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SOME RESULTS ON p NEAR-RINGS AND RELATED NEAR-RINGS

CHAPTER I 

INTRODUCTION

1. Notational Convention

A left near-ring ip an algebraic system (N;+,‘) such that

(a) (N;+) is a group,

(b) (N;*) is a semigroup,

(c) x»(y + z) = X y + x*z for all x, y, z e N.

All of the near-rings in this paper are left near-rings, so hereafter 

near-ring will mean left near-ring. We adopt the usual convention of 

denoting x y by xy.

The names maximal sub-C-ring and maximal sub-Z-ring found in 

Berman and Silverman [l] are used. When discussing ideals the proofs

will not involve the definition but instead will use the condition

established by Blackett £2^.

The integers modulo p will be denoted by (Zp;+,*) or sometimes 

more simply by Zp. However occasionally we will deal with (Zp;+,') 

where • and ' are different multiplications. Then (Zp;+,') may be 

denoted by Zp so some care must be used to see exactly what Zp means 

in any given argument.
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2. Preview of Results

Clay and Lawver [4] studied a class of Boolean near-rings that 

were in some sense dependent upon a Boolean ring with identity. Part 

of this paper extends some of their results. A class of p near-rings, 

that are in some sense dependent upon a p ring with identity, is studied, 

When the results are specialized to p = 2 they agree with those of Clay 

and Lawver. The results needed about p rings may be found in McCoy [9] 

and £lOj.

Then results by Ligh jlsj were extended from B near-rings to 

more general near-rings in the last chapter. A decomposition theorem 

for this more general class of near-rings is established.

Most of the near-rings used as examples in this paper are 

labeled as they appear in Clay £3].



CHAPTER II

MOTIVATION OF THE DEFINITION

1. General Remarks

Let p be a prime. A near-ring (N;+,*) is a p near-ring iff 

px = 0 and x^ = x for every x e N.

Clay and Lawver [4] did a partial study of a class of Boolean 

near-rings. They began with a Boolean ring with identity (B;+,*;l) and 

then defined a multiplication * such that (B;+,*) was a Boolean near­

ring. With this in mind we start with a p ring with identity (N;+,*;l).

A suitable way to define * such that (N;+,*) would be a p near-ring was 

not immediately obvious so two particular cases were examined first.

The basic plan was that x * y should be a polynomial in x and y with 

fixed coefficients in N.

2. The 2  Ring Case

Let (N;+,*;l) be a 3 ring with identity. Define * : N x N -► N by 

X * y = + axy + By + ax^y^ +  bx^ + cxy^ + dx + ey^ + f

where a, B, y, a, b, c, d, e, f e N. We want (N;+,*) to be a 3 near-ring 

so in particular x * 0 ■ 0 for all x e N .  0 * 0 = 0  results in f = 0. 

1 * 0 = 0  and 2 * 0 = 0  produce the following equations.

b + d = 0 (1)

b + 2d = 0 (2)
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Then (1) end (2) imply that b = d = 0 .  0 * 0 = 0 * l + 0 * 2  implies 

that e = 0. Continuing in this fashion 1 * 0  = 1 * 1  + 1 * 2  yields

2a +  2c = 0 (3)

and 2 * 0 = 2 * l + 2 * 2  gives us

2a + c = 0 . (4)

Equations (3) and (4) imply that a = c = 0.

We now demand that the associative law hold in some carefully 

selected cases. The outcome of 0 * (0 * 1) = (0 * 0) * 1 is

6% = 6 . (5)

1 * (0 * 1) = (1 * 0) * 1 and 2 * (0 * 1) = (2 * 0) * 1 result in

By + ag = 0  (6)

and

By + 2oB = 0 . (7)

As a consequence of (6) and (7) we find that oB = By = 0.

(N;+,*) is to be a 3 near-ring so x * (x * x) = x for all x e N. 

Then 1 * (1 * 1) = 1 yields

2«y + y^ + +  B = 1 . (8)

Similarly 2 * (2 * 2) = 2 produces

2ay +  2y2 + 20% + 2B = 2 . (9)

Equations (8) and (9) imply that ay = 0. Finally 1 * (1 * 1) = (1 * 1) * 1
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implies that = y and equation (8) may be written as

Y = 1 - - e . (S')

Since aB = 0 and B^ = B it follows that = y* We now prove the follow­

ing result.

