MARKETING OF FARM WOODLOT PRODUCTS

IN EASTERN OKTAHOMA

By
Robert Raunikar
Bachelor of Sciemce
Oklahoma State Uriversity
Stillwater, Oklahoma
1956

Submitted to the faculty of the Graduate School of the Oklahoma state University of Agriculture and

Appliea Science in partiol fulfillment
of the requiremente for the degree of
MASTER OE SCTENCE
May, 1958

MARKETTNG OF FARM WOODLOT PRODUCTS

IN EASTERN OKLAHOMA

Thesis Approved:

410311

The author wishes to convey his sincere appreciation to professor E. J. R. Booth, Graduate Comotitee Chairmang for his encouragement, counsel and cxiticiams during his graduate program, and the preparation of this thesis; to Dr. Leonard E. Midilex, Dr. William B.Back, Dr. Adlowe L. Larsong and Dr. George G.Judge for the advice offered througho out the author's graduate atudy and for the reading and improvement of the manuscript.

The muthor is indebted to Lee Clymer. Extension Forester for his aid and constructive ctiticisms in formulating and attacking the problems Of the study. Appreciation is lso expressed for the coperation of the many hadivicuas in the forest industry and county agricultural workers who paxtictpated in this otudy.

To the Agricultural Econ@mics statistisel laboratorys especially to Mrs. Jean McAlister, and others who made this study posedble, the author Is grateful. Finally, the auchor wishes co express his appieciatiou to Mrs. Gwendol S. Martin for typing the find manseript.

TABLE OF CONTENMS

Chapter page
I. PROBLEM SETTTNG 1
A. Lntroductiom 1
B. Present Situation 2
C. Ceneral Objectives 8
IT. GROBLEM ANALWEIS 11
A. Low Income Theses 11
B . Forest Market Studies 15
C. Specific Objectives 19
D. General Procedure 21
IIT. DESCRIPTION OF THE FORESTI TNDUSTRY 28
A. Whole Industry 24
B. Sawmills 34
C. Pulp, Prop, Pole, Post and itie Buyers 49
D. Miscellameous Wood Processors 56
IV. THE MODEL FOR POTENTIAL CAPACTMY OE THE SAWMILL INDUSTRY 61
A. Introduction 61
B. Capacity at 200 Days Operation 66
C. Fixm and Industry Capacity Theory 67
D. Fixm and Industry Capacity Model 73
V. EMPIRTCAL RESULTS OW POLENPIAL CAPACTTY MODELS 84
A. Capacity Results at 200 Days Operation 84
B. Estimated Firm Cost Fumetions 84
C. Estimetes of Imdustry Cost Fumetions 89
D. Maximum Efficiency for the Industry 92
VII. SUMMARY AND COMCTISSTONS 102
Conesumions 101
Recommendations 103
BIBLIOGRABHX 104
APPENDTCES 106

LTST OF TABLES

Table
Page
I. Ownership of Commercial Forest Land dn Oklahomay 1945-195323
II. Value of Forest Product with Fercemt Pine, 1929.1956 87
ITI. Volume and Value of Non-Farm and farm Wood, with Percent Pine by Types and Number of Tudustries 30
IV. Volume and Value of Secondary Woodolusers 31.
V. Work Force Comparisoms in Fifteen Counties of Eastern Oklahoma, by source, 1929-1949 32
VI. Industry Woxk Foree 35
VIT. Volume Sawn by Purchase Location, 1956 44
VIII. Distribution of Sawills by Type of Equipment 47
IX. Sawnills Clessified by mumer of Motors 49
X. Product Descraption by Type of Buyers 53
XI. Estimated Cost Equations 85
XII. Lowest quintile Model Average Total Cost and Average Output 88
KIII. Average cost Fumetions - Estimates from Restricted Observations, Polynomial Modely, y in $3 t c / M B F^{\prime} x$ in MMBF' 89
XTV. Comparison of Minimum Average Total cost values by Different Methods of Estimatom 90
XV. Maximum Fixm Efficiency for Present FixmoType Distxibution 93
XVI, Firm Cost Deta at Maximumeficiency with Hoxsepower and Woxk Forge 95
XVIT. Estimated Volume and Value at Maximum Firm Eficiency 96
XVIII. Eixm Vaximbility Using Average Variable Coste 98
XIX. F-Test Of Vardamees, $H_{0} \sigma_{i}^{2}=0_{j}^{2}$ 99

LTST OF FTGURES

Figure Page
I. Counties in Oklahoma with Serious and Moderate Rural
Low Income Problemo1949 4
IIT Counties wth Lowest Farm Income and Levela of Living, 1954, USDA, ARS and AMS, Neg. DNol003 6
IIT. Major Forest Types im Eastern Oklahoma 9
IV Percentage Change in Distribution of the Total Work Force in Fifteen Counties of Eastern Oklahoma, 192901949 33
V. Distribution of Sawnils by Duration of Establishment from 1957 36
VI. Distribution of Sammils by Unal Woxkers Class 38
VTI. Distribution of Sawmils by Average Log Diameter 41
VITH. Distribution of Sawmils by Average Length of Havl Class 43
IX. Distribution of Sawnille by Horgeporex Gliss 46
X. Distribution of Pulp, Prop, Pole, Posty mud Tie Buyers by Duration of Establishment from 1957 51
XI. Distribution of Pulp, Post, Pole, Prop, and Tie Buyers by Usual Workexs Class 52
XIT. Distribution af Palp, Prop, Pole, Pogt, mad Tie Buyers by Average Length of Haul class 55
XITT. Empirical Relqtionship of Average Variable cost and Output for Sammile with One Headsaw 75
XIV. The Polynomial Model 82
XV. Statistically Dexived Average Total Cost Functions for Three Types of Firms from Restricted Observations 91

CHAPTER II

PROBLEM SETTING

A. INFRODUGIION

The problem of low farm income in any area is composed of many Eacets. This study mil investigate omly a small segment of this lowe income problem. But to understand this segment, it must be placed in perspective with the more important facets of the general problem of low farm income.

In this study of the problem there are three major factors to be related. These are farm income, forest resources, and forest markets. Farm income is in part dependent upon resources. But production and markets must develop simultaneously to imerease incomes from inereased resource use. The growth of income and ome product such as wood nad its market may generate growth in other products and their markets with concomitant further increases in farm income.

The primary purpose of improving the level of income in an area is to mprove the welfare of not only that area but of the state and notion. Since eastern Oklahoma is a lowimcome area of the United States, any measure to improve the incomes of families in this sector must mecessare ily result in affecting the economy of the mation, regardiegs of how minute the change may be.

The following chaters will concentwte on the forest markets of the axea. But to place the study in perspective with the more indirect aspecte of the lownarn income problem, the nature of this problem and
the extent of forest resources in the area must first be examined.

B. FRESENT SITVATION

1. Low Income -

Eastern Oklahoma farm families have relatively low imeomes, problem also found in other areas of the United States. Action to relieve this situation has recently been of major importance.
W. E. Hendrix states why the mation as a wole should be comeerned with the lowmincome problem:

If the low inoomes now observed in American agriculture are a result of the underemployment and undexdevelopment of the resources these lownimcome people have, including their personal abilities, then they represent for the rest of the economy loss of otherwise available markets for the goods and services that it has the capacity to produce. The loss of these potential markets, in turn, means for the rest of the nation's people a lower level of employment and income and lower level of living thon they wowld otherwise heve. ${ }^{1}$

In his 1954 report to Congress, Fresident Eisenhower made policy
recommendations for acion on ruxal poverty in the umited states.
Emphasis has beem placed on research to gruoy the low-income problem especially by land grant ollegea.

More than fourth of the faxm familues in the United states have low earnings. In 1950, Ghere were roughly 5.4 milinom ferm operator families of which about 1.5 mildion had cash imcomes under $\$ 1,000$. Five eights (2e5 areas) of the total number of economic areas had median incomes of $\$ 1,500$ or more. One-eighteenth (20 arems) of the total mmor

[^0]of economic areas with median incomes of $\$ 1,500$ or more are found in the 13 southern states. Only 3 of Oklahoma ${ }^{\circ}$ sthirteen economic areas have median incomes of $\$ 1,500$ or more. Eiftyone of the mation's eoonomic axeas have median incomes of less than $\$ 1,000$.

Criteria to examine the standards of living of farm families were developed by the United States Department of Agriculture. ${ }^{2}$

The degree of seriousmess of the lownincome problem of counties was classified as moderate, substantial or serious by these criteria. The classification of the lowoincome problem counties was as follows:

Moderatemany one of the three stimdards was present:
Substantialoany two of the three standards were present;
Serious-mall three standards were present.
Thirty-eight counties in Oklahoma have a rural lowaincome problem by this classification (Figure 1). No coumties axe in the "substantial class" in Oklahoma. In Figure 1 , the 29 counties lassed as moderete are crossohatched and the 9 counties classed as sexious axe shaded. The 9 counties classed as serious are included in this study.

[^1]

Figure I. Counties in Oklahona with Serious and Moderate Rural Low Income Problam-1949

In 1957, similax delineation of the lownineone area was prepared by the United States Department of Agriculture (Eigure id). The critexia used was mecessarily different from that of 1949 2s data on residual income was not available for 1954. ${ }^{3}$ Elewem coumites meeting both cxiterion are shaded. The coumties in critexion one only are doted and those counties classed in criterion two mly are oross-hatched.

Even though the classifications used in preparing the two maps are somewhat differents there remeins g futlaxity in the delinention of the low-income counties. The use of readidy avsilable data based on the 1954 cemsus, provides more recant information on the lownincome farming axems. With the exception of Muskogee County, all coumties in this study are classed as lownimeme faming axeas in boch 1949 and 1954.

In sumary, the low farm income problem is sexious nationally, and one of the axeas of its concentxation is exstexn Okinhoma. The mext section will exmine whether forest resources in this mea offer any hope of partial solution. Certainlyg help from any guarter would be welcome.

```
    2. Forest Resources -
```

While eastern oklahoma farm families have inferiox dmemes, they have the major forest resources. As resut of the recemt imber Resouree Review conducted by the United states Forest Service in 1959 , we know that nearly onefourth $(10,329,000$ actes) of the state is forested land and that $5,907,000$ ares of this lamd combens thmber the cat be comverted
$3^{C r i t e r i s}$ for 1954 : 1 . Lowest 500 counties ranked by level of living of farm operator famifes. ? 500 commies with largest proportion of commercial farms having sules of farm products valued at less than $\$ 2,500$.

Figure II. Counties with Lowest Farm Income and Levels of Living, 1954, USDA, ARS and AMS, Neg. DN -1003
into lumber. 4 In aditiong the timber cut from live sawtimber was 152,235,000 board feet. Pulpwood production has increased by 95.5 pero cemt from 38,100 cords in 1955 to 74,500 cords in 1956.5

A publication Okfsmom Forest Facts for 1956, states that the products of oklahoma ${ }^{\circ}$ moodousing indugtries are valued in excess of $\$ 50$ million a year. 6 About $\$ 17$ midilon are paid anually in wages to workers in these industries. According to the report, there are 445 industrial establishments in Oklahome which are dependent on products of the forest. This muber of establishments includes 297 sammila. Approximately 5,000 persons are fullotime employees in oklahoma ${ }^{\text {s }}$ wood using industries. In the state, there is bout 6.5 bulluon board feet of timber in trees of sumtimber size。 Herwoods comprise bout tworthirds of the sawtimber volume. These statistics are primarily concexned with the commercial forest land of eastern Oklahoma.?

It is evident thet the forest indumtries of Oklehoma me important in the state s economy. The income derived from forest production or any other simgle resouree may make up darge portion of tamily income in this low-income zrem.

4Tmber Resource Review, Chapter IT, U.S.D.A. Forest Service, (Washington, D. Co, september, 1955), $\mathbb{P} .1 .5$.
 In the South, ${ }^{\text {fi }}$.S.D.A. Sowthern Forest Exp. Ste. Forest Surwey Retesse 80, (New Orleans, Lourisiana, Jume, 1957), p. ${ }^{2}$

Goklahoma Forest Fects, 1956 Editiong publishes by American Forest

TComercial forest land as defimed by the Umited states rorest Service, is that forest lam which ig (a) producing, or is physically Gapable pt producing, usable crops of wood (wavally sqwtimber), (b) conomically available now or prospectively, and (c) mot withdrawm from timber mididgation.

Figure III illustretes the distribution of the species of wood in eastern Oklahoma. It can be seen that the mion pine resourcea are located in four counties of eastern Oklahoma. Although the figure fails to reveal any other pine axeas, some small axeas in other counties have a limited amount of this wood species. Outside of the southeast section, hardwoods are the primary timber species. The term hardwood is used to mean all species othex than pine.

G. GENERAL OBJECTIVES

1. Improve incomesoos is true with most economic studies, one of the objectives is to increase the level of income or economic welfare for the segment being studied. To see how forest resources and forest markets can improve, if at all, income in easterm Oklahoma is of prime importance. The potential contribution of the forest imdustry to the income of farm families in eastern Oklahoma will be mscertained. Thju objective is, however, only indirectly attempted. The study will comentrate directly on a small number of factors contributing to the incomes of the area imwolved as follows.
2. Describe forest marketson description of the existing structure and performance of forest markets will be developed. Information comerning the structuxe and performance of forest markets has been lacking for eastern Oklahoma.
3. Increase market kmowledge of buyers and sellersoone of the major factors which contributes to imperfect competitiom is the lack of knowo 1edge. Whth resource owners and buyers unimformed, the resource may return less income to its owner than would otherwise be possible. The lack of knowledge in eastern Okiahoma concerming outiets for forest

Ook - Hickory
\square Oak-Gum-Cypress
\square Oak-Pine
Loblolly-Shortleaf Pine
\square Nontyped ; less than 10% forest

Figure ITI. Najor Forest Types in Eastern Oklahoma
resources bas been previlent for many years. By increasimg knowledge, it is reasonable to assume that the result would be improved markets for forest resources.
4. Estimate market capacity in relation to production potentialou There is no logical way of determinimg the curremt market capacity of the forest industry in easterm oklehoma from published data. This study will attempt to estimate the potential production capacity of eastern Oklahom and determine the current capacity of the forest markets. This will also include the ability of the existing market to process the potemial production. If the curremt market is inndequate, the mecessary changes in the market structure and performance will be determined.
5. Measure variability in firm cost efficiency-Determine how much variability is present within these simidar types of fixms. No estimate of the variability existimg in the costs of similar firms is yet availaime

The following chapter will define the more specific objectives of this study. It will also include a brief diacussion of studies which have been made concerning the lowoincome problem and forest markets.

PROBLEM ANALYSTS

A. LOW INCOME THESES

1. General

Three objectives have been of primay concern in past research on the lownincome problem. These are: (1) to develop mesourements of the low income problem, (2) to explain the development of rural lowoincome areas in the United States, and (3) to propose and examine alternative solutions. These objectives have gaimed recently in importamee to economists. Many hypotheses have been developed to attain the second objective. Among theses the following are outstanding in recent literature and relevant to this study

Professor W. H. Nicholis believes that the peculiar political and social history of our nation accomms for the origin of xural poverty. Low-income rural arem reman poor because they are outside of the mainstream of economic progress. A long period of ecomomic and oultural isolation resulted after eniy settlement in these areas. As result, small subsistence farming was established. The domimation of atace by larger and wealthiex land omers caused political meglect of transportation and educational needs in southern commuities.
W. H. Nicholls, "The Sowth ${ }^{\circ}$ Low Income Problem, "Earm Policy Forum, Vo1. 8, No. 4 (Ames, Iowe State College Press, Spring, 1956), p. 13-19.

According to Nicholls, industrial-urban development of rural areas speeds readjustments townrds higher productivity and incomes in agrim culture because: (1) it is easier to get these underemployed farm people to change occupations than residence, (e) the drain on local capital is avoided, (3) industrialization brings capital which allows financial institution provide local agriculture with capital resources to increase farm size nad efficiency, (4) improvement of the quality of human resources and stimulation of further economic development will result, and (5) new markets which are more efficient and competitive are created for locelly-produced farm products and for the factors of farm production. This will stimulate development of resources which axe adapted to the lowincome areas. The improvement of forest land in the low-income counties cm result from these more efficient and competitive markets.
W. E. Hendrix belleves the lownincome areas have existed because people in these areas have limited capital wealth and limited backgrounds of training and experience. Hendrix believes. we can mlleviste the lown income problem by taking fuller cogmizance in administering the agrio cultural agencies and programe which are already available. Two major changes must take place to raise the income of these peopla: (1) Improvement in the type, size and method of farming, and (a) move many of the people to more remunerative nonofarm employment. He states that

[^2]many of the low-income fax people are too fax along in age or theix occupational handicaps are too great for them to move to non-farm jobs. Also, improvement in the low-income areas must be associated by chamges in the types and sizes of faxming, marketing and farm product processing facilities, and changes in tenure and credit. In some of the lowimeome axeas, capital limitetions inhibit the small faxmex's competition with the larger farmer ${ }^{\circ}$ s.

In summary, the general attick on the low farm fincome problem has been very broad in scope. But some more specific theses have been advanced with regard to special crops and the lownincome problem.
2. Speciality crops

The development of special crops in lownimeome areas has been suggested by some economists. This, they believe, can bring about the initiation of income raising processes which will perpetuate and in so doing will improve the level of living in the loweincome meas. Hendrix believes that eggressive action aimed at exploiting such farmoimprovemenc opportunities as now exist, even when these are small, may also help to spark the longer-rum structuril changes that are needed in low-imeome fixm areas. ${ }^{3}$ He states that the failure to exploit quilimble opportumities because they axe small or because they are immediately available to only a few low income farmers, may be equivalent to adopting policy of perpetuating the lowaincome problem because it canot be solved in \& singlemstep operation.

3W。E.Hendrix, "the Problem of the Low Ferm Imeomes, p. 217.

An example of exploitation of existent fermeimprovement opportunities is being imitimted in Latimer County. A program designed to improve the forestry on farms in this county is being developed under the guidance of the Extension Service. Whis is a step towat improving the incomes of farmers by using otherwise unproductive land. The development of income raising cash crops applies mot only to forestry but to other farm produets of the low-income areas.

