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CBAPTER L 

ORDINARY THIRD ORDER LINEAR 

HOMOGENEOUS DIFFERENTJAL 

EQUATIONS 

This the sis is c::onqerned with re suits <;;onc;erning the osGillatol"y 

properties of the third order ordinary linear he:,mogeneous diHerential 

equation whiGh have cl,ppeared si,nc:e 1967. In particuiar thQse :results 

oon~erning e~istenee of qsc;Ulatory (and nanoeqillatory sall.itlons), 

solution space prope:rHes, and the relation between the thi:rd orc;!.er 

linear differential equation and tts adjoint Fl.re stud.ied 1 A\so, techniques 

whic;h were used to obtain l:p.ese resuHs wUl be pre~ented. 

The purpose of this the sis is ta gather the !';le re ~mlts into a single 

unified work whi(;h would be of q.se to thoi;,e interes~ed in differential 

equations, Also, many of the techn-tques used to obtc\,in these :results 

will be displayed for the benefU of t'.he novice in diHerenHal equations. 

This the sls is a pa1'tial extension of Swanson's book [22] whi(:;h 

summarizes many of the results in this area of differentlaJ equations 

which were obtained prio:r to 1968, Conseqµently, tliis thesis !;>rings 

the work of Swanson up to date 1 

The study of the thb.1d orcj,er linear dlffe:rential equation began 

with Bi:rkhaff' s pa.per [6] lp 1911 whtGh dealt with separation and 

I 
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comparison theorems, Most of the osc;iUatory theory of third Ol'de:r 

linear differential equc:1.tions has been developed cluring the past two 

decades. Some of those responsible for the early results concerning 

the oscillatlon theory of third order equations are Gregus, Hanan, 

Lcl,zer, Rab, Svec and VilLari, Much of the early work in this al,'ea was 

motivated by linear third order equations wlhh constant coefficients. 

Recently there has been some intere13t in the relationship between the 

oscHlatory behavior of the third order linear equation and the oscilLa,. 

tory behavior of its adjoint: 

The body of this thesis is divided into thre!;l chapters, Chapter II 

is devoted to the study of the osc;:Hlato:1;1y properties of fundamentci.l sets 

of the third order linear dVfer,entla\ equation, For e:x:arnple, if one 

<:;onsiders the differential equation which has ;:LS a fundamental set 

{et, sin t, cost} then any oscillatory solution is a linear comb·~nc;1.tion 

of sin t and oos t. A generi:i,lizaUon of this e:x;ample is given in 

Chapter II. 

In Chapter III the existence of osdllatory sph,1tions and the 

asymptotic behavior of solutions and their c:ierivatives are studied, 

The techniques used ln this chapter are of special interest, Some of 

the res-ults and techniques were motivated by L1;3.zer's paper [15], 

The criterion whi<;;h are c;onsidered to guarantee th~ existen9e of 

oseillatory solutions or nonoscillatory !:!olutionEi are the following: 

(i) The signs of the coefficients of y, y' and y", 

(ii) The integrability of the coefficients of y 1 y' and y"', 

(iii) The c;haractertstic:: equation, 

However, some oseiUatory properties of the 1ronstant coefficient case 

do not generalize as will be shown by example, 



Chapter IV Gontains re E!lults which clisplay the <i:onnec:;tion between 

the osGillatory nature of the th:i,rd order Hnear differential equation and 

its formal adjo~nt. Much of tMs material is very recent and some has 

yE;!t to appear in the literature. The relationships between the differ-

ential equation and it:s a,.dj oint wHb, re ~pec;t to the proper tie 13 R, RN, 

RO 1, osc:iillatory, nonosc:;illatory and weakly oac:;lllatory are considered. 

Some of the proofs given in the lite:vature were co:rrl:lcted (for 

example Lemma 4. 5) or shortened ( see Lemma 4. 19) by using the 

rei;mlts of Birkhoff c1.nd Polya, In fac:t mu.ch of the) work in this chapter 

follows from thl=l work of Birkhoff, Polya and Lazer, Also, seve)ral 

examples using the resuHs of the theory developed in Chapters II, III 

and IV are given. 

Thil'd Order Line<;1.r Differentia,.l Equat~ons 

Consider the cUfferentlal equaHon 

y 111 + p(t) y 11 + q(t) y 1 + r(t) y :;: 0 , ( 1) 

where p(t), q(t) 1 r(t) e C[a, ro) 1 and a is a J;"eal number. The 

formal adjoint of ( 1) 11;; the differep.~ial equation given by 

y"' ., (p(t)y)" + (q(t)y)' ,. r(t)y ::; 0 , ( 1 )* 

With the assumpHon that p(t), q(t), r(t) e C[a, m), the solutions of 

~~ 
equation ( 1) as well as ( 1) form a vector space of dimension three 

over the reals, Also, with the above assµmptions there exists a unique 

solution satisfying the initial conditions y(t0 ) = a 1 , y' (t0 ) ::: a 2 , 

y' '(t0 ) = a 3 , where t0 e [a, a:i), The solution spaqe of ( 1) will be 

I >1C 

denoted by Q and the solution space of (l)''' by g' 1 The substitution 
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y(t) = z(t) ""P [- } lt p(s)d~ 

transforms ( 1) into the differential equ.at'lon 

z''' + P(t)zl + Q(~)z = 0 . (2) 

The osctllatory properties remain inv;;i.riant under this substitution. 

Thus, the osqillatory nature of equation (1) can be considere~ without 

loss of generality by studying oscill.;1.tion theory of eq_\lations of the 

form (2). 

In the remainder of this paper a isolution of (1) shall mean a 

nontrivial solution, A solution of ( 1) if:l said to be os~Ulatory (or is 

said to osc:;illate) H iti, set of zeros is unbounded above~ Solutions 

which are n.ot oscUlatory are called nonos0Ula~ory 1 

Preliminary Con~epts 

The fqlLowtng deflnit:i,ons and theorems are nec:essary to under.., 

stc1,nd the remainder of this the a is, The proofs of the theorems are 

omitted, 

Definition 1, 1 A subspace of the space £! of the solutions of the 

differentia..L equc1-tion ( 1) is said to be osciUatory if it contatni.; a~ le?,st 

one oscillatory $Olution, A subspace is said tc;i be weakly oscUlatory if 

it c;:ontains both an osc:Hlatory and a nonosGillatory solution. 

Definition 1, 2 A 13ubspace of D is said to be nonosc:Ula~ory [strongly 

oscillatory] if none [all] of the solutions in the subspa~e oscillate. 



Definition 1. 3 The different~a,l equation ( 1) 11:1 said to have 1grol?e'rty 

R on [a, co) if it ~s weakly oe~iH~tory c1,nd H has two solutions y 1 

and y2 such that W(y 1,y4)(t) :/: O for t e [a,ai), where W(y 1,y2 ) 

represents the Wron1;,kian of y 1 and Yz, 

Theorem 1. 4 (:Pol ya [l 7] ). If ( l) has solution1:1 y 1 aq.d y 2 such 

that y 1(t) :/: 0 on [a1 00) and W{y 1,y2 )(t) :/: 0 on [a,oo), then no 

eiolution of (l) can have more than two zeros 011, [a. 1 oo) (cotlnting 

multiplicities), This says that the solution spaqe ls nonosc;illatory. 

5 

Remark l. 5 Let equation ( 1) have property R. It follow1:1 from 

Theorem l, 4 that the solutions y 1 ar,i,<'l y2 :in De£inihop 1. 4 

osc:illate, For, suppose y 1 (t) :/: 0 an [b, co) whe:re b 2:,_ a, Sin<:::e 

W(y 1,y2 )(t) :/: 0 on [b,co), no 1:1alution of (1) qan 01:1cillate by 

Theorem l, 4. This is c\. contrc1.dlction i;iini;;;e equAHon (1) ha!? property 

R; hence an osoillatol;"y solution, Thus, y1 (t) oeqillates, Similarly, 

y2 (t) oscillates. 

Definition 1. 6 The differential equation ( l) 11> said to have property 

RO i£ it ha1:1 property R and a f:lolution of ( 1) li, 01:1c;illato:ry if and only 

if it is a nontrivial linear combination of y 1 and y z, where y 1 and 

Yz a:re as in Deftniticm 1. 3 1 Equation { 1) is said to have property RN 

if it has property R and every nonosc:;illatory soluticon of (1) is a 

con13tant multiple of a fixed nonosGillatory sotµtion, It follows directly 

that properties RN and RO are mutually exclusive, 

The following examples are :intended to UL'ust:i;ate so:i;ne of the 

above ~onc:epts, 
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Example 1. 7 Consider ~he differential equation 

yll I t y' ::?; Q (3) 

wh:Lch ha$ { 1, sin t, cost} as a fundamental set. Now y(t) = 1, 

y 1 (t) z: sin t are nonosclllatory and oi,cillato:i:-y solutions respectivelyi 

Sinee W(cos t, sin t) = l, (3) has property R, But z 1 (t) :;: } + sin t 

is oscillatory and z2 (t) = 2 + sin t is nonoscillatory; hence, (S) has 

neither property RO nor RN 1 

The next example c;;ha:racterizes the :properHes RO and RN in 

the case where (1) has constant c;oeffic;ienti;; 1 

Example 1. 8 Consider the eq_uation 

y, , , + PY, , + q y, + ry = 0 1 (4) 

where p 1 q, and. r are c;onejtants. The adjoint of (4) is 

y 111 "' py" + qy' ~ ry = 0 , (5) 

If the charac;;teristie equation of (4) does not have imaginary 

roots, then (4) c;annot have an oscUlatory solut~on, Bence, it eannot 

have property R. So, suppose the charac;tertsti~ equation of (4) has 

roots a, µ + il3, and µ ~ :Ll3, ~ f, 0 1 

eµtsinl3t, and eµtcosl3t. 

Constde r the solutions 

Case I, Suppose µ < a, The soluHqn 

y(t) 
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oscillates if and only if c 1 = 0 sj.nce µ - a < 0 and 

Therefore, (4) has pl;'operty RO, 

Case II, Let µ > a, then 

;,: µt (. ( a - µ)t + / 2 + 'z e c 1 e c~ a 3 f3 in ( 13 t + c) 

2 Z is nonosqUla..tory if and only if c 2 + ~S ~ 0 1 a~ a ..,. µ < 0. Thus (4) 

has property RN, 

Ca..se III, Suppose a = µ, Then thl:l soh,it:i,on 

is oscillatory, and the i,;olution 

y(t) = eat (2 + sinl3t) 

il'l nonoscUlatory. Hence, (t) has neither property RO nor RN, 

The properties RN and RO may be chc1-rcterized by the 

following conditions on µ anc;l. a : 

(i) equc:1,tion (4) has property RO if and only if µ < a, 

(ii) e'q~ation (4) has property RN H c:1.nd only if µ > a, 

Itiseasilyshownthat -a, -µ 9 il3, -µ+if3 c:1.rerootsofthe 

charc1.cterlstic equation of (5), If equc;1.tiqn (4) has property RO, then 



µ < ~. Hence ~ a > .. µ, and (5) hF!-s p:rope:rty .RN, SimU~rly, if (4) 

has property RN then (5) has property RO, Thie :rela.tion,Mp 

between the differenti?t.l ijquati,on and its adjoil'l.t wil~ be e;on.sidered 

again in Chapter IV. 

Definition 1, 9 'rhe diffe :renHal equation ( 1) h said to be (2, 1) dis ... ............... 

conjugate if for any nontrivial solution y(t) of (l) and any number 

b E [a,oo), y(b) = y'{b) = 0 impHelil y(t):,. 0 for t > b, 

R I The solut101;1. 

y(t) = "1 + sin t 

is an os~iUatory ~olut~on with doq,ble Z(lll"OS, So property R doe~ not 

imply (Z, 1) disconjugac:y, 

Lemma 1. 11 (Hanan [Ia]). U' µ(t) an,d v(t) ar~ l\nea:rly indepen .. 

dent solutions of eq,uaUon (2) sugh that u(I)) "" v(b) "" 0 for some 

b > a and equation (2) is (2, 1) disconjugate, then the zeros of u(t) 

and v(t) separate in [a, b). 

8 

Theorem 1. 12 (Mammana [16]), Equation (2) il:l (2~ 1) disconjugate 

if 2Q(t) ~ P'(t) < 0. 

Lemn;ia 1.13 (La:i:;er [15]), If P(t) ~ O, Q(t) < 0, 2Q(t) ... P'(t) ~ 0 

in equati,(l)n (2) then the derivative of al'ly Oscnlat0;,;y (i!Olµtiqn Of (2) is 

bounded. 

Theorem 1. 14 (Lazer [15] )1 If P(t) ~ O. and Q(t) > O, then 

equation (2) has a solution z(t) such that 



z"'(t)z"(t)z 1(t)z(t) I- 0, te; [a,~). 

sgnz(t) = sgnz 11 (t) # sgnz 1(t) = sgni'"(t), 

lim z''(t) = lim z'(t) = 0, 
t-oo t-co 

and z(t) is asymptotic to a fix~d ~onstant. 

