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Abstract

The race to next generation cellular networks is on with a general consensus in

academia and industry that massive densification orchestrated by self-organizing

networks (SONs) is the cost-effective solution to the impending mobile capacity

crunch. While the research on SON commenced a decade ago and is still ongoing,

the current form (i.e., the reactive mode of operation, conflict-prone design, lim-

ited degree of freedom and lack of intelligence) hinders the current SON paradigm

from meeting the requirements of 5G. The ambitious quality of experience (QoE)

requirements and the emerging multifarious vision of 5G, along with the associated

scale of complexity and cost, demand a significantly different, if not totally new, ap-

proach to SONs in order to make 5G technically as well as financially feasible. This

dissertation addresses these limitations of state-of-the-art SONs. It first presents

a generic low-complexity optimization framework to allow for the agile, on-line,

multi-objective optimization of future mobile cellular networks (MCNs) through

only top-level policy input that prioritizes otherwise conflicting key performance

indicators (KPIs) such as capacity, QoE, and power consumption. The hybrid,

semi-analytical approach can be used for a wide range of cellular optimization sce-

narios with low complexity. The dissertation then presents two novel, user-mobility,

prediction-based, proactive self-optimization frameworks (AURORA and OPERA)

to transform mobility from a challenge into an advantage. The proposed frame-

works leverage mobility to overcome the inherent reactiveness of state-of-the-art

self-optimization schemes to meet the extremely low latency and high QoE ex-

pected from future cellular networks vis-à-vis 5G and beyond. The proactiveness

stems from the proposed frameworks’ novel capability of utilizing past hand-over

(HO) traces to determine future cell loads instead of observing changes in cell loads

passively and then reacting to them. A semi-Markov renewal process is leveraged

to build a model that can predict the cell of the next HO and the time of the

xiv



HO for the users. A low-complexity algorithm has been developed to transform

the predicted mobility attributes to a user-coordinate level resolution. The learned

knowledge base is used to predict the user distribution among cells. This predic-

tion is then used to formulate a novel (i) proactive energy saving (ES) optimization

problem (AURORA) that proactively schedules cell sleep cycles and (ii) proactive

load balancing (LB) optimization problem (OPERA). The proposed frameworks

also incorporate the effect of cell individual offset (CIO) for balancing the load

among cells, and they thus exploit an additional ultra-dense network (UDN)-specific

mechanism to ensure QoE while maximizing ES and/or LB. The frameworks also

incorporates capacity and coverage constraints and a load-aware association strat-

egy for ensuring the conflict-free operation of ES, LB, and coverage and capacity

optimization (CCO) SON functions. Although the resulting optimization problems

are combinatorial and NP-hard, proactive prediction of cell loads instead of reac-

tive measurement allows ample time for combination of heuristics such as genetic

programming and pattern search to find solutions with high ES and LB yields com-

pared to the state of the art. To address the challenge of significantly higher cell

outage rates in anticipated in 5G and beyond due to higher operational complexity

and cell density than legacy networks, the dissertation’s fourth key contribution

is a stochastic analytical model to analyze the effects of the arrival of faults on

the reliability behavior of a cellular network. Assuming exponential distributions

for failures and recovery, a reliability model is developed using the continuous-time

Markov chains (CTMC) process. Unlike previous studies on network reliability, the

proposed model is not limited to structural aspects of base stations (BSs), and it

takes into account diverse potential fault scenarios; it is also capable of predicting

the expected time of the first occurrence of the fault and the long-term reliability

behavior of the BS.

The contributions of this dissertation mark a paradigm shift from the reactive,
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semi-manual, sub-optimal SON towards a conflict-free, agile, proactive SON. By

paving the way for future MCN’s commercial and technical viability, the new SON

paradigm presented in this dissertation can act as a key enabler for next-generation

MCNs.
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CHAPTER 1

Introduction

1.1 Motivation for Paradigm Shift in Self-Organizing Networks

This century has witnessed an exponential increase in mobile data usage—around

400-million-fold over the past 15 years—thanks to the proliferation of smart devices

and diversity in mobile applications. According to the latest visual network index

report from Cisco [1], global mobile traffic will rise from 7.2 Exabytes per month in

2016 to reach 49.0 Exabytes per month by 2021. This has prompted the need for the

future generation of wireless networks to provide unprecedented capacity gain and

a top notch quality of service (QoS). The ambitious requirements of zero latency

and gigabit experience are driving the evolution of fifth-generation (5G) cellular

networks. While the surge in mobile device-based applications is only bounded by

imagination, the capacity of cellular systems is tightly bounded by fundamental

physics. The general consensus is that major capacity gain in 5G must come pri-

marily from impromptu network densification. It is not difficult to prognosticate

that such a colossal deployment will become a significant challenge in 5G aggra-

vating several problems in terms of energy consumption, mobility management,

and OPEX, to name a few. This means that automation of the post-deployment

operation and optimization in MCN for reducing costs, handling complexity, and

maximizing resource efficiency will not only become a necessity, but the future

MCN’s technical and commercial viability may also hinge on them.

The research on the automation of MCN operation and optimization commenced a

decade ago in the context of self-organizing networks (SONs), and it is still ongoing.

However, legacy SON solutions aim to only automate the manual process of opti-
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Fig. 1.1: Conventional SON Architecture

mizing one of the many performance metrics (PMs) using one or a few configuration

and optimization parameters (COPs). Typical COP examples include antenna tilts,

azimuths, Tx powers, frequency reuse, handover hysteresis, cell individual offsets

(CIOs), cell discovery rate, and neighbor lists. Each PM-COP self-optimization

routine is called a SON function. Driven by the dire need to cut the cost of man-

ual operation, many SON functions have recently been standardized by 3GPP. The

operation of a typical SON function is illustrated in Fig. 1.1 and can be explained

as follows: performance data, which contains PMs mostly related to coverage and

QoS are gathered through drive tests, customer complaints or minimization of drive

test (MDT) reports. These data are analyzed to determine whether the PM under

consideration is falling below a preset threshold. If so, then a SON function that

handles that PM (e.g., coverage and capacity optimization [CCO] if the PM is ei-

ther throughput or coverage) is triggered. To restore the PM, the SON function

performs a hit-and-trial-based gradual adjustment of the COPs in the live network.

The PM is observed after each COP adjustment and the process is repeated until

a satisfactory PM is achieved. This legacy SON falls short of the mark for 5G

requirements due to the following limitations:

2



1. Legacy SON lacks intelligence: The legacy SON relies on hit and trial to

adjust the COPs, since no explicit model of the optimization objective as a function

of the optimization parameters is derived, and the COP adjustment is performed

through a basic hit-and-trial heuristic, with a goal of achieving improvement over

the existing configuration without developing robust model to project the effect of

a COP change on the system performance. While this hit-and-trial scheme can

improve the performance, it may never optimize or maximize it.

2. Legacy SON lacks ability to function with top level instructions: Legacy

SON functions are effectively stand-alone control loops that simply aim to eliminate

mundane tasks that were previously performed by humans. The day-to-day oper-

ation of current MCNs involves tweaking a myriad of COPs such as antenna tilts,

azimuths, Tx powers, frequency reuse, handover hysteresis, CIOs, cell discovery fre-

quencies, and neighbor lists. Such a COP adjustment is done by engineers while

relying on their domain knowledge. In some cases, this domain knowledge is aided

by an offline system-level simulator. The goal of this laborious and almost continu-

ous COP adjustment process is to enhance or maintain performance indicators that

may ultimately improve one or more of the three main top-level key performance

indicators (KPIs) of MCN, namely, capacity, QoS, and energy efficiency (EE). This

manual process is known to be highly inefficient and prone to human error, and it

is bound to become infeasible altogether in future MCN.

3. Reactive mode of operation: The plethora of existing SON approaches are

designed to kick in after detecting network conditions that have already taken effect.

For example, when load imbalance is detected in a network, a non-convex NP-hard

load balancing (LB) algorithm is usually solved to optimize hard or soft network

parameters. This is an improvement on fixed parameter settings in real networks

that achieve LB at the cost of QoS. However, given the acute dynamics in HetNets,

by the time a load imbalance is detected and a realistic non-convex NP-hard LB
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Fig. 1.2: Reference signal received power heatmap corresponding to various combination
of beam widths, tilts and azimuth orientation of BS antennas with BS located at center

of the square region

algorithm is solved to produce a new network configuration that is optimal for

the observed network conditions, the conditions may have already changed. The

newly determined optimal parameter settings are thus likely to be suboptimal before

they can be actuated. This problem can be exacerbated, particularly in 5G, where

myriad services and a plethora of cell types mean that the dynamics of the cellular

eco-system will be even more swift.

4. Limited set of optimization parameters: Downlink transmission power is

one of the prime optimization parameters that has been largely used in literature

as an actuator for SON functions. However, with the evolution of smart antenna

technology, a new set of optimization parameters has surfaced that is yet to be

exploited. This includes beam widths (radiation patterns) that can be adapted

on the fly by optimizing the phases of complex weight vectors—thanks to smart

antenna technology. Similarly, the azimuth orientation of the antennas can be

leveraged to effectively change the cell footprint in conjunction with the antenna

tilts, as illustrated in Fig. 1.2. As per the Sobol-based variance sensitivity analysis

method [2], the first-order sensitivity index values for some of the optimization
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Fig. 1.3: Sobol method-based first-order sensitivity index values for tilts, CIOs, macro
BS transmission power, small BS transmission power, azimuth, horizontal and vertical

beam widths

parameters are plotted in Fig. 1.3. It is observed that the CIOs, horizontal beam

width and azimuth are found to have the largest impact on network performance

(the QoS). This observation calls for a deviation from the legacy age old paradigm

of only optimizing Tx power to maximize system performance and keeping other

control knobs untouched.

5. Conflict-prone design of SONs: One caveat with conventional SON solutions

is that they are oblivious to the fact that multiple SON functions may be prone to

hidden or undesired conflict when implemented together in a network [3]; e.g., the

CCO SON use case may try to improve coverage by increasing Tx power, which in

turn can force a large number of users to jump into its coverage thereby conflicting

with LB SON objective. The interplay between CCO and LB becomes complicated,

considering that they both resort to the optimization of the same parameters. The

CIO, which unlike antenna parameters, is a soft parameter, was later introduced for

LB and traffic steering in heterogeneous networks (HetNets). However, adjustment

of the CIO by the LB algorithm may also cause conflict with CCO objectives as a
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user offloaded due to increased CIO may face higher interference (assuming intra-

frequency offloading), and lower received power from the destination cell, compared

to the origin cell. This may result in lower SINR and ultimately lower throughputs.

As explicated in [3], such a conflict-prone LB solution design can actually degrade

a network’s performance instead of improving it.

6. Overly simplified, unrealistic assumptions: Most of the existing litera-

ture on SONs is more theoretical in nature, using analytical models that often

involve overly-simplified, unrealistic assumptions – such as uniformly distributed

user equipments (UEs); a spatially independent distribution of base stations (BSs);

omnidirectional, single-antenna transmission and reception; fixed transmit powers;

the same CIO for all cells in one tier; and full load scenarios – to achieve convexity in

the optimization problem. These assumptions help to make the analysis tractable

and the optimization convex in nature; however, they render the end result less

useful for practical implementation. In contrast to a dense HetNet as the main

motivation for SON functions, some works exist, wherein the solution is proposed

and simulated mainly for macrocell scenarios; i.e., large CIOs and Tx power dis-

parities between small cells (SCs) and macro cells are not considered. While these

approaches may work for current network deployment, they will not be useful for

the dense HetNet architecture envisioned for 5G.

1.2 Research Objectives

In light of the discussion in section 1.1, the research presented in this dissertation

provides answers to the following questions:

1. How does one perform self-optimization with low time complexity through just

top-level policy input that prioritizes otherwise conflicting key performance

indicators?
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2. A user mobility pattern is known to have a high predictability component.

Is there a way in which this predictability can be exploited to predict the

future location of users and thus set foundations for proactive self-organizing

network functions?

3. If small cell densification is evident for future network growth, how can we

proactively reduce the high aggregated network energy that "always ON"

small cells are bound to consume in an ultra-dense network, while meeting

ambitious 5G quality of experience requirements?

4. Imbalanced loads among small and macro cells and poor resource utilization as

a consequence form a paramount challenge that hinders wide-scale ultra-dense

network deployments. How can one perform load balancing in a proactive way

to meet the extremely low latency and high quality of experience expected

from 5G and beyond?

5. Anticipated high operational complexity and cell density in 5G indicates that

an ultra-dense 5G network is bound to face significantly higher cell outage

rates than legacy networks. How should the susceptibility of an ultra-dense,

extremely complex 5G network to a potentially high cell outage rate be man-

aged?

This dissertation addresses the aforementioned research questions. Analytical mod-

els are developed, and 3GPP-compliant rigorous simulation studies are carried out

to find and validate the answers to the above questions. The key contributions of

the dissertation are outlined in the following section.

1.3 Contributions

The contributions of this dissertation can be summarized as follows:

7



• This dissertation contributes by presenting a generic low-complexity cellular

system optimization framework to provide the agile, on-line, multi-objective

optimization of potential network topology configurations (NTCs) that can

judiciously strike the intended balance between the various conflicting goals,

such as capacity, QoS, and power consumption, while taking into account

an operator’s policy. This framework quantifies, analyzes, and optimizes the

three major KPIs used for the holistic optimization of SON-enabled hetero-

geneous cellular systems, namely, capacity, service area fairness (SAF) and

power consumption. This framework can model the KPIs of interest as func-

tions of a comprehensive set of optimization parameters such as the spectrum

reuse factor, the number of sectors per site, the number of SCs per site, adap-

tive coding, and modulation. The metrics derived can be quickly evaluated

semi-analytically and thus facilitate a solution to the multi-objective, holistic

optimization problem that is otherwise tackled using black box-type complex,

dynamic simulation models. Using the proposed performance characteriza-

tion framework (PCF), we also evaluate and compare 26 different network

topologies and quantify their relative gains. We analyze the respective trade-

offs offered by each NTC in terms of capacity, SAF and power consump-

tion. Our results also demonstrate that contrary to common notion, NTCs

with the highest spectrum efficiency are not necessarily those that resort to

full frequency reuse. The insights provided by the proposed framework can

help to address new requirements from future heterogeneous cellular networks.

Building on these insights, we propose a heuristic algorithm named "classify

parameters, prioritize objectives, and solve subproblems (CPS)" for holistic

optimization. Through a case study, we demonstrate, how the PCF and CPS

together can be used for a wide range of cellular optimization scenarios with

low complexity.
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• Next, we develop and analyze a semi-Markov model-based spatio-temporal

mobility prediction framework. Our proposed mobility prediction model over-

comes the limitation of conventional discrete-time Markov chain (DTMC)-

based prediction models that fail to incorporate the time dimension, i.e.,

"Time of next Hand Over (HO)." Next, we propose a novel method to map

the next cell’s spatiotemporal HO information to the estimated future loca-

tion coordinates based on the idea of Landmarks. This novel method further

increases the spatial resolution of the future location estimation without re-

quiring an increase in the number of states for the semi-Markov model. The

accuracy of the proposed model is quantified through experimental evaluations

coupled with extensive Monte Carlo simulations.

• Another contribution is AURORA wherein, based on the intelligence gained

from the mobility model, i.e., future cell loads, a proactive energy-saving (ES)

optimization problem is formulated to minimize the energy consumption by

switching OFF underutilized SCs. In addition to proactiveness, another key

novelty of the proposed ES scheme is that it leverages CIOs as optimization

variables for balancing the load between cells while deciding which cells to

switch ON/OFF. In this way, an additional UDN-specific mechanism is ex-

ploited to ensure the QoS while maximizing ES. Although the formulated

problem is non-convex, large-scale, combinatorial, and NP-hard, our results

indicate that the structure of the problems allows heuristics such as genetic

programming to find useful solutions with high ES yield. The ahead-of-time

estimation of cell loads allows ample time for such heuristics to converge

without jeopardizing the QoS. We conduct multi-tier, system-level 3GPP-

compliant rigorous simulations for a comprehensive performance analysis of

the proposed AURORA. The prediction accuracy of the semi-Markov-based

mobility prediction model has been quantified using the realistic SLAW mo-
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bility model in a HetNets environment. The average location estimation error

was found to be around 28 meters, while relying only on one piece of infor-

mation that is already available in the network, namely, HO trace. We also

analyze the impact of cell load thresholds on ES gains and the QoS (per-

centage of satisfied users) for proactive ES optimization. The results of this

analysis provide actionable insights for determining cell load thresholds that

can judiciously strike the intended balance between the conflicting goals of

ES and QoS. We perform a comparative analysis of the proposed solution in

low and high traffic demand scenarios, with the latter comprising all video

users, against several benchmarks, including industrial practices, i.e., All-ON

SCs without and with fixed CIOs. AURORA achieves significant gains in the

total network energy reduction for low and high traffic demand scenarios by

putting under-utilized SCs in sleep mode with a negligible number of unsatis-

fied users. We also investigate a deep neural network (DNN)-based mobility

prediction model to test the sensitivity of AURORA to mobility prediction

model and its accuracy. DNN-based mobility prediction model offers slightly

higher prediction accuracy and hence better performance gain in AURORA,

compared to semi-Markov but at the cost of substantial increased complex-

ity and training time. Moreover, we compare AURORA with a near-optimal

performance bound that is achievable when future network load conditions

can be estimated with 100% accuracy. This comparison demonstrates that

AURORA is reasonably resilient to location estimation inaccuracies.

• The next contribution is the OPERA framework that can leverage the knowl-

edge gained from mobility/hand-off patterns for coping with load imbalance

challenges in 5G and beyond. The proactiveness of OPERA stems from its

novel capability that instead of passively waiting for congestion indicators to

be observed and then reacting to them, OPERA predicts future cell loads us-
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ing readily available data streams such as past HO traces, and then proactively

optimizes key network parameters that affect cell load and network capacity

namely azimuths, beam widths, Tx power and CIOs to preempt congestion

before it happens. Although the resulted problem is NP-hard, the ahead of

time estimation of cell loads allows ample time for a dexterous combination

heuristics such as genetic programming and pattern search to find solutions

with high gain. We use extensive system level simulations to evaluate OPERA

and compare its performance against three different benchmarks: (i) real net-

work deployments settings taken from an LTE operator, (ii) recently proposed

LB scheme in literature as representative of state-of-the-art reactive schemes,

and (iii) upper performance bound where user future location is assumed to be

known with 100% accuracy. Realistic SLAW model based mobility traces are

used in the performance analysis. Results show that compared to benchmarks,

OPERA can yield significant gain in terms of fairness in load distribution and

percentage of satisfied users. Superior performance of OPERA on several

fronts compared to current schemes stems from its following features: 1) It

preempts congestion instead of reacting to it; 2) it actuates more parame-

ters than any current LB schemes thereby increasing system level capacity

instead of just shifting it among cells; 3) while performing LB, OPERA si-

multaneously maximizes residual capacity while incorporating throughput and

coverage constraints; 4) it incorporates a load aware association strategy for

ensuring conflict free operation of LB and CCO SON functions.

• Lastly, this dissertation contributes by presenting a stochastic analytical model

to analyze and predict the arrival of faults on the reliability behavior of a cel-

lular network. Assuming exponential distributions for failures and recovery, a

reliability model is developed using the CTMC process. The proposed model,

unlike previous studies on network reliability, is not limited to structural as-
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pects of BSs. It also takes into account diverse potential fault scenarios, and

it is capable of predicting both the expected time of the first occurrence of

the fault and the long-term reliability behavior of the BS. This model can

adapt itself dynamically by learning from a past database of network failures.

Three different scenarios have been analyzed in terms of transient analysis,

occupancy time, first passage time, and the steady-state distribution. As per

the numerical results, the mean arrival rate of trivial failures has a profound

effect on the reliability behavior of the cellular network. Another key finding

is that a substantial gain in network reliability can be achieved by reducing a

BS’s fault detection and recovery time; this strongly advocates the need for

agile self-healing SON functions.

1.4 Dissemination and Publications

Throughout the course of preparation for this dissertation, several dissemination

activities were carried out. These activities have resulted in the following presenta-

tions and (accepted or pending) peer reviewed articles.

Awards:

A1. Awarded Gallogly College of Engineering Dissertation Excellence Award by

University of Oklahoma.

A2. Winner of the IEEE Young Professional Green ICT Idea Competition 2017.

The core idea of AURORA framework has won IEEE GREEN ICT Best Solu-

tion Award Competition 2017. Received the award at IEEE Greening through

ICT Summit held in Paris, France on 3rd October 2017.

A3. Winner of a nationally competitive travel grant for participation in IEEE

ComSoc Summer School 2017 held in New Mexico, USA.
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A4. Awarded twice for Best Research Presentation at TCOM Research Meeting,

University of Oklahoma. Received an honorable mention for having highest

score in the past decade.

Patents:

P1. A. Imran, A. Asghar and H. Farooq, "Method for enhancement of capacity

and user Quality of Service in Mobile Cellular Networks", provisional patent

application number: 62681320 filed June 06, 2018.

P2. A. Imran, H. Farooq and A. Asghar, "Method and apparatus for proactive

self-optimization using data about network user behavior, mobility and mea-

surements", 2018 (pending provisional patent application).

Book Chapters:

B1. H. Farooq, A. Imran and M. S. Parwez, "Continuous Time Markov Chain

Based Reliability Analysis for Future Cellular Networks", Big Data Applica-

tions in the Telecommunications Industry, Ye Ouyang and Mantian Hu, IGI

Global, pp 119-136, 2016.

B2. M. S. Parwez, H. Farooq, A. Imran and H. Refai, "Spectral Efficiency Op-

timization Using Clustering and Dynamic Beam Steering in Self Organizing

Cellular Networks", Big Data Applications in the Telecommunications Indus-

try, Ye Ouyang and Mantian Hu, IGI Global, pp 137-155, 2016.

Journals:

J1. H. Farooq, A. Asghar and A. Imran, "Mobility Prediction based Automated

Proactive Energy Saving (AURORA) Framework for Emerging Ultra-Dense

Networks", IEEE Transactions on Green Communications and Networking,

2018, DOI: 10.1109/TGCN.2018.2858011.

13



J2. A. Asghar, H. Farooq and A. Imran, "Concurrent Optimization of Coverage,

Capacity, and Load Balance in HetNets Through Soft and Hard Cell Associ-

ation Parameters", IEEE Transactions on Vehicular Technology, vol. 67, no.

9, pp. 8781-8795, Sept. 2018.

J3. A. Asghar, H. Farooq and A. Imran, "Self-Healing in Emerging Cellular Net-

works: Review, Challenges, and Research Directions", IEEE Communications

Surveys & Tutorials, vol. 20, no. 3, pp. 1682-1709, 2018.

J4. A. Taufique, A. Mohamed, H. Farooq, A. Imran, and R. Tafazolli, "Analytical

modelling for mobility signaling in ultra-dense hetnets", IEEE Transactions

on Vehicular Technology, 2018, DOI: 10.1109/TVT.2018.2846655.

J5. A. Zoha, A. Saeed, H. Farooq, A. Rizwan, A. Imran, and M. A. Imran, "Lever-

aging intelligence from network CDR data for interference aware energy con-

sumption minimization", IEEE Transactions on Mobile Computing, vol. 17,

no. 7, pp. 1569-1582, July 2018.

J6. A. Said, S. W. H. Shah, H. Farooq, A. N. Mian, A. Imran and J. Crowcroft,

"Proactive Caching at the Edge Leveraging Influential User Detection in Cel-

lular D2D Networks", Future Internet, vol. 10, no. 10, p. 93, Sep. 2018.

J7. S. Bassoy, H. Farooq, M. A. Imran and A. Imran, "Coordinated Multi-Point

Clustering Schemes: A Survey", IEEE Communications Surveys & Tutorials,

vol. 19, no. 2, pp. 743-764, 2017.

J8. H. Farooq and A. Imran, "Spatiotemporal Mobility Prediction in Proactive

Self-Organizing Cellular Networks", IEEE Communications Letters, vol. 21,

no. 2, pp. 370-373, Feb. 2017.

J9. H. Farooq, A. Imran and A. Abu-Dayya, "A Multi-objective Performance

Modeling Framework for enabling Self-Optimization of Cellular Network Topol-
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ogy and Configurations", Transactions on Emerging Telecommunications Tech-

nologies, vol. 27, pp. 1000-1015, 2016.

J10. A. Asghar, H. Farooq and A. Imran, "Entropy Field Decomposition Based

Time and Space Aware Outage Detection Solution for Ultra-Dense Millime-

ter Wave Heterogeneous Networks", IEEE/ACM Transactions on Networking

(under review).

J11. S. M. A. Zaidi, A. Taufique, H. Farooq, and A. Imran, "Mobility Management

in 5G and Beyond: A Survey Outlook", IEEE Communications Surveys &

Tutorials (under review).

J12. H. Farooq, A. Asghar and A. Imran, "Mobility Prediction based Proactive

Dynamic Network Orchestration for Load balancing with QoS Constraint

(OPERA)", IEEE/ACM Transactions on Networking (under review).

J13. H. Farooq, A. Taufique and A. Imran, "Challenges in 5G Networks Mobil-

ity Management: How to change Mobility from bane to blessing?", IEEE

Networks (under review).

Conferences:

C1. H. Farooq, A. Asghar, and A. Imran, "Mobility Prediction empowered Proac-

tive Energy Saving Framework for 5G Ultra-Dense HetNets", accepted in

Proc. IEEE GLOBECOM’18, Abu Dhabi, United Arab Emirates, 2018.

C2. A. Asghar, H. Farooq, and A. Imran, "Concurrent CCO and LB Optimization

in Emerging HetNets: A Novel Solution and Comparative Analysis", accepted

in Proc. IEEE PIMRC’18, Bologna, Italy, September 2018.

C3. Hughes, S. Bothe, H. Farooq and A. Imran, "Generative Adversarial Learning

for Machine Learning empowered Self Organizing 5G Networks", accepted in
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Proc. Workshop on Computing, Networking and Communications (CNC) as-

sociated with International Conference on Computing, Networking and Com-

munication (ICNC) Hawaii, 2019.

C4. M. N. Rafiq, H. Farooq, A. Zoha and A. Imran, "Can Temperature Be Used

as a Predictor of Data Traffic: A Real Network Big Data Analysis", accepted

in Proc. 5th IEEE/ACM International Conference on Big Data Computing,

Applications and Technologies (BDCAT), Zurich, 2018.

C5. A. Asghar, H. Farooq, and A. Imran, "A Novel Load-Aware Cell Association

for Simultaneous Network Capacity and User QoS Optimization in Emerging

HetNets", in Proc. IEEE PIMRC’17, pp. 1-7, 2017.

C6. Y. Kumar, H. Farooq and A. Imran. "Fault prediction and reliability analysis

in a real cellular network", in Proc. 13th International Wireless Communi-

cations and Mobile Computing Conference (IWCMC), Valencia, Spain, pp.

1090, 2017.

C7. H. Farooq, A. Imran and M. S. Parwez, "Continuous Time Markov Chain

Based Reliability Analysis for Future Cellular Networks", in Proc. IEEE

GLOBECOM’15, pp. 1-6, San Diego, CA, 2015.

C8. M. S. Parwez, H. Farooq, A. Imran and H. Refai, "Spectral Efficiency Op-

timization Using Clustering and Dynamic Beam Steering in Self Organizing

Cellular Networks", in Proc. IEEE GLOBECOM’15, pp. 1-7, San Diego, CA,

2015.

