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Abstract 

Social networks and the use of technology allow communities to be connected, creating 

opportunities for individuals to spread information and influence others. This 

communication is critical when disruptions, such as natural disasters, occur. Finding 

these influencers, and subsequently maximizing their spread of influence in the network, 

is key for mitigating the effects of these disasters and restoring communities as quickly as 

possible. The proposed model seeks to first maximize the spread of influence through the 

network and then to minimize the vulnerability of the network after the disruption occurs. 

Maximization of influence involves a mixed integer formulation while minimizing 

vulnerability requires a bi-level function based on maximizing these influence scores 

before and after a disruption. The model incorporates social vulnerability scores to ensure 

the most susceptible members of the community are reached when needed. The network 

is subjected to disruptions by removing influencers of the community, affecting the most 

vulnerable members of the population, and creating spatial disruptions to disconnect the 

network. The model may be used to locate influencers and can be used by decision-

makers to determine areas that need more assistance to be resistant to disasters. The 

model is tested on a sample graph with 16 nodes and applied to a Twitter network to find 

the influencers before and after a disruption. 

ix 
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Chapter 1.0 Introduction and Motivation 

Natural disasters, attacks, and other emergency situations necessitate the need for 

resilience, minimizing the extent of the disruption and recovering losses as quickly as 

possible. This concept of resilience has been studied and applied to numerous contexts, 

including its relationship to community structures (Cutter et al., 2008; Cutter et al., 2014; 

Ramirez-Marquez et al., 2018). Additionally, government agencies, such as the National 

Academics of Science, have shown interest in investing to strengthen resilience (2012). 

Likewise, the National Institute of Standards and Technology enables communities to be 

resilient—to “prepare for anticipated hazards, adapt to changing conditions, and 

withstand and recover rapidly from disruptions” (2015).  

At the center of these communities, individuals communicate and influence each 

other. Influence can be described as an actor’s ability to shape the intentions, thinking, 

feelings, and behavior of other people (Hamill et al., 2007). This type of communication 

is especially important during disruptions when influencers within the network can 

spread information useful in minimizing the vulnerability of the community and helpful 

to its recovery after the disaster. The spread of information using technology has been 

useful in mitigating the effects of several disasters, such as the Haitian relief effort (Zook 

et al., 2010; Gao et al., 2011), Hurricane Irene (Dailey and Starbird, 2014), and the 

Boston Marathon Bombing (Bagrow et al., 2018).  

 This research seeks to minimize the vulnerability of a social network by choosing 

influencers that reach the most susceptible members of the community. The network is 

subjected to different types of disruptions—removing the most influential, disrupting the 

more vulnerable nodes, and upsetting communities based on various spatial sizes. By 
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obtaining the change in influence scores before and after the disruption, the network’s 

vulnerability can be assessed. Likewise, establishing these influencers in the network can 

be useful for mitigating the effect of these disruptions. 

 The rest of this thesis is outlined as follows: Chapter 2 details the background and 

supporting literature for measuring and optimizing influence and community structures. 

Chapter 3 gives the methodological background for applying the linear threshold model, 

calculating social vulnerability scores, and applying a particle swarm algorithm for the 

bi-level optimization problem. In Chapter 4, a model is proposed to measure the spread of 

influence and the particle swarm algorithm is developed to solve for minimizing 

vulnerability. Chapter 5 provides illustrating examples of a small, random sample 

network and is then applied to a community in a larger Twitter network. Concluding 

remarks are found in Chapter 6. 
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Chapter 2.0 Literature Review 

This next section details methods for measuring and optimizing influence, as well as 

demonstrating how influence has been applied in community structures. Analyses and 

applications of research performed on Twitter networks are also included. 

2.1 Measuring Influence 

Influence in a network can be understood in several different ways, including graph 

topological measures, dynamics-based measures, and approximation models for finding 

multiple influencers. Graph topological measures include degree, k-core, and eigenvector 

centrality, while dynamics-based measures comprise closeness, betweenness, Katz 

centrality, and PageRank (Pei et al., 2018). Some applications have proposed variations 

on these methods including LeaderRank (Lu et al., 2016) and employing the Google 

reduced matrix from PageRank (Zant et al., 2018). Models to find multiple influencers 

track the growth of influence through the network.  

The spread of influence through a network can be exhibited through the linear 

threshold and independent cascade models. In each case, edges between nodes are 

assigned a propagation probability. A node’s influence in the linear threshold model 

depends on all of the neighbors of the node. If the sum of the arcs connected to active 

nodes is above a certain threshold, the node is considered active. Conversely, the 

independent cascade model passes influence from one active node to another, depending 

on a single probability between the two nodes (Kempe et al., 2003). These approaches 

were further applied to marketing applications using stochastic propagation models to 

reflect the power-law in the size of the cascade to determine how the number of 

recommendations increases in a time period (Leskovec, Adamic, et al., 2007). In another 
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approach, optimal percolation, nodes are defined with a probability that a node is not 

activated given that another node is removed. The giant component represents a fraction 

of the inactive nodes and is minimized in order to maximize spreading (Morone and 

Makse, 2015). Additionally, Dodds (2018) employs a Susceptible-Infectious-Recovered 

(SIR) model, defining a gain ratio as a measure of the expected newly infected edges 

from a single infected edge connected to an uninfected edge. Because networks are 

typically large and complex, algorithms are required to find influencers in a reasonable 

amount of time.  

2.2 Algorithms to Find Influencers 

Various algorithms have been used to measure the spread of influence through the 

network. Greedy hill-climbing, used by Kempe et al. (2003), was found to choose 

influencers more effectively than by random chance or by using graph measures, such as 

high degree and centrality. A cost-effective lazy forward selection algorithm (CELF) 

seeks to first calculate marginal improvements and then selects nodes based on 

decreasing order of improvement. If the top marginal improvement is invalid, it is 

recomputed and placed back in the order. The top element will exhibit minimal change, 

and therefore it can be recomputed without all marginal improvements needing to be 

recalculated (Leskovek, Krause, et al., 2007). Adaptations (Chen et al., 2009) and 

improvements (Goyal et al., 2011) on this model also are found to be effective.  

Other approaches include iteratively building a hypergraph of the nodes that 

would influence a randomly chosen node (Borgs et al., 2014), finding the minimum 

fraction of nodes to fragment the network using a non-backtracking matrix (Morone and 



 5 

Makse, 2015), and a collective influence algorithm measuring influence through a 

breadth-first search on a directed diffusion graph (Pei et al., 2018; Teng et al., 2016). 

When communities are incorporated into the analysis, k-medoids created a large 

scope of influence because it considered the local and global topological structure of the 

network (Zhang et al., 2013). This relationship between influence and communities has 

been further explored to understand how the structure of communities impacts the spread 

of information. 

2.3 Influence and Community Structures 

Communities can help explain how information is passed to neighbors in a network.  

Leskovec, Adamic, et al. (2007) identified communities to understand how 

recommendations flowed through similar interests in a network. One approach by He et 

al. (2015) first builds communities based around “super” nodes with high modularity. 

The node with the highest degree is selected as the spreader. Then, spreader nodes from 

other communities that are not connected to the first super node are chosen as 

influencers. This method performed better than choosing nodes by high degree in 

different networks. To understand the virality of content, communities are formed around 

early adopters, defining adopter entropy and the spread of these users across their 

community (Hui et al., 2018). Wei et al. (2018) identified influential nodes based on 

overlapping communities and network structure. They developed a ranking method based 

on the propagation capacity (number of communities a node belongs to) and the 

propagation speed (based on the network constraint coefficient of structural holes) to 

locate influential nodes. These types of community structures can be beneficial when 

analyzing the connectivity of Twitter networks. 
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2.4 Influence in Twitter Networks 

Research also has been conducted in understanding influence in Twitter networks. Kwak 

et al. (2010) ranked influential users by their number of followers, PageRank, and 

number of retweets, finding that the number of retweets produces different rankings than 

the other two measures. This illustrates the fast diffusion of information. Virality in 

Twitter networks is often very small as popularity is influenced most by the size of the 

largest broadcast of information; a larger broadcast causes more spreading (Goel et al., 

2015). Additionally, weak ties between Twitter communities can still be as effective as 

strong ties in generating larger amounts of traffic (Weng et al., 2018).  

Real scenarios have been analyzed to understand the spread of information in 

these contexts. Bagrow et al., (2018) examined Twitter data from the Boston Marathon 

Bombing. The data showed that the population within three kilometers of the blast site 

and within five hours after the explosion are mentioned more quickly than their direct 

tweeting—this is likely due to news media sources. Also, a stronger second spike in 

activity after the bombing was related to the arrest report of an individual witnessed by 

the initial population, showing that once engaged, the Twitter population was ready to 

forward information (this had stronger virality although the length of activity was 

shorter). Another application from Ferrara (2018) analyzed the role of Twitter bots in the 

2016 presidential election. Twitter bots typically have a high frequency of retweets and a 

high connectivity, creating confusion in distinguishing bots from humans. These 

characteristics of Twitter networks are helpful in understanding the nature of how 

influence spreads. 
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Chapter 3.0 Methodological Background 

This section provides background to how influence is measured through the linear 

threshold model, the relevance of social vulnerability measures, and employing the 

particle swarm optimization model to solve the bi-level optimization problem. 