Theorem 1, 15 (Lazer [15] ). If P(t) ~ 0, Q(t) > Q, 

and equation (2) has on~ 01,,~lUq.tQry solut~pn, then i'i\U soluHona of (2) 

Oli!dHate except c;onstant multiples of ~he nonyanisMng so~ution whose 

eXci,sten<;:e ~s as$e rted Ln 'l'heorem 1, 14, 

'J;'heorem 1, 16 lf in, equation (Z) P(t) ~ 0 1 Q(t) < 0 and y(t) is a 

s olutton of (2) sue!;h thc1- t 

for some t 0 e [a 1 co), then y(t) > 0, y'(t) > 0 1 y''(t) > 0 for all 

t > to and 

lim y(t) = ll.m y' (t) = oo, 
t-co t.+co 

Theorem 1.17 (Birkhqff [6)) 1 If y 1(t), y 2 (t)~ y~{t) form a 

fundamental set for ( 1) then 

z l (t) 

9 



z 2 (t) 
W(Y11Y3) 

(t) ' = 
W{yl' Yz• y)) 

z 3 (t) 
W(yl' Yz) 

(t) = 
W(yl' Ya, Y3) 

f f d . 1 f (l)*. orm a un. amenta set or 

Theorem 1, 18 (Pol ya [ 1 7]) 1 If the functions 

n~ 1 
u, £1,£2 , ... ,fneC (I) onsomeinterv~LI, the:n 

(i) W(uf1,. 1 r, ufQ.) .:;: unW(f 1,,. 1 , fn) 

(ii) W(W(£ 1,£2 ), W(£ 11 £,), W(£2,£,)):.: w2 (£ 1,£2 ,£,). 

Remark 1. 19 BarrFltt [4] lntrod.uc::ed the eanonteal form 

where r 2 (t) > 0, an,d r 2 (t) 1 q 1 (t), q 2 (t) e C~a, QI!). EquaU<;m (6) is 

equival~nt to the syst~m 
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O:' I .:;: B(t)a, (7) 

where 

0 1 0 a 1 (t) 

B(t) -ql (t) 0 
l and a 2 (t) .:;: 

rz(t) 
a = 

0 q2 (t) 0 
a 3 (t) 

That is, if y(t) ts a sol:ution of (6), then 



y (t) 

~(t) ,.. y 1(t) 

y 2 (t) 

lsa1;Jolutlonof (7), where y 1 =y" and y2 =r2 [y 11 +q 1y] 1 

Conversely, if 

a 1 (t) 

a(t) = a 2 (t) 

a3 (t) 

11 

is a sol~tion of (7), foen y(t) .:;: a 1 (t) ~!3 a i,;aLu~~on of (~). 

Coni;;equently 1 th~ standarc;I. uniq"l!lenesi; anli exif'itenoe tJ:ieorems for (6) 

folLow from system {7). 

Theorem 1. 20 (Rabensl!~in [19] ). If y 11 y 2 ~r,i,~ y~ are soluHonfl 

of equation ( 1) 1 then 

The above rela~i~m ls someHrnes referred. to as Abel'i;; formula. 



CHAP':l'ER H 

OSCILLATION 

The purpo$e of this qhapter is to invesHgahe oscillatory 

properties of fundamental sets for equation ( 1) and subspac:e s of the 

soluti.on space g. The c;oefficients in equattoq. (1) are c:;ontinuous on 

some half ray [a, co), Henc;e, g i~ a vec;;tor spc1.c;e of climenslon 

three. 'The case where p, q, and r are !:)onstants 13uggest6l that 

every fundamental set co1;1tains a nonoseillatol'!y sol~Uon 1 Howeve:rs, 

this is not true as will be shown in Chapter IV; in fac;t, it will be shown 

that g C:<;l.n be f;!trongly osc:i,U;:1.tory, The follow~ng exa,.rople shows that 

there a:r;e ex;:i.mples of equation (1) whl<;:h have fundamental sets which 

contain O, 1 , 2 , or 3 nonos<;;illatory eoluHons. 

t t t Let y 1(t) = e ~ y2 (t) :::! e sint, and y 3 (t) = e ~ost 

Then {Yp Yz, y3 } is a fundamental set for the l!hirq. order linear 

dHferential eq1,1.ation given by 

The following are fundamental sets for equ.aticm {8) with O, 1 , 2 1 $ 

nono sqillatory solutions re spec f::i,vely: 

t t t B 0 = {e (ltcost) 1 e c;ost, e sint}, 

(8) 



t t t 
B 3 = { e , ~ (~ + ~os t) , e (2 + sin t} . 

Although B0 c;;ontains three o~eillatory s<;>luH<!>ns, equat\on (8) has a 

n.ono seillatory soLution y 1 (t) = et, The foUowh1g theorem du!:l to 

Utz [2~] provides a gener;;tlizatic:m of this example, The proof given 

below is provided. by the author, 

Theorem 2, 2 Rec.an eqµatlon (2) given by 

z"' + P(t)~' + Q(t)z = Q , 

where P(t), Q(t) e C[a, co). If 

(a) P(t) 5_ 0, Q(t) > 0 ~ 

(b) 2P(t) di ( 1) 
Q(t) . + ~ 1J1TI ~ 0 ' 

and some solution of (~) oscUlates 1 theµ the:re are three linearly 

independent osc;Ulatory soluUons of (2) ; yet some noµtl'ivial soluHon 

h nonosc:;lllatory. 

ProQf; As P(t) < 0, Q{t) > 0, (2) has ~ non.~rivi.al nonoseiHatol"y 
..,..... . 

l!iOlut:i,on. z(t) s~<;h that lim z(t) = c;:i by Theol"e:rn 11 14. Conditions 
t-oo 

(a) and (b) imply the ex\stenc;e of two l:i.ne1;1.rly ind.ependent osp;:iqlatory 

solutions of (2) (Theorem 1.15) say, z 1(t) and :21 2 (t) such tha,t 

z, z 1 , z 2 F1,re Linearly independent, Then z 1 (t) + z(t), z 2 (t) + 21(t) 

oscUla,.te by Theo;i;em 1. 15. SinG«i:l z, z 1 , z 4 are linea.l"ly il'Hhipendent, 

z + z 1 , z + z 2 , z 1 {or z 2 ) are the required solut:i,.em1p a,nd ~he proo{ 

is complete,. 
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I\ 
Utz [2,] states tha~ Svec [21] has shown that if P(t) = 0 and 

Q(t) > 0 in equaHon (Z), then equation (2) has an oscUl~to:ry solution, 

The author was not able tc;> find such a fact in Svec's paper. In fact, 

the statement i,s false as shown by the following exa:mple. 

ExamEle 2. S The differepHal equation 

3 [ y'" + -. -. y = 0, t ~ 1, co) , 
8t3 

has as a tundamenta1 set {ts 12 , / 3 + N)/4 , t(~ .. N)/4}. Now, 

y(t) = t312 is a nonoscUlatory s olutton of (9) c;tnd 

3/2 (:~+m)/4 
W(t , ~ ) # 0 on [a 1 oo), Hen~e, by Theorem l. 4, 

equatiop (9) has no 013c:illa.tol'y solut·ions, 

Utz [23] qlaims that the following follows from Theorem 2. 2, 

If P (t) = O , Q (t) > 0 and : 1~. (o:{tJ) :S, O , thon the s onol uaion of 

Theorem 2. 2 follows, However, Utz's proof requires that Q(t) > 0 

(9) 

and P(t) = 0 impliei, that equation (2) has an oscillatory soiution. 

But, Example 2. 3 is not a counterexaiq,ple as :,~ (a{,1) > 0, Thus, 

Utz's claim seems to pe an open question, 

The properties RO and RN describe the structure of Q, 

For ex&mple, if equation ( l) has property RO, then. it follows from 

the definition of RO that there exist a two dimensional subspaee of Q 

such that each oscillatory solution of ( l) is contai.ned in this subspace. 

The following theorems, due to Ahmad [IL give a oharacterlzat:j.on of 

properties RO and RN, 

Theorem 2, 4 If equation (Uhas solutions y 1 (t), y 2 (t), and y(t) 

such that y(t) is non .-vanishing on [a, oo), y 1 (t) and y 2 (t) are 



oscillatory and W(y 1, y2 )(t) is non-vanishtng on [a, rn), then 

equation ( 1) has property RO tf and on~y if 

15 

y l (t) 
lim = 
t-+co y(t) 

Yz (t) 
tL~ y(tf = 0. ( 10) 

Proof: Assume that condition (1) holds. To show that (1) has 

property RO, it is sufficient to show that 

is oscillatory only if c 1 = 0. As y(t) I O on [a, co) 1 z(t) c:an be 

written 

( 
y 1(t) Y;a(t)) 

z(t) = y(t} Cl+ Cz y(t} + c:, y{t) , 

Therefore,· z(t) is osc;illatory only if c 1 = 0. Hence, (1) has 

property RO, 

Next, assume that equation ( 1) has propl:lrty RO, In order to 

establish 

suc:;h that 

(10), it must be shown that given e: > 0 
y. (t) 

I - 1 - I < ,. fo""' t > T ·1· - l 2 y ( t ) c. _.,. - i I - J • 

there exii:;t T. 
l 

Suppose that there exists an ~ > 0 such that the above does not 

hold, Hence. there exists a sequence {t } 
~ :i,n 

Y1 (tin) 

y(tin) 
= It or 

Yi (tin) 
. y(t) = -e' 

suc;h that t 1 "'"'" co and ·n 

i = 1, 2 , 

This is pos sibie as 
Yi (t) 
y(t) is asc;:illatory, If the first equality holds, 

then y i (t) - e: y(t) is an oscillatory solution, qontradic;tlng the fact 

that ( 1) has property RO, A similar contradiction is reached if the 
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second equality holds. Hence, c;on,dition O) mu~t hold and the proof is 

complete. 

Theorem 2, 5. Suppose that equaHon ( 1) has solutions y 1 (t), y2 (t) 

an.d v(t) suc;h that v(t) does not vanish on [a, ro) and y 1 (t), y 2 (t) 

are osc:Ulatory wtth W (y 1, y 2 ) (t) non ... vanishing on [a, co) • Then 

equation (1) has property RN if and only U every nontrivial linear 
y 1(t) Yz(t) 

combination of v(t) and ~ is unbounded above and below, 

Proof: First, assume that 

z (t) 

is unbounded above i;i.nd below, Thel'J., given <:t 1 > 0, there e:x;ists a 

sequenc;e {t} 
n 

and 

So, there e)l:ist a i;;equence {T} 
n sµch that r - ~ 

n 

for all n. Thus, 

y(t) = ~ c.; 1 v(t) + <rz y 1 (t) + c 3 y(t) 

= v(t) (- c.: 1 + z(t)) 

is a nonoscillatory solution only if z(t) = 0, that ls c 2 = c~ = O, 

Henc;e, equation ( l) has property RN. 

Next, assume that equation ( l) has property RN, Suppose !!hat 

z(t) is bounded above. So, there exis~s a number M sueh that 

z(t) < M for c1,ll t e [a, co). Then 
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y(t) = v(t) [~M + z(t)] 

is a nonoscillato:ry solution whic:h ts not a c:onstr;i.nt mµHiple of v(t) 1 . 
contradi,c;t:i,ng the fa~t hhat equation (1) has property RN, Hence, z(t) 

is unbounded above. Similarly, z (t) is uqbounded b~low and the proof 

is complete, 

The following results concerning property RO were obtained by 

Benharbit [5]. The proof of his first l~mma employ$ a technique 

which has been widety used tn the current Uterature. 

Lemma 2. 6 In equation (2), let P(t) < 0, Q(t) < 0 on [a, a,). If 

Pe c 1[a, co) with P'(t) < 0, then all osc;illatory soluttons of (2), 

if any, are bounded on [a, co), 

Proof: Let y(t) be an oscillatory $Olutlon of (2), t 1 a fl:ifed zero of 

y'(t), and t2 any other zero of y'(t) $UCh that t 2 > t 1 , These 

points exist by Rol~els theorem as y(t) oscillates. 

Let the maximum of y 2 (t) oq. [t 1 • t 2 ] oc~ur at T. Then 

y'(t) = 0 as y'(tl) = y'(tz);::, 0, Define 

F[y(t)] = [y 1 (t)] 2 - 2y(t)yJ'(t).,. P(t)y2 (t). 

It can be verified by diffeJ;entiati,on that 

/
t . 2 

F[y(t)] = F[y(t 1)] - P'(s)y (s)d,s 

tl 

( 11) 
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2 2 
If t=t 1 , thenthema~imumqf y (t) on [t 1,t4] tsgtv~nby y (t 1), 

Now, if t > t 1 

(12) 

Using the fa~ t that y' (t) = 0 and equi;l.ti©n ( 11), it foUow~ that 

F[y(t)] = .. 2y(t) y"(t) ~ P(t) y 2 (t) , ( 1 S) 

From (12) a..nd (13), 

Now y(t) y"(t) < 0, Otherwise, by 'l'heorem 1. 16, y(t) wouid be 

nonoscillatory whiqh LI> a c;;ontradi~Hon. So, 

or 

Therefore 1 

(Recall that two cases were considered t = t 1 , t > t 1) and t 1 is 

fixed. Henc;e, y(t) 113 bounded, 
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Theorem 2. 6 Assume the hypothesis of the p:r13ceeding lemma. I£ 

equation (2) is oscillatory, then it has prope:rty RO, 

Proof: By Theorem 2 of [2] (\X{hiGh will be presented in Chapter III) 

there exist two linearly independent o~c;iillatory irnlutions of equation (2), 

i,ay yl (t) and y2 (t), sm;h that any nontrivial Une;;i.r c:ombinatiqn of 

y 1 (t) and y2 (t) is oscUlatory and the zeros of y 1 (t) and y2 (t) 

separate. 

that 

z ( t) 2 2 = c 1 y I ( t) + c:;: 2 y 2 ( t) ' c 1 + c 2. > Q I 

satisfle!il 

z(t) = z'(t) = 0, z"(t) > 0, 

Henc;e, by Theo1;em l, 16, z(t) 1~ nonosc;i1l9-tOX'Y whi~h is a qontradic; .. 

tion. Therefore, W{y 1,y2 ){1!) f. 0 on [a,a:i). 