In addition to the better use of land, special crops bislng about additions to income in the marketing sectors. The specialty crops give added need for the development of aggressive approaches because such programs already have the social sanction by both farm and nonfarm sectoxs of the economy, and most of the institutional framerork for implementation Of such approaches is already availuble. This fs trwe in the forest industry where programs re at present in force which could reduce the establishment costs for farm woodlot. From this it can be seen that specialty crops may offer one of the important approwhes to the solution of the lownincome problem.
3. Agricultural Markets and Economic Development

The development of agrdcultural maxket ma their effect om economic development axe important in epproaching the lownincome problem. Nicholls believes that the efficiency, adequacy, and competitiveness of maketing services in a local commuity are probably related to its stage of ecomomic development. He states that in largely ruxal (underdeveloped) counties,

4 William H. Nicholls, umpub. Report of the Subcommittee on Lown Imeome Rural Areas, S.S.R.C.Comittee an Agricultuxal Economics.
one would expect that the nubers, types, sixes, and varieties of marketing agenciesoombether engaged im the purchase of fatm products or in the sale of farm production goodsoowold be less adequate, efficient, and competitive than those im other once similar cowntes which have enjoyed considerable industrimlownan development. Progress toward higher labor productivity and higher family incomes in lownimcome rural areas mecessarily involves certain concomitant changes in marketing institutions, facidities, services, and practices. If these changes are slow occux, the resulting effect mil probably retard the lownincome areas. The local rate of development will probably be faster than it otherwise would have been if the changes on the marketing side accompany or leat produco tion changes in agricurture.

As has been previousiy stated, this study is directed towned one method of alleviating the lowoincome problem. The genexal problem is to discover the mature of the forest merket to determine not only what it is but whether it is leading or lagging developnent in local farming. The next section will view the present status of forest morket studies.

B. EOREST MARKET STUDIES

1. General

Studies condueted in other areas on the forest industry have been numerous. The major porion concentrite on the efficiency of the forest market. Many purely descriptive studies have beer completed by both public and private institutions. Only poxtions of the ontoofostate research was relevant to this projecto The gtudies telated to market efticiency are aimed at improving mangement ant use or forest resources. Only those studies which were helpful in this research will be mentioned.

A study in Massachusetts by Rich and Susterbem was made to analyze current marketing practices, titudes regaxding sales, and the effectiveness of such practices amd policies. ${ }^{5}$ The witimate objective of this study was to increase the land owmer ${ }^{\circ}$ income. Similar studies were made in Maine by Baker and Beyer, New Hampshire by Swain and Wallace, and Pennsylvania by Carroll, Trotter and Nortona These were made in conjunction with stwdy of marketing from small woodiand axeas in the northeast under the supervision of the Northeastern Regiond Techaical comittee. 7 The objectives of the nottheagt survey were to obtain information about the forest marketing practices, the pricimg processes at the farm level, and ome of the factors which affect the practices and prices. This survey dealt only with land owners who had woodlots from 10 to 500 acce in size.
${ }^{5}$ J. Haxry Rich and George H. Sisterhenm, Maxketing Forest Products in Massachusetts, Agricultural Experiment Station Bulletim No. 498 (University of Massachusetts, 1955).

6
Gregory Baker and Frank E. Beyer, Marketing Forest Products from Small Woodland Areas in Maine, Agrieultural Experiment Station Bullecin No. 554 (University of Maine, December, 1956).

Lewis C. Swin and oliver F. Waluce, Marketing korest Eroducts in New Hampshire, Agrieultural Expeximent Station Bulletia No. 420 (University of New Hemphire, June, 1955).
W. M. Caral, C.E.Troter and N.A.Noxtom, Marketing Forest Products in Pemmylyamin, Pemmylvania Agwicutcural Experiment Station Progress Report No. 131 (Penmaylvania 5 tete College, Jamwiy, 1955).
$7_{\text {Noxtheasterm Regional I Techmical Comitter. Marketing Forest }}$ Products from Smell Woodland Areas in the Nottheast, Noxtheast Regional Publication No. S5 (Permont Agricultural Experiment Station Bulletim No. 595, Burlington, Vermont, Jume, 1956).
e. Iocal

No marketing reseateh has been pexformed pertaining to forestry in eastern oklahoma. A survey of forest industries in Oklahoma by Linm Was made in 1948. ${ }^{8}$ whe survey was developed to obtin accurate knowledge of the extemt and location of forests, sawnils, and woodousing industries. Mamy of the sawmils and other woodmaing incugtries in Linn ${ }^{0}$ survey are no longer in existence. Neventheless, the information in bis study was helprul in locking some of the major woodousing industries which are currently operating in eastern Oklahome.

A pubication, Okliahoma Forest Fets, was compiled by the Americam Forest Products Industries, Inc. with the aid of the Extension Forestex and the Director of the state Division of Forestry. ${ }^{9}$ The 1956 editiom contains general informmion about Oklahomas forest resources and forest industries.

Studies relating to forest resources in oklahoma have beem made by the Southerm Forest Experimemt Station. The initial survey was made in a five county area (Haskell, Le Flore, Latimer, Pushmataha mad McCutcmin) Of southeastern Oklahome in 1936 . ${ }^{10}$ The objective of the gtudy wis (1) to make an inventoxy of the supply of timber and other forest products;

[^3](e) to ascextix the imeresse in supply of timber through growth, (3) to detemine the decrease in supply of traber due to industrial mo local use, windfall, fire mad disease, and (4) to conrelate the findings with existing and anticinated economic conditions. The more recent study included seventeen counties in eastern Oklahoma. ${ }^{11}$ This 1955-1956 Forest Survey bad is its purpose only the fixst three items of the 1936 survey. This survey gives the most complete forest resource information for eastern Oklahoma as yet available.

In 1955, the forest service published the Timber Resourge Review. The data breakdown is by states and not decailled by counties. However, Oklahoma data is separated for eastern and western Oklahoma. In eastern Oklahoma, it includes the same counties as this study. The purpose of the review was to provide a tockotaking of the current timber situation in the United States and a look at the future with xespect to prospective timber supplies and needs.

Since this is only the second forest market study at this institution, selected publications which are related to the forest marketug aree are included in the bibliography. All of the publications listed are not specifically related to this thesis. it is felt that listed publio cotions which wexe not used im the preparation of this thesis will be beneficial to those doimg future research on forest markets dra Oklahom.
${ }^{11}$ Philip A. Wheeler, "Forests of East Oklahoma, "Forest Survel Release No. 79. Umited States Department of Agriculture, Southerm Forest Experiment station (New Orleans, Louisiams, Jume, 1957).
$12_{\text {Ceorge F' Burks, Timber Resouxce Review, Chapter IX, United States }}$ Department of Agxiculicare, Forest Service (Washington, D. Cog September, 1955).

C. SPECIFIC OBJECTIVES

1. Detailed Description of the Forest Industry

No recent attemptis have been made to take inventory of the forest maxkets in eastern oklahome Here we are concerned with describing in detail the existing market, and its components. The size, type, location Qf the warious fixms operating within the forest industry will be defined.
2. Directory of Forest Industries

The lack of knowledge by sellers of forest products and the buyers Of processed wood has been indicated by individusis associated with the forest industry. The directory will prowide threeray classification of the wood industries and will include the information which provide a better informed buyer and seller. Three separete pats of the directory will facilitate immedidte access to firms mame locatiomg and other pertinent information. Through the directory more odequate efficient and competitive maxket com be developed for forest products.
3. Analysis of sammil capacity amd Aswociated Costs
a) Capacity with respect to yearly duretion of operathon

If the samill industry is mot presemily workimg at a capaciey with respect to time, then the capaciey at this levell will be estimated. This will aid in detemiming the current cepacity of the sawmil industry es presently comstituted and 110 for estimsting the potential maximum production, assuming forest resources are freely available.
b) Capactey of the firmoo

Individuad fixm capacity will be malyged for different sawnil typee. Cost and output data will be amyyzed to determine the optimum sammil for each type opexated. The mills will be classified by the type of equipmemt.

Cost functions will be fitted to each type of mill to arrive at maimum costs and thereby axriving at the optimum output for esch mill type.
c) Capacity of the industryoo

By the use of individual fixm output and cast data, some estimate of waustry capacity will be nttempted. This showld give some idea of potential output and costs for the induetry where firm adiustment bas been ossumed and all firms are opereturg at the longownioptimumpint or efficiency.
4. Vaxiability Of Sammill Costs

The mown of varimbility for fixed costs mill be eqtimeted between the different firm types. The fixms used in ostimoting the vaxiability will be from all counties surveyed. If a great mount of variability exists, the cause may be explained by maysig of the data.

The variability of variable coste within the fixms will also be estimated. Some ssessment of the degree to which variation in output explaims variability im costs mit also be attempted The major components (1) this variability mid be discussed.
5. Provide Base for Futher Efficiency Rescarch

The data from the study will provide needed information for any future study. It wirl mao point to the need for further research especially with respect to the need for a more deraled cort Bnd efficiency analysis. This study did not obtain informeton for m ideal efficiemey study but way provide an icea of the importance of the sammil industry and an pproximet evalugtom of costs and efficiency. As would be necessaxy for any efficiency sudy, existing onditions in the forest Industry must be examiced. This study will proyide that base.
D. GENERAL PROCEDRRE

1. Selection of Axe

The area of easterm oklahom was selected for two major reasons: (1) the fifteen counties are dengnated as lownincomerea, and (2) this area contains the major foxest resources of oklahoma. These reasons have been illustrated it Chater I. The counties have been included in previous forest resource gtudies which will provide bsis for correlato ing the production and marketing aspects. Some of the fifteen coumties have been ox axe being studied under the rural development program. Previous low income studies have been restricted to a smar area in Oklahoma, however, to approach the forest marketimg angle amd its importance to farm imeome, it wes neceasary to imclude a large enough area to adequately describe the forest indurtry. The countes imeluded In the axea wexe Adair, Atok, Cherokee, Choctar, Coan, Delawate, Haskell, Latimer, Le Flore, McGurtain, McTmtosh, Muskogee, Piticburg, Pashmataha, and Sequoyah.
2. Emumexation Methods

The entire population of forest industy frims were contacted to obtain infomation relevant in satisfying the objectives of this stady. One of the majox difficulties was to abtain the location of existimg firms. Aid in obtaiming this dmformation mas solicited from the Extension Service, Soil Comservatiom Service, Forestry Service, amd infomed individuals in the forest industry. After complete list Of firms was avallable, schedules to obtaim informaton from induidual firme were designed. The Exteusion Service and the soil comservation Service wexe msked ta mid in interviewing the fixm ${ }^{\circ}$ owner or operator.

The schedules were classified into three groups: (2) sammils and/or planing mills; (2) pulp, post, pole, prop, piling, and tie buyers; and (3) miscellaneous outlets which include wood presexving plants, handle factories, charcoal plants, furniture factories, and crating factories. The data covered the firms 1956 operations and the enumeration was taken during the summer of 1957. To obtain the highest number of completed firm schedules, the interview method was used.
3. Classification Methods for Directory

The directory provided a threeonay classification ef the wood industries of fifteen "timbered" coumies of eastern oklahoma. The information listed incladed the firms name, operator ${ }^{\circ}$ mame, location, date of establishment, number of workers, wood products made, wood products used, wood type used (hardwood and/or pine) and the number of working days closed during 1956. The first part of the directory contaimed information classified by county with firms listed alphabetically within three industry groups. The second part provided the sellers of wood products with a diet of the wood industries which use these raw materiala. part three was designed for use by the buyer in locating different products made. The directory included all firms whichmere io operstion at the time of the survey xegardiess of the daise of establishment whe Directory of Forest Industries in Easteru OkIahoma was published in 1958.
4. Description of the Industry

Information from the surwey wis tabulated for the whole industry and for the individual finm types within the imdustry. Tables wexe used to give a detailed description of exiating conditions and fixms were classified by coumty and fixm type.

5. Methods of Capacity Estimation

Economic and statistical models were designed to estimate the capacity of different firm types and for the industry. These estimates were based on minimum costs of the particular firm type and for the whole industry. These were used to estimate the maximum capacity of the industry under the most efficient firm operation by types of firm.

In addition, the capacity of the present market was estimated by increasing the capacity (0f existing firms to at least 200 day operation per year. This gave an estimme of potemtial capacity with the existing levels of efficiency.
6. Cost Variability Estimates

The variability existimg within firm types was assessed by using the costs from firms of the same type, Both fixed and variable costs mill provide data to estimate cost vaxiability. The standard deviation, coefficient of variation and estimate of variance were used in estimeting the degree of variabilitey。

DESCRIPTMON OF THE FOREST TNDUSTRI

A. WHOLE INDUSTRY

1. Volume and Value of Industry Production

The fifteen county area of eastern oklahoma includes most of the forest resources of the state. The ownership of commercial forest land in Oklahoma is shown in Table 1. Since 1945 , the comercial forest land in Oklahoma has increased. A large component of this change was the increase in acres of commercial forest land owned by farmers. The 812,000 acres of commercial forest land on farms in 1945 was for eastern oklahoma. None was reported for western Oklahoma. In 1953 , of the $2,240,000$ acres of privately owned farm commexcial forest land, $1,700,000$ actes (68 percent) was in eastern oklahoma with the remaining 540,000 acces in western Oklahoma. Also in 1953, only 100,000 ares (3 percent) of the private commercial forest land, other than ferm, was in western Oklahoma Of the $6,177,000$ acres of commercial forest land, omly 18.4 percent is found in western oklahoma.

The 1957 Forest Survey Release for eastern Oklahana determimed the timber trends in five counties (Haskelly Latimer, Le Flore, MGCurtain and Pushmataha). ${ }^{1}$ A similar survey im these conmies wes completed in 1938 .
${ }^{1}$ Phillip A. Wheeler, 昭Porests of East Oklahoman Forest Survey Release No. 79 , nited States Department ofi Agriculture, Southerm Forest Experiment Station (New Orleans, Lounsianag Jume, 1957).

TABLE I

OWNERSHTP OF COMMERGTAL FOREST LAND TN OKLAHOMA, 1945.1953

From 1936 to 1956, there was a decrease of 1.3 percent in commercial forest land. There remaned nearly 3 million acres of forested land in these counties, vixtually the same as in 1936. Total murobers of hardwood trees (mostly onks) declined but their total volume remained about the same. Changes in softwoods consisted in the lidquidetion of oldogrowth pine and a buildoup in second-growth volume. Although there has been a decrease in largewdiameter volume and am increase in middle and small diameter volume, the net effect on softwod sawtimber volume is that the five-county area had about the same volume in 1957 as in 1936. It should be emphasized that trends in these five counties are not necessarily indicators of forest resource changes eltewhere in Oklahoma They wre cited because both the prevailing timber types (minly pine) and pattria of land ownership (mainly nonofarm) in this ares differ considerably from the rest of the commerind timber belt.
$\mathbb{I n}$ Tale $\mathbb{I T}$, the velse of forest products by counties is presemted includimg both census and survey data.

A small amount of double counting, due to wood passing from one : forest industry to nother, occurs in the total gross wood value and the total agrimbusiness value for 1956. This double countimg has been eliminated in obtainimg the 1956 estimated gross farm value of forest products.

The percent pine columns were calculated by dividing the total value of forest products into the total value of pine for each county. To obtain the pine percentages in the fifteenocounty total line, the summtion of the fifteen-county forest products value was divided into the sumation of the fifteen-county forest products value from pine.

From the census date variability between cemsus years is present in nearly all counties. These increases and decreases in values of farm forest products may be attributed to variation in the demand for wood pref ducts. From the survey results, in 1956 onily five of the fifteen counties lie within the 1929-54 querage deviation ramge for these counties. Most other counties lie above the range.

From the survey, data obtatmed hows that, in all counties except one, value of farm forest products has increased over the 1954 census year. Some of the counties which border Arkinsas may be higher in value for 1956 since some of the timber product may have entered from thit neighbor state. However, those counties bordering Arkansas contain some of Oklahomis best timber resources nd, therefore, the entre increase in value from farm forest products cammot be attributed to outofustate timber.

TABLE II

VALUE OF FOREST PRODUGTS WITH PERCENT PINE, 1929-1956

County	1949	1954	1929-1954 Average Deviation Range	1956 Gross Farm		1956 Agrio		1956 Total	
	Cemsus	Census		Value ${ }^{\text {c }}$	Percent Pine	Business		Gross	
	Farm value	Farm Value	Farm Valueb			Value ${ }^{\text {d }}$	Percent Pine	t Value ${ }^{\text {e }}$	Percent Pine
	$(\mathrm{dollars})^{\text {a }}$	(dollars) ${ }^{\text {a }}$	(ellars)	(dollars)		(dollars)		(dollars)	
Adair	13,952	13,225	9,000-47,000	74, 105	83	204,105	8	204,105	8
Atoka	18,735	14,361	7,000-19,000	67,6e8	35	67,628	35	67,988	35
Cherokee	23,670	10,985	14,000-40,000	6,816	3	6,816	3	11,552	6
choctaw	34,919	7,053	8,000-30,000	287,330	98	523,016	54	580,267	58
Coal	11,697	3,609	1,000-13,000	6,959	E	6,959	2	6,959	e
Delaware	24.618	7,869	$8,000-52,000$	104,448	1	104,448	1	105,730	2
Haskell	7,433	1,377	1,000-5,000	2,455	36	R,455	36	5,753	64
Latimer	7,073	3,626	$2,000=6,000$	5,890	96	5,890	96	63,086	86
Le Flore	45.343	20,140	11,000-33,000	65,409	99	115,535	99	803,798	99
McCurtaix	45,988	35,653	26,000-52,000	91,847	87	163,947	49	1,526,454	76
McTatosh	3,336	4,315	$2,000=8,000$	7,563	0	7,563	0	7,603	0
Muskogee	5,489	1,501	2,000-6,000	3,410	0	3,410	0	3,450	0
Pittsbuxg	9,546	2,935	1,000-15,000	17,305	37	17,305	37	28,215	28
Pushmataha	17,823	26,151	11,000-25,000	36,946	39	36,946	39	200,705	87
Sequayah	3,688	1,873	1,000-19,000	81,143	95	81,537	95	530,379	97
Total	273,250	154,673	120,000-340,000	859,254	72	1,347,560	46	4,146,044	75

Source: U.S. Department of Commerce, Bureau of Census, U. S. Census of Agriculture, 1949, 1954, (Washington, D. C., 1949, 1954).