3.1 Linear Threshold Model 

To model the spread of influence through the network, this analysis will use the linear 

threshold model. As stated earlier, this algorithm depends on the status of all the 

neighboring nodes to determine if a node is active. Specifically, a weight, ,  is 

assigned between nodes  and  to represent the probability that influence is passed. The 

sum of these arcs into node  must be less than or equal to one, . 

Every node then chooses a threshold, , randomly from the uniform distribution between 

[0,1]. This threshold signifies the number of active nodes required to influence . The 

model runs iteratively, as nodes activated in the previous time period remain active for 

the rest of the simulation. Nodes are activated as their sum of the edges of their 

neighboring active nodes surpasses the threshold limit, . 

The number of active nodes at the end of the cascade represents the influence score 

(Kempe et al., 2003).  

Because this problem is NP-complete, it must be approximated for large network 

sizes. This is proven by considering a parallel case of the Vertex Cover problem. The 

complete proof, as well as the proof for submodularity that allows for a good 

approximation using greedy techniques, is shown in Kempe et al. (2003).  

bv,w

v w

v ∑w n eig h bo r o f v bv,w ≤1

θv

v

∑w active n eig h bo r o f v bv,w ≥θv
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3.2 Social Vulnerability Scores 

During a disruption, it is important for the most vulnerable members of a community to 

be reached and assisted. To ensure this occurs, the optimization model can be 

incentivized to reach these members of the community. Communities can be assessed for 

their level of social vulnerability to environmental and other types of disruptions based 

on their social status. Cutter et al. (2003) have developed much of this work into 

assigning social vulnerability scores to United States’ counties based on social and place 

inequalities. This, of course, includes socioeconomic status as communities with more 

wealth and larger safety nets are able to recover quicker when disasters occur. It also can 

include factors such as race and ethnicity, age, housing and transportation status, and 

education (see Cutter et al. (2003) for a comprehensive list). The Centers for Disease 

Control and Prevention (CDC) manages a similar Social Vulnerability Index. The index 

ranks each county based on 15 variables similar to Cutter et al. (2003) and groups these 

variables into four main categories—socioeconomic status, household composition and 

disability, minority status and language, and housing and transportation (Flanagan et al., 

2011).  

The data based on the 2016 census will be used for this analysis (Centers for 

Disease Control, 2016). Social vulnerability scores will be used to prioritize influence to 

reach the most vulnerable members of the community by including vulnerability in the 

objective function. 

3.3 Particle Swarm Optimization 

Because networks are typically large in size, the optimization model can be difficult to 

implement. Therefore, approximation models become useful in finding good solutions in 
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a reasonable amount of time. This analysis will apply a particle swarm optimization to 

solve for influencers in the network. The particle swarm optimization model was 

developed by Kennedy and Eberhart (1995) to solve multi-dimensional nonlinear 

problems. It stems from research in social sciences, following the patterns of a flock of 

birds or a school of fish. After initializing a swarm of particles, these particles are then 

allowed to search the solution space, taking information from each particle’s best solution 

and the best global solution. In each iteration, the particles are updated with these 

cognitive and social factors to converge on the optimal solution. The particle swarm 

model has these roots in genetic algorithms and evolutionary programming (Kennedy & 

Eberhart, 1995). 

 In the formulation of this problem, each node is stored as a binary variable, 

indicating whether it is active or not. Active nodes are chosen randomly and evaluated by 

the linear threshold model. Then, based on the evaluation scores, the particles will update 

and move towards the optimal solution. The particles will update for a certain number of 

generations and will ideally converge during this time. 

3.4 Particle Swarm Optimization in the Bi-Level Problem 

In order to minimize the vulnerability of influence after a disruption, a bi-level 

programming problem is required. In these problem sets, the objective function and the 

constraints for the upper and lower levels are expressed as follows: 

 

minx∈X F(x , y)
subject to G (x , y) ≤ 0

maxy∈Y f (x , y)
subject to g (x , y) ≤ 0
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The variables,  and  correspond to the decision variables for the leader and follower, 

while  and  relate to their objective functions, respectively (Gao et al., 

2011). The leader function will try to minimize the vulnerability, dependent upon 

maximizing influence before or after the disruption—the follower function. 

 Influencers before the disruption are chosen using the linear threshold model. 

Then, these influencers are removed from the network, and the influencers after the 

disruption are found. The difference in their influence scores corresponds to the 

vulnerability measure. Because minimizing vulnerability depends on first maximizing 

influence before and after the disruption, a bi-level formulation is necessary. Particle 

swarm optimization is effective in solving these types of problems (Parsopoulos et al., 

2002; Gao et al., 2011; Kennedy & Eberhart, 1997; Kuo & Han 2011; Li et al., 2006; 

Sinha et al., 2018; Kuo & Huang et al., 2009). The formulation for the problem is shown 

in the following section. 

  

x y

F(x , y) f (x , y)
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Chapter 4.0 Proposed Model 

In this section, a model is proposed to measure influence based on the social vulnerability 

scores of those influenced.  

4.1 Single-Level Formulation 

Individuals in the network are represented as a set of nodes, , with an index of 

influencers, , and an index of those influenced, , such that . 

Links exist between individuals, where . A propagation probability, , exists 

on each of these links. If the sum of the active propagation probabilities of the links 

leading into a node is above a threshold limit, the node is considered active. This problem 

is modeled like a linear threshold model combined with a set cover problem (Kempe et 

al., 2003). 

 Variables include the list of starting influencers, , and the list of ending nodes 

influenced, 𝑠". Because the starting influencers should also count as influenced 

individuals, 𝑥" will be the total number influenced, or the max of  and 𝑠". 

 Parameters include the propagation probability of edges, 𝑝%" , the social 

vulnerability associated with each node, , and a large number, , to create the 

maximum bounds for total influenced, 𝑥". 

        (1) 

 Constraints set a node as active based on the threshold limit, limit the number of 

starting influencers, and find the ending number of influenced nodes. The first constraint 

sums the propagation probability, 𝑝%" , on the arcs leading to each node. This depends on 

the status of the outgoing node, . The variable, 𝑢", holds the summation. 

N

i ∈ NI j ∈ NJ NI ∪ NJ = N

(i, j ) ∈ L pij

yi

yi

υj M

Maximize σ = ∑
j∈NJ

xj ⋅ υj

yi
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        (2) 

 The next set of constraints use a threshold, , to determine if the person is 

influenced, where 𝑠" is a binary variable to determine if the node is active. Because the 

formulation is trying to maximize 𝑠", only equation (3) is needed to provide the lower 

bound of 0 if the node does not meet the threshold. 

        (3) 

 The third constraint limits the number of starting influencers to . 

         (4) 

 The next set of constraints finds the total number of influenced nodes. 

       (5) 

       (6) 

       (7) 

       (8) 

       (9) 

 Other binary constraints are shown below. 

         (10) 

         (11) 

4.2 Bi-Level Particle Swarm Algorithm 

The bi-level problem seeks to maximize the influence of the graph before a disruption, 

, and afterward, . This change in influence should be minimized in order to reduce the 

uj = ∑
j∈NJ

pij ⋅ yi ∀(i, j ) ∈ L

θj

θjsj ≤ u j ∀j ∈ NJ

c

∑
i∈NI

yi ≤ c ∀i ∈ NI

xj ≥ sj ∀j ∈ NJ

xj ≥ yj ∀j ∈ NJ

xj ≤ sj ⋅ Mbj ∀j ∈ NJ

xj ≤ yj + M(1 − bj) ∀j ∈ NJ

bj ∈ {0,1} ∀j ∈ NJ

yi ∈ {0,1} ∀i ∈ NI

sj ∈ {0,1} ∀j ∈ NJ

σ0

σ1
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vulnerability of the network. A particle swarm optimization method, as shown in Gao et 

al. (2011), will be used. The formulation is shown below.  

   (12) 

The constraints are the same as the single level formulation. Maximizing  will 

seek to maximize . The bi-level particle swarm algorithm, adapted from Gao et al. 

(2011), is shown in Table 1 on the next page. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

minx∈X σ0 − σ1
subject to G (x , y) ≤ 0

maxy∈Y σ1
subject to g(x , y) ≤ 0

σ1

σ0
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Table 1: Particle Swarm Bi-Level Algorithm 

Algorithm 1: A PSO based algorithm for minimizing network vulnerability 

Step 1: Initialize swarm of particles, , for number of nodes on starting graph,  

  Randomly set positions, , for starting influencers to 1 and others to 0 

  Assign velocities, , to all particles between  

  Evaluate using linear threshold model 

Step 2: Initialize counter for leader’s loop,  

Step 3: For the k-th particle, get response from follower: 

       Step 3.1: Remove arcs connected to influencer nodes, creating graph,  

       Step 3.2: Initialize counter for follower’s loop,  

       Step 3.3: Initialize ( , ) and evaluate particles on graph  using linear threshold   
model, finding particle best, , and global best,  

       Step 3.4: Update positions and velocities, where  is the inertia, , is the cognitive 
factor, , is the social factor, and  is a random number: 
                   
                   

       Step 3.5: Update counter,  

       Step 3.6: Return  

Step 4: Find change in influence between graph  and graph . Record particle best, , 
and global best, . 

Step 5: Update positions and velocities, where  is the inertia,  is the cognitive factor, 
 is the social factor, and  is a random number: 

                   
                   

Step 6: Update counter,  

Step 7: Return  

[end] 
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Chapter 5.0 Illustrative Examples 

Two examples were created to test the algorithm. The first features 16 nodes and shows 

how the flow of influence can spread through the network. The second models a Twitter 

community and shows how information disseminates in a large, highly connected 

network. 

