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PREFACE 

This paper is expository in nature and preaents teaching tech-

• 
niques developed and used by the writer in a secondary school classroom. 

It is written primarily for teachers of geometry. The main objective 

is to demonstrate how the mathematics teacher can incorporate elements 

of symbolic logic into a deductive Euclidean geometry course in such a 

manner .that (1) much of the traditional formal proof approach can be 

eliminated without sacrificing rigor and (2) the student obtains 

discovery techniques that will allow him to anticipate and, in some 

cases, establish the validity of many geometric theorems before they 

are introduced in the textbook, The writer has experienced success 

with techniques that will be described, and he presents them in 

this paper in the hope that other secondary school geometry teachers 

will find them useful. The paper has been prepared under the 

assumption that the reader's exposure to symbolic logic has been 

minimal. 

The writer wishes to express his appreciation to his major 

advisor, Dr. Vernon Troxel, for his assistance and guidance through-

out the preparation of this paper. Gratitude is also extended to 
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suggestions while the paper was being prepared, 
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CHAPTER I 

INTRODUCTION 

The decade of the sixties was a revolutionary period in mathe­

matics education, Mathematics educators, confronted with the modern 

theories of educational philosophy and psychology, faced up to the 

reality that many of their teaching methods, as well as much of their 

subject matter content, were antediluvian. The historic Cambridge 

Conference of 1963 and groups such as the Committee on the Under­

graduate Program in Mathematics (CUPM), the School Mathemal;:ics Study 

Group (SMSG), the University of Illinois Committee on School Mathe­

matics (UICSM), and others suggested and in many instances implemented 

many reforms that led to considerable improvement in the quantity and 

qual~ty of mathematics education. 

Despite the numerous improvements there remain unresolved issues. 

Irving Adler (1), among others, has stated that curriculum revision. 

during the sixties was least successful in seco)ldary school geometry. 

pespite the fact that reforms suggested by SMSG were almo.i:it universally 

adopted, Adler expressed the feeling that rigor was ov~remphasized, 

intuition was neglected, and too much emphasis on proof stood in the 

way of understanding, 

Even as this manuscript is being prepared, diverse opinions about 

the role of geometry are appearing in print, At one extreme one finds 

those (15) who feel that there. should be a year of work that is 



primarily geometric, and at the other those (7) who wish to eliminate 

geometry as a separate course. Another point of view is that geometry 

should be completely revised so that, by using transformations, it can 

be integrated with other branches of mathematics (5). 

A major point in the arguments of those who seek changes in the 

geometry curriculum is that students are now being introduced to 

elements of geometry on an intuitive basis during elementary and 

junior high schoolo Hence, the common geometric figures and their 

basic properties are fairly familiar to the high school sophmore. 

It would appear, therefore, that high school geometry is an ideal 

place for the student to experience thoroughly the deductive process 

of reasoning. His previous exposure to this process has been minimal 

and to continue on a purely intuitive basis would deny him the 

opportunity to develop proficiency with this important and extremely 

useful reasoning process, 

A geometry course developed through a deductive process requires 

a certain amount of rigor, Indeed, the act of deducing a necessary 

conclusion as a logical consequence of other statements is a rigorous 

exercise when compared to inducing a probable conclusion from 

observation or experimentation, With the exception of those who 

might suggest that the content of sophomore geometry be presented on 

a purely intuitive basis, none of the diversified opinions concerning 

the geometry ct1rriculum suggest that the deductive nature of geometry 

be abandoned. Eccles (5), who desires that geometry be taught using 

transformations, would retain a substantial block of traditional 

deductive geometry, When transformations are introduced after 

perpendicularity, parallelism, and triangle congruence have been 

2 
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covered, they are to be developed deductively. Fehr (7), who wants to 

discard the present year-long geometry course, would integrate 

geometry with ot;her courses and have it included in every year 

beginning in grade seven and continued. through grade twelve. His 

program calls for the developing of the- concept of proof and for , 

the proving of theorems. It would . appear that strong. support exists_ 

for retaining the deductive approach to geometry and preserving. a 

degree of rigor. Keeping Adler's -views in mind., the ques tbn arises 

as to how a teacher can present geometry .in a rigorous manner without 

overemphasizing rigor and neglecting intuition. The writer directs 

himself to this question in this paper. 

The writer will offer the secondary.school geometry teache+ 

some insights into possible uses of symbolic logic.in the teaqhing 

of geometry. The· writer feels that use of some or all of the 

concepts discussed in this paper may.be beneficial in helping 

students obtain a more complete understanding of the nature of 

deduct:l,ve reasoning than would be obtained by strict adherepce to 

material in a textbook. The rigor that is necessary for a deductive 

development remains. However, as will be shown, the rigor can be 

used to promote student discovery and intuition. 

Following is a brief outline of the logical content of this paper. 

The concepts of statement, negation, truth table, conjunction, 

disjunction, conditional, biconditional, equivalence, and .tautology 

are introduced in Chapter II, The. teacher is shown hQw he, may 

in.traduce and reinfo.rce .these concepts by relating them to definitions 

and postulates that appear in the. early chapters of a geometry text;book 
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and by utilizing the basic properties of common geometric figures that 
' 

students have intuitively induced in earlier grades, 

The valid argument forms that are used in a deductive geometric 

proof are introduced in Chapter III. The writer feels that examination 

of these argument forms may be beneficial to students as an aid in 

understanding the nature of deductive proof. 

The· traditional definitions of converse, inverse, and contra-

positive of a statement are introduced in Chapters IV, V, and VI, 

respectively. Using these definitions as a guide, three new statement 

forms are constructed, defined to be (1) a partial converse, (2) a 

partial inverse, and. (3) a partial contrapositive. Emphasis is 

placed on demonstrating many creative uses of these statement forms. 

Indirect proof is discussed and used in most secondary school 

geometry textbooks, The aforementioned concepts of symbolic logic 

can be used to supplement what is usually a brief textbook presentation 

of indirect proof. This is the subject of discussion in Chapter VII. 

Based on the writer's personal experience in a geometry classroom, 

he believes that the concepts of symbolic logic presented in this 

paper can be integrated into a geometry course without sacrificing 

time from geometric content, A suggested outline for this procedure 

is found in Chapter VIII. 

It is interesting to note that opinions on the teaching of logic 

in secondary schools are as diverse as those concerning the geometry 

curriculum. Presented in the May, 1971, issue of The Mathematics . ~- ' 

Teacher are pro and con articles on the question "Should Mathematical 

Logic be Taught. Formally in Mathematics Classes?" On the pro side, 

Exner argues that our present school mathematics sequence does not 



5 

prepare a student very well in the matter of proving things and. 

feels that the introduction of some formal logic "would replace some 

misguided formalism that is already present." (6, p. 396). On the 

con side, Hilton expresses a concern that too much logical rigor 

could be harmful to the .student. However, he does feel that "certain 

logical techniques should be taught explicitly" (6, p.. 390) and expands 

on this by saying: 

For example, the· student should know how to. negate 
a proposition involving universal and existential 
quantifiers and thus how to set about the search for 
a counterexample to such a proposition,,,,(6, p. 390). 

It should be noted that even the Report.of the Cambri!fge Confer-

ence of 1963 sheds little light on the issue of teaching logic, 

It will have been observed in section 5, . under 
Logic and Foundations, that the treatment of 
formal logic is very meagre. We do not know 
how thorough the treatment of logic should be. 
Since we do not propose.to teach logic as a 
subject in its own right, the problem is 
pedagogic and hence pragmatic,,,,(8, p. 47), 

Despite an expressed uncertainity about the role of logic in 

the secondary school classroom, the authors. of the 1963 Cambridge 

Conference Report exhibit a belief that an introduction to logic 

may well be justified if it can be beneficial and practical in the. 

learning experience of any mathematics class, This writer thus feels 

that there is justification for using symbolic logic.in sophomore 

geometry classes and in presenting the material contained in this 

paper. His experiences in the classroom have led him to believe 

that an exposure to symbolic lo.gic has been a valuable learning 

experience for his geometry students and that a know:ledge of the 



techniques used may poss"ibly be beneficial to other geometry 

teachers. 

6 

The writer has attempted to reach a compromise position between 

Exner and Hilton. Though not teaching logic as a subject in itself, he 

introduces those logical 'concepts mentioned previously and relates them 

to material in ,the geometry textbook being used for the year of study. 

The writer hopes to demonstrate that his procedure, if carefully 

developed by the geometry teacher, preserves . the rigor that .is · 

necessary for a deductive development of geometry without,being harm­

ful to students. 

In preparing this paper; the writer has attempted to present 

material that will facilitate application of the ·techniques to almost. 

any deductive development of geometric structure. This is not to say . 

that the specific examples illustrated can be utilized in every 

geometry classroom. For instance,. no examples are given that relate 

to transformations, since the writer has taken' his ex~ples from f;l..ve 

modern textbooks, the structures of which are developed without ·trans­

formations~ The thought. underlying th.is omission is that transforma-. 

tion geometry is -not widely used at the present time and to 

interchange transforma.tion and non-transformation examples would be 

confusing. However, though most of the examples in this pa.per are not 

directly applicable to transforma.tion geometry, the techniques relat­

ing to the development of a deductive .system certainly are, For that 

matter, the techniques could be utilized in other branches of 

mathematics, since the. logical derivation of . a nece.ssary ccmclusion 

from a stated .hypothesis does not. require .that the statements relate 

specifically .to geometry. 



The geometry textbooks that have been referenced in the writing 

of this paper are the following: 

Exploring Geometry, by Keedy, Jameson, Smith, and Mould, 
Holt, Rinehart and Winston, Inc., 1967. 

Geometry, by Goodwin, Vannatta, and Crosswhite, 
Charles E, Merrill Publishing Company, 1970, 

Geometry, by Moise and Downs, Addison-Wesley Publ,ishing 
Company, 1971, 

Geometry, A Dimensional Approach, by Rosenberg, Johnson, 
and Kinsella. The Macmillan Company, 1968. 

School Mathematics Geometry, by Anderson, Garon, and 
Gremillion. Houghton Mifflin Company, 1969. 

The writer's analysis of these texts consisted of a thorough 

study of each book in an effort to extract geometric material common 

to each text, The writer then considered the concepts of symbolic 

logic to be introduced in this paper, Finally~ he selected topics 

and examples from the common geometric material that, in his opinion, 

would best illustrate the use of symbolic logic.as a tool in the 

secondary school geometry classroom. 

Each of the texts develop geometric structure by means of an 

axiomatic deductive system. That is to say, primitive terms, def-

initions, and postulates are established in early chapters and these 

are used to prove elementary theorems, which in turn are used to 

prove more advanced theorems relating to the common geometric figures 

and the conditions for congruence, parallelism, perpendicularity, etc. 

For the most part, the texts are patterned after the material 

produced by SMSG. 

The fact that the use of symbolic log:i,c in geometry is the 

subject of this paper should be put in proper perspective before the 

7 
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reader progresses into the next chapter. Clearly, the authors of the· 

five ·geometry texts use logic in the sense that they derive necessary 

(as contrasted to probable) conclusions from existing statements that 

have been accepted or proved to be true, This writer will exemplif~ 

their use of logic.to promote discovery techniques and enrichment 

exercises and ·to present what he considers to be desirab.le alternatives 

to many of their prE>ofs. This is accomplished by the gradual. develop-

ment of some of the concepts of symbolic logic, 

Anderson and Moise do not-make any use .of symbolic logic, In. 

varying degrees, Goodwin-(pages 87-115), Keedy _(pages 133-137), and 

Rosenberg (pages 64-71; 173-179) introduce some of the symbols.of· 

symbolic logic, but do not make .them _an ·essential part of their 

geometric development. All of .the texts identify the converse form 

of a statement; and three of them (G0odwin, Kee,dy, and Rosenberg) 
r 

identify inverse and contrapositive forms, and touch upon truth 

tables. Again, however, these concepts are not·werked into.the 

development of material throughotl-t the texts, None of the ·texts 

contains "validity" or "valid argument" in the index, although 

Goodwin displays valid argument forms on pages 91~92 and Rosenberg 

defines "valid syllogism" on page 70, Once again, however, the 

concept of validity is not utilized in the deductive development,. 

and most of the .examples of valid arguments do not relate to geometry. 

A typical example, from Rosenberg's text, is the following: 

PREMISES: All boys are giants, 
Sam is a boy. 

CONCLUSION: Sam is a giant, (19, p, 70), 



This writer believes that the five books in the sample are 

excellent geometry textbooks. The comments that have been made, and 

similar ones that will be made throughout this paper, should not be 

considered as criticisms of the texts. Indeed, it would require a 

text of imme.nse bulk to cover the geometric content in ·these. books 

and also incorp0rate a development of symbolic logic.within its pages. 

It is the carefully conceived structure 0f geometry within these texts 

that allows one to employ the concepts of symbolic logic presented .in 

this paper. 

Four of the five texts adhere to a modern trend and integrate 

three-dimensional Euclidean geometry with plane Euclidean geometry. 

Rosenberg is the exception, deferring a study of three-dimensional· 

geometry until Chapter 11. In the exa:mples presented throughout this 

paper, it is to be assumed that all statements about geometric figures 

are made relative to three-dimensional Euclidean space, unless other..-· 

wise specified. In ·some instances,.it will be specified that state:-­

ments about a planar· figure are made relative to the plane of the · 

figure, as some of the theorems 0f plane Euclidean geometry are not 

valid when stated relative to three-dimensi0nal Euclidean space. 

Since most of the logical concepts presented can be introduced 

in the early m,onths of a geometry course, a large portion of·. the 

examples in thi~ paper relate t0 material normally found in the early 

chapters of a geometry text. However, since the logical concepts are 

applicable throughout the entire course, this paper does contain 

examples relating to circles, spheres, and other figures usually found 

in :the la.ter chapters of a textbook, 

9 



The reader will find exercises at the end of many sections in 

this paper. These serve as examples of problems that can be assigned 

to students or discussed in class to reinforce the logical concepts 

developed. Solutions for .the exercises appear in the Appendix~ 

10 



CHAPTER II 

BASIC CONCEPTS OF LOGIC 

Introduction 

A deductive course in geometry is concerned with proof, That is 

to say, the student is taught the science of reaching a necessary 

conclusion from one or more given statements. Before one can begin 

to discuss the idea of proof, a foundation must be established by 

introducing primitive .terms ·(such as point, line, and plane), 

definitions, and postulates. The time required for this part of a 

geometry course is considerably less than it was formerly because 

much of the important information about geometrical objects is 

taught in the elementary school.and many useful conclusions pertaining 

to these objects are established by the end of grade eight. 

(7, p. 151). S:l.nce.the pre-proof.period is essent:i,ally a review 

for students, this is the ideal time to introduce basic concepts 

of logic that will provide students with a powerful discovery tool 

when a study of proof is undertaken. The logic.al concepts will 

undoubted.ly represent new material for the students. However, it. 

requires only. a few minutes of class time to introduce these concepts . 

and they can continually be reinforced by applying them to material 

in the early chapters of the geometry text, which, as hq.s been 

stated, contains material familiar to the students. Many examples w:1.11 

be given in this paper to demonstrc;1.te how th:1.s can be done, 

1 , 
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Statements 

Fundamental to logic and geometry is .the concept of a statement, 

A statement is an assertion that is either true or false, but not both, 

In geometry, postulates are statements that are assumed to be true, 

and .theorems are statements that are proved from other statements, A 

statement possesses one of two truth values: T (for true) or F 

(for false), 

Example 2.1 

The following sentences are statements. 

1. {a,b} C {a,b,c}. 

2, Two distinct lines may inter.sect: in two distinct points, 

3, All right angles are congruent, 

4. A triangle is. a quadrilateral. 

A simple statement is a single independent clause--that is, it 

contains one subject and, verb, can stand alone grammatically, and 

expresses a complete thought, The statements in Example 2.1 are 

examples of simple statements. One can combine two or more simple 

statements by using statement connectives ·such as "and" or "or" or 

"if •• , then ••• " to create a compound statement. The statement, "An 

isosceles triangle may contain a right angle and no triangle contains 

two right angles," is an example of a compound statement. Each 

simple statement used in .the construction of a compound statement is 

called a component statement of the compound statement, 

A teacher of geometry and his students spend c.;msiderable time 

working with compound statements because virtually all definitions, 
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postulates, and theorems are compound statements. Definitions, 

postulates, and theorems are true statements and the geometry student 

should have a clear understanding of what it means to say tha~ a 

compound statement is true, Ona also encounters false compound 

statements in geometry. For instance, in the discussion of. converses 

of theot"ems, many authors of geometry texts emphasize that the converse 

of a theorem may be a false statement, 

The following sections are devoted to exploring the basic types 

of compound statements encountered ;in secondary school geometry, the 

connectives used in constructing such statements, and the assignment 

of truth values to the statements. Throughout this paper, statements 

will often be denoted by lower case letters, such asp, q, and r, The 

notation "p:" me-ans that p denotes the statement following the colon, 

For instance, 

p: Vertical angles are congruent 

means that p denotes the statem~nt "Vertical angles are congruent:." 

Negation 

If p denotes a statement, then "'P (read "not p") denotes a 

statement called the negation of p. If pis true, then "'Pis false; 

if p is false, then "'"P is true, 

Example 2.2 

p: 5 + 2 = 7, (T) , 

~p: 5 + 2 • 7, (F), 
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Example 2.3 

p: A line contains three noncollinear points, (F), 

l\,p: A line does not contain three nonoollinear points, (T). 

The statement l\,P may also be written .in the following manner. 

l\,p: It is not true that a line contains three noncollinear points. 

The teacher should emphasize that if p and q are negations of one 

another, then one must be true whenever ~ other is false, ~ 

vice-versa. Consider these statements: 

p: Lines 11 and 12 are parallel. 

q: Lines 11 and 12 intersect, 

Students are likely to consider q as.the negatioll of p, arguing that 

if q is true, then p must be false. However, if pis .false, it does 

not follow that q is llecessarily true. In three-space, if 11 and 12 

are not parallel, then they may be skew. (If "skew lines'' have not 

been defined, the teacher can demonstrate two non-parallel lines that 

do not intersect by picking two appropriate edges in the classroom.) 

Of course, if one is assuming that 11 and 12 are distinct coplanar 

lines, the p and q are indeed negatione of each other. This example 

points out the fact that one must examine statements.relative to 

the space in which. one is working, 

As another example, consider statement 2 in Example 2.1. This 

statement is false in Euclidean three--space. However, if "lines." 

refer to lines on a sphere, then the statement is true. 



15 

Example 2.4 

p: No two sides of LlABC are equal in length, 

q: The three sides of LlABC are equal in length, 

In this instance, p and q are not negations of each other, since 

it is possible for both statements to be false. Let AB= BC= 4 and 

AC= 6, for instance. 

One might reasonably question the use of Example 2.4 in the 

beginning stages of a geometry course, pointing out the fact that 

many texts do not define "triangle" until two or three chapters of 

preliminary material have been introduced. Moise, for example, first 

defines "triangle" in Chapter 4 of his text, This writer sees nothing 

wrong with utilizing the intuitive knowledge that students possess to 

stress concepts that will be beneficial to them when they begin 

to work with deductive proofs. It can reasonably be assumed that 

high school sophmores recognize triangles, rectangles, circles, etc., 

and know some of their basic properties. It can also be noted that 

authors of geometry texts appeal to the intuitive knowledge of students, 

Moise refers to triangles in his Chapter 1 problem sets long before 

formally defining "triangle," 

The concept of a quantifier can be emphasized when discussing 

negation. A teacher can point ~ut in a geometry text numerous examples 

in which a quantifier is directly u.sed or implied. For instance, the 

postulate stating: "For any two points there is exactly one line that 

contains them" (12, p. 34), is a statement about~ pairs of two dis-

tinct points. A way to negate this statement is to say, "There exists 

at least one pair of distinct. points not contained on exactly one line," 
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In general, if x represents an element of a specified set and if 

p denotes a statement, the negation of.the statement, "For all ;ii:, p," 

may. be writte~ in any one. of the following useful forms, 

(1) For some x: ~p. 

