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CHAPTER I 

INTRODUCTION 

Isomerization may be defined as the rearrangement of the molecular 

configuration of a compound without change in molecular weight. This 

thesis will not consider geometrical or optical isomerization, but only 

structural isomerization. 

Hydrocarbon isomerization is a reversible, first-order reaction . 

Equilibrium favors the more branched, compact molecules, at low to mod

erate temperature. 

Much work has been done on the catalytic conversion of cyclohexane 

into methylcyclopentane. Separation of products from the catalyst is 

accomplished by distillation at low temperature (to avoid further 

reaction), washing with water, or both . The reaction products have 

been examined by means of several instruments : (1) refractometer, 

(2) cryoscopic apparatus, (3) infrared spectrophotometer, (4) mass 

spectrometer, and (5) Raman spectrograph. 

Industrially the isomerization is best done vapor-phase, at high 

temperatures, over nickel-silica-alumina catalyst; but the present work 

is concerned with use of metal halide catalysts of the Lewis-acid type 

in liquid phase. 

It is now-accepted that a pure aluminum chloride or aluminum 

bromide catalyst, or even one promoted with hydrogen ha lide, does not 

affect pure cyclohexane and methylcyclopentane. However, aluminum halide 

catc;\lysts promoted by exposure to water-, oxygen, and olefin promotes 

l 



the rearrangement (cf. Chapter II). 

A literature search shows that nothing is known·bf the cata~;y:tic 

value of any halides except aluminum chloride and aluminum bromide for 

this isomerization. The equilibrium constant has been measured, but 

for temperatures above 80° the values are few and inconsistent. The 

pr,esent work has aimed at extending our information in both these areas, 
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CHAPrER II 

HISTORICAL BACKGROUND 

General Methods and Results 

Aschan4 was the first to observe that cyclohexane isomerizes into 

methylcyclopentane when refluxed with aluminum chloride. 

In. 1911 Ipatieff and Dowgelewitsch22 reported that when cyclohexane 

was heated with aluminum chloride at 500-510° and 110-120 atmospheres 

pressure for four hours, only a small amount of methylcyclopentane was 

recovered from the reaction product. 

Later Grignard and Stratfordl7 studied the action of a luminum 

chloride on cyclohexane and alkylcyclohexanes at 120-150° with the 

amount of catalyst being 20-30% of the weight of hydrocarbon. It was 

found that (1) cyclohexane and methylcyclohexane remained unchanged . 

(2) Some methyl groups shifted to the 3-position when 1,2- and 1,4-

dimethylcyclohexanes were tried . (3) The products of isomerization of 

ethyl- and propylcyclohexanes were 1,3-dimethylcyclohexane, 1,3-diethyl

cyclohexane and tetramethylcyclohexanes. Only small amounts (1-5%) of 

·acyclic compounds formed from the cracking of the side chains . (4) With 

the three butylcyclohexanes, the cracking increased to 13-15%. Butane 

was formed from normal and secondary butylcyclohexanes. The tertiary 

butyl isomer gave a mixture of _!}-butane and isobutane. The main 

product was a mixture of tetramethylcyclohexanes. (5) With pentyl 

and isoamylcyclohexanes, 70 and 42% cracking occurred respectively. 

3 



4 

Both yielded butane, methylcyclohexanes, and polyme thylcyclohexanes. 

Skraup and Beifuss57 found that when cyclohexane was heated three 

days at 420° in an alkali-glass tube, only 5 per cent of it was conver t ed 

to methylcyclopentane . 

Zelinskii61 in 1929 treated cyclohexane with aluminum bromide for 

twelve hours at 180°. Only a slight change in the cyclohexane resulted. 

Later work of Zelinskii with Turova-Pollak63,64 showed t hat a rearrange

ment of cyclohexane into methylcyclopentane and a dimethylcyclobut ane 

occurred when cyclohexane was heated for 24 hours with a luminum bromide 

on a steam bath. These authors claimed that the acti on of a luminum 

bromide and aluminum chloride does not stop with the forma tion of methyl= 

cyclopentane, the end product apparently being a dime thylcyclobutane . 

Nenitzescu and Contuniari,34 on the contrary, observed tha t isomer = 

ization proceeded only to the formation of methylcyclopentane when 

cyclohexane was heated for three hours with aluminum chloride. No 

evidence of the formation of a dimethylcyclobutane was obtained. This 

isomerization was markedly aided by the presence of a small amount of 

water. In fact, when the aluminum chloride used was as nearly anhydrous 

as possible, the cyclohexane was practically unchanged . The reported 

equilibrium mixture for the reflux temperature consisted of 22 per cent 

methylcyclopentane and 78 per cent cyclohexane. 

In 1939 Ipatieff and Komarewski23 investigated the effect of alumi~ 

num chloride-hydrogen chloride on cyclohexane. The treatment was 

carried on for 24 hours at 150° in closed autoclaves . The reac t ion 

mixture contained, besides methylcyclopentane, some hydrogen, isobutane, 

1,3-dimethylcyclopentane (6 . 5%), dimethylbicyclopentyl (9%), bicyclohexyl 

(3%), and unaltered cyclohexane. 

Glasebrook and Love1113 confirmed the inertness of anhydrous 
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aluminum chloride toward the hydrocarbons under discussion. In treatment 

of boiling cyclohexane with aluminum chloride activated with water, a 

16 per cent yield of methylcyclopentane was obtained; only 5 per cent 

of the cyclohexane entered into side reactions. 

In 1938 and 1939 a number of investigators demonstrated that the 

yield of methylcyclopentane can be increased by using other catalysts 

under severe conditions. Puchkov and Nikolaeva48 reported a 62 per 

cent yield of methylcyclopentane when 102.2 grams of cyclohexane at 400° 

under 140-365 atmospheres of hydrogen pressure was stirred for 26 hours 

in the presence of 10.1 grams molybdenum sulfide catalyst. Serious side 

reactions led to the formation of 19 per cent hexane and 15 per cent 

isohexane; only 4 per cent of the cyclohexane was unchanged. Gases, 

unsaturated hydrocarbons (50%), and aromatic hydrocarbons (9%) developed 

as additional products at 500° during one hour reaction time. Prokopets 

and Filaretov47 reported practically complete isomerization when cyclo

hexane was treated with -molybdenum sulfide-cobalt sulfide catalyst for 

one hour at 500° under 100 atmospheres initial pressure of hydrogen. 

The molybdenum sulfide-cobalt catalyst was more active as a hydrogenation 

and isomerization catalyst than the molybdenum sulfide. 

Ando, 1 a Japanese chemist, observed that 67.7 per cent of methyl

cyclopentane was formed along with 0.4 per cent of unsaturated hydro

carbons and 0.6 per cent of aromatic hydrocarbons when cyclohexane was 

passed over molybdenum. sulfide supported on granular Japanese acid clay 

in a vertical reaction chamber at 379° to 411° and under 200 atmospheres 

hydrogen pressure. Under milder conditions, molybdenum sulfide, 

supported on a Japanese acid clay which had been activated previously 

with mineral acids, was effective in forming 17.2 per cent of methyl

cyclopentane.2 A few years later the catalytic isomerization of 
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cyclohexane over molybdenum sulfide was restudied by Maslyanskii.28 His 

findings indicated that the rate of the reaction is dependent only upon 

the partial pressure of cyclohexane and is independent of hydrogen 

partial pressure. However, an increase of hydrogen pressure helps to 

preserve the catalyst activity. 

The composition of the equilibrium mixture is highly dependent upon 

temperature. Increase in temperature increases the equilibrium amount 

of methylcyclopentane until at 140°, it reaches that of the cyclohexane.55 

The experiments were carried out with aluminum chloride=hydrogen chloride 

over the temperature range 20 to 110° and aluminum chloride a lone at 140°. 

The reaction time was 10 hours for each run. At lower temperatures 

(20° to 80° C) the isomerization is only slightly impeded by side 

reactions (0.6-1.0%). The side reactions become highly pr onounced if 

the temperature is raised above 80°. At temperatures higher than 140° 

the disproportionation increased rapidly, and it was impossible to 

obta in reliable results for the equilibrium constant at these temperatures. 