Theorem 2.1; Let (N;+,-;l) be a 3 ring with identity and a, B e N such 

that aB = 0 and B^ = B. If x * y = (1 - a^ - B)x^y +  axy + By for all 

X, y e N then (N;+,*) is a 3 near-ring.

Proof ; For ease of computation let y = 1 - - B. (N;+) is known to

be a commutative group. We must show that x * (y * z) = (x * y) * z,

X *  (y + z) = x * y  +  x * z  and x * x * x = x for all x, y, z e N.

X * (y * z) = X * (yy^z + ayz +  6z) = yx^(yy^z) + ax(ayz) + B(Bz)

= yx^y^z + a^xyz + Bz 

(x * y) * z = (yx^y +  axy +  By) * z = y(yx^y)^z + a(axy)z +  Bz 

= yx^y^z + a^xyz + Bz 

Thus X * (y * z) = (x * y) * z.

X * (y + z) = yx^Cy + z) + ax(y + z) +  B(y + z)

= yx^y + otxy + By + yx^z +  axz + Bz = x * y + x * z

X * (x * x) = y(x^^x) + a^(xxx) + 6(x) = (y + a% + B)x = x

Therefore (N;+,*) is a 3 near-ring.

Some examples of this type of near-ring are now given. Begin 

with (Z3 ;+,•). If a,B e Z3 such that a = B = 0 then y = 1 and a 3 near­

ring of this type results which is not a ring. But if a, B e such

that a = 1 or 2, B = 0  then y = 0 and a 3 near-ring of this type results

which is isomorphic to Z3.



3. The 2  Ritig Case

For further motivation let (N;+,.;l) be a 5 ring with identity 

and define * : N x N ->■ N by

X * y = ax^y** + bx^y^ + cx^y^ + dx**y + ex*̂  + fx^y^ +  gx^y^ + hx^y^

+ ix^y + jx^ + kx^y^ + £.x̂ ŷ  + mx^yZ + nx^y + px^ + qxy^

+ rxy^ + sxy^ + txy +  ux + vy** + wy^ + py^ + ay +  x.

We want (N;+,*) to be a 5 near-ring so let us first impose the condition 

that X * 0 = 0 for all x e N .  0 * 0 = 0  gives us x = 0 immediately.

For X = 1, 2, 3, 4, x * 0 = 0 yields the following equations.

e + j + p +  u = 0 (1)

e + 3j +  4p +  2u = 0 (2)

e + 2j +  4p +  3u = 0 (3)

e + 4j +  p + 4 u = 0  (4)

These equations imply that e = j = p = u = 0.

The conditions that 0 = 0 * 1 + 0 * 4  and 0 = 0 * 2  +  0 * 3  

respectively result in the following equations.

2v + 2p = 0 (5)

2v +  3p = 0 (6)

Thus V = p = 0. As a consequence of the conditions 0 = 1 * 1 + 1 * 4 ,

0 = 1 * 2 4 - 1 * 3 ,  0 = 2 * l  + 2 *  4, 0 = 2 * 2 4 2 * 3 ,  0 = 3 * 1  

4 - 3 * 4 ,  0 = 3 * 2 4 - 3 * 3 ,  0 = 4 * 1 4 - 4 * 4  and 0 = 4 * 2 4 - 4 * 3  

we obtain the following equations respectively.
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2a + 2c + 2f +  2h + 2k + 2m  + 2q + I

2a + 3c + 2f +  3h + 2k + 3m + 2q + :

2a +  2c + f + h +  3k +  3m +  4q +  4s 

2a +  3c + f + 4h +  3k + 2m + 4q + s 

2a + 2c + 4f + 4h + 3k + 3m + q + 3 

2a + 3c + 4 f + h  + 3k + 2m + q + 4s 

2a +  2c + 3f + 3h + 2k + 2m + 3q + :

2a + 3c + 3f +  2h + 2k + 3m + 3q + Î

These equations imply that a = c = f = h = k = m  = q = s = 0. Then 

0 * 2  = 0 * 1 4 - 0 * 1  results in w  = 0. Conditions 1 * 2  = 1 * 1 4 - 1 * 1 ,  

2 * 2  = 2 * 1 4 - 2 * 1 ,  3 * 2 = 3 * 1 4 - 3 * 1  and 4 * 2  = 4 * 1 4 - 4 * 1  

respectively lead to the following equations.