(2) There exists at least one x such that ~p. 

(3) It is not true that for all x, p. 

Example 2.5 

p: All triangles are equilateral. 

~p: (1) Some triangles are not.equilateral, 

(2) There exists at least one triangle that .is not 

equilateral. 

(3) It is not true that all triangles are equilateral. 

The statement ~pin Example 2.5 is a statement about some of the 

elements in a specified set.. In this case, the set is the set of all 

triangles. In geometry one often encounters a statement.that is true 

for a proper subset of a specified set, U, but false when applied to 

all elements in U. For instance, many true statements about squares 

are false when applied to qt.;adrilaterals. 

In general, if xis an element of a spec:lfieq set, the negation 

of .the st.ateme,:i.t, "For some x, p," may be written as follows: 

(1) for all x, ~p. 
I 

(2) It is not true that for some x,p. 

(3) ~here does not exist an x such that p. 
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Example 2.6 

p: Some triangles are right triangles. 

"'P: (1) All triangles are not right triangles. 

(2) It is no.t true that some triangles are right triangles. 

(3) !here does not exist a t~iangle that is a right triangle, 

Exercise Set 2a 

1. For each statement p, write the statement "'P· 

(a) 8 p: ".:'z = 4. 

(b) p: The point Mis petween ppints A and. B, 

(c) P' ' 1B intersects en. 
(d) p: lrQR is not a right angle, 

(e) p: T;wo intersecting lines.are not contained in a unique plane. 

(f) p: Every segment has a midpoint. 

(g) p: All pairs of suppl,ementary angles are congruent. 

(h) p: Some pairs of perpendicular lines form right angles. 

2. In Example 2.5, can "'P be writ.ten "No triangles are equilateral''? 

In problems 3-5, E!xplain why p.and q are not negations of each other, 

3. p: /A.is acute. 

q: /A is obtuse. 

4. p: Any set containing three distinct points is collinear. 

q: No set containing three distinct points is collin,ear. 

5. p: There exist two planes that iriters·ect :in a line •. 

q: There exist two planes that do not intersect in a line.· 
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Conjunction 

If p and q denote statements, then the conj1,inction of p with q is 

a statement denoted by pj\q (read "p and q"). The statement p/\q is 

true when both p and q.are true; otherwise it is false. Assignment of 

a truth value to the compund statement requires knowledge of the truth 

value of p and the.truth value of q. Since p has two.possible truth 

values and q has two possible truth values, there are 2~2 = 4 

arrangements for the values of the two statements. Table I illustrates 

the truth values of p/\q for all pos.sible arrangements of. the t:ruth 

values of its component statements. Such a table is called a truth 

table. 

TABLE I 

TRUTH TABLE FOR p/\q 

p q p /\ q 

T T T 

T F F 

F '.t F 

F F F 

Example 2.7 

p: Angles with the same measure are congruent. 

q: Vertical angles are congruent, 
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p/\q: Angles with the same measure are congruent and vertical 

angles are congruent, 

The statement p/\q is true since both p and q are true, 

Example 2.8 

p: A triangle is the .union of three.segments. 

q: The union of three segments is a triangle. 

p/\q: A triangle is the union of three segments and the union 

of three segments is a triangle. 

The statement pj\q is false since q is false. Note that the 

truth value of pis irrelevent in this example (See Table I), 

Symbols of inclusion, such as parentheses, brackets, and braces, 

are used to indicate a grouping of co.mponent statements within a 

co~pound statement. For instance, if p, q, and r denote stat~ments, 

then the compound statement (p/\q)/\r represents.the conjunction of the 

statement p/\q with the statement r. The truth table for (p/\q)/\r 

3 contains ·eight rows, since there are 2 • 2 • 2 • 2 possible arrangements 

for the truth values of p, q, and r. The geometry teacher should 

observe the systematic pattern of T's and F's in the first three 

columns of Table II below. Adherence to this pattern saves time and 

promotes uniformity when one is listing trt.1th value arrangements for 

three component statements. 



TABLE II 

TRUTH TABLE FOR (p/\q)/\ r 

' (o/\o)/\ r D a r. 

T T T T rlT 

T T F T F F 

T F T F F T 

T F F F F F 

F T T F F ! 

F T F F F F 

F F T F F T 

F F F F F F -...,.. 

It should be carefully n1:>ted that the compoµnd etat;ement (p(\q)/\r is 

true if and only if all of its component statements are t:rue. 

One can easily extend Table II to include a colµmn for the 

truth values of the statement p /\(qi\:-). A result of this exercise 

is that one can write the statement (p/\q)/\l:' as p/\qf\r, since 

the order iQ. which the comppnen.t statements are considered has no 

effect on the t;ruth table of the compound statement, 
i 

Exercise Set 2b 

1, Let p: A square is a rectangle. 

q: A rectangle is a square. 

Deter.mine t:he truth value of each statement below. 
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(a) pj\q. 

(c) 'vp/\q. 

(b) pj\'vq. 

( d) 'up I\ <vq • 

2. Let p: Congruent angles have the same measure. 

q: Supplementary angles are congruent, 

r: Vertical angles are congruent, 

Determine the truth value of each statement below, 

(a) pj\qj\r, 

( c) pl\ 'vqj\r. 

(b): 'vpj\qj\r I 

(d) 'vpj\ 'vqj\ "\Ir, 

3. The definition of "betweenness for points" in Anderson's ·text 

is stated as follows: "Bis. between A and C is (1) A, B, and 

Care distinct points on the same line and (2) AB+ BC• AC." 

(3, p.50). 

Let p: A, B, and Care.distinct points. 

q: A, B, and Care collinear. 

r: AB+ BC• AC. 

Then one can say that Bis between A and. C if P/\qj\r is a true 

statement, 

Assume now that it is known that Bis n.ot between A and C. 

What can be said about the relativ.e truth values of p, q, and r? 

4. Construct truth tables for (a) "'P/\'1-q; (b) pj\qj\'vr, 

5. If p, q, r, ands denote statements, how many rows would appear 

in a truth table for p/\q/\r/\s? 

Disjunction 
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If p and q deno.te statements~ the11, the disJ unction of p with q is 

a statement denoted by PVq (l;'ead "p or q"). The statement pVq is 

true if at least one of p and q is true; otherwise it is false. 



TABLE III 

TRUTH TABLE FOR PV q 

'D (I t> v a 

'I T T 

T F T 

ll' T T 

F F F 

The word "or" is used in the inclusive sense in the 'definition of 

disjunction, Hence, if one of the component statements of p\/q is 

true, then p\/q is true irrespective of the truth value of the pther 

component statement, 

Example 2.9 

p: Bis vertex of ~ABC. 

q: B is an interior point of ~ABC, 

p\jq: Bis vertex of 6ABC or Bis an interior point of.AABC. 

The st~tement p\jq is true since pis true, Furthermore, note 

that it makes no difference in this example whether or not q is ttue. 

Example 2.10 

p: The intersection of two lines must be ~. 

q: The intersection of two planes may be a point, 

22 

p\jq: The intersection of two lines must be~ or the intersection 

of the two planes may be a point. 

The statement p\/q is false since both p and q are false, 
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Exercise Set 2c 

1, Let p: A line m•y intersect a plane in exactly one point, 

q: A line not contained in a ,plane may interaect the plane 

in more than on• point, 

Determi~e the truth value for each 1tatement below, 

(a) p\/q, (b) P\/"'Q• 

(d) "'P V"'q, 

2, Construct truth table& for (p\/q)\/r and p\/(q\/r), Ara the 

symbols of inclusion necessary? 

3. Refer to problem 3, Exercise Set 2b, If the statement p\jq\/r 

is true, can one conclude that Bis between A and C? 

4. Let p: A right triangle may be isosceles. 

q: A right triangle may be equilatar•l, 

r: A right triangle may contain two right.angles, 

Determine the truth value of each statement.below. 

(a) PVqVr, 

(c) pV'vqV"-r 

(b) 'up vq vr. 

(d) l'\,PV "'qVr, 

Conditional Statements 

If one scans the pages of a geometry text, he will find among 

the definitions, postulates, theorems, and exercises numerous examples 

of compound statements using the logical connective "if .,. then 

Statements of this type are encountered on a daily basis in a 

secondary school geometry course. 

If p at}d q denote statements, then the statement denoted by 

p+q. (read "If p, then q") is called a conditional statement. The 

II 
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statement p-+q is true except when pis true and q is false, in which 

case it is false, 

TABLE IV 

TRUTH TABLE FOR p+q 

p q p + q 

T T T 

T F F 

F T T 

F F T 

The statement p+q may also be read in any one of the following ways:. 

(1) q, if P• 

(2) p only if q. 

(3) pis a sufficient condition for q. 

(4) q is a necessary condition for p, 
I 

Example 2,11 

p: Rectangles have four right angles, 

q: Sq4ares have four right angles. 

p-+q: +f rectangles .have four right angles, then squares have 
I 

four right ~ngles. 

The condition p+q may also .be read in any one of the following 

ways: 



(1) Squares have. four right angles if rectangles have four 

right angles. 

(2) Rectangles have four right angles only if squares have four 

right angle~. 

(3) A sufficient condition for sqllares having four right angles 

is that rectangles have fc;,ul;." right angles. 
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(4) A necessary condit:l,on for rectangles hav:i,ng four right angles 

is that squares have four right angles. 

The conditional p+q is true since it is not possible for q to 

be false while pis true. 

Example 2.12 

p: /A and a_ are. supplementary. 

q: (A and~ are complementary. 

p-rq: If IA. and & are supplementary, then IA_ and /.a_ are 

complementary. 

The conditional p+q is false since q is false whenever pis true. 

Example 2.13 

p: All angles have the same measure, 

q: All segments have the same lengthi 

p+q: If all angles have the same measure, the.n all segments 

have the same length, 

The statement pis false. Therefore, it is impossible for q to 

be false while pis true. Hence th.e conditional p+q is true. 
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It w;i.11 be emphasized at this point that the conditional p-+q b 
' 

false only.when pis true and q is false (See ±al)le IV), Hence, when-

ever pis false, the conditional p+q is true irrespective of the truth 

value of q. This situation is often confusing to students. If time. 

permits, and if a teacher has able students, he might wish to discuss 

the underlying reasons for the assignment of truth values to p+q, An 

excellent reference is Lightstone (14, p. 5). An alternate approach, 

and perhaps the most desirable in the majority of ca$es, is for the· 

teacher to explain that the assignment of truth values to p+q is 

merely .a matter of definition and that most of the w0rk in geometry 

involving the conditional p+q will be limited to cases in which p 

is true, (It can be noted that even in forms of indirect proof, 

a student begins his reasoning .Process with a statement assumed,to 

be true.) 

Exercise Set 2d 

1. Let p: &. and Li_ have the same m~asure, 

q: &_ and &are congruent, 

(a) Write out in words t;he conditional ! p+q, 

(b) Write the conditional in (a) U!~ing the phrase !'only if, II 

(c) Write the conditional in (a) using t;h~ word "necessary. II 

(d) Write the conditional in (a) using thel word "sufficient." 

(e) What is the truth val.ue of each of the following statements? 

(i) p+q, (ii) q+p. 

2, Follow the directions in problem 1 using th.e following statements. 

p: 6ABC is isosceles. 

q: 6ABC is equilateral, 



3, Moise presents the following definition: 

"If~ andAE are opposite rays, and AC 
is 8:nY other ray, then 4Ac and li:AD 
form a linear pair, II (17, p, 91) 1 

He then states. the following postulates: 

B A D 

Figure.1 

'.'If two angles. form a linear pa.tr, then th~y. are· supplementary." 

(17, p. 91), Suppose now that it is ,known that two angles do·. 

not form a linear pair, Can one conclude that toe two angles 

are not supplementary? 

Biconditional Statements 

The conjunction of the conditional p:l:'q with the conditional 

q-+p is a statement called a bic.onditional, The tru~h values fin 

the biconditional (p+q)/\(q:+p) are shown in Table V. 

TABLE V 

TRUTH TABL~ FOR (p+q)/\(q~p) 

p (I (p+Q) I\ (a+o) 
,-,-

T T T 'l' T. 

T F .F F T ; 

F T '.T F F 

F F T T T ....... 
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The biconc;litional (p+q)/\(q~) is generally denoted by p+4,,q, 

One can note from Table V that p+-+q is true if and only if p and q 

have the same truth value; otherwise. it is false, The biconditional 

p+-+q is most commonly read in one of the following two ways. 

(1) p if and only if q. 

(2) pis a necessary and sufficient condition for q. 

Example 2.14 

p: IA_ is a right angle. 

q: m&_ = 90. 

p+.+q: (1) LA. is a right angle if and only if mLA. = 90. 

(2) A necessary and sufficient condition for m /A= 90 

is that LA is a right angl.e, 

The statement p+-+q is true since p and q cannot have opposite 

truth values. 

Example 2.15 

p: 11 and 12 are parallel lines, 

q = 11 n 1 2 = {a. 

p++q: (:],.) 11 and 12 are .parallel lines if and only if 

11n 1 2 = "· 

(2) A necessary and suff:tcient condition for 11 and 12 

to be paraUel lines is that 11 n L2 = ", 

The biconditional p++q is false since q can be true while pis. 

false, (Two skew lines have an empty intersection, but.they are not· 

parallel,) Note that if the statements in this example are made 

relative to the Euclidean plane, then the biconditiond p++q is true. 

28 
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Exercise Set 2~ 

1. Let p: &_ is the complement of fa. 
q: fa. is the complement of a,.. 

(a) Write the bicqnditional p+-+-q using the phrase "if and only if." 

(b) Write the biconditional p+-+q using the phrase "necessary and 

sufficient," 

(c) Determine the truth value of each statement belqw, 

(i) p+-+q, (ii) 'vp+-+q • 

2. Follow the directions in problem 1 using the following statements. 

p: AABC and ADEF are congruent. 

q: AABC and ADEF are equilateral. 

Tautologies and Equivalent Statements 

A compound statement that is always true regardless of the truth 

values of its component statements is called a tautology, The state­

ment p\/~p is an example of a simple tautology. See Table VI below. 

TABLE VI 

TRUTH TABLE FOR p\j'vp 

' 
p p PV'vp 

T F T 

F T T 



Two compound statement• constructed from a set of simple stat,-

ments are equivalent if the compound st~tements have idenUcal·truth 

values for all possible arran,ements of the·truth value&! of their 

component statements, If p1 .and p2 .denote eq~ivalant compound 

statements, then tha b:J,conditional ·Pf•·+R2 i, • tJutology since 

p1 and p2 cannot have Qpp.oaite truth value,, 

Example 2,16 

Table VII demonstrates that 'v(pj\q)++("'PV1vq) is a tauto;L9gy. 

TABLE VII · 

.. 
.. ,,. 

1) .a "'(p/\a) ~p\/'va 'v(n/\q)++C~PV"'a) 
,...... - -T T F r· F F F F T F 

T F T F' F T T .T T T . 
F T T F T T F T. T T 

F F T F 'l' T T T T T ._ - ...... 

'( 

It can easily be established with a.truth table that 

"'(PV,q)++("'P/\"'q) is also a tautolqgy, This tautology and the· one· 

stated in Example 2,16 are known aei DeMorgan's Law1;1, 

30 
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Example 2,17 

Table VIII demonstrates that (p+q)++('vp\fq) is a tautology, 

TABLE VIII 

TRUTH TABLE FOR (p+q)++('vpVq) 

p q p+q 'up Vq (p+q)++('\Jpvq) 
,..__ I--:, 

T T T F T T T T T 

T F F F .F F F T F 

F T T T T T T, T . T 

F F T T T F T T T ..._ ,_,._ 

When the concepts of equivalence and tauology are introduced, 

a point to be emphasized is that·the truth value of a compound. 

statement may be obtained by determining the ·truth value of an 

equivalent statement, This .fact will be of extreme importance in 

the remaining chapters of this paper, Also, the :tautologies developed 

in this section and those in problems 1 and 2 of Exercise Set 2f 

will be referenced later in this paper, so they should be noted 

carefully at this time, 

Exercise Set 2f 

1. Show that (p+q)++('vq-+r1.,p) is a tauology. 

2. Shpw that 'v(p+q)++(pj\'vq). is a tautology, 



32 

3. The negation of a tautology is a statement whose truth values are 

all false. Such a statement is called a fallacy, Construct a 

truth table to demonstrate the (p~)~(p+-¥1.iq) is a fallacy, 

Suggestions for Enrichment 

An interesting class discussion may be generated by asking 

students to explain their everyday uses of the logical connectives 

discussed in this chapter. Does a student use the connective "or" in 

the inclusive or the e:icclusive sense? In what context does a student 

use the "if ..• then ••. " connective in daily conversation? What does 

the use of the "if ••• then ••• " connective convey to the.student in 

a politician's speech or a magazine advertisement? A student 

reflecting on his everyday use of the connectives discussed in this 

chapter may well discover that his usage is consistent with the def­

initions stated in this chapter, 

Insurance contracts (life, automobile, etc,) contain many 

conditional statements. A teacher can give examples of conditional 

statements from an insurance contract; that he may own. He can 

discuss with his class some of the possible reasons for the many 

court cases involving an interpretation of a conditional statement 

in an insurance contract;. 

A teacher familiar with the computer programming language BASIC 

(.!!,eginner's !_ll-purpose §ymbolic Instruction Code) can explain. the 

use of the IF •.• THEN ••. command as ax:,. inE!truction to the computer. 

Other progranuning languages have a similar command. 



Summary 

It hae been the purpose of this chapter to demonstrate how a 

geometry teacher can use material in the early chapters o.f a geometry 

text and a student's intuitive knowledge of basic geometric figures 

to illustrate the logical concepts. of statement, compound. statement, 

and statement connectives. Emphasis was also placed. on the dete_rmin­

ation of the truth values of compound statements. The geometry 
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teacher who has previously·studied symbolic logic will realize that 

this chapter does not include all topics and symbols that one might 

expect to encounter ;i.p a symbolic logic course. Rather, only those 

concepts that this writer has found useful in the deductive development 

of geometric structure have been introduced. Since a geometry course 

involves considerable geometric symbolism, the use of logical 

symbolism has purposely been kept to a minimum. 

A teacher might use the logical concepts introduced to reinforce 

continually a student's understanding of important mat_hematical phrases. 

For instance, a teacher can stress the meaning of the phrase "exactly· 

one" by examining the negation of the postulate stating "For every 

two points there is exactly one line that contains both points." 

(17, p. 47). 

The essence of deductive geometric proof requires that one be able, 

to logically derive true statements from existing true statements. The 

following chapter will show how a geometry teacher might use the 

concepts of symbolic logic developed in this chapter to aid his students 

in gaining insight into the nature of deductive proof. 



CHAPTER III 

ARGUMENT FORMS 

Proof 

Having introduced some of the basic concepts of symbolic logit 

in the pre-proof stage of a geometry course, the teacher bin a 

position to use these concepts when-it-is time to begin a study of 

proof. It should be kept in mind that a student probably conceives 

of proof as an argument designed to convince somebody of something. 

The student undoubtedly has in mind the it'l.ductive process (although 

he may not kn.ow it by that name), wh:1,ch is the very heart of the 

scientific method of proof and involves reaching a conclusion from 

experimentation or observation, 

It is generally not qifficult to convince a student that most of 

his experience with proof in mathematics and in everyday life in 

general has been inductive in nature. A few examples might be 

helpful. 

