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LOWER RADICAL AND RELATED CLASSES FOR NOT

NECESSARILY ASSOCIATIVE RINGS

CHAPTER I

INTRODUCTION AND PREREQUISITES

1.1. Introduction. We are concerned with continuing the investigations 

of general radical theory initiated by A. G. Kurosh [18] and S. A. Amitsur 

[1, 2, 3]. More recent contributions have been made by V. A. Andruna- 

kievic [7, 8], T. Anderson, N. Divinsky, A. Sulinski [5, 6], E. P. Armen- 

dariz [9] and A. E. Hoffman [13]. Kurosh introduced the concept of the 

lower radical class LM determined by a class M of rings and gave a con­

struction for it which has been modified by Anderson, Divinsky, and Sul­

inski [6]; their construction is 'isually referred to as the A. D. S. 

construction. Other constructions of LM have been given by W. G. Leavitt, 

Y. L. Lee [20], R. Tangeman and D. Kreiling [17]. The lower radical LM 

is the minimal radical class containing M; much of our work centers 

around the construction of LM given by Tangeman and Kreiling, which we 

call the extension-union construction. The definitions and previous 

results which are used throughout are presented in Section 1.2.

It is natural to ask how placing various conditions on a class may 

affect its lower radical. One property that occurs frequently in radical 

theory is the hereditary property; a class of rings has this property 

provided every ideal of a ring in the class is also in the class. Hoff­

man and Leavitt [14], using the A. D. S. construction, showed that if M 

is hereditary, then LM is also hereditary. We begin Chapter II by prov­

ing several generalizations of this result by considering the analogous
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hereditary properties for one-sided ideals and subrings; these results 

will prove useful in Chapters III and IV. Our proofs employ the extension- 

union construction. We generalize the result of Hoffman and Leavitt more 

directly by showing that if every ideal of each ring of M  is in LM, then 

LM is hereditary. Hoffman and Leavitt also considered hereditary classes 

of hereditarily idempotent rings, that is, rings in which every ideal is 

idempotent; we give a new proof of their result using the extension-union 

construction. We also consider heredity to large ideals and show that 

this implies ordinary heredity.

The remainder of Chapter II is concerned with applying the extension- 

union construction to classes M which satisfy a variety of properties.

We consider briefly classes of rings which fail to satisfy the ascending 

or descending chain conditions. Our result for the ascending chain condi­

tion is quite general, but we require more restrictive conditions in the 

corresponding theorem concerning the descending chain condition; in par­

ticular, we require associativity in the latter. Next we turn to the 

examination of a property introduced for the study of strong heredity by 

W. G. Leavitt [19]; analogous properties will be studied at length in 

Chapters III and IV. We place rather strong conditions on the centers 

of rings in M and show that these, too, are preserved by passage to the 

lower radical. We give a new proof of a result of Hoffman [13] on the 

lower radical construction in the presence of two universal classes and 

conclude Chapter II by touching on upper radical classes.

Chapter III is devoted to the study of strongly subring hereditary 

radical classes, that is, radical classes P for which P(I) = I D P(R) for 

each subring I of every ring R in a suitable type of universal class. We 

begin by adopting a setting sufficiently large for our investigations.
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one in which every subring of the rings under consideration will be avail­

able. We introduce a property, property (b), which is equivalent to

strong heredity for radical classes in the presence of subring heredity.

We construct for each class M a minimal radical class containing M which 

satisfies property (b) as well as a minimal strongly subring hereditary 

radical class containing M. A characterization of the semisimple classes 

whose radical classes satisfy property (b) generalizes a result of Armen- 

dariz [9]. We conclude by addressing, briefly, the classical situation 

of hypernilpotent radicals in the class of associative rings and show 

that a strongly subring hereditary radical class of this type contains 

all fields.

Chapter IV begins with the study of strong right heredity, the ana­

logue for right ideals of strong subring heredity and strong heredity.

As in Chapter III, we first insure that we are provided with a type of 

universal class large enough to encompass our activities. The property, 

called property (p), which we introduce is equivalent to strong right 

heredity in the presence of right heredity. We obtain equivalent formu­

lations of this property and of strong right heredity and show that none 

of the radical classes encountered in the classical situation can have

property (p). At this point we seem to be close to an unanswered question

of Koethe [16]; it is unknown whether a nil right ideal of a ring gener­

ates a nil two-sided ideal. We construct for each class M a minimal radi­

cal class containing M which satisfies property (p) as well as a minimal 

strongly right hereditary radical class containing M. We characterize 

the semisimple classes whose radical classes satisfy property (p) and 

those whose radical classes are strongly right hereditary, again general­

izing results of Armendariz. Similar strong radical properties have been
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studied recently by N. Divinsky, J. Krempa and A. Sulinski [12].

The rest of Chapter IV is devoted to the study of a new radical 

class R^(M) obtained from a simple modification of the extension-union 

construction. For each limit ordinal 6, in the construction of LM, we

admit a ring R if R is the union of a chain of its ideals contained in

the previously obtained classes. At the corresponding point in the con­

struction of R^(M), we admit a ring R if it is the union of a chain of

its right ideals contained in the previously obtained classes. The radi­

cal class R^(M) seems worthy of our attention for two reasons. First,

LM and R^(M) are identical if M has property (p) and is homomorphically 

closed. Second, R^(M) is contained in every radical class P containing 

M such that, for each R in the universal class under consideration, every 

ideal I of R which is a sum of P-right ideals of R is contained in P(R). 

We remark that various properties which may be possessed by a class M are 

preserved by passage to R^(M). Finally we note that a similar class may 

be defined using left ideals in place of right ideals and note that even 

in the associative case these two classes need not be identical.

1.2. General Radical Theory. In this section we present the basic defi­

nitions and results of general radical theory for not necessarily asso­

ciative rings that bear directly upon this dissertation. We will use the 

notation and terminology of A. G. Kurosh [18]. Some familiarity with the 

basic concepts of ring theory, as set forth, for instance, in [23], will 

be assumed. The term ring will indicate a not necessarily associative 

ring; when we need associativity, we will state the requirement explic­

itly. The term ideal used without modification will mean two-sided ideal. 

The isomorphism theorems for associative rings remain valid for nonasso-
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ciative rings. On the other hand, if R is a ring and I is an ideal of R,

2then I need not be an ideal of R. We will say that a ring R is nilpo-

tent if and only if there exists a positive integer n such that every

product of n elements of R in any association is zero.

A class M of rings is said to be homomorphically closed if every 

homomorphic image of each ring of M is also in M. If M is any class of 

rings, let H(M) = {S : S = for some R € M and some homomorphism <}>}.

Then H(M) is homomorphically closed, and any homomorphically closed class 

of rings which contains M must also contain H(M) [13, page 20, Proposition 

4.1]. H(M) is called the homomorphic closure of M. A class M of rings 

is said to be hereditary if every ideal of each ring in M is also in M.

A class W of rings is a universal class if it is both homomorphically 

closed and hereditary. In the following discussion, W denotes an arbi­

trary universal class.

Definition 1.1. A class P C  W is said to be a radical class in W if it 

has the following two properties:

(Rl) P is homomorphically closed.

(R2) If R € W is not in P, then R has a nonzero homomorphic image

which has no nonzero ideals in P.

A ring R in a radical class P may be called a P-ring. If I is an 

ideal of a ring R and I is a P-ring, we say that I is a P-ideal of R.

Our first two theorems provide useful characterizations of radical classes. 

Theorem 1.1. [18, page 16], The class P c W is a radical class in W if

and only if P is homomorphically closed and every ring R E W contains a P- 

ideal J which satisfies the following two conditions:

(1) J contains every P-ideal of R.

(2) R/J contains no nonzero P-ideals.
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If P is a radical class in W and R Ç W, the ideal of R which satis­

fies the conditions of Theorem 1.1 will be called the P-radical of R and 

will be denoted by P(R). A ring is said to be P-semisimple if it has no 

nonzero P-ideals.

Theorem 1.2. [2, page 105]. The class P c W is a radical class if and

only if it satisfies the following three conditions:

(Rl) P is homomorphically closed.

(R3) P is extension closed, that is, if I is a P-ideal of a ring 

R € W and R/I is a P-ring, then R is a P-ring.

(R4) If {I^ : Y € r} is a chain of P-ideals of a ring R 6 W, then

U I is a P-ideal of R.Y
If P is a radical class in W, we denote the class of P-semisimple 

rings in W by SP; we may refer to SP as the semisimple class of _P.

Definition 1.2. A class Q C W is said to be a semisimple class if it

satisfies the following two properties:

(51) Every nonzero ideal of each ring in Q has a nonzero homomorphic 

image in Q.

(52) If every nonzero ideal of R Ç W has a nonzero homomorphic image 

in Q, then R is in Q.

Definition 1.3. Let Q be a class satisfying (SI). Then UQ = {R € W :

R has no nonzero homomorphic image in Q}.

Our next theorem shows the significance of UQ.

Theorem 1.3. [18, page 19]. If Q is a class satisfying property (SI),

then UQ is a radical class such that Q c SUQ; moreover, UQ is the largest 

radical class whose semisimple class contains Q.

UQ is called the upper radical class determined by Q in W. The rela­

tionship between the operators S and U is clarified by the next theorem.
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Theorem 1.4. [18, page 17]. If P is a radical class, then SP is a semi­

simple class and USP = P. If Q is a semisimple class, then SUQ = Q.

Thus Q c w is a semisimple class for a radical class in W if and only 

if Q satisfies conditions (SI) and (S2).

E. P. Armendariz has characterized semisimple classes in a class W 

of associative rings in the following way.

Theorem 1.5. [9]. A class Q is semisimple in an associative class W if

and only if it has the following four properties:

(1) Q is hereditary.

(2) Any subdirect sum of rings in Q is also in Q.

(3) Q is extension closed.

(4) If I is an ideal of R € W and 0 # I/J € Q for some ideal J of I,

then there exists an ideal K of R contained in I such that 0 ^ I/K € Q.

A ring R is alternative if = x(xy) and xy^ = (xy)y for all x,y in R; 

thus every associative ring is alternative. Although in any class W of 

alternative rings every semisimple class is hereditary [5], this is not 

true in general [10] . Y. L. Lee showed [22] that in the universal class 

of associative rings every class M determines an upper radical class,

that is, a radical U maximal with respect to the property that all rings

in M  are U-semisimple. Jenkins and Kreiling [15] extended this result to 

alternative rings but showed that in general a class M  in an arbitrary 

universal class W need not determine an upper radical class.

Every class M, however, in an arbitrary universal class W, determines 

a minimal radical class in W containing M, the lower radical of Kurosh. 

We will present two constructions of this class, the modification of 

Kurosh’s construction given by Anderson, Divinsky and Sulinski [6], which
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we shall refer to as the A, construction, and the extension-union

construction of Tangeman and Kreiling [17], In both constructions the

definition is accomplished by means of transfinite induction.

In the A. D. S. construction, a class M  is defined for each ordinal3
number $ in the following way. Let = H(M) and for any ordinal number 

3 > 1 let Mg = {R 6 W : every nonzero image Ri contains a nonzero ideal 

I € M^ for some a < 6}. Then L^I, the lower radical of M relative to W,

is defined to be U M „ .3 6
Theorem 1.6. [6]. L ^  is a radical class which is minimal among radical

classes in W  containing M.

The extension-union construction proceeds as follows. For any class 

M, define R^(M) to be the homomorphic closure of M. Let 3 > 1 be an ordi­

nal number and suppose the classes R^(M) have been defined for all a < 3. 

If 3 is not a limit ordinal, so that 3 - 1  exists, admit R to R (M) ifp
and only if R E W and there exist rings S,T € R„ .(M) such that R contains3—i
an ideal I isomorphic to S and R/I is isomorphic to T. If, on the other

hand, 3 is a limit ordinal, admit R to R„(M) if and only if R € W and R3
contains a chain {I^ : y 6 1} of ideals such that each I^ is isomorphic

to some member of U R (M) and R = U I . Finally, let R(M) = U R (M) .a<3 a y €T Y g B
Lemma 1.1. [17]. If a and B are ordinal numbers with a ± 3 ,  then 

R (M) c R_(M).Ot D
Lemma 1.2. [17]. For every ordinal 3 ^ 1 ,  Eg (N) is homomorphically 

closed. Hence R(M) is homomorphically closed.

