasibi: and benefit of utilizing asphalt pavement hot recycling in Oklahoma. The work began in April, 1980 and lasted throug June 1980. The 8 1/2 mile (11.6 km) project was located on I +40 in Caddo County. The project involved cold millir the top one inch (25 mm) of roadway. A non-woven poly-propylene fabric, Petromat, was placed on the cold milling sufface. This material was overlaid with 1 1/2 inches (38 mm) of the hot recycled mixture containing recycled asphalt concrete, virgin aggregate, and asphalt cement. YF woods Asschaft pavement, cold milling, fabric, recycled material Paschaft cor Fins MOE A wor MOES Reference	1. REPORT NO. FHWA/OK	82(4)	2. GOVERNMENT	CCESSION NO.	3. RECIPIENT'S CA	TALOG NO.
AUTION ISI I. PERCENNENG CREAMEZATION HAVE AND ADDRESS Ghasem Pourkhosrow 79-14-1 Item 400 PERCENNENG CREAMEZATION HAVE AND ADDRESS C. WOOK LHHT MO. Oklahoma Department of Transportation Research & Development Division C. WOOK LHHT MO. 200 NE 21st, Room 2A2 DOT-FH-15-391 DOT-FH-15-391 SPONSONG AGENCY NAME AND ADDRESS Federal Highway Administration DOT-FH-15-391 200 NW 5th, Room 454 Kilahoma City, OK 73102 Final Report SUPTEMENTARY NOTES Done in cooperation with the Federal Highway Administration. ASTMCT The objective of this report is to evaluate the feasibi: and benefit of utilizing asphalt pavement hot recycling in Oklahoma. The work began in April, 1980 and lasted throug June 1980. The 8 1/2 mile (13.6 km) project was located on I-40 in Caddo County. The project involved cold milling the top one inch (25 mm) of roadway. A non-woven poly-propylene fabric, Petromat, was placed on the cold milled surface. This material was overlaid with 1 1/2 inches (38 mm) of the hot recycled mixture containing recycled asphalt concrete, virgin aggregate, and asphalt cement. SP WORDS TAN OF FMOSE 2. PECE SP WORDS TAN OF FMOSE 2. PECE	4. TITLE AND SU Hot Recy	cling of As	phalt Pave	ments	S. REPORT DATE Revised 6. PERFORMING C	March 1982 October 198
PERCENNING ORGANIZATION NAME AND ADDRESS Oklahoma Department of Transportation Research & Development Division 200 NE 21st, Room 2A2 Oklahoma City, OK 73105 IL CONTENT OF GENERATION DOT-FH-15-391 200 NE 21st, Room 2A2 Oklahoma City, OK 73105 IL CONTENT OF GENERATION 200 NW 5th, Room 454 DOT-FH-15-391 200 NW 5th, Room 454 Final Report 201 NW 5th, Room 454 Final Report 202 NW 5th, Room 454 Final Report 203 NW 5th, Room 454 Server of this report is to evaluate the feasibility and benefit of utilizing asphalt pavement hot recycling in Oklahoma. The work began in April, 1980 and lasted throug June 1980. The 8 1/2 mile (13.6 km) project was located on I-40 in Caddo County. The project involved cold milled surface. This material was overlaid with 1 1/2 inches (38 mm) of the hot recycled mixture containing recycled asphalt concrete, virgin aggregate, and asphalt cement. SY WORS Asphalt pavement, cold milling, fabric, recycled material The DISTRIBUTION STATEMENT SUM WORS PARCES The NOP PAGES SY WORS Scurry CLASHE KOF THIS REFORT PARCES IN PAGE SUM WORS PARCES PROFES STARCE Report PARCES INFORMANY	7. AUTHOR (S) Ghasem P	ourkhosrow			8. PERFORMING OR 79-14-1	GANIZATION REPORT Item 405
Oklahoma Department of Transportation Research & Development Division 200 NE 21st, Room 2A2 Oklahoma City, OK 73105 SPONSONO AGENCY NAME AND ADDESS Federal Highway Administration 200 NW 5th, Room 454 Oklahoma City, OK 73102 SEPTEMENTARY NOTES Done in cooperation with the Federal Highway Administration. ASTRCT The objective of this report is to evaluate the feasibil and benefit of utilizing asphalt pavement hot recycling in Oklahoma. The work began in April, 1980 and lasted throug June 1980. The 8 1/2 mile (13.6 km) project was located on I-40 in Caddo County. The project involved cold millin the top one inch (25 mm) of roadway. A non-woven polypropylene fabric, Petromat, was placed on the cold milled surface. This material was overlaid with 1 1/2 inches (38 mm) of the hot recycled mixture containing recycled asphalt concrete, virgin aggregate, and asphalt cement. ST WORDS THE OPTIME PROPENT (ADD FERORING) ST WORDS THE SECORT (CASE (OF THE MORE) The Difference of the secort Statement	9. PERFORMING OF	GANIZATION NAME	AND ADDRESS	area an		
Research & Development Division ILCONTRUCT of MART NO. 200 NE 21st, Room 2A2 DOT-FH-15-391 Oklahoma City, OK 73105 ILTTY OF EFORT AND FUNCTION Frederal Highway Administration 200 NW 5th, Room 454 Oklahoma City, OK 73102 Final Report SUPPLEMENTARY NOTE Done in cooperation with the Federal Highway Administration. Done in cooperation with the Federal Highway Administration. Administration. AMSTRACT The objective of this report is to evaluate the feasibil and benefit of utilizing asphalt pavement hot recycling in Oklahoma. The work began in April, 1980 and lasted throug June 1980. The 8 1/2 mile (13.6 km) project was located on I-40 in Caddo County. The project involved cold milling the top one inch (25 mm) of roadway. A non-woven poly-proylene fabric, Petromat, was placed on the cold milled surface. This material was overlaid with 1 1/2 inches (38 mm) of the hot recycled mixture containing recycled asphalt concrete, virgin aggregate, and asphalt cement. FY WORDS Material asphalt pavement, cold milling, fabric, recycled material Material BURY CLASH: LOF THIS EFFORT De SECURITY CLASH: LOF THIS MARE) BURY CLASH: LOF THIS EFFORT De SECURITY CLASH: LOF THIS MARE) BURY CLASH: LOF THIS EFFORT De SECURITY CLASH: LOF THIS MARE)	Oklahoma	Department	of Transp	ortation		an a
200 ND 2151, NOOM 242 DOT-TH-15-391 SPONSORME AGENCY NAME AND ADDRESS Federal Highway Administration 200 NW 5th, Room 454 Final Report 201 NW 5th, Room 454 Highway Administration 200 NW 5th, Room 454 Highway Administration 200 NW 5th, Room 454 Highway Administration 201 NW 5th, Room 454 Highway Administration 202 NW 5th, Room 454 Highway Administration 203 NW 5th, Room 454 Highway Administration Assnet The objective of this report is to evaluate the feasibilities and benefit of utilizing asphalt pavement hot recycling in April, 1980 and lasted throug Junc 1980. The 8 1/2 mile (13.6 km) project was located on I-40 in Cado County. The project involved cold milled surface. This material was overlaid with 1 1/2 inches (38 mm) of the	Research	& Developm	ent Divisi	On	II. CONTRACT OR	RANT NO.
STONSORING AGENCY NAME AND ADDRESS Federal Highway Administration 200 NW 5th, Room 454 Oklahoma City, OK 73102 SUPPLEMENTARY NOTES Done in cooperation with the Federal Highway Administration. ANSTACT The objective of this report is to evaluate the feasibi: and benefit of utilizing asphalt pavement hot recycling in Oklahoma. The work began in April, 1980 and lasted throug June 1980. The 8 1/2 mile (13.6 km) project was located on I-40 in Caddo County. The project involved cold millin the top one inch (25 mm) of roadway. A non-woven poly- propylene fabric, Petromat, was placed on the cold milled surface. This material was overlaid with 1 1/2 inches (38 mm) of the hot recycled mixture containing recycled asphalt concrete, virgin aggregate, and asphalt cement. ST WORDS asphalt pavement, cold milling, fabric, recycled material No. OF MAGES 22. PECE ELENTY CLASSER OF THE REPORT 20. SECURITY CLASSER OF THIS MAGE) T. No. OF MAGES 22. PECE	Oklahoma	City. OK 7	3105		DOT-FH-	15-391
Federal Highway Administration 200 NW 5th, Room 454 Oklahoma City, OK 73102 H. SPONSORING AGENCY CODE SUFFLEMENTARY NOTES Done in cooperation with the Federal Highway Administration. ASSTACT The objective of this report is to evaluate the feasibil and benefit of utilizing asphalt pavement hot recycling in Oklahoma. The work began in April, 1980 and lasted throug June 1980. The 8 1/2 mile (13.6 km) project was located on I-40 in Caddo County. The project involved cold milling the top one inch (25 mm) of roadway. A non-woven polypropylene fabric, Petromat, was placed on the cold milled surface. This material was overlaid with 1 1/2 inches (38 mm) of the hot recycled mixture containing recycled asphalt concrete, virgin aggregate, and asphalt cement. FY WORDS asphalt pavement, cold milling, fabric, recycled material EXEMPT CLASH. FOR THE REPORT 20. SECHENT CLASH. FOR THIS MORE) The No. OF PAGES 20. PEICE	2. SPONSORING A	HENCY NAME AND	DORESS	an a	IS. TIPE OF REPORT	AND PEODO COVERED
Oklahoma City, OK 73102 H. BONSORNG AGENCY CODE SMPTLEMENTARY NOTES Done in cooperation with the Federal Highway Administration. ASTACT The objective of this report is to evaluate the feasibil and benefit of utilizing asphalt pavement hot recycling in Oklahoma. The work began in April, 1980 and lasted throug June 1980. The 8 1/2 mile (13.6 km) project was located on I-40 in Caddo County. The project involved cold milling the top one inch (25 mm) of roadway. A non-woven polypropylene fabric, Petromat, was placed on the cold milled surface. This material was overlaid with 1 1/2 inches (38 mm) of the hot recycled mixture containing recycled asphalt concrete, virgin aggregate, and asphalt cement. If words asphalt pavement, cold milling, fabric, recycled mixture Containing Tecycled material ECURTY CASSH FOF THIS REPORT) D. SECURTY CASSH: FOF THIS PAGE) 21 NO. OF PAGES 22. PECE	Federal 200 NW 5	Highway Adm th. Room 45	inistratio: 4	a	Final R	leport
SUFFLEMENTARY NOTES Done in cooperation with the Federal Highway Administration ASTRACT The objective of this report is to evaluate the feasibil and benefit of utilizing asphalt pavement hot recycling in Oklahoma. The work began in April, 1980 and lasted throug June 1980. The 8 1/2 mile (13.6 km) project was located on I-40 in Caddo County. The project involved cold millin the top one inch (25 mm) of roadway. A non-woven poly- propylene fabric, Petromat, was placed on the cold milled surface. This material was overlaid with 1 1/2 inches (38 mm) of the hot recycled mixture containing recycled asphalt concrete, virgin aggregate, and asphalt cement. If woos milling, fabric, recycled material M.DISTRIBUTION STATEMENT ECURITY CASSHE FOF THIS REPORT) D. SECURITY CASSHE FOF THIS PAGES 21 MO OF PAGES 2. FECE	Oklahoma	City, OK 7	3102		14. SPONSORING AG	HENCY CODE
(EY WORDS asphalt pavement, cold milling, fabric, recycled material 18. DISTRIBUTION STATEMENT ECURITY CLASSIE (OF THIS REPORT) 20. SECURITY CLASSIE. (OF THIS PAGE) 21. NO. OF PAGES 22. PRICE	The and be Oklaho June 1 on I-4 the to propyl surfac (38 mm asphal	objective o nefit of ut ma. The wo 980. The 8 0 in Caddo p one inch ene fabric, e. This ma) of the ho t concrete,	f this rep ilizing as rk began in 1/2 mile County. T (25 mm) of Petromat, terial was t recycled virgin ag	ort is to bhalt pave April, 1 (13.6 km) he project roadway. was place overlaid mixture o gregate, a	evaluate the ement hot rec 1980 and last project was t involved co A non-woven ed on the col with 1 1/2 i containing re and asphalt c	feasibilit ycling in ed through located ld milling poly- d milled nches cycled ement.
ECURITY CLASSIF, IOF THIS REPORT) 20. SECURITY CLASSIF. (OF THIS PAGE) 21. NO. OF PAGES 22. PRICE	KEY WORDS asphal millin materi	t pavement, g, fabric, al	cold recycled	18. DISTRIBUTION	STATEMENT	
	SECURITY CLASSIF. IC	F THIS REPORT)	20. SECURITY CLASSIF.	OF THIS PAGE)	21. NO. OF PAGES	22. PRICE
none 45	none			and Andreas and a state of the state Andreas and a state of the state of	45	

