FROTH FORMATION ABOVE DISTILLATION TRAYS

By

JOHN TINSMAN PATTON Bachelor of Science Oklahoma State University Stillwater, Oklahoma

1953

Submitted to the faculty of the Graduate School of the Oklahoma State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May, 1958

STATE UNIVERSITY LIBRARY

NOV 7 1958

ŝ

FROTH FORMATION ABOVE DISTILLATION TRAYS

Thesis Approved:

Thesis Adviser

9 2 bar the Graduate School Dean of

PREFACE

In this thesis I have attempted to add to the understanding of the variables which affect the froth height in a distillation column. Airwater and air-oil systems were studied. The purpose was to determine the effect of gas velocity and clear liquid level on the froth height.

I appreciate the guidance and constructive criticism offered by Dr. Robert N. Maddox. I also wish to thank Mr. E. E. McCroskey for his aid in construction of the equipment and the use of his photographic equipment.

The generosity of Mr. E. K. Gaylord, through his support of my Honors Fellowship, helped make this work possible.

TABLE OF CONTENTS

Chapter																												P	age
I.	THE	PRO	BLF	M	• •		\$	9	٠	ņ	•	÷	à	•	•	•	٠	÷	٠	4	.•	٩	*	4	•	٥	0	¢,	1
		St Li Cl	ate mit ari	eme: at fi	nt ior cat	of 15 51c	t) of n	he ti of	Pı he Te	rot St ern	ole tuc	≥m ly	•	•	• •	•	•	•	•	9 • 5	9 • •	• •	e • •	• • •	•	•	•	•	5 1 1
II.	REVI	ew	of	LT	TEI	<u>r</u> as	UR	E	۰	•	•	v	•	•		•	•	•	। ●	æ	•		¢	4	ų	•	.•	•	4
		Hi Ho Su	stc t-W mme	ori lir liry	cal e / oi	L E Ane ? t	ac. noi he	kg ne L	rou try ite	ind 7 ere	l .tu	ire	•	•	• •	• • •	•	0 8 4	•	• • • •	4 6 8	•	•	а С Ф	9 0 0	• • 3	• 5	• • •	4 5 7
III.	METH	OD	ANC	P	RO(EL	OR	E	•	•		٠	•	• .	•	•	. •	•	•	•	•	٠	•	b	•	٠	e	٠	10
		Ap Ex	par per	at im	us ent	al	. P	ro	ceò	lur	e	•	•	•		•	•	•	•	•	•	•	•	0 9	э 6	•	•	*	10 15
IV.	RESU	LTS	•	•	•	•	•	¢	•	•	•	•.	•	٠	.•	ę	•	•	•	4	•	٠	•	٠	٠	à	.•	¢	17
		Pr Fa	eli ctc	mi: ors	nar Wł	y 11c	In h	ve In	sti flu	lga 1er	ati ace	lor F	i d Fro	of otł	Ar 1 E	ien Iei	nor .gl	nei 1t	trj		[eo	chr •	ni o	lne	•8	• • •	₽. ₽	•	17 22
V.	INTE	RPR	eta	T	ON	OF	R	ES	ULI	rs	٠	•	•	•	•	•	٠	•	٠	÷	٠	۰	٥	٠	÷	٠	٠	¢	33
		Su Su	una gge	ry st	ar 1 or	1 đ 18	Co: fo:	nc r	lue Fut	sic tur	ms re	s St	sud	ly.	•	•	ة ب	0 9	•	•	•	•	• a	е 8	°	9 9	0 0	•	33 35
NOMENCL	ATURE	•	٠	•.	0 i	, 8	•	Ð	ą		ч. •	e	0	e	ė	٠	ò	è	٠	٠	٥	ø	ø	o	0	0	÷	Ð	38
BIBLIOGI	RAPHY	0	0	¢	• •		•	v	•		•	•	9	٥	•	0	é	¢	۴	٠	P	•	ø	ų	e	4	9	ø	39
APPENDI	κ.	• •	,e	•	• •			a	•	•	o	•	3	•	۰.	•	e		•		٠	9	•		9	÷	÷	÷	40

LIST OF TABLES

Table																						Page
I.	Test of Equat Williams, e	tion l et al.	. W11	th Da	ata • •	Co •	•11	.ec	te	eđ.	by •	, ,	•	ø	•	٠	•	ð	6	e	٠	36
II.	Experimental	Data	for	Run	1	٠	٠	•	٠	•	٠	ţ	•	e	•	.•	٠	•	•	4		45
III.	Experimental	Data	for	Run	2	•	÷	٠	•	•	•	•		٠	•	٠	٠	•	٠	٠	•	46
IV.	Experimental	Data	for	Run	3	•	٠	•	•		9	ø	٠	•	•	٠		t	٠	٠	٠	47
٧.	Experimental	Data	for	Run	4	٠	•	٠		•	٠	•	٠	٠	٠	٠	٠	ø	•	٠	•	48
VI.	Experimental	Data	for	Run	5	٠	•	•	•	•	٠	•	P	۰.	٠	•	٠	•		•	¢	49
VII.	Experimental	Data	for	Run	6	٠	٠	.•	٠	•	•	٠	٠	٠	U	٠	٠	٠	9	٠	٠	50
VIII.	Experimental	Data	for	Run	7	÷	٠	٠	•	•	٠	•	•	٠	٠	٠	8	•	é	•	•	51
IX.	Experimental	Data	for	Run	8	•	٠	•	•	÷	•	۰,	٠	•	٠	٠	•	ŵ	۵		•	52
x.	Experimental	Data	for	Run	9	•		٠	۰		•	٠	•	•	• '	٠	٠	¢	٠	٠	ę	53
XI.	Experimental	Data	for	Run	10	*	•	•	٠	•	٠	٠	•	¢	•	•	•	٠	٠	4	÷	54
XII.	Experimental	Data	for	Run	11	٠	•,	٠	•	٠	٠	٠	•	•	•	•	•	۰.	٠	Ð	i.	55
XIII.	Experimental	Data	for	Run	12	•	•	ŧ	•	9	•	٠	•	•	•	÷	.0	•	÷	4	•	56
XIV.	Experimental	Data	for	Run	13	•	•	•		•	•.	٠	•	٠	•	٠	•	•	•	¢	٠	57
XV.	Experimental	Data	for	Run	14	•	٠		÷	٠	٠	•	٠	٠	٠	ę	٠	٠	•	٠	0	58
XVI.	Experimental	Data	for	Run	15	۲	÷	•	*		٠	٠	÷	٠	٠	•	٥	¢	•	÷	÷	59
XVII.	Experimental	Data	for	Run	16	٠	•	۶	•	•	. •	٠	٠	•	٠	e	•	٠	•	٠	•	60
XVIII.	Experimental	Data	for	Run	17	٠	•	à	è	٠	٠	٠	•,	٠	٠	٩	•	•	٠	۵	٠	61
XIX.	Experimental	Data	for	Run	18	Ð		÷	•	¢	¢	•	•	¢	¢	٥	٠		e	G	•	62
XX.	Experimental	Data	for	Run	19	•	e,	•	•	•	•	٠	ę	÷	iş	•	, o '	٠	ę	٠	ę	63
XXI.	Experimental	Data	for	Run	20	•	•	٠	ą	•	•	٩	٠		•	•	÷		æ	●.	٠	64

(COMPINUED)

LIST OF TABLES (CONTINUED)

Table																						Page
XXII.	Experimental	Data	for	Run	21	•	•	•	•	•	•	•	•	•	•	•	•	•	•			65
XXIII.	Experimental	Data	for	Run	22	•	•		•		•	•	•		•	•	•	•			•	66
XXIV.	Experimental	Data	for	Run	23	•	•	•	•	•	•	•	•		•	•	•	•	•		•	67
XXV.	Experimental	Data	for	Run	24	•	•	•	•	•		•		•	•	•	•	٠	•	•	•	68
XXVI.	Experimental	Deta	for	Run	25	•		•	•	•	•	•	•	•	•	•	•	•	•	•		69
XXVII.	Experimental	Data	for	Run	26	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	70
XXVIII.	Experimental	Data	for	Run	27	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	71
XXIX.	Experimental	Data	for	Run	28	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	72
XXX.	Experimental	Data	for	Run	29	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	73
XXXI.	Experimental.	Deta	for	Run	30	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	74
XXXII.	Experimental.	Data	for	Run	31	•	•	•	•	•	•	•	•	•	•	•	٩	•	•	•	•	75
XXXIII.	Experimental	Data	for	Run	32	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		76
XXXIV.	Experimental	Data	for	Run	33	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	77
XXXV.	Experimental	Data	for	Run	34	•	•	•	•	•	•	•	•	•	•	•	9	•	•	•	•	78
XXXXI.	Experimental	Data	for	Run	35	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	79
XXXVII.	Experimental	Data	for	Run	36	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	80
XXXVIII.	Experimental	Data	for	Run	37	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	81
XXXIX.	Experimental	Data	for	Run	38	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	82
XXXX.	Experimental	Data	for	Run	39	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	83
XXXXI.	Experimental.	Data	for	Run	40	•	•	۰	•	•	•	•	•	•	•	•	•	•	•	•	•	84
XXXXII.	Experimental	Data	for	Run	41	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	85

(CONTINUED)

LIST OF TABLES (CONTINUED)

e i

Table		,																				Page
XXXXIII.	Experimental	Data	for	Run	42	0	0	8	÷	45	6	٠	a	•	\$	•	Ð	٠	3	æ	ė	86
XXXXIV.	Experimental	Data	for	Run	43	٠	٠	a	¢	٠	ø	٠	•	٠	4	•	٠	a	ø	ø	9	87
XXXXV.	Experimental	Data	for	Run	44	đ	٩	•	a,	¥	•	٠	•	9	•	•	\$	•	٠	•	₽° I	88
XXXXVI.	Experimental	Data	for	Run	45	•	¢	•	•	•	a	٠	•	. 0	•	۰.	\$	9	6	٠	8	89

LIST OF FIGURES

.