CExludes value of ties bought by tie yards and creosoting plants to eliminate double-counting.
Includes value of all forest products of farm origin bought by the industries.
enncludes value of all forest products of farm and non-farm origin bought by the industries.

The major pine timber is located in southeastern oklahoma and como tributes more to the value of farm forest products than that of haxde wood. The percentage of pine diminishes as movement is made awy from the southeastern Oklahoma area. The large farm value of pine in Adaix county may be due to the concentration from neighborimg coumtes, however, this county does contain some pine timber resources which are owned mostly by faxmexs.

In the fifteenocoumty area, the 1956 estimated gross farm forest products value was $\$ 859,254$. This amount is 8 percent greatex than that reported by the cemsus of 1954 . From this, it seems that the mood industry is more importan to farm income than had previously been thought. This wood of farm owned origin contributed mother halfomilion dollats of gross value whem further processimg had beer accomplished as the value attributed to agriobusimess indicates.

According to the survey made by the Southerm Forest Experiment Station, the commercial forest land of east oklahoma suports a growing stork of 1.3 billion cubic feet, an average of 3 cords per acre. ${ }^{2}$ The volume of sawtimber in east Oklahoma is 4 billion board feet which is fifty percent pine. In 1955 , east Oklahoma metegrowth was 107 million cubic feet including 245 million board feet of smwtimber. less than omeo half of this net growth, 115 milion boaxd feet, was removed im 1955. The Forest Service also states that under the application of miximum forestry practices, the grouing stock in east Oklahoma conld be doubled.

[^4]This continues to point out the importance of forestry im east Oklahoma which in the past has not beem recognized. An increase in production of forest products from the patty untapped forest resources, could bring about considerable improvement in the level of living in eastern oklahoma especially to the farm owners many of whom are in the low-income group.
2. Volume and Value of Faxm and Nomafarm Wood

The volume of forest products was classified by eight industries and by five different units of measure as shown in Table IIT. The major part of the wood cut in eastern Oklahoma consisted of pine Charcoz 1 wood buyers and handle stock buyers were the omiy industries buying hardo wood alone. The only other industry with less tham 50 pereent pine were the tie buyers.

The industries which contributed most to imcome were the sammils and creosote plamts, each with over one milion dollars value of forest products bought. In both cases, over 80 percent of the value of forest products can be attributed to the pine resources. The pime resources are of more value than are the hardwood resources. For imstmee, tinber purchased by samills consisted of 72 percemt pine by volume while the pine value was 88 percent of the total value of the wood sawn.

The industries contributing most to frm income from wood products are sammils and creosetimg plants. Howevers most of the imeme ins from non-faxm timber resources in these two industries. In only the chareoal wood buyers and handle stock buyers does the major portion of the income go to fammers who onn these resources. It may liso be noted that no pine is used in these two industries.

TABLE III
VOLUME AND VALUE OF NON-FARM AND FARM WOOD, WITH PERCENT BINE BY TYPES AND NUMBERS OF INDUSTRIES

Numbers in this column do not sum to the total since some establishments buy more than one form of wood.

Of the total income from forest products, 75 percent is attributable to the pine reaources. Oneafifth of this total value goes to the farm owners of timber resources. About pe percent of the farm income from wood products is derived from pine. It can be sem that pine is the most important wood with respect to farm income in eastern Oklahoma.
3. Volumes and Values of Secondary WoodoUsers

The additional information contaned in Table IV gives an indication Of the amount of wood bought in a smiofinished form by specified industries. Although gome secondary woodousers may have been omitted, those interviewed on the survey indicate the importance of this group as indirect outlets for wood produced on form and nomofarm woodlots. All industries associated with the use of wood are either directly or ino directly contributors to the mount of income received by persons in these counties. The adequey of secondary woodousing industries dixectly affects the volume of wood products processed by the primary industries.

TABLE IV
VOLUME AND VALUE OE SECONDARY WOODOUSERS ${ }^{\text {a }}$

Industry	Number	$\begin{gathered} \text { Volume } \\ \text { (M Bd. Ft.) } \end{gathered}$	$\begin{gathered} \text { Value } \\ \text { (dollars) } \end{gathered}$
Planimg Mills	12	21,949	554.730^{6}
Furniture Fectories	4	1,664	68,800
Handle and Gunstock Mills	2	100°	$4,000^{6}$
Total	18	23.713	687253

asecondary woodmacre are defined as those industries who buy semio finished wood.
balue not aveinlable for forr mils.
$\mathcal{G}_{\text {Pncomplete information. }}$

4. Industry Work Foree

The total work force in eastern oklahom decreased during the period 1929-1949. Work force comparisons are shown in Table V. The percentage of the total work force employed in agriculture was maimicined during the period 1929-39, however, it decreased by over 31 percent from 1939 to 1949. While the totel work force has declined, the forestry work force has maintained its percentage as agriculture was losing its work force to other industries. This is illustrated graphically in Figure IV. The crossohatched area represents the forestry work force percentage of the total work force. The axea below forestry is the agriculture work force percentage and the area above forestry is the percentage of the total work force in other industries. The figures at the top of the graph are the total work force numbers for their respective years.

TABLE y^{2}
WORK FORCE COMPARISONS ITN FIFTEEN COUNTIES OF EASTERN ORLAHOMA, BY SOURCE, 19e9-1949

Item	1929	1939	1949
Total work force	124,200	95.821	95,137
Agricultural work forse	64,766	48,792	33,464
Percemt of total	52.15	50.93	35.17
Forest work force	4,974	5,813	4,398
Percent of totel	4.00	5.44	4.62

Figure IV. Percentage Change in Distribution of the Toitel Work Foree in Fifteen Coumties of Eastern Oklahoma, 1929-1949

Table VI gives a breakdown of the work force by industry type. The largest employment (69.2 percent) occurs in the samill industry which also has the greatest number of man days (65.7 pexcent). The amount of income from this source is therefore of importance to some families in these counties. Samills not only provide a market for farm and nonofarm woodlot products which increases the incomes of the resource owners but also supplies an additiomal source of income for those employed by this industry. However, the wages received by employees of industries such as the creosoting plants may be expected to be larger than those obtained in the samill industry. No method of assessimg the incomes of employees in the various industries is available in this study but a wide variation may be expected to occur between these industries. The number of workers for the industries which are involved in the prelimimary operations, ioe. loggexs, was not ascerteined by this study. Therefore, the total number of forest industry workers, if available, would reveal a much better picture of the income derived from the forest industry.

B. SAWMILLS

1. Duration of Establishment

By the use of a bar graph in Figure $V_{\text {, the }}$ distribution of sawnills by the duration of establishment is illwstrated.

One-humdred and thirtyotwo of the total 133 sawmils reported their date of establishment. Ovex half (57 percent) have been established since 1950. Twentyonine percent of the mi11s were established in the 1940° s. Nearly three-fourths (73 percent) of the sawills have been put into operation during past ten years. The mild which have been eatablishea for more than ten years are generally permanent and have more nearly

TABLE VI

INDUSTRY WORK FORCE

Industries	Man Days		:	Number of Workers		
	Numbers	Percen Total	: Usual 1	Percent	High	Percent
Sammils	168,740	65.7	871	69.2	983	63.0
Pulp, Pole, Prop, Po and Tie Buyers	$40,850$	15.9	173	13.7	280	18.0
Charcoal Wood Buyers	1,650	.6	28	2.2	54	3.5
Handle Stock Buyers	5,740	2.2	24	1.9	31	2.0
Creosoting Plants	39,760	15.6	163	13.0	211	13.5
Total	256,740	100.0	1,259	100.0	1,559	100.0

figure V. Distribution of Samills by Duration of Establishment from 1957
maximum output for the type of equipment used. ${ }^{3}$ Some of the more recently established mills have been in operation previous to their present location but have been either in other counties or adjoining states. Also, many of the mills established during the past few years are portable and their duration in one location may not be over one to two years. The mills which have been in one location for several years may usually be found in the pine area. of the total number of mills for which complete data are available, forty-one percent were established during the period 1953-1957 with about half of these (fifty-one percent) classed as permanent. During the period 1948-1952, twentyone percent of the total number of mills were established, nearly threemfourths of these were considered permanent. Thirty-eight percent of all mills had an establishment date of before 1947. Eighty one percent of those established before 1943 are permanent mills. Naturally permanent mills are more likely to have been in existence longer than the temporary type. Sixtyofive percemt of all mills are classed as permanent.
2. Size of Work Force

Figure VI shows the distribution of the work foree in the sawmil industry. Only those mills reporting the usual number of workers were used for this distribution.

The usual number of workers wiss reported by 129 sammills. The major number (74 percent) of the samills employed $1-3$ men. Eighteen

[^5]

Figure VI. Distribution of Sawmills by Usual Workers Class
sawills (14 percent) opereted with 406 mem with sixteen sawmills (13 percent) using seven or more men.

The number of workers used by mills with the same type of equipment varies. The small mills (i.e., those with only one head saw) may be employing from one to five men when actually three men would be sufficient for the mill operation itself. Some mills indiceted the excess number of workers was, in part, to provide some sort of employment for their neighbors. Others using only one or two men are not striving for an efficient sawmill operation but rather for means of supplementing their income from other sources. These mills, which axe undermanned, usually operate on a seasonal basis. However, some mills indicated they would be willing to increase output if timber resources were more readily available. This would indicate a need for improving the productivity of woodlots. The Forest Service has steted that the productivity of woodlots could be doubled through the use of minimum forestry practices.

3. Types of Products

The three major classes of products sawn mre ties, bridging, and construction lumber. All but 5 percent of the 1.32 mills xeporeing produced these products. The distribution among the major products is as follows-oconstruction lumber (58 percent), ties (24 percent), and bridging (13 percent). The production of ties and bridgimg uses mainly hardwood resources. Thus, these products are produced predominatly outside the pine counties. Although furniture stock is of minor importo ance, the value of this specielty product is greatex than that of any other product. However, the limited quantity of specialty wood im eastern Oklahoma restricts the processing of these products.

Ninety-one of the firms reporting indicated they produced at least two commodities with thirtyoone of the firms producing three or more products. The diversification of product by mills is usually dependent on the species of wood and available secondary wood.using markets in the area.
4. Sawlog Sizes

The distribution of sawmills by average low diameter is illustrated graphically in Figure VII.

Nearly half of the 55 mills sawing pine are sawimg pine logs with an average diameter of 809 inches and onewthird are sawing $10-11$ inch logs. Pine logs with the small average diameters axe usually being sawn by mills outside of the predomimantly pine counties. Since most mills are sawing pine logs of less than eleven inches in diameter, this means that many small trees are being cut which obviously reduces the efficiency of these mills.

The 107 mills sawimg hardwood are sawing larger logs than those sawing pine. Sixty-four percemt of the midis axe sawimg logs with average small end diameters between $12-15$ inches. The difference in size of logs between pine and hardwood may be attributed to the differencts in value of these products. At the stump, the price per M bd. ft. for pine is about ten dollars higher than that of hardwood. The price of pine as the end product is higher than hardwood products. With better prices received for pine, the mills have been inclimed to ignore any type of marked timber program which would in the long rum improve both size and quality of the timber, Many mills, however, particularly im the pine region, are moving toward selective cutting of timber and this should lead to more income for both the processor and the resource owner.

Figure Vild Distribution of Sawnilis by Average Log Diameter ${ }^{3}$
${ }^{\text {R }}$ Refers to the average small end diameter.

5. Length of Has 1

The distance which logs must be hauled from the sitump to the saw can become a major cost in some instances. A distribution of the length of haul is shown in Figure VIII.

The average length of haul was reported by 120 of the 133 sawnills. Eighty-three percent hauled an average of fifteen miles (one way) with less than 3 percent of the mills traveling more than twenty-five miles to obtain timber. It is apparemt that most of the mills are located near the timber resources. Some of the temporaxy mills are situmed on the tract of timber purchased and will move to a new site when these resources are exhausted. Those mills with large output may in some instances travel over fifity miles to obtain sawlogs which are of desix able sime and quantity. The permanent mills are not mble to relocate without incurring high costs and therefore are prone to haul timber greater distances.

The length of haul is of importance to the costs of producing wood products. This would be of concern in detemming the efficiency of the overall mill operation which wowid include ali costs from stump to the final mill product.

The lack of information conceming trensportation costs points to the need for an efficiemey study to determine the optimum distance which various size mills should haul timber. This may imdirectly affect the incomes of the resource owners by reducing the firm's processing cosis.
6. Iocation of Purchase

Table VII indicaics the percent of wood which is purchased at different losations.

Figure VIIT. Distribution of Sawmills by Average Leagth

TABLE PIT
VOLUME SAWM BY PURCHASE LOCATION, 1956

County	County Volume (Mmod.Ftal	Percent Industry Volume	Percent Bought at Stump	Percent Bought at Mill	Percent Bought at Roadside
Adair	2,378	3	77	23	$=0$
Atoka	2,861	4	47	53	-0
Cherokee	1,055	1	78	22	∞
choctaw	4,947	6	67	27	6
Cos 1	350	a	100	\bigcirc	\bigcirc
Delaware	2, 144	3	92	8	\cdots
Haskell	560	1	94	6	\bigcirc
Latimer	2,025	3	-	100	∞
Le Flore	5.810	7	91	9	∞
McCurtain	43,181	55	89	11	∞
McIntosh	1,263	2	100	∞	∞
Muskogee	575	1	100	-0	∞
Pittsburg	3,395	4.	62	38	∞
Pushmataha	7,970	10	41	58	1
Sequoyah	348	a	69	31	\bigcirc
Total	78,865	100	78	28	0

aless than .5 percent.

The sammils in twelre of the fiftean counties purchose the major portion of their wood gt the stwmp. Omly ome county reports mo wood purchased at the stump, with three connties purchasing all wood at the stump. Over three-fourths of the fifteenocounty wood sawn is bought at the stump. Two counties only report a negligible amount of wood purchased at the roadside. The various mills who purchase woot at the mill indicare some lack of vertical integration since much of this wood is contrected by intermediate woodcutters. The determimetion of whether improved efficiency would occur through vertical integration is an acea for additional study.

One coumty has over balf of the total mood sawn This wood is mainly from nonofarm woodlots and my include some wood from adjoining counties ox Arkansas. However, the amount of wood taken across county lines is assumed to balance for any given county. Those counties with major pine or hardwood concentrations account for the major portion of the fifteemocounty wood swm. Of course, the larger samilis in terms of output pex year are located in the coumties with the large quantities of wood sawn.

7. Price Vaxiation

Seventeen percent of the samills reported price varision for wood bought at the stump, ten percent reported price variation for wood bought at the mill. Comsidexing the fact that most wood is bought at the stump (78 percent) this implies that of all wood bought fixteen percemt involves price variation.

The quoted variations are dikely to be umderoestimated simee the xespondents were the buyers. The mount of variation was not availabe. Differences in accessibility of the timber stam and the lemgth of road haul make a study in price variation for woodlot producte extremely cumbersome. A study of this phase by surveying the wood sellers would add greatly to improving the market for forest products.
8. Operating Horsepower

Crapbice 1 ly in migure IX is shown the distribution of sawmils by the total amount of borsepower wsed.

Of the 133 samills contacted on the forest survey, les reported total horsepower of their mill. Most milla (77 percent) operated with motors rated at less than 150 horsepower. Sixteen percent of the mills

Figure IX. Dievribwtion of Sawmils by Horsepowex class
had motors between $150-49$ horsepower and seven percent had motors ith horsepower ratimg of over 250 .

Some sawnills were obviously overpowered or undexpowered. Many firms using car motors were not geared for maximum efficiency. This lack of power in many instamees caused delayg particularly if large timber was being sawed. Most mills which are located at or near the major pine and hardwood resources generaly have ample borsepower for their operatioms. The greatly differing horsepower ratings for motors in similar mill types indicates a need for detemming the optimum powex unit for the different size of each mid.
9. Combinations of Saw and Motor Equipment

One of the major differences in equipment is in the number of head saws, edgers, trimmers, and gang gaws which are utilized by a firm. Table vily ilnustrete the deferent sombinetuone which occur in eastern OkJmoma

TABLE VTCI
DTSTRIBWTTOM OF SAWMTHLS BY THPE OE EQUTPMENT

Frequency of Mills		Type of Equipment			
Number	Percemt	Head saws	Edgers	Trimmers	Gaug Sawe
54	45	1	-	-	-
15	13	1	1	-	-
18	15	1.	-	1	\square
24	20	1	1.	1	-
1	2	1	2	-	-
1	2	1	1	2	-
1	a	2	1	-	-
1	a	2	2	1	-
2	2	1	1	1	1
1	a	2	2	2	1
1	a	3	-	\bigcirc	1
T17	100	T124	6\%	49	4
Tota 13		137	53	51	4

Nearly half of the samills for which complete informaton is availa able report as having one head saw and no edgers or trimmers. Ninetyofive percent of the mills have only ome head saw and no gang saw The xemaining five percent are large mills mainly operating in the pine counties of eastern Oklahoma. The installation of gang saws by mills is a recent effort to improve their efficiency. Mills wing the gang saw have in some cases doubled their output. Those who have recently installed gang saw expect an improved efficiency in mil operation. The change from the use of the head saw to a gang saw has been gradual and in some instancen the head saw is still being used in conjumetion with the gang sam. A later chapter of this thesis mill give nu indication of the efficiemey of mills mith various types of equipment.

The number of motors by the different typer is shomm in Table IX. Most sawills axe powered by gas motors. The type of gag motors varies from those obtained from olld cars to the large stationary motors. The duration of service obtamed from these gas motors alwo varies. Some motors are replaced evexy year while the stationary types are expected to be in operation for several years, depending on the hours used per year. The samills with more than one motor usually have larger output per year than the single motor mills. The additonal motors genetally power auxiliary equipment such as edgers and trimmers. The motor wsed to powex the head saw have greater horseponer ratrags than the auxidinuy motors.

