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PREFACE

This paper is exposiltory in nature and presents teaching tech-
nﬁques developed and used by the writer in a secondary school classroom.
It is written primarily for teachers of geometry. The main objective
is to demonstrate how the mathematics teacher can incorporate elements
of symbolic logic into a deductive Euclidean geometry course in such a
manner -that (1) much of the traditional formal proof approach can be
eliminated without sacrificing rigor and (2) the student obtains
discovery techniques that will allow him to anticipate and, in some
cases, establish the validity of -many geometric theorems before they
are introduced in the textbook. The writer has experienced success
with techniques that will be described, and he presents them in
this paper in the hope that other secondary school geometry teachers
will find them useful. The paper has been prepared under the
assumption that the reader's exposure to symbolic logic has been
minimal.

The writer wishes to express his appreciation to his major
advisor, Dr. Vernon Troxel, for his assistance and guidance through-
out the preparation of this paper. Gratitude is also extended to
other committee members—-Dr. Douglas B. Aichele, Dr. Gerald K. Goff,
and Dr. Thomas Johnsten--for their efforts in providing comments and

suggestions while the paper was beilng prepared.
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Special gratitude is certainly due to my wife, Barbara, and our
son, Jeff, for their encouragement and sacrifices throughout the
1971-72 school year. An equal amount of gratitude is also extended
to my parents, Mr. and Mrs. Ephraim K., Smith, and to my mother-in-law,
Mrs. George P. McCallum, all of whom have been extremely helpful in
many ways.

Finally, a note of thanks to my employer, Mr. Frederick F. Clark,
and to the trustees of The Cate School, Carpinteria, Californla, for
thelr generous sabbatical year policy that has allowed me to pursue
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CHAPTER 1
INTRODUCTION

The decade of the sixties was a revolutionary period in mather
matics education. 'Mathematics edubators, confronted with the modern
theories of educational philosophy and psychology, faced up to the
reality that many of thelr teaching methods, as well as much of theilr
subject matter content, were antediluvian. The historic Cambridge
Confefence of 1963 and groups such as the Committee on the Under-
graduate Program in Mathematics (CUPM), the School Mathematics Study
Group (SMSG), the University of Illinois Committee on School Mathe-~
matics (UICSM), and others suggested énd in many instances implemented
many referms that led to considerable improvement in the quantity and
quality of mathematics educatien.

Despite the numerous improvements -there remain unresolved issues.
Irving Adler (1), among eothers, has stated that curriculum revision
during the sixties was least successful 1in secondary school geometry.
Despite the fact that referms suggested by SMSG were almost universally
adopted, Adler expressed the feeling that rigor was overemphasized,
intuitien was neglected, and toeo much emphasis on proof staod in the
way of understanding.

Even as . thls manuscript is being prepared, diverse opinions about
the role of geometry are appearing in print. At one extreme one finds

those (15) who feel that there should be a year of work that is



primarily geometric, and at the other those (7) who wish to eliminate
geometry as a separate course. Another point of view is that geometry
should be completely revised so that, by using transformations, it can
be integrated with other branches of mathematics (5).

A major point in the arguments of those who seek changes in the
geometry curriculum 1s that students are now being introduced to
elements of geometry on an intuitive basis during elementary and
junior high school. Hence, the common geometric figures and their
basic properties are fairly familiar to the high school sophmore.

It would appear, therefore, that high school geometry is an ideal
place for the student to experience thoroughly the deductive process
of reasoning. His previous exposure to this process has been minimal
and to continue on a purely intuitive basis would deny him the
opportunity to develop proficiency with this important and extremely
useful reasoning process.

A geometry course developed through a deductive process requires
a certain amount of rigor. Indeed, the act of deducing a necessary
conclusion as a logical consequence of other statements is a rigorous
exercise when compared to inducing a probable conclusion from
observation or experimentation. With the exception of those who
might suggest that the content of sophomore geometry be .presented on
a purely intuitive basis, none of the diversified opinions concerning
the geometry curriculum suggest that the deductive nature of geometry
be abandoned., Eccles (5), who desires that geometry be taught using
transformations, would retain a substantial block of traditional.
deductive geometry. When transformations are introduced after

perpendicularity, parallelism, and triangle congruence have been



covered, they are to be developed deductively. Fehr (7), who wants to
discard the present year-long geometry course, would integrate
geometry with other courses and have it included in every year
beginning in grade seven and continued through grade twelve.' His
program calls for the developing of the concept of proeof and for
the proving of theorems. It would appear that strong support exists
for retaining the deductive approach to geometry and preserving a
degree of rigor. Keeping Adler's views in mind, the question arises
as to how a teacher can present geometry in a rigorous manner without
overemphaslzing rigor and neglecting intuition. The writer directs
himself to this question in this paper.

The writer will offer the secondary school geometry teacher
some insights into possible uses. of symbolic logic .in the teaching
of geometry. The writer feels that use of some or all of the
concepts discussed in thils paper may be beneficial in helping
students obtaln a more complete understanding of the nature of
deductive reasoning than would be obtained by strict adherence to
material in a textbook, The rigor that is necessary for a deductive
development remains, Heowever, as will be shown, the rigor can be
used to promote student discovery and intudtion.

Following is a brief outline of the logical content of this paper.
The concepts of statement, negation, truth table, conjunctien,
disjunction, conditional, biconditional, equivalence, and tautology
are Introduced in Chapter II., The teacher is shown how he. .may
introduce and reinforce these concepts by relating them to definitiens

and postulates that appear in the early chapters of a geometry textbook



and by utilizing the basic properties of commen geometric figures that
students have intuitively induced in earlier grades.

The valild argument forms that are used in a deductive geometric
proof are introduced in Chapter III. The writer feels that examination
of these argument forms may be beneficial to students as an.aid in
understanding the nature of deductive proof.

The traditional definitions of converse, inverse, and contra-
positive of a statement are introduced in Chapters IV, V, and VI,
respectively., Using these definitioens as a guide, three new statement
forms are constructed, defined to be (1) a partial converse, (2) a
partial inverse, and (3) a partial contrapositive. Emphasis is
placed on demonstrating many creative uses of these statement forms.

Indirect proof 1s discussed and used in most secondary school
geometry textbooks. The aforementioned concepts of symbolic logic
can be used to supplement what 1s usually a brief textbook presentation
of indirect proof. This is the subject of discussien in Chapter VII.

Based on the writer's personal experience in a geometry classroom,
he believes that the concepts of symbolic legic presented in this
paper can be integrated into a geometry course without sacrificing
time from geometric content. A suggested outline for thils procedure
is found in Chapter VIII.

It is interesting to note that opinions on the teaching of logilc
in secondary schools are as diverse as those concerning the geometry

curriculum, Presented in the May, 1971, issue of The Mathematics

Teacher are pro and con articles on the question ''Should Mathematical
Logic be Taught Formally in Mathematics Classes?" On the pro side,

Exner argues that our present school mathematics sequence dees not:



prepare a student very well in the matter of proving things and.
feels that the introduction of some formal logic "would replace some
misguided formalism that is already present." (6, p. 396). On the
con side, Hilton expresses a concern that too much logical rigor
could be harmful to the .student. However, he does feel that "certain
logical techniques should be taught explicitly" (6, p. 390) and expands
on this by saying:
For example, the student should know how to negate
a proposition involving universal and existential
quantifiers and thus how to set about the search for
a counterexample to such a propesition....(6, p. 390).
It should be noted that even the Report.of ‘the Cambridge Confer-
ence of 1963 sheds little light on the issue of teaching legic.
It will have been observed in sectioﬁ_S,_under
Logic and Foundatiens, that the treatment of
formal leogic is very meagre. We do not know
hew thorough the treatment of logic should be.
Since we do not propose .to teach logic as a
subject in its own right, the problem ‘is
pedagogic and hence pragmatic....(8, p. 47).
Despite an expressed uncertainity about the role of legic in
the secondary scheol classroom, the -authors of the 1963 Cambridge
Conference Report exhibit a belief that an introduction te legic
may well be justified if it can be beneficial and practical in the .
learning experience of any mathematics class. This writer thus feels
that there is justification for using symbolic logic in sophomore
geometry classes and in presenting the material contained in this
paper. His experiences in the classroom have led him to believe

that ‘an exposure to symbolic logic has been a valuable learning

experience for his geometry students and that a knowledge of the



techniques used may possibly be beneficial to other geometry
teachers.

The writer has attempted to reach a compromise position between
Exner and Hilton. Though not teaching logic as a subject in itself, he
introduces those logical concepts mentioned previously and relates them
to material in the geometry textbook being used for the year of study.
The writer hopes to demonstrate that his procedure, 1f carefully
developed by the geometry teacher, preserves . the rigor that is -
necessary for a deductive development of geometry without being harm-
ful to students.

In preparing this paper, the writer has attempted to present
material that will facilitate application of the techniques to almost .
any deductive development of geometric structure. This 1s not to say .
that the specific examples illustrated can be utilized in every
geometry classroom. For instance, no examples are given that relate
to transformations, since the writer has taken his examples from five
modern textbeoks, the structures of which are developed without‘trang—
formations. The thought underlying this omission is that transforma-
tion geometry 1s not widely used at the present time and to
interchange transformation and non-transformatien examples would be
confusing. However, though most of the examples in thils paper are not
directly applicable te transformatien geometry, the techniques relat-
ing to the development of a deductive system certainly are. For that
matter, the techniques could be utilized in other branches of
mathematics, since the loglcal derivatlon of a necessary conclusion
from a stated hypothesis does not requlre that the statements relate

specifically to geometry.



The geometry textbooks that have been referenced in the writing

of this paper are the following:

Exploring Geometry, by Keedy, Jameson, Smith, and Mould.
Holt, Rinehart and Winsten, Inc., 1967.

Geometry, by Goodwin, Vannatta, and Crosswhite.
Charles E. Merrill Publishing Company, 1970.

Geometry, by Moise and Downs. Addison-Wesley Publishing
Company, 1971.

Geometry, A Dimensional Approach, by Rosenberg, Johnson,
and Kinsella. The Macmillan Company, 1968.

School Mathematics Geometry, by Anderson, Gareon, and
Gremillion. Houghton Mifflin Company, 1969.

The writer's analysis of these texts consisted of a theorough
study of each book In an effort to extract geometric material common
to each text. The writer then considered the cencepts of symbolic
logic to be introduced in this paper. Finally, he selected topics
and examples from the commen geometric material that, in his opinien,
would best illustrate the use of symbolic logic as a teool in the
secondary school geometry classroom.

Each of the texts develop geometric structure by means of an
axiomatic deductive system. That is to say, primitive terms, def-
initions, and postulates are established in early chaptefs and these
are used to prove elementary theorems, which in turn are used to
prove more advanced theorems relating to the common geometric figures
and the~conditions for congruence, parallelism, perpendicularity, etc.
For the most part, the texts are patterned after the material
produced by SMSG.

The fact that the use of symbolic logic in geeometry is the

subject of this paper should be put in proper perspective before the



reader progresses into the next chapter, Clearly, the authors of the-
five geometry texts use logic in the sense that they derive necessary
(as contrasted to probable) conclusions from existing statements that
have been accepted or proved teo be true. This writer will exemplify
their use of logic to promote discovery techniques and enrichment
exercises and to present what he considers to be desirable alternatives
to many of thgir proofs, This is accomplished by the gradual develop-
ment of some of the concepts of symbolic logic.

Anderson and Moise do not make any use of symbolic logic. In
varying degrees, Goodwin. (pages 87-115), Keedy (pages 133-137), and
Rosenberg (pages 64-71, 173-179) introduce some of the symbols pf -
symbolic logic, but do not make them an essential part of their
geometric development. All of the texts ldentify the converse form
of a statement; and three of them (Goodwin, Keedy, and Roesenberg)
identify inverse and contrap&éitive forms, and teuch upon truth
tables. Again, however, these concepts are not worked into the
development of material throughout the texts. None of the texts
contains ''validity" or "valid argument' in the index, although
Goodwin displays valid argument forms on pages 91-92 and Rosenberg
defines ''valid syllogism'" on page 70. Once again, however, the
concept of validity is not utilized in the deductive development,
and most of the .examples of valld arguments do net relate to geometry.
A typical example, from Rosenberg's text, is the following:

PREMISES: All boys are giants.
Sam is a beoy.

CONCLUSION: Sam is a giant. (19, p. 70).



This writer believes that the five books in the sample are
excellent geometry textbooks. The comments that have been made, and
similar ones that will be made throughout this paper, shcould net be.
considered as criticisms of the texts. Indeed, it would require ‘a
text of immense bulk to cover the geometric centent in -these books
and also incorporate a develppment of.symbolic logic within its pages.
It is the carefully conceived strucﬁure of geometry within these texts
that allows one to employ the concepts of symbolic logic presented in
this paper.

Four of the five texts adhere to a modern trend and integrate
three-dimensional Euclidean geometry with plane Euclidean geometry.
Rosenberg is the exception, deferring a sfudy of three-dimensional -
geometry until Chapter 1l. In the -examples presented throughout this
paper, it is to be assumed that all statements about geometric figures
are made relative to three-dimensienal ‘Euclidean space, unless other~ -
wise specified. 1In 'some instances, it will be specified that state-
ments about a planar figure are made relative to the plane of the
figure, as some of the theorems of p;ane Euclidean geometry are not
valid when stated relative to three-dimensional Euclidean space.

Since most of the logical concepts presented can be intreduced
in the early months of a geometry course, a large portion of.the
examples in this paper relate to material nermally found in the early
chapters of a geometry text. However, since the logical cencepts are
applicable throughout the entire course, this paper does contain
examples relating to circles, spheres, and ether figures usually found

in the later chapters of a textbook.



The reader will find exercises at the end of many sections in
this paper. These serve as examples of problems that can be assigned
to students or discussed in class to reinforce the logical concepts

developed. Solutions for the exercises appear in the Appendix.,

10



CHAPTER I1

BASIC CONCEPTS OF LOGIC

Introduction

A deductive course in geometry is concerned with proof. That is
to say, the student is taught the science of reaching a necessary
conclusion from one or more given statements., Before one can begin
to discuss the idea of proof, a foundation must be established by
introducing primitive terms (such as point, line, and plane),
definitions, and postulates. The time required for this part of a
geometry course is considerably less than it was. formerly because
much of the important information about geometrical objects is
taught in the elementary school and many useful conclusions pertaining
to these objects are established by the end of grade eight.

(7, p. 151). Since the pre-proof period is essentially a review

for students, this 1s the ideal time teo introduce basic coencepts

of logic that will provide students with a powerful discovery tool
when a study of preoof is undertaken. The logical concepts will
undoubtedly represent new material for the students. However, it
requires only.a few minutes of class time to introduce these concepts
and they can continually be reinfeorced by applying them to material

in the early chapters of the geometry text, which, as has been

stated, contains material familiar to the students. Many examples will

be given in this paper to demonstrate how this can be done.

11
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Statements

Fundamental to logic and geometry 1s the concept of a statement,
A statement 1s an assertlon that i1s either true or false, but not ‘both,
In geometry, postulates are statements that are assumed to be true,
and theorems are statements that are proved from other statements. A
statement possesses one of two truth values: T  (for true) or F

(for false).

Example 2.1
The following sentences are statements,
1. {a,b}C{a,b,c}.
2. Two distinct lines may intersect in two distinct points.
3. All right angles are congruent.

4, A triangle is a quadrilateral.

A simple statement is a single independent clause--that is, it

contains one subject and verb, can stand alone grammatically, and

expresses a complete thought. The statements in Example 2.1 are

examples of simple statements. One can combine two or more simple
1t 1"

statements by using statement connectives such as "and" or "or" or

"if ... then ..." to create a compound statement. The statement, "An

isosceles triangle may contain a right angle and no triangle contains

two right angles,"

is an example of a compound statement. FEach
simple statement used in the construction of a compound statement 1is

called a component statement of the compound statement.

A teacher of geometry and his students spend considerable time

working with compound statements because virtually all definitions,
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postulates, and theorems are compound statements., Definitions,
postulates, and theorems are true statements and the geometry student
should have a clear understanding of what it means to say that a
compound statement 1s true. One also encounters false compound
statements in geometry. For instance, in the discussion of conversas
of theorems, many authors of geometry texts emphasize that the converse
of a theorem may be a false statement.

The followlng sections are devoted to exploring the basic types
of compound statements encountered in secondary school geometry, the
connectives used in constructing such statements, and the assignment
of truth values to the statements. Throughout this paper, statements
will often be demoted by lower case letters, such as p, q, and r. The

' means that p denotes the statement following the colen.

notation "p:'
For instance, .
p: Vertical angles are congruent

means that p denotes the statement 'Vertical angles are congruent.'
Negation

If p denotes a statement, then vp (read "not p'") denotes a
statement called the negation of p. If p 1s true, then ~p is false;

if p is false, then ~p is true.

Example 2.2
p: 5+2=17, (D).

wp: 54+ 2 = 7. (F).
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Example 2.3
p: A line contains three noncollinear points, (F).
®p: A line does not contain three noncollinear points. (I).
The statement &p may also be written in the following manner.

npt It is not true that a line contains three noncollinear points.

The teacher should emphasize that if p and q are negatlons of one

another, then one must be true whenever\the other is false, and

vice-versa. Consider these statements:
p: Lines Ll and L2 are parallel.

q: Lines Ll and L2 intersect.
Students are likely to consider q as the negation of p, arguing that
if q 1s true, then p must be false., However, if p 1s false, it does

not follow that q 1s necessarlly true. In three-space, 1f L. and L2

1
are not parallel, then they may be skew. (If "skew lines" have not
been defined, the teacher can demonstrate twe non-parallel lines that
do not intersect by picking two appropriate edges in the classroom.)
and L

Of course, 1f one is assuming that L are distinct coplanar

1 2
lines, the p and q are indeed negations of each other. This example
points out the fact that one must examine statements relatilve to
the space in which one 1s working.

As another example, consider statement 2 in Example 2.1. This

statement is false in Euclidean three-space. However, if ''lines"

refer to lines on a sphere, then the statement 1s true.
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Example 2.4

p: No two sides of AABC are equal in length.

q: The three sides of AABC are equal in length.

In this instance, p and q are not negations of each other, since
it is possible for both statements to be false. Let AB = BC = 4 and

AC = 6, for instance.