Example 3.1 

A student has heard it asserted that the sum of the measures 

of the angles of a triangle is 180. He carefully constructs many 

triangles and measures the angles with a protractor. Summing the 

measures of the angles in each triangle and finding that the sum is 
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always in the neighborhood of 180 (small errors in measurement are 

likely to occur), he concludes that the assertion is true, 

Example 3,2 

Mary has observed that Mr, Brown is always angry with a studant 

who shows up late for his class. Today, Mary will be late for 

Mr, Brown's class. She concludes that Mr, Brown will be angry with 

her, 

Example 3,3 

Henry substitutes the integers 1, 2, 3, ••• , 25 for n in the 

2 expression n - n + 41 and observes that the value o.f the expression 

is a prime number. 2 He concludes that n - n + 41 is always a prime 

number when a positive integer is substituted for n. 
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The conclusi.ons in the three examples above can only be classified 

as probable (as contrasted to necessary) conclusions~ The conclusion 

in Example 3.1 is indeed true in Euclidean geometry. However, the 

student can certainly appreciate that it is not a necessary result 

of his experiment, for he cannot possibly verify it by summing the 

measures of the three angles in every triangle. The conclusion in 

Example 3.2 does not necessarily follow from Mary's observations, 

Is it not possible that Mr. Brown will be in a happy and forgiving 

mood on this particular day? The conclusion in Example 3.3 is not a 

necessary consequence of Henry's experiment, for it is false. This 

can be demonstrated by letting n = 41. 

Consider now a set Hof statements and let h be the conjunction 

of statements in H. If c is a statement, then the conditional 



statement 

h+c 

is called an ai::gument, or an .inference. The statement h is the .. 

hypothesis of the argument and c is the conclusion of the argument. 
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The statements in H may consist of definitions, postulates, or 

statements, the truth values of which have been previously.established. 

lf all of the statements in Hare true, .then h,·being the conjunction 

of these statements; is t-rue. If at least one of the Stfltements in 

His false, then his false, 

If the truth of h necessitates the truth of c; then h+c is a 

valid argument. In other words, the argument h~c is valid if it is 

impossible for c to be false while h is true. 

Example 3.4 

Consider the following argument: If m& .. 30 and m/a • 150, 

then fA and /JJ.. are supplementary angles. 

Let .P: 

q: 

mfA. • 30, 

mU • 150. 

r: LA and Di are supplementary. 

The argument is symbolic~lly represented by 

~u, 
Hypothesis Conclusion 

The argument is valid since it is impossible for the conclusion to.be 

false while the hypothesis is true. 



If, for a given argument, the conclusion may be false while the 

hypothesis is true, then the argument is invalid. In this case, the 

conclusion is not a necessary consequence of the hypothesis. 

Example 3.5 

Consider the following argument: If m/A. < 45 and mhl < 50, 

then/.! and~ are not complementary. 

Let p1 : m&__ < 45. 

Pz: mhi_ < 50. 

c: &_ and m._ are no.t complementary. 

The argument is symbolically represented by 

t P1~Pz~~y 

Hypothesis Conclusion 

The argument is invalid since it is possible for the conclusion to 

be false while the hypothesis is true. For example, let mfA .. 41 

and md • 49. 

The process of using valid arguments to obtain a necessary 

conclusion from a set of given statements is called deductive 

reasoning. A typical geometric problem presents the student with a 

conclusion and a hypothesis from which the conclusion is to be 

obtained by the construction of a series of valid arguments. Some 

of the fundamental valid argument f~rms will be introduced in the 

following sections. The argument forms have various names. The 
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names used in this paper conform to those used in Rosenberg's textbook. 
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Exercise Set 3a 

In each problem below, identify the -hypothesis and conclusion of each 

argument. The-n determine whether or not the argument.is valid. 

1. If a~ band b + c, then a+ c. 

2. If AABC is equilateral, then AABC is isosceles. 

3. If LA and f! are acute, then they are complementary angles. 

4. I:f; P1 a'Q.d P2 are distinct points in plane ~' then P1i 2 ( E. 

The Law of Detachment 

A very commo)l form of argument is illustrated by the following: 

If a triangle is equilateral, then it is isosceles • ./': 

ALiC AABC is equilateral. 

Therefore, AABC is ispsceles. 

Figure 2 
This is a valid argument because it fits the fundamental argument 

form [ (p+q)j\p]+q t which is .tautology. Table IX illustrates that 

the conclusion q cannot be false when the hypothesis (p+q)j\p 

is true. 
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TABLE IX 

TRUTH TABLE FOR [ (p+q)/\ p]+q 

p q (p+q)/\. p [ (p+q)/\ D l+q 
~ 

T T T T T T T T 

T F F F T F T F 

F T T F F F T T 

' 
F F T F F F T F - --

This form of argument is called the ~ of detachment. 

In order to emphasize the component statements of the hypothesis 

and conclusion in an argument form, a common method for presenting 

an argument will be adopted in this chapter. The component statements 

of the hypothesis will be written on separate lines and a horizontal· 

segment will separate the hypothesis from the conclusion of the· 

argument, The law of detachment is then presented as follows: 

~~ j The conjunction of these statemen1;s is the hypo~hesis, 

q Conclusion. 

Many of the statements used in init.ial proofs are postulates and 

these allow early emphasis on the law of detachment, 



Example 3,6 

p+q If two points of a line lie in 
a plane, then the line lies in 
the plane, (Postulate), 

p Points A and B of line L lie 
in plane E. 

q AB lies in plane E. 

Example 3.7 

p+q 

p 

If there exi$.ts an SAS 
correspondence between two 
triangles, then the. triangles 
are congruent, (Postulate), 

&/ 
F;l.gure 3 

LIB ~E There exists an SAS 
correspondence between 
AABC and ADEF. A C D F 

q AABC and ADEF. are congruent. Figure 4 

A proven theorem may also be used as part of the hypothesis in 

the law of detachment, 

Example 3,8 

p+q 

p 

q 

If two sides of a triangle 
are.congruent, then the angles 
opposite these sides are 
congruent. (rheorem.) 

In 6A~C, AB !il! AC. 
Ii 
B C 

Figure 5 

Some theore~s are stated in the form of a biconditional, Since 

p+-+q is equivalent. to (p+q)/\ (q-+p), one can apply the law of. 

detachment to .biconditional statements. 

40 
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Example 3.9 

p++q: A triangle is equiangular .if and only if it is equilateral,· 

If the validity of p++q has been established, one can utilize the 

law of detachment in the following ways, 

p+q A triangle is equi~ngula.r if 
it is equilateral. 

p bABC is equilateral, 

q MBC is equiangular. 

q+p A triangle is equilateral if 
it is equiangular. 

q bRST is equiangular. 

p bRST is equilateral. 

Exercise Set 3b 

Use the law of detachment to supply.the necessary 

1. If- a tria,ngle has one right angle, then 
its other angles are acute. 

2. 

In bABC, /c is a right angle. 
? 

The diagonals of a rhombus at;e 
perpendicular. 

Figure 6 

S~I 

Figure 7 

conclusion. 

BLJ: 
Figure 8 

oA;§CD is a rhombus, Figure 9 
.· ? 

3. A line is the perpendicular,..bisector of 
a segment if an,d only if it is perpendicular 
to the segment and bisects the segment, 

Ai3 is perpendicular to. co anci n bisects ci5'. 
? 

Figure 10 



Exercise Set 3c 

An invalid argument form that .is sometimes confused with the law of 

detachment is the following: 

p + q 

q 

p 

1. Construct a truth table to demonstrate that [ (p+q) I\ q]+p is not 

a tautology. 
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In problems 2-3, construct a drawing to demonstrate that the arguments 

presented are invalid. 

2, If a quadrilateral is a square, then it is a rectangle. 

O.ABCD is a rectangle. 

DABCD is a square. 

3. If two angles form a linear pair, then they are supplementary. 

/.!. and L], are supplementary. 

/.!_ and & form a linear pair. 

Law of Transitivity of Conditionals 

Another common valid argument form is the law of transitivity of 

conditionals. This argument is shown below, 

p + q 

q-+ r 

P + r 



l'abTe ·x- below illustl;."ates that I (p-+q)A (q~) ]-+(p~) is a 

tautology, 

TA:BLE X 

TRUTH TABLE FOR [(~)j\(q~)]~(p~) 

p q r (p-+q)J\(q+r) [ (p-+q)/\ (q+r)] +(p+r) 

-
T T T T 'r T 

T T F T F F 

T F T F F T 

T F F F F T 

F T T T T T 
' 

F T F T F F 

F F T T T T 
' 

F F F T T T --

Example 3.10 

p -lCJ. 

q-){" 

If.Dis in the interior.of JAc, 
then m .13AC == mLBA.n + m~C. 

If m &C = m tRA,D + mLDAC , then 
nJAc > m~AD •. 

If D is in the ;nt. erior of aAc, 
then m~AC > m~AD. 

-
T T T 

F T F 

F T T 

F T F 

T T T 

F T T 

T T T 

T T T -

A C 

Figure 11 
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Example 3,11 

p-+q If two lines are perpendicular to the 
same plane, then they are parallel, 

q-+r If two line.s are parallel, then 
they are coplanar. 

p-+r If two lines are perpendicular to the 
same plane, then the lines are 
coplanar. 

Exercise Set 3d 

. I 
I 
I 

! 1 
Figure 12 

Use the law of transitivity of conditio.nals to establish a conclusion 

for each argument. 

1. If two angles are complementary, then each of them is acute, 

2. 

If each of two angles is acute, then they are not supplementary. 

? 

If MR is a median of scalene triangl'e MNP, 
theI). MR does not bisect LNMP. 

If MR does not bisect l.NMP, then MR is 
not perpendicular to Nf. 

? 
Figure 13 

3. If the diagona+s of a quadrilateral bisect each other, then the 
quadrilateral is a paralleJ,ogram, 

The opposite angles of a parallelogram are congruent, 

? 

The Use,of Valid Arguments.in a Formal Proof .. 

44 

The law of detachment and the law of transitivity of conditionals 
.c 

are used extensively in fo.rmal proofs. Identification of these 

argument forms in some of the introductory formal proofs in a. 

geometry course may be beneficial in helping students appreciate that 



45 

a deductive proof is a series of valid arguments, each of which has 

a true hypothesis and, hence, a true conclusion, It ie1 important to 

note that the validity of: an argument does not depend on whether the. 

hypothesis is true. However, if t;he argument is valid and the 

hypothesis is true, then the conclusion must be true. 

The following formal prc,of is similar to those that one would 

expect to encounter in the early stages of geometric proof. The valid 

argument forms dis.cussed will be identified in the proof. 

Given: The· figure with AC~ CD 
and BC ~ CE. 

Prove: fA.. ~ ill, 

Proof 

Statement 

l. AC~ CD and BC~ CE. 

2. f&cB ~ ~CE. 

3. LiACB,;;: LiDCE. 

4. IA~ Lh. 

]figure 14 

Reasons 

1. Given 

2. Vertical angles are 
congruent. 

3, SAS. 

4. Corresponding parts of 
congruent triangles are 
congruent. 

It should be emphasized that all statements in the Statement 

column are made relative .to Figure 14. This is generally the case 

in any proof that involves a given figure. Also, while not explicitly 

stated, one is to assume that the points.A, C, and E are distinct 

and collinear and similarly for B, c, and D. These assumptions are 

considered as part of Statement 1 and .are necessary in the establish­

ing that &CB and. £DCE are vertical angles. The question arises as 
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to what unstated assumptions should be :Lmplicitly made about a given 

figure to be used in a geometric proof, This writ.er feels that a firm 

rule cannot be established and that the context of a.specific problem 

usually indicates the assumptions which should be made, For the 

sake of brevity, these assumptions are conventionally not presented 

in a writt~n version of a formal proof, 

The geome.tr.Y- teacn·e.r can note that all statements in the · 

Statements column of the proof are true. Statem~nt 1 is given as 

true, Statements 2, 3, and 4 can be established as true using the law 

of detachment w:i,th the corresponding conditional stateme"Q.t represented 

by the phrase or abbreviation in the Reasons column,, as shown below . 

If two angles form a pair of vertical angles, then they are 
congruent! (Reason 2). 

. ·' 
~CB andiDCE form a pair of vertical angles. (The truth of 
this statement follows from the definition of vertical angles 
applied to the given figure,) 

LA_cB ~ fD.cE. (Statement 2), 

If two sides and the inc:luded angle of one triangle are.congruent 
respectively to two sides and the included angle o~ a second 
triangle, then the triangles are congruent, (Reason 3), 

Two sides and an included angle of l:iACB are congruent respectively 
to two sides and an included angle of l:iDCE. (This statement 
represents the conjunction of Statements 1 and 2,) 

l:iACB ~ l:iDCE; (Statement 3), 

If two .triangles are congruent, then their corresponding parts 
are congruent. (Reason 4). 

LA.and lD. are corresponding parts of congruent triangles ACB 
and DCE, respectively. (The truth of this statement follows 
from the definition of corresponding parts of congruent triangles,) 

& ~ fn, (Statement 4), 
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The teacher can now emphasize that the truth of Statement 1 

(including the implicit assumptions mentioned) necessitates the truth 

of Statement 2. Hence 

(Statement 1) + (Statement 2) 

is a valid argument. It has been shown that the truth of Statement 2 

necessitates the truth of Statement 3, meaning that 

(Statement 2) + (Statement 3) 

is a valid argument. (It should be noted here that the above argument 

• 
is valid relative to the truth of Statement 1. That is, Statement 2 

necessitates the truth of Statement 3 if one knows that Statement 1 

is true.) Similarly, 

(Statement 3) + (Statement 4) 

is a valid argument. One can now establish that 

(Statement 1) + (Statement 4) 

is a valid argument by a double application of the ].aw of transitivity 

of conditionals, as shown below. 

(Statement 1) + (Statement 2) 

(Statement 2) + (Statement 3) 

(Statement 1) + (Statement 3). 

(Statement 1) + (Statement 3) 

(Statement 3) + (Statement 4) 

(Statement 1) + (Statement 4) 

Based on his experience in the classroom, the writer feels that 

a similar analysis of a few elementary formal proofs gives students 



a deeper insight into the nature of deductive geometric proof, 

Such an analysis stresses the following points: 

(1) The "Given" in the statement of a geometry problem (proo_f) 

is a set. of true statements. The conjunction of these 

statements. represents the hypothesis, h, of an argument. 

(2) The "Prove" in the statement of a geemetry problem is a 

statement that represents the ·conclusion, c; of the 

argument. 

(3) The objective of the person working on the problem is to 

show that :the conclusion is-a necessary consequence of the 

hypothesis. That. is, he is .to show that the argument h+c 

is valid. 

(4) In a direct proof, the ·objective in (3) is obtained by 

creating a series of valid arguments. 

(n a positive integer). 

(In the series of arguments above, c1 denotes.hand. cn+l 

denotes c. If 2 ~ k ~ n, the argument ck-+ck+l is va,lid 

relative to the truth of c1 , c2 , ••• , ck-l~) Repeated use 

of the law of transitivity <;>f conditio.nals is then used to 

establish ·the validity of h+c, It should be noted that in 

direct proof, to be discussed in Chapter VII ·of this paper, 

4·8 
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one still c,reates a ~er:ies of valid arguments. However, 

the first argument in the series does not have has its 

hypothesis •. 

There are two othei:: valid argument forms that are often useful 

in geometric proofs. They will be introduced at this time. 

The Law of Cont:t:"aposi.ticm 

A third valid argu11,1ent form is the law of contraposition. This 

argument form is shown below. 

p -+ q 

'vq 

"'P 

Table XI illustrates that [ (p+q)/\"'q]-h..p is a tautology. 

TABLE XI 

TRUTH TABLE FOR [(~q)/\'vq]-+,1up 

p q (p+q)j\'vq [ (o+q)/\'vq]+r1,p. 

1r--
T T T F F F T F 

T F F F T F T F 

F T T F F F T T 

F F T T - T T . .1.. T 



Example 3.12 

p+q If the ·diagonals of a quadrilatei-al 
bisect each other; then the · 
quadrilateral is a parallelogram. 

"'q CJABCD is not a parallelogram. 

"'P AC and BD do not bisect each other. 

Example 3.13 

A quadrilateral is a rectangle· i~ and only 
right.angles. 

50 

D 

Figul;'e 15 

if it .has four 

D C 

p+q If· a quadrilat.eral has four right angles, 
then it is a rec'l;angil:e.· 0 
PABCD 1$ not a rectangle, 

"'P :A.BCD does not have four right angles. 

q7"P If a quadrilateral is a rectangle, 
then it has four right angles. 

"'P O!A.BCD does not have £01,1r r;i.ght angles. 

"'q o,ABCD is not;·a rectangle. 

A B 

Figure 16 

Figure 17 

l'he law of contrapqsition emphasizes. the :importance·of under;-

standing the concept of negation. CQnsider the ·following example, 

ExaJD.ple 3.14 

p+q If both pairs of opposite sides of .a 
quadrilateral are qongruent, then the· 
quadrilateral is a parallelogram. d 

'\,R . oABCD is not·a p.a:rallelogram, A B 

"'P ? 
Figure 18 



What must be negated is the statement p: (AB~CD)/\(AD~BC). 

According to one of DeMorgan's Laws (Example 2.16), th,e statement 'vp 

must be (AB;i:CD)V(AD,'BC). This allows three poi;sibilities: 

(1} ABfCD and AD~c. (Figure 19). 

Figure 19 

(2) Af3~CD and. AD~. (Figure 20), :o: 
(3) AB1CD and AD~BC. (Figure 21), D -----1·C Figure 20 -A\ ;{ 

Figure 21 

A connnori. error is ~to accept (1) a.s 'vp. Clearly, (1) alone· is 

not a necessary con1;1equence of the hypothesis. In other words, if 

one defines statement r to be 

r : AB?'CD and AD?':ac , 

then the following argument is nc;,t valid, 

p~q · If both.pairs of opposite sides of a 
quadrilateral are congruent, then the. 
quadrilateral is a ~arallelogram. 

'vq QA.BCD is not a parallelogra111. 

r AB1CD and AD'13C. 

Figure 22 

Since r is not equiyalent to "vp, the argument form is not. the· law of 

contraposition, But this alone would not make the argument invalid. 

51 

Invalidity results from the fact that r is no; a necessary consequence 

of.the hypothesis, 
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Exercise Set 3e 

Use the law of contrapositi°'n to supply a necessary conclusion for each 

argument. ·· 

1. If two lines are. skew, the'.',l they do not intersect, 

2. 

Lines 11 and 1 2 intersect. 

? 

A median ,of a ti:iangle bisec.ts the side tQ 
which it·is ·drawn. 

PQ _does not bisect MN. M Q N 

? Figure 23 

3. In AABC. if m£>m~' then ,BC>AB. c~ 

BC$AB. A B 

? 
Figure 24 

Exerc;h1e Set. 3f 

The .following argument·form is sometimes confused with ·the law ·of 

contraposition •. 

p + q 

'up 

1. Construct a. truth table ·to demonstrate t~at [ (p+q)/\"'pJ,+,l'\,q is. not 

a tautology •. 

In pi:oblems 2 .... 3, construct, 1:1 draw;i.ng .to demonst.rate that the following 

arguments are invalid. 

2. If each of two lines· is para1ie1 to .a third ;Line, then they are 
parallel to each otheI'. · 



11 is not parallel to 13 aQ~ 11 is ·not parallel to 13 • 

3. If ,1B is perpendicular to."eo, then nn~ 'f {II. 

11 is not.perpendicular to~. 

The Law of ;Elimin.atioJi 

A fourth valid argument form is :the law E£ elimination. l'his 

argu~ent forl!l. is shown below., 

"'P 

q 

Table XII below illul3,trates that [ (pVq)/\ '\lp]+q is a taut;ology. 

T-4BLE :XII 

TRUTH l'ABL;E FOR ( (pVq)/\ "'P ]+q 

p a (p v q) /\ 'vp [(pVq)/\ "'P]+a 
,..... ,....;. 

T T T F F F T T 
'' 

T F T F F F T F 

F T T T T T T T 

F F F F T F· T F. .......... -
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Example 3.15. 

pVq Two distinct planes intersect in a 
line or they are parallel. 