C9. H. Gebrie, H. Farooq, and A. Imran, "Comparative Performance Analysis of

Machine Learning Techniques for Mobility Prediction in Cellular Networks",

(under review).
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C10. A. Asghar, H. Farooq and A. Imran, "Outage Detection for Millimeter Wave

Ultra-Dense HetNets in High Fading Environments", (under review).

C11. H. Farooq, A. Asghar, and A. Imran, "Mobility Prediction based Proactive

Dynamic Network Orchestration for QoS aware Load balancing", (under re-

view).

1.5 Organization

The dissertation is structured as follows. Chapter 2 presents the background on

SONs; it highlights 3GPP standardized SON use cases. Chapter 3 presents a

generic low-complexity optimization framework coupled with a heuristic algorithm

to provide agile, on-line, multi-objective optimization of future MCN through just

top-level policy input that prioritizes otherwise conflicting KPIs such as capacity,

QoS, and power consumption. Chapter 4 presents the semi-Markov renewal process-

based mobility prediction model that predicts the future location of users and hence

transforms mobility from a challenge into an advantage. This predicted load distri-

bution of the cells is then used to formulate a novel (i) energy saving optimization

problem (AURORA) in chapter 5 that proactively schedules SC sleep cycles and

(ii) proactive LB optimization problem (OPERA) in chapter 6. The two contribu-

tions on proactive SON (P-SON) leverage the fact that ahead-of-time estimation

of cell loads allows ample time for heuristics such as genetic programming to find

solutions with high ES and LB yields. Chapter 7 presents a stochastic reliability

analytical model to predict the expected time of the first occurrence of the fault

and the long-term reliability behavior of the BS. Finally, chapter 8 discusses the

conclusions and future work, and it thus concludes the dissertation.
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CHAPTER 2

Background

It is not the strongest of the species that

survives, nor the most intelligent that

survives. It is the one that is the most

adaptable to change.

Charles Darwin

This chapter is devoted to a SON as a feature of 3GPP LTE systems. It briefly

presents the basic concepts, and it provides a high-level introduction to the structure

of 3GPP SON use cases. It goes through self-optimization and healing functionali-

ties, introducing the use cases that have been defined for each of them and mainly

talking about how they have been addressed in 3GPP. It does not focus on the

general literature on SON, as this has already been reviewed in other works [4].

Furthermore, it discusses the self-coordination problem that may exist between the

parallel execution of multiple SON functions. It describes the MDT functionality,

which is introduced to collect useful data for analysis from UE measurements, in

order to improve coverage and capacity issues, and verify the QoS among other

things. Finally, it highlights big data sources in cellular networks that need to be

exploited by SONs to become 5G viable.

2.1 Introduction to SONs

As the spectral efficiency per link for LTE is approaching the theoretical Shan-

non limit, it is envisaged that the network densification by SCs is among the most
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promising solutions for realizing ambitious goals of infinite capacity and zero la-

tency provision in future 5G networks. It is not difficult to prognosticate that the

complexity of operation and OPEX of the resultant ultra-dense network is bound

to become the largest challenge in 5G and beyond. To cope with a much punier

version of this challenge in 4G, research on SONs has already begun in recent years,

mainly to reduce the operational cost of manual labor. However, since the bulk of

target capacity gain in 5G must come from network densification, even the technical

feasibility of 5G hinges on its SON capabilities, in addition to financial viability.

This paradigm of SON has recently been heavily investigated to automate cellu-

lar system management and maintenance tasks [4]. The main objective of SON is

to reduce cost, i.e., CAPEX and OPEX, by minimizing human involvement, while

enhancing network performance, in terms of network capacity, coverage, and QoE.

The main motivation behind the increasing interest in the introduction of SON

from standardization bodies and operators is twofold. On the one hand, from a

technical perspective, the complexity and large scale of future radio access tech-

nologies imposes significant operational challenges due to the multitude of tuneable

parameters and the intricate dependencies between them. With each successive

generation of cellular networks, the complexity of BSs has continued to increase;

i.e., typical 2G, 3G, and 4G cells have roughly 500, 1000, and 1500 parameters

respectively to optimally configure and maintain. Without intervening measures,

the same complexity growth trend is expected for 5G [5]. Traditional network man-

agement using classic manual and field trial design approaches are hence no longer

viable. The overall idea of SON is to integrate network planning, configuration, and

optimization into a single cognitive, automated process requiring minimal human

intervention. 3GPP has defined the number of SON use cases first introduced in

Release 8 and expanding to subsequent releases. These meaningful SON use cases

can be classified as follows according to the life cycle phases of a mobile network
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(planning, deployment, optimization, and maintenance).

1. Self-Configuration–automation of network configuration and planning of

newly deployed BSs.

2. Self-Optimization–automation of the tuning of a deployed mobile cellular

infrastructure’s COP for obtaining the best network configuration and per-

formance over time.

3. Self-Healing–automation in detection, diagnosis, compensation, and recov-

ery from the failures of a deployed mobile cellular infrastructure.

Self-optimization and Self-healing are two of the most important functionalities in

SONs because they ensure that the network operates at its best level of efficiency

once the BSs have been deployed. Since this PhD dissertation is focused on self-

optimization and self-healing, the following section further describes these functions.

2.2 Self-Optimization

Self-optimization algorithms aim to optimize ongoing services in the network based

on network measurements. These algorithms monitor network performance data

and perform optimization changes in the network in open and/or closed loops,

aiming to reduce OPEX costs as well as improve network performance in terms

of network spectral efficiency, EE, network capacity, and the overall QoS. Self-

optimization is a core part of LTE/LTE-Advanced standardization, and commer-

cialized algorithms are already deployed in current LTE networks. Specific use cases

are described as follows:

1. Mobility load balancing (MLB): Load balancing aims to balance the load

between the available cells in a certain geographical area. The goal of LB
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in general is to move traffic from high loaded cells to less loaded neighbors

as far as the interference and coverage situation allows. In this way, better

utilization of cell capacity and larger UE throughputs can be reached. The

implementation of this function is generally distributed and supported by the

load estimation and resource status exchange procedure.

2. Mobility robustness optimization (MRO): The MRO is a SON function

designed to guarantee proper mobility, i.e., proper handover in connected

mode and cell re-selection in idle mode between cells of the same and different

radio access technologies (RATs). Common targets include reduced call drops,

the minimization of radio link failures (RLFs), and a decreased number of ping

pongs. The messages containing useful information are as follows: the S1AP

handover request or X2AP handover request, the handover report, the RLF

indication/report. Mobility robustness optimization operates over connected

mode and idle mode parameters. In connected mode, it tunes meaningful

handover trigger parameters, such as the event A3 offset (when referring to

intra-RAT, intra-carrier handovers), the time-to-trigger, or the Layer 1 and

Layer 3 filter coefficients. In idle mode, it tunes the offset values, such as the

Qoffset for the intra-RAT, intra-carrier case.

3. Inter-cell interference coordination (ICIC): The ICIC minimizes inter-

ference among cells sharing the spectrum. Its working hinges on the coordi-

nation of physical resources between co-channel neighboring cells to reduce

interference from one cell to another. ICIC can be static, semi-static, or dy-

namic, wherein ICIC relies on frequent adjustments of parameters, supported

by signaling among cells over an X2 interface.

4. Random access channel (RACH): The RACH finds the best trade-off

between the performance of the random access and the resources that have
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to be sacrificed for it based on UE feedback and knowledge of its neighboring

eNBs RACH configuration. Random access channel optimization can be done

by adjusting the power control parameter or changing the preamble format to

reach the set target access delay.

5. Coverage and capacity optimization: The main objective of the CCO

use case is to provide sufficient coverage and capacity in the whole network

area with minimal radio resources. This CCO use case can be further divided

into two sub-objectives:(i) maximizing the relative coverage in the area so

that continuous coverage would be achieved, where the relative coverage can

be defined as the probability that the received signal quality is better than

the minimum required received signal quality, and (ii) providing a sufficient

received quality in terms of an achievable bit rate over the entire area.

6. Energy saving: The deployment of ES is motivated by the goals to reduce

CO2 footprint and to optimize the costs. The radio access network (RAN),

and particularly the radio BSs, have been identified as having the highest

share of mobile networks’ overall energy consumption and hence the largest

potential for ES measures. Energy saving aims to provide desired QoE to end

users with minimal impact on the environment. Energy saving achieves its

objective by temporarily switching OFF unused capacity when not needed.

2.3 Self-Healing

Self-healing comes into play during the maintenance phase of a cellular network.

Wireless cellular systems are prone to faults and failures, and the most critical

domain for fault management is the RAN. A complete (or partial) cell outage is a

scenario when either a BS’s hardware and/or software malfunctions or when one

or more cell parameters become misconfigured during network operations. Partial
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outage refers to scenarios when the cell continues to operate but its performance

degrades below its typical level. The cell outage rate in a network is intrinsically

proportional to the number of cells and number of components and parameters per

cell. Forthcoming cellular networks are susceptible to even higher cell outage rates

caused by the misconfiguration of parameters due to potential conflicts between

multiple SON functions. Self-healing performs an automatic adjustment of network

parameters and algorithms in surrounding cells to compensate the outage users until

the problem is solved. Once the actual failure has been repaired, all parameters

are restored to their original settings. Self-healing solutions are broadly classified

as follows:

1. Cell outage detection–these solutions aim to detect a cell outage through

the monitoring of performance indicators, which are compared against thresh-

olds and profiles.

2. Cell outage compensation–this use case aims to provide service to users

who were previously served by a cell in outage by appropriately adjusting

suitable radio parameters, such as the pilot power and the antenna parameters

of the surrounding cells.

A significant number of self-optimization and self-healing solutions for 4G have

recently been proposed by the research community. However, there are dramatic

differences between current cellular systems and the 5G cellular networks that call

for a paradigm shift in SON research to enable a commercially and technically

feasible 5G network.
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2.4 Self Organizing Network Evolution in 3GPP

3GPP Release 8 includes SON functionalities relating to the initial equipment in-

stallation and integration [6]. The SON functionality developed in Release 9 fo-

cuses on the optimization of deployed LTE networks, and Release 10 introduces

SON functions to offset interoperability issues in HetNets and includes NGMNs

recommendations. Release 11 SON functions are related to the self-management of

heterogeneous networks, while Release 12 focus on enhancing the performance of

the centralized CCO functions. Release 13 studies schemes for enhancements of the

OAM aspects of distributed LB as well as enhanced centralized CCO. Finally, Re-

lease 14 focuses on meeting the ambitious 5G requirements in terms of zero latency,

fair co-existence in an un-licensed spectrum, EE, support for carrier aggregation,

and SON support for active antennas.

2.5 Self-Organizing Network Architecture

Depending on the location of SON functions or where they are executed, three

possible architectures have been considered for a SON defined as (i) a centralized

SON (C-SON), where SON algorithms reside in the network management system or

in OMC; (ii) D-SON, wherein the SON functions are distributed across the edges of

the network; and (iii) a hybrid SON, with SON algorithms located at different levels.

C-SON style algorithms take input from all nodes in the network and have a global

picture of the overall network at the cost of low agility which may be pronounced

in the emerging world of SCs that experience highly transitory traffic loads. On the

other hand, D-SON functionalities have high agility, which enables the network to

adapt to local changes more rapidly at the cost of higher vulnerability to network

instabilities that maybe caused, e.g., by the concurrent operation of SON functions

with conflicting objectives/parameters/KPIs. Therefore, it is crucial to select the
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SON function execution location and thus the SON architecture mainly on a per

use case basis. From a design perspective, SON functions must have the following

capabilities:

• Autonomy–the network must be able to operate autonomously; i.e., SON

functions must be independent of human input during operation.

• Scalability–the functions deployed within SONs must be scalable enough to

be able to run within the limited computational capabilities afforded by the

network nodes; i.e., any SON functions deployed in the network must be

scalable in terms of both time and space.

• Adaptability–the network must be able to adapt to outside influences and

internal failures.

• Agility–SON functions should have low time complexity and thus high agility

to meet the zero latency requirements of 5G.

• Cognition–SON networks must be intelligent; i.e., they must be able to learn

from the information generated by users and network entities to become com-

pletely independent in terms of adapting network parameters based on the

primary goals of the mobile network operators (MNOs).

2.6 Self-Coordination

Self-organizing network algorithms, being use-case centric, are often designed as

stand-alone functionalities. As a result, the concurrent operation of multiple inde-

pendent SON functions is prone to unhealthy conflict when implemented together

in a network. As identified in [3], in an uncoordinated SON, a variety of conflicts

may occur when 1) two or more SON functions try to modify the same network
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configuration parameter; 2) a SON function is triggered by an input parameter

whose value is dependent on some other network parameters; 3) there is a change

in network conditions by the impromptu addition or removal of relay, eNB, or Home

eNB; 4) different SON function actions try to alter the same KPI of a cell while

adjusting different network configuration parameters; 5) a SON function computes

new parameter configuration values based on outdated measurements; and 6) there

is a logical dependency between the objectives of SON functions. The uncoordi-

nated working of multiple SON functions can thus be subject to a large number

of potential conflicts, which can actually degrade a network’s performance instead

of improving it. For example, CCO may try to improve coverage by increasing Tx

power which may force a large number of users to jump into its coverage, thereby

conflicting with the LB SON objective. Therefore, it is deemed necessary to consider

SON conflicts when devising SON functions.

2.7 Minimization of Drive Tests

The true potential of SONs is contingent on the timely availability of network mea-

surements. Therefore, a key enabler for SON functions are MDT Reports, which

were standardized in 3GPP Release 10. Minimization of drive test reports enables

the network to instruct UE’s to log network measurements–such as the reference

signal received power (RSRP) and reference signal received quality (RSRQ) of serv-

ing and neighboring cells–and send them back to the core through radio resource

control (RRC) signaling messages, thereby avoiding manual and time consuming

physical drive tests. The MDT scheme supports two reporting configurations: (i)

non-real time or immediate reporting wherein when the preconfigured triggers are

met, the UE immediately reports the measured radio conditions, and (ii) logged

mode wherein UE stores measurements and reports them when the periodic timer

expires. When eNB requests UE for MDT reports through the UEInformationRe-
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quest RRC signaling message, UE responds by embedding the desired measurement

results in the UEInformationResponse RRC message and sending it back to the net-

work. Moreover, the measurement reports are tagged with the location information

of reporting UEs for facilitating SON algorithms. Based on the intelligence ex-

tracted from the measurements received from UEs, the SON engine can initiate ap-

propriate SON functions to achieve optimum network performance that aligns with

the business’s tailored objectives prescribed by the operator. This MDT feature is

effectively a pre-requisite for enabling the range of SON functions that either have

already been standardized by 3GPP or are being considered for the future evolution

of SON.

2.8 Big Data Sources for SON

Mobile networks routinely produce massive amounts of control, signaling, and con-

textual data during the day-to-day operation of cellular networks–also referred to

as big data. When exploited, this big data can be an enabler for a paradigm shift

in SONs to meet the ambitious QoS requirements of 5G. The potential constituents

of big data in cellular networks are as follows [5]:

• a) Subscriber-level data. These data comprise of KPIs obtained from a voice

or a data session initiated by the subscriber to provide an indication of the

accessibility, retainability, and integrity performances of the network. Several

metrics including blocked call rates, access failure rates, setup times, the suc-

cess rate, and hand-over failure rates, project the accessibility of the network.

Dropped call rates, completion times, the packet data protocol context, and

success rate together define the retainability of the network. Metrics such as

speech and data streaming quality, throughput, packet jitter, and delay offer

insight into a user’s perceived QoE.
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• b) Cell-level data. This refers to the measurements that are reported by a

BS and all users within the coverage of that BS. Examples of useful cell-

level data streams are measurements reporting the uplink noise floor in terms

of reference interference power, channel-based power information, physical

resource block (PRB) usage per cell, the number of active users per cell, and

MDT measurements. Minimization of drive test reports consist of the RSRP

and RSRQ values of the serving and neighboring cells reported by the users

to their serving BSs.

• c) Core network-level data. Core network data include signaling information,

historical alarm logs, equipment configuration lists, and service and resource

utilization accounting records (call data records - [CDRs] and extended data

records [XDRs]) as well as the aggregate statistics of network performance

metrics.

• d) Miscellaneous data. These data consist of the structured information al-

ready stored in the separate databases, including customer relationship man-

agement, customer complaint center, and spectrum utility maps. They also

include un-structured information such as social media feeds, specific appli-

cation usage patterns, and data from smart-phone built-in sensors and appli-

cations.

2.9 Conclusion

In this chapter, we described the field of SONs by providing an overview of the

3GPP standardized SON use cases in the domains of configuration, optimiza-

tion, and healing and with regard to the need for self-coordination. Then, we

highlighted big data sources in cellular networks that, when exploited, can

make SONs viable for 5G networks.
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CHAPTER 3

A Multi-Objective Performance Modeling Framework

for Enabling the Self-Optimization of Cellular Network

Topology and Configurations

Strength without agility is a mere mass.

Fernando Pessoa

Cellular system optimization (CSO), a cornerstone of the cellular systems

paradigm, requires a new focus shift because of the emergence of a plethora of

new features shaping the cellular landscape. These features include SONs with

added flavours of heterogeneity of cell sizes and BS types, adaptive antenna

radiation patterns, EE, spatial homogeneity of service levels, and a focus shift

from coverage to capacity. Moreover, to effectively tackle the spatiotempo-

ral dynamics of network conditions, a generic low-complexity framework to

quantify the key facets of performance–namely, the capacity, QoS and power

consumption–of the various NTCs, is needed to enable SONs driving the cel-

lular system optimization on the fly. In this chapter, we address this problem

and presenting a PCF that quantifies the multiple performance aspects of a

given heterogeneous NTC through a unified set of metrics that are derived as

a function of key optimization parameters. We then leverage this framework

to present a cross comparison of a wide range of potential NTCs. Moreover,

we propose a low-complexity heuristic approach for the holistic optimization

of future heterogeneous cellular systems for joint optimality in multiple de-

sired performance indicators. The PCF also provides quantitative insights

into the new tradeoffs involved in the optimization of emerging heterogeneous
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Fig. 3.1: A SON engine has to cope with frequent activity variations observed in a real
cellular network

networks, and it can pave the way for much needed further research in this

area.

3.1 Introduction

The paradigm of SONs has recently been heavily studied to automate cellular

system management and maintenance tasks [4, 7, 8]. This SON capability

allows a cellular network to monitor KPIs and optimize network parameters

to adapt itself to the spatiotemporal dynamics of network conditions. These

dynamics include a change in traffic patterns over the course of a day, the

relocation of hot spots, and cell outages. For example, Fig. 3.1 depicts a

SON-enabled cellular network and the variations in traffic patterns observed

in a real cellular network’s data. These variations exhibited through the KPIs

and that can further be estimated using MDT reports [9], prompt the SON

engine to test each of the possible NTCs in a static or dynamic simulator to

devise a new NTC that meets specific objectives such as spectral efficiency,
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EE, QoS, or a combination of these. Leveraging the modern capability of

turning BSs on and off and smart antenna radiation patterns, the SON engine

can adapt a projected number of sectors, frequency usage, and the number

of SCs on the fly to achieve the desired objectives. In a real network, there

are hundreds of possible network parameters configurations (i.e., large search

space) characterized by the types of BSs, the number of sectors per site,

the number of SCs per site, and the frequency reuse, in addition to other

configuration parameters, including, locations, tilts, azimuths, and heights.

In this ever-changing traffic landscape of the cellular environment, by the time

a SON engine comes up with an optimum network configuration, the scenario

might have already changed and the NTC becomes outdated. This calls for

a low-complexity performance estimation and then optimization techniques

to cope with the spatio-temporal dynamics of the cellular environment in an

agile fashion. Increasing the scarcity of the spectrum for LTE is pushing

for more aggressive frequency reuse, leading to new kinds of spectrum reuse,

e.g., intra-site spectrum reuse [10, 11] that has to be incorporated into SON

optimization objectives. Also, fueled by the performance criteria set forth by

3GPP, where the spatial fairness of the data rate received by the cell edge

and cell center users is being assigned increasing importance [12], the QoS

metric can no longer be neglected. Similarly, in the wake of the rising cost of

energy and environmental concerns, power consumption has also become an

important metric [13].

The ambitious goals of zero latency [5] in envisioned future cellular systems

(CSs) require a low-complexity CSO framework to provide an agile, on-line,

multi-objective optimization of potential NTCs that can judiciously strike the

intended balance between the various conflicting goals, such as capacity, QoS

and power consumption while taking into account an operator’s policy. The
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need for the potential search of NTCs, though well-conceived in [14, 15, 16, 17],

is not fully addressed yet, particularly in the context of SCs enhanced CS

(SC-CS) HetNets. Another challenge in enabling and evaluating many of the

SON use cases in HetNets is the lack of a unified performance quantifica-

tion framework that can quantify cellular system performance in terms of the

aforementioned KPIs. This chapter addresses that need by presenting and

analyzing a holistic framework to quantify the three KPIs, namely, capacity,

QoS, and power consumption. This framework can act as a key enabler for a

number of SON use cases such as CCO, ICIC, EE and LB.

3.1.1 Prior Works

For cellular networks, most of the prior research studies have focussed on the

optimization of network parameters [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,

29, 30, 31, 32, 33, 34, 35, 36, 37], using different definitions of a given KPI,

e.g., coverage and capacity [19, 20, 21, 31, 32, 33, 18], QoS [22, 23], cost ef-

ficiency [24], or EE [25, 26, 34, 35], to optimize a single network parameter,

e.g., the BS location [26, 27, 28, 38], or few other parameters such as antenna

tilts [31], sectorization [29, 36], and frequency reuse [30, 37]. Moreover, these

KPI metrics, which are to be used by the SON engine, should be able to quan-

tify the long-term average performance of a cellular system by incorporating

its dependencies on NTC parameters, while generalizing or averaging out the

short-term dynamics of the cellular eco-system. An additional requirement is

that the metrics should be evaluable by the SON engine without resorting to

complex dynamic simulators. More precisely, to the best of our knowledge,

no previous work has provided a framework to enable a cross-comparison of

potential NTCs, in terms of capacity, QoS and power consumption simultane-

ously, while taking into account key deployment factors such as the number of
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sectors per site, the number of SCs per site, and different variants of intra-site

frequency reuse that the emerging CSs can avail. Furthermore, the trade-off

between the capacity and spatial fairness of a service level in the coverage

area is relatively overlooked. In view of the increasing emphasis by 3GPP on

better cell edge throughput rates and better spatial fairness of achievable data

rates [23], we also use the proposed PCF to investigate this under-explored

but important trade-off that various NTCs offer. The presented analysis can

be leveraged to design NTCs that can strike an operator-intended precise bal-

ance between the capacity and spatial fairness while simultaneously taking

into account the power consumption aspect of the given NTC.

Additionally, since the optimization of network parameters is an NP-hard

problem, prior works in literature have generally addressed it using meta-

heuristics such as simulated annealing [39, 40, 38], particle swarm [41], genetic

algorithms (GAs) [42, 33], Taguchi’s method [43], or ant colony optimization

[29] to obtain near optimal solutions for a selected set of few parameters. The

basic methodology that is generally followed in these works involves a detailed

dynamic simulation model that acts as a black box between the KPI and

the potential parameters of a given NTC. The SON engine’s use of dynamic

simulation-based models is not only time consuming, but it also provides little

insight into system behavior. In contrast, our approach builds on a mathe-

matical model to couple the KPIs with the extensive set of NTC parameters

and thus helps to obtain better insights into system behavior. The resultant

PCF makes the holistic cross-comparison of various potential solutions to the

CSO problem easier.
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3.2 Background and System Model

3.2.1 Cellular System Optimization Objectives and Proposed So-

lution Approach

For emerging CSs, the optimization problem has multiple target objectives,

such as the maximization of capacity, coverage, fairness of service in the cover-

age area, spectral efficiency, spectrum reuse efficiency, throughput, minimiza-

tion of cost, energy consumption and/or outage. However, all these objectives

can be boiled down to three main categories of performance measures:

1. Capacity oriented performance measures–these include cellular capacity,

spectral efficiency, spectrum reuse efficiency, throughput, or goodput.

2. Quality-of-Service oriented performance measures–rate fairness and out-

age are typical QoS measures.

3. Cost oriented performance measures–the total cost of ownership of a

cellular system over its life has three further major factors:

(a) Capital cost–cost of hardware, cost of software, and deployment la-

bor cost.

(b) Maintenance cost–cost of labor required for operation, optimization,

and maintenance of sites and the switching network.

(c) Power consumption–power consumed to keep the cellular system

running is increasingly becoming a significant factor of operational

cost.

In this chapter, we derive the PCF to quantify each of the three listed aspects

of a cellular system’s performance as a function of NTC parameters. Under

cost-oriented performance, we only focus on the power consumption, as it has

recently become highly important, particularly due to rising costs of energy
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and concern for CO2 emissions. For the treatment of the other two cost

factors, interested readers are referred to previous works in [14], which deals

with capital cost reduction by the introduction of low-cost BSs (Relays, or

Femto or Pico BSs), and [4], which provides a comprehensive review of a SON

as a major maintenance cost-reduction approach.

The main idea of the proposed solution in this chapter is that in order to cope

with spatiotemporal changes in either traffic or the cellular environment, a

SON engine will dynamically switch to a suitable NTC, based on an adaptive

utility function that incorporates major system objectives, e.g., spectral ef-

ficiency, fairness, and power consumption, and it can prioritize among these

objectives. To overcome the size and complexity of a holistic CSO prob-

lem, we propose exploiting a hybrid approach; i.e., a detailed mathematical

system model is first constructed, and extensive system-level simulations are

performed to generate the whole solution space for all feasible NTCs, con-

sisting of the number of sectors per site "S", the spectrum reuse factor "F",

and the number of SCs per site "R". Since possible combinations of "S",

"F" and "R" are not large in a practical cellular system and in fact, only the

configurations listed in Fig. 3.3 are technically the most feasible ones, the

SON engine can easily and effectively search over this confined solution space

and adapt the utility to set an optimization target and switch to the most

suitable NTC in a time-efficient manner.

3.2.2 System Model and Holistic CSO Problem Formulation

We consider a generic cellular system model as illustrated in Fig. 3.2. We

divide the whole area to be optimized by the SON engine into set of Q bins

denoted by Q, where q denotes the qth bin, such that
∑Q

q=1 aq = A, and

A
Q

= aq,∇q ∈ Q where A is the total area and area a of the bin is so small
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Fig. 3.2: Generic system model used for SINR calculation

that shadowing and path loss can be considered constant within it. Now,

using the notation defined in the list of key symbols, the problem of holistic

joint optimization of the three performance objectives identified above can be

formulated as a multi-objective optimization problem:

max
Qb,Qr ,Hr ,Hs,S,R,P s,P r ,Υf ,φ,θ

f(Υ,Λ,Ω) (3.1)

subject to feasibility and range constraints on the optimization parameters.

The definitions of the parameters in (3.1) are presented in the list of key

symbols.

The expression in (3.1) is a holistic CSO problem in which the location of

BS and SC, the number of sectors per BS, the number of SCs per BS, the

antenna heights, the transmission powers, the antenna azimuth, the antenna

tilts, and the frequency reuse have to be optimized to achieve the best possible

performance in terms of all three KPIs. Sub problems of such a CSO prob-
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lem have been shown to be NP-hard in a number of studies [41, 44, 45, 46];

therefore, metaheuristic techniques are generally utilized to partially explore

the solution space of the CSO problem in order to find an acceptable solution.

