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CHAPTER '1I
INTRODUCTION

The computation of deflections is necessary in order to be sure
that a structure proportioned by the plastic method will not be bent
out of shape to such an extent that it becomes unserviceable. The
limit up to which deflection can be tolerated is a difficult question.
-Even in the ordinary elastic design, more often than not, a precise
answer cannot be given. Consequently, the-judgment and experience
of the engineer plays an important role in settiﬁg the proper de-
flection limit.

One of the principal advantages of plastic énalysis is the
'simplicity.ﬁith‘which the maximum load carrying capacity may'be cal-
culated. In case it is required to find the deflections, some of
this advantage may be lost, although .fairly easy procedures may be
applied in certain cases, However, deflection‘at ultimatelloaa is not
ordinarily required any more than it is for an elastically .designed
structure, Therefore, since plastically designed structures are
usually elastic at working loads, deflections may be computed by methods
based on elastic behavior. Hence, this difficulty is not so serious as
may be supposed.

The deflection requirement, however;, is only a secondary one. The
structure must be able to carry the assumed load, but on the .other hand

it must not deform too much out of shape. Therefore, our needs involving



deflection computation may be satisfied with approximations.

In Chapter II of this report are solved some examples of simple beams
under different types of loadings. Chapter III presents a method for com-
puting the approximate magnitude of the deflection at ultimate load and
for obtaining an upper limit to the deflection at working 1oac}° In
Chapter IV is discussed the problem of superimposed loads. The fifth

chapter summarizes and concludes the study.



CHAPTER 1T
DEFLECTIONS OF BEAMS FOR.DIFFERENT LOADINGS

"In the following pages are worked some examples of statically deter-
minate beams under different types of loadings. As a preliminary step,
a brief outline will be presenﬁea of the theory supporting each method of

investigation.
2~1 Assumptions

-The following assumptions are madeé:
(1) The cross-section of the beam is assumed to be rectangular.
(2) The material for the beams worked out is assumed to be perfectly

plastic with the same stress-strain curve in tension and compression.

c F----7

[ N,
[0}

Fig. 1. Idealized Stress-Strain Curve



Theory:

2-2 Area Moment Method

Proof of the two theorems used in this method may be found in most

strength of materials textbooks. The theorems may be stated as follows:

-Theorem I :

Theorem II:

The change in slope between tangents drawn to the elastic
. . 1

curve at any two points is equal to the product of 1

multiplied by the area of the moment diagram between

these two points.

‘When a straight beam is subjected to bending, the dis-

tance of any point on the elastic curve, measured normal
to the original position of the bending axis, from a
tangent drawn at any other poéint drawn on the elastic
curve, is represented in magnitude by the moment of the

area under the M/EI diagram between these two points

about an ordinate through the first point.

A} ‘B’

Fig. 2. Load and M/EI Diagram



Mathematically ‘the two .theorems may be expressed as:

BMd
S Hax
o - [
B
" . IMxdx
A J EI
A .

where M is expressed in terms of the distance, X, measured from
the point A.

However, in the plastic range the rate of angle change can no longer
be defined as M/EI because f # %X . .It may be stated, however, that the

rate of angle change is-M/EIr, where Ir is the reduced moment of inertia.



EXAMPLE: -SIMPLY SUPPORTED BEAM WITH A CENTRAL LOAD(A)

-The figure below shows a simple beam with a central load. The treat-"
ment followed shows a procedure for determining the deflection, by making

use of the Area-Moment Method.

-Fig. 3. M/EI Diagram and Deflection Curve

AC = Elastic CD = Elastic + Plastic DB = Elastic
M=£§ M =‘££‘

2 max 4

Moment at C when the plastic hinge is formed = M

e
Now M = Pxy
e 2
2M
or X = e



-

"Now -9 e, - Q.

A <
= Area of M/EI diagram between A and £
Me°X1 _ 2M,
=7t Ap e 'E§Q,
v
=PI T4
Cmax h
NOW )\ = ‘5—' = - o
e €s Ve
2
o g E
e >\2

Now for a rectangular section

1

A o ———
v 3-2 M7‘Me

¢« 2 _ qu2 _2 -
Sy -_3h (1

w |

M
)
e

‘Now for the plastic portion

y2 = 30° (1 - % %—) [(But M = Pk/2]
- .
or yz = 3n2 (1 —»Px/BMe)
Now = Ke-h—
Ve
x = L/2 h L/2 , M L/2
<3 _.Jde_ e J dx ___%I.,_._ck__
e - EI J , T EIJ 3 - Px/M
X = X » xlhd3(l - PX/BMe) X e
Substituting 3 - 5;-: ] and integrating
e
Y L/2
Y- ‘Js—l/gds
p PEI J
X
2M

‘Integrating and substituting x, = —5~



oM3

- e -PL
Ap:-PEI [’\/3-2M '11
e
M oM
: S = - ___,‘, - f UL
S8 = PEIU3 1:1 [3 2 > 2M]
M
2 —
8 = < P_§T> <§X1>‘+ Ap.x

Substituting x;, = 2Me/P

4 M _
6 = 5 + A X
PPET P
Now L/o L/2
A X = Ikxdx === f
’ Bl A3 - Px/M

Substituting 3 SR 5 ana integrating

M

e

X = L/2 ° L/2
x _ _ . _e 5 2 3/2]
bt f s = - g 68 - 575

Now %, = 2Me/P

Kp- - b—fgﬁ[ 3 - -PL/QMe{4’+ PL/BMe} - %é]
M
1)

soh e el TR { o I
- 953 EI ~ P°EIN el 3M

PL
3p EI[2O'«/3'PL/2Me<12+Mé>]

