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' 
Findings and Conclusions: The T2 phage, in order to reproduce itself in 

its host E..._ coli, must stimulate the formation of several enzymes, 
or enzyme complexes, which in turn catalyze the reactions which 
produce phage precursor molecules. 

The phage must first halt all macromolecule synthesis within the 
host cell by a DNase, then produce a phage specific messenger RNA. 
With this RNA carrying the code for phage specific protein, the 
bacterial ribosomes and the transfer RNA of the host cell are bor­
rowed, resulting in protein which functions as enzymes, or is phage 
precursor in nature. 

The majority of the phage induced enzymes are concerned with the 
formation or replication of DNA, which is unlike that of the host 
cell in that it contains glucosylated deoxyhydroxymethyl cytosine 
derivatives. These enzymes lead directly to the synthesis of 
deoxyhydroxymethylcytidylate, its subsequent polymerization into 
phage DNA where it is glucosylated by further phage induced 
enzymes. Also deoxythymidylate is produced in the infected cell 
from deoxycytidylate by deamination and addition of a mole of 
formaldehyde. 

At this point, the phage specific DNA and precursor protein pools 
in the host cell are "full". The DNA is crosslinked, the poly­
hedral head and tail are added, and the resultant phage are mature. 
The host cell is then lysed from within by a lysozyme whose 
synthesis was also induced by the attacking phage, and the phage 
progeny are released into the medium. 
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PREFACE 

At first thought, the value of extensive research in­

to a seemingly inconsequential virus-host system such as 

the T2 bacteriophage and Escherichia coli may seem nil. 

However, if it is considered in the sense in which it is 

employed, as a model system, it becomes invaluable. Many 

characteristics of the system lend to its value as a model 

system; the availibility of both the host cell and the 

virus, the ease with which the bacteriophage can be assayed, 

the hydroxymethyl cytosine common to T;...even phages being 

but a few. 

Though researchers are well aware that all ~irus~ 

host relationships are not as in the T2, E. colj system, 

they see the value in their investigations because of the 

similarity to other systems. Total enlightenment of the 

complexities of this system will surely add to the pool 

of general knowledge of viruses. 

It is in this vein that I have researched and written 

this paper; the specific knowledge of this system being 

of little importance, rather the insight I have gained into 

the effects resultant in the host cell from viral infec­

tion. 

Indebtedness is acknowledged to Dr. L.H. Bruneau, 

and Dr. E.T. Gaudy for their assistance. 
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CHAPTER I 

INTRODUCTION 

In order for a given virus to reproduce itself after 

attacking any living system, be it a somatic cell of a 

vertebrate, a plant cell, or a bacterium; it must be ca­

pable of converting the 11 metabolic machinery11 of that cell 

to such an extent that any resultant molecules produced 

are of a viral species. The attacking virus may stimulate 

the formation of entirely new metabolic pathways as well 

as "borrown some of those which are active in the uninfect­

ed cell, but the end result must ,e those processes which 

ultimately result in the formation of new virus particles. 

One may immediately think that such metabolic conver­

sion would be quite simple in the T2, Escherichia coli 

system, due to the simple structure of the T2 bacteriophage. 

However, some insight into the structure of this phage at 

the molecular level, indicates that several differences 

exist which will make it necessary for the phage to create 

totally new enzyme series in order to produce the su"fu:stances 

necessary for phage maturation. 

In this system, the resultant metabolic pathways are 

clearly categorized relative to the time when they first 

appear after infection of the cell, and the duration of the 
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alteration. All these changes are such that they are to­

tally necessary for the production of new phage particles, 

and the sequence in which they appear is perfectly adapted 

to the development of the mature phage particle. 



CHAPTER II 

METABOLIC CONVEHSION 

In order for virus induced enzymes to exert their to­

tal influence upon the m~tabolic machinery of the cell, the 

chemical synthesis in the infected cell must be brought to 

a halt. Cohen and Anderson (1946) have shown that immed­

iately upon infection by T2, the formation of further res­

piratory enzymes cease, and the energy flow of the cell 

proceeds at a constGnt rate all during the latent period. 

This is to say that anabolic activities concerned with 

macromolecule synthesis cease, but catabolic, or energy 

producing reactions continue. 