TEC

TABLE OF CONTENTS

	Page
INTRODUCTION	1
Background Purpose	\mathbf{t}_{i} and \mathbf{t}_{i} is a second secon
Scope Site Description	2 2
PRELIMINARY INVESTIGATION	4
Description of Pre-Existing Pavement Traffic Crack Survey	4 4 4
POST-CONSTRUCTION EVALUATION	7
Rut Depth Measurement Benkelma Beam Deflection Crack Survey	7 7 7
FIRST YEAR EVALUATION	8
Rut Depth Measurement Benkelman Beam Deflection Crack Survey	8 8 8
COST ANALYSIS	9
Economics	9
DESIGN AND CONSTRUCTION	10
Design Construction Procedure Conservation	10 10 13
ENERGY CONSUMPTION	14
REFERENCES	17
CONCLUSIONS AND RECOMMENDATIONS	18
APPENDIX A - SPECIFICATIONS	A-1 - A-2
APPENDIX B - TEST RESULTS	B-1 - B-11
APPENDIX C - PHOTOGRAPHS	C-1 - C-7
المحمد المحم المحمد المحمد	

i

LIST OF FIGURES

						rage
Figure 1.	Location of	Existing Ro	adway			5
Figure 2.	An Illustrati and Recycle	on showing d Overlay	Pre-Existi	ng Pavemer	nt	6
		-				