The use of diesel motors, which are stationary, is limited to eighteen sammile. These motors have higher horseponer retings than mogt gas motors. The initud cost for this type of motor is usually greater than for gas motors we manly to differences in horsepower ratinge.

TABLE IX
SAWMILLS CIASSTFIED BU NUMBER OE MOTORS

Number of Motors	Erequeney of Motors			Total Mils
	Qas	Diesel	Electric	
1.	90	1.5	1	106
2	23	3	1	27
3	1	-0	3	4
10-15	\cdots	\cdots	2	2
20-25	\bigcirc	\cdots	2	2
over 25	\cdots	\cdots	1	1
Total Mills Reporting	114.	18	10	142
Total Motors Reported.	139	21	586	746

Also includes steam and kerosene motors.

Electric motors im most imstamees are used to power edgers and trimmers. 0nly ten sumille reportect the use of electric motors. The location of some sammids prevents the use of electric motors. However, the feasibility of using electrie motors wes not determined by this study.

Several types of power are used by sammils. Which type is best can only be detemmed by studying their efficiency under similar conditions. Vaxiables such msill size mud location wonld be of major importance. The knowledge of firm eficiency in eastern Oklahoma de 1acking, and latter part of this study will show that a future effecervy study would be desirable. The objective of such study would be to improve the incomes of samill operntors, woodite owness, and the consumers of wood products through more efficient plants.
C. PULP, $\mathrm{FROP}, \mathrm{POLE}, \mathrm{POST}, \mathrm{AND}$ TIE BUYERS

1. Duration of Establishment

A distribution of the duration of establishment is fllustrated in Figure X. The cotal number of buyers anveyed (37) reported the length of establishment. Fiftyoseven percent of these have been escablished in the 1950° s with 35 percent put into operation during the $1940^{\circ} \mathrm{s}$. The buyers who have been established for twenty or more years are large-volume operators. The new outlets for these various products have led to new firms emtering the industry. Mamy of the firms in the noxthern counties are post buyers who hande only a few posts as aideline to their main entexprise. For these latter firms, being in operation for several years does not indicate that large volumes are handled. The large buyers which have been recently established began their operation because of secondaxy markets for wood products. Also, lower gredes of wood are being used by some buyers who have recently established. One buyer in the hardwood area of eastern Oklmhom purchases low grade hardwood to process into absorbent structural paper. More study is needed to determine industries which could use the imferion trees on woodiots.

2. Size of Work Force

Figure XI shows the distribution of workers in this segment of the forest industry. Sixty percent of the buyers heve only one person handing the products at the yard. Trenty-four percent have to 3 employees with six buyers having four on more workers. One fixm, operating in six different locations, mploys one humdred workers.

Seventyosevea percent of the firms with only one worker are excluo sively post buyers. Seventy percent of these axe located in the northern counties, and all except two firms hedile only bardwood posts. The firms handling pine posts axe maturally loceted in the southern coumties primarily.

Figure X. Distribution of Pulp, Prop, Pole, Post, and Tie Buyers by Duration of Establishment from 1957

The number of workers cutting the wood sold to buyers was not ascertaimed. There would be no way of detemining how many cutters were invalved as buyers in many instances had no record of persons from Whom they had purchased wood. Therefore, the actual employment in this industry would be difficutt to ascextain. Much seasonality in wood cutting was found, particularly for those cutting hardwood posts.
3. Types of Product and Price Variation

Included in Table X are the buyers classified by wood type. The amount of price variation is shown by the last colum of the table. Thintyoseven buyers are located in nime of the fifteen eastern Oklahoma counties. The largest mumer of firms (68 percent) are post and prop buyers. Twelve firms (3e percent) are buying pulpwood. The post buyers are mainly located in the northern counties with the pulpwood buyers perexting in the southern pine counties.

TABLE X

PRODUCT DESCRIPTION BY TYPE OE BUYERS

Wood Type	Buyers Reporting		
	Number of Buyers	Most Important Products	$\begin{gathered} \text { Price } \\ \text { Variation } \end{gathered}$
Pulp	12	11.	3
Poles	3	-	\cdots
Posts and Props	23	24	1
Ties	4	2	3

Twenty-four buyers (65 percent) have post and props as their major product. Pulpwood is the next most important product bought by these
buyers. TWO Of the fowr firms buying ties list this product as being the most important. Eight of the buyers handle two or more products with five buyers purchasing three or more different products.

Only a small mount of price variation was reported by the buyers. Three of the firms buying pulpwood indicated that their prices varied during 1956 and three tie buyers reported price variation. The large buyers, particularly the post handlers, have price lists for the various products. There is some difference in prices between counties, however, the price of the products within a county are usually the same. The difference in prices between coumeies can be partially explained by the difference in species and quality of the wood. The difference in pwlpo wood prices may be attributed to the location of the outlet. Some pulpwood buyers are able to set lower prices because mo other firm is near enough for the woodlot owners to actain higher prices for their products. It is the judgment of the wiotex thet the present pulpwood production potential would mot wariat the establishment of more buyers.
4. Length of Haul

Figure XII shows graphically the distribwtion of buyers by the length of their hali whis shows only the average distance the wood is hauled to the buyer ${ }^{\circ}$ yard.

Thirtyosix buyere reported an averge distance of haul for timber. Seventy-eight percent of the timber was hawled a distuce of twenty mides or less. The longest of the average distance mas seventyofive mites by one buyers. The hauls which were owst twenty miles involved all types of buyers. The haling in northern counties which are predominantly hardwood is dome mostly by farmers who cut these wood products for arr

Figure Xili Distribution of Fulp, Prop, Pole, POst, and Tie Buyers by Average Length of Hiul Class
additional income. The hauling in the pine coumies is in most instances done by the buyer or by a contract howler. The timber is usually hauled to poimts of concentration located at railroad terminals. This is especially true of pine pulpwood buyers as it is all shipped out of state for processing.
D. MISCELIANEOUS WOOD PROCESSORS

1. Charcoal Makers

There are four charcoal wood buyers in easterm oklahoma. These are located where an adequate supply of hardwood is present. Hickory and oak are the most comon types of mood used in making charcoal.

One finm has been in operation forty-one years with the other three being established in the years 1956057 . The increased use of charcoal has brought bout the estoblishment of firms in the counties where adequate low grade herdwood is present. A large amownt of charcoal is processed into charcoll briquettes.

The usual nuber of workers employed ranges from four to twelve men. The firm which has been estalished for the longest periog ino dicated the operations rum on seasonal baiss. This meams that the finm is not operatimg at eqpacily and alowing the workers and kins to be idle during portor of the year. The reason for this seasonality was not determined. The more recently estobished firms indicated they would operate the entire year, thereby giving fuld-time employment for theix workers.

The volume of wood processed by the charcoal plants for period of one year camot be ascetained sumee three of the firms were established durimg 1956 or later. Some of the recently established plamts have
intentions of building additional kilms which would imerease their volume. The price paid per cord of wood varies between counties but not within counties. The wood resource owners in the southern counties receive a 1ower price per cord than of those resource owners in the northern counties. The lower price in the southern counties may be explained by a low volume of wood being processed relative to a large volume of wood available for processing. According to A. C. Pakula, a large charcoal industry could be supported by those oklahoma forest resources which have no higher use vælue. ${ }^{4}$

All of the wood used is obtained from faxm woodlots except in one instance where the wood was being cleared from a ranch. The wood is usually hauled to the charcoal plant by the resource owners. One charcoal maker handles the entire operntion with mis workers from the stump to the finished products. The distance of the haul from the woodlot ramges from one to forty miles. Most of the wood is hauled from ten to twenty miles. The transporation costs would be a limitimg factor in the distance wood could be conomically bauled to a plant.

This study indicates a need for additional investigation of the charcal plants. With the possibinity of increasing farm incomes through the use of low-grade hardwoods, the feasibility of increasiug charcoal output could be determined by studying plant efficiency and market demand for the product.
2. Handle Makers

Four handle mills are using wood from farm woodlots in eastern Oklahoma. Three mills have been established since 1940 with the other
${ }^{4}$ A. C. Pakn la, The Donestic Charcoal Market in Oklahoma: Bulletin No. B-495, Oklahour Agricwitural Experdment Station, August, 1957, p. 18.
mill beginning its operation in 1920. These mills are located in a three-county area (Adair, Cherokee, and Delaware) in eastern Oklahoma.

All firms worked 200 or more days during 1956. The number of men working ranged from one to ten per mill. These mills are somewhat seasonal in their operations as they decrease the number of men used during the summer months. The reason for the decline in output during the summer months is due to the decrease in demand for handies. A large number of axe, mattork, hoe, pick, hamer, and maul handles are manfactured by these milis. The fixms indicmed the best sales occurred the fall, winter, and spring months, with most of their products being sold in the southern and southwestern states.

The major types of wood used for making handles are hickory and ash. Except for one firm, the wood is cut and hauled to the mill by the farmers in the axea. The price paid by the mille varies from eigh teen to twentyothree dollars per cord. This differeme in price may be partially attribuced to the types and quality of wood bought by the mill. The income recsived by the farm woodlot owners in these counties contributes substentialiy to their family imoome.

The distance of the haul by farmers sverages between ten and twemty miles with some large truck loads being hawled up to sixiy miles. Most Of the wood is hawled from nearby farms.

Some of the plamit appeared to be in good mechanical condition while others bad machines that were in need of repair or raplacement. The plant efficiency seemed to vary greatly because the mithowted equipment being used by some firms. The decermination of the most efficient type of plamt with the use of the available wood resources
may be very benefleial to increasing the returns to both the firm and the farm woodlot owner. Although this wood outlet may be small compared to other types of outlets, any means of increasing farm income should be investigated.

3. Creosoting Plents

Creosoting plants have bean in operation in eastern oklahoma suce 1907. Whe five firms reporting use the pressure method of treating wood. A dipping method wes used in the early days by some firms, but this did not impregmate the wood fibers except near the Buffec. Most firms have converted to the pressure system, and thxough an educational program, most consumers are mon specifying only pressureatreated wood. Only one firm operated less than 200 days during 1956. The reasom for this firm operating less than 200 day whe due to the conversion of the plant to the pressure treating system. Most firms are operato ing at or mear cepachty es the demand for creasoted wood products mas good during 1956.

The average dilly numbr of men used by a plant is up to seventym five. The variation in the number of workers employed duxing the year were only slight. The time of year is a factor affecting the mumber employed as adverse weather condituons temd th restroin full operation.

Almost 3.7 million cubic teet of wown wes processed during 1956 by the five creosoting planis in this gtudy. The pricen ranged from 35. to 4e cents per cubic foot. This difference in price mey be mainly attributed to the different types and simes of wood processed. The major products creosoted me pine powts ma poles. Ome fyum creosotes only hardwood ties while other firms ereasoce only a negligible amount of haxdwood.

Three of the five firms buy their wood from farm-owned woodlots. Fortyofive percent of the wood processed was bought from farmoowned timber. Most of this wood was hauled by contraet haulers with only one firm reporting fifty percent being hauled by farmers. The average haul varies from ten to seventy-five miles. The longest hauls occur for those firms which are located outside of the pine region.

The increase in volume of wood being creosoted has provided an incentive for woodlot ommers to sell the timber to these processors. Much timber which was undesirable for other uses in the past can now be used by the creosoting plants. Additional investigation of the creosotm ing plants may prove fruitful as these products have become important to the forest industry during the recent years.

CHAPTER IV

THE MODEL FOR POTENIIAL CAPACIIY OF THE SAWMTLL INDUSTRY

A. INIRODUCTION

1. Type of Fixm Studied

Sawmills were selected for this study for several reasons. Secondary industries using dimension stock are dependent on the production of samills. These secondary wood users provide markets for wood products which influence, both directly and indirectly, the per capita income of families in eastern Oklahoma. These other industries seem to be working near capacity. The buyers, creosoting plants and handle factories are working at or near the maximum number of working days. It is assumed that these industries ${ }^{\circ}$ efficiency is at or near optimum, certainly it is more near optimum efficiency than the sawmill industry.

In the sawmill industry there are a sufficient number of firms to make a statistical study of cost, efficiency, and capacity. This number is large enough that a breakdown into different types of firms leaves sufficient members in each group to make statistical fitting of cost functions possible. The sammills in addition, all produce one type of product regardless of the type of fixm.

The last reason is, perhaps, the most important. There are obvious indications that many samills operate less than capacity especially with respect to duration of yearly operation. Only a small number of mills (seventeen) are operating over 200 days per year. The remaining firms operating at less than 200 days indicate excess capacity in this industry.

This means that with sufficient wood resources, the industry output could be increased with existing equipment and with possible reduction of unit costs. Since samills are processors of logs into lumber, an understanding of potential log supply and lumber demand is needed.
2. Log Production Potential

The production of woodlot products in eastern Oklahoma is now below its potential. The non-farm production under present management is assumed to be at or near full capacity. If the farm production is brought up to the level per acre of non-farm production, output would be nearly doubled for pine sawlogs. Also with the application of minimum forestry practices the output of all woodlot products could be nearly doubled, to bring production near the net growth potential.

Several factors must be considered in developing a program for better production of wood products. Fixst, the time required for growing merchantable sawlogs in eastern Oklahoma wowld be, in most areas, a minimum of twenty years for pine and even longer for the hardwood species. Therefore any investment in pine seedling planting would involve a lengthy period before any monetary return was realized. Secondly, the land ownership, outside of that owned by nomofarm residents, is generally restricted to small tracts, 50 to 100 acres. For forest production to be economical, it is estimated that forest land must return more than 2 to 3 dollase per acre annually which is currently the case in many instances. Also, confronting the land owner is the progressive land tax which is being adopted by some states along with a maximum land area ownership by an individual. These are only a few of the problems facing the woodlot owners in eastern Oklahoma.

Forestry workers in Oklahoma estimate that production can be increased by about thirty percent by 1975 and an increase of fifty pexcent by the year 2000. The current production could be increased by insect, disease and fire prevention along with planting seedlings and removing the undesirable species. This would indicate that the potential capacity of forest production is encouraging. Only through better forestry programs can this potential production be achieved.
3. Lumber Demand Potential

The potential demand for wood products by 1975 may possibly call for a greater amount of imports into this state than is expected. With the possibility of a rapid industrial development, it could also be expected to increase the use of wood by a similar proportion in Oklahoma.

The estimated demand for industrial wood for the U.S. in 1975 may be 25 to 40 percent above 1952. ${ }^{1}$ The demend for fuelwood would decrease by about 25 percent during the same period. It is reasomable to assume that certain species of wood will be imported regardless of the production in Oklahoma. However, imports can be balanced with exports of the existing species in Oklahoma to meet the nation's demend. Under existing como ditions, the potential demand for wood products in oklahoma would exceed the expected 1975 production by an even greater percentage than at the present. Increasing production through better management could by 1975 at least meet the current ratio of production to demand. By increasing managerial practices, it could be expected that by 1975 the output of

[^6]sawlogs in eastern Oklahoma could be as high as 150 milion board feet. In 1955, the output of sawlogs was 115 million board feet. If this is the amount which eastern Oklehoma currently is required to supply to meet the nation's demand then it is reasonable to assume that by 1975 the demand for forest products could be met with oklahoma ${ }^{\circ}$ s increased output and a similar increase in output by other areas of the nation. However, applying the estimated demand increase for the United States in 1975 would project a large inorease in wood consumption in Oklahoma. No data are available for estimating the potential demand for wood products in Oklahoma specifically. The consumption of wood in Oklahoma during the past has not been recorded. This restricts any estimation of potential demand in Oklahoma to a mexe guessmoan indication that further study of the demand for wood by the Oklahoma maxket and of the total demand for Oklahoma wood would be useful. There is at present no study reporting any estimates of the parameters of wood demand either by areas or by the nation.
4. General Statement of the Model

In the absence of demand relationships, firm and industry efficiency and capacity must be examined only in a cost semse divorced from revenve and profit considerationg. Such an analygis implies that wnit revenue is independent of output, an assumption that may nearly hold up only under small variations in output. The capacity of samills will be compared with three supply conditions - 1956 actual, 1975 net growth potential. 1975 demand potential. Mhese figures are $86.7,115.0$, and 152.2 million board feet respectively. Thexe are three major ways in which the capaciey Of the sammil industry may be imereased; (1) raising the days operated
by existing fixm to some teasonable maximmm such as 200 days, (R) increasing individual fimm efficiency, for given type of firm, and (3) Optimising the effieiency of the industry by maximizing the efficiency of the optimum type of firm.

The objectives of the above methods are to determine the effect of efficiency increase on the wood industry. It will sllow the estimation of changes in the value for forest production from both farm and nonofarm woodlots, especially the determination of the increase in value of farm Wood production as a percent of the present. The effect these methods have on the capital costs of the forest industry will be reflected. Another important factor is determining what these methods will do to the man days of employment and payroll in the industry. More efficient production of wood producte in Oklahoma may increase the demand if more favorable pricing is made possible by reduced costs.

Improving the efficiemey of the firms and improving the structure of the industry is omly om pilot study basis and will be useful in determining the need for fumther study. If g large degree of variability exists within firm type, then improving the efficiency of firms by another moxe detailed study would seem usefur. This also applies to improving the industry stracture by obtaining the optimum efficient firm operation in the industry. An exmmie of increasing the efficieney of an operation has occurred since the data for this study was obtained. One firm recently indicated that, after the addition of a gang saw, itichas nearly doubled its output in the second yesr of its opermtion aftex learning how better to employ the new equipment. Whether this has lowered
its ayerege cost curve could only be determined by an efficiency study, however, this finm's owner believes a more efficient operation has resulted from the addition of this equipment.