Let y 3 {t) be the solut;i.on of (2) defined by 

By Theorem 1, 16, y3 (t) is a nonosc~llatory so1',1hion. So {y1, y2 , y3} 

is a fundamental set for equation (2), By Theorem 2 of [2], 

li,m y3 (t) = cx:i. Let y(t) be any solu!:ion qf (2), then 
t->-m 

By the prec.;eeding lemma, y 1 (t) and y 2 (t) al;'e bou,nded, . Henqe, 

y(t) is unbo\;l.nded if c 3 f. 0 as y 3 (t) is unbounded, Thus, y 3 (t) 
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can be assumed to be any nonos<;:illatory so\ution. So, y iij oscillatory 

U and only if cS = O. Thus, eqyation (2) has prope:J'.'ty RO, and the 

proof is complete. 

The following results were obtained by Gustaflijon [11], 

Theorem 2, 7 A nec;essary and suffieient conditi9n fo:r; every two 

dimensional sub space of the solution spa~e of 

(P(t)u")' + Q(t)u 1 = 0 1 ( 14) 

where P, Q e C[a, co) and P(t) =I O on [a, q;i), to contain both an 

oscillatory and a nonosillatory aolution is that the following <;;ondition 

be iaatisfied: there exists a fundamental set { l, u(t), v(t)} with u(t) 

and v(t) osc;illatory satisfying 

(i) u(t) + a, v(t) + I:> nonoscillato:ry implies u(t) +a+ i; (u{t) + b) 

ls oscillatory for some G, 

(U) u(t) +a, v(t) + b oscillatory implies tha~ {u(t) + a) + c;:(v(t) .J, b) 

is nonosc;illatory for 1;1ome c;; , 

(Ui) u(t) + k v(t) nonosc;illatory implies u(t) + k v(t) + c is 

oscilLatory for some c I 

Proof: Suppose that every two dimensional subspace of the solution 

spaee of ( 11) contains oscUlcttory and nonoscillatory solutions, Let 

{ u, v1 l} be any fundamental set for (11). The two dimensional 

generated by { l , V} Contains an Oscillatory solution V = Q l V t c 2 

by hypothesis. Similarly, there exist ~onstaµts c 5 and c4 such foat 

u = c 3 u + c4 ls oscillato;l,"y, Therefore, { l, u, v} is a fundamental 

set with µ and v being oscillatory. 
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To show property (0 holds for {l, u, v} 1 suppose that v+a 

and u-f, b are nonoscillatory, The two dimensional subspace generated 

by { v +a, u + b} contains an osc;illatory solution 

w(t) = X.(u(t) + a) + µ(u(t) + b) 

byhypothesis. Also, X.µ#0 as u+a, and v+b arenanoscillatory, 

1 
Hen~e. z(t) = f w(t) is the r.equired solution, Properties (ii) and 

(iii) c:;an be ve rifled in a s imil;,u manner. 

Suppose there exists a fundamental set { 1, u f v} for (14;) with 

u and v osc:;il~atory and conditions (i), (ii) 1 (iU) satisfied, Let X 

be any two dimensional subspace of the solution spa~e of (14) with 

~.1 = a1 u + bi v + c:; 1 , i = 1, 2 , ( 15) 

A13sume that X is nonosc;:Ulatory, It follows from (l~) that if 

Cl bz ~ c 4b l = 0, then G 1x 2 ., c 2x l is a G<;>nstant multiple of U. But 

X is nonoscillatory so c 1x 2 - c 2x 1 = 0, Hence, c 1 = c 2 = 0 as x 1 

and x 2 are linearly independent. Thus, x.;:; a.u + b,v i; X and 
1 l 1 

ai 1 0, bi 1 0 1 i = 1, 2 as X is nonosc;l,llabory, Now, 

But v is osdllatory, so a 1 = a 2 = 0, But this is not possible. 

Therefore, c 1 b2 ~ c; 2 b 1 1 O, Now, 
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nonoscillatory. Thus, 

is in X. Thu~, U' + kv e X, Two oases shall be considered: 

Case I: 1 e X. Condition (iii) implies there ex\sts a c;anstant c sueh 

that u + kv + c is oscillatory. But, u + kv + c; e X whir.ih is a 

c;ontradictlon. 

Case II: 1 i X. Then the solution spac;e of !:lquation (14) c:a1;1 be 

expressed as the direct sum of the space generated by { l} and X, 

Hence, u + a and v + b must be in X for some c:;:onstants a and b. 

·otherwise, u or v would be in X wh~c:h is not pos slble as X l.;s 

nonoscillatory. But, then by condition (i) there ex~sts a constant c 

such that (u+ a)+ c;(v + b) is oscillatcny whic::h is a oontr?l-diqtian, 

Therefore, X cannot be nonos<;:illatory. 

then 

is ~n X, But X is strongly oscillatory, so a 1 = a 2 == 0, Thus, 

u + a and v + b e X for some a, b and u +a, v + b are osqillatory 

as X is strongly oscillatory, But ~ondition (ii) implies there exist 

a nontrivial linear combination of u + a and v + b which is non-

oscillatory, This is a c;:ontradiotion, Therefore, c = a 1bi - a 2b 1 :f- 0 

which impHes that 



and 

are in X and condition (ii) leads to a c:ontradietion. Thereforet X is 

not strongly osc:Hlatory and the proof is oomplete. 

Theorem 2. 8 If every two dimensional subspace of the solution space 

of equation (14) contains both oscillatory and nonoscillatory solutions, 

then there exists a fundamental s~t { 1, u, v} of ( 14) such that 

(i)' u ~ 0 1 v ~ O for large t, 

(ii)' u + a(v + b) oscillates for some a :£ O(b ::::., O). 

Proof: By Theo:t1em 2. 7. there t;:xists a fundamental set {l,u0 ,v0} 

such that u 0 and v O are oi,c;illatory and ciondHions (i), (ii) and 

(iii) ate satisfied, 

If u 0 does not satil;ify (i) 1 , selec:;t k sw:;h ~hat ul = u 0 + k. v O 

is nonoscillatory, By Theorem 2. 7, ~here exists a constant 1.; s-qc;h 

that u 1 + c oscillates, Without loss of generality, c; may be asi;rnmed 

to be positive. Let 

c 1 = inf { c: u 1 + ~ oscillates} . 

Suppose u 1 + c, u. 1 + d os~illate, <:;! < r < d. Then 

So, u 1 + r oscillates. Thus, 

{ c : u 1 + <:: oscillates} 



is connected. Therefore, u 1 + d is eventually ot cqn,stant sign for 

ea.eh d < c 1 . Let u::: ±(u1 + d). 

Now, u=:1:(u0 +kv0 +d)~ henc:e {l,u1 v 0} ~safu.ndamental 

set, Choose a such that u + a is oscillatory to get a solution 

* u = ±(u+a+kv0 +d) with the ~amepropertiesas u, Then 

24 

''C 
{ 1, u, u''} is the required fundamentc:tl set 1 and the proof is complete. 



CHAPTER III 

ASYMPTOTIC AND OSCILLATORY BEHAVIOR 

OF SOLUTIONS 

The purpo$e of this Ghapter is to st"l,ldy the osc:lllatory and 

asymptotic behavior of equation ( 1) g~ven by 

y"' + p{t)y" + q(t)y 1 t r(t)y :;: 0 , 

where p(t), q(t), and r(t) E C[a, cp), The fo~lowing rE:isults were 

obtained by Ahmad and Lazer [2 J , 

Lemma 3, 1 If in eqµation ( 1) p(t) S, 0, q(t) s_ 0, r(t) < 0, where 

t E [a, l'X>) and y(~) is a sqlution of (1) with 

for some t 0 e [a, ex;,) 1 then 

y(t) > 0, y 1(t) >QI y"(t) > 0 for t '.> t0 

and 

lim y(t) = lim y~t) = co. 
t-co t-co 

];=>roof: First it wUl be shown that for t > t 0 y"(t) > 0, To do this 

c;;onsider 

w(t) = y(t) y• (t) y 11 (t) , 
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If y 0 (t) = 0 for some t > t0 , then there exists a :;;r,r;iallest number 

t 1 > t 0 suc;h that y"(t 1) = O, Otherwise y 11 (t0 ) = O whi<:ih is a 

contradiction. Since y''(t) > 0 for all t ~ (t0 , t 1), y(t0 ) > 0 and 

y'(to) > 0 1 y(t) > 0 and y~(t) > 0 for au t e (to, tl). Also, y'"(t) > 0 

for aU t e (t01 t 1) as p(t) ::_ O, q(t) ~ O and r(t) < O. Thus, 

WI ( t) ;: YI 2 ( t) Y J I ( t) + Y ( t) Y If 2 ( t) t Y ( t) Y I ( t )'y I U ( t) > 0 

Hence, y 11 (t) > O fol;' t :::_ t 0 . Thus, y' (t) > O, y(t) > O for t > t, 

It follows direc::tly that y"'(t) > 0 for t > t0 , Clearly, 

lim y(t) = lim y'(t) = ro, 
t->-co · t-t\Q 

and the proof is complete, 

Lemma 3. 2 If in equation (1) p(t) < 0, q(t) ·:5. 0, r(t) < 0 and y(t) 

is a nontrivial nonosGillatory sol\lt'lon of (1), then there exists a 

number t 1 ~ a such that y'(t) f;. 0 for t ::_ t 1 , 

Proof: Sinc;e y(t) is nonosc;i,llatory, it may be assumed ehat th.ere 

exists a number t 1 ::::._ a such that y(t) > 0 for ati t :=:, t 1 , Let 

be a number suc;h that y'(T) = 0 and y"(T) > 0. 
r-

By 

Lemma :3. 1, y'(t) > 0 for &.U t > T. If y'(T) = 0 impliies that 

y" (T) < 0 then y' (t) = O for at most one t and the proof is complete. 



Theorem 3. 3 In equation ( 1), if p(t) ~ 0 , q (t) :S, 0 , r(t) < 0 then 

the following conditioni, are equivalent? 

A. There exists an oscillatory i,c;>lution of (1), 

B. If w(t) is a nontrivial nonosGillatory solution of 

equation (1), then ther~ exists a number t 0 ;::.. a., 

such that w(t) w' (t) w' '(t) :/:- O for t ;::._ t0 ~ and 

sgn w(fl) :;: sgn w' (t) = sgn w' '(t) for t ;:::.. t 0 , 

Proof: Suppose condiHon A holds. Let u(t) be an osGillatory 
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solution of ( 1), If w(t) is a nonoscillato:r,-y solu~icm of ( l), then, by 

Lemma 3, i, there exists a number t 1 ~ a such that 

w(t) w'(t) :/:- 0 for t :::_ t 1 , (16) 

As u(t) is osc;illatory and w(t) ls nono:;;cilla~ory, there exii;;t1;1 a 

number s :::_ t 1 such that W(u1 w)(s) = 0, Otherwise, by Thl:lorem 

1. 4, equation (1) would b!cl nonoiscillatory. Hence, there ex\st 

number El c 1 and c2 such that 

c 1 u( s) + c 2 w( s) = 0 , 

c u'(s) + c w'(s) = 0 l · · 2 

Let z(t) = c:: 1 u(t) + c 2 w(t). Since u(t) is oscUlatory and w(t) is 

nonos~illatory, u(t) and v(t) are linearly indepenclent. Hence 1 

z"(s) :/:- 0. Without loss of generality, assum13 that z"{s) > 0, Since 

z(s) = z'(s) = 0, 

z(t)>O, z'(t)>O, z"(t)>Q for t>s, 
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by Lemma 3, 1, Furthermore, 

z"'(t) = .. p(t)z"(t) ~ q(t)z'(t).., r(t)z(t) > 0 

by the c;;ondlHons on p, q and r. So, 

lim z(t) = lim z'(t) = oo. ( 1 7) 
t-a:l t-co 

From (16), either w(t)w'(t)<O or w(t)w'(t)>O, If w(t)w 1(t)<O 

for t~t 1 , then w(t) isboundedon [t 1,co). Th"l,lsfrom.(17) 

lim c 1 u(t) = lim [z(t) ~ G-;i w(t)] = ao, 
lJ·"""CO t-ex:> '1 

But this contradicts the fact that u(ll) is oscillatory. Henc;e 1 

i,gn w(t) = sgn w' (t) for t ~ t 1 . If w' '(t2 ) = 0, then 

So, w''(t) c;an have at most one zero on [t 1, co), Therefore, there 

e:x;ists a number t3 euc;h ~hat 

w(t) w'(t) w' '(t) f:. O for t :::_ t 3 1 

Suppose that w(t)' w"(t) < 0 1 t ;::_ t 3 , This implies that w'(t) is 

bounded, Then by ( 17) 

limG -µ'(t) = lim[z'(t) -q2 w'(t)] = t;Q, 

t-oo 1 t-+oo 

'l'his conhradic;;ts the fact that u(t), hen1::e u'(t), is osdlLatory. Thus, 



sgn w(t) = sgn w 1 (t) = sgn w 1 '(t) for ~ ~ t 3 

and condition B hold1;1, 

Suppose statement B holds, Let w(t) be a nonoscillatory 

1;1olution satisfying the conditions of stat~ment B, 'J;'he following 

techntque is worth noting. Let z 0 (t), z 1 (t), z2 (t) be solut'Lo,ns of 

( 1) defined by 

z (j)(a) = 
k ojk 

= { 0 J 

1 J 

j # k J 

j = k . 

