TABLES AND NOMOGRAPHIC CHARTS FOR THE PRELIMINARY ANALYSIS OF RIGID FRAMES WITH CURVED MEMBERS

By

DELBERT CALVIN CARMAN Bachelor of Science Oklahoma State University Stillwater, Oklahoma

1957

Submitted to the faculty of the Graduate School of the Oklahoma State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August, 1958

TABLES AND NOMOGRAPHIC CHARTS FOR THE PRELIMINARY ANALYSIS OF RIGID FRAMES WITH CURVED MEMBERS

Thesis Approved: Thesis Adviser

Dean of the Graduate School

PREFACE

This study is the first part of a series, for the development of charts and tables, for preliminary analysis of rigid frames with curved members, directed by Professor Jan J. Tuma.

The writer wishes to acknowledge his indebtedness to Professor Tuma for his guidance and assistance in preparation of this thesis and for acting as the writer's major adviser, to Dr. John W. Hamblen for the use of the Oklahoma State University Computing Center facilities and $\frac{1}{12}$ for his advice in their use, to the staff of the School of Civil Engineering for their guidance and instruction, and to the Continental Oil Company for the scholarship which made this year of graduate study possible.

D. C. C.

TABLE OF CONTENTS

Part	Pa	ge
I.	NTRODUCTION	1
II.	EQUATIONS OF DEFORMATION	3
	 Slope-Deflection Equations Conditions of Static Equilibrium Matrix Tables Solution of Matrices 	3 7 8 12
III.	TABLES AND CHARTS	13
	 General Notes Contents of Tables and Charts Steps of Procedure Interpolation 	13 13 14 14
IV.	LLUSTRATIVE EXAMPLES	47
	First Example	47 48
. V. .	CONCLUSIONS	50
	A SELECTED BIBLIOGRAPHY	51

ł

LIST OF TABLES

Table	F	Page
I.	Matrix for Two Span Frames	9
II.	Matrix for Three Span Frames	10
III.	Matrix for Four Span Frames	11
B- 2.	Moment Coefficients for a Two Span Frame with Parabolic Girder	15
B-3.	Moment Coefficients for a Three Span Frame with Parabolic Girder	16
B-4.	Moment Coefficients for a Four Span Frame with Parabolic Girder	18
C-2.	Moment Coefficients for a Two Span Frame with Circular Girder	20
C-3.	Moment Coefficients for a Three Span Frame with Circular Girder	21
C-4.	Moment Coefficients for a Four Span Frame with Circular Girder	23

 \mathbf{v}

.

LIST OF CHARTS

Chart		Pa	ıge
B-2.	Moment Coefficients for Two Span Frame with Parabolic Girder	•	25
B-3.	Moment Coefficients for Three Span Frame with Parabolic Girder	•	27
B-4.	Moment Coefficients for Four Span Frame with Parabolic Girder	•	31
C-2,	Moment Coefficients for Two Span Frame with Circular Girder	•	36
C-3.	Moment Coefficients for Three Span Frame with Circular Girder		38
C-4.	Moment Coefficients for Four Span Frame with Circular Girder	a	42

LIST OF FIGURES

Figur	e	Pa	ge
1.	Typical Rigid Frames with Curved Members		1
2.	Uniformly Loaded Curved Member of Circular Shape	•	3
3.	Uniformly Loaded Curved Member of Parabolic Shape	•	5
4.	Typical Column for Rigid Frames	•	6
5.	Typical Joint of a Rigid Frame	•	8
6.	Uniformly Loaded Three Span Frame with Parabolic Girder	•	47
7.	Uniformly Loaded Three Span Frame with Circular Girder		48

NOMENCLATURE

М	End moment
Q	End moment coefficient
Ĺ	Length of span
н	Horizontal thrust
v	Shear
w	Intensity of load
I	Moment of inertia
E	Modulus of elasticity
r	Girder height
h .	Column length
a	Column length parameter
β	Girder height parameter
θ	Angular rotation of a joint
$\Delta \mathbf{x}$	Linear displacement in horizontal direction
e	Distance to elastic center from lowest part of girder
BM	Bending moment of basic structure
Ā	Elastic area = $\int \frac{ds}{EI}$
\overline{I}_{xx}	Moment of inertia of elastic area about horizontal axis
	$=\int y^2 \frac{ds}{EI}$
Īyy	Moment of inertia of elastic area about vertical axis = $\int x^2 \frac{ds}{EI}$
P	Elastic weight = $\int \frac{BM ds}{EI}$
\overline{M}_{xx}	Static moment of elastic weight about horizontal axis
	$= \int \frac{BM \ y \ ds}{EI}$
M _{yy}	Static moment of elastic weight about vertical axis = $\int \frac{BM \times ds}{EI}$

