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CHAPTER I

ORDINARY THIRD ORDER LINEAR
HOMOGENEOUS DIFFERENTIAL

EQUATIONS
Introduction

This thesis is goncerned with results concerning the osgillatory
properties of the third order ordinary linear hemogeneous differential
equation which have appeared since 1967, In particular those results
concerning existence of gscillatory (and nonosgillatory solutions),
solution space properties, and the relation between the third order
linear differential equation and its adjoint are studied, Also, techniques
which were used to ohtain these results will be pregented.

The purpose of this thesis is to gather these results into a single
unified work which would be of use to those interested in differential
equations, Also, many of the techniques used to obtain these results
will be displayed for the benefit of the novice in differential equations,
This thesils is a partial extensjon of Swanson's book [22] which
summarizes many of the results in this area of differential equations
which were obtained prior to 1968, Consequently, this thesis brings
the work of Swanson up to date,

The study of the third order linear differential equation began

with Birkhoff's paper [6] in 1911 which dealt with separation and



comparison theorems., Most of the oscillatory theory of third order
linear differential equations has been developed during the past two
decades. Some of those responsible for the early results concerning
the oscillation theory of third order equations are Gregus, Hanan,
Lazer, Rab, Svec and Villari, Much of the early work in this area was -
motivated bly linear third order equations with constant coefficients,
Recently there has been some interest in the relationship between the
oscillatory behavior of the third order linear equation and the oscilla-~
tory behavior of its adjoint,

The body of this thesis is divided into three chapters. Chapter II
is devoted to the study of the osgillatory properties of fundamental sets
of the third order linear differential equation, For example, if one
considers the differential equation which has as a fundamental set
{et, sint, cost} then any oscillatory solution is a linear combination
of sint and cost. A generalization of this example is given in
Chapter II.

In Chapter III the existence of oscillatory solutions and the
asymptotic behavior of solutions and their derivatives are studied.

The techniques used in this ¢hapter are of special interest, Some of

the results and techniques were motivated by Lazer's paper [15],

The c¢riterion which are gonsidered to guarantee the existence of

oscillatory solutions or nonoscillatory solutions are the following:
(i) The signs of the coefficients of y, y' and y'!,

(ii) The integrability of the coefficients of y, y' and y''!,

(iii) The characteristic equation,

However, some oscillatory properties of the ¢onstant coefficient case

do not generalize as will be shown by example,



Chapter IV contains results which display the connection hetween
the ogcillatory nature of the third order linear differential equation and
its formal adjoint. Much of this material is very recent and some has
yet to appear in the literature, The relationships between the differ-
ential equation and its adjoint with respect to the properties R, RN,
RO, oscillatory, nonoscillatory and weakly oscillatory are considered.

Some of the proofs given in the literature were corrected (for
example Lemma 4.5) or shortened (see Lemma 4,19) by using the
results of Birkhoff and Polya, In fact much of the work in this chapter
follows from the work of Birkhoff, Polya and Lazer. Also, several
examples using the results of the theory developed in Chapters II, III

and IV are given.
Third Order Linear Differential Equations
Consider the differential equation
y'Ut+p(t) v+ qlt)y' + r(t)y = 0, (1)

where p(t), q(t), r(t)e C[a.,e:o)q and a is a real number. The

formal adjoint of (1) is the differential equation given by

Yo ()t + (q(t)y)! - x(t)y = O, (1)

With the assumption that p(t), q(t), r(t) ¢ Cla, ), the solutions of
equation (1) as well as (1)>:< form a vector space of dimension three
over the reals, Also, with the above assumptions there exists a unique
solution satisfying the initial conditions y(to) =a, y’(to) = a,,
y”(to) = ag, where ty € [a,®), The solution spage of (1) will be

N

denoted by € and the solution space of (1)* by & , The substitution



t
y(t) = z(t) exp [— %,/ p(s)ds:!
a

transforms (1) into the differential equation
Z1 4 P(t)z' + Q(t)z = 0 . (2)

The oscillatory properties remain invariant under this substitution.
Thus, the oscillatory natur.e of equation (1) can be considered without
loss of generality by studying oscillation theory of equations of the
form (2).

In the remainder of this paper a solution of (1) shall mean a
nontrivial solution, A solution of (1) is said to be oscillatory {or is
said to oscgillate) if its set of zeros is unbounded above. Solutions

whieh are not oscillatory are called nonoscillatory,
Prellminary Concepts

The following definitions and theorems are necessary to under-
stand the remainder of this thesis, The proofs of the theorems are

omitted,

Definition 1,1 A subspace of the space & of the solutions of the

differential equation (1) is said to be oscillatery if it contains at least

one oscillatory solution, A subspace is said to be weakly oscillatory if

it contains both an osc¢illatory and a nonosg¢illatory solution.

Definition 1,2 A subspace of & is sald to be nonoscillatory [st;‘ongly

oscillatorx] if none [all] of the solutions in the subspace oscillate,



Definition 1,3 The differential equation (1) is said to have property

R on [a,®) ifit is weakly oscillatory and it has two solutions 1A
and Vs such that W(yl,ya)(t) £0 for te [a,,ee), where W(yl,yz)

represents the Wronskian of 1) and Yy

Theorem 1.4 (Polya [17]). If (1) has solutions vy and Vo such
that yl(t) #0 on [a,o) and W(yl, yz)(t) #£0 on [a,®), then no
golution of (1) can have mere than two zeros on [a, o) (counting

multiplicities), This says that the solution space ls nonoscillatory.

Remark 1.5 Let equation (1) have property R. It follows from

Theorem 1,4 that the solutions Yy and s in Definition 1.4
oscillate, For, suppose y,(t) #0 on [b,o) where b > a, Since
W(yl,yz)(t) #0 on [b,®), no solution of (1) can oscillate by
Theorem 1.4. This is a contradiction since equatijon (1) has property
R ; hence an osc¢illatory solution, Thus, yl(t) escillates, Similarly,

y,(t) oscillates.

Definitio_n 1.6 The differential equation (1) is said to have property
RO if it has property R and a solution of (1) is oscillatory if and only
if it is a nontrivial linear combination of 2 and Yy where 18] and
yz are as in Definition 1.3, Equation (1) is said to have property RN
if it has property R and every nonoscillatory solutjon of (1) is a
constant multiple of a fixed nonoscillatory solution, It follows directly
that properties RN and RO are mutually exclusive,

The following examples are intended to illustrate some of the

above concepts,



Example 1,7 Consider the differential equation

y''t+y! =0 - (3)

which has {1, sint, cost} as a fundamental set. Now y(t) =1,

Yl(t) = sint are nonoscillatory and oscijllatory solutions respectively,
Since W{(cost, sint) =1, (3) has property R, But zl(t) = %-i- sint
is oscillatory and zz(t) =2 + sint 1is nonoscillatory; hence, (3) has

neither property RO nor RN,

The next example characterizes the properties RO and RN in

the case where (1) has constant coefficients,

Example 1.8 Consider the equation

ytt+py't+qyttry =0, (4)
where p, q, and r are constants. The adjoint of (4) is

y"t - py'"t tqy' -ry = Q. (5)

If the characteristic equation of (4) does not have imaginary
roots, then (4) cannot have an osg¢illatory solution, Hence, it cannot
have property R. So, suppose the characteristic equation of (4) has
roots a, ptip, and p ~ip, P# 0, Consider the solutions eat,

e“tsin Bt, and ep'tcosﬁt.
Case I, Suppose u < a. The solution

at pt

= Pt
y(t) = ¢ e” " te,e

sinPt + Gg e cosft

at(

H

e (et cze(“”a)tsinﬁt+c3e(“*a)t¢osﬁt)



oscillates if and only if ¢y =0 since p-e<0 and

cz(pL ¥ “)t(sinﬁt + cogft) = K ek~ a)tsin(ﬁt ty).

Therefore, (4) has property RO,

Case II, Let p> a, then

y(t) = c:lea’t + ¢, ept.sinﬁt + ¢3 e}"'tcos(,’)t
= ep.t(c'.le(a‘-p.)t+ c;‘-l'cgz sin (Bt + &)

is nonosc¢illatory if and only if 022 + c?,z =0, as a~pu <0. Thus (4)

has property RN,
Case III, Suppose a =, Then the soluytion

at (l— + sinpt)

y(t) = & 5

is oscillatory, and the solution

y(t) = e®t (2 + sinpt)

is nonoscillatory. Hence, (t) has neither property RO nor RN,

The properties RN and RO may be charcterized by the
following conditions on p and a:
(i) equation (4) has property RO if and only if p < e,

(ii) equation (4) has property RN if and only if u> «a,

It is easily shown that -a, -u-if, -u + if are roots of the

characterlstic equation of (5), If equation (4) has property RO, then



p < a. Hence -~a> -p, and (5) has property RN, Similarly, if (4)
has property RN then (5) has property RO, This relationship
between the differential equation and its adjoint will be considered

again in Chapter IV.

Devfinition 1,9 The differential equation (1) is said to be (2,1) dis-

conjugate If for any nontrivial solution y(t) of (1) and any number

bela,m), y(b)=y'(b) =0 implies y(t) #0 for t>b,

Remark 1.10 The differential equation in Example 1,7 has property

R, The solution

y(t) = -1 + sint

is an oscillatory solution with double zeros. So property R does not

imply (2,1) disconjugacy,

Lemma 1.11 (Hanan [12]). If wu(t) and v(t) are linearly indepen-

dent solutions of equation (2) sugh that wuf(b) = v(b) = 0 for some
b >a and equation (2) is (2, 1) disconjugate, then the zeros of wu(t)

and v(t) separate in [a,b).

Theorem 1.12 (Mammana [16]). Equation (2) is (2,1) discenjugate

if 2Q(t) - PY(t) <0,

Lemma 1.13 (Lazer [15]), If P(t) <0, Q(t) <0, 2Q(t) - P'(t) < 0
in equation (2) then the derivative of any osc¢illatory solution of (2) is

bounded.

Theorem 1.14 (Lazer [15]), If P(t) <0, and Q(t) >0, then

equation (2) has a solution z(t) such that



z'"(t) 2" (e) 2" (t) z(t) # 0, tela, @),
sgnz(t) = sgnz''(t) # sgnz'(t) = sgnz'''(t),

lim z''(t) = lim z'(t) = 0,
tr>co t~>

and z(t) is asymptotic to a fixed constant.

Theorem 1,15 (Lazer [15]), If P(t) < 0, Q(t) >0,

2
P , 4 ( 1 ) .
O e y) S0

and equation (2) has one oscillatory solution, then all solutiens of (2)
oscillate except constant multiples of the nonvanishing solution whose

existence is asserted in Theorem 1. 14,

Thgorem_l, 16 If in pquation (2) P(t) < 0, Q(t) < 0 and y(t) is a

salution of (2) such that
yltg) 2 0, yi(ty) 2 0, and y'i(t;) >0

for some to € [a¥m), then y(t) >0, y'(t)>0, y''(t) >0 for all

t>t0 and

lim y(t) = lim y'(t) = «,
tr>o

t>c0

Theorem 1.17 (Birkhoff [6]), If y (8, yz(ﬁt), ys(t) form a

fundamental set for (1) then

W(styg)
W(Y&a Yza Yﬁ)

Zl(t) = {t) ’



W(Y1:Y3)

2 W ¢
W(y,v,)

2500 = Wy

W(Yl ’ Yz'n YB )
e

form a fundamental set for (1) ,

’I‘hgeorpm 1, 18 (Polya [17]), If the functions

u, f,f5,... ,fn € Cn'l(I) on some interval I, then

I . n
(j-) W(ufl"?r’ufn) = u W(fl_!ﬁ-y:fn)

(1) WW(E,£), WIEp, £), Wiy, £g)) = W2E, £, f

3) -

Remark 1.19 Barrett [4] introduced the canonical form

Lalyl = {ry(t)[y"* + q (t)y]}' + qp(t)y' = 0, tela,w),

10

(6)

where r,(t)>0, and r,(t), ql(t), q,(t) « CEa,m), Equation (6) is

equivalent to the system

vcv' = B(t)d,
where
0 1 0 al(t)
1
B(t) = wa(t) 0 ‘rﬂg—(ﬁ and a = az(t)
0 q,(t) 0 a5(t)

That is, if y(t) is a solution of {6), then

(7)
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y (t)
a(t) = yl(t)

¥, (t)

is a solution of (7), where v, = y' and ¥y = ra[y" + qu],

Conversely, if

is a solution of (7), then vy(t) = al(t) is a solution of (6).
Consequently, the standard uniqueness and existence theorems for (6)

follow from system (7).