With the assistance of Theorem 1.2, one then has 

Theorem 1.7. [17]. R(M) = L ^ .

We shall employ this construction routinely throughout this disser­

tation, and it will be advantageous to streamline it a bit. Since the



classes (N) are ail homomorphically closed, we may describe the con­

struction of R (M) when g is not a limit ordinal as follows. We admitp
a ring R to R (N) if and only if there exists an ideal I of R such thatD
I and R/I are both in R ,(M). When S is a limit ordinal, we include Rp-i
in Rg(N) if and only if R is the union of a chain {I^} of ideals of R

contained in U R (M). We reserve the subscript y for this construction
a<6 ^

and will understand without explicit mention that the indices y are mem­

bers of some index set F.

We point out two results on lower radical classes:

Theorem 1.8. [14], If M is a hereditary class, then LM is hereditary.

Theorem 1.9. [18]. Let R be a simple ring and suppose M is a homomor­

phically closed class. Then R € LM if and only if R 6 M.

Tangeman and Kreiling [17] have given a proof of Theorem 1.8 using 

the extension-union construction whose proof establishes the following 

lemma, which we use in Theorem 2.5.

Lemma 1.3. [17]. If M is a hereditary class, then each of the classes

R^(M) is hereditary.

If and ? 2  are radical classes, we say that ^  P^ if every ring 

in P^ is also in P^; equivalently, SP^ <_ SP^.

Radicals have found their most profound applications in the structure 

theory of associative rings, and we shall have occasion to mention some 

of the radical classes encountered therein, including the nil radical 

class N and the Jacobson radical class J. In this theory one is most 

interested in the radical classes P which agree with J (and N) on right 

artinian rings in the sense that for each right artinian ring R, P(R) = 

J(R). Let y  denote the lower radical class determined by the class of
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all zero simple rings and let tT denote the upper radical class deter­

mined by the class of all matrix rings over division rings. Then, for 

every such radical class P, ZT ^  P ^  [11, page 40]. One such radical 

class is the Baer lower radical class 6 ; this is the lower radical class 

LZ determined in the universal class of associative rings by the class Z 

of rings with zero multiplication. A radical class P in a universal class 

W is said to be hvpernilpotent if it contains all rings with zero multi­

plication in W and hence all nilpotent rings in W. Thus the Baer lower 

radical is the smallest hypernilpotent radical in the universal class of 

associative rings.

An elementary and useful result in the theory of associative rings 

is due to V. A. Andrunakievic.

Lemma 1.4. [7, Lemma 4]. Let R be an associative ring and let B be an

ideal of an ideal A  of R. Let B' denote the ideal of R generated by B.

Then (B')^ c B.

A radical class P in a universal class W such that P(I) = I fl P(R)

for every ideal I of each ring R € W is said to be strongly hereditary;

this terminology was introduced by W. G. Leavitt [19]. In a universal

class of alternative rings if I is an ideal of a ring R, then the radical

P(I) is also an ideal of R  for any radical class P [5]; as a consequence,

P(I) C I n P(R). Kurosh [18] showed that in the universal class of asso­

ciative rings a radical class P is hereditary if and only if P is strongly 

hereditary. This equivalence has been established for alternative rings 

as well, but in general a hereditary radical class need not be strongly 

hereditary [9].

Theorem 1.10. [19]. A hereditary radical class P in a universal class W
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is strongly hereditary if and only if it has property:

(a) If J € P is an ideal of an ideal I of some ring R 6 W then 

J ’ 6 P where J' is the ideal of R generated by J.

Finally we mention three properties which may be possessed by a class 

M  of rings. M is said to be right hereditary if every right ideal of each 

ring in M is also in M, left hereditary if every left ideal of each ring 

in M is also in M, and subring hereditary provided every subring of each 

ring in N is also in M.



CHAPTER II

APPLICATIONS OF THE EXTENSION-UNION CONSTRUCTION

The unifying theme of this chapter is the utilization of the extension-

union construction to establish that various properties which may be pos­

sessed by a class M of not necessarily associative rings in a universal

class W are also possessed under suitable conditions by the lower radical

class LM. Although some of our results have been demonstrated previously 

using the A. D. S. construction of LM, all of our proofs will be new. We 

begin with several generalizations of Theorem 1.8.

Theorem 2.1. Let M c W, where W is a universal class. If M is right 

hereditary, then LM is right hereditary.

Proof. The class R^(M) is the homomorphic closure of M, Thus if 

R € R^(M), then R = K/J where K Ç M and J is an ideal of K. If I is any 

right ideal of R, then there exists a right ideal I' of K containing J 

such that I'/J = I. Since M is right hereditary, I' € M. Therefore I, 

being a homomorphic image of I', is in R^(M). Hence R^(M) is right hered­

itary .

Thus suppose B is an ordinal number greater than 1 and that the

classes R^(M) are right hereditary for all a < 3. Let R € Rg(M) and

suppose I is a right ideal of R. If 3 is a limit ordinal, then R = U 1^

where {I^} is a chain of ideals of R each belonging to one of the classes

R^(M) with a < S. Now I = U (I^ 0 I) ; since for each y the ring I_̂  H I

is a right ideal of I^ and each of the classes R^(M) is right hereditary,

{I n 1} is a chain of ideals of I contained in U R (M). Therefore 
Y a<B a

I € Rg(M).

12
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If 6 is not a limit ordinal, there exists an ideal J of R such that 

J, R/J € R q t (H) . Since R„ , (M) is right hereditary, I A J and I/I fl J =p— ± p— i
(I + J)/J both belong to R„ ,(M). Therefore I € R_(M). Thus, in either

P  — 1  P

case, R (M) is right hereditary, so that the theorem is established byS
transfinite induction, for since each R^(N) is right hereditary, LM =p
U R q (M) is right hereditary.
B p

Because the proof of the following result is practically identical 

with the preceding argument, we will omit it.

Theorem 2.2. Let M c W, where W is a universal class. If M  is left

hereditary, then LM is left hereditary.

Theorem 2.3. Let M c W, where W is a universal class. If M  is subring

hereditary, then LM is subring hereditary.

Proof. If R € R^(M), then R is a homomorphic image Ko of some ring K £ M.

Then if I is any subring of R, I = for some subring J of K. Now J € M

since M is subring hereditary, so that I € R^(M). Thus R^(M) is subring 

hereditary.

Now assume that g > 1 and that R (M) is subring hereditary for alla
a < g. Let R £ R (M) and suppose I is any subring of R. If g is a limit 

6
ordinal, then R = U I^, where {I^} is a chain of ideals of R each belong­

ing to one of the subring hereditary classes R^(M) with a < g. Then I =

U (I n I ). Since each I A I is a subring of I , each I A I € U R (M)
Y Y Y Y a<g 3

Therefore I € Rg(M), as each I A I^ is an ideal of I.

If g is not a limit ordinal, there exists an ideal J of R such that

J, R/J € R (M), Since R ,(M) is subring hereditary by the inductivep-1 g— i
hypothesis, I A J and I/I A J = (I + J)/J are both in Rg_^(M). Thus 

I £ R (M). In either case we have shown that R,. (M) is subring hereditary,p 0
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and so, by transfinite induction, this is true for every ordinal number S, 

Therefore LM = U R (M) is subring hereditary.
6 D

We can generalize Theorem 1.8 in a different direction as follows. 

Theorem 2.4. Let M be a class of rings with the property that if R € M, 

then every ideal of R is in LM. Then LM is hereditary.

Proof. If R Ç R^(M) and I is an ideal of R, then I is a homomorphic image 

of an ideal J of some ring in M. But J 6 LM by hypothesis, so that I € LM 

because LM is homomorphically closed. Thus suppose that for each ring

R 6 U R (M) every ideal of R is in LM. Let R S Rg(M) and let I be an
a<B “ p

ideal of R. If S is a limit ordinal, then R = U I , where {I } is a chainY Y
of ideals of R contained in U R (M) . Then I = U (I fl I ) . For each y ,a<g a Y
I n I is an ideal of I and hence is in LM by hypothesis. Now I D I Y Y Y
is a chain of ideals of I so that I € LM by Theorem 1.2, condition (R4).

On the other hand, if p - 1 exists, then there exists an ideal J of R such 

that J, R/J E Ro T (M). By the inductive hypothesis, 1/(1 HJ) = (I+J)/J € LMp—i
and I n J € LM. Therefore I € LM by Theorem 1.2 condition (R3).

Corollary 2.1. Suppose M is a class of rings with the property that if 

R € M, then every principal ideal of R is in LM. Then LM is hereditary. 

Proof. Every ideal of R is a sum of principal ideals of R for each R € M. 

Therefore, by condition (1) of Theorem 1.1, every ideal of R is in LM.

The reader will notice the Theorems 2.1, 2.2, and 2.3 may be gener­

alized in a similar way. For instance, suppose every right ideal of each 

ring of M is in LM; then LM is right hereditary.

A  ring is hereditarily idempotent provided each of its ideals is 

idempotent. The following result was proved by Leavitt and Hoffman using 

the A. D. S. construction of LM; we present a new proof employing the 

extension-union construction.
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Theorem 2.5. [14]. Let M be a hereditary class of hereditarily idem-

potent rings. Then so is L>I.

Proof. If M is hereditary, each of the classes R„(M) is hereditary byp
Lemma 1.3 and LM is hereditary by Theorem 1.8. Thus it is sufficient to 

show that for each ordinal number g >_ 1, R (M) contains only idempotentp
rings. Since each homomorphic image of an idempotent ring is idempotent, 

R^(M) contains only idempotent rings. Thus suppose that each of the 

classes R^(M), a < g, contains only idempotent rings. First suppose 3

is a limit ordinal and that R 6 R (M), so that R is the union of a chain6
{I } of ideals of R contained in U R (M). If x € R, then x 6 I for

y a<& “ y
2 2 2 some index y» so that x Ç C R . Hence R C R , so that R is idempotent.

If, on the other hand, g is not a limit ordinal, then there exists an
n

ideal J of R such that J, R/J € R (M) . If x € R, then x - ̂  r.s. € J
3 1 1=1 1 1

for some r\,s^ E R and some integer n since R/J is idempotent. Hence
n m

X -  y r.s. = y t.u. for some t.,u. 6 J and some integer m since J is
1=1 j=i 1 1 1 1

n m 2

Idempotent. Therefore x =  y r . s . +  y t.u.E R ,  so that we have
1=1 ^ ^ j=l ^ ^2R C R and hence R is idempotent in this case as well. Thus by trans­

finite induction R (M) is a class of idempotent rings for each ordinal3
number g, so that LM = U R_(M) is a class of hereditarily idempotent rings,g 6

An ideal L of a ring R is said to be a large ideal of R if, for 

every ideal I of R, L H I = 0 implies 1 = 0 .  The next proposition shows 

that heredity to large ideals is equivalent to ordinary heredity. 

Proposition 2.1. Let M be a homomorphically closed class with the prop­

erty that if R G M and L is a large ideal of R, then L € M. Then M is 

hereditary.
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Proof. Let R E M  and let K be an ideal of R. By Zorn's Lenma we assert

the existence of an ideal J of R maximal with respect to the property that

J fl K = 0. Then J + K, we claim, is a large ideal of R. If I i s  an ideal

of R and ( J +  K) 0 1 = 0, let k € K fl (I + J )  . Then k = x + y with x € I

and y E J ,  so that k - y  = x E i n ( J + K )  = 0. Hence k = y E J f l K  = 0. 