Figure		Page
1.	Correlation of Data Collected by Williams, et al	8
2.	Experimental Apparatus	12
3.	Electrical Circuit Diagram	14
4.	Typical Vertical Traverse with Variable Resistance Probe	18
5.	Typical Vertical Traverse with Variable Resistance Probe	19
6.	Typical Vertical Traverse with Constant Temperature Probe	20
7.	Typical Vertical Traverse with Constant Temperature Probe	21
8.	Froth Height vs F Factor for Air-Water System, L _c = 1.57 in	23
9.	Froth Height vs F Factor for Air-Water System, L _c = 2.36 in	24
10.	Froth Height vs F Factor for Air-Water System, L _c = 3.15 in	25
11.	Froth Height vs F Factor for Air-Water System, L _c = 3.98 in	26
12.	Froth Height vs F Factor for Air-Oil System, L _c = 3.15 in	27
13.	Froth Height vs F Factor for Air-Oil System, L _c = 2.36 in	28
14.	Froth Height vs F Factor for Air-Oil System, L _c = 1.57 in	29
15.	Froth Height vs Clear Liquid Holdup, F = 0.191	30

(CONTINUED)

LIST OF FIGURES (CONTINUED)

Figure					Page
16. Froth Hei	ight vs Clear Idquid	l Holdup, F =	0.261	• • •	31
17. Froth Hei	ight vs Clear Liquid	l Holdup, F =	0.322	99 & Ø	32
18. Calibrati	Lon Curve Air Rotans	eter, R ₃	● __ = + = = = +	* * S	41
19. Calibrati	ion Curve Air Rotame	ters, R_1 and	R ₂	9 ÷ ¢	42
20. Probe Cal	Libration Curve .		* • • • • •	\$ \$ \$	43
21. Dry Plate	Pressure Drop .			● ଏହି ଅଟ	44

CHAPTER I

THE PROBLEM

Statement of the Problem

The rapid growth in industry's demand for distillation towers has led to the adoption of design techniques which utilize many simplifying assumptions. The estimation of the froth height is one such example. In most cases a liberal estimate is made of the froth height and the design incorporates this estimation. It is obvious that such an estimation based on experience or a "rule of thumb" has certain inherent weaknesses.

Assuming that the design yielded an operable column, it could then cause money to be invested in oversized equipment which provides no additional return and hence, a net loss to the investor. The utilization of more expensive materials of construction, required by higher working pressures and corrosive systems, magnifies the costs connected with inferior design techniques.

In addition to its economic significance, the study of froth height is important from a technical point of view. In the design of distillation columns it is of paramount importance that the designer be aware of the factors which affect the operating efficiency of a distillation tray. In this respect the froth formation above the tray is quite important.

The purpose of this investigation was to collect and correlate data concerning the variables which affect the froth height. The hot-wire anemometer was used to locate the froth height. Preliminary investigation indicated that the use of the hot-wire anemometer would be a great

improvement over existing techniques. The improved accuracy obtained by the use of this instrument made a real contribution to the value of the results.

Limitations of the Study

In this problem, only the air-water and the air-oil systems were investigated. The effects of the two major variables, gas velocity and clear liquid holdup, were studied. The studies were made using a nonflow pilot column containing one perforated tray.

Aside from the preliminary work, the constant temperature probe was employed in contrast to the variable resistance technique. This was done to improve the accuracy of the data collected. The electrical equipment provides measurements precise to three significant figures. The dynamic variability of the froth height makes this precision more than adequate.

The probe was centered in the froth bed. It covered a section approximately equal to one-third of the cross-sectional area of the column. This section was assumed to be representative of the frothbed at any particular elevation above the plate.

Clarification of Terms

The word froth is used to denote the mixture of gas and liquid which is present above the distillation tray. It includes only the region where neither phase is readily distinguishable. Hence, the density of the froth will always be greater than the gas density and less than the liquid density.

Froth height denotes the distance that the interface between the

froth and the gas phase is above the tray. The froth height data were recorded in centimeters, but have been converted to inches for ease in evaluation.

F factor or F value is a measure of the gas velocity with a density factor included. It has been accepted as a useful way to describe gas rates in a distillation tower. The F value, for any given velocity, is the product of the linear gas velocity multiplied by the square root of the density of the gas. The F factor, thus calculated, represents the square root of the pressure head equal to the superficial gas velocity. All quantities have units of feet, pounds or seconds.

CHAPTER II

REVIEW OF LITERATURE

Historical Background

In an effort to increase the available information concerning the design of distillation columns, the American Institute of Chemical Engineers initiated a research program on plate efficiencies. This program, started in 1952, is being conducted at the University of Delaware, the University of Michigan and North Carolina State College. The investigation of plate efficiencies has amplified the problem of determining the vapor residence time which in turn is dependent on the froth height.

Visual determination of froth heights has been tried by a number of investigators, but the results have been far from satisfactory. Gerster, et al, discuss the problems encountered when utilizing this technique.(2) It is logical that a better method could be devised for determining the froth level.

The hot-wire anemometer has properties which make it suitable for locating froth heights. Hot-wire anemometry was utilized as early as 1921, by Griffiths for determining the liquid level in a fuel tank. (5) From that time to the present the hot-wire anemometer, often called a resistance thermometer, has found many applications. A few such uses have been the measurement of temperature, flow-rate, and turbulence of gas streams.

Hot-Wire Anemometry

The salient feature on which anemometry is founded is the fact that the resistance of a wire changes with temperature. The factors that induce a change in temperature of a wire can, therefore, be studied and related to changes in the resistance of the wire. In the hot-wire anemometer, current is supplied to the wire for two reasons. First, it is necessary to heat the wire so that temperature changes are possible. Secondly, the current allows the resistance of the wire to be measured by means of a Wheatstone Bridge. There are two techniques used in the field of hot-wire anemometry. One is a constant temperature probe where the current is varied in order to maintain the reference temperature. The other is a variable resistance scheme where the current to the probe is esentially constant and the temperature allowed to vary in response to variations in the froth bed surrounding the probe.

Recently, work was completed by Albright at Oklahoma State University.(1) He evaluated the application of the hot-wire anemometer in the location of froth heights. He used a variable temperature probe, and found it to be quite satisfactory at low gas velocities.

The principle difference between the two possible type probes can be clarified by studying the factors which influence their operation. The basic law which enables one to predict the operation of the hot-wire anemometer is given by:

$$l = U A_p \Delta t$$

where

- U = Heat transfer coefficient for the systems in which the probe is immersed.
- Ap = Surface area of the probe.

Q = Heat lost by probe, IR.

 Δt = Temperature of the probe minus the temperature of the cooling medium, $(T_p - T)$.

In going from one location to another in the froth, the value of U changes because of changes in the density and other properties of the system. For the sake of clarity let us assume that U changes by a factor of two, i.e., increases by 100% or decreases by 50%. Further more, let us assume that Δt is small compared with T_p . If the voltage is held constant, then Q will not change much as Q = E I. Δt will change by a factor of 2 which will cause only a slight percentage change in T_p . This is obviously semi-insensitive and is characteristic of the variable resistance probe.

In contrast let us see the effect of holding T_p constant and thereby R_p constant. Q must change by a factor of two when U decreases by a factor of two. Since A and $\triangle t$ are held constant I^2 must be reduced by a factor of two. In other words $I_2 = I_1 / \sqrt{2}$ which means I will change by a factor of 1.4 when U changes by a factor of 2. This is a sensitive response and is characteristic of the constant temperature probe.

It may be argued that when the current is allowed to change the temperature of the fixed resistance of the Wheatstone Bridge will vary and introduce errors in the data taken. Theoretically this is a valid criticism; however, a check should be made on the magnitude of the possible temperature change. The heat lost by any resistance, if the voltage across it is changed by a factor of two, changes by a factor of 4. Since for a given resistance $Q = U A \triangle t$, where U and A will be constant and $\triangle t$ will be small compared to T_r , $\triangle t$ must change by a factor of 4 and it is believed that this change of $\triangle t$ will produce a negligible change in T_r and consequently R_r .