Theorem 1.‘20 (Rabenstein [19]), If Vi+ V2 and Y3 are solutions

of equation (1), then

t
W[Yll.p YZ, YB ](t) = W[YII sz Ys] (a) exp ('-f P(S)dS) .
‘ a

The above relation is sometimes referred to as Abel's formula,



CHAPTER II
OSCILLATION

The purpose of this ¢chapter is to investigate oscillatory
properties of fundamental sets for equation (1) and subspaces of the
solution space &, The coefficients in equation (l) are continuous on
some half ray [a,o), Hence, 2 is a vegtor space of dimension
three. The case where p, q, and r are gonstants suggests that
every fundamental set contains a nonoscillatory solution, However,
this is not true as will be shown in Chapter IV; in fact, it will be shown
that 2 can be strongly oscillatory, The follawing example shows that
there are examples of equation (1) which have fundamental sets which

contain 0, 1, 2, or 3 nonogsgillatory solutions,

Example 2.1 Let Yl(t) = etl yz(t) = et sint, and y3(t) = etq:ost.
Then {yl, Yo y3} is a fundamental set for the third order linear

differential equation given by
Wiy, yy(8), v,(t), y4(t)) = 0, (8)

The following are fundamental sets for equation (8) with 0, 1, 2, 3

nonosgillatory solutions respectively:

B {et(1+cost), etcost, etsint} ,

0

B, = {et, etsint, etcost} \

12
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o
i

{et, et(2+cos t), etsint} )

By

{et, et(2 + cos t), et(2+s‘lnt} .

Although B0 containg three osclllatory solutions, equation (8) has a

nonosgcillatory seolution yl(t) = et.

The following theorem due to
Utz [23] provides a generalization of this example, The proof given

below is provided by the author,

Theore.m 2,2 Recall equation (2) given by

z'" + P(t)z' + Q(t)z = 0,

where P(t), Q(t) ¢ Cla, o). If

() P(t) <0, Q(t)>0,

2
o 2 P(¢) d 1
(b) ==y~ ¥ 7 (Q(t)) <0,

and some solution of (2) oscillates, then there are three linearly
independent oscillatory solutions of (2); yet some nontrivial solution

is nonosclllatory.

Proof: As P(t) <0, Q(t)>0, (2) has a nontrivial nonoscillatory

solution z{t) such that %im z(t) = ¢ by Theorem 1, 14, Conditions
>0

(2) and (b) imply the existence of two linearly independent oscillatory

solutions of (2) (Theorem 1.15) say, =

1(t:) and zz(t) such that

Z, Zy, %, are linearly independent, Then zl(t) + z(t), zz(t) + z(t)

oscillate by Theorem 1.15. Since 1z, =z z., are linearly independent,

1" 72

ztz,, z%tz z, f(or =z are the required solutions and the proof

20 %1 2)

is complete,



14

A
Utz [23] states that Svec [21] has shown that if P(t) =0 and
Q(t) > 0 in equation (2), then equation (2) has an oescillatory solution,
The author was not able to find such a fact in Svec's paper. In fact,

the statement is false as shown by the following example.

Example 2.3 The differential equation

gt 2oy =0, tella), (9)

8t

(372 B34 3 - 13)/ey

has as a fundamental set

3/2

Now,

yit) =t
w2 3 \/E>/4) ‘0

is a nonoscillatory solution of (9) and
on [a,»), Henge, by Theorem l.4,

equation (9) has no oscillatory solutions,

Utz [23] claims that the following follows from Theorem 2.2,
If P) =0, Q(t)>0 and f;z, (Bl(a) <0, then the gonglusion of
Theorem 2.2 follows, However, Utz's proof requires that Q(t) > 0
and P(t) =0 implies that equation (2) has an oscillatory solution,
But, Example 2,3 is not a counterexample as :i—zz- (—51(—5> >0, Thus,
Utz's claim seems to be an open question,

The properties RO and RN describe the structure of g,
For example, if equation (1) has property RO, then it follows from
the definition of RO that there exist a two dimensional subspace of &
such that each oscillatory solution of (1) is contained in this subspace.

The following theorems, due to Ahmad [1], give a characterization of

properties RO and RN,

Theorem 2,4 If equation (1) has solutions yl(t) s yz(t) , and y(t)

such that vy(t) is non-vanishing on [a, o), yl(t) and yz(t) are
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oscillatory and W(yl, yz)(t) is non-vanighing on [a., w), then

equation (1) has property RO if and only if

oyt oyt
SN £ TN (10)

Proof: Assume that condition (1) holds. To show that (1) has

property RO, it is sufficient to show that
a(t) = cyylt) +epyy(E) +agy,(t)

is oscillatory only if ¢y = 0. As y(t)#0 on [a, @), z(t) can be

written

z(t) = y(t) cl+c2—m+q3w ,

Therefore, " z(t) is osgillatory only if ¢y = 0. Hence, (1) has
property RO,
Next, assume that equation (1) has property RO, In order to

establish (10), it must be shown that given ¢ > 0 there exist Ti
y;(t)
y(t)

Suppose that there exists an ¢ > 0 such that the above does not

such that |

]<g for tZTi, i=1,2.

hold, Hence, there exists a sequence {ti,n} such that t, - o and

in
v (t,) yiltiy)
—TE_—)-:E or T:-e’ i=1,2,
it y
y; (£)

This is possible as W is oscillatory, If the first equality holds,
then Yi(t) -¢g y(t) is an oscillatory solution, contradicting the fact

that (1) has property RO, A similar contradiction is reached if the
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second equality holds. Hence, condition (1) mugt hold and the proof is

complete.

Theorem 2.5 Suppose that equation (1) has solutions yl(t) ) yz(t)

and v(t) such that v(t) does not vanish on [a,«) and yl(t), yz(t)
are oscillatory with W(yl,yz)(t) non-~vanishing on [a, ). Then

equation (1) has property RN if and only if every nontrivial linear

combination of ——F—— and —=— 1is unbounded above and below,
v(t) v(t)

Proof: First, assume that

is unbounded above and helow, Then, given ¢ >0, there exists a

t - o and

sequencge {tn} such that t <t .., t

z(t y > cl, z(t

2i-1

So, there exist a sequence {?n} such that ”t-n - o and z(Tn) =cy

for all n. Thus,

y(t) = -6 v(t) ¥ 6y, (t) + agyl(t)

= v(t) (- ¢, + 2(t)

is a nonoscillatory solution only if =z(t) =0, that is Cy = Cg = 0,
Hence, equation (1) has property RN.

Next, assume that equation (1) has property RN, Suppose that
z(t) is bounded above. So, there exists a number M such that

z(t) <M for all te [a,o). Then
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y(t) = v(t)[-M + =z(t)]

is a nonoscillatery solution which is not a constant multiple of v(t),
contradicting the fagt that equation (1) has property RN, Hence, z(t)
is unbounded above. Similarly, =z(t) is unbounded below and the proof

is complete,

The following results concerning property RO were obtained by
Benharbit [5]. The proof of his first lemma employs a technique

which has been widely used in the gurrent literature,

Lemma 2.“6 In equation (2), let P(t) <0, Q) <0 on [a,w), If
Pe Cl[a, o) with P'(t) < 0, then all osgillatory solutjons of (2),
if any, are bounded on [a, ),

Proof: Let y(t) be an oscillatory solution of (2), t1 a filxed zero of

y'(t), and t, any other zero of y'(t) such that t, >t,. Thege

2

points exist by Rolle’s theorem as y(t) oscillates.
Let the maximum of yz(t) on [tl, tZ] ocgur at t. Then

v (t) =0 as y‘(tl) = y'(tZ) = 0, Define

2 2

Fly)] = [yue)]® - 2y(t) y**(t) - P(t) y“(t). (11)

It can be verified by differentiation that



If t= tl , then the maximum of yz(t) on [tl,tz] is given by vy (tl) ,

Now, if T >t

1
Fly(t)] = Fly(t))] ~f P'(s)y”(s)ds + 2/ Q(s)y (s)ds
3! ]
>t
< F[Y(tl)] -y (t)J Pl'(s)ds, (12)
¢
1

Using the fact that y'(t) = 0 and equation (11), it follows that
Fly(£)] = -2y()y''(F) - P(E)y*(F) (13)
From (12) and (13),
-P(t)) y2(T) - 2y(F)y™(F) < Fly(e))] .

Now y(?)y"(?) < 0, Otherwise, by Theorem 1.16, y(t) would be

nonoscillatory which is a ¢ontradigtion. So,

P(t,)y*(T) < Flyte))]

or
Fly(t))]
2, — 1
Therefore,
Fly(t,)]
max Yz(t) < Yz(tl) + —'j.@—(g“-l)—" ,

ke [tl,tz]

(Recall that two cases were considered t =t

fixed. Hence, y(t) is bounded,
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Theorem 2.6 Assume the hypothesis of the preceeding lemma. If

equation (2) is oscillatory, then it has property RO,

Proof: By Theorem 2 of [2] (which will be presented in Chapter III)
there exist two linearly independent osgillatory solutions of equation (2),
say yl(t) and yz(t) , such that any nontrivial linear combinatign of
yl(t) and yz(l:) is oscillatory and the zeros of Yl(t) and yz(t)
separate,

If ,W(yl,yz)(_f) = 0, then there exist constants Gy and <, such
that

a(t) = ey, () *oyy,(t), ebtcl >0,

satisfies

z(t) = z'(t) = 0, z't) > 0,

Hence, by Thsorem 1, 16, z(t) is nonoscillatory which ig a contradic-
tion. Therefore, W(yl,yz)(t) £ 0 on [a,a@).

Let y3(t) be the solution of (2) defined by
vs(a) = yi(a) = 0, yiifa) = 1.

By Theorem 1, 16, y3(t) is a nonoscillatory solution. So {yl, Voo y3}
is a fundamental set for equation (2), By Theorem 2 of [2],

lim y,(t) = «. Let y(t) be any solution of (2), then

t—>o

y(t) = ¢y (t) + ey y,(t) + 65 yg(t) .

By the preceeding lemma, yl(t) and yz(t) are bounded. Hence,

y(t) is unbounded if 03# 0 as y3(t) is unbounded, Thus, y3(t)
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can be assumed to be any nonosgillatory solution. So, y is oscillatory
if and only if g = 0. Thus, equation (2) has property RO, and the

proof is complete.
The following results were obtained by Gustafson [11],

Theorem 2,7 A negessary and sufficient condition for every two

dimensional subspace of the solution space of
(P(t)u'")' + Q(t)u' = 0, (14)

where P, Qe Cla,») and P(t) # 0 on [a,®), to contain both an
oscillatory and a nonosgillatory solution is that the following condition
be satisfied: there exists a fundamental set {1, u(t),v(t)} with u(t)

and v(t) osgillatory satisfying

(i) wu(t) +a, v(t) +b nonoscillatory implies u(t)+a+cg(u(t)+b)
is oscillatory for some ¢,
(ii) u(t)+a, v(t)+b oscillatory implies that (u(t)+a) + ¢(v(t)+b)
is nonoscillatory for some ¢.
(iil) wu(t) + kv(t) nonoscillatory irlnpl'J,es u(t) + kv(t) + ¢ is

oscillatory for some c,

Proof: Suppose that every two dimensional subspace of the solution
space of (11) contains oscillatory and nonescjllatory solutions, Let
{u, \7, 1} be any fundamental set for (11), The two dimensional
generated by {1, v} contains an osgillatory solution v = < v + ¢y
by hypothesis. Similarly, there exist constants Gg and 4 such that
u = cautc, is oscillatory, Therefore, {1, u, v} is a fundamental

3

set with u and v being oscillatory.
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To show property (i) holds for {1, u, v}, suppose that v+a
and u+b are nonoscillatory, The two dimensional subspace generated

by {v+a, u+b} contains an osgillatory solution
w(t) = Nu(t) +a) + p(u(t) +b)

by hypothesis, Also, \p#0 as uta, and v+b are nonoscillatory,
Hence, z(t) = %w(t) is the required solution, Properties (ii) and
(iii) can be verified in a similar manner.