"'P Planes El and E2 do not inte1;sect 
in a line. 

q E1 is parallel to E2 • 

Exampb 3.16 

pVq - Two similar tr;i.angles have .the same 
area or they are not con~ruent,. 

"'P AABC and.ADEF are simila+ and 
do no,t haye the same area. 

q MBC and A:QEF are not, .congruent .• 

Exercise Set 3g 

Figure 25 

\ 
A B 

Figure 26 

Use the law of elimination to supply a necessary conclusion for the 

following arguments. 

1. Eve·ry tri~ngle is either isos_celes or scalene. 

2. 

3. 

AABC is scalene, 

? 

~ .J. A.E or DE is parallel te Bet .. BD r CE . · · 

~ is ·not parallel to !a. 
? 

2 2 2 AABC is not a right tri~ngle. or a.+b "'c. 
2 

c • 

? 

Figure 27 

a~ 
. C .b .. A 

Figure 28 
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4. What conclusion is needed to make the following argument valid? 

1vp 

? 

Truth and Validity 

It should be pointed eut.to students that the validity of an 

argument depends upon the form o~ the .argument and not upon the 

truth value of the hypothesis or the tr.uth value of the conclusion. 

The. following three examples illustrate .this fact. 

Example 3,17 

p+q If a triangle is isosceles, then .it · 
is equilateral. 

p LiABC is isosceles, 

q LiABC is equilat·eral. 

a!Z10 
A~ 

Figure 29 

Argument: Valid, since its form is th.at of the .law of detachment, 

Hypothesis: False, since (p+q)J\p is false. 

Conclusion: False. 

Example 3·, 18 

p+q A square is a triangle. 

q+r A.triangle is a rectangle. 

p+r A square is a rectangle. 

Argument: Valid, since its ;form is that of the law of transitivity 

of conditionals. 

Hypothesis: False, since (p+q)/\(q+r) is false. 

Conclusion: . True. 

55 
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Example 3.19 

p+q If two an,gles form a pair· of vertical. 
angles, then they are congruent, 

~ 
~ 

q ~EC and ~ED are.congruent, 

p LB.Ee and lAED form a pair of vertical 
angles. 

Argument: Invalid (See Exercise Set ~c). 

Hypothesis: True, since (p+q)/\ q is .true, 

Conclusion: True, 

Exercise Set 3h 

Figure 30 

In each problem, tell whether the argument is valid or invalid and 

state the truth value of the ·hypothesis and conclusiotl, 

1. 

2. 

3. 

If &.. and .@...ar.e verticSrl angles, thet\ ~ Li. 
(g/».., 
/!. and .4._ are not .vertical angles, 

If a triangle co1;1tai'I!,s two congruent angles, 
then all· of its angles are c;:ongruent, · 

6DEF contains two congruent. angles. 

All of the angles of 6DEF are congruent, 

Lk 
A B 

Figure .31 

Dil.F 
Figure 32 

If a triangle is equilateral, theI!, it is is·o~celes. 

MBC is not equilateral. 

6ABC is not.isosceles. Figure 33 

Suggestions for Enrichmen.t 

Students can be encouraged to look and listen for the valid 

argument forms outside of the ·geometry ;classroom. Use of the lil,rgumen:t 

forms can often be found in debates (school, political, etc,). For· 



instance, one might encoun te:i:- ·an argument s;i.milar to the follo:w:lrng: 

Anyone who supports the concept of neighborhood schools is a 
segregationist.• 

Jone.a supports the concept .of neighborhoo<i schools, 

Jones is a segregationist. 

_ The argt,1ment is valid since its form is that of the law of 

deta.chment, But what is the truth value 0f the hypothesis? What is 
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the·truth value of the conclusion? Will the answers to these questions 

differ from person to person? Perhaps the most important question 

is the following: Does the ·validity of the argument mean that the · 

conclusion is trt,1e? If Jones is a candidate for a school board 

positioI). and if ·the argument abeve is presented by Wilson, a candi~ 

date for the same posit;.ion, does Wilson wish to have the public 

believe that: validity necessitates the truth of the conclusion?. 

One might also uncover arguments similar to the. following: 

Anyone who support~ the concept of neighborhood schools is a 
segregationist, 

Wilson .does not suppo1;t the concept of neighborhood schools. 

Wilson is. not a segregationist, 

The argument ab.eve is invalid (See Exercise Set Je), Again, 

one can. ask a series of questions concerning the truth values. of 

the ·hypothesis and conclusion. 



5.8 

Summary 

The common argument forms that appear both implicj;tly and 

explicitly in geometry textbooks have been. introduced · and demonstr.ated 

in this chapter. Hopefully,. the mater.ial in this chapter will be 

useful to the secondary school geometry teaqher as he strives to 

ins.till, in his students an understanding and appreciation .of the 

deductive ·reasoning process and the dist:f,nc·tions between this process 

and inductive reasoning. 

It has been mentioned that· a typical ·ge(:)metry problem presents. 

the :student with a stat.ed· hypothesis. and a stat.ed conclusion. The 

stud.ent '13 ·objective is to show with logical arguments that the · 

con.clusion .is a necessary com;1equence. ef the hypothesis. The fact 

that the hypothesis and conc].usion are stated somewhat limits ·the· 

student to establishing the validity of an argument constructed by 

another individual. It .is the opinion of· this writer that .the 

geometry student should be supplied with discovery techniques so that 

his activity will not be confined tQ estl!!,blishing the validity 

of arguments constructed by authors of geometry textbooks •. 

Since the. proce~i:i of working. with.in a .deductive system b 

a relatively new experience for the secondary schoel·student, it 

is reasonable to assume that the student does not possess knowledge 

of useful techniques for disco·vering meaningful geometric arguments. 

The following chapters will attempt·to .show how a geometry .teacher 

can provide discovery techniques. for the student and how these 

techniques .may be us·e.d to increase student interest and enthusia.sm, 



CHAPTER IV 

PARTIAL CONVERSES 

Introduction .to the Concept 

of a Partial Converse 

After an introduction to formal proofs, the authors of the five 

sample textbooks introduce the concept of "converse of a statement." 

Though Euclid made no mention of "converse" (or for that matter,. 

"inverse" or "contrapositive," each of which will be discussed in 

later chapters) in his Elements, authors of modern geometry texts 

find it a useful concept, It is interesting to note the definitions 

in the five sample texts listed in Table XIII. 

With the exception of Goodwin, the text definitions imply 

that a theorem or postulate has but one converse. The idea that 

the statement q-+p is the converse of p-tq is certainly satisfactory 

when one considers theorems similar to th.e following: 

Theorem 1: If two sides of a triangle are congruent, then the 
angles opposite these sides are congruent:. 

The theorem is written .in ·the following manner in order to 

emphasize the component i;;ta,tements in the hypothesis and conclusion •. 



Hypothesis: ~ABC, 

p: AC~BC. 

Conclusion: 

q: ~-::J. 
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6 
A B 

Figure 34 

(Note: since the theorem is about triangles, the fact that the figure 

is a triangle is not considered as a component statement of the 

hypothesis.) 

Text 

Anderson (p. 238) 

Goodwin (p. 100) 

Keedy (p. 126) 

Moise (p. 159) 

Rosenberg (p, 179) 

TABLE XIII 

TEXTBOOK DEFINITIONS OF ''CONVERSE" 

Definition of ''converse" 

"More generally, .. the converse of a state­
ment expressed in if,,,then form is the 
statement obtainedby interchanging the g_ 
and then parts (with nouns and pronouns also 
interchanged where appropriate.)" 

"If a conditional statement contains multiple 
distinct conditions and conclusions, con­
verses are obtained by interchanging any 
number of distinct conditions with an 
equal number of distinct conclusions of 
the original implication." 

"The conditional sentences A+B and B+A are 
converses of each other." 

This text does not state a formal defini­
tion, It gives examples of statements that 
are. converses of each other, 

"The implication q+p is the converse of 
the implication p+q," 



Theorem 1 has. the form p+q, and all, of the sample texts list· 

Theorem 2 below as the converse of Theorem 1. Theorem 2 clearly·has 

the form q+p. 

Theorem 2: If two angles 
sides opposite these 

Hypothesis: AABC 

of a triangle are congruent, then the 
angles are congruent. ~ 

Conclusion:. £ .... --1 
A ----- B 

p: 

Figure 35 · 

Examination of a geometry text will reveal that the statements· 
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of many geometric theor.ems are more ~pmplicated than that of Theor.em 1. 

Consider the following theoremi 

Theorem 3: If two sides of one triangle are congruent respec~ 
tively to two sides of a second triangle, and if, the 
measure of the included angle of the first triangle is 
greater than the ·measure of the included angle of the 
second, then tq,e third side of the first triangle is 
larger than the third side of the second •. 

Theorem 3 is commonly called the Hinge Theorem, or the Scissors 

Theorem. Its. hypothesis an.d conclusion .are restated below, 

Hypothesis: AABC and ADEF. Conclusion: B~C 

q: E 

D~ 
-· -AC=DF. 

P3: /.a>IJJ.. Figure 37 

Argument form: (p1/\p2/\.p3)+q. 

With the exception of Rosenberg, the sample texts list Theorem 4 

below as a converse of Theorem 3, (Anderson and Moise specifically 

identify Theorem 4 as the Converse Hinge Theorem,) 



Theorem 4: If two si.des of one ~ri~ngle are congruent;. t'espec­
tive+y to two sides of a second tri~ngle, and if the third 
side of the fitst triangle is longer than the thi%'d side 
of the second, then the included angle of the first 
triangle is larger than t:;he included angle of the . secc;md. 

Hypothesis: 6ABC and 6DEF. 

pl: AB~DE. 

-,.,-
p2: AC=DF. 

Conclusion: B 

~c 

q: BC>EF. 

D~ 

Figure 37 

One can observe that a converse of Theor.em 3 w1:1,s obtained by 
. 

interchanging one component statement of the hypothesis with -0ne 

component statement of the conclusion. Hence; it would certainly 

seem tha~ one ~ight also consider 

(1) <P/\ p/\q)+p2 , and 

(Z) (p2/\.p/\q)+pl 

••• 
as converses of Theorem 3, even though these converses have little 

use in the development of geometric st-:t:.ucture. Since determining the 

validity or non-validity .of. arguments (1) and (2) is considered 

unimportant by authors of the texts, t;he teacher can demonstrate that 

the arguments a1;e invalid with a drawing. For instance, consider (1). 

Hypothesis: 6ABC and 6DEF. 

-/l)-

P1: AB=DE. 

B~ 

A C 

Conc;lus:i,on: . 

AC~F. 

q: BC>EF. 

Figure 38 



Figure 38 illustrates that the conclusion p2 is not a necessary 

consequence of the hypothesis. One can do a similar thing with 

(p2/\P3/\q)+pl. 

If one adheres strictly to. the definitions of Anderson, Keedy, 

and Rosenberg, it is. difficult to justify the classification of 

Theorem 4 as a converse of Theorem 3, According to any of these 

definitions, the converse of Theorem 3 would be 
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It can be noted that the statement of Theorem 4 (a valid argument) and 

the statement q+(p1A p2A p3) are not equivalent since one can construct 

numerous examples to demonstrate that the latter argument is inva.lid. 

Moise avoids this logical inconsistency by not stating a formal 

definition of converse. 

In the Anderson, Keedy, and Rosenberg texts, as well as in 

many other standard treatments, the definitions of converse and some 

of the examples given are inconsi.stent, as ha$ been demonstrated with 

the Hinge Theorem. All examples are cc:>nsistent with Goodwin's 

definition. The difference is that Goodwin!s definition acknowledges 

more than one cqnverse, and the others do not. However, Goodwin's 

definition is inconsistent with many standard treatments of logic, 

which assume that a conditional statement has exactly one converse. 

The .fact is that if one considers a conditional geometric 

statement and examines it in light of Goodwin's definition, one is 

likely to find many inte.resting and useful arguments. It is the 

purpose of this chapter to show how a geometry teacher can use these 
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arguments to promote discovery and intuitive thinking in a deductive 

geometry course. 

Since it is desirable to avoid the logical inconsistencies cited 

above, the arguments constructed from conditional geometric statements 

wi],1 not be called converses. They will be referred to as partial 

converses. A formal definition of partial converse will now be stated. 

A partial converse of an argument is an argument that is 

obtained by interc,hanging any number of component statements 

in the hypothesis with an equal number of component statements 

in the conclusion, 

One might reasonably ask why the definition of partial converse 

requires that an equal number of component statements be interchanged. 

First, as will shortly be established, that stated definition yields 

a high percentage of.valid (and interesting) arguments. Secondly, 

there is evidence that an unequal interchange of component statements 

will not produce similar results, After Lazar examined many theorems 

and constructed arguments by interchanging a number of component 

statements in the hypothesis with an unequal number of component 

statements in the conclusion, he made the following observation: 

No theorem in geometry was found which yielded a 
true converse by an unequal interchange of hypothesis 
and conclusion. (13, p. 107). 

The number of partial converses of a given argument depends, of 

course, on the number of component statements in the hypothesis c1.nd 

conclusion, Table XIV illustrates how one can cc1.lculate the number 

of partial converses for some of the common argument forms. The symbol 



nck represents the number of ways one can choose k statements from a 

set of n statements (n.::_k). 

TABLE XIV 

CALCULATION OF NUMBER OF PARTIAL CONVERSES 
FOR COMMON ARGUMENT FORMS 

Argument form Number of partial converses 

P--Hl lCl•lCl = l•l = 

(pl/\ P2 )-+q 2Cl•1Cl = 2·1 = 

(p/\ P2)-+(q1/\ q2) 2C1•2Cl + 2C2•2C2 = 2·2 + 1•1 = 

(P1/\P2/\ P3)-+q 3C1•1Cl = 3•1 = 

(p/\ P2/\ P3)-+(ql/\q2) 3C1•2Cl + 3C2•2C2 = 3•2 + 3·1 = 

(p1/\P2/\P3)-+(qlj\ q2/\ q3) 3C1•3Cl + 3C2•3C2 + 3C3·3C3 = 

3•3 + 3•3 + l•l = 

It can be observed from Table XIV that the argument p-+q has 

exactly one partial converse, q+p. According to any of the text 

definitions of converse, the converse of p-+q is identical to the 

partial converse of p-+q, 
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1 

2 

5 

3 

9 

19 
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Use of Partial Converses to 

Promote Discovery 

Once intro4uced to the concept of a partial converse, the student 

has at his disposal an extremely useful technique for discovering 

geometric argu~ents, some of which. may be valid and useful.· Now it 

is. certainly not expected that. a student w:i,11 be able to establish 

immediately the validity or non-validity of every argument that he 

discovers. It is entirely possible that more material will need to 

be developed before validity or non-validity of a specific argument 

can, be established. At this point intuition can enter a deductive 

course in geometry, for students can exercise .their intuitiv:e abilities 

and "guess" whether a discovered argument is val.id. In most cases, 

the right-ness or wrong-ness of the guess can be established at some 

time during the .course when the appropriate mated.al is developed. 

Example 4.1 

Once a student has proved the following theorem, he can 

"discover" five other argument~ by looking at its partial converses. 

In this case, all of the partial converses ·are valid arg1,1ments. 

Theorem 5: The bisector of the vertex angle of an isosceles 
triangle is perpendicular to the base ani:1 bisects the base. 

Hypothesis: ~ABC. Conclusion: 

pl: 

Pz! 

Argument form: (p1/\ p1)+(q1 j\q2). 

AB=AC. 

AD bisects [DAC. 

BD=DC. Bih 
Figure 39 
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This argument is easily proved valid using SAS and elementary 

suppleme~tary angle theorems. 

Hypothesis: M.BC, Conclusion: 

pl: AB=AC, p2 : AD bisects l~.AC, 

BD;:::DC, 
++++ 

q2 : ADlBC, Figure 40 

The validity of this argumen~ can be. established using SSS and 

elementary supplementary angles theorems. 

A 

BD=DC. 
ill B D C 

Partial Converse 2: 

Hypothesis: 6ABC, Conclusion: 

pl: AB=AC. 

++++ 
AD.IBC. AD bisect;s aAC. Figure 41 

The validity of this argument can be established when the hypotenuse-

leg triangle congruence theorem is developed. 

ql: BD=DC, pl: AB=AC. 
B~ 

Hypothesis: 6ABC. Conclusion: 

Pz: AD bisects ·,aAC, q2: lD.ac. Figure 42 

This argument can be established as valid by us:ing the theorem that 

states that the bisector of an angle of a triangle divides the opposite 

sides into segments that are proportional to the adjacent sides. That 

. BD AB is, DC AC' Since BD=DC, one may conclude that AB=AC. The truth 

of q2 easily follows. 



Partial Converse 4: (q2/\p2)+(p1/\q1). 

Hypothesis: ~ABC. Conclusion: 

q2: AI}.1BC. pl: AB=AC. 

p2: AD bisects &c. ql: BD=DC, 

Validity is easily established using ASA. 

Partial Converse 5: (q1 /\q2)-+(p/\ P2) • 

Hypothesis: ~ABC. Conclusion: 

BD=DC. AB=AC. 

Validity is easily established using ASA. 

Lt 
B D C 

Figure 43 

.~ 
Figure 44 

The teacher can continually reinforce the concept of partial 
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converse by having students examine the partial converses of.theorems 

that are stated in the problem sets in their texts. If such problems 

are carefully chosen by the teacher, the student can carry out this 

task without a.great expenditure of time, For instance, the problem 

in Exami:>le 4.2 appears in most texts after theorems about paraJlel 

lines are introduced. As part of a homework assignment, a student. 

can be asked to establish the validity of the stated argument and to 

examine its partial converses. 

Example 4.2 

Problem: AD and CD bisec.t each other ,at E. Prove that t:/j// CB. 

Hypothesds: The figure. Conclusion: 

A/~d(" +-+ !J +-+ pl: AE=BE. q: AD 1 CB. 

p2: CE=DE. 

Argument form: (pl f\P2 )-+q' 
Figure 45 
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The argument and its two partial converses are easily proved valid 

using ASA. 

Partial Converse 1: (p1/\q)+p2• 

Hypothesis: The figure. Conclusion; 

CE•DE. 

q: t'nlltB. 
Figure 46 

Partial Converse 2: (p2/\q;+p1 . B 

Hypothesis: The figure. Conclusion: 

CE=DE, AE=BE. A 

q: Figure 47 

An alert student may notice that the two partial converses in 

Example 4.2 are not distinct arguments. This fact is certainly 

worthy of class discussion, 

It should. be carefully .noted that a partial converse of a valid 

argument is not necessarily a valid .argument. For example, two of the 

three partial converses of Theor~m 3 are invalid, 

-Exerci~e Set 4a 

Examine the partial converses of each tl"!.eorem and identify those that 

are inva.lid argumente., 

1. Theorem 6: If t~o sides of a triangle are not congruent, then 
the angles opposite these sides are not congruent, and the· 
larger angle is opposite the longer side, 

Hypothef:lis: AABC Conclu.sion: 

p: AB>AC, q: 
Figure 48 



2. Theorem 7: A line containing the center of a circle and 
perpendicular to a chord of the circle bisects the chord. 

Hypothesis: The circle with Conclusion:. 
chord AB, 

CD is a line 
containing the 
center of the 
circle. 

q: -eti bisects AB, 

D 
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Figure 49 

3. Theorem 8: If opposite sides of a quadrilateral are parallel, 
the opposite sides are congruent and the opposite angles 
are congruent. 

Hypothesis: Quadrilateral 
ABCD. 

pl: AB/J'En, 

P2: AD//BC. 

Conclusion: 

ql: AB~CD, 

q2: AD='BC, 

q3: LA~A;. 

q4: Li~Lu. 

Using Partial Converses to Relate 

Theorems and Postulates 

D,____/ _.( 

A B 

Figure 50 

The concept.of a part:1,al converse provides a teacher and his 

students an opportunity to establish relationships between many 

theorems and postulates that are treated as unrelated in textbooks. 