5.1 Sample Network 

To test the formulation, a random network with 16 nodes was created, as shown in Figure 

1. The size of the node corresponds to the social vulnerability, where larger nodes are 

more vulnerable. Some of the most vulnerable nodes include nodes 1, 2, 8, 14, and 15. 

The model will try to reach these nodes as much as possible. Threshold limits on each 

node constrain its ability to receive influence. Nodes with high threshold limits, such as 

1, 4, 7, 12, and 13, have greater difficulty activating. The social vulnerability and 

threshold values were randomly sampled. The edge thickness corresponds to the 

propagation probability. Two nodes (15% of the size of the network) were chosen to be 

influencers.  
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Figure 1: Sample network 

 
Because this network is small, it can be run to find the optimal solution. To 

compare the performance of the algorithm with the optimal solution, only one iteration 

will be run. The optimal result chooses nodes 0 and 14 as influencers and results in a 

score of 4.217. This result is compared with the results of the particle swarm algorithm in 

Figure 2. First, the swarm size was varied while the number of generations was kept 

constant at 100. A swarm size of 50 was required to reach the optimal solution. Then, the 

swarm size was kept constant at 100 while the number of generations varied. This always 

produced the optimal result. 
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Figure 2: PSO parameter selection 

 
However, when multiple iterations are allowed, and influence continues to pass, 

nodes 0 and 7 are chosen as influencers to produce a score of 4.781. This result, same as 

the before-disruption outcome, is shown in Figure 3 below. Influencers are shown in 

green and influenced in yellow. After removing the edges leading from the two 

influencers and rerunning the model, the score drops to 3.689, with nodes 4 and 5 chosen 

as influencers. The most vulnerable nodes are still reached as much as possible, even 

after the disaster.  

 

Figure 3: Influence results 
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5.2 Twitter Network 

The Twitter network was created from Stanford’s network dataset collection (Leskovek 

and Krevl, 2014). The network consists of 216 nodes and 3,507 edges. Most of the nodes 

are located within California or nearby states. The location of the user is based on either 

the geolocation of their last tweet or the location provided in the user’s profile. This 

provides location data for 191 nodes.  

5.2.1 Topological Measures 

The average degree of the network is 16.236 and consists of 45 strongly connected 

components. This, along with a network diameter of six and an average path length of 

2.433, illustrates the scale of large connectivity of the network. Figure 4 illustrates the 

connectivity of the network. The dense area near the center represents users in and near 

San Luis Obispo, California. 

 

Figure 4: Twitter network connectivity 
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Because of this connectivity, influence should spread through these highly 

connected areas easily, as redundancy provides multiple opportunities for a node to be 

reached. The degree distribution is shown in Figure 5 below, where the scale-free 

distribution becomes evident. The power law-scaling demonstrates a node’s ability to 

increase its connectivity at a much higher rate as its connections grow. Therefore, nodes 

in highly connected areas have a much greater distance in connectivity to those with a 

smaller degree (Barabasi & Albert, 1999).  

 

Figure 5: Degree distribution 

 
Figure 6 shows the location of the Twitter users within the network. The highest 

density of users is located within the San Luis Obispo region along the coast of California 

(59 users). Figure 6 also shows the social vulnerability scores by county, where darker 

colors represent higher scores. Most users along the coast have a lower vulnerability, and 

vulnerability increases in further inland regions. This seems intuitive as users that live 

along the coast have a higher income and perhaps better opportunities, preparedness, and 

support during disruptions. 
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Figure 6: Twitter locations 

 
5.2.2 Parameter Selection 

Before running the model, parameters must be chosen for the number of influencers and, 

if using a constant threshold, the level to set for each node. For the particle swarm 

algorithm in the following examples, the swarm size is set to 100 and the number of 

generations to 10.  Figure 7 below shows how influence changes as the percent of 

influencers increases. This follows a fairly consistent linear relationship that as the 

percent of influencers increases, the level of influence also increases. For the following 

plots and analysis, the percent of influencers will be set to 10%. 
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Figure 7: Altering number of influencers 

 
The linear threshold model calls for each node to have its own random threshold 

value. However, it can be interesting to see how changing this threshold value affects the 

influence score. Figure 8 shows this change below. A significant drop occurs around 0.3, 

where at this point, it becomes difficult for the propagation probabilities to exceed the 

threshold limits. Nodes with thresholds above this limit are less likely to be reached. 

 

Figure 8: Altering threshold limits 
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5.2.3 Results 

Several different methods exist to disrupt the network—based on influencers, 

vulnerability, and spatial locations. These different types of disruptions can vary the 

influence score in the network. Running the single-level particle swarm optimization 

before a disruption produces a score of 29.787. Each of the following plots illustrates the 

influence score after the disruption takes place. The first disruption type removes the 

more vulnerable nodes from the network. Figure 9 displays the resulting influence scores 

when a percentage of these nodes are removed. Removing nodes will, of course, lower 

the influence in the network. However, influence does not seem to drop quickly. One 

reason for this may stem from the high connectivity of San Luis Obispo and its low 

vulnerability. The nodes in the inland areas are removed but the influence along the coast 

remains. 

 

Figure 9: Disruption 1 - Affecting vulnerability 

 
Additionally, disruptions can occur spatially. Three different areas were chosen 

for disruption, and the nodes in these areas were removed from the network. Figure 10 

below shows each of the three boxes. The first centers around San Luis Obispo and the 
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last extends to Los Angeles. Each of the three boxes disrupts 76, 119, and 131 nodes, 

respectively.  

 

Figure 10: Spatial disruption map 

 
Because of the densely packed users in these areas, the influence scores drop 

significantly after the first disruption. This region is highly susceptible to disruption and 

can severely impact influence in the rest of the network. Figure 11 shows the resulting 

scores. 
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Figure 11: Disruption 2 - Affecting area 

 
The last type of disruption explores removing the first set of influencers to disrupt 

the network. This problem requires the bi-level formulation as the result after the 

disruption depends on the influence from before the disruption. Because of the size of 

this problem, the algorithm only may return a solution that is close to optimal. Figure 12 

represents the vulnerability of each of the four runs, resulting in an average score of 

7.614. The maximum of each line holds the before-disruption score and falls to the after-

disruption score. Run 4, while having a high influence score, also has the largest 

vulnerability. Run 2 illustrates the opposite case, where each run has a low influence 

score, but the vulnerability is minimized. A compromise between these, run 1, was 

chosen for the heat map analysis. 
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Figure 12: Disruption 3 - Affecting influencers 

 
As Figure 13 shows, certain nodes were chosen as repeat influencers in all four of 

the runs. These are nodes 70 and 77 (while 13, 17, 68, and 127 occur three times) in the 

left plot. Node 43 in the right plot occurs three times. Because these nodes appear 

multiple times as influencers, they are likely important to spreading influence throughout 

the network. 

 

Figure 13: Repeat influencers 

 
Figure 14 illustrates the spread of influence throughout the region. The results 

before the disruption are shown on the left, while the results afterward are on the right. 

Each point represents a user in the network, while the heat map demonstrates those users 
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that are influenced. As the map shows, users in the San Luis Obispo remain the most 

influenced, while users in the other regions of California become less affected. Once 

again, the tight connectivity of San Luis Obispo is shown to help maintain influence in 

the community.  

    

Figure 14: Heatmap of influencers 

  
As the results have indicated, the spread of influence can be modeled to choose 

influencers that maximize this range and minimize the vulnerability. The high 

connectivity of San Luis Obispo made it a key target for the algorithm because it could 

easily activate a large number of nodes. As Figure 14 above shows, nodes in more 

vulnerable regions are still a target to reach before the disruption, but this becomes less 

significant after the disruption. These nodes could be further prioritized by applying a 

scaling factor to further separate the more vulnerable nodes and incentivize the algorithm 

to activate these nodes. 

5.2.4 A Note on Complexity 

In the sample problem with 16 nodes, the particle swarm algorithm was easily able to 

solve and find the optimal solution in the solution space with 100 particles. However, as 
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the problem grows to include 216 nodes and 3,507 edges, it becomes much more difficult 

to find the optimal solution. Using 100 particles and 10 generations produce variable 

results and, while finding a good answer, may not find the best. Increasing the swarm size 

and number of generations, however, produces a much more time-intensive problem. The 

bi-level algorithm grows exponentially dependent on the product of the swarm size and 

number of generations. When 1,000 particles and 50 generations are used in the single-

level particle swarm optimization (neglecting minimization of vulnerability), higher 

influence scores can be obtained. For example, a before-disruption score of 33.638 can be 

found (although this produces an after-disruption score of 24.370—not much higher than 

before). This is also a higher vulnerability score than previously obtained. Increasing 

these parameters in the bi-level problem may produce higher influence scores and 

reduced vulnerability; however, it comes at the cost of time. 
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Chapter 6.0 Conclusions 
 
6.1 Summary 

As technology continues to make society more connected, these tools can be utilized to 

spread information efficiently and quickly when needed. Natural disasters and other 

disruptions can severely impact society and leave people without the resources they need. 

By taking advantage of the technology in place, the extent of these disasters can 

hopefully be minimized as citizens know updates as they occur, receive information on 

evacuation areas, and find places to receive assistance. Identifying these influencers can 

lead to improved communication between members of the community and assist in 

spreading critical information when needed. 