Suppose there exists a fundamental set {1, u, v} for (14) with
u and v oscgillatory and conditions (i), (ii), (iii) satisfied, Let X

be any two dimensional subspace of the solution space of (14) with

basis {xl(t),xz(t)}, Now

xj,:alu+blv+ql, I:l:z$ (15)

Assume that X 1is nonoscillatory. It follows from (15) that if

Cle - czbl = 0, then G Xy n CyX g is a constant multiple of u. But

X 1is nonoscillatory so C Xy = CyXy =0, Hence, ¢, =c¢, =0 as x

1 2 1

and x, are linearly independent. Thus, x, = au + biv ¢ X and

a; £ 0, bi # 0, i=1,2 as X is nonoscillatory, Now,

a.X, -~ a,Xx

X5 - 2% = (@b, ~asby)y ¢ X,

But v is oscillatory, so a; =a, = 0, But this is not possible.

Therefore, c;lb2 ~ czbl # 0, Now,
Sp¥p m Op¥y * (Gyay - e )ut (Gyby -Gk Iv

isin X. As clbz-c;zbl# 0, c,a

12~c2a1¢0 as X is
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nonoscillatory, Thus,

a %X - a,%x; = (a;b b.)v + (a,¢ wazcl)fo

2 27 229 1%2

is in X. Thus, w+t kv ¢ X, Two cases shall be considered:

Case I: 1 e X, Condition (iii) implies there exists a constant c¢ such
that u + kv + ¢ is oscillatory, But, u+ kv+ ¢ e X whichisa

contradiction,

Case II: 1 ¢ X. Then the solution spage of equation (14) can be
expressed as the direct sum of the space generated by {1} and X,
Hence, ut+a and v+b must be in X for some gonstants a and b.
Otherwise, u or v would be in X which is not possible as X is
nonoscillatory. But, then by condition (i) there exists a constant ¢
such that (u+a) + g{v+b) is oscillatory which is a contradigtion,
Therefore, X cannot be nonoscillatory.

Next, assume that X is strongly oscillatory, If a.lb2 - a.zbl =0,

then

is in X, But X is strongly oscillatory, so a) =a, = 0. Thus,
uta and v+be X for some a,b and u+a, v+b are oscgillatory
as X is strongly oscillatory., But condition (ii) implies there exist
a nontrivial linear combination of u+a and wv+b which is non-

b

oscillatory, This is a contradiction, Therefore, ¢ = al

g =2k # 0

which implies that

1

= (a,lx2 - asx
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and

1
E—(blx2 - ble) =u+b

are in X and condition (ii) leads to a contradigtion, Therefore, X is

not strongly oscillatory and the proof is complete.

Theorem 2.8 If every two dimensional subspace of the solution space

of equation (14) contains both ascillatory and nonosgcillatory solutions,

then there exists a fundamental set {1,u,v} of (14) such that

(i) >0, v <0 forlarge t,

(ii)' u+a(v+b) oscillates for some a < 0(b >0).

Proof: By Theorem 2.7, there exists a fundamental set {1, uo,v-o}
such that ug and vy are oscillatory and conditions (i), (ii) and
(iil) are satisfied,

If ug does not satisfy (i)', sele¢t k such that ul = uo+ kvo
is nonoscillatory., By Theorem 2.7, there exists a constant ¢ such

that uy + ¢ oscillates., Without loss of generality, ¢ may be assumed

to be positive. Let

¢ = inf{c: u; t¢ oscillates} .
Suppose u1+ c, ul+ d osgillate, ¢ <r <d. Then

u1+c<g1+r<u1+d.

So, u1+r oscillates. Thus,

{c: u; te oscillates}
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is connected. Therefore, uy +d is eventually of constant sign for

each d<c1. Let u:i(u1+d).

Now, u = ;(:(u0+ kv0+ d), hence {1, u,vo} is a fundamental

set, Choose a such that u+a is oscillatory to get a solution

u® = (utat kv0+ d) with the same properties as u, Then

{1, u, u*} is the required fundamental set, and the proof is complete.



CHAPTER III

ASYMPTOTIC AND OSCILLATQRY BEHAVIOR

OF SOLUTIONS

The purpose of this chapter is to study the oscillatory and

asymptotic behavior of equation (1) given by
y''t A p(t)y™ + qlt)yt + x(t)y = 0,

where p(t), q(t), and r(t) ¢ Cla,o), The following results were

obtained by Ahmad and Lazer [2],

Lemma 3,1 Ifin equation (1) p(t) <0, q(t) <0, r(t) < 0, where
tela,) and vy(t) is a solution of (1) with

yltg) 20, y'(t)) >0 and y''(t;) >0

for some t, ¢ [a,®), then

0

y(t) >0, y'(t) >0, y'"(t) >0 for t> t

and

Iim y(t) = lim yXNt) = o,
t—c

t—>o

Proof: First it will be shown that for ¢t > tO y'!(t) > 0, To do this

consider

w(t) = y(t)y'(t)y''(t) .

25
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If y'(t) =0 for some t>t then there exists a smallest number

O H
t; >t such that y"(tl) =0, Otherwise y”(to) =0 whichis a

contradiction., Since y''(t) > 0 forall te (to,tl), y(t.) > 0 and

o)
y'(to) >0, y{t) >0 and y'(t)>0 forall te (to,tl) . Also, y'"''(t)>0

for all te (to,tl) as p(t) <0, q(t) <0 and r(t) <0. Thus,

wi(t) = y'2 (8) yri(e) + y(t) y A (E) + y(t) y ()Y () > O

for all te (to,tl), Integrating w'(t) from to to t, yields

t
0 = W(to) +f 1W)(s)ds .

to

Hence, y''(t) >0 for t >t Thus, y'(t) >0, y(t)>0 for t>t,

0"

It follows directly that y'"'(t) >0 for t>t Clearly,

0 ]

lim y(t) = lim y*(t) = .
' t—>c

t—>o

and the proof is complete,

Lemma 3.2 If in equation (1) p(t) <0, q(t) <0, r(t) <0 and vy(t)
is a nontrivial nonoscillatory solution of (1), then there exists a

number 1:1 > a such that y'(t) # 0 for ¢t > tl'

Proof: Since y(t) is nonoscillatory, it may be assumed that there

exists a number £ > a such that y(t) >0 for all t > t1 . Let

T > t, be a number such that y'(T) =0 and y'Y(T) 3_ 0. By

1
Lemma 3.1, y'"(t)> 0 forall t>T. If y'(T)=0 implies that

y'"(T) < 0 then vy'(t) =0 for at most one t and the proof is eomplete.
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Theorern 3.3 Inequation (1), if p(t) <0, q(t) <0, r(t) <0 then

the following conditions are equivalent:
A. There exists an oscillatory solution of (1).
B. If w{t) is a nontrivial nonoscillatory golution of
equation (1), then there exists a number ¢t > a,

0

such that w(t)w'(t)w''(t) # 0 for t >t and

03
sgnw(t) = sgnw'(t) = sgnw''(t) for t> to,
Proof: Suppose condition A holds. Let u(t) be an oscillatory

solution of (1), If w(t) is a nonoscillatory solution of (1), then, by

Lemma 3.2, there exists a number t, > a such that

1

w(t)w'(t) # 0 for t > t) (16)

As wu(t) is oscillatory and w(t) is nonoscillatory, there exists a
number s > tl such that W(u, w)(s) = 0, Otherwise, by Theorem
1.4, equation (1) would be nonoscillatory. Hence, there exjst

numbers <y and c¢ such that

Z

clu(s) + czw(s) =0,

clu'(s) + czw‘(s) =0,

2 2
Let z(t) = clu(t) + <, (¢). Since u(t) is oscillatory and wi(t) is
nonoscillatory, u(t) and v(t) are linearly independent. Hence,
z''(s) # 0. Without loss of generality, assume that z''(g) > 0, Since

z(s) = z'(s) =0,

z(t) >0, z'(t) >0, z''(t) >0 for t>s,
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by Lemma 3,1, Furthermore,
z'''(t) = -p(t)z''(t) - q(t)z'(t) - r(t)z(t) > 0
by the conditions on p, q and r, So,

lim z(t) = lim z'(t) = o. (17)
t—>re t>eo
From (l6), either w(t)w'(t) <0 or w(t)w'(t)>0, If w(t)w'(t) <0
for t> tl’ then w(t) is bounded on [tl,m). Thus from (17)

lim clu(t) = lim [z(t) - c,a w(t)] = o,

t—~o t->e

But this contradicts the fact that u(t) is oscillatory. Henge,

sgnw(t) = sgnw'(t) for t > tl. If w"(tz) = 0, then

sgnw!''(t,) = sgnlq(t,) w'(t,) + r(t,) wit,)]

1

~8gn w(tz) .

So, w''(t) can have at most one zero on [tl, ©), Therefore, there

exists a number t3 such that

w(t)w'(t)w''(t) # 0 for t > 153r

Suppose that w(t)'w''(t) <0, t >t This implies that w'(t) is

bounded, Then by (17)

lim ¢
t—>eo

u'(t) = lim [2'(t) - o, w'(t)] = o,

t->e

1

This contradicts the fact that u(t), hence u'(t), is oscillatory. Thus,
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sgnw(t) = sgnw'(t) = sgnw''{t) for ¢ > t3

and condition B holds,

Suppose statement B holds, Let w(t) be a nonoscillatory
golution satisfying the conditions of statement B, The following
technique is worth noting. Let zo(t), zl(t), zz(t) be solutions of

(1) defined by

For each positive integer n >a, let a

numbers such that

20p Zo(m) * 25,2,() = 0, (19)
by 7 (0) + b, z,(n) = 0, (20)
2 2 _ .2 2

3oy T Ay, T Ry TRy =1 (21)

Define for each n > a solutions of (1) by
u (t) = 20n zo(t) + a5 ZZ(t) s

vn(t) = blnzl(t) + bZn zz(t) .

As the unit ball is compagt, there exists a sequence of integers {nk}

such that

lim a = a lim a = a
n n
k
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and
ag tal = bl+bl=1 (23)
Let
u(t) = a, zd(t) + 2, zz(t) ,
(24)
v(t) = blzl(t_) + b2 zz(t)
Then u(t) and v(t) are solutians of equation (1) and
W) Dty v 0~ w0y, for j=0,1,2. (25)
k

To see this consider the solution space @ with the norm

Iy, = Iy@] + [y'@] + [y"@],

Now, (25) clearly holds inthe || ||, norm. But ina finite dimen-

sional space all norms are equivalent, Hence, (25) is valid.
Suppose u(t) is nonoscillatory. It follows from (21) and the

t) and =z

independence of =z t) that wu(t) is a nontrivial solution,

o p{

Condition B guarantees the existenge of a number tO > a such that

u(to)u'(to)u"(to) £ 0
and
sgnu(to) = sgnu'(to) = sgnu"(to),

From (25) it follows that there exists an integer N such that ny > N

implies



31

unk(to)u;k(to)u;'k(to) £0

and

= 1 = 1t
sgnu (to) sgnul (to) - sgnu (to) .

kn k k
By Lemma 3, 1, u (t) # 0 for t > to and ny > N, However, for
k
all n, > max [N, to} » Uy (nk) =0 by (19). Hence, u(t) must be

k
osgillatory. Similarly v(t) is oscillatory, and the proof is complete.