It is certainly not essential that these relat:l.onships be established. 

However, as the geometry teacher c~n note, the establishment of 

these relat:1.onships stresses .the use of definitions and equivalent 

statements and extends the use of partial converses as a discovery 

technique. 
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The definition stated below is taken from Rosenberg's text, The 

corresponding definitions in·the other sample texts are equivalent to 

this definition. 

Definition: 6ABC is said to be congruent to 6A'B'C' if 
and only if. 

L.c~fc' , IA~/A' , /JE. Lli.', (19, p, 153), 

'l'his definition will be utilized in the following example. 

Example 4.3 

The SAS Postulate is usually the first trian,gle congruence 

postulate presented in geometry textbooks, This postulate is stated 

below. 

SAS Postulate: If two sides and the included angle of. one 
triangle are congruent respectively to corresponding parts 
of a second triangle, then the triangles are ccmgruent. 

Using the stated definition of congruent triangles, the conclusion 

of the SAS Po,tulate is equivalent to saying that corresponding sides 

and corresponding angles of the two triangles are congruent, However, 

the hypothesis of the SAS Postulate states that three of these 

· corresponding parts are congruent, Using the definitio'Q. of congruent; 

triangles and the law of transitivity of conditionals, one can 

coneitruct an argull).ent equivalent to the SAS Postulate, 
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Bypothesis: L'IABC and L'IA' B' C', Conclusion: 

a::;:a'. 
A4B 

c=c', B' 
CI I 

b=b I, 

Argument form: 

q3: 

(P1/\P2 /\p3)-+(ql/\ q2/\ q}' 

m.&.."'m~', A'C' 
b' 

Figure 51 

Among the partial converses of this argument one finds the following: 

Hypothesis: L'IABC and L'IA'B'C', Conclusion: 

ql: m&=m~', P1: a=a'' 

q2: c=c'. P2: m&,.=m&', 
Figure 52 

q3: mLli=m~, b;;:b I, 

This argument is equivalent to the ASA Postulate, stated below. (In 

some texts, ASA is established as a theorem.) 

ASA Postulate: If two angles and the included side of one 
triangle ar,e congruent respectively to the corresponq.ing 
parts of a sec<;md triangle, then the triangles are 
congruent, 

Hypothesis: L'IABC and L'IA' B 'C' , 

pl: a=.a', 

q2: c=c', 

P3: b=b'. 

Conclusion: 

ql: m&!,=m&', 

p2: mLC=mLt_', 

q3: mL].=mfB', 

A4'B 
r~~' 

A~-;-
b 

Figure 53 

This argument is equivalent to the SSS Postulate. (In some texts, 

SSS is established as a theorem.) 

SSS Postulate: If three sides of one triangle are congruent 
to the three sides of a second triangle, then the triangles 
are congruent. 
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Ad-:1. b . 
Hypothesis: ~ABC and ~A'B'C'. Conclusion: 

pl: a•a'. 

ql: m£,•m.&_'. qz: c•~ I• 

P3: b·~ I. 

~B' 
~·a' 

q3: mLli=-mLB.'. 
A' . b I C' 

This argument is equivalent to the SAA Theorem. 
Figure 54 

SAA Theorem: If two angles and a non-included side of one 
triangle ar.e congruent respectively to two angles and 
the corresponding non"'."included side of a second 
triangle, then the triangles are congruent. 

Example 4.4 

In a discu~sion of similar. triangJ,es, some seemingly unrel.ated 

theorems in textbooks can'be related using the partial converse con-

cept. First, the class mus.t understand a definition _of similar: 

polygons, such as the following. 

Definition: Two polygons ar~ similar to each other if 
their corresponding angles are congruent 
and their corresponding sides are 
proportional. (lf, p. 311). 

The first theorem established in a study.of similar triangles 

is usually the following: 

AA Similarity Theorem: If two angles of on~ triangle are 
congruent to two angles.of another triangle, then·the 
triangles are similar •. 

After introducing the definition of similar polygons, the teacher can 

show tha~ the conclusion of the AA Similarity Theorem is equivalent 

to saying that corresponding sides. of the two triangles are proper-

tion~l and. that corresponding angles are congruent •. However, the. 
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hypothesis of the AA similarity Theorem states that two pairs of 

corresponding angles are congruent. Hence, it is ~nly necessary to 

conclude that the corresponding sides are proportional and that the 

third angles of each triangle are congruent. Using the defin~tion 

of similar triangles and the law of transitivity for conditionals, the 

teacher can show that the AA Similarity Theorem is equivalent to the 

following argument. 

Hypothesis: fl ABC and fl A' B' C 1 , 

P1: m&=m&_', 

p2 : m&=m&, 

Conclmdon: 

q2: 

q3: 

q4: 

a:a'=c:c'. 

b :b'=-c:c', 

Argument form: (p/'p2)-+Cq/\ q2/\q3 Aq4) • 

B' 
c'~ 

~~' A "'"----<--b-, _ _,_c , 

Figure 53 

Among the partial converses of this theorem, one finds the following: 

., 

Hypothesis: llABC and t.A'B'C', Conclusion: 

a:a'=b:b'. pl: m& .. 11m&_', 

a:a '=c :c'. p2: m Al.=-m LB.. 1 , 

q3: b :b '=c ~-c' , 

q4: m&•mk', 

~B 

A~a 

~l A~'' 

Figure 54 

This argument is equivalent to the SSS Similarity Theqrem, sta_ted 

below, 

SSS Similarity Theorem: Two triangles are similar if correspond­
ing sides are. proportional. 



75 

Hypothesis: ~ABC and 6A'B'C'. Conc.lusion: D: 
A b C 

ql: a:a'•b:b'. 

pl: mf!.,.m &: '. 

B' 

~· 
A' b' C' 

~3: b:b'.,.c:c'. Figure 55 

q4: m&=-mt.' • 

This argument is equivalent ·to the SAS Similarity Theorem, stated 

below. 

SAS Similarity Theorem: Two triangles are s:i.mil.ar if an angle 
of one is congruent to 1;1.n angle of t.he other, and the 
corresponding .sides including the. angles are proport:;i.onal. 

This writer. has found from past. experience that students often . 

confuse definitions with postulates and basic.theorems. For instance, 

when asked for a definition .of congruent triangles, a student often 

states a triangle congruen~e postulate, such as SAS. Also, when 

asked for a definition of similar triangles, a student often states 

a triangle similarity .theorem, such as the AA Similarity Theorem. 

The question "Why can't we use a postulate (or theorem) as a 

definition?" has been asked by evet1 the most.able student. Using a 

triangle congurence.postulate_as an example, a te;ic.her can.explain 

th.at a postulate is a useless statement unless one knows the. 

definitions of all the terms within it. The neceseity of this can. 

be exemplified by a teacher as he shows the r~lationships between 

theorems and postulates .in a manner similar .to that demonstrated in 

E~amples 4.3 a11d 4.4 'l'he definitions of congruent triangles and 

similar. polygons were essential in repreeenti.ng the .initial arguments 

of these examples in symbolic fopn. 



It is interesting to note that ,13.uthoJ;"s of geometry •texts 

occasionally contribute to a student's difficulty. in understan4ing 

the distinction between a definition .and a. postulate or a .. theorem. 

For instance, Moise presents the followi.ng theqrem without ever 

having defined the. "perpepdicul,ar bisecting plape of a. segmeq.t." 

The perpendicular bisecting plane of a segment is the . 
set of all points equidistant from the end points. of the 
segment, (17, p. 251). 

Since a formal definition of "perpendicular bisecti,ng plane pf a 

segment" is not stated, it is not surpr:i,sing that a student might. 

consider the statement of the ab.ove theorem as a definition. An 

interesting contrast can be made by noting the following theorem 

presented earliei; in Moise.' s text, 

The perpendicular ,bisec,tor of a segment, in a plane, .is 
the. set of all points of the plane thae are equid;i.stant f:i;'c.>m 
the end points of the segment, (17, p. 188). 

Prior to ..presenting this theorem, Moise states a formal def.in:1,tion . 

of the "perpendicular bisect.Gr of a segment in a plane," It is this 

76 

writer's opinion that such inconsistencies contribute to the confusicm 

of a student·who has not.made a clear-cut distinc;tion between a 

definition and a postulate or theoretjl. 
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Exercise Set 4b 

1, Consider the theorem stated in problem 3 of Exercise Set 4a. Find 

partial converses of this theorem that are presented as theorems 

in your geometry textbook. 

2. Show that each of the four theorems below is a partial converse 

of the other three. The arguments are stated relative to the 

plane of the circle. 

Theorem 9: A line perpendicular to a 
radius at its outer end is tangent 
to the circle. 

Theorem 10: A tangent to a circle is 
perpendicular to the radius 
drawn to the point of contact. 

Theorem 11: The perpendicular to a 
t~ngent to a circle at its 
point of contact passes 
through the center of the 
circle. 

Theorem 12: The perpendicular .line 
from the center of a cir~le to 
a tangent meets it at. the point 
of contact. 

A Partial Converse Theorem 

D 

Figure 56 

It has been established that a partial converse of a valid 

argument is not necessarily a valid argument. However, there are 

instances when the validity of:three trichotomy..-related arguments 

necessitates the validity of a partial converse of each of the three 

arguments, .as shown in Theorem 13. The proof of thia theorem is 

not difficult and, as will be demonstrated, the theorem has inte~est-

ing applications in geometry. Since the proof does involve indirect 



reasoning, it will be noted at this point that-indirect reasoning is 

discussed or used in the early chapters of each of the sample texts. 

Theorem 13: Let p be a statement and a, a', b, b' be real 
numbers. 

If the arguments 

(1) [p/\(a=a')]+(b=b') 

( 2 ) [ p /\ ( a> a ' ) ] + (b > b ' ) 

(3) [p/\(a<a')]+(b<b') 

are valid, then the arguments 

(4) [p/\(b=b')]+(a=a') 

(5) [p/\(b>b')]+(a>a') 

(6) [p/\ (b<b') ]+(a<a') 

are also valid, Note that arguments (4), (5), and (6) 

are, respectively, partial converses of the arguments (1), 

(2), and (3). 

The vaildity of ?rgu..ment (4) will now· be established. The only 

way that (4) can be invalid is for the sta1;:emet a=a' to be false 

while p/\ (b=b') is true. It _will be shown that this cannot happen. 

Assume that p /\(b=b') is true. Then p is tr,ue, and b=b' is 

true. Also, the Trichotomy Property of Real Numbers specifies that 

exactly one of the statements a>a', a<a', a=a' must be true. 

If a>a' is true, then p/\(a>a') is true, Therefore, by val:i.d 

argument (2), b >b' is true, This is. impossible s:i,nce b=b' is true. 

Therefore, a>a' is false. 
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If a<a' is true, then p /\ (a<a') is true, 'Iheref ore, by valid 

argument (3), b<b' i1 true, 'Ihi1 i1 impo11ibl• sine• b•b' i1 true, 

Therefore, a<a' is fal1e. 

It ·has bean 1hown that the truth of pA(b•b') nec:e11itat11 that 

a>a' i1 false and that a<a' i1 fal1e, Hence, u1in1 the Trichotomy 

Property, a•a' i1 true, Sine• the truth of pl\(b•b') nece11itate1 

the truth of a•a', the argument (4) [pl\ (b•b')J +(a•a') ii valid, 
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In similar manner, one can ahow that argumant1 (5) and (6) are valid, 

Example 4,5 

Consider the two triangle,, AABC and AA'B'C', 

with the propertie1 that AB•A'B' and AC•A'C', 

Let p: (AB•A'B')/\(AC•A'C'), 

Th• following valid 1r1um1nt1 1r1 u11ful in 

11omstry, and thay 1r, ~f@11n~1d in mo1~ 11~m1try 

(l) [p/\(m 4•m 4') ]"11(,cwa' l:l 1), 

(2) {p/\(m/4\~Jl'l~')]rl:z(;aC~ij'''), 

(3) [p /\ {m $odll·t) ! )J~{JC)'l!]i ! CI) t 

Acecrding te 'I'h1enm U, ;Lf th1 1r1um1nu 1bov1 i'H HU'b1L1h1d 

•• valid, then th• fo1lowin11r1umeni1 111 1110 valid, 

(4) [p/\(BC•B'C'>J•(m{i•mj'), 

(S) [p/\(BC>B 10 1)J..,(rn£~m{6'), 

(6) [pl\ (BC<B' C') J•(mQ.<m4'), 

The argument, (4), (.5), and (6) an alao \1Hfu1 :1.n ,11om11:ry and 

are pre1ented a1 thear1m1 in me1t 11em@try t•xtbooki, How1v,r, in 

the text pre1entation1, tho validity et •&eh Ar1um1nt ii po1tulat1d or 
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established by a formal proof, Theor~m 13 renders this process 

unnecessary if the validity of (1), (2), and (3) is. established, 

Theorem 13 can. be used with other sets of three trichotomy .. 

related arguments, Two such sets appear in Exercise Set 4c, 

Exercise Set 4c B 

1. Given L'.IABC, If the theorems QC (1) If AB=BC, then m IA=a & , A 

(2) If AB>BC, then m&.>m Lt_, Figure 58 

(3) If AB<BC, then m~m& 

are estal;>lished as valid, use Theorem 13 to list three other valid 

arguments. 

2. Let AB and CD be chords of a circle, If the theorems 

r:d: (1) If AB=CD, - ......... 
then m AB=m CD, 

(2) If AB>CD, then m AB>m 
......, 
CD, 

(3) If AB<CD, then m AB<:m CD' Figure 59 

are established as valid, .use Theorem 13 to list three other valid 

arguments. 

Suggestions for Enrichment 

The writer has found that much enthusi._asm is developed in the · 

geometry classroom if a mild competitive atmosphere is occasionally 

created by pitting various groups (a group might be a set of students 

in a row of seats) against each: other in a contest that involves 

demonstrating the validity ~r no~~validity of partial converses of 

valid argument. Much of the excitement is developed when the groups 
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compete to establish that a certain partial converse is invalid. 

Non-validity is generally demonstrated with a drawing, When an indivicl-

ual creates a drawing .that demonstrates the non-validity of a partial 

converse (that is, a drawing demonst:t;"ating that the conclusion is 

not a necessary consequence of the hypothesis), he raises his hand 

and then has the opportun;ity tq produce his drawing on the blackboard. 

If his drawing is acceptable, his group earns a point. If the 

drawing does not demonstrate non-validity, the second group is g:i,.ven 

the opportunity to earn the point. 

As an example, a partial converse of the SAS l.'ost.ulate (Example 

4.3) is the following: 

Two triangles are congruent if two sides and a non­
included angle of one are congru¢nt respectively to two 
sides and the non-included angle of the other. 

An acceptable drawing that demonstrates the non-validity of.the above 

argument is shown in Figure 60. Note 

that tiABC and tiABD satisfy the 

hypothesis of the theorem,.but 

that they are not congruent. 

This example is a difficult one. 
Figure 60 

If the students are unable to produpe a drawing to demonstrate non-

validity, the teacher can create .the drawing and give the point to 

the group finding triangles that satisfy the hypothesis, but not the · 

conclusion, of the argument, 

A similar activity consists of examining the partial converses 

of a postulate or theorem to find related arguments that are presented 

as theorems or postulates in the textboqk. The group finding the 



82 

largest number of related theorems or postulates is the winner, In 

this se.ction it has been demonstrat;ed that the -SAS Postulate and the • 

AA Similarity Theor.em have partial ·converses that are basic geometric 

postulates or theorems. Many other valid geometric argun,.eri.ts. have 

this property. For instance, the partial converses of Theorem 8 

(Problem 3, Exercise Set 4a) include most of the basic theorems 

about parallelogr,;1.ms. 

Summary 

In this chapter .the definitions of "converse" presented in the 

five sample texts were examined, Inconsistencies e:idsting between 

the st;.ated definitions, their use in the texts, and the basic laws of. 

logic were noted. These inconsistencies presented no major problem 

in the geometric development in the texts, sii;i.ce it is generally 

the statement of an argument that 'is important in a geometry text 

and not the fact that it is called the converse of another argument. 

However, the writer hopes that it has been established that if 

a teacher eliminates the inconsistencies by introqucing the concept 

of a partial converse to his class, he .has given his. students a 

useful technique for discovering other meaningful geometric ·argu­

ments.. He can encourage use of this technique by organiiing activities 

similar to those mentioned in the. previous section or by other 

means that he may devise, It is this writ.er' s opinion .tha t the 

introduction of a concept of a partial converse enhances the learning 

experience in a deductive geometry course by offering the student 



an opportunity to assume an active role in the .examinatio~ and 

construction of geometric ax:guments~ 
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CHAPTER V 

PARTIAL INVERSES 

The Definition of a Partial lnv:erse 

Secondary school students have been exposed to hundreds of hours 

of commercials on television and radio, in newspapers, and through 

other media. They are undoubtedly familiar with the following type 

of sales pitch: 

If you brand of soap is Nodirto, then you are using 

a good soap. 

Having introduced the students to the argument above, they can be 

asked to complete the following statement in a manner that would 

please the manufacturers of Nodirto soap. 

If your bran.a of soap is nc;,t Nodirto, then ------­

(Answer: you are not using a good soap,) 

Students have little difficulty with this kind of exercise and quickly 

recognize that if they consider the first a:i;-gument to be p+q, then the 

second is clearly l\,p+rvq, 'l'he manufacturers of Nodirto obviously hc;,pe 

that a lis.tener or ,reader, upon hearing or seeit1g the first argu.­

ment, will subconsciously produce the :second one and con!;!ider the 

t-wo arguments as equivalent, The alert student will intuitively 

0/. 
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induce that the arguments are not equ:l,valent, and can c;;onvince h:l,mself 

with a truth table that· (p-+q)~('\lp.+'vq) is not a tautology, 

The statement '\lpe+tuq is genera.Uy conside1Ted to be :l.n inverse 

of p-+q, and this is the way Keedy anq. Rosenberg define "inverse" 

in their texts, Goodwin says, "The inverse of an implicatic;m is writ-

ten by negating both the anteced.ent and the consequent," (~, p. 103), 

Andersem and Moise do not state any definit;l.on ot "inverse," nor do 

they use the concept in their. respective texts, 

It was demonstr1:1ted in the previous chapter that meaningful 

arguments can be constructed by examining partial converses of a 

geometric argument. Another set of argum13nts may be construct13d 

from a given.argument using the following definition, 

A partial inverse of an a~gument is an, argument formed 

by negating a number of component statements of the hypo-

thesis and an equal number of component statements in the 

conclusion. 

It can· be noted that the single partial inverse of the a~gument 

p-+q is l\,p-+'vq. In this case, the partial ;l.nve1:se is the same as 

the inverse as defined by Goodwin, Keedy, c;1nd Rosenberg, 

Example 5,1 

Theorem 14: If two lines are parallel, their slopes are equal. 

Hypothesis: Lines 11 and 1 2, 

p =, • Ll I/ 12, 

Argument form: p-+q, 

Conclusion: 

q: Slope 0f L = 
l slope 0f 12, 

Figure 63 

1 
2 



The partial inverse 'vp~q is easily stated: If two lines are ~ot 

parallel, their slopes are not equal. In this QJse, the partial 

inv.erse is a .valid argument. 

Example 5.2 

Theorem 15: If two lines are parallel, their y-intercepts 
1:1.re not equal. 

As with Example 5.1, the partial inverse is easily stated: If two 

lines are not parallel, the.n their y-intercepts are 

equaL This argument is invalid, as demonstrated 

·in Figure 64. 

Figure 64 

Example ,5.3 • 

Theorem 16.: In a ,plane, if a l:1;pe, intersects one of two 
parall~l lines in exactly one point, then it intersects 
the other .line in exactly one point. 
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Hypothesis: Coplanar lines 
1 , 12 , 1 3 , 

1 . 