This thesis proposes a model that incorporates social vulnerability scores into 

influence and optimization models. Additionally, an algorithm for solving the bi-level 

problem to minimize vulnerability is proposed and tested on a Twitter network. As nodes 

are more connected, information is able to reach them easier and makes them more 

resistant to disruption. 

6.2 Future Work 

This work can be improved and expanded by analyzing a larger Twitter network that 

includes multiple communities and measures how influence travels within and among 

these communities. Additionally, increased knowledge into the vulnerability of smaller 

regions within the community can help identify the more vulnerable population in these 

areas. For example, susceptible populations in San Luis Obispo could be discovered and 

prioritized for influence in this highly connected area. Likewise, individuals that are 
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currently influencing these vulnerable populations could be disrupted to see how this 

affects influence through the network.  

 This model also depends on a deterministic state where the structure of the 

network, the propagation probabilities, and the threshold limits are known. Incorporating 

uncertainty into these parameters more accurately reflects real scenarios and can be 

generalized for several networks. Similarly, the threshold could be included in the 

objective function to determine an optimal limit that allows influence to pass through 

neighbors. Finding ways to incentivize the threshold also can be beneficial to lowering it 

and activating more users in the community. 

 Further research could also extend to maximizing recovery of the system after the 

disruption, using the time to recover and amount recovered as indicators. Incorporating 

this with vulnerability leads to improving the resilience of these communities to 

disruption.  
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Appendix A: AMPL Code – Model File 
 
reset; 
option solver cplex; 
option randseed 19; 
 
# Groups of people, influencers, and connections between them 
set PEOPLE;  
set INFLUENCERS;       
set ARCS within {INFLUENCERS, PEOPLE};     
       
# Parameters 
#param prop {ARCS} := Uniform01(); # Assign propagation probability to the arcs 
param prop{ARCS};   # Assign propagation probability to the arcs 
param t{PEOPLE};   # Threshold for each person 
param M := 1000;    # For finding maximum 
param sv{PEOPLE};   # Social vulnerability for each person 
 
# Variables 
var y{INFLUENCERS} binary;  # Starting influencers 
var s{PEOPLE} binary;  # Ending influenced people 
var u{PEOPLE};   # Hold summation of arcs 
 
var x{PEOPLE};    # Used to find maximum between start and end 
var b{PEOPLE} binary;  # Used to find maximum 
 
 
# Optimize spread: Influenced node * social vulnerability score 
maximize spread: sum{j in PEOPLE} x[j] * sv[j]; 
 
# Find sum of arcs of active nodes 
subject to active {j in PEOPLE}: u[j] = sum{(i,j) in ARCS} y[i] * prop[i,j]; 
 
# Determine if node meets threshold limit 
subject to threshold {j in PEOPLE}: t[j]*s[j] <= u[j]; 
 
# Determine number of starting influencers 
subject to limit: sum {i in INFLUENCERS} y[i] <= 2; 
 
# Constraints to find the ending maximum influenced 
subject to max1 {j in PEOPLE}: x[j] >= s[j]; 
subject to max2 {j in PEOPLE}: x[j] >= y[j]; 
subject to max3 {j in PEOPLE}: x[j] <= s[j] + M*b[j]; 
subject to max4 {j in PEOPLE}: x[j] <= y[j] + M*(1-b[j]); 
 
# Read in data and solve 
data network.dat; 
solve; 
display y, x; 
 
 
 



 35 

Appendix B: AMPL Code – Data File 

 
set PEOPLE := 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15; 
set INFLUENCERS := 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15; 
 
set ARCS := (0, 1) (0, 2) (0, 3) (0, 4) (1, 5) (1, 6) (1, 8) (2, 5) (2, 6) 
      (2, 7) (3, 6) (3, 7) (4, 6) (4, 7) (4, 11) (5, 8) (5, 9) (6, 9) 
      (6, 10) (7, 10) (7, 11) (8, 12) (8, 13) (9, 12) (9, 13) (10, 13) 
      (10, 14) (11, 13) (11, 14) (12, 15) (13, 15) (14, 15); 
 
param sv :=  
0 0.6957279716157805 
1 0.9160960662545845 
2 0.8164649890317078 
3 0.028749761066347967 
4 0.028041893921005423 
5 0.7438086041530414 
6 0.28855253318726903 
7 0.25719517445052975 
8 0.8508915655407895 
9 0.650396427594281 
10 0.49948586935849015 
11 0.30653814079710606 
12 0.6409787445759747 
13 0.37651206017437044 
14 0.8145728613758114 
15 0.9453578017199536; 
 
param t :=  
0 0.4706810530434994 
1 0.6979085881001218 
2 0.23278514744401813 
3 0.17396749189309824 
4 0.9033647822607421 
5 0.5021209861281979 
6 0.5790873096413065 
7 0.6273477338307205 
8 0.2654174490273189 
9 0.21802956966098364 
10 0.38932199142757884 
11 0.026846232825811223 
12 0.6555561416786693 
13 0.8620716020188668 
14 0.0622859279293565 
15 0.05652409688228199; 
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param prop :=  
[0, 1] 0.895348163654844 
[0, 2] 0.4212214974801205 
[0, 3] 0.7958670533798993 
[0, 4] 0.7746444551066404 
[1, 5] 0.3246788210216138 
[1, 6] 0.06662423643153312 
[1, 8] 0.15668111503910137 
[2, 5] 0.07525015228085663 
[2, 6] 0.0848674226258275 
[2, 7] 0.3211691249636829 
[3, 6] 0.14562662430172618 
[3, 7] 0.057795688790242584 
[4, 6] 0.2090475007813697 
[4, 7] 0.23307272605709883 
[4, 11] 0.3665782545329316 
[5, 8] 0.2757846236180138 
[5, 9] 0.21682203466433164 
[6, 9] 0.20994751324388922 
[6, 10] 0.4599796758880993 
[7, 10] 0.0033687985167396017 
[7, 11] 0.1639780615694167 
[8, 12] 0.0545023404376328 
[8, 13] 0.20001477431154954 
[9, 12] 0.10223165955573477 
[9, 13] 0.11085158734693767 
[10, 13] 0.1264766357720927 
[10, 14] 0.04351434104468721 
[11, 13] 0.16547335532032353 
[11, 14] 0.1081189592616596 
[12, 15] 0.1269944909233354 
[13, 15] 0.10900143406071675 
[14, 15] 0.10004572201850995; 
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Appendix C: Python code to create graph 
 
import tweepy 
from tweepy import OAuthHandler 
import json 
import time 
 
import sys 
import os 
import io 
import re 
import pandas as pd 
import random 
import numpy as np 
import networkx as nx 
import matplotlib.pyplot as plt 
from random import Random 
 
""" Useful Functions """ 
# Code adapted from https://labsblog.f-secure.com/2018/02/27/how-to-
get-twitter-follower-data-using-python-and-tweepy/ 
# Patel (2018) 
 
# Save json files 
def save_json(variable, filename): 
    with io.open(filename, "w", encoding="utf-8") as f: 
        f.write(str(json.dumps(variable, indent=4, 
ensure_ascii=False))) 
 
# Load saved json files 
def load_json(filename): 
    ret = None 
    if os.path.exists(filename): 
        try: 
            with io.open(filename, "r", encoding="utf-8") as f: 
                ret = json.load(f) 
        except: 
            pass 
    return ret 
 
# Save result of functions as json files 
def try_load_or_process(filename, processor_fn, function_arg): 
    load_fn = None 
    save_fn = None 
    if filename.endswith("json"): 
        load_fn = load_json 
        save_fn = save_json 
    else: 
        load_fn = load_bin 
        save_fn = save_bin 
    if os.path.exists(filename): 
        print("Loading " + filename) 
        return load_fn(filename) 
    else: 
        ret = processor_fn(function_arg) 
        print("Saving " + filename) 
        save_fn(ret, filename) 
        return ret 
 
# Get user data and latest tweet from user id 
def get_user_objects(follower_ids): 
    batch_len = 100 
    num_batches = len(follower_ids) / 100 
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    batches = (follower_ids[i:i+batch_len] for i in range(0, 
len(follower_ids), batch_len)) 
    all_data = [] 
    for batch_count, batch in enumerate(batches): 
        sys.stdout.write("\r") 
        sys.stdout.flush() 
        sys.stdout.write("Fetching batch: " + str(batch_count) + "/" + 
str(num_batches)) 
        sys.stdout.flush() 
        try: 
            users_list = api.lookup_users(user_ids=batch) 
        except tweepy.RateLimitError: 
            print ('Rate limited. Sleeping for 15 minutes.') 
            time.sleep(15 * 60 + 15) 
            continue 
        users_json = (map(lambda t: t._json, users_list)) 
        all_data += users_json 
    return all_data 
 
# Get tweet from the tweet id 
def get_geo_objects(tweet_ids): 
    batch_len = 100 
    num_batches = len(tweet_ids) / 100 
    batches = (tweet_ids[i:i+batch_len] for i in range(0, 
len(tweet_ids), batch_len)) 
    all_data = [] 
    for batch_count, batch in enumerate(batches): 
        sys.stdout.write("\r") 
        sys.stdout.flush() 
        sys.stdout.write("Fetching batch: " + str(batch_count) + "/" + 
str(num_batches)) 
        sys.stdout.flush() 
 
        try: 
            users_list = api.statuses_lookup(batch) 
        except tweepy.RateLimitError: 
            print ('Rate limited. Sleeping for 15 minutes.') 
            time.sleep(15 * 60 + 15) 
            continue 
 
        users_json = (map(lambda t: t._json, users_list)) 
        all_data += users_json 
    return all_data 
 
