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PREFACE

When conducting scientific research; the experimenter is confronted
with the problem of taking a minimum sample size and still be confident of .
-the results.

Thié thesis will help provide an answer to thié problem. Four
‘methods are given for determining the sample size necessafy from an
infinite population. A desirable sample size from a finite population
is briefly discussed. An applied problem in t.,exjtil‘e. research is also
p;_esg_nted.

Indebtediness . is acknowledged to-Dr, Franklin Graybill for his val-

uable guidance and assistance in preparing this study.
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INTRODUCTION

When we desire the value of a parameter in a given distribution, we
are faced with the problem of determining a sample size that will yielld
a realistic result. Of course, if we had unlimited time and resources
there would not be any problem because in that case we could utilize
most of the population. We shall consider the case where we are
sampling from a normal population of random variables, We want to
minimize time, work, and money and at the same time have confidence
that a sample will give reliable results.

The following represents a hypothetical situation. An experimenter
arbitrarily decides to use a sample of size 100 in.an effort to estimate
ft; the population mean. Therefore a confidence interval is placed on u.
{(We will discuss later how intervals are determined and show the rela-
tionship between the sample size and the width of the interval.)

The experimenter finds that the computed interval is too wide.
Therefore, in order to decrease the interval width he takes a sample
of size 500 feeling that this is a '"good' number. Another interval is
placed on p but this time the interval is sc small that half as large a
sample would have done the job satisfactorily. This is perhaps extreme.
However, it is conceivable that there would be many advantages to the

experimenter if he were to have an idea of how many samples to take for



a given reliability.

This paper will enumerate methods that will give the experimenter
an indication of how many samples are necessary to obtain a specified
width confidence interval on p.at a given probability level.

'The following notations will be used:
. Xi . ”Xi is a random variable from a normal population with mean p

. 2
and variance ¢ .

X

n
H Z Xi/n
izl
2 n 2
. . z - -
SR P
1 - -a! the confidence coefficent

~w: width of a confidence interval

d: a predetermined width of a confidence interval

gzl’ a predetermined choice of ¢%; it could be (1) an-unbiased estimate
of ¢4 determined from another experiment, (2} an actually known value
of o2, or {3) an approximation.

- E(K): expected value of K

B: the specified probability that w is less than d

Za: Standard normal deviate such that the probability of a larger value
is1-a/2

ta: Student’ s ''t" variate such that the probability of a larger value is

l?a/Z
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2 °
(1-p)

value is B.

X A chi-square variate such that the probability of a smaller
[Q]: If Q is any number then {Q] is the smallest integer greater than or
equal to Q.

Outline of Procedure! The probability that X is equal to 'y is zero;

consequently we use confidence intervals to determine the probability
that the interval will include p. We will explain how to determine n
such that certain relationships involving d and w will be established.
These will be presented under three specified conditions in the following
order:

2 . e
1. When o is known (d, o specified)

A. P(d=w) =1.00
B. PX -d/2<p<X +d/2)=1-a

2 2
iI. When ¢ is unknown and g is used (d, gz, a, and B specified)
A. Case A

1. PX -w/2)<p<X +w/2)=1¢-aqa
2. E(w)=4d

B. Case B

1. PX -w/2<pu<X +w/2)k=1.-a
2. Pw<d)=58

2 )
II1. When ¢ is not known; Stein s Two Step Test (d, a specified).

A. P(Si "W/2<[.L‘<'}_§ '+w/2){:1=a
B. P{w <dj = 100%



CHAPTER I
THE POPULATION VARIANGE IS KNOWN
A known variance is a rather trivial case because seldom does the
experimenter know the true variance of the population, The experi-
menter would like to have a sample size such that the width of the
confidence interval on p will be equal to d. At the same time, he
wants 1 = a to be exact. If the experimenter knows 0“2-, he is in a
position which is as close to ideal as he cou_ld possibly hope to obtain.
We desire:ann such that the probability that IS-C p] is greater than
d/2 equals 1 =« ‘a. This can be written as |
| P(IX ~p|>d/2)=1-a
\‘/E‘(S-Cep),'/o' is distributed normally with mean zero and variance one.
We obtain
P{|X - nl/ocNn) >2 =1l-a.
This is equivalent to
P(ﬂi -p.i fZa U/\/;l-. )=1l-a,

Thus

which gives



Note that Z(1 may be found by looking up the tabular value in normal
tables. Thus, the desired width is obtained. Hence, if the variance is
known, we may find an n such.that a specified confidence length will be
attained and the confidence interval will have a 1 - a probability of
including p.