Morphological changes (to be discussed later in this 

paper) that occur in the host cell i~mediately after in­

fection, make it evident that something is happening to 

the bacterial deoxyribonucleic acid (DNA). Pardee and 

Williams (1952) found an increase in deoxyribonuclease 

(DNase) activity in the infected cell and the same was 

found by Kunkee and Pardee in 1956. The results of their 

work led them to believe it was definate increase in the 

activity of DNase and they could not creat.e the same effect 

by a variety of environmental changes. They also showed 

that the phage DNA must enter the cell to stimulate this 
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effect, as a phage nghost 0 caused no increase in the activ­

ity of this enzyme. Both workers felt the observed effect 

resulted from bacterial DNase whose actiViation resulted 

from the destruction of a DNase inhibitor by the attacking 

phage. 

Later work by Stone and Burton (1962) disproves the 

earlier theory of the destruction of an inhibitor, in that 

they were able to isolate a DNase whose highest specific 

activity is during that time of greatest protein synthesis 

in the host cell, and whose sensiti~ity to p-chloromercur­

i~enzoate (PCMB) is a great deal different. This certain­

ly tends to support the concept of a totally new phage in­

duced enzyme. With the synthesis of this DNase, the ncode 

centern for macromolecule synthesis is destroyed, and the 

invading virus is now in a position to rebuild a portion 

of the cell's metabolic machinery. 

Almost immediately after infection by T2 (i.e. the 

injection into the host cell of the viral DNA), a change 

is detectable in the RNA produced by ~he infected cell. 

Cohen (1948), in his early experiments observed a cessa­

tion of RNA synthesis immediately after infection, and 

could not positively establish if RNA synthesis was then 

reestablished, or if so, the degree to which it was carried 

on. But he positively proved that protein synthesis con­

tinued in an infected cell at the same rate as that found 

in the cell prior to infection. 

Several years later however, it was shown by Hershey 
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(1951) that there was active RNA synthesis in the cell af­

ter phage infection, and he flelt it was most certainly coded 

from the viral DNA. This discovery, when considered in the 

light of Cohen's constant level of protein synthesis in the 

post infection period, was inevitable. The RNA synthesis 

in the infected cell was maintained at such a low level, 

however, that it did not seem capable of producing the a­

mount of protein necessary for the production of mature 

phage. 

Volkin and Astrachan'{l95'6), when considering uridyl­

ic (dUMP) and cytidyli.c acid (dCMP) as equivalents of their 

natural analogues, hydroxymethylcytidylic acid (dHMCMP) 

and thymidylic acid (dTMP) of phage DNA, found that the 

post infection RNA is characteristic of the phage DNA ra­

ther than the host cell. That is, the base sequence (or 

their analogues) conforms to the sequence of bases found 

in the phage DNA. They also explained the extremely low 

level of RNA present at any given time in the cell by show­

ing this to be highly unstable nucleic acid, i.e. its 

turnover was rapid. 

RNA, which was obviously coded from the phage DNA, 

was further observed by Nomura et al (1960), and they 

felt the majority of this RNA probably always exists in 

a bound form, i.e. as a ribonucleoprotein particle. How­

ever, later work by Brenner et al (1961) found that stable 

RNA was not made after T2 infection, and existed only in 

the unstable form as formerly postulated. This unstable 

form served as a 0 messenger" RNA wh1ch carries the code 
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from the phage DNA to the ribosomes, and that the ribosomes 

themselves are an inert mechanism which cannot function 

without information from the DNA. This unstable messenger 

RNA (M-RNA) was found to possess molecular weights from 250 

to 500,ooo~ 

Osawa et al (1962) added that a phage specific M-RHA 

is formed from the phage DNA, is liberated from it, and 

then passes to the ribosomes. This RNA was definitely a 

virus species. About 90% of this nucleic acid in the cyto­

plasm could be demonstrated in the ribosomal pellet, and 

the remaining 10% was in a soluble form in the cytoplasm. 

Also, at any given time, a percentage of the total cell 

RNh could be found in close proximity with the phage DNA, 

as it was being templated from it. 