The_orem 3.4 The solutions u(t) and v(t) in Theorem 3.3 have the

following properties:

(a) u(t) and wv(t) are linearly independent,

(b) any nontrivial linear combination of u(t) and v(t) is
oscillatory, and

(c) if yl(t) and yz(t) are two linear combinations of u(t)
and v(t) which are linearly independent, then the zeros

of yl(t) and yz(t) separate,

Proof: Suppose that there exist constants c. and ¢

] ' such that

clu(t) + c2v(t) =0,

Then, by (23) and (24),

c.a.z.(t) +b

120%0 c,z,(t) ¥+ (¢, a +czb2)z2(t)EO,

17271 192

Now, zo(t), zl(t), zz(t) are linearly independent, If ¢ # 0, then
ag = 0. So, a, = +1 and uf(t) = izz(t). However, zz(t) is non-

oscillatory by Lemma 3.1. This is a contradlction to the assumption
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that wu(t) is oscillatory. Therefore, ¢y = 0. Similarly ¢y = 0.
Hence, u(t) and v(t) are linearly independent,

Let y(t) =dju(t) + d,v(t) with dl2 + dzz 0. Since u(t) and
v(t) are linearly independent, y(t) is a nontrivial solution of (1), If
y(t) is nonoscillatory, then by Theorem 3.3 there exists a number

ty> a such that

0
vty y'(tg)y''(ty) # 0
and
sgny(ty) = sgny'(ty) = sgny''(ty) .
Set

where u (t) and Vi (t) are defined as in Theorem 3.3, Then
n n
Y, (t) converges to y(t) as in Theorem 3.3, Also, the solution
k
y(t) is oscillatory ag in Theorem 3,3 .

We wish to show that W(u,v)(t) # 0 for te [0,0). Suppose to
the contrary that there exists s ¢ a,®) such that W(u,v)(s) = 0.

Then there exist constants S5 and cz such that

clu(s) + czv(s) =0,

Set y(t) = c,u(t) + ¢y v(t)., Then vy(s)=y'(s) =0. But u(t) and v(t)

1

are linearly independent. Hence, y''(s) # 0. Thus, by Lemma 3,1,
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y(t) 1is nonoscillatory which is a contradiction to part (b). Therefore,
W(u(t), v(t)) # 0 on [a,w),
If y(t) is any linear combination of u(t) and wv(t), then

W(y,u,v)(t) =0 on [a,e). If H(t) = u'(t)v''(t) - v'(t)u''(t), then
W, v)(E) y'H(t) - Wi{u, v)(t)y'(t) + H(t) y(t) = 0.

Thus, y(t) is a solution of the nonsingular linear second order

equation

l:W(u,v)(t):l + Wz(u,v)(t) y =0, (26)

By the Sturm separation theorem [22, p. 5], the zeros of linearly

independent solutions of equation (26) separate, and part (g) follows,

Corollary 3.5 If the conditions of Theorem 3,3 hold, then a necessary

and suffigient condition for equation (1) to have ne oscillatory solutions

is that there exists a solution z(t) of (1) such that

ar

for some T ¢ [a,®).

Proof: Suppose there exists a solution satisfying (27) or (28), Hence,
condition B of Theorem 3.3 is not satisfied, Thus, equation (1) has
no oscillatory solution,

Suppose equation (1) has no oscillatory solutions, Hence, there

exists a nonoscillatory solution z(t) which does not satisfy property
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B of Theorem 3.3. By Lemma 3,2, there exists a number tg 2 2

such that z(t)z'(t) # 0 for t > tor I z(t)z'(t) >0 for t > to s
then as in Theorem 3,3 there exists T > to such that z'(t)z''(t) # 0

for t> T. Therefore, z'(f)z''(t) <0 for t >t as condition B is

0

not satisfied, and the proof is complete,

Theorem 3.6 Consider .equat'ion (2) given by

y''t+ Pt)y' + Q(t)y = 0,

where P(t), Q(t) ¢ Cla,®) and P(t) < 0, Q(t) <0, 2Q(t) ~ P'(t) <0
on [a, o). If equation (2) is oscillatory, then there exist two linearly
independent oscillatory solutions u(t) and wv(t) of (2) whose zeros
separate. Furthermore, a solution of (2) is oscillatory if and only if
it is a nontrivial linear combination of u(t) and v(t). If w(t) is a
nontrivial solution of (2) which is not a linear combination of uf(t)

and v(t), then

lim |w(t)| = lim [wi(t)| = .
t—>o0 tr>c0

Proof: By hypothesis (2) has an oscillatory solution, The conditions
of Theorem 3,4 are satisfied. Hence, equation (2) has two linearly
independent solutions, say u(t) and wv(t), whose zeros separate and
any nontrivial linear combination of uf{t) and v(t) is also
oscillatory, Furthermore, by Lemma 1,13, u'(t) and v'(t) are
bounded.,

Let z(t) be the solution of (2) defined by z(a) = z'(a) =0,
z''(a) =1, By Lemfna_ 3,1, z(t)>0, z'(t)>0, z''(t) >0 for t>a.

Hence,



lim z(t) = lim z'(t) = o,
t—>w t—>co '
Since z(t) is nonoscillatory, {u(t), v(t), z(t)} is a fundamental set

for (2), Suppose

wit) = clu(t) + czv(t) + cgz(t), Cq £ 0,

Since clu(t) + <, u(t) is oscillatory and %hn z(t) = w, wit) is
—» 0
unbounded. Now, %im w'(t) = o as u'(t) and v'(t) are bounded
— 0
and tltim z'(t) = o, Hence, w(t) is oscillatory if and only if Gy = 0.
—» 0

And the proof is ¢omplete,

The following results goncerning properties R, RO and RN

were obtained by Ahmad [1].

Thevorem 3,7 If equation (1) is (2, 1) disconjugate on [a,o ), then

it has property R on [a,e).

Proof: Let zl(t), zz(t) and z3(

z(j)(a)zé. jyk=1,2,3.

For each n>a, let a = (a

such that

where z = (zl(n),zz(n),z3(n)). That is, @ and B are orthogonal

unit vectors which are both crthoegonal to z Let
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t) be the solutions of (1) defined by



(t) = alnzl(t) + aznzz(t) + 3z, z3(t) ,

t) = blnzl(t) * bZnZZ(t) * b3nZ3(t) !

Now, W(uln, U‘Zn)(t) #0 for a < t<n. Suppose tothe contrary

there exists to ¢ [a,n) such that W(uln’ uZn)(tO) = 0. Then there
exist constants c, and ¢, such that

Cluln(to) tcy uzn(to) =0,

1 . 1 —
cluln(to) + CZuZn(tO) =0,
2 2
€ + ¢y # 0.
— 5 H — ! —
Then ul(t) = cluln(t) + CZuZn(t) satisfies u(to) =u (to) =0 and
u(n) = 0. This contradicts (2,1) disconjugacy. Hence,
W(uln’ uZn)(t) # 0 for a < t<n.
Without loss of generality, assume that W(uln’uZn)(t) >0,

a < t<n., As in the proof of Theorem 3.3, there exist a sequence

a b b b such that

{nk} and numbers a g5 by bay by

17 azy

lim (a , a , @ ) = (a,, a4, a,) ,
k—>o lnk an 3nk 1 2 3
lim (b , b , = (b, by, by),
k—>w( lnk an Snk) ( 1727 73

and

36
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Let

ul = alzl + azzz + a3z3 s

b,z

) 1 + b,z

2 373 °

£
n

1+bzz

Now, c % + cyu, = 0 implies that cl(alqaz,a3) = CZ(bl’bZ’b3)'

3
It follows that c)=¢, = 0 because Z aibi = 0 and
1
Z)a.zz Zb,zzl.
i 1

The next objective is to show that W(ul, uz)(t) #£0 for tefa,o),

To do this it will be shown that if W(ul, uz)(T) = 0, then

ul(T) = uZ(T) = 0,
Suppose that W(ul,uz)(T) =0, Te [a._,w), For each te [a,®)
W(ulnk, uznk)(t) - Wlu, u,)(t)
and
W(ulnk, uznk)(t) >0,

Hence, W(ul,uZ)(t) > 0. Therefore, W(ul,uz) has a relative

minimum at T, Hence, W’(ul,uz)(T)zo‘ Thus,

H
C:—-
E
it
o
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has rank 1. This implies that there exist constants 3 and ¢, such

that

< ul(T) + <, uZ(T)

U
o

1
o

¢y uj(T) + G, ul(T)

1t
o

clu'l'(T) + <, u'Z'(T)
2 2
¢, te, # 0.

Hence, ¢, u, te,y, = 0; contradicting the linear independenge of

u,(t) and wu,(t), So, u(T) = u,(T) = 0,

1 2

Suppose that W(ul?uz)(o) = 0, o>T. By the above argument,
ul((r) = uz((r) = 0, Thus, u’l(T) # 0 and u,'z(T) £ 0 as (1) is (2,1)

disconjugate, Let

y(8) = uy(Thu(b) - ui(T)u,(t).

Then y(T) = y(T) =0 and y(oc) = 0. This contradicts the agsumption
that (2) is (2,1) disconjugate, So, ity has been shown that
W(ul,uz)(l:) # 0 for t>T,

Since W(ul,uz)(t) £ 0 for t>T, ul(t) and uz(t) must be
oscillatory, Otherwise, by Theorem 1,4, equation (1) would be non-
oscillatory, Equation (1) is (2, 1) disconjugate. Hence u'l(T) # 0

and u'z(T) # 0. Thus,

y(£) = wh(T)u,(6) - ul(T)u,(t)

4

is a nontrivial solution of (1), Since W(ul,uz)(ﬁ,) #0 for t¢>T,

ul(t) and uz(t) are solutions of a nonsingular second order linear
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differential equation as in Theorem 3.4. Hence, y(t) is also a
solution and oscillates by the Sturm separation theorem [22, p, 5].
Now, y(T) =y (T) =0 since ul(T) 5 uz(T) =0 and W(ulfuz)(T) =0,

Because equation (1) is (2, 1) disconjugate, it follows that

W(u ,u,)(t) £ 0, tela, o),

As equation (1) is (2, 1) disconjugate, the solution defined by
v(a) = v'(a) =0, v''(a) # 0 is nonoscillatory, Therefore, equation

(1) has property R, and the proof is complete,

Corélla_ry 3,8 If equation (1) is oscillatory and p(t) <0, q(t) <0,

—

r(t) <0 for te [a,o), then equation (1) has property R,

Proof: Equation (1) is (2,1) disconjugate by Lemma 3.1, Thus the

result follows directly from Theorem 3.7,

Example 3.9 In Example 1,9, it was shown that the equation

Yll!+yl - O (3)

has property R, However, the solution vy(t) = 1-sint satisfies

y(§+2m) = y‘(;l-i-Z'rm) =0 n=1,2,,., . Hence, (3) is not (2, 1)

disconjugate, So, property R does not imply (2,1) disconjugacy.
The following results were obtained by Benharbit [3],

Theorem 3.10 If equation (2) has an osgillatory solution y(t) and

P(t) >0, Q(t) <0, 2Q(t) - P'(t) <0 on [a,e),
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then equation (2) has another oscillatory solution z(t) such that y(t)

and z(t) are linearly independent,

Proof: Let y(t) be an oscillatory solution of (2), b a number such
that y(b) # 0, and {ti} an increasing sequence of zeros of y(t) with
t. > b. (This is enough to insure that lim ti =w). Let yl(t), yz(t) ,

1 t— 0

y3(t) be the solutions of (2) defined by

() - -
Yk - ék_]’ ks.]'1:2:37

Thus, {yl, 'yz,y3} is a fundamental set for (2), For each ingeger n,
let

2a(t) = ey () +cq, yp(t) ¥ ag, v (t)

be a solution of (2) satisfying the boundary condition

Since, yz(b) = y3(b) = zn(b) = 0, it follows that Cln = 0, Hence,

z (t) = c, v,(t) + ay valb),

2 - ; P
where Sn +tc, =1. As {(czn, c3n)} is a sequence of points on the

unit ball, there exists a suhsequence {CZn R } converging to

(CZ’C3) such that c; + 032 = 1, Define a solution of (1) by

cSnk

z(t) = c,z, (k) + cgzg(t) .