Summary of the Literature

Previous published work on froth formation is almost non-existent. Information concerning the froth is commonly the by-product from a study of tray efficiencies. This is the case with regard to one of the more useful and recent reports concerning tray efficiencies. Data collected at the Universities of Delaware and Michigan and North Carolina State College include work on froth formation. These data were collected in connection with a program for the study of tray efficiencies in distillation columns sponsored by the American Institute of Chemical Engineers. Correlations based on the data are summarized in the progress report dated June 30, 1956.(3)

Figure 1 shows the relationship between clear liquid holdup and froth height for the air-water system at three different F values. Data necessary for the correlation presented in Figure 1 were extracted from work done at the University of Michigan and presented in the previously mentioned progress report.

In prior work concerning the location of froth height two techniques have been tried. Both methods have definite shortcomings and the data collected is of doubtful accuracy. The two methods employed to date are the visual and touch methods for determining froth height.

The visual method makes use of two glass windows in the column. A graduated device is mounted inside the column and the froth height can be visually recorded. The persons taking data must attempt to average the fluctuations in the froth height by sight and record this average as the best guess as to the actual froth height. The results from this technique have been far from satisfactory.

Correlation of Data Collected By Williams, et al.(3)

In the touch method the operator must insert his hand through the inspection port and locate the froth height by touch. Translating this point of contact into an accurate level of the froth is nearly impossible. In addition to the inherent difficulties of measuring the froth height accurately this method has another limitation. The columm must be operated at atmospheric pressure or opening the inspection port will disturb the operation of the column.

CHAPTER III

METHOD AND PROCEDURE

Apparatus

Column

A four inch inside diameter transparent column was used in this investigation. The column was constructed from three glass sections and one lucite section. All sections were six inches long and were connected by the use of flanges and connecting rods. The plate to be used was mounted in the middle of the column thus providing a twelve inch section below the plate for flow distribution. The twelve inch section above the plate allowed the froth to be studied visually and allowed for the disentrainment of the liquid from the vapor.

The top of the column was open to the atmosphere as all data concerning the vapor rate were taken upstream from the plate. The bottom of the column was made from one-sixteenth inch galvanized sheet fitted with copper tubing connections for the air, manometer, and drain lines. The air line connection was one-half inch copper tubing which extended three inches above the bottom plate. The discharge end of this line was equipped with a small baffle plate to distribute the gas evenly across the cross-section of the column.

Treys

The trays used in this investigation were made of one-eighth inch stainless steel plate. The holes drilled were one-eighth inch in diameter. Preliminary work was done with a plate containing eight 1/8"

holes on 2.3 centimeter triangular pitch. The pressure drop across this plate was found to be excessive and it was replaced with a plate having more flow area. The new plate contained thirty-seven 1/8" holes on 1.15 centimeter triangular pitch.

Probe

The probe was constructed from a piece of fine platinum wire, 0.005 inches in diameter and 10.75 inches long, stretched between two insulated copper leads. The sensitivity of the probe was directly proportional to the length of the platinum wire. This fact dictated that the maximum amount of wire be utilized. Two lucite spacing struts were employed to allow a greater length of platinum wire to be used. The probe was attached to one end of a lucite tube with the leads threaded inside the tube. The other end of the tube was held by an adjustable clamp which allowed the probe to be positioned at any desired elevation in the column. A scale placed on the upper portion of the probe allowed its position in the column to be easily determined. A photograph of the apparatus appears in Figure 2.

Auxiliaries

- Preliminary studies were conducted using two Fischer-Porter model B4N-25-A rotameters in parallel to meter the air flowing to the column. These rotameters were installed on the inlet air line as the top of the column was open to the atmosphere.
- 2. One Fischer-Porter model B-5A-25-A rotameter was used for the final portion of the investigation. It was employed to enable a larger quantity of air to be metered. It was in-stalled in the inlet air line for reasons stated above.

Experimental Apparatus

- 3. One U-tube manometer was constructed to determine the pressure drop across the plate. A metric scale divided into millimeters was used to measure the pressure differential. One leg of the manometer was connected to a tap located below the tray, and the other leg was open to the atmosphere. The manometer was filled with distilled water colored with a drop of fortisan solution.
- 4. One Leeds and Northrup Company Student Potentiometer No. 244726 was used to effect the necessary electrical measurements and adjustments. The fixed resistances were each 45 ohms. The slide wire contained LOOO divisions, each representing 0.01 ohm resistance or a total of 10 ohms. A drawing of the electrical circuit appears in Figure 3.
- 5. One Leeds and Northrup Company Model. 2420-0 reflected beam galvanometer was used to indicate the balance of the Wheat-stone Bridge.
- 6. One Leeds and Northrup Company Resistance Box No. 245486 was used to provide a variable resistance of desired magnitude. It provided resistance from 0 to 9,999 ohms in 1 ohm increments.
- 7. One Triplet Company model O221-T anneter was used to measure the current flowing through the probe. Its scale was calibrated from 0 to 500 D.C. milliamps.
- 8. The battery used was a 7.2 volt Nicad wet cell. A variable resistance was installed in series with the battery to provide a means of varying the potential across the probe.
- 9. A Curtin Company mecury theremeter was used to measure the temperature of the froth. It was graduated from -30° to 120° F in 1° increments.

Electrical Circuit Diagram

- 10. Air for these studies were drawn from the laboratory compressed air tank. The tank was supplied by a single-stage compressor. An auxiliary compressor was available in the event the primary compressor could not furnish the quantity of air required. The pressure in the supply tank varied from 80 to 120 psig, depending on the rate of air withdrawal.
- 11. One Climax type 245 pressure regulator was installed in the inlet air line, upstream from the rotameter. It was used to reduce the air pressure from 100 psig to 25 psig. This installation served a two-fold purpose. First, it was a safety measure to protect the equipment from excessive pressures. Secondly, it served to eliminate the possibility of inaccuracies being introduced in the metering of the air due to pressure variations. The pressure in the supply tank was maintained above 25 psig.

Experimental Procedure

To start a run, the probe was positioned above the plate at the desired still liquid level. Water or oil, depending on the system being studied, was added until the probe was well covered. Air was introduced to the column and frothing commenced above the plate. There was a negligible amount of seepage. The froth temperature was recorded and checked at intervals to determine when the equilibrium temperature had been reached. While the froth was reaching equilibrium, current was supplied to the probe so that it could attain an equilibrium temperature. When it was determined that the froth had reached the equilibrium temperature, the air was turned off and the liquid allowed to drain slowly through the plate until the liquid surface was

exactly even with the probe. The air was then adjusted to the desired rate. After the desired variables had been adjusted and recorded, the froth height was located.

The froth height was determined by making a vertical traverse with the hot-wire probe. The probe was lowered to a point just above the tray. The variable resistance in series with the battery was adjusted until the current flowing through the probe was between four hundred and five hundred milliamps. After the Wheatstone bridge was balanced, the variable resistance in the bridge and the current to the probe were recorded. The temperature of the froth was recorded. The probe was raised one centimeter and the current adjusted until the balance of the Wheatstone bridge was restored. The new current value and the position of the probe were recorded. The probe was then raised one centimeter and the process repeated. This technique was continued until the probe was obviously above the froth-gas interface. This visual observation was verified by the fact that current to the probe showed no change as the probe was raised farther above the tray. The temperature was taken to verify that no significant change had occurred. The air was turned off and the still liquid level was checked. This completed one experimental run.

CHAPTER IV

RESULTS

Preliminary Investigation of Anemometry Techniques

Before commencing the study of froth characteristics it was necessary that the alternate techniques of utilizing the hot-wire anemometer be studied and evaluated. The series of graphs which follow are representative of the data collected by the two different techniques. A total of four runs, two by each technique, are presented.

FIGURE 4

Typical Vertical Traverse using Variable Resistance Probe

18

 ${\rm V})$

FIGURE 5

Typical Vertical Traverse using Variable Resistance Probe

Typical Vertical Traverse with Constant Temperature Probe

FIGURE 7

Typical Vertical Traverse with Constant Temperature Probe

Factors Which Influence Froth Height

The data collected in this investigation provide two correlations. These correlations are presented graphically on the following pages. The first series of graphs depict the relationship between the froth height and the gas velocity as expressed as F values. The other independent variable, liquid level, is held constant for any one correlation. The second series of graphs show the correlation between the froth height and the clear liquid holdup while the F value is held constant.

FIGURE 8

Froth Height vs F Factor for Air-Water System, L_c = 1.57 in.

FIGURE 9

Froth Height vs F Factor for Air-Water System, Le= 2.36 in.

Froth Height vs F Factor for Air-Water System, L_c = 3.15 in.

Froth Height vs F Factor for Air-Water System, L_c^2 3.98 in.

FIGURE 12

Froth Height vs F Factor for Air-Oil System, L_c^2 3.15 in.

Canal

FIGURE 13

Froth Height ws F Factor for Air-Oil System, L_c = 2.36 in.

Froth Height vs F Factor for Air-Oil System, L_c = 1.57 in.