= 0 (7)

= 0 (8)

0 (9)

0 (10)

0 (11)

0 (12)

= 0 (13)

= 0 (14)

b 4 - g 4 - & 4 - r  = 0 (15)

b 4- 3g 4- 4i 4- 2r = 0 (16)

b + 2g +  4& + 3r = 0 (17)

b + 4g + & +  4r = 0 (18)

From these equations we see that b = g = £ = r = 0 .  Thus the original 

expression is reduced to x * y » dx^y 4- ix^y 4- nx^y 4- txy 4- ay.

We now demand that the associative law hold for some selected 

elements. (0 * 0) * 1 = 0 * (0 * 1) results in a = a^. The conditions 

(1 * 0) * 1 = 1 * (0 * 1), (2 * 0) * 1 = 2 * (0 * 1), (3 * 0) * 1 

= 3 * ( 0 * 1 )  and (4 * 0) * 1 = 4 * ( 0 * 1 )  result respectively in the 

following equations.
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da +  ia +  no + ta = 0 (19)

da +  3ia + 4na +  2 ta = 0 (20)

da + 2ia + 4na + 3ta = 0 (21)

da +  4ia + na +  4ta = 0 (22)

These equations imply that da = ia = na = ta = 0.

We now make the following change in notation. Let 

X * y = a x V  + bx^y +  c x ^  +  dxy + ey where ae = be = ce * de * 0 and 

e^ = e. With straightforward computation one finds that

X * (y * z) = ( (a^)xV** + (ab)x'*y^ +  (ac)x^y2 + (ad)x**y + (ab)x^y^^

+  (b^)x^y^ +  (bc)x3y2 + (bd)x^y +  (ac)x^y‘* +  (bc)x^y^

+  (c2)x2y2 +  (cd)x^y + (ad)xy^^ + (bd)xy^ + (cd)xy^

+  (d^)xy + e ) z

and

(x * y) * z = ( (a +  a^c^ +  2a^bd +  ab** + 2ab^cd + ac"̂  +  ad^)x^y^

+  (a^b +  ab^d +  3b ̂ c + 3abc^ +  3bcd^)x^y^ +  (a^c 

+  2bcd + c3)x^y2 +  (ad)x**y + (4a^b + 2a^cd +  4ab^c 

+  4ac^d + 4a^d^)x^y^ + (3afb^ + abed +  Sb^d + Sb^c^

+  bd^)x^y^ +  (2abc + 2c^d)x^y^ + (bd)x^y + (4a^c 

+  a^b^ + a^d^ +  4a^bcd + 4ab^d + ab^c^ +  ab^d^ + 4a^c^ 

+  ac^d^ + 4abd^)x^y** + (3afbc + 3ab^ +  b^cd + bc^

+  3abd^)x^y^ + (2ac^ + b^c +  cd^)x^^ + (cd)x^

+  (4a**d + 2a^bc + 4a^b^ +  4abc^ + 4acd^)xy*^ + (3a^bd 

+  ab^c +  + 3bc^d +  3b^d^)xy^ +  (2acd + 2bc^)xy^

+  (d^)xy + e ) z.
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The expressions for x * (y * z) and (x * y) * z must be equal. Further­

more the coefficients of like terms in these two expressions are equal.

To see this we first change notation to the following. Let

X * (y * z) = (aix^y^ + a2X^y3 + a^x^y^ + (ad)x^y + a^x^y^ + agx^y^

+ agx^yZ + (bd)x^y + ayx^y^ + a^x^y^ + agX^yZ + (cd)x^y

+  aioxy'* + a^^xyS + a^gXy^ + (d^)xy + e) z

and

(x * y) * z = (b^x^y^ + b2X^y3 + bgX^yZ + (ad)x^y + b^x^y^ + bgx^yS

+ bgX^yZ + (bd)x^y + byx^y^ + bgx^y^ + bgx^yZ + (cd)x^y

+ biQxy*^ + b^^xy^ +  bi2*y^ + (d^)xy + e) z.