The effect of the temperature is shownl3 by a curve representing the 

experimental composition of the equilibrium mixture of cyclohexane and 

methylcyclopentane (aluminum chloride catalyst) at 10° intervals over 

the range of 25° to 77.4°. The methylcyclopentane contents of the 

mixture (average mole per cent) were 12.5 per cent at z5c and 25.6 per 

cent at 77.4°. From these equilibrium mixture values the thermodynamic 

constants for the isomerization were calculated. These va lues, with 

the exception of the ones36 based on early and somewhat uncertain 

combustion data (see line II of Table I ) , agr ee close ly with the values 

recorded in later literature by several other investigators.32,33,55,59 

Moore and Parks33 made an extensive and very precise investigation 

of the heats of combustion of cyclohexane [11126.7 (± 2. 1) cal . /gram] 
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TABLE I 

THERMODYNAMIC DATA FOR THE REACTION 

CYCLOHEXANE (LIQUID, 25°)~THYLCYCLOPENT~ (LIQUID~ 25°) 

Basis of 
Calculation 

Equilibrium measurementsl3 

Thermochemical data of 
Parks and Huffman36 

Thermochemical data of 
Moore and Parks33 

. Equilibrium'·measurements of 
Mizusima and Morino32 

Equilibrium measurements of 
Stevenson and Morgan59 

Equilibrium measurements of 
Schuit, Hoog and Verheus55 

*(AF= -3930 + 9.15T) 

AH. cal. /mole 

3510 

-HOO 

3930 

4015 + 550 -

t:J,F 0 , caL /mol121 .65, e.u. 

1150 7.9 

-4100 10.0 

950 10.0 

9.2 ~ 1.2 

ll83 :!: 272. 9 9. so ! 1.1 

=1201. 9* 



and methylcyclopentan~ [11173.4 (± 3.6) cal./gram]; from these values 

AH, t::S, and b,F were calculated. These thermpdynamic values are listed 

in Table I for comparison with the ones derived by Glasebrook and 

Lovell. 13 

In 1941 Mizusima, Morino and Huzisiro32 proved by the use of Raman 

spectra that in the presence of meist aluminum chloride, cyclohexane is 

isomerized to give 12.6% methylcyclopentane at 30° and 26.5% at 78.5°. 

8 

A few years later Stevenson and Morgan59 investigated the equilibrium 

mixtures at 27°, 59° and 100° with the aid of infrared and mass spectro

meters. The infrared analysis showed that ~luminum bromide isomerized 

11.5% of the cyclohexane to methylcyclopentane at 27°~ and 19.3% at 59°. 

In the same way aluminum chloride caused isomerization of 33.5% (! 0.6) 

of the cyclohexane at 100°. 

Recent workers ~ave found good agreement between composition of the 

equilibrium mixture obtained at atmospheric pressure and that obtained 

in the presence of a substantial hydrogen pressure. 27 This shows its 

independence of pressure. The methylcyclopentane contents of the 

equilibrium mixtures of cyclohexane and methylcyclopentane at 100°, 

160°, and 167° were reported to be 33.8, 50.8, and 52.6 per cent 

respectively. 

The rate of isomerization of alkanes and cycloalkanes with even the 

most active catalysts known is so low at room temperature that commercial 

processes have always been operated at or above 80°. 

The rate of isomerization is dependent on the pressure; increased 

pressure tends to inhibit the reaction. Gronikberg, Plate, and 

Gavriloval4 observed this inhibition under high pressure of hydrogen at 

80°. Thus, at 25, 130 and 615 atmospheres of hydrogen, the yields of 

cyclohexane within three hours were 61, 48.5 and 17.8 per cent 
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respectively; on the other hand, under 1, 140, 460, and 660 atmospheres 

of nitrogen, the corresponding yields of cyclohexane were 60.S, 60, 48.5 

and 38.5 per cent respectively. This is in accord with the work by 

Lien and D00uville,27 who studied the specific reaction rate for the 

isomerization of cyclohexane at 100°. The yield decreased within ten 

minutes from 27.6 per cent to 21.6 per cent methylcyclopentane as the 

hydrogen pressurewas raised from zero to 1000 pounds per square inch. 

Mechanism 

In order to present a more complete picture of the subject, this 

review of mechanism will not be limited strictly to the isomerization of 

cyclohexane and methcy~lopentane, but will include some work on alkanes 

and cycloalkanes, since they behave fundamentally alike. 

Although Gunness20 could say as recently as 1951 th.at the mechanism 

of isomerization remains uncertain, it appears now that the carbonium=ion 

theory is highly favored. The facts that the reaction requires acid 

catalysis and that the action of activators, regulators, and inhibitors 

can all be explained in terms of their action on carbonium ions, point 

to this theory. In accordance with this idea, the steps in isomerization 

are as follows. 

(a) The formation of a carbonium ion, not directly from the 

paraffins but from impurities or preliminary substitution 

products. 

(b) Attack of this carbonium ion on the alkane or cycloalkane, 

C-C-C•C + R ~ --~~ RH+ C•C-C-C ~ C-C-C=C 
EB EB I 

/ 

® H <:B 

O CH Gt 3 . nu . ____,,,_ CH 2 + lUl ·,;;;- ' _J 
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(c) Rearrangement (isomerization) of the carbonium ion by internal 

shifts. 

H$ 

(d) 
d 

Continuation of these steps. 
@ 

c-i-c + c-c-c-c 

H$ 

(j+ 

H 

c-~-c + c-c-c-: 

0 + 

In 1946 P.ines and Wackher43 formulated the mechaniSm of paraffin 

isomerizations which were promoted with a small amount of oxygen in the 

~resence of aluminum chloride or aluminum bromide catalysts. This 

lllechanism was·discussed in two series of hypothetical equations. 

EB 
C4H9X ._--CHrCHrC H-CH3 + HX 

e e 
CH3=cH2-cH-CH3-;;;::::::=~ CH3-~H-CH2 

CH3 

e e 
CH3=9H-CH2-:;;:::=~ CH3-c-cH3 

CH3 CH3 

Ee H EB 
CH3'"~·CH3 + c4u10~=== CH3=?=CH3 + CHrCH2-CH-CH3 

CH3 CH3 



II. c4u10 + 1/2 o2 

__ c4H9 OH + AlX3 

C4 Hg OH + HX 

> c4H9 OH 

c4 H9 OA1X2 + HX 

c4 Hg X + HzO 

EB 
c4 Hg X -===!!!:-· CH3-cH2-CH-CH3 + HX 

EB EB 
CH3-cH2•CH•CR3·--:;;.:==~ CH ·CH-CH 

3 CH 2 
3 

EB 
cu3-~H-CH2 

CH3 

A more specific mechanism is the one suggested recently by Pin®s, 

Abraham and Ips.tieff, 38 who concl~ded from their work that olefin,s are 

11 

necessary as promoters fer the initiation of the reactien. This mechanism 

which is similar to that of Block, Pines, and SchmerlingS for nQbutane, 

is given stepwise below; 

Ro (elefins) + HBr B.Br 

G 
EB 

Al Br~ -RBr + AlBr3 

. ~ $ j o-CH3 
~® ~ lilt, •. 0- CH3 Al Br4 + RH 

+ R Al Br4 
,, 
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These are in accord with mechanism studies utilizing CH3- cH2-c13H3, which 

was found to isomerize to CH3-cl3H2-cH3 over aluminum bromide at a normal 

rate but never to yield any CH3-c13H2-c13H3. In other words, the isomer~ 

ization is intramolecular, and does not involve cleavage and recombination 

of fragments as believed earlier.10 Some similar work has been done on 

isomerization of c14ii3-CH(CH3)-cH2-cH3.49 

Side Reactions 

Side reactions in isomerization of alkanes become more serious as 

the molecular weight of the hydrocarbons increases. Whereas the butane-

isobutane transformation is clean, B~pentane gives some trouble, n=hexane 

more, and B-heptane has not been successfully isomerized, commercially at 

least, Among cycloalkanes the cyclohexane-methylcyclopentane conversion 

is fairly smooth, but isomerization of larger ones becomes more com?li-

cated. Side reactions make analysis of the product difficult, give 

u~wanted products, and often combine with the catalyst to cut its useful 

life. The reactions themselves are very complex, involving disproportion= 

ation, cracking, self-alkylation, and so on. They are manifested in 

products boiling lower and higher than the desired isomers,3,27,63,64 and 

in a catalyst inactivated by a sludge, this apparently being unsaturated. 