Example 1:
d=2.0 1-a=95 ¢=3.1 za' =1.96

2 .02 @% = 36917

n=4(l.96
. A sample of size 37 is required.to produce a confidence interval
of width equal 2 regardless of X and
P(|X - ul > 1) =.95
or
p('}_; -l<p <X +1)=.95.
Example 1 illustrates that a value of n equal to 37 under the given con-

ditions will always yield a -1 - a confidence interval with width equal to

2.



CHAPTER 1I
THE VARIANCE IS UNKNOWN

If 0'2 is unknown, we cannot be assured of finding an n such that w
will be equal to d. We will use g2 in place of 0'2 to determine n in the
following cases:"

(A) E(w)=d
(B) Plw<d = p
The effects of g2 will be discussed in each case.
CASE (A):
We desire an n such that
P(|X -u| >w/2)=1-a
and E(w) = d.
Nn (3( - p)/s is distributed as Students’ distribution with n - 1

degrees of freedom.

Therefore

P[([S'c mplA/H)/s}ta]:l-a
and

P[li-pl?ta s/ Nn]=1-a
or

_ t s _ t s

PX - — <p<X+ =— J=1l-a

N n N n



Hence

w = 2t S/N/-I_i_

a

We want E(w) = d:. Therefore

n-2 ,
Zta ,\/'2— ("'—'-2————).

E(W) = - n - 3 a.
Nn  An -1 (——)

We substitute c,, and g to obtain

2

2t
d=Ew) = —0r c,g
o Nn - 1
where (n_z »
2 L]
=n2
2 e

2
The effects of using g: Because it is not certain that g is equal to

2 '
o , our results are not exact. If g > ¢ then E(w) is proportionally larger

than d, and n is larger than required. If g < ¢ then E(w) is proportionally
smaller than d and n will be smaller than required.
The value of g does not affect the confidence coefficient; hence 1 - a
is exact.
Example 2
. 2
d=2.0; a=405 g =9.0

_ (2) (2.03) (0.978) (3)
'\/n - l |

A graph is furnished so that n may be readily determined. To use

y n=36

2.0

the graph in Example 2, we procede as follows:



(a) Compute g/d = 1.5,

{(b) Refer to the c‘o?responding n on the chart. Atthe 1 - a = .90
probability level n = 26; atthe I - a = .95 level n = 36; at
thel-u=.991eve1n=62. :

The examplé also illustrates that we do not place an interval on
.untiblkaft;e.r sz has been computed. Thus g'2 ha; no effect on fhe final
kconﬁdence interval.

CASE B

We desire an n such that!:

(1) P(|X-p|> ‘%) =1-a

() Pw< d)=p

(1) has beeﬁ solved in case A and we obtained

w = 2t S/'\];. ‘

a

We now desire the P(w <d) =B,
Substituting for w

P(2t s/Nn < d) =8,

hence
dNn
P(s f : T ) =P
Ta
and .
2 . 2
.8 (n - 1) dn(n-1
pi—2yal < 2B,
o 4t o
sz oy .
- It is known that ——J———L . 1‘12- : is distributed as the central _‘chi=
: - _ T

sfjuare with n - 1 degrees of freedom.



2
Hence for X1 8 we obtain
2 |
2 d n(n - 1)
X1 .8 S Tz 2
4t a
a

2 2
Since g is used instead of ¢ we set up the ineqality

2 2 2

Hapta B 2
n(n - 1) - )

The value of n is obtained by an iterative process such that values of

2

2 .
X(l 8)’ 4=t(1 ,and n (n - 1) combine to form the fraction that is the

. : 2 . 4
largest value possible which is less than d . It is readily observable that

2 2
g will not influence a. However, g will have some effect on . This effect

will be discussed later.