»
il

“!m%



2-3 Method of Double Integration

‘Theory:
The expression for the radius of curvature, @, of any curve is
- T
3
P &£y
dx®

Since the curvature of most (initially) straight beams is quite small
when subjected to stresses below the elastic limit, the second order
differential (dy/dx)® is very small and may be neglected with no

appreciable error.  Hence

p:

&%

It can be shown further that p = EI/M. By equating the two expressions
d2
for p, we .arrive at the basic relationship Elggg = M which is the general
equation for the elastic curve of a beam., M is the bending moment, ex-
presséd in terms of x, at a distance x from the origin and y ‘is the de-

flection of the beam at the same point.
-Example: Simply Supported Beam With a Central Load

Figure 4 shows a simple beam with a concentrated central load. The
method of a double integration shall be used to determine the central

deflection.



‘ P
= %y — ‘L
y
P/2 L/2 _L/? B/
M ——
p e
M S
M
e
. X
Fig. 4., Moment Diagram
M = Px/2; M = Px /2 S.oX = 2M /P
e e
Section Properties:
koo M _ Px
EIl  2EI
xS x < L/2
kz_}:[': but I—t;ﬁt vno]: == ]I_t
1 T

EI
r

Alsc for a rectangular section

3 1
t=5x 0 -3

and - 1
= ===
-2y
e
substituting
ClM o1 ﬂf{.g[___ml_m]
~ T EI : T EI ‘ M

3 1
o - 3

10



Integrating expressions for curvature

d°z o bkx

dx® ~ 2ET

.dz Px®

= = " ZEI + 0 where O = slope at x =
nd = -‘PXB + Ox (no constant sinc
a 2 % T 1oET ez
Evaluating at x = x, where x, = 2M /P

: e
dz _ _ E§;>, 0
dx =~ PEI
oM oM

B g
3P°EI P

X, S x < L/2

£z _ e [
ax® =~ T EI J3 - Px7Me ,
dz QMZ /
E{' = PEI 3 - PX/Me 4= Cl
= - 4M2 3 - Ex /2+ C,x + C
Z = 7 3pPET M 1 2

Evaluating C, and 8

Slope at x = L/2 = 0

"
at X = %, = - PEL t 0
then
2 w2
A B s S
2t
. Cl =2 - 'ﬁ + 0
and
oM 3M§
TEL 3 - PL/EMe -1t 8 =0



3M° 2M2
- 0 - —& _ _PL
o " PEI PEI
PL
°or Q:PEI[ “2\/3'2M 1
2Me
To evaluate C, deflection at x = x, = —p  must be the same as already
found above,
EMZ oM
g " 2PPEI | PEEI [ T 2M]
4> o oM a
- SpEET - Tt SN
3P°EI ~ PPEI | P EIL oM, ?
or (C, = 29 gg——
2 "3 P°EI
the maximum deflection may now be evaluated at x = L/2, i.e.
® 372 sy 0y
Zg =8 = -2 ';x-,P]L - === 'E-EJ J+g=-9—§——-
£ 3 Pin\ 2PEI = 2PEI 3 P°EI
M
_ e [4«/3 _PL>_3PL J——FB-L+201
3P°EIL QM\ oM/ M oM
é e e
e [20 - J3 - (12 " PL)J
T 3P°EI
Summary
Slopes
M <M <M M = PL
e max P max &
M
QTPEI[3‘2\/3m2MJ
max. elastic slope P = 4M /L, M = P L/4
e e € €
P L7
e
e 16EI
P L 3
limiting plastic slope- Mb = —%~ = 1.5 Me =3 Pel

12
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P 12 P 12
e

g = —E2— -
p - 12EI ~ 8EI

Deflections:

M .
e PL P
8 = 35757 [20 ; <}2 * M%)J% - 2MeJ

max. elastic deflection

4Me PéL
Pe= T o Mt
P 13
§ = =
e 48ET
P L 3
limiting plastic deflection M = P2 15M ==P1L
P 4 e 8 "e
3 12
. 5 .vaL 5 D.PeL
p 162 EI ~ 108 EI
Equivalent Deflection
1.501 No plastic action

/ -
4 |
P/P yZ / .
P /

Collapse takes
place

!
I
|
l
I
|
!
?
!
|
|

1.0

105 *

22

o

Fig., 5. . Load-Deflection Curve
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Collapse occurs when the deflection reaches the limiting plastic

p 158
. 5 P . . .
deflection of IEE BT ° The ratio 6/6e at that time 1is
3
5 a PeL 240 .

T60EL ‘pl / %8EI = 162

m"d l_d"d

But for a rectangular section Pp/Pe = 1.5
. 6/6e = 2.22
Thus the curve indicates that the beam deflects a maximum of 1.48 times

what it would assuming no plastic action.
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2-4 Conjugate - Beam Method
Theory:

From the similarity of the relationships d®M/dx® = W and, d®y/dx®
= M/EI, it may be seen that the load bears the same relationship to the
moment that the M/EI bears to the deflection, Thus‘if the real beam
-is replaced by a conjugate beam (which, in some cases, differs from the
real beam in typé of support) and this conjugate beam then loaded with
the M/EI diagram, the deflection of the real beam at a given point will
be-equal in magnitude to the moment in the conjugaté beam at the same
point.