B. CAPACITY AT 200 DAYS OPERATION

The existing types of firms could be brought to full capacity in terms of the number of days operated. Of the mills for which complete data are available, fifty-eight percent operated less than haf or the year. Only fourtern percent of the mills operated 200 days or more during 1956. The sawill industry in eastern oklahome is thus below its potential capacity with respect to days operated. The method for obtaining an estimate of "time" capacity is as follows: All firms which Fork eno days or more are allotec their octual production Those which work less than 200 days are incremsed to soo days at calunlated daily ouputs. This assumes that up to 200 days there are constant returns co thou as variable factor. 200 days was chosen as capacity with respect to time since may samillis are hincered by days when bad weather makes dixt road transport and outsice operation improcticable if not imposeible Gsing existing technimes and fixed plame. Covexed mills, log invemtories, and favored location makes opextion up to 300 days possible for some mills. It is assumed that below 200 days, on the average, lack of full inme capacity is capable of beng remedied withowt chaging the fixed plent, always assuming the product is saleable at profit. The firm and industry capacity models will be standerdized at 200 days operation for allamo
C. FIRM AND TNDNSERY CAFAGTHY THEORY

1. Economic Capacity Theory

To view theoretically the cost curves for an industryg the follow ing diagram is presented.

Fox the industry, optimum economic capacity is defined as the point Where total output is $\mathrm{O}_{1} \times \mathrm{N}_{1},\left(\mathrm{~N}_{1}\right.$ equels number of firms), and each
 LAC for each firm and dyerege costs mise at mitimum lu both the short and the long run.

Optimum economic cepedity of the finm is when some firms ore operating on $S A C_{1}, S A C_{2}$, and SAG but all are operating ar minmum SAC. TCtal demand in the short rum is equal to $\left(O_{3} \times N_{3}\right)+\left(0_{2} \times N_{2}\right)+\left(0_{1} \times N_{1}\right)$. This assumee that firms camot inmedintely change theix scale of plumt.
 and SAG_{3} but at outputs where short rum average costs axe above the
minimum. This may be illumtrated as follows:

These firms could make adjustment within their scaile of plant to decrease costs by increasing or decreasing output.

It is also possible that some firms are operating on different sac curves due to not using the best availlable techniques at given outputs. These firms not using the optimum techmique for a given output would have average cost curves that lie completely above the LAC curve. This can be shown as follows:

The long rum average cost curve is an exvelope curve to those short run average cost curves that use the best techniques for any given inputoutput combination. The difference between $S A G_{1}$ and $S A C_{2}$ is not a lack of optimizing techniques but a laek of optimizing the long run technology available. A higher degree of technology used implies higher fixed costs. The following production curves illustrate the input-output combinations underlying this arguments. f_{c} represents fixed costs in terms of inputs. TPs total industry production implies maximum technology. Firm number 5 for example, has not optimized techniques for the given inputs $I_{1}=I_{5}$.

The total product surves, tp p_{4} and p_{5} correspond respectively to the firm's $S A C_{4}$ and $S A G_{5}$ curves. $t p_{1}$ and $t p_{2}$ mre tangent to $T P_{1}$ and correspond to SAG ${ }_{H}$ made respectively.

Locationsl disturbances may afect economic fixm and industry structure efficiency. For economic finmeffuciency the plant is operitimg at minimum SAC for given plant type or cepital expemditure using the
best techniques for given inputs. Also for optimum industry structure efficiency, all firms are operating on the same SAC curve which is tangent at its minimum to the minimum point on the LAC curve. That is, each firm would have the same plant type for industry efficiency. The production or output by the industry would be based on the long run or planning product curve. Each firm would operate where $t p_{1}=\mathbb{T} P_{\mathbb{1}}$ illustrated in the foregoing diagram. But within any given axea, demand for output may be so small with txmeport cost isolation that maximum structural efficiency cannot be achieved. For the same reasons, even single firms may be operato ing at a profit using inefficient techmiques for an output that is above the minimum average cost for the industry and above the minimum average cost for the firm. Such isolation may allow firms to operate under monopolistic competition and restrict owtput to maximize profit. The sawnill industry particularly has the characteristic of this type of locational disturbance to "spaceless" economic equilibrium.

2. Assumptions

a) Firms are operating in pure competition with respect to output and factor demand, i.e., the price of wood products is very little affected by firm output and the pricess of factors (logs, equipment, powex, and labor), are unaffected by firm imput levels.
b) Due to lack of estimates of demand elasticities, assume that the eliasticity is umity and thus revenue unaffected by output. (This assumption is reasomable since oklahoma's production is only a small percent of national production and if mational demand elasticity is umitary. However, transport costs do tend to isolate Oklahoma ${ }^{\circ}$ demand).
c) Fixme are not isolated spatiadly with respect to output. (The maximum length of hav by mills in all counties of eastern oklahoma overlaps considerably. They not only overlap within countes but between counties.)
d) Capital and labor markets are perfectiy liquid and thus changes in plant type and industry structure are feasible even though not necessarily profitable. Cextainly labox in eastexn oklahoma is physically available since it is labor surpias area with grossly undexemployed labor in agriculture. The capital liquicity assumption is much less likely to be valid. The decision to expand a plamt is based on the xeturms to capital and labor and the unit cost of capital may very well be imexeaso ing with increasing use. But in addition, it may just not be available at any price which is most likely locally.
3. The Sources of Dete

Data for this study was obtained by the survey amd from secondaxy sources.
a) Survey data:

Data available from the survey includes production in board feet of wood by sawmilis for 1956 , the muber of days individual firms opexated the total horsepower of the power wnits, the numbers and kimds of power mits, the numbers and kirdis of saws operated and the wsul mumber of men in the sawill operdtion.

From this information, the output for each mill was calculated at 2 Level of a fuldyear ${ }^{\circ}$ operations. Those firms operatimg at less than 200 days were brought up to the fulloyear level to obtaim the estimatech swmill industry capaity at stamardimed durations of operation. The
remander of the physictl imfomation then needed prices and depreciation rates to be transformed into fixed and variatue cost series.
b) Secondary data:

Price information on gas and diesel motors and theix operating costs was furnished by the AlliswChalmers Compamy, Sand Springs, Oklahoma. Electric motor prices and operating costs were furmished by Elmer Dniels, Agricultural Engineering Department, Oklahoma State Univergity. These operating costs wexe of schedule mature allowing the survey imformation on honsepowex and type of motor to be translated into estrmated operating costs.

Prices of other equipment and their rate of depreciation was furnisho ed by 1 .J. Clymex, State Extemsion Foxestex. Mr. Clymer also gave estimates of motor cepresiation in the sammil industry which were sufficiently different from the makers ${ }^{\circ}$ estimates to warrant their use。 The fester rate of depreciatiom is probably due to the condtions of operation in the sammil modustry where wnewen lozds, dust and moistrue tend to wear out powex equipment fagter than the average given by the makers.

Wages are reasonebly stamdardiged throughout the industry with tro wege rates; one fox samyer and one for his helpexs. variation im totar Labor costs is due largely te variathom in the number of helpers shich in turn is partly deperderit on the rumber of smar sumg Sowe more efticdert and higher outpat midn pay higher rates but all mere standardiead at the average. Mr. Gymex Eurnished these rates which were checked by a small telephone gample tw representative tirm types. whis data is listed in the appendix.
c) Reliabidity of the deta:

There are several obvious lacks in data. No withinofirm variability is available since yearly querage figures for each firm were used. Withino firm variability due to differences in labor inputs or inefficient use of similar equipment, will be assessed by comparing firms of similar equipo ment types. This introduces the assumption that within broad types of firms there is no necessmuy difference in managexial gkill.

The date used in this analysis is not that needed for the ideal efficiency and capacity gtudy. There are several improvements meeded for such a study. Data to obtain within fixm variability from various levels of labor inputs are needed. Also, the different levels of firm management for similar types of equipment and the engineering data on optimum types of equipment and power meeds would be required for analyzing the industry"s individuel firm efficiency and capacity. Individual firm labor costs and other imdividual firm costs would be requixed. Time and motion studies of different types and axangements of this optimum eguipment could be analyzed with respect to these individual costs. Nevertheless, it is hoped that this study will detect gross differences in firm efficiemoy and point to the places where detwiled efficiency studies might be waranted. The results will also lend valuable help to such a study im illustrating the major fixm types and the major sources of variability within these types.
D. EIRM AND TMDUSTRY GAPAGTYY MODET

1. The Nodel Problem

The model problem in the cose of empirical cost curves is composed of at least three foportant facetsithe egonomis, the atetiaticalo and
the empixical. The model must first conform to the undexlying assumptions of ecomomic theory. Them it must be susceptible to statistical fitting processes. The difficulty of solving this problem is compounded by the joint dependence of these two parts of the problem. The third facet is the nature of the empirical observations which are comonly attained by surveys or cost accounting studies of an industry. This data problem widl be examined first.
a) The data problem:

Nearly all empirical observations of average costs mie aroumd a hyperbolic type of Eumetion. Thi\& is true of this study, as Figure XITT i1lustrates.

In other words, we seldom have observations in the real monld where diminishing returns occur: the average cost curyes, aseuming as we do that factor prices are independent of output, never seem to turn up, athough the example in Figure Prif does have one fimal obsexvation that would lie above a byperbolic fungtion. This predisposes the imvestigntor to fit a hyperbolic average cost function through fitcing a linear total cost fumetion or to fit directy m logatithmic fumetion to the observations of average cost.
b) The statistical problem:

The types of curves that may be fitted statisticelly ase mumerous but nevertheless limited. Inmear in real mubers of their logarithme is the common choice. Polynomin 1 of any degree with or without product terms San also be fitted but involve more difficulty in computation and com siderable likelihood thet one or more coefficients of degree higher than umity do not differ significently from zero.

Eigure xitho Emprigca Relutionship of Average vaciable cost and Ontput for Sawuills with one Heacisau
c) The economic problem:

The economic problem imvolves finding forms of equations that do'not violate the implications of the assumptions made by economic theory. Industry or longmun total cost curves may indeed be linear, implying constant returns to the factors. But firm or shortorun total cost curves must at least be convex to the output axis so that longorun industry average cost does not lie above average total firm costs. The following section on the models investigated will demonstrate these difficulties. A further difficulty involves the use of the model. We are looking for firm and industry maximu cost efficiency without regard to demand relationships. In the absence of empirical studies in the foxest industry, price is assumed independent of output and thus cost efficiency is examined outside of revenue considerations. Cost efficiency can be thought of as minimining avexage total Gost for the firms and average (variable) cost for the industry. Io do this, these curves will have to attain a minimum at finite outputs. Put in a different way, the form of the equations estimated will have to be such that would allow firm average total cost and industry average cost to reach minimum as will be seen in the following section, this will necessitute the use of polynomial form. 2. The Lineax Model ${ }^{2}$
a) Statistical assumptions:

Tyhe symbols used rin this model will be standaxd in all models. $T C=10 n g=x u n t o t a l$ cost in dollars per thousand board feet, AC = long-
 average total cost, ave = average variable cost, me margimal cost, e m error. Small letters denote shortorun and capital letters denote longo run. Output in million board feet is denoted by x. Any additiond lettexs will be explained at time of use.

The equation to be fitted is：

$$
t e_{i j}=c_{i}+b_{i} x_{i j}+e_{i j},
$$

where，$x_{i j}$ are measured without error，

$$
E\left(e_{j}\right)=0, E\left(e_{j}^{2}\right)=\sigma^{2}, \quad\left[\hat{\sigma}^{2}=\operatorname{SSE} \div(n-1)\right]
$$

and $E\left(e_{j} e_{k}\right)$ ，the covariances，$=0$ ．
Fitting this model by least squares will give us the best linear unbiased estimates of the unknown parameters for the sample observed over $j=1,2, \ldots, n_{i}$ firms of the $\mathbb{i}^{\text {th }}$ type。
b）Economic assumptions：
Assume

$$
\begin{aligned}
& T C=B x_{2} A C=B \text { and } F C=0 . \\
& t c_{i}=\mathcal{C}_{\mathfrak{i}}+b_{i} X_{j} \\
& \operatorname{atc}_{i}=b_{i}+G_{i} X^{=1} \text {; } \\
& \operatorname{aVC}_{\mathrm{i}}=\mathrm{b}_{\mathrm{i}}=\mathrm{mc} \\
& \text { tes } x_{2} c_{9} b_{2} \geq 0_{9} \text { and } \\
& i=1, \mathbb{R}_{8} \ldots \mathrm{~T}_{2} \text { the type of finm。 }
\end{aligned}
$$

C）Implications：
The curves are mot weful for this andysis for when $b_{i}=b_{j}<\mathbb{B}_{2}$ the following figure demonstrates that ato does not reach a minimum for finite outputs and this minimum equals $b_{i}<B_{i}$ ．When $b_{i}>B$ ，similar conclusions apply．

3．The Logarithmic Model
a）Statistical sssumptions：
The equation is

$$
\operatorname{Iog} \operatorname{avc}_{i j}=10 g \operatorname{cog}_{i}+b_{i} \log x_{i j}+\log e_{i j}
$$

b) Economic assumptions:

The equations for the longorum are

$$
T C=A x^{1+B}, A C=A x^{B}, \text { and } M C=(1+B) A x^{B}
$$

The shortmrum equations are

$$
\begin{aligned}
& t c_{i}=c_{i}+a_{i} x_{i}{ }^{1+b} b_{i,} \text { where } t c_{i j}, x_{i}, c_{i}, a_{i},>0 \text { and } b_{i}<0_{2} \\
& a t c_{i}=c_{i} x_{i}^{-1}+a_{i} x_{i}^{i b} i_{i} \\
& t C_{i}=c_{i}{ }^{3} \\
& t v c_{i}=a_{i} X_{i}{ }^{1+b_{i}}{ }_{i} \\
& \operatorname{avc}_{i}=a_{i} x_{i}{ }^{b_{i}} \text { and } \\
& m c_{i}=\left(1+b_{i}\right) a_{i} x_{i}^{b}{ }_{i}
\end{aligned}
$$

c) Implications:

For a fit of the wswal average cost observation; $b_{i}{ }^{2} B<0$. Two of the many possibilities will be examined.

$$
\text { For }-1<b_{i^{9}}<0, B<0 \text { and as } x>0 \text { mincresses: }
$$

$$
\begin{aligned}
& 0<A C=A x^{1+B}<\infty \\
& \infty>M C=(1+B) A x^{B}>0 \\
& \infty>\mathrm{AG}=\mathrm{Ax} \quad \mathrm{~B} \quad>0 \\
& c<t c_{i}=c_{i}+a_{i} x_{i}{ }^{1+b_{i}} \bar{\equiv}<\infty \\
& \infty>\operatorname{mo}_{\mathrm{i}}=\left(1+\mathrm{b}_{\mathrm{i}}\right) \mathrm{a}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \mathrm{~b}_{\mathrm{i}}>0 \\
& \infty \equiv a t c_{i}=c_{i} x^{-1}+a_{i} x_{i} b_{i} \equiv 0
\end{aligned}
$$

This would imply curves å follows:

Unless the A, B, coefficients are restricted with respect to the a_{i}, b_{i}, c_{i}, these curves can intersect. Even with such restrictions, the average curves reach a minimum of zero at infinite output. This model ${ }_{9}$ then, can only be used as a fitting model over limited outputs and not to determine maximum firm or industry efficiency.

For $b_{i}<-1,-1<B \geqslant 0$ and as x increases:

$$
\begin{aligned}
& 0<\mathbb{X}=A x^{1+B}<\infty \\
& \infty>M C=(1+B) A x^{B}>0
\end{aligned}
$$

$$
\begin{aligned}
& \infty>A C=A x^{B}>0 \\
& \infty \gg C_{i}=c_{i}+a_{i} x_{i} 1+b_{i}<c \\
& \infty>a c_{i}=c_{i} x_{i}^{-1}+a_{i} x_{i} b_{i} \gg 0 \\
& \infty>m c_{i}=\left(1+b_{i}\right) a_{i} x_{i} b_{i}>0
\end{aligned}
$$

This would imply curves as follows when $B=0$.

Once again, this model is mot applicable for a capacity study.
4. The Polynomial Model
a) Statistical assumptions:

The equation is

$$
\operatorname{ave}_{i j}=a_{i j}+b_{i} x_{i j}+d_{i} x_{i j}+e_{i j}
$$

b) Economic assumptions:

The relevant equations as before are for the firm:

$$
\begin{aligned}
& 2 y c_{i}=a_{i}+b_{i} x_{i}+d_{i} x_{i} e^{2}, \\
& \text { tuc }=a_{i} x_{i}+b_{i} x_{i}^{2}+d_{i} x_{i}{ }^{3}, \\
& t \in c=\mathbb{C}_{\mathbf{i}^{g}} \\
& t c_{i}=c_{i}+a_{i} x_{i}+b_{i} x_{i}^{2}+d_{i} x_{i}^{3} \text {, and } \\
& a \operatorname{coc}_{i}=a_{i}+c_{i} x_{i}^{-1}+b_{i} x_{i}+d_{i} x_{i}{ }^{2},
\end{aligned}
$$

where $t c_{i}, x_{i}, a_{i}, d_{i}>0_{2} b_{i} \stackrel{\sum 0}{<} 0$.
and for the industry:

$$
\begin{aligned}
& A C_{k}=2+B x_{k}+D x_{k}+E_{k} \\
& I C_{k}=A x_{k}+B x_{k}^{2}+D x_{k}^{3}
\end{aligned}
$$

where k are the observations described below.
©) Implications:

$$
\begin{aligned}
& \text { For } b_{i}, B<0, a_{i}, \mathbb{C}_{i}, d_{i}, A, G, D>0 \text {, as } x>0 \text { increases: } \\
& 0<T C=A x+B x^{2}+D x^{3}<\infty \\
& A<M C=A+2 B x+3 D x^{2}<\infty \\
& A<A C=A+B x+D x^{2}<\infty \\
& \infty \equiv a t c_{i}=c_{i} x_{i}^{-1}+a_{i}+b_{i} x_{i}+d_{i} x_{i}^{2}<\infty \\
& c_{i}<\cos _{i}=c_{i}+a_{i} x_{i}+b_{i} x_{i}^{2}+d_{i} x_{i}^{3}<\infty \\
& 2_{i L} \sum_{i} \sum_{i}=a_{i}=2 b_{i} x_{i}+3 d_{i} x_{i} \sum_{i}^{2}<\infty
\end{aligned}
$$

The curves illustreted in Figure Xav would apply. One added restriction would be thot $\mathbb{T} C$ and $A C$ are envelope curves of tc and ate ${ }_{i}$ This would mean that
$m C_{i}=a_{i}+2 b_{i} x_{i}+3 d_{i} x_{i}^{2}=A \& 2 B x+3 D x^{2}=M C$ for some $x_{j}>0$. But this restriction oniy applies to the fitting of $T C_{\text {, not }}$ no the short run firm curves. This model itself violates no implicatioms of firm theory and may be used for discovering maximum fificiency of the firms and industry. The only further trouble with the function is the possibiluty that minimum average costs be negative.