Example 3:
2
d=2;g =9a=.058=.99
4(67. 5,-)”(4) 9 - 4
(50) (29) :
n = 50
P(X -p|>2)=.95
or
P(X - 1< p<X +1)=.95
and : Pw < 2) =.99,
. 2 2 . 2
The influence of g . If g is larger than ¢ then B will be larger than

2 ,
specified and n will be larger than necessary. If g is smaller than o

B will be smaller than specified and n will be smaller than necessary.
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Stein’ s Two Step Mﬁ»ethod*:; Methods mentioned previously in this
chapter give ;10 as s.ura,ncé that the confidence interval width will
be equal to a desired width.  The reason is that the value of gz is not
:ordina.r'ilyj accur._a.‘t;,e. If the experimenter wants the width of the
interval to be less than or equal tp a specified value, he can use
Stein’ s method with successful results. In‘ Stein’ s method, any
information about the variance is derived . from the population
itself. Stein’s method has many applications in determining
sample size and is a valuable aid to the researcher. Stein’ s
téclmique assumes a normal population.

The sample is taken in two steps. The first set of values is of

size n- A confidence interval is placed on p with
2t s '

Q

where ta is Students’ distribution with n, - 1 degrees of freedom.
If w is less than or equal to d, the sample is of suitable si.ze.
The 1 - a probability statement is exact. That is
P_(S.Cl - wl/Z <p <§l' + wl/Z); = l - a,

If W exceeds d then n, additional observations are taken until
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This can be summarized as the following theorem.

The value of n can be obtained in a two step sequence such that

PX -w/2<p<X +w/2)=1-a
and
P(w < d) = 100 %

by selecting n equal to either

1) n
or
— 2 2
4t sl
a
(2) >
d
nl nl _ 2
. , s X = X -X
L=l i=1 T 2 i=_l‘(i 1) . .
where X' = ——— , 5 = —~——, n_ is the size of
1. nl 1 nl -1 1 '

the first sample, and t has nl - 1 degrees of freedom.
a

Proof. Assume X, is normally and independently distributed with .
i
. 2 . . .
mean p and variance o . The first sample consists of observations

X XZ, ...X . . The sample has a computed mean of -}_(l and

I n
, 1l

variance' s . A confidence interval is placed on p. Then
X, - <X 2y =1 -
P(X, Vl/Z <p <X ot wl/ ) l a

where

If p is less than d, n = n, and the specified requirements are met.

If wlis larger than d, the additional observations.Xn, +l
an -+‘;2A e X'n'l+ nz | that have mean X2 are taken.



Let

n X +n -}_{
X = 1771 2 2
: n
where
n“—.=n1+n2
and
n, = [ £(s)].
Let

y= N0 (X -p).

If s is fixed then n_ is fixed and

2

fy | s) = —
' N2

1

2,. 2
eﬁy /_20‘ .

g

Since f(y|s) does not involve s then

1
f(y) =

NZr o

Because

f(y]s) = £(y),

2 2
Y /20 .

y and s are independently distributed.

It is known that if

(1) y is distributed normally with mean

(2)
(3)

zero and variance 0'2,
s is independent of y,

2
s (n1 - 1)
o2
with n, - 1 degrees of freedom,

is the chi-square distribution

—

38



then y/s follows Student’ s "'t distribution with n, - 1

degrees of freedom.

Nn s(X o) has Students’ distribution with n_ -

Hence 1

degrees of freedom.
Therefore

P(;( '=W/2<|J,<.)_{ +w/2)=1-aqa

where
2t s
a
W= =
Nn
If we desire d < w then we get
2
4t s
n= a
2
d

and the theorem is proved.
Example 4.
. , 2
d=2;1«a=.95; s =12; .n,6 =20
w = (2) (2.093) (3.464)/4.472 =3.2
is greater than d, hence
. 2 2.
n = (4} (2.093) (12)/(2) = 53.
Therefore 53 - 20 or 33 more samples are needed so that
P(X -1<p<X +1)=.95.
Summa.ry: Stein’ s method assures us a desired length of

confidence interval 100 per cent of the time. This is distinct

13
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from the probability 1 - a f:hat jo is included in the interval. There
is a diéadvantage_in the use‘ of this method when there is a change
in the variance of the population (e.g. height of ceftain plants).
The change of variance would contradict the a&;sumption that the
variance of the Xi was o'z.

