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PREFACE 

Oklahoma State University has received a grant from the National 

Science Foundation for the design and construction of a low speed wind 

tunnel for micrometeorology research. The knowledge of the flow and 

characteristics of the air near the earth~s surface is important to 

many of the sciences. The purpose of this paper is to present the de

sign of a wind tunnel in which the natural air flow may be simulated. 

The author is indebted to Professor L. J. Fila for his willing ad

vice and counsel. Further indebtness is due Dr. Gordon Nelson for his 

aid and advice throughout the design. Also a word of connnendation is 

due Jack Fryrear and Jim W. Hale for their excellent preparation of the 

detail drawings. 

The author wishes to express his appreciation to Dr. J. H. Boggs 

for his helpful suggestions and criticisms in the preparation and writ

ing of this paper. 

The author would be remiss if he failed to mention the sacrifices 

made during the writing of this paper by his wife, Thelma, and his son, 

Neil, to whom this paper is dedicated. 
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NOMENCLATURE 

2. 
A Area, ft. 

B Expansion ratio, dimensionless 

C Contraction ratio, dimensionless 

D Height, ft. 

F TemperatureJ degrees Farenheit 
_,1. 5. 

G Roughness coefficient, sec.5 ft.z. 

H Height, in. 

K0 Pressure loss coefficient, dimensionless 

Lc Characteristic length, ft. 

L Length, ft. 

N Theoretical energy conversion in a diffuser, per cent 

N0 Overall diffuser efficiency, per cent 

Nf Fan Efficiency, per cent 

q Dynamic pressure, lb. per ft. 

Rn Reynolds number, dimensionless 

V Volume, ft. per minute 

V Velocity9 ft. per sec. 

v Velocity variation from the mean veldcity, ft. per sec. 

X Distance from the intake section entrance, ft. 

Greek Letters 
2. 4 

Rho, Density, lb. sec. per f'.to 

Delta, Change of a value in general 

vi 



?
Mu 3 Dynamic viscosity 3 lb o sec o per ft'o 

Delta~ Thickness of the boundary layer, fto 

Lambda 1 Skin friction coefficient, dimensionless 

Theta, Diffusion angle, degrees 

Abbreviations 

ft Feet 

sec Seconds 

psia Pounds per square inch absolute 

in, Inch 

CFM Cubic feet per minute 

log Logarithm to the base 10 

Ke Kinetic energy, foot pounds 

EoR, Energy ratio 

BHP Brake horsepower 

AHP Air horsepower 

fps Feet per second 

MPH :Miles per hour 

DFPA Douglas Fir Plywood Association 

PT Point of tangency 

Subscripts 

i Intake section 

D Diffuser 

f Fan 

s Screen 

1 Intake section inlet 

vii 



2 Intake section outlet 

0 Test section 
} 

t Transition section 
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CHAPTER I 

INTRODUCTION 

The flow and characteristics of air near the earth's surface are 

quite unlike those found at a point only a few feet above the surface. 

The knowledge of the characteristics of this flow and properties of the 

air within this region are important to many of the sciences. If the 

air within this region is to be studied, a means of controlling the char

acterisitics of the air and the velocity gradient, in order to simulate 

the natural air flow is needed. To do this a special type of wind tun

nel is required other than the kind found in general aerodynamic usage. 

An aerodynamic wind tunnel is unsuited because the velocity distribution 

throughout the test section is nearly uniform and the test section is 

generally short. 

Sutton (1) states that the air flow over the earth's surface is. al

ways turbulent. In order to simulate this flow, a tunnel of sufficient 

length to permit the. growth of the turbulent boundary layer is required. 

O'Neill (2) gives the following expression for the standard wind gradient: 

0.656 log (D+ 16) - 0.109 (1-1) 

where: 

v0 = velocity at any height above the earth's surface, feet per second 

1 



v33 = velocity at a point 33 feet above the earth's surface, feet 

per second 

D = height, feet 

2 

This gradient is shown in Fig. 1. The height scale is such that one inch 

as shown in Fig. 1 is equivalent to one-hundred inches above the earth 1s 

surface. The velocity at a height of 33 feet was assumed to be 50.5 (fps). 

If this gradient can by obtained, then it can be expected that ex

perimental tests in regard to wind effects, will closely approximate 

th~ conditions prevailing near the earth's surface. There are no tun-

nel facilities to meet this and other comparable requirements, insofar 

as known, at any educational institution in the southwest. In the ab

sence of suitable facilities within this geographical area, a low speed 

wind tunnel to be used for micrometeorology research was designed and 

-built. 
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CHAPTER II 

IN:J:'l'IAL DE~:Ll:.rN .QO;N$;I:PERATION_S 

.. In_.order. that thE3 tunp.el might 1,)~ suitable for 13,s wide a range of 

researcl;l _pro_ject!311s possible,, t:he functicm13,l :t:EJqui!'ements ,f9r micromete-. . ' ' ' . ' 