One might reasonably question the use of Example 2.4 in the
beginning stages of a geometry course, pointing out the fact that
many texts do not define "triangle'" until two or three chapters of
preliminary material have been introduced. Moise, for example, first
defines "triangle'" in Chapter 4 of his text. This writer sees nothing
wrong with utilizing the intuitive knowledge that students possess to
stress concepts that will be beneficial to them when they begin
to work with deductive proofs. It can reasonably be assumed that
high school sophmores recognize triangles, rectangles, circles, etc.,
and know some of their basic properties. It can also be noted that
authors of geometry texts appeal to the intuitive knoﬁledge of students,
Molse refers to triangles in his Chapter 1 problem sets long before
formally defining "triangle."

The concept of a quantifier can be emphasized when discussing
negation. A teacher can point out in a geometry text numerous examples
in which a quantifier is directly used or implied. For instance, the
postulate stating: "For any two points there is exactly one line that
contains them" (12, p. 34), is a statement about all pairs of two dis-
tinét points., A way to negate thils statement 1s to say, "There exists

at least one palr of distinct points not contained on exactly one line."
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In general, 1f x represents an element of a specified set and if
p denotes a statement, the negatlon of the statement, 'For all x, p,"
may.be written in any one of the following useful forms.
(1) For some x: §p.
(2) There exists at least one x such that ﬁp.

(3) It is not true that for all x, p.

Example 2.5
p: All triangles are equilateral,
®p: (1) Some triangles are not equilateral,
(2) There exists at least one triangle that is not
equllateral.

(3) It is not true that all triangles are equilateral.

The statement vp in Example 2.5 is a statement about scme of the
elements in a specified set., In this case, the set is the set of all
triangles. In geometry one often encounters a statement that .is true
for a proper subset of a specified set, U, but false when applied to
all elements in U. For insgtance, many true statements about squares
are false when applied to quadrilaterals.

In general, i1f x is an element of a specified set, the negation
of the statement, "For some x, p," may be written as follows:

1) For all x, ~p.

(2) It is not true that for some x,p.

(3) There does not exist an x such that p.
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Example 2.6

1.

2l

P

np

Some trilangles are right trilangles.
(1) All triangles are not right triangles,
(2) It is not true that some triangles are right triangles.

(3) There does not exist a triangle that is a right triangle.

Exercilse Set 2a

For each statement p, write the statement ~p.

(a)
(b)
(e)
(d)
(e)
(£)
(8)
(h)

8

pP: The-point M is -between peints A and B.

p: Xﬁ intersects EB.

P ZPQR is not a right angle.

p: Two Intersecting lines . are not contained in a unique plane.
p: Every segment has a midpeint.

p: All pairs of supplementary angles are congruent,

p: Some pairs of perpendicular lines form right angles.

In Example 2.5, can "p be written ''No triangles are equilateral'?

In problems 3-5, explain why p .and q are not negations of each other.

3.

P

q:

, [A_is acute.

[A_is obtuse.

Any set centailning three distinct points.is collinear.
No set containing three distinct points is collinear.
There exist two planes that intersect in a line..

There exist. two planes that do not intersect in a line..
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Coenjunction

If p and q denote statements, then the conjunction of p with q is
a statement denoted by p/\q (read "p and q"). The statement p/\q is
true when both p and q are true; otherwise it 1s false. Assignment of
a truth value to the compund statement requires knowledgé of the truth
value of p and the_;ruth value of q. Since p has two.possible truth
values and q has two possible truth values, there are 22 = 4
arrangements for the values of the two statements. Table I illustrates -
" the truth values of pAq for all possible arrangements of the truth

values of its component statements. Such a table 1s called a truth

table.
TABLE I

TRUTH TABLE FOR p/\q

p | q p N\ q

T | T T

T F F

F T F

F | F F
Example 2.7

p: Angles with the same measure are congruent.

q: Vertical angles are congruent.
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p/\q: Angles with the same measure are congruent and vertical
angles are congruent.

The statement p/\q is true since both p and q are true.

Example 2.8

p: A triangle is the unien of three segments.

q: The union of three segments is a triangle.

p/\q: A triangle is the union of three segments and the union
of three segments is a triangle.

The statement p/\q is false since'q is false., Note that the

truth value of p is irrelevent in this example (See Table I).

Symbols of inclusion, such as parentheses, brackets, and braces,
are used to indicate a grouping of component statements within a
cogpound statement. For instance, if p, q, and r denote statements,
then the compound statement (p/\q)/\r represents  the conjunction of the
statement p/\q with the statement r. The truth table for (p/\q)/\r
contains eight rows, since there are 2+2-2 ==,23 possible arrangements
for the truth values of p, q, and r. The geometry teacher should
observe the systematic pattern of T's and F's in the first three
columns of Table II below. Adherence to this pattern saves time and
promotes uniformity when one 1s listing truth value arrangements for

three component statements.



TABLE II

TRUTH TABLE FOR (p/A\@)/\r

p i a lzxr |1 (AQAT
T| T |T T [T]T
T| T |F T |F|F
T | F [T F (P|T
T | F|F F |F|F
F|T|T F|FlT
F | T |F F |FlF
F | F | T F |F|T
F | F|F F |F|F

It should be carefully noted that the compound statement (p/\q)/\r is
true if énd only if all of its compenent statements are true.

One can easily extend Table II to include a column for the
truth values of the statement p/\(q/\r). A result of thils exercise
18 that one can write the statement (p/\q)/\r as p/\a/\r, since
the order in which the component statements are considered has no

effect on the truth table of the compound statement.,
Exercilse Set 2b

1. Let.p: A square 1s a rectangle.
q: A rectangle is a square,

Determine the truth value of each statement below.

20
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(@) p\a. (®)  p/AM.
(e) vp/\q. (d) ~p/\"q.
2, Let p: Congruent angles have the same measure.
q: Supplementary angles are congruent,
rt Vertical angles are congruent.
.Determina the truth value of each statement below.
(&) p/AN\aANr. BN ZACVAE
()  pAVIANE. (d) ~vpANgANE.
3. The definition of "betweenness for points" in Anderson's text
is stated as follows: "B is between A and C is (1) A, B, and
C are distinct points on the same line and (2) AB + BC = AC."
(3, p.50).
Let p: A, B, and C are.distinct points.
q: A, B, and C are collinear.
r: AB + BC = AC.
Then one can say that B is between A and C if pAQ/\r is a true
statement.
Assume now that it is known that B is not between A and C.
What can be said about the relative truth values of p, q, and r?
4, Construct truth tables for (a) ~pA~rg; (b) p/\q/N@r.
5. If p, q, ¥, and s denote statements, how many rews would appear

in a truth table for p/\gAr/\s?
Disjunction

If p and q denote statements, then the disjunction eof p with q is
a statement denoted by p\/q (read "p or q"). The statement p\/q is

true if at least one of p and q is true; otherwise it is false.
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TABLE III

TRUTH TABLE FOR p\/q

pl g PV 9 ,
T| T T
T| F T
F| T T
F|F F

The word "or" is used in the inclusive sense in the definition of
disjunction. Hence, if one of the component statements of pVq is
true, then pVq is true irrespective of the truth value of the pther

component statement.

Example 2.9
p: B is vertex of A;BC.
q: B is an interior point of AABC.
P\/q: B is vertex.of AABC or B 1s-an interior point of AABC.

The statement p\/q is true since p is true. Furthermore, note

that it makes no difference in this example whether or not q is true.

Example 2.10

p: The intersection of two lines must be @.

q: The intersection of two planes may be a point.

P\/q9: The intersection of twe lines must be {} or the intersection
of the two planes may be a point.

The statement pV ¢ 1s false since both p and q are false.



Exercise Set 2c

1. Let p: A line may intersect a plane in exactly one peint.

q: A line not contained in a plane may. intersect the plane

in more than one point,
Determine the truth value for each statement below.
(@) pVa. S ®) PV
(e) ~p\ /4 <d>~pv¢m

2, Construct .truth tables for (p\/q)\VV/r and pV(q\/r). Are the

symbols of inclusion necessary?

3. Refer to problem 3, Exercise Set 2b., If the statement p\/q\/r

is true; can one conclude that B Iis between A and C?
4, Let p: .A right triangle may be iscsceles.
q: A right triangle may be equilateral.
r: A right triangle may contain two right.angles.
Determine the truth value of each statement below.
(a) pvaVr. (b) vpyvavr.
(c) pwrg\/or (d) ~p\/qy/r.

Conditional Statements

If one scans the pages of a geometry text, he will find among

23

the definitjons, postulates, theorems, and exercises numerous examples

of compound statements using the logical connective "if ... then
Statements of this type are encountered on a daily basis in a
secondary .school geometry course,

If p and q denote statements, then the statement denoted by

p+q,(read "If p, then q") is called a conditional statement. The

"



statement p*q is true except when p is true and q is false, in which

case 1t 1s false.

TABLE IV

. TRUTH TABLE FOR p>q

P q P> d
T T T
I F F
F T T
F F I

The statement p+q may also be read in any one of the followlng ways:

(1) q, if p.
(2) p only if q.
(3) p is a sufficient condition for q.

(4) q is a necessary conditien for p.

Example 2.11

p: Rectangles have four right angles.

q: Sq@ares have four right angles.

prq: }f rectangles have four right angles, then squares have
four right éngles.

The condition p>q may also be read in any one of the following

ways:

24
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(1) Squares have four right angles if rectangles have four
right angles.

(2) Rectangles have four right angles only if squares have four
right angles.

(3) A sufficient condition for squares having four right angles
is that rectangles have four right angles.

(4) A necessary condition for rectangles having four right angles
is that squares have four right angles.

The conditional p+q is true since it 1s not pessible for q to

be false while p is true.

Example 2,12

p: Aé and [3 are supplementary.

q: [A and [B_are complementary.

prq: If ZA,and [ﬁ_are supplementary, then AA_and Zﬁ_are
complementary.

The conditional p+q is false since q is‘false whenever p i1s true.

Example 2,13

p: All angles have the same measure.

g: All segments have the same length.

p>q: If all angles have the same measure, then all segments
have the same length.

The statement p 1s false. Therefore, it is impossible for q to

be false while p is true. Hence the conditional p+q 1s true.
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It will be emphasized at this point that the conditlonal p»q is
false only when p 1s true and é i1s false (See fable IV). Hence, when-
ever p is false, the conditlonal p+q is true irrespective of the truth
value of q. This situation is often confusing to students. If time .
permits, and if a teacher has able students, he might wish to discuss
the underlying reasons for the assignment of truth values to p>q. An
excellent reference is Lightstone (14, p. 5). An alternate approach,
and perhaps the most desirable in the majority ef .cases, is for the -
teacher to explain that the assignment of truth values to p»q is
merely a matter of definition and that most of the work in geometry
invelving the conditioenal p+q will be limited to cases in which p
is true. (It can be noted that even in forms of indirect proof,

a student begins his reasoning process with a statement assumed. to

be true.)
Exerclse Set 2d

1. Let p: L& and [ﬁ_have the same measure.
q: [é_and Zﬁ_are congruent.
(a) Write out in words the conditional p+&.
(b) Write the conditienal in (a) using the phrase 'only if."
(c) Write the conditional in (a) using the word 'necessary."
(d) Write the conditional in (a) using thg‘word "gufficient."
(e) What is the truth value of each of the follewing statements?
(1) prq. (11) qp. L) pa.
2., Follow the directions in problem 1 using the following statements.
p: AABC is isosceles.

q: AABC is equilateral.



3. Moise presents the following definition:

—, .
"If AB and AB are opposite rays, and XZ C
is any other ray, then éAC and /[CAD L R
form a linear pair." (17, p. 91), B . A D
Figure 1

He then states the following postulates:
"If two angles form a linear pair, then they are supplementary."
(17, p. 91). Suppose now that it is known that two angles do
not form a linear pair. Can one conclude that the two angles

are not supplementary?
Biconditional Statements

The conjunction of the conditional p»*q with the conditional

q>p is a statement called a biconditional. The truth values for

the biconditional (p+qyﬁ\(q+p) are shown in Tahle V.

TABLE V

TRUTH TABLE FOR (p~q)/\(q~>p)

p lq (o) N\ (grp)
T | T BEEGE
F | T T |\F| F
F | F T E T
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The biconditional (p+q)/\(q+p) is generally denoted by p+>q.
One can note from Table V that p<»q is true if and only if p and g
have tﬁe same truth value; otherwise it is false. The biconditional
p<>q 1s most commonly read in one of the following two ways. |
(1) p 1if and only if q.

(2) p is a necessary and sufficient condition for gq.

Example 2.14
p: /A is a right angle.
q: m/A = 90,
peq: (1) A s a right angle if and only 1f m/A = 90.
(2) A necessary and sufficient conditioen for1né§,= 90
is that ZA is a right angle.
The statement p«>q is true since p and q cannot have opposite

truth values.

Example 2.15

p: Ll and L2 are parallel lines.

q: Ij-r\Lz = 0.

pe>rq: (1) Ll and L2 are .parallel lines if and onlfﬁif
LML, = 0.

(2) A necessary and sufficient condition for Ll and,L2

to be parallel lines is that Llf\]L2 = §.

The biconditional p+»q 1§ false since q can be true while p is.
false, (Two skew lines have an empty intersection, but they are not-

parallel.) Note that if the statements in this example are made

relative to the Euclidean plane, then the biconditional p+>q is true.
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Exercise Set 2e

1, Let p: A&_is the complement of [ﬁ.
q: [ﬁ_is the complement of ZA.
(a) Write the biconditional p«+>q using the phrase "if and only if."
(b) Write the biconditional p<>q using the phrase ''necessary and
sufficient.”
(¢) Determine the truth value of each statement below,
(1) peq. (11) vp*rq.
2, Follow the directions in problem 1 using the following statements.
p: AABC and ADEF are congruent.

q: AABC and ADEF are equilateral.
Tautologles and Equivalent Statements

A compound statement that is always true regardless of the truth
values of its component statements is called a tautology. The state-

ment pVMup 1s an example of a simple tautology. See Table VI below,

TABLE VI

TRUTH TABLE FOR p\/vp

p | p pVp

T F T

F T T
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Two compound statements constructed from a set of simple state-

ments are equivalent if the compound statements have identical truth

values for all possible arrangements of the truth values of theilr

component statements, If plland pé denote equivalent compound

statements, then the biconditional'plﬁp2 is a tautology since

Py and P, cannet have opposite truth values.

Example 2.16

Table VII demonstrates that ~(p/\q)«>(wp\/vq) is a tautology.

TABLE VII -

TRUTH TABLE FOR &;(p/\q)ﬁ(mp\/“?q)

e

.
‘ee
H

\ ,
p | a ll v@A) | Vg | vGAQ(wVrg)
T | T _F-‘ T r [7] 7 For] =
T | F || |T .F‘I, CF 7| T R
FolT || |T]F T || F T. || T
F | F |||z]|F EE I

It can easily be established with a truth table that

v (p\va)«>(vp/\vq) 1s also a tautology. This tautolegy and the one

stated in Example 2.1l6 are known as DeMorgan's Laws.
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Example 2,17

Table VIII demonstrates that (p>q)<+>(vwp\/q) 1ls a tautology.

TABLE VIIL

TRUTH TABLE FOR (g+q)<>(vp\/q)

pl g ll pra| Vg | pra)er(pVa)
T | T ‘T‘ Flrlr | 1T T
T | F F | FIF 'F _: Flt| F
F | T T | T [Tf T T.|T] T
F| F NERNE T || T

When the .concepts of equivalence and tauology are introduced,
a point to be emphasized is that the truth value of a compound.
statement may be obtained by determining the truth valua of an‘
equivalent statement. This fact will be of extreme importance in
the remaining chapteré of this paper. Also, the}tautologiesrdeveloped
in this section and those in problems 1 and 2 of Exercilse Set 2f
will be referenced later in this paper, so they should be noted

carefully at this time.
Exercilse Set 2f

1. Show that (p>q)+>(vq+vp) 1s a tauology.

2.  Show that v(p>q)++(p/\vq). is a tautelogy.
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3. The negation of a tautology is a statement whose truth values are
all false. Such a statement is called a fallacy. Construct a

truth table to demonstrate the (p+q)+>(p+q) is a fallacy.
Suggestions for Enrichment

An interesting class discussion may be generated by asking
students to explain thelr everyday uses of the logical connectives

discussed in this chapter. Does a student use the connective "or" in

the inclusive or the exclusive sense? In what context does a student
use the "if ... then ..." connective in daily conversation? What does
the use of the "if ... then ...'" connective convey to the student in
a politician's speech or a magazine advertisement? A student
reflecting on his everyday use of the connectives discussed in this
chapter may well discover that his usage is consistent with the def-
initlons stated in this chapter.

Insurance contracts (life, automobile, etc.) contain many
conditional statements. A teacher can give examples of conditional
statements from an insurance contract that he may own. He can
discuss with his class some of the possible reasons for the many
court cases involving an interpretation of a conditional statement
in an insurance contract.

A teacher familiar with the computer programming language BASIC
(Beginner's All-purpose Symbolic Instruction Code) can explain the
use of the IF ... THEN ... command as an instruction to the computer.

Other programming languages have a similar command.
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Summary

It has been the purpose of this chapter to demonstrate how a
geometry teacher can use material in the early chapters of a geometry:
text and a student's intuitive knowledge of basic geometric figures
to illustrate the logical concepts of statement, compound statement,
and statement connectives. Emphasis was also placed on the determin-
ation of the truth values of compound statements. The geometry
teacher who has previously studied symbolic logic will realize that
this chapter does not include all topics and symbols that one might
expect to encounter in a symbolic logic course. Rather, only those
concepts that this writer has found useful in the deductive development
of geometric structure have been introduced. Since a geometry course
involves considerable geomeétric symbolism, the use of loglcal
symbolism has purposely been kept to a minimum,

A teacher might use the logical concepts.introduced to reinforce
continually a student's understanding of important mathematical phrases.
For instance, a teacher can stress the meaning of the phrase "exactly
one' by examining the negation of the postulate stating "For every
two points there is exactly one line that contains both points."

(17, p. 47).

The essence of deductive geometric preof requires that one be able
to logically derive true statements from exlsting true statements. The
following chapter will show how a geometry teacher might use the
concepts of symbolic logic developed in this chapter to aid his students

in gaining insight into the nature of deductive proof.