. The problem of how many samples shéuld be taken i;i the first -
step ‘is. answ er..ed',in part in the next section.

Taking the first ‘sample in Stein’s Method . Stein’ s method .

leaves the selection of the size of the first “sample to the discretion
of the experimehter. This might be troublesoﬁe if he has no idea
as to the size of n, - Seelbinder (1953) has provided tables that aid
in rhaking the decision. These tables enable the experimenter

to determine the expected total sample size given the size of the
firstsample. In order to use the tables, d and a are specified,

and o is known to be 'contai'_ned in a certain interval. The minimax
technique is utillized so that the experimenter can take the smallest
sample size a;nd still have good resultéu This technique minimizes
 the maximum loss in additional observations because of the unknown‘
value of o—z, 1f 0'2 were known then no additional observation would
be necessary. The maximum differences of the value of n (when @“2
is known) and the expected value of n (given nl_) are set up in a table.:
Correspoﬁding to the minimum of the rha,ximum vdi‘fferen'c‘e,s, a value

.of n. may be obtained.

1



TABLE 1

-SUMMARY OF SELECTING A SAMPLE SIZE. CONSIDERING FOUR POSSIBLE ALTERNATIVES

0’2 KNOWN 0"2 UNKNOWN BUT ESTIMATED BY g2 0"2 UNKNOWN
e Case A: E(w)=d Case B: P(w <d) =B ‘Stein’ s Method
Method - E(w) =d = ii_ig_ XZ . 4th g2 Sample n; observations:
2 2 N - 1 (l -B) e :dz ompute interval on p.
47 a T ) , 2 n(n‘=- 1) w < d take no more sam-
n = '2 ta is Stpdent s. g X’l e is tabular at f ples. If w > d compute
o d withn. -1 degrees of level withn - 1 degrees 4t2 52 )
Za is standard nor- freedom. g is estimate of freedom. t is Student’ s nz"; > using t and
mal deviate at 1 - a

level. 0'2‘ is known

variance. d is desired -

. width of interval.

given by the experimenter.

c. is found in tables.

2

t with n - 1 df, g2 is esti-
mate of 0‘2,‘ d is desired
difference.

s from first sample

(t with n) - 1 df), Take

n - n; samples and
compute interval using
t and s.

Advantages
n can be found such
. that interval will be
exactly what is de«" -
sired. Computation-
is easy.

If experimenter is fam-
iliar enough with data -
gives excellent idea of
sample size. Computas .
tion rather easy.

Experimenter may state

.with given probability

that width is less than
desired interval provided
g” is close estimate.

Width obtained is always
less than or Equal-to d.

.Easy to compute.

- Disadvantages

Chances of knowing
g~ are slim; Might
tempt researcher
into desiring too
small d thereby
obtaining n larger
than capabilities.

Cumbersome to compute
n. If g2 less than o2 then
n is toa small.- Desired

Rather difficult to com-
. pute n. If g.z;less than

results will_not be ob=. . .,

tained; If g smaller than
o% then'n is too large.

15

o then actual prob-
ability will be less than
B; hence n is too small.
gz greater than &% im-
plies B too large and n
too large.

If population changes
then statistics will be
inaccurate.
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CHAPTER III
"DETERMINATION OF SAMPLE SIZE IN A FINITE POPULATION |

Introduction: Determining the sample size necessary for a desired

confidence interval on the mean while sampling from a finite popu- -
lation can be handled most readily by the first of the three methods
given; however it is guite possible that the résults might require
utilization of an appreciable amount of the popul‘ation. In fact, the
results may call for n larger than the size of the population itself!
For this reason, we introduce the finite population correction (fpc).