Conclusion: 
~Ll 

12 .. 
p: 11//12. 

p2 : 13 and 11 
intersect in 
exactly one 
point, 

q: 1 3 and h 
inters13ct in · 
exactly one 
point. 

Figure 65 



Hypothesis: Coplanar lines 
11' 12, 13, 

"'P • 1· 

p2 : 1 3 and 11 , 

intersect in 
exactly one 
point. 

Conclusion:. 

'\Jq : 13 and t 2 
do n.ot 
interesect 
in exactly 
one point, 

This argument ·is invalid (See Figure 66). 
! 

Partial Inverse 2: (p1/\"'Pz)+rvq. 

Hypothesis: Coplanar lines Conclusion: 
11' 12' 13 

"'P2 : 13 and 11 
do not 
intersect 
in exactly 
one point, 

"'q: 13 and t 2 
do not 
intersect 
in exactly 
one point .• 
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Figure 66 

1i~----,---+ 
12------

13--..----.....a> 

Figure 67 

This argument is valid, Since the line!3 are cqplana:r, "'Pz is equiva,.... 

lent to saying .that r.,. 3//11 and '\lq is equivalent to saying 13 //12. The 

validity is established using the theorem stating that two lines 

parallel to a third line are parallel. . 

Example 5.4 

Theorem 17: In a plane, any pp:i,nt on the perpendic;:ular bisector 
of a segment is equidistant frpm the end point;s ef the 
segment, 



Hypothesis: Line Land 
segment AB, 

pl: p is a point on 

+-+ 
Pz: LJ.AB, 

P3: L bisects AB, 

Conclusion: 
p 

L q: PA•PB, 

Figure 68 

Without going into elaborate detail on this e:x:i:lmp.J,e, the writer 

concludes that the partia.J, inverse 

is equivalent to saying that any point not on the perpendicular 
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bisector of the segment is not equie:listant from the end points of the 

segment, This partial inverse is valid, The partial inverse 

is not valid since '."q (tha_t is, PA,rPB) is not a necessary consequence 

of the hypothesis, This can be seen by taking P to be the point of 

intersection of Land AB, -The partial inverse L 

p 

A 
can be established as vaJ,id with al'!, 

indirect proof (See Figure 69). 
Figure 69 

The arguments in the above examples contai11 exactly .one component 

statement in th,eir respective conclusions. The writer has tried 

negating more than one statement in the hypothesis and conclusions of 

man,y arguments, .but has never found any interestj,ng (from an instruc~ 
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tional standpoint) and useful arguments by this process~ This is not 

to say that·the concept; of a partial inverse cannot be meaningfully 

applied when an·argument contains more than one component statement 

in its conclusion. Any argument, the .cqnclusion of which is the 

conjunction of n. statements, c;a:n be written as n · argµments, .each 

having cme component statement in its conc:t.usion! Interesting argu-

ments can often be obtained by examining partial inverses of then 

agruments. As an example, it can be ob$erved in problem .4 of 

Exercise Set 5 that 

~I+.+ 
AD..L BC 

is a necessary consequence.of the given hypothesis. Hence 

is a .valid argument, The partial invet;se 

is meaningful, but, in the writer's opinion, noit; interesting ftom 

an instructional standpoint, However, the partial inverses of the 

arguments 

and 

include interesting and valid. arguments. 
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Exe.rcise Set. 5 

In problems 1-3, write the pa"J;"tial inverse c,f each 1;p:g1,1men~ and deter-

mine if it is valid. 

1. 

2. 

If b.ABC is equilateral, then b.ABC b bosce1es, 

5 7 a b If - ... - the_n -5 • -7, 
a b' 

3. If b.ABC ;l..s congruent to b.DEF, then liABC is. similar tc:> b.DE?, 

In problems 4-5, examine the pal:'t;i.al, inverses of each argument 1:1.nd 

determine their validity or nan-validity. 

4. Hypothesis: b.ABC. Conclusion: 

AB=AC. q: 
....... 
AD bisects BC, 

Pz: · AD bisects ~AC. 

Figure 67 

5. Hypothesis: Quadrilateral ABCD, Conclusion: 

n11cn. 
!ntJ!c. 

q: 
DOC 

m& .. 90, A . B 

Figure 68 

Suggestions for: Enrichment 

Students can be asked to e:ii;plore the relationship between the 

number of partial converses and the number of par:tia~ inverses for 

a given argu'1,11ent. form, l;t is not a difficult task tQ .establish that 

the numbers are equal. 

It can be established with a truth table that 

( q-+p) ---< 'vp-¥vq) 

is a tautology. That is, the converse of the argument -p-+-q_ is equiva-

lent to the inverse of the argument. St;udents can then examine the 



91 

possibility that a similar result holds for the partial converses and 

partial inv_erses of the argument 

It is interesting to note that 

is a tautology. However, 

is not. In general, it can be established that for each partial, 

converse of an argument, ·there is exact:ly one equivalent; partial 

inverse, and vice-versa. 

Summary 

The purpose of this chapter was to introgµce the concept of a 

partial inverse and demc;mstrl:lte its use as a discovery technique, 

However, the major significance of a partial inverse in the deductive 

development of geometry will be discussed after the concept of 

"part;Lal contrapositive" is introduced in the following chapter, 



CHAPTER VI · 

PARTIAL CONTRAPOSI'IIVES 

Examination of the Definition 

of Contrapositive. 

In previous chapters it was demonstrated how students cari discover 

other theorems by examining the partial converses and partial inverses 

of postulates and theorems. But it was also demonstrated that partial· 

converaes and partial, inverses of valid arg1.J.ments are not necessad,ly 

valid arguments. Therefore, after discc,vering a new and seemingly 

valid argument by ·these t13chniques, the student must establish the 

validity of the argument before using it in the development of new 

material. In this chapter the .reader will be introduqed. to an. 

argument form that will automati~ally produce a valid argument :l,f 

obtained from a valid argument, 

The argument form to be introduced is si'!llilar to, and in some. 

instances identical to, .the statement form known as a "eoµt:ra­

positive." l'hree of the sample textbooks define "contrapositive," 

and two (Anderson and Moise) do not. Goodwin, Keedr, and Rosenberg 

all state that the argument "'q,+l'\;p is the ccmtral?os;i.tive of p+q. It is · 

easy to establish that "'q-¥\Jp is equivalent ta> p+q with a truth table 

(problem 1, Exercise Set 2f), Hence, one can easily c+eate a valid 

argument from another valid argument that has only one component 

Q') 



statement in both hypothesis anc;l conclusion by construc;.ting the 

contrapositive of the argumen,t. 

Example 6.1 

Theorem 18: If two sides of a tr:1,ang;l.e are congruent, the 
angles opposite these sides are congl:."uent. 

Hypothesis: 6. ABC. Conclµsi,on: .. 

p: q: 

Argument form: p+q. Figure 72 

Contrapositive of Theorem 18: If two angles of a triangle 
are not congruent, then the sides op~osite these angles 
are not congruent. ~ C 

Hypothesis: 6ABC. Conclusion; B ~~'---~~~~~__.. 

rvq: Mic.. Figure 73 

Argument form: rvq+rvp. 

The validity of rvq+rvp is'usually established by ind:1,rect proof. 

liowever, indirect proof is not. needed here. Th,e argument "'q-+'\lp is 

valid by contrapositive argume~t;, 

Example 6.2 

Consider the following argument; If two d;l..st;inct lines a,re 

parallel, ~heir y-intercepts are equal. 

I 

This argument is clearly invalid (since the two lines wou.:I.d. 

intersect if their y-intercept;s were equal), and hence its contra"'.' 

positive, which is an equivalent statement, should also be invalid. 

The· contrapositive can be stated in the following manner: 
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If they-intercepts. of two 4istinct lines are not equal, 

then the lines are not parallel. 

The non-validity of thb argument can be established by considering 

the lines y=x and yax.+ 1. 

Consider now an argument of the form (p1/\p2)-rq, The contra­

positive of this argument (u,sing the traditional definition) is 

It is easily established with a truth table that 

is a tautology. Hence, if (p1Ap2),+q is val:l.d, .then so is 

"iq-¥v(p1/\p2). This means that the truth of "iq necessitates the 

.truth of "i'(p1Ap2), which, by one of;DeMorgan's Laws, is equivalent 

to "ip1\/"ip2. One can ~hclude that the truth of "iq necessitates 

that it is impossible for bothy,f "ipl and "1Pz to be false. This 

leaves three possibilities: 

(1) "ipl and "iPz are both true, 

(2) "ipl is true and "ip2 is false. 

(3) "ipl is false .and "ip~ is tJ:'.Ue, 

Example 6.3 

D 

94 

c Given quadrilateral ABCD (Figure 74), The 

Al I B. 
validity of the following argument is easily 

established. 
Figure 74 

r <Ail/ c$)/\< ~ m) J-rc1$/ I B"c). 
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The contrapositive of this argument is 

c!n~ BC)-+tv c <Ai311 co)/\ < ~~ /JJ) J • 
B 

+-+"i.J+-+ 
The truth of ADtf\BC would necessitat~ the truth 

Figure 75 

of exactly one of the following statements, 

(1) (AB J/...cn)/\(~1/JJ.). (See Figure 75.) 
D Av/C / 

B 

(2) (AB# CD)/\ (f.6';;;'fQ), (See Figure 76.) 

Figure 76 

(3) (Ai3//cn)/\(/J3/L!2), (See Figµre 77,) 

Figure 77 

The conclusion of the contrapositive in Example 6.3 is meaningf~l 

and informative, However, it does have certain limitations, First,_ 

one can only conclude that exactly one of the statements (1), (2), 

or (3) must be true without being able to spec;ify which one of the 

three is true. Secondly, in the contrapositive argument, one cannot 

determine a truth value for either of the statements AB//cJj and 

DJ~/]}. The point to emphasize is that if the hypothesis of a valid 

argument c:ontains more than one component statement, one is unable 

to specify the truth value of these component statements in the 

contrapositive argument. This fact .somewhat limits the practical 

use of the contrapositive of a valid argument with a compound hypo-

thesis in a deductive geometry course, 



The Definition of a Partial Contrapositive 

At th.e beginning of thiS! chapter, the contrapositive of the 

argument p+q was examined. The contrapositive of this argument.did 

not·have the aforementioned limitations of the contrapositive of an 

argument with a compound hypothesis. This. section is devoted to 

constructing a valid argument form from a valid argument .with a 

compound hypothesis such that the constructed argument does not have 

these limitations. The argument form is described in the following 

definition •. 

A partial contrapositive of an argument is an argument· 

obtained by negating a nu.mber of component statements in the 

hypothesis and an equal number of compo~ent statements in 

the conclusion and then interchanging the negated statements. 

It should be noted that the single partial contrapositive of p+q 

is identical to the contrapositive, ~q-wvp, 

Attention will now be centered op partial contraposit;f.vea of 

arguments with conclusions containing e~actly one component 

statement. As will be shown, these partial contrapositives are 

extremely useful in deductive geometry and do not have the previpusly­

mentioned limitation. (It will again be noted that an argument with 

n component statements in its conclusion can be written as n argu­

ments, each with one component statement ;l.n its cqnclusion,) 

If an argument has the fqrm (p1/\.p2)+q,· then the part.ial 

contrapositives of this argull).ent ar-e 

and 
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TABLE XV 

TRUTH VALUES OF (p1/\p2 )-+q AND ITS PARTIAL CONTRAPOSITIVES 

P/\Pz P/\ "''l 'vqj\p2 (pl/\p2)-+q (pl/\ 'vq)-+'vp2 

..__ -
T F F T T T F T F 

T T T T F F T F F 

F F F F T T F T T 

F T F F T F T T T 

F F F F T T F T F 

F F T F T F F T F 

F F F .F T T F T T 

F F F F ..'.!__ F F T T -

( 'vq/\ Pz )-+'vpl 

.--
F T F 

T F F 

F T F 

F T F 

F T T 

T T T 

F T T 

F T T -

\0 ...... 
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Table XV shows that both of these partial ~ontrapositives are 

equivalent to (p1/\p2)+q, 

In a similar manner, one can consider the argument (pJ!'p2j\p3)+q 

and establish that it is equivalent to its three partial contrapositives 

('\iq/\Pz/\P3)+'\ipl. 

In general, the argument (p1/\Pz/\:., /\Pn)+q is equivalent to every 

one of its n partial contrapositives. 

Using any valid argument, the student n~w has at his disposal a 

technique for constructing other valid arguments, A po:Lnt to 

emphasize is that one can establish the validity of an argument 

containing a one-component statement conclusion merely by identifying 

it as a partial contrapositive of a valid argument, 

Example 6.4 

Theorem 19: The bisector of the vertex angle of an isosceles 
triangl,e is perpendicular .to the base of the triangle, 

Hypothesis: ~ABC. Conclusion: 

AB=AC, q: 

p2 : fi:i! bisects /YJAC. D 

Argument form: (pJ!\p2)+q, I;igure 78 

This is a valid argument, and hence its two partial, contrapositives 

are valid. 



Partial Contrapositive 1: (p1/\"'q)-¥\#p2. 

Hypothesis: t.ABC. 

AB=AC. 

Conclusion; 

~ 
AD does not 
bisect §,AC. 
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c 

Figure 79 

In words: If a ray (line) containing the vertex of an isosceles 

triangle is not perpendicular to the base, then the· ray (line) does 

not bisect the vertex angle of the triangle. 

A 

Partial Contrapositive 2: ('vq/\ Pz)"*"'Pl • 

Hypothesis: t. ABC. Conclusion: 

"-q: AD~BC. "'Pl: ABo/:AC. B 

Pz: AD bisects L]_AC. Figure 80 

In words: If the b:l,sector of an angle of a triangle is not 

perpendicular to the opposite side, then the sides of the triangle 

which include the angle are not congruent. 

Example 6.5 

Theorem 20: Any point on a perpendicular bisect;or of a segment 
is equidistant from the end points of the segment. 

L 

Hypothesis: Line Land segment AB, Conclusion: p 

p1: Pis a point on L. q: PA•PB. 

1.l.!B. 

p3 : L bisects AB. Figure 81 

Argument form: (p1;\ p2/\p3)+q. 

This argument is valid and hence its three partial contrapositives 

are valid. 

c 



Partial Contrapositive 1: (p1J\p2/\l'\iq)~p3 • 

Hypothesis: Line Land segment AB, Conclusion: 
L 
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Pis a point on.L. 

p2: L1-lB. 

"'P • 3' L does 
bisect :~_:~.E 

"'q: PA;/;PB. Figure 82 

In words: If a line is perpendicular to a segment, and if there 

exists a point on the line which is not equidistant from the end 

points of the segment, then the line does not bisect the segment. 

Partial Contrapositive 2: (p1,/\'vq/\p3)+'vp2 , 

Hypothesis: Line Land segment AB, C'onclusion:. 

p1 : Pis a point on L, 

PA;/;PB. 

L bisects AB. 

L 
p 

Figure 83 

In words: If a line bisects a segment, and if there exists a 

point on the line which is not equidistant from the end points of the 

segment, then the line is not perpendicular to the segment. 

It is interesting to note.that if the hypothesis of partial 

contrqpositive 2 is to be t;rue, then P must not be AB(\ L, If P is 

taken to be AB('\ L, the hypothesis is false (since l'\iq would be false), 

However, the argument is still valid. (Recall that an argument is 

invalid only if the conclusion can be false when the hypothesis is 

true.) 
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L 

Hypothesis: Line Land segment AB, Conclusion·: 
•P 

l\,q: J;>A;'PB, l\,pl: p is not 
on Ii, 

+-+ 
Pz; LJ_AB, 

P3: L bisects AB, Figure 84 

In words: If a line is a perpel').dict,1lar bhector of a segment, 

and if a point is not equidistant from the end points of the segment, 

then the point is not on t:he line, 

Exercise Set 6a 

Write the partial contrapositives of each argument, 

1. Supplements of congruent angles are congruent. 

i. If a triangle is equ,ilateral, the~ it is isosceles, 

3, If two circles have unequal areas, t:"h,en their ;radii are unequal, 

4. If a+ b = c and b1'0, then ar<c, 

5. If two planes are perpendicula~ to the same line, the planes 

al;'e parallel. 

Using Partial Cot1trapositives to Prove 

Gen.era! Theore111s 

:Many of the general theorems t:hat appeal;' in ge~etry text;bc:,oks 

can be p'l;'oved using pa;r:tial contrapositives. In many i1'Stan.ces, t;his 

saves considerable time while preserving rigor, as studen,t;e; dP not 

have to struggle through a.complicated formal proof, (A teache;r: must 

exercise discretion here, since it is not-tp be denied that some com-

plicated formal proofs are wor:thy :of explorat;ion 'by geometry $tu4ente ,) 



Example 6,6 

Prove Theorem 21: Two lines cut by a transversal 
are parallel if a pair .of alte:rnate interior 
angles are congruent. 
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-~ .. ·. 

··~ 

Figure 85 

If the Exterior Angle Theorem for triangles has been established, 

the following theorem :ts easily proved. 

Theorem 22: If two l;i.nes are not pa't'allel, t:;hen ~.,.;,,1, ...... ~ ...... -~t'"'1' 

a pair of alterna~e interior angles are not 
congruent. 

Figure 86 

(Of the five sample texts, only Goodwin introduces the Exterior Angle 

Theorem after parallel line theorems have been established.) 

By constructing the contraposit:i,ve of Theorem 22, one obtains a valid 

argument, which is Theorem 21, 

Example 6.7 

Prove Theorem 23: A line joining the 
of a triangle is parallel i:o the 

midpoints of two sides 
third side. A . 

D~ 

Figure 87 

To prove Theorem 23 using partial c~ntrapos:ttivei;,, one needs the 

following theorem, 

Theorem 24: If three or more parallel ltnes 
intercept congruent segments on one 
transversal, then they.intercept congruent 
segments on every transversal, 

Figure 88 



(Three of the five sample texts--Anderson, Goodwin, and Mo:i.se,,--

establish Theorem 24 after l'heorem 23. However, in each of these texts, 

Theorem 24 could easily be proved Urst,) 

A corollary of Theorem 24 is the following: If a line is parallel 
to one side of a triangle and bisects a second side, then it· 
bisects the. third side. 

Hypothesis: .6.ABC, Concll,lsion: . 
E 

q: fl-A_~ 

E i~ the m;idpoip;t . . 
of AC, 

B C 

Pi= wJI BG, 

D is the midpoint . 
of AB. 

Argument form: (p/\ P2)-+q • 

A partial inverse of this cqrollary is <"'Pi'' p2)-+"-<!, 

Conclusion: Hypothesis: .6.ABG. 

+-+:\/:J -DE/1\BC. "'q: E is not the 
midpoint of AC, 

Dis the midpoint 
of AB". 

The validity of this partial inverse can be.established 

++ 
by introducing the uniql,le line through B parallel to DE, 

++ This line will intersect AC at a point F. (See Figure 

91.) Then AE = EF by l'heorem 24, Since EF ~ EC, one 

concludes that AE ~ EC, and that Eis not the midpoint 

of AC. 

Figure 89 

Figure 90 

B C 
Figure ~l 

Since. ("'PJ!' p2)-+'vq is valid, a partial contrapositive, 

(q/\p2)-;,.p1 is also valid, 



Hypothesis: t\ABC. 

q: Eis the midpoint 
of AC, 

p2 : Dis the midpoint 
of AB, 

Conclusion: 
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D . · E ~ 
F;i.gure 92 

Note that this partial contrapositive is Theorem 23, the argument that 

was to be proved valid. 