The slope in the real beam at a given point, incidentally, will

be ' equal in magnitude to the shear in the conjﬁgate beam.

-Example: Simply Supported Beam with Uniformly Distributed Load )

Figure 6 shows a simple beam loaded with a uniform-distributed load.
The portions AD and EB are elastic whereas the portion DE of the beam
is elastic-plastic. The conjugate beam method discussed above has

been made use of for determining the central deflection of the beam.

W
I )
14 R
N Ll%\LDLl(CL%ELi ]
XI_]T;'Q——-’»‘

Fig. 6. .Deflected Shape of Beam
Uniformly Loaded



CWLx  Wx® Wx

WL2/8

=
i

max

Moment at D when the plastic hinge is formed is Me
_WLxy  WE

e 2 2

or
Wx? - WLx, +2M = 0
e

‘or
L
X1='2":l: = L =

Now ~Ir/I =t or I = It

Also for a rectangular section:

3. L
t =53 <1 3)@)

and

‘Substituting the values of t and A in above

v M - M W I - LA 2
Ir = M ‘J 3-2 =5 M (Lx - ¥°) /3 M (Lx - x°)
e e e

M @z do
Now  K=%7 =32 ~ ax
4 M | . |
dx EI = O"‘Xl EI r e X?
‘Integrating
Xy L/?
-
GA _ %E‘Ide:+ W/EéLxI ;x ) dx ”
Lx - x° W -
1E > M =—(Lx X )J 3 Me (Lx x°)



X, L/2

= — g({(Lx - ¥°)dx + EII J3 _ (Lx - x°)

Integrating the above expression in two parts

%

1 Hf - _ W .

EL o (Lx - x°)dx = o8I (3L - 2%,)
0

dx

M
2l 3 Tk - )
Xy M

e

lo

o

EREIEC S S -
~ EI w1 M N M

€ e

M . 2
e |_e W /Wx WLX
TEI VW [log{g[ﬁ{b{—l’ v 3>]} 2le ; %Ii]
e

| W WL
M M E[M <3 4M ]
__e/_e [1og e
EI w [%g— <Wx2 - WLx, + 3M j
e

1 (L/2 = xl)
e
Now Wxf - WLxy + 3M_ = M
.. the above expression becomes equal to
2
M (W <3 - ‘—'J—L—(—D
-t ./ _8
T EI WE [ <L2 j OMeT/j
W
C-E)
1 [Wx
. 8, = [‘1’2‘1 GL - 2x) + M [ e log A
W e e I
Me 4 W

|

17
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Conjugate Method For Finding the: Deflection

2

WL % 3
4 EI ’
N
ft@s Wix
ﬁ\\‘\\“\\ 2EIr
A Lill>>>/
o ws®
GAT Wxy /‘%é% 2§1r
6EI 4@//
L 4\41
Fig. 7. Conjugate Beam
Ajay = 2% L/i (L/2 - x)d ~MLJI:/2 (Lo 2x) d
vy = o2 T XX“QEI(L-X)JB_ (L_Xg)x
X
‘Breaking it into partial fractions
L - 2x) s+
(L= 3 - @ (L'X 3-'—’L-
\/ e X-%X2) N/ (Lx
1 N 3w
where A = - 7@ ; B =

L e _ aM
5+ 2 /4 BWS;

s L/2 L/2
(L - 2x)dx ML

ML
2EIf(L X)JB-—(LX 2 - 2/3EI Jﬂ(L 0 ¢ 2EIBJf (LXX

. WL?
2
ML L/2_ . V e
2EI B log — .

2[3 2B E198 T-x




L/2 M L/2
Aa %= (L/2 - %) 4y - j x(L - 2x)
g2 < ‘
. 2ET_ 2EI (L-x) v@ T x - 2
1
Breaking it into partial frartions
x(L - 2x) __C . D
(L- X)v@ - (Lx - %) (L-x) V[B - %%—(Lx - x°)
. e i
1% 3M
12 LG = 55 - 2(12/4 = 3M /W)
Where C = =~ ¢ and D =
\/3 ' L 3
= + L 3M
o = . e
4 W
L/2 L/2 L/2
T A N T Y
J DEI =5 /5 (m B JB-—-(LX-X)
1 T X e
2 WL
—ML lo'L/2>+ Me 343 D lo <3 AMe
= 2/3E1 %, 2EI N W & 2
WL )
——— . 2
2
- bR (L 2.y, T e
c 2  6EI 2B EIL - %y
%
; WL? -
+;§g_ 1\—'IE-D lo <? 4M;> - UL oy (L £ Xq)
cEIW W~ % T wrE éj% 4ET 7t 2 T3 7
4M
12 : (o WIANG
_ MeL log L/2'> MéL /Me B 1o <$ 4M;>
2/3E1 L-x, 2EI wir 3
- ” )
. Hﬁi 3 2 1 N2 2 ;
or éc = 54ET L® - 2x,L + 2% L = 3x7 - 3L° + 4x L

' Ny
M, ()
tomrA W 18] _<WL ‘) [L tD- LB}
LM

Substituting for B and D from above



ol

Wl

3 WL2

4M
— 1]
g%
Al

. C
e
WL
P 8
wi® w18 W
e e _ . e
[ 16 48 J ~ 2

Wk w14
e e .