The reported side reactions for the interconversion of cyclohexane 

and methylcyclopentane involve from 5 to 38 mole per cent of the hydro-

carbons, depending upon the nature of catalyst, temperature, pressure, 

and promoters. For example, under mild conditions (one atmosphere 

pressure and reflux temperature) hydrated aluminum chloride catalyst 

converted only 5 per cent of cyclohexane into undesired products,13,55 

these being a mixture of branched-chain hexanes, methylcyclohexane, 

1,3-dimethylcyclohexane, bicyclohexyl, and dimethylbicyclopentyl . 
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Aluminum bromide substituted for aluminum chloride increased the extent 

of side reactions, isobutane, isopentane, isomeric hexanes and some gases 

being among the reaction products. Cyclohexane exposed to ~os 2 under 

severe conditions (500° and 140-365 atmospheres) completely cracked 

and dehydrogenated into gaseous and liquid products, including 

unsaturated and aromatic hydrocarbons.48 

An improvement was made by Ciapetta6 for repressing the side 

reactions of cyclohexane at temperatures ranging as high as 280 to 300°, 

by employing standard nickel-silica-alumina catalyst. In this way only 

2.4 mole per cent of the cyclohexane is converted to hexanes and lower 

molecular weight alkanes, and 1. 9 male per cent is dehydrogenated to 

benzene. 

Argument formerly existed amogg investigators over the alleged 

formation of cyclobutane and dimethylcyclobutanes as a result of the 

action of moist aluminum bromide on cyclohexane.63,64 It has now been 

determined by mass-spectrometric analysis that c3H8, c4H10, c5H12, 

c6H14, c7, c8, and c91napthenes and c17 binaphthanes are among the 

products ef side reactions, but no evidence could be found for the 

formation of cyclobutane, cyclopropane and dimethylcyclobutane.34,59,62 

Various regulators have been tested and recommended to minimize 

these side reactions. It appears likely that the regulators function by 

destroying most of the isoparaffin carbonium ions by reacting with them 

before these ions can either lose a proton and irreversibly foul the 

catalyst~ ,or disproportiot?-ate, or alkylate another molecule. 51 Using 

aluminum along with aluminum chloride reduce~ catalyst consumption.18 A 

much more cemmon practice is to effect isomerization at 500-1000 

pounds/square inch pressure of hydrogen, even though some hydrogenolysis24 

occurs and the hydrogen.hinders the catalytic reaction.14 Naphthenes at 
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5,-10 volume per cent or benzene at O. 25-0, 5 per cent represses side 

reactions in the isomerization of ];-pentane by aluminum chloride-hydrogen 

chloride at 75°; however, too much benzene stops the reaction by trapping 

all the alkylcarbonium ions. 9, 30 The most recent suggestion is that 

excess isobutane, which is known to take part in the catalytic dispro

portionation of isoalkanes,52 can suppress side reactions and catalyst 
., 

loss in isomerization of ];=pentane (or of ];=hexane~ but less 

effectiv~ly),56 

Factors Affecting Isomerization 

The factors affecting isomerization are worth individual discussion. 

1. Physical state of the hydrocarbon, i.e., vapor phase or liquid 

phase. Some isomerizations are called "vapor-phase" &nd some "liquid= 

pha!:3e, 1137 but actually the carbonium ion intermediate cannot exist in the 

vapor or even the nonpolar liquid environment, and available evidence 

indicates the reaction occurs at solid surfaces, ordinarily the catalyst 

surface.7,27,35,58 

2. Concentration of the hydrocarbon. 

3. Solvent, if any. It is obviously difficult to find an inert, 

cheap solvent in which to carry out the catalytic isomerization. 

4. Catalyst. 

a. Nature. Both pure compounds and the variety of promoted 

ones need to be discussed here. Careful work has made it 

clear that pure anhydrous aluminum halide will not affect pure 

.!!-alkanes41 and/or cycloalkanes,13,31,34,38,58 although 

AlBr3-HBr is claimed to attackE-hexane or ,n-heptane even 

at 0°c.31 
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In 1943 and 1945 Leighton and Heldman26 and Powell and Reid46 

advanced a theory of isomerization involving the presence of hypothetical 

strong complex acids, HA1X4.ll They believed that the presence of these 

,acids was responsible for the catalytic activity of the aluminum halide. 

The more recent work of Pines and Wackher42,43b and Abraham and 

Ipatieff38 substantiates this theory but shows that substances other 

than a hydrogen halide must be present along with an aluminum halide in 

order to convert the AlX3 or AlXrHX mixture into an active catalyst for 

isomerization of paraffins and cycloparaffins. These promoters are now 

identified as olefins, 38, 41 , 4294.3b,SS, 43i water, oxygen9 cyclohexyl 

bromide 9 38 etc. It is suggested58l)4.3b that water converts .aluminum 

chloride (or rather Al 2x6) into intermediate compounds of the form 

AliX6~n (OH)'n (where 1. (·n> ~ 5), any of which may have catalytic 

activity. The use of radioactive hydrogen (tritium)46 or heavy hydrogen 

(deuterium) as tracers in butane undergoing isomerization withiAlX.3-HX 

has shown rapid exchange of hydrogen between the HX and the hydrocarbon. 

This indicates that hydrogen chloride or hydrogen bromide is involved 

directly in the reaction mechanism; however, HA1X4 has beeri pr6ved 
i 

incapable of independent existence, so that it can be postulated to form 

only in the presence of an acceptor for the proton, such as an olefin.37 

I 

A less well=known catalyst for isomerization of alkanes is boro~ 

trifluoride activated with-an alkyl fluoride.52,53,54 Little information 

on its relative efficiency is .available. Concentrated sulfuric acid 

is clearly a much weaker catalyst, which can shift methyl groups along 

a chain or around a ring but not produce any net gain in bran.chi,~.::,. -- _: , :~::. 

ing.15925950,60 The ~nly isomerization that has been observed to be 

caused by concentrated H2S04 (99.8 per cent) is that of these alkanes 

and cycloalkanes having tertiary carbon atoms. No evidence of a ring 



enlargement was observed for methylcyclopentane, An elaborate study 

of isoalkane-sulfuric acid hydrogen exchange and isomerization showed 

that the two are not necessarily connected; one can occur without the 

other. 60 
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Another class of catalysts, as already noted~ is that which has 

been developed for isomerization from general hydroforming catalysts. 

These are combination cracking (silica-alumina)=hydrogenation (nickel, 

platinum, cobalt, or molybdenum) 1,l0,2B,47,48 catalysts used at 450-

5000 and 500=1000 pounds H2/square inch pressure@ and are of recent 

appearance. The Platforming catalyst is not very specific~ yielding 

only 52 per cent ,!!-heptane isomerized, and 14 per cent recovered per 

pass;21 in contrast, molybdenum sulfide catalyst isomerized 79.4 per 

cent of cyclohexane, Tungsten sulfide showed quite ®xtensive hydrogen= 

olysis and is a poor catalyst for selective isomerhati.on. Close reg= 

ulation of the H2/,!!-pentane ratio· between 0.3 and 0.8 permits molybdena= 

alumina to give 40-55 per cent isomerization per pass and up to 95 per 

cent ultimately, apparently by a balance between carbon deposition on 

the catalyst (if too little hydrogen) and hydrocracking to lower alkanes 

(i.£ too much). 8, 16 The broadest claims are made for nickel=silica= 

alumina» which is said to be far superior to the aluminum chloride type 

of catalyst. 6, 7, 12 Excessive cracking activity is avoided by high

temperature steaming to reduce surface area. 

b. Surf~ce chaiacteristics. This has been little studied 

except for the cracking=hydrogenation high=temperature 

catalysts. 