For ea<;:h positive integer n > a, let a 0n, a 20 , b 1 o., b20 be 

numbers such that 

aQn ZQ (n) f azn !Z2 (n) = 0 • 

bln zl (n) + b2n zz(n) ::; Q I 

2 2 b z t b 2 1 ! aon + azn ::; ::; 

ln 2n 

Define for eaqh Q. > a solution1;i of ( 1) by 

?9 

( 18) 

( 19) 

(20) 

(2 l) 

As the unit ball is qompaqt 1 there exist;:; a sequence of integ!;lrs {nk} 

suqh that 



an.d 

Let 

u(t) 

v(t) 

• a 0 z 0 (t) + a. 2 z 2 (t),} 
= b 1 z 1{t)+b2 z2 (t) 

Then u(t) and v(t) are solutions of equation ( 1) and 

for j=0,1,2. 

To see this consider the solutic>n space ~ with the norm 

lly(t)II == /y(a)! + jy'(a)! + jy"{a)! 1 a 
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(23) 

(24) 

{2 5) 

Now, (25) clearly holds in the II II norm, Bl,lt ln a finite dimen-a 

sional spact;: all norms are equivalent, Bence, (25) is valid. 

Suppo1;3e u(t) is nonoscillatory. lt follows from (21) and the: 

independenGe of z 0 (t) and z 1 (t) that u(t) is a nontrivia,l solution, 

Condition B guarantees the existenqe of a number t0 :;:, a such than 

and 

From (25) it follows that there exists an integer N sueh that nk :::_ N 

implies 



and 

= sgn u' (t0 ) .::; 
nk 

sgnu" (t ) 
nk O 

By Lemma 3, 11 un (t) # 0 for t ~ t 0 and nk ~ N, HoweveJ;', for 
k 

all nk > max [N, t 0} 1 unk (nk) = 0 by { 19). Hence, u(t) must b~ 
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osqiUatory, Simtlarly v(t) is osc;illatory, ap.d the proof is e0mplete. 

'l'heo:1;em 3. 4 The solutions u(t) and v(t) tP. Theorem 3. 3 have the 

following properties: 

(a) u(t) and v(t) a.re Unearly independent~ 

(b) any nont~ivlal linea:r combinatiop. of u(t) and. v(t) is 

oscil~atory, and 

(c) if y 1 (t) and y 2 (t) are two linear combinations of u(t) 

and v(t) which a.re linearly independent, then the zeros 

of y 1 (t) and y~(t) separate, 

Proof: Suppose that there exist constants c 1 and · q 2 such that 

Cl u(t) + Cz v(t) _ 0 , 

Then, by (23) and (24) 1 

Now, z 0 (t), z 1 (t), z 2 (t) are linearly independent, If q 1 # O ~ then 

ao = O . So, a2 = ±J and u(t) = ± :Zz (t) , However, Zz (t) is non

oscillatory by Lemma 3. l. This is a coatradletion to the assumption 



that u(t) i1;1 oseillatory. Therefore, c 1 = 0, Sim:i.!a:rly c; 2 = 0. 

Hence, u(t) and v(t) are linearly independent, 
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Let y(t) = d 1 u(t) + d2 v(t) with df t di :/:. 0. Sinc::e u(t) and 

v(t) are linearly independent, y(t) is a nontrivial solution of (1). If 

y(t) is nonoscillatory, then by Theorem 3. 3 there exists a number 

t 0 ~ a such that 

and 

Set 

y (t) = d 1 u (t) + d2 v (t), 
nk nk nk 

where uk (t) and vk (t) are defined as iri Theorem 3. 3, Then 
n n 

y (t) qonverge s to y(t) as in Theorem ~. 3 • Also, the sohttion 
11k 

y(t) is oscillci.tol'y a~ in Theorem 3, 3. 

We wish to show that W(u., v)(t) :/:. 0 for t E [O,cro ) . Suppose to 

the ~ontrary that there exists s E [a, co) suc:;h that W(u, v)(s) = 0. 

Then there exist c;onstar:i.ts c 1 and c2 S\lCh that 

ci u(s) + c2 v(s) = O, 

c; 1 u'(s) + c 2 -u'(s) = O, 

Set y(t) = c 1 u(t) + c 2 v(t), Then y(s) = y'(s) = 0. But u(t) and v(t) 

are linearly independent. Hence, y' 1(s) 'IO. Thus, by Lemma. 3. 1, 
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y(t) is nonos<:;ilhitory which is a contradi~tion to pi,rt (b). Therefore, 

W{u{t),v(t)) # 0 on [a,00) 1 

Jf y{t) is any li,.near ttombinaUon of u{t) an4 v{t), then 

W(y,u,v)(t):;::: 0 on [a,ro). If H(t) = u'(t)v"(t) ... v'(t)u"(t), then 

W(u, v)(t) y''(t) ~ Wl(u~ v)(t) y'(t) + H(t) y(t) = 0 • 

Thus, y(t) is a solution of the nonsingular Linear sec;ond order 

~quation 

(26) 

By the Stu;rm separation theorc;H'P [Z2, p. 5], the zeros of linearLy 

independent solution1;1 of equation (?6) separate, and part {<;) foUows, 

Corollary 3, 5 If the c;oqditions ot 'l'heorem 3, 3 p.old, then a nee:essa;ry 

an,d suffi<:;ient condition for equation. ( 1) to have p.o oi;;~illatory solutions 

is that there e~ists a solution z(t) of ( 1) su~b that 

z(t)z'{t) < 0 · t > T (27) 

or 

z'(t) z!'{t) < 0 t > T (28) 

for some T e [a, oo) • 

Proof: Suppose there exists a solution satisfying (2 7) or (28), Henc:;e, 

ccmdition B of Theo:("em 3, 3 is not sallisfied. Thus, equation (1) has 

no oscillatory solution, 

Suppose eq,uation (1) has no osc;;;illatory solutions, Hence, there 

exlsti:; a nonoscillatory soh;ition z(t) which does. not satisfy property 



B of Theorem 3. 3. By Lemma 3, 2, there eJ!1'.ists a nu,mber t 0 2:. a 

such that z(t) z 1 {t) :f. O for t ::::.. t0 , If z(t) z 1(t) > O for t ~ t 0 , 
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then as in Theorem 3, 3 there exists T ~ t 0 ~\l<::h that z 1 (t) z 11 (t) :f. O 

for t > T . Therefore, z '(~) z 11 (t) < 0 for t ::::_ t0 as condition B is 

not satisfied, and the proof is eomplete, 

Theorem 3. 6 Consider equation (2) given by 

y 1 I I + P(t)y 1 + Q(t)y :: C) ' 

where P{t), Q(t) e C[a 1 oo) and, P(t) :::_ 0, Q(t) < 0, 2 Q(t) ~ P 1(t) :::_ 0 

oq [a, OJ). 1£ equation (2) is osc;illatory, then there exist two linearly 

independent osciltatory solutionEi u(t) and v(t) of (2) whose zeros 

separate. Furthermore, a solution of (2) is 01:1clUatory if and only if 

it is a nontrivial linear corn.bina~ion of u(t) and v(~). If w(t) is a 

nontrivial solution of (2) whic;h is not a linear combination of u(t) 

and v(t), then 

lim lw{t)I = lim lw 1 (t)I = a,, 
t-o:i b-+co 

Proof: By hypothesis (2) has an osc;illatory solution. The c;onditions 

of Theorem 3, 4 are satisfied. Henee 1 equation (2) has two linearly 

independent solutions, say u(t) and v(t) 1 whose z;eros separate and 

any nontrivial linear comblnation of u(t) and v(t) is also 

oscillatory, Furthermore, by Lemma 1, 13, u'(t) and v'(t) are 

bounded, 

Let z(t) be the solution of (2) defined by z(a) = z 1 (a) = 0, 

z"(a) = 1, By Lemma 3. 1, z(t) > 0 1 z'(t) > 0, z"(t) > 0 for t >a. 

Hence, 



lim z(t) = lim z'(t) = 00 1 
t-oo t-co 

Since z(t) is nonoscillatory, {u(t), v(t), z(t)} ls a fundamental set 

for (2), Suppose 

w(t) = c:1 u(t) + Cz v(t) + c:;3 z{t), C3 # 0, 

Sinc:;e cl u(t) + c 2 u(t) is osc;Hlatory and 

unbounded. Now, lim w' (t) = co 
t-oo 

as U I (t) 

llm z(t) = ai, w(t) is 
t-co 

and v'(t) are bounded 

and Hm z '(t) = co, Hence, w(t) is o~clllatory if and only if c; 3 = 0, 
t-oo 

And the proof is complete, 

The following resuHs c;oncerning properties R I RO and RN 

were obtained by Ahmad [I], 

Theorem 3. 7 If equation (I) is (2, I) dlsconjugate on [a,ro ) , then 

it has property R on [c1,, OJ) • 
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Proof: Let z 1(t), z 2 (t) and z 3 (t) be the 1;1oluHons of (1) defined by 

z U\a) = 
k 

j,~ = 1,2,3. 

For each n >a, let a = (aln' a 2n, a;n) and 

suc;:h that 

f3 = (b 1 , b2 , b3 ) be n n · n 

a · f3 = 0 and a· z = 0 , 
n 

where zn = (z 1 (n),_ z 2 (n), z 3 (n)). That is 1 a and f3 are orthogonal 

unit vectors which are both orthogonal to :z Let 
n 



Uzn (t) = b ln Z 1 (t) t b2n Z2 (t) t b3n Z3 (t) ' 

Now, W(uln' u 2Q)(t) I O for a < t < n. Suppo13e to the contrary 

there exists t 0 e [a, n) such that ·w(uln' u 2n)(t0 ) = 0. Then there 

exist constants c 1 and c 2 such that 

satisfies u(t ) = u' (t ) = 0 and 0 0 

u(n) = 0. This contradicts (2, 1) disc::onjugacy. Hence, 

W(uln' Uzn)(t) I O for a < t < n. 

Without loss of generality, assume that W(uln' u 2n)(t) > 0, 

a :::_ t < n. As in the proof of Theorem 3. 3, there exi~t a sequen<;:e 

and 

lim (a 1 , a 2 , a 3 ) = (a 1, a 2 , a 3 ) , 
k-oo nk nk nk 

lim (bl , b2 , bs ) = (bl, bz, b3), 
k-oo . nk nk nk 

3 2 
~ a. 

l 1 

3 
= ~ b.2 = 1 , 

l 1 

3 
~ a.b. = 0 . 
1 l 1 
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Let 

Now, c 1 u 1 t c 2u 2 = 0 impUes that 

It follows that c 1 = c 2 = 0 because 

2 2 
~ a. = ~ b1 = 1. 

t 
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The next objective is to show that W(u 1, u 2 )(t) :f. 0 for t E [a, Cl!l ). 

To do this it will be shown that if W(u 1, u2 )(T) = 0, th1;m 

u l ( T ) = u 2 ( T) = 0 , 

Suppose that W(u 1, u2 ){T) = 0, T e [a, s:i) , For each t e [a, ex,) 

and 

W(u 1 . , u 2 )(t) > 0 , 
nk nk 

Hence, W(u 1,u2 )(t) 2:_ O. Therefore, W(u 1,u2 ) has a relative 

minimum at T, Hence, W'(u 1,u2 )(T) = 0 1 Thus, 

(2 9) 

If u 1 (T) :f. 0 or u 2{T) :f. 0, then it follows from (29) that the matrix 

u"{T) 
l 

u2 (T) 

u" (T) 
2 
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has rank 1 . This implies that there exist constanti; c 1 E\.nd G2 suc:h 

that 

Hence, c 1 u 1 + c: 2 y 2 E O ; contraq,1,c:ting the linear independence of 

u 1 (t) and u 2 (t), So, u 1 (T) :;:: u 2 (T) = O, 

Suppos~ that W(ul' -u2)(a-) = 0, o- > T. By the above argument, 

u 1(o-) = u2 (o-);:: 0, Thusf u 1(T)# 0 and llz(T) 1 Oas (1) is (2,1) 

disconjugate, Let 

Then y(T) = y'(T) == 0 and y(o-) = 0. This contradic:ts the assumption 

that (2) is (2, 1) dis~onjugate 1 So, H has been shown that 

W(u 1,u2 }(t) 1 0 for t > T, 

Since W(u 1, u 2 )(t) # 0 for t > T 1 u 1 (t) ancl u 2 (t) must be 

oscillatory, Otherwise, by Theorem 1, 4 1 equation ( 1) would be non-

oscillatory, Equation (l) is (2, 1) disconjugate, Hence u 1 ('l') 1 0 

and u2 (T) # 0. Thus, 

is a nontrivial solution of (1), SinGe W(u 1, u 2 )(t) 1 0 for t > T, 

u 1 (t) and u2 (t) are solutions of a nonsingular second order linear 



differential equation as tn Theorem 3. 4. Hence, y(t) is also a 

solut~on and oscillates by the Sturm separation theorem [22, p, 5]. 
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Now, y(T)=y'('l')=O since u. 1(T):;u2 (T)::0 and W(u 11 u 2 )(T)=O, 

Because equation (1) is (2, 1) disconjugate, it follows that 

As equation (1) is (2, 1) disconjugate, the solution defined by 

v(a) = v'(a) = 0, v 11 (a) :/:. 0 is nonoscillatory, Therefore, equation 

(1) has property R, and the proof is complete. 