J—{_lo J 3 ZII‘-"Ie
' N 4M

2

M =L~ - 1,5M

e

13
4ET

W \L4
e

J 5
1281 = 38

4 " EI

20
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2-5 Cantilever With An End Load(a)

Figure 8 shows a cantilever with an end load. The method of double

integration has been applied to determine the deflection.

Fig. 8. .Deflected Shape of Contilever
‘With End Load

M
e
M = Px; Me = Px, X =5
Now
Fz 4o _ _.[g_: M,]
dx® 7 dx EI EI
M - M
Ir = It = I. M 3 -2 M
e e
or
&£z de 1_[ M ]
=== =+ = | M+
dx dx EI
M 5 _ oM
M M
dz 1 v - M 1 Px? ; Px
Lz . p = — = ———e e A | - — Y2 e
ax = ® EIUPXdXJ’J. dx] EI[: 2 +Mej_<3 e d]
0 Xy L f3 - E'E- Xy e



2Px

[rSuteAd

M
e

Lrg E)E R
EIL2 P
Integrating again

= - EI [J Px%dx + I

Substituting .3 - =8

M xdx

p 18
_ e
e ~ 3EI

22

and integrating

-
2ds:} = -

M2
e

[ 2PL
EPEI[B N 2\ 3-% ]

e

[—Tx]

Substltutlng 3 - %BE =s and % = Me/P and integrating
e
PL
b e - P-i G
: e
Summary
Slopes
M <M <M M = PL
e max P max
M 2
- _2__A<:_ [3 - 22;)
0 2PEI 3-243 M
e
max. elastic slope = P =M /L 3 M =PL
e e e e
Pe'L2
% = 2EI
limiting plastic slope Mp = PpL-: 1.5 M 1.5 PéL
P 12 PéLg
e = T.581 - &I - %
~“Deflections:
U
e _ 2PL
6= gomgal > - O P -
max. elastic deflection: P =M/L 5 M =P L
e e e e



limiting plastic deflection

40P 1.2 p .18
. p _20 e _ =2V

6p = B8IEI o7 EI T 9

Minimum ép occurs at Mp = Me

23
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(4)

2-6 Cantilever With End Moment as Shown

Figure 9 shows a cantilever with an end moment. The deflection
can be easily determined by making use of the method of double integration

discussed earlier in the Chapter.

Fig. 9. .Deflected Shape of Cantilever
With End Moment

M = -m M >mzM)
P e

Now Pz do [M_ LM ]
dx® ~ dx  LEI EI_

As already shown before

M
I =1+ [T -0
r Me 3 -2 M

[

. d°z _de 1 [M N M R
dx® T dx T~ EI M J

M 3-2ﬁ—

e

Xl L
M
or dz 1 e .
dx_g—EI[deX+J ™ dx]



or
Me
M
e
o at x, = 0
o - Mo
EI m
3—2M
e
Now M =m
MEL
9e = TEI
M = l.SM = m
P e
ML
. 6 = —£ 1 o

R

Integrating the expression on the previous page once again

M xdx 1 Mx1 Me
_ 2 .2
a U»«xdwf}m[ S
M
e
at 3 =0
M 12 M 12
5 = 1 [ e ‘] e . 1
T EI |2 T 2FEI i
3-2M » 3—2M
e e
max. elastic deflection Me = m
MéLz
8 = ZET
Limiting plastic deflection Mp = 1.5 Me = m
M 1®
5 = e 1 -

25



2-7 Deflection of the Beam Hinged At One End and Roller On
Other End and With An External Moment m as Shown
By Integration Method(a)

The method of double-integration can be quite easily applied for

determining the deflection of the beam shown below,

NN
A ( ‘C B\ m
AN Lo . l 2
%y S .
\%5 93
//////
M m

Fig. 10, Deflected Shape and Moment Diagram

.Portion A --C Elastic

i

i

C - B Plastic
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CHAPTER 'III
. DEFLECTTONS FOR 'LOADS PRODUCING:YIELDING BY SLOPEjDEFLECTION(B)

The slope deflection equations may also be used to find out the rela-
tive deflection of segments of the structure. The moments would first
be worked out from plastic analysis. .The following form of slope
deflection equation will be used, and the sign convention is as shown

in the figure below:

My ) @ti : ‘
\\\\)\\\\

& |

'Fig., 11. Sign:Convention and Nomenclature For Use
‘InSlope-Deflection Equations

. A L Ma
%8 = % L T 3Er Mhe T2
where QAB' = slope at A due to a similar loading of a simply supported

beam,
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3-1 Procedure

- (1) Obtain the ultimate load, the corresponding moment diagram, and the
mechanism by plastic analysié.
(2) ‘Compute the deflection of the various segments assuming, in turn,
that each hinge is the last to form. For this:
(a) :Draw free body diagram of segment.
(b) Solve slope deflection equation for the condition of continuity
at the assumed last plastic hinge,
(3) Select the largest value of the deflection (this corresponding to
the last plastic hinge.)
(4) Check: ' From the deflection calculation on the assumption as to
which hinge is the last to form, compute the kinks formed due to
the incorrect assumption.  Remove the kinks formed due to incorrect

assumption by mechanism motion and obtain the correct deflection.
3-2 Assumptions

(1) The catenary forces are neglected.  These tend to decrease deflection
and increase strength,

. (2) The second order effects which increase deflection and decreases
"strength are also neglected.