Maximum efficiency of the firmonate:

$$
\begin{aligned}
\operatorname{atc}_{i} & =2 d_{i} x+b_{i}=c_{i} x^{-2} \\
\text { at } 2 t c_{i}^{i} & =0_{2}\left(\operatorname{Ed}_{i} x+b_{i} x^{2}=c_{i}\right.
\end{aligned}
$$

Figure Xilu. The Polymomial Madel

This can be solved by itexation for x. It will be seen, by Descartes rule, that this cubic equation in x has one real positive root for $x \geq 0$.

Fitting the envelope curve involves difficulties beyond the range of this study when considered joincly with the relatively small importance of the results for industry efficiency. Instead an approximation will be finted by finding the equation for a curve drawn free-hand and envelope to the firm cost curves.

The model fit will be $A G=A+B x+D x^{2}+$ e and industry efficiency Would be at output x where $A C^{\circ}=0$, at $x=\frac{B}{2 D}$.
5. The Lowest Quintile Model

Finally, estimates of maximum efficiency will be made by taking, for each firm type, the lowest quintile of firms as distributed by average total costs and calculating the average of their unit costs and outputs. Whis method will allow examination of the power and labor used by the more efficient firms whereas the other models abstract from these factors. Whe other models will be used mainly to assess the variability of costs and the output flexibility of the differemt types of firms. Most important they will be used to compare the averaged results with results from mose theoretical model.

CHAPMER V

EMPIRICAL RESULTS OF POTENTIAL CAPACTTY MODELS

A. CAPACTTY RESULTS AT 200 DAYS OPERATTON

By increasing the firm 0 s operation to at least 200 days pex year, the samill industry's capacity would imerease by nearly twenty percent. ${ }^{1}$ This is an increase from the current $78,342,000$ board feet capacity to a 200 -day capacity of $96,216,750$ board feet. The increase is due primarily to increased operations of small mills. Many of the firms workimg less than half of the year are small with respect to capital investment and men employed. In the counties outside of the pine area, the industry capacity could be increased by forty pereent if the number of days operated by samills wexe increased to 200 or more.

B. ESTIMATED FTRM COST ETMCMIONS

The polynomial equation was fitted to the four types of fixms analyaed. In addition, the limear and logarithmic functions were fitted to all except Fixm Type \mathbb{I}.

1. Results

The results of fitting the different equation types to the different firm types are sumarised in Table XI. The yointereept, the regression coefficients, the tests of aignificance of the coefficients and the correlation coefficients are presented.

IThese do not include about twenty mills which did not have complete data for 1956.

TABLE XI

ESTMMAED COST EQUATIONS

Fixm Type	Equation Form ${ }^{\text {a }}$	2	b	d	t_{b}	${ }^{t}{ }_{d}$	R^{2}	$\begin{gathered} \text { Mindmum } \\ \mathrm{R}_{\mathrm{f}} \\ \hline \end{gathered}$
1. Headsam	Polynomial	89.621	-348.074	351.892	-6.298\%	4.567%	. 540 **	.112
2. Headsan	Lineax	5.342	3.270		1. 198		. 082	. 219
Trimmer	Logarithmic	1.828	-. 000145		-6.236\%		. 708%	. 219
	Polynomial	103.427	-44.7.763	504.712	-6.037\%	4.7015%	. $813^{* *}$. 329
3. Headsew	Lincer	6.936	2.767		3.250%		. 458 \%	-264
Edger	Logaxithmic	1.639	-. .000483		-4.143\%		. 551 等采	. 264
	Polynomial	93.964	-007.580	71.711	-3.909ters	3.462\%	. 596 \% 6	. 393
4. Headsaw Edger Trimmex	Linear	11.343	1.292		1.304		. 082	.187
	Logasithmic	1.487	-. 000261		-6.719\%		. 7048%	.187
	Polynomial	45.119	- 34.751	5.483	-3.5518%	2.756%	. 4768%	.283

${ }^{\text {a }}$ See Text.
*95 pexcent level of confidence, the nulf hypothesis is in all cases that the population parameter is zero.

99 percent level of confidense, the null hypothesis is in all cases that the population parameter is gero.

2. Comparisons

For the linear model, the b and R^{2} values are only significant in the case of Firm Type ITI. ${ }^{2}$ In Firm Type I, both the b and d values are significant at the one percent level and the R^{2} is significant at the one percent level for the polymomial fitted. In this case the regression accounts for fifty-four percent of the variation.

In Fixm Type II, the b value for the logarithmic and the b and d estimates for the polynomial equation are significant at the one percent level and the R^{2} is sigmificant at the one percent level for these two equation types. By the use of the polynomial equation a greater amount of variation is explained, 81 percent, by the regression than by either the linear or the logarithmic. None of the variation is statistically explained by the use of the limear function.

All of the b, d and R^{2} values in firm Type III are significant at the one percent level. The R^{2} of the polynomial i.s greater than either the linear or the logarithmic. Almost sixty percent is explained by the regression in the polymomial model. Fixm Iype III presented the greatest difficulty in obtaining reasonable results for fitting the equations. A possible reason for the poor fit may become more apparent later in this chapter.

Only the b values of the logaxithmic and polynomial equations are significant for Firm wype $\mathbb{T V}$. These b vaues axe significant at the one

2
The question of significance is only relevant if the east oklahoma population is thought of as sample of U.S. sawnils. otherwise, the fitting of equations is a puely mothematical process.
percent level. The d value for the polynomial is significant at the five percent level. The R^{2} for the logarithmic and polynomial equations are significant at the one percent level. The $R^{2}{ }^{2}$ s for the linear equation is not significant. For this firm type, the logarithmic regression explains seventy percent of the cost variation. As in Firm Type II, the linear equation for Firm Type IV has a very $\operatorname{low} \mathrm{R}^{2}$ and none of the variation is statistically accounted for by the regression.

A reasonably good fit of the polynomial equation was obtained for all foux firm types. Oniy in the case of Firm Type IV was the logaxithmic equation a better fitt than the polynomial. In acirly all of the firms a poor fit of the linear equation resulted. Only one significants R^{2} was obtained for any of the linear equations.
3. Economic and Statistical Conclusions
a) The linear model which was previously shown to be a "non-economic fit also provides poox statistical fit. This is true for all firm types except Type III.

The logarithmic equation provides a good statistical fit in all firm types but this equation gives a non-aconomic fit. Only in the case of Fixm Type IV is the R^{2} mumerically the largest.

The polynomal gives both a good economic and statistical fit. Although the logarithmic equation may give the better statistical fit, the economic fit of the equation must be given consideration. In all but one fixm types, the polynombll has the highest R^{2} value. It is vital for the economic fit that the model does well in all cases, so that the polynomial overall was the best model from both economic and statistical considerations.
b) The above results justify statistically the use of more sophisticated models than the limear, flthough only for economic theory reasons the use of the polynomial rather than the logarithmic.
C) The results also justify the data used and way it was modified in the sense that the eonomic model was not rejected by the data.
4. Results from the Lowest Quintile Model

In using the lowest guintile of the firms in each type the average output and the average of average cotal costs were abtained for each type. As the fixed equipment of the fixm increased the output increased and ayerage total cost decreased. Five other single examples of firm types averaged out at higher output but higher cost also. The figures for the industry minimum lomg-rum average cost comordinates were obtained as a wighted average of the firm astimates. The average output and average total cost of Fixm Type IV and the othex firms wexe used in obtaining a more realistic estimste of the optimum industry efficiency coondinate from a more efficient group of firms. The results are summarized in Table XIT.

MABLE XITI
LOWEST QUTNTILE MODET AVERAGE TOTAI COST AND AVERAGE OUTPRTM

Fixm Type	Numiber	Average Output	Average Total Cost Per MBd. Ft.
		(MMBd。ET)	(dollars)
II	11.	.4 .85	13.97
IT	4	. 506	11.10
TII	3	1.233	10.75
IVI	4	2.410	7.41
Other firms	5	3.236	11.67
Industry	27	1.350	11.79
Imdustry of others	9	2.869	9.78

G. ESTTMATES OF TNDUSTRY GOST FUNCTIONS

At first it was thought that am approximation to an envelope ourve could be fitted by using a restricted number of observations from the different firm types. The results from these attempts were unsatisfactory. The resulting industry cost function was nowhere neax an envelope curve.

Fitting a free hand curve brought to light the fact that although the firm cost curves went to a minimum at outputs similar to the average outputs of the lower quintile fixms the unit cost of these outputs as estimated from the functions were in two cases of four negative.

For these reasons, a new set of coat functions were estimated from a reduced number of observations. The reduction of observations from the original was made on the basis of eliminating the few extremely high cost and low output firms of each type. The results are sumarized in Table XIIT.

TABLE XIII

```
AVERAGE COST FUMGTIONS - ESTIMATES EROM RESTRICUEE OBSERVATIONS, POLZMOMCAI, MOEL, y in \$ atc/MBE, \(x\) in MMB
```


It will be seen from Table XIV that the statistical fit was not as good as in the unrestricted model. But the firm cost curves in three cases did conform to theoretical expectations. In the case of Firm Type II the cost function was highly inflexible and came to a negative minimum average total cost.

TABLE XIV

COMPARISON OF MINIMUM AVERAGE TORAL COST VALUES BY DIFFERENT METHODS OF ESTIMATHON

$\begin{aligned} & \text { Fixm } \\ & \text { Type } \end{aligned}$	First Quintile of Average Total Cost		Statistical Estimates			
			All Observations		Restricted Observations	
	min. y	x	min. y	x	min. y	x
	\$/MBF	MBF	\$/MBF	MBE	\$/MBF	MBF
I	13.97	445	3.86	495	11.87	683
II	11.10	506	4.37	4.44	-2.44	861
III	10.75	1233	- 56.26	14.48	2.56	1787
IV	7.41	2410	- 9.87	3171	0.90	3817
Industry						
AC	11. 79	1350	4.84	3627	5.55	6306

The envelope curve wes drawn tangent to the three other firm types as illustrated in Figure $X P$. Its output for a minimum average cost of $\$ 1.00$ was 3000 MBF . Its equation, mathematically fitted since its minimum was known was

$$
A C=25.0-1.9 x+2.7 x^{2}
$$

It will be seen from figure XV that Firms I, III and IV are in ascending order of output flexibility and in descending order of minimum firm unit cost. The curves, however, tend to over-estimate economies

 Resertacted observetions
possible in that the minimum costs are much lower than most observations. For these reasons it was decided to use the "First Quintile" estimates in assessing the firm capacity potential of the industry. In the case of industry efficiency, 3000 MBF seems a reasonable output but the unit costs involved will likely be closer to $\$ 10.00$ per MBF when compared to the actual data. These figures will be used for the industry capacity coordinates. Table XIV illustrates the comparison of results from these varied methods.

D. MAXIMUM EFFICIENCY FOR THE INDUSTRY

1. Potential Outputs at Maximum Firm Efficiency

A comparison of the existing and potential output of the industry is shown in Table XV. The existing conditions show that 112 firms are used in processing $56,700,000$ board feet of wood. At maximum efficiency the number of firms could be reduced to fifty-five. This is less than half of the number now required for the current output. The mumber of workers required would also be reduced by more than half.

The net growth in eastern Oklahoma as aited in a previous chapter is $115,000,000$ board feet. To attain this amount of output minus the one firm's output which is held constant, 79 firms would be required when operating at maximum efficiency. The number of workers for processing the $85,000,000$ board feet is only 73 percent of the existing number of men employed.

The maximum potential output for the existing firms working at maximum efficiency would be $128,248,000$ board feet. This figure excluedes the $30,000,000$ board feet of one firm. The estimated potential wood

MAXIMMM FIRM EFFICIENCY FOR PRESENT FIRM-TYPE DISTRIBUTION

Fixm Type	Existing at 200 Days			Present ${ }^{\text {a }}$			Net Growth Production ${ }^{a}$			Potential ${ }^{\text {a }}$		
	Output	Men	$\begin{aligned} & \text { No. } \\ & \text { Fixms } \end{aligned}$	Output	$\text { Men }^{\mathrm{b}}$	$\begin{aligned} & \text { No. } \\ & \text { Fims } \end{aligned}$	Output	Men ${ }^{\text {b }}$	$\begin{aligned} & \text { No. } \\ & \text { Firms } \end{aligned}$	Output	Men ${ }^{\text {b }}$	$\begin{aligned} & \text { No. } \\ & \text { Firms } \end{aligned}$
	(MBF)			(MBF)			(MBF)			(MBF)		
I	12,929	137	54	12,929	58	29	16,711	76	38	24,030	108	54
IT	4,875	45	18	4,875	30	10	6,333	39	13	9,108	54	18
III	6,703	54	15	6,703	25	5	12,860	50	10	18,500	75	15
IV	20s373	113	21.	20,373	54	9	35,190	90	15	50,610	126	21
other	11.8200	44	4	11.820	22	8	13,906	33	3	20,000	44	4
Total	56,700	393	112	56,700	189	55	85,000	288	79	122,248	407	112
Girms Held Constant	30:000	300	1	30,000	300	1	30,000	300	1	30,000	300	1
Total	86.700^{6}	693	113	86,700	489	56	115,000	588	80	152,248	707	113

${ }^{\text {a capacity of firms operating at efficiency of lower } 20 \text { percent of firms in each type. }}$
bumber of men equals number of firms times median number of workers.
Excludes seven firms because of poor data.
production from woodlots in 1975 is $150,000,000$ board feet. By subtracting one large firm ${ }^{1}$ s output, it can be seen that the current number of mills, operating at maximus efficiency, can process the 1975 potential production.

To obtain the maximum efficiency by firm type, the average output, average total cost, total costs, power type, horsepower, and work force are given in Table XVI. In the data are shown that as output increases by firm type, the total cost increases but average total cost decreases. Also the average horsepower except for Type II and IV, and median number of workers increase as output increases. The data in this table were computed by using the lower 20 percent of the firms in each type, i.e., the lowest quintile model.
2. Potential Value of Output at Maximum firm Efficiency

The estimated potential value for the existing firms at maximum efficiency in the firm types is given im Table XVII. For the same firm types at 200 days capacity the current total outputis $44,880,000$ board feet of which $28,723,000$ board feet (64 percent) is pine and $16,157,000$ board feet (36 percent) is hardwood. By using the average costs per thousand board feet of pine ($\$ 18.65$) and of hardwood ($\$ 8.63$) the total value is 675,119 dollars. Of the present total value, the farm value of wood is 114,770 dollaxs (17 perceat).

The potential total output at maximum fim efficiency is $102,248,000$ board feet with $26,607,000$ board feet (26 percent) of the total amount attributed to farm woodlots. The potential total value is $1,538,090$ dollars with 261,475 dollars going to farm woodlot owners. For the same firms at maximum efficiency the current output would more than

TABLE XVI
FIRM COST DATA AT MAXIMUM EFFTCIENCY WITH HORSEPOWER AND WORK FORCE

TABLE XVII
ESTIMATED VOLUME AND VALUE AT MAXIMUM FIRM EFFICIENCY

Potential					Value at Stump			
Type	Total Volume ${ }^{a}$	Pine	Hwd.	Farm Volume ${ }^{\text {b }}$	Hwd.	Pine	Total	Farm ${ }^{\text {b }}$
	(MMBF)	(MMBF)	(MMBF)	(MMBF)	(Dollars)	(Dollars)	(Dollars)	(Dollars)
1	24.030	15.379	8.651		74,658	286,818	361,476	
II	9.108	5.829	3.279		28,298	108,711	137,009	
III	18.500	11.840	6.660		57,476	220,816	278,292	
IV	50.610	32. 390	18.820		157,239	604,074	761,313	
Total								
	102.248	65.438	36.810.	26.607	317,671	1,220,419	1,538,090	261,475

$a_{\text {Total }}$ output is computed by the average output at maximum firm type efficiency (Average output times number of firms in type).

Computed by use of existing volume and value, farm to total ratios.
double as would the value of the wood. This indicates that with firm efficiency and adequate wood resources available the sawmill industry would be even more important than at the present.
3. Potential Output and Values at Maximum Industry Efficiency Using the coordinates of 3000 M board feet with average total cost at 10 dollars per M board feet, the industry capacity would depend on the number of firms. With 100 firms, the output would be 300 MM board feet giving a total value of $4,512,840$ dollars. Of the total volume and value, the farm output would be 78 MM board feet with a value of 767,183 dollars. This indicates the magnitude of the sawmill industry operation when at maximum industry efficiency. The capital costs of attaining such efficiency are perhaps not as large as might be thought. Firm Type IV can be a very efficient finm as the results show producing around 2500 MBF per year at an average total cost of $\$ 7.50$ per MBE . Yet the fixed equipment difference between this type and the others is relatively small as the yearly depreciation fixed costs show. The yearly fixed costs are $\$ 227.61$ versus $\$ 124.20, \$ 131.20$, and $\$ 142.20$ for $T y p e s$, II and III. So at the worst the yearly fixed costs do not double between Type I and Type II. However, the total expenditure to buy the extra equipment is quite large and capital may well be rationed. Also the figures overestimate the actual market values of the equipment of the smaller firms who often operate with very much depreciated equipment.