vii

ĉ

PART I

INTRODUCTION

The analysis of continuous rigid frames with curved members, by energy or deformation methods, is a laborious and time consuming procedure. The difficulty arises in the preparation and solution of a system of simultaneous equations. In this study, tables and nomographic charts, for the preliminary analysis of two, three, and four span rigid frames (Fig. 1 a, b, c) are presented. The tables and charts were evaluated by the use of slope-deflection equations, as developed by Ungson⁴, Parcel and Moorman², and Havner¹.

Typical Rigid Frames with Curved Members

Frames, with girders of circular and parabolic shape and straight vertical columns, were considered. The column length and girder rise, were expressed as a function of the span length, and denoted by aL and β L respectively. The values of the parameters a and β were chosen to cover a range of practical limits.

The solution of the numerical equations was done on the IBM 650 digital computer.

Examples for the use of the charts and tables are given in Part IN.

The nomenclature and sign convention were chosen to conform with that generally used in the application of the slope-deflection method, and are stated in the introductory part of this thesis.

EQUATIONS OF DEFORMATION

PART II

1. Slope-Deflection Equations

The general slope deflection equations for a curved member of constant cross section, with axis curved in a circular arc, as shown in Fig. 2, are:

Fig. 2 Uniformly Loaded Curved Member of Circular Shape

$$M_{12} = \frac{EI}{L} \theta_1 \left(\frac{L}{\overline{A}} + \frac{L^3}{4\overline{I}_{yy}} + \frac{e^2 L}{\overline{I}_{xx}} \right) - \frac{EI}{L} \theta_2 \left(\frac{L^3}{4\overline{I}_{yy}} - \frac{L}{\overline{A}} - \frac{e^2 L}{\overline{I}_{xx}} \right)$$

$$+ \left(\frac{er L}{\overline{I}_{xx}} \right) \frac{EI}{Lr} \left(\Delta_{2x} - \Delta_{1x} \right) - BM_x - \left(\frac{\overline{P}}{\overline{A}} + \frac{\overline{M}_{yy}}{\overline{I}_{yy}} \frac{L}{2} + \frac{e\overline{M}_{xx}}{\overline{I}_{xx}} \right)$$

$$(1)$$

$$M_{21} = \frac{EI}{L} \theta_{2} \left(\frac{L}{\overline{A}} + \frac{L^{3}}{4\overline{I}_{yy}} + \frac{e^{2}L}{\overline{I}_{xx}} \right) - \frac{EI}{L} \theta_{1} \left(\frac{L^{3}}{4\overline{I}_{yy}} - \frac{L}{\overline{A}} - \frac{e^{2}L}{\overline{I}_{xx}} \right)$$

$$- \left(\frac{erL}{\overline{I}_{xx}} \right) \frac{EI}{Lr} \left(\Delta_{2x} - \Delta_{1x} \right) - BM_{x} - \left(\frac{P}{\overline{A}} + \frac{\overline{M}_{yy}}{\overline{I}_{yy}} \frac{L}{2} + \frac{e\overline{M}_{xx}}{\overline{I}_{xx}} \right)$$

$$H_{12} = H_{21} = \frac{EI}{Lr} \left(\frac{erL}{\overline{I}_{xx}} \right) - \frac{EI\theta_{2}}{Lr} \left(\frac{erL}{\overline{I}_{xx}} \right) + \frac{EI}{Lre} \left(\Delta_{2x} - \Delta_{1x} \right) \left(\frac{erL}{\overline{I}_{xx}} \right)$$

$$(3)$$

The stiffness and carry-over factors, that are stated in column analogy terms, are denoted by a constant (C), and the fixed end moments and fixed end thrusts are expressed as a function of wL.