From (3.1), we can obtain some useful insights into the solution space of the

problem. Let’s take a simple example of only 19 × 3 = 57 sectors CS and

focus on solving for only one NTC parameter, e.g., the optimal sector az-

imuth angle. With an over-simplified assumption that the azimuth can only

take 10 possible values centered around the nominal azimuth of the sector,

a brute force-based solution will have to search among 1057 possible azimuth

angle combinations. If a system-level evaluation of the KPIs of interest, as

a function of azimuth angles, that is generally carried through a simulation

tool takes time τe (this can be in order of minutes), then finding an optimal

solution may take as long as 1057

1/τe
minutes. However, the actual size of the

solution space of a typical holistic CSO problem represented by (3.1) is far

larger.

If we apply one of the aforementioned evolutionary metaheuristics used in

literature [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 39, 41, 42, 43], the

search space Cp of the holistic CSO problem in (3.1) can be reduced by a factor

ε. The solution would still require time τ =

(
Cp
ε

)

1/τe
minutes and yet may not be

guaranteed to be optimal. Contrary to most of the works in open literature on

CSO, which propose variations and combinations of different metaheuristics

to only increase ε to reduce the solution time τ , the framework we present in

this chapter exploits a bi-pronged approach for increasing the efficiency of the

CSO process by reducing both τe and Cp instead. First, through the PCF,

it eliminates the need for a dynamic simulator for KPI evaluation at each

iteration of a search. This is expected to substantially reduce τe which will

ultimately reduce the τ irrespective of the metaheuristic used to factorize Cp
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by ε. Second, different parameters have different significance in CSO. Building

on further insights into this observation provided by the PCF, we propose a

simple algorithm for the holistic CSO problem that can substantially reduce

the Cp itself. By allowing conventional metaheuristics to be more thorough,

this bi-pronged approach can improve the quality of solutions obtained, while

significantly reducing the complexity of the holistic CSO problem.

3.3 Performance Characterization Framework

In this section, we derive quantitative measures for the three KPIs of interest,

namely, Υ, Λ, and Ω, in terms of the key NTC parameters, which can be eval-

uated with low complexity, i.e., without resorting to black-box-type complex

dynamic simulators. The SINR perceived in the qth bin from the sth sector

(see Fig. 3.2) can be given as follows:

γsq =
psGs

qα(dsq)
−(β)δsq

σ2 +
∑
∇s′∈S(ps′Gs′

q α(ds′q )−(β)δs′q .u(Υf ))
(3.2)

where {s, s′} ∈ S, q ∈ Q and u (Υf ) is a unit function that determines

whether or not the qth bin will receive interference from a particular sector

depending on the frequency reuse. Note that we assume a full load scenario;

i.e., all sub-carriers allocated to a cell are simultaneously under use. With this

assumption, in calculating SINR, the impact of dynamic scheduling can be

omitted, and only static frequency reuse that is part of NTCs can be used to

determine the inter-carrier collision and hence interference at a given location.

Here, dsq is the distance between the qth bin and the sth sector antenna located

in the qthb ∈ Qb bin, given by:

dsq =

√
(xqb − xq)

2 + (yqb − yq)
2 + (hs − zq)2 (3.3)

Three dimensional (3D) antenna gain can be modeled as in [47] :
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Gs
q = G(ζ,D)× 10

−1.2(λv(
θsq−θ

s

ϕv
)2+λh(

φsq−φ
s

ϕs
h

)2)
(3.4)

where θsq is the vertical angle in degrees in the sth sector from the reference axis

to the qth bin and it can be given as (see Fig. 3.2 ). The φsq is the horizontal

angle in degrees in the sth sector to the qth bin with respect to a positive x-

axis. λh and λv represent the weighting factors for the horizontal and vertical

beam patterns of the antenna in a 3D antenna model [48], respectively. As

indicated in (3.4), the maximum antenna gain G is a function of antenna

efficiency ζ and directivity D and it can be written as G = ζD where D can

be further approximated as: D = 4π
ϕshϕv

.

For the practical cellular antennas, the relationship between the horizontal

beam width of the sector antenna and the number of sectors Sb per bth BS

site can be modeled as ϕsh = µ∗360
Sb

, where µ is a factor representing the overlap

between the sectors. Thus using (3.4) in (3.2), the SINR can be determined

as in (3.5):

γsq =

psα(dsk)
−(β)δsq .(

4πζ

(µ∗360
Sb

ϕv)
).10

−1.2(λv(
θsq−θ

s

ϕv
)2+λh(

φsq−φ
s

(
µ∗360
Sb

)
)2)

σ2 +
∑
∇s′∈S(ps′α(ds′q )−(β))δs′q .(

4πζ

(µ∗360

S′
b
ϕv)

).10
−1.2(λv(

θs
′
q −θ

s′

ϕv
)2+λh(

φs
′
q −φ

s′

(
µ∗360
S′
b

)
)2)

.u(Υf )

(3.5)

As desired, the SINR in (3.5) is a function of the key parameters of a given

NTC. Similarly, the SINR from the rth SC in the qth bin can be given as

follows:

γrq =
prα

(
drq
)−(β)

δrq

σ2 +
∑
∀r′∈R

(
pr′α

(
dr′q
)−(β)

δr′q

) (3.6)

where {r, r′} ∈ R and q ∈ Q. Note that for a SC, the antenna gain can be

assumed as unity, therefore, it is omitted in the SINR expression. Also, due to
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the fact that BSs have much higher Tx powers than SCs, SCs have to duplex

with BSs in time or frequency to avoid excessive interference from BSs. With

this assumption, only interference from other SCs is considered in (3.6). A

frequency reuse of one is assumed among SCs; therefore, no exclusive term to

capture the frequency reuse, as in (3.2), is needed in (3.6).

3.3.1 Quantifying Υ–Reflecting Capacity-Wise Performance from

a CSO Perspective

We propose a metric, namely, effective spectral efficiency (ESE) to quantify

capacity-wise performance denoted by Υ. This metric has semantics similar to

the area spectral efficiency, but it does not require a throughput estimation for

its calculation; rather, it can be determined through a simple semi-analytical

approach. A key advantage of ESE is that it can also serve as the basis for

the calculation of the other two KPIs, namely, Λ and Ω. This is useful in

modeling the coupling between these contradicting CSO objectives. Below,

we explain calculation of ESE.

Since the sub-carrier bandwidth in emerging CSs (e.g., LTE) is fixed, the

throughput on a single sub-carrier in a given BS-user link and hence the

total throughput of the system depends on the average achievable modulation

coding efficiency (MCE) on each link in the system. Over the long term, the

MCE depends on the SINR available on that link, whose long-term average

value (in a full load scenario, as assumed above) in turn depends mainly on

the NTC, as derived above in (3.5) and (3.6).

Let L = {0, 1, 2, 3, ...L} be the set of modulation coding schemes (MCS)

available in the standard under consideration. MCEl denotes the MCE of

the lth MCS; l = 0 means a MCS with zero spectral efficiency, i.e., no link,

representing outage; and L is the MCS with the highest spectral efficiency.
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Invoking the bin grid concept, an easily evaluable metric can be given as

follows:

ΥMCEe =
L∑

l=0

(

MCEl ×
Ql

Q

)

(3.7)

where
Ql =

∑

∀q∈Q

Ul (γq) (3.8)

Here, γq denotes the SINR perceived in the qth bin from the best serving BS

sector or SC (whichever is greater), and the unit function Ul(γq) is defined as

follows:

For l ∈ L \ {0, L} : Ul(γq) =






1 Tl < γq < Tl+1

0 otherwise

For l = L : Ul(γq) =






1 Tl < γq

0 otherwise

And for l = 0 : Ul(γq) =






1 γq < T0

0 otherwise

Tl is the threshold SINR required to use the lth modulation and coding scheme

from set L. T0 is the threshold of the minimum γ, below which a link cannot

be maintained with the lowest modulation and coding pair implemented in

the standard, and all such points in the coverage area constitute the outage

area. Note that L∑

l=0

Ql = Q (3.9)

Effectively Ql is the number of bins in coverage area in which γq meets the

threshold required to use the lth modulation and coding scheme. A key advan-

tage of quantifying spatial spectral efficiency in this manner is that it has the

potential to reflect geographical areas of high importance with weighting fac-

tors to pronounce their importance in capacity optimization and reflect them
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in the ESE measure proportionally. This provides freedom to tailor this KPI

for the CSO process in order to reflect an operator’s policy. To set different

coverage priorities for different regions, Q in (3.7) that represents number of

bins can be replaced with the sum of weights associated with each bin; i.e.,

ΥMCEw =
L∑

l=0

(

MCEl ×

∑
l=l′ wql′∑Q
q=1 wq

)

(3.10)

where ΥMCEw denotes the weighted average MCE, and wq denotes the weight

assigned to the qth bin in proportion to its relative importance in the area

of interest. These weights can thus be used to model the QoS requirements

of different demographic groups or to differentiate areas with different user

densities. wql′ denotes the weight of the qth bin using the l
′th MCS, where

l′ ∈ L. If not enough data are available to assign precise weights to individual

bins, and if operators in general want to ensure that the spatially fair data

rates are available throughout the coverage area, harmonic mean can be used

instead of the arithmetic mean in (3.7). Unlike the arithmetic mean, the

harmonic mean will aggravate the impact of bins with low spectral efficiency

and dampen the impact of bins with high spectral efficiency, while representing

the overall spectral efficiency of the system. In this case,

ΥMCEh =
Q

∑Q
q=1( 1

MCEq
)
,MCEq > 0 (3.11)

where ΥMCEh denotes the harmonic mean spectral efficiency in the area of

interest, and MCEq denotes the spectral efficiency achievable in the qth bin

based on the SINR γq perceived in that bin. Note that unlike ΥMCEe ,ΥMCEh

cannot take into account the outage in the coverage area. While ΥMCE re-

flects link spectral efficiencies achievable with a particular NTC and can be

used as an aspect of capacity, for a holistic quantification of capacity, an im-

portant means of cellular capacity, i.e., spectrum reuse, must also be taken
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into account.

Against the backdrop of a need for aggressive frequency reuse, we propose

reusing the spectrum within a site. By exploiting the fact that aggressive

sectorization can provide significant isolation among cells projected from the

same BS, the spectrum can be reused within a site among sectors pointing in

opposite directions as well as among alternative sectors pointing in different

directions, as illustrated in the various NTCs sketched in Fig. 3.3. To quantify

the spectrum reuse gain in capacity obtained from such spectrum reuse, we

define Υf as the "number of times a spectrum is reused within a site". Thus

Υf can be calculated as follows:

Υf =






ρb × S
F

+ ρr × R if R > 0

S
F

otherwise

(3.12)

where ρb and ρr are factors with which the spectrum is shared between a

BS and a SC such that ρb + ρr = 1. F is the number of parts into which

the spectrum allocated to the BS (excluding the spectrum allocated to a

SC) is divided. Although intra-site spectrum reuse is expected to increase

interference and thus decrease ΥMCE , it would be interesting to investigate

how a gain in capacity through a higher Υf trades against the loss in capacity

due to a lower ΥMCE . To incorporate the impact of both of these factors in

the cellular capacity, we define the desired capacity-wise KPI named ESE as

follows:

Υ = ΥMCE ×Υf (3.13)

ΥMCE can be modeled using (3.7), (3.10), or (3.11) depending on the CSO

objectives and service priorities of an operator. On one hand, ΥMCE effec-

tively reflects the capacity gain via spectral efficiency. On the other hand,

43



Υf essentially reflects capacity gain via spectrum reuse efficiency that might

come from intra-site frequency reuse (or inter-site frequency reuse, or even

fractional frequency reuse, which is not covered in this contribution). There-

fore, Υ quantifies the intended capacity-wise KPI from a CSO perspective by

incorporating the effect of key NTC factors.

3.3.2 Quantifying Λ–Reflecting SAF from CSO Perspective

From a CSO perspective, the QoS has two aspects: 1) achievable data rates

and 2) the spatial fairness of those rates. An explicit metric to quantify only

the second aspect is needed from a CSO perspective, as the first aspect is

already covered in our definition of Υ. However, for an appropriate measure

of fairness, which has to be used in a CSO process as an optimization ob-

jective, we must significantly depart from the conventional notion of fairness

that is considered when designing very short time-scale adaptive mechanisms,

e.g., scheduling or power allocation. For long-term traffic variations, such

short-term dynamics can generally be neglected, as they are averaged out.

Therefore, it is fairness in space, rather than classic fairness in time, that is

more heavily dependent on NTCs and must thus be considered and evaluated

during the CSO. More precisely, this spatial fairness of data means the homo-

geneity of the level of service that can be provided in the coverage area. We

build on derivations in the last section and define a metric to reflect the SAF

effectively as the inverse of the standard deviation of the spatial distribution

of MCE as follows:

Λ = 1/

√√
√
√ 1

Q

Q∑

q=1

(

MCEq −
L∑

l=0

(

MCEl ×
Ql

Q

))2

(3.14)

Note that, similar to ESE, SAF can also be evaluated using the SINR ex-

pressions derived above. Having an explicit spatial connotation instead of a

44



temporal one, SAF assigns the cell edge users judiciously higher importance

because more bins lie farther from the cell center. Thus, the advantage of SAF

is that it is capable of explicitly capturing the cell-center and cell-edge rate

disparity. In case, a finite bound-based estimation of SAF is required, Jain’s

fairness index can also be adapted to estimate the fairness of the service area

as follows [49] :

JSAF =

(∑Q
q=1 MCEq

)2

N
∑Q

q=1 (MCEq)
2

(3.15)

3.3.3 Quantifying Ω–Reflecting Power Consumption Wise Perfor-

mance from a CSO Perspective

Power consumption in a cellular system has many complicated and interre-

lated components. Considering the scope of this contribution, we focus on the

five selected elements of NTCs that mainly determine the power consumption

of a given NTC, i.e., types of access points (BS or SC), number of sectors per

site, number of SCs per site, transmission powers and sector overlap. These

are the main parameters that make the power consumption in various cellular

systems’ NTCs different from each other. To that end, we model the power

consumption on a site while incorporating both the fixed and variable power

consumption per site that in turn depends on the type of BS. Fixed power con-

sumption is the power that is consumed in keeping the circuitry of BS sectors

alive regardless of whether there is traffic or not. Fixed power remains non-

zero until all sectors and SCs associated with a BS are completely switched

off. Variable power consumption is the power required for transmission on

air interface, and it varies with the traffic load. Total power consumption in

the bth BS site (including that of all sectors and associated SCs) can thus be

written as (3.16) below:
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p =

Sb∑

s=1

{
psf + psv (G (ζs, Ds) , pst , η

s)
}

+

Rb∑

r=1

{
prf + prv (G (ζr, Dr) , prt , η

r)
}

(3.16)

where subscripts f, v, and t denote fixed, variable, and transmission powers

respectively. For the sake of simplicity, we do not consider any stray losses,

e.g., feeder loss and connector loss, as they are negligible for the purpose of this

analysis. The variable power consumption within each sector or SC further

depends on the transmission power pst and prt , the traffic loading factors for

sectors and SCs (between 0 to 1) ηs and ηr, respectively, and antenna gain G

of the sectors and SCs respectively. Furthermore, antenna gain is a function

of antenna efficiency ζ and directivity D. The directivity of the antenna

determines its gain and hence the transmission power required to provide a

certain coverage and service level. For almost all commercial antennas used

in cellular systems, the directivity can be approximated as follows [50]:

D ≈
4π

ϕhϕv
(3.17)

In commercial cellular systems, the typical vertical beam width of an antenna

is approximately ϕv ≈ π/18 radians, and the horizontal beam width depends

on the number of sectors per access point. For a BS with three sectors and six

sectors, beam widths of around 70o and 35o respectively are generally used.

Using µ, defined above as the factor determining the overlap between the

adjacent sectors, we can write the horizontal beam width as a function of Sb

as ϕh = 2πµ/Sb. Using these values of ϕh and ϕv, (3.17) can be written as

follows:

D ≈
36Sb
µπ

(3.18)

The typical value of µ can be assumed to be µ = 1.1. To achieve a desired
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effective isotropic radiated power (EIRP) in the coverage area, less transmis-

sion power pt will be required for antennas with higher gains, as indicated

below:

EIRP = ζ ×D × pt (3.19)

If pd is the power required to achieve the desired EIRPd with an omnidirec-

tional antenna, then

pd =
EIRPd
ζD

(3.20)

Therefore, for a given coverage level, if more sectors per site are used, then

less transmission power per sector would be required due to high directivity

and hence higher gains of the antennas. The variable circuit power per sector

for the desired EIRPd can thus be written in dB as follows:

psv = 10 log10 p
s
d − 10 log10

(
2ζsSb
µϕv

)

+ 10 log10 η
s (3.21)

Similarly, the variable circuit power on an SC can be written as follows:

prv = 10 log10 p
r
d − 10 log10

(
2ζr

ϕv

)

+ 10 log10 η
r (3.22)

Substituting (3.21)-(3.22) to (3.16) and re-arranging, we obtain (3.23):

Ω =

(
Sb∑

s=1

{

psf + µ

(
ηsϕsvp

s
d

2ζsSb

)}

+
R∑

r=1

{

prf +
ηrϕrvp

r
d

2ζr

})

(3.23)

Ω

Υ
=

(∑Sb
s=1

{
psf + µ

(
ηsϕsvp

s
d

2ζsSb

)}
+
∑R

r=1

{
prf +

ηrϕrvp
r
d

2ζr

})

∑L
l=0

(
MCEl ×

Ql
Q

)
×Υf

(3.24)

Equation (3.23), on one hand, provides a simple metric to quantify the power

consumption in an NTC as a function of the number of sectors per site, the

number of SCs per site, transmission powers, sector overlap, and antenna
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Table 3.1: Modeling parameters
Parameters Values

System topology 19 sites (1-6 sector/site)
BS transmission power 39 dBm
BS Inter site distance 1200 meters

BS height 32 meters
User antenna 0 dB (Omini directional)

BS antenna vertical beam width 100

BS antenna horizontal gain weight 0.5
BS antenna vertical gain weight 0.5

BS antenna maximum gain 18 dB
BS antenna maximum attenuation 20 dB

Frequency 2 GHz
Path loss model Cost Hata
Shadowing STD 8 dB

beam widths. This metric also takes into account an additional factor, namely,

the traffic load factor, which is not a direct part of NTCs but can heavily affect

the power consumption. The split ratio between the fixed power consumption

and transmission power can be used to model various BS types as well. On

the other hand, equation (3.24) provides a metric to quantify the long-term

average energy consumption in Joules
bits

for a given NTC.

3.4 Performance Evaluation of Different NTCs

In this section we evaluate the performance of a range of potential NTCs using

the PCF.

3.4.1 System Model for Performance Evaluation

A total of 26 NTCs with generally feasible combinations of key NTC parame-

ters F , S, and R (see Fig. 3.3) are evaluated while other parameters are kept

fixed at the values listed in Table 3.1. Two tiers of cells are modeled for each

NTC to consider a realistic amount of interference in a multi-cellular scenario.

Shadowing and appropriate path loss models for BSs and SCs similar to [51]

are used to model a realistic cellular system environment. In SC-CS, SCs are

located at half of the inter-site distance, where the SINR is minimum, i.e.,

where the far end corners of adjacent sectors join. To map the SINR γq to

the long-term average link spectral efficiency, we refer to SINR thresholds for
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Fig. 3.3: Twenty-six different NTCs with varying S, F and R, which are investigated in
this chapter. Dots in the center of each site represent base station locations. Oval shapes
represent sectors, and small circular shapes represent small cells attached to a site. Filling
patterns represent the frequency reuse pattern whereas arrows represent backhaul links

between base stations and small cells.
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MCSs used in LTE. A given NTC is denoted by the number of sectors per

site S, frequency reuse F , and the number of SCs per site R. Thus, e.g., an

NTC denoted by "25. S = 6, F = 3, R = 3" means that NTC no. 25 has six

sectors per site, and the spectrum allocated to BS (after splitting with SC) is

divided into three equal parts; each part is allocated to three adjacent sectors,

and the pattern is repeated for the other three sectors on the site such that

sectors using the same spectrum are pointing in opposite directions to each

other and the site has three SCs. Thus, in NTC 25 the spectrum is reused

Υf = ρb × S
F + ρr ×R = 0.5× 6

3
+ 0.5× 3 = 2.5 times within a site area. For

brevity, the analysis hereafter will use ΥMCEe as a measure of capacity and Λ

as a measure to reflect SAF.

3.4.2 Analyzing Capacity Wise Performance

Fig. 3.4 plots Υ, Λ, and Ω evaluated for all 26 NTCs under consideration,

normalized by their maximum values. It can be seen that different NTCs offer

different trade-offs among different KPIs. For ease of discussion while probing

into these trade-offs, we first focus on NTCs 9-12, all with S = 6. It can be

seen that from NTC = 9 to NTC = 12, as frequency reuse is made less tight

with other parameters being fixed, the overall capacity of the system, i.e., Υ,

still increases (see Fig. 3.4). This is because the increase in ΥMCEe due to

decreased interference overweighs the loss in Υf . As a net result, Υ is hence

larger in NTC = 10, 11, 12 compared to NTC = 9. However, there is a payoff

of this gain. It can be seen that Λ ( i.e., SAF) continuously decreases from

NTC = 9 to NTC = 12. The reason for this will be discussed in the next

subsection. By comparing the Υ for SC-CS with that for CS, it can be easily

seen that SCs bring a significant improvement in overall capacity. There are

two reasons for this improvement. First, the much smaller height and lower
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Fig. 3.4: Comparison of different NTCs in terms of their capacity Υ, service area fairness
Λ and power consumption Ω

transmission power of SC causes and suffer from much lesser interference,

resulting in a better ΥMCEe . Second, in addition to a higher ΥMCEe, there

is another positive contribution of SCs towards a higher Υ that is explained

as follows: Let us assume that three SCs are working in a cell. In this case,

the spectrum is divided into two parts for sharing between a BS and SC. This

reduces Υf by half only, compared to a scenario with three sectors where Υf

will be reduced by a factor of 3. These two reasons together make an SC

a more advantageous method to boost capacity, compared to adding more

sectors. However, there is a payoff for this gain in capacity achieved by SC in

terms of both SAF as well as power consumption. It can be seen from Fig.

3.4 that SC-CS in general has a lower SAF and higher power consumption

compared to CS.
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3.4.3 Analyzing SAF

From the results in Fig. 3.4, it can be noted that the SAF increases with

an increase in the number of sectors, but it decreases with an increase in F

(or in other words, a decrease in Υf ). This is because increasing the number

of sectors in general decreases the cell edge interference, thereby making the

geographical distribution of data rates more uniform in a cell. A low Υf

means less intra-site reuse, and interference consequently comes primarily

from adjacent sites rather than adjacent sectors, leading to classic scenarios

where cell edge experience much more interference and hence a lower SAF

than cell center users. On the other hand, SAF in SC-CS is noticeably lower

than that in CS due to the drastic change in distribution of data rates brought

by SCs.

3.4.4 Analyzing Power Consumption

It is clear from results in Fig. 3.4 that, as expected, total power consumption

increases as both the mean of increasing capacity, i.e., sectors, or SCs are

added. Therefore, even though SCs offer suitable means to increase capacity,

as seen above, a slightly higher power consumption is another payoff for them

in addition to a poorer SAF. Fig. 3.5 plot the total power consumptions for

a range of R and S using (3.23) and the preceding analysis. ηs = ηr = 1

is assumed because we are considering a full load scenario. The antenna

efficiency of commercial antennas is used, i.e., ζ = 60%. P s
f = 15W, with

P r
f = 0.5P s

f is used for the reasons explained in [14]. It can be seen that

in addition to the spectral efficiency and spatial fairness of data rates, power

consumption also varies with S and R, and it thus adds a third dimension

to the capacity-QoS trade-off in dimensioning NTCs. Fig 3.5 illustrates that

power consumption per site increases more rapidly with an increase in the

52



Fig. 3.5: Total power consumption per site

number of SCs (i.e., R) than an increase in the number of sectors per site

(i.e., S). This is mainly because each SC has an omnidirectional antenna, so

there is no compensating factor as in the case of sectors.

3.4.5 Trade-Off between the Three Performance Aspects

Finally, from the results in Fig. 3.4, it can be seen that no single NTC is

simultaneously optimal in all three performance aspects. Here, the key obser-

vation is that there exists a certain pareto optimality in which one objective

generally improves only with a loss in another. Therefore, the PCF’s capabil-

ity to precisely quantify this trade-off with computation efficiency can actually

help to design an NTC that is optimal for simultaneously meeting the mul-

tiple CSO objectives in an operator’s intended order of priority. Although a

regular topology has been assumed in the analysis for the sake of simplicity,

in cases of realistic irregular topologies, the PCF can build on the real user

MDT reports, and the KPIs produced by the PCF and hence the optimal

NTCs determined will consequently still be optimal for real networks.
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3.5 Application of PCF in Holistic Optimization

Despite the fact that the PCF can reduce τe and thus can reduce the overall

solution time, the holistic optimization of all parameters together remains

a daunting task. In this section, we propose a simple three-step heuristic

algorithm for a SON engine to simplify the holistic optimization by using the

PCF.

3.5.1 Classify Parameters, Prioritize Objectives and Solve Sub-

problems: A Pragmatic Heuristic for Holistic Optimization

The CPS algorithm has the following three steps:

1. Classify the parameters of interests into hierarchical groups based on

their impact on the KPIs. For example, parameters that substantially

determine network performance can be classified into a group named

gross parameters (GPs), and parameters that fine-tune network perfor-

mance can be placed in another group called fine tuning parameters

(FTPs). This grouping can be done by examining the role of a particu-

lar parameter through the PCF.

2. Prioritize the objectives, which involves modeling the optimization ob-

jective of the holistic CSO problem using the PCF. This modeling should

reflect the operator’s priorities for each KPI. This step will be explained

in detail through a case study below.

3. Solve the subproblem.

(a) Starting with the highest group in the parameter hierarchy (resulted

from step 1), optimize the objective function defined in step 2 for

the parameters in this group, considering it as a subproblem that is

independent of the groups below it.
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i. To solve this optimization sub-problem, normalize the KPIs to

make them unitless in order to bring them to the same scale.

ii. Use these normalized values of the KPIs in the objective function

defined in step 2 and solve the subproblem using an exhaustive

search or metaheuristics depending on the parameter group size.

(b) Once a group of parameters is optimized, lock all parameters in that

group at their optimal values, and repeat step 3 for the lower groups

until all groups are optimized.

The CPS algorithm is further explained below through a case study.