# Return the geo data for each user - works with return of geo_objects 
def clean(tweet_data): 
    entry = {} 
    for tweet in tweet_data: 
        #id_str = tweet["user"]["id_str"] 
        try: 
            id_str = tweet["id_str"] 
 
            if tweet['status']['place'] is not None: 
                if tweet['status']['place']['bounding_box'] is not 
None: 
                    geo = 
tweet['status']['place']['bounding_box']['coordinates'][0][0] 
                    entry[id_str] = geo 
                else: 
                    entry[id_str] = None 
            else: 
                if tweet['location'] is not None: 
                    entry[id_str] = tweet["location"] 
                else: 



 39 

                    entry[id_str] = None 
        except KeyError: 
            print(id_str) 
    return entry 
 
# Return list of follower ids 
def get_follower_ids(target): 
    return api.followers_ids(target) 
 
# Create edges based on return of get_follower_ids 
def create_edges(users): 
    for target in users: 
        print('Pulling followers for ', target) 
        edges = [] 
        filename = "dbo/" + str(target) + "_edges.json" 
        try: 
            followers = get_follower_ids(target) 
            for f in followers: 
                edges.append([int(target), f]) 
            save_json(edges, filename) 
        except tweepy.RateLimitError: 
            print ('Rate limited. Sleeping for 15 minutes.') 
            time.sleep(15 * 60 + 15) 
            continue 
        except tweepy.TweepError: 
            pass 
 
############################################ 
 
""" Data pull """ 
 
consumer_key = "" 
consumer_secret = "" 
access_token = "" 
access_secret = "" 
 
auth = OAuthHandler(consumer_key, consumer_secret) 
auth.set_access_token(access_token, access_secret) 
 
api = tweepy.API(auth) 
 
target = "13179562" 
filename = target + "_geo.json" 
tweets  = pd.read_csv('data/13179562.edges', header=None, sep=' 
').values 
 
g = nx.DiGraph() 
g.add_edges_from(tweets) 
 
nodeList = [] 
for n in g.nodes(): 
    nodeList.append(n) 
 
geo_objects = try_load_or_process(filename, get_user_objects, nodeList) 
cleaned = clean(geo_objects) 
save_json(cleaned, '13179562_clean.json') 
 
 
############################################ 
 
# Run Google API to get longitude and latitude for string locations 
from geopy.geocoders import GoogleV3 
import geopy 
geolocator = GoogleV3(api_key = '’) 
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for k, v in cleaned.items(): 
    if isinstance(v, list) and v is not "": 
        temp = v[0] 
        v[0] = v[1] 
        v[1] = temp 
 
save_json(cleaned, '13179562_clean.json') 
# some edits 
cleaned = load_json('13179562_clean.json') 
 
coordinates = {} 
for k, v in cleaned.items(): 
    if isinstance(v, str) and v is not "": 
        try: 
            coordinates[k] = geolocator.geocode(v, timeout=3) 
        except geopy.exc.GeocoderQueryError: 
            print(k) 
            pass 
        except geopy.exc.GeocoderTimedOut: 
            print(k) 
            pass 
 
filename = target + "_coord.json" 
 
coord = {} 
for k, v in cleaned.items(): 
    if isinstance(v, str) and v is not "": 
        coord[k] = coordinates[k][1] 
    else: 
        coord[k] = cleaned[k] 
 
save_json(coord, '13179562_coord.json') 
 
 
############################################ 
 
""" ogr """ 
# Determine the social vulnerability factor of each user based on 
longitude and latitude 
# Code adapted from https://stackoverflow.com/questions/7861196/check-
if-a-geopoint-with-latitude-and-longitude-is-within-a-shapefile 
# Check if a geopoint with latitude and longitude is within a 
shapefile. (2015) 
 
import ogr 
from IPython import embed 
import sys 
 
drv = ogr.GetDriverByName('ESRI Shapefile') #We will load a shape file 
ds_in = drv.Open("SVI2016_US_COUNTY/SVI2016_US_COUNTY.shp")    #Get the 
contents of the shape file 
lyr_in = ds_in.GetLayer(0)    #Get the shape file's first layer 
 
#Put the title of the field you are interested in here 
idx_reg = lyr_in.GetLayerDefn().GetFieldIndex("RPL_THEMES") 
 
#If the latitude/longitude we're going to use is not in the projection 
#of the shapefile, then we will get erroneous results. 
#The following assumes that the latitude longitude is in WGS84 
#This is identified by the number "4326", as in "EPSG:4326" 
#We will create a transformation between this and the shapefile's 
#project, whatever it may be 
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geo_ref = lyr_in.GetSpatialRef() 
point_ref=ogr.osr.SpatialReference() 
point_ref.ImportFromEPSG(4326) 
ctran=ogr.osr.CoordinateTransformation(point_ref,geo_ref) 
 
def lookup_sv(d): 
    for k, v in d.items(): 
        if v is not "": 
            lat = v[0] 
            lon = v[1] 
 
            #Transform incoming longitude/latitude to the shapefile's 
projection 
            [lon,lat,z]=ctran.TransformPoint(lon,lat) 
 
            #Create a point 
            pt = ogr.Geometry(ogr.wkbPoint) 
            pt.SetPoint_2D(0, lon, lat) 
 
            #Set up a spatial filter such that the only features we see 
when we 
            #loop through "lyr_in" are those which overlap the point 
defined above 
            lyr_in.SetSpatialFilter(pt) 
 
            #Loop through the overlapped features and display the field 
of interest 
            for feat_in in lyr_in: 
                d[k].append(feat_in.GetFieldAsDouble(idx_reg)) 
    return d 
 
lookup_sv(coord) 
save_json(coord, "13179562_sv.json") 
 
 
############################################ 
# Fill in social vulnerability to nodes 
sv = load_json("13179562_sv.json") 
 
sv_val = [] 
for k, v in sv.items(): 
    if len(v) == 3: 
        sv_val.append(v[2]) 
 
sv_vals = np.array(sv_val) 
mean = sv_vals.mean() 
 
# Put in mean if no location for user 
for n in g.nodes(): 
    if str(n) not in sv: 
        g.nodes[n]['sv'] = mean 
    elif len(sv[str(n)]) < 3: 
        g.nodes[n]['sv'] = mean 
    else: 
        g.nodes[n]['sv'] = sv[str(n)][2] 
 
# Make sure it worked 
nx.get_node_attributes(g, 'sv') 
 
# Change twitter ids to integers to store in lists easier 
g = nx.convert_node_labels_to_integers(g, label_attribute='name') 
nx.get_node_attributes(g, 'name') 
 
# Assign propagation probability to nodes 
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degrees = [d for n, d in g.in_degree()] 
p = np.zeros((nodes,nodes)) 
for e in g.edges(): 
    n = e[1] 
    if degrees[n] > 0: 
        p[e[0],e[1]] = random.uniform(0,1/degrees[n]) 
    else: 
        p[e[0],e[1]] = random.random() 
 
# Make sure sum of probabilities <= 1 
psum = p.sum(axis=0) 
 
# Assign to edges 
for e in g.edges(): 
    g.edges[e]['p'] = p[e[0],e[1]] 
 
# Assign threshold to nodes 
for n in g.nodes(): 
    g.nodes[n]['t'] = random.random() 
 
# Assign coordinates to the nodes 
for n in g.nodes(): 
    x = str(name[n]) 
    if x in coord: 
        g.nodes[n]['loc'] = coord[x] 
    else: 
        g.nodes[n]['loc'] = '' 
 
# Save network 
nx.write_gpickle(g, "13179562_network.gpickle") 
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Appendix D: Python code for finding influencers 
 
import pandas as pd 
import random 
import numpy as np 
import networkx as nx 
import matplotlib.pyplot as plt 
from matplotlib import collections  as mc 
from random import Random 
import sys 
import json 
import os 
import io 
import re 
import collections 
import pylab as pl 
import folium 
from folium.plugins import HeatMap 
from shapely.geometry import Point 
from shapely.geometry.polygon import Polygon 
 
# Read in graph 
g = nx.read_gpickle('13179562_network.gpickle') 
 
# Starting parameters 
degree_sequence = sorted([d for n, d in g.degree()], reverse=True) 
med_degree = np.median(degree_sequence) 
nodes = g.number_of_nodes() 
 
seed = 5113 
myPRNG = Random(seed) 
 
# Plot histogram of degree 
plt.hist(degree_sequence) 
plt.xlabel("Degree") 
plt.ylabel("Frequency") 
plt.title("Degree distribution") 
plt.savefig('savefig/degree.jpg',dpi=1000) 
 
############################################ 
# Run the linear threshold model 
def ltm(x, graph): 
    """ 
    :param x: the solution to run the linear threshold model on 
    :param graph: the graph to test the solution on 
    :return: a list - the influenced nodes 
    """ 
    # Copy influence list 
    influenced = x[:] 
 
    # Get thresholds 
    dt = nx.get_node_attributes(graph,'t') 
    sort = collections.OrderedDict(sorted(dt.items())) 
    threshold = list(sort.values()) 
 
    level = np.zeros((nodes,nodes)) 
 