Corollary 3, 8 lf equation (1) is oscillatory and p(t) ~ 0, q(t) ~ 0, 

r(t) < 0 for t e [a,Cl'.l), then equation (1) has property R. 

Proof: Eqm;1.tion ( 1) is (2, I) disc::onjugc;1.te by Lemma 3. 1 . Thus the 

result follows d\rectly from Theorem 3. 7, 

Example 3. 9 In Example I. 9, it was sho'Vn that the eqµation 

y'''+y' = 0 (3) 

has property R, However, the solutioa y(t) = 1 - sin t sati$nes 

1T 1T 
y( 2 + 2irn) = y'( 2 + 2,rn) = 0 n = 1, 2, .• , . Hence, (3) is not (2, 1) 

disc;onjugate, So, property R does not imply (2, 1) disconjuga~y. 

The following results were obtained by Benharbit [3] 1 

Theorem 3. 10 If equation (2) has an osc;;illatory solution y(t) and 

P(t) > 0 1 Q(t) < 0, 2 Q(t) - P 1(t) < 0 on [a, oo), 
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then equation (2) has another oscillatory solution z(t) such that y(t) 

and z(t) are linea:rly independent. 

Proof: Let y(t) be an oscillatory solution of (2.), b a number such 

that y(b) :/; 0, and {ti} an increasing sequence of zeros of y(t) with 

t 1 > b. (This is enough to insure that lim t .. = cxi). Let y 1 (t) 1 Yz (t), 
t-ro l 

y 3 (t) be the solutipns of (2) defined by 

Thus, {y 1,y2 ,y3 } lsafundamentalsetfor (2), Forea,.c:;hingeger n, 

let 

be a solution of (2) satisfying the boundary condition 

z (b) = z (t ) = 0 • n n n 

2 2 
where c 2 n + c 3n = 1. As { (cZn' c 3 n)} is a sequence of points on the 

unit baU, there exists a subsequen~e { c 2 1 a 3 } converging to 
nk nk 

Deftne a solution of ( 1) by 

As in Theorem 3, 3 {c. z (j)(t) c z (j)(t)} converges to 
' 2n 2 ' 3n 3 

(J• ) (J" ) • _k k ( . ) ( . ) 
{c 2 z 2 (t), c 3 z 2 (t)}, J - 0, 1,2. Henc;:e c z j t c z J 

' 2nk 2 2nk 3 

converges to ;;i;O )(t), j = 0, 1, 2 . The solution z(t) is nontrivial as 
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2 2 
c 2 + c 3 = 1 and z 2 (t) and z 3 (t) are !!nearly independent, The 

solutions z (t) and y(t) are linearly independent as y(b) :f. 0 and 
nk 

z (b) = 0, Also, z (t) and y(t) have a common ze:iro at t 
nk nk nk 

By Theorem L 12, eqtiation (2) is (2, 1) disconjugate, Hence, by 

Theorem l, 11 , the zero!;! of y(t) and sep;:i.rate in [a, t ]. 
nk 

Let c and d be consecutive zeros of y(t) suc;h that c < d, 

Select nk such that nk > d. Then, as above, the zeros of z (t) 
n. 

and y(t) separate for 

z (t) has a zero say n. 
J 

ac;cumulation point t 0 

n. > nk on 
J -

t. in [c;, d] 
J 

e [c, d] as 

[a, x ) ; hence on [c, d], 
n. 

J 
for all n. > nk, The t. 

J - J 

[c:, d] is c.:ompact. Henqe, 

J 
So 

have an 

z(t0 ) = lim z (t ) = 0, and z(t) is oscillatory. Furthermove, 
nk -a.ro nk nk 

z(t) and y(t) are linearly independent as z(b) = 0 and y(b) f. 0, 

and the proof is complete I 

Theorem 3. 11 Every linear combination of y(t) and z(t) in the 

above theorem is oscillatory and W(y, z)(t) f. 0 on [b, oo), 

Proof: Let v(t) = c 1 y(t) + o 2 z (t) . If c 1 = 0 or c 2 = 0, then v(t) 

is oscillatory as y(t) and z(t) are oscillatory. Suppose that 

c 1 c 2 f. 0 and v(t) is nonoscillatory, Without loss of geq.erality, 

assume that v(t) > O for aU t ::::_ b. As equation (2) is (2, 1) 

disconjugate, all zeros of (2) are simple. But c 2 z(t) > - c 1 y(t), 

y(t) having simple zeros implies there exists an interval (t 1, t 2 ) 

such that c 2 z(t) > 0 on (t 1, t 2 ). This contraqichs the results of 

Theorem 3. 10, Therefore, every nontrivial linear combination of 

y(t) and z(t) oscillates. 

Suppose that W(y, z)(t0 ) = 0 for some t0 e [b, oo), Then there 

exist constants c;: 1 and c 2 such that 



2 2 
Cl t c 2 = 0 , 

So, w(t) = c: 1 y(t) + c 2 z(t) is an oscHlatory solution with a double 

zero at t 0 • Thi.s contradicts the fact that equation (2) is (2, 1) 

disc:onjugate. Therefore, W(y, v)(t) f:. 0 on [b, co) and the proof is 

complete. 
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Lemma 3, 12 Let P(t) :::_ 0, 2 Q(t) ., P'(t) < 0 for t e [a, co), If y(t) 

is a flOlution of equation (2), then F[y(t)] > 0 for all t e [a, co), 

where 

F[y(t)] = [y'(t)] 2 - 2y(t)y"(t) - P(t)y2 (t). 

Proof: Consider 

Now, 

However, 

t 
F 1[y(t)] = F[y(a)] + J [2Q(s) - P'(s)]y4(s)ds 

a 

Fl [y(t)] = [2 Q(t) - P'(t)] y 2 (t) 1 

F 1[y(t)] = 2y'(t) y' '(t) - 2y'(t) y"(t) 

- 2y(t) y' 11 (t) - P' (t) y 2 (t) - 2 P(t) y(~) y' (t) 

= -· 2y(t) [-P(t)y' - Q(b) y(t)] - P' (t) y 2 (t) 

- 2P(t) y(t) y' (t) 

= y 2 (t) [2 Q(t) - P' (t)] , (30) 



Therefore, F'[y(t)] = F 1 [y(t)]. It follows that 

F[y(t)] = F[y(a)] + jt[2Q(s) - P'(s)]y2 (s)ds, 
a 

Alsof from (30), F'(y(t)) < 0 except at the zeros of y(t). Hen.c;e, 

F[y(t)] :i,s strictly decreasing, 

Let {t1} be an increasing seqµence of zeros of y(t). Then 

lim t. = ai and 
i-+co 1 
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However, F[y(t)] is strictly decreasing, Therefore, F[y(t)] > 0 for 

aU t E [a, co) • 

Theorem 3, 13 If in equation (2) P(t) > 0, 2 Q(t) ~ P' (t) < 0 and y(t) 

is an oscillatory solution of (2), then the zeros of y(t) and y'(t) 

separate. 

Proof, By the preceeding lemma and its proof, F[y(t)] > 0 and is 

strictly decreasing on [a, co). Hence, llm F[y(t)] exists and is 
t-.co 

nonnegative, 

The i,olution y(t) oscillates. Thus, between any two consecu-

tive zeros of y(t) there exists a zero of y'(t), Let tk be a zero of 

y'(t), then 

F[y(tk)] = [y'(tk)] 2 - 2y(tk)y''(tk)] 

2 
- P(tk) y (tk) 



Since F[y(t)] > 0 , P(t) > 0, it follows that 

Let a 1 and a2 be consecutive zeros of y(t), Then y'(t) 

can have at most a finite number of zeros on [a 1, a 2 ], If not, then 
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:::c >lit * 
there exists t e (a 1 a 2 ) such that y' (t ) = y' '(t ) = 0, This implLei, 

that 

as sinc;e y(t) "t. 0, This ls a contrc1-dic;;tiqn. So, y' (t) has 

at most a finite number of zeros in [a 1, a 2 ]. Let t 1 and t 2 be two 

consecutive zeros of y 1(t) in [a 1, a 2 ]. These are simple zeros of 

y'(t). Otherwise, F[y(t)] < 0 on [a 1, a 2 ] 1 and the proof is complete. 

The results following Theorem 3. 14 helow were obtained by 

Pfeiffer [18]. These results use integrability criterion to guarantee 

the e:dstence of oscilLatory and nonoscillatory solutiqns of equation (2). 

Theorem 3. 14 (Hinton [13] ). If r(t) > 0 on [a,co) and 

r"(t) 

rl+l/n(t) 

for n = 1, 2,,.. is tn L(a, ro) {functions which are Lebesgue 

integrable on (a, co)} , then 

(i) r 1 /n(t) ,- L(a, co) 

(ii) r 1 (t) e L(a, co) and 
r1·+ 1/n(t) 



r II (t) 
.....,....., ........ _ ......... E L(a, CX)), a is any real number 
r4 /3 (t) 

Lemma 3. 15 If r(t) I O, 

such that 1/3 a r (t) > 0 on [a, CX)) and 13 = :I:: t , then 

Proof: Witho\l.t loss of generality, ass\lrne that r(t) > 0 on [a, CX)). 

Then a > 0. First it will be shown that 

lim r , ( t) = 0 ' 
t-oo r(t)4/~ 

r"(t) ( '{t) )' ByTheorem3.14(ii). as 4/3 EL(a,m), ·4n· eL(a,ai), 
r (t) r (t) 

1. r'(t) 
:i,m . 

t-oo r 4 /3 (t) 
exlsts and equals aome constant c, So, 

, r. I (t) . 
hm - - = [ Jz 
t-oo r4/3(t) 

2 
c • 

Suppose that c :f. 0, Then there exists a number t 0 ?::.. a such that 

t >. to implies 

He nee, 

c 2 ( r'(t) ) 2 3 2 2 < . 4/'3' < 2 c 
r (t) 

45 



46 

By Theorem 3. 14 (iii), ( ~~~) )
2 

e L(a, co), This ·implies that 
r (t) 

r 1 / 3 (t) e L (a, co) , This ~s a contradiqtion to part (0 of Theorem 3, 14. 

Therefore, lim · ~/~) · = 0. Hence, there e:x:ists a number a 1 ~ a 
t-co r (t) 

such that for t ~ a 1 

[3( a r'(t)) < ;;..2. rl/3(t), 
a r(t) 

Integrating the c1,bove from a 1 to t gives 

lo ( ar(~) )[3 < a ft 1/3( )d 
g a r(al) 2 r s s , 

al 

Th\ls, 

and 

f t 1/3 
As lim r (s)ds = 00 1 

t-o:::i a 
1 

lim(ar(t). )[3 e:xcp (-a ft :t,1/S(s)ds) = 0 
t-o:::i a r(a 1) 

al 

and the proof is complete. 

Theorem 3. 16 If Q(t) :f. 0 on [a 1 oo) and 

Q"(tL 
Q4 /3 (t) 

P(t) 
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are in L(a, m), then there are three Unearly lndependent s0lutions of 

eq-uatlon (2) such that one solution y 1 (t) is non<!lscillatory on [q., co) 

and the other two solutions y 2 (t) and y 3 (t) ~l,'e oscillatory on 

[a 1 m) 1 

Proof: The hypothesis of corollary 5 of [13] are satil;lfied, So, there 

exist solutions z 1 (t), z 2 (t), z 3 (t) of equation (2) and a number 

t > a 0 .,- such that for t ~ t 0 and k = 1,2,3 

Q - I I 3 ( t) exp 
t 
o113 (s)ds zk(t) - µk (1 + 0(1)) , 

to 

t 
1/3 

zk(t) = µk exp µk r ( s )d s (1 + 0(1)) , 

to 

2 
t 1/3 

z 11 (t) = µk exp µk r · (s)ds (1 + 0(1)), 
k 

to 

(3 1) 

1 + ff i 
2 

1 ~rs i 
µ3 = . 2 . , and 1im ( l + 0 ( 1)) = 1 . 

t-co 

Let y 1(t) = z 1 (t). Since Q{t) > 0 fol," all t e [a,oo), y 1(t) 

does not oscillate, For k = 2, 3 l~t 

(32) 

where 0k(t) and 'Yk(t) are real-valued funGt:i.ons on [a, co), Define 

If 

lim I '¥ 2 ( t) I = Um I '¥ 3 ( t) I ,- m , 
t-co t-+co 

then y 2 (t) and y3 (t) will be osc;illatory. From (31) and (32) for 



k = 2, 3 

lim 
t-+co . ~1/3 .. ( . ft 1/3 . )' 

Q (t) exp µk Q (s)ds 
to 

Henc:e, as / exp (i '±' k(t)) / = l , 

Also, 

lim 
t-+oo 

zk(t){l + O{l)) 
= li.r.n ----~- = 1 ! 

~-a:i zk (t) 

= 1 .. 

lim a r g (. 1 + 0 ( 1 ) ) = 0 1 k = 1, 2, 3 , 
t-co zk 

Thus, 

0 1 k 1 a fixed integer, 

0, k 2 a fl.x;ed integer. 

From Theorem 3. 14 (i), 

Henc:e, it follows from (33) that 

lim / '1' k ( t) / = oo , for k = 2 , 3 . 
t-co 

Therefore, y 1 (t) and y 2 (t) are osc;illatory on [~ 01 co), By 
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(33) 
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comp\lting W(yl'y2,Y3Hto), the solutions Y1(t), Ya(t), Y3(t) may 

be shown to be linearly independent, and the proqf is c:;omplete. 