9:r·olog.i,cal. _res.ea,_rch .. and .rE:llatElci 1:1:reas WEl_re de_termir1ed.. Conferences were 

l.vflclwith resEJa:rqhe!'$_on..:t;he $taff .9f .... 9!4a,hoI11a Sta:te .. 'Qriiversity who are 

doing research v~eI'ein wind nE:l~r the ground ifl a pertinent factor. These 

a:['.EJ_?,s qf re~~~rplf Jric],ude: __ 13,gr_iqult,µ.ra],. eil,gi!_leEJrir.J,g, poultry science, 

13,gronomy, hor:ticuJ_turEJ,. lap._g.i:1cllplf:l cie~.1.gn ,._ ~mtqm9logy and. animal husband-

ry_, ~ .. Otller _arEJas for ;r:esearch would include heat transfer studies and 

ind us trial app],ica tionS,. 

Elpecific irJ,vestigat:f.,qns in which a low-speed wind tunnel of special 

design will be used include~ 

2. Surf'.ac::e qooling by :wind of roof coverings exposed to solar 

ra<iia:ti9n. 

3. W:i,nd cc:iol1.,ng aJ:1<1 ventilation of livestock and poultry pro-

dugti,gn buildings. 

6, CoJ:1:tro]._,Q,f ey§.pora,t_io:n. .fro_m_ surfa9ei:i .. 9(. i;:rigated lands. 

7, Wirid=;cqnveyancEJ _gf paI'tig:les §.rid .P§.th9l9gica], organisms. 

8. Influence of wind on distribution of defoliants, insect-

icides,and herbicides, and on the design of application 

4 
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equipment. 

9. Convective air cooling of agricultural products. 

10. Vibratory loads due to wind on surface coverings for roofs. 

11. Effect of wind on surface temperatures and sub-surface 

temperature gradients of soils and impounded water. 

12. Effect of wind on evapo-transpiration requirements of plants. 

1.3. Heating and cooling requirements for residences as influ-

enced by wind effects. 

A. FUNCTIONAL DESIGN REQUIREMENTS 

As a result of the functional design considerations, it was decided 

that the tunnel should: 

1. Be large enough for, and have easy access for bulky objects. 

2. Be long enough to permit the turbulent boundary layer to 

reach a depth of 18 11 • 

.3. Have a drive unit capable of a wide range of speed. 

4, Be able to operate for long periods of time. 

5. Have test sections of variable height. 

6. Have temperature ,and hum~dity controls. 

'· B. ANA1'YSIS OF THE FUNCTIONAL REQUIREMENTS 

1. Tunnel Length 

The study of motion within the boundary layer of a flat surface may 

be regarded as the idealized problem of the natural wind flow over-· a 

small portion of the earth. For a flow parallel to a smooth surface a 

laminar boundary layer is first formed starting at the leading edg,, but 

for sufficiently large distances downstream, or for sufficiently high 

velocities, the boundary layer becomes turbulent. Thus on proceeding 



downstream from the leading edge, a laminar boundary· layer is first 

formed, then a transition region, and finally a fully developed turbu

lent;boundary layer (see Fig. 2). The transition region is quickly 

re~ched and occurs, according to Binder (3), when the Reynolds number 

becomes equal to 2,000. The Reyno~s number ·is defined as: 

where-: 
-4 

(? = density, pound second squared feet 

Le: characteristic length, feet 

){:,dynamic viscosity, pound second per foot squared 

D 

(-) ( - ) 

c- ) r-. -> (-

(-) (-) - ""' c.. - ) (.- -
.... - 'i ·~-> 

(2-1) 

L 

~ Laminar _ ___,...+-4-- Transition - ~+-4- Turbulent ----

· Fig. 2-The Turbulent Boundary Layer 

6 

In natural wind flow the leading edge is always an infinite distance 

upstream from the point of observation; thus it may be assumed that the 

trubul~nt boundary is alwqs fully developed. (l). 
' ' 

Sutton (1) give~ the following eq~tion for the depth of the turbu

lent boundary layer for flow over a smooth surface as a function of the 
I 
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distance from the leading edge: 

I 

O. 366 L ( 1-:( ) 5 

ev1 
(2 .... 2) 

where: 

~~thickness of the boundary layer, feet 

In all subsequent calculations, standard sea level conditions of 

14.7 psia and 69° F are assumed. For these conditions ~=6.380 sec. ft.z.. 

For an assumed mean velocity of 35 fps and a boundary depth requirement of 

18 inches, the tunnel·le~gth by Eq. (2-2) ts 153 feet. Because of space 

limitations the tunnel test sections were restricted to a length of 50 

feet. This length gives, by Eq. (2-2), a turbulent boundary layer depth 

of 7 .8 inches. 

The boundary layer depth may be increased by artificially roughen

ing 'the surface over which the flow occurs. Zingg and Chepil (4) per-

formed experiments in whi9h the boundary layer depth was determined over 

an artificially roughened floor. The floor was covered with gravel rang-

ing in diameter from one-eight to one-quarter inches in diameter. When 

the floor leng.th was 48 feet, and the mean velocity 38.2 fps, the turbu-
' 
lent boundary layer was found to have a depth of 10.5 inches. 