5. Reaction time (contact time). Long reaction time (sometimes 

weeks) is required for the reactions at lower temperatures, but as the 

reaction temperature increases, the contact time decreases. 
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6, Temperature. A proper choice of temperature may result in the 

formation of a desired isomer. Increasing the reaction temperature 

increases the rate of reaction, but shifts equilibrium toward the normal 

paraffin and increases the proportion of side reaction,39 

7. Pressure. Other things being equal, increased pressure should 

favor isomerization over disproportionationj since the latter involves 

an increase in volume. Pressure increase should emlso fawor the formation 

of the isomer of greatest density. 

Measuring The Yield Of Isomers and Byprodu1cts 

Separation of products from Clill,ta,lyst is done either by distillation 

at low temperature (to avoid further reaction), or washing with wa,ter » 

or both. 

Thereafter, the most common procedure is fra1.c:tio1e1Je11 dlLstillai.tion., 

In the exceptionally favorable case of cyclohexane<': ,:,methylcyclopentame, 

fractional distillation must be very carefully done, with a 60-100 plate 

column and high reflux ratio,, to get maximum separation of what is 

usually a complex mixture, 

The separate cuts are then often examined further to characterize 

them. Densities, refractive indices, and melting points are easy to 

measure. The parachor is capable of distinguishing isomers differing in 

the .. number of methyl side chains, lO Much more elaborate and powerful 

tools are the infrared sp1rctrophotometer and the mass spectrometer, both 

of which have frequently been applied. The Raman spectrograph has been 

used very little, and of course instruments for the ultraviol 1et, while 

excellent for aromatics, are useless for alkanes and cycloalkanes, It 

has repeatedly been shown that refractive index alone is a good index of 

composition, but this simple method i_s safe only for an essentially 
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binary system. 

The Schaarschmidt method of selective chlorination with antimony 

pentachloride, described by Egloff~ al., 10 has some value for determin

ing isomers containing tertiary carbon atoms; but it is slow, it measures 

points of chain branching rather than isomers, and it is not at all 

clear-cut. The segregation of straight-chain alkanes by urea complexing 

may serve the purpose, but unfortunately the compl~:M:®~ do not form with 

chains as short as six carbon atoms. 

In a few instances the degree of chdn branching @r ~v~n thie identity 

of isomers has been derived from motor~n\ethod octanie numb~r determination, 



CHAPTER III 

SOURCES OF CHEMICALS 

The cyclohexane used in the experiments for the identification of 

reaction products was of a technical grade from Eastman Orgamic Chemicals 

Departrµent. The refractive index of this cycloh~xanei was L t~24}7 &l:,t 

20°C. Distillation of this material revealed the pnisence of some 

and lower boiling impurities such as benzene and water. 

The methylcyclopentane, with a refractive index of l.4091~ was 

supplied by Phillips Petroleum Company, 

A chemically pure grade of anhydrous aluminum bromide requir:i,ng no 

further purification was used. This came from City Chemical Corporation. 

Anhydrous aluminum chloride from Matheson, Coleman and Bell 

Incorporated was used throughout, This had become partially hydrated 

and further purification was necessary, except for the study of 

equilibrium constants, where impurities should have no noticeable effect 

on the values obtained, 

Several other chemicals (C. P. grade) were used and are listed 

below, along with the company that supplied them: 

Activated alumina •..••••.•••••••.••• Baker Chemical Company 

Ferric chloride anhydrous,, •• ,,,,, •• Matheson, Coleman, and Bell Inc. 

Antimony pentachloride .••.•••••••••• Baker Chemical Company 

Titanium tetrachloride ..•••••••••••• Fisher Scientific Company 

Stannic chloride •..••••••••.••••••.• Baker Chemical Company 

Concentrated sulfuric acid •.•••.•.•• Baker Chemical Company 

19 
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Purification Of Chemicals 

The fr actionating column used for distillation was a vacuum= 

jacketed Oldershaw bubble-plate having 30 plates, a high hold-up (45 cc)p 

and a timer set at 10 per cent takeoff. Cyclohexane and methylcyclopen= 

tane were purified by the use of this column and the constant=boiling 

fractions were used. 

Various methods and types of apparatus were used in an effort to 

obtain pure catal~sts, which were placed in sealed, breakab l e capsules, 

and to cut down on the time required for each run . Each method tried 

had its own advantages and disadvantages that will not be explained 

further. 

A. Sublimation 

The simple apparatus shown schematically in Figure 1 is used in a 

very quick and crude method of subliming the catalysts , A bulb (a,b) of 

10 to 12 lIUll in diameter is blown in a short piece of 5-lIUll Pyrex tubing . 

After introduction of the catalyst in one end of the t ube, a tight=fit ting 

glass rod K is inserted behind it to prevent cata lyst vapors from escaping 

during the sublimation of the catalyst into the bulb . When sufficient 

catalyst has been sublimed into the bulb, the l a tter is sealed off. The 

catalysts produced by this method were not of suff icient purity for the 

purpose of this work. 

Another method for purification of solid cata lysts is shown in 

Figure 2. Catalyst is placed in the bulb K, which i s then attached to 

the bulb containing the hand-blown thin-walled capsules ab and ed. 

Nitrogen gas is passed through the system; and, when heat is applied, the 

purified ca talyst is collected in the capsules, which a r e sealed off at 

the points a,b,c and d . Further modification of this apparatus is 
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depicted schematically in Figure 3, the difference in use being that sub= 

limat i on is done under vacuum. Several other difficulties were then 

encountered--the undue length of time spent to prepare the capsules, 

and trouble in sealing off the tube containing the catalyst . Glass 

surfaces covered with the catalysts (aluminum chloride or ferric chloride) 

or their residues do not flow properly when the glass i s melted , and 

would not give seals . 

Figure 4 shows the apparatus used in the quickest and most effective 

method of all. Catalyst is placed in K through openi ng M and t hen 

nitrogen gas is flushed through the system. Tube AB is heated up to 

about 200° by means of an electric current through the nichrome wire 

wrapped around the tube. When heat is applied at K, the catalyst sub= 

limes and condenses on the side walls of the glass tubing above the 

capsules. Then, with the help of a Bunsen burner, it is trans f erred into 

the capsules. The excess sublimed catalyst is collected in tube L. In 

this method the capsules are blown in the end of 3- mm Pyrex tubing which 

is joined to the rest of the apparatus by the use of ball0 joints E and F. 

In this way several capsules containing catalyst can be made in each run. 

B. Distillation 

A liquid catalyst is placed in a round-bottomed distilling flask A 

(see Figure 5), which joins the condenser H connecting it to the rest of 

the apparatus. Nitrogen gas is flushed along the system through opening 

C and out through drying tube E. The part of the system T through G is 

evacuated p~ior to the distillation by using the rubber bulb with valve 

K. After heat is applied at A and the catalyst condenses at H, the 

distillate trickles down unt il stopped by the Teflon-plug stopcock T. 

Excess distillate runs into the reservoir B. When sufficient distillate 

has formed at T, the stopcock is opened and the pure catalyst is forced 
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through the 3-nun tube into the bulb G, after which the stopcock is 

closed and another evacuation made to prevent a pressure build=up 

during the sealing off of the bulb G. The bulb-tube is removed at the 

ball-joint clamp D and another is clamped in place for the next run. 

Stannic chloride was purified by this procedure. 

Apparatus For The Reaction 

Two general types of apparatus were used in this work to gain 

qualitative and quantitative results. One was designed to give an 
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idea as to the ability of a catalyst to isomerize cyclohexane under 

partially controlled conditions. The limits of this control are illus= 

trated by the general arrangement of the apparatus as shown in Figure 6. 

A 100-ml round-bottomed flask A was fitted with a long reflux condenser, 

the top of which was connected to containers Band C of dehydrating 

reagents such as activated aluminum oxide and/or phosphorus pentoxide. 

For the more precise work other types of apparatus were constructed. 

Schematic drawings of these appear in Figures 7 and 8. The conditions 

under which the runs were made were carefully controlled. The apparatus 

shown in Figure 7 was composed of a 200-ml round-bottomed flask A, 

condenser L, automatic pipette E, and two manometers X and Y. It was 

constructed entirely of glass, with only one three-way stopcock with 

Teflon plug where it would come in contact with liquid cyclohexane» F. 

Flask A and re,ction tube S could be removed from the apparatus; but the 

rest of the jointa were fu~ed together . 