    # Find the propagation of active nodes 
    for i in range(0,len(influenced)): 
        if influenced[i] == 1: 
            for n in graph.neighbors(i): 
                level[i,n] = graph.edges[(i,n)]['p'] * influenced[i] 
 
    # Find sum into each node 
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    level_sum = level.sum(axis=0) 
 
    # If above threshold, mark as active 
    for i in range(0,len(level_sum)): 
        if level_sum[i] >= threshold[i] and influenced[i] == 0: 
            influenced[i] = 1 
 
    # If no updates made, return influenced list 
    if np.sum(influenced) == np.sum(x): 
        return influenced 
    # Otherwise run again 
    else: 
        return ltm(influenced,graph) 
 
# Evaluate the solution 
def evaluate(x, graph): 
    """ 
    :param x: the solution to be evaluated 
    :param graph: the graph to run the solution on 
    :return: the solution's score and the solution 
    """ 
    sv = nx.get_node_attributes(graph, 'sv') 
    sort = collections.OrderedDict(sorted(sv.items())) 
    sv= list(sort.values()) 
 
    # Run linear threshold model 
    sol = ltm(x, graph) 
 
    # Calculate score 
    score = 0 
    for i in range(0, len(sol)): 
        score = score + (sol[i] * sv[i]) 
 
    return score, sol 
 
 
""" Particle Swarm Optimization """ 
# Function to update the velocity 
def updateVelocity(vel,pos,pBest,gBest,inertia): 
    """ 
    Update the velocity 
    :param: vel: velocity of the particles 
    :param: pos: position of the particles 
    :param: pBest: the best position for an individual particle 
    :param: gBest: the best position of all particles 
    :param: inertia: the amount of weight the previous velocity will 
have 
    :return: a list of the particles' velocities 
    """ 
 
    cognitive = 1 
    social = 3 
    vmax = 10 
 
    cogVel = [] 
    socVel = [] 
 
    for i in range(nodes): 
        r1 = myPRNG.random() 
        r2 = myPRNG.random() 
 
        cogVel.append(cognitive * r1 * (pBest[i] - pos[i])) 
        socVel.append(social * r2 * (gBest[i] - pos[i])) 
        vel[i] = inertia * vel[i] + cogVel[i] + socVel[i] 
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        if vel[i] > vmax: 
            vel[i] = vmax 
 
        if vel[i] < -vmax: 
            vel[i] = -vmax 
 
    return vel 
 
# Function to update the position 
def updatePosition(pos,vel): 
    """ 
    Update the position 
    :param: pos: position of the particles 
    :param: vel: velocity of the particles 
    :return: a list of the particles' new positions 
    """ 
 
    update = [] 
    num = int(ni * nodes) 
    for i in range(nodes): 
        update.append(pos[i] + vel[i]) 
 
    update = np.array(update) 
    updateList = np.argsort(update)[-num:] 
 
        # Make sure update is within feasible space 
    for i in range(nodes): 
        if i in updateList: 
            pos[i] = 1 
        else: 
            pos[i] = 0 
 
    return pos 
 
def inertiaWeight(j,Generations): 
    """ 
    Find the inertia (linearly decreasing) 
    :param: j: the current iteration 
    :param: Generations: how many times the optimization will run 
    :return: float of inertia weight 
    """ 
    return j/Generations 
 
# Intialize swarm 
def initializeSwarm(nodes, swarmSize, graph): 
    """ 
    Create an ititial swarm 
    :param: nodes: the number of nodes in the problem 
    :param: swarmSize: the size of the swarm 
    :return: the position, velocity, current value, pBest, and pBestVal 
of swarm 
    """ 
    #the swarm will be represented as a list of positions, velocities, 
values, pbest, and pbest values 
 
    pos = [[] for _ in range(swarmSize)]      #position of particles -- 
will be a list of lists 
    vel = [[] for _ in range(swarmSize)]      #velocity of particles -- 
will be a list of lists 
 
    pos2 = [[] for _ in range(swarmSize)]      #position of particles -
- will be a list of lists 
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    vel2 = [[] for _ in range(swarmSize)]      #velocity of particles -
- will be a list of lists 
 
    curValue = [] #value of current position  -- will be a list of real 
values 
    pBest = []    #particles' best historical position -- will be a 
list of lists 
    pBestVal = [] #value of pbest position  -- will be a list of real 
values 
 
    #initialize the swarm randomly 
    for i in range(swarmSize): 
          s = [] 
          for j in range(0,int(ni * nodes)): 
              s.append(myPRNG.randint(0,nodes)) 
          for j in range(nodes): 
                #if np.sum(pos[i]) < int(ni * nodes): 
                if j in s: 
                    #pos[i].append(myPRNG.randint(0,1))    #assign 
random value between -500 and 500 
                    pos[i].append(1) 
                else: 
                    pos[i].append(0) 
 
                vel[i].append(myPRNG.uniform(-1,1))        #assign 
random value between -1 and 1 
 
          curValue.append(evaluate(pos[i], graph))   #evaluate the 
current position 
 
    pBest = pos[:]  # initialize pbest to the starting position 
    pBestVal = curValue[:]  # initialize pbest to the starting position 
 
    return pos, vel, curValue, pBest, pBestVal 
 
# Particle Swarm Optimization 
def PSO(nodes, swarmSize, Generations, graph): 
    """ 
    Run the Particle Swarm Optimization 
    :param: nodes: the number of nodes in the problem 
    :param: swarmSize: the size of the swarm 
    :param: Generations: the number of times to iterate through the 
optimization 
    :param: graph: the graph to run the optimization on 
    :return: the best value and its score 
    """ 
 
    # Initialize the swarm 
    pos,vel,curValue,pBest,pBestVal = initializeSwarm(nodes, swarmSize, 
graph) 
 
    # Find best 
    gBestIndex = pBestVal.index(max(pBestVal)) 
    gBest = pos[gBestIndex] 
    gBestVal = max(pBestVal) 
 
    # run the optimization 
    for j in range(Generations): 
 
        # Find pbest and gbest 
        for k in range(swarmSize): 
            curValue[k] = evaluate(pos[k], graph) 
 
            if curValue[k] > pBestVal[k]: 
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                pBest[k] = pos[k] 
                pBestVal[k] = curValue[k] 
 
            if curValue[k] > gBestVal: 
                gBest = pos[k] 
                gBestVal = curValue[k] 
 
        inertia = inertiaWeight(j,Generations) 
 
        # Update position and velocity 
        for k in range(swarmSize): 
            vel[k] = 
updateVelocity(vel[k],pos[k],pBest[k],gBest,inertia) 
            pos[k] = updatePosition(pos[k],vel[k]) 
 
    return gBest, gBestVal 
 
# Function to remove influencers 
def removeInfluencers(graph, pos): 
    """ 
    :param: graph: the graph to remove nodes from 
    :param: pos: the nodes to remove 
    :return: f: new graph 
    """ 
    f = graph.copy() 
    toRemove = [] 
    t = [] 
    for i in range(0, len(pos)): 
        if pos[i] == 1: 
            toRemove.append(i) 
            t.append(graph.nodes[i]['t']) 
 
    f.remove_nodes_from(toRemove) 
 
    for i in range(0, len(toRemove)): 
        n = toRemove[i] 
        f.add_node(n) 
        f.nodes[n]['sv'] = 0.0001 
        f.nodes[n]['t'] = t[i] 
    return f 
 
# Function to remove vulnerable nodes 
def vulnerable(graph, pct): 
    """ 
    :param: graph: the graph to remove nodes from 
    :param: pos: the nodes to remove 
    :return: f: new graph 
    """ 
    sv = nx.get_node_attributes(graph, 'sv') 
    f = graph.copy() 
    num = int(pct*nodes) 
 
    v = np.array(list(sv.values())) 
    vList = np.argsort(v)[-num:] 
 
    t = [] 
    for i in vList: 
        t.append(graph.nodes[i]['t']) 
 
    f.remove_nodes_from(vList) 
 
    for i in range(0, len(vList)): 
        n = vList[i] 
        f.add_edge(n,n) 
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        f.edges[n,n]['p'] = 0 
        f.nodes[n]['sv'] = 0.0001 
        f.nodes[n]['t'] = t[i] 
 
    return f 
 
# Function to remove nodes spatially 
def boundary(graph, corners): 
    """ 
    :param: graph: the graph to remove nodes from 
    :param: pos: the nodes to remove 
    :return: f: new graph 
    """ 
    f = graph.copy() 
 
    loc = nx.get_node_attributes(graph,'loc') 
    polygon = Polygon(corners) 
    toRemove = [] 
    t = [] 
 
    for i in range(0, len(loc)): 
        if loc[i] is not '': 
            point = Point(loc[i]) 
            if polygon.contains(point): 
                toRemove.append(i) 
                t.append(graph.nodes[i]['t']) 
 
    f.remove_nodes_from(toRemove) 
 
    for i in range(0, len(toRemove)): 
        n = toRemove[i] 
        f.add_edge(n,n) 
        f.edges[n,n]['p'] = 0 
        f.nodes[n]['sv'] = 0.0001 
        f.nodes[n]['t'] = t[i] 
 
    return f 
 
def nestedPSO(nodes, swarmSize, Generations, graph): 
    """ 
    Run the bi-level Particle Swarm Optimization 
    :param: nodes: the number of nodes in the problem 
    :param: swarmSize: the size of the swarm 
    :param: Generations: the number of times to iterate through the 
optimization 
    :param: graph: the graph to run the optimization on 
    :return: the best value and its score 
    """ 
 