If we demand that x * (y * 1) - (x * y) * 1 = 0 for x = 1, 2, 3, 4 and

y = 1 , 2, 3 then some equations result that yield the desired outcome.

Let Ci = - bi. 1 * (1 * 1) - (1 * 1) * 1 = 0 leads to

Cl +  C2 +  Cg + Cî  +  C5 +  Cg + C7 +  Cg +  Cg +  Cjo + Cji

+  C12 = 0 . (23)

Similarly 2 * (1 * 1) - (2 * 1) * 1 = 0, 3 * (1 * 1) - (3 * 1) * 1 = 0,

• • *, 3 * (3 * 1) - (3 * 3) * 1 = 0 and 4 * (3 * 1) - (4 * 3) * 1 = 0

result respectively in the following equations.

Cl + C2 +  C3 + 3ci+ + 3c5 + 3c6 + 4c7 + 4cg + 4cg + 2c%o

+  2cii + 2c i 2 “ 0 (24)

Cl + C2 +  Cg + 2cî  + 2cg + 2cg + 4c7 + 4cg + 4cg + 3cjq

+ 3cii + 3c j 2 “ 0 (25)
Cl + C2 +  C3 + 4c^ + 4c5 + 4c6 + C7 + eg +  eg +  4ciq

+ 4cii +  4cj2 = 0 (2b)
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C-j + ICg + + 3Cg + 4Cg + Cy + 3Cg + 4Cg + C^g

+ 3cii + 4c j 2 “ 0 (27)

Cl + 3c2 + 4cg + 3cî  + 4cg + 2c0 + 4cy + 2cg + cg + 2cio

+ Cii + 3ci2 = 0 (28)

Cj + 3c^ + 4c^ +  2c^ + Cg + 3cg + 4cy +  2cg + Cg +  3ciq

+ 4cii + 2c j2 = 0 (29)

C^ + 3C2 + 4c 3 +  4cif + 2cg + Cg + Cy + 3cg + 4cg + 4CiQ

+ 2cii + Cl 2 = 0 (30)

Cl +  2Cg +  4 c g  +  c^ +  2 c g  +  4 c g  +  c, +  2cg +  4 c g  +  Ciq

+ 2cii + 4c i 2 = 0 (31)

Cl + 2c^ + 4cg +  3Cĵ  + Cg + 2cg + 4c y +  3Cg + Cg +  2Ciq

+ 4cii 3^12 ” (32)

C l  +  2 c g  +  4 c g  +  2 c ^  +  4 c g  +  3 C g  +  4 C y  +  3 C g  +  C g  +  3 0 ^ ^

+ Cii + 2Ci2 = 0 (33)

Cl + 2cg + 4cg + 4c^ + 3Cg +  C g  + c, + 2c^ + 4c^ + 4c^^

+ 3cii + Ci2 = 0 (34)

From equations (23),''',(34) we see that c^ = 0 for 1 = 1, 2, 3,''", 12. 

Thus we obtain the following equations.

a + a^c^ + 2a^bd + ab** + 2ab^cd + ac** +  ad^ = a^ (35)

a^b +  at? d + 3b^c + 3abc^ + 3bcd^ = ab (36)

.n̂ c + 2bcd + c^ = ac (37)

4a‘*b + 2a^cd + 4ab3c + 4ac3d + 4a^d^ = ab (38)

3a2b2 + abed + 3b3d + 3b2c2 + bd^ - b^ (39)

2abc + 2c^d = be (40)
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4a^c + +  a^d^ + 4a^bcd + 4ab^d + ab^c^ + 4a^c^

+ ab^d^ +  ac^d^ + 4abd^ = ac (41)

3a^bc + 3ab^ + b^cd +  bc^ +  3abd^ = be (42)

2ac^ + b^c + cd^ = (43)

4a^d + 2a^bc + 4a^b^ + 4abc^ + 4acd^ = ad (44)