By the use of this equipment, eight hours on an average were 

required to produce one sample for isomerization. It was a difficult 

and time-consuming task. What was needed was a simplification of 

techniques so that more runs could be made with more frequent analysis 
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of products, to provide a.better basis for making comparisons. 

In an effort to achieve this simplification, the apparatus shown in 

Figure 8 was constructed. It consisted of a T-tube connected to the 

reaction tube on one side and to the two manometers at the other opening; 

the connections were made with Tygon tubing. Stopcock K served to open 

and close the vacuum line to the system; and nitrogen was flushed into 

the system from point C, 

The details of each apparatus will be discussed later. 

In order to keep the reactor tubes at a consteint temperature~ it 

was necessary to construct a thermostat with a thermoregulator (:!: 0.1°) 

to operate at temperatures as high as 80°C. The thermostat w£s f:l.lled 

with ethylene glycol instead of water to reduce evaporation of liquid. 

Figure 9 illustrates an agitator for the sealed~reactor tubes. 

This rocked the fluid from one end of the tube to the other. The reactor 

tubes were clamped at points a-b, c-d, etc. The oscillating motion was 

generated by an electric automobile windshield wiper using direct current 

which was provided by a rectifier. The reactions at 80-160°C were 

carried out in a Carius-tube furnace, 
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CHAPTER IV 

EXPERIMENTAL PROCEDURES AND RESULTS 

The Action of Aluminum Chloride on Cyclohex.ii!ne 

and Methylcyclopentane 

Procedure I. 

Cyclohexane (50 ml.) and 10 grams of anhydrous aluminum chloride, 

activated with a small amount of water, were placed in a lOO=mL flask 

equipped with a reflux condenser and connected to dehydra.ting=rea.gent 

containers (see Figure 6). 

The reaction mixture was boiled for 45 hours, after which the 

reaction flask was cooled with a mixture of ice and salt, and the liquid 

decanted and washed with ice water. After drying over activated aluminum 

oxide, the product had a refractive index of L 42173 at 20. O", which 

corresponds to 27. 3 mole per cent methylcyclopentane. 

The same procedure was used for the isomerization of methylcyclo

pentane and the dried product had a refractive index of 1. 42167 at 20. O". 

This refractive index corresponds to 27 .4mole per cent methylcyclopentane 

and 72. 6 mole per cent c.yclohexane. 

Procedure IL 

Cyclohexane and a piece of metallic sodium were introduced into 

distilling flask A (see Figure 7), and a weighed amount of catalyst con

tained in a sealed glass capsule in reactor tubes. The system was 

evacuated by opening the stopcocks at Mand H. The safety column Y also 
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served as a manometer. Nitrogen was then introduced i nto the system 

through stopcock M. This was repeated several times · to remove the air 

and replace it with nitrogen: When the pressure build0 up from the 

nitrogen occurred, the excess nitrogen was run out through the mercury 

in the safety column X. 

The cyclohexane was distilled and collected in the container D. 
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During distillation all the stopcocks were closed except stopcock Z 

which served to make connection wit~ Y acting as a safety column in case 

of pressure build-up from the cyclohexane vapors and/or nitrogen. Eleven 

ml. of cyclohexane from D were placed in the automatic pipette E through 

the Teflon-plug stopcock at F and let down into the reactor tube. The 

Teflon plug did not hold a vacuum well, and stopcock grease could not 

be used since it contaminated the cyclohexane. Therefore, the whqle 

~~opcock was incased in thin rubber tubing which effective ly sealed it 

off, . The cyclohexane was frozen in reactor tube S to decrease vaporizing 

during evacuation. The activator (if any) was placed in the reactor 

tube through opening S, in an open capsule. A glass-covered iron rod 

served to prevent the activator capsule from dropping . When the iron 

rod was pulled back into I by a magnet, the activator capsule was 

allowed to fall into the reactor tube. 

The next step was the sealing off of the react ion tube. In order 

to facilitate this operation, the reaction tube was placed under slight 

vacuum as shown by a small rise in the mercury column Y. The vacuum 

prevented a pressure build-up and also caused the walls of the reactor 

to collapse during the heating . 

The thin-walled catalyst capsule was then broken by ~triking the 

reaction tube sharply against a rolled magazine. Although this method 

may seem crude, very little difficulty from tube breakage was encountered. 
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The reaction tube was placed in the agitator in a constant=temperature 

bath (see Figure 9). After agitation for a known time, the reactor tube 

was opened, the liquid deca~ted and washed several times with ice water 

in a separatory funnel, and the hydrocarbon layer separated from the 

water and dried over activated aluminum oxide. 

The weight o~ aluminum chloride was determined by weighing the 

glass capsule before and after the experiment. 

From the refractive index o_f the hydrocarbon mixture 9 the per= 

centage of isomerization was determined from the binary di$gr~ shown 

in Figure II. The results of applying this method a.re summarized in 

Table II. 

Procedure III. 

Fifteen ml. of hydrocarbon, measured with a pipette, was introduced 

into the reaction tube G (see Figure 8) together with a weighed amount 

of catalyst contained in a sealed glass capsule. The reaction tube was 

connected at point D to the rest of the apparatus, the pinch clamps at 

points A and B being closed. The stopcock K was opened and the system 

to the left of clamp A evacuated until the mercury in the manometer Y 

had risen to a maximum. The stopcock K was then closed. The reaction 

tube was cooled in a mixture of ice and salt, and then clamp A was 

opened, so that the tube was partially evacuated. The m~rcury in the 

manometer fell to approximately three-fourths the original height. 

Clamp A was then closed, and B was opened, admitting nitrogen to the 

reaction tube. This process of evacuating and admitting nitrogen was 

repeated until the mercury had fallen to the level of that in the 

rese+voir. With all the clamps closed, the stopcock K was again 

opened and the system evacuated until the mercury had risen to a 

maximum. The process of evacuating the tube and then filling with 



TABLE II 

-RESULTS OF ISOMERIZATIONS BY PROCEDURE II 

Run No.. l 2 .3 

Aluminum chloride, grams 0.8545 0.2295 0.4692 

Activator (H20), grams -- -= 0.0481 

Tempe:r:ature, °C 25 25 25 

Reaction time, hrs. 24 24 24 
' 

*Refractive index of product, 
1.4243 l.424:l l.4241 ... 20 n , 

D 

Methylcyclopentarte indicated 
20 ll. 7 12.8 12.8 

by n , mole% 
D 

* Determined with a Bausch and Lomb Abbe-type refractometer. 

4 s 

0.0917 0.2515 

60 60 

1/2 1 

l.4247 1.4240 

9.3 13.4 

6 

o. 2010 

60 

1/2 

l. 4247; 

9.3 

(.,> 
.p. 



35 

nitrogen was repeated in exactly the same manner as described above. It 

was believed that three to four compl et e evacuations were necessary to 

remove all air from the reaction tube. 

Then the reactor tube was sealed off at Gunder slight vacuum and 

treated as described in the previous procedure . 

The results of applying this method are shown in Table rir. As 

noted later, they were quite unsatisfactory. 

Comparison of Ot her Catalysts 

With Aluminum Chloride 

Ferric chloride proved to be inactive as a catalyst for the isomer= 

ization of cyclohexane and met hylcyclopentane. Runs were made using all 

three procedures that have been described. The products obtained from 

these runs remained light yellow in color after washing several times 

with water. 

Ana lysis of these yellow pr oducts with t he dipping refr act ometer 

gave "impossible" values; the r efractive indexes were often higher than 

for pure cyclohexane or else for pure methylcylopentane. Consequently 

t he r eacti on products wer e di s ti lled. The refractive index of the color~ 

l ess dis t i lla t es showed them to be samples of pure cyclohexane or methylQ 

cyclopentane; no isomerization had occurred. 