; (i) (i)
As in Theorem 3.3, {CanZZ (t), cBnkZS (t)} converges to

{CZZZ(J)(t) » Cq zéJ)(t)} , j=0,1,2. Hencge, CanZZ(J) + QanZB‘(J)

converges to z(j)(t)? j=0,1,2 . The solution z(t) is nontrivial as



41

c22+c32=1 and zz(t) and z

3(t) are linearly independent, The

solutions 2 (t) and y(t) are linearly independentas y(b) # 0 and
k

z (b)=0, Also, z_(t) and vy(t) have a common zero at t .

"k B 'S

By Theorem 1,12, equation (2) is (2,1) disconjugate, Hence, by

Theorem 1,11, the zeros of y(t) and z (t) separate in [a, tn ].

k k
I.et ¢ and d be consecutive zeros of y(t) such that ¢ <d,

Select 0 such that ny >d. Then, as above, the zeros of z (t)

J
and vy(t) separate for nj_>_nk on [a,xn); hence on [ec,d], So
J
z (t) has a zero say tj in [¢,d] for all njz_nk. The tj have an
J

accumulation point toe [c,d] as [e,d] is compact. Henge,

z(ty) = lim z_(t ) = 0, and =z(t) is oscillatory. Furthermore,

)
0 nk»m l'lk nk
z(t) and y(t) are linearly independent as z(b) =0 and y(b) #0,

and the proof is complete,

Theorem 3. 11 Every linear combination of y(t) and z(t) in the

above theorem is oscillatory and W(y,z)(t) # 0 on [b,a).

z(t), If ¢, =0 or ¢

! = 0, then v(t)

Proof: Let v(t) = cly(t) + <,

is oscillatory as y(t) and =z(t) are oscillatory. Suppose that

2

€%, # 0 and v(t) is nonoscillatory, Without loss of generality,
assume that v(t) >0 for all t > b. As equation (2) is (2, 1)
disconjugate, all zeros of (2) are simple, But czz(t) > -cly(t),
y(t) having simple zeros implies there exists an interval (tl,tz)
such that czz(t) >0 on (tl, tZ) . This contradicts the results of
Theorem 3.10, Therefore, every nontrivial linear combination of
y(t) and z(t) oscillates.

Supposge that W(y,z)(to) = 0 for some to € [b, @), Then there

exist constants ¢ and c2 such that
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So, w(t) = ¢y y(t) + <, z(t) is an oscillatory solution with a double
zero at tO . This contradicts the fact that equation (2) is (2, 1)
disconjugate. Therefore, W(y,v)(t) # 0 on [b, ) and the proof is

complete.

Lemma 3,12 Let P(t) > 0, 2Q(t) - P'(t) <0 for te [a,®), If y(t)

is a solution of equation (2), then F[y(t)] >0 forall te [a, w),

where

Flyt)] = [y'(6)]% - 2y(t) y''(6) - P(£) y2(t)

Proof: Consider

t 2
[2Q(s) - P'(s)]y“(s)ds .

5]
—
<
G
1
i}
=
)
-+
m'\.

Now,

Filyn] = [2Qm - Proly’e

However,

F'ly(t)] = 2y'(t)y''(t) - 2y'(t) y''(t)
S 2y(6)y'(E) - P8 YO (E) - 2 P(E) y(E) ' (¢)
= -2y [-PO)Y' - QB y(t)] - P y2(b)
- 2P(H) y(t) y'(t)

= y2w [z - PUp)] . (30)
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Therefore, F'[y(t)] = F'l[y(t)]. It follows that

Also, from (30), F'(y(t)) <0 except at the zeros of y(t). Hence,
F[y(t)] is strictly decreasing,
Let {t‘l} be an increasing sequence of zeros of y(t). Then

limt, = @« and
i

Fly)] = [y'(e)]% - 2y(t) y'ie) - Ple) yoE)

=y'(t,) 2 0.

However, F[y(t)] is strictly decreasing, Therefore, F[y(t)]>0 for

all te [a,m).

Theorem 3,13 If in equation (2) P(t) >0, 2Q(t) ~ P'(t) <0 and y(t)

is an oscillatory solution of (2), then the zeros of y(t) and y'(t)

separate.

Proof: By the preceeding lemma and its proof, Fly(t)] > 0 and is
strictly decreasing on la, o). Hence, il;Ln:, F[y(t)] exists and is
nonnegative,

The solution vy(t) oscillates. Thus, between any two consecu-
tive zeros of y(t) there exists a zero of y'(t), Let tk be a zero of
y'(t), then

Fly(t,)]

1l
\4-—
ey
W‘v

"
1
N
<
=y
\<—-
=y
W‘v
§
el
=y
ot
<
=y
W‘v
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Since F[y(t)] >0, P(t)> 0, it follows that
y(t ) y''(E ) <0.

Let ay and a, be consecutive zeros of y(t), Then vy'(t)

can have at most a finite number of zeros on [a.l, a.]. If not, then

s e &

there exists t ¢ (alaz) such that y'(t ) = y''(t ) = 0. This implies

that

Flyth] = -P(t)y2(t ) <0,

as y(t*) # 0 since vy(t) # 0. This is a contradiction. So, y'(t) has
at most a finite humber of zeros in [al, az]. Let tl and t2 be two
consecutive zeros of y'(t) in [al,az]. These are simple zeros of

y'(t). Otherwise, Fly(t)] <0 on [al,az], and the proof is complete,

The results following Theorem 3. 14 helow were obtained by
Pfeiffer [18]. These results use integrability criterion to guarantee

the existence of oscillatoryand nonoscillatory solutions of equation (2).

Theorem 3,14 (Hinton [13]). If r(t)>0 on [a,») and

rll(t)

r1+ l/n(t) !

for n=1,2,,.. isin L(a,w) {functions which are Lebesgue
integrable on (a,®)}, then

rl/n

(i) (t) ¢ L(a, =)

{t) ¢ L{a, ») and



Lemma 3. 15

such that ar

, 2
r(t) ) ¢ L(a, @) .
)

(t
It or() £0, i ¢ Lia,e),
L r4/3 ()

() >0 on [a,o) and p = &

t—>e

t
lim rﬁ(t) exp (-af r1/3(s)ds>
a

Proof: Without loss of generality, assume that

Then o >0,

By Theorem 3. 14 (ii), as

. r'(t)
lim =773

t>o r (t)

Suppose that

E >t

Hence,

First it will be shown that

vrl!(‘t)
r4/3(t)

a is any real number

U)]r-—-

, then

=0.

r(t)>0 on [a,mw).

¢ L(a, =), (——Z—;%l——) ¢ Lia, ®),
r

(t)

exlsts and equals some constant c, So,

( 2
lim - r’ t) = cz
f—o r4/3(t) '

¢ # 0, Then there exists a number t, > a such that

implies

0

45
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r'(t)
r7/6

2
) € L(a,w), This implies that
(t)

By Theorem 3. 14 (iii), (

r1/3(t) € L(a, o), This is a contradiction to part (i) of Theorem 3, 14,
1
Therefore, %im z (;) = 0, Hence, there exists a number a, > a
>o p (t)

such that for t > a,

Integrating the above from a, to t gives

1

B t
tog (2] < § P rns
1 ay
Thus,
t
o <22l < g [V,
1 a.l
and
art) \P t o3 et o1y3
0<<ar(a1)) exp(—va/a‘ r (s)ds)<exp(.—~z.£ r (s)ds)

B
p a r(t)
g (m) exp <“°‘ f

and the proof is complete.

Theorem 3.16 If Qt)#0 on [a,®) and

Qi) P(t)

Q4/3(t) ’ Q1/3(t)
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are in L(a,®), then there are three linearly independent solutions of
equation (2) such that one solution yl(t) is nonoscillatory on [a, ©)
and the other two solutions yz(t) and y3(t) are oscillatory on

[a,®),

Proof: The hypothesis of corollary 5 of [13] are satisfied, So, there
exist solutions zl(t), zz(t), z3(t) of equation (2) and a number

t, > a such that for t > ¢t

0 and k=1,2,3

0

t

2 () = @7 P exp . 2 P(e)s (14001,
to
t s 5
zl'<(t) = My OXD Py T (s)ds (1+0(1)), (31)
to
t
2(t) = pp exp p, ¥/ 2(s)ds (1+0(1),
to
1+/3 i 1-/3 i
where hy = 1, By = 5, Mg T Ty, and lim (1+0(1)) = 1.

t—co

Let yl(t) = zl(t). Since Qft) >0 for all te [a, o), yl(t)

does not osc¢illate, For k=2,3 let
z = 0, (t) exp (i ¥ (t)), (32)

where Gk(t) and \yk(t) are real-valued functions on [a,®), Define
y,(t) = 0,(t)eos ¥, (t), y,(t) = 0,(t) sin¥,(t) .

If

lim |, (t)] = lim [¥;(t)] = =,

t-> o f~>co

then yz(t) and y3(t) will be oscillatory. From (31) and (32) for



k=2,3
, 6, (t) exp (i ¥, (t)) ~ oz (e)(1+o(l))
e 1/3 t 173 S N O
Q- (t)exp(pka (s)ds)
t
0

Hence, as lexp(’l‘i’k(t))l =1,

0, (t)
lim - k - =1,
t—>co -
1/3()exp(2 f Q (s)d s)
0
Also,
“K
1 a =0 k=1,2,3,
e Tz (I¥0(1) T
.Thus,
3 t
lim J’i’z(t) -—l/—-;f Q1/3(s)ds + Zklw = 0, kl a fixed integer,
t—>e0
0
3 t
lim (¥ (t —J;f Q s)ds + ZkZTr = 0, k, a fixed integer.
t—>eco tO 2

From Theorem 3. 14 (i),

t 173
o

Hence, it follows from (33) that

lim |¥,(t)] = =, for k=2,3,

t—co

Therefore, (t) and vy, (t) are oscgillatory on [t.,o), By
71 2 0

48

(33)
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computing W(yl,yz,y3)(t0), the solutions yl(t), yz(t), y3(t) may

be shown to be linearly independent, and the proof is gomplete,

Example 3? 17 Consider the differential equation

U4 ($) sinty £y = 0, te (La). (34)

Now, Q(t) = £2>0 on (1,w),

UL 3 L, e)

By TP '
and

P(t) sint
! = . L(]_,co) .
Q730 3

Hence, equation (34) has a fundamental set consisting of one

nonoscillatory and two osclillatory solutions by Theorem 3, 17.

Theorem 3.‘18 If P(t)>0 on [a,o) and monotonic on [al,m) for

1
some a, > a, A and () e L(a,»), then there is a
1= P3/2(t) P(t)

fundamental set for equation (2) gonsisting of one nonosgillatory

solution and two oscillatory solutions on [a, o).
Proof; Similar to the proof of Theorem 3. 16.

Example 3.19 Consider the differential equation

y“'+t3y’—tsinty =0, te(l,o), (35)
Now,
t3

P(t) = t° > 0,
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P''"t) _ 3t _ 3
By - 972 - 7z < Rhe)
and
Q(t) = sin t e L(l,o) .
P(t) 2

Hence, by Theorem 3. 18, equation (35) has a fundamental set con-

sisting of one nonoscillatory solution and two oscillatory solutions.



CHAPTER IV
THE ADJOINT EQUATION

The purpose of this chapter is to investigate the relations, if
any, with regard to oscillatory behavior of solutions of equation (1)

given by
y'"" A pt)y' F qlt)y' + r(t)y = 0,

and its formal adjoint (1)>:< given by

y'to- (p(t)y)'! F (qlt)y)' - r(t)y = O,

In partigular, the relationships between equation (1) and its formal
adjoint (1)* with respect to the properties R, RO, RN, oscillation
and weak oscillation will be studied,

The following results were obtained by Ahmad [1].