Stent (1963) strengthens the concept that a highly 

unstable M-RNA is formed, by stating thAt the rate of pro­

tein synthesis in the infected cell can be controlled by 

the number of operable ribosomes in the bacterium prior 

to infection. This can them be interpreted as meaning the 

phage "borrows" the bacterial ribosomes and produces its 

own protein by the M-RNA carrying messages coded from 

viral DNA. Other investigators such as Gros et al (1961) 

demonstrated an RNA in both the infected and uninfected 

cell and felt it definitely had~ messenger function. 

This M-RNA was found in each case to have a base sequence 

which was characteristic of the DNA in the respective cell 

in which it was found. 
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After the wide acceptance that M-RNA coded from viral 

DNA had the ability to control protein synthesis in the 

bacterial ribosome, workers turned toward the seqqence of 

information transfer rather than the mechanism. Green c 

(1963) found a great diversity in the molecular weight of 

the M-RNA as a result of sucrose gradient centrifugation, 

and by hybridization of this RNA with phage and bacterial 

DNA found that the RNA varied greatly with the time in 

which it was made. 

Further investigation by Spiegleman (1963) led to his 

total agreement of the messenger function of the phage in­

duced RNA, and that specific RNA molecules are produced at 

a given time.· He found that most molecules of RNA were be-· 

tween 16 and 30s, such size that they are coded for more 

than one protein. He felt this could arise from continuous 

transcriptions of contiguous cistrons found in the same op­

eron. This would then provide a simple explanation for the 

physical basis of the turning off and on of such groups of 

· cistrons. 

By checking the structure of M-RHA, he found that 

transcription of the entire phage genome is not a random 

thing because RNA produced in the same period was always 

structurally alike, and different if from a different per­

iod. 

Along with the work by Nomura et al (1960) on M-RNA, 

they also found an RNA subsequent to infection which was 

soluble in the cytoplasm of the host cell. This RNA had 
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about the same sedimentation coefficient as E. eoli soluble 

RNA, and is probably in about the same size range, but po~ 

ssessed the same base ratios as the ribosomal fraction. 

Nomura et al felt that this molecule could be breakdown pro­

ducts of precursors of the ribosomal RNA, but probably func­

tioned as an amino acid acceptor, an integral component in 

the present scheme of protein synthesis. Cohen (1948) had 

previously shown that the normally appe0ring soluble RNA 

Cs-RNA) fraction in E.coli does not exhibit comparable 

metabolic actibity in protein synthesis subsequent to in­

fection. Also Osawa et al (1962) demonstrated 10% of the 

phage induced R~A as being soluble in the cytoplasm. 

These facts, though they prove the presence of a 

s-RNA or transfer RNA (as would certainly be expected), 

do not show in any manner that these molecules are phage 

specific. ~1en considering the function of transfer RNA 

in protein synthesis, there is no need that it actually 

be phage specific. 

With the virus induced formation of a M-RNA and a 

s-RNA which is known to ha,,e an amino acj_a acceptor func­

tion, the synthesis of phage specific protein may begin, 

and the first protein of this type to appeer does so at 

about three minutes after infectiori. This molecule is 

given the name internal protein, and though its function 

is not definitely known, there is much conjecture on the 

subject. 



CHAPTER III 

INTERNAL PROTEIN SYNTHESSBS 

Internal protein was first found by Hershey (1955) and 

was given the name 1-protein. It has specific antigenic 

properties and is closely associated with viral DNA. It 

accounts for 2% of the total phage induced protein and con­

sists of two polyamines, spermadine and putrescine, and a 

polypeptide containing primarily aspartic and glutamic acid, 

and lysine. 

This protein may function as the "condensation princi­

ple'1 (to be discussed later in this paper), which is recog­

niz~d by many researchers. Stent (1963) feels that it prob­

ably functions in this capacity, as there is little doubt 

that the condensation principle is protein in nature, be­

cause a protein inhibitor administered at the time of in­

fection will prevent cross linking of the phage DNA. The 

internal protein is found in the host cell in close proxim­

ity to the phage DNA and remains there when the DNA:'.lis®en­

closed in the phage head. This close assbciation of in­

ternal protein with DNA, has led sorae workers to postulate 

that it may serve to carry some hereditary traits or play 

an integral role in the synthesis of DNA. (Murakami et al, 

1959). 