Froth Height vs Clear Liquid Holdup, F = 0.191

FIGURE 16

Froth Height vs Clear Liquid Holdup, F = 0.261

Froth Height vs Clear Liquid Holdup for Air-Water System, F= 0.322

CHAPTER V

INTERPRETATION OF RESULTS

Summary and Conclusions

The graphs representing typical data for each of the anemometry techniques illustrate the difference in sensitivity and usefulness of the two schemes. The theoretical considerations which cause the constant temperature probe to be more sensitive were discussed in Chapter II. The curves clearly verify this analysis.

The variable resistance probe, being the less sensitive, is useful for locating the froth-gas interface only when it is fairly well defined. A typical vertical traverse at such conditions appears in Figure 4. As the probe emerges from the froth the heat transfer characteristics of the system change immensely and induce a significant change in the temperature of the probe. The sharp change in slope of the curve depicts this change in the temperature and hence the resistance of the probe.

As the velocity of the gas is increased the interface becomes irregular and poorly defined. This is result of a surging action and the jetting of small pencils of froth into the vapor space. This instability causes the temperature change of the probe to vary gradually as it approaches and is raised above the froth-gas interface. The lack of sensitivity to small changes in the heat transfer characteristics of the system cause the data to be of doubtful accuracy. The changes in the resistance of the probe are so small that errors due to the precision of the electrical measurements could seriously distort the data.

Figure 5 presents data collected by the use of the variable resistance probe when the interface is not well defined. Even though the resistance scale is expanded beyond the precision limits of the data, the location of the froth-gas interface is not clearly discernable.

In contrast, the data taken with the constant temperature probe are quite useful. The location of the interface is based on the premise that this is the point at which the maximum change in the heat loss from the probe will occur. In mathematical terms this means that at the interface dW/dx is a maximum, where W refers to the heat loss from the probe in watts and x is the distance of the probe above the tray. Comparing the curves of Figures 6 and 7, it is apparent that this maximum point is not as sharp at the higher gas velocity. This is not considered a serious weakness, but is merely a reflection of differences in the structure of the interface at the two conditions.

The data indicate that a linear correlation exists between froth height, H_f , and F factor. In addition, the y-axis intercept and the slope of the regression line were found to vary linearly with the clear liquid holdup, L_c . This information suggests that it is feasible to derive an empirical formula relating froth height, F factor and clear liquid holdup. This equation would have the form:

$$\mathbf{H}_{\mathbf{f}} = \mathbf{f}(\mathbf{L}_{c}) + \mathbf{f}(\mathbf{L}_{c}, \mathbf{F})$$

All correlations were made statistically using a least squares fit and assuming linear relationships. The final form of the equations for both the air-water and the air-oil systems are as follows:

Air-Water:

$$H_{f} = 2.36 \pm 0.66L_{c} \pm 2.43L_{c}F = 3.09F$$
(1)

Air-Oil:

 $H_P = 0.48 + 0.79 L_c + 1.18 L_r F + 3.92 F$ (2)

These expressions allow the determination of the froth height by knowing the values of L_0 and F, both of which are readily available. It is recognized that these equations are known to be accurate only within the limits of the experimental data; however, the writer believes they can be safely extrapolated well beyond the limiting F value of 0.38.

Suggestions for Future Study

Although this problem is concerned only with the factors influencing the location of the froth-gas interface, the data indicate that the hotwire anemometer can be utilized in studying the characteristics of the froth at any point above the distillation tray. As was pointed out earlier, the study of froth formation is an intergral part in the evaluation of plate efficiencies. The work that has been done at the University of Delaware on plate efficiencies has shown that the effective froth height does not always coincide with the actual froth-gas interface. The data collected in this work indicate that the hot-wire anemometer can be utilized to determine the density of the froth bed at any point above the tray. A typical vertical traverse, starting at a point just above the plate, shows that the heat given up by the probe as it is raised has three distinct characteristics at different segments of the traverse. In the first portion, the heat loss decreases at a constant rate. In the second stage, there is no noticeable change in heat loss from one step to

the next. The third segment represents the interface and here the heat loss drops off very rapidly. These characteristics indicate that the body of the froth contains two regions, one of varying density and a second of constant density. By properly calibrating the probe it appears feasible to use it to study the density at any point in the froth bed. It is felt that such a study of the variables affecting the density of the froth bed should aid in evaluating the mass transfer characteristics of a distillation tray.

The similarity between the correlation relating froth height, clear liquid holdup, and F factor for both the air-water and air-oil data suggests that it may be possible to determine an expression which would apply to any vapor-liquid system. By studying the effects of such variables as viscosity, surface tension, liquid density, etc. such an expression could be obtained. The effect of the plate design should be evaluated and incorporated into the relationship. The goal of such work would be a relationship which would allow a designer to accurately estimate the froth height for any system and tray design. Such information would be quite useful in determining the plate spacing in the distillation column.

TABLE I

TEST OF EQUATION 1 WITH DATA COLLECTED BY WILLIAMS, et al. (4)

Clear Liquid Holdup in.	F Factor	H _f experimental in.	Hf calculated in.
3	0.4	4.9	6.01
4	0.6	8.2	9.01
5	1.0	12.3	14.62

The empirical equation for the air-water system was tested by using data collected at the University of Michigan. The data were collected using a bubble cap tray operating at atmospheric temperature and pressure. In view of the fact that the equation was derived from data concerning a perforated tray, the agreement between the predicted and experimental values is very good. The results of the calculations are presented in Table I. This agreement illustrates the value of this work, and emphasizes the potential of additional research in the field of froth formation.

NOMENCLATURE

- A = Surface area.
- E = Voltage.
- F = F Factor, $v \sqrt{e}$
- H = Height above tray, inches.
- I = Current, amps.
- L = Depth of liquid on tray, inches.
- R = Resistance, ohms.
- T = Temperature.
- U = Overall heat transfer coefficient, Btu/hrft² ^oF.
- Q = Heat flow, Btu/hr.
- v = Superficial gas velocity based on the cross-sectional area of the column, ft/sec.
- \mathcal{C} = Density, lb/ft^3 .
- Δt = Temperature difference for heat transfer, ^OF.

Subscripts

- c = Clear liquid holdup.
- f = Froth.
- p = Probe.
- r = Resistance.

BIBLIOGRAPHY

- Albright, M. A. "Use of the Hot Wire Anemometer to Locate Froth Levels." (unpublished M. S. Thesis, School of Chemical Engineering, Oklahoma State University, 1956.)
- 2. American Institute of Chemical Engineers Research Committee. "Tray Efficiencies in Distillation Columns." Third Annual Progress Report. American Institute of Chemical Engineers. New York City, New York, 1955.
- 3. American Institute of Chemical Engineers Research Committee. "Tray Efficiencies in Distillation Columns." Fourth Annual Progress Report. American Institute of Chemical Engineers. New York City, New York, 1956.
- Crozier, Ronald D. "Froth Stratification and Liquid Mixing in a Bubble Tray Column." Doctoral Dissertation. University of Michigan, 1956.
- "Discussion on the Absolute Measurement of Electrical Resistance and Instruments Based on the Temperature Variation of Resistance." Proceedings, Physical Society, London, 1921.
- Lamb, Owen P., and Killen, John M. "An Electrical Method for Measuring Air Concentration in Flowing Air - Water Mixtures." St. Anthony Falls Hydraulic Laboratory, 1950.
- 7. Perry, J. H., ed. Chemical Engineer's Handbook. 3d ed. McGraw-Hill Book Company, Inc., New York City, New York, 1950.

APPENDIX

FIGURE 21

Calibration Curve Air Rotameter, R3

FIGURE 22

Dry Plate Pressure Drop

Dry Plate Pressure Drop (inches of water)

TABLE II

EXPERIMENTAL DATA FOR RUN 1

Clear Liquid Level = 2.0 in. Resistance Box = 3.0 ohms Temperature of Froth = 63° F. Rotameter Reading = 10.0 (glassfloat) Position of Tray = Probe reading of 15.7 cm.

Pr	obe Reading	Slide Wire Reading	Height of Probe above tray	Probe Resistance
	em	:	inches	ohms
, f	8,	437	3.03	2.925
, Jili,	7	437	3.42	2.925
	6.5	437	3.62	2.925
	6.0	437	3.82	2.925
· .	5.5	442	4.02	2.931
	5.0	449	4.22	2.940
	4.5	457	4.42	2.949

Froth Height from probe data = 4.10 inches Froth height by visual observations = 4.02 inches

TABLE III

EXPERIMENTAL DATA FOR RUN 2

Clear Liquid Level = 1.57 in. Resistance Box = 3.0 ohms Temperature of Froth = 53° F Rotameter Reading; R₁ = 12 (steelfloat) R₂ = 15 (glassfloat) Position of Tray = Probe reading of 15.7 cm.