Theorem 4,0 If equation (1) has property R on [a, ), then its

formal adjoint (1)>k has property R on [b,®), where b > a.
Conversely, if equation (1);k has property R on [b,®), then equation

(1) has property R on [c,»), where ¢ > b.

Proof: As the adjoint of equation (H)* is equation (1), the second part
of the theorem will follow directly from the first part, Assume
equation (1) has property R. Then, by the definition of property R,

(1) has a fundamental set {ul(t) s uZ(t) , v(t)} such that ul(t) and

51
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uz(t) are oscillatory with W(ul, uz)(t) >0 forall te[a,o) and v(t)

is a nonoscillatory solution. Let

Then Ul(t) = F(t)W(ﬁl,v)(t), U,(t) = F(t)W(uZ,V)(t) and

V(t) = F(t) W(ul,uz)(t) are solutions of (1)* by Theorem 1,7, The
solution Ul(t) is oscillatory, Otherwise, there exists to?_a such
that W(ul,v)(t) # 0 for tz_to. But v(t) 1is nonoscillatory, This
implies that (1) is nonoscillatory by Theorem 1.4 which is a contra-
diction, Hence, U,(t) is oscillatory, Similarly, Uz(t) is oscilla-
tory. As F(t) # 0 and W(u (t),u,(t) # 0, te [a, o), V(t) isa

nonoscillatory solutien, Using Wronskian identities from Polya's

paper [17] ,

44

W(U;, U,)(0)

Ty W(FW(u,,v), FW(u

2,V))(t)

2 (6) W(W (w), v), Wlay, v))(E)

Fz(t)v(t)W(v,ul,uz)(t) .

Thus, W(UI’UZ)(t) #0 forall t>b as F(t)#0, W(v,ul,uz)(t) £ 0

and v(t) is nonoscillatory, Therefore, (1)* has property R.

Theorem 4.1 If equation (1) has property RO on some interval

»,

[a, o), then its adjoint (1)"< has property RN on some: interval

[b,o), b > a,

Proof: Suppose equation {i) has property RO. Then, (1) has linearly
independent solutions ul(t), uz(t), v(t) such that wv(t) is non-

oscillatory, ul(t) and uz(t) are oscillatory, Furthermore, a
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solution of (1) is oscillatory if and only if it is a linear gombination of

ul(t) and uz(t), Also,
Wa ,u,)(t) # 0, te [a,®).

Let Ul(t), Uz(t) , V(t}) be solutions of (1)>X< as in Theorem 4.0,

Then Ul(t), Uz(t) are oscillatory while V(t), W(UI’UZ)(t) are

ke

nonoscillatory. Suppose (1) has a nonoscillatory solution

a(t) = e v(t) + z,u (t) + egu,(t), where of+ci4 0.  (36)

Assume c, # 0, Then W(ul, z)(t) is oscillatory as in the proof of

the previous theorem. Also, .

W(Ul’ z(t)) = < W(ul,v)(t) + cy W(sz V) + c3W(u1,v) , (37)
In Theorem 4. 0,
WU, U, = FAe)v(E) Wiv,u ), u)(E)
WU, V)(E) = FE(0)u () Wa,v,u,)(t)
and '
W(U,, V)(E) = F2(t)u, (6) W(a,, v, u,)(t)

However, W(v,ul,uz)(t) = —W(ul,v,uz)(t), Hence,

WU, Z)(8) = F2(6) Wla ), v, u,)(t) [e ult) - cpu,(t) + eqpvit)].

Now, W(Ul,Z)(t) oscillates, but . F(t) and W(u,l,v,uz)(t) are non-

oscillatory, Thus,

y(t) = clul(t) + czuz(t) + c3v'(t)
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is an oscillatory solution of (1). This contradicts the assumption that

(1) has property RO, So, CZZ + c32 = 0, This implies that (1)* has

property RN, and the proof is complete.

Remark 4.2 The converse of Theorem 4,1 does not hold as shown by

Benharbit [3].

Corollary 4,3 Consider equation (2) where P(t) is differentiable,

P(t) <0, P'(t) -Q(t) <0 and P'(t) -2Q(t) <0 on [a,®). If the
adjoint of (2) is oscillatory, then equation (2) has property RN on

[b,©) where b > a.
Proof: By Theorem 2.6, the adjoint of (2), given by
vy P()'y + (P(t) - Q(t))y, (38)

has property RO, It follows from Theorem 4,1 that equation (2) has

property RN on some interval [b,®), b > a.
The following theorem was proven by Gustafson [10],

Theorem 4.4 Given an integer n > 2, there exists an nth order

linear differential equation Ly = 0, such that Ly is nonoscillatory
on [a, o) while its formal adjoint L*y = 0 1is strengly oscillatory on

[a, ).

Although the above theorem does provide an example where
equation (1) is n;)noscillatory while (1)>:< is strongly oscillatory, the
functions p, q, r are not elementary functions, This example
seems artificial and one might wonder if a simpler example might

exist.
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The following results are due to Dolan [8], Before considering
his results some notations must be introduced. Dolan uses a canonical
b

form which was introduced by Barrett [6]. Equations (1) and (1)

take the form

La(y) = {2ly"" +q;y]} +q,y =0, (6)
Loty) = {(y) +a,y)' +q,(Lz) =0, 6)*
where
[ |
£(t) = exp p(s)ds ,
a
|t
ay(t) = g J He)rle)s, ) (39)
a.

for t > a,
If y(t) and z(t) are in C(B)[a,w), then Lagranges equation

has the form

{y;z}' = 2Ly + yL¥*z,

where ) (40)
(yisd = = (-1)*D, yD,' =
and
Doy =y D:z =z,
D,y = y' Dz = £a', (41)
D,y = £(y'"" +q,y) D,z = (lz) +q,z.
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For Yi(t) e Q, zj(t) € 9*, i,j=1,2,3 . Let

m(yl,yz) = Det(Din) i=0,1, j=1,2; (42)
m*(z,2,) = Det(Dfl"zj) i=0,1, j=1,2; (43)
M(y,sy55 ¥3) = Det(Din) i=0,1,2, j=1,2,3; (44)
M*‘(zl,zz,z3) - Det(D;’zj) i=0,1,2, j=1,2,3. (45)

b3
It follows from equation (1) and (1) , (44), (45), and Theorem

1.20 that My, y,, y,)(t) and M>"(z1,zz,z3)(t) are constant if

y, € e, z, ¢ 9>'<, i=1,2,3. Furthermore, M(yl,yz,y3)(t) #0

{M'(le ZZ: Z3)(t) # 0} if and OnlY if {Yln Yza Y3} ({Zl,ZZ, ZB}) is a
fundamental set for equation (1) {<1)>:<} ’

From (40), (42), (43), (44) and (45), it follows that

{Yl ;m(YZ: Y3)} = M(Y1!an Y3) if Yl € &, i=1,2,3;
(46)

*

(wi(z),2,)i2,} = M (2,2,,5,) if 2,8, i=1,23,

L 4

The following lemma was stated by Dolan [8], However, the
proof as given by Dolan is incorregt. The author offers the following

proof.

Lemma 4,5 If y(t) e @ {z(t) e 9>'<} , then there exist solutions

Zi(t) ¢ 9 {yi(t) e 8}, i=1,2 such that

y(t) = m¥(z),2,)(t) {z() = mly ,y,)®)}
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Proof: Let y(t)e 8. If y(t) =0 on [a,®), let z,(t) =0 and
zz(t) be any solution of (1)"4
Suppose y(t) 20 on [a,®). Let yl(t) and yz(t) e § such

that W(y,yl,yz)(a) =1, Let

1

t.
g(t) = exp (/a' p(S>dS) T Wy ypr v5)(®)

Then

are solutions of (1)* by Theorem 1,17,

Let

o(t) g—(lg

Then ﬂ(t)W(zl, Z is a solution of (1) by Theorem 1,17. From

2)
Theorem 1, 18

LE) Wz, 2,)(0) = LD W(EWly,y), g Wy, vt

= 1O 2O WW(y ), ), Wiy, y)(®)

= gl y(O)Wy.yy,)

= y(t) .

k

But, m (zl,zz)(t) = ﬂ(t)W(zl,zz)(t) and the proof is complete,

sk

Lemma 4.6 If yi(t)e Q (zl(t) e &) i=1,2, then yl(t) and yz(t)

are linearly dependent if and only if m(yl, y'z) (¢) =0

(m(z),2,)(t) =0) on [a,m).
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Proof: If Yi(t) e g i=1,2, yl(t) and yz(t) are linearly dependent,

then as W(yl,yz)(t) =0 on [a,®) it follows that

m(y s y,)(t) = L)Wy ,y,)(t) S0 on [a,@).

Now, suppose that 'rn(yl,yz) =0 on [a,w). Let
y(t) e - [yl{t),yz(t)] ([yl(t),yz(t)] the subspace spanned by yl(t)

and yz(t)). Then from (40), as m(yz,y3)(t) =0,

L) Wy, y1s yp) () = My, v, y,)(t)
= {ysmly, v3))
= 0,
But, f(t)#0 on [a,o), Hence, W(y,yl,yz)(t) =0 on [a,«) which
implies that y(t), yl(t), YZ(t) are linearly dependent, However,
yegQ- [yl(t),yz(t)] thus Yi(t) and yz(t) are linearly dependent,

and the proof is complete.

In equation {1) make the substitution y = pu, where y{t) and

p(t) are in @. Then u(t) satisfies the differential equation

Lo = {Ry(p) [Ry(p)y' I} + QUp)R, (p)y'] = 0, (47)
where
.
R (p) = p°,
R,(p) = = (48)
2 p '’
Q(p) = > [sz+q2p]s
P

and £(t), qz(t) are given by (39).

e oo
— >

Similarly, if z and p ¢ @ , make the substitution z = p v
in equation (1)% . Then v{t) satisfies the differential equation
de o

L +(2) = (R, (MR (p1)2' )} + Q7R (p)21] = 0,
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where
E sle 1
Rl(p ) = %
P
&k *2
Rz(p ) = ‘e p ?
B b3 1 Kk b

p
and I(t), ql(t) are as in (39),
If p(t) e &8 and Hp is the solution space of equation (47),
then

g = [plH . (51)

Furthermore, if p(t) is nonoscillatory and 7 € 9>.c' then it follows
from (40) and (41) that z satisfies the nonsingular linear second

order differential equation
(R, (p)y") + Qlp)y = 7 (52)

on any interval where p(t) does not have a zero.

%

Definition 4,7 If yo(t) e @ {zo(t) g}, let

e

(i) s;r = {z(t) € ¥ {y;z}
0

{15

o},

(ii) QZ = {y(t) ¢ Q: {yo;z} = 0} .

Lefnrna. 4.8 If y(t) {z(t)} is a nontrivial solution of equation (1)

{(1)*} , then Zo(t) € Qj{yo(t) € QZ} if and only if
2o(t) = mly, 7)) {y,(t) = m’ (2, T)(t))

for some y(t)e @{z(t)e 8} .



. .
Proof: Suppose zo(t) € Q; » It follows from Definition 4.7 that

{y;zo}(t) = 0. By Lemma 4.5, there exist solutions yl(t) and

y,(t) in @ such that

zo(t) = m(Yl, Yz)(t) ’

Hence,
{yszy}t) = {ysm(y,y,)}(t) =0
on [a,co). However,

{ysmlyy,y) ) = Mly, yi, y,)(t)

it

LE) Wy, vy, v,)(8)

This implies that W(y,yl,yz)(t) =0 on [a,®), Therefore, y(t),
yl(t), and yz(t) are linearly dependent, So, there exist constants

Cy € and ¢, suc¢h that
cy(t) + clyl(t) +c,y,(t) =0 on [a, @)

and cz+ci2+q22>0

.
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As y(t) is a nontrivial solution, either G, or ¢, is nonzero,

say ¢y. Then

y (8 = - = (ey(t) + ey, (t) .