(3) Any factors that influence the moment - curvature relationship are also

ignored.

3-3"Case I: :Deflection Analysis of a Fixed Ended
(3)

Beam With a Conc. Load as Shown

"Let us consider the case of a beam with built-in ends with.a con-

centrated force ‘P at the middle third. The bending moment diagram has



the form shown in Figure 12(b) line 1.

‘have the fully plastic moments Mp°

is by means of three yield hinges when it becomes a mechanism.

to the fully plastic moments as shown in Figure 12(b).

33

The cross-sections of the beam

The only way this beam can collapse

.Hence . the beam shall collapse when the bending moments become equal

moment diagram is then shown by II.

(1)

@)
(3)

load can be calculated:

2 9
.EMb =9 PuL or P = L M

“The mechanism is shown in Figure 12(c).
-Compute the trial values of vertical deflection.
(a) Trial at Section (A): - (Figure 12(d))

Slope:Deflection Equation:

8
, v _
A L MBA
Oy = 8y + T T 3pr Mg - 3
8
or v M
v A L/3 _P
0-0+L/3,+3EI(MP+ 2)
or M 12
'SvA =+ S4E1

(b) Trial at Section (B): (Figure 12(e))

"Assume continuity at B so that QBA = QBC

-Slope: Deflection Equation:

8

v M
_ _B _L/3 P
%a = %' *T73 t3Er (Mpto )
or 36V ML
e — bB__L..
BA © L 18ET
5
v ‘M
o =6 , -5 L3 o . B

The bending

-Compute the ultimate load: From the Figure 12(b) the collapse



‘P
A% J'B L C
be—L/3—k oL/3
(a)
ik M
lig T +
M
__¥P
(b)
(c)
8 =0
Myp="1 C:: A ' -SL
— ) =
M3A=pr
(d) y
M= Ck - — ) M=+,
<B| M =+M/ .
BC p 8
, == “BC
MﬁA=)Mp :
(e)
8 .=
"CB _
g e
c
(‘MBCZ'J’M
p
(£)

Fig. 12. .Deflection Analysis of Fixed~ended
Beam With Concentrated Load
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or 36v ML
0 . = - =—b 4 B
BC 2L 9ET
Now g, = 8¢
36V ‘ML 36V ML
;.l ' B‘ p -_—'-l B+ p
L 18ET 2L 9EI
or M 12
5VB‘= * 37ET

(c) Trial at Section (3): (Figure 12(f))

8 ,
v
c ., L
s = %' * T 31 M - fgg )
or -8 2
0- —C + BL3 -HP-)- 8 =-+3——R—ML
2L/3 T 3EI “p T 273 <Py, 27 EI

Of the three trials, the maximum deflection takes place when the
last hinge is assumed to form at section (C). .The other assumptions
produce negative kinks which are not possible and produce smaller

deflections.

.Load Deflection Curve:

‘"There are four distinct phases that may be uniquely determined as
follows:
Phase I (0-A): (Elastic) Represents slope of deflection curve of

structure (a)
'Phase~II-kA-B): Represents slope of deflection curve of structure (b)
‘Phase ‘III (B-C): :Represents slope of deflection curve of cantilever
structure (C)

‘Phase IV (C-~D): Mechanism

Thus each portidn of the curve represents the load deflection curve

of a new structure containing one less redundant than previously.
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& L J] (b)

2 10
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Fig. 13, Idealized Load-Deflection Curve
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3-4-Deflection Analysis of Fixed Ended Uniformly Loaded

~ Beam By Slope:Deflection Method(3)

-The beam with uniformly distributed load will be aﬁalyzed to deter-

mine the center deflection at ultimate load.

| W= WL
N T3 1 30 el il c
I.: /
< L/2 L/2
yield i C)
ultimate
T ¥
/ﬁm r

w% N

(b)

AB

Fig., 14, Deflection Analysis of Fixed-ended Uniformly
Loaded Beam
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(1) ‘Compute the ultimate load (Figure 14(b))

~From the figure

‘WL2 u_
oM = "g- =g 3 v =T

(2) ' The moment diagram and mechanism are as shown in Figures 14(b) and

14(c).

“. (3) Compute the trial values of vertical deflection. Looking at the

problem it is quite clear that the last hinge shall form at section
‘B, However, a trial section shall also be assumed at A and shown
that this assumption is incorrect.

Trial Section at B: (Figure 14 (d))

éVB:'. M
QBA = QBA' + — + —3E'I (MBA 2
M L
GBAv = simple beam end rotation = - 12ET
ML ‘SV , L2 8 "+—E—ML2
-,0:- P + (M+_R)" VB"—
. 12ET © 172 T 3EI P 1R

Trial Section at A: (Figure 14 (e))

5 ,
V.
A L MBA
O = %p' * T * 35T Mg - )
or ML 6V
_ _P . L/2 %
0‘12E-1+L/ 3ET (M, t )
or
5
ML v ML
B_ . o-B . P _o, -8 _o
10ET L - 12EI 5 - Vp

Hence, the first trial at Section B was cotrect.