Probe	Slide Wire	Height of Probe	Probe
Reading	Reading	above Tray	Resistance
CH.	· · ·	inches	ohms
12.0	398	1.46	2.878
11.0	398	1.85	2.878
10.0	398	2.24	2.878
9.00	398	2.64	2.878
8.00	398	3.03	2.878
7.00	398	3.42	2.878
6.75	399	3.52	2.879
6.50	399	3.62	2.879
6.00	399	3.82	2.879
5•75	400	3.93	2.880
5•50	401	4.03	2.881
5•25	401	4.13	2.881
5.00	402	4.22	2.882
4.75	403	4.32	2.883
4.50	404	4.42	2.884
4.25	405	4.52	2.885
4.00	406	4.62	2.886
3.75	406	4.72	2.886
3.50	406	4.82	2.886
3.25	406	4.92	2.886
3.00	407	5.01	2.887
2.5 2.0 1.0 0 Froth height	407 408 408 from probe data =	5.21 5.40 5.80 6.20 4.80 inches	2.887 2.888 2.888 2.888

Froth height from visual observation = 4.45 inches

TABLE IV

EXPERIMENTAL DATA FOR RUN 3

Clear Liquid Level = 1.57 in.Resistance Box = 3.0 ohmsRotameter Reading = 0.7Pressure Drop Across Tray = 1.93 in. wateAir Velocity = 0.527 ft/secF Value = 0.146Position of Tray = Probe Reading of 28.0 cm.System Studied; air-waterSlide Wire = 320

Probe Reading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
cm.	milliamps	inches	watts	watts
24	480	1.57	•644	
23	480	1.97	•644	.000
22	460	2.36	•593	.051
21.	460	2.76	•593	•000
20	450	3.15	• 568	•025
19	340	3.54	.322	.246
18	5µ0 -	3-0/1	.161	.161
17	190	4.34	.101	.060

Froth Height = 3.54 in.

4.

N

TABLE V

EXPERIMENTAL DATA FOR RUN 4

Clear Liquid Level = 1.42 in.Resistance Box = 3.0 ohmsRotameter Reading = 0.7Pressure Drop Across Tray = 1.77 in. watAir Velocity = 0.527 ft/secF Value = 0.0893Position of Tray = Probe Reading of 28.0 cm.System Studied; air-waterSlide Wire = 294

Probe Reading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
cm.	milliamps	inches	watts	watts
2 6	465	0.78	0.598	0.00
25	465	1.18	0.598	0.00
24	465	1.57	0 .598	0.00
23	440	1.97	0.534	0,064
22	420	2.36	0.488	0.046
21	280	2.76	0.216	0,272
20	180	3.15	0.0897	0.1263
19	150	3•54	0.0624	0.0273

Froth Height = 2.6 in.

TABLE VI

EXPERIMENTAL DATA FOR RUN 5

Clear Liquid Level = 1.57 in.Resistance Box = 3.0 ohmsRotameter Reading = 0.85Pressure Drop Across Tray = 2.01 in. wateAir Velocity = 0.688 ft/secF Value = 0.191Position of Tray = Probe Reading of 28.0 cm.System Studied; air-waterSlide Wire = 320

Probe Reading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
cm.	milliamps	inches	watts	watts
22	480	2.36	0.644	0.000
21	480	2.76	0.644	0.000
20	480	3.15	0.644	0.000
19	400	3•54	0.450	0.194
18	290	3.94	0.237	0.213
17	240	4.34	0.162	0.075
16	210	4.73	0.125	0.037

Froth Height = 3.58 in.

TABLE VII

EXPERIMENTAL DATA FOR RUN 6

Clear Liquid Level = 1.57 in.Resistance Box = 3.0 ohmsRotameter Reading = 1.0Pressure Brop Across Tray = 2.12 in. watAir Velocity = 0.836 ft/secF Value = 0.236Position of Tray = Probe Reading of 28.0 cm.System Studied; air-waterSlide Wire = 306

Probe Reading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
cm.	milliamps	inches	watts	vatts
21	480	2.76	0.640	0.104
20	440	3.15	0.536	0.104
19	360	3.54	0.361	0,175
18	260	3.94	0.188	0.173
17	210	4.34	0.123	0.065

Froth Height = 3.54 in.

TABLE VIII

EXPERIMENTAL DATA FOR RUN 7

Clear Liquid Level = 1.57 in.Resistance Box = 3.0 ohmsRotameter Reading = 1.1Pressure Drop Across Tray = 2.20 in. watAir Velocity = 0.940 ft/secF Value = 0.261Position of Tray =Probe Reading of 28.0 cm.System Studied; air-waterSlide Wire = 3.06

Probe Reading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
cm.	milliamps	inches	watts	watts
22	480	2.36	0.640	A 60A
21	480	2.76	0.640	0.000
20	470	3.15	0.617	0.023
19	400	3.54	0.445	9.172
18	290	3.94	0.234	0.211
17	230	4.34	0.147	0.087
16	21.0	4.73	0.123	0.024

Froth Height = 3.66 in.

temp.

TABLE IX

EXPERIMENTAL DATA FOR RUN 8

Clear Liquid Level = 1.57 in.Resistance Box = 3.0 ohmsRotameter Reading = 1.2Pressure Drop Across Tray = 2.28 in. watAir Velocity = 1.05 ft/secF Value = 0.290Position of Tray = Probe Reading of 28.0 cm.System Studied; air-waterSlide Wire = 306

Probe Reading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Neat Loss
cm.	milliamps	inches	watts	Wetts
22	460	2.36	0.590	<u> </u>
21	460	2.76	0.590	0.000
20	460	3.15	0.590	0.100
19	380	3.54	0.467	0.123
18	260	3.94	0,250	0.21
17	220	4.34	0.148	0+10¥
16	1.90	4.73	0.112	0,036

Froth Height = 3.74 in.

TABLE X

EXPERIMENTAL DATA FOR RUN 9

Clear Liquid Level = 1.57 in.Resistance Box = 3.0 ohmsRotameter Reading = 1.3Pressure Drop Across Tray = 2.36 in. watAir Velocity = 1.158 ft/secF Value = 0.322Position of Tray = Probe Reading of 28.0 cm.System Studied; air-waterSlide Wire = 295

Probe Reading	Current to Probe	Height of Probe above Tray	<u>Heat</u> Loss from Probe	Change in Heat Loss
cn.	milliemps	inches	watts	watts
21	490	2.76	0.665	0.078
20	460	3.15	0.587	0.188
19	380	3.54	0.399	0.4100
18	260	3.94	0.187	0.212
17	220	4.34	0.134	0.035
16	190	4.73	0.100	0.034

Froth Height = 3.62 in.

TABLE XI

EXPERIMENTAL DATA FOR RUN 10

Clear Liquid Level = 1.57Resistance Box = 3.0 ohmsRotameter Reading = 1.4Pressure Drop Across Tray = 2.44 in. watAir Velocity = 1.26 ft/secF Value = 0.35Position of Tray = Probe Reading of 28.0 cm.System Studied; air-waterSlide Wire = 295

Probe Reading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
cm.	milliamps	inches	watts	watts
21	480	2.76	0.640	0.050
20	460	3.15	0.590	0.000
19	420	3.54	0.492	0.090
18	300	3.94	0.250	0.242
17	240	4.34	0.160	0.090
16	240	4.73	0.160	0.000

Froth Height = 3.74 in.

TABLE XII

EXPERIMENTAL DATA FOR RUN 11

Clear Liquid Level = 1.57 in.Resistance Box = 3.0 ohmsRotameter Reading = 1.5Pressure Drop Across Tray = 2.56 in wateAir Velocity = 1.365 ft/secF. Value = 0.379Position of Tray =Probe Reading of 28.0 cm.System Studied; air-waterSlide Wire = 295

Probe Re ading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
cm.	milliamps	inches	watts	watts
20	460	3.15	0.588	0.000
19	420	3•54	0.490	0.090
18	320	3.94	0.282	0.200
17	260	4.34	0.187	02095
16	230	4.73	0.147	0:040
15	21.0	5.13	0.123	0.024

Froth Height = 3.74 in.

TABLE XIII

EXPERIMENTAL DATA FOR RUN 12

Clear Liquid Level = 2.36 in. Resistance Box = 3.0 ohms Rotameter Reading = 0.7 Pressure Drop Across Tray = 2.72 in. wate Air Velocity = 0.527 ft/sec F Value = 0.146 Position of Tray = Probe Reading of 28.0 cm. System Studied; air-water Slide Wire = 308

Probe Re ading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
cm.	milliamps	inches	watts	watts
21	490	2.76	0.665	0.000
20	490	3.15	0.665	0.000
19	490	3.54	0.665	0.010
18	480	3•94	0.646	0.019
17	450	4.34	0.562	
16	340	4.73	0.318	0.244
15	220	5.13	0.134	0.104
14	210	5.52	0.122	0.012

Froth Height = 4.53 in.

TABLE XIV

EXPERIMENTAL DATA FOR RUN 13

Clear Liquid Level = 2.36 in.Resistance Box = 3.0 ohmsRotameter Reading = 0.85Pressure Drop Across Tray = 2.79 in. waAir Velocity = 0.688 ft/secF Value = 0.191Position of Tray = Probe Reading of 28.0 cm.System Studied; air-waterSlide Wire = 304

Probe Reading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
cm.	milliamps	inches	watts	watts
19	490	3.54	0.664	A 464
18	490	3.94	0.664	0.000
17	440	4.34	0.534	0,130
16	340	4.73	0.318	0,216
15	260	5.13	0.187	0.131
14	210	5.52	0.123	0.064

Froth Height = 4.53 in.