€y

Thus,

2(t) = mly,,y,)(t) = m( - ;:1—1 (cy +cyy), yy)t)

C _ G
- (j.; m(y, YZ)(t) = m(y, = g; Yz)(t)

m(y, y )(t) ,



where y(t) = - f—- Yz(t)'
2

t) = m(y,y)(t)., Then

H

Suppose that zo(

—

{zqiy}(®) = {mly,¥);y} = Mly,y, y)t)

= £(t) W(y,y, y)(t)

O v

i

Therefore, zo(t) € By’ and the proof is gcomplete,

Lemma 4.9 If y(t) {z(t)} is a nontrivial solution of (1) {(n'y,

then 9:{82} has dimension 2,
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Proof: Let yl(t) and yz(t) € @ Dbe such that {y(t)‘, yl(tz), yz(t)} is

a fundamental set for 2. By Theorem 1,7,

z(t) = mly, y (), z,(t) = m(y, Yz)(ﬁ)

23(t) = m(yl, Y.Z)(t‘)

form a fundamental set for Qa‘ . If zo(t) € S!::,, then, by Lemma 4.8,

t) = ‘m(y;;)(t), where ;(t) e &, Let

y(t) = cylt) + ey (b) + ayy,(e),

Then

Hence, Qy has dimension 2 and the proof is complete.

olt) = mily, y)(t) = ¢y mly, y)(t) + ¢, mly, y,)(t) .

Lemma 4,10 If yo(t) {zo(t)} is a nontrivial solution of (1) {(1)*}

—_ R b Jp—
and z(t)e & -~ 2 {y(t)e & ~82 }, then
Yo %0
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g = [y,]® 9?{9*‘ = [zy] @ Sf;} ~

n s

Proof: Let z(t) & - QY . This implies that {yoz;}(t) £ 0. Hence,
0
yo(t) {2 and [Yo] Me_=[o]. ¢ has dimengion 2 by Lemma
z .4 z
4.9. Hence ¢ = [yo] ® e _.
Z

Lemma 4. 11 If 91{9;‘} is a two dimensional subspace of Q{Q>'<},

b

then there exists a nontrivial solution z, of (1) {yo of (1)} such

0
that

Proof: Let Ql be a subspace of ¢ of dimension 2 with basis

{y (8,0} . I z0(t) = mly . y,)(t), then zy(t) e 2* by Theorem

1.17. Also,

{ZO;Yi}(t) = M(Y]_!YZ’ Yl)(t) =0 i=1,2,

So, y,(t) and vy,(t) arein & . It follows that & = @ as ¢
1 2 z,Q 1 0
has dimension 2.

Lemma 4, 12 If yi(t) € g {Zi(t) € Q>ﬁ} i=1,2 are linearly indepen-

dent, then

. Mg = [m(yl,yz)] {e, Mg, = [m(z,2,)]} .

1 2

Z

Proof: If =z (t) * m *
oot olt) szyl szyz
Definition 4.7, There exists vy(t) ¢ @ such that zo(t) = m(yl, y)(t)

, then {yi;zo}:o, i=1,2 by

by Lemma 4,8. So,

M(st er Y)(t) = {Yz; m(yl? Y)} (t)

{Yz;zo}(t) = 0,
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Hence, there exist constants c, G,+ G, not all zero such that

cyl(t) + clyl(t) + czyz(t) =0,

Now, ¢ #0 as yl(tz) and yz(t) are linearly independent. So,

y(0) = = = (cyy(8) + epy,(6) .

Therefore,

N
=
———
=z
!

= m(y,,y)

C
2
- ""q‘“ m(er Yz) € [m(Yl'Vz)] '

Conversely, by (46),

{yjpemly v} = e My, vy, y,)

sk . b R
It follows that gyl M S!y = [m(Yl.yz)].

2

Lemma 4,13 If po(t) {po} is a nonoscillatory solution of equation

& i
(1) {(l) }, then the subspace g; {gp*} is either nonoscillatory or
0 0
strongly oscillatory. Moreover, Q:; {g p>:<} is strongly oscillatory if
0o Po .
and only if for each nonoscillatory solution p(t) ¢ S!{P.F(t) € gq},

QF:{Q *} is strongly oscillatory, Furthermore, the zeros of

p
oscillatory solutions of (1) separate each other and eventually become
simple,

Proof: Let po(t) be a nonoscillatory solution of (1), Then by (52),

the subspace QT’ of Q:.« is the solution space of the linear second
0 .
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order differential equation
[Rz(po)Y']' * Qpgly = 0 (53)

on [b,w) if po(t) # 0 on [b,@), b > a,

So, equation (53) is either strongly oscillatory or nonoscillatory
by the Sturm comparison theorem [22, p., 5] and the zeros of linearly
independent solutions separate, Also, nontrivial solutions of (53) can
have at most simple zeros.

If pl(t) and pz(t) are nonosclllatory solutions of (1), then the

ke

above shows that Q: and Q;: are elther strongly osgillatory or

1 2 % X
nonosclllatory. Howeaver, by Lemma 4. 12, m(pl, pz) ¢ Q; M Q‘é .
" ‘ L1 2
Therefore, @ 0 is strongly osclllatory if and only if @ ; is strongly
1 2

oscillatory, and the proof is complete.

Lemma 4, 14 If every two dimensional subspage of e{e } is weakly

oscillatory, then g*{g} is strongly oscillatory,

Proof: From Definition 4.7, if y(t) € ¢, then vy(t) e Qz if and only

if =z(t) e QY Let yl(i;) and yz(t) be linearly independent solutions

of (1) which are in Q- From L.emma 4.12

e sk

If yl(t) and yZ(t) are linearly dependent, then m(yl,‘yz) = 0 by
Lemma 4.6. Hencge,
m:Qngz»[z].

As every two dimensional subspace of ¢ is weakly oscillatory,

it follows from Lemma 4,9 that g, is weakly oscillatory, Thus,



65

there exist solutions of (1), yl(t) and yz(t) in Qz which are
oscillatory and nonosg¢illatary respectively. Now, z(t) = cm(yl,yz)(t),
If z(t) is nonoscillatory, then m(yl,yz)(t) #0 on [b,oo), b>a,
But thls implies that W(yl, yz)(t) # 0, which says that @ is non-
oscillatory as yz(t) is nonosgillatory, (This follows from Theorem
1.4.) This is a contradigtion, Hencge, z(t) is oscillatory, As z(t)

#
was arbitrary, @ is strongly oscillatory and the proof is complete,

e

Theorem 4.15 If equation (1) {(1) } is weakly osgillatory, then

sk

equation (1) {(1)} is oscillatory.

Proof: As equatien (1) ls weakly osg¢illatory by hypothesis, there
exists a nonoscillatory solution p(t) of (1), By (51), ¢ = [p]HP .
- Hence, I—Ip must be oscillatory, Let u(t) be an osgillatory solution

in -Hp, then u'(t) is also oscillatory. Now, u(t) satisfies

.
E
1

{Ry(p) [Ry(p)u' ]} + Qlp) [Ry(p)u'] = 0,

2w ()] + Q(p) (p2(H)u'(t)) = O .

So, p2(t)u'(t) satisfles (53) and consequently p2(t)u'(t) ¢ Q:. Now,

B P 2k

gp C gs, and u'(t) is oscillatory, Henge, 534 is oscill__ato_ry and the

proof is complete,

Corollary 4.16 If equation (1) {(l)m} is weakly oscillatery, then

*
equation (1) {(1)} has a strongly oscillatory two dimensional sub-

space,
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Proof; Let p(t) be a nonoscillatory solution of (1), Then, as in the

b K
proof of Theorem 4. 15, g; is oscillatory. Hence, Q>p is strongly

oscillatory by Lemma 4. 13,

S

Corollary 4,17 If equation (1) {(1) } 1is nonoscillatory, then

*
equation (1) {(l)} is nonoscillatory or strongly oscillatory,

Proof: Contrapositive of Theorem 4. 15,

-Theorem 4,18 1If Q{g*} contains a naenosgillatory two dimensional

subspace, then g*{g} is either nonoscillatory or strongly oscillatory.
And if zi(t) {yi(t)} i=1,2 are linearly independent solutions of
g*(ﬂ)» then there is a number to > a such that if zl(t) {yl(t)} has
at least three zeros on some interval I C [to, w), then z, (f) {yz(t)}

has at least one zero on I.

Proof: Let 2, be a nonoscillatory subspace of ¢. By Lemma 4,11,

there exists a solution zo(t) e ¢ such that e = gz . Suppose
]

yl(t) and yz(t) are a basis for U z{t) e ¢ , Now, gzm 2, # [0]

by Lemma 4.12. So, there exist constants ¢y and ¢, such that

) 2. 2
{Q1y1+c2y2,z} =0, cl+c2 > 0.

Therefore,

where vy (t) = clyl(t)+czy2(t). But =z(t) was arbitrary. Hence,
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From Lemma 4. 13, 9* is nonoscillatory or strongly o$¢i11atory
depending on whether zo(t) is nonoscillatory or oscillatory as
z.o(t) 3 Qﬂj_ for all ;r-(t) € Q.

Sugpose that g* is strongly oscillatory. Then zl(t) and zZ(t)

. e
are linearly independent solutions of (1) , and

z.(t)eg , i=1,2 for some ;1(“ €8 .

By Lemma 4. 12,
-— — E e
m(y;, y,)(8) e §_ M g_ .
Y1 V2

From Lemma 4,3, the zeros of m(;l, ;2)(1:) eventually separate the
zeros of zl(t) and zz(t) and conversely. So, if zl(t) has three
zeros on I, m( ;1,'}72)(t) has two zeros on I, Therefore, zz(t) has

at least one zero on I, and the proof is complete,

¢ &
Lemma 4,19 If g{g } contains a nonosgillatory solution p(t) {p (t)}

that has no zeros on [b, w) for some number b > a and

yt) € g -[p] {z(t) e g -[p ]}, then either

ok ool
(i) There exist a solutions zo(t) € g< - Qp {yo e Q-¢ >,<}
‘ P
such that
{yiz,} {vgiz} &
Y - z - * p
{pizy} {ygip }

is oscillatory, or

(i1) lim ._X,L(.P_L lim _z(t). exists, and gx{g} is either

sl

tweo oT(p) [t pT(e) |

nonose¢illatory or strongly oscillatory.
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Proof: If y(t) e g-[p], then y(t) and p(t) are linearly independent.