9 



CHAPTER IV 

I NDUC F]D ENZ:{ME SYNTHESIS 

Further phaGe induced protein synthesis gives rise to 

a protein group commonly callAd early enzymes or early pro­

tein. This category would include all that protein pro­

duced after infection except phage precursor molecules and 

the lysozyme synthesized later in the eclipse period. 

Innumerable works have been published to show this 

group of large molecules are phage induced and that their 

synthesis is completely necessary for the later replication 

of viral DNA. Watanabe (1957) was able to stimul?te a nor­

mal rate of protein synthesis in an ultra Violet inactivated 

E._coli cell by allowing the attack of T2. Cohen and Fowler 

as early as 1947 found that the early protein synthesis can 

be inhibited, thus inhibiting DNA synthesis, by the appli­

cation of one of several common protein inhibitors. It 

has been further found that if these inhibitors are admin­

istered a few minutes after infection, DNA synthesis will 

follow, and that rate of synthesis is proportional to the 

time after infection of administration of the inhibitor. 

This early evidence pointed toward the fact this group of 

protein was enzymes which were directly involved in the 

formation. of phage DNA precursors, and further work has 

10 



fully supported this concept. 

Flaks and Cohen (1959) were able to demonstrate the 

presence of the enzyme responsible for the synthesis of 

dHMC in cells infected with T even phages. It was found 

11 

to catalyze the addition of formaldehyde, in the presence 

of tetrahydrofolic acid, to the 5-position of dCMP to yield 

5-dHMCMP. This enzyme could not be demonstrated in unin­

fected cells, and first appears three minutes after infec­

tion in the infected cell, with synt:1esis continuing up to 

fifteen minutes after infection. If the formation of this 

enzyme is blocked with a protein inhibitor, no phage spe­

cific DNA is synthesized. The origin of the substrate of 

deoxycytidylate hydroxymethylase (dHMCase) was at that 

time unknown, ;put it was felt that it probably was the nu­

cleotide that resulted from host DNA destruction and that 

the presence of the nucleotide triggered the formation of 

the enzyme. (Flaks et al, 1959). 

1/'Jyatt and Cohen (1953) demonstrated the efficiency of 

this enzyme in their comparisons of the amount of phage and 

cellular DNA found within the infected cell at given times 

after infection. Cytosine contairdng DNA (bacterial DNA) 

decreases to about one third at twenty minutes after infec­

tion, and the infected cell contains virtually no cytosine 

DNA thirty minutes after infection if lysis is inhibited. 

At ten minutes after infection, phage and bacterial DNA 

are found in equal amounts in the infected cell. 

Workers involved with the discovery of the new pyrim-
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idine base and the enzyme responsible for this substance 

were puzzled as to how dIIl'iC was phosphorylated and incor­

porated into phage DNA. Kornberg et al (1959) found sev­

eral new enzymes in the infected cell which appeared about 

four minutes after attack by phage and like all other early 

protein was inhibited by the common protein inhibitors. 

Among these enzymes was a kinase which phosphorylated 

dHMCMP to the triphosphate form, and it was given the name 

dHMC:MP kinase. This enzyme was undetectable in uninfected 

cells and in those cells infected with bacteriophage T5 (a 

phage which contains cytosine rather than its hydroxymethyl 

deri va ti ves in its DNA). Somerville et,~al (1959) demon­

strated this enzyme by providing dHMCMP to both infected 

and uninfected cells, and this monophosphate was converted 

to the di- and triphosphate only in the infected cells. 

Somerville (1962) also showed this enzyme to be present as 

early as one minute after infection, and at this time both 

the enzyme and the product could be demonstrated in the in­

fected cella 

While these workers were concerned with this kinase, 

they found that the T2 infected cell loses its ability to 

phosphorylate dCTP at the same time the new kinase appears. 