These examples illustrate how a partial contrapositive of a 

valid argument may be used to establish the validity of common geo-

metrictheorems. It is, of qourse, impossible to present illustrations 

that can be directly applied to all geometry te~ts, for any two texts 

may present completely different orders of theorems. However, using 

any text that presents a deductive development of geometry, the al1ert 

teacher and his students can utilize methods of proof similar to 

those in the examples, For just one instance, problems presented in 

problem sets are often partial contrapositives of other arguments 

that have been established as valid, 

Exercise Set·6b 

In each problem, if the stated argume~t can be established as valid, 

what comm.on geometric theorem could be obtained by using partial 

contrapositives? 

1. If a transversal cuts two lines and if a pair of alternate 

interior angles are not congtuent, then the lines are not parallel, 

2, If a line is perpendicular to one of two non-petpendicular planes, 

then the line is not contained in the second plane, 



3. If A, M, and Care points on a line L, and if Mand 

4. 

A are on opposite sides of any other line that 

contains c, then Mis not between A and C. Figure 93 

In L'IABC, if DE is not parallel to. BC, then D A E 

d:::. ::::s ~ 
AD AE 
DB 'f EC' 

B~ ~-C 

Figure 94 

Finding a Necessary Conclusion for a. 

Given Hypothesis 
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The typical geometry problem involving proof presents the student 

with a stated hypothesis and a stated conclus:i,on to be obtained 

from the hypothesis by logical argument, The conclusion generally 

does not follow inunediately from the hypothesis, To create the series 

of valid arguments referred to iri Chapter 3, the student must take 

the given hypothesis and construct an interim conclusion, He then uses 

the interim conclusion in conjunction with the hypothesis to construct 

another conclusion which is either the conclusion of the stated 

argument or another interim co_nclusion. This process is co.ntinued 

until the conclusion of the stated argument becomes a necessary conse-

quence of the conjunction of the given hypothesis with obtained 

interim conclusions. Hence, a good portion of a student's ti~e is 

spent constructing interim conclusions that can be used to obtain 

eventually the stated conclus~on, 

A common error made by stud.ants in the construction of a formal 

proof involves obtaining an interim conclusion that is not a neces-

sary consequence of the stated hypothesis and othel;' in.ter:i,ni conclu~ 

sions. The writer has found that _this type of error .is very common 
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in proofs involving geometric inequalities. That is, students often 

have difficulty obtaining necessary conc;.lusions (interim or otherwise) 

from a hypothesis that contains statements of inequality, The writer 

has also found that the occurrence of this type of error can be 

lessened by introducing the partial contrapositive technique demon-

strated in the following examples. 

Example 6.8 

What conclusion is a necessary consequence of the given hypothesis? 

Hypothesis: ~ABC and ~DEF, Conclµsion: 

AB=DE, q: ? 

BC=EF, 

Figure 95 

Solution: A method of attack is to examine the partial contrapos:i,.tive 

form 

Hypothesis: ~ABC and ~DEF, Conclusion: 

pl: AB=DE, 

P2: BC=EF, 

"4: ? 

Now if ~q is defined to be the statement 

then the partial contrapositive is a valid argument, Hence q: mj,&ma,. 

is a necessary consequence of the given hypothesis, (It should be 

noted that ~q can also be defined to the statement AC•DF,) 



Example 6.9 

Supply a necessary conclusion for the given hypothesis, 

Hypothesis: 6ABC, Conclusion: 

AB is the longest 
side, 

• q: ? 
C B 

p2 : m&= 30. 

p3 : BC;&/3<AC). 

Figm::-e 96 

Solution: Preceding as in Example 6.8, one can examine the partial 

Hypothesis: 6ABC. Conclus;ion: 

AB is the longest 
side. 

BC = /3(AC), 

p2 : m&, = 30. 

If ~q is defined to be the statement 

6ABC is a right triangle, 

then the partial contrapositive is valid, Henc~ 

q: 6ABC is not a right triangle 

i~ a necessary conclusion of the given hypothesis, 

Example 6.10 

Supply a necessary conclusion for the given hypothesis, 

Hypothesis: The circle with Conclusion: 
external point P. 

pl: PA is a tangent q: ? 
segment to the 
circle 

Pz: PA;'PB, Figure 97 
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Solution: Examine the partial contrapositive 

Hypothesis: The circle with Conclusion: 
external point P. 

PA is a tangent 
segment to the 
circle, 

If 'vq_ is defined to be the statement 

PA=PB. 

PB is tangent to the circle at B, 
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then the partial contrapositive is a valid argl!:ment. }Jenee, for the 

original hypothesis, a necessary conclusion is 

+.+ 
q: PB is not tangent to the circle at B, 

+,,+ 
Note that q is not equivalent to saying that PB is not tangent to the 

circle. 

Exercise Set 6c 

In each problem, supply a necessary conclusion for the stated 

hypothesis, 

1. Hypothesis: Quadrilateral ABCD. Conclusion: A 

pl: E is the midpoint of AB, q: ? 

Pz: F is the midpoint of BC. 

P3: G is the midpoint of CD. 

+.+ +.+ 
P4: GH is not parallel to EF. 

J;igU'l:'!a 98 



2. Hypothesis: .6ABC with a point Conclus:1,.on: A 

3. 

D between Band C, 

Hypothesis: The sphere and 
plane R, 

R is tangent to the 
sphere at point P, 
+,,+ 

OP is not perpendicular 
to R, 

B&C 
D 

Figure 99 

Conciusion:~ 

q: ? 

Figure 100 

Relating Converses and Inverses 
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Most geometry textbooks, including those in the sample for this 

manuscript, contain many characterization (locus) problems. Problems 

of this type involve proving that a given set, S, consists of all of 

the points satisfying a given condition. That i,s, one is required to 

show that 

(1) If Pis any point in S, then P satisfies the given condition. 

(2) ;r.f Pis any point satisfying the given condition, then 

Pis in S. 

In many characterization prQblems, statement (l) can be repre~ 

septed in the conditionial for.m p-+q, A simple truth table can be 

constructed to show that 

( q-+p) ++ ( l'\,p+rvq) 

is a tautology •. That is, the converse and the inverse of p-+q are 

equivalent statements. (One can also note that "1>+'1-q is the contra-

positive of q+p,) Hence, to show that the converse of p+q is a 
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valid argument, it suffices to show that the inverse of p~ is a 

valid argument. 

Example 6.11 

In a plane, .if one wishes to prove that the perpendicular 

bisector of a segment is the set of all points equidi~tant from the 

end points of the segment, he must prove that 

(1) all points on the perpendicular bisector of the segment 13,re 

equidistant from the end points of the segment, 

and the converse of (1), which is 

(2) all points equidistant from the end pain.ts of the segment 

are on the perpendicular bisector of the segment. 

However, to prove (2), it suffices to prove the inverse of (1), which is 

(2a) all points not on the perpendicular bbec.tor of the segment 

are nG>t equidistant from the end points of th.e se~ment, 
I,. 

The prc;,cedure for the total proof is outl:i,ned below, 

(1) Hypothesis: AB and its perpen~ Conclusion: A.....,..-+----+1:-,.+,--~ 
diaular bisector B 
L, 

Figure 101 

p: Pis any point on L, q: PA•PB, 

If Pis M, the result follows immediatel.y, If Pis not M, the 

validity of p~q is easily established using SAS, 



(2a) Hypothesis: AB and its perpen-. Conclusion: 
dicular bisector 
L, 

L 

•P 

A 

p: Pis any point not on 
L, 

q: PA,'PB, 'M 

Figure 102 
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B 

The validity of (2a) can be established using the procedure discussed 

in the last section, First, one can note that PM..l.AB, since PM 
++ 

is not L and the perpendicu.1,ar .to AB at M is unique. Thus, one can 

present the hypothesis pf (2a) in the following manner in order to 

seek a necessary conclusion q1 . 

Hypothesis: AB and its perpendicular 
bisector L, 

P1: ~n. 
Pz: AM•BM, 

? 

Examining a partial contrapositive of (p1/\p2)-+q1 , one obtai~s the 

followii:ig: 

Hypothesis: AB and its perpendicular Conclusion: 
bis.ec tor L, 

"'q:i.: ? 

p2 : AM•BM, 

Now if "'ql is defined to be the statement 

PA• PB, 

l\,P : ~.Ltt. 
l 

is a necessary consequence of PJ:"Pz and the argument (2a) is valid. 



Exercise Set 6d 

1, To prove that 

In a plane, t~~ set of .all points 

equidistant from two parallel lines t 1 

and 12 is. a line parallel to 11 and 12 

and midway between them, 

one would prove that 
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._E_.---~~ 11 .,.., ___ ..,........ ->· 12 