LIST OF TABLESTable 1.Costs for Conventional Overlay
Costs for Recycled Overlay
Value of Recycled Material12
12Table 2.Quantity Comparisons13Table 3.Energy to Produce One Ton of Recycled Asphalt15Table 4.Energy to Produce One Ton of Convent onal
Asphalt Concrete16

ii

INTRODUCTION

Background

The increasing cost of construction materials along with decreasing highway revenues, has generated the need to recycle asphalt concrete (AC) pavement.

There are three methods of recycling AC pavement; hot mix recycling, cold mix recycling, and surface recycling.

The Oklahoma Department of Transportation (ODOT) believed that hot recycling would provide at least three significant advantages over a conventional overlay. Recycling can conserve energy, materials, and retain the original grade.

At the time of this report, seven projects have been completed in Oklahoma. Approximately 50 miles (80 km) of four lane Interstate highways; namely I-40 and I-35, have been hot recycled. These projects are located in Caddo, Love, Custer, Sequoyah, Payne/Noble, and Beckham Counties.

The project described herein was the second hot recycling job conducted by ODOT. The project was a contract job and done by Brooks and McConnell Construction Corporation. The first project was on I-40 near Weatherford in Custer County and this project was finished in July, 1980.

ODOT Engineers estimate the savings for 50 miles (80 km) of four lane highway to be about \$1,250,000. Efforts are currently being made to make greater use of hot asphalt recycling.

Purpose

The purpose of this project is to evaluate the feasibility and benefits of utilizing asphalt pavement hot recycling in Oklahoma.

The work began on the hot recycling project in April, 1980, and lasted through June, 1980. The project was in two sections located on I-40 in Caddo County. The first section began 1.5 miles (2.4 km) east of the Caddo-Custer County line and extended east six miles (9.6 km). The other began at the US 281 junction and extended east 2.5 miles (4.0 km) ending at the Canadian County line.

The project involved cold-milling the top one inch (25 mm) of roadwa . A non-woven polypropylene fabric, Petromat, was then placed on the cold-milled surface. This material was then overlaid with one and one-half inches (38 mm) of hot recycled mixture containing recycled asphalt concrete, virgin aggregate, and asphalt cement.

A specification relating to the feasibility of hot recycling will be developed and evaluated. (See Appendix A.)

Site Description

Caddo County has a warm continental climate. Winters are mostly moderate and sunny. Temperature ranges from 25° to $45^{\circ}F$ (-4° to 7°C) in the winter, and $75^{\circ}to$ 95°F (24° to 35°C) in the summer. The lowest recorded temperature since 1936 was -17°F (-27°C) and the highest was 117°F (47°C).

Summers generally are long and hot. The driest month is August. The average annual rainfall is about 32 inches (813 mm) and snowfall is 7.5 inches (91 mm) annually. The maximum frost penetration is about 20 inches (508 mm). The average number of annual freeze-thaw cycles in this area is 40. The average freeze-thaw season for northwest Caddo County lasts 210 days.

About 80 percent of the soils on the project site include the Pond Creek and the Minco soil series with slopes of 0 to 5 percent. The remaining 20 percent are Minco or Lucien soil series with slopes of 0 to 30 percent.

Scope

The Pond Creek soil consists of deep, nearly level, or very gently sloping soils on uplands. It is well drained and has moderately slow permeability. The Pond Creek is rated poor to fair as road fill, good for subgrade material, and has low shrink-swell potential.

The Minco soil consists of deep, gently sloping to steep soils on uplands. The Minco soils are well drained and moderately permeable. The Minco soil is rated good for topsoil, good to fair for road fill, and has low shrink-swell potential.

The Lucien soil consists of fine sandy loam developed from sandstone. Lucien is rated good for topsoil, fair as road fill, and has low shrink-swell potential. All three soils, Pond Creek, Minco, and Lucien, are classed as A-4 in the AASHTO Soil Classification System.

PRELIMINARY INVESTIGATION

Description of Pre-Existing Pavement

The roadway section evaluated is located on eastbound and westbound I-40 near the city of Hydro (see Figure 1). Each section includes two lanes, 24 feet (7.3 m) wide, with a 10 foot (3.0 m) outside shoulder and 4 foot (1.2 m) inside shoulder. The road was built in 1961. The design included 8 inches (203) mm) of stabilized aggregate base course; 8 inches (203 mm) of fine aggregate bituminous base; 3 inches (76 mm) of (AC) Type A; and a top layer of 1.5 inches (38 mm) of AC Type C (see Fi ure 2).(2)

Traffic

The average daily traffic (ADT) count was 13,000 vehicles in 1980. The projected ADT for the year 2000 is 29,000 vehicles. The equivalent truck factor (T) is 20 percent.

Crack Survey

The pre-construction crack observations were made approximately two weeks before rehabilitation.

The outside lanes were extensively cracked, east and westbound. The crack types were transverse, longitudinal, random (large block), and alligator. A condition rating for a 2.8 mile (4.5 km) extent of the westbound lane appears in Appendix B.

Figure 1.

1. Location of Existing Roadway

į.

POST-CONSTRUCTION EVALUATION

The post-construction evaluation was conducted approximately one month after the completion of the project.

Rut Depth Measurement

Rut depth measurements were conducted on July 23, 1980 at 0.25 mile (0.4 km) intervals throughout the project (See Appendix B). The rut depth readings ranged from 0.0 inches to 0.3 inches (0.0 mm to 7.6 mm).

Benkelman Beam Deflection

Benkelman beam deflection measurements were made at 0.25 mile (0.40 km) intervals throughout the project (see Appendix B). The beam deflections ranged from 0.003 inches to 0.025 inches (0.07 mm to 0.6 mm).

Crack Survey

A visual inspection was made approximately one month after the road had been opened to traffic. There were no visible cracks on the road at that time.

FIRST YEAR EVALUATION

Rut Depth Measurement

• Rut depth measurements were conducted on October 29, 1981, at 0.25 mile (0.4 km) intervals throughout the project (see Appendix B). The rut depths ranged from 0.0 inches to 0.4 inches (0.0 mm to 10 mm).