Therefore K fl (I +  J)  = 0 ,  so that by the maximality of J  we must have 

1 = 0. Hence J  +  K E M  by hypothesis, so that K = ( J + K ) / J  E M by the 

assumption that M  is homomorphically closed.

Proposition 2.2. Let P be a hypernilpotent, hereditary radical class in 

an associative universal class W. Suppose R € W has a large P-ideal X and 

suppose I is a nonzero ideal of R. Then I has a large P-ideal.

Proof. X n I is a P-ideal of I by the heredity of P, so that if X fl I 

is a large ideal of I we are done. Otherwise, let-J be an ideal of I 

maximal with respect to the property that X fl I fl J = 0 and let J' be the
3

ideal of R generated by J. Then by Lemma 1.4 J ' c J and we have
3 3X fl J' = 0 .  However, since X is a large ideal of R, J' = 0 so that

J '  E P, for P by hypothesis contains all nilpotent rings in W. By hered­

ity, J E P. Thus (X n I) + J E P. Let K be an ideal of I such that

[(X n I )  + J ]  fl  K = 0. Then we have (X H I) fl (J  + K) = 0, for if

X E X fl I and x = j  + k with j  E J and k E K, then k = x - j E [ ( x n i )  +  J ] f l K  

and so k = 0, whence x = j E x f l l f l J  = Q.  By the maximality of J ,  we 

have K = 0. Hence (X fl I) + J is a large P-ideal of I.

Theorem 2.6. Suppose M is homomorphically closed and that no ring in M 

has an identity. Then no ring in LM has an identity.

Proof. Since M = R^(M), R^(M) has no rings with identity. Thus suppose 

8 > 1 is an ordinal number and that no ring in the class U R (M) has an
a<6 a



17
identity. Let R € Rg(N). If S is a limit ordinal, then R = U where

{I } is a chain of ideals of R contained in U R (M). If R has an iden- 
Y a<6 a

tity 1, then 1 € I^ for some index y» so that I^ has an identity in contra­

diction with the inductive hypothesis. If g - 1 exists, then R has an

ideal J such that J, R/J € R^ If R has an identity 1, then 1 £ J

since J does not have an identity. But then 1 + J is an identity for R/J

so that again we have a contradiction.

Theorem 2.7. Suppose M is a homomorphically closed class with the property 

that no nonzero ring in R has a. c. c. on right ideals. Then no nonzero 

ring in LM has a. c. c. on right ideals.

Proof. We have assumed that R^(M) = M contains no nonzero rings with

a. c. c. Thus suppose R is a nonzero ring in Rg(%D and that no nonzero

ring in U R (M) has a. c. c. on right ideals. If g - 1 exists, there 
a<6 G

exists an ideal J of R such that J, R/J £ R , (M) . If R had a. c. c. onp-i
right ideals, then so would R/J, so that necessarily R/J = 0 by the induc­

tive hypothesis. But then J = R  would have a. c. c. on right ideals and 

J € Rg_^(M), which is a contradiction. If, on the other hand, g is a limit

ordinal, then R = U I where {I } is a chain of ideals of R contained inY Y
U R (M). If R had a. c. c. on right ideals, then {I } would have a 

a<6 Y
maximal element I^, so that necessarily I^, = R which again contradicts 

the inductive hypothesis. The theorem is therefore proved by transfinite 

induction.

The hypothesis that M  be homomorphically closed is essential in this 

theorem, for let R be the zero ring which is the direct sum of a countable 

collection of cyclic groups of order two. Then if N = {R}, R^(M) contains 

noetherian rings, in particular cyclic groups cf order two, although R is 

not noetherian.
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We remark that if M is a homomorphically closed class with the prop­

erty that every ring in M  is noetherian, LM may contain rings which are 

not noetherian. For let W  be the universal class of zero rings and let 

M be the class of zero rings whose additive groups are cyclic p-groups.

Then the zero ring on Z^(=), being the union of a chain of cyclic p-groups, 

is in LM, but is not noetherian (see, for instance, [11, page 14]

for a discussion of Z^C")).

We can draw much the same conclusion if we turn our attention to 

artinian rings. Let W be the universal class of zero rings and let M = 

{R,0} where R is the zero ring of order two, so that M is a homomorphic­

ally closed class of artinian rings. Then the direct sum of an infinite 

number of copies of R is in LM and fails to have d. c. c. on ideals.

The following result of T. Szele will be required in the proof of 

Theorem 2.9.

Theorem 2.8. [24]. A group G is the additive group of a nilpotent artin­

ian ring if and only if the minimum condition is satisfied by the sub­

groups of G.

We have been unable to prove the following theorem for arbitrary 

universal classes.

Theorem 2.9. Suppose M is a homomorphically closed class of associative 

rings such that no nonzero ring in M has d. c. c. on right ideals. Then, 

in the universal class W of associative rings, LM has no nonzero rings 

with d. c. c. on right ideals.

Proof. We have assumed that M = R^(M). Thus suppose 3 > 1 and assume 

iy[M) contains no nonzero right artinian rings for each a  < S. Let R be 

a nonzero ring ir. Rg(M). If 2 - 1 exists, then R has an ideal I such



19

that I, R/I € Rg T(M). If R has d. c. c. on right ideals, then so doesp—1
R/I, so that R/I = 0 by the inductive hypothesis. But then R = I has

d. c. c. on right ideals, which is a contradiction. Therefore in this

case R cannot be right artinian.

If 6 is a limit ordinal, then R = U I where {I } is a chain ofY Y
ideals of R contained in U R (M). Suppose R is right artinian and let

a<6 “
N denote the classical radical of R. If R f N, then we have R/N =

U  ((I + N)/N) and for each index y , (I + N)/N = I /(I 0 N) € U R  (M)Y Y Y Y a<B û
as this class is homomorphically closed by Lemma 1.2. Then R/N is a semi­

simple right artinian ring which is the union of a chain of ideals which 

are not right artinian; this by the Weddenburn-Artin Theorem [23, Theorem 

5.59] is a contradiction, for R/N is isomorphic to the direct sum of a 

finite number of complete matrix rings of finite order over division rings. 

Therefore R = N. Since a nil ring with d. c. c. on right ideals is nil- 

potent [23, Theorem 4,30] R has .the minimum condition on subgroups by

Theorem 2.8. Thus the additive group of each I^ must have minimum condi­

tion on subgroups, so that each must have minimum condition on right 

ideals, so that again we have a contradiction.

The proof of the following result is due to R. Tangeman (unpublished) 

who has also obtained a simpler proof using the A. D. S. construction. The 

theorem is concerned with the following property, which was introduced in 

Theorem 1.10:

(a) If J 6 M and J is an ideal of an ideal I of a ring R S W, then

the ideal J' of R generated by J is also in M.

Theorem 2.10. If M is a homomorphically closed class satisfying property

(a), then LM satisfies property (a).
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Proof. By hypothesis, R^(M) = M satisfies property (a). Suppose R^(M) 

has property (a) for each a < g and let J be an ideal of an ideal I of

R 6 W such that J 6 R (M). Let J ’ be the ideal of R generated by J. We6
must show that J* is also in R (M).p

If g is a limit ordinal, then J = U J where {J } is a chain of ide-
Y Y

als of J contained in U R (M). For each v let J ’ be the ideal of Ia<6 a Y
generated by J^; then since c J, J = U J \  By property (a),

since, for each J € R (N) for some a < g, we have J ' E  R (M). ForY a y a
each Y let J ” be the ideal of R generated by Again by the inductive

hypothesis J" 6 U R (M). Since J = U J ’, we have J ' = ( U J')'. Since Y a<B a Y Y
U J" is an ideal of R containing J' for each y, ( U J ’)' c U J". Let

Y Y Y Y
X 6 U J"; then x € J" for some y and hence x is in every ideal of R which

Y Y
contains J', in particular ( U J')'. Thus U J" C ( U J ’) ’. Hence J ' =

Y Y Y Y
U J", where {J"} is a chain of ideals of J' contained in U R (M)•

Y Y o<g o
Therefore J' 6 R (M).P

If g is not a limit ordinal, then J has an ideal K such that K,

J/K 6 Rg ^(M) . Let K' be the ideal of I generated by K, so that

K' € Rg ^(M) by the inductive hypothesis. Now K' C J and J/K' =(J/K)/(K'/K)

so that J/K' € R (M) by Lemma 1.2. Thus we may as well assume that K D'-l
is an ideal of I. Since J' C I, K is an ideal of J'. Let K* be the ideal

of R generated by K. Since K is an ideal of I and K €  Rg_^(M), the induc­

tive hypothesis implies that K* € Rg_^(M). Now R/K* has the ideal I/K* 

which in turn has the ideal (J + K*)/K* = J/(J H K*)• Since J + K* is an

ideal of J', (J + K*)/K* is an ideal of J'/K*. Now J'/K* is an ideal of

R/K* containing (J + K*)/K*. If U/K* is any ideal of R/K* containing 

(J + K*)/K*, then U  is an ideal of R containing J + K* so that U certainly 
contains J. Thus J' C U and so J'/K* C U/K*. Therefore J'/K* is the
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ideal of R/K* generated by (J +  K*)/K*. Now J/J 0 K* = (J/K)/(J (1 K*/K) , 

so that by Lemma 1.2 (J + K*)/K* € Rg_^(M) . Hence, using property (a), 

we have J ’/K* 6 R„ i(M). Therefore J' Ç, R (M) .

Thus by transfinite induction each of the classes,R(M) satisfiesp
property (a) so that LM = U R (N) must satisfy property (a). This com-6 p
pletes the proof.

As a consequence, we may note that if a class M  with property (a) 

is homomorphically closed and hereditary, then LM is strongly hereditary. 

For LM has Property (a) by Theorem 2.10 and is hereditary by Theorem 1.8 

and hence is strongly hereditary by Theorem 1.10.

Theorem 2.11. Let W be a universal class and let M  c W be a homomor­

phically closed class such that the center of every ring in M is contained 

in a subring hereditary radical subclass P of the class C of commutative 

rings. Then the center of every ring in LM is contained in P.

Proof. For each ring R, we let Z(R) denote the center of R. We have 

assumed that every ring in R^(M) = M has center in P. Thus suppose that

for each a < S and each R €  R (M) we have Z(R) 6 P. Let R € R (M) . Ifa p
6 is a limit ordinal, then R is the union of a chain of ideals of R

contained in U R (M). Since Z(R) D i e  Z(I ) for each y and P is sub- 
a<6 Ü Y Y

ring hereditary, Z(R) D c P for each y. Thus Z(R) = U (Z(R) D I^) is 

the union of a chain of its ideals contained in P. Since P is a radical 

class, Z(R) € P by condition (R4) of Theorem 1.2.

If B - 1 exists, then R has an ideal J such that J, R/J Ç R^_^(M).

Now Z(R)/(Z(R) n  J) = (Z(R) + J)/J c Z(R/J) so that Z(R)/Z(R) 0 J € P as 

P is subring hereditary and homomorphically closed. Also Z(R)H J c  Z(J)g P 

so that Z(R) n J f P again because P is subring hereditary. Then by Theo­

rem 1.2, condition (R3), since P is a radical class, Z(R) Ç P.
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We make several observations concerning Theorem 2,11 and note some 

of its consequences. If M is homomorphically closed and every ring in M 

has zero center, then every ring in LM has zero center. The rings with 

zero center in the universal class of associative rings* do not form a

homomorphically closed class. For consider the ring R =

fn To Cn i'1 fr\ 1 1
€ Z(R) , then

a b 
0 0

If a b 
0 0

0 a' a b] 0 l'
[0 Oj lO oJ lO oj

0 1 a b
0 0 0 0

: a,b real 

= 0 so that

)■

a b 1  o' a o' fl o] fa b'l fa b'
.0 0. 0 0 0 0 , while 0̂ oJ [o oJ [o 0a = 0; moreover, 

so that b = 0. Thus Z(R) = 0. Now R has the ideal I-

and R/I is isomorphic to the field of real numbers. Thus the hypothesis 

that M is homomorphically closed cannot be omitted in the statement of 

Theorem 2.11.