We define N to be the size of the finite population, n to be the desired

N ~-n
N

sample size and the fpc =

. 2
Condition given ¢ Known: This condition is quite probable in finite

sampling. Usually the experimenter has a good knowledge of his data
2 .

and can define ¢ . We procede in the same manner as in determining

a sample size from an infinite population except we let ny be the value

obtained. That is: 2 2

47 &
e
1 a2

If the ratio nl/N is appreciably large (to the experimenter) then we

shall use the formula




If nl/N were too small then the experimenter need not worry about the
fpc.

Examgle 5

N = 450 , 0"2:;90 ; d=4

- (4) (1.96)2 (90)

n, = ¢ = 86.4 or 87

Since nl/N does not use a negligible part of the population we compute

87
—eee = 72,5 or 73,
14 87/450 -

The probability statement! is

P(ﬂi - H&ﬂ <2) = 95

Conclusion: A sample'vs‘i_ze of 73 will yield a confidence interval on

pof width less than 4.

Brief proof of method used to determine ns+ In the above discussion

. 2 ‘
we have used . and o to represent the population parameters. In the
proof which follows we will use the more common definitions.

2
Finite Population Mean S : Population variance

TR

Sample mean 2, .
; s . sample variance

.Gomputations:

_ X __ = 2_ X 2
X= = =x/N ; x= = x/n s > . (x, ~X /N - L;
. i i i :
i=1 i=1 i=1
2
2 n (x, - X) 472 s
1 a
s = > n =
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The variance of X is given as
2 2
s— =S (N -n)/Nn.
Under the assumption X is asymptotically distributed normally with

— 2 i
mean X and variance S_. we obtain
X

d =25 N (N - n)/MNn,
Hence
(2ts/d 2
0 = )

2 2, .2
(1+4t"s"/Na")

From our definition of n1



CHAPTER IV
DETERMINATION OF SAMPLE SIZE IN A TEXTILE EXPERIMENT
Synopsis

A textile expérimenter is interested in the mean breaking strength
of white muslin cloth. He would like to take a conservative number of
swatches from a bolt of cloth and still have confidence in the results.
Two methods for obtaining a desirabl‘e sample size are presented.
Method I will be used to obtain a samplve size such that the confidence
interval width will be -simaller than a speéiﬁ_ed number. Method II will
be used to obtain a sample size such that there is a specified probability
that a confidence interval width is less than or equal to a speciﬁed

value.

Introduétioni Suppose a textile experimenter wanted to estimate the
mean breaking sf;rength of a popﬁlation of muslin cloth. Suppose he
gathvered all of the muslin cloth that existed. He would have a population
of breaking strengths if he were to take every possible swatch of cloth
of a particular size and then measured a breaking strength from each
swatch, The experimenter desires an estimate of the mean or average
value of this population, It is possible for h1m to obtain an estimate by
taking a sample of say n measurements. The c}orhputation' would’ bekto

sum the sample values and divide by n.

20



He would like to know if the calculated sample mean X is

reasonably close to the population mean u. That is, he desires

to say with a specified probabili.ty that a certain interval will in-
clude p. For example, suppose the following 95% confidence
interval had been computed: 45 < p < 55. The probability that

the mean breaking strength is between 45 and 55 lbs is equal to 95%.
This probability statement means that if the experimenter selects
many samples and sets a 95% confidence interval on p for each
sample, then 95% of those intervals will contain p. We will denote
the probability as the confidence coefficient 1 = a. The interval is
informative but if too long might be useless. If this isnthe case, v
generally the best way to shorten the interval is to take a larger
sample. To do this we would like to know how large a sample to
“take to find a specified interval width. Coné,equentl[y we will reformu-
late the problem. The experimenter tlesires to take'gtmini‘mqnu,.sa;mple
size so that the average length of the confidence interval will be

less than d per cent of the true mean in length. The experimenter
also wants to work with confidence coefficients other than 95%

(e:g. 90% oxr 99%). Thué the problem can be stated as follows:

How large a sample is necessary in order to place a 1 - a confidence

interval on p such that the average length of the intervals will be

less than d% of p? '"The average length of the intervals will be less

than d% of p'* means that if the experimenter selects many samples;
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sets a 1 - a interval on p for each sample; then the average width of all
these intervals will be less than d p/ 100.