In order to replace the constant 0.336 ,Eq. (2-2), which is for flow 

over a smooth surface, with one which accounts for a roughened surface, 

the results o,f Zingg 'and Chepil are substituted into Eq. (2-2) :giving 
. ' L § . 

-5 2 
a value of .. nGu equal to 0,475 seconds feet. The constant 1G1 is the 

roughness coefficient. The turbu+ent boundary layer depth for ~low over 

the gravel roughened surface may then be expressed as: 
, 

5 
~ -::: 0.475 L ( .<4 ) ev1 . (2"."J) 
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For a length of .50 feet and a mean velocity of 35 fps the boundary layer 

depth is found to be 11.0 inches. 

Summarizing~ 

Boundary layer depth over a smooth floor ~.7.8 inches. 

Boundary .layer depth over a gravelled flobr = 11.0 inches. 

2. Temperature and Humidity Control 

Temperature and humidity control to the extent of increasing the 

humidity and decreasing the temperature may be provided for. This may 

be achieved by providing a shoFt removable test element. Into this space 

another element may be placed whereby the air may be· adiabatically sat

urated. Cooling of the air by refrigeration was :not deemed feasible. 

The size of the air conditioning unit required would make the cost pro

hibitive. Maintaining an air temperature in the tunnel higher than at

mospheric temperature can be·, accomplished by heating the laboratory 

space. 

3. Energy Source and Speed Control 

As an ample source of' electrical power was available, the use of an 

electric motor with some variable speed typ~ driye was indicated. The 

use of these units would result in good speed control, and the tunnel 

could be operated unattended. 

4. Tunnel Size and Configuration 

A basic test section of 4:ic,,4 feet in cross section was deemed suf

ficiently large. If a test were to be conducted which required a larger 

test section, some of the basic test sections could .be.removed. They 

would be replaced by a larger test section and additional diffuser and 

contraction elements. These additional elements were not designed. 
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A floor which was adjustable in height would permit the use of a 

false floor. This would be desirable when tests were to be conducted 

involving water surfaces and plants. The water or plant containers them-

selves would not affect the flow pattern. 
\ 

An adjustable floor would make it possible to provide for a slight 

divergence of flow. This would pe~mit the maintenance of a 1miform max~ 

imum velocity throughout the test section length. 



CHAPTER III 

STATEMENT OF THE DESIGN OBJECTIVES 

From. preliminary design considerations, the following final object'-

ives were to: 

A. Have a test section length of 50 feet. 

B. Have a basic test s~ction of 4 X 4 feet in cross-section. 

C. .Provide a variable depth test section. 

D. Assemble the test section from component elements. 

E. Attain a velocity of 40 MPit~" 

F. Use an open type tunnel with provision made for the possible 

conversion to a closed type tunnel. 

·a. Use a contraction ratio of six for the intake section. ,. 

H. Provide instrumentation for the tunnel to insure accuracy of 

velocity measurements at low velocities. 

I. Provide for the possible increase of the air humidity within 

the tunnel. 

J. Dimension the contraction element to give constant acceleration 

at discharge. 

K. Achieve low turbulence of the airstream at exit from the con-

traction element. 

L. Provide a fan with at least 6 blades with the blades having an 

adjustable angle of attack. 

M. Use a tunnel of the induced flow type. 

10 
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N. Provide a diffuser for maximum energy recovery. 



CHAPTER IV 

COMPONENT DESIGN 

The tunnel is located in the Agricultural Engineering Laboratory 

No. l=A. A floor plan of the of the Laboratory showing the tunnel loca

tion is given in Fig. 3. Air flowing from the end of the tunnel is dis

charged into a dust settling room having a floor area of approximately 

350 square feet and an average height of 13 feet. From this room the 

air may be either exhausted to the atmosphere or returned to the tunnel 

laboratory for recirculation. If the air is exhausted to the atmos

pherej ample openings exist to provide a fresh supply of air. 

An induced flow-type tunnel was selected as this type tunnel has 

several advantages over one in which air is blown in from the intake end. 

The entering air is undisturbed by the fanj making a honeycomb brother 

straightener devices unnecessary. One-third of the fan dynamic pressure 

may be lost in the straightener devices of a forced flow-type tunnel. (4). 

Bagnold (5) states that there is also the practical advantage that the 

negative pressure within the tunnel will aid in keeping the access doors 

tightly closed.· This applies also to the sealing of the flange joints 

between test elements. If sea.ls are found.to be necessaryj the seals 

would be located on the outsiqe of the tunnel joints. With the seals 

located externallyj less disturbance of the air flow would result. 

Figure 4 is a schematic drawing showing all the component parts. 

The detail drawings and specifications of all component parts are on file 

12 
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in the office of the Argicultural Engineering Department. 

It was not deemed necessary to discuss all of the mechanical prob-

lems· of the design. Only those problems concerned with the air flow, 

the tunnel performance, or some unique feature were thought worthy of 

consideration. 