It was believed from the di scolorat ion of the hydrocarbons that the 

ferric chloride might have been hydrated by the di s solved water in 

cyclohexane and the moisture of its sur rounding containers. A run was 

made using 25 grams of anhydrous ferric chlori de ( f rom a previously 

unopened bottle) and placing it immediat e ly i n SO ml . of purified 

cyclohexane. The r eact i on f l ask was joined to the condenser and then 

anhydrous hydrogen chloride wa.s bubbled in through glass tubing inserted 



TABLE III 

RESULTS OF ISOMERIZATIONS BY PROCEDURE III 

Run No. 1 2 3 4 Si( 

Hydrocarbon used* CH3C5H9 CH3c5H9 CH3c5H9 C6Hl2 CH3c5H9 

Aluminum chloride, g 0,0809 0,0894 0.0494 0.0376 0.3170 

Temperature, °C 40 40 40 40 60 

Reaction time, hrs. o. 25 0.5 1.0 0.5 4 

Refractive index of product, 

25 1.4058 1.4059 1.4060 1.4218 1.4066 
nD 

Methylcyclopentane indicated 
99 98. 5 · 97.7 1. 2 94.2 

by n 25 , mole% 
D 

* Catalyst purified in apparatus s~own in Figure 4. 

6* 7-1: 

CH3c5H9 C6Hl2 

0, 3112 0.3567 

60 60 

10 4 

1.4061 1. 4220 

97. 3· 0 

s~·:.-

C6Hl2 

0.3737 

60 

10 

1. 4220 

0 

w 

°' 
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through the condenser. After the gas had been added for 30 minutes, the 

cyclohexane was refluxed for 39 hours. At the end of this period the 

catalyst was destroyed by the usual method and the reaction product was 

distilled. The distillate had a refractive index of 1.42623, which 

corresponds to zero isomerization. 

Several other members of the Lewis-acid family were refluxed with 

cyclohexane, the apparatus illustrated in Figure 6 being used. The 

results, all negative, are sUD1Darized in Table lV. In working with these 

catalysts the destruction of the catalyst with water became a major 

problem. Since some of them, such as titanium tetrachloride and anti-

mony pentachloride, hydrolyze violently, the heat resulting from the 

reaction with water caused evaporation of the hydrocarbons before the 

complete destruction of the catalyst occurred. To overcome this undesired 

feature of the reaction between catalyst and water, the hydrocarbon 

layer was poured in small portions into a large flask of ice water. 

Analytical Procedure 

An Abbe-type and a Zeiss dipping refractometer were used in this 

work. 

In the preliminary experiments the lack of an independent cooling 

and circulating system made it impossible to keep the thermostatic temp-

erature at exactly 20°, the only temperature for which a literature 

calibration curve for cyclohexane=methylcyclopentane is available. 13 It 

was then decided to make up a binary diagram of composition vs. refractive 

index a·t 25 ° • 

. · A series· of methylcyclopentane-cyclohexane mixtures (by weight) was 

prepared and the refractive indices determined with a Bausch and Lomb 

Abbe-type refractometer with the temperature controlled at !2°. 
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TABLE IV 

ATTEMPTED ISOMERIZATION OF BOILING CYCLOHEXANE WITH VARIOUS CATALYSTS a 

Reaction time, hrs. 65 35 49 48 48 48 

Catalyst SnCl4 
b SnCl4+ 

FeCl3 
Con. H2so4 TiC14 ClHS03 SbCl5 

Volume or weight of 25 ml. 25 ml. + 50 ml. 15 ml. 15 ml. 25 ml. 
c~talyst 9 g 

Refractive index of 1.42623 1.42618 1. 42614 l. 42603 1.42623 1. 42679 
product, nD 20 

Methylcyclopentane, mole% 0.00 0.40 0.80 1. 30 0.00 C 

a. 50 ml. cyclohexane used throughout these tests. 

b. After purification, also tested as catalyst by Procedure III; it proved inactive here also. 

c. Chlorination had evidently occurred. 

w 
00 
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A plot of the data (see Table V) is shown in Figure 10; this was 

used for the analysis of the products of isomerization. The resulting 

curve is so nearly linear with composition that it is probably just as 

accurate to assume it is a straight line between the values for the pure 

hydrocarbons. It is parallel to the ideal curve (straight line drawn 

between the values for the pure cyclealkanes); its failure to coincide 

with it is attributed to inaccuracy' ef 'refractometry and the impurities 

in the cyclohexane and methylcyclopentane. 

After a new bath with a cooling and circulating system had been 

constructed, the refractive indexes were obtained at 20°C with additional 

accuracy by the use of the,dipping refractometer. 

The diagram of refractive index vs. composition for the binary 

system at 20°C was made after the experience with the d~ta at 25°> by 

drawing a straight line between the values fer the pure cyclohexane 

and the methylcyclopentane. This curve, which is shown in Figure 11, 

very nearly coincides with the experimental findings of Glasebroek and 

Lovell. 13 

The Effect of Temperature and Catalyst on the 

Cyclohexane-Methylcyclopentane Equilibrium 

Both aluminum chloride and aluminum bromide were used as catalytic 

agents. The runs were made by a greatly simplified procedure. Cyclo= 

hexane (25 ml.) was introduced into a combustion tube along with 10-12 

grams of catalyst, and immediately frozen in a dry ice bath. The tube 

was then sealed off. 

The reaction tubes were placed in a constant=temperature bath for 

the temperature range 25° to 60°. The destruction of the catalyst and 

drying of the hydrocarbon was done by the usual procedure. 



TABLE V 

REFRACTIVE INDICES nD 25 FOR METHYLCYCLOPENTANE•CYCLOHEXANE MIXTURES 

25 

1.4220 

1. 42015 

1. 4184 

1.4167 

1. 4134 

1. 4119 

1.4089 

1.4056 

Methylcyclopentane, 
mole.% 

. 0.,00 

10.00 

20.00 

30.00 

50.00 

60.00 

80.00 

100.00* 

Cyclc,hexane) 
mdle % 

100.00* 

90.00 

80.00 

70.00 

' 50.00 

40.00 

20.00 

o.oo 

* Assuming the cyclohexane and methylcyclopentane to be 100% pure 
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For each temperature several runs were made. The resultant values 

are shown in Tables VI and VII. A plot of these v~lues as a function of 

temperature is shown in Figure 12 for aluminum bromide, and in Figure 13 

for aluminum chloride. Figure 13 also gives published values for 

aluminum chloride.13,27 



.. Run 
No. 

1 

2 

3 

4 

5 

6 

7 

8 

TABLE VI 

EQUILIBRIUM CONCENTRATIONS OF METHYLCYCLOPENTANE IN THE 
PRESENCE OF ALUMINUM BROMIDE 

Reaction Reaction 20 
time, hrs. _ temp., oc nD 

23 80 1. 42251 

14 95 1.42154 

10 105 1. 42093 

6 120 1. 4197 5 

6.75 130 1.41914 

3.5 145 1.41849 

3 150 1. 41786 

2 160 1.41719 

* Average mole per cent of methylcyclopentane 

44 

Mole% 
C5H9CH3 

22.4* 

28.4 

32. 2-

39. 2* 

42.8 

· 46.8 

50.6 

54. 7 



TABLE VII 

EQUILIBRIUM CONCENtMTIONS OF METHYLCYCLOPENTANE IN THI PRESENCE 
OF ALUMINUM CHLORIDE 

Run Reaction 'Reaction 
nD 

20 
No. tiae, hrs. temp., oc 

1 600 25 1.425-93 

2 624 35 1.42494 

3 192 45 1.42443 

4 90 55 1.42338 

5 47 65 1.42275 

6 24 80 1.42190 

7 12 92 1.42083 

8 8.75 100 1.42002 

9 6 110 1.41979 

10 3 130 1.41'823 

11 2.5 145 1.41720 

12 2 160 ·1.41627 

* Av~rage·moie per cent of tn~thylcyclopEinta.ne 
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Mole% 
C5.B9CH3 

2.0 

8.0 

16;s 

17. 2 

21.2 

26.3* 

32.7 

37.7 

38.9 

48.4 

54.5 

60.2* 
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CHAPTER V 

DISCUSSION OF THE RESULTS 

In order to compare the effectiveness of various catalysts and 

conditions for the isomerization of cyclohexane~ a vost1mnd&rd 11 catalyst 

was needed. Aluminum chloride was chosen because of th~ £mount of 

published data available. 