If the center of every ring in M is nilpotent, then LM may contain 

rings without nilpotent centers.. For example, the ring of [11, Example 3, 

page 19] is a commutative Baer lower radical ring which is not nilpotent. 

We can say, however, that if the center of every ring in M  is nil, then 

the center of every ring in LM is nil.

We may specialize Theorem 2 . 1 1  as follows. Suppose M  c  w  is homomor­
phically closed and satisfies the following conditions:

(1) If R e M, then Z(R) 6 M.

(2) Every subring of a commutative ring in M is also in M.

Then the center of every ring in LM is also in LM. We would like to be 

able to weaken the rather stringent condition (2) so as to be able to say, 

for instance, that if M is hereditary and satisfies condition (1), then 

the center of every ring in LM is in LM. The non-limit ordinal case has 

been intractable.
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Proposition 2.3. Let M be a hereditary class of associative rings such 

that if R € M, then Z(R) 6 M. Suppose S is the union of a chain of

ideals of S contained in M. Then Z(S) is the union of a chain of ideals

of Z(S) contained in M.

Proof. We have Z(S) = U (Z(S) A 1^)* Now for each index y , Z(S) A c

Z(I ). We claim that in fact Z(S) A I is an ideal of Z(I ). Thus let
Y Y Y

r € S, c e  Z(S) A l  and X  € Z(I ). Then
Y Y

r(xc) = (rx)c (by associativity)

= c(rx) (as c 6 Z(R))

= (cr)x (by associativity)

= x(cr) (as cr € and x € Z(I^))

= (xc)r (by associativity again).

Thus xc 6Z(S) Al^. Hence, since M is hereditary, Z(S) A € M for all y.

Let us note one more consequence of Theorem 2.11. If the center of

every ring in M is a p-ring, then the center of every ring in LM is a p- 

ring.

We mention two results whose proofs are fairly easy using the

extension-union construction; we therefore omit the proofs.

Proposition 2.4. If each ring in M  contains no nonzero nilpotent elements, 

then each ring in LM contains no nonzero nilpotent elements.

Proposition 2.5. If every nonzero ideal of each ring in M contains a non­

zero idempotent, then LM has the same property.

Next we show how to construct, for any universal class W and any 

class M GW, a minimal hypernilpotent radical class in W containing M.

Let M^ = M U {0} and let M* = {R € W : R^ € M^}.

Theorem 2.12. LM* is the unique minimal hypernilpotent class in W con­

taining M.
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Proof. LM* contains M* which by definition contains every zero-ring in W, 

so that LM* is a hypernilpotent radical class in W containing M. Let P

be any hypernilpotent radical class in W containing M and let R 6 M*.
2 2 2 2 Then R/R is a zero ring and R E M^, so that R/R , R ,E P. By Theorem

1.2, condition (R3), we have R E P. Hence M* C p so that LM* G p by

Theorem 1.6.

We may remark that LM* = L(M U Z) where Z is the class of zero rings, 

for on the one hand L(M U Z) is a hypernilpotent radical class containing 

M  so that LM* G l(M U Z) by Theorem 2.12, while on the other hand M U  ZG M* 

so that L(M U Z) G LM*. Thus intuitively the properties that LM* inherits 

from M are the properties, inherited by the lower radical, which M shares 

with Z. For example, if M  is hereditary, then M  U Z is hereditary and 

so LM* = L(M U Z) is hereditary by Theorem 1.8.

We now turn to a consideration of the lower radical construction in 

the presence of two universal classes. Theorem 2.13 is due to Hoffman, 

who accomplished its proof with the A. D. S. construction, and we present 

a new proof which employs the extension-union construction. First we re­

quire a lemma, whose proof we omit.

Lemma 2.1. [13, page 54], Let P be a radical class in a universal class

W. If W' is some other universal class, then W 0  W ’ is a universal class

and P 0 W' is a radical class in W A W .

Theorem 2.13. [13, page 58]. Let X and W be universal classes and let

M C W be homomorphically closed. Then X A L^(M) = L^^^(X H M) .

Proof. By the Lemma, X 0 L^(M) is a radical class in X fl W. Since

M c  L^(M) we have X A M C X fl L^(M) , so that, inasmuch as L ^ ^ ( X  A M) is

minimal among radical classes in X A W containing X A M, we have
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We now fix the notation to be used in the remainder of the proof.

For each ordinal number 6, R.(M) will be the class obtained in the con-D
struction of L^(M), while R^(X A M) will be the class obtained in the 

construction of A M ) ,  at the 6^^ step in the extension-union con­

struction, Since M is homomorphically closed, X A R^(M) = R^(X D  M) =

X n M. Thus let 6 > 1 be an ordinal number and assume for all a < S that

X n  R (M) c R (X A M ) . Let K € X A R_(M). If g is a limit ordinal, then ot a p
K = U K , where {K } is a chain of ideals of K contained in U R (M).

Y Y a<6 a
Moreover, each € X, for X being a universal class is hereditary. Thus 

each K € X A R (M) for some a < B and hence each K 6 R (X A M ) . ThusY a Y ct
K € R  (X A M). If g is not a limit ordinal, then K has an ideal J suchD
that K/J, J Ç R (N). Since X is hereditary and homomorphically closed,p—i
K/J and J are both in X A R„ , (M). Hence K/J, J € -Rq , (X A M) by thep-i p-i
inductive hypothesis, so that K 6 R (X A M) . Thus X A R (M) c R (X A M)

P  P  P

for all B, so that X A L^(M) c L ^ ^ ( X  A M ) .

It is interesting to note that the hypothesis that M be homomorphic­

ally closed cannot be removed in the theorem, as Hoffman has shown in an 

example [13, page 57] which can be summarized as follows. Let R be a ring 

containing exactly one proper ideal K such that R/K and K are not isomor­

phic. Let W = {R,K,R/K,0}, X = {R/K,0} and M = {R,K,0}; then W and X are

universal classes, M c w and M  is not homomorphically closed. Now 

L ^ ( X  A  M) = L%(X A M) = L (0 )  = 0, while since R/K € R^(M), L^(M) = W. 

Thus X A  L^(M) = X A W = X so that L^^^(X A M) is properly contained in 

X A L^(M).

We shall be interested in whether some of the other minimal radical 

classes we encounter have the nrooertv noted for LM in Theorem 2.13; not
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all of them will. However for the radical class of Theorem 2,12 we have 

the following result.

Corollary 2.2. Denote by L*^(M) the unique minimal hypernilpotent radical 

class in the universal class W containing the homomorphically closed class 

M and let X be a universal class. Then L* _ (X 0 M) = X fl L* ,(M).xnw w
Proof. Let stand for the class of zero rings in the universal class 

W. By the remarks below Theorem 2.12,

X n L%(M) = X n I^(M u Ẑ )
= I ^ „ ( x  n  (M U Z y ) )  (Theorem  2 . 1 3 )

= i% n y ((x  n  M) u  (X n  z ^ ) )

= n  M) U z^ n »)

" •

Finally, we use the extension-union construction to determine a 

property of a class Q which satisfies condition (SI) of Definition 1.2; 

as a corollary, we obtain a characterization of UQ.

Theorem 2.14. If M is a homomorphically closed class and Q is a class 

satisfying (SI) such that M fl Q = 0, then LM fl Q = 0.

Proof. We have assumed that R^(M) 0 Q = 0. Let S > 1 and assume

R (M) n Q = 0 for all a < 6. Suppose 0 9  ̂B E Rg(N) D Q. Either B is a
C t M

union of ideals from the classes R^(M), a < S, or B is an extension of an 

ideal in R (M), so that in either case B contains a nonzero ideal I in 

R^(M) for some a < S. By (SI), I has a nonzero image € Q, but since

R^(M) is homomorphically closed, we have Ib 6 R^(M) fl Q, a contradiction.

Corollary 2.3. If Q satisfies (SI), then UQ is the union of all homomor­

phically closed classes whose intersection with Q is zero.

Proof. Let M be the union of all homomorphically closed classes whose
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intersection ;<rith Q is zero. Then M is homomorphically closed and Mf)Q=0. 

Hence LM fl Q = 0 and, since LM is homomorphically closed, M = LM. Now UQ 

is a radical maximal with respect to having zero intersection with Q, so 

that M c UQ. Again by construction of M we have M  = UQ.



CHAPTER III

STRONG SUBRING HEREDITY AND RELATED PROPERTIES

This chapter is devoted to a study of a concept similar to strong 

heredity, which we have discussed briefly in Chapter I, and certain 

closely related properties. The concept we introduce, strong subring 

heredity, is the analogue of strong heredity for subrings instead of 

ideals. We will formalize our terminology after making some preliminary 

observations. One of our objectives will be to characterize in various 

ways the radical classes which are strongly subring hereditary. To accom­

plish this, we adopt the approach of W. G. Leavitt in his work on strongly 

hereditary radical classes [19], introducing a modification of property

(a) of Theorem 1.10. We will construct minimal radical classes having 

the properties we are concerned with and will comment on the semisimple 

classes of some of the radical classes we encounter.

We begin by introducing a type of universal class sufficiently exten­

sive for the ensuing development.

Lemma 3.1. Given any class M of rings, there is a minimal subring heredi­

tary class AM containing M.

Proof. Let -''H = {R : R is a subring of some ring S Ç M). Then AM is sub­

ring hereditary, for if I is a subring of R E  AM, then R is a subring of

S 6 M and so I is a subring of S. Hence I € . On the other hand, any

subring hereditary class containing M must contain AM.

The following should now be clear, and we omit the proof.

Proposition 3.1. For any class M  of rings, HAM, the homomorphic closure 

ofAM, IS the minimal subring hereditary, homomorphically closed class 

containing M. 2 g
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We will call a subring hereditary, homomorphically closed class s- 

universal. When we discuss subring heredity, we will understand without 

explicit mention that we are working within an s-universal class W. We 

remark that if M  is a class of rings contained in an s-.universal class W, 

then LAM is the minimal subring hereditary radical class in W containing 

M  by Theorem 2.3.

Definition 3.1. A radical class P in an s-universal class W is called

strongly subring hereditary if for all R € W  we have P(I) = 1 0  P(R) for

each subring I of R.

Theorem 3.1. A  subring hereditary radical class P of an s-universal class 

W is strongly subring hereditary if and only if P has the following prop­

erty (b) .

(b) If I is a subring of R £ W and I € P, then the ideal of R gen­

erated by I is also in P.

Proof. Suppose first that P is strongly subring hereditary. Let I € P 

be a subring of R Ç W and let J be the ideal of R generated by I. Now

P(J) = J 0 P(R) is an ideal of R. Since I € P and P is strongly subring

hereditary, P(I) = 1 = 1 0  P(R) and so I c P(R). Thus I c P(J) so that 

P(J) must be the ideal of R generated by I. Thus J = P(J) and therefore 

P has property (b).

On the other hand, suppose P is a radical class having property (b). 

Then if I is a subring of R Ç W, let J € P be an ideal of I. Let J' be 

the ideal of R generated by J, so that J ’ 6 P by property (b). Thus J' c 

P(R), so that J c P(R). In particular P(I) c I 0 P(R). For the reverse 

inclusion, by subring heredity P(I) 2  I 0 P(R) as I 0 P(R) is a subring 

of P(R) and is thus in P. Therefore P is strongly subring hereditary.
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We remark that in any s-universal class W, if P is a strongly sub­

ring hereditary radical class, then P is subring hereditary. For let 

R € P and let I be a subring of R. Then P(I) = I f) P(R) = I fl R = I, so 

that I € P. The following example shows that the converse is not true. 

Let M be the class consisting of the ring Z of integers and all its sub­

rings. Then M is certainly subring hereditary and hence so is LM by 

Theorem 2.3. Let R be the field of real numbers, which contains Z as a 

subring. R is LM-semisimple by Theorem 1.9 since R is simple and R ? M. 