TABLE XV

EXPERIMENTAL DATA FOR RUN 14

Clear Liquid Level = 2.36 in.Resistance Box = 3.0 ohmsRotameter Reading = 1.0Pressure Drop Across Tray = 2.88 in. watAir Velocity = 0.836 ft/secF Value = 0.236Position of Tray = Probe Reading of 28.0 cm.System Studied; air-waterSlide Wire = 298

Probe Reading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
em.	milliamps	inches	watts	watts
19	470	3.54	0.614	0.000
18	470	3.94	0.614	0.000
17	410	4.34	0.465	0.149
16	360	4.73	0.360	0.105
15	280	5.13	0.216	0.144
14	2 30	5.52	0.147	0.069
13	230	5.92	0.147	0.000

Froth Height = 4.68 in.

TABLE XVI

EXPERIMENTAL DATA FOR RUN 15

Clear Liquid Level = 2.36 in.Resistance Box = 3.0 ohmsRotameter Reading = 1.1Pressure Drop Across Tray = 2.95 in. watAir Velocity = 0.940 ft/secF Value = 0.261Position of Tray = Probe Reading of 28.0 cm.System Studied; air-waterSlide Wire = 296

Probe Re ading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
cm.	milliamps	inches	watts	watts
18	480	3.94	0.637	م بر سر
17	430	4.34	0.513	0.124
16	350	4.73	0.338	0.175
15	260	5.13	0.188	0,150
14	230	5.52	0.147	0.041
13	21.0	5.92	0.123	0.024

Froth Height = 4.60 in.

TABLE XVII

EXPERIMENTAL DATA FOR RUN 16

Clear Liquid Level = 2.36 in.Resistance Box = 3.0 ohmsRotameter Reading = 1.2Pressure Drop Across Tray = 3.03 in. wateAir Velocity = 1.05 ft/secF Value = 0.290Position of Tray = Probe Reading of 28.0 cm.System Studied; air-waterSlide Wire = 2.94

Probe Reading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
cm.	milliamps	inches	watts	watts
18	480	3.94	0.637	A A###
17	450	4.34	0.562	0.075
16	390	4.73	0.420	0.142
15	310	5.13	0.267	0,163
14	270	5.52	0.202	0.065
13	250	5.92	0,173	0.029
-0	220	1 21		0.026
Т	230	D.JL	0.147	

Froth Height = 4.8 in.

TABLE XVIII

EXPERIMENTAL DATA FOR RUN 17

Clear Liquid Level = 2.36 in.Resistance Box = 3.0 ohmsRotameter Reading = 1.3Pressure Drop Across Tray = 3.11 in. wateAir Velocity = 1.158 ft/secF Value = 0.322Position of Tray = Probe Reading of 28.0 cm.System Studied; air-waterSlide Wire = 294

Probe Reading	Current to Probe	Height of Probe above Tray	Heet Loss from Probe	Change in Neat Loss
cm,	milliamps	inches	watts	vette
18	470	3.94	0.615	0.080
17	440	4.34	0.535	0.000
16	400	4.73	0.444	0.090
15	350	5.13	0.338	0,106
14	290	5.52	0.233	0.105
13	240	5.92	0.159	0.074
12	210	6.31	0.123	0.036
11	210	6.70	0.123	0.000

Froth Height = 4.92 in.

TABLE XIX

EXPERIMENTAL DATA FOR RUN 18

Clear Liquid Level = 2.36 in.Resistance Box = 3.0 ohmsRotameter Reading = 1.4Pressure Drop Across Tray = 3.2 in. waterAir Velocity = 1.26 ft/secF Value = 0.350Position of Tray =Probe Reading of 28.0 cm.System Studied; air-waterSlide Wire = 286

Probe Reading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
cm.	milliams	inches	watte	watts
17	480	4.34	0.635	
16	430	4.73	0.512	0.123
15	380	5.13	0.398	0.114
14	310	5.52	0.266	0.135
13	280	5.92	0.216	0.040
12	250	6.31	0.173	0.043
11	240	6.70	0.159	0.014

Froth Height = 5.0 in.

TABLE XX

EXPERIMENTAL DATA FOR RUN 19

Clear Liquid Level = 3.15 in.Resistance Box = 3.0 ohmsRotameter Reading = 0.7Pressure Drop Across Tray = 3.5 in. waterAir Velocity = 0.527 ft/secF Value = 0.146Position of Tray =Probe Reading of 28.0 cm.System Studied; air-waterSlide Wire = 310

Probe Reading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
cm.	milliamps	inches	watts	watts
18	470	3•94	0.616	0.000
17	470	4.34	0.616	0.000
16	440	4.73	0,535	0.001
15	380	5.13	0.400	0.135
14	310	5.52	0.268	0.132
13	230	5.92	0.147	0.121
12	190	6.31	0.100	0.047

 \mathcal{Q}_{i}

Froth Height = 5.16 in.
TABLE XXI

EXPERIMENTAL DATA FOR RUN 20

Clear Liquid Level = 3.15 in.Resistance Box = 3.0 ohmsRotameter Reading = 0.85Pressure Drop Across Tray = 3.58 in. wateAir Velocity = 0.688 ft/secF Value = 0.191Position of Tray = Probe Reading of 28.0 cm.System Studied; air-waterSlide Wire = 310

Probe Reading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
cm.	milliamps	inches	watts	watts
17	480	4.34	0.638	مع بلاد بکتر می
16	480	4.73	0.638	0.000
15	1 40	5.13	0 .53 6	0.102
14 .	350	5.52	0.338	0.098
13	290	5.92	0.233	0.105
12	240	6.31	0.160	0.073
1.1	210	6.70	0.123	0.037

Froth Height = 5.31 in.

TABLE XXII

EXPERIMENTAL DATA FOR RUN 21

Clear Liquid Level = 3.15 in.Resistance Box = 3.0 ohmsRotameter Reading = 1.0Pressure Drop Across Tray = 3.66 in. wateAir Velocity = 0.836 ft/secF Value = 0.236Position of Tray = Probe Reading of 28.0 cm.System Studied; air-waterSlide Wire = 304

Probe Reading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
cm.	milliemps	inches	watts	watts
18	480	3•94	0.637	0.000
17	480	4.34	0.637	0.075
16	450	4.73	0.562	0.007
15	410	5.13	0.465	0.091
14	380	5.52	0.399	0.000
13	310	5.92	0.267	0.132
12	250	6.31	0.173	0.094
11	220	6.70	0.134	0.039

Froth Height = 5.35 in.

TARLE XXIII

EXPERIMENTAL DATA FOR RUN 22

Clear Liquid Level = 3.15 in.Resistance Box = 3.0 ohmsRotameter Reading = 1.0Pressure Drop Across Tray = 3.74 in. wateAir Velocity = 0.940 ft/secF Value = 0.261Position of Tray = Probe Reading of 28.0 cm.System Studied; air-waterSlide Wire = 298

Probe Reading	Current to Probe	Beight of Probe above Tray	Rest Loss from Probe	Change in Meat Loss
cm.	milliamps	inches	watte	Watts
17	480	4.34	0.637	A 36A
16	440	4.73	0.535	0.105
15	400	5.13	0.443	0,092
14	390	5.52	0.421	0.022
13	300	5.92	0.250	0.171
12	260	6.31	0.187	0.063
11	230	6.70	0.147	0.040

Froth Height = 5.70 in.

TABLE XXIV

EXPERIMENTAL DATA FOR RUN 23

Clear Liquid Level = 3.15 in.Resistance Box = 3.0 ohmsRotameter Reading = 1.2Pressure Drop Across Tray = 3.82 in. wateAir Velocity = 1.05 ft/secF Value = 0.290Position of Tray = Probe Reading of 28.0 cm.System Studied; air-waterSlide Wire = 298

Probe Re ading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
cm.	milliemps	inches	watts	watts
17	470	4.34	0.616	0.008
16	460	4.73	0.588	0.052
15	440	5.13	0.535	0.003
14	400	.5.52	0.444	0.091
13	350	5.92	0.338	0.070
12	310	6.31	0.268	
11	2 50	6.70	0.174	0.094
10	230	7.10	0.147	0.021

Froth Height = 5.70 in.

÷.

TABLE XXV

EXPERIMENTAL DATA FOR RUN 24

Clear Liquid Level = 3.15 in.Resistance Box = 3.0 ohmsRotameter Reading = 1.3Pressure Drop Across Tray = 3.92 in.wateAir Velocity = 1.158 ft/secF Value = .322Position of Tray =Probe Reading of 28.0 cm.System Studied; air-waterSlide Wire 0 294

Probe Reading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
cm.	milliamps	inches	watts	watts
17	470	4.34	0.614	
16	470	4.73	0.614	0.000
15	440	5.13	0.533	0.081
14	400	5.52	0.442	0.091
13	370	5.92	0.378	0.064
12	320	6.31	0.282	0.096
	900	6.70	0.030	0.050
10	250	7.10	0.173	0.059

Froth Height = 5.90 in.