CHAPTER III
ARGUMENT FORMS
Proof

Having introduced some of the basic,concépts‘of‘symbolic logic
in the pre-proof stage of a geometry course, the.teacher 1s in a
position to use these concepts when ‘it.1s time te begin a study of
proof. It should be kept in mind that a:student probably conceilves
of proof as an argument_designea to convince somebody of something.
The student undoubtedly has in mind the inductive process (although
he may not know it by that name), which 1is the very heart of the
sclentific method of proof and involves reaching a conclusion from
experimentation or observation.

It 1s generally not difficult to convince a student that mést of =
his experience with proof in mathematics aﬁd in everyd;y life in
general has been inductive in nature, A few examples might be

helpful.

Example 3.1

A student has heard it asserted that the sum of the measures
of the angles of a triangle is 180, He carefully constructs many
triangles and measures the angles with a protracter. Summing the

measures of the angles in each triangle and finding that the sum is

34
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always in the neighborhood of 180 (small errors in measurement are

likely to occur), he concludes that the assertion is true.

Example 3.2

Mary has observed that Mr. Brown 1s always angry with a student
who shows up late for his class., Today, Mary will be late for
Mr, Brown's class. She concludes that Mr. Brown will be angry with -

her.

Example 3.3

Henry substitutes the integers 1, 2, 3, ..., 25 for n in the
expression n2 - n + 41 and observes that the value of the expression
1s a prime number. He concludes that n2 - n + 41 is always a prime

number when .a positive integer is substituted for n.

The conclusions in the three examples above can only be classified

as probable (as contrasted to necessary) conclusions. The conclusion
in Example 3.1 1s indeed true in Euclidean geometry. However, the
student can certainly appreciate that it 1s not a necessary result
of his -experiment, for he cannot possibly verify it by summing the
measures of the three angles in every triangle. ' The conclusion in
Example 3.2 does not necessarily folleow from Mary's observations.
Is it not pessible that Mr. Brown will be in a happy and forgiving
mood on this particular day? The conclusion in Example 3.3 1s net-a
necessary consequence of Henry's experiment, for it is false.. This
can be demonstrated by letting n = 41.

Consider now a set H of statements and let h be the cenjunction

ef statements in H. If ¢ is a statement, then the conditienal
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statement
h»c

is called an argument, or an inference. The statement h is the
hypethesils of the argument and c is the conclusion of the argument.
The statements in H may consist of definitions, postulates, or
statements, the truth values of which have been previously established.
If all of the statements in H are true, then h, being the conjunction
of these statements, is true. If at least one of the statements in
H is false, then h is false.

If the truth of h necessitates the truth of c, then h+c is a

valid argument. In other words, the argument h+c is valid if it is -

impossible for ¢ to be false while h is true.

Example 3.4
Consider the following argument: If ng = 30 and m[ﬁ_- 150,
then ZA and Zﬁ are supplementary angles.
Let p: m[ﬁ_- 30.
q: mlR = 150.
T: [A and Zﬁ are sﬁpplementary. &

The argument 1s symbolically represented by

LoDz

Hypothesis Conclusion

The argument i1s valid since it 1s impessible for the conclusion to. be

false while the hypothesis is true.



If, for a given argument, the conclusion may be false while the
hypothesis is true, then the argument is invalid. In this case, the

conclusion is not a necessary consequence of the hypothesis.,

Example 3.5
Consider the following argument: If mlﬁ < 45 and.mZ§.< 50,
then [é and [3 are not complementary.
Lét Pyt mé&_< 45,
P, nlB < 50.
c: [A_and [E_are not complementary.
The argument is symbolically represented by
(pl/\PZ)—"&i

CL 72

Hypothesis . Conclusion

The argument is invalid since it is possible for the conclusion to
be false while the hypothesis is true. For example, let m[ﬁ = 4]

and mlﬁ_- 49,

The process of using valid arguments to obtain a necessary
conclusion from a set of given statements is called deductive
reasoning. A typical geometric problem presents the student with a
conclusion and a hypothesis from which the conclusion is to be
obtained by the construction of a series of valid arguments. Some
of the fundamental valid argument ferms will be introduced in the

following sections. The argument forms have various names. The
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names used in this paper conform to those used in Rosenberg's textbook.
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Exercise Set 3a

In each problem below, identify the hypothesis and conclusion of each
argument, Then determine whether or not the .argument.is wvaldid.

1. ' If a# b and b # ¢, then a # c.

2. If AABC 1s equilateral, then AABC is 1sosceles.

3. 1If ZA and Zﬁ are acute, then they are complementary angles.

4, 1If Pl and P2 are distinct points in plane E, then flfz(: E.

The Law of Detachment

A very common form of argument is dillustrated by the following:
If a triangle is equilateral, then it 1s isosceles. B
AABC is equilateral,
Therefore, AABC is isosceles. A c

Figure 2
This 1s a valld argument because it filts the fundamental argument

form [(p+q)/\pl+q, which is tautology. Table IX illustrates that
the conclusion q cannot be false when the hypothesis (p>q)/\p

is true.



TABLE TIX

TRUTH TABLE FOR [ (p>q)/\ pl+q

Pl g (erNp | [(pra)Ap]>g
T | T T [T] T T . [T]T
T | F F [F|T F |T|F
F| T T |F| F F |T|T
F| F T |F|F F o |T|F

This form of argument is called the law of detachment.

In order to emphasize the component statements of the hypothesis
and conclusion in an argument form, a common method for presenting
an argument will be adepted in this chapter.
of the hypothesis will be written on separate lines and a horizontal
segment will separate the hypothesis from the conclusion of the-

argument. The law of detachment 1s then presented as follows:

prq

P__

q Conclusion,

Many of the statements used in initial proofs are postulates and

these allow early emphasis on the law of detachment.

The conjunction of these statements 1s the hypothesis.

39

The component statements
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Example 3.6

p*q | If two points of a line lie in
a plane, then the line lies in -

the plane. (Postulate). é"——'_;t?

P Points A and B of line L lie A B

in.plane E. Figure 3
q 18 1lies in plane E.
Example 3.7
p>q ] If there exists an SAS
correspondence between two
triangles, then the triangles
are congruent. (Postulate). B B
P There exists an SAS
correspondence between e
AABC and ADEF,
q AABC and ADEF are congruent. Figure 4

A proven theorem may also be used as part of the hypothesis in

the law of detachment.

Example 3.8

p>q | If two sides of a triangle A
are congruent, then the angles
opposite these sides are
congruent. (Theorem.)

p In AABC, AB & AC. B €

~ Fi
q [B g [a gure 5

Some theorems are stated in the form of a biconditional. Since
p+rq is equivalent to (p>q)/\(g>p), one can apply the law of

detachment to biconditional statements.
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Example 3.9
pe>q: A triangle is equiangular if and enly if it is equilateral.
If the validity of p+>q has been established, one can utilize the -

law of detachment in the following ways.

p>q | A triangle 1s equiangular if
it is equilateral. , B c

P AABC 1s equilateral.

Figure 6
q AABC 1is equiangular.
g*p | A triangle 1s equilateral if Zf;iffi}é&
it is equiangular.
Figure 7

q ARST is equiangular.

P ARST 1s equilateral.

Exercise Set 3b

Use the law of detachment to supply the necessary conclusion.

1. If. a triangle has one right angle, then
1ts other angles are acute. B c

In AABC, £ is a right angle.
> -

) B
2, The diagonals of a rhombus are bziifi:::;;7f
perpendicular. o D c
DARCD 1s a rhombus, Figure 3 c
R
3. A line is the perpendicular.bisector of
a segment 1f and only 1if it is perpendicular < 3

to the segment and bisects the segment.

B is perpendicular to‘EB and”Xf bisects CD.
?

Figure 10
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Exerclse Set 3c

An invalid argument form that is sometimes confused with the law of

detachment 1is the following:

P >4

a

P

1. Construct a truth table to demonstrate that [(p>q)Aql»p is not

a tautology.

In problems 2-3, construct a drawing to demonstrate that the arguments

presented are invalid.

2. If a quadrilateral is a square, then it 1s a rectangle.

JABCD is a rectangle.

LJABCD is a square.

3. If two angles form a linear palr, then they are supplementary.

ZA and AE are supplementary.

ZA_and Zﬁ_form a linear pair.
Law of Transitivity of Conditionals

Another common valid argument form is the law of tramsitivity of

conditionals. This argument is shown below.




"Table X below illustrates that [(p=q)/\(q-t)]=+(px) is a

tautology.
TABLE X
TRUTH TABLE FOR [(p~q)/\(g-x)]+(p-1)
plal r || oA | LA Isp
T|T T ro[T| T T Tt
SERE T |F| F P T| F
T| F T F {F| T F T| T
T| F F F |Fj T ¥ T| F
F| T T T JT] T T T T
F| T F T |F| F F T| T
F| F T T {T] T T T| T
F| F F T T T T T| T
Example 3.10
p-q | If D is in the interior of zﬁAC,
then mBAC = mZBAD + m/DAC.
g-or | If mAAC = mzﬁAD + mA)AC, then
nBAC > m AAD. |
por | If D is in the Jinterior of [bAC,
then mBAC > mBAD. Figure 11

43
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Example 3.11

p>q | If two lines are perpendicular to the
same plane, then they are parallel.

g*r | If two lines are parallel, then
they are coeplanar.

p>r | If two lines are perpendicular to the
same plane, then the lines are
coplanar.

Figure 12

Exercise Set 3d

Use the law of transitivity of conditionals te establish a cenclusion
for each argument.
1, If two angles are complementary, then each of them is. acute.

If each of two angles is acute, then they are not supplementary.

?

M
2, If ﬁi_;s a median of scalene triangle MNP,
then MR does not bisect [ﬁMP.
If MR does not bisect /NMP, then MR is N R P
not perpendicular to 1P,
Figure 13

?

3. . If the diagonals of a quadrilateral bisect each other, then the
quadrilateral is a parallelegram.

The opposite angles of a parallelogram are congruent. »

?

The Use of Valid Arguments.in a Formal Proof

The law of detachment and the law of transitivity of conditionals
are used extensively in formal prooefs. Identificatien of these
argument forms in some of the introductory formal proofs in a

geometry course may be beneficial in helping students appreciate that
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a deductive proof 1s a serles of valid arguments, each of which has

a true hypothesis and, hence, a true conclusion. It is important to
note that the validity of an argument does not depend on whether the
hypothesis is true. However, if the argument is valid and the
hypothesis is true, then the conclusion must be true.

The following formal proof is similar to those that‘one would
expect to encounter in the early stages of geometric proof. The valid
argument forms discussed will be identified in the proof.

. D . E
Given: The figure with AC= CD :
and BC ® CE. C

Prove: [A_E' @ A

Figure 14
Proof
Statement Reasons
1. AC % CD and BC € CE. 1. Given
2. [ZQB': ZbCE. 2., Vertical angles are
congruent.
3. AACB = ADCE. 3, SAS.
4, ZZf: L. 4. Corresponding parts of
congruent triangles are
congruent,

It should be emphasized that all statements in the Statement
column are made relative to Figure 14. This is generally the case
in any proof that involves a given figure. Also, while not explicitly
stated, one 1s to assume that the points A, C, and E are distinct
and collinear and similarly for B, C, and D. These assumptions are
considered as part of Statement 1 and are necessary in the establish-

ing that éﬁﬂSand,ZbCE are vertical angles. The question arises as
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to what unstated assumptions should be implicitly made about a given
figure to be used in a geometric proof. This writer feels that a firm
rule cannot be established and that the context of a specific problem
usually indicates the assumptions which should be made. For the

sake of brevity, these assumptions are conventionally not presented

in a written version of a formal proof.

The-geometé&jteacﬁér can note that all statements in the -
Statements column of the proof are true. Statement 1 is given as
true. Statements 2, 3, and.4 can be established as true using the law
of detachment with the-corresponding~conditional statement represented

by the phrase or abbreviation in the Reasons column, as shown below.

If two angles form a pair of vertical angles, then they are
congruent, (Reason 2). ‘

[}CB andZﬁCE form avpair of vertical angles. (The truth of
this statement follows from the definition of vertical angles .
applied to the given figure,)

ZAQB 2 /pcE. (Statement 2).

If two sides and the included angle of one triangle are congruent
respectively to two sides and the included angle of a second
triangle, then the triangles are congruent. (Reason 3).

Two sides and an included angle of AACB are congruent respectively
to two sides and an included angle of ADCE. (This statement
represents the conjunction of Statements 1 and 2.)

AACB = ADCE. (Statement 3).

If two triangles are congruent, then their corresponding parts
are congruent. (Reason 4).

/A and (D are corresponding parts of congruent triangles ACB
and DCE, respectively. (The truth of this statement follows
from the definitipn of corresponding parts of congruent triangles.)

/A3 b, (Statement 4).
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The teacher can now emphasize that the truth of Statement 1
(including the implicit assumptions mentioned) necessitates the truth
of Statement 2. Hence

(Statement 1) -+ (Statement 2)
is a valid argument. It has been shown that the truth of Statement 2
necessitates the truth of Statement 3, meaning that

(Statement 2) - (Statement 3)
is a valid argument. (It should be noted here that the above argument
is valid relative to the truth of Statement 1. That is, Statemeﬁt 2
necessitates the truth of Statement 3 if one knows that Statement 1
is true.) Similarly,

(Statement 3) - (Statement &)
is a valid argument. One can now establish that

(Statement 1) - (Statement 4)
ig a valid argument by a double application of the law of transitivity

of conditionals, as shown below.

(Statement 1) -+ (Statement 2)

(Statement 2) + (Statement 3)

(Statement 1) -~ (Statement 3).

(Statement 1) - (Statement 3)

(Statement 3) - (Statement 4)

(Statement 1) -+ (Statement 4)

Based on his experience in the classroom, the writer feels that

a similar analysis of a few elementary formal proofs gives students



a deeper insight into the nature of deductive geometric proof,

Such an analysis stresses the following points:

(L

(2)

(3

(4)

The "Given" in the statement of .a geometry problem (proof)
1s a set of true statements. The conjunction of these
statements. represents the hypoethesis, h, of an argument.
The "Prove' in the statement of a geometry problem is a
statement that represents the conclusion, c, of the
argument.

The objective of the person working on .the problem is. to
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show that the conclusion 1s a necessary consequence of the -

hypothesis. That is, he 1is to show that the argument h-c
is valid.
In a direct proof, the objective in (3) 1s obtained by

creating a series of valid,arguments.‘

(n a positive integer).

(In the series of arguments above, c, denotes h and ¢

1 n+l
~ denotes c. If 2 < k < n, the argument ck+ck+l is valid
relative to the truth of-cl, Cos vees ck_l,) Repeated -use

of the law of transitivity of conditionals 1s then used to
establish the validity of h»c., It should be noted that in

direct proof, to be discussed in Chapter VII of this paper,
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one still creates a series of valld arguments. However,
the first argument in the series does not have h as its

hypothesis.

There -are two other valid argument forms that are oftemn useful

in geometric proofs., They will be introduced at this time.
The Law of Contraposition

A third valid argument form is the law of contraposition. This -

argument form is shown below.

P*4q
“q

vp

Table XI illustrates that [(p>q)/\vq]+vwp is a tautology.

TABLE XI

TRUTH TABLE FOR [ (p>q)/\~q]+vp

p | a || () N\vg | [(prq)\vglonp.
ERE T [F] F Fr] F
T | T F (F| T F|T| F
vl ot || 1[e|F _FTvT
F| F T |7 T (1] T
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Example 3.12 .

C
p>q |If the dlagonals of a quadrilateral D
bisect each other, then the-
quadrilateral is a parallelogram.
g DABCD 1s not a parallelogram. A
_ _ Figure 15
wp AC and BD do not bisect each other.

Example 3.13

p<*q A quadrilateral is a rectangle if and only if it has four
right angles., D C

‘p*q |If a quadrilateral has four right angles,
then it is a rectangle. :

g OABCD 1s not a rectangle. A B
ﬁp kiABCD does not have four right angles, Figure 16
D C
g*p |If a quadrilateral is a rectangle,
then it has four right angles.
vp OABCD does not have four right angles.
' ' ' ' Figure 17
vq DABCD is not 'a rectangle.

The law of contraposition emphasizes the importance of under-

standing the concept of negation. Consider the following example.

Example 3.14

C
p>*q |If both pairs of opposite sides of a D
quadrilateral are congruent, then the
quadrilateral 1s a parallelogram.
vp DABCD is not a parallelogram, A B
np ? Figure 18
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What must be negated is the statement p: (Ahaéb)/\(gbzﬁé).
According to one of DeMorgan's Laws (Example 2.16), the statement "p

must be (AB#CD)\/ (AD#BC). This allows three possibilities:

C
(1) AB¥CD and AD¥BC. (Figure 19). v b
A B
Figure 19
(2) ABSCD and AD#8C. (Figure 20). | D _E
A B
(3) AB#CD and AD®BC. (Figure 21). D. ¢ Figure 20
Figure 21
A common error .is ‘to accept (1) as &p. Clearly, (1) alone is
not a necessary consequence of the hypothesis. In other words, if
one defines statement r to be"
r: AB¥CD and AD¥BC,
then the following argument is net valid.
C

P7q If both pairs of opposite sides of a
quadrilateral are congruent, then the - A B
quadrilateral is a parallelogram.

Figure 22
g UABCD is not.a parallelogram.

T Kﬁ?&ﬁ and Kﬁ?ﬁé.

Since r is not equivalent to vp, the argument form 1s not the law of
contraposition. But this alone would not make the argument invalid.
Invalidity results from the fact that r 1s not a necessary consequence

of the hypothesis.
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Exerclse Set 3e

Use the law of contraposition to supply a necessary conclusion for each

argument.

1.

If two lines are skew, then they do not intersect,

Lines L, and L2,intersect.

1 @
?
) P
A median of a triangle bisects the side to
which it is drawn.
fﬁ,does not bisect MN. M Q N
? Figure 23
' C
In AABC, if mé>m£, then :BC>AB. N
BC<AB. | A B
Figure 24

?

Exerciée Set. 3f

The following argument form is sometimes confused with the law of -

contraposition..

p+4q

“p

~q

1. Construct a truth table to demonstrate that [(p>q)/\“pl>vq is not

a tautolegy.

In problems 2-3, construct.a drawing to demonstrate that the following

arguments are invalid.

2-

If each of two lines 1s parallel to a third line, then they are
parallel to each othex.’