Now LM(Z) = Z 5  ̂LM(R) fl Z = 0. Hence, even in the associative case, sub­

ring heredity does not imply strong subring heredity.

Lemma 3.2. If P has property (b), then SP is subring hereditary.

Proof. If R € SP has a subring I g SP, then I has an ideal J f 0 in P.

But J is in turn a subring of R, so that the ideal J' of R generated by J

must be in P by property (b). This is a contradiction, for J ’ ^ 0. 

Proposition 3.2. Let P be any radical class in W and let N be any homo­

morphically closed, hereditary class; every N-subring of each ring in SP 

is also in SP if and only if for each N-subring I of each ring R € W we 

have P(I) C P(R).

Proof. First suppose every N-subring of each ring in SP is also in SP.

Let R € W and let I be an N-subring of R. If P(I) ̂  P(R), then 0 #

[P(D +  P(R)]/P(R) = P(I)/[P(I) n P(R)] 6 Nfl P since N fl P is homomor­

phically closed. Then [P(I) + P(R)]/P(R) is an N-subring of R/P(R) and 

hence is in SP, but P fl SP = 0, so that we have a contradiction. Con­

versely, suppose for each N-subring I of each ring R 6 W we have P(I) c 

P(R). If R € SP, then for any N-subring I of R, P(I) C P(R) = 0, so that 

I is also in SP.
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The following special case of Proposition 3.2 is worth pointing out. 

Corollary 3.1. Let P be any radical class in W. Then SP is subring 

hereditary if and only if for each R 6 W and each subring I of R we have 

P(I) c P(R).

Lemma 3.3. Let P be any radical class in W. Then P is strongly subring 

hereditary if and only if both P and SP are subring hereditary.

Proof. If P is strongly subring hereditary, then P(I) = 1 0  P(R) for

each subring I of each ring R € so that both P and SP are subring

hereditary. For the converse, suppose P and SP are subring hereditary 

and let I be a subring of R. By Corollary 3.1, P(I) C I 0 P(R). Since

P(R) E P and P is subring hereditary, I 0 P(R) € P. Since I fl P(R) is

an ideal of I, I 0 P(R) C P(I). Thus I 0 P(R) = P(I).

Lemma 3.4, If P is a subring hereditary radical class, then P satisfies

property (b) if and only if SP is subring hereditary.

Proof. This follows from Lemma 3.2, Lemma 3.3 and Theorem 3.1.

We remark that property (b) implies property (a) of Theorem 1.10. 

The following result, which we prove using the extension-union construc­

tion, will be used in the construction of a minimal radical class in W 

containing a given class M and satisfying property (b).

Theorem 3.2. If M c W is homomorphically closed and satisfies property

(b), then LM satisfies property (b).

Proof. R^(M) has property (b) by hypothesis. Suppose R^(N) has (b) for

all a < 6 and let I be a subring of a ring R with I € R (M).
P

First suppose 3 is a limit ordinal. Then I = U I^ where each

I € U R (M) and each I is an ideal of I. Let J be the ideal of R 
Y a<6 * Y

generated by I and for each y  let be the ideal of R generated by I .
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Then we claim that J = U  J . For U is an ideal of R containing UI^=  

so that U 2 J, while J is an ideal of R containing every I^, hence 

every J^, so that J 2 U J^. Thus J E Rg(M).

If 6 is not a limit ordinal, let I E Rg(M) be a subring of R. Let J 

be the ideal of R generated by I. I has an ideal K with K, I/K E R. ,(M).P —1
Now K generates an ideal P C  J of R such that P E R„ , (M) . Consider J/P;D—-L
we claim it is the ideal of R/P generated by (I + P)/P. For suppose S/P 

is an ideal of R/P containing (I + P)/P. Then S is an ideal of R con­

taining I +'P, hence I. Thus S contains J, and so S/P 2 J/P. Then J/P is 

minimal among the ideals of R/P containing (I + P)/P. Now (I + P)/P =

1/(1 n p ) . Since K C I O  P, we have a natural map from I/K onto I/ClflP). 

Since all the classes (M) are homomorphically closed by Lemma 1.2,

1/(1 n P) E R_ ,(M) and hence (I + P)/P E R„ ,(M).. Since R„ , (M) hasp — J. p— JL p— i
property (b), J/P E Rg_^(M). Since we have shown P, J/P E R^ ^(M), we 

have J E Rq (M).D
The theorem follows by transfinite induction.

We now direct our attention to the construction of minimal radical

classes of certain types. First we need a definition.

Definition 3.2. For any class M  c W, define F(M) = {J' : J E M ,  J is a

subring of R € W, and J' is the ideal of R generated by J}.

Theorem 3.3. If W  is any s-universal class and M C W, then there is a 

unique minimal radical class in W  containing M which satisfies property

(b).

Proof. Let be the homomorphic closure of M, = F(M^), and proceed

inductively. If a > 2 is odd and has been defined for all k < n, let

M be the homomorphic closure of M ,. If n is even, let M = FfM .). n n-j. II n-i
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Clearly m <. k implies c N^. Let M* = U the union being taken over

all positive integers n. M* is clearly homomorphically closed. Also if

J is a subring of R 6 W and J E M*, then J 6 for some odd n so that J ’,

the ideal of R generated by J, is in c M*. Thus M* has property (b).

If N is any homomorphically closed class containing M  and satisfying

property (b), then we claim M* C N. For c N since N is homomorphically

closed. Suppose C N. If n is odd, is the homomorphic closure of

so that C N since N is homomorphically closed. If n is even,

let J ' 6 M  Then there exists J E M  such that J' is the ideal ofn+1 n
some R € W generated by J C R. Then J' 6 N since N has property (b).

Thus M  - C N in either case, so that by induction M* C N. If N is aIIt I
radical class, then LM* C N. Since LM* satisfies (b) by Theorem 3.2, LM* 

is therefore the minimal radical class in W containing M and satisfying 

property (b).

Example 3.1. The class F(M^) need not be hereditary when M^ is heredi­

tary. For let K be the field of two elements and let R= a b 
0 0 : a,b€ K^.

We work within the class W of associative rings, and we identify isomor­

phic rings . Now K = ^ ^ : a E  and the ideal this subring generates

in R is R itself. R has the ideal I = 0 b 
0 0 b E Kr, a zero-ring of

order two. Let M = M^ = {K,0}; then M  is a hereditary class. Now REF(M^) 

but I is not in F(M^) since I is a simple abelian group.

Continuing the example, we let S € M 2  = F(M^). Then there is a ring 

X with K C S C X such that S is the ideal of X generated by K. Suppose 

T is an ideal of S with K C T. Let x E X and let 1 denote the identity
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element of K; we note that 1 need not be an identity for any of the other 

rings we have mentioned. Now xl € S as S is an ideal of X and so xl = 

xl • 1 € T (here we have used the associativity) . Thus XK ^ T. Similarly 

KX and XKX C T. Thus K + XK +  KX +  XKX, the ideal of X generated by K, 

is contained in T, so that necessarily S = T. Hence F(M^) = = {S : K C S

and there is no ideal T of S with K C T C 8} U {0}.

We have noted previously that c Let X Ç Then X = S/T

where S Ç M^. Now if S ^ 0 then S is generated by K, and as K is simple, 

S/T is generated by (K + T)/T = K. Hence S/T 6 M 2 , so that X  € M 2 . 

Therefore M^ = M 2 .

Now let U 6 M^. Then if U ^ 0 there exists a ring S € = M 2  such

that S C U C X, X € W, and U is the ideal of X generated by X. Now K c S 

and the ideal K' of X generated by K must contain S by the characteriza­

tion of M 2  given above. Hence K ’ is the ideal of X generated by S, so 

that K ’ = Ü, i.e., U 6 M^.

This shows that M* = M 2 , for M 2  is closed homomorphically and FfM^) =

M 2 . In particular I ^  M*, so that M* is not hereditary.

Now I is a simple ring, so that LM* does not contain I by Theorem 

1.9. Thus we have shown that, if M  is hereditary, the minimal radical 

class in W containing M which satisfies property (b) need not be heredi­

tary.

Indeed, it seems rather difficult to discover properties that LM*

does inherit from M. For instance, if M is homomorphically closed and

has no rings with identity, F(M) may contain rings with identity, as we 

see from the preceding example.

Remark. If W is an s-universal class, we will for the moment let L'^(M)
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denote the minimal radical class in W containing M  and satisfying property

(b) . We may ask whether the analogue for this construction of Theorem 

2.13 is true; that is, if X is a second s-universal class, does x n L ’̂ (M) =

We can shoo that n M) = X fl . Let J 6 X fl L'^fM) and

suppose J is a subring of R 6 X 0 W. Let J' be the ideal of R generated 

by J. Then J ’ € since the latter radical class has property (b),

and J' 6 X  since X is subring hereditary. Thus J' € X A so that

X n L'y(M), a radical class in X 0 W by Lemma 2.1, has property (b) and

contains X A M. This completes the proof since L ’̂ ^ ( X  fl M) is the mini­

mal such class.

The reverse inclusion is not true, however, and to see this we use 

an example from [10]. Let R be the algebra generated over the field F of

two elements by the non-associative symbols u, v, w, subject to the rela-
2 2 2 tions u = 0, uv = vu = u, uw = wu = vw = wv = v = v and w = w. Then

I = {0,u,v,u + v} is the only proper ideal of R and J = {0,u} is the only

proper ideal of I. As usual we identify isomorphic rings. Let X = {F,0},

W = {R,I,J,F,0} rnd M = {J,0}. Then X, W and M  are all s-universal

classes. The ideal of R generated by J is I and I/J = F. In {w,0} we

have a subring of R isomorphic to F, and the ideal of R generated by {w,0}

is R itself. Hence L',,(M) = W. Now X A l '„(M) = X, while on the otherw w
hand L ’̂ y C x n  M) = L ' ^ ( { 0 } )  = {0}.

Theorem 3.4. Let M be any homomorphically closed class of rings in the 

class W of associative rings and suppose M contains the class Z of rings 

with zero multiplication. Let LM* be the unique minimal radical class 

in W containing M and satisfying property (b) . If R lE W has no nonzero 

subrings in M, then R 2 LM*.
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Proof. We shall continue to use the notation of Theorem 3.3. By hypothe­

sis neither R nor any of its subrings is in M = = H(M). Moreover

R € Mg = F(M^) because R has no proper subrings in M^, and for the same 

reason, no nonzero subring of R is in M^. Let n >_ 2 and suppose that no 

nonzero subring of R is in any of the classes M^ with k ^  n. If n is 

odd, ^^n+1 ~ ^ • Again since R has no proper sub rings in M^, R cannot

be in M^^^. The same is true of each nonzero subring of R. If n is even

M J- = H(M ). If S/I = R where S 6 M and I is an ideal of S, then S has n+1 n n
a subring J 6 M^ ^ such that S is the ideal of some ring T generated by J. 

Since we are working in the class of associative rings. Lemma 1.4 is
3

available; hence, if I' is the ideal of T generated by I, I' c l .  But 

S/I can have no nilpotent subrings, so that I' C I and hence I is an ide­

al of T. If J C I we contradict the fact that J generates the ideal S 

in T. Hence J $z I. Now (J + I)/I is a subring of S/I, which by the 

inductive hypothesis has no nonzero subrings in M^ But 0 ^ (I + J)/I =

J/(I n J) € M . as M  . is homomorphically closed and so we have a con­n-1 n—1
tradiction. Thus R S  M^^^. Likewise no nonzero subring of R can be in 

The fact that R $ M* now follows by induction.

To complete the proof we will use the A. D. S. construction to show 

that R g LM*. In the following M* will denote the class obtained at theP
gbh step in the A. D. S. construction of LM*. Now R €  M^* = M*. Let

6 > 1 be an ordinal number and suppose that no nonzero subring of R is in

U M*. Then since R has no nonzero ideals in U M*, R cannot be in M*; 
o<6 Û a<6 “ P
by the same reasoning, no nonzero subring of R can be in M*. Thereforep
R e LM*.