$$\frac{L}{\overline{A}} + \frac{L^{3}}{4\overline{I}_{yy}} + \frac{e^{2}L}{\overline{I}_{xx}} = C_{1}$$

$$\frac{L^{3}}{4\overline{I}_{yy}} - \frac{L}{\overline{A}} - \frac{e^{2}L}{\overline{I}_{xx}} = C_{2}$$

$$\frac{e^{rL}}{\overline{I}_{xx}} = C_{4}$$

 $BM_{x} - \left(\frac{\overline{P}}{\overline{A}} + \frac{\overline{M}_{yy}}{\overline{I}_{yy}} \frac{L}{2} + \frac{e\overline{M}_{xx}}{\overline{I}_{xx}}\right) = Fixed End Moment = iwL^{2}$

$$\frac{\overline{M}_{xx}}{\overline{I}_{xx}} = Fixed End Thrust = jwL$$

The slope deflection equations in terms of the parameter β

are:

$$M_{12} = C_1 \frac{EI}{L} \theta_1 - C_2 \frac{EI}{L} \theta_2 + \frac{C_4}{\beta} \frac{EI}{L^2} (\Delta_{2x} - \Delta_{1x}) + iwL^2 \quad (1a)$$

$$M_{21} = C_1 \frac{EI}{L} \theta_2 - C_2 \frac{EI}{L} \theta_1 - \frac{C_4}{\beta} \frac{EI}{L^2} (\Delta_{2x} - \Delta_{1x}) - iwL^2$$
 (2a)

$$H_{12} = H_{21} = \frac{C_4}{\beta} \frac{EI}{L^2} \theta_1 - \frac{C_4}{\beta} \frac{EI}{L^2} \theta_2 + \frac{C_4}{e\beta^2} \frac{EI}{L^3} (\Delta_{2x} - \Delta_{1x}) + jwL$$
(3a)

The values of C_1 , C_2 , C_4 , i, j and e are taken from the book, <u>Analysis of Statically Indeterminate Structures</u>, by Parcel and Moorman².

The general slope deflection equations for a curved member, with axis curved as a second degree parabola, and so proportioned that the moment of inertia varies as the secant of the angle of inclination of the arch axis with the horizontal as shown in Fig. 3 are:

Fig. 3 Uniformly Loaded Curved Member of Parabolic Shape

$$M_{12} = 9 \frac{EI_{c}}{L} \theta_{1} - 3 \frac{EI_{c}}{L} \theta_{2} + \frac{7.5}{r} \frac{EI_{c}}{L} (\Delta_{2x} - \Delta_{1x})$$
(4)

$$M_{21} = 9 \frac{EI_{c}}{L} \theta_{2} - 3 \frac{EI_{c}}{L} \theta_{1} - \frac{7.5}{r} \frac{EI_{c}}{L} (\Delta_{2x} - \Delta_{1x})$$
(5)

$$H_{12} = H_{21} = \frac{7.5}{r} \frac{EI_c}{L} \theta_1 - \frac{7.5}{r} \frac{EI_c}{L} \theta_2 + \frac{7.5}{2/3 r^2} \frac{EI_c}{L} (\Delta_{2x} - \Delta_{1x}) + \frac{wL^2}{8r}$$
(6)

The slope deflection equations in terms of the parameter β are:

$$M_{12} = 9 \frac{EI_{c}}{L} \theta_{1} - \frac{3EI_{c}}{L} \theta_{2} + \frac{7.5}{\beta} \frac{EI_{c}}{L^{2}} (\Delta_{2x} - \Delta_{1x})$$
(4a)

$$M_{21} = 9 \frac{EI_{c}}{L} \theta_{2} - \frac{3EI_{c}}{L} \theta_{1} - \frac{7.5}{\beta} \frac{EI_{c}}{L^{2}} (\Delta_{2x} - \Delta_{1x})$$
(5a)

$$H_{12} = H_{21} = \frac{7.5}{\beta} \frac{E_{1c}}{L^{2}} \theta_{1} - \frac{7.5}{\beta} \frac{E_{1c}}{L^{2}} \theta_{2} + \frac{7.5}{2/3\beta^{2}} \frac{E_{1c}}{L^{3}} (\Delta_{2x} - \Delta_{1x}) + \frac{wL}{8\beta}$$
(6a)

The slope deflection equations, for a straight column of constant cross section as shown in Fig. 4, are:

Fig. 4 Column of Constant Moment of Inertia

$$M_{10} = 3 \frac{EI}{h} \theta_1 + 3 \frac{EI}{h} \frac{\Delta_{1x}}{h}$$
(7)

$$M_{01} = 0$$
 (8)

$$V_{10} = V_{01} = \frac{3EI}{h^2} \theta_1 + \frac{3EI}{h^3} \Delta_{1x}$$
 (9)

The slope deflection equations in terms of the parameter a are:

$$M_{10} = \frac{3}{\alpha} \frac{EI}{L} \theta_1 + \frac{3}{\alpha^2} \frac{EI}{L} \frac{\Delta_{1x}}{L}$$
(7a)

$$M_{01} = 0$$
 (8a)

$$V_{10} = V_{01} = \frac{3}{a^2} \frac{EI}{L^2} \theta_1 + \frac{3}{a^3} \frac{EI}{L^2} \frac{\Delta_{1x}}{L}$$
 (9a)