Benkelman Beam Measurement

Benkelman Beam tests were made on October 29, 1981, at 0.25 mile (0.4 km) intervals throughout the project. The Benkelman Beam deflection measurements ranged from 0.006 to 0.025 inch (0.15 to 0.63 mm).

Crack Survey

A crack survey was made on August 19, 1981. There were no cracks observed on the six mile section. The 2.5 mile (4 km) section had only transverse cracks. About 80 percent of the transverse cracks were full width, crossing the road from the edge of the outside shoulder to the edge of the inside shoulder. The transverse crack widths range from light to medium, 1/8 to 3/8 inch (3 to 9 mm). However, the road was in excellent condition. The eastbound lane had a total of 64 transverse cracks and the westbound lane had a total of 107 transverse cracks.

COST ANALYSIS

Economics

In theory, utilizing the old pavement at the project site as a source of material should prove economically feasible. However, the method of recovering the old material generates a significant cost. This cost must be somewhat less than the cost of virgin material in order for the recycling process to be feasible.

The cost analysis for Oklahoma's second hot recycling project is listed below. The total amount of bituminous material used was 30,905 tons, including 14,732 tons of recycled material. See Table 2.

DESIGN AND CONSTRUCTION

Design

The asphalt design mixture for Oklahoma's Type C asphalt concrete (2) used on the project is given in Appendix B. The aggregate consisted of 50 percent crushed limestone, 30 percent limestone screenings, and 20 percent coarse sand. The AC content was 4.8 percent by weight of total mixture. The old asphalt materials analysis is given in Appendix B.

Construction Procedure

The work on the project began on April 30, 1980 and ended on June 3, 1980. A rotomill CMI Model 375 was used to cold mill the old road to a depth of approximately one inch (25 mm). (See Appendix C.) The cold milled material was transferred, by a conveyor belt on the rotomill, to five-axle trucks, brought to the plant site, and stockpiled. It then was screened to separate any material greater than 2 inches (51 mm).

A Boeing drum with CMI mid-point feeder modification was used to recycle the material. The material less than 2 inch (51 mm) in size was brought in half way down the drum mixer. The virgin aggregate was superheated at 450° F (232° C) in the drum and transferred to the end of the drum. There it was mixed with recycled material and then AC was added. The AC content for the mix was 4.8 percent (See Appendix B).

The tack coat (120-150 penetration) was applied to the cold milled surface at the rate of 0.25 gal/yd^2 (1.13 l/m^2). It was used to bind Petromat.

An average 1 and 1/2 inch (38 mm) overlay was laid using a blend of 48 percent reclaimed pavement and 52 percent virgin material. The asphalt cement temperature was 320° F (160°C). The laydown temperature of the hot mix was

about 285[°]F (141[°]C). The hot mix material was placed on the road using standard laydown equipment. Compaction was done with a steel wheeled Bomag vibratory roller and a standard pneumatic roller.

Table 1

COSTS FOR CONVENTIONAL OVERLAY

Quantity(Tons)	• <u>Material</u>	Cost/Ton(\$)	<u>Total(\$)</u>
29,421 1,483	Virgin Aggregate Asphalt Cement	18.75 150	551,644 222,450
Total cost, co	onventional mixture:		774, 094
Cost per ton,	conventional mixture		25.05

COSTS FOR RECYCLED OVERLAY

Quantity(Tons)	Material	Cost/Ton(\$)	<u>Total(\$)</u>
15,448	Virgin Material	18.75	289,650
724	Asphalt Cement	150	108,600
17,393	Cold Mill/Stockpiling	g 15.74	273,772
14,732	Processing Recycled	1	
	Material	13.75	202,565
Subtotal			874,587

VALUE OF RECYCLED MATERIAL

Quantity(Tons)	Material	Cost/Ton(\$)	Total(\$)
14,010 722	Cold Mill. Aggregate Cold Mill. Asp. Cmt.	18.75 150	262,688 108,300
Subtotal			370,988
Total Cost:	\$874,587- \$370,988 =		503,599
Cost per ton,	, recycled overlay:		16.30
Savings			
Savings per t	on by recycling (\$):		8.75
Savings per s	q. yd., per inch (\$):		0.47
<u>Or</u>			

35 percent savings.

Conservation

The amount of materials used in the recycling project and the estimated amount of materials required for an equivalent conventional method are listed in Table 2.

Table 2

QUANTITY COMPARISONS

Quantities Used on Recycled Project

Recycled materia	ปร	14,732	tons
Virgin aggregate		15,448	tons
Asphalt cement 4	.8% (avg)	724	tons

Quantities Required for Conventional Method

Virgin aggreg	ate	29,421 tons
Asphalt ceme	nt at 4.8% (avg)	1,483 tons

Quantities Saved by Recycling

Virgin aggregate	13,973	tons
Asphalt cement	759	tons
inopilare comente		como

ENERGY CONSUMPTION

The energy consumption calculations were made similarly to those in the Asphalt Institute's "Energy Requirements for Roadway Pavements."(1) All fuels are converted to BTU's (British Thermal Units) and then to equivalent gallons of gasoline.

When comparing the results in Table 3 and 4, the energy equivalent of 0.54 gallons (2.04 1) more of gasoline per ton was required to produce asphalt concrete by the conventional method. Therefore, there was a saving of energy equivalent to 0.54 gallon (2.04 1) per ton. Since the project utilized 14,732 tons of recycled material, 7,995 gallons (30.113 1) of gasoline were saved.

Table 3

Energy to Produce One Ton of Recycled Asphalt

Remove, screen, and stockpile recycled material. 1. 0.15 gal.gas/t x 152,000* BTU/gal. x 0.480 t = 10,944 BTU = 0.09 gal.gas 2. Crushing of virgin aggregate. 42,500* BTU/t x 0.497 t = 21,123 BTU = 0.17 gal.gas. 3. Hauling of virgin aggregate. 1,960* BTU/t - mi x 72 mi x 0.497 t = 70,137 BTU = 0.56 gal.gas. 4. Burner fuel. 28,000* BTU/t@1% moist. + 470* BTU/F/t x $250^{\circ} F(0.977 t)$ = 142,153 BTU = 1.14 gal.gas. Process and delivery of liquid asphalt. 5. [587,500* BTU/t + (1,960* BTU/t - mi x 21 mi x 2)](0.023 t)= 15,406 BTU = 0.12 gal.gas. 6. Haul of old pavement. = 24,461 BTU = 0.20 gal.gas.1,960* BTU/t mi x 13 mi x 2 x 0.48 t Total to produce 1 ton of recycled asphalt concrete = 2.23 gal.gas. *Estimate from Reference (1)

Diesel Fuel #5	152,000	BTU/g	gal
Gasoline	125,000	BTU/g	gal

1 BTU = 1,055 J 1 gal = 3.78 l 1 ton (English unit) = 0.45 ton (metric unit) 1 mi = 1.6 km

Table 4

Energy to Produce One Ton of Conventional Asphalt Concrete

1.	Crushing of virgin aggregate. 42,500 BTU/t x 0.952 t	= 40,460 BTU	=0.32 gal.gas.
2.	Hauling of virgin aggregate. 1,960 BTU/t mi x 72 mi x 0.952 t	= 134,346 BTU	= 1.07 gal.gas.
3.	Burner fuel. [28,000 BTU/t@1% moist. + (470 BTU/F/t x 250°F)]x 0.952 t	= 139,860 BTU	= 1.12 gal.gas.
4.	Process and delivery of liquid asphalt. [587,500 BTU/t + (1,960 BTU/t mi x 21 mi x 2)] x 0.048 t	= 32,151 BTU	= 0.26 gal.gas.
	Total to produce one ton of conventional asphalt	concrete	= 2.77 gal.gas.