L., Ly, and L

1 Ly are lines and'Ll 1is not parallel to LZ’

3

1 3 3°

3. If A% 1s perpendicular to ED, then Kﬁf\éﬁ # 0.

L, 1s not parallel to L, and Ll is not parallel to L

Xﬁ is not perpendicular to EB.

8N = 0.

The Law of Elimination

A fourth valid argument form is the law gi.elimination. This

argument form 1s shown below.

PV 4
“p_____

q

Table XII below illustrates that [(p\/q)/A\~“pl+q is a tautology.

TABLE XII

TRUTH TABLE FOR [(p\/q)/\vpl+q

p | q EVONAp | [V vplrg

—— sy

T T T |F|F F [T T
T F T F F‘ F T} F
F T TITIT T IT] T
F F F | F Tv F EL F
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Example 3.15

p\/q |Two distinct planes intersect in a [{i::::;7
line or they are parallel. '
P Planes E, and E, do not intersect
1 2
- }in a line.
q El is parallel to E2. Figure 25
Example 3.16 Fy
pPVa| Two similar triangles have the same C
area or they are not congruent.. x
\p AABC and ADEF are similar and AT B D

do not have the same area.

Figure 26
q AABC and ADEF are not.congruent.

Exercise Set 3g

Use the law of elimination to supply a necessary conclusion for the
following arguments.‘

1. Every triangle is elther isesceles or scalene.

AABC is scalene.

?

- A
AD , AE = . ' . :
2. D #* CE °F DE is parallel to ia. B C
52 is not parallel to §8. . Figure 27
?
2,.2. 2
3. AABC 1s not a right triangle or a'+b™ = c”,
a2+b2 ¥ c2.
a ¢
? A
b

Figure 28
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4, What conclusion 1is needed to make the following argument valid?
P\Va\/L -
P

?

Truth and Validity

It should be pointed out.te students that the validity of an
argument depends upon the form of the .argument.and not ‘upon .the
truth value of the hypothesis or the truth value of the conclusion.

The following three -examples illustrate this fact,

Example 3.17 C
R . 8 10

Prq If a triangle is isosceles, then it

is ‘equilateral. A

' 10

AABC 1s is les.
P S Qsce - Figure 29
q AABC 1s equilateral.

Argument:  Valid, since its form is that of the .law of detachment.
Hypothesis: False, since (p>q)/\p is false.

Conclusion: False.

Example 3,18
p*q. |A square 1is a .triangle.

g>r |jA triangle is a rectangle.

p>r |A square is a rectangle.
Argument: Valid, since its form is that of the law of transitivity
of conditienals.
Hypothesis: False, since (p>q)/\(g+r) is false.

Conclusion:. True.
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Example 3,19

B A
p>q |If two angles form a pair of vertical. E
angles, then they are congruent. 7 )

q [BEC and [AED are congruent. Figure 30
P ZﬁEC and [AED form a pair of vertical"
angles.

Argument: Invalid (See Exercise Set 3c).
Hypothesis: True, since (p+>q)/\q is true.

Conclusion: True.
Exercise Set 3h

In each problem, tell whether the argument is valid or invalid and

state the truth value of the hypothesis and conclusion.

1. If /A and B are vertical angles, then AE%ZE. 1 //5;0

.
VX2 A B

ZA and B are not.vertical angles.

Figure 31
2, If a triangle contains twe congruent angles, &
then all of its angles are congruent., - D .
ADEF tains two congruent. les.
contains congruent._ang Figure 32
All of the angles of ADEF are congruent.
3. If a triangle is equilateral, then it is isosceles. (; 5
AABC is not equilateral. A B
AABC is not isosceles. Figure 33

Suggestions for Enrichment

Students can be encouraged te lock and listen for the wvalid
argument forms outside of the geometry classroom. Use of the argument

forms can often be found in debates (school, political, etc.). For-
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instance, one might enceounter an argument similar to the follewing:

Anyone who supports the conc¢ept of neighborhood schools is a
segregationist.

Jones supports the concept of neighborhood schools.

Jones 1s a segregationist.

The -argument is valld since its form 1s that of the law of
detachment., = But what is the truth value of the hypothesis? What 1s
the -truth value of the conclusion? Will -the answers to these questions
differ from person to person? Perhaps the most important question -
is the following: Does the wvalidity of the argument mean that the -
conclusion is true? If Jones 1s a candidate for a school beard
position and if -the argument abeove is presented By Wilson, a candi-
date for the same positioen, does Wilsen wish to have the public
beiieve that validity necessitates. the truth of the conclusien?

One might also uncover grguments similar to the following:

Anyone who supports the concept of nelghborhood schools is a
segregationist.

Wilson does not support the concept of meighberhood schools.

Wilson is not.a segregationist.

The argument above is invalid (See Exercise Set 3e). Again,
one can.ask a series of questions concerning the truth values of

the hypothesis and cenclusion.
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Summary

The commen argument forms that appear both implicitly and
explicitly in geometry textbooks have been introduced and demonstrated
in this chapter. Hopefully, the material in this chapter will be
useful to the secondary school geometry teacher as he strives to
instill in his students an understanding and appreciation of the
deductive reasening process and the -distinctions between this process
and inductive reasoning.

It has been mentioned that-a typlcal geometry problem presents.
the student with a stated hypothesils and a stated conclusion. The
student's 'objective is to show with logical ‘arguments that the
cenclusion 1s a necessary consequence.of the hypothesis. - The fact
that the hypothesis and conclusion are stated somewhat limits ‘the
student to establishing the validity of an argument constructed by
another individual.' It is the opinion of ‘this writer that the
geometry student should be supplied with discovery techniques so that
his activity will not be confined te establishing the wvalidity
of arguments constructed by authors of geometry textbooks.

Since the process of working within a deductive system is
a relatively new experilence for the secondary school student, it
is reasonable to assume that the student does not possess knowledge
of useful techniques for discovering meaningful geometric arguments.
The following chapters will attempt to show how a geometry teacher.
can provide discovery techniques for the student and hew these

techniques may be used to increase student Interest and enthusiasm. -



CHAPTER IV
PARTIAL CONVERSES

Introduction to the Concept

of a Partial Converse

After an introduction to formal proofs, the authors of the five
sample textbooks introduce the concept of "converse of a statement."
Though Euclid made no mention of '"converse' (or for that matter,
"inverse" or '"contrapesitive,'" each of which will be discussed in
later chapters) in his Elements, authors of modern geometry texts
find it a useful concept. It is interesting to note the definitions
in the five sample texts listed in Table XIII.

With the exception of Goodwin, the text definitions imply
that a theorem or postulate has but one converse. The idea that
the statement q-p is the converse of p¥q is certailnly satisfactery.
when one considers theorems similar to the following:

Theorem 1l: If two sides of a triangle are congruent, then the

angles oppoesite these sides are congruent.

The theorem is written in the following manner in order to

emphasize the component statements in the hypothesis and conclusion.

(=2
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Hypothesis: AABC. Conclusion:

p: ACEZBC. q:  AFA.
A B

Figure 34

(Note: since the theorem is about triangles, the fact that the figure
is a triangle is not considered as a component statement of the

hypothesis.)

TABLE XIII

TEXTBOOK DEFINITIONS OF ''CONVERSE"

Text Definition of '"converse"
Anderson (p. 238) "More generally, the converse of a state-

ment expressed in if...then form is the
statement obtained by interchanging the if
and then parts (with nouns and pronouns also
interchanged where appropriate.)"

Goodwin (p. 100) - "If a conditional statement contains multiple
distinct conditilons and conclusiens, con-
verses are obtained by interchanging any
number of distinct conditions with an

equal number of distinct conclusions of

the original implication."

Keedy (p. 126) "The conditional sentences A+>B and B~>A are
converses of each other."

Moise (p. 159) This text does not state a formal defini-
tion. It glves examples of statements that
are converses of each other.

Rosenberg (p. 179) "The implication q+p is the converse of
the implication p+q."
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Theorem 1 has the form p+q, and all of the sample texts list
Theorem 2 below as the converse of Theorem 1. Theorem 2 clearly has

the form g-p.

Theorem 2: If two angles of a trilangle are congruent, then the
sides opposite these angles are congruent.

Hypothesis: AABC Conclusion:.

q: (A¥ /B. p: ACZBC.

Figure 35

Examination of a geometry text will reveal that the statements’
of many geometric theorems are more complicated than that of Theorem 1.

Consider the followlng theorem,

Theorem 3: If two sides of one triangle are congruent respec~
tively to two sides of a second triangle, and if the
measure of the included angle of the first triangle is
greater than the measure of the included angle of the
second, then the third side of the first triangle is
larger than the third side of the second.

Theorem 3 1s commonly called the Hinge Theorem, or the Scissors

Theorem. Its hypothesis and concluslon are restated below,

. B
Hypothesis: AABC and ADEF. Conclusion: X%:\\\\\\\\\\\
A A\
E

— . C
py: AB=DE., q: BC>EF.
P,: AC=DF. ‘ D Af/x//?:\\\\F

SR/ Figure 37

Argument form: (pl/\pz/\p3)+q.

With the exception of Rpsenberg, the sample texts list Theorem 4
below as a converse of Theorem 3, (Anderson and Molse specifically

identify Theorem 4 as the Converse Hinge Theorem,)
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Theorem 4: If two sides of one triangle are congruent frespec-
tively to two sides of a second trilangle, and 1f the third
side of the first triangle 1is longer than the third side
of the second, then the included angle of the first
triangle is larger than the included angle of the second.

Hypothesis: AABC and ADEF. Conclusion: B
P ¢ ABEDE. Pyt Lol h
Pyt AC®DF. . oA C
q: BC>EF. E{ :;
: D :

Argument form: (prf\pzx\q)+p3.
. Figure 37

One can observe that a converse of Theorem 3 was obtained by
interchanging one component statement of the hypothesis with ene
component statement of the conclusion. Hence, it would certainly

seem that one might also consider

(2)  (pyApyNa)>py

L3 2

as converses of Theorem 3, even though these converses have little
use 1n the development of geometric structure. Since determining the
validity or non-validity of arguments (1) and (2) is considered
unimportant by authors of the texts, the teacher can demonstrate that

the arguments are invalid with a drawing. For instance, consider (1).

. Hypothesis: AABC and ADEF, Conclusion:
o l ™~

e
Pyt AB=DE. pz: AC=DF. A C

: F
p3: é@-' D

Figure 38
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Figure 38 illustrates that the conclusion Py is not a necessary
consequence of the hypothesis. One can do a similar thing with
(PyAP3NAT)P,

If one adheres strictly to the definitions of Andersen, Keedy,
and Rosenberg, it is difficult to justify the classification of
Theorem 4 as a converse of Theorem 3. According to any of these

definitions, the converse of Theorem 3 would be
a> (AP, Apo).

It can be noted that the statement of Theorem 4 (a valid argument) and
the statement q+(pl/\p2/\p3) are not equivalent since one can construct
numerous examples to demonstrate that the latter argument is invalid.
Molse avoids this logical inconsistency by not stating a formal
~definition of converse.

In the Anderson, Keedy, and Rosenberg texts, ‘as well as in
many other standard treatments, the definitions of converse and some
of the examples gilven are inconsistent, as has been demonstrated with
the Hinge Theorem. All examples are consistent with Goodwin's
definition. The difference is that Goodwin's definition acknowledges
more than one converse, and the others do net. However, Goodwin's
definition is inconsistent with many standard treatments of logic,
which assume that a conditional statement has exactly one converse.

The fact .is that if one considers a conditional geometric
statement and examines it in light of Goodwin's definition, one is
likely to find many interesting and useful arguments. It is the

purpose of this chapter to show how a geometry -teacher can use these
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arguments to promote discovery and intuitive thinking in a deductive
geometry course,

Since it is desirable to aveid the logical Inconsistencies cited
above, the arguments constructed from conditional geometric statements
will not be called converses. They will be referred to as partial

converses. A formal definition of partial converse will now be stated.

A partial converse of an argument is an argument that is

obtained by interchanging any number of component statements
in the hypothesis with an equal number of component statements

in the conclusion.

One might reasonably ask why the definition of partial converse
requires that -an equal number of component statements be Interchanged.
First, as will shortly be established, that stated definition yields
a high percentage of valid (and interesting) arguments. Secondly,
there is evidence that an unequal interchange of component statements
will not produce similar results. After Lazar examined many theorems
and constructed arguments by interchanging a number of component
statements in the hypothesis with an unequal number of component
statements in the conclusion, he made the following observation:

No theorem iﬁ geometry was found which yielded a

true converse by an unequal interchange of hypothesis

and conclusion. (13, p. 107).

The number of partial converses of a given argument depends, of
course, on the number of component statements in the hypeothesis and
conclusion., Table XIV illustrates how one can calculate the number

of partial converses for some of the common argument forms. The symbol



an represents the number of ways one can choose k statements from a

set of n statements (n>k).

TABLE XIV

CALCULATION OF NUMBER OF PARTIAL CONVERSES
FOR COMMON ARGUMENT FORMS

Argument form Number of partial converses
p~>q . 1€171Cy = 1°1 =
(PP, 5116y = 2°1 =
(P APy (gAGy) )C179Cq T 5CptpCy = 2:2 + 11 =
(PyAP,APLI™ 4€171C; = 31 =
(PyAPAPI>(q;Ng,) 3C179Cq F 50 pCp = 3°2 + 3:1 =
(PyIAPyAPI (4 ATy AG5) 3C173C1 T 3046y * 5C574C4 =

3.3+ 3.3 + 1-1 =

It can be observed from Table XIV that the argument p>q has
exactly one partial converse, g>p. According te any of the text
definitions of converse, the converse of p+q 1s identical to the

partial converse of p-q.
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Use of Partial Converses to

Promote Discovery

Once introduced teo the concept of a partial converse, the student
has at his disposal an extremely useful technique for discovering
geometric arguments, some of which may be valid and useful. Now it
is certainly not expected that a student will be able to establish
immediately the wvalidity or non-validity of every argument that he
discovers. It is entirely possible that more material will need to
be develeoped before validity or non-validity of a specific argument
can be estéblished. At this point intuition can enter a deductive
course in geometry, for students can exercise their intuitive abilities
and "guess'" whether a discovered argument is valid. In most cases,
the right-ness or wrong-ness. of the guess can be established at some

time during the course when the appropriate material is developed.

Example 4.1
Once a student has proved the follewing theorem, he can
"discover' five other arguments by leoking at its partial converses.

In this case, all of the partial converses are valid arguments.

Theorem 5: The bisector of the vertex angle of an isosceles
triangle is perpendicular to the base and bisects the base,

»

Hypothesis: AABC. Conclusion: A
py: AB=AC. q;: BD=DC.
Pyt AD bisects /BAC. Q' D86,
B D C

Argument form: (pjAP,)>(q;A4,). .
Figure 39



This argument is easily proved valid using SAS and elementary

supplementary angle theorems.

Partial Converse 1l: (pl/\ql)+(P2/\q2)-

Hypothesis: AMABC. Conclusion:
Pyt AB=AC, Pyt AD bisectSJZBAC. B ,D c
qqt BD=DC. : dyt XBIEE. Figure 40

The validity of this argument can be established using SSS and

elementary supplementary angles theorems.

A
Partial Converse 2: (pl/\q2)+(ql/\p2).
Hypothesis: AABC. Conclusien:
. _ ] = B C
Pyt AB=AC. qit BD=DC. D
“«—> <> —_ .
q,: ADIEC. p,: AD bisects /BAC. Figure 41

The walidity of this argument can be established when the hypotenuse-

leg triangle congruence theorem is developed.

A
Partial Converse 3: (ql/\pz)*(pl/\qz).
Hypothesis: AABC. Conclusion: .
B C
ql: BD=DC. Py AB=AC.
P,* AD bisects /BAC. Q' Xﬁlga. Figure 42

This argument can be established as valid by using the theorem that
states that the bisector of an angle of a triangle divides the opposite

sides into segments that are proportional te the adjacent sides. That

BD_AB

is, D ac Since BD=DC, one may conclude that AB=AC. The truth

of 4y easily follows.
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Partial Converse 4: (q2/\P2)*(Pl/\ql)-

Hypothesis: AABC. Conclusion:
q,: B13C. P : AB=AC.
— . B C
Py AD bisects ZﬁAC; qq¢ BD=DC. D
: Figure 43
Validity is easily established using ASA.
A
Partial Converse 5: (q;/\q,)>(p;/AP,)-
Hypothesis: AABC. Conclusion: B 1
;¢ BD=DC. Py AB=AC. ‘ Figure 44
9y ° KﬁLﬁE, p2: AD bisects ZEAC.

Validity is easily established using ASA.

The teacher can continually reinforce the concept of partial
converse by having students examine the partial converses of theorems
that are stated in the problem sets in their texts, If such problems
are carefully chosen by the teacher, the student can carry out this
task without a .great expenditure of time, For instance, the problem
in Example 4.2 appears in most texts after theorems about parallel
lines are introduced. As part of a homework assignment, a student.
can be asked to establish the validity of the stated argument and to

examine its partial converses.

Example 4.2

Problem: AD and CD bisect each other.at E. Prove that‘Kﬁﬂlaﬁ.

Hypothesis: The figure. Conclusion: : G B
p i AE=BE. q: Ap// CB. ﬁ';
D
p,: CE=DE.
Figure 45
Argument form: (pl/\p2)+q.
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The argument and its two partial converses are easily proved valild

using ASA, -
Partial Converse 1: (pl/\q)+p2. C
Hypothesis: The figure, Conclusion:
A D
Pyt AE=BE, Pyt CE=DE.
- Figure 46
q: K_ﬁ// CB.
Partial Converse 2: (pz/\q)+pl. C B
Hypothesis: The figure. Conclusion:
. = : = A
p,: CE=DE. py: AE=BE.
q: AD/CE. ' Figure 47

An alert student may . notice that the two partial converses in
Example 4,2 are not distinct arguments. This fact 1s certalnly
worthy of class discussion.

It should be carefully noted that a partial converse of a valid
argument is not necessarily a valid argument. For example, two of the

three partial converses of Theorem 3 are invalid.
‘Exerclse Set 4a

Examine the partial converses of each theorem and identify these that
are invalld arguments.
1. Theorem 6: If two sides of a triangle are not congruent, then

the angles opposite these sides are not congruent, and the
larger angle 1s opposite the longer side.