TABLE XXVI

EXPERIMENTAL DATA FOR RUN 25

Clear Liquid Level = 3.98 in.Resistance Box = 3.0 ohmsRotameter Reading = 0.7Pressure Drop Across Tray = 4.29 in. waterAir Velocity = 0.527 ft/secF Value = 0.146Position of Tray = Probe Reading of 28.0 cm.System Studied; air-waterSlide Wire = 318

Probe Reading	Current to Probe	Height of Probe above Tray	He at Loss from Probe	Change in Neat Loss
cm.	milliamps	inches	watta	watts
16	490	4.73	0.672	0.000
15	490	5.13	0.672	0.000
14	450	5.52	0,569	0.103
13	370	5.92	0.384	0:105
12	270	6.31.	0.204	0.100
11	230	6.70	0.149	0.035

Froth Height = 5.90 in.

TABLE XXVII

EXPERIMENTAL DATA FOR RUN 26

Clear Liquid Level = 3.98Resistance Box = 3.0 ohmsRotameter Reading = 0.85Pressure Drop Across Tray = 4.37 in. wateAir Velocity = 0.688 ft/secF Value = 0.191Position of Tray = Probe Reading of 28.0 cm.System Studied; air-waterSlide Wire = 31.8

Probe Reading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
cm.	milliamps	inches	watts	watts
15	490	5.13	0.672	A A427
14	480	5.52	0.645	0.027
13	430	5.92	0.518	0°75(
12	330	6.31	0.306	0.215
11	270	6.70	0.204	0°105
10	230	7.10	0.149	0.045

Froth Height = 6.10 in.

TABLE XXVIV

EXPERIMENTAL DATA FOR RUN 27

Clear Liquid Level = 3.98 in.Resistance Box = 3.0 ohmsRotameter Reading = 1.0Pressure Drop Across Tray = 4.42 in. watAir Velocity = 0.836 ft/secF Value = 0.236Position of Tray = Probe Reading of 28.0 cm.System Studied; air-waterSlide Wire = 312

Probe Reading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
сщ.	milliamps	inches	watts	watts
15	480	5.13	0.638	0.057
14	460	5.52	0.587	0.051
13	430	5.92	0.513	0.074
12	380	6.31	0.398	0.115
11	310	6.70	0.267	0.131
10	250	7.10	0,173	0.094
9	230	8.49	0.147	0.026

Froth Height = 6.49 in.

TABLE XXIX

EXPERIMENTAL DATA FOR RUN 28

Clear Liquid Level = 3.98 in.Resistance Box = 3.0 ohmsRotameter Reading = 1.1Pressure Drop Across Tray = 4.61 in. wateAir Velocity = 0.940 ft/secF Value = 0.261Position of Tray= Probe Reading of 28.0 cm.System Studied; air-waterSlide Wire = 308

Probe Reading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
cm.	milliamps	inches	watts	watts
15	490	5.13	0.665	0.000
14	490	5.52	0.665	0.000
13	490	5.92	0.665	0.000
12	440	6.31	0.535	0.130
11	400	6.70	0,443	0.092
10	320	7.10	0.282	0.161
9	270	7.49	0.202	080.0
8	240	7.89	0.160	0,042

Froth Height = 6.88 in.

TABLE XXX

EXPERIMENTAL DATA FOR RUN 29

Clear Liquid Level = 3.98 in.Resistance Box = 3.0 ohmsRotameter Reading = 1.2Pressure Drop Across Tray = 4.64 in. watAir Velocity = 1.05 ft/secF Velue = 0.290Position of Tray= Probe Reading of 28.0 cm.System Studied; air-waterSlide Wire = 304

Probe Reading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
CB.	milliamps	inches	wetts	wetts
14	490	5.52	0.665	0.000
13	490	5.92	0.665	0.000
12	460	6.31	0.588	0.067
11	400	6.70	0.443	0.145
10	330	7.10	0.302	0.141
~~	000	7,120 7, ho		0.068
9	290	7.49	0.234	0.032
8	270	7.89	0.202	

Froth Height = 6.69 in.

MABLE XXXI

EXPERIMENTAL DATA FOR RUN 30

Clear Liquid Level = 3.98 in.Resistance Box = 3.0 ohmsRotameter Reading = 1.3Pressure Drop Across Tray = 4.88 in. wateAir Velocity = 1.158 ft/secF Value = 0.322Position of Tray = Probe Reading of 28.0 cm.System Studied; air-waterSlide Wire = 300

Reading	Probe	above Tray	from Probe	Heat Loss
cm.	milliemps	inches	watts	watts
14	470	5.52	0.615	0.000
13	460	5.92	0.587	0.020
12	440	6.31	0.534	0.053
11	420	6.70	0.490	0.044
10	370	7.10	0.379	0.111
9	330	7.49	0.302	0.077
8	270	7.89	0.202	0.100
7	240	8.28	0.159	0.043

Froth Height = 7.12 in.

Very of the oil?

TABLE XXXII

EXPERIMENTAL DATA FOR RUN 31

Clear Liquid Level = 3.15 in.Resistance Box = 3.0 ohmsRotameter Reading = 0.70Pressure Brop Across Tray = 2.63 in. waterAir Velocity = 0.527 ft/secF Value = 0.146Position of Tray = Probe Reading of 28.0 cm.System Studied; air-oilSlide Wire = 408

Probe Reading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
cm.	milliamps	inches	watts	watts
20	440	3.15	0.558	
19	400	3.54	0.464	0.094
18	380	3.94	0.418	0.046
17	310	4.34	0.279	0.139
16	240	4.73	0.167	0.115
15	180	5.13	0.094	0.073

Froth Height = 4.13 in.

TABLE XXXIII.

EXPERIMENTAL DATA FOR RUN 32

Clear Liquid Level = 3.15 in.Resistance Box = 3.0 ohmsRotameter Reading = 0.85Pressure Drop Across Tray = 2.87 in. wateAir Velocity = 0.688 ft/secF Value = 0.191Position of Tray = Probe Reading of 28.0 cm.System Studied; air-oil

Probe Reading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
cm.	milliamps	inches	watts	wætte
19	480	3.54	0.668	0.109
18	440	3.94	0.560	0.100
17	390	4.34	0.442	0.118
16	350	4.73	0.354	0.000
15	270	5.13	0.211	0.143
14	260	5.52	0.196	0.015
13	21.0	5.92	0.128	0.078

Froth Height = 4.33 in.

TABLE XXXIV

EXPERIMENTAL DATA FOR RUN 33

Clear Liquid Level= 3.15 in.Resistance Box = 3.0 ohmsRotameter Reading = 1.0Pressure Drop Across Tray = 2.99 in. wateAir Velocity = 0.836 ft/secF Value = 0.236Position of Tray = Probe Reading of 28.0 cm.System Studied; air-oil

Probe Reading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
cn.	Milliamps	inches	vetts	vetts
18	460	3.94	0.615	0 1 0 0
17	420	4.34	0.513	0.105
16	400	4.73	0.464	0.049
15	330	5.13	0.316	0.148
14	270	5.52	0.211	0.105
13	240	5.92	0.167	0.044

Froth Height = 4.92 in.

TABLE XXXV

EXPERIMENTAL DATA FOR RUN 34

Clear Liquid Level = 3.15 in.Resistance Box = 3.0 ohmsRotameter Reading = 1.1Pressure Drop Across Tray = 3.11 in. waterAir Velocity = 0.940 ft/secF Value = 0.261Position of Tray = Probe Reading of 28.0 cm.System Studied; air-oil

Probe Reading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
cm.	milliemps	inches	wetts	watts
18	450	3.94	0.592	ద ద ారా
17	420	4.34	0.515	0.077
16	400	4.73	0.483	0.032
15	350	5.13	0.355	0.128
14	300	5.52	0.262	0.093
13	250	5.92	0.182	0.080
12	220	6.31	0.141	0,041

Froth Height = 5.0 in.

TABLE XXXVI

EXPERIMENTAL DATA FOR RUN 35

Clear Liquid Level = 3.15 in.Resistance Box = 3.0 ohmsRotameter Reading = 1.2Pressure Brop Across Tray = 3.19 in. wate:Air Velocity = 1.05 ft/secF Value = 0.290Position of Tray = Probe Reading of 28.0 cm.System Studied; air-oilSlide Wire = 412

Probe Reading	Current to Pròbe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
cm.	milliamps	inches	watts	Watts
17	440	4.34	0.560	八 六部 つ
16	410	4.73	0.487	0.073
15	370	5.13	0.397	0.090
14	330	5.52	0.316	0.081
13	280	5.92	0.226	0.090
12	2 50	6.31	0.181	0.045
11	230	6.70	0.154	0.027

Froth Height = 5.32 in.