3.5.2 A Case Study for CPS

As a case study, we consider the joint optimization of four key NTC param-

eters, namely F , S, R, and θ, which have been largely overlooked in the

literature. The CSO problem under consideration can thus be written as

follows:
max
F,S,R,θ

{Υ (F, S,R, θ) ,Λ (F, S,R, θ) ,Ω (F, S,R)} (3.25)

From the previous section, we know that no single NTC is optimal for Υ, Λ,

and Ω simultaneously. This also implies that (3.25) is non-convex and hence

difficult to solve with analytical approaches. Below, we apply the CPS to find

a solution with low complexity. We place F , S, and R in the GPs group and

θ in the FTP group. This grouping is quite intuitive and can also be inferred

from the expressions in (3.5) and (3.6), which demonstrate that F , S and R

have a more profound impact on the SINR and hence the KPIs associated

with it than θ.
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Optimizing GPs

The GP optimization problem can be written as follows:

max
F,S,R
{Υ (F, S,R) ,Λ (F, S,R) ,Ω (F, S,R)} (3.26)

Since the mutual priority of these objectives and their target values are

strongly dependent on the operator’s policy [4], we propose using multi-

objective optimization, as used in [52] by representing the three objectives

simultaneously as a single utility function; i.e.,

v =






vg(Υ,Λ,Ω), General Optimization

vt(Υ,Λ,Ω), Targeted Optimization

(3.27)

where the subscripts g and t denote the general and targeted cases respectively

as further explained below:

1. Case 1 (General Optimization): This case represents a scenario in which

the operator has no specific target values for the KPIs but has a certain

priority for each KPI. In this case, the optimization problem can be

modeled as:
max
F,S,R

υg (Υ,Λ,Ω) = max
F,S,R

(λ1Υ + λ2Λ− λ3Ω) (3.28)

This utility function can reflect the mutual priority among these objec-

tives. Below, we present some exemplary rules to manifest these priori-

ties:

(a) If the operator has equal priority for all the KPIs, then, in (3.28),

set the following

λ1 = λ2 = λ3 = 1/3 (3.29)

(b) If the operator wants to maximize a specific objective (the dth ob-

jective), while neglecting others, then in (3.28), set the following
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λi =






1 if i = d , i = 1, 2, 3

0 otherwise

(3.30)

(c) If the operator has a specific priority for each objective, it can be

represented by weights such that

λ1 + λ2 + λ3 = 1 (3.31)

2. Case 2 (Targeted Optimization): This case represents the scenario where

the operator has specific target values to be achieved in each performance

aspect. In this case, the optimization problem can be written as (3.32):

min
F,S,R

υt (Υ,Λ,Ω) = min
F,S,R

∣
∣
∣
∣

√
λ1 (Υ−Υt)

2 + λ2 (Λ− Λt)
2 + λ3 (Ω− Ωt)

2

∣
∣
∣
∣

(3.32)

The rules for utility adaptation are as follows:

(a) If the operator wants to achieve desired targets in each metric with

the same priority, then substitute (3.29) in (3.32).

(b) If the operator has a desired target value in one objective but has

no priority in others, then substitute (3.30) in (3.32).

(c) If the operator has specific values of each metric as targets but a

different priority for each target to be met, then substitute (3.31) in

(3.32).

Fig. 3.4 provides the solution space for the problem in (3.26), obtained by

the normalization of the KPIs with their respective maximum values.

Fig. 3.6 plots utility υg for four sets of different objective priorities. With

an equal priority of all three objectives, we can see that the GP values in

NTC = 9 are optimal. When capacity has the highest priority i.e., 80%, and

fairness and power consumption have lower and equal priorities of 10% each,
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the GP values in NTC = 22 are optimal. On the other hand, when fairness

has highest importance, i.e., 80%, and capacity and power consumption have

lower and equal priorities of 10% each, the GP values in NTC = 9 become

optimal. When power consumption is the most important target, with an 80%

importance factor, and fairness and spectral efficiency are lower priorities, with

an importance of just 10% each, the optimal GP choice is given by NTC=1.

Fig. 3.7 plots υt for three different sets of target values of the three objec-

tives, each having the same priority, i.e., λ1 = λ2 = λ3 = 1/3. The first case

(blue) represents the CSO scenario when the operator wants both capacity

and fairness-wise performance to be closest to their absolute optimal values

but has some flexibility in power consumption. In this case out of the 26

GP combinations explored, the optimal solution is NTC = 4. The second

case (red), represents a scenario in which the power is needed to be closest

to optimal, followed by spectral efficiency, and finally fairness. Now the NTC

= 5 can be seen to be the optimal solution. The last case (green) represents

scenarios where the operator wants SAF to be closest to its absolute optimal

and can tolerate middle level performance in capacity, followed by power con-

sumption. In this case, NTC = 9 provides the optimal GP values to meet

these priorities.

Optimizing FTPs:

Assuming the operator’s business model requires all three KPIs to be equally

important, this policy will be modeled with utility 1, with λ1 = λ2 = λ3 = 1/3.

In this case, the GP optimization, i.e., the solution to the subproblem in (3.26),

will return a solution (F = 1, S = 6, R = 0). The next step in the holistic

CSO problem, according to the CPS algorithm, can now be written as follows:
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Fig. 3.6: Solution space for general optimization

Fig. 3.7: Solution space for targeted optimization
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max
θ
{λ1Υ (γ (θ)) + λ2Λ (γ (θ))} (3.33)

Note that since Ω is not a function of θ, it does not have to be included in the

optimization problem. The KPIs Υ and Λ are functions of SINR γ, which is

a further function of θ, which is a vector of the tilt angles of all sectors in the

system, as modeled in (3.5). Note that in our particular case, each site has the

same F and S. Therefore, from the insights obtained from (3.5), it is clear that

optimal tilt angles, being dependent on height as well as S and F (GPs), will

be the same across the network. With this additional simplification, the PCF

can be used to quickly draw the solution space of (3.33), which is presented

in Fig. 3.8. It can be seen that, again, there is a strong trade-off between

the two KPIs, and no single tilt is optimal for both Υ and Λ. Using the same

utility-based approach as proposed above, namely the optimal value of the

FTP that meets the operator’s defined objective, the solution can be easily

found. For example, in a case where λ1 = λ2 reflects the operator’s priorities,

the solution is θ = 140. The solution to our CSO problem in (3.25), for given

KPI priorities set by the operator, is thus (F = 1, S = 6, R = 0, θ = 14).

3.5.3 Complexity of PCF and CPS based holistic CSO approach

Since the grouping of parameters substantially reduces the search space size,

and the PCF reduces τe compared to traditional dynamic simulation-based

SON approaches, the CPS algorithm can greatly reduce the solution complex-

ity of the holistic CSO problem. More specifically, if a conventional approach

takes time τ =

(
VM

ε

)

1/τe
to solve the CPS problem with M optimization param-

eters, each of which can take V different values, then the CPS will take the

following amount of time:
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Fig. 3.8: Υ, Λ and optimization objective function of tilt angle, for NTC = 9

τ ′ =
τ

( VM

∑G
i=0(V

M
gi )
× τe

τ ′e
)

(3.34)

where τ ′e is the time required for the individual evaluation of KPIs using the

PCF and G is the number of groups in which CPS divides the parameters.

This generally implies that τ >> τ ′. For our particular case study, the feasible

combinations of F , S, and R were as low as 26, and τ ′e on a regular desktop

computer was less than 1 second. Therefore, it took less than a minute to

explore the search space for GPs and almost the same time for FTPs.

3.6 Conclusion

This chapter presented a framework to quantify, analyze, and optimize the

three major KPIs–capacity, SAF and power consumption–used for the holis-

tic optimization of SON-enabled heterogeneous cellular systems. The PCF

proposed in this contribution can model the KPIs of interest as functions of
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a comprehensive set of optimization parameters such as the spectrum reuse

factor, the number of sectors per site, the number of SCs per site, adaptive

coding, and modulation. The metrics derived in the PCF can be quickly

evaluated semi-analytically, and they can thus facilitate a solution to the

multi-objective, holistic optimization problem that is otherwise tackled using

black-box type complex dynamic simulation models. Using the PCF, we also

evaluated and compared 26 different network topologies and quantified their

relative gains. We analyzed the respective trade-offs offered by each NTC in

terms of capacity, SAF and power consumption. Our results demonstrated

that contrary to common notion, NTCs with the highest spectrum efficiency

are not necessarily those that resort to full frequency reuse. The insights

obtained by the proposed framework can help to address new requirements

from future heterogeneous cellular networks. Building on these insights, we

proposed a heuristic CPS algorithm for holistic optimization. Through a case

study, we demonstrated how the PCF and CPS together can be used for a

wide range of cellular optimization scenarios with low complexity.
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CHAPTER 4

Spatiotemporal Mobility Prediction

The more unpredictable the world is the

more we rely on predictions.

Steve Rivkin

In this chapter, we present a contribution in the area of mobility prediction

as an enabler of proactive SONs in cellular networks. We develop and analyze

a semi-Markov model-based spatio-temporal mobility prediction model. The

proposed mobility prediction model overcomes the limitation of conventional

DTMC-based prediction models that fail to incorporate the time dimension,

i.e., "Time of next HO." Next, we propose a novel method to map the next

cell spatiotemporal HO information to the estimated future location coordi-

nates based on the idea of Landmarks. This novel method further increases

the spatial resolution of the future location estimation without requiring an

increase in the number of states for the semi-Markov model. The accuracy of

the proposed model is quantified through experimental evaluation, leveraging

real network traces generated by smartphone applications as well as through

simulations.

4.1 Introduction

Mobility is the raison d’être of wireless cellular networks. However, the

planned design of future wireless networks namely 5G resorts to extreme cell

densification. This design is antagonistic to capability of cellular networks for

seamlessly supporting user mobility. This challenge has been recognized as

63



Fig. 4.1: Mobility prediction in cellular network

one of the major hurdles in the successful realization and deployment of 5G

cellular technology. This chapter presents a truly revolutionary approach that

transforms mobility from a bane of the cellular industry into a blessing. The

main idea behind the proposed approach is to first develop robust models to

predict certain attributes of user mobility and then exploit these attributes

to ultimately develop the foundations for the much needed next generation

mobility management proactive SON. This proactivity is achievable through

anticipating user behavior and predicting a future network state by exploiting

historical network information referred to as big data. Endowed with these

proactive predictive capabilities, network resources can be pre-allocated more

intelligently and in a more efficient manner than ever before [5].

User mobility prediction is one of the core ingredients of the proactive SON

paradigm; it predicts the future locations of users in terms of the associated

BSs (see Fig. 4.1). This enables the reservation of network resources in

future identified cells for a seamless handover experience as well as for traffic

forecasting purposes that drive SON functions like ES, LB etc.

Our rationale for building and utilizing mobility prediction is backed by a

landmark study that analyzed real data for 10 million mobile users [53] and

revealed that typical human mobility features 93% average predictability. The

mobility prediction model developed in this contribution exploits the following

idea: transition probability to a next cell can be predicted by modeling user

transition from one cell to another as a Markov stochastic process and using
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HO history to estimate state transition probabilities. The DTMC has been

commonly used in the literature for mobility prediction purposes [54, 55, 56].

Compared to more complex and more space-consuming compression-based

predictors, the Markov-based scheme can yield a more scalable solution, as

it does not need to store users’ past movements. Instead, the crux of this

information is captured by transition probabilities. However, the DTMC is

memory-less and assumes that sojourn time is geometrically distributed and

that each transition takes place in one unit of time. Considering these limita-

tions of the DTMC model, the aforementioned works have utilized the DTMC

for only spatial prediction, i.e., the identification of a future cell only, with-

out any information about the time at which a handover may take place.

The CTMC is the DTMC’s continuous counter part and it can be utilized

for mobility prediction if human mobility is assumed to be memory-less and

if cell sojourn time is assumed to be exponentially distributed. As per [57],

human mobility exhibits a memory property and can be best approximated

with power law (heavy tailed) distribution instead of memory-less exponen-

tial distributions. The semi-Markov model is fortunately an advanced class

of Markov models that allows for arbitrary distributed sojourn times. Few

recent works have characterized the prediction accuracy performance of the

semi-Markov based model for mobility prediction [58, 59]. However, the afore-

mentioned relevant studies utilized historic, publicly available WLAN traces,

not cellular network mobility traces. Those WLAN mobility traces exhibit

large sojourn times due to relatively fewer mobility dynamics in WLAN com-

pared to a cellular network. Therefore, the conclusions drawn from these

WLAN studies cannot be directly applied to current cellular networks, such

as LTE, where the device form factor and user behavior are drastically differ-

ent than those of WLAN users in 2004. The study presented in this chapter
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Fig. 4.2: Probability state transition diagram

fills this gap. We gather real LTE network’s mobility traces in live cellular net-

work using a state-of-the-art application. These traces exhibit highly dynamic

characteristics that are intrinsic to the cellular network, and they thus enable

a realistic evaluation of the prediction accuracy of the semi-Markov-based

method for cellular network mobility. Another contribution of this chapter is

that instead of relying on historic public datasets, we use a novel methodol-

ogy of employing smartphone applications, based on the idea of participatory

sensing, to collect real LTE network data for building, training, and evaluat-

ing the performance of mobility prediction schemes in a live network. We also

present a method of quantifying the gains of mobility prediction techniques

from the perspective of proactive SON-enabled cellular networks.

4.2 Mobility Prediction Model

We begin by modeling user mobility as a semi-Markov renewal process {(Xn, Tn) :

n ≥ 0} with discrete state space C = 1, 2, 3 . . . , z, where Tn is the time of the

nth transition, Xn is the state at the nth transition and the total of z cells

[60]. Each cell is represented by the state of the semi-Markov process, and a

handover from one cell to another is considered to be a state transition. It

is assumed that the process is time-homogeneous during the time period in

which the model is built. Fig. 4.2 displays a state transition diagram for the

semi-Markov model, wherein pi,j is the probability of transition from cell i to
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j. The associated time-homogeneous semi-Markov kernel for user "u" which

is the probability of transition to the jth cell if the user has already spent time

t in the ith cell, is defined as follows:

ψ
(u)
i,j (t) = Pr(X

(u)
n+1 = j, T

(u)
n+1 − T

(u)
n ≤ t|X(u)

n = i) = p
(u)
i,j Γ

(u)
i,j (t) (4.1)

where
p

(u)
i,j = lim

t→∞
ψ

(u)
i,j (t) = Pr(X

(u)
n+1 = j|X(u)

n = i), p
(u)
i,j ∈ P

(u) (4.2)

and
Γ

(u)
i,j (t) = Pr(T

(u)
n+1 − T

(u)
n ≤ t|X(u)

n+1 = j,X (u)
n = i) (4.3)

Here, p(u)
i,j is the probability of handover of user "u" from cell i to j, P(u) is

the probability transition matrix of the embedded Markov chain of user "u"

given as

P(u) =












p
(u)
1,1 p

(u)
1,2 · · · p

(u)
1,z

p
(u)
2,1 p

(u)
2,2 · · · p

(u)
2,z

...
...

...
...

p
(u)
z,1 p

(u)
z,2 · · · p

(u)
z,z












(4.4)

and Γ
(u)
i,j (t) is the sojourn time distribution of user "u" in cell i when the next

cell is j. It is important to note here that the handover from a cell to itself

is not allowed; therefore, the diagonals of the matrix P (u) will all be zeros,

and the matrix will be a hollow matrix. Furthermore, direct handovers are

possible between neighboring cells only. The probability of user "u" in cell

i leaving cell i before or at time t, regardless of the next cell is defined as

follows:

Λ
(u)
i (t) = Pr(T

(u)
n+1 − T

(u)
n ≤ t|X(u)

n = i) =
z∑

j=1

ψ
(u)
i,j (t) (4.5)

Now the time-homogeneous semi-Markov process of user "u" is defined as

X = (Xt, t ∈ R+
0 ) with state transients as follows:
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χ
(u)
i,j (t) = Pr(X

(u)
t = j|X(u)

0 = i) (4.6)

= (1− Λ(u)
i (t))δi,j +

z∑

m=1

∫ t

0

χ
(u)
m,j(t− τ)dψ

(u)
i,m(τ) (4.7)

= (1− Λ(u)
i (t))δi,j +

z∑

m=1

∫ t

0

dψ
(u)
i,m(τ)

dτ
χ

(u)
m,j(t− τ)dτ (4.8)

where δi,j is the Kronecker function defined as:

δi,j =






0 , i 6= j

1 , i = j

(4.9)

Integral equation (4.8) is Volterra equations of second kind and the integral is

the convolution of ψ(u)
i,m(.) and χ(u)

m,j(.); i.e., ψ
(u)
i,m ∗χ

(u)
m,j . It gives the probability

that user "u" starting in cell i, will be in cell j by t. The first part of the

right-hand side of the equation is the probability that the user, being in cell

i, never leaves cell i until the end of the period t. The second part of the

right-hand side of the equation accounts for all cases in which the transition

from i to j occurs via another cell m 6=i applying the renewal argument. First,

the probability of the user staying in cell i for a period of length τ and then

going to cell m is given by ψ
(u)
i,m(τ). The handover to this new cell m can

be interpreted as a renewal of the process because the expected behavior of

the user from then on is the same irrespective of when the user enters cell

m. Therefore, the probability of the user, who is in cell m at τ, being in cell

j at t is given by χ
(u)
m,j(t − τ). As the transition from i to m can occur at

anytime between 0 and t, all possible transition times are considered by the

integration over τ [61]. The numerical solution to solve evolution equation

(4.8) is given by [62], and we implement the same approach. The evolution

equation (4.8) can be re-written for discrete-time homogeneous semi-Markov

process as follows:
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χ
(u)
i,j (k) = h

(u)
i,j (k) +

z∑

m=1

k∑

τ=1

σ
(u)
i,m(τ)χ

(u)
m,j(k − τ) (4.10)

where h(u)
i,j (k) = (1 − Λ(u)

i (t))δi,j and σ(u)
i,m(k) =

dψ
(u)
i,m(τ)

dτ
can be approximated

as follows, assuming that the time step is equal to the unit:

σ
(u)
i,m(k) =






ψ
(u)
i,m(1), k = 1

ψ
(u)
i,m(k)− ψ(u)

i,m(k − 1), k > 1

(4.11)

Since P(u) is a right stochastic matrix, ψ(u)(k) and χ(u)(k) will also be right

stochastic matrices; i.e.,
∑z

j=1 ψ
(u)
i,j (k) =

∑z
j=1 χ

(u)
i,j (k) = 1, ∀i, j ∈ C. The

χ
(u)
i,j (k) indicates the probability of user "u" being in cell j after k amount of

time from the time instant when he/she made the transition from somewhere

to cell i. However, to predict the location of a user at every k′ time steps, we

have to estimate the probability χ̂(u)
i,j (k′, s) = P (X

(u)
s+k′ = j|X(u)

0 = i, tsoj = s),

i.e., the probability of a user being in cell j after k′ time, given that the current

cell is i and the user has stayed in cell i for sojourn time tsoj = s. It can be

evaluated as [58] below:

χ̂
(u)
i,j (k′, s) =

P (X
(u)
s+k′ = j, tsoj = s,X

(u)
0 = i)

P (X
(u)
0 = i, tsoj = s)

(4.12)

=
P (X

(u)
s+k′ = j, tsoj = s|X(u)

0 = i)P (X
(u)
0 = i)

P (X
(u)
0 = i, tsoj = s)

(4.13)

=
P (X

(u)
s+k′ = j, tsoj = s|X(u)

0 = i)P (X
(u)
0 = i)

P (tsoj = s|X(u)
0 = i)P (X

(u)
0 = i)

(4.14)

=
P (X

(u)
s+k′ = j, tsoj = s|X(u)

0 = i)

P (tsoj = s|X(u)
0 = i)

(4.15)

=
h

(u)
i,j (s+ k′) +

∑z
m=1

∑s+k′

τ=s+1 σ
(u)
i,m(τ)χ

(u)
m,j(s+ k′ − τ)

1− Λ(u)
i (s)

(4.16)

Note that for s = 0 : χ̂
(u)
i,j (k′, s) = χ

(u)
i,j (k). We will also leverage the steady-
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state distribution of the semi-Markov model to analyze the long-term cell

association of the users. This can help to identify the cells where users spend

most of their time, and it can be further utilized to validate our proposed

framework. The steady-state distribution of the semi-Markov model, i.e.,

∆(u) = [∆
(u)
1 ,∆

(u)
2 ,∆

(u)
3 , ...,∆

(u)
z ], is given as follows:

∆
(u)
j =

ϑ
(u)
j ξ

(u)
j

∑z
i=1 ϑ

(u)
i ξ

(u)
i

(4.17)

where [ϑ
(u)
1 , ϑ

(u)
2 , ϑ

(u)
3 , ..., ϑ

(u)
z ] is a positive solution to the following balance

equations:
ϑ

(u)
j =

z∑

i=1

ϑ
(u)
i p

(u)
i,j , 1 ≤ j ≤ z (4.18)

z∑

i=1

ϑ
(u)
i = 1 (4.19)

and ξ(u)
j , 1 ≤ j ≤ z is the mean sojourn time of user "u" in cell j. Utilizing the

past handover history of user "u" <time, Cell ID>, the probability transition

matrix P(u) and sojourn time distribution matrix Γ(u) are initialized as follows

[63]:
p

(u)
i,j =

N
(u)
i,j

N
(u)
i

(4.20)

and
Γ

(u)
i,j (k) =

N
(u)
i,j,k

N
(u)
i,j

(4.21)

where N (u)
i,j is the number of handovers of user "u" from cell i to j, N (u)

i,j,k is the

number of handovers of user "u from cell i to j with a sojourn time less than

or equal to k, and N (u)
i is the total number of handovers of user "u" from cell

i. Whenever there is a handover from cell i to j, p(u)
i,j and Γ

(u)
i,j (k) are updated

and ψ(u)
i,j (k) is solved. Finally χ(u)

i,j (k) and χ̂(u)
i,j (k′, s) are computed. The cell

with the highest probability is chosen as the predicted future destination, i.e.,

max χ̂
(u)
i,j (k′, s)

j∈Ni

where Ni is the set of all neighboring cells of cell i. In this

way, after every k′ time steps, the next HO tuple information for each UE
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{CuN ,T
u
HO} is generated wherein CuN is next probable cell of user "u" at time

TuHO.

4.3 Future Location Estimation

Let the UE’s current location coordinates at time instant k be luk = (xuk , y
u
k )

and the next cell HO tuple information for each UE be {CuN ,T
u
HO}. The

next task is to utilize this information for estimating the UE’s future location

coordinates in the next time step k+ k′. Inspired by observation [64, 65] that

users in a network usually move around a set of well-visited landmarks with

landmark trajectory being fairly regular, we utilize the past mobility logs of

UEs to estimate the most probable landmarks visited by each UE in each cell.

This information is then utilized to estimate the direction of trajectory from

the current location, while the distance to be travelled in that direction is

estimated using the next cell HO time THO. Let the coordinates of the most

probable landmark for UE "u" in the next cell CuN be lLMCuN = (xLMCuN , y
LM
CuN

), then

a unit vector û originating from the current coordinates in the direction of

(xLMCuN , y
LM
CuN

) is given as follows:

û =
[lLMCuN − l

u
k ]

||(lLMCuN − l
u
k)||

(4.22)

where ||.|| is the Euclidian norm operator. The future coordinates at time

step k + k′ can be estimated as follows:

luk+k′ = luk +

√
(xLMCuN

− xuk)
2 + (yLMCuN

− yuk )2

T uHO
∗ k′ ∗ û (4.23)

The pseudocode for the next location estimation algorithm is given in Algo-

rithm 1 in appendix.
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4.4 Experimental Evaluation

To realistically evaluate the proposed framework, we conducted an experi-

mental study based on participatory sensing to analyze the applicability of

the proposed model. In this experimental evaluation, the mobility pattern of

a graduate student at the University of Oklahoma, Tulsa Campus, was logged

for a month period in the Tulsa Campus region. The data gathered through

the student’s phone were used to build a semi-Markov model. This model was

then used to predict his mobility pattern for the next whole week. The an-

droid application “LTE Discovery” was installed on the student’s smartphone

to continuously log the user’s handover information. Once activated, the ap-

plication continued to run in the background and updated the handover log

whenever the user moved to some new cell. The logged information contains

a time stamp and a new cell ID. In some places, such as indoor offices and

cell overlapping regions, the test subject’s equipment experienced a ping pong

effect. The mobility history log was preprocessed to remove such entries, as

has been done in [58], and only stable entries were utilized to build the semi-

Markov model. Based on the recorded data set, four BSs were identified in the

campus region, herein anonymously named A, B, C, and D. Two semi-Markov

models were built (I and II) with time intervals of 1 hour and a quarter of an

hour (15 minutes) respectively. A mobility pattern was predicted up to next

3-hour period. The sojourn time distribution matrix Γ(u) was computed for

the test subject as done in [66]. Network scenario settings are listed in Table

4.1.

For prediction accuracy, each time the user entered a new cell, we calculated

the probability of future locations for the next 3-hour period using the two

semi-Markov models, and we compared it with actual mobility pattern. The
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Table 4.1: Network scenario settings

No. Parameter Value

1 No. of Cells 4

2 Mean Sojourn Time (hours) A: 0.33, B: 0.07, C: 2.95, D: 13.98

3 Speed (miles/hour) max: 20

4 Prediction Interval (hour) 1/4, 1

5 Avg. no. of HOs ( per day) 9

6 Area (sq. meters) 3000

Fig. 4.3: Prediction accuracy

prediction accuracy results for each individual cell are presented in Fig. 4.3.

As per the results, a minimum of approximately 50% and a maximum of 90%

accuracy were achieved. The test subject had the least amount of sojourn

time–around 2 minutes on average–in cell B, corresponding to the parking

area, and it affected the training of sojourn time matrix; therefore, its pre-

diction accuracy was the lowest. The user spent a relatively large amount of

time in the rest of the cells, and the prediction accuracy was above 80% for all

of the test cases. A smaller time interval effectively provided a better resolu-

tion; however it increased the operational complexity for the same prediction

period, and the number of matrix multiplications increased. The difference in

prediction accuracies between the two models having prediction time windows

of 1 hour and a quarter of an hour, is not significant, at least for the scenario
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Fig. 4.4: (a) Semi-Markov kernel for Model II (b) Steady-state distribution

represented by our case study; therefore, the search for an optimal prediction

window size can be avoided. Choosing the next two destinations with max-

imum probabilities instead of only one significantly increases the prediction

accuracy–almost 100% in our test cases. However, this comes at the cost of

decreased resource efficiency, as resources need to be reserved in more than

one cell, and this factor amplifies in cases of incorrect predictions.

Model II’s semi-Markov kernel for cell A, plotted in Fig. 4.4a, indicates the

probability of transition of a user to neighboring cells B and C from cell A

w.r.t time. From 0 to 15 minutes, the probabilities of transition to cells B and

C are effectively the same, while from 15 minutes onwards, the probability

of transition to cell C increases compared to cell B. This can be utilized to

decide when, where, and for how long resources need to be reserved for each

user for a successful and seamless handover between the cells. For instance,

the necessary amount of resources could be initially reserved in both cells B

and C during the first 15 minutes of transition to cell A. If the user stays in

cell A for more than 15 minutes, then this could prompt the network to limit

its resource reservation thereafter in cell C only, since that is the most likely

handover to take place from the current cell.

The results for steady-state probability distribution are illustrated in Fig.

4.4(b). Accordingly, the user spends 67.86% of the time in cell D, followed by
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26.77% in cell C, 4.65% in A and only 0.7% in B. The operator can utilize

this information to identify the cells that are most likely to exhibit maximum

traffic and plan the resources accordingly. For example, if the other users of

the region exhibit a similar steady-state distribution to our test subject, then

the network operator should have maximum capacity resource provision in

cell D as compared to the other cells. It is important to highlight that the

presented results are valid only for the considered network in which data are

gathered. To be applicable to another network and set of users, the proposed

mobility prediction model needs to be trained for that network and set of

users.

4.5 Simulation Evaluation

We generated typical macro cell and SC-based network and UE distributions

leveraging an LTE 3GPP standard compliant [67] network topology simulator

in MATLAB. The simulation parameters’ details are listed in Table 4.2. We

used a wrap around model to simulate interference in an infinitely large net-

work, thereby avoiding boundary effects. To model realistic networks, UEs

were distributed non-uniformly in the coverage area such that a fraction of

UEs were clustered around randomly located hotspots in each sector. Monte

Carlo style simulation evaluations were used to estimate the average perfor-

mance of the proposed framework. The real challenge here was the selection

of a mobility trace generation model that realistically represents the behavior

of actual cellular network users. Several such models have been proposed re-

cently in literature, such as SLAW, SMOOTH, and Truncated Levy Walk [68].