Hypothesis: AABC Conclusion: ////////,/4§\
i ' B C

p: AB>AC. | q: Lo b,

Figure 48
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2. Theorem 7: A line containing the center of a circle and
perpendicular to a chord of the circle bisects the chord,

Hypothesis: The circle with |Conclusion: A
chord AB.

Pyt TD is a line q: TD bisects AB. C
contalning the A— B
center of the
clrcle. JD

Pyt THIAE. Figure 49

3. Theorem 8: If opposite sides of a quadrilateral are parallel,
the opposite sides are congruent and the opposite angles
are congruent.

Hypothesis: Quadrilateral Conclusion:
ABCD. D c
Py ¢ AB/fD. qq ABE(CD. z
P,* BD/[BC. 1, ADERC, A B
s ZAQZ@- Figure 50
qy° A2/,

Using Partial Converses to Relate

Theorems and Postulates

The concept.of a partlal converse provides a teacher and his
students an opportunity to establish relationships between many .
theorems and postulates that are treated as unrelated in textbooks.

It 1s certainly not essential that these relationships be established.
However, as the geometry teacher can note, the establishment of

these relationships stresses the use of definitions and equivalent.
statements and extends the use of partial converses as a discovery

technique.
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The definition stated below is taken from Rosenberg's text. The
corresponding definitions in the other sample texts are equivalent to
this definition.

Definition: AABC is said to be congruent to AA'B'C' if
and only if

AB¥A'B', BCEB'C', ACEA'C'

LeBLY, MRA', A2 A'. (19, p. 153).
This definition will be utilized in the following example.

Example 4.3
The SAS Postulate is usually the first triangle congruence
postulate presented in geometry textbooks. This postulate is stated

below.

SAS Postulate: If two sides and the included angle of one
triangle are congruent respectively to corresponding parts
of a second triangle, then the triangles are congruent.

Using the stated definition of congruent triangles, the conclusion

of the SAS Postulate is equivalent to saying that corresponding sides
and corresponding angles of the two triangles are congruent. However,
the hypothesis of the SAS Postulate states that three of these

" corresponding parts are congruent, Using the definition of congruent

triangles and the law of transitivity of conditionals, one can

construct an argument equivalent to the SAS Pestulate.
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Hypothesis: AABC and AA'B'C’. Conclusion:
: c
p;: a=a'. q m/A=m/A'. A‘¢:::;1:2;2;

Py nf=mAL'. q c=c'. ol 1'3'

. = . - A' c'
Py’ b=b'. qq nl=n/B'. 5t

B

Argument form: (pl/\p2/\p3)+(ql/\q2/\q3)‘ Figure 51

Among the partial converses of this argument one finds the following:

Partial Converse 1: (ql/\qz/\q3)+(p1/\p2/\p3)_ . ? ;i: 5%

Hypothesis: AABC -and AA'B'C'. Conclusion: B
c! a'
. =m /A" . a=a!
ql' mé mL . Pyt @ a. A'ﬁ'
: c=c', : m/L=m/C'.
2 ’ . P2 & Figure 52
qq° m[ﬁ?m[ﬁj.- Pyt b=b'.

This argument is equivalent to the ASA Postulate, stated below. (In
some texts, ASA is established as a theorem.)
ASA Postulate: If two angles and the included side of one

triangle are congruent respectively to the corresponding
parts of a second triangle, then the triangles are

congruent.

. ) B
Partial Converse 2: (pl/\qz/\p3)+(ql/\p2/\q3). ji;;;
Hypothesis: AABC and AA'B'C', Conclusion: A g c

. o= . = B!

Py* a=a'. qq m A mé'. , .

1 1
q,: c=c'. Py nl=n/c'. A B
P3: b=bv . q3: mé:mZB' . Figure 53

This argument is equivalent to the SSS Postulate. (In some texts,

S8SS is established as a theorem.)

SSS Postulate: If three sides of one triangle are congruent
to the three sides of a second triangle, then the triangles
are congruent.
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Partial Converse 3: (pl/\ql/\q3)*(P2/\q2/\P3)-

B
c

Hypothesis: AABC and AA'B'C', Conclusion: A—‘:jz:::::zg
b

Py a=a', Pyt nf=nl'. B’
1
' Al ; c!
qqt n/B=n/A'. Py b=b"'. b
Figure 54

This argument 1s equivalent to the SAA Theorem.

SAA Theorem: If two angles and a non-included side of one
triangle are congruent respectively to two angles and
the corresponding non-lncluded side of a second
triangle, then the triangles are congruent.

Example 4.4

In a discussion of similar triangles, some seemingly unrelated
theorems in textboecks camn'be related using the partial converse con~
cept. First, the class must understand a definition of similar
polygons, such as the following.

Definition: Two polygons are similar to each other if

thelr corresponding angles are congruent
and thelr corresponding sldes are
proportional. (19, p. 311).

The first theorem established in a study . of simllar triangles

i1s usually the following:

AA Similarity Theorem: If two angles of one trilangle are
congruent to two angles of another trilangle, then the
triangles are similar.

After introducing the definition of similar polygons, the teacher can
show that the conclusion of the AA Similarity Theorem is equivalent

to saying that corresponding sides of the two trilangles are propeor-

tional and that corresponding angles are congruent. However, the



74

hypothesis of the AA similarity Theorem states that two palrs of
corresponding angles are congruent. Hence, it 1s only necessary to
conclude that the corresponding sides are proportional and that the
third angles of each triangle are congruent, Using the definition

of similar triangles and the law of transitivity for conditionals, the
teacher can show that the AA Similarity Theorem is equivalent to the .

follewing argument.

Hypothesis: AABC and AA'B'C'. Conclusion: o :jg
» ! om A=mé§'. : a:a'sb:b'. A ¢

Pyt ql
Pyt m[ﬁ?mlﬁ!. q,* ata'=c:c’', B
qqt bib'=c:c'. ¢’ A
qy m=m L. A "t O
Figure 53

Argument form: (pl/\p2)+(ql/\qz/\q3/\q4)-

Among the partilal converses of this theorem, one finds the following:

uf

Partial Converse 1: (ql/\q2)>(Plf\Pz/\q3/\q4).

B
c
Hypothesis: AABC and AA'B'C’', Conclusion: A‘::%::%Z

\i
q,: a:a'sb:b'. P, mA=m[A_‘. 7
1 1 c '
q,* ata'=c:c', P,* nfi=n/R'. A % G
dq b:b'=cc'.

q° mzﬁsmlhl.

Thls argument is equivalent to the SSS Similarity Theorem, stated

Figure 54

below.

SSS Similarity Theorem: Two triangles are similar i1f correspond-
ing sides are proportiocnal. :



Partial Converse 2: (q2/\p2)+(ql/\pl/\q3/\q4), . B
_ :: 53

Hypothesis: AABC and AA'B'C'. Conclusion: A "
B!
9t ata'=c:c’'. q;¢ ata'=b:p', ¢! /

—

Py* mB=m/AB'. Py mA=mA'. 5T ¢!
_q3.: b:b'=c:c'. Figure 55

q,: nf=m L.
This argument is equivalent to the SAS Similarity Theorem, stated

below.

SAS Similarity Theorem: Two triangles are similar if an angle
of one is congruent to an angle of the other, and the
corresponding sides including the angles are proportional,

This writer has found from past. experience that students often

confuse definitions with postulates and basic.theorems. For instance,
when asked for a definition of congruent triangles, a student often
states ‘a triangle congruence postulate, such as SAS. Also, when
asked for a definition of similar triangles, a student often states

a triangle similarity theorem, such as the AA Similarity Theorem,

The question "Why can't we use a postulate (or theorem) as a
definition?" has been asked by even the most able student. Using a
triangle congurence postulate as an example, a teacher can explain
that a postulate is a useless statement unless one knows the
definitions of all the terms within it. The necessity of this can.
be exemplified by a teacher as he shows the relationships between
theorems and postulates in a manner similar to that demonstrated in
Examples 4.3 and 4.4 The definitions of congruent triangles and
similar polygons were essential in representing the initial arguments

of these examples in symboelic form.
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It is interesting to note that authors of geometry texts
occasionally contribute fo a student's difficulty in understanding
the distinction between a definition and a postulate or a. theorem.
For instance, Moise presents the following theeorem without ever
having defined the '"perpendicular bisecting plane of a segment.”

The perpendicular bisecting plane of a segment is the .
set of all points equidistant from the end points of the

segment. (17, p. 251).

Since a formal definition of ''perpendicular bisecting plane of a
segment" is not stated, it is not surprising that a student might
consider the statement of the above theorem as a definition. An
interesting contrast can be made by noting the following theorem

presented earlier in Moise's text.

The perpendicular bisector of a segment, in a plane, is
the set of all points of the plane that are equidistant from
the end points of the segment. (17, p. 188).
Prier to presenting this theorem, Moise states a formal definition .
of the "perpendicular bisector of a segment in a plane," It is this
writer's opinien that such inconsistencies contribute to the confusioen

of a student -who has not made a clear-cut distinction between a

definition and a pestulate or theorem.
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Exercise Set 4b

1. Consider the theorem stated in problem 3 of Exercise Set 4a. Find
partial converses of this theorem that are presented as theorems
in your geometry textbook.

2, Show that each of the four theorems below is a partial converse
of the other three. The arguments are stated relative to the
plane of the circle.

Theorem 9: A line perpendicular to a
radius at its outer end is tangent
to the circle.
Theorem 10: A tangent to a cirele is A

perpendicular to the radius — A . .
drawn to the point of contact.

Theorem 1l: The perpendicular to a
tangent to a circle at its
point of contact passes
through the center of the
circle.

4

Figure 56
Theorem 12: The perpendicular line gu

from the center of a cirqle to
a tangent meets it at the point
of contact.

A Partial Converse Theorem

It has been established that a partlal converse of a valid
argument 1s not necessarily a vglid argument. However, there are
instances when the validity of :three trichotomy-related arguments
necessitates the valldity of a partial converse of each of the fhree
arguments, as shown in Theorem 13. The proof of this theorem is-
not difficult and, as will be demonstrated, the theorem has inteﬁest-

ing applications in geometry. Since the proof does involve indirect



reasoning, it will be noted at this point that indirect reasoning is
discussed or used in the early chapters of each of the sample texts.
Theorem 13: Let p be a statement and a, a', b, b' be real

numbers.

If the arguments

(1) [pN(a=a")]>(b=b")

(2) [p/N\(a>a")]>(b>b")

(3) [pA(a<a') ]+(b<b")

are valid, then the arguments

(4)  [pA\(b=b')]+(a=a'")

(5) [pA(®>b')]>(a>a’)

(6) [pA(b<b')]>(a<a')

are also valid. ©Note that arguments (4), (5), and (6)

are, respectively, partial converses of the arguments (1),

(2), and (3).

The vaildity of arguﬁent (4) will now‘bé.established. The only
way that (4) can be invalid is for the statemet a=a' to be false
while pA (b=b') is true. It will be shown that this cannot happen.

Assume that p/\(b=b') is true. Then p is true, and b=b' is
true. Also, the Trichotomy Property of Real Numbers specifies that
exactly one of the statements a>a', a<a', a=a' must be true.

If a>a' is true, then p/\(a>a') is true. Therefore, by valid
argument (2), b>b' is true. This is impossible since b=b' is true.

Therefore, a»a' is false.

78
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If a<a' is true, then p/A(a<a') is true, Therefore, by valid
argument (3), b<b' is true. This is impossible since bsb' is true.
Therefore, a<a' is false.

It has been shown that the truth of p/A(b=b') necessitates that
a>a' is false and that a<a' is false. Hence, using the Trichotomy
Property, a=a' is true. Since the truth of pA(bmb') necessitates
the truth of a=a', the argument (4) [pA (b=b')] +(a=a') is valid,

In similar manner, one can show that arguments (5) and (§) are valid,

Example 4.5 , B
Consider the twe triangles, AABC and AA'B'C',
with the properties that ABwA'B' and AC=A'C’,
Let p: (ABwA'B')A(AC=A'C').
The fellowing valid arguments are usaful in

geomatry, and they are pressnted in most geomatry

textbooks,

(1) [pA(mbenf')]+(BEmB'C"), Figure 57

(2, [pA(m&rn ') 1=>(BCXE'C"),

(3 [pAmbad ) >3,

According to Theorem 13, if the argumeats above are established
as valid, then the following arguments are ales valid,

(4) [pA(BC=B'C") >(mbund'),

(5) [pA(BCB'C) Iv(mbend"),

(6) [pABC<a'C) I+ (mlamA"),

The arguments (4), (3), and (6) are alsoc useful in geometry and
are presented as theorems in most geometry textbooks. However, in

the text presentations, the validity of each argument i1s postulated or
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established by a formal proof. Theorem 13 renders this process

unnecessary if the validity of (1), (2), and (3) is established.

Theorem 13 can be used with other sets of three trichotomy-

related arguments. Two such sets appear in Exercise Set 4c.
Exercise Set 4c B

l.. Given AABC. If the theorems

(1) 1If ABR=BRC, then mA=a[Q, A c

(2) 1If AB>BC, then mﬁ&ﬂnéi, Figure 58

(3) If AB<BC, then mA<m/C

are established as valid, use Theorem 13 to list three other valid

arguments.,
2., Let .AB and CD be chords of a circle. If the theorems A
(1) If AB=CD, then m AB=m €D, B
(2) 1If AB>CD, then m AB>m €D, c P
‘}(3) If AB<CD, then m KB<m €D Figure 59

are established as valid, use Theorem 13 to list three other valid

arguments.
Suggestions for Enrichment

The writer has found that much enthusiasm is developed in the .
geometry classroom i1f a mild competitive atmosphere is occasionally
created by pitting various groups (a group might be a set -of students.
in a row of seats) againgt each other in a contest that involves
demonstrating the5validity or non-validity of partial converses of

valid argument., Much of the excitement is developed when the groups.
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compete to establish that a certailn partial converse is invalid.
Non-validity is generally demonstrated with a drawing. When an individ-
ual creates a drawing that demonstrates the non-validity of a partial
converse (that is, a drawing demonstrating that the conclusion is
not a necessary consequence of the hypothesis), he raises his hand
and then has the opportunity to produce his drawing on the blackboard. -
If his drawing is acceptable, his group earns a point. If the
drawing does not demonstrate non-validity, the second group is given
the opportunity to earn the point. '

As an example, a partial converse of the SAS Postulate (Example
4,3) is the following:

Two triangles are congruent 1f two sides and a non-

included angle of one are ceongruent respectively teo two

sides and the non-included angle of the other.
An acceptable drawing that demonstrates the non-validity of the above
argument is ‘shown in Figure 60. Note - B

that AABC and AABD satisfy the

hypothesis of the theorem, but A C
that - they are not.congfuent. -
This example is a difficult one. Figure 60
If the students are unable to produce a drawing to demenstrate non-
validity, the teacher can create the drawing and give the point to
the group finding triangles that satisfy the hypothesis, but not the
conclusion, of the 'argument.

A similar activity consists of examining the partial converses

of a postulate or theorem to find related arguments that are presented

as theerems or postulates in the textbook. The group finding the
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largest number of related theorems or postulates 1s the winner. In
this section it has been demonstrated that the ‘SAS Postulate and the'
AA Similarity Theorem have partial converses that are basic geometric
postulates or theorems. Many other valid geometric arguments. have
this property. = For instance, the partial converses of Theorem 8
(Problem 3, Exercise Set 4a) include most of the basic theorems

about parallelograms.

Summary

"converse' presented in the

In this chapter the definitions of
five sample texts were examined, Inconsistencies existing between
the stansd definitions, their use in ﬁhe texts, and the basic laws of.
logic were noted. These inconsistencies presented no major preblem
in the geometric development in the texts, since it is generally
the statement of an argument that 'is important in a geometry text
and not the fact that it is cailed the converse of another argument.
However, the writer hopes that it has been established that if
a teacher -eliminates the inconsistencies by introeducing the concept
of a partial converse to his class, he has given his students a
useful technique for discovering other meaningful geometric argu-
ments. He can encourage use of this technique by organizing activities
similar to those mentioned in the previous section or by other
means that he may devise. It is this writer's opinion that the

introduction of a concept of a . partial converse enhances the learning

experience in a deductive geometry course by offering the student



an -opportunity to assume an active role in the examination and:

constructlon of geometric argﬁments.
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CHAPTER V
PARTIAL INVERSES .
The Definition of a Partial Inverse

Secondary school students have been exposed to hundreds of hours
of commercials on television and radio, in newspapers, and through
other media. They are undoubtedly familiar with the fellowing type

of sales pitch:

If you.brand of secap is Nedirto, then you are using

a good soap.

Having introduced the -students to the argument above, they can be
asked to complete the following statement in a manner that would

please the manufacturers of Nodirto soap.

If your brand of soap 1s net Nodirtoe, then : i .

(Answer: you are not using a good soap.)

Students have little difficulty with this.kind of exercise and quickly
recognize that if they consider the first argu;ent to be p+>q, then the
second "is clearly Vvp>vq. ' The manufacturers of Nodirto obvieusly hope
that a listener or .reader, upon hearing or seeing.theﬁfirst argu-

ment, will isubconsciously produce, the second one and consider the

two arguments as equivalent. The alert student will intuitively
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induce that the arguments are not equivalent, and can convince himself
with 'a truth table that' (p>q)<+>(vp>vq) 1s not a tautology,

The statement ~p+\uq 1s generally considergd to be in inverse
of p*q, and this is the way Keedy and Rosenberg define 'inverse'
in their texts., Goodwin says, ''The inverse of an implication is writ-
ten by negating both the antecedent and the consequent.'" (9, p. 103).

Anderson and Moise do not state any definition of "inverse,'

nor do
they use the concept in their respective texts.

It was demonstrated in the previous chapter that meaningful
arguments. can be constructed by examining partial cenverses of a

geometric argument. Another set of arguments may be constructed

from a given.argument using the following definition.

A partial inverse of an aygument is an argument formed

by negating a number of component statements of the hypo-
thesis and an equal number of component statements in the

conclusion.

¥
N #

It caﬁ'be noted that the single partial inverse of the argument
p*q is ap-»vq.  In this case, the partial inverse 1s the same as

the inverse as defined by Goodwin, Keedy, and Rosénberg.

Example 5.1
Theorem 14: If two lines are parallel, thedir slopes are equal,
1
Hypothesis: Lines Ll and L2. Conclusion: y Lo
p: Ll//LZ' q: Slope of L.=

slope of Lz.