3a^bd + ab^c + b^ +  3bc^d + 3b^d^ = bd (45)

2acd + 2bc^ = cd (46)

We now demand that x * (x * (x * (x * x))) = x. However

X * (x * (x * (x * x))) = (4a^b + 2a^cd + 4ab^c +  2abc^

+ 3ab^d +  4ad^ + 4b +  3bcd^

+ 4c^d + 4bc^d)x^ + (a^b^ +  a^d^

+ 4abc^ + 4ac^ + 2b^c +  b^c^

+ 2b3d + 2bdS + c^d? + 2bcd2)x3 

+ (4a^d + 2a^bc + 4ab^ + 3abd^

+ 2ac^d + 3b^cd + 4b^c^ + 4abcd 

+ 4b + 4cd^)x^ + (a'̂  + 2a^bc

+ a^c^ + 2ab^c + 2acd^ +  b**

+ 2b^d^ +  4b^cd +  2bc^ +  ĉ *

+ d^ + e)x .

Wc now simplify this to x * (x * (x * (x * x))) ■ qx*̂  + rx^ + sx^ + tx«

Then for x = 1, 2, 3, 4 we obtain the following equations.

q + r + 8 +  t * l  (^7)

q + 3r +  4s + 2t • 2 (48)

q + 2r +  4s + 3t ■ 3 (49)
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q + 4r + s + 4t = 4 (50)

These equations imply that q = r = s = 0 and t = 1. Hence the following

equations result.

4a^b + 2a^cd + 4ab^c + 2abc^ + 3ab^d + 4ad^ + 4b + 3bcd^

+ 4c^d + 4bc^d = 0 (51)

a^b^ + a^d^ + 4abc^ +  4ac^ + 2b^c + b^c^ 4- 2 b + 2bd^

+ c^d^ + 2bcd^ = 0 (52)

4a^d + 2a^bc + 4ab^ +  3abd^ + 2ac^d + 3b^cd + 4b^c^

+ 4abcd + 4bc^ + 4cd^ = 0 (53)

a^ + 2a^bc + a^c^ + 2ab^c +  2acd^ + b^ + 2b^d^ + 4b^cd

+ 2bc^ + c^ + d^ + e = 1 (54)

From equations (35), ••• ,(46) and (51), ,(54) we may determine

first that ad = 0. This implies that b = c = 0, a ^ = a  and finally 

that 1 = a + d^ + e. If a = 1 - d^ - e then it is routine to show that 

a% = a since de = 0 and e^ = e.

Theorem 3.1; Let (N;+,*;l) be a 5 ring with identity and a, 6 e N such

that aS = 0 and = 3. If x * y = (1 - a** - 3)x**y + axy + 3y for all

X, y e N then (N;+,*) is a 5 near-ring.

Proof : The proof of this theorem is routine and will be omitted.

There is another reason for omitting the proof of this theorem. 

In the first section of the next chapter a more complete theorem is 

given. This more complete theorem is proven there.



13

Some examples of this type of 5 near-ring are now given. Begin 

with (Z^;+,*). If a, 8 E such that a = 0, 8 = 1  then y = 0 and a 5 

near-ring of this type results which is not a ring. However if a, 8 e Z^ 

such that a = 1, 2, 3, 4 and 8 = 0  then y = 0. In this case a 5 near­

ring of this type results which is isomorphic to Z^.



CHAPTER III

(a,g) p NEAR-RINGS 

1, A Class of p Near-Rings

We now turn to the more general case where (N;+,';l) is a p ring

with identity. If a e N and a ^ 0 then a® = 1.

In the following discussion a, g e N such that ag = 0, g^ = g 

and x * y =  (1 - ^ - g)x^ y + axy + gy for all x, y e N. If p > 2

then a is the coefficient of xy. However if p = 2 then that is not the

case. Then x * y =  (1 - a - g)xy + axy + gy = (1 - g)xy +  gy. In a 2

ring or Boolean ring -a = a so x * y = (1 + g)xy +  gy. Thus the coef­

ficient of xy is 1 +  B. In certain theorems that follow it will be 

convenient to refer to the coefficient of xy. However it is very cuinber- 

some to keep repeating the phrase "the coefficient of For this

reason we will hereafter regard a as the coefficient of xy and when p = 2 

it will be understood that a = 1 + g.