It was found that this phenomenon resulted from the action 

of another phage induced enzyme, deoxycytosine triphospha­

tase (dCTPase). This enzyme was aptly demonstrated by 

Kornberg et al (1959) by mixing extracts of T2 infected 

cells with uninfected cells and an inhibition of the forma-
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tion of dCTP, which is normally formed in uninfected cells, 

was seen. This enzyme does not dire6tly inhibit the action 

of the normally occurring dCMP kinase, because the dCMP,:cki­

nase was shown to be prodL1ced at preinfection levels at this 

time; rather it was found to cleave the terminal pyrophos­

phate from this compound as rapidly as it was formed. Un­

infected cells were found to have less than 1% of the dCTP­

ase as were cells infected with phage T5. 

Koerner et al (1960) in further investigations found 

that dCTPase is a very specific enzyme, i.e. it will not 

react if the nature of the pyrimidine base has been al­

tered in any way, if the substrate is not in the triphos­

phate form, or if ribose is substituted for deoxyribose. 

It.will not react with dCDP, which shows the cleavage 

must be of the pyrophosphate. This was shown to be true 

by virtue of the discovery of one molecule of pyrophos­

phate formed for each mole of dCTP used. It was also 

found that the enzyme rapidly increases from two to fifteen 

minutes after infection, and at the time DNA replication 

begins (6-8 mins.), the enzyme has attained nearly 50% 

final activity, and shows 10% final activity at three min­

utes after irifection. 

Bessman (1959) demonstrated the ten to twenty fold in­

crease not only in dffi1C kinase, but also in a dGMP and a 

dTMP kinase as well. This increase, of course, was not 

apparent in the dCMP kinase, due to the phosphatase dis­

cussed earlier in this chapter. 
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It was not positively known during thi·s period whether 

these kinases which phosphorylated dTMP and dGMF were virus 

specific enzymes, or merely increased activity of a natur­

ally occurring bacterial enzyme present prior to infection. 

Bessman and. Van Bibber (1959) later showed that dGMP 

kinase was probably a phage induced enzyme by virtue of its 

reaction KCl. This salt stimulated the formation of the 

kinase in an uninfected cell and inhibited its formation 

in an infected cell. 

Bessman, now working with Belle (1963), continued his 

investigation of these enzymes, and in this later work 

has grouped what he considered three kinases previously, 

into one enzyme, a deoxynucleotide kinase. This enzyme is 

active in phosphorylating dTNP, dGMP, and dHMCHP, but is 

ineffective on dCNP and dAMP. Bessman and Belle teel this 

enzyme has three active sites, one specific for each of its 

respective substrates. When any one of the three substrates 

attack an active site on the enzyme, it so modifies the 

enzyme that it alters the remaining active sites a.nd they 

can no longer function. This opinion is strengthened by 

the fact that each of the substrates are competitive in­

hibitors of the other two. Surprisingly enough, this en­

zyme was shown to be capable of adding only one phosphate, 

i.e. bringing the nucleoside to the nucleotide form. On 

the strength of this discovery, one might predict the iso­

lation of further kinases in this system, though there is 

nothing more at the time of writing of this paper. 
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It is probably apparent at this point that no mention 

has been made of any enzyme which is capable of phosphory-

lating dAMP. This £unction is not necessary, even under the 

accelerated metabolic rates after T2 infection, due to the 

normally occurring high level of adenosine triphosphate. 

(ATP) relative to its function as a high energy compound. 

After the triphosphates of each of the four nucleo­

tides are formed, the polymerization of these substrates 

into DNA then follows. Lehman et al (1958) demonstrated 

the presence of a DNA polymerase, but could not state def­

initely whether this was an accelerated bacterial enzyme 

or another which is phage induced. Aposhian et al (1962) 

then reported that the DNA polymerase present subsequent 

to infection is distinctly different from that produced by 

the host cell on the strencth of immunological specificity, 

primer preference, etc. They also showed a ten fold in­

crease in the activity of this enzyme as would be expected 

when one considers the increased rate of actitity of the 

respective kinases. 

Early workers were aware that upon analysis of T-even 

phage DNA, glucose derivatives of dHMC were present, and 

were even found to be nresent in definite percentages in 
~ -

each T-even phage as will be discussed later in this paper. 