CONCLUSIONS AND RECOMMENDATIONS

While the durability performance is yet to be determined, the first year evaluation of the recycled asphalt project shows that it is comparable to conventional asphalt concrete in strength and stability.

The 8.5 mile (13.6 km) recycled overlay project cost about \$270,495 less than an equivalent conventional overlay. The savings per yd^2 (0.84 m²) per inch (25.4 mm) was \$0.47.

The energy saving was 0.54 gallon (2.04 l) gasoline per ton of recycled material. Also, 13,973 tons of virgin aggregates and 759 tons of asphalt cement were saved in an 8.5 mile (13.6 km) extent of recycled interstate highway maintenance overlay.

The use of reclaimed AC pavement in new AC pavement is feasible. It is recommended that blending reclaimed pavement and virgin material can be used if proper mix designs and construction quality controls are provided.

REFERENCES

1. "Energy Requirements for Roadway Pavements" (MISC-75-3), the Asphalt Institute, College Park, Maryland, April, 1975.

2. Oklahoma Department of Transportation Specifications, 1976.

APPENDIX A SPECIFICATIONS

Th Se

> Sa So

Sei pli Bi Mi: Sa So Asi mei

shi

be wi usı ti(

Vii

Rec

Rec prc Bit

Pla the

whi inc

OKLAHOMA DEPARTMENT OF TRANSPORTATION SPECIAL PROVISIONS FOR RECYCLED PLANT MIX ASPHALT CONCRETE PAVEMENT (TYPE C MIXTURE)

These Special Provisions revise, amend and where in conflict, supersede applicable Sections of Standard Specifications for Highway Construction, Edition of 1976.

411.01. DESCRIPTION. (Add the following). This work shall consist of Recycling Salvaged Bituminous Pavement Materials combined with Virgin Aggregates, Asphalt and/or Softening Agents as specified or directed by the Engineer.

411.02. MATERIALS. (Add the following). Materials shall meet the requirements of Section 708, except as herein specified. Salvaged materials stockpiled at the mixing plant site in accordance with Special Provision 416 (Cold Milling and Stockpiling Existing Bituminous Pavement) shall be utilized in the production of the specified Plant Mixed Bituminous Pavement Mixture. The recycling process shall consist of reprocessing Salvaged Bituminous Pavement Materials combined with Virgin Aggregates, Asphalt and/or Softening Agents as required (Estimated 40% Virgin Aggregate and two (2) percent new Asphalt Cement of total mix) to produce a blend of materials meeting the requirements of Subsection 708.04 Type C mixture.

Any Softening or Rejuvenating Agent required to restore the Salvaged Asphalt Material shall be submitted for tests and approval by the Materials Engineer prior to use.

411.03. EQUIPMENT. (a) General. (Add the following). The plant as specified shall be modified to process Reclaimed Materials. Plant modifications shall be in accordance with the manufacturers recommendations or as approved by the Engineer. The Mixing Plant used shall be designed, equipped and operated in such a manner that the heating and proportioning will yield a uniform blended mix.

The plant shall be provided means of independent calibration and measurement of Virgin Aggregates, Reclaimed Bituminous Mixture, Asphalt and/or Softening Agents.

411.05. METHOD OF MEASUREMENT. (Amend as follows). (a) Virgin Aggregate and Reclaimed Bituminous Mixture will be measured seperately by the ton.

(b) (Revise the second sentence to read) Measurement of Virgin Aggregate, Asphalt, and Reclaimed Bituminous Mixture shall be determined by weighing the composite mixture as provided in Section 109.01(a). The weight of Virgin Aggregate, Asphalt, and Reclaimed Bituminous Mixture will be based on proportions established by the job-mix formula.

Softening or Rejuvenating Agents will not be measured for payment.

411.06. BASIS OF PAYMENT. (Add the following). Accepted quantities for Recycled Plant Mix Asphalt Concrete Pavement, measured as provided above, will be paid for at the contract unit price for:

	(A)) Sp. VIRGIN AGGREGATE TON
	(B)) Sp. ASPHALT TON
. ((D)) Sp. PROCESSING RECLAIMED BITUMINOUS MIXTURE TON

which shall be full compensation for furnishing all materials, equipment, labor and incidentals to complete the work as specified.

OKLAHOMA DEPARTMENT OF TRANSPORTATION SPECIAL PROVISIONS FOR COLD MILLING AND STOCKPILING EXISTING BITUMINOUS PAVEMENT

These Special Provisions revise, amend, and where in conflict, supersede applicable Sections of Standard Specifications for Highway Construction, Edition of 1976.

416.01. DESCRIPTION. This work shall consist of cold milling and removing the existing bituminous pavement surface to a depth shown on the plans below the present finished grade, removing ridges, ruts and other imperfections and stockpiling the resulting material at the site of the central mixing plant or at locations shown on the plans or determined by the engineer. The milling work shall furnish a plane surface providing traffic a smooth riding surface. The surface aggregate shall be sheared and textured by the milling machine in a manner approved by the Engineer.

416.03. EQUIPMENT. The contractor shall provide a power operated milling machine capable of planing a depth of one and one-half inches in a single pass. The equipment shall be self-propelled with sufficient power, traction and stability to maintain accurate depth of cut and slope. The equipment shall be capable of accurately and automatically establishing profile grades along each edge of the machine by referencing from the existing pavement by means of a ski or matching shoe or from an independent grade control and shall have an automatic system for controlling cross slope at a given rate. The machine shall be equipped with an integral loading means to remove the material being cut from the surface of the roadway and discharge the cuttings into a truck, all in one operation.

416.04. CONSTRUCTION METHODS. The existing pavement shall be uniformly milled providing a uniform texture, true to line, grade and cross section, it shall have no deviations in excess of 3/16 inch (4.8 mm) in ten feet. Any portion of the planed surface not meeting this requirement shall be corrected in a manner approved by the Engineer.