Argument form: p—q.
Figure 63
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The partial inverse vp+vq is easily stated: If two lines are not
parallel, thelr slopes are not equal. In this case, the partial

inverse 1s a valid argument,

Example 5.2

Theorem 15: If two lines are parallel, their y-intercepts
are not equal.

As with Example 5.1, the partial inverse is easily stated: If two

lines are not parallel, then their y-intercepts are 1}y Ly
equal. This argument is invalid, as demonstrated , x
"in Figure 64. “/// i \E%

' Figure 64
Example 5.3 .

Theorem 16: In a plane, if a line intersects one of two
parallél lines 1n exactly one point, then it intersects
the other line 1n exactly one point. .

L3
Hypothesis: Coplanar lines Conclusion: L
L s Lys Ly :
Ly
B e
p: L. //L.. _ q: L, and L
172 . 3 2 Figure 65

intersect in-
exactly one
point.

Py: L3 and Ll

intersect in
exactly one"
peint.

Argument form: (pl/\p2)+q.



Partial Inverse 1l:

Hypothesis:

'\.vpl:

This argument is invalid (See Figure 66).

(%pl/\p2)+mq-

Coplanar lines
Ll’ L2’VL3'

Ly /KLy

L3 and Ll

intersect in
exactly one

point.

Partial Inverse 2: (pl/\mp2)+mq.

Hypothesis:

87

Conclusion: 3

ng ¢

L3 and L2
do not.
interesect

in exactly
one point.

Figure 66

Coplanar lines

F1o Boe By

pl: Ll// L2 .

mpz: L3 and Ll

do not

intersect
in exactly
one point.

This argument is valid,

Li< , >
L24
Conclusion: K -
L3, >
Figure 67
g 2 L3 and L2
do not
intersect
in exactly

one point.

Since the lines are coplanar, %pz is equiva-

lent to saying that L3A/Ll and vq 1s equivalent to saying L3//L2. The

validity 1s established using the theorem stating that two ‘lines

parallel to a third line are parallel,

Example 5.4

Theorem 17:

In a plane, any point on the perpendicular bisecter

of a segment is equidistant from the end points of the

segment. -
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Hypothesis: Line L and Conclusion:
segment AB, P
Pyt P is a point on L q: PA=PB, A . | B
B i i
Py LlXﬁ. &
. Figure 68
p3: L bisects AB.

Argument form: (pl/\pz/\p3)¢q.

Without goilng into elaborate detail on this example, the writer

concludes that the partial inverse
(vp; AP, AP3)>q

is equivalent to saying that any poilnt not on the perpendicular
bisector of the segment is not equidistant from the end points of the

segment. This partial inverse is valid. The partial inverse

1

(p1/\Py/AP4)>q

is not valid since nq (that is, PA¥PB) is not a necessary consequence

of the hypothesis. This can be seen by taking P to be the point of

intersection of L and AB. ' The partial inverse L
A P
(py AP, Avpo)rng TN
/,, Y \\\
N A \l, B
can be established as valid with an

Figurk 69
indirect proof (See Figure 69).

The arguments in the above examples contain exactly one component
statement in their respective conclusions. The writer has tried
negating more than one statement in the hypothesis and conclusions of

many arguments, but has never found any interesting (from an instruc-
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tional standpoint) and useful arguments by this process. This is not
to say that the concept of a partial inverse cannot be meaningfully
applied when an-argument contains more than one component statement
in its conclusion. Any argument, the conclusion of which is the
conjunction of n statements, can be written as n arguments, each
having one component statement in its conclusion, Interesting argu~
ments can often be obtained by examining partial inverses of the n
agruments. As -an example, it can be observed in problem 4 of

Exercise Set 5 that
q: ADLEE

is a necessary consequence.of the given hypothesis. Hence
CIVAS TORICRACED)

1s a valid argument. The partial inverse
(vp; /\vp,)+(va N\ )

is meaningful, but, in the writer's opinion, not interesting from
an instructional standpoint. However, the partial inverses of the

arguments

(p,/Npy)~g
and

(p1 /\1>2)+q1

include interesting and valid arguments.
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Exercise Set 5

In problems 1-3, write the partial inverse of each argument.and deter-
mine 1f it 1s valid.

1. If AABC 1s equilateral, then AABC 1s 1sosceles.

5 7 a
2, If i then s 7

3. If AABC is congruent to ADEF, then AABC 1s similar to ADEF,

In problems 4-5, examine the partial inverses of eagh argument and

determine their validity or non-validity. A
4, Hypothesis: AABC. Conclusion: AW EY
Pyt AB=AC. q: AD bisects BC. B c
Pyt AD bisects ' ABAC. v
Figure 67
5. Hypothesis: Quadrilateral ABCD. Conclusion: D
: Il : . -
Pyt K_ﬁ ¢B. q: m& QO'A'T
: KB/ 88,
P2 ! Figure 68
Pyt mA = 90.

Suggestions for Enrichment

Students can be asked to explore the relationship between the
number of partial converses and the number of partial inverses for
a given argument form. It 1s not -a difficult task te establish that
the numbers are equal.

It can be established with a truth table that
(g=>p)+>(vp>vq)

is a tautology. That is, the converse of the argument p>y is equiva-

lent to the inverse of the argument. Students can then examine the
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possibility that a similar result holds for the partial converses and

partial inverses of the argument
(p;/\p,)q.

It is interesting to note that
[(aApPy)»p I [ (P AP,)+q]

1s a tautology. However,
[(@APy)>py I++[(p Apy) >2q]

is not. In general, it can be established that for each partial
converse of an argument, there is exactly one equivalent partial .

inverse, and vice-versa.
Summary

The purpose of this chapter was to introduce the concept of a.
partial inverse and demenstrate 1ts use as a discovery technique,
However, the major significance of a partial inverse in the deductive .
development of geometry will be discussed after the concept of

"partial contrapositive' is introduced in the follewing chapter.



CHAPTER VI
PARTIAL CONTRAPOSITIVES

Examination of the Definition

of Contrapositive .

In previous chapters it was demonstrated how students can discover
other theorems by examining the partial converses and partial inverses
of postulates and theorems. But it was also demonstrated that partial -
converses and partial inverses of valid arguments are net necessarily
valld arguments. Therefore, after discovering a new and seemingly
valld argument by these techniques, the student must establish the
validity of the argument before using it in the development of new
material. In this chapter the reader will be introduced to an.
argument form that will automatically produce a valid argument if
obtained from a valild argument.

The argument form to be introduced is similar to, and in some
instances identical to, the statement form known as a "contra-
positive." Three of the sample textbooks define ''contrapesitive,"
and two (Anderson and Molse) do not. Goodwin, Keedy, and Reosenberg

all state that the argument "“q~“p is the contrapositive of p?>q. It is-

easy to establish that “g>“p 1s equivalent to p*q with a truth table
(problem 1, Exercise Set 2f). Hence, one can easily create a valid

argument from another valid argument that has only one component

an
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statement in both hypothesis and conclusion by constructing the.

contrapositive of the argument.

Example 6.1

Theorem 18: If two sides of a triangle are congruent, the

angles opposite these gsides are congruent. A
Hypothesis: A ABC. Conelusion: .
p: AB¥AC. q: AEL, B C
Argument form: p-q. ‘“ . Figure 72

Contrapositive of Theorem 18: If two angles of a triangle
are not congruent, then the sides opposite these angles

are not congruent. ,//////,/’/A\i\
AABC. B C

Hypothesis: Conclusion:

g zﬁflbﬂ np: AB¥AC. Figure 73

Argument form: ~qg>p.

The validity of ng>vp is’'usually established by indirect proof.
However, Indirect procf is not needed here. The argument &q+&p is

valid by contrapositive argument,

Example 6.2

Consider the following argument: If two distinct lines are

parallel, their y-intercepts are equal.

) i

This argument is clearly invalid (since the two lines would .
intersect if their y-intercepts were equal), and hence its contra-
positive, which is an equivalent statement, should alseo be invalid.

The contrapositive can be stated in the follewing manner:
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If the y-intercepts of two distinct lines are not equal,

then the lines are not parallel.

The non-validity of this argument can be established by censldering
the lines y=x and y=x.+. 1.
Consider now an argument of the form (pl/\p2)+q. The contra-

positive of this argument (using the traditional definition) is
(R VA JOR

It is easily established with a truth table that
[(p APy al<[vgv(p, Np,) ]

is a tautology. Hence, if (pl/\pz)»q is_valid,‘then so is
%q+W(pI/\p2). This means that the truth of ~nq necessitates the
.truth of m(pl/\pz), which, by one of DeMorgan's Laws, is equivalent
to mpi\/mpz. One can gg%clude'that the truth of ngq necessitates
that it is impossible for bothygf'%pl and vp, to be false., This

leaves three possibilities:

L “Py and “p, are both true,
(2) mpl is true and mpz is false,

(3) “Py is false and “P, is true.

Example 6.3

Given quadrilateral ABCD (Figure 74). The D C
validity of the following argument is -easily Azii::::::;Z?
established. Figure 74

[(AB// TBY/\( & &) 1-(AB// 8C) .
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The contrapositive of thils argument is

C
D -
BHF) [ G/ DN (L) ]. N
B
Tﬁe'truth of XEX(EE would necessitate the truth Figure 75
of exactly one of the following statements.
(1) EBXED)/\(B¥/D). (See Figure 75.) 5
™~
2) EEXEHN(LELD).  (See Figure 76.) A /¢
' , B
Figure 76
(3) (K—ﬁ//gﬁ)/\(@?@)- (See Figure 77.) D < z /C
A B
Figure 77

The conclusion of the contrapositive in Example 6.3 is meaningful
and informative. However, it does have certain limitations. First,.
one can only conclude that exactly one of the statements (1), (2),
or (3) must be true without being able to specify which one of the
three is true. Secondly, in the contrapositive argument, one cannot
determine a truth value for either of the statements Xﬁﬂ’fﬁ and
/B=/D. The point to emphasize is that if the hypothesis of a valid
argument contains more than one component statement, one is unable
to specify the truth value of these component statements in the
contrapositive argument. This fact somewhat limits the practical
use of the contrapositive of a valid argument with a compound hypo-

thesis in a deductive geometry course.
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The Definition of a .Partial Contrapositive

At the beginning of this chapter, the contrapositive of the
argument p+q was. examined, The,contrapoéitive of this argument did
not -have the aforementioned limitations of the contrapositive of an
argument with a compound hypothesis. This sectilon is devoted to
constructing a valid argument form from a valid argument with a
compound hypothesis such that the constructed argument does not have
these limitations. The argument form is described in the followiﬁg

definition.

-

A partial contrapositive of an argument is :an argument’

obtained by negating a number of component statements in the
hypothesis and an equal number of component statements in

the conclusion and then interchanging the negated statements.

It should be noted that the single partial contrapositive .of p+q
1s identical to the contrapositive, ~ng>vp,

Attention will now be centered on partial centrapositives of
arguments with conclusions contalning exactly one cemponent.
statement, As will be shown,.these partial contrapesitives are
extremely useful in deductive geometry and do not have the previeusly-
mentioned limitation. (It will again be noted that an argument with
n compenent statements in its cenclusion can:bg written as n argu-
ments, each with one component statement in its conclusion.)

If an argument has the form (pl/\p2)+q,~then the partial

contrapesitives of this argument are

(p,/\v)>p, and (vq/\p,)p, .



TRUTH VALUES OF (p,/\p,)>q AND ITS PARTIAL CONTRAPOSITIVES
1/ P2

TABLE XV

Pl Py p,\p, | PAM | AP, (pl/\p2)+q’ (P, A)»p, | (vaAp,)>vpy
T T T F F v oo (1| F o[
T | T T T. T T |F|F T |F|F T |[F|F
T Fo|# F F F FoofT{T FoofT|T F [T| F
T F F T F F |T|F T fT|T F|r|F
F | T F F F F |T|T F |T|F Foolr]T
F T F F T F|T|F F |T| F T fr}T
F | F F F F FfT|T F |T|T F|r]T
F F F F F F |T}F F loirT F ol

L6
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Table XV shows that both of these partial contrapositives are
equivalent to (pl/\p2)+q.
In a similar manner, one can cansider the argument (pl/\pz/\p3)+q

and establish that it is equivalent to its three partial contrapositives

VAN IVANCIELT I
(p/\va/No3)p,, and
(vq/\Po/\P3) 7Py -

In general, the argument (pl/\pz/\.../\pn)+q is equivalent to every
one of its n partial‘contrapositives,

Using any valid argument, the student now has at his disposal a
technique for constructing other valid‘arguments. A point to
emphasize is that one can establish the wvalidity of an argument
containing a one-component statement conclusion merely by identifying

it as a partial contrapositive of a valid argument.

Example 6.4

Theorem 19: The bisector of the vertex angle of an isosceles
triangle is perpendicular to the base of the triangle.

Hypothesis: AABC. Conclusion: "~

pyi AB=AC, q: ABLEBE.

pz: Eﬁ'bisects ZBAC.

Figure 78

Argument form: (prf\p2)+q.-
This is a valid argument, and hence its two partial contrapositives

are valid.
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Partial Contrapositive l: (pl/\mq)ﬁmpz.

A
Hypothesis: AABC. Conclusion:
—
Pyt AB=AC, “p,: AD does not
biseect /BAC. B 5 c
g 2 A_D:f\ﬁz Figure 79

In words: If a ray (line) containing the vertex of an isosceles
triangle is not perpendicular to the base, then the ray (line) does

not bisect the vertex angle of the triangle.

- A
Partial Contrapositive 2: (mq/\p2)+mpl.
Hypothesis: A ABC. Conclusion:
. a»\ 7 . B C
vq: ADYBC. “p;:  ABFAC. D
P, AD bisects /BAC. Figure 80

In words: If the bisector of an angle of a triangle is not
perpendicular to the opposite side, then the sides of the triangle

which include the angle are not congruent.

Example 6.5

Theorem 20: Any point on a perpendicular bisector of a segment
is equidistant from the end points of the segment.

L
N
Hypothesis: Line L and segment AB, | Conclusion: Aop
Pyt P is a point on L. q: PA=PB, A ; B
Py: L.LX%.
Py L bisects iB. Figure 81

Argument form: (pl/\pz/\p3)+q.
This argument is valid and hence its three partial contrapositives

are valid.



Partial Contrapositive 1: (pl/\pz/\mq)+mp3,

Hypothesis: Line L and segment AB,

Pyt P is'a point on L,

p2: L_ng.

“q: PA#PB.

Conclusion:

'hp3:

L does not
bisect AB.

100

Figure 82

In words: If a line is perpendicular to a segment, and if there

exists a point on the line which is not equidistant from the end

points of the segment, then the line does not bisect the segment.

Partial Contrapositive 2: (pl/\mq/§p3)+%p2.‘

Hypothesis: Line L and segment AB,
Pyt P is a point on L.
g s PA#PB.

Pyt L bisects AB.

Conclusion:-

’hpz:

LXASB.

Figure 83

In words: If a line bisects a segment, and if there exists a

point on the line which is not equidistant from the end points of the

segment, then the line is not perpendicular to the segment.

It is interesting to note .that if the hypothesis of partial

contrapositive 2 is to be true, then P must not be ABNL.

If P is

taken to be ABNL, the hypothesis is false (since “q would be false).

However, the argument is still valid. (Recall that an argument is

invalid only if the conclusion can be false when the hypothesis is

true.)
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Partial Contrapositive 3: (mq/\pz/\p3)—>'\apl. B‘A
Hypothesis: Line L and segment AB, | Conclusion: .
. +P
nq: PA#PB, “py: P is not
' on L. ’
PN Ave—t—p- B
p2: L1l AB. v
Pyt L bisects AB. » Figure 84

In words: If a line is a perpendicular bisector of a segment,

and if a point is not equidistant from the end points of the segment,

then the point is not on the line.

Exercise Set 6a

Write the partial contrapositives of each argument.

1.

Supplements of congruent angles are congruent.

If a triangle is equilateral, then it is isosceles.

If two circles have unequal areas, then.their radii are unequal.
If a +b = ¢ and b?0, then a<c.

If twao planes are perpendicular to the same line, the planes

are parallel.

Using Partial Contrapositives to Prove:

General Theorems

Many of the general theorems that appeafr in geometry textbooks

can be proved using partial contrapositives. In many instances, this

saves considerable time while preserving rigor, as students do not

have to struggle through a complicated formal proof. (A teacher must

exercise discretion here, since it is not -to be denled that some com~

plicated formal proofs are worthy of exploration by geometry students.)
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Example 6.6

Prove Theorem 21: Two lines cut by a transversal
are parallel if a pair of alternate interior

angles are congruent. figure 85

If the Exterior Angle Theorem for triangles has been established,

the following theorem is easily proved. <

A
Theorem 22: If two lines are not parallel, then <= ' —_—cy
. , , B DN
a pair of alternate interior angles are not g{/r
m /ABC>m BCD

congruent.
Figure 86

(0f the five sample texts, only Goodwin introduces the Exterior Angle
Theorem after parallel line theorems have been established.)

By constructing the contrapositive of Theorem 22, one obtains a valid

argument, which is Theorem 21.

Example 6.7

Prove Theorem 23: A line joining the midpoints of two sides
of a triangle is parallel to the third side. A .
& Dm N

B NG

- Figure 87

To prove Theorem 23 using partial contrapositiveg, one needs the
following theorem.

Theorem 24: If three or more parallel lines
intercept congruent segments on one
transversal, then they intercept congruent
segments on every transversal.

A 4
~H

;]\b
< >
v ¥ l

b

Figure 88
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(Three of the five sample texts~-Anderson, Goodwin, and Moise--
establish Theorem 24 after Theorem 23. However, in each of these texts,
Theorem 24 could easily be proved first.)

A corollary of Theorem 24 is the following: If a line is parallel

to one side of a triangle and bisects a second side, then it
bisects the third side. .

Hypothesis: AABC. Conclusion: .
P, B_E//ﬁ—a- q: E is the midpoint
1 2 ;
of AC.

: D is the midpoint .
e, Figure 89
Argument form: (pl/\p2)+q.
A partial inverse of this corollary is (ﬂplf\p2)+mq. D A
. . B C
Hypothesis: AABC. Conclusion: -
Py * Bﬁ%(fﬁ. ~q: E is not the Figure 30
midpoint of AC.
Py D is the midpoint
of AB.
The validity of this partial inverse can be established
A

by introducing the unique line through B parallel to DE.