+-(----~> 13 

Figure .104 

(a) any point on 1 is 
~~~,..-~~----~._.~ ....... ~---------

and 

(b) any point not on 1 is __ __,,.,...,.......,....,... ______ ,,...... ______ ,,,_ ____ ~ 
2. Follow the outline below to prove that 

The set of all points :1,n the· interior 
• 

of an angle that are equidistan~ £rpm the 

sides of the angle is. the bi sec t:i,.ng ray, ... .. 
minus its end point. 

(a) Prove that if CD is the bi1;1ecting ray of 

~CE and if P is a point on CD other ,than c-----=---'"!:-'411-

c, then Pis equidistant froi:p. c1 and CB. 

(b) Now prove that if Pis in the interior 

of ~CB and not on the bisecting ray 

cff, then Pis not equidistant from 

GA and 'fi. (See following.) 

Figure 105 

c 

Figure 106 



(i) Why is m . .&_CP 'F ma_CP? 

(ii) Fill in the hypothesis and explain why· pl and p2 are true. 

Hypothi:sis: 

PC=PC, 

~EC and tXFC are 
right angles. 

m .&_CP 'f m&_CP, 

Conclusion: 

q: ? 

(iii) A partial contrapositive of (pJ!' p2Ap3),-iq is 

(P:(\P2/\"'q)-+'\p3 , How can one define '\Cl to make 

this partial contrapositive into a valid argument? 

Hypothesis: 

PC=PC. 

fE.EC and illC 
right angles, 

q: ? 

Conclusion: 

are 

Suggestions for Enrichment 

The geometry teacher can use Venn diagrams to illustrate many 
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of the topics discussed in this and previous chapters. Let p denote 

a statement and let Ube a universe in which p has a definite truth 

value. Let p be that part of the universe U in which pis true. The 

universe U will represented by a 

rectangle and its interior, and P 
u 

will be represented by a circle and 

its interior (the shaded region in 

Figure 107). The part of the 
Figure 107 

universe U in which p is false will 

be denoted by P, Hence P is the non-shaded region in Figure 107, 



Assume now that (p1/\p2)+q is a valid argument, This fact may 

be illustrated by Figure 108. The shaded 

region in Figure 108 represents the 

portion of U in which the hypothesis 

of the argument (p1/\p2)+q is true. 

Note that the truth of p1/\p2 

necessitates the truth of q. 

u 

Figure 108 

Teachers and students can inductively conclude that (pr1'p2)~ is a 

valid argument if and only if (p1np2)CQ. 
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Figure 108 can be used,to reinforce previously-discussed logical 

topics. For instance, it can be noted t;.hat 

(1) (P1 nq)CP2• This Hlustrat;~s that theval~dity of 
.. 

(p1/\ p2)+q necessitates the validity of a partial contra­

positive·, (p/\'vq)+'vp2 . 

(2) (P1 n P 2)~ Q, This illustrates that the validity of 
. 

(p11\p2)+q does E:9!, necessitate the validity of a partial 

inverse, (pi"." 'vp 2) .+t\/q. 

(3) (P1n Q)~P2• This illustrates that the validity of 

(p1/\p2)+q does ~ necessitate the validity of a pai-tial 

converse, (p1Aq)+p 2• 

Figure 108 is the most general illustration of the validity of. 

u 
Although there are other 

diagrams that illustra.te the validity 

of this argument, such as the one 

shown in Figure 109, it should be 

noted that Figure 109 indicates Figure 109 



that Pf~q is a valid argument. The val;i.dity of p1-rq is not a neces­

sary consequence of the validity of (p1/\p2)-rq (see Figure 108). 

Hence, Figure 109 does not represent the genera;t ca~e •. 

It ,is also possible tc:i construct Venn diagrams to illusttate 

(p1Ap2)-rq as a invalid argument, One 

such diagram is shown in Figure .110. 

?,Tote that P1 nP2<\Q· This illustrates 

that the truth of q is not a necessary . 
consequence of the truth of p1/\p2 , 

Summary 

u 

Figure 110 

It has been d.emonstrated that one can .deduce valid. arguiµents by 

constructing partial contrapositives·of previously estab;l.ished valid 

arguments. But although many such deductions are instructive in the 

classroom, it should be evident to .a geometry teachet that many of 

t't!.e numerous valid arguments that can be. dedu1;1ed in this man1;1er will 

not be of any use in the future develop~eat :of a geometric eitructu:re 

that is being created. In othe;t words, it makes little sence to 

examine every partial conttapositi:ve of every valid arg\.1.ment, 

The development of geometriq st;ructu,:e wil;l. dif.fer from text to 

text, a'l'l.d if a geometry teacher :Ls 1;:o :u.tilize partial cbn.traposiUv.es 

effectively, he must be thoroughly familii;!.r with his text and emphas;lze 

those partial contrapositives that will be beneficial in future work, 

A clever teacher will allow students to disco.vet. useful valid aigu.-

ments by suggestiI).g th;at they examine the contrapositives of spec:l,f;f.,c 

theorems. With careful guidance, st1,1dents might estal;>,lish the 

validity of an important; theorem before the class reaches the: point in 
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the text where the theorem is presented, Refer to example 6,6 for 

instance. It is often possible for students to establish the v;:ilidity 

of the theorem 

~o lines cut by a transversal are parallel if a pair 

of alternate interior angles are congruent 

before it is introduced in a text. The writer has frequently observed 

that the feeling of being "one up on the author(s) of a geometry 

text" is very 1=1atisfying to students. In some instap.ces, certain 

students have made a habit of looking ahead in the text in an attempt 

to "beat the author(s) to the proof of a theorem," 

The wise use of partial contrapositives can also eliminate the 

need for many time-consuming formal proofs, allowing more clas!3 time 

for some of the enrichment activities that have been suggested, 

However, as has been mentioned, a teac;her .should carefully examine 

a lengthy formal proof for possible educational value before substi-::­

tuting a partial contraposit;ive proof for it, 



CHAPTER VII 

RELATING SYMBOLIC LOGIC TO 

INDIRECT PROOF 

Types of Indirect Proof 

Most geometry texts, including those in the sample for this paper, 

discuss.the concept of .indirect proof and use it, in varying degrees, 

as a method of proof in their deductive development of geometry._ It 

ia the purpose of this chapter to relate this form of proof to. some 

of the concepts of symbolic logic that have been developed. 

Anderson states, ''To give an indirect proof of a statement, 

suppose that the statement is false and deduce a contradiction." 

(3, p. 192), Anderson is describing a. common form of indirect proof 

generally .called pl;'oof £l_ contradiction, or reductio ad absurdum. A 

symbolic analysis of the i:p.direct proof process as described by 

Anderson will now be given. 

Let p, q, and r denote statements such that pis true and r :1,s 

true. If one wishes to show tl).at p+q. is a valid argume:tlt using proof 

by contradiction, he assumes that p+q is '.false and shows that this 

leads to a contradiction of a known fact,.· This amounts to saying 

that the validity of p+q can be established by showing that. 

(1) tv(p-+q)-¥ur 

.., ... ~ 
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· is a valid argument. Note carefully that if "'(p+q) is true (that is, 

if p+q is false), then the validity .of (1) necessitates the .truth of 

"'r. This. is the contracliction referred to by Anderson, since r is 

given as true. The basic question to be analyzed is the following: 

Why does the validity of (1) necessitate the truth of q whenever p and 

rare true? 

As a first analysis, it can be noted. that the validity of (1) 

necessitates the validity of its contrapositive 

r+(p+q). 

Therefore, since r is true, the statement p+q is true, Since p+q 

is true and pis true, this necessitates the truth of q, 

As a second analysis, the biconditional 

'v(p+q)++(p/\'vq) 

is a tautology (Problem 2, Exercise Set 2f). Hence, (1) is equivalent 

to 

Since (1) is valid, then. (2) is also valid. Therefore the argument 

(3) (p/\ r)+q 

is valid since it is a partial contrapositive of (2). Since p and r 

are true, the statement p/\r is true. The validity of (3) thus 

necessitates the truth of q • 

• 



Example 7,1 

An example of an indirect proof using the cont1;ad,iction method 

is shown below. The proof is presented in Moise's text, The Line 

Postulate referenced in the proof states, "For every two points 

there is exactly one line containing both points." (17, p. 62), 

If two different lines intersect, thei:r intersection 
cont1;tins only one point. 

Proof, If two different lines intersect at two 
different points P and Q, then there would be two lines 
containing p and Q, The Line Postulate tells us that 
this never happens. (17, p. 63), 

l.19 

One can identify .in this proof the statemE;\nts p, q, and r referred 

to. in the discussion on proof by contradiction. 

p: Two dis tine t lines intersect •. 

q: The intersection of the distinct lines contains only 

one point, 

r: Two distinct points are contained on exactly .one line. 

A second method of indirect proof is called proo,f .!zZ cases, 

or proof 1?z elimination, If q1 , q2 , •• , , qn are statements sa,Usfy;Lng 

the condition that exactly ,one of them must be true in any given 

instance, a-p,d if pis a true statement, then exactly one of the 

argu~ents 

p + q 
n 



is valid, since only one of them can have a true conclusion fe~ the 

true hypothesis, p. If p+qj ;is the valid argument, its validity .is 

established. by showing that·the arguments 

ar.e all invalid. This. is usually accomplished by the contradiction 

method. That is, one attempts to establish that the validity .of. 

p+qk (1 .::_ k .::_ n, j,'k) necessitates the truth of a statement known 

to be false. 

Example 7.2 
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Consider the follewing theorem: The shortest distani;:e from a 
point to a line is .the length of the perpendicular segment 
from the point to .the ],ine. 

Hypothesis: Line L anq a point 
P not on L. 

PQJ.L at Q, 

Risa point on L 
distinct from Q, 

Conclusion: 

ql: PQ<PR, p~ 

~ 
.l. ·. 

Figure 111 
The Trichotomy Property of real numbers assures one that exactly one 

of the statements 

q1 : PQ < PR 

q2 : PQ = PR 

q3 : PQ > PR 

is true for any t;wo segment. lengths PQ a11d PR, Hence, since. PJ!' p2 

is true, exactly one of the following arguments is valid, 



(1) (p(' P2) + ql 

(2) (pl /\P2) + q2 

(3) (pl/\p2) +q3. 
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Outlining the proof, one would hope to establish tha.t ~q1 , which 

is equivalent to q2V'q3 , is false. The way that this is don~ would 

vary from text to text, again depending upon the order in which the 

material is presented. In Keedy, prior to presenting the stated 

th~orem, it is established that 

(a) If two s:Ldes of a triangle are congruent, the angles 

opposite these s;ides are congruent. 

(b) If a triangle has one ;right angle, then its other 

angles are acute. 

(c) If two s;ides of a triangle are not congruent, the.n 

the angles opposite them are not congruent, and the 

largest angle is opposite the longer side. 

If q3 is true, then py (c)., mLl?RQ > m.ll'QR • 90, a contradiction 

of (b). Hence q3 is false. 

If q2 is true, then. using (a), one obtains mURQ • 90, a 

contradiction of (b). Hence q2 is false. 

Since q2 and q3 are false, it follows that; q2 vq3 is !alse; 

that is ~q1 is false. Then q1 is true and (p1/\p2)+q1 is the valid 

argument. 

It should be noted that·one can look upen.the proof 'by elimination 

in Example 7.2 as a double application of the law of elimin,ation, 
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previously discussed in Chapter III .(see also problem 4, Exercise 

Set 3g), This. fact is demonstra:t:ed below, 

A third method of indirect proof presented in some textbooks is 

called proof . .!?z contraposition. Goodwin, Keedy, and Rosenberg briefly 

discuss this method of proof. As its name suggests, this method 

of proof involves establishing the validity of p+q by showing that 

its cqntrapositive, 'uq-+'vp is a vali,d argument, This. method of 

establishing the validity of arguments was thoroughly di~cussed in. 

Chapter VI. Though many texts label proof by c<;mtraposition .as an 

indirect method of proof, ,on,e is certainly justified, in light of 

previous discussion, in considering it a way of making a direct proof, 

Exercise Set 7 

1. Consider the theorem: If a line .intersects a plane not containing 
it, then the intersection contains exactly .one point, 

If one assumes that the intersection of the line and the plane 

contains two or more points, (a) what conclusion is a necessary 



consequence of this assumption? (b) what contradiction is 

obtained? 

2, Let p: a, b, and care the lengths of sides of a triangle, 

a~. q1 : a+ b > C, ~ 
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Figure 112 

(a) Assume that one wishes to prove the validity of p+q1 by the 

3. 

elimination method. Find statements q2 and q3 such that 

exactly one of q1 , q2 , q3 is true. 

(b) Having found the statements q2 and q3 in part (a), one 

would then have to prove that the arguments p-+q2 and p-+q 3 

are 

Let AB be the .diameter .of a circle and let C be a 
A~---+B 

point on the circle distinct from A and B, If 

one wished to present a proof by contraposition 

that m~CB ... 90, then, one would show that 
Figure 113 

(m £.BC :/, 90 )-+ is a valid ...... -..-...... ,....___,...,...,. ............ -
argull).ent. 

Suggestions for Enrichment 

A teacher and his stuq.ents can discus.a daily situations in which 

a person may use indirect reasoning to arrive at a conclusion. A 

television ,repairman may conclude that the trouble in a specif:f.c 

television set is caused by a picture tube, s:f.nce all other parts of 

the set have been found to be in satisfactory condition, A doctor 

may use indirect reasoning to make an educated guess as te the 

cause of a patient's problel.ll, For instance, .the doctor migl)t reason 



that a patient's stomach pain is caused by gallstones because the 

patient's appendix has previously been removed and ~-rays have 
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shown the absence of ulcers. Students in the teacher's geometry 

class may recall arriving .at an answer on a multiple guess test, not 

by directly determining the correct answer, but by eliminating all 

'qut one of the possible answers because of their apparent inco.rrectness, 

Summa-ry 

Experience with many geometry textbooks has led this writer to 

.;1.gree with those (10) who claim that many of the explanatiop.s of 

indirect proof which commonly appear in geometry textbooks are likely 

to confuse the studen.t, if not. actually mislead him, Most of the 

text explanations are brief, and merely prescribe a procedure for 

the student to follow and offer .. one or two examples demonstrating 

an application of the procedure. It is hoped that this chapter 

has offered the geometry teacher a deeper insight into the nature.of 

indirect proof and has suggested ways that might make this powerful 

method of proof more meaningful for. his students if symbolic logia 

is used, 



CHAPTER VIII 

CONCLUSION 

It has been the purpose pf this paper to demonstrate how a 

secondary school geometry teacher can introduce elements of symbolic 

logic into a geometry course but at the same time, preserve rigor, 

provide students with discovery techniques and a better understanding 
' . 

of deductive proof, and reduce the time spent on traditional form~l 

proofs. The extent to which a teacher chooses to utilize these con-,-

cepts of symbolic logic will vary from teacher to teachei, and the 

way ,it is done will depend upon the manner in which geometric material 

is developed in the textboo'k, being used. However, this ·writer hopes 

that he has convinced the reader that it is indeed ppu;l,bl~ tCJ use 

concepts of symbolic logic constructively in any deductive develop~ 

ment of geometry. Now that the reader has seen many possible uses 

for elements of symbolic logic in the teaching of geometry, a 

pr-ocedure for introduc~ng them without a grea.t expe1:1-ditu:re of time 

will now be summarized. 

In the beginning weeks of a geometry course, whe~ definitio.ns, 

primitive terms, and postulates are being established to be used in 

a later development of theorems, the teaGher can introduce the concepts 

of statement, negation, conjunction, disj:unction, c~nditional and 

biconditional statements, tautology, equivalent statements, and trut;h 

tables. A few minutes ·of class discussion per day, combined with. 

1? c; 
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statement examples (not all of which have to be related to geometry) 

will make these concepts familiar to the students, The teacher can 

utilize the student I s intuitive knowledge of. basic geometri.c figur:es 

for this purpose. As part of homework assignments, students.can 

construct simple truth tables. In doing so, they might make some 

interest;i.ng disco.veries, such as the fact that the converse of a 

statement is not equivalent to. the statement itse,lf. During this 

period, the teacher may identify the converse, inverse, and contra­

positive forms of the argument p+q. It is not suggested that the 

definitions of partial converse, partial inverse, and partial contra­

positive be introduced during this pre-proof period. 

When a discussion of elementary proof·ie; introdu,;:;ed in the 

textbook, the argument forms discussed in Chapter III of this paper 

can be introduced. The teacher can point out the valid argument 

forms that present themselves in the elementary formal proofs that 

appear in the,problem sets of the text, Invalid argument forms 

(Exercise Sets 3c and 3f) should be discussed, since students should 

clearly understand the distinction between valid and invalid argu­

ments, The reaeion for this is that valid arguments can l:>e used over 

and over again in th.e process of deducing useful concl1,1sions, while 

invalid arguments cannot be used in thh way. The writet hopes that 

introduction to the valid argument forms will help the students to 

understand another important distinction: That. between deductive 

reasoning and inductive reasoning, If students can make such a dis­

tinction, they will more clearly appreciate what is ·expected of 

them when a geometric proof is required. 
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The concepts of converse, inverse, and contrapositive should 

initially be related to the conditional p+q, The following points 

can be emphasized by constructing truth tables. 

(1) q+p is ~ equivalent to p+q, 

(2) 'up-¥1Jq is ~ equivalent to p+q. 

(3) 'vq-¥1Jp is equivalent to p+q, 

(4) q+p is equivalent t O 'up-¥1Jq , 

(5) The inverse of p+q is the contrapositive of the converse of 

p+q. 

These concepts can be reinforced daily by examining the converses, 

in.verses, and contrapositives of definitions, postulates, and simple 

theorems. The definitions of partial converse, partial inverse, and 

partial contrapositive can be introduced when a teacher feels the 

need for them. Perhaps the ideal time for the partial converse 

definition would be when the triangle .congruence postulates a:re 

presented, since (as was demonstrated in this paper) these postulates 

and the AAS Theorem are part::1,al converses of one another, . The 

writer feels that all of the "partial" definitions sho.ulc;l be introduced 

shortly after .the triangle congruence postulates, for they offer the 

students techniques for discovering other theorems. Also, if these 

concepts are established prior to the introduction oL.indirect proof 

in a textbook, they can be u!;led to supplement what is conunonly a 

very brief explanation of indirect proof, 

It should be J1.oteq. that while the material discussed in .this 

paper can be presented in such· a way as to be within t:he realm of 
• 

tmderstanding for high school geometry students, its presentation 
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requires a dedicated teacher who truly wants to interact with his 

students, Dedication is required because the teacher must be will­

ing to do some work outside of the textbook as he prepares his lesson 

plans. If he successfully develops the logical concepts. discussed, 

he has, in the opinion of this writer, given his students a powerful 

discovery tool and he must be willing to allow them to display openly 

their discoveries, thoughts, and ideas. The writer believes that 

even the most.able or energetic student will lose enthusiasm if he is 

forced to keep his ideas and discoveries to himself, The enrichment 

suggestions contained in the paper provide qpportunities for active 

student participation. When class members can participate and exper­

ience the thrill of discovery, it is this writer's opinion that 

geometry .and the deductive reasoning process can generate interest 

and enthusiasm while offering an exciting challenge to both teacher 

and students. 

In conclusion, it must be emphasized that this paper contains 

the thoughts, ideas, and opii::i.ions of only one geometry teacher, He 

has found them to be (;!xtremely useful in his geometry classroom. It 

is ·certainly not suggested that all, or even some, of these ideas 

and techniques can be successfully utilized in every geometry class~ 

room. It is the individual. geometry teacher who must decide which, 

if any, of these ideas and techniques are applicable tq his teaching 

situation. 
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1. 

' 2. 

3. 

4. 

5. 

1. 

2. 

3. 

Exercise Set 2a 

(a) 8 - ,;, 4. -2 

(b) The point M is not between points A and B, 

(c) AB does not intersect .CD. 
(d) .ll:.QR is a right angle. 

(e) Two intersecting lines are contained in exactly one plane, 

(f) There exists. a segment that does not have exactly one 

midpoint. 

(g) Some pairs of supplementary angles are not congruent, 

(h) All pairs of perpendicular lines do not form right angles. 

No. 

If &..is a right angle, then both p _and q are false. 

Both p and q are .fabe, 

Both p and q are true. 

Exercise Set.2b 

(a) F. (b) T. (c) F, (d) 

(a) F. (b) F. (c) T. (d) 

At least one of the s1=atements P, q, r is false. 
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4. (a) TABLE XVI 

TRUTH TABLE FOR ~p/\~q 

1) Cl 
. 

~1) "~Cl 

-
T T F F F 

T F F F T 

F T T F F 

F F T . ..I T 

(b) TABLE XVII 

TRUTH TABLE FOR p/\q/\~r 

i 
(o /\Q)/\ ~r . p Q r 

-T T T T F F 

'.r 'I' F '.r '.r 'I' 

'I' F T F F F 

T F F F F 'I' 

F T T F F .F 

F T F F F T 

F F T F F F 

F F F F .E. T 

~. 4 2 ::; 16. 



Exercise Set ·2c 

1. (a). T, (b) T, (c) F. (d) T, 

2. TABLE XVIII 

TRUTH TABLE FOR .(p Vq)Vr AND PV(qVr) 

' cpVq)Vr pV(qVr) 'P q r 

~ 

T T T T T T T r T 

T T F T T F 'l' r T 

T F T T T T T rr T 

T F F T T F. T rr F 

F T T T T T F T T 

.F T F T T F F T T 

F F T F T T F rl' T 

F F F F 00' F F F F ..... -

Symbols of inclusion are not·necesse,ry. 

3. No, 

4, (a) T. (b) F, (c), T. (d) T. 



:itxerc;f,se Set 2d 

l. (a) If A and /.a.. have the same measure, th~:m IA. and b.. are 

congruent. 

(b) IA.. and &.. have the sa~e measure only if IA. a,;\d . .di.. a;-e 

congruent. 

(c) A necessary condition for IA. and LA. to have the 1:1am~ 

measure is that · /A and LB. are congruent, 
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(d) A sufficien.t condition for fh. and Le.. to be ~ongruent is that 

/!. and LA have the same measure, 

(e) (i) T, (ii) T. (iii) F. 

2. (a) If AABC is isosceles, then llABC is equilateraJ, 

(b) AABC is isosceles only if -llABC is equilateral. 

(c) A necessary concU.tion for AABC to be isoscele~ is that;. llABC 

is equilate+al,. 

(d) A suf.£:Lcient condiUon for AABC to be equilateral :Ls that. 

AABC is iso1cales. 

(e)· (i) F. (i:L) T •. (ii:I.) F, 

3, No, 

Exercise Sat 2e 

l. (a) IA.. is the· cQmplament of /.a.. if and only if d is the cQmple .. 

ment of· /A: 

(b) A necessary and sufficient condition for {A_ to be the 

complement of ill. is that Ai_ ;i.s the cqmpleni.ent of &• 
(c) (i) T. (ii} F, 
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2. (a) llABC and ~DEF are congruent if and only if 6ABC and 6DEF 

a,re equilateral. 

(b) A necessary and sufficient condition for ~ABC to be congru-

ent to 6PEF is that 6ABC and. ~DEF are equilateral, 

(c) (i) F. (ii) F, 

Exercise Set 2f 

1. TABLE XIX 

TRUTH TABLE FOR (p+q)*'+(l\,q-¥vp) 

p Q p~ l\,Q,+t\,p (p+q)++(l\,Q-l-1\,p) 

- ~ 

T T T F T F T T T 

T F F T F F F T F 

F T T F T T T rr T 

F F T T .1 T l' r. T 

2. TABLE XX 

TRUTH TABLE FOR l\,(p+q)++(p/\1\,q) 

p Q l\,(p+q) p/\1\,Q I\, ( p+Q )++ ( p/\ l\,Q) 

- - -T T F T T F F F T F 

T F T F T T T T T T 

F T F T F F F F T F 

F F F T F F T F T F 
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3. TABLE XXI 

TRUTH TABLE FOR (p-H-q)+-+(p~q) 

p Cl p-t-+q .P+-+'uQ (p~)+-+(p~g) 

,r-. .-
T T T T IF F T F F 

T F F T T T F F T 

F T F F T F F F T 

F F T F F T T F F ,_ ,_ 

Exet:'cise Set · 3a . 

1. Hypothesis: a 'f' band b .,. c. 

Conc:I.usion,: a 'F c. 

ArgumeI1,t is inval;Ld. 

2. Hypothesis:. 6ABC is. equilateral. 

Conc;lusion: 6ABC is isosceles, 

Argument is valid. 

3. Hypothesis: fA and .a:Lare acute. 

Conclusion: IA. and ~ are complementary. 

Argument is invalid~ 

4. Hypothesis: P1 _and P2 ai;-e distinc;t points .in plane E. 

ConcJ,.usion: 

Argument is valid. 
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Exercise Set 3b 

1. /A. and. a_ are acute. 

2. The diagonals o{ oABCD are perpendicular. 

3. 
++ AB is the perpendicular bisector of CD, 

Exercise Set 3c 

1. TABLE XXII 

TRUTH TABLE. FOR {(p+q)/\q].+p 

p Q ( P-t"Q ) /'v:i [ (p+q)/\Q J+p 

- -
T T T T T T T T 

T F F F F. F T T 

F T T T T T F F 

F F T .I. F F T F -

2. Db r A B 

Figure 114 

3. 

AL L 
B 

Figure 115 



Jl;xerc:ise Set 3d 

1. If two angles are complemel'!,tary, then they are not supplemen,tary. · 

2. If MR is a median of scalene triangle :MNP, then MR is nqt pe~~ 

pendicular to NP .. 
3. If the diagonals of a quadrilateral bisect ea~h other, ihen .the 

opposite aqgles Qn the ·quadrilater1:1,l are congtuent. 

Exercise Set 3e 

1. 11 and 12 are not skew. 

2, PQ is not a.median of MNP. 

3. m&, < m&., 

Exercise Set 3f · 

1. 

TRUTH TABLE FOR [ (p-+q)/\ "'P ]-¥1.q 

p q (p-+q)l\<vp . [ (p-+q)/\ 'up ]+'l.q· 

- -T T T F :F . F T F 

T F F F F F T T 

F T T T T T F F. 

F F T T T T T T - .... 



2. 

3. 

1. 

2. 

3. 

4. 

1. 

2. 

3. 

~ABC is isosceles 

AD .J. AE 
BD r CE• 

Figure 116 

Figure 117 

Exercise Set 3g 

~ABC is not a r:i,ght triangle. 

q vr. 

Exercise Set 3h 

Argument Hypot;hesis · Conclusion 

Valid True True 

Valid False False 

Invalid True True 

E:x;ercise Set 4a 

1. There exists. one partial converse and it is valid. 

2. There are two partial converses, If one is working in the 
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plane of the circle, both partial converses are valid. In epace, 

the partial converse (p2/\q)+p1 is not valid. 

3. (q/\q2)+(pJ.A p2f\q3/\q4) is valid. 

(q1 /\q3)+(p1/\ P2'\ q2Aq4) is inval~d. 
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(q/\ q4)+(pl/\ Pzf\ q2/\ q3) is invalid, 

(q2/\q3)+(pl f\ Pz/\ ql/\ Cl4) is invalid, 

(q2/\ Cl4)+(pl /\ Pz/\ ql /\ Cl3) is invalid, 

(q3/\Cl4)-+(p1/\ Pz/\ ql/\q2) is valid. 

(pl/\ ql)-+(Pz/\ Clz/\ Cl3/\ Cl4) is valid, 

(pl/\q2)+(p2 /\ Cl1/\ Cl3 /\q4) is invalid. 

(pl/\q)-+(p2_1\ ql/\q/\q4) is valid. 

(pf\ q4)+(p2/\ql /\qi\q3) is valid. 

(p2j\ql)+(pl/\q2/\ q/\ q4) is invalid. 

(P2/\Clz)+(pl /\ Cl1/\ Cl/\ q4) is valid. 

(Pz/\Cl3)+(pl /\ ql /\q2 /\ Cl4) is valid. 

(P21\Cl4)+(pl (\. ql/\ q2/\ q) is valid. 

Exercise Set 4b 

1. See solution for problem 3, Exercise Set 4a. 

2. The component statements in the hypothesis and conclusion o.f 

Theorem 9 are shown below. Each of the other three theorems is 

obtained by interchanging q and one of the component statements 

of the hypothesis. 

Hypothesis: The ci_rcle wi,th 
center at c. 

AD contains the · 
center of the 
circle. 

A is a point on 
the circle. 

ABJ_An at A. 

Conclusion: 

q: AB is ·tangent 
to the circle. 
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Exercise Set 4c 

1. If rn/A • mLC, then AB• BC, 

If mlh > mft, then AB> BC, 

If mo.< ma;, then AB< BC, 

- -2. If m AB m CD, then AB = CD, 

- -If MAB > m CD, then AB > CD. 

- ........... 
If m AB < m CD, then AB< CD, 

Exercise Set·5 

1. If t.ABC is not equilateral, then t.ABC is not isosceles. (Inviilid). 

2. 5 7 a b 
H a :/: b' then 5 ':/: 7. (Valid), 

3. If t.ABC is not congruent to t.DEF, then t.ABC is not si!llilar to 

b.DEF, (Invalid) , 

4. There are two partial inverses and both are valid, 

5. There are three partial inverses and all are valid, 

Exercise Set 6a 

1. If the supplement of two angles are not congruent, then the 

angles are not congruent. 

2, If a triangle is not isosceles, then it is not equilateral, 

3. If the radii of two circles ~re equal, the circles have equal 

areas. 

4. Partial Contrapositive 1: If a+ b = c and if a.::__ c, then 

b.'.:_ C, 

Partial Contrapositive 2: If a> c and if b > O, then a+ b ':/: c. 
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5, There are two partial contrapositives and both are equiv~lent 

to the following: If two planes are not parallel, and if one 

of the planes is perpendicular to a line, then the other ~lane 

is not perpendicular to that line. 

Exercise Set 6b 

1. If two parallel lines are cut by a transversal, a pair of 

alternate interior angles are congruent. 

2, If a line is perpendicular to a plane, then every plane 

containing the line is perpendicular to the given plane. 

3, If Mis between A and Con line 1, then Mand A are on the same 

side of any other line that contains C. 

4. AD AE - tl: If DE= EC' then DE is parallel to B~. (If. a .line divides two 

sides of a triangle into segments that are proportipnal, then it 

is parallel to the third side.) 

Exercise Set 6c 

1. His not the midpoint of AD, 

2. BD :/: DC. 

3. OP does not contain the center of the sphere, 

Exercise Set 6d 

1, (a) equidistant from 11 and 12 , 

(b) not equidistant from 11 and 12• 

2. (a) 6CPE ~ 6CPF by AAS. Therefore PE= PF, 

(b) (i) The bisector of an angle is unique, 



(ii) Hypothesis: &.CB and bisecting ray CD, Pis a 

(iii) 

-point not on CD. 

p1 is true by identity. 

p2 is true by the definition of distance {rom a 

point to a line. 

"'q: PE= PF. 

Exercise Set 7 

1. (a) The line is co.ntained in the plane. 

(b) Statement (a) contradicts the fact that .the line is not 

contained in the plane. 

2. (a) a + b = C, a + b < c. 

(b) invalid. 

3. AB is not a diameter of the circle. 
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