3-5 Comparison of the Ultimate Load Wu to the Load at
First Yield Wy For a Fixed Ended Beam(B)
‘With a Uniform Load

‘Blastic Yield ——

'Yield%’oint Réached at g

Ultimate Load —=

W @ h

M /2

,Uz__,’_‘__,dz__é_
lz'
ow]c -
-

I

|

Fig. 15. Redistribution of Moments in a
Fixed Ended-Beam

'From the diagram above

"W.L 3
8 - EMy
or 12M
W o= —t
.y »L
'Wu'-L
5 - oM
or
16M
W o= —L

39



40

S, ﬁ— =3 W ‘where M= shape factor
-y y y

Thus it may be -said that the reserve strength due to redistribution of
moments is one-third.

.Taking an average shape factor for WF sections as 1.15
= % x 1,15 = 1.53

Thus it may be said that the ultimate load is 53% greater than the

load at first yield.
3-6 Conclusions

(1) -Plastic hinges are reached first at sections subjected to greater
deformations.
- {(2) Formation of plastic hinges allowsa distribution of moment until
Mp is reached at each maximum or critical section,

- (3) The maximum load is attained when a mechanism forms.

»
[
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3-7:Deflection at’Working‘Load(3)

As pointed out earlier, the magnitude of the deflection is of
‘secondary importance; a rough estimate will usually suffice. .The proce-
:dure in this case is as follows:

- (1) Compute the ultimate load. .Divide the .computed ultimate 1§éd by the

‘load factor of safety to find the working load.

. (2) ‘Calculate the deflection at this working load.
3-8 Assumptions Made

‘The following assumptions were made:
(1) :The effect of residual stresses was neglected.
.(2) The effect of stress concentrations was neglected.
(3) 'The effect of gradual plastification of the cross-section was

neglected.

3-9 Load v/s Deflection Curve For a Fixed End Beam

With a Uniformly Distributed Load

As calculated before for this case

'L

Juy
o =
=

=

5

i
] PP
=

where F = load factor of safety.

or

w FL

Taking -F = 1.85



16M fR
W = T8 =80 7

Now W < W
w y

S, the beam is elastic.

. = wL®
*-© T 384FT
8.65M 12 M 12
b = 38581 = 0.0225 =7
Also
12M 12 M 12
5y = Jgipr = 0-03125 —EE—

Above the yield point, the slope of the curve is the same as for a

simple beam,

= 5(aW) L2
AB ~ 384EI
16Mp 12Mp 4Mp Ez
Aw = wu = wy = L L L T3
8, = éy + 8,n
M 12 ' M 1°
2

5 12 M
= 3pEI T 384 ﬁ(L) = 0.0833 =37
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CW =16 — - = — — — — — ————~—-/]?"/_-—
13 |
i |
|
.-w_y=12 Y -2 /J’,e"l:i‘/Point :
Al [
/|
10} a |
| l
8.65|working load _ ‘ '
; | |
!
| ,’ |
| [ |
5} : l |
L |
| |
| |
, |
| |
o |
0 0.02 "0,0225' 0.03125 0.04 0.06 0.08 0.0833
- b, 8,
7 o 8EI
ML
P

Fig. 16. Idealized Load-Deflection Curve



CHAPTER - IV
DEFLECTIONS FOR SUPERIMPOSED LOADS
4-1 General
The principal of superposition does not apply to structures stressed
in the plastic range. .Consider the beam loaded as below.
‘P P

r—L/3—e—L/3—f—1/3—>
- ]

{

réf‘, N 4

-Fig., 17. Beam With Plastic Yielding

The magnitude of the loads P are such. that when both the loads are
applied the beam behaves plastically. However, when each of the loads
"P are applied separately, the beam behavior may still be in the elastic
range. .Hence, superposition of the effects of tﬁe two loads assumes

that the beam behaves elastically under the load 2P which is not the

actual case.
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4-2. Beam Loaded With a Uniform Distributed Load and

A Concentrated Load in the Middle

‘The figure below shows a simple beam loaded with a uniform-distri-
buted load and a concentrated load in the middle. The treatment shall
present a method of determining the deflection, by making use of the

conjugate beam method, which has been discussed earlier.

P

g kR

CTTTT I T T Id |
4 c élr f%;;

5 e 1/ ——

‘Fig. 18. Beam With Superimposed Load

WLx Px Wx° 1 x + P
M="F+7 - " Px-3) =@~ X)<W > ->

2

M 2
Me =3 bh ce
M = (L - Xl)CJ’X "+‘P‘>
e 2
or
2
E“x@;%+M,&*O
2 1 2 €T =
WL-P | [WL-P\? <ﬁ PL
. 2 * J<.2 -> S AWM -3
» e X, = W
Now
g M _ &£z _ 4o
T EI T dx*  dx
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. 3 o __]_', - M—u .—M—'e, - ..M__
=1 2«/\3-2M—[1'3(3 2M):I"M B -z

M - e e e

=

C-x)@x+P) _ : L
= o T, Gx+ P - %)

M
e
48 _ M| LM
dx El X = O=% iEIr X = XI%
1 & L2 ( W ” P) |
. L - x(Wx + dx
- 8 T EI jde * JEE(L ~x) (Wx + Py 1 J3 W% & P5ZL - %)
0 ¥y ' 2 e
Xy L/?
1 J‘ _ _J‘ dx
= 2p1 JL - VW P) dx+ gy J3_(WX+P)(L-X)
0 - ° .