Preliminary trials of aluminwn chloride by Procedure II at room 

temperature for 24 hours (Table II, runs 1, 2, and 3) show that an 

equilibrium conversion of ·-cyclohexane to methylcyclopent.mnei was thus 

attained. (According to Glasebrook and Lovell, at 25°, 12.50 mole per 

cent of cyclohexane is converted into methylcyclopentane.) 13 However, 

the equilibrium conversion of cyclohexane to methylcyclopentane is 

obviously undesirable since it permits no valid comparison of the,!!!! 

of reactionQ~~i.e,s catalyst effectiveness. Evidently some impurities 

in the catalyst or in the cyclohexane may have acted as an activator even 

when none was added. 

The small differences between equilibrium values (runs 2 and 3) 

obtained by this method and the one by GLasebrook and Lovell are probably 

due to the lack of a bath for maintaining ·the temperature of the 

refractometer at 20°. An Abbe refractometer was used for the analysis of 

the product and was not calibrated at the time. 

As noted, it was necessary to arrest the isomerization before 

equilibrium was obtained. For this purpose time and temperature had to 

48 •' 
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be carefully regulated. Runs 4, 5 and 6 in Table II were made with a 

resublimed catalyst in a thermostat at 60°. Although none of these 

nearly approached giving the literature value for equilibrium conversion 

at 60°, which is 19.5 per cent, no isomerization at all should have 

occurred if activators were not present. 

Many runs were tried with this procedure, but none gave the desired 

zero isomerization. Another disadvantage of this technique, as already 

remarked, was the time required for each run. 

The advantages of the revised apparatus shown in Figure 8 are: 

(1) runs could be made in a much shorter time, and (2) there was less 

chance of contamination of reagents by stopc~ck grease, etc. 

Isomerization by rrocedure III was conducted using both cyclohexane 

and methylcyclopentane. Since the amount of conversion from the methyl~ 

cyclopentane side is much greater than from the cyclohexane, (the 

concentration of cyclohexane in the equilibrium mixtures is much greater 

than that of methylcyclopentane), the refractometric analysis is more 

reliable for the methylcyclopentane runs. The low results that were 

obtained (Table III, runs 1 to 4) with aluminum chloride purified in 

the simple apparatus shown in Figure 1 indicate that not enough activators 

were present to promote the reaction appreciably. Nevertheless, again 

not ,one run showed zero isomerization; this seems to indicate that traces 

of activators were present. It seems quite likely that purifying the 

aluminum chloride and subliming it into capsules by the above method did 

not give a pure catalyst. 

The need for a new apparatus for the purification of catalyst thus 

became apparent. The best results were obtained by using the new 

apparatus shown in Figure 4. Runs were made at 60° with reaction times 

4 and 10 hours, using both cyclohexane and methylcyclopentane, and gave 
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either small degrees of isomerization (runs 5 and 6 of Table III) or none 

at all (runs 7 and 8 of Table III). Therefore, it was concluded that 

promoters were essentially absent and that this procedure should be used 

for the comparison of other catalysts with aluminum chloride. 

Aluminum bromide isomerized cyclohexane in the combustion t ube 

giving 22.4 mole per cent methylcyclopentane after 23 hours at 80° C. At 

reflux temperature (see Figure 6) aluminum chloride produced 27.3 mole per 

cent of methylcyclopentane from cyclohexane during 44 hours and left 

27.4 mole per cent starting with methylcyclopentane ; thus equilibrium 

between cyclohexane and methylcyclopentane had been attained. On the 

other hand, 78.7% of methylcyclopentane remained unisomerized when 

· refluxed with al,uminum bromide for 44 hours . This value is obvious ly 

far from the one obtained from the cyclohexane side. Since no other 

experiments were made with methylcyclopentane plus aluminum bromide 

catalyst and there is much evidence that the equilibrium composition is 

about 25% methylcyclopentane, 75% cyclohexane at 80°, it must be concluded 

that the isomerization of methylcyclopentane by aluminum bromide is 

abnormally slow and that this one value obtained thence is untrustworthy 

for equilibrium studies. 

As a matter of fact, other observations also indicated that aluminum 

chloride produces a higher reaction rate than aluminum bromide. The 

possible reasons for this are: 

a. An aluminum halide cannot initiate the isomerization reaction 

unless some small quantity of promoters (H20, o2, etc.) is present . The 

combination of catalyst with promoters will produce an intermediate 

active compound in the form of a complex. 

AlX3 + H20 

HOA1X2 + RH 

~=======7HOA1X2 + HX 

~======~ Complex 
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If one step of the isomerization involves separation of some of the 

halogen from the hydroxyaluminum dihalide as halide ion, as seems 

probable, then aluminum chloride should be a better catalyst than aluminum 

bromide. This is because the greater electronegativity of chlorine will 

favor its becoming chloride ion in any such competition -with bromide. 

b. The aluminum chloride is essentially insoluble in cyclohexane 

and methylcyclopentane whereas the solubility of aluminum bromide is 

high. It may be that aluminum bromide gives a lower rate of isomerization 

because it complexes more strongly with cyclohexane and methylcyclopentane 

than aluminum chloride does, and the stability of these complexes 

actually impedes the reaction. 

Other acid catalysts were tried; some had very little effect and 

some had none. The difference between aluminum halides and other halides 

as catalysts is evidently much greater for this isomerization than for 

the Friedel-Crafts ketone synthesis. 

As is shown in Figure 13, the equilibrium conversion of cyclohexane 

to methylcyclopentane was not attained for the temperature range of 

25° :to 55 °. This has also been noted by other investigators. If the 

aluminum chloride, water and hydrocarbon are mixed and allowed to stand 

at room temperature for several days, very little reaction occurs. 

According to Glasebrook and Lovell,13 the induction period can be over= 

come if the reaction mixture is heated to boiling before it is placed in 

the constant~temperature bath . Since the major part of this work is 

concerned with values gained over the temperature range of 80° to 160°, 

a~option of the procedure of Glasebrook and Lovell was not considered 

necessary. 

A series of calculations were made from the thermodynamic data of 

A.P.I. project 44 (see Appendices A and B) to plot the theoretical 



52 

equilibrium curve. The method of calculation for log Kand its values 

are shown in Table VIII. A plot of these values as a function of the 

inverse of the absolute temperature is shown in Figure 149 from which the 

value of log K can be read at any temperature within the range. Equilib~ 

rium concentrations of cyclohexane and methylcyclopentane at specified 

temperature can then be calculated. 

The data from Tables VI and VII were used to calculate the ®quilib= 

rium constants and t:::;E values by means of the equation e;JJ' = -RT ln K. 

Other thermodynamic constants w.are obtained by the use of Vsm 1 t Hoff 8s 

equation d(-R ln K) = 6H and the free energy equation ISF =Lill= T.68. 
· 'd ( 1/T) ' 

The results are sunnnarized in Tables IX and X. 

It is apparent that the experimental equilibrium constant v2lues do 

not agree well with the theoretical values. This observation confirms 

the discrepancies of about the same order of magnitude observed by 

previous investigators. The extent of the side reactions, some of them 

irreversible, accompanying the isomerization must have h~d some effect on 

the apparent ratio of methylcyclopentane to cyclohexane. However, this 

is not believed to be the cas~ for experiments conducted below 60° where 

the side reactions would have a negligible effect. At elevated tempera.0 

, I . 

tures a minimum reaction time consistent with attainment of equilibrium 

is very des.irable to minimize these side reactions. The selection of the 

proper reaction time, however, was always a difficult task. 

During runs at 110-160°, the aluminum chloride=hydrocarbon system 

changed from solid+ liquid to liquid+ liquid. The color of this two~ 

liquid system changed from faint yellow to darker yellow as the reaction 

time increased. During longer heating a small portion of the liquid 

mixture formed a third phase (Tarry), which upon opening the cooled 

reaction tube turned to red and then slowly to black. These color 



TABLE VIII 

CALCULATED EQUILIBRIUM CONSTANTS FOR THE REACTION 

CYCLOHEXANE ti II METHYLCYCLOPENTANE 

53 

(B~ee.d:.01:1. th~-~~l•U~ns~~psAF25° = AFf 0 (methylc~lopentane) - AFf 0 (cyclo

hexane), and log ''It= -AF0 /2. 303 RT) : 

Temperature, °C l/T 0 log'K 

25 o.00335~; -0.70361 

~26.~; .0~0025 0~·03&24 
,:,•,.:,-. 