2. Conditions of Static Equilibrium

Three conditions of static equilibrium can be written for any joint of a continuous rigid frame. These conditions are:

Equilibrium of Moments

$$\Sigma M = 0 \tag{10}$$

Equilibrium of Horizontal Forces

$$\Sigma \mathbf{F}_{\mathbf{y}} = \mathbf{0} \tag{11}$$

Equilibrium of Vertical Forces

$$\Sigma \mathbf{F}_{\mathbf{y}} = \mathbf{0} \tag{12}$$

Assuming that vertical displacement will not take place, condition (12) is not required for the solution.

Applications of equations (10) and (11) to a typical joint of a rigid frame, Fig. 5, results in the following equations of equilibrium:

Fig. 5 Typical Joint of a Rigid Frame

$$\Sigma \dot{M} = 0 : M_{21} + M_{20} + M_{23} = 0$$
 (10a)

$$\Sigma F_{2x} = 0 : H_{21} + V_{20} - H_{23} = 0$$
 (11a)

3. Matrix Tables

Using equations (10a) and (11a) in conjunction with the slopedeflection equations, a matrix of equations can be formed for the solution of the unknown rotation and displacement equivalents. There will be as many matrix-equations as there are unknown deformations.

The matrices, for two, three, and four span symmetrical rigid frames, uniformly loaded, and with circular and parabolic girders, are given in Tables I, II, and III. The moment of inertia of the girders and the columns are equal.

TABLE I - MATRIX FOR TWO SPAN FRAME

Ŷ

TABLE II MATRIX FOR THREE SPAN FRAMES

TABLE III - MATRIX FOR FOUR SPAN FRAME

4. Solution of Matrices

The matrix constants were evaluated on a desk calculator for all combinations of a and β . The values of a and β used were:

a = .2, .4, .5, .6, .8, 1.0

 β for circular girder = .1, .15, .20, .25, .35

 β for parabolic girder = .1, .2, .3, .4, .5

The matrix equations were solved for the rotations and displacement equivalents on the IBM 650 digital computer.

Each matrix equation was punched into standard 8-10 word machine data cards, with its identification, in floating point form. The data cards were then read into the computer with a program for solution of simultaneous equations. The program used was for the solution of linear equations using Cholesky's scheme.

This program is on file, in the program library at Oklahoma State University Computing Center and with International Business Machines Corporation, under the name of "Equ. Solv." This program will solve a series of five equations with five unknowns. The computer output data gives the values of the rotations and displacement equivalents with its identification.

The values of rotation and displacement equivalents from the computer are used in the slope-deflection equation for solution of the end moment coefficients. These end moment coefficients are presented in tables and nomographic charts in Part III of this thesis.

PART III

TABLES AND CHARTS

1. General Notes

The tables and charts for end moment coefficients presented in this section are divided into the following groups:

Group 2 - Two Span Frames

Group 3 - Three Span Frames

Group 4 - Four Span Frames

Each group is further divided into two subgroups:

B. Frames with Parabolic Girders

C. Frames with Circular Girders

Each table's symbol is composed of two terms: First a capital letter "B" or "C" indicating the subgroup; next, an Arabic number indicating the number of spans. The symbols on the charts contain an additional number indicating sequence of end moments from left to right.

2. Contents of Tables and Charts

Each table and chart is composed of the following major parts:

1. Description of frame and table number.

2. Illustration of frame: A figure containing symbols for all structural elements such as symbols for joints, lengths, moment of inertia, intensity and type of loading.

3. Column parameter a.

4. Girder height parameter β .

5. Moment coefficient (Q) : function of a and β .

6. End moments: Formulas for determining the final end moments: $M = Q w L^2$.

The number of horizontal rows in the tables is equivalent to the number of a values used in the solution. The number of vertical rows is equal to the number of β values used. The charts contain five curves, one for each β value used in solution.

3. Steps of Procedure

1. Select the table or chart corresponding to the case under consideration and adjust the symbols to those shown on chart or table.

2. Determine the values of α and β .

3. Determine the moment coefficient (Q) by the use of a and β from Step 2.

4. Compute final end moments by the use of formulas given in charts and tables.

4. Interpolation

The end moments can be determined very efficiently from the tables if the values of α and β are the same as those tabulated. Interpolation for values of α and β , other than those in the table, can be done more accurately from the charts.