Based on an extensive analysis of the pros and cons of these models, we chose

the SLAW [69] mobility model. In contrast to conventional random walk mod-

els, where movement at each instant is completely random–chosen randomly
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Table 4.2: Simulation settings
System Parameters Values

Number of Base Stations 21
Number of UEs 84
Mobility model SLAW

Prediction Interval 1 minute

from a set of allowed speeds and angles–SLAW has been shown to be a highly

realistic mobility model. It exhibits all of the characteristics of real-world

human mobility, i.e., (i) truncated power-law flights and pause-times–

the lengths of human flights that are defined to be straight line trips without

directional change or pause have a truncated power-law distribution; (ii) het-

erogeneously bounded mobility areas–people mostly move only within

their own confined areas of mobility, and different people may have widely

different mobility areas; (iii) truncated power-law inter-contact times–

the time elapsed between two successive contacts of the same persons follows

truncated power-law distribution; and (iv) fractal waypoints–people are al-

ways more attracted to more popular places. Therefore, the accuracy of the

semi-Markov-based model tested using mobility traces generated by SLAW is

very likely to represent its true performance in a real network. The SLAW

mobility model was utilized to generate the HO traces of 84 mobile users for

one week. Of that week, traces for the first six days were utilized to build

and train the semi-Markov mobility model for each of the 84 UEs. Without

loss of generality, and keeping operational complexity in mind, the prediction

interval k′ was set as 1 minute in our simulation study.

To benchmark the prediction accuracy of the semi-Markov-based model trained

on six days training data, we utilized (4.10) and (4.16) to predict the serving

cells of all UEs for the next whole day after every k′ time step. At each time

interval k, when the predicted future cell in the next time interval k′ is the

same as actual future cell, a score of 1 is given, otherwise it is 0. Accuracy is

then calculated by summing the scores for all time instants and dividing that
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Fig. 4.5: Next cell prediction accuracy

total by the number of observations. The next cell prediction accuracy results

are presented in Fig. 4.5. Accordingly, a maximum prediction accuracy of

87.70% was achieved, with a mean value of 81.46%, when choosing the top

most probable cell among all future next cell candidates (1-Cell Prediction).

The predictor performs exceptionally well, since the prediction interval is only

1 minute. This prediction can be further enhanced further by decreasing k′

interval length. Fig. 4.6 illustrates that the mean prediction accuracy (de-

noted by dotted lines) monotonically decreases with an increase in k′ interval’s

length. We could not decrease the prediction interval to less than 1 minute,

as with the computational resources available for this study, the GA that is

used to solve proactive SON functions in the upcoming chapters needed at

least this minimum amount of time to find a feasible solution. However, it

is anticipated that if more powerful computational resources are leveraged to

reduce the convergence time of the GA, then better mobility prediction ac-

curacy may be achieved. We also analyzed the effect of choosing two of the

most-probable future next cell candidates (2-Cell Prediction) instead of one.

The prediction accuracy received a slight boost, with the mean value reaching
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Fig. 4.6: Effect of prediction interval on next cell prediction accuracy

up-to 84.39%. However, this gain is not significant given that it already has

high accuracy.

Next, based on the next cell HO tuple information for each UE {CuN ,T
u
HO},

we compared the actual and predicted number of UEs per cell. Let |Uj(t+1)|

be the number of users predicted to be in cell j at time t + 1. This consists

of users who (i) just entered into cell i at time t and will be in cell j at time

t+ 1 given by the following equation:

Uj(t+ 1) := {∀u ∈ U|j = arg max(χ
(u)
i,m(k = 1))

m∈C

} (4.24)

and (ii) users who are in cell i and have stayed in cell i for sojourn time

tsoj = s and will be in cell j at time t+ 1 given by the following equation:

U′j(t+ 1) := {∀u ∈ U|j = arg max(χ̂
(u)
i,m(k′ = 1, s))
m∈C

} (4.25)

Therefore, the total number of UEs predicted to be in cell j at time t+ 1 will

be as follows:
|Uj(t+ 1)| = |Uj(t+ 1)|+ |U′j(t+ 1)| (4.26)

As evident in the Fig. 4.7, the mobility prediction model is able to predict
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Fig. 4.7: Actual and predicted number of UEs per cell

Fig. 4.8: Future location coordinates estimation performance

the number of UEs in most of the cells at the next time interval with high

accuracy. Next, based on the next cell HO tuple information for each UE

{CuN ,T
u
HO}, future location coordinates were estimated using Algorithm 1 for

all UEs for a 1 hour simulation duration after every k′ time steps. The average

estimation performance is illustrated in Fig. 4.8, according to which the maxi-

mum distance error between the estimated and actual coordinates was around

33 meters, with a mean value of around 27.5 meters. The location estimation

algorithm performed exceptionally well. One particular reason for the high

accuracy is that the SLAW model is for pedestrian users. Therefore, the loca-

tion of a user changes slowly as a function of time and thus remains relatively

more predictable. With high speed, accuracy is expected to degrade; however,

79



Fig. 4.9: Leveraging geographical knowledge for facilitating user/cell discovery

Fig. 4.10: Normal probability plot for average location estimation error

knowledge of the street/road layout can be exploited to maintain accuracy.

This idea is illustrated in Fig. 4.9, where the HO record for a user’s transition

from cell 1 to cell 7 is superposed onto a local map. With this superposition,

the spatial resolution of the HO prediction can be narrowed down from the

whole cell boundary to a narrow track, and the temporal prediction can also

be improved by incorporating the typical speed limit of the track and the

RSRP gradient into the prediction time produced by the mobility prediction

model for that user. However, this is beyond scope of this contribution and

will be the subject of a future study. The normal probability plot for the

average location estimation error is depicted in Fig. 4.10, that is basically

a plot of the ordered observations from a sample against the corresponding

percentage points from the standard normal distribution. If the data come
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from a normal distribution, then they will fall on an approximately straight

line. As per the figure, normal distribution can be good approximation of the

average location estimation error distribution.

4.6 Gain of the semi-Markov-based Mobility Prediction Frame-

work

Mobility prediction accuracy is the parameter investigated in this chapter as

the holistic performance of a proactive-SON-enabled cellular system depends

on how accurate its predictions are. The gain of the semi-Markov-based mo-

bility prediction framework (SMPF)-based cellular system can be evaluated

as follows [70]:

Gain =
λnp − λsmpf

λnp
(4.27)

where λnp is the resource utilization cost in a conventional non-predictive CS,

and λsmpf is the expected resource utilization cost for an SMPF-enabled CS

given as follows:

λsmpf = αp(RUCc) + (1− αp)(RUCic) (4.28)

Here, αp is the prediction accuracy, and RUCc and RUCic are the resource uti-

lization costs for correct and incorrect predictions respectively. These can be

handover resource reservation costs, resource block reservations for capacity,

caching and waking up next BS, among other things. An incorrect predic-

tion may degrade the overall system performance, since it reserves resources

that could otherwise be used for other users. The gains for different RUCs

with prediction accuracy are plotted in Fig. 4.11. A fixed value of 200 is

considered for λnp. In (a), when RUCc is half of a non-predictive CS (λnp),
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Fig. 4.11: Gain of SMPF vs. prediction accuracy

and RUCic is the same as λnp, then the gain is always positive and lies in the

range of (0% to 50%). When RUCic is increased to 300 in (b), then the gain

can be negative, and at 50% prediction accuracy, we obtain a gain of 0% (the

same performance as that of a non-predictive CN). When RUCc is decreased

to 25 in (c), then the gain achieved rises to the maximum. When RUCic is

also decreased to half of λnp as in (d), then the gain is always positive and

≥ 50% for all prediction accuracies. While the gain is a generic measure, and

the evaluation of specific values is beyond the scope of this contribution, it

provides a framework for assessing the gain of the SMPF and its minimum

accuracy needed to achieve any gain.

4.7 Conclusion

This chapter proposed a novel spatiotemporal mobility prediction model em-

ploying the innovative concept of estimating future user locations that in turn

can empower SON functions like ES, MLB, CCO and MRO. Experimental

and simulation evaluations demonstrated that the proposed model achieved a

high prediction accuracy of above 80% for the majority of the cells. In next

two chapters, the gain of the proposed mobility prediction framework will be
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evaluated for different SON use cases.
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CHAPTER 5

Mobility Prediction-Based, Autonomous, Proactive

Energy Saving (AURORA) Framework for Emerging

Ultra-Dense Networks

The best way to predict the future is to create it.

Abraham Lincoln

Increased network-wide energy consumption is a paramount challenge that

hinders wide-scale UDNs deployments. While several ES enhancement schemes

have recently been proposed, these schemes have one common tendency: they

operate in reactive mode; i.e., to increase ES, cells are switched ON/OFF

reactively in response to changing cell loads. Although, significant ES gains

have been reported for such ON/OFF schemes, the inherent reactiveness of

these ES schemes limits their ability to meet the extremely low latency and

high QoS expected from future cellular networks vis-à-vis 5G and beyond. To

address this challenge, in this contribution we propose a novel user mobil-

ity prediction-based, autonomous, proactive, ES (AURORA) framework for

future UDNs. Instead of passively observing changes in cell loads and then

reacting to them, AURORA uses past HO traces to determine future cell

loads. This prediction is then used to proactively schedule SC sleep cycles.

AURORA also incorporates the effect of CIOs for balancing the load between

cells to ensure QoS while maximizing ES. Extensive system-level simulations,

leveraging realistic SLAW model-based mobility traces, demonstrate that AU-

RORA can achieve a significant energy reduction gain without a noticeable

impact on QoS.
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5.1 Introduction

The current exponential mobile data traffic escalation is a precursor of an im-

minent "capacity crunch". Against backdrop, extreme network densification

through the deployment of a large number of SCs has emerged as the most

yielding solution to achieve the 1,000-fold capacity gain goal [5]. However, the

ultra-dense deployments of SCs is on a direct collision path with the econom-

ically viable and energy efficient deployment vision of 5G. This is due to the

high aggregated network energy that "always ON" SCs are bound to consume

in a UDN. In addition to a higher carbon footprint, this translates into higher

OPEX. Although SCs have a relatively low power consumption profile, the

always ON approach increases overall network-wide energy consumption [71].

This is because the load-independent power consumption (circuit power) com-

ponent in SCs constitutes a much larger portion of over-all power consumption

[72]. As a result, with the advent of UDNs, the need for ES schemes will be

even more compelling. The consensus among the research community is that

to avert a possible energy crunch in 5G and to achieve economic viability, the

1, 000× capacity increase must be achieved at a power consumption that is

similar to or lower than that of legacy networks [73].

5.1.1 Related Work

Energy consumption in cellular systems can be reduced significantly by turn-

ing OFF underutilized cells during off-peak hours or by optimizing resource

allocation such that minimum energy is consumed per bit transmission [73,

74, 75, 76]. To exploit these approaches, 3GPP has recently adopted ES as

a key SON function [77], and ES has been extensively studied in literature.

Energy-saving enhancement, with a focus on optimizing resource allocation

despite its relatively small gain compared to turning ON/OFF under-utilized
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BSs, has been studied more extensively compared to later approach [73]. Re-

source allocation optimization can reduce the energy consumption to only a

limited degree for a given system throughput target. The ES of cellular sys-

tems can be further enhanced significantly by switching under-utilized BSs to

sleep mode or turning them OFF entirely during off-peak time [74, 75, 76, 78].

In this direction of research, some recent works demonstrate promising results

in terms of potential ESs [79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92].

However, to the best of our knowledge, existing ES approaches fall short of

the mark for 5G requirements due to the following four limitations:

1. Reactive mode of operation. Conventional ES SON algorithms are

designed to switch OFF/ON cells after detecting network conditions that

have already taken effect. For example, when congestion is detected in a

network, a non-convex, NP-hard ES algorithm is usually solved to iden-

tify certain sleeping/OFF cells that should be switched ON, or using

the same process, certain cells are switched OFF when a low load is

observed in specific cells. This is an improvement on fixed-timer based

switching ON/OFF [93] which can, at best, follow a coarse, statistical,

spatio-temporal traffic pattern and thus achieves ES at the cost of QoS.

However, given the acute dynamics of the traffic and cellular environ-

ment, by the time congestion or low traffic conditions are detected, and

a realistic non-convex, NP-hard ES algorithm is solved to produce a new

network ON/OFF configuration that is optimal for the observed net-

work conditions, the conditions may have already changed. Therefore,

the newly determined switch ON/OFF vector is likely to be suboptimal

before it can be actuated. This problem can be exacerbated particularly

in 5G, where a motely of traffic and a plethora of cell types mean that

the dynamics of a cellular eco-system will be even more swift.
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2. Difficulty in meeting 5G low latency. Base stations require a certain

amount of time to wake up from a sleep cycle [94]. For a user entering a

sleeping cell, this time to wake up will add to the latency experienced by

the user. This demands a paradigm shift from the conventional reactive

design of ES algorithms towards proactive characteristics to cope with

the extremely low latency requirements of 5G in a more agile fashion.

3. Impractical cell discovery. The following is a key challenge in switch-

ing OFF-based ES schemes: how to discover an OFF cell when users en-

ter into the physical coverage area of the OFF cell. Existing ES schemes

either overlook this challenge, or propose solutions that exploit neigh-

boring cells or a master controller to wake up the cell when enough users

enter into the coverage area of the OFF cell. While this approach may

work in a low user density network with large macro cells with relatively

less stringent QoS requirements, such as LTE, it may not scale to 5G

because of signaling overhead, delays, and the cost of missing out OFF

SCs for off-loading.

4. Self-organizing networks’ conflict prone design. The other caveat

with conventional ES solutions is that they are oblivious to the fact that

multiple SON functions may be prone to hidden or undesired conflict

when implemented together in a network [95, 5]. Two SON use cases

that become highly relevant to the ES in HetNets are CCO and LB [77]

because of the overlap in their optimization parameter set: transmission

power and CIOs. When ES switches OFF some cells, it may force some

users to be associated with neighboring ON cells and overload them,

thereby conflicting with the CCO and LB SON functions. As explicated

in [95], such a conflict prone ES solution design can actually degrade a

network’s performance instead of improving it.
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Fig. 5.1: The AURORA framework

5.2 The AURORA Framework

To address the aforementioned limitations, we propose the AURORA frame-

work (Fig. 5.1) by building on the lines of a big data empowered SON frame-

work [5]. The key idea is to make emerging cellular systems artificially intel-

ligent and autonomous, so that they can anticipate user mobility behavior.

This intelligence is then used to formulate a novel ES optimization problem

that proactively schedules SC sleep cycles to divert and focus the right amount

of resources when and where needed while satisfying QoS requirements.

In this section we present the analytical model development of the AURORA

framework, whose three corner stones are as follows:

– The semi-Markov-based spatiotemporal next cell prediction, presented

in chapter 4.

– The mapping of next cell prediction to future user location estimation,

presented in chapter 4.

– Proactive-ES optimization based on future user location estimation.
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5.2.1 Network Model and Assumptions

The AURORA framework proposed in this contribution only focuses on the

downlink of cellular systems for the sake of conciseness. It is assumed that all

mobile devices and SCs have omnidirectional antennas with a constant gain

in all directions, while macro cells have directional antennas. A frequency

reuse of 1 is considered, and the same band is utilized by the macrocell and

the SCs. A full buffer traffic model is used for each user; i.e., there are

always data available to be sent for a user with a constant bit rate (CBR)

service. A centralized C-SON architecture is assumed wherein a centralized

server in the core network performs a system-wide proactive-ES optimization.

Moreover, HO traces that include the location-stamped information of past

cell transitions, such as cell IDs, RSRPs, and call detail records are assumed

to be available to the C-SON server.

5.2.2 Proactive ES Optimization

Given the next probable HO tuple and estimated future location luk+k′ for all

users determined through the semi-Markov model presented in chapter 4, we

devise an ON-OFF sleeping mechanism for SCs for the next time step k+k′ to

minimize network-wide energy consumption. The sleeping schedule is ensured

to satisfy the coverage KPI and QoS requirements of each UE located at its

estimated future location luk+k′ as well as to satisfy the maximum loading

constraint for each BS. The total instantaneous power consumption of a cell

can be given by the sum of the circuit and the transmit power as follows [72]:

P total
c = πc(P c

CT + ηc.P
c
t ) (5.1)

where P c
CT is the constant circuit power, which is drawn if a BS in cell c is

active and is significantly reduced if the BS goes into sleep mode; P c
t is the
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transmit power of cell c; ηc denotes the load; and πc is an indicator variable

that will be 1(0) for an ON(OFF) BS in cell c. One way in which to quantify

ESs is to leverage the PM criterion of the energy consumption ratio (ECR)

[96, 97]. This ECR for a cell is defined as the amount of energy consumed in

Joules per bit of information that is reliably transmitted in that cell, calculated

as follows:

ECRc =
P total
c∑

Uc
ωuB ∗ f(γcu)

(Joules/bit) (5.2)

where f(γcu) is a function that returns the achievable spectral efficiency of user

"u" at a given SINR γcu and ωuB is the bandwidth assigned to user "u". The

f(γcu) can be defined to take into account post-processing diversity gains such

as the ones harnessed by MIMO and/or the loss incurred by system-specific

overheads using f(γcu) := A log2(1 + B(γcu)). Here, A and B are constants

taken as 1 in our simulation studies without a loss of generality. The SINR γ̂cu

at an estimated user location luk+k′ at time step k + k′ when associated with

a cell c is defined as the ratio of reference signal received power P c
r,u by user

"u" from cell c to the sum of the reference signal received power by user "u"

from all cells i such that ∀i ∈ C/c, and the noise variable κ:

γ̂cu(k + k′) =

[
P c
tGuG

c
uδα(dcu)

−β

κ+
∑
∀i∈C/c P

i
tGuGi

uδα(diu)
−β

]

k+k′

(5.3)

where P c
t is the transmit power of cell c; Gu is the gain of user equipment;

Gc
u is the gain of the transmitter antenna of the cell c, as seen by the user

"u;" δ is the shadowing observed by the signal; α is the path loss constant;

dcu represents the distance of the estimated location of user "u;" i.e., luk+k′

from cell c and β is the path loss exponent. The time subscript on the right

hand side of (5.3) and in rest of the chapter indicates that all terms enclosed

within [.]k+k′ are considered for the next time step k+k′. Within the scope of
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this contribution, it is assumed that shadowing estimate information for the

estimated user location is available with a normally distributed error. In a

practical network, both channel maps that build on the MDT reports and the

collected channel quality indicator reports can be utilized to estimate channel

gains in estimated locations. This γ̂cu(k+k′) is a fully loaded SINR expression

and is valid only when all cells are fully utilized. The actual interference

from neighboring cells based on their respective loads is utilized as follows to

calculate the SINR for data transmission:

γcu(k + k′) =

[
P c
tGuG

c
uδα(dcu)

−β

κ+
∑
∀i∈C/c ηiP

i
tGuGi

uδα(diu)
−β

]

k+k′

(5.4)

where ηi denotes the cell load in a cell i at time step k + k′. This method

of weighting the interference power received from each cell with its current

resource utilization results in a certain coupling of the total interference with

different cell utilizations. More loaded cells contribute more interference power

than less loaded ones [98]. For an LTE network, an instantaneous cell load

can be defined as the ratio of PRBs occupied in a cell during a transmission

time interval (TTI) to the total PRBs available in the cell. This indicator is

available as a standard measurement in LTE as "UL/DL total PRB usage."

The number of PRBs allocated to each user depends on the QoS that the user

requires and the achievable SINR. For instance, if the QoS is defined in terms

of the required data rate, more PRBs are assigned to a user with a higher

rate requirement and/or one with a lower SINR. The total load of cell c at

time step k + k′ will be the fraction of the total resources in the cell needed

to achieve the required rate of all users of a cell given as follows:

ηc(k + k′) =

[
1

Nc

∑

Uc

τ̂u
ωB log2(1 + γcu)

]

k+k′

(5.5)

where ωB is the bandwidth of one resource block, Nc is the total number of
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resource blocks in cell c, τ̂u is the minimum required rate of the user, and Uc

is the number of active users connected to a cell c. It is a virtual load, as it is

allowed to exceed 1 to provide us with a clear indication of how overloaded a

cell is. The required rate in the numerator is the minimum bit rate required

by the user, depending on the QoS requirements of the services and user sub-

scription level. In current LTE standards, an exact method does not exist to

estimate the throughput required by the user. Only the historical throughput

of a user can be estimated after the allocation of resources. However, 3GPP

standards define a metric called the QoS class identifier (QCI). The primary

purpose of the QCI is to prioritize users based on their required resource type,

packet delay susceptibility and packet error loss rate. The definition of the

desired throughput can build on the QCI. In a more robust approach that

leverages network analytics, τ̂u can be modeled as a function of subscriber

behavior, subscription level, service request patterns, as well as the applica-

tions being used [5]. The set of users connected to cell c is determined by the

following user association criterion:

Uj := {∀u ∈ U |j = arg max
∀c∈C

(P c
r,udBm

+ P c
CIOdB)} (5.6)

where P c
r,udBm

is the true reference signal power in dBm received by user "u"

from cell c, and P c
CIOdB is the bias parameter (the CIO). The term CIO is

a common identifier for, e.g., the real Qrxlevminoffset and Qqualminoffset

parameters for cell selection, the Qoffset parameter in cell reselection, and the

Oxx parameters for event Ax measurements, as preparation for HO procedures

in radio resource management [99]. This CIO is primarily used to offset the

lower transmit power of SCs to transfer a higher load to them (Fig. 5.2).

In case some underutilized cells are turned OFF, the remaining cells need to

have maximum utilization to cater for the transferred load from underutilized
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Fig. 5.2: CIO bias

Fig. 5.3: Average UE SINR (dB) vs. CIOs

cells. However the downside of biasing is that UEs are no longer necessarily

connected to the strongest cell. As a result, the SINR is bound to be lower

with higher CIO values, as illustrated in Fig. 5.3. However, CIO is still a

necessary measure to balance the loads. The capacity loss due to a drop

in SINR can partially be offset if the serving cell has more free PRBs that

can be allocated to that user, compared to PRBs in the previous serving

cell, to satisfy the required QoS. This highlights the importance of the CIO

parameter as a knob to control the trade-off between network LB, CCO, and

energy consumption.

It is important to highlight here that in case of ES optimization with guaran-
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teed minimum QoS requirements, it does not make sense to look at through-

puts, since the UEs either receive an exact constant bit-rate or they are un-

satisfied. Therefore, a more appropriate PM to analyze is the number of

unsatisfied or dropped users "Nus," given as follows [48]:

Nus(k + k′) =

[
∑

c

max(0,
∑

Uc

1.(1−
1

ηc
))

]

k+k′

(5.7)

where
∑
Uc

1. is the total number of users in cell c, while (1− 1
ηc

) is a modulation

parameter that indicates what percentage of users in that cell are unsatisfied.

Here, by definition from (5.5), ηc is allowed to exceed 1 to provide a clear

indication of how overloaded a cell is. When ηc = 1, the inner summation in

(5.7) will be 0, meaning that all users in cell c are satisfied. When ηc = 2,

the inner summation will be equal to half of the number of users of cell c,

meaning that half of the users are satisfied. The outer summation is the total

number of unsatisfied users in the whole network while a max operator is used,

since the number of unsatisfied users cannot be negative in under-loaded cells.

Unsatisfied users would not be allowed to enter the system, or they would be

dropped if they are already active.

Now we formulate the general energy consumption minimization problem for

time step k + k′ as (5.8-5.10e):
min

πc,P cCIO

∑

C

[ECRc]k+k′ (5.8)

min
πc,P cCIO

∑

C



 πc(P c
CT + ηc.P

c
t )

∑
Uc
ωcu log2(1 + (

P ct GuG
c
uδα(dcu)−β

κ+
∑
∀i∈C/c ηiP

i
tGuG

i
uδα(diu)−β

))





k+k′

(5.9)
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where Uj := {∀u ∈ U |j = arg max
∀c∈C

(P c
r,udBm

+ P c
CIOdB)}

P c
CIO.min ≤ P c

CIO ≤ P c
CIO.max∀c ∈ SC (5.10a)

πc ∈ {0, 1}∀c ∈ SC (5.10b)

1

|C|

∑

C

1

|Uc|

∑

Uc

1(P c
r,u ≥ P c

th) ≥ ω̄ (5.10c)

τu ≥ τ̂u∀u ∈ U (5.10d)

ηc ≤ ηT∀c ∈ C (5.10e)

The objective is to optimize the parameters πc, P c
CIO of SCs (SC) such that

the energy consumption ratio in all cells is minimized while ensuring coverage

reliability and the satisfaction of user throughput requirements. The first two

constraints define the limits for the CIOs and ON/OFF state array respec-

tively. These are the constraints that will determine the size of the solution

search space. The third constraint is to ensure minimum coverage. Here, P c
th

is the threshold for the minimum received power for a user to be considered

covered, ω̄ defines the area coverage probability (a QoS KPI) that an oper-

ator wants to maintain, and 1(.) denotes an indicator function. The fourth

constraint ensures that each user receives the required minimum bit rate, de-

pending on the QoS requirements of the service and the user’s subscription

level. This is due to the fact that to achieve the ECR minimization objec-

tive, the CIO of the remaining ON SCs may be increased to offload users of

switched OFF cells into their coverage umbrella. The consequences are that

the received power P c
r,u of offloaded users may become worse, leading to de-

graded SINR and throughputs. The effect of decreased SINR can be offset

by allocating more resources only if the received power by the user is above a

certain threshold. Therefore, this fourth constraint ensures that the minimum

throughput is guaranteed for all users in all cases. However, this can only oc-
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cur when the number of resources available in a cell is sufficient to meet user

requirements; therefore, this constraint is complemented by a constraint on

cell load ηc ≤ ηT (load threshold) with ηT ∈ (0, 1].

The formulated combinatorial optimization problem in (5.8-5.10e) contains

both continuous P c
CIO and binary πc decision variables. It can be identified

as a mixed-integer non-linear programming problem (MINLP). The inherent

coupling of the ON/OFF state vector, CIOs, and cell loads indicate that it is

a large-scale non-convex optimization problem. As we are dealing with two

problem parameters per cell whose effects on the optimization function are

not independent, the complexity is expected to grow exponentially with the

number of cells. Therefore, an exhaustive search for the optimal parameters

may not be practical for a large-size network due to a high complexity time

search that needs to be done in real time. For a practical scenario, with 50 SCs

and only CIO as the optimization variable with 10 possible values available

at each SC, we already have 1050 possible settings. This is approximately

equal to the number of atoms on earth. Therefore, to solve the formulated ES

problem, we utilized GA [100] with the pseudocode given in appendix since

it is considered attractive heuristic technique for a multi-variable MINLP

problem with a large variable count and enormous search space. Genetic

algorithms are collectively a class of artificial intelligence algorithms based on

a natural selection process that mimics biological evolution. In contrast to

classical optimization wherein a single point is generated at each iteration,

and the sequence of points gradually approaches an optimal solution, GAs

generate a population of points at each iteration, and the best point in the

population approaches an optimal solution. Due to its random nature, a GA

significantly improves the chances of finding a global solution, especially for

highly non-linear objective functions. It is also important to note that the
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GA starts from a random parameter set in the solution space; therefore, it

does not require a feasible point to start a search. Based on the estimated

network state for time step k + k′, the AURORA framework consequently

devises the optimal ON/OFF state array and CIO values for all the SCs

ahead of time such that the energy consumption ratio of the whole network

is minimized. The ON/OFF state array and CIO values remain fixed from k

to k′. In a practical network, SCs need some non-zero time to switch their

states; therefore, the proposed strategy allows ample time of k′ duration for

SCs to switch to an optimal ON/OFF state.