Zimmerman et al (1959) first found an enzyme which 

was capable of catalyzing the transfer of glucose from 

urldyl diphosphoglucose (UDPG) to dI-IMCTP and gave it the 

name glucosyl transferase. It was very obvious that was a 
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phage induced enzyme, as the glucosylated purine is co111mon 

only to the DNA of the phage. At this time there was no 

distinction made as to whether this was a single enzyme or 

a complex of enzymes which resulted in the various glucosyl 

derivatives common to the T-even phac;e. 

Lehman et al (1960) published their results showing 

that the proportion of glucose to phosphate in the T-even 

phage is a heritable property of each phage type. This 

proportion of glucosylated derivatives is so inflexible, 

they feel it may in some manner carry genetic information. 

Further proof of the inheritable characteristic of glucosy­

lated dHMC was published by Streisinger et al (1959) when 

they found that crosses between T2 and T4 phages resulted 

in intermediate structure of the glucose derivatives in the 

DNA of the resulting progeny1 

Lehman et al ( 1960) further s:1owed the extent of glu­

cosyla tion of the dHMC in T2; 25% is not glucosylated, 70% 

is a monoglucose d~rivative, and 5% is a diglucose deriva­

tive. They also found the specificitt of the glycosidi6 

bonds to be as follows: those molecules of glucose which 

are bonded to the hydroxyl group on dHMC are always joined 

through an alpha linkage, and the second mole, which is of 

course bonded to the first, is always in beta linkage. At 

this point, these workers felt probably two enzymes existed, 

an alpha and beta glucosyl transferase. 

Further work in this area bv Zimmerman et al (1962) 
" --

proved the glucosyl derivatives of dI-I1,1C must be polymerized 
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into DNA before they can act as a substrate for the glucosyl 

transferases. They found that if only dHMCTP in the gluco­

sylated form was present, no DNA synthesis would take place, 

but dHMCTP was readily polymerized into phage specific DNA .. 

The DNA polymer then became the substrate for the enzyme, 

resulting in the glucosylated DNA. 

At that point when the triphosphates of the four nucleo­

tides are polymerized into phage specific DNA, and dHMC is 

glucosylated, the phage DNA molecule is complete and will 

be found in progeny in this form. At the time this pathway 

from dCMP to DNA-glucose was traced, another acquired meta­

bolic pathway was found to arise also from dCMP. 

:Flaks and Cohen (1959), while investigating the reason 

that phage could mature within, and burst a thymineless 

mutant of E.coli which was growing in a medium containing 

no thymine, found a new enzyme capable of converting dUM:P 

to dTMP. This reaction required formaldehyde from which 

the one carbon fragment is obtained, and tetrahydrofolate, 

which they felt probably functions as the carbon carrier 

and a reducing agent as well. They postulated that this 

enzyme, which they gave the name thymidylate synthetase, 

transfers the formaldehyde to dTMP by way of a methylene 

bridged complex between dUMP and the intermediate, tetra­

hydrofolate. The enzyme then reduces the formaldehyde to 

the methyl group found on dTMP. Thymidylate synthetase 

was found to be present in the uninfected cell, but in­

creases seven fold in the infected cell, exactly that rate 
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which would make the specific activity of this enzyme com­

parable to that of the phosphorylation of dTMP and DNA po­

lymerization. 

Mathews and Cohen (1963) were able to substantiate the 

earlier theory that tetrahydrofolate functioned as a redu­

cing agent as well as a car~on carrier, by showing that it 

was stochiometrically oxidized to dihydrofoltil(te, and that 

the rate of reduction of this compound was approximately 

seven fold as in other steps in the synthesis of dTMP. 

They found that a new enzyme, dihydrofolate reductase, was 

responsible for reducing the dihydrofolate with the cofac­

tor TPNH2 to tetrahydrofolate and TFN plus. This enzyme 

was present in the uninfected cell also, but thane appeared 

to be some difference in properties when compared to that 

enzyme which is probably phage induced, but one cannot 

positively make this conclusion. 

Keck et al (1960) found the link between dCr~P and dlJMP 

by isolating an enzyme which cleaves the amino group from 

dCMP. This enzyme, named dCMP dearninase, appears about 

three to five minutes after infection. Unlike other en­

zymes in this group, it could not be demonstrated in the un­

infected cell. 