The machine shall make as many passes as necessary to remove irregularities and to profile the surface to the depth and cross slope shown on the plans.

The cold milling shall be done in a manner that will not create undue traffic hazards with one traffic lane open at all times.

The milling operation shall be performed in each lane in such a manner that the milled lanes will be evened up as near as practical at the end of each days operation so as to eliminate the hazard of an exposed vertical edge when traffic is carried through construction.

It is expected that this method of removal will provide salvaged material such that 100% of the material sizes will have at least one dimension of 2 inches (50 mm) or less. Hauling and stockpiling of the salvaged material will be done in accordance with Section 106.07.

All aggregate removed and stockpiled and not used in the recycled bituminous mix shall become the property of the contractor and shall be disposed of by him in accordance with Section 104.06 unless otherwise specified on the plans.

416.05. METHOD OF MEASUREMENT. Cold milling will be measured by the square yard of surface area. Hauling and stockpiling operations will not be measured as a separate item.

416.06. BASIS OF PAYMENT. Accepted quantities of cold milling, measured as provided above, will be paid for at the contract unit price for:

COLD MILLING SQ. YD. Which shall be full compensation for furnishing all materials, equipment, labor and incidentals to complete the work as specified. APPENDIX B TEST RESULTS

CONDITION PATING FOR FLEXIBLE PAVEMENTS

DATE: May 7, 1980

LOCATION: 1-40 Westbound

LENGTH:_____

MILES SURVEYED BY: Jack Stewart

Condition Rating 1 2 3 4 5 6	I <u>Crackin</u> 1 2 3 4 4	3	II Surfa Roughne 1 2 3 4 4	.ce :ss	Di	III stortion	IV <u>Ravelling</u> 1 2 3 4	V Base Failure 1 2-3 4	1 = 2 = 3 = 4 =	less than 5% 5% to 15% 15% to 30% more than 30%
Mileage	Condition				• •• <i>•</i> •••	Condition	Beam		Rut	S. F.

Location	Rating	I	II	III	IV	v	20 Rating	Deflection	S.W.L.	Depth	Patching
0.0		Ĺ						Immediately	over bo	K	•
0.2	6	4	4	4	1	4		Rt. lane is	extensi	vely cra	cked
0.4	5	2	2	3	1	2					
0.6	5	4	4	2	1	3				•	
0.8	5	4	4	2	1	3					
1.0	5	4	· 3	2	1	2					
1.2	5	4	3	2	1	2					
1.4	5	3	3	2	1	3					
1.6	6	3	3	2	1	4 -					
1.8	6	4	3	2	1	4		Rt. Lane ext Lt. Lane sam	ensively e	cracked	
2.0	5	4	3	2	1	3					
2.2	5	4	3	2	1	3					
2.4	6	4	3	2	1	4					
2.6	6	4	4	3	1	3		Rt. Lane is	by far t	né worse	
2.8	5	4	3	3	1	3					
			and the second sec	the second se	A CONTRACTOR OF A CONTRACTOR O		the second se		and the second s	and a second a second sec	

B-1

Rut Depth Measurements Seven Months after Construction

Caddo Co. (6 mile long project) IR-40-4(288)090

in.

1. Milemarker 90	A. 0.0 in all wheelpaths
(west end of project)	

2.	Station 4885+15	Α.	Rt. wheelpath-Rt. Lane	0.3
		Β.	Lt. wheelpath-Rt. Lane	0.0
		C.	Rt. wheelpath-Lt. Lane	0.1
		D.	Lt. wheelpath-Lt. Lane	0.1
3.	Milemarker 93	Α.	Rt. wheelpath-Rt. Lane	0.0
		Β.	Lt. wheelpath-Rt. Lane	0.1
		с.	Rt. wheelpath-Lt. Lane	-0.1
		D.	Lt. wheelpath-Lt. Lane	0.0
4.	1/4 mile W of the E	Α.	Rt. wheelpath-Rt. Lane	0.0
	end of project	в.	Lt. wheelpath-Rt. Lane	-0.1
	(Approx. 1/4 mile E	c.	Rt. wheelpath-Lt. Lane	-0.1
	of Bethel Rd.)	D.	Lt. wheelpath-Lt. Lane	0.0

Caddo Co. (2.5 mile long project) IR-40-4(293)102

1. M	ilemarker 102	Α.	Rt. wheelpath-Rt. Lane	0.1
		В.	Lt. wheelpath-Rt. Lane	0.05
		C.	Rt. wheelpath-Lt. Lane	-0.1
		D.	Lt. wheelpath-Lt. Lane	-0.05
2. M	ilemarker 104	А.	Rt. wheelpath-Rt. Lane	0.0
	(1/4 mile W of the E	Β.	Lt. wheelpath-Rt. Lane	-0.1
	end at Canadian	C.	Rt. wheelpath-Lt. Lane	-0.1
	County line)	D.	Lt. wheelpath-Lt. Lane	0.0

		/			49		3013-39 1130-39	9366 9366 ·
D H-FORM 352-63	•	/	•	STATE OF OKLA	НОМА		3050-39	9366
Calculations Checked By	T		PART	MENT OF	HIGHWAYS	5 Repor	3050-39 t No3050-39	9367 9368
Proof Perd By	でして	Ν	ATERIALS	S AND RESEARC	CH DEPARTMENT		3050-39 1 130 -39	9369 9369
Proof Read Dy_	~		ASPHAI	TIC MIXTU	RES DESIGN	C. S.	No-013-	
Project NoI	R-40-4(288)	090 03045	(04)	County	Caddo	Hwy_I-	40 Divisio	on5
Contractor_Bro	ooks & McCo	nnell Con	st.Cor	Specification 1	Item 708	_ Type_C	Design I	No. 3013-39366
MA	TERIAL	iertora			SOURCE			% USED
Old Asph. M	Mixture	M	cConne ⁻	lls Plant s	ite at Weath	erford		52%
New Asph. Mixture (95% New Agg. + 5.0% New AC)								48%
3/8" Chips The Dolese Co. at Cooperton								50%
Screenings	S		II I	1 II			and the second	
Sand		<u> </u>	ec. 23	, 113N, R1/	W, Custer Co).		20%
Laboratory No. Percent Passing	39369 old asph	39366 chips		39367 Screenings	39368 Sand	Combined Aggregate	l Job Formula	Required Spec's.
3/4"					100	- 100	100	100
1/2" -	100	100			97	100	100	95-100
3/8" No 4	99 82	93 20		100	96	97 70	93	80-100
No. 10	57	4		61	90 81	47	-47	40-55
No. 40	35	2		24	44	26	- 26	18-33
No. 80	23	2		16	26	17	18	10-22
% Asnh (12.1 Tement	1.3		11.3	13.3	9.4	8	4-10
Asph. Con	itent 4.9						4.0	4.4-7.5
Sand Four	valent						63	A5 Min
Los Angel	les Abrasion	, % Wear	(500 R	Rev.)			26.3	40 Max.
Durabilit	y, Dc Facto	r					78	40 Min.
BUIK LIDPT	regnated Spe	citic Gra	vity				2.695	
		TE	STS ON	I COMPRESS	ED MIXTURE	s 	. . <i></i>	
Percent S Asphalt	pecific Gravity Specimen	Max. I Specific (heo. Gravity	V.M.A. (%	(%)	(%)	of Max. Theo.	Value
4.4	2.378	2.51]	15.6	66.0	5.3	94.7	56
5.4	2.388	2.49	2	15.7	73.9 81.6	2.9	95.9 97 . 1	54 47
Recommen Compacte Abson ol	ded 2.4% As d Wt. 112 1 d mix n ion 38 6	ph. Cemer bs/sq.yd. ew mix	t (180 /1" th	-200 Pen.) ickness		cc:M	aterials	
Ductilit	y 25]	50+				1	-W.J. Heerwa	ld
						Ĵ	-Diy. 5	Connoll
MEETS	SPECIFICAT	ION REQUI	REMENT	S		1- 1- L	-Brooks & MC iaison	conne l I
	1 00 00						D Tolford	DE
Transmitted	4-22-80		19		.	U.	v. ienora,	<u></u>