Let X\ be a real number. Then, by Lemma 4,12,

N g = [mly-rp, )]
gy._)\p QP—mY" PsP

*
as vy(t) -~ Ap(t), p(t) are linearly independent. Now, gy-Xp is of
e E] »

Mg -¢ , So,

dimension 2. Hence, there exists z (t) ¢ @ :
(t By P

{y-\p;z} =0, but {p;z} # 0,

Hence,

{p;z}
Let uft) = -%%3— on [b,cn) and
@ = lim inf u(t) , (54)
@ = lim sup u(t) . (B5)

Now, u(t) is a solution of equation (47) as @ = [p]Hp , Also,
v(t) =1 1is a solution of (47). Hence, if X\ ¢ (g,a), then u(t) - X
is in Hp' Now, u(t) - X is oscillatory as there exist sequences

{ti} and {vtj} of numbers in [a,®) such that

lim t. = lim t, = o,
> 1 j
limua(t,) = a,
i~e L -

and
lim u(t.) = «.
jeo

bd

e k
It was proven above that there exists zO(t) e Q - gp such that
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A= —{—Y—;-fg-]; .
{pizy}
So,
{y;z,}
yit) - O o
{pg32p}

is oscillatory, Thus, if y(t) - X p(t) is nonoscillatory for each real
A then a = E, that is, lim-Y—-(-Q exigt,
- t=>co P(t)
Suppose that vy(t) - A p(t) is nonoscillatory for each real A\,

Then [y(t), p(t)] is nonoscillatory as p(t) is nonosgillatory and

¥
wit) = ¢y y(t) + ¢y plt) = ¢ (y(t) + E& p(t), ¢, # 0
1

e
is nonoscillatory, Therefore, by Theorem 4.18, @ is either non-

oscillatory or strongly oscillatory, and the proof is complete,

Remark 4,20 Assume the hypotheglis of Lemma 4, 19. Let

e e,
yegQ- [p] {z e g - [p ]}. It follows, as in the proof of Lemma 4, 19,
*
that if there exists a unique number M{A } such that

y(t) - Xp(t) {z(t) =\ p ()}

is oseillatory, then

lim K )iy 20
tmo P(t) ) oo p>'<(t)

exists, Conversely, if

lim ~Ji%%%- lim —2{t)
t>eo P to 57 (t)
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O) such that

exists, then there is at most one number )\0

ES

y(£) - Xy e {z(t) - Ny e (1))

is oscillatory,

Definition 4.21 If y(t) ¢ g{z(t) ¢ @} i=1,2, then

(i) y, = 0(y2) {zl = 0(22)} means that yz(t){zz(t)} is

nonoscillatory and

y,(®) 2 (t)
lim — =0!{lim —=— = 0} ;
t—> Yz(t) t—> o Zz(t)

(i) yy~vy, {ZINZZ} means that yz(t){zz(t)} is non-

oscillatory and

v (t) z,(t)
lim ——rr { lim -y
tro V28] )t 23 (t)

exists and is a finite number. In this case, Yl(t){zl(t)}

is sald to be asymptotic to yz(t) {zz(t)} .

Remark 4. 22 From Definition 4,21 it follows directly that

v, = 0(y2){zl: 0(22)} if and only if (y, - )\yz) ~Yys N#O,
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b s : .
{(z, - X Zy) ~ 7y, A # 0}. Also, y1~y2{zl~zz} if and only if

1
(vy = Ayp) = 0ly){(z) - X z,) = 0(z;)}, where

v ® | . 7, (8)
A= lim ———r (A = lim ——v
t-» Yz(t) t-> Zz(t)

Theorem 4.23 If Q{Q%} contains a nonoscillatory solution, then

there exists a nonoscillatory solution po(t) {pm(t)} of (1) {(1)*}
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such that for each solution
% %
yt) e g -lpg] {z e -[py]}

at least one of the following holds:

ok

(i} There are distinct numbers )\1 and )\2 ()\1 and )\2*)
such that the solutions y(t) - )‘i po(t) {z(t) - )"1* p;(t)}
i=1,2 are oscillatory;
(i) y = 0(pg){z = 0(pg)}s or
(iii) y ~pg{z ~ p(;k} .
Proof: Let pl(t) be a nonoscillatory solution in @. Then, by

Lemma 4. 19 and Remark 4, 20, either there are distingt numbers

N, and X\

1 such that the solutions

2
Y(t) ')\lpl(t): i= 1:2

are oscillatory, or

i (t)
o o o

exists.
Suppose for each y ¢ @ - [pl] , the limit in (56) is finite, Then
let po(t) = pl(t) and the theorem is proven, Suppose there exists a

solution yl(t) € Q - [pl] such that

¥ (t)
lim | = (57)
tr> Pl(t)
pp(t)
This implies that yl(t) is nonoscillatory. So, lim ——F— exists and
t—co Yl(t)

the conclusion of the theorem holds for all y(t) ¢ [yl(t), pl(t)] with
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Po(t) = yl(t), As po(t) and pl(t) are in Qm(pO’pl) and

Qm(p 01) has dimension 2, [po, pl] = Qm(p o)
0’1 0'F1

If the coneclusions of the theorem are not satisfied for all
y(t) e @, let po(t') = pz(t). Then there exists a solution

Yz(t) € Q- Qm( such that

pla pz)

lim =
t—>o

.

¥ (t)
el

p,(8) p,(8) Py (t)

LG P
e Po e 5,0 tia Pyl

is finite for {=1,2.
As pl(t),- pz(t) are linearly independent and
po(t) € 8 - [py(t), po(t)], {pg(t), py(t), pp(t)} forms a fundamental

set for (1). Thus, if y(t) € @, then
y(t) = copo(t) + clpl(b) + czpz(t) '
Then by ({54) and (55)

1 ._Y_(__t..)__ =
e ol - o

Therefore, y = O(po) or Y ~pg, and the proof is complete,
The following examples [8] make use of the above theory.

Example 4,24 Consider the nonsingular second-order differential

equation

r(B)y' +pyt)y' +q ity = 0 tela o), (58)



where

and

t t
. 2 4
ql(t)zl'f'-'—Z-SJ.nt*"z‘COSt,0.<e<1,t_>_a_: 5
t t leg
Equation (58) has a fundamental set consisting of
Yl(t) = sint + ¢ N
and
1
Yz(t) = cost+ +,
Let
r(t) = 0,
Py (t)
q(t)
q(t) = rl"(t) , on [a,m) .
Then . the solutions of (1) have the form
y(t) = ¢1(~cost +et) + mz(sint + 1nt) + Cs s t> a,
Now ul(t) = -cost tet is nonoscillatory and W(ul, (t), u_z(t)) >0

where uz(t) = sint + Int. Hence, (1) is nonoseillatory by Theorem

1.4,

73
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o
Using Theorem 1.17, the solutions of (1)‘ can be expressed as

z(t) = cl(sint+e) + cz(cost+ -IE-) +q3w(t), t> a,

where w(t) = (~-cost +et)(cost - 1?) - (sint + Int)(sint +¢), t > a.

ok i
Now, @ 1is oscillatoryas sint+e is oscillatory, So, ¢ is

strongly oscillatory by Corollary 4. 17.

The following is an example of equation (1) which is weakly

'3
oscillatory while equation (1)> is strongly oscillatory,

vExa.mple 4,25 Consider the nonsingular linear second~order equation

(x(t)y")' + r2()y = 0,

where r(t) = [1+-\/-2_e sin (t + Z—-]”l> 0, 0<e< , £ >0, which

1
Tz

has as a fundamental set gonsisting of

yl(t) = gint te

and
yz(t) = costte,
Let
_or'(t)
p(t) - r(t) ?
q(t) = r(t),
and

r(t) = 0 on [0,w),

Then equation (1) has as a fundamental set consisting of
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p(t) = 1,
y,(t) = cost - et
yz(t) = siht+el‘,.

Thus, @ is weakly oscillatory as p(t) is nonoscillatery, while

yl(t) + yz(t) is an oscillatory solution, For each real number X\,

yy(t) + Ap(t)

b

is a nonoscillatory solutien of (1). Hence, @ 1ls strongly oscillatory

or nonoscillatory by Theorem 4. 18, However,
-1 .
Z-(t) =W [P; Yla YZ] (t)(sint + e)

is an oscillatory solution by Theorem 1,4, Hence, Q* is strongly
oscillatory,
Dolan [8] asks if there exist examples of equation (1) such that
(i) ¢ and 9* are both strongly oscillatory,
(ii) Every two dimensional subspacge of @ is weakly
oscillatory,
Gustafson [11] provides examples of both (i) and (ii). To do this, he

proves the following.

Theorem 4,‘2,6 Let u(t) be a nontrivial solution of

(n) + an_l(t)u(nql) +...+a.(thu =0, tela,b] (59)

o!

n-1) (n-1)

with u( (b) <0, and a zero of order n-1 ateachof a

(a)u
and b. If v(t) is a solution of the adjoint equation of (59), then wv(t)

has at least one zero in [a, bl.
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Proof: Let {ul(t), ...,u (t)} be a basis for the solution space of

n
equation (59) with un = u. Define

W(t) = Wlu(t),...,u ()],
vi(e) = Whay(6), ., (0, ow 0],

where "A'" is used to indicate that the jth ¢olumn is deleted, Then

v. (t)
wilt) = gy 3= L2,

form a basis for the adjoint of equation (39) by Birkoff [6], If z(t)

is a solution of the adjoing of equation (59), then

z(t) = clwl(t) L cnwn(t) .

As un(b) has a zero of order n-1 at a and b,

z(a) = qnwn(a) and z(b) = cnwn(b), But 5
Wa) = w_(@)u® V)

and
W) = w_(b)u® Vib)

n

as ut) has a zero of order n-1 at a and b. So

2(2)z(b) = ¢ Zw_ (a)w,(b)
v (@) v, (0)
= rp- - . . . ¢ n
u.(n"l)(a)vn(_a) u(nwl)(b)vn(b)
2 1
2
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If c = 0, then either z(a) or =z(b) is zero, If not, then

(n-1)

z(a)z(b) <0 as u (a) u(nwl)(b) < 0, Hence, there exist ¢ ¢ (a,b)

such that z(g) = 0 and the proof is complete.

. D‘evfinition 4,27 Equation (59) is said to be a separator on [tl, o) if

for each [tZ,oo) C [tl,oa) there exist a solution wu(t) = u(t, tz) and

two points a,b e [tz,m) with u(j)(a) = u(j)(b) = 0 for

(n-1) (n-1)

i=13,2,..,,n-2 and u (a) u (b) < 0,

Corollary 4.28 (to Theorem 4, 26), The adjoint of a separator is

strongly oscillatory,

Example 4.29 Asgs,

W1, sin2t cost, sin2t sint] = 8 -3 sin2t sint > 0 for all t,

{1, sin2t cost, sin2t sint} are a basis for the solution space of

x

Ey = Wly, 1, sin2t cost, sin2t sint] = 0. Let y(t) = sin2t sint, then

yDwr2km = yPerkm =0, j=01, k=1,2,... .

But

v ekm = -y®ri2km = 4,

Hence, Ea‘y = 0 1is a spearator. It follows from Corollary 4.28 that

Ey is strongly oscillatory,

Example 4.30 The following is an example of equation (1) such that

s
both ¢, @ are strongly oscillatory, To construct (1), let L = E
on the intervals [4nmw, (4 ntl)w]. L = E" on the intervals

[(4n+2)w, (4n+3)7] n=0,1,2,3,... , Define p(t), g(t) and r(t) on
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the complements of the above intervals suech that p, q, and r have
*

continuous third order derivatives, So, both L. and L are
%

separators as in Example 4.29., Hence, both @ and @ are strongly

os¢illstory by Corollary 4, 28,

The example of equation (1) satisfying cendition (ii) above does
not involve elementary functions. The gonsgtrugtion makes use of

Theorem 2,7.



CHAPTER V

SUMMARY AND CONCLUSIONS

The purpose of this thesis is to collegt and present the current
research in oscillation theory of the third order linear differential
equation in a readable and compact form, Proofs are included not
only for completeness, but to display the tegchnigues which were used
to obtain these results,

Chapter I gives a brief history of the development of oggillation
theory of the third order equation, Also ingcluded in Chapter I are
definitions and some well-known preliminary results which are
necessary to read this thesis.

In Chapter II, the oscillatory nature of fundamental sets is
studied. In this chapter, characterizations of properties RO and RN
are given,

Chapter III is devoted to the study of asymptotic and osgillatory
behavior of solutions, Conditions which guarantee the existenge of
oscillatory and nonosgillatory solutlons are given, The question of
when a linear combination of oscillatory solutions oscillates is also
considered, Integrability of goeffigient functipons is used to show that
oscillatory and nonoscillatory solutions exist,

The relationships between the third order linear differential
equation and its adjoint are studied in Chapter IV, It is shown that if

equation (1) has property RO then its-adjoint has property RN,

79
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However, the converse does not hold in general, Also, if equation (1)
is weakly oscillatory, it is shown that its adjoint is oscillatory, In
addition, if equation (1) is nonascillatory it is shewn that its adjoint is
strongly oscillatory or nonoscillatory,

Several questions are suggested by this thesis. Is it possible to
determine the dimension of the strongly oscillatory subspace of a given
differential equation? This appears to be a difficult problem in general,
Are there reasonable gonditions which may be plaged on equation (1)
such that if equation (1) has property RN, then its adjoint has

property RO,
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