	TWO	SPAN FRA	ME	PAR	ABOLIC	GIRDI	ER	and the second	TAB	LE B-2	
$ \begin{array}{c} I \\ I \\ I \\ $							N N	A ₁₂ = -wL A ₂₁ = +wL	² Q ₁₂ ² Q ₂₁		
		Q ₁	2					G	2 ₂₁	1	
al	0.1	0.2	0.3	0.4	0.5	a	0.1	0,2	0.3	0.4	0.5
0.2	.06250	.05392	.04605	.03972	.03472	0.2	.06250	.04412	. 03289	.02570	.02083
0.4	.05652	.05556	.05307	.05000	.04682	0.4	.08261	.06944	.05866	.05000	.04307
0.5	. 05258	. 05298	.05203	.05033	,04824	0.5	.08820	.07732	.06776	.05957	.05263
0,6	.04891	.05000	.05000	.04927	.04808	0.6	.09239	. 08333	.07500	. 06752	.06090
0.8	.04267	. 04422	.04510	.04545	.04540	0.8	.09664 [.]	.09184	.08560	. 07955	.07393
1.0	,03772	. 03926	.04040	.04118	.04167	1.0	. 10237	. 09752	. 09268	. 08793	. 08333

	THR	EE SPAN	FRAME	P	ARABOL	IC GIR	DERS		FABLE B	-3	
				sec θ 4 0	μβ		N N N N	$I_{12} = -wL$ $I_{21} = +wL$ $I_{23} = -wL$ $I_{20} = +wL$	$2^{2} Q_{12}$ $2^{2} Q_{21}$ $2^{2} Q_{23}$ $2^{2} Q_{20}$		
		Q	12					(2 ₂₁		
aB	0.1	0.2	0.3	0.4	0.5	β	0.1	0.2	0.3	0.4	0.5
0,2	.06757	.05823	.04914	.04191	.03631	0.2	.05405	.03389	.02324	.01717	.01341
0.4	.06044	.06034	,05781	.05428	.05054	0.4	.07629	.06103	.04898	.03981	.03288
0.5	.05617	.05750	.05680	.05495	. 05252	0,5	.08173	.06937	.05860	. 04966	.04236
0.6	.05230	.05425	.05463	. 05397	.05262	0.6	.08545	.07540	.06612	.05789	.05077
0.8	.04586	.04809	.04941	.04991	. 05002	0.8	.09010	.08324	.07648	.07000	.06395
1.0	.04081	. 04288	.04442	.04548	.04613	1.0	. 09280	.08790	.08290	.07792	.07306

-

			Q ₂₃				• • •		2 ₂₀		
al	0.1	0.2	0.3	0.4	0.5	al	0,1	0.2	0.3	0,4	0.5
0.2	.06081	.06177	.02988	. 02245	.01760	0,2	+. 00676	+.00788	+.00663	+.00528	+.00419
0.4	.07562	.06448	.05429	.04572	.03876	0.4	00067	+.00344	+.00531	+.00591	+.00588
0,5	.07886	.07038	.06190	.05421	. 04748	0.5	0.00287	+.00100	+.00329	+.00454	+.00512
0.6	. 08112	.07442	.06749	.06081	.05465	0.6	00433	00099	+.00137	+,00292	+.00388
0.8	.08416	.07970	.07490	.07000	.06517	0.8	 00594	÷.00355	00155	+.00000	+.00122
1.0	. 08620	.08300	.07951	.07586	.07214	1.0	00660	00490	00338	00206	00923

TABLE B-3 (CONTINUED)

	FOUR	SPAN FR	AME		PARABO	LIC G	RDERS		TABLE	Б. В-4	
	I sec θ 1 0	$I \sec \theta$ 2 0 L	I sec θ 3 4 0 0	I sec θ	μα μα		N N N N	$I_{12} = -wL$ $I_{21} = +wL$ $I_{20} = +wL$ $I_{23} = -wL$ $A_{32} = +wL$	$^{2} Q_{12}$ $^{2} Q_{21}$ $^{2} Q_{20}$ $^{2} Q_{23}$ $^{2} Q_{32}$		
			Q ₁₂			1.36		Q2	1	2	
aB	0.1	0.2	0,3	0.4	0.5	aß	0.1	0.2	0.3	0.4	.0.5
0.2	.07177	.06114	.05088	.04297	.03700	0.2	.04732	. 02707	.01787	.01306	.01021
0.4	.06335	.06412	.06133	.05723	.05290	0.4	.07301	,05530	.04230	. 03313	.02665
0.5	.05841	. 06088	.06041	.05831	.05547	0.5	.07958	. 06488	.05273	.04317	,03580
0.6	. 05403	.05716	.05804	.05741	.05586	016	.08415	.07205	.06124	.05260	. 04447
0.8	.04687	.05013	.05212	.05307	. 05323	0.8	. 09000	.08162	.07348	.06589	.05898
1.0	.04137	. 04428	.04646	.04797	.04892	1.0	. 09354	. 08748	.08136	. 07537	.06963