5.3 Performance Analysis

In this section, we analyze the potential ESs resulting from the application

of the AURORA framework on HetNets. We have benchmarked its perfor-

mance against four schemes; (i) near-Optimal performance bound (NARN)

wherein it is assumed that AURORA estimates the future location and chan-

nel estimate at that location with 100% accuracy; (ii) all cells ON with

homogeneous network settings (AllOn-HomNet) wherein all cells are ON,

and no CIO is utilized for SCs; (iii) all cell on with heterogeneous network

settings (AllOn-HetNet) wherein all cells are ON, and a fixed CIO of 10 dB is

utilized for all SCs; and (iv) a reactive scheme that is simulated by delaying

user location information, i.e., optimization with ηT = 1 is done based on the

location information of the previous 1 minute.

5.3.1 Simulation Settings

We generated typical macro cell and SC-based network and UE distributions

leveraging an LTE 3GPP standard compliant [67] network topology simulator

in MATLAB. The simulation parameters’ details are listed in Table 5.1. We

used a wrap around model to simulate interference in an infinitely large net-
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Table 5.1: Network simulation settings
System Parameters Values

Number of Macro Base Stations 7 with 3 Sectors per Base Station
Small Cells per Sector 5

Number of UEs Mobile: 84, Stationary: 336
LTE System Parameters Frequency = 2 GHz, Bandwidth = 10

MHz
Macro Cell Tx Parameters Tx Power = 46 dBm, Tilt = 1020

Small Cell Tx Parameters Tx Power = 30 dBm, CIO = 0 to 10 dB
Base Station Heights Macro BS = 25m, Small BS = 10m

Area Coverage Probability 100%
Total Simulation Duration 1 hour

work, thereby avoiding boundary effects. To model realistic networks, UEs

were distributed non-uniformly in the coverage area such that a fraction of

UEs were clustered around randomly located hotspots in each sector. Monte

Carlo-style simulation evaluations were used to estimate the average perfor-

mance of the proposed framework. Furthermore, SLAW [69] was used as the

mobility model to generate HO traces of 84 mobile users for 1 week. Of

this week, traces for the first six days were utilized to build and train the

semi-Markov mobility model for each of the 84 UEs. Moreover, an additional

336 stationary UEs (80% of the total UEs [101]) were deployed to generate

additional loading on the network. For traffic demand, we considered two

scenarios (i) low traffic demand comprising of five different uniformly dis-

tributed UE traffic requirement profiles corresponding to desired throughputs

of 24 kbps (voice), 56 kbps (Text Browsing), 128 kbps (Image Browsing), 512

kbps (FTP) and 1,024 kbps (video), and (ii) high traffic demand wherein

all UEs are video users. Without a loss of generality and keeping operational

complexity in mind, the prediction interval k′ was set as 1 minute in our

simulation study.

5.3.2 Quantifying the ES Potential of the AURORA Framework

The ECR of AURORA and NARN for low and high traffic demands with

varying values of load thresholds ηT along with that of AllOn-HomNet, AllOn-

HetNet and state-of-the-art reactive schemes averaged over a 1-hour duration

are visualized in Fig. 5.4. Note that to visualize the ECR ranges for both
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Fig. 5.4: Energy consumption ratio (ECR)

traffic classes in same figure, the y-axis has been plotted in a logarithmic scale.

The load threshold range is [0.6, 1], since the P-ES optimization algorithm

(5.8) returned no feasible point below 0.6. It was observed that the ECR values

are higher for a high traffic demand scenario, as a higher number of SCs need

to be switched ON to cater for the high load. Moreover AURORA exhibited

a linearly decreasing trend with increasing values of ηT . It is significantly less

than the conventional AllOn schemes for all load threshold values. The reason

is that for AllOn schemes, all cells are ON at all times, this increases energy

consumption which is bound to further escalate with densification. At lower

ηT values, the ECR for AURORA is higher, since a smaller ηT value compels

AURORA to keep ON a larger number of underutilized SCs. For instance, at

ηT = 0.6, AURORA switches ON the next SC as soon as the utilization of

the current ON SCs reach 60%. Thus, on average, a large number of SCs will

be turned ON for smaller ηT values, thereby increasing energy consumption.

Moreover, with a large number of SCs turned ON, there is a higher chance
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that location estimation inaccuracy will result in turning ON SCs with low

or no loads (i.e., high ECR [Joules/bit]). On the other hand, larger values

of ηT enable AURORA to switch OFF a large number of SCs. For instance,

at ηT = 1, AURORA will switch ON the next SC only when the utilization

of the current ON SCs reaches 100%. As a result, the ECR is expected

to decrease, and the same trend is observed for NARN. It is interesting to

observe that, on the one hand, with an increasing value of ηT , a fewer number

of SCs are turned ON; therefore, there is less chance of having any turned

ON SCs with low or no load. On the other hand, with increasing ηT values,

AURORA switches ON the smallest possible number of SCs, and all of them

are almost fully utilized with few resources to spare. As a result inaccuracy

in location estimation will result in an increased risk of blocking of the UEs

(and hence an increased number of unsatisfied users–see Fig. 5.7), thereby

negatively affecting the QoS. However, the number of fully utilized SCs is

a more dominant factor in determining the overall ECR, as compared to a

slight increase in the number of unsatisfied users; therefore, the overall ECR

reduces. The comparison of AURORA with the reactive scheme demonstrates

that the ECR for the reactive scheme is higher compared to AURORA. This

is because in the reactive scheme, due to delayed user location information

outdated configuration settings that are suboptimal for the current instant are

applied to the network. This increases the percentage of unsatisfied users (on

average, 1.85% with AURORA at ηT = 1, and 4% with the reactive scheme

at high traffic loads), and the ECR is hence higher. Moreover, the ECR for

AllOn-HomNet is slightly higher, compared to AllOn-HetNet. This is because

higher CIO values used in AllOn-HetNet compel SCs to be utilized more,

hence resulting in a reduced ECR, compared to an AllOn-HomNet scheme.

Fig. 5.5 illustrates the average number of SCs put to sleep mode with AU-
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Fig. 5.5: Number of SCs put into sleep mode vs. load threshold

RORA and NARN with varying values of ηT for low and high traffic demand.

It can be seen that a fewer number of SCs can be put into sleep mode to meet

the needs of high traffic demand. The number of SCs put into sleep mode

continue to increase with ηT . This is because with increasing values of ηT , an

SC is utilized more before turning ON the next SC; i.e., more SCs are put

into sleep mode at higher values of ηT . Since load coupled interference also

increases with ηT , the optimization algorithm returns such an optimization

parameter configuration (OPC), i.e., πc, P c
CIO, that minimizes the overall en-

ergy consumption ratio. Figure 5.6 presents a snapshot of the SCs states with

AURORA for low and high traffic scenarios at the same time instants. It can

be observed that for high traffic demand, the majority of the SCs are turned

ON. Without a loss of generality, the results in all subsequent figures of this

chapter correspond to only a high traffic demand scenario, which follows the

same trend as that observed with low traffic demand. The average percentage

of satisfied users under the AURORA framework vs load threshold ηT for a
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(a) Low traffic demand

(b) High traffic demand

Fig. 5.6: Snapshot of small cell (ON/OFF) states by AURORA for (a) Low traffic
demand and (b) High traffic demand. Green (red) circles indicate ON(OFF) SCs and UEs

are illustrated by black dots.

high traffic demand scenario is visualized in Fig. 5.7 on the left y-axis, while

EE (1/ECR) is plotted on the right y-axis. It can be observed that at low

ηT values, plenty of free resources are available in a relatively higher number

of available BSs, and more users are hence served with enough resources to

meet their minimum QoS requirements. Even with location estimation in-

accuracies, the UEs will still have a better chance of both acquiring enough

resources and being satisfied. However, more SCs are turned ON at a low ηT

with a higher chance of being underutilized, thereby resulting in a lower EE.
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Fig. 5.7: Percentage of satisfied users vs. load threshold for high traffic demand

As the ηT value becomes higher and approaches 1, AURORA returns an OPC

πc, P c
CIO that results in the smallest possible number of switched ON SCs,

and all of them are almost fully utilized, with few resources to spare. There-

fore, a slight location estimation inaccuracy can result in an increased risk of

blocking and hence a decrease in the number of satisfied users. In contrast

to that, fewer cells turned ON with more utilization improve the EE of the

network. It is interesting to observe that for a high traffic demand scenario,

even at ηT = 1, the percentage of satisfied users is above 98%. Figure 5.8

plots the cell loads of ON cells achievable with AURORA and NARN with

ηT = 0.6 and 1 alongside AllOn schemes for high traffic demand.

It is evident from the figure that in the case of AllOn-HomNet and AllOn-

HetNet, since all cells are kept ON, most of the cells are underutilized, with

mean utilizations of 7.74% and 8% respectively. This results in a higher ECR

(see Fig. 5.4). With AURORA and NARN, at a lower value of ηT , i.e., 0.6,

some SCs are switched OFF, and the utilization of the remaining ON cells

relatively increases with mean utilization of 30.9% and 27.6% respectively.

At a higher value of ηT , i.e., 1, large number of SCs are switched OFF, and

the few that are ON, are relatively more utilized, with mean utilizations of

103



Fig. 5.8: Cell loads of ON cells for high traffic demand

55.8% and 44.2% respectively. The average CIO values are indicated on top

of each boxplot. It is observed that a at higher ηT value of 1, as compared

to a lower value of 0.6, on average, relatively larger CIO values have been

leveraged. This is because when fewer cells are switched ON, the CIO values

of ON SCs are boosted to serve the users of OFF cells. In this way, CIOs

complement the proactive energy consumption optimization by serving as a

guiding parameter in directing users to suitable cells such that the overall

ECR reduces while satisfying QoS requirements. Fig. 5.9 presents a CDF

plot of the results for the average downlink SINR for AURORA and NARN

with ηT = 0.6 and 1, along with the AllOn-HomNet and AllOn-HetNet for

a high traffic demand scenario. It can be observed that at a higher value of

ηT , i.e., 1, load-coupled interference from neighboring BSs is high. Therefore,

SINR is negatively affected for AURORA and NARN, as compared to AllOn-

HomNet and AllOn-HetNet. As a matter of fact, when CIOs are leveraged, a

degraded SINR is natural outcome. However, this does not mean a degraded

system-wide performance as long as the loss in throughput caused by a lower

logarithmic SINR term is offset by an increased number of PRBs allocable
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Fig. 5.9: Average UE SINR CDF for high traffic demand

to users. This is how AURORA strives to guarantees the minimum QoS

requirements, as illustrated in Fig. 5.7. At a smaller ηT value of 0.6, a higher

number of SCs are turned ON with a relatively less load. This reduces the

overall interference floor in the network and the SINR improvement is hence

higher than that achievable at an ηT value of 1. For AllOn-HomNet and AllOn-

HetNet schemes, all SCs are ON and highly underutilized, resulting in a higher

SINR. However, it is worth noting that this gain in SINR comes at the cost of

a higher energy consumption; i.e., for AllOn-HomNet and AllOn-HetNet, the

ECR is 109 mJ/bit and 107 mJ/bit respectively; this is much higher compared

to the ECR for AURORA, which is around 36 mJ/bit, achievable at ηT = 1.

The average long-term cell occupancy probability of the users computed through

(4.17) is depicted in Fig. 5.10(a) according to which users spend most of their

time in macro cells 5, 1, 19, 20, and 21 (denoted by yellow stars). This infor-

mation can be utilized for validation of the proposed AURORA framework.

The average percentage of ON SCs with AURORA for a 1-hour simulation

duration is presented in Fig. 5.10(b). As is evident, a higher number of SCs

were turned ON in macro cells 9, 20, 5, 19, and 1 (denoted by yellow stars).
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(a) (b)

(c)

Fig. 5.10: (a) Long term cell occupancy probability (b) Percentage of ON small cells at
low traffic demand (c) Percentage of ON small cells at high traffic demand.

Therefore, on average, AURORA kept a higher number of SCs switched ON in

cells where users had a higher sojourn time. The few discrepancies that were

observed, such as with macrocell 21, can be attributed to location estimation

inaccuracies as well as the rate requirement of UEs in those cells; i.e., even

with a higher cell occupancy probability of users in a particular macrocell, if

the cumulative rate requirement of UEs is low, then SCs in that macrocell will

remain switch OFF most of the time. For a higher traffic demand scenario,

the average percentage of ON SCs with AURORA is depicted in Fig. 5.10(c).

Since a higher number of SCs were turned ON to cope with the high traffic

demand, the plot in Fig. 5.10(c) is relatively more green compared to that in

Fig. 5.10(b).
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5.3.3 Quantifying the Effect of Mobility Prediction Model Inaccu-

racy on Potential Energy Saving

The potential energy savings resulting from the the application of AURORA

framework can be quantified by computing the ERG [96, 97] PM, given as

follows:

ERG = (
ECRBenchmark − ECRAURORA

ECRBenchmark

)× 100% (5.11)

It is logical to anticipate that the ES gain of AURORA, i.e., the ERG, will

depend on the accuracy of the underlying mobility prediction model. In this

section, we analyze this dependence by varying the underlying user mobility

model such that it includes varying degrees of randomness and hence pre-

dictability. To vary the degree of randomness in the mobility traces, the two

key parameters of the SLAW mobility model, namely the variance in pause

times and the percentage of random waypoints, were changed from the default

values suggested in [69] (and used for the results in Figs. 5.4-5.10) to larger

values to increase randomness in the mobility trajectory of the UEs. Four

sets of gradually increasing initialization parameters were used that resulted

in increasing randomness in user mobility. Our prediction model trained on

these four sets of traces exhibited average prediction accuracies of 85%, 75%,

65% and 55%. The average ERG of AURORA for these varying values of

prediction accuracy against AllOn-HomNet and AllOn-HetNet schemes, av-

eraged over a 1-hour duration, for a high traffic demand scenario is plotted in

Fig. 5.11. It is observed that, as expected, the gain of AURORA decreases

with a decrease in prediction accuracy. However, it is noteworthy that as long

as mobility is predictable with 55% or higher accuracy, AURORA continues

to yield ERG. Given that typical human mobility features 93% predictability

when averaged over a large real user sample space [53], AURORA is a promis-
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Fig. 5.11: Energy reduction gain vs prediction accuracy

ing approach. However, human mobility is bound to have some randomness

that translates into prediction inaccuracy. The high frequency periodic up-

date aspect of future location probabilities is one of the possible ways in which

to cope with those prediction inaccuracies, as the effect of a prediction inac-

curacy is only limited to the prediction interval. Another method is to make

it adaptive so that AURORA continuously analyzes its performance and falls

back on the conventional AllOn scheme when prediction accuracy drops be-

low 55%. Moreover, selecting the top-two probable locations, as illustrated

in Fig. 4.5, can also be chosen as a strategy to improve prediction accuracy,

albeit at the cost of reduced ERG. Another approach is to use state-of-the-art

machine learning algorithms in place of semi-Markov model. The AURORA

framework is designed with flexibility in mind so that it can leverage any

other machine learning technique for mobility prediction. To demonstrate

this, we gauged the performance of the AURORA framework using deep neu-

ral network (DNN) as a mobility prediction model. The user’s time stamped

trajectory information was used as training data and mobility prediction was

transformed into the classification problem with target cells as class labels.
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Fig. 5.12: Energy reduction gains with DNN and semi-Markov as mobility prediction
models

Figure 5.12 illustrates the improvement in ERG (compared to AllOn-HetNet)

when using alternative mobility prediction technique. It is observed that the

gain of the proactive energy scheme increased with DNN albeit at the cost of

increased time complexity.

5.4 Conclusion

This chapter proposed a novel spatiotemporal mobility prediction aware, proac-

tive, sleep-mode-based ES optimization algorithm for cracking the future 5G

ultra-dense HetNets puzzle. The proposed AURORA framework employs an

innovative concept of estimating future user locations and leveraging them to

estimate future cell loads. It then devises an ES optimization problem for the

estimated future network scenario. The majority of conventional reactive-style

approaches are expected to solve the formulated ES problem dynamically in

real-time as network conditions change. However, this is close to impossible,

even when substantial computing power is available. In contrast, the inno-

vative proposed approach enables state-of-the-art heuristic techniques such
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as GAs to find practically sound solutions to the formulated optimization

problem predictively ahead of time. This advantage makes the proposed so-

lution an enabler for meeting ambitious 5G latency and QoS requirements.

Moreover, the AURORA framework considers the interplay between the three

intertwined SON functions (ES, CCO, and LB) due to the overlap in their

primary optimization parameters. Therefore, it employs a co-design approach

wherein the joint optimization of ON/OFF states and CIO values for SCs does

not conflict with CCO and LB objectives. Extensive simulations employing a

realistic SLAW mobility model indicate that AURORA can achieve significant

ERG in ultra-dense HetNets compared to the always ON approach. To test

the sensitivity of AURORA to mobility prediction model and its accuracy,

we investigate a DNN-based mobility prediction model as well. DNN-based

mobility prediction model offers slightly higher prediction accuracy and hence

better performance gain in AURORA, compared to semi-Markov but at the

cost of substantial increased complexity and training time. A comparative

performance analysis with a near-optimal performance bound indicates satis-

factory robustness of the proposed AURORA framework for location estima-

tion accuracies.
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CHAPTER 6

Mobility Prediction-based, Proactive, Dynamic Network

Orchestration for Load Balancing with QoS Constraint

(OPERA)

No one can whistle a symphony. It takes an

orchestra to play it.

Halford E. Luccock

Load imbalance among small and macro cells and consequential poor re-

source utilization is a major challenge that undermines the gains of emerging

ultra-dense heterogeneous networks. While Load Balancing (LB) problem has

been studied extensively, existing LB schemes in literature have one common

caveat. They operate in reactive mode. i.e., cell parameters are tweaked re-

actively in response to changing cell loads. The inherent reactiveness of these

LB schemes limits their ability to meet the extremely low latency and high

QoE expected from future cellular networks vis-à-vis 5G and beyond. To

address this challenge, in this chapter we propose a novel user mobility pre-

diction based LB and network capacity optimization framework "OPERA".

The proactiveness of OPERA stems from its novel capability that instead of

passively waiting for congestion indicators to be observed and then reacting to

them, OPERA predicts future cell loads using readily available data streams

such as past HO traces, and then proactively optimizes key network parame-

ters that affect cell load and network capacity namely azimuths, beam widths,

Tx power and CIOs to preempt congestion before it happens. Although the

resulted problem is NP-hard, the ahead of time estimation of cell loads allows
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ample time for a dexterous combination heuristics such as genetic program-

ming and pattern search to find solutions with high gain. We use extensive

system level simulations to evaluate OPERA and compare its performance

against three different benchmarks: (i) real network deployments settings

taken from an LTE operator, (ii) recently proposed LB scheme in literature

as representative of state-of-the-art reactive schemes, and (iii) upper perfor-

mance bound where user future location is assumed to be known with 100%

accuracy. Realistic SLAW model based mobility traces are used in the per-

formance analysis. Results show that compared to benchmarks, OPERA can

yield significant gain in terms of fairness in load distribution and percentage of

satisfied users. Superior performance of OPERA on several fronts compared

to current schemes stems from its following features: 1) It preempts conges-

tion instead of reacting to it; 2) it actuates more parameters than any current

LB schemes thereby increasing system level capacity instead of just shifting

it among cells; 3) while performing LB, OPERA simultaneously maximizes

residual capacity while incorporating throughput and coverage constraints;

4) it incorporates a load aware association strategy for ensuring conflict free

operation of LB and CCO SON functions.

6.1 Introduction

The race to 5G is on with massive impromptu densification by small cells

orchestrated by SON being perceived as a cost-effective solution to the im-

pending mobile capacity crunch. Although poor indoor coverage coupled with

explosive cellular data growth—that were expected to generate the momen-

tous demand—are still relevant, to date, mass deployments of SCs remain

elusive. One of the key challenge therein is the load imbalance issue [102].

Even with a targeted deployment, where these SCs are placed in high-traffic
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zones, most users will still receive the strongest downlink signal from the

tower-mounted macro cell. As a result, macro cells remain overloaded, while

lightly loaded SCs are not able to serve more users–even those who are present

in their coverage. This load imbalance also affects the user’s perceived rate,

which is the product of the instantaneous rate and the fraction of resources

assigned to users. In case of highly loaded cells, few resources are assigned to

users, and users’ perceived QoE thus drastically falls. Therefore, load imbal-

ance becomes an issue that is of paramount importance in HetNets.

6.1.1 Relevant Work

Load imbalance can be mitigated by shifting the traffic from high loaded

cells to less loaded neighbors as far as interference and the coverage situation

allow. To exploit this approach, LB has recently been adopted as a key SON

function by 3GPP and has been extensively studied in literature [103, 104,

105, 106, 107, 108, 109, 110]. However, to the best of our knowledge, existing

LB approaches fall short of the mark for 5G requirements due to the following

limitations:

1. Reactive mode of operation. The plethora of existing LB SON algo-

rithms are designed to mitigate load imbalance after detecting network con-

ditions that have already taken effect. For example, when load imbalance is

detected in a network, a non-convex, NP-hard LB algorithm is usually solved

to optimize hard or soft network parameters. This is an improvement on

fixed parameter settings in real networks that achieve LB at the cost of QoS.

However, given the acute dynamics in HetNets, by the time load imbalance is

detected and a realistic non-convex, NP-hard LB algorithm is solved to pro-

duce a new network configuration that is optimal for the observed network

conditions, the conditions may have already changed. Therefore, the newly

113



determined optimal parameter settings are likely to be suboptimal before they

can be actuated. This problem can be exacerbated, particularly in 5G, where

myriad services and a plethora of cell types mean that the dynamics of a

cellular eco-system will be even more swift.

2. Limited set of optimization parameters. Antenna tilts, downlink

transmission power, and CIOs are the three prime optimization parameters

that have been largely used in literature as actuators for the LB function.

However, with the evolution of smart antenna technology, a new set of opti-

mization parameters has surfaced that is yet to be exploited. This includes

beam widths (radiation patterns) that can be adapted on the fly by optimizing

the phases of complex weight vectors—thanks to smart antenna technology.

Similarly, the azimuth orientation of the antennas can be leveraged to ef-

fectively change the cell footprint in conjunction with the antenna tilts, as

illustrated in Fig. 1.2. As per the Sobol-based variance sensitivity analysis

method [2], the first-order sensitivity index values for these optimization pa-

rameters are plotted in Fig. 1.3. It is observed that the CIOs, horizontal

beam width, and azimuth are found to have the largest impact on network

performance (the QoS). This observation calls for a deviation from the legacy

age-old paradigm of only optimizing tilts and Tx power to maximize system

performance and keeping other control knobs untouched.

3. SON conflict prone design. One caveat with conventional LB solutions

is that they are oblivious to the fact that multiple SON functions may be

prone to hidden or undesired conflict when implemented together in a net-

work [3]. Another SON use case that becomes highly relevant to the load

imbalance in HetNets is CCO because of the overlap of its optimization pa-

rameter set with LB. When CCO attempts to improve coverage by increasing

Tx power, this can force a large number of users to jump into its coverage,
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thereby conflicting with the LB SON objective. The interplay between CCO

and LB becomes complicated, considering that both CCO and LB resort to

optimization of the same parameters. Unlike antenna parameters, CIO is a

soft parameter, and it was later introduced for LB and traffic steering in Het-

Nets. However, an adjustment of CIO by the LB algorithm may also cause

conflict with CCO objectives, since a user who is offloaded due to increased

CIO may face higher interference (assuming intra-frequency offloading) and

lower received power from the destination cell, compared to the origin cell.

This may result in a lower SINR and ultimately lower throughputs. As expli-

cated in [3], such a conflict-prone LB solution design can actually degrade a

network’s performance instead of improving it.

4. Impractical assumptions. There exist line of works, such as [111, 112,

113, 114], that are more theoretical in nature aimed for LB or more precisely

optimal cell association in HetNets while considering CCO in form of con-

straints and vice versa. While these works provide valuable theoretical insights

often into the asymptotic behavior of the system, for tractability, the analyt-

ical models used in these theoretical studies often build on overly-simplified

and unrealistic assumptions such as uniformly distributed UEs, a spatially

independent distribution of BSs, omnidirectional single-antenna transmission

and reception, fixed transmit powers, the same CIO for all cells in one tier,

and full load scenarios. These assumptions help to make the analysis tractable

and the optimization convex in nature, but render the end result less useful for

practical implementation. Contrary to dense HetNet as the main motivation

for an LB SON function, some works on LB exist, such as [115, 99], wherein

the solution is proposed and simulated mainly for macro-cell scenarios; i.e.,

large CIOs and Tx power disparities between SCs and macro cells are not

considered. These approaches may work for current macro cell dominated
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Fig. 6.1: OPERA framework

network deployment, but may not be applicable to dense HetNet envisioned

for 5G.

6.2 The OPERA framework

To address the aforementioned limitations, we propose the OPERA frame-

work (Fig. 6.1). OPERA can perform LB without conflicting with CCO.

By building on the idea of big-data-empowered SON framework [5], OPERA

leverages a novel approach to transform mobility from a challenge into an ad-

vantage. It proposes a solution that can leverage the knowledge gained from

mobility/hand-off patterns for coping with the load imbalance challenge in

5G. The key idea is to make emerging cellular systems artificially intelligent

and autonomous so that they can anticipate user mobility behavior. This

intelligence is then used to formulate a novel LB optimization problem that

proactively optimizes network parameters while satisfying QoS requirements.

In this section, we present the analytical model development of the OPERA

framework (so called because it is a composition of a number of optimization

parameters that are combined and actuated into a coordinated performance).
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The OPERA framework consists of three components:

– Semi-Markov based spatiotemporal next cell prediction, as presented in

chapter 4.

– The mapping of next cell prediction to future location estimation, pre-

sented in chapter 4.

– Proactive load-minimization optimization based on future location esti-

mation.

6.2.1 Network Model and Assumptions

The OPERA framework proposed in this chapter only focuses on the downlink

of cellular systems for the sake of conciseness. It is assumed that all mobile

devices and SCs have omnidirectional antennas with a constant gain in all

directions, while macro cells have smart directional antennas. A frequency

reuse of one is considered, and the same band is utilized by the macro cell

and the SCs. A full buffer traffic model is used for each user; i.e., there are

always data available to be sent for a user with a CBR service. A centralized C-

SON architecture is assumed wherein a centralized server in the core network

performs a system-wide proactive load-minimization optimization. Moreover,

user reported measurements that include the location-stamped information

of past cell transitions, such as cell IDs, HO failure reports, RSRPs, and

call detail records are assumed to be available to the C-SON server. These

measurements are then utilized to build and train spatiotemporal mobility

prediction models for users.
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6.2.2 Proactive Load-Minimization Optimization

Given the next probable HO tuple and estimated future location luk+k′ for all

users, we devise a load-minimization optimization problem for next time step

k + k′ in such a way that the network load is minimized while satisfying the

coverage KPI and QoS requirement of each UE located at its estimated fu-

ture location luk+k′ as well as satisfying the maximum loading constraint for

each BS. The added advantage of targeting load minimization is that many

QoS-related KPIs are monotonic functions of the average cell loads, e.g., the

throughput per resource experienced on average, the mean delay in the cell, or

the average number of service requests that are present at any point in time.