Integrating the two parts separately

% . < ‘
1 1 ,
'Q_E'fj(L - x)(Wx + P)dx = 12EI[WX1 (3L - 2%, ) + 3P(2L - xl)jl
0 _ ‘

L/2

J[l—(WX+P P)(L - x)
[e w12 P-ﬁL L PL N WL P - WL
=Jf sroslef [ F B -
e e e e e e

M :
- ./ e | W s <P»- WL> ( . >} 2W 'P-'WL]
N 1og|:2{¥1 [M Xy + M X, +(3 X1 v
: e e e e
%
2

5]

Y

’\/ log[ {F—g{le + Px; ~ WLx; - PL + 3M >} - e¥ (L - Xl‘)"'*‘ %]
ev

o L/2 o
But Wi® + Px; - WLx; - PL = M, . J‘ dx —
Xy 3 - (Wx+P) (L-x)



[ 3 B B BT SR

PL  WLE,
M <‘3-2M-4M +/“‘_

X4 |
A = 12EI [le (3L - 2xy) + 3P(2L - XQ]

+

_e 10g -
R | «KW5'KMe'—2§+§—w]+"“P~i
e T WMe

2
M M (3 L WL g
_£ [ _£ lo EMB
EI W o8 /’W:_Q}( (WL - P

.Deflection by Conjugate Beam Method

WMe o o
JFEN, PN P
W < * 2)f-§7WMe

(Erw (B x
EEI 2 EIr
AT h
l Al s -8
S ¥
GA Ap
—H3
\
Wx"f \L\\\L\
—— L
6ET NN

2EI
_ r
j L/2 -

Fig. 19. Conjugate Beam

L/2

P+ WINITI. [ x L ;
na =(FF) L[ 2 (5 %)
xl r .
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L/2
(P+WL) . x{L-2x) dx
=M J(L-x

) (W= + P)Vg _QWX+P[§L-XZ
M
e

<}
Breaking into Partial fractions

~ x(L - 2x%) A B

C
(L-x)(Wx+P%/ Wt P) (L-x (L-%) (Wx+P) /J (Wx+P) (L-%)
3 - (i) (Lox) 3-
M M
e e
where
12
A= - /3 (WL+P)
<L + 22
B -
<L - w>
-Lx + 2x° /
C = o) )
Wx*+ x(P-WL) + PL
where ‘
x. _ (WL - P) % «/(WL + P)3- 12WMe
' 2W
M (P+WL) J‘ x(L=2%) d%
(L-X)(WX+P)vé o {Wx+P) (L-x
M
e
: WL
_w:[_‘q 1o .].:‘.Lg_@ 4 }B"]:' 1o 2,_.: - C EE].O
T ZE & T-x, LT 2

_ PL WL, P
3 - T - 4 ===
PMe  4M /WMe

-/ N TR a( BL) P, E_

M, [\/@W > w\Me -T2 ol

e

where A, B, and C are constants defined as abopve.
L/2 L/2
MW 2
_ Wx _ x° (L-2x)dx

Baag = 2EI (L/2 - ®)dx = 2EI J(L-x) (WX+P)J D) (Lo
3 - ___ﬁ_li;__l

X *

e
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Breaking into partial fractions

%2 (L-2x) D E

= == +
(L-x)(wx+P)vg_(Wx+P):L-x: (L-x)
M

e

(Wx+P) +«/3 ]

(Wx+P) (L-x)
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where
IS Fu
- /3 (WL+P)
<L + 2B
E
e PD
F o= -Lx® + ox®
Wx® + x(P-WL) + PL
where .
< - (WL - P) /(WL + P)2 - 10WMe
oW
L/2
M " I %2 (L-2x) dx = Mewr =D log + Eul log
2EI (L-x) (wX+P)J‘ Y] OETL W
Xy 3 - K“"—Eg£”~“l
: e
' 3
L M (3 L
CRN— + Fn*g lo oMe 4M
Wx, + P w o8 ( :L::P:?: ]
oW o/ " 2w
a ‘ - 4+ P
. &6 _go.L le%_ > [ LL?,J_ A 2
ST =T — ! QEIDIL@L-x'EWIngX + P
6ET 1
(3 PL WL2> P
L oM. | aMg/ T WM
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W
W[ JUL-BY 2 21:) _1?,_] P
R [ 2w> G OE R JW
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W log
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M
*Oylos T ,y_[ €WL+P>2 < PL> P
VM oW T

e e

‘where OA is given as in equation (1) and A, B, C,-D, E and F are constants

) 2
<§ - PL WL P

as derived on the previous pages.



CHAPTER V-
SUMMARY AND CONCLUSIONS

Of the several methods available for determining the deflections of
simple beams, the methods of double integration and area moments are
better understood and more easily employed than any of the others. The
area moment method usually gives a solution more readily than any other
method.

In cases where the beam is symmetrically loaded and supperted, and
where it is required to find the maximum deflection, the use of double
integration method yields a solution almost as easily as the area moment
method, In general, it may be said that the difficulty of solving a
problem by the double integration method igs proportional to the dif-
ficulty of calculating the constants of integration.

There is actually very little difference between the area moment
and conjugate beam methods. However, for some students the conjugate
beam method may be easily remembered as it is a common everyday
operation == that of finding the moment at a given section of a beam.

The proceduré in Chapter III may serve as a method for computing

"the approximate magnitude of the deflection at ultimate load and for
obtaining an upper limit to the deflection at working load.