	e		Q23						Q ₃₂		
β	0.1	0.2	0.3	0.4	0.5	β	0.1	0.2	0.3	0.4	0.5
0.2	.06230	.04135	.02875	.02119	.01640	0.2	.05047	. 02891	.01798	.01218	.00882
0.4	.07793	.06588	.05457	.04518	.03772	0.4	.06897	.05471	.04251	.03313	.02618
0.5	.08135	.07224	.06287	. 04532	. 04694	0.5	.07229	.06159	.05123	. 04227	.03493
0.6	.08381	. 07669	.06901	.06154	.05468	0.6	.07415	.06606	.05759	.04963	.04259
0.8	.08726	.08254	. 07725	.07174	.06629	0.8	.07585	.07097	.06542	.05966	.05402
1.0	.08969	.08629	. 08245	.07835	.07413	1.0	.07640	.07324	.06951	.06544	.06122

TABLE	B-4	(CONTINUED))
-------	-----	-------------	---

	Q ₂₀										
β	0.1	0.2	0.3	0.4	0.5						
0.2	+.01498	+.01428	+. 01088	+.00814	+,00619						
0.4	+.00492	+.01059	+. 01227	+.01205	+.01107						
0,5	+.00177	+.00735	+. 01015	+.01115	+.01114						
0.6	∝. 00035	+.00464	+.00777	+.00948	+.01022						
0.8	00274	+.00092	+.00377	+.00586	+.00730						
1.0	00385	00119	+.00109	+.00298	+,00450						

.

•

9

5

۰,

	TWO SI	PAN FRAI	ME	CIR	CULAR G	IRDEI	RS	·	TAI	BLE C-2	
		2 I 0	w y y y y y w		.β .α		. I.	^A 12 = -wI I ₂₁ = +wL	² Q ₁₂ ² Q ₂₁	(<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
			12	na sa				ଦ	91		
β	0.1	0.15	0.20	0.25	0. 35	β	0.1	0.15	0.20	0.25	0.35
0,2	.06226	.05762	.05293	.04839	.03938	0.2	.06149	. 05013	.04111	. 03370	. 02095
0.4	.05661	.05601	.05537	.05339	. 05895	0.4		07216	.06445	.05677	<u>.0415</u> 6
0.5	.05278	.05289	.05324	.05271	.04960	0.5	.08656	.07851	.07165	.06429	,04890
0.6	.04886	.04969	.05064	.05074	.04906	0.6	.09025	. 08329	.07715	.07016	.05484
0.8	.04307	.04386	,04537	.04619	.04640	0.8	.09647	. 09001	.08499	.07861	.06373
1 0	03816	03901	04071	04184	04309	1.0	10044	. 09451	09029	. 08437	06995

	THREE SPAN FRAME				CIRCULAR GIRDER			TABLE C-3				
Turning	I I I O L			w I 4 I 0 L			N N N N	$I_{12} = -wL$ $I_{21} = +wL$ $I_{23} = -wL$ $I_{20} = +wL$	$2^{2} Q_{12}$ $2^{2} Q_{21}$ $2^{2} Q_{23}$ $2^{2} Q_{20}$			
		Q	12	1					2 ₂₁			
aB	0.1	0.15	0,20	0,25	0,35	β	0.1	0.15	0,20	0.25	0,35	
0.2	.06733	.06254	,05732	.05222	.04228	0.2	.05307	.04034	.03076	.02325	.01070	
0.4	.06048	.06042	,06011	.05871	.05356	0.4	.07497	. 06509	.05639	.04796	.03157	
0,5	;05630	.05689	.05765	.05732	.05432	0.5	.08035	.07186	.06429	. 05636	.03984	
0.6	.05251	.05336	.05472	.05506	.05367	0.6	.08404	.07663	.07008	.06276	.04662	
0.8	.04615	.04709	.04897	.04999	.05055	0.8	. 08868	.08271	.07770	.07149	.05661	
1.0	.04036	.04199	.04400	.04526	.04678	1.0	.09022	. 08628	. 08230	.07690	.06327	