Corollary 3.2. With the conditions of Theorem 3.4 on M, a ring R € W is
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is LM*-semisimple if and only if R has no nonzero subrings in M,

Proof. Suppose R has no nonzero subrings in M  and let I be an ideal of R. 

Then I has no nonzero subrings in M  so that I € LM* by Theorem 3,4. Thus 

R is LM*-semisimple. On the other hand, if R is LM*-seniisimple, let I be 

an LM*-subring of R. Since LM* satisfies property (b), the ideal I’ of 

R generated by I is in LM*. Hence I' = 0 ,  so that 1 = 0 ;  in particular,

R has no nonzero subrings in M.

Lemma 3.5. Let W be a universal class and let M C W. Then there is a 

unique minimal class M ’ 2 M which is homomorphically closed, subring 

hereditary and satisfies property (b).

Proof. Define the classes M^ as follows. Let M^ be the homomorphic clo­

sure H(M) of M, Mg = A(M^), the subring closure of M^, and M^ = F(Mg). If 

n > 3 and the classes M^ have been defined for all .k < n, let M^ be either

the homomorphic closure of M  ,, A(M ,) or F(M ) according as n is con-n— 1 n—i n—i
gruent to one, two or zero modulo three. Finally, let M' = U M^.

Since M^ c M^ if k ^  m, it is easy to see that M* is homomorphically 

closed, subring hereditary and satisfies property (b). On the other hand, 

a straightforward induction like that in Theorem 3.3 shows that any class 

with these three properties which contain M  must also contain M ' .

Theorem 3.5. If M is any class of rings in an s-universal class W, then 

LM' is the unique minimal strongly subring hereditary radical class in W 

containing M.

Proof. Since M c M', M e  LM'. Since M' is homomorphically closed, sub­

ring hereditary and satisfies property (b), LM' has the same properties 

by Theorem 2.3 and Theorem 3.2. Let M C N where N is a strongly heredi­

tary radical class. Then N is homomorphically closed, subring hereditary
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and satisfies property (b) by Theorem 3.1, so that M' C n . Therefore 

LM* C N by Theorem 1.6, This completes the proof.

The example given in the remark preceding Theorem 3.4 also shows 

that X n L^^* ^ L j ^ ( X  0 M) ' in general.

To characterize semisimple classes for radical classes having prop­

erty (b) requires only a slight modification of Theorem 1.5. Here W is 

not required to be associative.

Theorem 3.6. Q C W is a semisimple class for a radical class P c W satis­

fying property (b) if and only if Q satisfies the following four proper­

ties:

(1) Q is subring hereditary.

(2) Any subdirect sum of rings in Q is also in Q.

(3) Q is extension closed.

(4) If I is an ideal of R € W and 0 r I/B € Q for some ideal B of 

I, then there exists an ideal A of R  with A c  I such that 0 I/A g Q. 

Proof. Suppose Q is a semisimple class for a radical class P which sat­

isfies property (b). Then SP = Q is subring hereditary by Lemma 3.2. 

Properties (2) and (3) follow as in [9]. To show (4), let I be an ideal

of R E  W and suppose 0 f I/B 6 Q for some ideal B of I, so that P(I) f I.

Let A be the ideal of R generated by P(I). Then A  € P by property (b) 

and A C I, so that in fact A = P(I). Hence 0 ^ I/A € Q.

Conversely, as in [9], Q is a semisimple class for some radical class 

P. Suppose I Ç P is a subring of R and let I* be the ideal of R generated 

by I. Then if I* g P we have 0 ^ I'/P(I')E Q. By (4), there exists an 

ideal A of R with A C I* and 0 ^ I'/A € Q. If I 2  A, then (I + A)/A =

1/(1 n A) is a nonzero ring in P by the fact that P is homomorphically
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closed. But Q by (1) is subring hereditary so that this is impossible. 

Thus I C  A, so that again we have a contradiction as I ’ is the subring 

of R generated by I.

We now introduce the following condition which may be satisfied by 

a radical class P:

(X) If I is a subring of R € W  with the property that I fl A 5  ̂ 0 for 

every nonzero ideal A of R and I € SP, then R E SP.

Proposition 3.3. Let P be a radical class satisfying property (b). If 

P is subring hereditary, so that by Theorem 3.1 P is strongly subring 

hereditary, then P has property (X).

Proof. If P is subring hereditary, let R € W have a subring I € SP such

that I n  A ^ 0 for every nonzero ideal A of R, Then P(I) = I A P(R).

Since SP is subring hereditary by Lemma 3,2, I A P(R) Ç P A SP = 0, which 

means P(R) = 0 since P(R) is an ideal of R. Therefore R € SP.

To conclude this chapter, we comment briefly on the meaning of strong 

subring heredity for hypernilpotent, associative radical classes. 

Proposition 3.4. Let W be the class of associative rings and P a strongly 

subring hereditary, hypernilpotent radical class in W. Then P contains 

every complete matrix ring of finite order over any division ring.

Proof. Let F be any division ring and consider the two-by-two matrix

ring F 2  over F. The subring R = j ^ ^ : a € Fj is nilpotent. By prop­

erty (b), which P possesses by Theorem 3.3, we have F_ € P, for F. is the

ideal of F^ generated by R. Then because F = a 0  

0  a : a € Ff is a sub­

ring of F^, F is in P. Now each of the simple rings F^ has a subring 

isomorphic to F, so that by property (b), each is in P.
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Theorem 3.7. [4, Theorem 4]. Every associative ring is a homomorphic

image of a subdirect sum of complete matrix rings of finite order over 

the ring of integers.

Theorem 3.8. Let W be the class of associative rings and let P be a 

strongly subring hereditary, hypernilpotent radical class in W. Then 

P = W if and only if P is closed under direct products.

Proof. By Proposition 3.4, P contains every complete matrix ring of fi­

nite order over the field of rational numbers. The matrix ring of or­

der n over the integers is a subring of the matrix ring of order n over 

the rational numbers, so that € P. If P is closed under direct prod­

ucts, then every direct product of complete matrix rings of finite order 

over the integers is in P, and hence every subdirect product of such rings 

is in P since P is subring hereditary. Since P is.homomorphically closed, 

every associative ring is in P by Theorem 3.7. The converse is evident.

We note, finally, the following simple consequence of Proposition

3.4.

Corollary 3.3. The Baer lower radical class S does not have property (b). 

Proof. As usual let Z denote the class of zero rings. Then 3 = LZ is 

subring hereditary by Theorem 2.3. If 6 had property (b), it would be 

strongly subring hereditary by Theorem 3.1. But this is impossible by 

Proposition 3,4, as 6 contains no fields.



CHAPTER IV

STRONG RIGHT HEREDITY AND RELATED TOPICS

One can define an analogue of strong heredity using right ideals, 

and we begin this chapter by adapting the approach of Leavitt [19] to the 

study of the concept, strong right heredity, we introduce. Our intentions 

are to characterize strong right heredity, for which purpose we employ a 

modification of property (a) of Theorem 1.10, to construct minimal radi­

cal classes of the types we encounter containing a given class and to say 

as much as possible about the semisimple classes of the radicals we study. 

We conclude the chapter with an investigation of certain radical classes 

obtained by altering the extension-union construction at the limit ordinal 

steps.

We wish to work within a type of universal class which includes all 

right ideals of the rings we consider; this requires a few preliminary re­

marks. Let C be an arbitrary class of rings and let C = Gq (C). Proceeding 

inductively, define Gy(C) = {1 : 1 is a right ideal of some ring R€G^_^(C)}

for j = 1,2,... and define G(C) = U G.(C). Of course we have C C G(C)j=0 2

and 0 € G(C).

Lemma 4.1. G(C) is right hereditary and is minimal among right hereditary 

classes containing C.

Proof. If R € G(C) , then R € G^ (C) for some integer j 2.0. Thus any 

right ideal 1 of R is a member of Gj^^(C) C G(C); hence, G(C) is right

hereditary. Also, if C C D where D is right hereditary, assume G^ ̂ (C)cD.

Then if R € G^(C), R is a right ideal of some ring K Ç G^ ^^C), so that

K € D. Since D is right hereditary R € D. Thu? Gj(C) C D and the proof

is completed by induction.
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In a similar way one can prove the following, taking one-sided ideals 

at each step in the construction above instead of right ideals alone.

Lemma 4.2. Given any class M of rings, there is a minimal class YN con­

taining M  such that if R € YM, then every one-sided ideal of R is also in 

YM.

Then H(Yhl), the homomorphic closure of YM, is the minimal homomor­

phically closed class containing M which is both left and right hereditary. 

We call such a class osi-universal ("osi" standing for one-sided ideal) 

and in this chapter we will understand that our activity takes place 

entirely within osi-universal classes W.

Proposition 4.1. Every class M of rings contained in an osi-universal 

class W is contained in a unique minimal right hereditary radical class 

in W.

Proof. Let G(M) be the right hereditary closure of M given in Lemma 4.1; 

clearly G(M) C w, because W is right hereditary and contains M. Then 

LG(M) is a radical class in W minimal with respect to the inclusion of 

G(M). Since G(M) is right hereditary, so is LG(M) by Theorem 1.1; more­

over, if P is a right hereditary radical class in W containing N, then P 

contains G(M) and hence LG(M) by Lemma 4.1 and Theorem 1.6.

Theorem 4.1. Suppose M C W is homomorphically closed and that M has the 

following property:

(p) If J € M is an ideal of a right ideal I of R € W, then the ideal 

J' of R generated by J is also in M. Then LM also satisfies property (p). 

Proof. By hypothesis R^(N) = M has property (p). Let B > 1 be an ordinal 

number and let J be an ideal of a right ideal I of a ring R 6 W with 

J 6 R (M). Let J' denote the ideal of R generated by J, and suppose theD
classes Ra(M) have property (p) for all a < 6.
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First suppose g is a limit ordinal. Then J = U J^, where {J^} is a

chain of ideals of J contained in U R (M). For each index y, let K be
a<6 “ Y

the ideal of I generated by J . We claim that J = U K  , for U K  2 U J = J,
Y Y Y Y

while on the other hand, as J is an ideal of I and J 2 for each y, we

have J 2 K for all y , so that J 2  U K . Each K € U R (M) by property
Y ”  Y Y a<6 a

(a) of Theorem 1.10, which is implied by property (p). For each y , let 

be the ideal of R generated by K. By property (p) each R^(N),

and we claim that J* = U K*. For J* contains K for each index y , so that
Y Y

J', being an ideal of R, contains all the and hence their union. Con­

versely, U K' is an ideal of R containing U K  = J and hence U K ’ 2 J'.
Y Y Y

Thus J ’ € R„(M).p
If 6 is not a limit ordinal, then J has an ideal K with K, J/KÇ R _(M).p-l

Now if P C J is the ideal of I generated by K, then P € Rg_^(M) by prop­

erty (a). Moreover, J/P € Rg ^(M) because J/P is a homomorphic image of 

J/K and Rg ^(M) is homomorphically closed by Lemma 1.2. Now P generates 

an ideal Q of R and Q € R , (M) by the inductive hypothesis. Consider
D— 1

J'/Q; we claim that this is the ideal of R/0 generated by (J +  Q)/Q. For

suppose S/Q is an ideal of R/Q containing (J + Q)/Q; then S contains J

and hence J ’, so that S/Q contains J'/Q. Conversely, J'/Q is an ideal

of R/Q. We have (J + Q)/Q = J/(J H Q) and since P c J A Q, J/(J fl Q) is

a homomorphic image of J/P € R ,(M). Since R , (M) is homomorphicallyp-i p-i
closed, (J +  Q)/Q 6 Rg_^(M); hence, J'/Q 6 Rg_^(M) by property (p), since 

(J +  Q)/Q is an ideal of the right ideal (I + Q)/Q of R/Q. Since Q,

J'/Q 6 R„ 1 (M), we have J' 6 R^(M), and the theorem now follows by trans-
D— 1 D

finite induction.