With the isolation of dCMP deaminase, a totally new 

pathway of dTMP synthesis opens, and as did the pathway 

to glucosylated DN!, arises from dCMP. However, the pro­

ducts resulting from a single substrate are quite differ­

ent, yet complement one another to produce a glucosylated 
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DNA which will become phage precursor molecules. 



CHAPTER V 

PHAGE PRECt::RSOR SYNTHESIS AND MATURATION 

With the synthesis of all enzymes necessary for the 

polymerization of phage DNA, this process starts about six 

to eight minutes after infection. There are certain morpho­

logical changes in the host cell prior to the advent of DNA 

synthesis which are worthy of some discussion in light of 

past remarks made in this paper, and these changes are also 

directly related to the maturation process of the phage. 

Kellenberger et al (1959) by viewing with the electron 

microscope ultra thin slices of E. coli at various times 

after infection by T2, was able to learn much about DNA 

synthesis and phage maturation. 

They saw that immediately following infection, a 

rapid distortion of the bacterial nucleoids occurs within 

two minutes, followed by a migration of this nuclear ma­

terial to the protoplast membrance of the host cell. At 

six to eight minutes after infection, large vacuoles con­

taining a fibrillar material are evident, and these en­

large until they are clearly evident within the cell. 

Kellenberger et al spoke of these large fi briL~con­

taining vacuoles as the "morphological pool", and felt 

they were composed largely of phage DNA~ These conclu-

20 
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sions were drawn from their demonstrating DNA, which was 

known to have been synthesized at different times during 

the latent period within the same phage offspring. If this 

thebry is not true, there would have to be much recombin-

ation of homologous subunits during their sojourn to the 

DNA pool. However, if DNA subunits are synthesized, one 

must accept the concept of a new system which will dictate 

the ordering of these subunits when they leave the pool. 

In no other manner could phage DNA exhibit that sequence 

of bases which make it phage specific DNA:. 

Kellenberger (1961) showed that DNA passes fron his 

"morphological pooln to the maturing phage, as he found 

that the pool does not increase in size from the end of 

the eclipse period even though DNh synthesis positively 

continues until burst. He explained this phenomenon by 

showing DNA was being condensed and incorporated int~-the 

phace head as rapidly as it was being synthesized. 

A' 1 t t' t. _l"'i' • .... .!L.. ( .. 1 ' -c; a Jou , ,ne same · .1me ar 1~er im: ec t.ion seven nnnu1;es j, 

Koch et al (1959) readily identified a phage precursor pro-

tein by immun,©logical techniques, and found it to be those 

protein subunits which go into the head of the mature phage. 

These protein subunits have a molecular weight of 80,000 

and probably exist in a pool as is ch2racteristic of DNA. 

tlt ten minutes after infection, Kellenberger et al 

(1959) viewed electron dense bodies with the polyhedral 

shape characteristic of the T2 head. These polyhedrals 

were shown to display various stages in the ontogeny of 

the phage head, as the number of such polyhedral bodies 
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per cell visible at various times during the latent period, 

always exceeded the number of empty phage heads and intact 

phage particles per cell ai any premature lysates of the 

same population of infected cells. So~e of these poly­

hedrons must then reflect an earlier stage in the develop­

ment of the phage head, and this structure corresponds nice­

ly with the cross linked DNA resulting from action by the 

condensation principle discussed earlier in this paper. 

At this point the protein coat forms about the eross­

linked DNA. Koch et al (1959) state that an unstable pro­

tein coat is first formed and maintains a membrane~char­

acteristic for approximately five minutes before becoming 

stable in the sixth minute~ The tail of the phage is then 

added and the maturation process is complete, thus ending 

the eclipse period at approximately fifteen minutes after 

infection. 

As is rather obvious to the reader, little informa­

tion has been given in this paper concerning the assembly 

process of the bacteriophase, i.e. the specific nature of 

addition of the protein coat and tail to the ;rosslinked 

DNA. Of all phases in production of mature phage, this 

seems to be the least understood and the least explained 

in literature. 

Though the presence of mature phage within the host 

cell indicates the end of the eclipse period, these ma­

ture particles are still within the bounds of the cell and 

must be released into the medium to complete the cycle. 
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This is accomplished by a lysozyme, the final phaee 

specific protein synthesized within the host cell. Though 

this enzyme lyses the cell at twenty five minutes after 

infection, it appears as early as seven to eight minutes 

after infection. 