A. Tunnel Test Sections 

The tunnel test sections are seven in number, six of which are 8 

feet in length and one which is 2 feet in length. Figure 5 shows the 
-

main features of the test sections. The framing members are of 2 X 6 

inch kiln dried structural grade fir. In order to reduce skin friction 

and to protect against warping a plywood having a hard smooth overlaid 

surface was used. The bottom, top and side panels are of one-half inch 

high density plywood (Exterior DFPA), of natural color and overlaid on 

both sides. 

The floor is adjustable in height at either end through a range of 

9 inches. The entire floor panel may be removed and replaced with a 

specialized floor panel if so desired. If the floor is adjusted so as 

to give a slope, provision has been made to fill the space which will 

result between the floor sections, by a series of angular wedges. 

A 2 X .3 foot access and observation door is provided on each side 

of the test section. The door panel is of three-eights inch thick plexi-

glass. Both the door and plexiglass panel are fitted flush on the in-

side. Larger size objects than can be accommodated by the access doors 

may be placed within the tunnel. The top is made as a separate papel 

and may be removed to provide access for large objects. 
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The test sections may be draw tightly together to provide proper 

' sealing at the flange joints. Provision has been made for this by in-

s.etting the flanges slightly. A template was used 111 the manufacture of 

the test section elements to .insure proper alignment of the panel ends. 

Rigidity or ·· the sections is provided for by a 1 inch thick by 20 

inch deijp plywood stiffener. A stiffener is placed at the bottom of 

the flange legs at each end of-. each section. Since the end flanges are 
,, 

. . 
cantilever beams, proper rigidity would be maintained in event t~e top 

panel were removed. The two foot section has no supports, being sup-

.ported by the flanges of ·the erid sections. This section may be removed 

readily to provide an area for the installation of any speciai air flow 

modification devices. 

As the air proceeds along the tunnel sections the thickness of the 

boundary l~er increases. To satisfy the law of continuity, the velocity 

in the center must increase. The velocity increase, in turn, results in 

a decrease in the static pressl?-l'e. If the static pressure is to remain 
I· 

constant throughout the tunnel, the walls must diverge. Pope (6) states 

that the . total angle of divergence between the walls should be approxi

mately one degree. Adjusting the floor slope simultaneously with longi-
1 

tudinal static pressure measurements will result in obtaining the proper 

angle of divergence. 

A.safety screen is provided between the last test section and ~he 

transition section. 

B . . Intake Section · 

The purpose of the intake section is to increase ~he velocity of the 
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air continously in such'a mariner so that at the exit of the intake sec-

tion the velocity will be uniform and the turbulence decreased. To do 

this, the flow through the intake section must be such that no separa

tion of the boundary layer occurs. The intake section should ac~ieve 

its purpose within a rea.sonably short length. 

·pope (6) states that the variation in velocity from the mean velo

city varies inversely as the square of the contraction ratio. Thus: 

(4-1) 

wl;lere: 

C-= the contraction ratio 

vt=-velocity variation from the mean velocity at the intake section 

ex,i t, feet per seqond 
I . ·• 

V*~veloc:i,.ty at the. intake section exit, feet per second 

v~ velocity variation from the mean velocity at the entrance to 

the intake section, feet per second 

V~ velocity at the intake section entrance, f.eet per second 

A large contract·ion ratio ·would result in a low velocity variation, but 

would increase the cost. In event the tunnel were later converted to a 

return type tunnel, the return portion would be increased in size as 

well as the intake section. A contraction ratio of six was selected for 

use as best fulfilling both flow and cost considerations. Substitution 

into Eq. (4-1) yields a velocity variation decrease to 2.78. per cent of 

its initial value. 

Several types of geometrical curves are given as suitable for the 
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intake section profile. (6,7). Rouse and Hasson (8) state that a profile 

having an infinite radius or curvature at the point or tangency with the 

test section is preferred. They have shown by experiment that unless 

this condition exists, there will be, in general, a pronounced drop in . . 

pressure just before the juncture of the curved and uniform sections. 

The pressure thereafter will rise to that or the uniform flow. C:Ubi~~ 

arcs (i.e., curves of the form y:::: _ax~) are preferable to either ellip

tical or circular arcs owing to the fact that their radius of curvature 

is infinite at their points of tangency with the uniform sections. (8). 

Figure 6 is a sketch of the intake section profile. It consists of 

two cubical parabolas each or which are tangent to the horizontal and to 

- -1-each other. 

---+~- -

PT 

I 
I 

~PT 

L 

Figure 6. Intake Section Profile 

Curve b 

-----·- -- --· 

The results of Rouse and Hasson's (8) 'experimmts to obtain cavi

tation free profiles are shown in Fig. 7. The use of Fig. 7 permits the 

PT 

selection of the transition characteristics .for a given contraction ratio 

and a permissible length ratio. The ratio X/L must be equal to or less 
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than the values indicated on the curves. 