B-3

Materials Engineer

from

BENKELMAN BEAM TESTS

D	T	v	T	C	T	n	M	5
L	+	×.	*	ູ	*	u	11	J

COUNTY CADDO

TEST DATE September 23, 1980

DESCRIPTION: I-40 Westbound lanes from US 281 East 2.5 miles

Rut Depth** (inches)	Mileage Extents (miles)	Beam Deflection (inches)	Load Supporting Ability (lbs.)	Required Overlay for 15,000 lbs wheel load (inches)
**	2.50	0.000		0
**	2.25	0.011	*	čeni se
**	2.00	0.002	*	õ
**	1.75	0.017	19915	Ō
**	1.50	0.007	*	ō
**	1.25	0.014	*	Õ
**	1.00	0.015	*	Ō
**	0.75	0.011		ō
**	0.50	0.021	15504	0
**	0.25	0.013		õ
**	0.00	0.019	17456	õ

*Wheel load greater than 20,000 lbs. **Not available

from

BENKELMAN BEAM TESTS

	•			~	٠	1		-		
Ŧ	11	v	-1	5		11	N	•		
-		. 8	*	ັ	Ψ.	U	11	J		

COUNTY CADDO

TEST DATE September 23, 1980

DESCRIPTION: I-40 Eastbound lanes from US 281 East 2.5 miles

Rut Depth** (inches)	Mileage Extents (miles)	Beam Deflection (inches)	Load Supporting Ability (lbs.)	Required Overlay for 15,000 lbs wheel load (inches)		
**	0.00	0.000	*	Ο		
**	0.25	0.015	*	õ		
**	0.50	0.005	*	Õ		
**	0.75	0.016	*	0		
**	1.00	0.010		Ő		
**	1.25	0.016	*	ñ		
**	1.50	0.008		ň		
**	1.75	0.012	*	õ		
**	2.00	0.016	****	Ŏ		
**	2.25	0.015	*	0		
**	2.50	0.018	*	0		

B-5

*Wheel load greater than 20,000 lbs. **Not available.

AC OVERLAY PROGRAM from BENKELMAN BEAM TESTS

DIVISION 5

COUNTY CADDO

TEST DATE September 23, 1980

DESCRIPTION: I-40 Westbound lanes from Hydro extending East 6.0 miles

Rut Depth** (inches)	Mileage Extents (miles)	Beam Deflection (inches)	Load Supporting Ability (lbs.)	Required Overlay for 15,000 lbs wheel load (inches)
**	5 75	0 001	*	0
**	5.50	0.020	16427	$\widetilde{0}$
**	5.25	0.015	*	õ
**	5.00	0.015	*	$\tilde{0}$
**	4.75	0.020	16427	ŏ
**	4.50	0.016	*	Ō
**	4.25	0.012	*	0
**	4.00	0.020	16427	0
**	3.75	0.018	18611	0
**	3.50	0.001	*	0
**	3.25	0.006	*	0
**	3.00	0.004	*	0
**	2.75	0.023	13919	1.2
**	2.50	0.022	14672	0
**	2.25	0.015	*	0
**	2.00	0.010	*	0
**	1.75	0.018	18611	0
**	1.50	0.012	*	0
**	1.25	0.013	*	0
**	1.00	0.011	*	0
**	0.75	0.015	*	0
**	0.50	0.007	*	0
**	0.25	0.015	*	0

~ ~

* Wheel load greater than 20,000 lbs. ** Not available.

from

BENKELMAN BEAM TESTS

			1.00
D T L	ITCT	ΔM	- E -
111 1	1171	1 1 1 1	<u> </u>
U 1 1			

COUNTY CADDO

TEST DATE September 23, 1980

DESCRIPTION: I40 Eastbound lanes from Hydro extending East 6.0 miles

Rut Depth** (inches)	Mileage Extents (miles)	Beam Deflection (inches)	Load Supporting Ability (lbs.)	Required Overlay for 15,000 lbs wheel load (inches)
**	0.0	0.0	159	0
**	0.25	0.008	*	0
**	0.50	0.016	*	0
**	0.75	0.021	15504	0
**	1.00	0.015	*	0
**	1.25	0.007	*	0
**	1.50	0.018	18611	0
**	1.75	0.018	18611	0
**	2.00	0.016	*	0
**	2.25	0.023	13919	1.2
**	2.50	0.017	19915	0
**	2.75	0.015	*	0
**	3.00	0.018	18611	0
**	3.25	0.020	16427	0
**	3.50	0.015		0
**	3.75	0.022	14672	0
**	4.00	0.013	*	0
**	4.25	0.014	*	0
**	4.50	0.023	13919	1.2
**	4.75	0.006	*	0
**	5.00	0.015	*	0
**	5.25	0.018	18611	0
**	5.50	0.014	*	0
**	5.75	0.015	*	0
**	6.00	0.028	11025	4.4

* Wheel load greater than 20,000 lbs. ** Not available.