Another textile experimenter rha.y feel that knowing the average

dp.
100

interval is going to be less than or equal to is not adequate.
He feels that often the computed interval might be wider than he
desires. Therefore, he would like to have an interval such that

the probébility that the interval width is less than a specified d is
equal to B where B is a given per cent {e.g. 90% or 99%).

We will discuss both metheds. -

Method I: Average length of confidence intervals less that d

per cent of . This requires the experimenter to know the coeffi-

cient of variation, g (g is defined as the population standard deviation
divided by the mean.) If the experimenter has an estimate of what - - -
interval will include g, the method of determining n will prove to

be quite satisfactory. The experimenter specifies g, d, and 1 - a.

A chart is given for three values of 1 - a. The procedure is to
compute g/d and read n from the approximate curve. If he believes

g to be in a certain interval he can determine a range of n values and
select an average . n.

As an example, we will show how this method a.pp‘li‘e..s' to a textile
experiment. An expérixnent.er -desireé to know th:e mean breaking
strength (in pounds) of muslin cloth after it has been washed
thorou‘ghly | and then dried in the sun for a period of four hours.

After cutting a bolt of cloth into say n swatches;, he washes and dries
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the cloth and then takes a measurement of breaking strength (in pounds)

from each swatch or sample. His problem is: How many samples

(swatches) should be taken in crder to place a 95% confidence interval

on the mean breaking strength such that the average length of the

intervals will be less than 4, 6, 8, or 10 per cent of .

The experimenter specifies g = .,012. This value was obtained
from an earlier experiment. By use of the graph, we can set up
the following table:

VALUES OF n GIVEN g/d AND «

. a :

d g/d . 90% 955 39%
.04 . 30 3 3 6
.06 . 20 2 2 4
.08 .15 2 2 3
.10 .12 2 2 2

Thus at the 95% level the experimenter would select either 2 or 3
samples depending upon the interval width desired. If he wanted to
work at the 99% level he would selecﬁ n equal to 2, 3, 4, or 6. His
estimate of g could be wrong by as much as 10% with little effect on
n.

Method II. " The probability that the 1 - a confidence interval width

is less than a specified d is equal to Pp where P is a given per cent

(e.g. 90% or 95%). This requires that the experimenter has an

2 2 o
estimate of ¢ . We will call this value g . We will find n by using

the relationship
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4 2 tz 2
X‘1=i3ag adz
n (o - 1) -

where t is the appropriate value of Students’ disﬂir‘ibuﬂ:icm with n - 1
degrees of freedom, XZ is the appropriate value of the chi-~square dis-
tribution with n ~ 1 degrees of freedom, and d and g are specified.
For example, suppose the textile researcher would like to have
the prebability that the 95% confidence interval width less than 6
equal to 99%. By a previous experiment is found an unbiased
estimate of @“2 to be 0.216. Thenifn =2

(usb)(9,21>(4,303)2
2y 10 - >36

and if n= 3

(.86)(11;3»(30182)2
(3) (2)

Thus, n = 3 since 3 is the largest integer such that satisfies the

<36.

inequality.
If the experimenter would prefer 1 = a = .99 then if n = 3

{.86) (9 21)49. 925)2

B3) 12 > 36

and if n = 4

(.86)(11.3)(5,841$2

ZINE) < 36.

Thus n = 4 since 4 is the largest integer that satisfies the

inequality.
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The major disadvantages in Method II are that the value of n

. . , 2 .
is rather difficult to find and the value of g could cause inaccurate

2

resulis because it is an estimate of o . In conclusion, it should be
noted that n is always rounded to the largest integer so that the

given expression is the maximum value less than or equal to d.

'



SUMMARY

This thesis is a collection of methods available to determine
a minimum sample size that will enable the experimenter to have
a desired confidence in the results. The main topics included
finding a sample size when the variance is known, unknown,
and approximated.

Further work that may be done along these lines include
(1) tables to find n when the probability that w is less than d
equals a specified B,
(2) finding the sample size when sampling from other than a
normal distribution,
(3) determining the sample size in Non-parametric Statistics,
(4) use of a two step method when the expected value of w is
less than d,
(5) graphs of sample size curves under specified conditions

( e.g. when the variance is known).
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