Definition 4.1, A radical class P c  W is called strongly right heredi-
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tary if for each right ideal I of each ring R 6 W we have P(I) = I A P(R). 

Theorem 4.2. A right hereditary radical class P C W is strongly right

hereditary if and only if it has property (p).

Proof. Suppose P is strongly right hereditary. Let J 6 P be ah ideal of

a right ideal I of a ring R € W and let J ’ be the ideal of R generated

by J. Now J c P(I) = I n P(R) so that J C P(R). Thus J C J' A P(R),

which is an ideal of R. Since J ’ is the ideal of R generated by J, J ’ =

J' A P(R) = P(J’). Conversely, suppose P has property (p) and let I be

a right ideal of R Ç W. If J € P is an ideal of I, then J' 6 P by (p).

Thus J' C P(R) so that J c P(R); in particular, P(I) C I A  P(R). On the

other hand, by right hereditary, I A P(R) is a P-ideal of I, so that

I A P(R) C P(I). Hence P(I) = I A  P(R).

Lemma 4.3. Let P be any radical class in W. Then SP is right hereditary 

if and only if for each R € W and each right ideal I of R we have P(I) c 

P(R).

Proof. If SP is right hereditary, R € W and I is a right ideal of R, then 

suppose P(I) t  P(R). Then 0 # [P(I) + P(R)]/P(R) = P(I)/P(I) A P(R) € P 

since P is homomorphically closed. Now [P(I) + P(R)]/P(R) is a right ide­

al of R/P(R) € SP. This is a contradiction since S P A  P = 0. For the 

converse, suppose that for each R € W and each right ideal I of R we have 

P(I) C P(R). If S € SP then for any right ideal J of S, P(J) c P(S) = 0. 

Hence SP is right hereditary.

Lemma 4.4. Let P be any radical class. Then P is strongly right heredi­

tary if and only if both P and SP are right hereditary.

Proof. If P is strongly right hereditary, then P(J) = I A P(R) for each 

right ideal I of each ring R 6 W, so that both P and SP are right heredi­
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tary. Conversely, suppose both P and SP are right hereditary and let I 

be a right ideal of R. By Lemma 4.3, P(I) C I 0 P(R). Since P(R) € P 

and P is right hereditary, I A P(R) € P. Since I A P(R) is a P-ideal of 

I, I A P(R) C P(I). Thus I n P(R) = P(I).

Lemma 4.5. If P has property (p), then SP is right hereditary.

Proof. If R E SP has a right ideal I g SP, then I has an ideal 0 f J € P. 

Then the ideal J' of R generated by J is in P by property (p), so we have 

a contradiction.

Lemma 4.6. If P is a right hereditary radical class, then P satisfies 

property (p) if and only if SP is right hereditary.

Proof. This follows from Lemma 4.5, Lemma 4.4 and Theorem 4.2.

We note that the example given below Theorem 3.3 also shows that

right heredity does not imply strong right heredity in the associative

case.

Proposition 4.2. If P is a strongly right hereditary radical class, then

for each R 6 W and each I 6 G({R}) (see Lemma 4.1), we have P(I) = I A  P(R).

Proof. If this result holds for all I € _^({R}) with j > 1, let

J € G.({R}) = GL(G. ,({R})). Then J is a right ideal of some l€ G. _({R}), J 1 J-1 J-1
so P(J) = J n  P C D  = J A I A P(R) = J n P(R). The result follows by 

induction.

Theorem 4.3. Let M be a class of rings satisfying property (p). For all 

R € W, if I € M is in G({R}), then the ideal I' of R generated by I is 

also in M.

Proof. Let R € W and let I € M A G 2 ({R})- Then I is a right ideal of a 

right ideal J of R. Let I* be the ideal of J generated by I, so that 

I* 6 M by property (p). Now let I*' be the ideal of R generated by I*;
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then I*' is also in M  by property (p) . Now I*' is an ideal of R contain­

ing I, but clearly also any ideal of R containing I must contain I* and 

hence I*’. Thus I' = 1 * '  is in M.

Now assume that for all R € W and all I € M 0 G ({R}) (n >. 2) thatn
I ’ € M, where I' is the ideal of R generated by I. Suppose K € M f l ( { E } )

for some R 6 W. Then K is in M A G„({J}) for some J 6 G , ({R}) and, if
2. n—1

K* is the ideal of J generated by K, K* € M by the inductive hypothesis. 

Now K* € M n G^({R}) so that if K*' is the ideal of R generated by K*,

then K*' € M, But, as before, K*' = K', so that K' ( M.

Corollary 4.1. Property (p) is equivalent to the following property (p’).

(p') If J € M  is a right ideal of a right ideal I of R € W, then

the ideal J' of R generated by J is also in M.

Corollary 4.2, Let P be a radical class which contains all the zero sim­

ple rings and whose semisimple class contains all matrix rings over divi­

sion rings, i.e., If ^  P ±  T "  in the notation of [11, page 40]; then P 

cannot have property (p).

Proof, Let F be any of the fields Z/(p), p prime. Let R be the 2 x 2

matrix ring over F. Then R has the right ideal 

in turn has the right ideal I = ‘ ^ ^

a b'' 
0 0 : a,b € F> which

Q Qj : b € f } which is a simple zero

ring with p elements and hence is in P. Now I ’ = R g P, so that P cannot

satisfy property (p).

This seems to be related to an unsolved problem of Koethe [16], We 

see from Corollary 4,2 that in the special case of the nil radical class,

there must exist a right ideal I of a ring R and a nil ideal J of I such

that the ideal J' of R generated by J is not nil. Koethe has asked
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whether a nil right ideal of a ring must generate a nil two-sided ideal. 

The following property (q) would seem to be of interest in this connec­

tion;

(q) If J 6 M is a right ideal of R, then the ideal J ’ of R generated 

by J is also in M.

We have been unable to determine whether this property will also hold 

for LM.

For any class M, let E(M) = {J' : J is an ideal of a right ideal I 

of a ring R Ç W, J € M, and J' is the ideal of R generated by J}.

Theorem 4.4. If W is an osi-universal class and M s W, then there exists 

a unique minimal radical class in W  containing M which satisfies property 

(p) .

Proof. Let = EH(M) and, proceeding inductively, for all

n > 1, Clearly m <. k implies C Let M* = U M^, where the union is

taken over all positive integers n; then H(M*) = M*. If J is an ideal of

a right ideal I of R € W and J € M*, then J E for some n. Hence

J € H(M ) so that J' € EH(M ) = M c M*, where J' is the ideal of R n n n+1
generated by J', Thus M* is a homomorphically closed class satisfying

property (p), so that LM* has property (p) by Theorem 4.1. Now if A is

any homomorphically closed class containing M and satisfying property

(p), then H(M) C A and EH(M) = M^ C A. If M C A, then H(M ) C A sinceI n  n
A is homomorphically closed and EH(M^) C A since A satisfies property (p). 

By induction M* C A, If A is a radical class, then LM* C A. This com­

pletes the proof.

For the moment let L* ,(M) denote the minimal radical class in W con-w
taining M which satisfies property (p). Then as in the remark preceding
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Example 3.3 we can assert that if X is a second osi-universal class, then 

X n  L*^(M) f ^ M) in general, although we do have (X fl M) c

X n  L*y(M).

We now construct a minimal strongly right hereditary radical class 

containing a class M. Let G(C) denote the minimal right hereditary class 

containing C introduced in Lemma 4.1.

Lemma 4.7. Let W be an osi-universal class and let M e  W. Then there is 

a unique minimal class M ’ containing M which is homomorphically closed, 

right hereditary and satisfying property (p).

Proof. Define M^ = EGH(M) and, inductively, M^ = EGH(M^_^) for all n > 1. 

Let M ’ = U M^. Then the lemma may be established by an induction argu­

ment as in Theorem 4.3.

Theorem 4.5, If M is any class of rings in W, then LM' is the unique 

minimal strongly right hereditary radical class containing M.

Proof. Since M CM', M C LM'. Since M' is homomorphically closed, right 

hereditary and satisfies property (p), LM' has the same properties by 

Theorem 2.1 and Theorem 4.1. Therefore LM' is strongly right hereditary 

by Theorem 4.2. If M C P where P is a strongly right hereditary radical 

class, then P is homomorphically closed and right hereditary and hence 

has property (p). Thus M' C P  and so LM' C P.

We now turn to the problem of characterizing the semisimple classes 

of radical classes having some of the properties mentioned in this chap­

ter.

Theorem 4.6. Q is a semisimple class for a radical class P with property 

(p) if and only if Q has the following four properties;

(1) Q is right hereditary.
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(2) Q is closed under subdirect sums.

(3) Q is extension closed.

(4) If I is an ideal of R and 0 f I/B € Q for some ideal B of I,

then there is an ideal A of R with A ^ I and 0 ^ I/A € Q.

Proof. Suppose that Q is a semisimple class for a radical class P satis­

fying property (p). Then SP = Q is right hereditary by Lemma 4.5. Prop­

erties (2) and (3) follow as in [9]. If I is an ideal of R and 0# I/B€ Q

for some ideal B of I, then P(I) f I. Let A  be the ideal of R generated 

by P(I); then A € P by property (p) and A  C I so that A = P(I). Hence 

0 f I / A G  Q.

Conversely, again as in [9], Q is a semisimple class for some radi­

cal class P. Suppose J € P is an ideal of a right ideal I of R, let J' 

be the ideal of R generated by J and suppose J' 6 P. Then J'/P(J') g Q.

By (4), there is an ideal A of R with A C  J' such that 0 / J'/A € Q. If 

J 2 A, (J + A)/A = J/(J n A) ^ 0, and J/(J H A) € P since P is homomor­

phically closed, so that we have a contradiction. Thus J C A, so that 

again we have a contradiction, for J ’ is the ideal of R generated by J, 

while J ’ / A.

Proposition 4.3. Let Q be a semisimple class for a strongly right heredi­

tary radical P. Let I be a right ideal of R 6 W and suppose 0 f I/B 6 Q, 

Then there exists a right ideal A  of R which is also an ideal of I such 

that 0 f I/A € Q.

Proof. I g P so that I/P(I) € Q, where P(I) = I fl P(R).

Theorem 4.7. Q is a semisimple class for a strongly right hereditary 

radical P = UQ if and only if Q satisfies, in addition to properties (1),

(2), (3) and (4) of Theorem 4.6, the following property (5).
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(5) If I is a right ideal of R and I Pi A / 0 for every nonzero ideal

A of R, then I ?  P implies R g  P.

Proof. Suppose Q is a semisimple class for a strongly right hereditary 

radical P. Then P satisfies property (p) by Theorem 4.2 and so Q satis­

fies (1), (2), (3) and (4) by Theorem 4.6. Now if I is a right ideal of 

R € W such that I D A 0 for every nonzero ideal A of R, and I #  P, we 

have P(I) = I n P(R) I. Thus I ^ P(R) so that P(R) f R, whence (5).

On the other hand, suppose Q satisfies (1), (2), (3), (4) and (5).

Then Q is a semisimple class for a radical class P satisfying (p) by Theo­

rem 4.6. Suppose P is not right hereditary, so that there must exist a 

right ideal I g P of some P-ring R € W. Let H = {A : A  is an ideal of R 

and A n I = 0}, Then 0 € H and so H ^ 0. By Zorn's Lemma, H has a maxi­

mal element M. In R/M ^ 0 we have (I + M)/M = I ?  -P. If A/M ^ 0 is an 

ideal of R/M ^ 0 then M C A  and M f A, so that by the maximality of M,

A n I f 0 in R. Thus (A/M) 0 (I + M)/M ^ 0. Hence, by (5) , R/M g P.

But P is a homomorphically closed class, so that this contradicts R g P. 

Therefore P is right hereditary; by Theorem 4,2, it is strongly right 

hereditary.