Q ₂₃								(2 ₂₀		
β	0.1	0.15	0,20	0,25	0.35	β	0.1	0.15	0.20	0,25	0.35
0.2	.06003	.04869	.03918	,03134	.01776	0,2	+,00696	+.00836	+.00843	+. 00809	+.00706
0.4	.07464	.06769	.06091	. 05400	.03948	0.4	∽. 00034	+.00261	+.00452	+.00604	+.00791
0.5	.07782	.07211	.06647	.06036	.04662	0.5	00252	+,00025	+.00218	+, 00399	+.00678
0.6	.08004	.07514	.07034	. 06489	.05201	0.6	00400	 00149	+.00027	+.00213	+.00450
0.8	.0830 <u>3</u> .	.07908	.07535	.07081	. 05937	0.8	00565	<u>00363</u>	00235	<u>⊷.00068</u>	<u>+. 00275</u>
1.0	.08355	.08158	.07847	. 07447	.06401	1.0	-,00665	00471	00383	00243	+.00073

TABLE C-3 (CONTINUED)

	FOUR S	PAN FRAN	/IE	С	R GIRD	ER		TABLE	E C-4		
		+ + +	+ +	↓ w			M ₁₂	$= -wL^2 Q_1$	2		
			I 4 I 0 L	I J I O L	μβ		M ₂₁ M ₂₃ M _{2,0} M ₃₂	$= +wL^{2} Q_{2}$ $= +wL^{2} Q_{2}$ $= +wL^{2} Q_{2}$ $= +wL^{2} Q_{3}$	1 3 0 2	AG 11.5. A	
		Q	12						Q ₂₁		
β	0.1	0.15	0,20	0.25	0.35	αβ	0.1	0.15	0.20	0.25	0.35
0.2	.07154	.06626	.06032	.05463	.04387	0.2	.04630	.03304	.02373	.01672	.00508
0.4	.06342	.06405	.06399	.06258	.05701	0.4	.07163	.06026	.05043	.05128	. 02423
0.5	. 05858	.05994	.06117	.06150	• 05809	0.5	.07812	.06828	.05953	.05135	,03290
0.6	. 05427	. 05589	.05779	.05852	. 05746	0.6	.08264	.07403	.06638	.05810	.04039
0.8	. 04721	.04880	.05121	.05269	.05397	0.8	. 08844	.08154	.07562	.06850	.05191
1.0	.04175	.04316	.04562	.04732	.04967	1.0	.09196	. 08603	.08133	.07516	.05986

	2			TABI	EC-4 (0	ONTH	NIED)				
		4	Q ₂₃			1.43		\$	232		
aB	0.1	0.15	0.20	0,25	0.35	B	0.1	0,15	0,20	0.25	0,35
0.2	.06153	.04909	. 03875	. 03039	.01617	0.2	.04969	.03630	,02603	.01811	. 004,86
0.4	.07689	. 06954	.06224	.05478	.03919	9.4	.06814	.05969	.05132	.04314	.02664
0.5	.08023	.07418	.06821	.06185	.04695	0,5	.07149	.06498	.05818	.05135	.03519
0.6	.08260	.07738	,07235	.06652	.05280	0.6	.07339	.06825	.06273	,05658	,04194
0.8	.08595	.08165	.07772	.07285	.06070	0.8	.07517	.07113	.06789	.06332	.05120
1.0	.08830	.08436	.08114	.07680	.06564	1.0	.07578	.07326	.07040	.06685	.05675

			Q20		-
aB	0.1	0,15	0.20	0,25	0.35
0.2	+.01523	+,01606	+,01503	+.01367	+, 01109
0.4	+.00526	+, 00928	+,01181	+, 01349	+. 01495
0.5	+.00211	+.00591	+.00867	+.01050	+.01405
0,6	0004	+, 00335	+, 00596	+,00842	+,01241
0.8	⇔.00249	+, 00012	+,00211	+,00435	+. 00088
1.0	00365	⊷. 00166	00019	+.00166	+.00577

25-

PART IV ILLUSTRATIVE EXAMPLES

First Example

A three span rigid frame, with dimensions and loads, as shown (Fig. 6), is considered. The modulus of elasticity is assumed constant for all members. The girder is of parabolic shape and the moment of inertia varies as the secant of the angle of inclination of the arch axis with the horizontal. The columns are straight and of constant cross section. The dimensions are chosen such that a and β will correspond to values listed in the tables. The values as determined by moment distribution are given for comparison.