'The height at exit from the intake section is the test section flow 

height; D2: 4 feet (see Fig. 6). Because of space limitations the max

imum intake section length was 8 feet. The contraction ratio may be ex-

pressed as: 

C :: (4-2) 

from which D1 =- 9.81 feet. Thus L/D1 0.816 and D1/D2= 2,45. From 

Fig. 7, a value of X/L = 0 .1'18 is obtained from which the distance X== 1. 44 

feet may be found. Referring to Fig. 6, the value of 1y 8 at the point 

of tangency of curve 1b 1 with the test section is 2.905 feet. 

The equations of the two parabolas are:. 

The boundary conditions are: 

(1) at X :: 0 

(2) at X 1.44 

(J) at X = 8 

d X 

d Yb 

d X 

0 

d Ya 

d X 

d Yb 
y = 20905 and -

b d X 

(4-3) 

(4-4) 

0 

From the boundary conditions the constants can be evaluated to give: 

3 
Y = Ool75 X a 

for x ~ 1.44 (4-5) 



3 
y = 2.905-(8-x )(00008434) 

b 
> 

for x == L44 
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(4=6) 

Equations (4-5) and (4-6) were used to obtain the ordinates of the 

intake section. The ordinates and intake section height for incremental 

values of length are given in Table Io 

The profile and important dimensions are shown in Fig. 8" An iso-

metric veiw of the intake section showing the important construction 

features is given in Fig. 9. The panels are laminated from two one-

quarter inch plywood sheets" All ends are jointed over construction 

members. The ribs are made of 1 inch plywood and have a depth of 8 

incheso At the intersection of all construction members, framing anch-

ors are used. 

Co Screen 

A curved trim of elliptical shape is provided for the entrance to 

the intake section. The trim helps provide a smooth flow to the intake 

section in addition to providing a frame over which a turbulence reduc-

ing screen is stretched. The screen functions to reduce turbulence by 

breaking the large size disturbances into smaller ones which soon decayo 

(?). Pankhurst (7) states that if the screen is to be effective in re-

ducing non-uniformity of flow.9 the pressure loss coefficient should be 

of the order of two. The pressure loss coefficient is defined as: 

K 
A P 

1 _2. - e. V 2 s 

(4=7) 

According to curves in Wind-Tunnel Technique by Pankhurst and Holder 

(7) the opening of the screen should be 51 per cent of the screen area 
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TABLE I 

INTAKE SECTION ORDINATES 

Distance From Entrance Curve Ordinates Height of Intake 
X-Feet y=Feet Section-D-Feet 

OoO OoO 9.81 

0 .. 50 00022 9.766 

1 .. 00 0.175 90460 

1.25 0.342 9.126 

1.44 0.5~3 S.764 

L50 0.586 8.638 

L75 o.s43 8.118 

2.ob 1.083 7.644 

2.50 1.502 6.806 

3.00 1.851 6.'108 

3.50 2.137 5.536 

4"00 2.365 5.080 

4.50 2.544 4.722 

5.00 2.677 4.456 

5.50 2.773 4.264 

6.00 2.838 4.134 

6.50 2.877 4.056 

7.09 2.897 4.016 

7.50 2.904 4.002 

8.00 2.905 4.000 
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Figure 9. INTAKE SECTION 
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for a pressure loss coefficient of 2.5. If a test section velocity of 

58.6 fps is assumed, the velocity--at the screen is 9.78 fps. Sttbsti

tution into Eq. (4-7) gives a value of. Ps equal to 0.285 pounds per 

square foot. 

Pankhurst (7) states that the Rh should be kept low. This require

ment dictated the selection of a small diameter wire. The specifications 

for the wire screen are as follows: 

Manufacturer 
Mesh .per Linear fnch 
Diameter of Wire 
Approximate Per Cent Open Area 
Grade 
Material 

D. Diffuser 

Buffalo Wire Wprks Co. 
22 X 22 
0.0132 inches 
500 5 
Light 
304 Stainless 

A diffuser is·a channel which qas for its purpose the conversion of 

kinetic energy in such a manner that the pressure increaseso If the air 

flow were to take place directly from the fan to the atmosphere? the 

whole of the kinetic energy would be dissipated by friction into inter-

nal energy. An additional quantity of energy equal to that dissipated 

would then need to be supplied to the air stream. If a diffuser is µsed 

ih an open=type tunnelJ the pressure at exit from the fan will pe lower 

than atmospheric pressure, thus the ~tatic pressure rise across the fan 

will be less than that required in the absence of a diffuser. This lower 

pressure rise will result in a lower power requirement by the fan. For 

small pressure rises teonard (9) states that the power rating m~y be ex= 

pressed asi 

AHP VAP 

33,0QO 
(4-9) 
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where: 

V = volume, feet cubed per minute 

The pressure gradient along the walls of a diffuser is such that it 

is difficult to avoid local separation or thickening of the boundary lay-

ero Diffusion is, therefore, an inefficient processo At low speeds it 

is seldom possible to recover more than 90 percent of the kinetic energyo . 