E~ample 3 1 17 Consider the differential equation 

Now, Q(t) 

and 

y' '' + ( T) sin t y' + t 3 y = 0 , t E ( 1, u,) • 

3 = t > 0 on 

Q"(t) = 
Q4/3 (t) 

3 
-EL(l,oo), 
t$ 

P(t) sin t 
=7EL(l,co), 

Hence, equation (34) has a fundamental set consisting of one 

nonoscillatory and two oscillatory solutions by Theorem :3. 17. 

(34) 

Theorem 3. 18 If P(t) > 0 on [a, ro) and roonotoni~ on [a 1, ix,) for 

P' I (t) Q(t) 
some a 1 ~ a, 312 · and P(t) e L(a, oo), then th.ere is a 

p (t) 
fundamental set for equation (2) <:;onsisttng of one nonos~illatory 

solution and two os~iUatory soh,1ti,ons on [a,~). 

Proof: Similar to the proof of Theorem 3. 16. 

Example 3, 19 Consider the differential equation 

y 1 " + t 3 y 1 - t sinty = 0, t E (l,oo), (3 5) 

Now, 

P(t) = t 3 > 0 , 



and 

P' I (t) 
P(t) 

:::: 
3t 

t9/2 

Bill = P(t) 

= 3 
?/Z e L(l 1 «:Xl), 

t 

sin t 
2 e L(l,co), 

t 

Hence, by Theorem 3, 18, equation (35) has a fundam,ental set con-

sisting of one nonosctllatory solution and two oscillatory solnHons. 
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CHAPTER IV 

THE ADJOINT EQUATION 

The purpose of this chapter ls to investigate the relat\ons, if 

any, with regard to oscillatory behavior of solutions of equation (1) 

given by 

yi 11 + p(t)y111 + q(t)y1 + r(t)y = 0 , 

,•, 
and its formal adjoint ( 1) '' given by 

ylll _ (p(t)y)II f (q(t)y)I _ r(f!)y: Q, 

In partiqular, the relationships between equation ( 1) and its formal 

adjoint (l)':q with respec;t to the properties R, RO, RN, oscillation 

and weak oscillation will be studied, 

The following results were obtained by Ahmad [I]. 

Theorem 4, 0 If equation ( 1) has property R on [a, oo), then its 

formal adjoint ( l / has property R on [b, ro), where b > a. 

Conversely, if equation (I)* has property R on [b, ro), then equation 

( 1) has property R on [c, co), where c > b. 

Proof: As the adjoint of equat~on ( 1 ),:; is equation ( 1), the second part 

of the theorem will follow directly from the first part, Assume 

equation ( 1) has p:coperty R. Then, by the definition of property R, 

(1) has a fundamental set {u 1 (t), u 2 (t), v(t)} suc;h that u 1 (t) and 
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u 2 (t) are oscillatory with W(u 11 u2 )(t) > 0 for all t E [a, co) and v(t) 

is a nonoscillatory solution. Let 

t 
F(t) = exp f p(s )ds 

a 

Then u 1(t) = F(t)W(u 11 v)(t), U2 (t) = F(t)W(u2 ,v)(t) and 

V(t) = F(t) W(u 1, u 2)(t) are solutions of (l)* by Theorem 1. 7. The 

solution U 1 (t) is oscillatory. Otheryvise, there exists t 0 2::., a 13uc:h 

that W(u 1, v)(t) :f. 0 for t ~ t0 . But v(t) is nonoscillatory. This 

impUei;; that (1) is nonoscillatory by Theorem 1. 4 whic:h is a contra~ 

diction, Hence, U 1 (t) is osc;illafory, Similar\y, u2 (t) is osc;illa~ 

tory. As F(t) :f. 0 and W(u 1 (t), u2 (t)) :f. 0, t e [a, l!Xl), V(t) is a 

nonoscillatory solution, Using Wronskian identit:i.es from Pol ya' s 

paper [ 17], 

W(U 1, U2 )(t) :;z W(FW(u 1,vL FW(u2,v))(t) 

2 = F (t) W(W(up v), W(u2 , v))(t) 

2 = F (t) v(t) W(v, u 1, u 2 )(t) • 

Thus, W(U 1, u2 )(t) :f. 0 for all t ~ b as F(t) I- 0, W(v, u 1, u2 )(t) IO 

and v(t) is nonosc;illatory, -~ Therefore, (l)' has property R. 

Theor(;!m 4. 1 If equation ( 1) has property RO on some interval 

* [a., co), then its adjoint ( 1) ha1:1 property RN on some interval 

[b, CO) I b > a , 

Proof: Suppose equation ( l) has property RO. Then, ( l) has linearly 

independent solutions u 1 (t), u 2 (t), v(t) such that v(t) is non~ 

oscillatory, u 1 (t) and u 2 (t) are oscillatory. Furthermore, a 
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solution of (1) is oscillatory if and only if it is a linear qombination of 

Leh U 1 (t), U 2 (t), V(t) be solutions of ( 1 )* as in Theorem 4, 0 • 

Then U 1 (t), u2 (t) are oscillatory whHe V(t), W(U 1, u2 )(t) are 

nonoscillatory. :* Suppose (1) has a nonosc;:illatory soh,ition 

z(t) = c 1v(t) + z 2u 1(t) + c3u2 (t), where Qi+ cf:/- 0: (36) 

Assume c 2 :/- 0, Then W(u 1, z)(t) is oscillatory as in the proof of 

the previous theorem. Also, . 

In Theorem 4. 01 

2 
W(U l' V)(t) = F (t) ul (t) W(ul' v' Uz )(t) ' 

and 

Now, W(U 1,Z)(t) oscillates, but F(t) and W(1.1- 1,v,u2 )(t) are qon~ 

oscillatory. Thus, 

y(t) = c 1u 1(t)+c2u 2 (t)+c 3v(t) 
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is an oscillatory solution of (1). This contradicts the assumption that 

2 2 * ( 1) has property RO I So, c 2 + c 3 = 0. This implle s that (1)' has 

property RN, and the proof ls complete. 

Remark 4. 2 The converse of Theorem 4, 1 doe~ not hold as shown by 

Benharbit [3]. 

Corollary 4, 3 Consider equation (2) where P(t) is differentiable, 

P(t) < 0, P 1(t) - Q(t) ~ 0 and P'(t) - 2Q(t) ~ 0 on [a, cxi). If the 

adjoint of (2) is oscillatory, then equation (2) has property RN on 

[b,oo) where b > a. 

Proof: By Theorem 2. 6, the adjoint of .(2) 1 given by 

y' 11 + P(t) 1y + (P'(t) - Q(t))y. (38) 

has property RO, It follows from Theorem 4, 1 that equaHon (2) has 

property RN on some interval [b, oo). b > a. 

The following hheorem was proven by Gusta.fson [10], 

Theorem 4. 4 Given an integer n > 2, there e:x;ists an nth order 

linear differential equation Ly = 0, suc;h that Ly is nonoscillatory 

on [a, co) whUe its formal adjoint L *y :: 0 is strongly oscillatory on 

Although the above theorem does provide an example where 

~·-eq ua ti on { 1) is nonosc;illatory while ( l) '' is strongly oscillatory, the 

functions p, q, r are not elementary functions 1 This example 

seems artificial and one might wonder i.f a simpler example might 

exist. 
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The following results are due to Dolan [8]. Before considering 

his results some notations must be introdui;;ed. Dolan uses a canonical 

[ ] * form whic;h wa,s introduced by Barrett 6 . Equations (1) an,d (1) 

take the form 

where 

for t > a . 

t 
.f (t) = exp f p(s)ds I 

a 

l ft 
q 1(t) = .f(t) .f(s)r(s)ds, 

a 

(6) 

(6 )* 

(39) 

If y(t) and z(t) are in C (3 )[a, co), then Lagrange s equation 

has the form 

{ y; z}, * = z Ly+ y L z , 

where (40) 
2 k ,~ 

{ y; z} = ~ ( -1) Dk y D2 -k z 
k=O 

and 

,:< 
Doy = y D 0 z = z ' 

Dly = y' * D 1 z = .f z I ' (41) 

,,, 

Dzy = .f(y"+qly) '" D2 z = {.f z I) I + q2 z • 



::.:-: 
For y/t) e Q, zj(t) e Q , i,j = 1, 2, 3 . Let 

Det (D. y.) 
·~ J 

::::-: = Det (D. z.) 
1 J 

:::i: 
Det (D. z.) 

1 J 

l = 0, 1, j = l, 2 

i=0,1 1 j=l,2 

j=l,2,3. 
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(42) 

(43) 

(44) 

(45) 

* Itfollowsfromequation(l)and {l), (44), (45), and Theorem 

Y• E Q, Z. E Q>:c'· i = 1,2,3 
1 1 

Furthermore, M(y 1, Yz, y3 )(t) :f. O 

{M 1 (z 1,z2 ,z3 )(t) :f. 0} ifandonlyif {y~,y2 ,y3} ({z 1,z2 ,z3}) isc:1-

fundamental set for equation (I) {(l)*}, 

From (40), (42), (43) 1 {44) and {45), i,t follows that 

(46) 

The following lemma was stated by Dolan [8], However, the 

proof as given by Dolan is inl!;orreqt. The author offors the following 

proof. 

Lemma 4, 5 If y(t) e Q * { z (t) e Q } , then there exist solutions 

* z/t) e Q {y1(t) e Q}, i = 1, 2 such that 



Proof: Let y(t) e S3. lf y(t) = 0 on [a, co) 1 let z 1 (t) - 0 and 

z 2 (t) be any solutiqn of ( 1 )*. 

Suppose y(t) '1:. 0 on [a, co). Let y 1 (t) and y 2 (t) e S3 suc:h 

that W ( y, y I' y 2 )(a) = 1 . Let 

g(t) = exp (-lt p(s)ds) = 1 

Then 

-·~ are solutions of ( 1 )" by Theorem 1, 17, 

Let 
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£ (t) (4 7) 

Then £ (t) W(z 1, z 2 ) is a soluHon of ( 1) by Theorem 1, 17 . From 

Theorem 1, 18 

£(t)W(z 1,z2 )(t) = £(t)W(gW(y 1,y), gW(y2 ,y))(t) 

2 = £(t)g (t)W(W(y 1,y), W(y2,y))(t) 

= g(t)y(t)W(y,y 1,y2 ) 

= y(t) . 

But, and the proof is complete. 

Lemma 4.6 If yi(t) e S3 ,:zl(t) e s:i*) i. = 1,2, then Y1(t) and Yz(t) 

are linearly dependent if and only if m{y 1, y2 ) ( t) = 0 
,:.: 

(m (z 1, z 2 )(t) ::: 0) on [a, m), 
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Proof: If yi(t) e Q i = 1,2, y 1(t) and y 2 (t) a.re linearly dependent, 

then as W(yl' Yz)(t) = O on [a, a:,) it follows that 

Now, suppose that m(y 1, y2 ) = 0 on [a, a:,). Let 

y(t) e 2- [y 1(t),y2 (t)] ([y 1(t),y2 (t)] the subspace spanned by y 1(t) 

and y 2 ( t)) . Then fr om ( 4 0) , as m ( y 2 1 y 3 )( t) = 0 , 

J.(t)W(y,y 1,y2 )(t) = M(y,y 1,y2 )(t) 

= {y; m(yz, Y;3)} 

= 0, 

But, J.(t) # O on [a, m). Hence, W(y, yl' y2 )(t) = 0 on [a, co) whieh 

implies that y(t), y 1 (t), y2 (t) are linearly dependent, However, 

ye Q - [y 1 (t), Yz(t)] thus y 1 (t) and y2 (t) are linec1,rly dependent, 

and the proof is complete. 

In equation (l) make the 1;1ubstitutlon y = pu, whe:re y(t) and 

p(t) are in ~. Then u(t) satiE?fies the differential equation 

where 

2. 
:;:: p g 

1 
Rz(P) = p' 

Q(p) = °i: [DzP t q2p] • 
p 

and i(t), q 2 (t) are given by (39). 

S - * * k h b". - * imilarly, ~f z and p e Q , ma e t e su stituhon z = p v 

in equation (l)*. Then v(t) satisfies the differential equation 

(4 7) 

(48) 



where 

* * 1 
Rl (p ) = *' p 

* ::::c *2 
Rz (p ) = .R. p 

* * 1 [ .. * ,~ *J 
Q ( P ) = --Y Dz P + 1 q 1 P ' ,~ 

p 

and 1 (t) 1 q 1 (t) are as in (39), 

If p(t) E £l 

then 

and H is the soluti,oJ:11 spac:;ie of eq1,'.!,a..tlon (47), 
p 

£! = [p]H . 
p 

>I~ 
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( 51) 

Furthermore, if p(t} is nonosc;illabory arid z e S3 1 then it follows 

from (40} and (41) th.;1.t z satisf:i.e s the rwns:i.ngular linear sec;ond 

order di.fferenticl.l equation 

(R2 (p)y' )' + Q(p)y = ~ I (52) 

on any interval where p(t) does not have a zero. 