Example 4.1. As before we let G(M) denote the minimal right hereditary

class containing the class M. jl will denote the Jacobson radical class;

we work entirely within the class W of associative rings.

Define the class Q as follows: R g Q if and only if G({R}) Ojr = 0 .

Then Q is clearly right hereditary.

Suppose R/B. g Q with fl B. = 0 where I is an index set. Suppose 
^ igl ^

K g G({R}) . Then, for each i g I, (K + B^)/B^ = K/K A B^ gj^ since

^  is homomorphic ally closed. Thus (K + EL^/B^ € G({R/B^}) 0  ̂' = 0 and
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so, for all i € I, K c Thus K c A = 0. Therefore Q is closed

under the taking of subdirect sums.

Suppose J, R/J € Q. Suppose I € G({R}) f) ̂  . Then (I + J)/J =

1/(1 n J) € fl G({R/J}) = 0, so I C  J. But then I € G({J}) = 0

so that 1 = 0 .  Hence Q is extension closed.

To show property (4) of Theorem 4.6, suppose I is an ideal of R with

0 ^ I/B 6 Q, B an ideal of I. Let B ' be the ideal of R generated by B,
3

so that B' c I. Then B' C B by Lemma 1.4, so that B ’/B is nilpotent.

Thus B ’/B € G({I/B}) fl ^  = 0, so B' = B. Thus B is an ideal of R.

Thus Q is the semisimple class for a radical class P with property 

(p). We claim P jt , for S^ does not have property (1). To see this,

let R be the 2 ^ 2  matrix ring over the field F of two elements, so that

R € . R has the right ideal | q q ' 6 f| which, in turn, has

the right ideal q : x  € f| which, being nilpotent, is in does

however have properties (2), (3) and (4).

If Q* is a semisimple class for a radical class P which has property

(p) and contains ^  , then we wish to show that Q' c Q. Let R € Q'. Then

as Q* must be right hereditary, G({R}) C q '. Now Q ' O ^  = 0 a s P 2 | -  

and Q n P = 0, so that G({R}) fl ̂  = 0 .  Hence R 6 Q. Therefore UQ is

the minimal radical class containing ^  which has property (p). We remark

that UQ contains all n x n matrix rings over fields for n >. 2 but contains 

no fields, so that the situation in the classical case is not so drastic 

as in Chapter 3.

We may abstract from this example the following;

Proposition 4.4. Let W be the class of associative rings and let Q C W
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be any class satisfying properties (1), (2) and (3) of Theorem 4.6 such

that Q n Z = 0, where Z is the class of zero rings. Then Q is a semi­

simple class for a radical class satisfying property (p) .

Proof. We need only show (4) of Theorem 4.6. If I is an ideal of R and 

0 ^ I/B 6 Q, where B is an ideal of I, let B ' denote the ideal of R gener-
3

ated by B. Then B ' C B by Lemma 1.4 so that B'/B € Q is nilpotent. Thus

B' = B, whence B is an ideal of R.

This is related to a result of S. E. Dickson [9, Theorem 4.2] to the 

effect that a class Q of associative rings is a semisimple class for a 

radical class which contains all nilpotent rings if and only if Q A Z = 0 

and Q has properties (1), (2) and (3) of Theorem 1.5.

Example 4.2. Let v V  be the class of nil rings in the class of associative 

rings. Define by saying that R € if and only if G({R}) A  = 0 .

As in the discussion involving the Jacobson radical, is the semisimple 

class such that UQ^ is the minimal radical class satisfying property (p) 

and c o n t a i n i n g L e t  R be the ring of rational numbers of the form 

2x/(2y + 1 ) ,  X ,  y integers (cf. [11, p. 103]). Then G({R}) A A" = 0 so

that R  € Q^; however, R is Jacobson radical so that R € UQ. Clearly R € Q

implies R € Q^, so that we have shown UQ^ < UQ.

We now turn to the consideration of a radical class obtained by modi­

fying the extension-union construction. For any class M contained in an 

osi-universal class W, we construct a class R^(M) as follows. Let R^^(M) 

be the homomorphic closure of M. We proceed inductively to define a class 

R ^(M) for each ordinal number B. If 6 - 1 exists, let R ^(N) = {R € W :p p
R has an ideal J such that J, R/J € R„ ,^(M)}. If B is a limit ordinal,P“1
we define R € R^(M) if and only if R is the union of a chain of right



53

ideals of R such that I 6 U R ^(M). Finally, let R^(M) = U R„^(M).
Y a<6 “ 6 p

Lemma 4.8. Each class R„^(M) is homomorphically closed. Hence R^(M) is 

homomorphically closed.

Proof. R^^(M) is homomorphically closed by definition. Let S > 1 be an 

ordinal number and suppose R^^(N) is homomorphically closed for all a < S. 

Let R 6 Rg^(M) and let I be an ideal of R. If B is a limit ordinal, there
p

is a chain {I } of right ideals of R such that each I belongs to Y Y
U R ^(M) and R = U I . Now R/I is the union of the chain {(I + I )/!} a<6 ot Y Y

of its right ideals; furthermore, each (I + I^)/I = 1^/(1 fl I^) so that,

by the inductive hypothesis, each (I + I )/I € U R  ®(M). Therefore
Y a<B “

R/I € Rg°(M).

If 6 - 1 exists, then R contains an ideal J such that J, R/J € Rg_^(M).

By the inductive hypothesis, (J + I)/I and R/(I + J) both belong to 
0R, T (M) since the former is isomorphic to J/(I D J) and the latter is ?-±

a homomorphic image of R/J. Since [R/I)/[(J + I)/I] = R/(J + I), we have 

R/I € R ^(N). Thus by transfinite induction R^(A) is homomorphically
P  P

closed for all B.

Corollary 4.3. R^(M) is a radical class.

Proof. This follows readily from Lemma 4.8 and Theorem 1.2.

Theorem 4.8. If M is homomorphically closed and has property (p), then 

LM = R°(M).

Proof. By definition R„(M) C R„*^(M) for each ordinal B, where R^(M) is
— —  D P  P

the class obtained at ordinal number B in the extension-union construction

of LM. Note that R^(M) = R^^(M). Suppose that (M) c R^(M) for all

a < 6 and let R € Rg^(M). If 6 - 1 exists, then there exists an ideal J

of R such that J, R/J S R„ ,^(M) c R„ , (M) ; hence, R S R„(M). If B is a
p - i  D - i  D
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limit ordinal, R is the union of a chain {I^} of right ideals of R con­

tained in U R ^(N). Let I ' be the ideal of R generated by I. We have 
a<6 y

shown in the proof of Theorem 4.1 that each class R^(M) has property (p),

so that each I ' € U R (M); moreover, {I '} is a chain of ideals of R.
Y a<6 ^ Y

Hence R = U I ’ 6 R^(M). Thus R ^ ( M )  = R (M) for all 6, and thereforeY p p p
LM = R°(M).

Property (p) cannot be omitted from the statement of Theorem 4.8.

To see this, let Z be the ring of linear transformations of finite rank 

of a vector space V of countable dimension over a division ring D; this 

ring is discussed in [11, example 11]. Z is, it is important to remark, 

a simple ring. If we represent the elements of Z by infinite matrices, 

these are the matrices which have only a finite number of columns with 

non-zero entries. Let L^ denote the left ideal of Z consisting of all 

elements of Z represented by matrices with non-zero entries in at most 

the first n columns. Then Z = U L^. Since we have been working with

right ideals, we will consider a ring Z* anti-isomorphic to Z. Under the

anti-isomorphism, each left-ideal L^ is mapped anti-isomorphically onto 

a right ideal L^* of Z*, and Z* = U L^*. Let M = { L^*}. Then Z * , being 

a simple ring and failing to be in the homomorphic closure of M, is

not in LM by Theorem 1.9; however, Z* is in R^^(M^) CR^(M).

We may also remark that the condition that M  have property (p) is not 

a necessary condition that LM = R^(M) . For let M be the Jacobson radical 

class, so that LM = M. On the other hand, the union of any chain of 

Jacobson radical rings is still Jacobson radical, so R^(M) = M. We have 

observed in Example 4.1 that M does not have property (p).

The position of R^(M) in the radical scneme of things may be clari­

fied by noticing that if P is a radical class containing a class M such
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that, for all R 6 W, every ideal I of R which is a sum of P-right ideals 

of R is contained in P(R), then R^(M) C P. We may demonstrate this using 

transfinite induction; suppose to this end that R^^(M) C P  Va < 6 and 
let R € R ^(N). If 6 - 1 exists, there is an ideal J of R such that J,p
R/J € R ,^(M) C P. Since P is a radical class, it is closed under factorp—i
extensions, so that R € P. If S is a limit ordinal, then R is the union

of a chain {I } of its right ideals contained in U R ^(M) C p, so that 
Y a<e a

R  is a sum of P-right ideals. Hence R € P. Unfortunately, this does not 

characterize R^(M), for let R be a 2 x 2 matrix ring over a field F and 

let M be the set of proper right ideals (i.e., "rows") of R. Since M is 

simple and is not the union of a chain of its right ideals, R ÇL R^(M), 

although R is the sum of its right ideals. In fact, R € SR^(M), which 

demonstrates that even in the associative case SR^(M) need not be right 

hereditary.

Nor for that matter need R^(M) be right hereditary. Let M  consist 

of the single simple 2 x 2  matrix ring R over a field F. Then the right 

ideals of R are clearly not in R^(M).

We omit the proof of the following propositions, as we need only fol­

low the corresponding proofs in Chapter 2.

Proposition 4.5, If M is hereditary [right hereditary, left hereditary, 

subring hereditary], then so is R^(M).

Proposition 4.6. If M is a hereditary class of hereditarily idempotent

rings, then so is R^(M).

Proposition 4.7. If M is homomorphically closed and satisfies property

(a) of Theorem 1.10, then so does R^(M).

we may, however, illustrate the technique of proof with the following:
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Proposition 4.8. Suppose M is homomorphically closed and that no ring 

in M contains a nonzero idempotent. Then no ring in R^(M) contains a non­

zero idempotent.

Proof. By hypothesis, no ring in R^^(M) contains a non-zero idempotent;

suppose this is true of R^^(M) for all a < S and let R € R^^(M). Let e

be an idempotent in R. If g - 1 exists, there is an ideal J of R such

that R/J, J € Rg ^^(M) . Then e + J is an idempotent element of R/J, so

that e + J = J, that is, e € J. But since e is an idempotent of J, e = 0.

If 8 is a limit ordinal, then R = U I_̂ , where is a chain of right

ideals of R contained in U R ^(M) . Thus e 6 I for some y so that e = 0.
a<8 “ Y

Remark. If M  C N, then R°(M) C R°(N).

Proposition 4.9. R^(M) = R^(LM).

Proof. Since M c LM, R^(M) C R*^(LM) by the remark. On the other hand, 

since R^(M) is a radical class containing M, LM c R^(M) so that R*^(LM) c 

R°(R°(M)) = R°(M).

We may construct a radical class in the same way using left ideals 

rather than right ideals. Explicitly, we define L^^(M) to be the homo­

morphic closure of M. If 6 - 1 exists, we define L ^(M) = {R : therep
exists an ideal I of R such that I, R/I € L„ ^^CM)}. If 6 is a limitp—1
ordinal, let R € L„^(M) if and only if R is the union of a chain of leftp
ideals of R contained in U L ^(M). Finally, we define L^(M) = U L  ^(M).

a < B  “ P D
We now present an example to show that even in the associative case 

L^(M) need not be equal to R^(M). Let R be the associative algebra over 

the field of rational numbers generated by a countable number of symbols 

{x^ ; i = 1,2,...} subject to the relations x\Xj = x^ for all natural 

numbers i, j. Then R has no proper right ideals. For each natural number
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n let I be the left ideal n
n
y a.x. : a. rational 

i-1 ^ ^ 1
Then {I } is a chain n

of left ideals of R and R = U I . Let M = {I }. Then R € L (M) , butn
since R has no proper right ideals, R ?  R (M)
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