    # Initialize swarm 
    pos,vel,curValue,pBest,pBestVal = initializeSwarm(nodes, swarmSize, 
graph) 
 
    # Intitialize best values 
    gBestIndex = pBestVal.index(max(pBestVal)) 
    gBest = pos[gBestIndex] 
    gBestVal = max(pBestVal) 
    gBestAfter = [] 
 
    # Loop through generations 
    for j in range(Generations): 
        sys.stdout.write("\r") 
        sys.stdout.flush() 
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        sys.stdout.write("Generation: " + str(j+1) + "/" + 
str(Generations)) 
        sys.stdout.flush() 
 
        for k in range(swarmSize): 
            # Remove influencers 
            f = removeInfluencers(graph, pos[k]) 
 
            # Run PSO on disrupted graph 
            after = PSO(f.number_of_nodes(), swarmSize, Generations, f) 
 
            # Evaluate the position 
            curValue[k] = evaluate(pos[k], graph) 
 
            # If the after value is higher than before, give it to 
before 
            if after[1][0] > curValue[k][0]: 
                pos[k] = after[0] 
                pBest[k] = pos[k] 
                pBestVal[k] = after[1] 
 
                if pBestVal[k][0] > gBestVal[0]: 
                    gBest = pBest[k] 
                    gBestVal = pBestVal[k] 
 
            # If the difference is smaller than pbest, update pbest 
            if (curValue[k][0] - after[1][0]) < pBestVal[k][0] and 
(curValue[k][0] - after[1][0]) > 0: 
                pBest[k] = pos[k] 
                pBestVal[k] = curValue[k] 
 
            # If the difference is smaller than gbest, update gbest 
            if (curValue[k][0] - after[1][0]) < gBestVal[0] and 
(curValue[k][0] - after[1][0]) > 0: 
                gBest = pos[k] 
                gBestVal = curValue[k] 
                gBestAfter = after 
 
        # Update inertia 
        inertia = inertiaWeight(j,Generations) 
 
        # Update position and velocity 
        for k in range(swarmSize): 
            vel[k] = 
updateVelocity(vel[k],pos[k],pBest[k],gBest,inertia) 
            pos[k] = updatePosition(pos[k],vel[k]) 
 
    return gBest, gBestVal, gBestAfter 
 
############################################ 
# Plot growth of problem 
x = np.array(range(1,1000)) 
y = x**2 
plt.plot(x,y) 
plt.ylabel("Complexity") 
plt.xlabel("Size") 
plt.title("Growth of Bi-Level Particle Swarm Algorithm") 
plt.savefig("savefig/complexity.jpg", dpi=1000) 
 
swarmSize = 100 
Generations = 10 
nodes = g.number_of_nodes() 
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############################################ 
 
""" Effectiveness of algorithm """ 
ni = 0.15 
ss = [10,50,100,200] 
Generations = 100 
result_ss = {} 
for swarmSize in ss: 
    result_ss[swarmSize] = PSO(g.number_of_nodes(), swarmSize, 
Generations, g)[1][0] 
 
swarmSize = 100 
gg = [10,50,100,200] 
result_gg = {} 
for Generations in gg: 
    result_gg[Generations] = PSO(g.number_of_nodes(), swarmSize, 
Generations, g)[1][0] 
 
# Save results in data frame 
ss = pd.DataFrame(list(result_ss.items()), columns=["n","Vary swarm 
size (G=100)"]) 
gg = pd.DataFrame(list(result_gg.items()), columns=["n","Vary 
generations (S=100)"]) 
gg['Optimal'] = 4.216969451 
 
# Plot results 
ax = ss.plot(0,1) 
ax2 = gg.plot(0,1,ax=ax) 
gg.plot(0,2,ax=ax2) 
plt.title("Effect of swarm size and number of generations") 
plt.ylabel("Influence") 
plt.xlabel("n") 
plt.savefig("savefig/ssgg.jpg", dpi=1000) 
 
############################################ 
""" Using the same threshold for all nodes at varying levels """ 
T = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] 
ni = 0.1 
result = {} 
for t in T: 
    result[t] = PSO(g.number_of_nodes(), swarmSize, Generations, 
g)[1][0] 
 
varyT = pd.DataFrame(list(result.items()), columns=["t", "Influence"]) 
varyT.plot(0,1) 
plt.title("Effect of changing threshold on influence") 
plt.ylabel("Influence") 
plt.xlabel("Threshold") 
plt.savefig("savefig/t.jpg", dpi=1000) 
 
############################################ 
""" Using random threshold and varying number of influencers """ 
numI = [0.01, 0.05, 0.1, 0.15, 0.2,0.25] 
result = {} 
for ni in numI: 
    result[ni] = PSO(g.number_of_nodes(), swarmSize, Generations, 
g)[1][0] 
 
varyN = pd.DataFrame(list(result.items()), columns=["n", "Influence"]) 
varyN.plot(0,1) 
plt.title("Effect of changing original number of influencers on 
influence") 
plt.ylabel("Influence") 
plt.xlabel("Number of influencers as percent of the number of nodes") 
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plt.savefig("savefig/ni.jpg", dpi=1000) 
 
############################################ 
""" Varying vulnerable node removal """ 
ni = 0.1 
result = {} 
percent = [0.01, 0.05, 0.1, 0.15, 0.2] 
for pct in percent: 
    f = vulnerable(g, pct) 
    result[pct] = PSO(f.number_of_nodes(), swarmSize, Generations, 
f)[1][0] 
 
varyPCT = pd.DataFrame(list(result.items()), columns=["Percent", 
"Influence"]) 
varyPCT.plot(0,1) 
plt.ylim(0,28) 
plt.title("Effect of removing vulnerable nodes on influence") 
plt.ylabel("Influence") 
plt.xlabel("Percent of nodes removed") 
plt.savefig("savefig/pct.jpg", dpi=1000) 
 
############################################ 
""" Varying spatial disruptions """ 
ni = 0.1 
slo = [(35.303218,-120.684299), (35.303218,-120.626450), (35.263562,-
120.626450), (35.263562,-120.684299)] #59 
 
box1 = [(35.297194,-120.745239),(35.297194,-120.460968),(35.027747,-
120.460968),(35.027747,-120.745239)] #76 
box2 = [(35.706377,-121.030884),(35.706377,-120.212402),(35.027747,-
120.212402),(35.027747,-121.030884)] #119 
box3 = [(35.706377,-121.030884),(35.706377,-117.246094),(33.422272,-
117.246094),(33.422272,-121.030884)] #131 
boxes = [box1,box2,box3] 
 
result = [] 
for corners in boxes: 
    f = boundary(g, corners) 
    #result[Polygon(corners).area] = PSO(f.number_of_nodes(), 
swarmSize, Generations, f)[1][0] 
    result.append(PSO(f.number_of_nodes(), swarmSize, Generations, 
f)[1][0]) 
 
b = ('Box 1', 'Box 2', 'Box 3') 
y_pos = np.arange(len(b)) 
plt.bar(y_pos, result, align='center') 
plt.xticks(y_pos, b) 
plt.ylabel("Influence") 
plt.title("Effect of spatial disruption size on influence") 
plt.savefig("savefig/area.jpg", dpi=1000) 
 
varyArea = pd.DataFrame(result) 
varyArea.plot(0,1) 
plt.title("Effect of spatial disruption size on influence") 
plt.ylabel("Influence") 
plt.xlabel("Area") 
plt.savefig("savefig/area.jpg", dpi=1000) 
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############################################ 
“”” Run model “”” 
swarmSize = 100 
Generations = 10 
ni = 0.1 
 
result = nestedPSO(g.number_of_nodes(), swarmSize, Generations, g) 
 
 
""" Save """ 
gBest = result[0] 
gBestVal = result[1] 
gBestAfter = result[2] 
 
def get_twitter_id(lyst): 
    a = [] 
    for i in range(0, len(lyst)): 
        if lyst[i] == 1: 
            a.append(i) 
    b = [] 
    for n in g.nodes(): 
        if n in a: 
            b.append(g.nodes[n]['name']) 
    return a,b 
 
influencers = get_twitter_id(gBest) 
before = get_twitter_id(gBestVal[1]) 
influencers_after = get_twitter_id(gBestAfter[0]) 
after = get_twitter_id(gBestAfter[1][1]) 
 
gBestVal[0] 
gBestAfter[1][0] 
 
with open('result.txt', 'w') as f: 
    for item in influencers[0]: 
        f.write("%s, " % item) 
    f.write("\n") 
    f.write("%s\n" % gBestVal[0]) 
    for item in before[0]: 
        f.write("%s, " % item) 
    f.write("\n") 
    f.write("\n") 
    for item in influencers_after[0]: 
        f.write("%s, " % item) 
    f.write("\n") 
    f.write("%s\n" % gBestAfter[1][0]) 
    for item in after[0]: 
        f.write("%s, " % item) 
 