E. VARIABILITY RESUITS

There exists a large amount of variability as is illustrated by the estimates of variation in Table XVIII. The estimated standard deviation was computed for each firm type. Type III has the largest standard

TABLE XVIII
FIRM VARIABILITY USING AVERAGE VARIABLE COSTS

Type	y	$\hat{\sigma y}{ }^{2}$	$\widehat{\theta} \mathrm{y}$	$\frac{\hat{\sigma}^{y} y}{\hat{S}_{\mathrm{s}}}$	R	Range of Y	$\overline{\mathrm{Y}}+1.96 \hat{\sigma} \mathrm{y} \quad \mathrm{P}$	Percent above Y
I	33.57	689.051	26.250	. 782	. $734641^{* *}$	$9.64-183.15$	$=27.88<\bar{Y}<85.20$	37.04
IT	34.88	711.165	26.668	. 765	. $901644 * *$	10.08-104.66	- $17.39<\bar{Y}<87.15$	33.33
III	37.31	$1,375.419$	37.087	. 994	. $771714 \% \%$	$5.61-133.25$	$-35.38<\bar{\Psi}<110.00$	0033.33
IV	21.83	333.707	18.268	. 837	. 689698 **	$5.57-90.06$	$-13.98<\bar{Y}<57.64$	28.57

deviation while Type IV has the smallest. The larger the standard deviation, the wider the scatter about the mean. This is shown by using $\bar{Y} \pm 1.96 \hat{\sigma} y$ where for normal distribution one would expect 95 percent of the distribution to be within this range. Again, Type III has the greatest amount of dispersion, $-35.38<\bar{y}<110.00$. Another measure of dispersion used is the coefficient of variation, $\frac{\hat{\sigma} y}{\bar{Y}}$. This gives the relative amount of variability in comparing the firm types. Relative to the other firm types, Firm Type III has the greatest amount of varia= bility with Type I and II having about equal variability.

The range of Y is large for all firm types. This gives another demonstration of the large amount of variability. The percent above the mean column also indicates the skewness in the distribution as does the difference between the two sigma range and the actual range. All of the firms are skewn below the mean with Firm Type IV showing the largest percentage of firms below the mean.

The ideal analysis in variability would be to compare the variability within each type of firm between each types of firms after allowing for variations in output. But this is impossible since we have to make the assumption that the regression form was the best fit in all cases which is obviously not necessarily valid. The same model for each type is not necessarily the best model. Nevertheless, output variability does remove a somewhat similar amount of variability from average total costs in all cases, so that a comparison between the variabilities of each type may be justified.

The F-test was used in Table XLX to test $H_{0}: \hat{\sigma}_{i}{ }^{2}=\hat{\sigma}_{j}{ }^{2}$. The hypothesis that $\hat{\sigma} y_{1}{ }^{2}=\hat{\sigma} y_{4}{ }^{2}$ was rejected at the 10 percent level of
significance and the hypotheses that $\hat{\theta} y_{3}{ }^{2}=\hat{\sigma} y_{4}{ }^{2}$ was rejected at the 1 percent level of significance.

TABLE XIX

$$
\text { F-TEST OF VARIANCES, } H_{0}: \hat{\sigma}_{i}^{2}=\hat{\sigma}_{j}^{2}
$$

	y_{2}	y_{3}	y_{4}
${ }^{\mathrm{y}} 1$. 969	. 501	2.065^{*}
y_{8}		. 517	2.131
y_{3}			$4.122^{* 3 r^{2}+}$

The conclusions to be dram are somewhat subjectively based but may be summarized as follows. Type $\mathbb{I V}$ has much less variability in average costs than any other type of firm. It is also more flexible with respect to output and is capable of handling large outputs in several instances of individual firms. In fact four firms in this type averaged about 2.400 MBF of output but only $\$ 7.50$ of average total costs. When the smaller variability in average costs and the large variability in output is added to the similar explanation of cost variability by output variability (48 percent) the conclusion seems reasomable that Firm Type IV is the most economically efficient of the firm types investigated. The fixed costs of this fixm are, of course, almost double those of the other types.

CHAPTER VI

SUMMARY AND CONCLUSIONS

Fifteen counties of eastern oklahoma which are in the low-income area were included in this study. The major objective of this thesis was to describe the current and estimate the potential capabilities of the process. ing industries for forest products, especially as they might restrict the possibility of improving incomes to the lowmincome farmers of eastern Oklahoma by greater use of their forest resources.

In this study, farm income, forest resources and forest markets were the three major factors examined. Five objectives were presented and analyzed each of which directly or indirectly influences farm forest resource use and farm income: (1) to provide a detailed descxiption of the forest industry, (2) to establish a directory of forest industries to improve market knowledge of the buyers and sellers of wood, (3) to analyze sawill capacity and associated costs, (4) to detemine the varaam bility of sawmill costs, and (5) to provide base for further research in the general area of forest product processing.

Conclusions:
(1) The size of the forest industry of eastern Oklahoma as measinred by numbers of firms (133 sawni11s) and their output (78 MMBF) is larger than previous estimates which were available.
(2) The market for forest products should be made more perfect with respect to buyer and seller knowledge by MThe Forest Market Directory ${ }^{\text {m }}$

Oklahoma State University Extension Bulletin, 1958.
(3) Existing sawills could process 85 percent of the eastern Oklahoma net-growth potential (115 MMBF) merely by increasing their days of operation to at least 200 days per year.
(4) With the present capital equipment of the various types of firms, by operating near economic capacity with respect to the variable inputs, labor and power, the sawmills could process 102 percent of the 1975 estimated output needs of the industry (120 MMBF for eastern Oklahoma).
(5) With this same economic capacity, the present output could be handled by about one ohalf of the existing fixms but difficulties of location and transport costs may well interfere with this result.
(6) One hundred sawills, operated at somewhere near the industry optimum, would be able to process 300 MMBF of logs at less than ten dollars per MBF of total unit costs.
(7) Thus, by all measures used, the sawmill industry is working at far less than capacity. A more useful way of putting this conclusion is to say that the industry, even as now consti也uted, but especially if operation were more efficient, could handle considerably greater volume of timber from eastern oklahoma. Other things being equal, the opportumity for increased Income to lowincome farmers in this area is not, thereforeg restricted by the structure of the forest processing market.
(8) A large amount of cost variability exists in the sawill. industry that is not entirely explained by differences in output of varioum firm types.
(9) The description of the industry with its high variability in sammill costs and the pilot investigation of the efficiency of the
various sawmill firm types will aid further investigation to improve the industry.

Recommendations:

(1) Information for the buyers and sellers should be kept upotom date through periodic revisions of The Forest Market Directory.
(2) Research needs which were unearthed by this study could be 1isted as follows:
a) Economic efficiency studies of the engineering and cost aspects of representative sawills, and secondary wood users such as charcoal makers.
b) The economics of location of forest product processing industries with respect to the situation and accessibility of timber stands and lumber markets.
c) Demand relations for forest products in Oklahoma and the region.
d) Price and pricing practices of farmowned timber.
e) New wood use potential especially for inferior grade timber.
(3) An extension of the programs to increase farm wood growth and production should be initiated to make better use of the existimg capacity of the processing industry for forest products in order to aid farm income improvement in the low income area of eastern Oklahoma.

Back, W. B., "Economic Disequilibrium and the Low-Income Problem", (unpub. paper presented at Southwest Social Science Meeting, Dallas, April, 1957).

Baker, Gregory and Frank K. Beyer, Marketing Forest Products from Small Woodland Areas in Maine, Agricultural Experiment Station Bulletin No. 554 (University of Maine, December, 1956).

Bishop, C. E., "Public Policy and the Low-Income Problem", Farm Policy Forum, Vol. 8, No. 4 (Ames; Iowa State College Press, Spring, 1956) pp. 30-36.

Burks, George F., Timber Resource Review, Chapter IX, United States Department of Agriculture, Forest Service (Washington, D. C., September, 1955).

Carrol, W. M., C. E. Trotter and N. A. Norton, Marketing Forest Products in Pennsylvania, Pennsylvania Agricultural Experiment Station Progress Report No. 131 (Pennsylvania State College, January, 1955).

Christopher, Joe F。and Martha E. Nelson, "1956 Pulpwood Production in the South", Forest Survey Release No. 80, United States Department of Agriculture, Southern Forest Experiment Station, (New Orleans, Louisiana, June, 1957).

Development of Agriculture's Human Resources, United States Department of Agriculture (Washington, D.C., April, 1955)。

Eldredge, I. F., "Forest Resources of Southeast Oklahoma", Forest Survey Release No. 37, United States Department of Agriculture, Southern Forest Experiment Station, (New Or Ieans, Louisiana, October 18, 1938).

Galbraith, J. K., "Inequality in Agriculture - Problem and Program", (unpub. lecture, Ontario College, Guelph, Canada, November 16, 1956).

Hendrix, W. E., "The Problem of LowoIncome Farms", In Aly, B., and Rogge, E. A., ed. Americam Farm Policy, Vol. 1, (National University Extension Association Discussion and Debate Manual No. 30, Columbia, Mo., 1956).

Judson, George M. and George L. Switzer, Timber Products Marketing in Northeast Mississippi, Mississippi Agricultural Experiment Station Bulletin No. 494 (Mississippi State College, October, 1952).

Linn, Ed. R., A Forest Industries Survey of Oklahoma, Experiment Station Bulletin No. B $\quad 325$, Oklahoma Agricultural Experiment Station (Stillwater, Oklahoma, December, 1948).

Nicholls, W. H., "The South's LowoIncome Problem", Farm Policy Forum, Vol. 8, No. 4 (Ames: Iowa State College Press, Spring, 1956), pp. 13-19.

Nicholls, W. H., Unpub. Report of the Subcommittee on Low-Income Rural Areas, S.S.R.C. Committee on Agricultural Economics.

Northeastern Regional Techmical Committee, Marketing Forest Products from Small Woodland Areas im the Northeast, Northeast Regional Publication No. 25 (Vermont Agricultural Experiment Station Bulletin No. 595; Burlington, Vermont, June, 1956).

Oklahoma Forest Facts, 1956 edition, Published by American Forest Products Industries, Inc., (Washington, D. C.).

Rich, J. Harry and George H. Sisterhenm, Marketing Forest Products in Massachusetts, Agricultural Experiment Station Bulletin No. 492 (University of Massachusetts, 1955).

Schultz, Theodore W., The Economic Organization of Agriculture, (New York: McGraw-Hill Book Company, Inc., 1953).

Smith, Richard C.g Marketing Farm Woodlot Products, Missouri Agricultural Experiment Station Bulletin No. 623 (University of Missouri, May, 1954).

Swain, Lewis C. and Oliver P. Wallace, Marketing Forest Products in New Hampshixe, Agricultural Experiment Station Bulletin No. 420 (University of New Hampshire, Jume, 1955).

United States Department of Agriculture, Basic Forest Statistics for the United States, Forest Service (Washington, D. C.; September, 1950).

United States Department of Commerce, Bureau of Census, Characteristics of the Population 1929-1949 (Washington, D. C., 1929-1949).
. United States cemsus of Agriculture, 1929-1954 (Washington, D. C. 1929.1954).
\qquad , United States Census of Manufactures 1929-1954 (Washington, D. C., 1929-1954).
, United States Census of Retail Trade 1929-1954 (Washington, D.C., 1929~1954).
, United States Census of Wholesale Trade 1929-1954 (Washington, D. C., 1929-1954).

United States Department of Comerce, Survey of Current Business (Washington, D. C., September, 1955).

Wheeler, Philip A., "Forests of East Oklahoma", Forest Survey Release No. 79, United States Department of Agriculture, Southern Forest Experiment Station (New Oxleans, Louisiana, June, 1957).

APPENDIX TABLE I

dISTRIBUTION OF WORK FORCE FOR EASTERN OKLAHOMA, BY COUNTY AND SOURCE, $1929{ }^{\text {a }}$

County	Agricultural Work Force ${ }^{\text {b }}$						Forest Work Force	TotalEstimatedForestWorkForce
	Total Work Force	Total Work Force	Agricultural Work Force	Percent of Total	Forest Work Force	Percent of Total		
Adair	4,566	2,865	2,625	91.63	240	8.37	106	346
Atoka	4,659	2,997	2,956	98.62	41	1.38	250	291
Cherokee	5,452	3,816	3,590	94.09	226	5.91	86	312
Choctaw	8,218	5,116	5,069	99.09	47	. 91	105	152
Coal	3,606	2,294	2,255	98.29	39	1.71	8	47
Delaware	4,688	3,580	3,385	94.54	195	5.46	124	319
Haskell	4,559	3,322	3,308	99.57	14	. 43	42	56
Latimer	3,464	1,787	1,763	98.64	24	1.36	144	168
Le Flore	13,035	7,149	7,071	98.91	78	1.09	721	799
McCurtain	11,374	6,939	6,783	97.75	156	2.85	1,016	1,172
McIntosh	7,522	5,564	5,541	99.58	23	. 42	24	47
Muskogee	23,490	7,519	7,504	99.80	15	. 20	76	91
Pittsburg	18,649	5,862	5,797	98.89	65	1.11	241	306
Pushmataha	4,757	2,800	2,685	95.91	115	4.09	511	626
Sequoyah	6,161	4,546	4,434	97.54	112.	2.46	130	242
Totals	124,200	66,156	64,766		1,390		3,584	4,974

Percent of
Total Work Force
52.15
${ }^{\text {a }}$ Source: United States Department of Commerce, Bureau of Census, Characteristics of the Population, 1929, (Washington, D.C. 1929).
bork Force is defined as all civilians 10 years old and over who were at work, or with job but not at work.

APPENDIX TABLE II

DISTRIBUTION OF WORK FORCE FOR EASTERN OKLAHOMA, BY COUNTY AND SOURCE, $1939{ }^{2}$

${ }^{\text {a }}$ Source: United States Department of Commerce, Bureau of Census, Characteristics of the Population, 1939 (Washington, D. C., 1939).

Work Force is defined as all civilians 14 years old and over who were at work, or with job but not at work.

APPENDIX TABLE III
DISTRIBUTION OF WORK FORCE FOR EASTERN ORIAHOMA BY COUNTY AND SOURCE, $1949^{\text {a }}$

Percent of
Total Work Force
35.17
4.62
${ }^{\text {a }}$ Source: United States Department of Commerce, Bureau of Census, Characteristics of the Population, 1949, (Washington, D. C., 1949).

Work Force is defined as all civilians 14 years old and over who were at work, or with job but not at work.

FARM FOREST AREA BY SPECIES AND COUNTY, 1956

County	Thousand of Acres		
	Hardwood	Pine	Total
Adair	115.2	10.0	125.2
Atoka	100.3	66.8	167.1
Cherokee	132.4	11.5	143.9
Choctaw	86.5	15.3	101.8
Coal	81.2	4.3	85.5
Delaware	152.4	13.3	165.7
Haskell	58.9	5.1	64.0
Latimer	8.0	65.1	73.1
Le Filoxe	19.2	155.8	175.0
McCurtain	1.2	9.8	11.0
McIntosh	12.2	3.1	15.3
Mayes	11.9	3.0	14.9
Muskogee	26.3	6.6	32.9
0ttawa	23.8	6.0	29.8
Pittsburg	186.1	16.2	202. 3
Pushmataha	15.1	122.5	137.6
Sequoyah	96.3	8.4	104.7
TOTAL	$1,127.0$	522.8	1,649.8

This table was obtained by the use of unpublished data from the Oklahoma Division of Forestry. The total acres of farm forest acres in each county was multiplied by the estimated percemt of the total acres in pine and estimated percent of the total acres in hardwood. This gave estimates of the acres of pine and hardwook by counties.

APPENDIX TABLE V

CALCULATION OF FARM VERSUS NON $-F A R M ~ O U T P P U T ~ O F ~ P I N E ~ A N D ~ H A R D W O O D ~$ OF SAWLOGS

A. Comparison of Survey Results

$1955-56$

Forest Service Survey ${ }^{1}$
Acres Bd.Ft. Bd.Ft./Acre

Pine	$1,578,700$	$60,390,000$	38.25
Hardwood	$4,053,300$	$19,510,000$	4.81

1956
Forest Markets Survey ${ }^{2}$

Pine	$1,574,100$	$57,132,000$	36.30
Hardwood	$3,821,700$	$21,733,000$	5.69

1 Forest of East Oklahoma, 1955-56, Forest Survey Release 79, Forests Services, U.S.D.A., June, 1957. Includes seventeen counties in eastern Oklahoma.
${ }^{2}$ Includes fifteen of the seventeen coumties included in the Forest Service Survey.
B. Calculation of Farm Versus NomoFarm Breakdown of Sawlog Output

1. Farm-Owned Production

Pine 5,376
in Fifteen Counties 1956 (MBF) $\begin{aligned} \text { Hardwood } & \frac{15,893}{21,269}\end{aligned}$

Date were obtained from 1956 Forest Survey by this station. Timber bought by sawmills from farmers is the only volume indicated.
$\begin{array}{clr}\text { 2. Total Acres Commercial } & \text { Pine } & 1,574,100 \\ \text { Forest Land in Fifteea } & \text { Hardwood } & \frac{3,821,700}{5,395,800}\end{array}$
Data were obtained from Table 6, page 22 of Forest Survey Release 79. Mayes and Ottawa were taken out of the seventeencounty total by using the proportions of growing stock of pine and hardwood in Table 15 of Release 79 and applying to the commercial forest area in $B 4$.
3. Farm Acres of Commercial and Non-Commercial Forest Land

Pine Hardwood

Total

522,800
$\frac{1,127,000}{1,649,800}$

Data obtained from the Oklahoma Division of Forestry (unpub.) information for counties in eastern Oklahoma. The farm forest acres and the estimated percent hardwood and percent pine were obtained for each county from this source. See Table of Farm Forest Area by Species for Seventeen Counties of Eastern Oklahoma.
4. Farm Acres of Commercial and NonCommercial Forest Land in Fifteen Counties

Pine	513,800
Hardwood	$1,091,300$
	$1,605,100$

The data for Mayes and Ottawa Counties were subtracted from the information of the seventeen counties. See Farm Forest Area Table for complete county data.
5. Farm Acres of Commercial Forest Land in Fifteen Counties

Pine	509,504
Hardwood	$1,082,696$
Total	$1,592,200$

This table was calculated by subtracting from the acres of farm commercial forest land (1636.9 acres) the amount of farm forest land in Mayes and ottawa counties (44.7 acres). This gave the total farm-owned commercial forest land in the fifteen counties. To obtain the area of commercial forest land by species, the proportions of pine (32 percent) and hardwood (68 percent) were multiplied by the total area (1,592,200 acres).
6. Non-Farm-Owned Production (MBF)

Pine
in Fifteen Counties, 1956 Hardwood

Total

$$
\begin{array}{r}
51,756 \\
5,840 \\
\hline 57,596
\end{array}
$$

Source of data is from 1956 Forest Survey at this station. Includes only volume of non-farm timber bought by sawnills.
7. Non-Farm Acres of Commercial Forest Land in Fifteen Counties

Pine
Hardwood
Total
1,064,596
$\frac{2,739,004}{3,803,600}$

Data obtained by subtracting B5 from B2.
8. Total Acres Comercial Forest Farm 1,592,200 $\begin{array}{ll}\text { Land in Fifteen Counties Classified } \\ \text { by Farm and Non-Farm } & \text { Total } \\ & \frac{3,803,600}{5,395,800}\end{array}$ Data obtained from the totals in B5 and B7.