(3,7)o The diffuser efficiency is defined as the ratio of the pressure . 

rise in the diffuser to the dynamic pressure at the diffuser inleto Thus: 

(4-10) 

For Fig. 10, the diffuser efficiency at low velocities is plotted as 

a function of the total included angle of the diffuser. (7)o Each of the 

curves refer to a particular expansion ratio. The efficiency increases 

rapidly between 20 and 10 degrees, reaching a maximum at about 10 degrees. 

Both Pope (6) and Pankhurst (7) state that the optimum angle of diver-

gence is about 5 degrees. 

Because of space limitations the length of the diffuser was limited 

to 7.5 feet. If a high diffusion efficiency was desired, a small angle 

of diffusion would be required. For a short diffuser, a small expansion 

ratio would result in a high kinetic energy loss at the exit. The prob-

lem then was to find the angle of diffusion which would result in the 

highest overall efficiency. The overall efficiency may be expressed as: 

N : N x N 
o D (4-11) 

where: 

N0 = the overall diffuser efficiency, per cent 
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ND= the diffuser efficiencyj per cent 

N ::. the theoretical energy conversion within a diffuserj per 

cent 

The theoretical energy conversion which is possible within a diffuser 

may be expressed as a function of the expansion ratio. In terms of the 

kinetic energyi 

N 

Kinetic energy may be shown to be~ 

Ke 

Thus~ 

N 

1 

2 

1-

If the flow is considered to be incompressible~ 

(4-12) 

(4-13) 

(4-14) 

(4=15) 

Thus Eq6 (4-11) may be expressed in terms of the expansion ratio asi 

(4-16) 

where~ 

B =- the expansion ratio, dimensionless 

The graph of Eq. (4-16) is shown in Fig. lL 

From preliminary design considerations the space available for the 
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diffuser was within a range of 5 to 17 feet. In order to find the max

imum overall efficiency for any length diffuser within this range, the 

maximum efficiency was found for several lengths. For each length, the 

angle of expansion for various expansion ratios was determined •. Valaes 

of 'Nnu and 'Nu were obtained from Figs. 7 and 8 respectively. These 

values were then introduced into Eq. (4-11) to give the results which 

are tabulated in Table II and shown graphically in Fig. 12. The maxi

mum overall efficiency values were then obtained and used as the ordi

nate of Fig. 13. Figure 13 shows the maximum overall efficiency as a 

function of the length and angle of diffusion. 

After the other components were designed~ the length remaining for 

the diffuser was 6.5 feet. The optimum angle of diffusion is 19 degrees 

(see Fig 13). The. effici~nc'y was estimated to be 65 per cent. The 

diameter at exit for the diffuser angle of 19 degrees is 7.18 feet which 

corresponds to an expansion ratio of 2.06. 

Figure 14 shows the principal features and dimensions of the diffu

ser. The diffuser is constructed of 20 gauge sheet metal. Stiffeners 

are placed around the outside. Angle flanges are provided at each end. 

Between the fan and intake flanges, a sponge rubber gasket is provided 

to reduce the transmission of vibrations to the diffuser. The diffuser 

is supported at the intake end by the fan flange connection. 1 .An access 

opening is provided in the bottom of the diffuser for a B-belt drive. 

If the noise level is found to be highj the diffuser may be covered with 

a sound deadening material. 

E. Fan 

Throughout the wind tuhnel the successive pressure drops which occur 
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TABLE 11 

DIFFUSER EFFICIENCIES FOR VARIOUS LENGTHS 

Expansion Theoretical Exit Size of Sqo Angle of Dif- Diffuser Overall 
ratio-B Eff.-% Diffuser-Feet fusion-Deg. Eff.-ND Diffuser 

A. L = 14 feet 
Eff.-N0 

600 97.4 9.81 23.0 65 63o3 

5.0 96o0 8.94 20.3 73 71.0 

4.5 95ol 8048 l8o2 76 72o2 

4o0 93.7 8~00 1604 83 77.8 

3.5 91.5 7o48 14ol 88 80.5 

3.0 89.0 6.93 11.9 91 81.0 

2.5 84.0 6.32 9.5 91 76~3 

2.0 75.0 5.66 6.8 90.0 67.5 
'· 

1.0 00 4.00 00 00 

B. L = 17 feet 

6.0 97.4 9.81 19.4 75 73.1 

5.0 96.0 8.94 16.5 82 78o7 

4.5 95.1 8.48 15.0 84 79.9 

4.0 . 93.7 8.00 13.4 87 8L5 

3.5 91.5 7.48 11.7 90 82.3 

3.0 89.0 6.93 9o9 91 81.0 

2.0 75.0 5.66 5.6 89 66.7 

1.0 00 4.00 00 00 
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TABLE 11 (Continued) 

Expansion Theoretical Exit·Dia. of Con.:. Angle of Dif- Diffuser Overall 
ratio-B Eff.-% ical Diffuser-Ft. fusion-Deg. Eff.-N0 Diffuser 