Theorem 1.1; Let (N;+,*;l) be a p ring with identity and a, 3 e N such 

that ag = 0 and 3 ^ = 3 .  If x * y = (1 - a^ ^ - g)x^ ^y + axy + 3y for 

all X, y e N then (N;+,*) is a p near-ring. Furthermore (N;+,*) is a p 

ring with identity iff a^”^ = 1.

Proof : Recall that a near-ring (A;+,*) is a p near-ring iff = x and 

px = 0 for all X e A. It is known that (N;+) is a commutative group and

14
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px = 0 for all x e N .  For ease of computation let Y = then

ay = By = 0 and y^ = Y* Let x, y, z e N. Then

X * (y * z) = X * (yyP ^z + ayz + Bz) = yx^ ^(yy^~^z) +  ax(oyz) + B(Bz)

= yxP“^ P ”^z + a^xyz + Bz

and

(x * y) * z = (yxP ^y + axy +  By) * z = y(yxf ^y)^ ^z +  a(axy)z + Bz

= y(x^ ^)^ ^y^ ^z + a^xyz +  Bz = yx^ ^y^ ^z + a^xyz + Bz.

Hence x * (y * z) = (x * y) * z for all x, y , z e N.

X * (y + z) = yx^ ^(y + z) +  ax(y + z) + B(y +  z)

= yxP"^y + axy +  By + yx^'^z + axz + S z = x * y + x * z

2Thus (N;+,*) is a near-ring. If x c N then x means xx. Then let 

x^^) = X * X and x^”  ̂ = x * if n is an integer and n ^  2. If m ^  2

then x^™^ = yx +  a™”^x™ +  Bx. The proof of this is routine by induction

and will be omitted. Then x^P^ = yx + o^'^x? + Bx = (y +  a^”^ + B)x 

= Ix = X since y = l - o ^ ^ - B .  Hence (N;+,*) is a p near-ring. Now
p—1let a = 1. If p = 2 then 1 +  B = a = 1. Thus B = O s o x * y = x y  

which clearly makes (N;+,*) a 2 ring or Boolean ring. If p > 2 then 

y * yl = ya^ ^ = 0 and B = 61 = 6a^ ^ = O s o x * y =  axy. Let x, y, z e N

then (x + y) * z = o(x + y)z - axz + ayz » x * z + y * z .  Thus (N;+,*)

is a p ring. Conversely let (N;+,*) be a p ring. If p = 2 then o = 1 + B 

and X * y = axy + By. Then B = 0 * 1 - (1 +  1) * 1 = 1 * 1 + 1 * 1 = 0  

so a = 1 + 0 = 1. If p > 2 then B = 0 * 1 = ( 0  +  0 ) * 1 * 0 * 1  + 0 * 1  

= B + B = 2B. Thus B ■ 0. Then (1 +  1 ) * 1 « 1 * 1  + 1 * 1  implies that
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2^ + 2a = 2y +  2a or 2^ \  = 2y. Under the ring operations + and

• the elements 0 , 1 , 2 , *•* , p - l  form a field isomorphic to Zp.

The nonzero elements form a group under * and its order is p - 1 

so 2^ ^ * 1. Thus Y “ 2y so Y * 0. Since y = 1 - - S then it

follows that a^ ^ = 1. Finally we notice that is the identity.

If p = 2 then this is obvious. Now let p > 2 and x e N .  x * a^~^

= axa^ = aP“^x = Ix * x and of ^ * x = aaP“^x = ^x = Ix = x.

Thus aP~^ is the identity.

A  p near-ring (N;+,*) is an (a,6) p near-ring iff there exists 

a p ring with identity (N;+,*;l) and a, 6 e N such that ag - 0, 6% » 6

and X * y « (1 - a^”^ - g)xP“^  +  axy +  gy for all x, y e N.

It is perhaps worth mentioning that there are p near-rings that 

are not (a,g) p near-rings. Let (N;+,*;l) be (Z^;+,«;l). According to

the listing in Clay [3] this 5 ring is one of those in class (10). Let

a, g e Zg such that ag = 0 and g^ = g. As before let y = 1 - a^ - g.