Fig. 6 Uniformly Loaded, Three Span Frame with Parabolic Girder a = 16/40 = 0.4 $\beta = 8/40 = 0.2$ $w = 1000^{\#}/\text{ft}.$

From Table B-2:

 $Q_{20} = + .00344$ $Q_{12} = + .06034$ $Q_{23} = + .06448$ $Q_{21} = + .06103$

Final Moments:

	Tables	By Moment Distribution
м ₁₂	= - 96, 544 #ft.	- 96,300 #ft.
м ₂₁	= + 97,684 #ft.	+ 97, 100 #ft.
м ₂₃	= - 103, 152 #ft.	- 102,900 #ft.
M ₂₀	= + 5,504 #/ft.	+ 5,800#/ft.

Second Example

A three span frame, with dimensions and loads, as shown (Fig. 7) is considered. The modulus of elasticity is assumed to be constant for all members. The girders are of circular shape and constant moment of inertia. The columns are straight and of constant moment of inertia. The dimensions are chosen such that a and β do not have values found in the tables. The nomographic charts will be used for interpolation for the end moment coefficient.

Fig. 7 Uniformly Loaded Three Span Frame with Circular Girder a = 20/40 = 0.5 $\beta = 12/40 = .03$

 $w = 1000^{#}/ft.$

C-30 ; $Q_{12} = + .0561$ C-31 ; $Q_{21} = + .04825$ C-32 ; $Q_{20} = + .00468$ C-33 ; $Q_{23} = + .05290$

Final Moments:

Charts	Moment Distribution
$M_{12} = -89,760^{\#}$ ft.	- 89, 500 #ft.
$M_{21} = +77,200^{\#}ft.$	+ 76,800 #ft.
$M_{20} = + 7,488\#$ ft.	+ 7,100 #ft,
$M_{23} = -84,640$ #ft.	- 83,400 #ft.

PART V

SUMMARY AND CONCLUSIONS

The tables and charts, for the preliminary analysis of rigid frames with curved members, were evaluated by the slope-deflection method. The slope-deflection equations (Eq. 1a, 2a, 3a, 4a, 5a, 6a, 7a, 8a, 9a) were stated in terms of the parameters a and β . A matrix was formed by the use of the slope-deflection equations and the conditions of static equilibrium. The matrices (Table I, II, III) were evaluated numerically and solved on the IBM 650 digital computer. The moment coefficients were then evaluated with the slope-deflection equations. By two example problems, the results obtained from the tables and charts were compared with those obtained by moment distribution.

The charts and tables provide a fast and accurate method for determining the redundant end moments of two, three, and four span rigid frames having curved girders, columns with hinged base, and a uniform load.

A SELECTED BIBLIOGRAPHY

- Havner, K. S. "Analysis of Symmetrical and Unsymmetrical Curved Member Frames by Moment Distribution." (Unpublished M. S. Report, School of Civil Engineering, Oklahoma State University, 1955).
- Parcel, John I. and Moorman, Robert B. B. Analysis of Statically Indeterminate Structures. New York: John Wiley and Sons, Inc., 1955. pp. 408-430.
- 3. Tuma, J. J., Havner, K. S., and Hedges, F. "Analysis of Frames with Curved and Bent Members." Proceedings of the American Society of Civil Engineers, Vol. 82, 1958.
- 4. Ungson, R. G., Jr. "Simple Slope Deflection Equations for Symmetrical Arch Structure." (Unpublished M. S. Report, School of Civil Engineering, Oklahoma State University, 1955).

VITA

Delbert Calvin Carman

Candidate for the Degree of

Master of Science

Title of Study: TABLES AND NOMOGRAPHIC CHARTS FOR PRELIM-INARY ANALYSIS OF RIGID FRAMES WITH CURVED MEMBERS

Major Field: Civil Engineering

Biographical:

Personal Data: Born in Mooreland, Oklahoma, October 3, 1928

- Education: Attended grade school and high school in Mooreland, Oklahoma; graduated from Mooreland High School in 1946; received the Bachelor of Science Degree in Civil Engineering from Oklahoma State University in 1957; completed requirements for the Master of Science degree, Oklahoma State University, August, 1958. Now, Junior Member of A. S. C. E. Recipient of \$1,500 Continental Oil Company graduate fellowship in Structural Engineering.
- Experience: Engineering Department of the A. T. and S. F. Railway Company, November, 1948 to February, 1951. United States Army, field artillery intelligence and survey specialist, February, 1951 to February, 1953.