Due to monotonicity, reducing the average cell load simultaneously improves

all quantiles of the spatial throughput distribution and similar measures, and

the LB-based objective function can capture the goals of the CCO objective

too. Moreover, load minimization or LB increases the probability of the avail-

ability of free resources in all the cells, and this becomes advantageous for

HetNets. To emphasize this point, consider a scenario, for instance a macro

cell and SC wherein the macro cell is bearing a load of 50%, while the SC is at

a load of 90%. If a mobile user enters the SC coverage area and requires more

throughput, he will be handed over to the macro cell, as the SC is already

close to its maximum load utilization. On the other hand, a load minimiza-

tion approach with minimum throughput guaranteed will try to minimize the

load utilization of the two cells in the first place. As result of LB, if the

load utilization of both cells is at 70%, and a new user comes under the SC

umbrella with a high throughput requirement, then the SC will be able to

accommodate this new user due to the availability of free resources.

The SINR γ̂cu at an estimated user location luk+k′ at time step k + k′ when

associated with a cell "c" is defined as follows:
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(6.1)

where P c
t is the transmit power of cell c; Gu is the gain of user equipment; λv

is the weight of the vertical beam pattern of the transmitter antenna; θcu is

the vertical angle of the user u in cell c with respect to horizon; θctilt is the tilt

angle of the serving cell’s antenna (at θctilt = 00, BS antenna faces the horizon);

ϕv is the vertical beam width of the transmitter antenna of cell c; λh is the

weighting factor for the horizontal beam pattern; φcu is the horizontal angle of

user u in cell c with respect to absolute north; φca is the azimuth of the antenna

of cell c (φca = 00 corresponds to the absolute north); ϕh is the horizontal beam

width of the transmitter antenna of cell c; δ is the shadowing observed by the

signal; α is the path loss constant; dcu represents the distance of the estimated

user location of "u," i.e., luk+k′ from cell c; β is the path loss exponent; and κ

is the noise variable. The time subscript on the right hand side of (6.1) and

in the rest of the chapter indicates that all terms enclosed within [.](k + k′)

are considered for the next time step k + k
′
. Within scope of this chapter,

it is assumed that shadowing estimate information for the estimated user

location is available with a normally distributed error. In a practical network,

channel maps that build on the MDT reports recently standardized by 3GPP

and the collected channel quality indicator measurements can be utilized to

estimate channel gains in estimated locations. This γ̂cu(k+k
′) is a fully loaded

SINR expression and is valid only when all cells are fully utilized. The actual

interference from neighboring cells based on their respective loads is utilized

as follows to calculate the SINR for data transmission:
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(6.2)

where ηi denotes the cell load in a cell i at time step k + k′ given by (5.5).

This way of weighting the interference power received from each cell with its

current resource utilization yields a certain coupling of the total interference

with different cell utilizations. More loaded cells contribute more interference

power than less loaded ones. The set of users connected to cell c is determined

by the user association criterion defined in (5.6). Moreover, in addition to

(5.6), in this work, we also leverage the user association criterion proposed

by us in [116, 117] that takes the cell load into consideration; it is defined as

follows:

Uj :=

{

∀u ∈ U | j = arg max∀c∈C

((
1

ηc

)a
∗
(
P c
r,udBm

+ P c
CIOdB

)(1−a)
)}

(6.3)

where ηc is the cell load, and a ∈ [0,1] is the weighting factor to associate

a level of priority to the load and RSRP metrics. A large value of a forces

users to avoid highly loaded BSs, even if they provide good RSRP. Note that

setting a = 0 will make it equivalent to (5.6). As such, a user is associated

with a cell with which the product of the received power (P c
r,udBm

+ P c
CIOdB

)

and reciprocal of the cell load is maximum. Note that for the cell association

criterion, ηc cannot be 0; therefore, for unloaded cells, ηc can be set as a very

small number ε → 0. It is important to highlight here that in case of LB

optimization with guaranteed minimum QoS requirements, it does not make

sense to look at throughputs, since the UEs either obtain the exact CBR or

are un-satisfied. A more appropriate PM to analyze hence is the number of
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unsatisfied or dropped users "Nus," given in (5.7) [115].

Now, we formulate the general load minimization problem for time step k+k′

as follows:

min
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where

Uj :=

{

∀u ∈ U | j = arg max∀c∈C

((
1

ηc

)a
∗
(
P c
r,udBm

+ P c
CIOdB

)(1−a)
)}

(6.6)

subject to:

Pt,min ≤ P c
t ≤ Pt,max∀c ∈ C (6.7)

θmin ≤ θctilt ≤ θmax∀c ∈ C (6.8)

φmin ≤ φat ≤ φmax∀c ∈ C (6.9)

ϕv,min ≤ ϕcv ≤ ϕv,max∀c ∈ C (6.10)

ϕh,min ≤ ϕch ≤ ϕh,max∀c ∈ C (6.11)

PCIO,min ≤ P c
CIO ≤ PCIO,max∀c ∈ C (6.12)

1

|C|

∑

C

1

|Uc|

∑

Uc

1(P c
r,u ≥ P c

th) ≥ ω̄ (6.13)

τu ≥ τ̂u∀u ∈ U (6.14)

ηc < 1∀c ∈ C (6.15)

Since ηc denotes the resource utilization of cell "c", term (1 − ηc) represents

the amount of resources available at cell "c" hence forth noted as residual

capacity. The objective is to optimize the parameters P c
t , θ

c
tilt ,φ

c
a ,ϕ

c
v,ϕ

c
h, and
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P c
CIO such that logarithmic sum of the idle resources in all cells is maximized

while ensuring coverage reliability and the satisfaction of user throughput

requirements. The log utility function leads to a kind of proportional fair

treatment of the individual cells. The first six constraints define the limits

for the variation in the Tx power, tilts, azimuths, beam widths (vertical, hor-

izontal) and CIOs respectively. These are the constraints that will determine

the size of the solution search space. The seventh constraint is to ensure min-

imum coverage, where P c
th is the threshold for the minimum received power

for a user to be considered covered, ω̄ defines the area coverage probability (a

QoS KPI) that an operator wants to maintain, and 1(.) denotes the indicator

function. The eighth constraint ensures that each user receives the required

minimum bit rate depending on the QoS requirements of the service and the

user’s subscription level. This is due to the fact that to achieve the LB objec-

tive, the CIO of less loaded SCs may be increased to offload users of relatively

more loaded cells into their coverage umbrella. The consequences are that

the received power P c
r,u of offloaded users may become worse, leading to de-

graded SINR and throughputs. The effect of decreased SINR can be offset

by allocating more resources only if the power received by the user is above

a certain threshold. Therefore, this seventh constraint ensures that minimum

throughput is guaranteed for all users in all cases, thereby inherently encom-

passing the CCO objective. However, this can only occur when the number of

resources available in a cell is sufficient to meet user requirements; therefore,

this constraint is complemented with a constraint on cell load ηc < 1.

The objective function, optimization variables, and constraints indicate that it

is a large-scale, non-convex optimization problem due to the inherent coupling

of optimization parameters and the cell loads. Non-convexity stems mainly

from the fact that we are dealing with not one or two but six problem param-
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Fig. 6.2: Non-convexity behavior of the objective function

eters per cell, whose effects on the optimization function are not independent.

The plot of the objective function for a sample topology of 42 cells is depicted

in Fig. 6.2 wherein the tilt and horizontal beam width of a BS are varied,

while the remaining variables are kept constant. It can be observed that the

solution space is a combination of multiple hills and valleys (non-convex). As

the number of possible combinations for the considered optimization parame-

ters increases exponentially with network density, an exhaustive search for the

optimal parameters to achieve the load minimization may not be practical for

a large-sized network due to a high-complexity time search. For a practical

scenario with 50 SCs and only CIO as an optimization variable with 10 possi-

ble values available at each SC, we already have 1050 possible settings. This is

approximately equal to the number of atoms on earth. This search space size

is too large to be traversed by a brute force algorithm in as short a time as

a TTI. Therefore, to solve the formulated proactive LB problem for the next

time step (k+ k′) in real time, we utilized a hybrid combination of a GA and

PS. As GA can reach the region near an optimum point relatively quickly, but

it can take many function evaluations to achieve convergence; therefore, to

overcome this issue, we used a hybrid scheme wherein the GA runs for a small

123



number of generations to reach a near optimum point. Then, the solution

from the GA is used as an initial point for the PS algorithm that is faster

and considered to be more efficient for local search. Pattern search methods

proceed by conducting a series of exploratory moves about the current iterate

before identifying a new iterate. Their pseudocodes [118] are given in the

appendix.

Based on the estimated network state for time step k + k′, the OPERA

framework consequently devises optimal values for all of the optimization

parameters ahead of time such that LB is achieved. Optimization parameter

values remain fixed from k to k′. As optimization algorithms need some time

to converge; the proposed strategy allows ample time of k′ duration to find a

feasible solution.

6.3 Performance Evaluation

In this section, we present the results for our proposed OPERA framework.

We have bench marked its performance against three schemes. (i) The first

scheme comprises real mobile network deployment settings—RDS-A, RDS-

B, and RDS-C are the three most common configurations adapted from real

network LTE deployment settings for one of USA’s national mobile operator

in city of Tulsa with RDS-A (Tilt: 30) and RDS-B (Tilt: 50) both using

antenna [119] and RDS-C (Tilt: 40) using antenna [120]. (ii) The second

scheme is a Joint algorithm (referred to as Joint1 in [99]) that is quite relevant

and has inspired the proposed work wherein LB is achieved via tilts with

coverage constraints. It is used as a representative of state-of-art reactive

schemes simulated by delaying user location information; i.e., the scheme is

implemented for location information from the previous 1 minute. Note that

due to the use of virtual loads in our system, the user association from [99]
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Fig. 6.3: Network topology with red circles indicating SCs, and UEs are illustrated by
black dots

returns undefined results. Therefore, the algorithm in [99] is implemented

using load-aware user association (6.3). (iii) The third scheme is near-optimal

performance bound (NARN) wherein it is assumed that OPERA estimates a

future location and the channel estimate at that location with 100% accuracy.

NARN(OPERA) leverage a conventional association strategy (a = 0) while

NARN*(OPERA*) uses a load-aware scheme with a = 0.5.

6.3.1 Simulation Settings

We generated typical macro cell and SC-based network and UE distributions

leveraging an LTE 3GPP standard compliant [67] network topology simulator

in MATLAB. The topology corresponding to one instant is illustrated in in

Fig. 6.3, and the simulation parameter details are given in Table 6.1.

We used a wrap around model to simulate interference in an infinitely large

network, thereby avoiding boundary effects. To model realistic networks, UEs

were distributed non-uniformly in the coverage area such that a fraction of UEs

were clustered around randomly located hotspots in each sector. Monte Carlo

style simulation evaluations were used to estimate the average performance of
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Table 6.1: Simulation parameter settings
System Parameters Values

Number of Macro Base Stations 7 with 3 Sectors per Base Station
Small Cells per Sector 1

Number of UEs Mobile: 84, Stationary: 336
Mobility Model SLAW

Transmission frequency 2 GHz
Transmission Bandwidth 10 MHz

Network Topology Hexagonal
Small Cell distribution Uniform within Sector

UE distribution Non- uniform with independent
hotspots

UE Traffic classes 5 (Voice, Text Browsing, Image Brows-
ing, FTP, Video) uniformly distributed

Macro Cell Tx Power 40 - 46 dBm
Macro Cell Tilt 900 - 1200

Small Cell Tx Power 27 - 30 dBm
Small Cell CIO Max: 10 dB, Min: 0 dB

Azimuths −450 - 450

Horizontal Beam width 450 - 1200

Vertical Beam width 50 - 150

Cellular System LTE
Network Deployment Clutter Urban

Macro Cell Height 25 m
Small Cell Height 10 m

UE Height 1.5 m
Inter-site Distance 500 m

Area Coverage Probability 100 %

Prediction Interval k
′

1 minute
Total Simulation Duration 60 minutes

the proposed framework. The SLAW model [69] was chosen as the mobility

model, and it was utilized to generate HO traces of 84 mobile users for 1

week. Of this week, traces for the first six days were utilized to build and

train the semi-Markov mobility model for each of the 84 UEs. Moreover, an

additional 336 stationary UEs (80% of the total UEs [101]) were deployed to

generate additional loading on the network. Without a loss of generality, we

considered five different uniformly distributed UE traffic requirement profiles

corresponding to desired throughputs of 24 kbps, 56 kbps, 128 kbps, 1,024

kbps, and 2,048 kbps. Without a loss of generality, and keeping operational

complexity in mind, the prediction interval k′ was set as 1 minute in our

simulation study.

6.3.2 Results and Discussion

Figure 6.4 plots the histogram of difference (error) between predicted and

actual load values with OPERA that leverage the semi-Markov-based future

location algorithm presented in chapter 4. It is observed that most of the

error falls into a 0.05 bin, with a root mean square error (RMSE) of 0.2711.
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Fig. 6.4: Histogram of error between predicted and actual load values

Fig. 6.5: Average offered cell loads CDF of all cells

Next, the offered cell load CDFs for all the cells with real deployment set-

tings, the Joint scheme, and the proposed schemes are presented in Fig. 6.5.

It is evident from the plot that with Joint scheme, the majority of the cells

remain overloaded. The reason can be attributed to (i) a reactive approach,

as resulting in outdated configuration settings, based on delayed user location

information that is suboptimal for current instant, being applied to the net-

work, and (ii) usage of only tilt as an optimization parameter. This increases

the overloading or the percentage of unsatisfied users (as illustrated in Fig.
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6.7). The same trend is observed for the real deployment settings wherein cells

remain overloaded, with overloaded cells being maximum in RDS-A (around

26%), followed by RDS-C (around 23%), and RDS-B (around 21%). Com-

pared to these fixed configuration settings and reactive schemes, the proposed

solutions, namely, OPERA and OPERA*, achieve load reduction purely by

increasing resource efficiency through the dexterous optimization of antenna

parameters (transmission power, tilts, azimuths, and beam widths) and CIOs

such that the cell loads are substantially reduced. However, slight overload-

ing of around 4%(2%) is observed with OPERA (OPERA*) due to prediction

inaccuracies. This overloading is mitigated when prediction accuracy reaches

100%, which is demonstrated by NARN and NARN* wherein the maximum

cell loads observed are 66% and 54% respectively. It is observed that the

inclusion of the load metric in the association criterion improves the residual

capacity fairness in all cells, and as a result, even in the presence of prediction

inaccuracies, cells have more free capacity to accommodate actual extra load

as compared to a less predicted load. Figure 6.6 depicts the box plot of the

percentage of free resources among all the cells, achievable with the RDS,

reactive and proposed schemes. The inclusion of the load metric in the asso-

ciation criterion of OPERA* and NARN* demonstrates a somewhat tightly

packed free resource values and hence less variance in residual capacity, com-

pared to the rest of the schemes. Note that the OPERA and OPERA* show

some cells with no free resources; this is due to prediction inaccuracies. This

zero residual capacity scenario is avoided with NARN and NARN*. The vari-

ance in cells loads is further analyzed using Jain’s fairness index, calculated

through (6.16) and plotted in Fig. 6.7. In this figure, the average percentage

of un-satisfied users is visualized on the left y-axis, while Jain’s fairness index

for residual capacity is plotted on the right y-axis, achievable with the RDS,
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Fig. 6.6: Box plot of percentage of free resources in the cells

reactive and proposed schemes.

JFI(1− ηc) =
(
∑

c(1− ηc))
2

(|C| ×
∑

c(1− ηc)
2)

(6.16)

The result computed from (6.16) ranges from (1/|C|) (worst case) to 1 (best

case), and it is maximum when all the cells have the same amount of free

residual capacity. Due to maximum overloading experienced with conven-

tional RDS and reactive schemes, a considerable number of users face blocking

and become unsatisfied. The proposed load-aware association-based schemes

OPERA* (NARN*) achieve a maximum fairness of 0.967 (0.992), compared

to their contemporaries OPERA (NARN), with a fairness of 0.965 (0.989).

This fairness helps to reduce the percentage of unsatisfied users from 0.98%

in OPERA to 0.35% in OPERA*. It is interesting to observe that even in

the presence of imperfect prediction, the percentage of satisfied users is above

99% with OPERA.

Figure 6.8 plots the CDFs for the achievable UE SINRs with the RDS, re-

active, and proposed schemes. For reactive and RDS schemes, SINR is con-
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Fig. 6.7: QoE achieved with OPERA

siderably lower than the rest of the curves. The reason is that maximum

loaded macro cells cause more network-wide interference, which reduces the

achievable SINR of the UEs. This interference footprint of macro cells be-

comes highly contained with the proposed schemes (OPERA and OPERA*)

by optimizing the values of antenna parameters and CIOs such that SINR is

enhanced and cell loads are minimized. Moreover, the inclusion of the load

metric in the association scheme (OPERA* and NARN*) reduces the achiev-

able SINR of the UEs, as the UEs are not connected to the strongest possible

cell. Despite decreasing SINR for NARN*, as compared to NARN, the so-

lution manages to deliver the gains observed in Fig. 6.7, mainly because of

load fairness by optimizing the horizontal and vertical beam widths, tilts, az-

imuths, Tx power, and CIOs. As a matter of fact, when CIOs are leveraged

to increase system-wide capacity through LB, a degraded SINR is a natural

outcome; however, it does not mean a degraded system-wide performance as

long as the loss caused by the lower SINR is offset by an increased number of

PRBs allocable to users. This compensating act is why OPERA* and NARN*

outperform, hence the gain in resource utilization is observed.

130



Fig. 6.8: Average UE SINR CDF

6.4 Conclusion

In this chapter, we proposed a novel spatiotemporal mobility prediction based

proactive load balancing optimization framework for HetNets by jointly op-

timizing Tx power, tilts, azimuths, beam widths and CIOs. The proposed

OPERA framework employs innovative concept of estimating future user lo-

cations and leverages that to estimate future cell loads. We then formulate a

system-level fairness-aware load optimization problem for the estimated future

cell specific loads. The majority of the current load balancing solutions are

reactive and are expected to solve the LB problem dynamically in real-time

after observing the congestion. With this reactive approach, meeting strin-

gent QoS and latency requirements in 5G and beyond is close to impossible

even when substantial computing power is available. Contrary to that, the in-

novative proposed approach enables state-of-the-art heuristic techniques like

GA to find practically good solutions to the formulated optimization problem

predictively ahead of time. Moreover, OPERA framework accounts for the

interplay between two intertwined SON functions (LB and CCO) that have

been shown to have strong conflict due to the overlap among their primary op-
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timization parameters and thus ensures conflict free operation. A load aware

association strategy that underpins OPERA further bolsters the framework

against location estimation accuracies and maximizes system level capacity

and QoE in addition to balancing load. Extensive simulations employing re-

alistic SLAW mobility model indicate that, in best case, OPERA can reduce

percentage of unsatisfied users to 0.35% making it an enabler for meeting 5G

ambitious QoE requirements despite of acute mobility and heterogeneity of

cell sizes. The presented results highlight the value of prediction (AI) based

proactive optimization.
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CHAPTER 7

Proactive Self-Healing for Future Cellular Networks

The sciences do not try to explain, they hardly even try to

interpret, they mainly make models. By a model is meant a

mathematical construct which, with the addition of certain

verbal interpretations, describes observed phenomena. The

justification of such a mathematical construct is solely and

precisely that it is expected to work.

John von Neumann

This chapter presents a stochastic analytical model to analyze and predict

the arrival of faults in a cellular network. It exploits CTMC with exponential

distribution for failures and recovery times to model the reliability behavior

of a BS. It then leverages the developed model and subsequent analysis to

propose an adaptive fault predictive framework. The proposed fault prediction

framework can adapt the CTMC model by dynamically learning from past

database of failures, and hence can reduce network recovery time thereby

improving its reliability.

7.1 Introduction

Cellular networks are inherently subject to cell outages caused by either BS

hardware and/or software malfunctions or misconfiguration of several hun-

dred cell parameters during routine network operation (Fig. 7.1). A BS can

be susceptible to a complete outage due to critical failures, or it can exhibit de-

graded performance in case of trivial failures. Forthcoming cellular networks
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Fig. 7.1: Ultra-dense, heterogeneous, complex cellular network

are susceptible to even higher cell outage rates, as the multiple SON func-

tions may be subjected to a large number of potential conflicts when operated

concurrently in a system. Given the parametric overlap as well as coupling

among the objectives of different SON functions, it has been demonstrated in

[3] that a large number of conflicts are possible among SON functions if no

self-coordination mechanism is employed. At times, such conflicts can actu-

ally degrade a network’s performance instead of improving it. For example,

the CCO SON function might try to improve coverage by increasing trans-

mission power; however, this may conflict with the ES SON function. The

potential failures occurring due to hardware/software malfunctioning, multi-

vendor incompatibility, or SON conflicts ultimately affect the coverage and

performance reliability of the network.

The increasing number of radio nodes in the 5G mobile cellular network can

result in an increase in node failures [121]. This is demonstrated in Fig. 7.2,

which illustrates the outage probability of a cell as mobile cellular network

density increases, obtained using a Poisson distribution-based method for es-

timating node failures derived from [121]. Figure 7.2 displays the probability

of a single node failure in one day (lower line chart), in three days (middle

line chart), and in seven days (top line chart). We can see that the prob-
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Fig. 7.2: Outage probability of one cell with increase in cell density

Fig. 7.3: Probability of single parameter misconfiguration with increase in number of
configurable parameters

ability of node failures is relatively low in a low-density network such as a

second-generation mobile cellular network. However, as the network density

increases, the probability of node failure increases, so much so that on any

given day, the probability of node failure could be anywhere between 60% and

99.8%.

The increasing number of network control parameters and entities can raise

the probability of parameter misconfiguration significantly. A quantitative

analysis of parameter misconfiguration in 5G mobile cellular networks is pre-

sented in Fig. 7.3, which illustrates the probability of misconfiguration of

one parameter per cell every 100 days as the total number of configurable

parameters per cell increases. The parameter misconfiguration probability is
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Fig. 7.4: Percentage of faults in given time interval

also derived using the Poisson distribution-based method of failure estimation

presented in [121]. In Fig. 7.3, three different probabilities 0.01% (bottom

line chart), 0.05% (middle line chart), and 0.1% (top line chart) of parametric

misconfiguration per 100 days are assumed. From Fig. 7.3, it is clear that

parametric misconfiguration will become a major concern for mobile network

operators in 5G networks.

Until now, all SON self-healing systems have been passive or reactive systems

that are only able to adapt to conditions many minutes after an event has

taken place. This often means that changes are made to the network long

after the need for change has passed, thereby creating a second negative im-

pact to compound the first. This method only responds to problems and can

only hope to limit their magnitude, not prevent them from happening. Fur-

thermore, this method is not experiencing the best success, since the network

experiences the greatest number of faults when people need to make calls the

most. Figure 7.4 was generated from the data set, which was an array of time-

stamped faults in a month from a national U.S. mobile operator. It illustrates

that during lunch (usually time interval 12 to 15), the greatest number of

faults occurred. Also, there were a significant number of faults at night (21 to

24) and after lunch (15 to 18). Regardless of the time interval, it is important
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for customers to have a reliable network when they need to make calls.

This is why predictive analysis, which is a proactive approach, is necessary

due to its effectiveness. Intending to deal with the problem before it occurs,

predictive analysis techniques learn the behavior of the system under normal

conditions, and they can also monitor the patterns that forecast a trouble-

some scenario. In telecommunications specifically, carriers would be able to

estimate that a fault is going to occur in a certain amount of time, and they

could thus take steps to prevent that fault. This would eliminate any possible

difficulties that a customer would experience, and it is much better than the

reactive approach, which can only hope to limit the trouble the customer must

experience.

7.2 Reliability Analytical Model for Cellular Networks

The reliability analysis of future cellular network’s BSs is of paramount im-

portance for network operators, since it directly affects the QoS and user

experience. A quantitative analysis of SON reliability can also provide ven-

dors with better insight into the various reliability considerations in SONs.

Furthermore, it can help to improve operators’ confidence in SONs, which has

been major bottleneck in SON penetration despite the significant financial and

technical gains that SONs can offer.

7.2.1 Prior Works

Despite the great significance of the topic, few studies to date have focused

on the reliability and survivability analysis of cellular networks in general and

SON-enabled cellular networks in particular. Dharmaraja et al. [122] devel-

oped an analytical model for the reliability and survivability quantification
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of a UMTS architecture network. Xie et al. [123] modeled and analyzed

the survivability of an infrastructure based wireless network under disaster

propagation. Tipper et al. [124] performed a simulation-based survivability

analysis of a mobile network. Guida et al. [125] evaluated the performance

of IP multimedia subsystem (IMS) core network signaling servers. However,

unlike the previous works on cellular network reliability that mostly focus on

the structural aspects of cellular networks and overlook the network behav-

ioral aspects that can cause complete or partial failures, our work is more

focused on developing a generic analytical model, encompassing diverse faults

cases such as software/hardware failures or SON-conflict attributed miscon-

figurations. This approach allows for the flexibility to incorporate a variety

of failure scenarios into the model. To the best of our knowledge, a study

that analyzes the probabilistic reliability behavior of SON-enabled emerging

cellular networks, including 5G, by considering the failure probability of BSs

using CTMC does not exist in open literature. This contribution is thus a

first attempt in that direction.

7.2.2 Model Development

To analyze and evaluate the reliability behavior of a cellular network, a quanti-

tative model for a cell (a BS) failure is needed. In real-world cases, most of the

node failure and repair times follow time-dependent failure rate distributions

such as Weibull, Pareto, and lognormal [126]. However, in most cases, analyt-

ical models with general (non-exponential) distributions are not mathemati-

cally tractable. Therefore, a phase-type distribution, which is a convolution

of many exponential phases, is used to approximate many general distribu-

tions and is used to construct the mathematically solvable analytical models

[122], for a component reliability analysis [127]. Since exponential distribu-
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Fig. 7.5: State transition diagram for a SON-enabled BS

tion is a particular case of a phase type distribution, hardware and software

faults are commonly modeled as an exponential distribution. Therefore, in

this contribution, we consider that the time to transit from a system state to

another due to failures and recovery also follows an exponential distribution.

This assumption is also supported by the fact that the exponential random

variable is the only continuous random variable with Markov property.

Building on this assumption, we construct an analytically tractable CTMC

model for the reliability analysis of a SON-enabled BS. Figure 7.5 illustrates

the state transition diagram of the CTMC model for the probabilistic relia-

bility behavior of the BS.

Let X(t), with finite state space S = {1, 2, 3}, denote the state of the BS

at time t wherein X(t) = 1 if the BS is in a healthy state at time t, with all

parameters configured with optimal values. X(t) = 2 if the BS is in a sub-

optimal state at time t, with one or more of the parameters misconfigured. In

this state, the cell continues to operate, but its performance degrades below

a typical level of performance. X(t) = 3 if the BS is in complete outage at

time t. It is assumed that time for failure is exponentially distributed. Since

the rate of arrival of failures is temporarily independent, it can be modeled

using Poisson distribution. We classify failures into (1) trivial failures charac-

terized by arrival rate λt which are failures that do not cause complete outage

but drive the network from an optimal to sub-optimal state, and (2) critical

failures characterized by arrival rate λc which lead to complete outage of the
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cell. Therefore, trivial failures can only occur when a network is in an optimal

state, while critical failures can occur in state 1 or state 2. Each BS is assumed

to be equipped with a recovery module powered by a self-coordination frame-

work such as that proposed in [3]. This module reconfigures all configuration

parameters back to their original optimal values once the misconfiguration

is detected and diagnosed. Moreover, it has the capability to reset the BS

software or switch over to the secondary backup hardware board if failure

has stemmed from hardware/software-related issues. The time to move the

network from a sub-optimal state back to an optimal state is assumed to be

exponentially distributed with mean value 1/µdc. This includes the time for

cell anomaly detection, diagnosis, and compensation [128, 129]. Similarly, the

time period to recover from a complete outage is exponentially distributed

with mean value 1/µc, which generally involves time for compensation only.