TABLE XXXVII

EXPERIMENTAL DATA FOR RUN 36

Clear Liquid Level = 2.36 in.Resistance Box = 3.0 ohmsRotameter Reading = 0.70Pressure Brop Across Tray = 2.4 in. waterAir Velocity = 0.527 ft/secF Value = 0.146Position of Tray = Probe Reading of 28.0 cm.System Studied; air-oilSlide Wire = 408

Probe Reading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Changes in Heat Loss
cm.	milliamps	inches	watts	watts
22	420	2.36	0.513	0.0C0
21	390	2.76	0.441	0.062
20	360	3.15	0.376	0.065
19	290	3.54	0.244	0.132
18	270	3.94	0.211	0.033
17	210	4.34	0.128	0.083
16	170	4.73	0.113	0.015

Froth Height = 3.34 in.

TABLE XXXVIII

EXPERIMENTAL DATA FOR HUN 37

Clear Liquid Level = 2.36 in.Resistance Box = 3.0 ohmsRotameter Reading = 0.85Pressure Drop Across Tray = 2.48 in. wate:Air Velocity = 0.688 ft/secF Value = 0.191Position of Tray = Probe Reading of 28.0 cm.System Studied; air-oilSlide Wire = 408

Probe Reading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
cm.	milliemps	inches	wetts	watte
21	430	2.76	0.547	A 00A
20	400	3.15	0.465	200.0
19	350	3.54	0.354	U e dudad
18	280	3.94	0.227	0.121
17	220	4.34	0.141	0.065
16	180	4.73	0.094	0.047

Froth Height = 3.66 in.

TABLE XXXIX

EXPERIMENTAL DATA FOR RUN 38

Clear Liquid Level = 2.36 in.Resistance Box = 3.0 ohmsRotameter Reading = 1.0Pressure Drop Across Tray = 2.52 in. wathAir Velocity = 0.836 ft/secF Value = 0.236Position of Tray =Probe Reading of 28.0 cm.System Studied; air-oilSlide Wire = 402

Probe Reading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
em.	milliamps	inches	watts	watts
\$ 1	340	2.76	0.397	<u>م مەت</u>
20	330	3.15	0.316	0.UQL
19	300	3.54	0.261	0.055
18	270	3.94	0.211	0.050
17	220	4.34	0.141	0.070
16	200	4.73	0.116	0.025

Froth Height = 3.74 in.

TABLE XXXX

EXPERIMENTAL DATA FOR RUN 39

Clear Liquid Level = 2.36 in.Resistance Box = 3.0 ohmsRotameter Reading = 1.1Pressure Drop Across Tray = 2.56 in. wateAir Velocity = 0.940 ft/secF Value = 0.261Position of Tray = Probe Reading of 28.0 cm.System Studied; air-oilSlide Wire = 402

Probe Reading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
cm.	milliamps	inches	watts	watts
20	330	3.15	0.316	0.000
19	320	3•54	0.296	0.020
18	280	3•94	0.226	0.010
17	25 0	4.34	0.181	0.045
16	220	4.73	0.141	0.040
15	190	5.13	0.105	0.036
14	160	5.52	0.074	0.031
13	150	5.92	0.065	0.009

Froth Height = 3.74 in.

TABLE XXXXI

EXPERIMENTAL DATA FOR RUN 40

Clear Liquid Level = 2.36 in.Resistance Box = 3.0 ohmsRotameter Reading = 1.2Pressure Drop Across Tray = 2.67 in. waterAir Velocity = 1.05 ft/secF Value = 0.290Position of Tray = Probe Reading of 28.0 cm.System Studied; air-oilSlide Wire = 402

Probe Reading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
en.	milliamps	inches	watts	wetts
20	350	3.15	0.354	000
19	340	3.54	0.334	020
18	300	3.94	0.261	0.073
17	280	4.34	0.226	0.037
16	24 0	4.73	0.167	0.059
15	2 00	5.13	0.116	0.051
14	1.80	5.52	0.094	0.022
13	160	5.92	0.074	0.020
15	150	6.31	0.065	0.009

Froth Height = 4.13 in.

TABLE XXXXII

EXPERIMENTAL DATA FOR RUN 41

Clear Liquid Level = 1.57 in.Resistance Box = 3.0 ohmsRotameter Reading = 0.70Pressure Drop Across Trey = 1.77 in. wateAir Velocity = 0.527 ft/secF Value = 0.146Position of Tray = Probe Reading of 28.0 cm.System Studied; air-oilSide Wire = 400

Probe Reading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Neat Loss
cm.	milliamps	inches	watts	wetts
24	360	1.57	0.477	0 0kg
23	340	1.97	0•334	0.043
22	300	2.36	0.261	0.073
ସ	240	2.76	0.167	0.094
20	190	3.15	0.105	0.062
19	150	3.54	0.065	0.040
18	140	3.94	0.057	0.008

Froth Height = 2.56 in.

TABLE XXXXIII

EXPERIMENTAL DATA FOR RUN 42

Clear Liquid Level = 1.57Resistance Box = 3.0 ohmsRotameter Reading = 0.85Pressure Drop Across Tray = 1.69 in. wate:Air Velocity = 0.688 ft/secF Value = 0.191Position of Tray = Probe Reading of 28.0 cm.System Studied; air-oilSlide Wire = 398

Probe Reading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
cm.	miliamps	inches	watts	watts
24	370	1.57	0.397	0.000
23	370	1.97	0.397	0.000
22	340	2.36	0.334	0.063
21	290	2.76	0.244	0,090
20	230	3,15	0.154	0.090
19	180	3•54	0.094	0,060
18	160	3.94	0.074	0.020

Froth Height = 2.75 in.

TABLE XXXXIV

EXPERIMENTAL DATA FOR RUN 43

Clear Liquid Level = 1.57Resistance Box = 3.0 ohmsRotameter Reading = 1.0Pressure Drop Across Tray = 1.75 in. wateAir Velocity = 0.836 ft/secF Value = 0.236Position of Tray =Probe Reading of 28.0 cm.System Studied; air-oilSlide Wire = 396

Probe Reading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
cm.	milliamps	inches	watts	vatts
24	370	1.57	0.396	0.000
23	360	1.97	0.376	0.020
22	340	2.36	0.333	0.043
21	310	2.76	0.278	0.065
20	270	3.15	0.211	0.007
19	220	3.54	0.140	
18	180	3.94	0.094	0,046

Froth Height = 3.15 in.

TABLE XXXXV

EXPERIMENTAL DATA FOR RON 44

Clear Liquid Level = 1.57 in.Resistance Box = 3.0 ohmsRotameter Reading = 1.1Pressure Drop Across Tray = 1.81 in. wateAir Velocity = 0.940 ft/secF Value = 0.261Position of Tray = Probe Reading of 28.0 cm.System Studied; air-oilSlide Wire = 394

Probe Reading	Current to Probe	Reight of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
cm.	milliamps	inches	wette	watts
23	370	1.97	0.396	و ال
22	350	2.36	0.353	0.043
21	330	2.76	0.315	0.070
80	290	3.15	0.243	
19	240	3.54	0.166	0.071
18	190	3.94	0.105	0,061
17	180	4.34	0.094	0.011

Froth Height = 3.34 in.

TABLE XXXXVI

EXPERIMENTAL DATA FOR RUN 45

Clear Liquid Level = 1.57 in.Resistance Box = 3.0 ohmsRotameter Reading = 1.3Pressure Drop Across Tray = 1.93 in. wateAir Velocity = 1.158 ft/secF Value = 0.322Position of Tray =Probe Reading of 28.0 cm.System Studied; air-oilSlide Wire = 388

Probe Reading	Current to Probe	Height of Probe above Tray	Heat Loss from Probe	Change in Heat Loss
cm.	milliamps	inches	watts	watts
23	330	1.97	0.315	0.097
22	310	2.36	0.278	0.018
21	300	2.76	0.260	0.050
20	270	3.15	0.210	0.000
19	5 µ0	3.54	0.166	0.044
18	200	3•94	0.115	0.030
17	170	4.34	0.083	0.018
16	150	4.73	0.065	COCCO

Froth Height = 3.74 in.

VITA

John Tinsman Patton

Candidate for the Degree of

Master of Science

Thesis: FROTH FORMATION ABOVE DISTILLATION TRAYS

Major Field: Chemical Engineering

Biographical:

Personal data: Born in Ft. Worth, Texas, May 9, 1931, the eldest son of Hendley K. and Katharine Patton.

- Education: Attended elementary school in Oklahoma City, graduating from Edgemere Grade School, Harding Junior Highschool and Classen Highschool; received the Bachelor of Science degree from Oklahoma Agricultrual and Mechanical College in May, 1953; completed the requirements for the Master of Science degree in May, 1958. Membership in scholarly or professional societies includes Phi Lambda Upsilon, Phi Kappa Phi, The Society of the Sigma Xi and the American Institute of Chemical Engineers.
- Professional experience: Employed by the Texas Eastman Company, Longview, Texas in their Research & Development Department from 1953 to 1956; tenure with Eastman was interrupted for two years while the author served with the Ordnance Corps, United States Army as a project engineer at Aberdeen Proving Ground, Maryland.