This line will intersect A¢ at a point F. (See Figure

91.) Then AE = EF by Theorem 24. Since EF # EC, one
concludes that AE # EC, and that E is not the midpoint Figure 91
of AC.

Sincel(mpl/\p2)+%q is valid, a partiai contrapositive,

(q/\p2)+pl is also valid.



Hypothesis: AABC. Conclusion: D iA &E
q: E is the midpoint Py: BiMVﬁﬁl BZ | I—

of AC.

Figure 92
P,: D 1s the midpoint |

of AB. *
Note that this partial contrapositive is Theorem 23, the argument that

was to be proved valid.

These examples illustrate how a partial contrapositive of a
valid argument may be used to establish the validity of common geo-
metric theorems. It is, of course, impossible to present illustrations
that can be directly applied to all geometry texts, for any two texts
may present completely different orders of theorems. However, using
any text that presents a deductive development of geometry, tﬁe alert
teacher and his students can utilize methods of proof similar to
those in the examples. For just one instance, problems presented in
problem sets are often partial éontrapositives of other arguments

that have been established as valid.
Exerclse Set 6b

In each problem, if the stated arguﬁen; can be established as wvalid,

what common geometric theorem could Be obtained by using partial

contrapositives? |

l. If a transversal cuts two lines and if a palr of alternate
interior angles are not congtuent, then thg lines are not parallel.

2, If a line is perpendicular to one of two non-perpendicular planes,

then the line is not contained in the second plane.
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3. If A, M, and C are points on a line L, and if M and A M

A are on opposite sides of any other line that

contains C, then M is not between A and C. Figure 93
4, 1In AABC, if DE is not parallel to"ﬁ.é, then /D‘—(is{;_)
AD , AE B —C
DB EC’ .
Figure 94

Finding a Necessary Conclusion for a.

Given Hypothesis

The typical geometry problem involving proof presents -the student
with a stated hypothesis and a stated conclusion to be obtained
from the hypothesis by logical argument. The conclusion generally
does not follow immediately from the hypothesis. To create the series
of valid arguments referred to in Chapter 3, the student must take
the given hypothesis and construct an interim conclusion. He then uses
the interim conclusion in conjunction with the hypothesis to construct
another conclusion which is either the conclusion of the stated
argument or another interim conclusion. This process is continued
until the conclusion of the stated argument becomes a necessary conse-
quence of the conjunction of the given hypothesis with obtained
interim conclusions. Hence, a good portion of a student's time is
spept constructing interim conclusioens that .can be used to obtain
eventually the stated conclusion,

A common error made by sﬁudents in the cohstruction-of a formal
proof involves obtaining an interim conclusion that is not a neces-
sary consequence of the stated hypothesis and other interim conclu-

sions. The writer has found that this type of error is very common
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in proofs involving geometric inequalities, That 1s, students often
have difficulty obtaining necessary conclusions (interim or otherwise)
from a hypothesis that contains statements of inequality., The writer
has also found that the occurrence of this type of error can be
lessened by introducing the partial contrapositive technique demon-

strated in the following examples.

Example 6.8

What conclusion is a necessary consequence of the given hypothesis?

Hypothesis: AABC and ADEF. Conclusion: A
:  AB=DE, - qs ?
P1 1 B AC E F
Pyt BC=EF.
Py mé?‘mZD- Figure 95

Solution: A method of attack is to examine the partial contrapositive

form
(p; /AP, /N\vq)+vp,.
Hypothesis: AABC and ADEF. Conclusion:
P AB=DE, Pyt m[5=méb.
p2: BC=EF.
ng ¢ ?

Now if ~q is defined to be the statement

m[ﬁ=mé<E,

then the partial contrapositive is a valid argument, Hence q: m[ﬁ#m[h.
is a necessary consequence of the given hypothesis. (It should be

noted that q can also be defined to the statement AC=DF,)
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Example 6.9

Supply a necessary conclusion for the given hypothesis.

Hypothesis: AABC. Conclusion: ‘A
Py: AB is the longest - q: 7 L 30°
side. N c B
PZ: mﬁ = 30. Figure 96
Pyt BC#v3 (AC).

Solution: Proceding as in Example 6.8, one can examine the partial

contrapositive form (pl/\pz/\mq)+mp3.

Hypothesis: AABC. Conclusion:
Py? AB is the longest “pyi BC = /3 (AC).
side.
Pyt nA = 30.
g e ?

If nvg is defined to be the statement
AABC is a right triangle,
then the partial contrapositive is vallid. Hence
q: .AABC 1s not a right triangle
1is a necessary conclusion of the given hypothesis.

Example 6.10

Supply a necessary conclusioen for the given hypothesis.

Hypothesis: The circle with Conclusion:
’ external point P.
— P
Pyt PA is a tangent q: . ?
segment to the B
clrcle
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Solutioen: Examine the partial contrapositive

(p{/Ma)p,.
Hypothesis: The circle with |Conclusion:
external point P.
Pyt PA is a tangent P, PA=PB,
segment to the
circle,
’ gt ?

If nq is defined to be the statement
>
PB 1s tangent to the circle at B,

then the partial contrapositive is a wvalid argument, Hence, for the

original hypothesis, a necessary conclusion is

P
q: PB is not tangent to the circle at B,

Note that q is not eduivalent to saying that BB is not tangent to the

circle.
Exercise Set 6¢c

In each problem, supply a necessary conclusion for the stated

hypothesis.

1. Hypothesis: Quadrilateral ABCD.; Conclusion:
py: E is the midpoint of AB. - q: ?
Py F 1s the midpoint‘of,ﬁa. |

P3* G is the midpoint of CD.

Pyt GH is not parallel to EF.

Figure 98
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2, Hypothesis: AABC with a point Conclusion: .

D between B and C, ///4%}\\\\\
Py AB#AC, q: ? B '

Pyt /BADR/CAD,

3. Hypothesis: The sphere and
plane R.

Pyt R is tangent to the
sphere at point P,

Figure 100

H ] :
Pyt OP is not perpendicular
to R.

Relating Converses and Inverses

Most ‘geometry textbooks, including these in the sample for this
manuscript, contain many characterization (locus) problems. Problems
of this type involve proving that a given set, §, consists of all of

the points satisfying a given condition. That is, one is required to

show that

(1) If P is any point in S, then P satisfies the given condition.
(2) I1f P is any pointﬁsatisfying the given condition, then

P is in S.

In many characterization problems, statement (1) can be repre-

sented in the conditional form p+q. A simple truth table can-be‘

constructed to show that

(q»p) > (vp>vq)

is a tautology.. That‘is,_the converse and the inverse of p>q are
equivalent statements. (One can also note that wp>.q is the contra=~

positive of q+p.) Hence, to show that the converse of p+q is a
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valid argument, it suffices to show that the inverse of p»q 15 a

valld argument.

Example 6.11
In a plane, if one wishes to prove that the perpendicular
bisector of a segment is the set of all points equidistant from the

end points of the segment, he must prove that

(1) all points on the perpendicular bisector of the segment are

equidistant from the end points of the segment,
and the converse of (1), which is

(2) all points equidistant from the end points of the segment

are on the perpendicular bisector of the segment.
However, to prove (2), it suffices to prove the inverse of (1), which is

(2a) all points not on the perpendicular bisector of the segment

are not equidistant from the end polnts of the segment.

The procedure for the total proof is outlined below. P
e ~
(1) Hypothesis: AB and its perpen- | Conclusien: Al/ 4 TR ’\B
dicular bisector l
L. Figure 101
p: P is any point on L. ' q: PA=PB,

If P is M, the result follows immedliately. If P 1s not .M, the

validity of p>q 1is easily established using SAS.
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(2a) Hypothesis: AB and its perpen—~ |Conclusion: L

dicular bisector [ +P
L., '
A 3 3 B

R SR ] i |

p: P is any point not on q: PA#PB. lM

L.

Figure 102

The validity of (2a) can be established using the procedure discussed
v >y <> <>

in the last section. First, one can note that PMJLAB, since PM

is not L and the perpendicular te Kﬁ at M is unique., Thus, one can

present the hypothesis of (2a) in the following manner in order to

seek a necessary conclusion q;-

L
Hypothesis: AB and its perpendicular pConclusion: f
bisector L. : P
Pyt JAWSE 4 ? AN B
; M
Pyt AM=BM, v
N Figure 103

Examining a partial contrapositive of (pl/\p2)+ql, one obtains the

followling:
Hypothesis: AB and its perpendicular |Conclusion:
bisector L. ‘
ngot o ? Np o ?ﬁJ_Kﬁ.
1 1 ,
Pyt AM=BM,

Now 1f “q; i defined to be the statement
PA = PB,
then (mql/\p2)+mpl is a valid argument. Hence
E éA # PB

is a necessary consequence of p,/\p, and the argument (2a) is valid.
1 -2
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Exercise Set 6d

1., To prove that

In a plane, the set of all points

MM
v\ N
|
w N

equidistant from two parallel lines Ll

and L2 is a line parallel to Ll and L2 Figure 104

and midway between them,

one would prove that

(2) any point on L is

and

(b) any point not on L is

2. TFollow the outline below to prove that

The set of all points in the interior
of an angle that are equidistant from the
sldes of the angle is the bisecting ray;

minus its end point.

(a) Prove that if CD is the bisecting ray of

ACE and 1if P is a point on CB other sthan

C, then P is equidistant from CA and TBH.

(b) Now prove that if P is in the interior -

of /ACB and not on the bisecting ray

Eﬁ, then P is not equidistant from

Ez\and Cﬁi (See following.) ) Figure 106
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(1) Why is m. ACP # m/BCP?
(ii) Fill in the hypothesis and explain why:pl and p, are true.

Hypothesis: Conclusion:

Py? PC=PC. q:s ?

Pyt /PEC and /PFC are
right angles.

Py n/ACP # m/BCP.

(1ii) A partial contrapositive of (prf\pz/\pg)aq is
(pl/\pz/\%q)*ﬂp3. How can one define ~g to make
this partial contrapositive into a valid argument?

Hypothesis: Conclusion:

py: PC=PC. py: mACP = n/BCP.

Pyt /PEC and /PFC are

right angles.

q: ?

Suggestions for Enrichment

The geometry teacher can use Venn diagrams to illustrate many
of the topics discussed in this and previous chapters. Let p denote
a statement and let U be a universe in which p has a definite truth
value. Let p be that part of the universe U in whi¢h p 1s true. The

universe U will represented by a

rectangle and its interior, and P

will be represented by a circle and

its interior (the shaded region in

Figure 107). The part of the
& P Figure 107

universe U in which p is false will

be denoted by P. Hence P is the non-shaded region in Figure 107.
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Assume now that (pl/\p2)+q 1s a valid argument. This fact may

be 1llustrated by Figure 108. The shaded ' 0

region in Figure 108 represents the

P
portion of U in which the hypothesis 2

haeJ
P

of the argument (pl/\p2)+q is true.

Note that the truth of pl/\p2 :
. Figure 108
necessitates the truth of q.

Teachers and students can inductively conclude that (pl/\pz)aq is a
valid argument if and only if (pl(\pz)CfQ.

Figure 108 can be used.to reinforce previously-discussed logical

topies. For instance, it can be noted that

(1) (Plf)a)CZfz. This illustrates that the validity of
(pl/\p2)+q ﬁecessitates ghé validity of a partial contra-
positive, (pl/\mq)+mp2.

2) @N 52)&\6. This illustrates that the validity of
(pl/\p2)+q does not neéessitate the validity of a partial
inverse, (pl{\%pz)»wq.

(3) (2,NQKP,. This illustrates thit the validity of
(pl/\p2)+q does not necessitate the validity of a partial

converse, (pl/\q)+p2.

Fligure 108 is the most general illustration of the validity of.

U
(pl/\p2)+q. Although there are other

diagrams that 1lllustrate the validity

of thils argument, such as the one

shown in Figure 109, it should be

noted that Figure 109 indicates Figure 109
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that P4 is a valid argument. The validity of P> is not 'a neces-
sary consequence of the validity of (pl/\p2)+q (see Figure 108).
Hence, Figure 109 does not represent the general case.

It is also possible to construct Venn diagrams to illustrate

(pl/\p2)+q as a invalid argument. One

such diagram is shown in Figure 110.

Note that Plf\ PZE\Q. This illustrates o
that the truth of q is not a necessary

consequence of the truth of pl/\pz.
Figure 110

Suﬁmary

It has been demonstrated that one can deduce valid arguments by
constructing partial contrapositives of previéusly éstablished valid
arguments. But although many such deductioné,are instructive in the
classroom, it should be gvident to a geometry teacher that many of
the numerous valid arguments that can be deduced in this manner will
not be of any use in the future development of a geametric structure
that is being created. In other words, it makes little sence to
examine every partial contrapositive of every valld argument, -

The development of geometric structure will differ from text to
text, and 1f a geometry teacher is to utilize partial contrapositdives
effectively, he must be thoroughly familiér with his text and emphasize
those partial contrapositives that will be beﬁeficial in future work.
A clever teacher will allow students to discever useful valid argu~-
ments by suggesting that they examine the contrapositives of specific
theorems. With careful guidance, students might establish the

validity of an important theorem before the class reaches the point in
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the text where the theorem is presented. Refer to example 6,6 for

instance. It 1s often posslble for students to establish the valildity

of the theorem

Two lines cut by '‘a transversal are parallel if a pair

of alternate interilor angles are congruent

before it 1s introduced in a text. The writer has frequently observed
that the feeling of being "one up on the author(s) of a geometry

text" is very satisfying to students. In some instances, certain
students have made a habit of looking ahead in the text in an attempt-
to "beat the author(s) to the proof of a theorem.'

The wise use of partial contrapositives can.also.eliminate‘the‘
need for many time-consuming formal proofs, allowing more class time
for some of the enrichment activities that have been suggested.
However, as has been mentioned, a teacher should carefully examine
a lengthy formal proof for possible educational value before substic

tuting a partial contrapositive proof for 1t.



CHAPTER VII

RELATING SYMBOLIC LOGIC TO

INDIRECT PROOF
Types of Indirect Proof

Most geometry texts, including those in the sample for this paper,
discuss the concept of indirect prdof and use 1t, in varying degrees,
as a method of proof in thelr deductive development of geometry. It
is the purpose of this chapter to relate this form of proof to some
of the concepts of symbolie logic that have been developed.

Anderson states, "To give an indirect proof of a statement,
suppose that the statement is false and deduce a contradiction.”

(3, p. 192). Anderson is describing a common form of indirect proof

generally called proof by contradiction, or reductio ad absurdum. A

symbolic analysis of the indirect proof process as described by
Anderson will now be gilven.

Let p, q, and r denote statements such that pvisﬁtrue and r -1s
true. If one wishes to show that p>q is a valid argument using proof
by contradictien, he assumes that p+q:is 'false and shows that this
leads to a contradiction of a known fact, This amounts.to saying

that the vallidity of p+q can be established by showing that

(1) ~(prq)snr
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'1s a valid argument. Note carefully that if ~(p+q) is true (that is,
if p»q is false), then the validity of (1) necessitates the truth of
nr. This 1s the contradiction referred to by Andersen, since r is

given as true. The basic question to be analyzed is the following:

Why does the validity of (1) necessitate the truth of q whenever p and
r are true?
As a first analysis, it can be noted that the validity of (1)

necessitates the validity of its contrapositive

+(p>q).

Therefore, since r is true, -the statement p+q is true, Since p>q
1s true and p is true, this necessitates the truth of q.

As a second analysils, the biconditional
v (prg) < (p/\q)

is a tautology (Problem 2, Exercise Set 2f). Hence, (1) is equivalent

to

(2)  @Nvg)r.
Since (1) is valid, then (2) is also valid. Therefore the argument
(3)  (pAr)>q

is valid since it is a partial contrapositive of (2). Since p and r
are true, the statement p/\r is true. The validity of (3) thus

necessitates the truth of q.
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Example 7.1

An example of an indirect proof using the contradiction method
is shown below. The proof is presented in Moise's text, The Line
Postulate referenced in the proof states, 'For every two points
there is exactly one line containing both points." (17, p. 62).

If two different lines intersect, their intersection
contains only one point.

Proof. 1If two different lines intersect at two
different points P and Q, then there would be two lines
containing pand Q. The Line Postulate tells us that
this never happens. (17, p. 63).

One can identify in this proof the statements p, q, and r referred

to. in the discussion on . proof by contradiction.

P: Two distinct lines intersect.
q: The intersection of the distinct lines contains only
one point.

r: Two distinct points are contalned on exactly one line.

A second method of indirect proof is called proof by cases,

or proof by elimination. 1If dqs 42,‘..., q are statements satisfying

the condition that exactly one of them must be true in any given
instance, and if p 1s a true statement, then exactly one of the

arguments

P+ q;
P~ q,

S
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is valid, since only one of them can have a true conclusion for the
true hypothesis, p. If p->qj is the valid argument, its validity 1s

established by showing that the arguments
g, (1 <kz<n, J%k)

are all invalid., This is usually accomplished by the contradictlon
method, That is, one attempts to establish that the validity of.
Pq (1 < k < n, j#k) necessitates the truth of a statement known

to be false.
Example 7.2

Consider the following theorem: The shortest distance from a
point to a line is the length of the perpendicular segment
from the point to the line.

Hypothesis: Line L and a point " Conclusion:
P not on L. P
Pyt Fa.LL at Q. - Q¢ PQ<PR.
Pyt R is a point on L
distinct from Q. Q R
C b
Figure 111

The Trichotomy Preperty of real numbers assures one that exactly one

of the statements

ql: PQ < PR
Q¢ PQ = PR
q3:. PQ > PR

1s true for any two segment, lengths PQ and PR, Hence, since‘pl/\p2

is true, exactly one of the following arguments is valid.
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1 eApy) »q
(2 (pyAPy) ~ q,

(3) (0, APy) > 4.

Outlining the proof, one would hope te establish that-wa, which
is equivalent to qz\/q3, is false. The way that this 1s dene would
vary from text to text, again depending upon the order in which the
material 1s presented. In Keedy, prior to presenting the stated

theorem, it is established that

(a) If two sides of a triangle are congruent, the angles
opposite these sldes are ceongruent.

(b) 1If a triangle has one right angle, then its other
angles are acute.