When this enzyme was first isolated, it was thought 

that its only capabilities were protein degradation. Then 

it was shown to lyse E.coli when in purified form and as 

a result considered as a true lysozyme. (Koch and Dreyer, 

1958). With the lysozyme actively bringing about a lysis 

from within, the host cell is ruptured, the phage progeny 

released, and the cycle is complete. 



CHllPTgR VI 

Sffi1MARY AND CONCLUSIONS 

Certain metabolic changes are apparent in the bacterium 

Escherichia coli after infection with T2 bacteriophage. A 

phage stimulated DNase appears immediately after the injec­

tion of viral DNA, resulting in the destruction of bacter­

ial DNA. Thus, all anabolic activities resulting in the 

formation of large molecules are brought t6 a halt; how­

ever the energy producing reactions common to the preinfec­

tion host cell continue at their normal rate. 

At about the same time, the synthesis of phage specif­

ic RNA is detectable, thus establjshing a phage oriented 

metabolism which will readily produce protein of a phage 

variety. This phage oriented protein producing mechanism 

consists of a M-RNA to carry the "code" of proteins to be 

synthesized from the viral DNA to the "borrowed" bacterial 

ribosomes. Probably as-RNA has also been detected which 

has an amino acid acceptor function. 

After establishing the necessary metaboli.c pathways, 

a number of phaee specific early enzymes are produced which 

will in turn catalyze reactions that result in the formation 

of phage precursor molecules. 

The majority of these early enzymes probably are con-

24 
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cerned with the production of glucosylnted DNA which is 

common to the T2 bacteriophacee Two general enzyme groups 

exist, and both have as their ultimate precursor, dCMF. 

A dHMCase catalyt.3es the addition of formaldehyde to 

dCMP to form dHMCMP, which is then phosphorylated by its 

respective kinase. The other three nucleotides found in 

phage DNA, dAMP, dTMP, and dGMP, are also found in high le­

vels in the host cell at this time, the latter two due to 

the action of their respective kinases, and the former by 

virtue of its function as a high energy compound. 

At this point, the triphosphates of the nucleotides 

are polymerized into an :nntact DNA by a phage specific 

DNA polymerase. This then results in DNA containing dHMC 

derivatives common to the T2. Also found in phage T2, are 

glucosylri ted deri va ti ves of dHMC in the intact DNA as a 

result of two phage specific enzymes, alpha and beta glu­

cosyl transferase, which transfer e;lucose from UDPG to 

dHMC. 

Another enzyme system which functions simultaneously, 

catalyzes a series of reactions which change dCMP to dTMP 

by removal of the amino group from dCMP to form dUMF, then 

the addition of a formaldehyde to the 5' position on dUEP. 

Deoxycytidylic deaminase and thymidylate synthetase are the 

enzymes involved in these reactions. One other enzyme is 

also functional in this series. Dihydrofol 0cte reductase 

is found to reduce dihydrofolate to tetrahydrofolate with 

TPNH2 as the cofactor. Tetrahydrofolate is itself exidized 
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in reducing formaldehyde to the methyl group found on the 

i:::' 1 · b /) 1:n,,·:;;1:,TMP· ,) car -on cu.x,u_., l • 

W'ith the appearance of all necessary enzymes, the phage 

precursor molecules are then synthesized. DHA replication 

is followed by its condensation into polyhedral shapes 

slightly smaller than the intact phage head. Protein sub­

units are then drawn from the protein pool to form a coat 

over the condensed DNA. The assembly of the phage is com-

pleted by the appearance and attachment of the tail. 

During the maturation process just described, the 

final phage induced protein is synthesized in the form of 

a lysozyme, which lyses the cell from within, releasing the 

mature phage. 

Further research into the E • .9...oli, T2 system will 

probably be directed toward the assembly of precursor 

substances rather than their synthesis. Phage specific 

DNA synthesis is relatively well outljned and seemingly 

requires little more study; however, further insight in­

to phage precursor protein will probably be attained. 

There will then only remain an elucidation of the actual 

mechanism bf assembly to complete the total picture of 

thj s systerrn. 
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