Eff.-N0 

L :: 9 feet 

6.0 97.4 12.25 44.0 33 32.2 

5.0 96.0 11.15 37.8 41 39.4 

4.5 95.1 10.60 34.6 45 42.8 

4.0 93.7 10.00 31.0 52 48.7 

3.5 91.5 9.34 27.2 66 60.5 

3.0 89.0 8.67 23.0 75 66.7 

2.5 84.0 7.90 18.3 84 70.5 

2.0 75.0 7.06 13.0 92 69.0 

1.5 64.0 6.12 7.1 90 57.5 

L : 5.54 feet 

6.o 97.4 12.25 66.2 25 24.4 

5o0 96.0 11.15 58.0 27 25.9 

4.5 95.1 10.60 53.6 28 26.6 

' 4.0 93.7 10.00 48.6 32 30.0 

3.5 91.5 9.34 42.8 42 3EL4 

3.0 89.0 8.67 38.6 51 45.4 

2. 5 84.0 7.90 29.4 72 60.5 

2.0 75.0 7.06 21.0 84 63.0 

1.5 64.0 6.12 11.6 92 .. 59.0 
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must be balanced by the fan. Before the fan could be selected it was 

necessary to determine the total pressure loss. Figure 15 is a sketch of 

the relative static pressures throughout the tunnel. 

Screen 
Atmos heric Pressure 

,-
1 

I 
I 

__ I 

Fan Diffuser-

Pope (6) has pointed the way towards a logical approach to the 

calculation of the losses in a wind tunnel. The procedure is to divide 

the total pressure losses into those occurring in the (1) intake section, 

(2) screen, (3) test sections, (4) transition section, (5) diffuser, and 

(6) those due to leakage .• 

In each section the pressure loss may be written in coefficient 

form as a ratio of the local pressure loss to the test section dynamic 

pressure. Thus: 

where: 

p q 
Ka=---· 

(q)(q) 
0 

q the dynamic pressure, pounds per square foot 

K pressure loss coefficient, dimensionless 

(4-17) 



The dynamic pressure is expressed as: 

1 -2 
q =-~v 

2 

The static pressure rise across the fan becomes: 

6P ::::. q0 ~ K 
F o 
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(4-18) 

(4-19) 

The following losses are found for a test section velocity of 58.6 

(fps); corresponding to qo equal to 4.08 pounds per square foot. 

1. Intake Section 

Pope (6) derives a relationship for K0 i to be: 

L 
K0 i = 0.32 (4-20) 

By Eq. (2-1) the Reynolds number at exit from the intake section is 1.495 

x 106• Figure 16 gives the skin friction coefficient as a function of 

the Reynolds number. (6). The friction factor is 0.013 (see Fig. 16). 

Substitution into Eq. (4-20) gives K0 i-0.083. 

2. Screen 

The pressure drop across the screen is 0.285 (see page 25). Sub-

stitution into Eq. (4-17) gives K0 s-= 0.07 

3, Test Sections 

The Darcy-Weisbach equation for the evaluation of pressure losses 

in ducts is: (3) 
L 

,6P - /\.- q 
D 

(4-21) 
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or in coefficient form as: 

/(P 
By Fig. .J::,,.-, )__ = 0. OlL Thus K - 0.137. 

00 

4. Transition Section 

40 

(4-22) 

The transition section changes the flow area from 4 ft. square to 

5 ft. circular within a horizontal distance of 3 feet and 7 inches. This 

permits an increase in flow area which is equivalent to an angle of dif-

fusion of 7.5 degrees. In a divergent section, both wall friction and 

expansion losses occur, which may be summed up by: (6) 

(4-23) 

where: 

D1 the smaller diameterj feet 

D2 the larger diameter, feet 

The effective smaller diameter== 4.5 feet. By Fig. 16, .11.= 0.011. Sub

stitution into Eq. (4-22) gives K0 r-0,020 

5. Diffuser 

The overall diffuser efficiency has been estimated to be 65 per cent 

(see page 30). The overall efficiency term includes both diffuser losses 

as well as the residual kinetic energy loss. Combining Eq. (4-10) and 

Eq. (4-17): 

(4=24) 
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At the diffuser entrance the velocity is 47,8 (fps), which corres-

sponds to a dynamic pressure of 2. 72 pounds per square foot,, Substitu-

tion into Eq. (4-2.3) gives K0 n== 0.4.33. 

6. Leakage Loss 

The loss due to leakage and joints may be assumed to·be approximate

ly 10 per cent of the other losses. (6). A value of K0 L = 0.070 was 

assumed. 

The loss coefficients are shown in the following tabulation: 

Intake Section 
Screen 
Test Sections 
Transition 
Diffuser· 
Leakage 

Loss Coefficients 

0.083 
0.070 
0.137 
0.020 
0,4.33 
0.070 
o.81.3 

By Eq. (4-19) the pressure rise across .the fan is 3 • .32 pounds per 

square foot or 0.64 inches of water. The flow rate is 56,200 CFll.fo Sub

$titution into Eq. (4-9) gives a value of the air horsepower equal to 

5.65. 