226.84 0.0020 0.46765 

326.84- . 0.00166 0.75757 

42~.~4 0.00143 0.95528 

S26.84 0.0012s 1.10084 



TABLE IX 

EQUILIBRIUM BETWEEN CYCLOHEXANE AND METHYLCYCLOPENTANE 

CATALYZED BY A1Br3 

*M = 4722 - (11. 1 '± 0. 2) T 

Tempera,ture» oc K K** 
observed value calculated value 

80 0.289 0.549 

95 0.397 0.699 

105 0.475 0.794 

120 0.645 1.048 

130 o. 748 1.096 

145 0.880 1.314 

150 1.024 1.397 

160 1. 208 1.544 

* .6H is assumed constant over the temperature range. 

** Read from Figure 14. · 
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eiF' cal. 
observed value 

871 

676 

559 

343 

233 

106 

-20 

el63 
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iTABLE X 

' ' i 

EQUILIBRIUM BETWEEN CYCLOHEXANE AND METHYLCYCLOPENTANE 

CATAJi,YZED BY AlC13 

., 
*AF = 4429 = (10. 7 ! o. 25) T 

ii 
Temperature~ oc i< , .. K~ l:il, cal. 

observed value calculated value : observed; value 

65 0.269 0.421 882 
! 

80 0.356 0.549 76$ 

·92 0.486 0.666 524 

100 0.603 0.739 375 

110 0.637 0.861 343 

130 0.938 1.096 51 

145 1.1~8 1.314 -150 

160 1. 513 1.544 =356 

* ~ is assumed constant over the temperature range. 

** Read from Figure 14. 
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changes are thoug~t to .be due to the formation of unsaturated hydro= 

carbons. The dark yellow hydrocarbon mixtures from such runs when 

analyzed refractometrically gave results that could not be interpreted. 

The results which are listed in Tables VI and VII were obtained 

reproducibly from samples which did not show any of the physical 

changes described above except development of the faint yellow color. 



SUMMARY 

1. The equilibrium of cyclohexane or methylcyclopentane in the 

pres.ence of anhydrous aluminum chloride has been studied. The experi~ 

ments confirm the lack of catalytic activity of aluminum chloride in.the 

absence of a promoter. At 60° impurities such as water act as promoters 

of isomeri~ation by aluminum halides. 

2. A series of o'l:her Lewis acid-type catalysts showed no ability 

to catalyze the isomerization of cyclohexane refluxing under 1 atmos~ 

pheric pressure. 

3.· Equilibrium concentrations of cyclohexane and methylcyclopentane 

were produced by use of both aluminum chloride and aluminum bromide 

catalysts, and were determined refractomet~ically. The experiments were 

carried out over the temperature range 25° to 160° with Alc13 and 80° to 

160,0 with AlBr , Equilibrium values were .then. plotted as. ·a function of 

temperature along with the values obtained from other investigatiors. 

4. From these data, values of the equilibrium constants, free 

energy change, heat of reac.tion, and entropy change for the isomerization 

reaction have been computed. 
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APPENDIX A 

Selected Values of Physical and Thermodynamic Properties 
of Cyclohexane (A.P.I. Thermodynamic data, Project 44) 

Free energy function (F 0 -H 0 )/T for the ideal gas state 

400 500 600 700 800 900 1000 

-61.8 -66.39 -70.96 -75.5 -79.97 -84.4 -88.74 

Entropy, S0 , for the ideal gas state 

400 500 600 700 800 900 1000 

80.18 89.24 98.30 107.14 115. 65 123.8 131. 59 

Heat Content (Enthalpy), (H 0 -H0), for the ideal gas state 

400 500 600 700 800 900 1000 

7352 11425 16404 22148 28536 35460 42850 

Temp., °K 

(F0 -H0 ) /T 

Temp., °K 

S 0 in 
cal. /deg. -mole 

Temp., °K 

(H0 -H 0 ) in 
cal. Ailole 

°' l.,J 



0 

0 

0 

-22. 01 

0 

-20. 01 

Append_ix A (Continued) 

Heat Capacity, C0 for the ideal gas 
p 

298.16 300 400 500 600 700 800 900 

25.4 25 .58 35.82 45.47 53.83 60.87 66.76 71.68 

' 
Heat of Formation, 6Hf 0 

298.16 300 400 500 600 700 800 900 

-29. 43 -29.48 -31. 7 -34.08 -35.57 -36.59 -37.19 -37.46 

Free Energy of Formation, !SFf 0 

298.16 300 400 500 600 700 800 900 

7.59 7.81 20.66 34.07 47.86 61.85 75.96 90.13 

Heat of formation, Hf0 , at 25° (liquid phase)= -37.34 Kcal./mole 
Entropy, S0 , at 25° (liquid phase)= 48.85 cal./deg.-mole 
Free -energy of formation, !SFf0 , at 25° (liquid phase)= 6.37 Kcal./mole 
Boiling point= 80.738°C at 760 nnn 

1000 Temp., °K 

75.8 C0 in 0 cal. /deg. -mole 

1000 Temp,, °K 

-37.41 6H O in f Kcal. /mole 

1000 Temp., °K 

104.3 !SF O in f 
Kcal. Lmole 

20 nD = 1.42623 Density at 20° = 0.77855 g/cc 

n25 = 1. 42354 
Density at 25° = 0.77389 g/cc 

D Freezing point= 6.554°C in air at 
1 atmosphere 

a, 
~ 



0 298.16 300 

0 -65.23 -65.33 

0 298.16 300 

0 81.24 81.42 

0 298.16 300 

0 4774 4827 

APPENDIX B 

Selected . Values of Physical and Thermodynamic Properties 
of Methylcyclopentane (A.P.I. Thermodynamic data, Project 44) 

Free energy function (F 0 -H 0 )/T for the ideal gas state 

4QO 500 600 700 800 900 

-70.45 -75.33 -80.07 -84.72 -89.26 -93.68 

. Entropy, S0 , for the ideal gas state 

400 500 600 700 800 900 

90.33 99.36 108.24 116.81 125.0l 132.83 

Heat Content (Enthalpy), (H 0 -H0), for the ideal gas state 

400 500 600 700 800 900 

7952 12015 16902 22463 28600 35235 

1000 

-97.97 

1000 

140.25 

1000 

42280 

Temp., °K 

(F 0 -H0 )/T o . 

Temp., °K 

go , 
cal. /deg. -mole 

Temp., °K 

(Ho-HO), 
cal./mole 

a, 
V1 



0 

0 

0 

-16.62 

0 

-16.62 

298.16 

26.24 

298.16 

-25. 5 

298.16 

8.55 

300 400 

26~46 36.11 

300 400 

-25. 54 -28. 07 

Appendix B (Continued) 

Heat Capacity, C0 , for the ideal gas state 
p 

500 600 700 800 900 

44.94 52.43 ~8.68 64.00 68.53 

Heat of Formation, 6Hf0 

500 600 700 800 900 

230.11 -31. 68 -32. 88 -33.74 -34.29 

""-..,., ..,., .. -' ....,.,. - ... ...;r-~..,-· 
Free Ener~y of Formation, !:lFf0 

300 400 500 600 700 800 900 

8. 76 20.59 33.00 45.78 58.79 71. 93 85.17 

Heat of formation, 6Hf 0 , at 25°C (liquid phase)= -33.07 Kcal./mole 
Entropy, S0 , at 25° (liquid phase)= 59.26 cal./deg.-mole 
Free ·energy of formation, !SF f O , at 25 ° (liquid phase) = 7. 53 Kcal. /mole 
Boiling point= 71.812°C at 760 mm 

1000 Temp., °K 

72.44 C0 in p 
cal. /deg. -mole 

1000 Temp., °K 

-34.58 H O in f 
Kcal. /mol e 

1000 Tei:np,, ~-K 

98.46 F0 in 
Kcal. /mole 

dt/dp = .04274°C at 760 mm 

n20 = 1. 40970-
D 

Density= 0.74864 g/cc at 20° 
Density= 0.74394 g/cc at 25° 
Freezing point= -142.455°C in air at 

n25 = 1. 40700 
D 

1 atmosphere °' °' 
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