Furthermore, the failure or repair transition is only determined by the current

state and not on the path to the current state. With these assumptions, the

transient process X(t) can be mathematically modeled as a temporally ho-

mogeneous CTMC on the state space S. For each time t > 0, the probability

that the BS is in state j is given by the following equation:

pj(t) = Pr{X(t) = j}, j ∈ S (7.1)

Let p(t) = [p1(t), p2(t), p3(t)] denote the row vector of the transient state

probabilities of X(t). The generator matrix G and rate matrix V for this

CTMC X(t) are given as follows:

G =









−λt − λc λt λc

µdc −µdc − λc λc

µc 0 −µc









(7.2)
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V =









0 λt λc

µdc 0 λc

µc 0 0









(7.3)

7.2.3 Analysis

In this section, we perform a transient analysis followed by the computation

of PMs.

Transient Analysis

Using generator matrix G, the dynamic behavior of the CTMC can be de-

scribed by the Kolmogorov differential equation in the following matrix form:

dP(t)

dt
= P(t)G (7.4)

Then, the transient state probability vector can be obtained as follows:

P(t) = P(0)eGt (7.5)

where P(0) is the initial probability vector. The common methods to obtain

the transient probability vector P(t) include the matrix exponential approach

[130] and uniformization [131]. In this contribution, we resort to the uni-

formization method for the analysis because of its higher accuracy and effi-

cient computation due to which it is the method of choice for typical problems

similar to the one under consideration in this chapter [132]. Let gii be the

diagonal element of G, and let I be the unit matrix; then the transient state

probability vector can be obtained as follows:

P(t) =
∞∑

k=0

e−ρt
(ρt)k

k!
P̂k (7.6)
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where ρ ≥ maxi |gii| is the uniform rate parameter, and P̂ is the probability

transition matrix given as follows:

P̂ = I +
G

ρ
(7.7)

When we truncate the summation in (7.6) from infinity to some large number

M , the resulting controllable accuracy error can be computed as follows:

ε = 1−
M∑

k=0

e−ρt
(ρt)k

k!
(7.8)

Performance Metrics

Based on the uniformization method, three PMs are computed as follows to

quantify the reliability of the network:

Occupancy Time:

The expected length of time that the BS spends in each of the states, namely,

optimal, suboptimal, and outage, during a given interval of time can be deter-

mined using the occupancy time of the CTMC. Let Ψi,j(T ) be the expected

amount of time that the CTMC spends in state j during the interval [0, T ],

starting in state i, and let pi,j(t) be the element of the transition probability

matrix P̂. The quantity Ψi,j(T ) is called the occupancy time of state j until

time T, starting from state i given as follows:

Ψi,j(T ) =

∫ T

0

pi,j(t)dt (7.9)

and in matrix form:
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Ψ(T ) =









Ψ1,1 Ψ1,2 Ψ1,3

Ψ2,1 Ψ2,2 Ψ2,3

Ψ3,1 Ψ3,2 Ψ3,3









(7.10)

First Passage Time

The expected value of the random time at which a BS passes into each of the

states (optimal, suboptimal, outage) for the first time can be calculated using

the first passage times of the CTMC. The first-passage time ζj into state j

starting from state i is defined as follows:

ζj = E(T |X(0) = i) (7.11)

where
T = min{t ≥ 0 : X(t) = j} (7.12)

and E is the expected value. The first passage times for a CTMC with a state

space S satisfy the following relation [131]:

viζi = 1 +
N−1∑

j=1

vi,jζj , 1 ≤ i ≤ N − 1 (7.13)

where i, j ∈ S and vi =
∑N

j=1 vi,j ,V = [vi,j ]. Therefore, in our model, the

first passage time for state 2 will be:

(λt + λc)ζ1 = 1 + λcζ3 (7.14)

(µc)ζ3 = 1 + µcζ1 (7.15)

By solving (7.14) and (7.15), we obtain the following equation:

ζ3→2 =

(
(λt + λc) + µc

((λt + λc)× µc)− λcµc

)

(7.16)

ζ1→2 =

(
µcζ3→2 − 1

µc

)

(7.17)
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where ζ3→2 and ζ1→2 are the first passage times to state 2 starting from states

3 and 1 respectively. The first passage time for state 3 will be

(λt + λc)ζ1 = 1 + λtζ2 (7.18)

(µdc + λc)ζ2 = 1 + µdcζ1 (7.19)

By solving (7.18) and (7.19), we obtain the following equation:

ζ1→3 =
(µdc + λc + λt)

(λt + λc)(µdc + λc)− λtµdc
(7.20)

ζ2→3 =
1 + µdcζ1→3

µdc + λc
(7.21)

where ζ1→3 and ζ2→3 are the first passage times to state 3 starting from states

1 and 2 respectively.

Steady-State Distribution

To analyze the long-term behavior of the network, we evaluate the limiting

distribution of this CTMC. The limiting or steady-state distribution ∆ is

defined as follows:
∆ = [∆1,∆2,∆3] (7.22)

where
∆j = lim

t→∞
Pr(X(t) = j) (7.23)

For a CTMC with rate matrix V = [vi,j ], it is calculated as follows:

∆jvj =
N∑

i=1

∆ivi,j (7.24)

and N∑

i=1

∆i = 1 (7.25)

Therefore, for our model, we determine [∆1∆2∆3] by solving the following:

A∆ = B (7.26)
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Table 7.1: Model parameters for case studies

Parameters Case Study I Case Study II Case Study III
λt hour−1 1/8 1/3 1/8
λc hour−1 1/80 1/30 1/80
µdc hour−1 1/6 1/6 1
µc hour−1 12 12 12

Error 10−5 10−5 10−5

where A =












λt + λc −µdc −µc

λt −(µdc + λc) 0

λc 0 −µc

1 1 1












and B =












0

0

0

1












7.2.4 Numerical Results

For the numerical results, we considered three case studies with parameter

settings as listed in Table 7.1 . In case study I, trivial failures are assumed

to occur with a mean value of 8 hours in relation to the traffic pattern shifts

during morning, evening, and night times, which might trigger a number of

SON functions. The probability of the occurrence of critical failures is as-

sumed to be 10 times less than that of trivial failures. Cell outage detection

is normally not a straight-forward task, and it may take several hours for the

detection, diagnosis, and compensation of outages. Therefore, we considered

µdc to be exponentially distributed with a mean value of 6 hours. In case

study I, compensation is assumed to have a mean value of 5 minutes, and it

also has exponential distribution. This small recovery time makes sense only

when it is assumed that the SON self-healing functions involving automated

diagnosis, such as those proposed in [13, 14] will be invoked for the recovery

process, otherwise, a recovery time can be significantly large. In case study

II, we increased the arrival rate of misconfigurations (trivial faults) from one

per 8 hours to one per 3 hours. The arrival time for critical faults is assumed

to be one per 30 hours. Case study II is meant to represent densely deployed
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Fig. 7.6: Transient analysis of SON-enabled BS for three case studies

cells where SON functions may need to be activated and deactivated more

frequently, e.g., ultra-dense mmWave-based deployment in 5G. In case study

III, all parameters are assumed to be the same as those in case study I, with

the exception of detection and compensation time, which is assumed to be

exponentially distributed with a mean value of 1 hour. The transient anal-

ysis of the three case studies is presented in Fig. 7.6. For case study I, the

probability of the BS being in an optimal healthy state is around 95% after 1

hour, and it gradually decreases to approximately 60% after a 24-hour period.

There is a low probability of the BS being in an outage state, as the critical

failure rate is too small in our assumed model. For case study II, the proba-

bility of the network being in a sub-optimal state is 15% after 1 hour, and it

gradually increases to 62% after 24 hours, since the rate of arrival of trivial

failures is high in case study II. In case study III, the probability of the BS

being in an optimal state is around 88% after 24 hours. This indicates that

a decreased detection and compensation time has a profound effect on net-

work performance reliability. Therefore, the failure detection, diagnosis, and

compensation time should be as small as possible to achieve maximum per-
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Fig. 7.7: Occupancy time of SON-enabled BS for three case studies

formance. This calls for more agile self-healing methods in emerging cellular

networks where increased complexity might cause a higher fault arrival rate.

The self-healing methods proposed in recent studies such as [128, 129, 133]

are good candidates to overcome this problem. The occupancy time for the

three case studies is illustrated in in Fig. 7.7. For case studies I and III,

the network remains in an optimal state most of the time, compared to case

study II in which the sub-optimal time gradually increases with the passage

of time. This is a direct result of the higher rate of arrival for trivial faults in

case study II. The first passage times into states 2 and 3 are portrayed in Fig.

7.8. The first passage time for the three case studies depends on the mean

arrival rate of trivial as well as critical failures, so the values of λt and λc

both determine when a cell first experiences degradation and complete out-

age. As expected, the time to the first experience of sub-optimal performance

is very small, compared to complete outage. The first passage time is small

in case study II, compared to the other two case studies, due to a higher rate

of arrival of faults in case study II, compared to the other two case studies.

The limiting or steady-state distribution is illustrated in Fig. 7.9. In the long
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Fig. 7.8: First passage times of SON-enabled BS for three case studies

Fig. 7.9: Limiting (steady-state) distribution of SON-enabled BS for three case studies

run, a cell remains in an optimal state for 58.3% and 88.9% of the time for

case studies I and III respectively. However, for case study II, it remains in

that state for only 36.17% of the time (63.77% in sub-optimal state) due to

a higher rate of trivial failures. The BS stays in state 3 for a negligibly small

amount of time, as the critical failure rate is very small in our study.
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Fig. 7.10: Schematic of the proposed fault prediction framework

7.3 Fault Prediction Framework (FPF)

Utilizing the analytical model developed in section 7.2, we propose a fault

predictive framework (FPF) that predicts the occurrences of faults based on

a database of past failures (Fig. 7.10). The historical data related to past

failures and misconfigurations of BS network parameters that occur routinely

during operation of a cellular network can be utilized to estimate the λt,

λc, µdc, and µc parameters using standard statistical tools. These estimated

mean values can then be plugged into the CTMC model, and the G and V

matrices can then be updated dynamically. The fitting of data to phase-type

distributions has been covered in various research studies, such as in [134].

Based on updated G and V matrices, transient and steady-state analyses can

then be run to compute new values for the expected time of the first occur-

rence of a fault, the occupancy time, and steady distribution. The difference

between the predicted and actual values can be used to retrain the CTMC

model parameters. In some cases, cell degradation is difficult to detect [135]

e.g., in case of sleeping cells where no alarms are raised. In those cases, cell-

outage/degradation detection requires expensive site visits or drive testing

that may take hours or days for the sub-optimal behavior to be detected. In
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the majority of cases, excessive customer complaints indicate the occurrence

of faulty behavior of a cell. This results in a significant reduction in the QoS

and capacity. The probability of a cell being sub-optimal at a given time

period can be calculated by the proposed framework and can be exploited to

minimize the degradation time. Once the predicted fault occurrence time is

near, prioritizing the verification of each of the BS elements or the configu-

ration parameters can be initiated. Similarly, the occupancy time of the BS

or steady-state distribution can be used as a KPI for cell performance. If the

calculated values suggest that the time period that the cell will spend in a

sub-optimal or outage state is above some threshold value, then that cell can

be prioritized accordingly in the optimization process. The proposed frame-

work can also aid in the diagnosis of faults, as this is one of the most difficult

tasks BS subsystem engineers face. If some record is maintained for the time

interval of the occurrence of a fault and the corresponding root cause of that

fault, as the expected suboptimal behavior or outage time approaches, the

diagnosis should start right from the root cause already recorded in the table.

This can result in a significant reduction in diagnosis time and compensation

time. The CTMC model and associated FPF framework presented in this

chapter can thus significantly improve the reliability of a network and provide

the enhanced user experience that is expected from 5G.

7.4 Quantifying CTMC based Reliability model using Real Net-

work Data

We also developed a CTMC-based analytical model for real historical faults

data gathered from a collaborating mobile network operator. Real data can

provide crucial information about the reliability of the entire network. The

exploitation of a CTMC analysis is possible due to the exponential distribution
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Fig. 7.11: Transient analysis for first day of network

of both the fault inter-arrival times (1/2.589 hour−1) and maintenance times

(exponentially distributed with a mean value of 62.9 hours). For the following

analysis, the network can only reside in two states: healthy and sub-optimal.

Using these values, the CTMC model was developed as described in section

7.2. This analysis can be adapted each time for new values in order to compute

new expected times for occupancy times, the first occurrence of a fault, and

steady-state distribution.

The transient analysis using the probability matrix in Fig. 7.11 reveals that

the probability of the network switching from healthy to unhealthy is very

high. In fact, after 12 hours, there is a 95% chance that the system will be in

an unhealthy state. After 1 day, the value for the sub-optimal state remains

constant at 0.9605. However, using these probability values, a possible model

can be made. For demonstration purposes, a model was developed that used

a 75% threshold level to signify that a fault has occurred. The model was

checked every 4 hours for a week, and the prediction accuracy was assigned

a value of 1 for a correct prediction and 0 for an incorrect prediction. The

model’s accuracy was 27/42 or 64.29%.

The first passage time was calculated to be 2.589 hours, which is in accordance
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Fig. 7.12: Steady-state distribution for lifetime of network

with the mean fault inter-arrival time of 2.589 hours. This makes theoretical

sense as the CMTC analysis is based on the fact that both variables follow

an exponential distribution. The steady-state distribution as illustrated in

Fig. 7.12, also confirms the need for a proactive approach. The distribution

found that during its lifetime, the network will spend only 3.95% of its time

in the healthy state, while it will spend a massive 96.05% of its time in a

sub-optimal state. Such a high sojourn time in the sub-optimal state is due

to the fact that we considered fault series data from multiple BSs instead of

a single BS. This highlights the fact that massive densification, aimed for 5G,

is consequently going to increase fault arrivals, and proactive self-healing, ca-

pable of forecasting network faults before subscribers are affected, is essential

for reliable operation in 5G cellular networks.

7.5 Conclusion

In this chapter, we presented a stochastic analytical model to analyze and pre-

dict the arrival of faults on the reliability behavior of a cellular network. As-

suming exponential distributions for failures and recovery, a reliability model

was developed using the CTMC process. The proposed model, unlike previ-
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ous studies on network reliability, is not limited to structural aspects of BSs;

it takes into account diverse potential fault scenarios and is capable of pre-

dicting the expected time of the first occurrence of a fault and the long-term

reliability behavior of the BS. This model can adapt itself dynamically by

learning from a prior database of network failures. Three different scenarios

were analyzed in terms of transient analysis, occupancy time, first passage

time, and steady-state distribution. As per the numerical results, the mean

arrival rate of trivial failures has a profound effect on the reliability behav-

ior of the cellular network. Another key finding is that a substantial gain

in network reliability can be achieved by reducing a BS’s fault detection and

recovery time, which strongly advocates the need for agile, self-healing SON

functions.
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CHAPTER 8

Conclusions and Future Work

It’s the possibility of having a dream come

true that makes life interesting.

Paulo Coelho

8.1 Conclusions

Tapping into an ultra-dense network is being widely considered as the most

promising means to cope with the imminent capacity crunch. However, it is

becoming clear that it is not feasible to merely rely on an increased number of

cells to provide the quality of experience (QoE) expected from future cellular

networks vis-à-vis 5G and beyond. The multifarious complexity and resul-

tant resource inefficiency of such an ultra-dense, multi-tier network is another

looming challenge. These above mentioned challenges call for a paradigm

shift in the way cellular radio access networks architectures are designed and

operated. One plausible method to address these problems is the automa-

tion of mobile cellular network (MCN) operation and optimization, dubbed

self-organizing networks (SONs). While the research on SONs commenced a

decade ago and is still ongoing, they may not meet the requirements of 5G

in their current form, mainly for the following reasons: their reactive mode

of operation, the conflict-prone design of SONs, the limited degree of free-

dom and lack of intelligence of the network. This dissertation addresses these

limitations of state-of-the-art SONs.
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To effectively tackle the spatiotemporal dynamics of network conditions, it

presents a generic low-complexity framework to quantify the key facets of

performance, namely, the capacity, quality of service (QoS), and power con-

sumption of the various network topology configurations (NTCs), for enabling

the SON-empowered cellular system optimization on the fly. The presented

framework quantifies the multiple performance aspects of a given heteroge-

neous NTC through a unified set of metrics that are derived as functions

of key optimization parameters, and it also presents a cross comparison of

a wide range of potential NTCs. Moreover, it proposes a low-complexity

heuristic approach for the holistic optimization of future heterogeneous cellu-

lar systems for joint optimality in the multiple desired performance indicators.

The performance characterization framework (PCF) also provides quantita-

tive insights into the new trade-offs involved in the optimization of emerging

heterogeneous networks, and it can pave the way for much needed further

research in this area.

Next, we develop and analyze a semi-Markov-based spatiotemporal mobil-

ity prediction framework for transforming a reactive SON into a proactive

SON. The proposed mobility prediction model overcomes the limitation of

conventional discrete-time markov chain (DTMC)-based prediction models

that fail to incorporate the time dimension, i.e., "Time of next hand over

(HO)." Next, we propose a novel method to map the next cell spatiotemporal

HO information to the estimated future location coordinates based on the

idea of Landmarks. This novel method further increases the spatial resolu-

tion of future location estimation without requiring an increase in the number

of states for the semi-Markov model. The accuracy of the proposed model

is quantified through experimental evaluations coupled with extensive Monte

Carlo simulations.
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Furthermore, it proposes a novel spatiotemporal mobility prediction-aware,

proactive, sleep-mode-based energy saving (ES) optimization algorithm to

solve the future 5G ultra-dense heterogeneous networks (HetNets) puzzle. The

proposed AURORA framework employs an innovative concept of estimating

future user locations and leveraging them to estimate future cell loads. It

then devises an ES optimization problem for the estimated future network

scenario. The majority of conventional reactive-style approaches are expected

to dynamically solve the formulated ES problem in real time as network con-

ditions change. However, this is close to impossible, even when substantial

computing power is available. In contrast, the innovative proposed approach

enables state-of-the-art heuristic techniques such as genetic algorithms (GAs)

to find practically sound solutions to the formulated optimization problem

predictively ahead of time. This can be an enabler for meeting ambitious 5G

latency and QoS requirements. Moreover, the AURORA framework considers

the interplay between the three intertwined SON functions (ES, coverage and

capacity optimization [CCO], and load balancing [LB]) that exists due to the

overlap between their primary optimization parameters. Therefore, it em-

ploys a co-design approach wherein the joint optimization of ON/OFF states

and cell individual offset (CIO) values for small cells (SCs) does not conflict

with CCO and LB objectives. Extensive simulations employing a realistic

SLAW mobility model indicate that AURORA can achieve significant energy

reduction gains in ultra-dense HetNets, compared to an always ON approach.

A comparative performance analysis with a near-optimal performance bound

indicates satisfactory robustness of the proposed AURORA framework for

location estimation accuracies.

This dissertation also proposes a novel spatiotemporal mobility prediction-

based, proactive LB optimization framework for HetNets by jointly optimizing
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Tx power, tilts, azimuths, beam widths, and CIOs. The proposed OPERA

framework solves the load-minimization optimization problem for the esti-

mated future network scenario. The majority of conventional reactive-style

approaches are expected to dynamically solve the formulated LB problem in

real time as network conditions change. This is close to impossible, even

when substantial computing power is available. In contrast, the innovative

proposed approach—thanks to its proactiveness—allows ample time for an ad-

vanced combination of optimization heuristics namely GA and pattern search

to find feasible high gain solution to the formulated optimization problem.

This makes OPERA an enabler for meeting the ambitious 5G latency and

QoS requirements. Moreover, the OPERA framework considers the interplay

between two intertwined SON functions (LB and CCO) that exists due to the

overlap between their primary optimization parameters, and it thus ensures

conflict-free operation. A load-aware association strategy further bolsters the

framework against location estimation accuracies. Superior performance of

OPERA on several fronts compared to current schemes stems from its fol-

lowing features: 1) It preempts congestion instead of reacting to it; 2) it

actuates more parameters than any current LB schemes thereby increasing

system level capacity instead of just shifting it among cells; 3) while perform-

ing LB, OPERA simultaneously maximizes residual capacity while incorpo-

rating throughput and coverage constraints; 4) it incorporates a load aware

association strategy for ensuring conflict free operation of LB and CCO SON

functions.

This dissertation also presents a stochastic analytical model to analyze and

predict the arrival of faults on the reliability behavior of a cellular network.

Assuming exponential distributions for failures and recovery, a reliability

model is developed using a continuous-time markov chain (CTMC) process.
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Unlike the previous works on cellular network reliability that mostly focus on

the structural aspects of cellular networks and overlook the network behav-

ioral aspects that can cause complete or partial failures, the proposed work is

more focused on developing a generic analytical model encompassing diverse

fault cases such as software/hardware failures or SON conflict-attributed mis-

configurations. This approach affords the flexibility to incorporate a variety

of failure scenarios into the model.

On the whole, the contributions of this dissertation can make a SON more

agile, intelligent, and conflict-free, and they can essentially transform it from a

reactive to a proactive paradigm and hence allow it to act as a key enabler for

5G. The resource efficiency, cost saving, and service improvement achievable

by the contributions of this dissertation are bound to have broad impacts on

nearly every aspect of the evolving digital society that counts on cellular con-

nectivity. Therefore, this dissertation offers key step forward towards paving

the way for the commercial and technical viability of 5G and beyond.

8.2 Future Work

The PCF framework presented in chapter 3 of this dissertation requires an

operator-specified policy for priority settings for various goals. This priority in

itself can be devised as an optimization parameter, which can be set by a SON

itself, depending on network conditions. Moreover, this priority policy can be

further abstracted with a return on investment (ROI). The SON can optimize

the priority values of conflicting goals to maximize the ROI for operators.

The AURORA and OPERA frameworks presented in chapter 5 and 6 respec-

tively can be further modified with the incorporation of user-specific mobility

behavior and QoS requirements of the UEs. They can be made backhaul-
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aware by assigning a maximum load threshold to the cells depending on the

available backhaul. In this way, core network influencing factors can be incor-

porated implicitly into the AURORA and OPERA frameworks. The minimum

required throughputs in the problem formulations of AURORA and OPERA

can be replaced with the actual spatiotemporal network usage requirements of

users that can then be learned by mining call data records (CDRs) and auxil-

iary data sources in mobile networks; e.g., User A frequently watches cricket

match. By mining CDRs and social feeds, it is possible to predict when the

user A will watch an upcoming famous cricket match, and this prediction can

be used for the throughput requirement of that user, instead of plain, flat,

minimum required throughputs.

In addition to ES, LB, and CCO SON use cases, the presented spatiotemporal

mobility prediction model in chapter 4 can also be used to transform mobil-

ity robustness optimization (MRO) SON function from reactive to proactive,

since the present contribution already predicts future cells for all users (see

Fig. 4.7), which in turn can be used for proactive handovers.

In the context of proactive self-healing, presented in chapter 7, the CTMC

can be extended to include a non-exponential distribution for failures and

recovery times, i.e., semi-Markov. Moreover, methods can be developed to

efficiently estimate stochastic reliability model parameters by learning from

the past failure logs collected from a real network. Also, knowledge about

the future load can be exploited when the goal is to reduce the maintenance

costs associated with base station (BS) power state changes. In particular, by

knowing the future variations of a load, it would be easier to schedule BS power

state changes in order to limit the increase in maintenance costs. Furthermore,

since cell failure data are highly skewed, not enough data are available to train

machine learning or statistical models for failure prediction. In this case,
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synthetic cell outage data, generated through appropriate machine learning

tools, can be leveraged.
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Appendix: Pseudocode of Algorithms

Algorithm 1 : Future Location Estimation

Input: luk ,C
u
N ,T

u
HO, l

LM
CuN

, SojournT imemax, k, k
′

Output: luk+k′

for u ∈ U
If sojourn time of user "u" ≥ sojourntimemax OR no training
sample exist for this CuN i.e., lLMCuN = {}

luk+k′ = luk
Else

luk+k′ = luk +

√
(xLMCu

N
−xuk)2+(yLMCu

N
−yuk )2

TuHO
∗ k′ ∗

[lLMCu
N
−luk ]

||(lLMCu
N
−luk )||

End If
End for
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Algorithm 2 Genetic Algorithm

Input:
Solution space S(AURORA: πc, P c

CIO )(OPERA: P c
t , θ

c
tilt ,φ

c
a ,ϕcv,ϕ

c
h,P

c
CIO ),

Objective Function Ω
Max Iterations G,
Solution space samples per iteration P,
Key samples per iteration E,
Mutation ratio M.

Output:
Solution X = [πc, P c

CIO ] for AURORA, [P c
t , θ

c
tilt ,φ

c
a ,ϕ

c
v,ϕ

c
h,P

c
CIO] for OPERA

1: Generate |P | sets from S randomly;
2: Generate values of Ω for each set in P
3: Save the sets in current solution space Pop;
4: for i = 1 to G do
5: Number of elite members in Pop numelite = E;
6: select the best numelite solutions in Pop and save them in Pop1;
7: Number of crossover solutions numcrossover = (|P | ∗ numelite)/2;
8: for j = 1 to numcrossover do
9: Randomly select 2 solutions XA and XB from Pop;

10: Generate XC and XD by one-point crossover to XA and XB;
11: Save XC and XD to Pop2;
12: end for
13: for j = 1 to numcrossover do
14: Select a solution Xj from Pop2;
15: Mutate each element of Xj at a rate M and generate new solution X́j ;
16: if X́j is non-feasible then X́j with a feasible solution by repairing X́j ;
17: end if
18: Update Xj with X́j in Pop2;
19: end for
20: Update Pop = Pop1 + Pop2;
21: end for
22: Return the best solution X in Pop;
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Algorithm 3 Pattern Search Algorithm

Input:
Parameter space S(P c

t , θ
c
tilt ,φ

c
a ,ϕcv,ϕ

c
h,P

c
CIO)

Objective Function Ω
Output: Solution X = [Pct , θ

c
tilt ,φ

c
a ,ϕcv,ϕ

c
h,P

c
CIO]

1: k = 0;
2: while k < iterationmax do
3: Determine a step size sk using exploratory search algorithm;
4: Test Ω at x0 and two more points x1 and x2 in a triangle;
5: Label best, good and worst points as xB, xG and xW ;
6: Reflect xW on the plane as xR;
7: if Ω(xR) > Ω(xG) then
8: if Ω(xR) > Ω(xB) then replace xW with xR;
9: else Find xE|2xR − (xB + xG)/2, find Ω(xE)

10: if Ω(xE) > Ω(xB) then replace xW
11: end if
12: end if
13: else
14: if Ω(xR) < Ω(xW ) then replace xW with xR;
15: Compute xC = ((xB + xG)/2) + xR) /2, find Ω(xC)
16: else Compute xC = ((xB + xG)/2) + xW ) /2, find Ω(xC)
17: end if
18: if Ω(xC) < Ω(xW ) then replace xW with xC ;
19: else Compute xS = (xB + xW )/2 and replace xW with xS and xG =

(xB + xG)/2
20: end if
21: end if
22: Compute pk = Ω(xk)− Ω(xk + sk)
23: if pk > 0 then xk+1 = xk + sk
24: elsexk+1 = xk
25: end if
26: Update Pattern Vectors and step size k = k + 1
27: end while
28: Return X = [P c

t , θ
c
tilt ,φ

c
a ,ϕcv,ϕ

c
h,P

c
CIO]
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