Following are the specifications of the fan selectedg 

Manufacturer Joy Manufacturing Co. 

Model Number 60-26-860 

Diameter 60 inches 

Hub Diameter 26 inches 

Number of Blades 16 

Recommended Speed 860 



The fan performance curves are given in Fig. 17. The' fan has a 

wide performance range made possible by varying the blade setting. The 

fan has integral straightening vanes by means of which a portion of the 

rotational kinetic energy imparted to the flow may be recovered. In 

addition to the fan, the Joy ManU:facturing Co. furnished the proper V

belt drive and transition section. 

F. Drive Unit 

The power requirement of the fan is ll.5 horsepower (see Fig. 17). 
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If a drive efficiency of 95 per cent is assumed, the drive motor required 

is 12.1 horsepower. The motor and drive specifications are given in Air 

pendix A. 

The term energy ratio is commonly -~sed to express the relative mag

nitude of the losses within a wind tunnel. The energy ratio is defined 

as the ratio of the kinetic energy of the air with·in· the test section 

to the input energy. Basing the input energy as that imparted to the 

air by the .fan, the energy ratio becomes: 

~ 
E.R. = --

q L1c 
0 

1 
(4-25) 

If the en.ergy ratio is defined to include the fan losses, then Eq. 

(4-25) maby be modified as·: 

ER - ~ . ·F -
~K 

0 

(4-~) 

The fan efficiency is: 

AHP 
(4-27) 

BHP 
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Using the values of horsepower previously determined, the fan efficiency 

is found to be 49 per cent. Substitution into Eq. (4~26) gives an energy 

ratio including fan losses of 0.602. 



CHAPI'ER, V 

SUMMARY AND CO:tlJLUSIONS 

A low speed research wind tunnel has been designed. At the present . . 

time all components have bee? fabricated with the exception of the dif

fuser; therefore, the fulfillment 6f the stated objectives await veri

fication. The prime objective of the tunnel is to provid~ a simulated 

·natural air flow. It is believed that this objective will be satisfac-

torily attained. 

If the boundary layer gradient requires modification, this may be 

accompl~shed. To do so, requires a change in the floor roughness. Thus, 

a combination of the proper velocity and floor surface roughness· should 

make duplication of all natural air flows possible. 

Higher velocities may be attained by the addition of a larger drive 

unit. The fan has capacity suitable for a tunnel speed of 62 MPH. 

Higher velocities may also be attained by the use of a smaller test sec-

tion. Several of the standard test sections could be removed and in 

turn be replaced by a contraction element, smaller test section, and a 

diffuser. 

The tunnel may be readily adapted to fit the requirements of many 
. f 

research projects. Because of this, in addition to other factors men-

tioned, the tunnel should prove to be a valuable tool for many research 

activities. 
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APPENDIX A 

DRIVE UNIT SPECIFICATIONS 

Motor 

Manufacturer 

Serial Number 

Horsepower 

Amperes 

Volts 

Type 

Phase 

RPM 

Variable Speed Drive 

Manufacturer 

Serial Number 

Size 

Gear Ratio 

Belt Number 

Max. RPM 

Min. RPM 

Horsepower of Motor 

Robbins and Meyers 

M5929SG 

15 

39.5/19 

220/440 

Alternating Current 

3 

1140 

Reeves Pulley Co. 

MD-13046 

6281-0-12 

1.54=1 

M661430 

1500 

250 

15 

47 
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APPENDIX B 

Following is a list including the specifications, of the instruments 

which have been selected for use: 

HOOK GAGE MANOMETER 

Manufacturer 
Manufacturer 1s No. 
Range 
Accuracy 

INCLINED MANOMETER 

Manufacturer 
Manufacturers No. 
Range 
Accuracy 

Manufacturer 
Model No. 

HOT WIRE ANEMOMETER 

A. Wire Current Circuit 

Heating 

Battery 

B. Amplifier 

Input noise level 
Max. output noise level 
Max. output signal 

F. W. Dwyer Mfg. Co. 
1420 
0=2 inches of water 
:t 0.001 inches of water 

F. W. Dwyer Mfg. Co. 
100 
0=1 inch of water 
± Q.01 inches of water 

Flow Corporation 
HWA3 

Constant current supply 
(25 ma. to 300 ma.) 
Built-in, capacity 40 
hr. at 60 ma. continous 

10 volts rms 
10 volts rms 
50 volts 

C. Hot Wire Anemometer Auxiliary Equipment 

2 Probes 
Power Supply 
Filter 

Model HWP-A 
Lambda Model 28 
Model F-7 
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PITOT TUBES 

A. 

Manufacturer F. W. Dwyer Mfg. Co. 
Manufacturer's No. 164 
Length 4g inches 
Type Mounting Flange 
Material Stainless Steel 

B. 

Manufacturer F. W. Dwyer Mfg. Co. 
Manufacturer's No. 163 
Length 36 inches 
Type Mounting Flange 
Material Stainless Steel 
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