Appendix Table V (continued)
9. Sawmill Output of Farm-Owned

Pine $\quad 10.55 \mathrm{bd} . \mathrm{ft} / \mathrm{acre}$ Comercial Forest Per Acre, Hardwood 14.68 bd.ft/acre 1956

Data obtained by Farm Pine Board Feet (B1) $\frac{\text { Farm Pine Land Acres (B5) }}{\text { (BC.Ft./acre of Pine }}$ $\frac{\text { Farm Hwd. Beard Feet (B1) }}{\text { Farm Hwd. Land Acres (B5) }}=$ Bd.Ft. /acre of Hwd.
10. Sawmill Output of Non-Farm-Owned Pine $58.62 \mathrm{bd} . f t / a c r e$ Commercial Forest Per Acre, Hardwood 2.13 bd.ft/acre 1956

Data obtained by:
$\frac{\text { Non-farm Pine Board Feet }(B 6)}{\text { Non-farm Pine Land Acres }(B 7)}=$ Bd.Ft./acre of Pine
$\frac{\text { Non-Farm Hwd. Board Feet }(B 6)}{\text { Non-Farm Hwd. Land Acres }(B 7)}=$ Bd.Ft./acre of Hwd.

APPENDIX A

Schedules Used in Obtaining the Primary Data

1957 FOREST MARKETS SURVEY: $A-(M T L L S)$

(Firm) (Manager)
(Location)

1. (check one) Sawmill \qquad Planing Mill \qquad Saw and Planing Mill \qquad
2. (check one) Is your location permanent \qquad temporary \qquad (7)
3. Products: (check all applicable and circle most important) Ties \qquad , Bridging \qquad , Construction Lumber \qquad , Furniture Stock \qquad Crating \qquad , Other \qquad (8)
(9) (10)
4. (enter year) What date was this business established? \qquad
5. How many working days were you closed in 1956 ? \qquad days.
6. How many workers do you employ? Usual \qquad Hzgh $(\overline{17,18)}$ Low $(19,20)$
7. What was your total BOARD SCALE (mill tally) volume in 1956 ? \qquad Board feet

$$
(21-23)
$$

8. What percent of the logs you sawed was bought from resident farm owners? percent.
$(24,25)$
9. What percent of your total 1956 volume was pine?
$\overline{(26,27)}$
percent.
10. What was the average (small end) diameter of the logs you sawed in 1956: Pine $\overline{(28,29)}$ in., hardwood ${ }_{(30,31)}$ in.

Appendix A (continued)

11. For timber you bought in 1956 at the: Stump Roadside Mill
a. What proportion did you buy at each location?

$$
\frac{9}{(32,33)} \prod^{9} \frac{\%}{(34,35)}
$$

b. What average price did you pay?
(\$ per thousand bd. ft. \log scale) $\$ \overline{(36 \times 38)} \quad \$ \overline{(39-41)} \quad \$ \overline{(42-44)}$
c. Did these prices vary much in 1956?
(Yes or No)
$\overline{(45)} \overline{(46)}$
12. What proportion of the timber you bought in 1956 was hauled to the mill by: Self $\frac{(48,49)}{}$ percent; Farmer $\overline{(50,51)}$ percent; Other \qquad percent.
13. What distance is the usual haul? Average $\overline{(52,53)}^{\mathrm{mi} .,}$ longest $\overline{(54-56)} \mathrm{mi} .$, s shortest $\overline{(57,58)}^{\mathrm{mi} .}$
14. How many power units do you opexate? Electric \qquad Diesel
(59) (60) Gas (61)
15. What is the total horsepower from all power units? \qquad
16. How many Head Saws \qquad Edgers_(67) Trimmers \qquad
17. How much wood do you normally keep on hand in logs \qquad Bd. $f t_{0}$, (Doyle Rule) in lumber \qquad Bd. ft. (mill tally).
18. What would be your first estimate of the market value of your equipment? \$ (73-77)

Appendix A (continued)

1957 FOREST MARKETS SURVEY:
B: (PULP, POST, POLE, PROP, PLLING, AND TIE)
(Firm)
(Manager)
(Location)

1. Products: (check all applicable and circle most important): Pulp \qquad Post \qquad Prop \qquad Pole__ Piling \qquad Ties \qquad Other \qquad $\overline{(6)} \overline{(7)} \overline{(10)}$
2. (enter year) What date was this business established? (11, 12)
3. How many working days were you closed in 1956 ? \qquad days
4. How many workers do you employ? Usual \qquad
5. What percent of the total amount of wood bought in 1956 did you buy from resident farmer owners? \qquad percent
6. What percent of the total wood bought was pine? \qquad percent

Appendix A (continued)
7. What was your total 1956 volume (if information cannot be obtained in units given, please specify the unit of measure used)?

Product	$\begin{aligned} & 1956 \\ & \text { Volume } \\ & \hline \end{aligned}$	Unit of Volume	1956 Yard Price Approximate Average*	
Pu1p $(25-27)$		units ($4^{8} \times 5^{\circ} \times 8^{\text {d }}$)	$(49,50)$	per unit
Poles (28-30)				
Classed		1ineal feet and/ox		per pole
$(31-33)$		Number	$(51,52)$	
Utility		lineal feet and/or		per pole
$(34-36)$		Number	$(53,54)$	
Posts (37-39)				
(40-42)		Number	$(55,56)$	per post
Peeled $(43-45)$		Number	$(57-58)$	per post
Ties (46-48)		Number	$(59-60)$	per tie

* We are looking for the total dollar payments for each wood product. When available this could be entered instead of this unrealistic "average price". Price lists for the different classes and sizes are already available.

8. Did the price range much in 1956 for these products? (check those varying) Pulp \qquad Poles \qquad Posts \qquad Piling \qquad Ties (65)
9. What was your average 1956 inventory in: $P u 1 p \underset{(66)}{ }$ (units), Poles $\frac{}{(67)}$ (number), Posts $\frac{\text { (number), Ties }}{(68)}$ (number), Piling $\frac{}{(70)}$ (number).

Appendix A (continued)
10. What proportion of the wood you bought in 1956 was hauled to your yard by: Self percent; Farmer $\overline{(73,74)}$ percent; Other \qquad percent.
11. What distance is the usual haul: Average $\overline{(75,76)}^{\mathrm{mi} ., \text { Long }} \overline{(77,78)}^{\mathrm{mi} .,}$ Short \qquad mi. $\overline{(78,80)}$

1957 FOREST MARKETS SURVEY:
C: MISCELLANEOUS OUTLETS

1. Products: (check all applicable and circle most important): Wood Preserving \qquad Handle Bolt \qquad Charcoal \qquad Furniture \qquad Crating \qquad Other (specify) \qquad

$$
\overline{(6)} \overline{(7)} \overline{(8)}
$$

$$
\overline{(9)} \overline{(10)}
$$

2. (enter year) What date was this business established? \qquad
3. (enter days) If you do not operate year round, how many working days were you closed in 1956?

$$
(13,14)
$$

4. (enter number) How many workers do you employ? Usual $\frac{\text { (15,16) }}{\text { High }} \overline{(17,18)}$

Low
$\overline{(19,20)}$

Apperdix A (continued)

5. (check one) What unit of wood measure do you use primarily in purchasing your wood? Cord \qquad Unit (specify cu.ft.) \qquad Cubic feet \qquad
Board feet \qquad Number (specify dimensions) \qquad Other (specify)
6. (enter number using units of measure checked above) 1956 total amount of wood used \qquad
7. What was the average 1956 price you paid per unit as above for this wood at the mill? (enter namber) \$ \qquad
8. (enter yes or no) Did this price vary much in 1956 ?

$$
(32)
$$

9. What was your average wood inventory in units as above? \qquad
10. What percent of all wood bought did you buy direct from resident farmex owners? \qquad percent.
$(38,39)$
11. What percent of all wood bought was pine? \qquad percent. $(40,41)$
12. What percent of the wood you bought in 1956 was hauled to your yard by: Own transport $\underset{(42,43)}{ }$ percent; Farmer $\overline{(44,45)}$ percent; Other_ percent.
13. What distance are these hauls? Average $\frac{\mathrm{mi}_{(46,47)}, \text { Longest }}{(48 \times 50)}$ mi. Shortest $\overline{(50,51)} \mathrm{mi}$.

APPENDIX B
DETAILED DATA ON FIRM COSTS

TABLE 1

FIRM TYPE I - - ONE HEADSAW

Total Costs	Total Fixed Costs	Total Variable Costs	Output MM Bd. Ft.	Average Cost Per M Bd. Ft.	Average Variable Cost per
					M Bd. Ft.

Table 1 (Continued)

Total Costs	Total Fixed Costs	Total Variable Costs	Output in MM Bd. Ft.	Average Cost Per MBd. Ft.	Average Variable Cost Per MBd. Ft 。
(dollars)	(dollars)	(dollars)	(per 200 days)	(dollars)	(dollars)
5135.70	124.20	5011. 50	. 282	18.21	17.77
4647.19	124.20	4522.99	. 089	52.22	50.82
5506.04	124.20	5381.84	. 080	68.82	67.27
5595.54	124.20	5471.34	. 167	33.51	32.76
7375.52	124.20	7851.32	. 300	24.58	24.17
6508.07	124.20	6383.87	. 400	16.27	15.96
6036.79	124.20	5912.59	. 185	32.63	31.96
6175.52	124.20	6051.32	. 333	18. 54	18.17
4691.96	124.20	4567.76	. 261	17.98	17.50
5135.70	124.80	5011.50	. 375	13.70	13.36
4832.17	124.20	4707.97	.208	23.23	22.63
5489.36	124.20	5365.16	. 300	18.30	17.88
4647.26	124.20	4523.06	. 200	23.24	22.62
10037.85	124.20	9913.65	. 375	26.76	26.44
6795.54	124.20	6671.34	. 183	37.13	36.46
5047.14	124.20	4922.94	. 200	25.24	24.61
6901.71	124.20	6777.51	. 260	26.54	26.07
6706.04	124.20	6581.84	. 667	10. 05	9.87

TABLE 2
FIRM TYPE II \cdots ONE HEAD SAW, ONE TRIMMER

Total Costs	Total Fixed Costs	Total Variable Costs	Output in MM Bd. Ft.	Average Cost Per M Bd. Ft.	Average Variable Cost Per
(dollars)	(dollars)	(dollars)	(per 200 days)	(dollars)	(dollars)

TABLE 3
FIRM TYPE III - ONE HEAD SAW, ONE EDGER

Total Costs	Total Fixed Costs	Total Variable Costs	Output in MM Bd. Ft.	Average Cost Per M Bd. Ft.	Average Variable Cost Per
(dollars)	(dollars)	(dollars)	(per 200 days)	(dollars)	(dollars)
7109.96	142.20	6967.76	.400	17.77	17.42
6412.94	142.20	6270.74	.300	21.38	20.90
5909.96	142.20	5767.76	.500	11.82	11.54
5613.54	142.20	5471.34	.225	24.95	24.32
7808.61	142.20	7666.41	.190	41.10	40.35
11808.84	142.20	11666.64	.800	14.76	14.58
7678.83	142.20	7536.63	.400	19.20	18.84
6633.55	142.20	6491.35	.250	26.53	25.96
7561.14	142.20	7418.94	.400	18.90	18.54
10481.05	142.20	10338.85	.200	52.40	51.69
10402.54	142.20	10260.34	.077	135.10	133.25
6146.17	142.20	6003.97	.053	115.97	113.28
7155.60	142.20	7013.40	.308	23.23	22.77
8265.26	142.20	8123.06	.200	41.33	40.62
13599.55	142.20	13457.35	2.400	5.67	5.61

TABLE 4
FIRM TYPE IV -- ONE HEADSAW, ONE EDGER, ONE TRTMMER

Total Costs	Total Fixed Costs	Total Variable Costs	Out.put in MM Bd. Ft.	Average Cost Per M Bd. Ft.	Average Variable Cost Per
(dollars)	(dollars)	(dollars)	(per 200 days)	(dollars)	M Bd. Ft.

APPENDIX c
TABLE 1
YEARLY COSTS ASSOGIATED WITH FIXED EQUIPMENT

$\begin{aligned} & \text { Firm } \\ & \text { Type } \end{aligned}$	Headsaw ${ }^{\text {a }}$	Carriage ${ }^{\text {b }}$	Trimmer ${ }^{\text {b }}$	Edger ${ }^{\text {b }}$	Other Equipment	Total Yearly Fixed Costs ${ }^{\text {c }}$
	(dollars)	(dollars)	(dollars)	(dollars)	(dollars)	(dollars)
I	178.00	297.00	--	-	500.00	124.20
II	178.00	297.00	70.00	--	500.00	131.20
III	178.00	297.00	-	180.00	500.00	142.20
IV	207.40	472.60	96.00	189.00	1000.00	227.61

${ }^{\text {a }}$ Depreciated at the rate of 25 percent per year.
$b_{\text {Depreciated at }}$ the rate of 10 percent per year.
${ }^{\mathrm{c}}$ Summation of depreciated costs of fixed equipment.

Appendix C (continued)
TABLE 2
COSTS ASSOCIATED WITH VARIABLE INPUTS

Firm Type	Labor Costs per Hour		Power Costs					
			Gasoline, Propane and Butane Engines\qquad		Diesel Engines		Electric Motors	
			Cost per Horsepower Hour	Depreciation Rate per Year	Cost per Horsepower Hour	Depreciation Rate per Year	Cost per Horsepower Hour	Depreciation Rate per Year
	(dollars)	(dollars)		(pexcent)	(cents)	(percent)	(cents)	(percent)
I	1.50	. 75	a	15.0	1.07	12.0	1.7	8.0
II	1.50	.75	a	15.0	1.07	12.0	1.7	8.0
IEI	1.50	.75	a	15.0	1.07	12.0	1.7	8.0
IV	1.75	1.00	a	15.0	1.07	12.0	1.7	8.0

${ }^{\text {a }}$ Estimated fuel cost ${ }^{6}$ s chart furnished by Allis Chalmers, Inc., Sand Springs, Oklahoma.

VITA

Robert Raunikar
Candidate for the Degree of
Master of Science

Thesis: MARKETING OF FARM WOODLOT PRODUCTS IN EASTERN OKLAHOMA

Major Field: Agricultural Ecomomics

Biographical:

Personal Data: Born in McAlester, Oklahoma, June 13, 1931, the son of Edward and Frances Raumikar.

Education: Attended grade school at Grayson Valley District No. 26, Latimer County, Oklahoma and high school at Wilburton, oklahoma; graduated from Wilburton High School in 1948; received the Bachelor of Science degree from Oklahoma State University, Stillwater, Oklahoma, with a major in Agricultural Educationg in May, 1956; completed requirements for the Master of Science degree in May, 1958.

Professional Experience: Served in the United States Air Force from February 9, 1951 to January 15, 1955. Research Assistant, Oklahoma State Umiversity, September 1956 to May 1958.

[^0]: W.E.Hendrix, Mhe Problem of the Low Farm Incomes, in $A 1 y, ~ B o$, and Rogge, E.A.g eat. American Farm Poligy, Vol. 1, (National University Extension Association Discussion and Debate Manual No. 30, Columbias Mo. 1956), p. 214.

[^1]: ${ }^{2}$ Criteria for 1949; 1. A residual farm income to operator and family labor in 1949 of less than $\$ 1,000$ provided the state economic area had a level of living index below the average for the region and had 25 percemt or more of its comexcial farms classified as "low productiono Residual income to operator and family represents the income fincluding value of home use) above operating expenses and a return to capital invested in land and machinery. 2. A level of living index in the lowest fifty of the nation. Items in the index include (1) percentage of farms with electricity, (B) percentage of farms with telephones, (3) pexcentage of farms with qutomoblles, and (4) querage value of products sold. 3. "Low production" farms comprising 50 percent or more of the commercial farms. Lowoproduction farms are those with sales of $\$ 250$ - $\$ 2,499$ with the operator mot working off farm as much as 100 days and farm sales exceeding family income from other sources.

[^2]: E. A. Rogge, ed. Aperican Parm Policy, Vol. 1 (National University Extension Association Discussion and Debate Manual No. 30 , Columbiz. Mo.s 1956), p.e11.

[^3]: ${ }^{8} \mathrm{Ed}$ R。 Linm, A Porest Industries Suxwey of Oklahoms, Experiment Station Bulletim NO. B-3e5, OkMhomagriculturel Experiment Station (Stillwatex, Oklahom, December, 1948).
 ${ }^{9}$ Oklahoma Forest Fects, 1956 edition, Published by Amexicam Forest Products Industries, Ine. (mashington, $D . C$.$) .$

 10 F F Eldredge, "Forest Resources of Southeast Oklahome, Forest Survey Release No. 37, United States Depwtment of Agricultures Southexn Foxest Experiment Staino (New Orleans, Louisiana, October 18 , 1938).

[^4]: ${ }^{2}$ Joe Fi. Christopher and Martha E. Nelson, "1956 Putpwood Productiom in the South, "Forest Survey Releqse No. 80, TiS.D.A., Sowthern Forest Experiment Station, (New Ordeam, Lowisimms, Jume, 1957)。

[^5]: 3^{3} "permanent" sawmill is defimed as being permanent with respect to location not duration. Most of the "temporaxy" mills in this semse are also portable by mature of the equipment.

[^6]: ${ }^{1}$ Edward C. Crafts, "rimber Resources for America's Future", Timber Resource Review, Forest Service, United States Department of Agricultwre (Washington, D.C., September, 1955) p. 28.