* Definition 4, 7 If Yo(t) e S3 {zo(t) S3 } , let 

:::~ * (1) S3 = {z(~) e £l : {y;z} - O} 
Yo 

(ii) £l ={y(t)eQ:{y0 ;z} :::O} 
zo 

Lemma.. 4. 8 If y(t) {z(t)} is a nontrivial soluHon of equation (1) 

,,, 

for some y(t) E S3 { z(t) E ~(} , 



Proof: Suppose * z 0 (t) e Dy, It follows from Defl~H·ion 4. 7 that 

By Lemma 4. 5 , there ext st sol'1;i.tic;,ns y 1 (t) and 

v2 (t) in rl such that 

Henc;;e, 

on [a,oo). However, 

{y;m(YpYz)}(t) = M(y,yl'y4)(t) 

- 1 (t) W(y, yl' y 2 )(t) , 

This implies that W(y, y 1, Yz)(t) = O on [a, o;i), Therefq;re, y(t), 

y 1 (t), and y 2 (t) cl.re linciarly dependent. So, there exist constants 

c , c 1 , and c2 sq.ch tha~ 

and 2 2 2 
c + c I + <:iz > 0 i 
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As y(t) is c1. nontrivial solution, eitp.er c 1 or c 2 is nonzero, 

Then 

Thus, 

y 1 (t) 
l 

= ~ e (c y(t) + <;;zYz. (~)) • 
l 

I = m(yl' YzHt) = m(.., ~ (c y + C:z y)' YzHt) 

= ~ S... m(y, y 2 )(t) 
Cz 

= m(y, y)(t) , 

c = m(y, .. - y?)(t) 
Cz "" 



where y (t) = .. ..£.. Yz (t) , Cz 
Suppose that z 0(t) :::: m(y, y)(fl. Then 

{z0 ;y}(t);:: {m(y,y)iY};:: M(y,y, y)(t) 

= 1 (t) W(y, y, y)(t) 

= 0. 

Therefore, z 0 (t) e DY, and the proof is qomplete, 

Lemma 4, 9 If y(t) { z(t)} is a nontrivlal solutiop. of ( 1) {( 1) *} , 

then S3;{ D 2) ha1;1 dimension. 2, 
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P:r;-oof: Let Y1(t) and Yz(t) e ij 1;,e suqh that {y(t), Y1(t), Yz(t)} h 

a fundamental set for D . By Theorem 1, 7, 

* * form fl.· fundamental set fo;r D , lf z0 (t) ~ 1\, then, by L~mm.c;1. 4, 8, 

zo(t) ;:: m(y; y)(t)' where y (t) E S3. Let 

Then 

* Hence, DY has dimension 2 and the proqf ie complete. 

Lemma 4, 10 If y 0(t) {z0(t)} is a nontrivial solution of (1) {(l)*} 

- * * {~ and i (t) e S3 .,. D y (t) e D ,. 0 } , then 
Yo zo 
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* * Proof: Let z(t) S3 · - S3 . This implies that {y0 : z}(t) "ti O. Henci:e, 
Yo 

y 0(t), S3..,.. and [y0 ] n S3_ = [o]. r! ha~ dimen1:1ion ~ by Lemma 
z z z 

4. 9. Hence S3 = [y0] .@ S3_. 
z 

Lemma 4. 11 * * If S3 1 { S3 1 } is a two d:l.men~ional suospa<;e of S3 { S3 } , 

then there exists a nontrivial solution * z 0 of (1) { y O of ( 1)} 1;1ueh 

that 

P:roof: Let S3 1 be a subspac;~ of S3 of dimep.sion 2 with b~jiS 

* {yl (t), Yz(t)}' If zo(t) = m(yl' YzHt)' t:h~n zo(t) E S3 by Theorem 

1. 17, Also, 

has dimension 2 • 

It follows thai ~\ = S3 as 
izio gz 

0 

Lemma 4, 12 If v/t) e S3 { z 1 (t) e D*} i = 1, 2 are lip.early indepl:ln

dent, then 

* * Proof: If zo(t) e S3Y1 (') S3Y2, then {yi; zo} :;: 0, i = 1, 2 by 

Defin\tlon 4. 7, There exists y(t) e S3 such thc;i~ z 0(t) = m(y 1, y)(t) 

by Lemma 4, 8. So, 

M(yz,Yi,Y)(t) = {y2 ;m(yl'y)}(t) 

= {yz;zo}(t) = 0. 
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Hence, there exist constants c, c;: 11 c 2 not a.11 ~~ro such that 

Now, c; :/- 0 as Yi (t) ancl y2 (t) are linec;i.rly independent. So, 

y(t) 

Therefore, 

Conversely, by (46), 

It follows that 

Lemma 4. 13 If p0 (t) {p~~} 

* (1) {(l) } , then the sub$pace 

is a nonosciUatory li!Oh,1tion of ~quati,on 
~:<i 

~ . { Q *} is either nonoscillatory or 
Po Po 

strongly osGiHatory. Moreover, Q,:~ fa *} is strongly osciliatory if 

Po Po . * . * 
c;1.nd only if for ea.c;h nonosc;Ulatory soluHon p(t) E Q { p (t) e Q } , 

* Q { Q ,,, } is strongly osc;illatory. Furthermore, the zeros of 
p p''' 

oscillatory soluHons of ( 1) separate eac;h other and eventually become 

simple. 

Proof: Let p0 (t) be a nonoscillatory solution of ( 1), Then by (52) 1 

the subspace 
>:~ 

of Q is the 1;1olution spac!:l of t}i.e linear second 
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order differential equation 

(53) 

on [bt co) if p0 (t) :f. 0 on [b 1 0:1), b :::._ a. 

So, equation (53) i$ either strongly oi;;,;;ilLatory or nonoscillatory 

by the Sturm comparison theorem [22, p. 5] c1,nd the zeros of linearly 

independent solut~ons separate 1 Ahio, nontrivial solutioqs of (5l) e;:an 

have at most simple zeros. 

If p 1 (t) and Pz (t) are nonosGillatory soh:i.tiop.s of ( l) 1 then the 

above shows that 
* :i:oe 

Q and S3 are eHher strongly os~:i.lla~ory or 
P1 Pz 

nonosclllatory. However, by Lemma 4. 12, m(pl' p~) 

Therefore 1 

osciUatory1 

Lemma 4, 14 

>!;; 

Q p 
1 

:i.s strongly osGlllatory if and only if 

and the proof ls <:omplete. 

{ ~~} 
If every two dimensional subspaqe of Q Q 

oi,cillatory, then Q *{ n} is strongly osGillatory, 

is weakLy 

Proof: From Definition 4. 7, if y(t) e Q , th!:)n y(t) e Q V and only 
z 

,:c 
if z(t) e QY. Let y 1 (t) and y 2 (t) be llnearly independent solutions 

of ( 1) which are in S3 • z From Lemma 4. l2 

If y 1 (t) and y 2 (t) are linearly dependent, then m(y 11 Yz) :;:: 0 by 

Lemma 4, 6. Hen~e, 

m: Q X Q --+ [z] , z z 

As every two dimensional subspa<:;e of g is weakly oscillatory, 

it follows from Lemma 4. 9 that Q is weakly osc;lUatory, z 



there exi:;;t solutions of (1) 1 y 1 (t) and y2 {t) in g whic;h are z 
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oscillatory and nonostillatory respe~tively. Now, z(t) = G m(y 1, YzHt), 

If z(t) isnonosdllatory,then m(y 1,y2)(t)#O on [b,co), l:>2:_a. 

But this implies that W(y 1, y 2 )(t) I O I whlqh says that g is non

oscillatory as y 2(t) is nonosi;Ulatory, (This follows from Theorem 

1. 4.) This is a Gontradic;tion, Henc::;e, z(t) is oscillc1,tory1 As z(t) 

was arbitrary, g is st:rongly oscillatory and the proof is c;omplete, 

,·~ 
Theo :rem 4. 15 l£ equc1,tion (I) { (I)'} is wec1-kly oscillato:171 then 

,:~ 
equation (1) {(l)} is oscillatory. 

Proof: As equc1,ti,on (1) ifl weakly osc;:iHatory by hypothe1;1is 1 the:1,"e 

exists a nonosclllatory solution p{t) of ( 1), By (51), 2 z: [p]H. . p 

Henc:;e, H must be oscillatory. Let u(t) be an 01;1t;;illatQry solution 
p 

in H , then u'(t) i$ aho osQillatory. Now, u(t) satisfies 
p 

2 
R l ( p) = p , thus 

[R2 (p2(t)u 1(t)) 1 ] 1 + Q(p)(p2(t)u'(t)) = O, 

2 So, p (t)u'(t) 
2 >:C 

satisfies (53) and oonsequently p (t) u'(~) E g . Now, 
p * >:( >:<: 

Q C Q , and u'(t) is osdllatory. Henc;;e, g is os:;c;Hlato:ry and the 
p 

p:i;-oof is complete. 

CoroHary 4. 16 I£ equation ( 1) 
>I<i 

{ (1) } la weakly 01;1cillatory1 then 

* equation (I) { (1)} has a strongly oscillatory two dimensional sub-

space, 
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Proof; Let p(t) be a nonoscillatory solution of (1), Then, as in the 

* proof of Theorem 4. 15, g is oscillatory. 
p 

* Henc:e, Q P is strongly 

oscillatory by Lemma 4. 13 . 

Corollary 4. 17 If equation ( 1) * {(l)} la n(;:>noscillatory, then 

* equation (1) { (l)} is nonoscillatory or $trongly oscillatory. 

Proof: Contrapositive of The0rem 4. 15, 

Theorem 4, 18 * If Q { Q } contains a nonosciUlatory two dimensional 

subspace, then °L!:? either nonosc::Ulatory or strongly oscillatory. 

And if zi (t) { yi (t)} i = 1, 2 are linearly independent solutions of 

* g (g), then there iFl a number t0 ~ a FlW~h that H z; 1(t){y 1(t)} has 

at least three zeros on some interval I ( [t01 ro), then z 2 (b) {y2 (t)} 

has at least one zero on I. 

Proof: Let Q1 be a nonoscillatory subspa<;e of Q, By Lemma 4. 11 1 

there exists a solution z 0 (t) e g':c 

y 1 (t) and y 2 (t) are a basis for 

suqh that g1 = g z . Suppose 

* 0 
gl. z(t) E g • Now, ~!Zn gl # [o] 

by Lemma 4. 12. So, there exist coni,i'tants c; 1 and c 2 such that 

Therefore, 

* Z ( t) E Q 

y 

2 2 
c 1 + c2 > 0 . 

where y(t) = c 1y 1 (t) + c 2 y2 (t). But z(t) was arbit:rary. Hence, 
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* From Lemma 4. 13, O is nonoscillatory or strongly os!;Zillatory 

depending on whether :z; 0 (t) is nonos~illatory or oscill;a.tory as 

* e g for all y (t) e o1 , 

y * Suppose that g is strongly oscillatory. Then z 1 (t) and z 2 (t) 

* are linearly independent solutions of ( l) , and 

Z.(t) E i3 
1 

By Lemma 4. 12, 

,:e 

From Lemma 4, 3, the zeros of m(y11 y4 )(t) eventually sepa:rate the 

zeros of z 1(t) and z2(t) and conversely. Sa, if z 1(t) hc:\s three 

zeros on I, m(y 1, y2 )(t) has two zeros on I, Th~refore, z 2 (t) has 

at least one zero on J, and the proof ls c:;omplete. 

Lemma 4, 19 ~f g { o*} c;:ontalns a nonoscUlatory solution p(t) { p>\t)} 

that has no zeros on [b, (X,'l) for :;,ome nq.mber 

y(t) e g ~ [p] {z(t) e g>~ ~ [p*]}, then eHher 

b > a and - ' 

(i) There exist a solutions 

such that 

{Yo; z} 
:i:~ 

{yo; P } 

is oscillatory, or 

(ii) exists, and i1;, either 

nonoscillatory or strongly oscillatory. 
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Proof: If y(t) e S3 - [pL then y(t) and p(t) are linearly independent. 

Let A. be a real number. Then, by Lemma 4 1 12 ~ 

* as y(t) .. >-..p(t), p(t) are linearly independent. Now, S.'ly->-..p is of 

- * * * dimension 2, Hence, there exists z (t) e S.'ly..,>-..p (') (! - S3 P, So, 

Hence, 

Let u(t) 

{ y - "-P ; z} = 0, but { p ; z} f O • 

= .r..ltl. on 
p (t) 

"- = 

[b 1 co) and 

{y:zl 
{ P; z} 

a = lim inf u(t) , 

....,. 
a = lim sup u(t) 

Now, u(t) is a soluf:ion of equa~:i.an (47) &s Q :; [p] H , Also, 
' p 

v(t) = 1 is a solution of (47). Henqe, if A e {~, cii), then u(t) - A 

is in H , Now, u(t) - A is oscillatory as there exist sequences 
p 

{ti} 

and 

and Ct.} 
J 

of numbers in [a, oo) su~h that 

lim t . "' lim t = co I 
i-+CX) ! j 

lim u( t . ) - ~ , 
i-co i 

lim u( t.) = a . 
j'-!!P J 

ii!( * 
It was proven above that there exists z 0 (t) e S3 ~ S3 p such that 

(54) 

(5 5) 



So, 

is oscillatory. Thus, if 

X. then ~ = a, that is, 

y(t) - X. p(t) is nonosci,llq.tory for eat;:h real 

lim _yfil exist. 
t-co p(t) 

Suppose that y(t) - X. p(t) 11::1 nonoi;;c:lllatory for each real X. , 

Then [y(t), p(t)] is nonosc;illatory as p(t) is nonosc;iUlatory and 

w(t) = G l y(t) t Oz p(t) 

is nonoscUlatory, Therefqre 1 by Theorem 4. 18, * g is elth~H non,. 

oscillatory or strongly oscU\atory, and the proof is complete. 