(c) If two sides of a triangle are ﬁot congruent, then
the angles opposite theﬁ are not congruent, and the

largest angle is opposite the longer side.

If 43 is true, then by (c), m[?RQ > mZ?QR = 90, a centradiction
ef (b). Hence q3 is false.

If q, is true, then using (a), one obtains m[PRQ = 90, a
contradiction of (b). Hence qz is false.

Since‘q2 and qq are falge, it follows that qz\/q3 ig false;
that is ~qg is false. Then 4 is true and (piﬁ\pz)*ql is the valid
argument. |

It should be noted that one can leok upen the proof by elimination

in Example 7.2 as a double application of the law of elimination,
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previously discussed in Chapter III (see also problem 4, Exercise

Set 3g). This fact is demonstrated below.

[, Np,)>a IV [ (P AP,) >4, 1 V(P A P,)+a,]

m[(pl/\p2)+q3]

[(PyAPy)>q; 1V [(Py/A\P,I™9,]

L(pyAPyI*a I/ [ (PP, ]

~I(py APy, ]

(PA\Py) 79,

A third method of indirect proof presented in some textbooks is

called proof by contraposition. Goodwin, Keedy, and Rosenberg briefly

discuss this method of proof. As its name suggests, this method

of proof involves establishing the validity of p+q by showing that.
its contrapositive, vg>vp is a valid argument. This method of
establishing the validity of arguments was thoroughly digcussed in .
Chapter VI. Though many texts label proof by contraposition as an
indirect method of proof, one is certainly justified, in light of

previous discussion, in considering it a way of making a . direct proof,
Exercise Set 7

1. Consider the theorem: If a line intersects a plane not containing
it, then the intersection contains exactly one point.

If one assumes that the intersection of the line and the plane

contains two or more points, (a) what conclusion is a necessary
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congequence of this assumption? (b) what contradiction 1s-

obtained?

Let p: &, b, and c are the lengths of sides of a triangle.

c
ql: a+b>c. a [::E:*

Figure 112
(a) Assume that one wishes to prove the validity of‘p—)-ql by the

elimination method. 'Find statements 4, and d3 such that
exactly one of 915 995 45 is true.

(b) Having found the statements q, and dq in part (a), one
would then have to prove that the arguments p~q, and P74,

are

Let AB be the diameter of a circle and let C be a

A B
point on the circle distinct from A and B, If
one wished to present a proof by contrapesition
. . Figure 113
that mé&CB = 90, then one would show that
(m ABC # 90)~ | | is a valid
argument,

Suggestions for Enrichment

A teacher and his students can discuss daily situatioens in which

a person may use indirect reasoning to arrive at a conclusion. A

television repairman may conciude that the trouble in a specific

television set 1s caused by a plcture tube, since all other parts of

the set have been found to be in satisfactory condition. A doctor

may use indirect reasoning to make an educated guess as te the

cause of a patient's problem. For instance, the doctor might reaspen
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that a patient's stomach pain 1s caused by gallstones because the
patient's appendix has previously been removed and x-rays have

shown the absence of ulcers, Students in the teacher's geometry
class may recall arrilving at an answer on a multiple guess test, not-
by directly determining the correct answer, but by eliminating all .

but one of the possible answers because of their apparent incorrectness.
Summary

Experience with many geometry textbooks has led this writer to
agree with those (10) who claim that many of the explanations of
indirect proof which commoenly appear in geometry textbooks are likely
to confuse the student, if not actually mislead him. Most of the
text explanations are brief, and merely prescribe a procedure for
the student to follew and offer.one or two examples demonstrating
an application of the procedure. It 1s hoped that this chapter
has offered the geometry teacher a deeper insight into the nature .of
indirect proof and has suggested ways that might make this powerful
methed of proof more meaningful for his students if symbolic logile

1s used.



CHAPTER VIII
CONCLUSION

It has been the purpose of this paper to demonstrate how a
secondary school geometry teacher can introduce elements of symbolic.
logic into a geometry -course but at the same time, preserve rigor,
provide students wi;h-discqvery techniques and a better understanding
of deductive proof, and reduce the time spent on traditional formal
proofs. The extent . .to which a teacher chooses to utilize .these con-
cepts of symbolic logic will vary from teacher to teacher, and the
way it is done will depend upon the manner in which geometrilc material
1s developed in the textbook being used. However, this writer hopes
that he has coﬁvinced the reader that it is indeed pessible to use
concepts of symbolic logic constructively in any deductive develop-
ment of geometry. Now that the reader has seen many posseible uses
for elements of symbolic logic in the teaching of geometry, a
procedure for introducing them without a great expenditure of time
will now be summarized.

In the beginning weeks of a geometry course, when definitions,
primitive terms, and postulates are being established te be used in
a later development of theorems, the teacher can introduge the concepts
of statement, negation, conjunction, disjunction, cenditional and
biconditional statements, tauteology, equivalent statements, and truth

tables. A few minutes .of class discussion per day, combined with .

128
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statement examples (not all of which have to be related to geometry)
wili make these concepts familiar to the students. The teacher can.
utilize the student's intuitive knowledge of basic geometric figures
for this purpose. As partlof homework assignments, students can
construct simple truth tables. In doing so, they might make some
interesting discoveries, such as the fact that the converse of a
statement is not equivalent to the statement itself. During this
period, the teacher may identify the converse, inverse, and contra-
positive forms of the argument p>q. It is not suggested that the
definitions of partial converse, partial inverse, and partial contra~
positive be introduced during this pre-proof period.

When a discussion of elementary proof is introduced in the
textbook, the argument forms discussed in Chapter III of this paper-
can be introduced. The teacher can point out the valid argument
forms that present themselves in the elementary formal proofs that
appear in-the,prbblem sets of the text. Invalid argument forms
(Exercise Sets 3c and 3f) should be discussed, since students should
clearly understand the distinction between valid and invalid argu-
ments. The reason for this is that wvalid arguments can be used ové;.
and over again in the process of deducing useful conclusions, while
invalid arguments cannot be used in this way. The writer hopes that
introduction to the vallid argument forms will help the students to
understand another important distinction: That between deductive
reasonling and inductive reasoning. If students can make such a dis-
tinctien, they will more clearly appreciate what is expected of

them when a geometric proof is required. -
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The concepts of converse, inverse, and contrapositive should

initially be related to the conditional p+q. The following points

can be emphasized by constructing truth tables,

(1) q>p is not equivalent to p-q.

(2) ~p>vq is not equivalent to pq.

(3) vg>vp is equivalent to p-q.

(4) q»p is equivalent to p>q.

(5) The inverse of p>q is the contrapositive of the converse of

p~q.

These concepts can .be reinforced daily by examining the converses,
inverses, and contrapositives of definitions, postulates, and simple
theorems. The definitions of partial converse, partial inverse, and
partial contrapositive can be introduced when a teacher feels the
need for them. Perhaps the ideal time for the partial converse
definition would be when the triangle congruence postulates are
presented, since (as was demonstrated in this paper) these postulates
and the AAS Theorem are partial converses of one another. The
writer feels that all of the ''partial' definitions should be introduced
shortly after the triangle congruence postulates, for they offer the
students techniques for discevering other theorems. Also, if these
concepts are established prier te the introduction of. .indirect proof
in a textbook, they can be used to supplement what is cemmonly a
very brief explanatien of indirect proof.

It should be noted that while the material discussed in this
paPer can be presented in such a way as to be within the realm of

tinderstanding for high school geometry students, its presentation
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requires a dedicated teacher who truly wants to interact with his
students., Dedication 1s required because the teacher must be will-
ing to do some work outside of the textbook as he prepares his lesson
plans. If he successfully develops the logical concepts discugsed,
he has, in the opinion of this writer, given his students a powerful
discovery tooel and he must be willing to allew them to display openly
their discoveries, thoughts, and ideas. The writer believes that
even the most.able or energetic student will lose enthusiasm 1f he is
forced to keep his ideas and discoveries to himself. The enrichment
suggestions contained in the paper provide opportunities for active
student participation. When class members can participate and exper-
ience the thrill of discovery, it is this writer's opinion that
geometry and the deductive reasoning process can generate interest
and enthusiasm while offering an exciting challenge to both teacher
and students.

In conclusion, 1t must be emphasized that this paper contains
the thoughts, ideas, and opinions of only one geometry -teacher. He
has found them to be extremely useful in his geometry classroom. It
is certainly not suggested that all, or even some, of these ideas
and techniques can be . successfully utilized in every geometry class-
room. It is the individual geometry teacher who must declde which,
1f any, of these ideas and techniques are applicable to his teaching

situation.
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(a)
(b)

(e)

(d)
(e)
(£)

(g)
(h)

No.
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Exerclse Set 2a

8
— ¥ 4.
The point M is not between points A and B.

Ki does not intersect.EB;

/PQR is a right angle.

Two intersecting lines are contained in exactly one plane,
There exlsts a segment that does not have exactly one
midpoint.

Some pairs of supplementary angles are not.congruent.

All pairs of perpendicular lines do not form right angles.

If Ais a right angle, then both p and q are false.

Both p and q are false.

Both p and q are true.

(a)

(a)

Exercise Set 2b

F. (b) T. (¢) F. (d) F.

F. (b) F. (¢) T. (&) F.

At least one of the statements p, q, ¥ is false.



(a)

(b)

= 16. .

TABLE XVI

TRUTH TABLE FOR np/\nq

P q vp /N g
2 B
T F F [F| T
F T T |F| F
F F T |zl T
TABLE XVII

TRUTH TABLE FOR pAgq/\vr

P q | r (PAPAN
T {T | T tr [F| ®
T | T | F T IT| T
T | F | T F |F|F
T |F | F F {F| T
F |T |T F |F| F
F |1t |¥F F |F| T
FolF | T F |F| F
F | F | F F {El T
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(a) T.

No.

p | a |« eVoVr | pVigVr)
T | T T T Tyt {Trh]T
T T F T T} F T[] T
T F T T Ty T T f T
T F. F T T} F T} F
F T T T Ty T FI} T
. F T F T | F FLj T
F F T F Ty T FITy T
FlF | F F [l P |FEEIF
Symbols of inclusion are not necessary.
(b) F. (¢), T.

(a) T.

TRUTH TABLE FOR (pVq)\/r AND p\/(q\/r)

(b)

Exercise Set 2¢

T.

TABLE XVIII

()

(d)

(d)

134 -
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3.

(a)

(b)

(e)

(d)

(e)

(a)
(b)

(c)

(d)

(e)

No,

(a)

(b)

(c)
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Exercise Set 24

If A_and [B_have the same measure, then [Aand ZB. are
congruent.

A and A& have the same measure only if A and B are
congruent.

A necessary condition for [A and [& to have the same
measure 1is that~é§ and [B_are congruent,

A sufficient condition for [A and AE to be congruent 1s that
/A and /B have the same measure.

(1) T. (11) T. (i1i) F.

If AABC is isosceles, then AABC 1s equilateral.

AABC 1s 1sosceles only if AABC is equilateral.

A necessary conditién for AABC to be isosceles 1s that AABC
is equilateral.

A sufficient condition for AABC to be equilateral is that
AABC is isosceles.

(L) F. (11) T. (1141) F.

Exercise Set 28

A is the complement of Zﬁ_if and only if /B 1s the comple~
ment of - A.

A necessary and sufficient condition for LA to be the
complement of /B is that /B is the complement of A,

(1) T. (i1) F.
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2. (a) AABC and ADEF are congruent if and only if AABC and ADEF
are equilateral.
(b) A necessary and sufficlent condition for AABC to be congru-
ent to ADEF 1s that AABC and ADEF are equilateral,

(e) (1) F. (i1) F.

Exercise Set 2f

L. TABLE XIX
TRUTH TABLE FOR (p~+q)<«>(vq>vp)
P q || prq | ~vgvp (prq)<r(vg>p)
| i T |FlT]F T k| T
T Fi| F [T|F|F F [t] F
F T T |F{T|T T I} T
F| F T | TITjT T [y T
2,
TABLE XX

TRUTH TABLE FOR (p+q)<+(p/\vq)

p | a |l ~qe) | prvg | vprgder(pAng)
| o1 ||[F] T T[F] F F ] ¥
| r {||z] ® Ti|T} T T T" T
Fl T |{IF| T F|F| F F fr| F
F | r llr] T rlr| T F Ir| F




TABLE XXI

TRUTH TABLE FOR (p<q)<>(p+>vq)

Pl g pe>q | pexng | (prg)er(png)
T | T T T ¥ T [f] F
T | F F T IT|T F |f} T
F T F FITIF F F T
F | F T F|F|T T |F| F
Exercise Set 3a
Hypothesis: a # b and b # c.
Conclusion: a # c.
Argument is invalid.

Hypothesis:

Conclusion:

Argument .is

Hypothesis:

Conclusion:
Argument is

Hypothesis:

Conclusion:

Argument is

AABC 1s equilateral,
AABC 1s 1sosceles,
valid.

[A and Zﬁ.are acute.

/A and A are complementary.

invalid.

Pl and P

<
C' .
P1P2 E

valid.

2

are distinct points .in plane E.
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Exercise Set 3b

/A and /B are acute.
The diagonals of mABCD are perpendicular.

i3 is the perpendicular bisector of CD.

Exercise Set 3c

TABLE XXII

TRUTH TABLE FOR [(p>q)/\gql*p

p | g e/ L) N\gl>p
T| T T frlT r
T| F F |F|F F It
F| T T |{T|T T |F
F| F T |plF F Iz]

D o HC

A B Ty

Figure 114

A7 B

Figure 115
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Exercise Set 3d

If two angles are complementary, then they are not supplementary.

If MR is a median of scalene triangle MNP, then MR ig not per-
o d

pendicular to NP..

If the diagonals of a quadrilateral bisect eagh other, then the

opposite angles on the quadrilateral are congruent.
Exercise Set 3e

Ll and L2 are not skew.

PQ is not a.median of MNP.

m/A f_mAL

Exercise Set 3f .

TABLE XXIII

TRUTH TABLE FOR [(p~q)/\~pl-vq

p | 4 (e N\vp [ [(prq)/\vplng

T| T T [F]F F o [r] F
T| F F |F|F F T
F| T T ool T T F| F
F | F T It} T T Tl T




»A A

N
=
w

Figure 117

Exercise Set 3g

AABC is isosceles

AD:, AE.
BD CE’

AABC is not a right triangle.

qVvr.
Exercise Set 3h
Argument Hypothesis - Conclusion
Valid True True
Valid False False
Invalid True True

Exercise Set 4a

There exists one partial converse and it is valid.

140

There are two partial converses., If one is working in the

plane of the circle, both partial converses are valid.
the partial converse (pzl\q)+pl is not valid.
(@ N g)>(p;AP,Ad3/N,) 1s valid.

(a3 Ad3)>(P;AP,AGyAG,) 1s invalid.

In space,



CRTATTRRJ¢-RAN SYNCEVANCEY)
(A q9)*(P{A PoA 41N Q)
(4, Q,)>(PyAPyA I /\ )
(43Nnq,)> (PN Py q AN G,)
(PN a >IN N 3AY,)
S IRACTV R Y NCEUANCEVAC Y
(p; A g (py N\ a A a,Ng,)
AL CIVACIVACIVACEY)
VAL TR CIVACPYAT INAT 7))
(PN~ (P Ny AN g,)
(Py NA3) (P A G AG,AGy)

S PVACIR RS STANC AN PVANCEY)

is

1s

is

is

is

is

is

is

is

is

is

is
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invalid.
invalid.
invalid.
valid.
valid.
invalid.
valid.
valid.
invalid.
valid.
valid.

valid.

Exercise Set 4b

See solution for problem 3, Exercise Set 4a.

The component statements in the hypothesis and conclusion of

Theorem 9 are shown below.

Each of the other three theorems is-

obtained by interchanging q and one of the component statements

of the hypothesis.

Hypothesis: The circle with

center at C.

pl: XB contains the

center of the
circle.

Py A is a point on
the circle.

Pyt KEJ_Xﬁ at A.

Conclusion:

q: XE is ‘tangent
. to the cilrcle.




Exercise Set 4c

If m[A --mZb, then AB = BC.
If m[é > mZb, then AB > BC.

If méé < m[b, then AB < BC.

n

If m AB CD.

m EB, then AB
If M AB > m CD, then AB > CD.

-~ —
If m AB < m CD, then AB < CD.

Exercise Set 5

142°

If AABC is not equilateral, then AABC is not isoscéles. (Invalid).

S 4, 7 a_ b ;
If ki then z # = (Valid).

If AABC is not.congruent to ADEF, then AABC is not similar to

ADEF. (Invalid).

There are two partial inverses and both are valid.

There are three partlal inverses and all are valid.

Exercise Set 6a

If the supplement of two angles are not congruent, then the
angles are not congruent.

If a triangle is not isosceles, then it is not equilateral.
If the radii of two circles are equal, the circles have equal
areas.

Partial Contrapositive 1l: If a +b = c and if a > c, then

bf_ Ce

Partial Contrapositive 2: If a > ¢ and if b > O, then a + b # c.
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There are two partial contrapositives and both are equivalent
to the following: If two planes -are not parallel, and if one
of the planes is perpendicular to a line, then the other plane

1s not perpendicular to that line.
Exercise Set 6b

If two parallel lines are cut by a transversal, a pair of
alternate interlor angles are congruent.

If a line-is perpendicular to a plane, then every plane
containing the line is perpendicular to the given plane.

If M is between A and C on line L, then M and A are on the same

side of any other line that contains C.

1f %%-= %%5 then DE is parallel to EC. (If a line divides two
sides of a triangle into segments that are proportional, then it

is parallel to the third side.)
Exercise Set 6c¢c

H is not the midpoint of AD.
BD # DC,

6? does not centaln the center of the sphere.
Exercise Set 6d

(a) equidistant from Ll and L2.

(b) not equidistant from Ll and L2.

(a) ACPE & ACPF by AAS. Therefore PE = PF.

(b) (1) The bisector of an angle is unique.



(i1) Hypothesis: ééCB and bisecting ray EB, P isa
point not on CD.
Py is true by identity.
P, is true by the definition of distance from a
point to a line.

(1ii) vg: PE = PF,
Exercise Set 7

(a) The line is contained in the. plane.

(b) Statement (a) contradicts the fact that the line is not.
contained in the plane.

(a) g a + b = c. q,: a + b < c.

(b) invalid.

AB is not a diameter of the circle.
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