In short, it may be said that the area moment method is the one
most readily used in the greatest variety of conditions. -Also it is

easily recalled and, therefore, can be employed for occasiconal use.
3
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APPENDIX
, &)
MOMENT~CURVATURE RELATIONSHIP

- In the figure below is shown a symmetyric cross-section, a strain

distribution and the corresponding stress distribution.

e=yK o=f (yK)

- X=Section Strains Stresses

Fig. 20..General Stress and Strain Distribution

Let K = curvature
p-= radius of curvature
.y = distamce from the neutral axis of the fibre with strain
€.
¢ = f(e) the stress-strain relation.
Then €= FK = ¥/ 0 4« o s ¢« o o o o 2.6 s o s s o e s e 8 o s o (D)
o= f(e) = E(yK)
The quantities €, y, K and @ are taken as positive®
Let B(y) = width of the x-section at a distance y from t

axis

1
L

* This differs from the signs adopted in strength of material
a pesitive strain is tensile and a negative strain compressive.

52

s that



53

Then the force acting on the area B(y)dy is £(yK)B(y)dy.
Statical moment of this force about the neutral axis = f£(yK)B(y)ydy
.. ‘Statical moment of the stresses acting on the lower half of the cross-

section about the N.A. is
y=h
j £(yK)B(y) ydy
y=0 '

From symmetry
y=h .
M= EJ'f(yK)B(y)ydy @ o ¢ o 0.0 ¢ o e s s 0o o o © & o o o o oo (2)
y=0 |
In case Hooke's:kawgoverns

¢ = Ee

Then from equation (1) ¢ = EyK

y=h
J. M= EJ EyKBydy
.y.—:O
or
a| h
M = 2EK'§L
3
0
or
- Zpgren®
M = 3EKBn
or
‘M = EIK Where I = moment of inertia of th? cross-section

o= %Eha

Let us now assume that the material of the beam is perfectly
plastic with the same stress-strain curve in tension and compression,
. In the following figure the entire cross-section is elastic and

the moment=~curvature relationship is
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: ) g
max max

, i |
Strains Stresses

Fig. 21. Stress and Strain Distribution

‘M = EIK
‘When e = €
max e
‘M ‘= EIK
e e
-However, if € nax > €, as below, the elastic part of the cross-

section lies between the two fibers while the rest of the cross=section

is plastic.

T

h
_%.
h

A

Fig.. 22. Stress and Strain:Distribution

it

Osysye @ = Ee¢ = EyK

Sy < = £ = Fr
Yo S¥ h ¢ =0, Eee EyeK

Substituting this in equation (@)



y=y, y=h
M =2JEKB (y)y2dy + 2JEKyéB (y)ydy

y=0 Y=Y
or
y=y, y=h
M= 2EKIy2B(y)dy + QEKyéfyB(y)dy = EEK(Ie + yeSp)
§=0 Y=y,
Ve h
where I = jyzB(y)dy and Sp = ij(y)dy
0 Ve
or
M = EKI

Where‘Ir =21 + 2y S

reduced moment of inertia,

i

From the above equations

‘M = EIK and
e e
M = EI K
r
M EL K
M T I K
e e
-Introducing A = K/Ke
-t z.Ir/I"
M
M = tox
e

The value of M for A—» is called the fully plastic moment and
denoted by-Mp,

M

The ratio Eg =8 is called the shape factor.
e



56

‘In Figure 23 we see the‘M/Mej A lines for various cross-sections.

M
M, A
P20l

' S = 2.0

w‘wﬂ&ﬁﬁ,ﬁ@
L o LT . @ S=1.7
1.5—'—'—,—7/ —;‘*—'——MS:L‘,S
1.0
1.0 2.0 5.0 7

Fig. 23. Shape Factor for Various Cross-Sectional Fdrms

They are straight making an angle of 45° with the A-axis for ail
values of A €1.- For other values of A the line is a curved one with
a horizontal asymptote.

Below are given the expressions for t, M/Me, A, ete. for various

)

‘cross-sections.
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b B —+

yN— -
B ar
e.
o - 2Bh%0e
e 3
M_ = Bh®o
P e

‘. oA - o)+ 1
>\4
M=_2>\3 "2}\ ':'.1.
Me“ AS
2 1
FemE T
B3
= Se=e
Me 6 e
w @
M __:,szm‘O'
P 3 e
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. - 2BA(3A®-1)-(B-b) (4A°-1)
ké(B'+ 3b)

M 2BA(3NR-1)-(B-b) (4A°-1)
Me - ksT(B + 3b)

" - -]
S w L Bk 3R

e 6 e
v - Bt 2b)h®
= o)
P 3 e
g - 2(8 + 2b)
T (B + 3b)
hS
(3A%-1)-2A® —% a - %)
\ _ - n
< b —-**4 B EXS[I . E; « “'éﬁ
/IS T w ¢y
—-—)\ ' h3
T T T M (3)2-1) - 2M3F (1 - ‘;})

_2h . 4 7 e M <!
i EYe '—“Eh e 2}\2[1&%};(1 . %)]

l L e 1
K55222§z2§62§/:4§ ——L< ' g1 = Eﬁ%?{%@sg* + 3 sin%)
Vo =y .

where T = arc cos b




b —

I =i

z?ye 2h

.

59

3>\2[1 . E‘l:_ ¢! %1,)] . d
- hﬁg d

2%3[1 - Hg (1 - g)]
M__Ma[l-%g.(l f})]-%
M, 27\2[1 -Ei a %)]
A= - Jg '

AT a

M = [bhg M - d)hf] o,

3 1 %2, a-9]
S = 3
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