Remark 4, 20 Assume the hypo~hei,ls of Lemm.a, 4, 19, Let 
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y E g - [p] {z E g~~ - [p *]}, It follows, a~ in the proof of Lemma 4 1 19, 

that if there exists a unl,que number x.{x.*} su~h that 

* ~!? y(t) ~ X. p(t) {z(t) - X. p (t)} 

is oscillatory, then 

lim ..till {um z(t) } 
t-co p(t) t-c:o p,\t) 

exists. Conversely, if 

.J1U__ {i·. z(t) } (t) 1m ,~ 
P t-eo P ' ( t) 



* exists, then there is at most one number x. 0 (X.Q) sueh that 

is oscillatory. 

* * y(t) - x. 0 p(t) {z(t) .. x.0 p (t)} 

,:~ 
Definition4.21 If y1(t)eS3{z1(t)eS3} L=l,2 1 then 

nonoscillatory and 

.. y 1(t) { z 1(t) } 
hm .. (t) = 0 llm · (t.) = 0 ; 
t-+co Y 2 t-co Zz 

(ii) Y1"' Yz {zl"' Zz} means that Yz(t){zz(t)} is non ... 

osciUato:ry and 

z l (t) } 
z2 (t) 

exists and is a ftntte number. fo thJ.s ~ase, y 1 (t) { z l (t)} 

is said to be asymptoti<;: to Yz(t) {z2 (t)} , 

Remark 4. 22 Fvom DeHnition 4, 21 it f91lows direc::tly that 

Y1 = O(yz) {zl = O(zz)} if and only if (yl - X.y2)"' Yz I X. f: O, 

'~ * {(z 1 - X. z 2 ) ""Zz, X. # 0}, Alf;;o, yl ,..._, Yz {z 1 ,..., z 2} if and only if 

* (y 1 -X.y2 ) = O(y 1){(z 1 ->-. z 2 ) = O(z 2 )}, where 

>-. = llm 
t-+c:o 

{ 
>:c _ • z 1(t)} 

>-. - hm (t) . 
t~co z2 

Theorem 4, 23 * If Q { £! } contcl,ins a nonosc;illatory solution, then 

there e)(:ists a nonos<:;i.llatory solution p0 (t) { p * (t)} 
>'J 

of (I) { ( 1) } 
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such that for each solution 

[ ] * [ *1 y(t) E 2 - Po { z E 2 .. Po } 

at least one of the following holds; 

(i) There are distinc;t numbers >-.. 1 and >-.. 2 

such that the soluHoqs y(t) - >-..1 p0 (t) { z (t) 

i = 1, 2 are oscillatory; 

* (ii) y = O(p 0 ) {z = O(p 0 )} ; or 

>'( 

(iii) y""' Po {z ""'p~}. 

* * (>-.. 1 and >-..2 ) 

* )~ 
- \ Po (t)} 

Proof: Let p 1 (t) be a nonosqillatory solution in Q. Then, by 

Lemma 4. 19 and Remark 4. 20. ei~h~:ir there a,.re q,istinct numbers 

>-.. 1 and >-.. 2 such that the eioluUons 

y(t) - \pl (t) • t = 1, 2 

a,.re oscillatory, or 

y(t) 
p 1 (£)' 

exists. 
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(56) 

Suppose for eac;h y e Q - [p 1] , the lim'it in (56) is Hnite, Then 

let p0 (t) = p 1 (t) and thf;l theorem is proven, Suppoije the;re exists a 

solution y 1 (t) e Q ~ [p 1] suc;h tha~ 

limlyl(t)l=co. (57) 
t-co P 1 (t) 

This implies that y 1 (t) is nonoscillatory. 
. p 1 (t) 

~o Hm exists and 
' t-co Y1(t) 

the conclusion of the theorem holds for all y ( t) E [ y l ( t ) , p l ( t ) ] with 



p0 (t) = y 1(t). As p0 (t) and p 1(t) are in om(p0, pl) 

Om(po, pl) has dimension 2, (p 0, p1] = {!rn(pO, pl), 

and 

If the conclusions of the theorem are not satisfied for all 

y(t) e Q, let p0 (t) = p2 (t), Then there exi~ts a solution 

such that 

Set p0 (t)=y2 (t), Then 

lim 
t-+co 

Yz (t) 

Pz (t) 

pi (t) 
lim -- = lim 
tr+co P 0( t) t-+c:o 

is finite for i = 1, 2 . 

= 00, 

As p 1 (t), Pz (t) are linearly in~ependent and 

Po(t) e Q - [pl(t), Pz(t)L {po(t), P1(t), Pz(t)} fovmi;, a fuvidamentclrl 

set for ( 1). Thus, if y(t) e Q, then 

Then by (54) and (55) 

11.'m y(t) = c 
t-+co P0 (t) o · 

Therefore, y = O(p 0 ) or y,..., Po, and the proof is complete, 

The following examples [8] make use of the above theory . 

.Ex:ample 4. 24 Consider the nonsingular second-order differential 

equaUon 

(58) 



where 

r 1 (t) 
l 1 t = 1 + (e + 2 ) 1;1in t + t ( t t ~01;1 t) > 0 

t 

and 

= 't (1 + ~) sin t + ( ~ ~ qo1:1 t)e: 
t t 

= l + -t 13in t ~ 1 ~OS t I O < e < 1 I t > a = ~ ' 
t t l .,. ii; 

Equation (58) hc;ts a fundamental set consisting of 

and 

Let 

y 1 (t) = sin t t e ~ 

r(t) - 0 , 

1 
G<;:>S t + T • 

p 1 (t) 
p(t) = 

l'l(t) I 

q l (t) 
q(t) = (), on [a,AJ). r 1 t 

Then,the solutions of (1) have the form 

Now u 1(t) = -cost -t,et ls nonoscillatory and W(u 1, (t),u2 (t)) > 0 

where u 2 (t) = sin t + ln t. Hence, ( l) ls nonosc:lllatory by Theorem 

1. 4. 
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>!f 
Using Theovem 1. 17, the soluttcm$ of (1) can be expressecJ as 

where w(t) = (-Gost + et)(cost - t) ~ (sint + lnt)(sint + e), t > a . ..,.. 

* Now, ~ is oscillatory as sin t + e i11 oscillatory, * So, ~ is 

strongly oscillatory by Corollary 4. 17. 

The following is an example of equaUon ( 1) whic;:h is weakly 
):( 

oscillatory while equation (1) ls strongly oscillatory, 

Example 4, 25 Consic;ler the nonsingular Une~r secon,d ... o;rder equation 

2 
(r(t)y')' + r (t)y = O I 

where r::;- 1TJ-l 1 r(t) = [l + v 2 e sin (t + 4 > 0 1 0 < ~ <: J2. 1 t ~ 0, whie:h 

has as a fundamental set consisting of 

anq. 

Let 

and 

p{t) :;; 

q(t) = 

r I (t) 
r (t) 

r (t) 1 

r(t) = 0 on [0,a:>), 

Then equation ( 1) has c;l.S a fundamental set consisting of 
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p(t) ;::: l , 

y l (ti) :::,: COl;l t "' ~ t , 

y2 (t) :::: sint,,. et. 

Thus, Q is weakly osclllato:ry as p(t) is n,onosGillatory, while 

y 1 (t) + y2 (t) il3 an osc;illatory soluticm, For ea,ch real number \, 

Yi (t) -1-r \ p(t) 

* i13 a nonoscillatory solution of ( l) . Henc;e, ~ ls strongly os<;?lllatory 

or nonoscillatory by Theorem 4. 18. However, 

* is an oscillatory soluhion by Theorem 1, 4 1 Henc;;e, {l is stl'ongly 

osc:;illatqry. 

Dolan [8] asks\£ there e~ist e~ampleij of equation (1) liHl.Ch that 
, .. 

(0 ~ and ~ '' are both strongly os<dllato;ry, 

(ii) Every two dimensional su!:>spaee of ~ is weakly 

oscillatory, 

Gustafson [ 11] provides examples of both (0 and (H), To do this, he 

proves the foUowing. 

Theorem 4, 46 Let u(t) be a non~riv~al EiOlut;l.on of 

t E [a, b] (59) 

with u(n-l\a)u(n-l)(b)<O, andazerooforder n~l ateachof a 

and b. If v(t) is a solution of th~ a,djol.nt equation of (59) 1 then v(t) 

has at least one zero in [a, b], 



Proof: Let { u 1 (t), .. ~ , un (t)} be a ba~~s fo1; the solution spc\,c;e of 

equation (59) with u = u. D~fine 
n 

W(t) = W[u 1 (t), •. ,, un(t)] , 

v. (t) = W[u 1 (t),, . , , 0:. {t), •.• , u (t)] , 
J J n 

where 11 /\" i~ used to indicate that ~he jth coh1mn is deleted, Then 

v. (t) 
wj (t) = ~ , j ::: l, ~,. , . 1 n 

for:r;n a basis for the adjoint of equation (59) by Birkoff [6], If z(t) 

is a solution of the adjoing of equatJon (59), then 
I 

As u (b) has a zero of ord,er n ~ 1 fl,t a i;tnd, b, 
n 

z(a) = c;; w (a) and z(b) = c;; w (b), But n n n n 

W(a) 

and 

W(b) = w (b) u(n .. l)(b) 
n 

as u(t) has a zero of order n - I at a and b. So 

2 
z(a) z(b) = q w (a) w (b) 

n n n 

:: 

v (a) 
n 

u(n - l}(a) v (a) 
n 

2 1 

v (b) 
n 

1.l(n .. l)(b)v (b) 
n 

= c;n \l(n~l)(a) u(n~l)(b) 

2 c n 
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If en= 0, then either z(a) or z(b) is zero. If not, theq. 

z(a) z(b) < 0 as u(n-l)(a) u(n-l\b) < 0, Henee, there e:x:ist c; E (a, b) 

such that z(c;) = 0 and the proof i1:1 complete. 

Definition 4, 2 7 

foreach [tz,a:i) 

two points a, b e 

j = 1,2 1 •• ,,n ... 2 

Equation (59) is said to be a sepcfl,rat0r on [t 1, 1Xl) if 

~ [t 1, oo) there e:xist a solution u(t) = u(t, t2 ) and 

[t2 ,a:i) with u(j)(a) = u(j)(b) = 0 for 

(n -1) (n -1) and u · (a) u (b) < 0 , 

Corollary 4. 28 (to Theorem 4, 26). The adj olnt of a sepa11ato:r is 

strongly oscillatory, 

Example 4. 29 As, 

W[l, sin 2t cost, sin 2t sin t] = 8 - 3 sin 4t sin t > 0 for all t I 

{ l, sin 2t COfil t, sin 2t sin t} are a baE!ls for the solu.Hon spac;e of 

~~ 
Ey = W[y, 1, sin 2t cost, sin 2t $ln t] = 0. Let y(~) = sin 2t sin t, then 

Hence, * E y = O is a spearator, It follows from Corollary 4. 28 that 

Ey is strongly oscUlatory, 

Example .4. 30 The following ls an example of equation ( 1) su~h that 

* both Q 1 Q are strongly osc:;illatory, To construct (1), iet L = E 
J, 

on the intervals [4nrr, (4n+l)rr]. L = E"' on the ir;i.tervals 

[(4 n+2 )rr, (4 n+3 )rr] n = 0, 1, 2, 3, .. , , Define p{t), q(t) and r(t) on 
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the complements of the above intervals such that p, q, and r have 

continuous third order derivatives, So, * both L anq. L are 

separators as in Example 4. 29, * Henee, both O and O al'e strongly 

osGillstory by Corollary 4, 28, 

The example of equation ( 1) satisfying c;;ondit,on (ii) above does 

not involve elementary func~ions. The construc;tj.on make13 u13e of 

Theorem 2, 7 . 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

The purpose of this the sis is to collect a,nd pre sent the current 

researeh in oscUlation theory of the U~ird order lin~ar differential 

equation in a readable anc;i compact fol;'m, Proofs a:re included not 

only for completeness, but to display the tec;:hniques whtoh wer~ useq. 

to obtain these results, 

Chapter I gives a brief history of the development of osc;lllation 

theory of the third order equation. Also included in Chapter I are 

definitions and some well~known preliminary :resuHs whic;h are 

necessary to read this thesis. 

In Chapter II, the o sc::iU;:1.l!ory nature of fundamental sets is 

studied. In this chapter, c;ha,racterizalrlons of pl,'operties RO ii,nd RN 

are given, 

Chapter III is devoted to the study of asymptotic and os<;;Ulatory 

behavior of solutions, Conditions whioh guarantee tb,e existence of 

oscillatory and n,onoscillatory solution$ are given. The question of 

when a Hnear combination of osc:illa,tory solutions oscillates is also 

consiclered, Integrability of coefficient functions ii;; used tq show that 

oscillatory and nonoscUla,tory solutions exist1 

The relationships between the third order linea11 differential 

equation and its adjoint are studied in Chapter IV, It is shown that if 

equation (1) has property RO then its adjoiqt has property RN, 
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However, the <;:onverse does not hold in genera.L Also, if eqqation (1) 

Ls weakly os~illatory, it is shown that its adjoint is oscPlatory, ln 

addHion, if equation (1) is non,os<:;illatory it ia shewn that its adjoint is 

strongly oscillatory or nonoscillatory, 

Several questions are suggested by this thesis. Is it possible to 

determine the dimension of the strongly oscillatory subspace of a given 

differential equation? This appears to be a difflc1,1lt problem in general, 

Are there reasonable c;;onditlons which may be plaqed on equaHon ( 1) 

such that if equation ( l) has property RN, then its adjo'int has 

property · RO . 
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