٠.

from

BENKELMAN BEAM TESTS

DIVISION D	D	I	V	I	S	Ī	0	N	5
------------	---	---	---	---	---	---	---	---	---

COUNTY CADDO

TEST DATE October 29, 1981

DESCRIPTION: I-40 West bound lanes from US 281 extending East 2.5 miles

Rut Depth (inches)	Mileage Extents (miles)	Beam Deflection (inches)	Load Supporting Ability (lbs.)	Required Overlay for 15,000 lbs wheel load (inches)
0.0	2.50	0.011	*	0
0.1	2.25	0.011	*	0
0.2	2.00	0.009	*	0
0.2	1.75	0.008	*	0
0.3	1.50	0.008	*	0
0.3	1.25	0.009	*	0
0.3	1.00	0.011	*	0
0.2	0.75	0.008	*	0
0.0	0.50	0.009	*	0
0.3	0.25	0.009	*	0.
0.2	0.0	0.010	*	0

* Wheel load greater than 20,000 lbs.

from

BENKELMAN BEAM TESTS

 	-	 -
 111		
 		 -
		 •

COUNTY CADDO

TEST DATE October 29, 1981

DESCRIPTION: I-40 East bound lanes from US 281 extending East 2.5 miles

Rut Depth (inches)	Mileage Extents (miles)	Beam Deflection (inches)	Load Supporting Ability (lbs.)	Required Overlay for 15,000 lbs wheel load (inches)
0.0	0.0	0.012	*	0
0.2	0.25	0.011	*	0
0.2	0.50	0.010	*	0
0.0	0.75	0.009	*	0
0.1	1.00	0.008	*	0
0.2	1.25	0.009	*	0
0.1	1.50	0.007	*	0
0.1	1.75	0.007	*	0
0.0	2.00	0.008	*	0
0.0	2.25	0.009	*	0
0.0	2.50	0.011	*	0

B-9

* Wheel load greater than 20,000 lbs.

from

BENKELMAN BEAM TESTS

DIVISION 5

COUNTY CADDO

TEST DATE Ocotber 29, 1981

DESCRIPTION: I-40 Westbound lanes from Hydro extending East 6.0 miles

Rut Depth (inches)	Mileage Extents (miles)	Beam Deflection (inches)	Load Supporting Ability (lbs.)	Required Overlay for 15,000 lbs wheel load (inches)
0.2	6.00	0.014	*	0
0.1	5.75	0.011	*	0
0.2	5.50	0.020	16427	0
0.1	5.25	0.015	*	0
0.2	5.00	0.021	15504	0
0.1	4.75	0.008	*	0
0.0	4.50	0.025	12610	2.7
0.2	4.25	0.020	16427	0
0.1	4.00	0.020	16427	0
0.1	3.75	0.021	15504	0
0.1	3.50	0.015	*	Õ
0.1	3.25	0.006	*	0
0.1	3.00	0.017	19915	0
0.0	2.75	0.024	13235	2.0
0.2	2.50	0.008	****	0
0.0	2.25	0.015	*	0 . The second secon
0.1	2.00	0.012	*	0
0.0	1.75	0.014	*	0
0.2	1.50	0.011	*	0
0.1	1.25	0.015	*	0
0.2	1.00	0.010	*	$\overset{0}{2}$
0.1	0.75	0.014		$\mathbf{\hat{o}}$
0.1	0.50	0.014	*	0
0.4	0.25	0.015	*	\mathbf{O}
0.1	0.0	0.016	*	0

* Wheel load greater than 20,000 lbs.

from

BENKELMAN BEAM TESTS

DIVI	SION	5	C
		-	

OUNTY CADDO

TEST DATE October 29, 1981

DESCRIPTION: I-40 Eastbound lanes from Hydro East extending 6.0 miles

Mileage Extents (miles)	Beam Deflection (inches)	Load Supporting Ability (lbs.)	Required Overlay for 15,000 lbs wheel load (inches)
0.0	0.018	18611	0
0.25	0.010	*	0
0.50	0.015	*	0
0.75	0.012	*	0
1.00	0.008		0
1.25	0.016	*	0
1.50	0.016	*	0
1.75	0.012	*	Q
2.00	0.007	`	Ü
2.25		10611	U
2.50	0.010	10011	U
3 00	0.012	18611	
3.00	0.010	*	· · · · · · · · · · · · · · · · · · ·
3.50	0.011	18611	Õ
3.75	0.012	*	ŏ
4.00	0.014	*	Õ
4.25	0.016	*	õ
4.50	0.022	14672	0
4.75	0.012	*	0
5.00	0.012	*	0
5.25	0.016	*	0
5.50	0.018	18611	0
5.75	0.016	*	0
6.00	0.024	13235	2.0
	Mileage Extents (miles) 0.0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00	Mileage Extents (miles)Beam Deflection (inches) 0.0 0.018 0.25 0.010 0.50 0.015 0.75 0.012 1.00 0.008 1.25 0.016 1.50 0.016 1.75 0.012 2.00 0.007 2.25 0.011 2.50 0.018 3.75 0.012 3.00 0.018 3.75 0.012 4.00 0.014 4.25 0.016 4.50 0.022 4.75 0.012 5.00 0.012 5.00 0.018 5.75 0.016 5.50 0.018 5.75 0.016 5.00 0.012 5.75 0.016 5.00 0.018 5.75 0.016 6.00 0.024	Mileage Extents $(miles)$ Beam Deflection $(inches)$ Load Supporting Ability $(lbs.)$ 0.00.018 $(lbs.)$ 18611 $(lbs.)$ 0.250.010 $(lbs.)$ *0.500.015 $(lbs.)$ *0.750.012 $(lbs.)$ *1.000.008 $(lbs.)$ *1.250.016 $(lbs.)$ *1.250.016 $(lbs.)$ *2.250.011 $(lbs.)$ *2.250.011 $(lbs.)$ *2.250.011 $(lbs.)$ *3.000.018 $(lbs.)$ 18611 $(lbs.)$ 3.500.018 $(lbs.)$ 18611 $(lbs.)$ 3.750.012 $(lbs.)$ *4.000.014 $(lbs.)$ *4.500.022 $(lbs.)$ 14672 $(lbs.)$ 4.500.022 $(lbs.)$ 14672 $(lbs.)$ 4.500.022 $(lbs.)$ 14672 $(lbs.)$ 5.500.018 $(lbs.)$ 18611 $(lbs.)$ 5.750.016 $(lbs.)$ *5.000.018 $(lbs.)$ 18611 $(lbs.)$ 5.750.016 $(lbs.)$ *5.000.024 $(lbs.)$ 13235

*Wheel load greater than 20,000 lbs.

APPENDIX C PHOTOGRAPHS

Figure 1. The old pavement was cold milled approximately one inch deep. The material was then transported to the plant site.

Figure 2. Typical recyclable material after cold milling. It was a nominal 2 inch size.

Figure 3. The rotomill used to cold mill the surface left a uniform texture.

Figure 4. Recyclable material stockpiled in the foreground. Three stockpiles of virgin aggregate are in the background.

Figure 5. The recycling plant was an old boeing drum with a C.M.I. modification. This allowed the recycled material to be introduced mid-way down the drum - away from the flame.

Figure 6. Petromat was placed on the cold-milled surface prior to the overlay. It would carry traffic for approximately ten days.

Figure 7 and 8. The recycled overlay was placed in a conventional manner. No special equipment was required.