############################################ 
“”” Plot “”” 
lines = [[(1,26.69074114285715),(1,20.57512514285715)], 
        [(2,25.766334285714294),(2,20.060527428571437)], 
        [(3,28.001036571428585),(3,20.809234285714293)], 
        [(4,29.7033342857143),(4,18.259329714285712)]] 
 
lc = mc.LineCollection(lines) 
fig, ax = pl.subplots() 
ax.add_collection(lc) 
ax.autoscale() 
ax.margins(0.1) 
plt.ylim(0,32) 
b = ('','Run 1', 'Run 2', 'Run 3', 'Run 4') 
y_pos = np.arange(len(b)) 
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plt.xticks(y_pos,b) 
plt.ylabel("Influence") 
plt.title("Bi-Level Results") 
plt.savefig("savefig/results.jpg", dpi=1000) 
 
before = 
[26.69074114285715,25.766334285714294,28.001036571428585,29.70333428571
43] 
after = 
[20.57512514285715,20.060527428571437,20.809234285714293,18.25932971428
5712] 
before = np.array(before) 
after = np.array(after) 
np.mean(before - after) 
before-after 
 
beforeNodes = [1, 16, 17, 33, 35, 48, 65, 67, 68, 70, 77, 102, 113, 
122, 130, 141, 153, 155, 163, 180, 200, 
1, 4, 10, 13, 17, 39, 53, 64, 65, 66, 70, 77, 86, 91, 109, 114, 127, 
155, 159, 174, 179, 
3, 4, 13, 14, 38, 40, 46, 54, 61, 67, 68, 70, 77, 79, 82, 91, 93, 127, 
139, 142, 186, 
10, 13, 16, 17, 20, 27, 39, 46, 66, 68, 70, 77, 81, 82, 85, 86, 90, 93, 
127, 143, 176] 
 
afterNodes = [5, 13, 43, 46, 47, 50, 52, 54, 62, 80, 84, 86, 111, 127, 
143, 148, 152, 158, 162, 183, 190, 
0, 5, 9, 27, 28, 33, 38, 40, 52, 55, 62, 68, 107, 130, 148, 161, 173, 
182, 191, 207, 215, 
8, 17, 18, 20, 22, 25, 27, 36, 43, 44, 45, 76, 101, 114, 136, 157, 167, 
169, 170, 173, 206, 
1, 8, 18, 19, 25, 36, 43, 45, 47, 65, 75, 76, 88, 102, 128, 134, 159, 
167, 171, 198, 203] 
 
plt.hist(beforeNodes,216) 
plt.title("Histogram of After-Disruption Influencers") 
plt.xlabel("Node") 
plt.ylabel("Frequency") 
plt.savefig("savefig/afternodes.jpg", dpi=1000) 
 
############################################ 
""" Complexity  """ 
swarmSize = 1000 
Generations = 50 
result = PSO(g.number_of_nodes(), swarmSize, Generations, g) 
f = removeInfluencers(g,result[0]) 
result2 = PSO(g.number_of_nodes(), swarmSize, Generations, f) 
 
result[1][0] 
result2[1][0] 
 
############################################ 
“”” Create folium map “”” 
coord = load_json('13179562_coord.json') 
 
# Read in shapefiles 
svi_county = os.path.join('SVI2016_US_COUNTY.geojson') 
scores = os.path.join('SVI2016_US_COUNTY.csv') 
scores_data = pd.read_csv(scores) 
 
# Influenced nodes 
before = [1, 15, 16, 17, 23, 33, 35, 48, 65, 67, 68, 70, 71, 72, 76, 
77, 83, 84, 99, 100, 102, 110, 112, 113, 118, 122, 130, 136, 137, 138, 
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141, 144, 151, 153, 154, 155, 163, 165, 166, 170, 174, 176, 177, 178, 
180, 182, 189, 192, 195, 200, 204, 207, 209, 211, 212, 213] 
after = [5, 8, 13, 15, 23, 43, 46, 47, 50, 52, 54, 55, 62, 71, 72, 80, 
83, 84, 86, 99, 100, 110, 111, 112, 127, 136, 138, 143, 144, 148, 152, 
154, 158, 162, 166, 175, 177, 178, 183, 190, 198, 204, 215] 
 
loc = nx.get_node_attributes(g, 'loc') 
name = nx.get_node_attributes(g, 'name') 
 
heat_data = [] 
for i in range(0,len(before)): 
    if loc[i] is not '': 
        heat_data.append(loc[i]) 
 
c = folium.Map(location=[38, -120.6], zoom_start=6) 
HeatMap(heat_data).add_to(c) 
 
for k, v in coord.items(): 
    if v is not "": 
        folium.Circle( 
            radius=100, 
            location=v, 
            popup=k, 
            color='black', 
            fill=False, 
        ).add_to(c) 
 
c.choropleth( 
    geo_data=svi_county, 
    name='choropleth', 
    data=scores_data, 
    columns=['OBJECTID', 'RPL_THEMES'], 
    key_on='feature.id', 
    fill_color='BuPu', 
    fill_opacity=0.4, 
    line_opacity=0.2, 
    legend_name='Social Vulnerability Index' 
) 
folium.LayerControl().add_to(c) 
c.save('before.html') 
 
############################################ 
""" Sample graph """ 
""" 
([1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], 
 (4.780702766311823, [1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1]), 
 ([0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 
  (3.689210867507707, [0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 
1]))) 
 """ 
# Position for sample graph 
pos = {} 
pos[0] = np.array([0,0]) 
pos[1] = np.array([-2,-1]) 
pos[2] = np.array([-1,-1]) 
pos[3] = np.array([1,-1]) 
pos[4] = np.array([2,-1]) 
pos[5] = np.array([-1,-2]) 
pos[6] = np.array([0,-2]) 
pos[7] = np.array([1,-2]) 
pos[8] = np.array([-2,-3]) 
pos[9] = np.array([-1,-3]) 
pos[10] = np.array([1,-3]) 
pos[11] = np.array([2,-3]) 
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pos[12] = np.array([-1,-4]) 
pos[13] = np.array([0,-4]) 
pos[14] = np.array([1,-4]) 
pos[15] = np.array([0,-5]) 
 
# Create sample graph 
g = nx.DiGraph() 
nodeList = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] 
g.add_nodes_from(nodeList) 
g.add_edge(0,1) 
g.add_edge(0,2) 
g.add_edge(0,3) 
g.add_edge(0,4) 
 
g.add_edge(1,5) 
g.add_edge(1,6) 
g.add_edge(1,8) 
 
g.add_edge(2,5) 
g.add_edge(2,6) 
g.add_edge(2,7) 
 
g.add_edge(3,6) 
g.add_edge(3,7) 
 
g.add_edge(4,6) 
g.add_edge(4,7) 
g.add_edge(4,11) 
 
g.add_edge(5,8) 
g.add_edge(5,9) 
 
g.add_edge(6,9) 
g.add_edge(6,10) 
 
g.add_edge(7,10) 
g.add_edge(7,11) 
 
g.add_edge(8,12) 
g.add_edge(8,13) 
 
g.add_edge(9,12) 
g.add_edge(9,13) 
 
g.add_edge(10,13) 
g.add_edge(10,14) 
 
g.add_edge(11,13) 
g.add_edge(11,14) 
 
g.add_edge(12,15) 
g.add_edge(13,15) 
g.add_edge(14,15) 
 
ni = 0.15 
swarmSize = 100 
Generations = 10 
nodes = g.number_of_nodes() 
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############################################ 
# Run bi-level problem 
result = nestedPSO(g.number_of_nodes(), swarmSize, Generations, g) 
 
# Set sizes for plotting 
sv = [] 
for n in g.nodes(): 
    sv.append((g.nodes[n]['sv']+1)**2 * 100) 
 
p = [] 
for e in g.edges(): 
    p.append((g.edges[e]['p'])) 
 
# Draw first graph 
nx.draw(g, pos=pos, with_labels=True, node_size=sv, width=p,font_size = 
8, node_color='lightblue') 
plt.savefig('savefig/plot.jpg', dpi=1000) 
 
influencers =[0,7] 
influenced =[1,2,3,11,14,15] 
 
# Set colors 
color = [] 
for n in g.nodes(): 
    if n in influencers: 
        color.append('#67d394') 
    elif n in influenced: 
        color.append('#fae86d') 
    else: 
        color.append('lightblue') 
 
nx.draw(g, pos=pos, with_labels=True, node_size=sv, width=p, font_size 
= 8, node_color=color) 
plt.savefig('savefig/before.jpg', dpi=1000) 
 
# Remove nodes for second plot 
f = g.copy() 
toRemove =[0,7] 
 
# Remove node 
f.remove_nodes_from(toRemove) 
 
# Add back without edges 
for e in toRemove: 
    f.add_node(e) 
 
# Assign the node the sv score 
f.nodes[0]['sv'] = g.nodes[0]['sv'] 
f.nodes[7]['sv'] = g.nodes[7]['sv'] 
 
# New influencers 
influencers =[4,5] 
influenced = [8,11,14,15] 
 
sv = [] 
for n in f.nodes(): 
    sv.append((f.nodes[n]['sv']+1)**2 * 100) 
 
p = [] 
for e in f.edges(): 
    p.append((f.edges[e]['p'])) 
 
# Update color 
color = [] 
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for n in f.nodes(): 
    if n in influencers: 
        color.append('#67d394') 
    elif n in influenced: 
        color.append('#fae86d') 
    else: 
        color.append('lightblue') 
 
 
nx.draw(f, pos=pos, with_labels=True, node_size=sv, font_size = 8, 
width=p, node_color=color) 
plt.savefig('savefig/after.jpg', dpi=1000) 
 