If a 0 then g = 0 since ag = 0. Also ay * a (1 - â *) *= a - a^ ■ 0 so 

y » 0. Thus X * y = axy which is again a 5 ring in class (10). If

a ■ 0 then g = 0 or g # 0. If g # 0 then g » 1 because g% » g. Then

y » l - g * O s o x * y « y .  Thus class (9) results. Finally if g ■ 0 

then y » l s o x * y «  x^y. If x ■ 0 then x * y ■ 0 but if x f 0 then 

X * y • y. Hence class (8) results. These are the only classes that 

occur as (a,6) 5 near-rings. However a simple check shows that class (7) 

contains three 5 near-rings and as shown above they cannot be (0 ,6) 5 

near-rings.
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2. Special p Near-Rings

Now we will consider a sub-class of these (a,3) p near-rings.

Let (N;+,*;l) be a p ring with identity and let a e N. If b * 1 - a^ ^ 

then ab = a(l - aP”^) = a - aP = 0 and b^ = (1 - aP~^)^ = 1 - 2a?"^ + aP“^ 

= 1 - aP"l = b. Hence if a e N and 3 = 1 -  then they determine an

(a,3) p near-ring (N;+,*). In this case y = 1 - aP”^ - 3 * 0 so 

X * y = axy +  (1 - aP“^)y for all x, y e N. A special p near-ring is an 

(a,3) p near-ring such that 3 = 1 -  aP“^. Note that every (a,3) 2 near­

ring is a special 2 near-ring. This special 2 near-ring coincides with 

what Clay and Lawver [4] called a special Boolean near-ring. Hence 

results established in this section are generalizations of some of the 

results of Clay and Lawver.

In the following discussion of special p near-rings when a is 

mentioned it will be understood that this is the a in the definition of *. 

Let (N;+,*;l) be a p ring with identity and t e N. Then define 

P(t) 5 {a G N:atP"l * a}. We note that 0, t e P(t). If t e N and L c  N 

then define L(t) = { a eN:a  = Jlt̂ ” ^ for some £ e L}. We may note that 

L(t) is empty iff L is empty. The following observations are listed 

here for future reference.

Theorem 2.1; Let (N;+,*;l) be a p ring with identity, t e N and L C  N.

(a) P(t) is an ideal of (N;+,*;l) with identity tP“^.

(b) If (L;+) is a subgroup of (N;+) then (L(t);+) is a subgroup of (N;+).

(c) If (L;+,*) is a subring of (N;+,*;l) then (L(t);+,*) is a subring 

of (N;+,*;l).

(d) L(t) C  P(t).
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Proof : (a) Let a, b e P(t) so at^“^ = a and bt^ = b. Then (a - b)t^
p“l p~l , 0—1= at - bt = a - b s o a - b £  P(t). Let x e N .  Then (xa)t

= x(at^ = xa. Hence P(t) is an ideal and clearly t^ is the identity.

(b) Let a , b  e L(t). Then a = &t^ and b = £’t^~^ for some £' e L,

a - b = (Jl - &')t^ ^ e L(t) since & - &' e L. Thus (L(t);+) is a group.

(c) Let a, b e L(t). Then a = £t^ and b = for some £ L.

ab = (&tP ^)(2,'t^~^) = (££')(t^ = (&&')tP ^ e L(t) since ££' e L.

Thus (L(t);+,*) is a subring.

(d) Let a e L(t). Then a = £t^ for some £ e L. Then at^ ^ = (£t^ ^)t^ ^

= £(tP"^)2 = £tP"l = a so a e P(t). Hence L(t) C  P(t).

Theorem 2.2: Let (N;+,*) be a special p near-ring. Denote the maximal

sub-Z-ring of (N;+,*) by and the maximal sub-C-ring of (N;+,*) by N^. 

Then = P(1 - aP“^) and = P(a).

Proof ; Recall that (1 - aP“^)^ = 1 - so that a e P(1 - o^ iff

a(l - = a. Also recall that = {a £ N;x * a = a for all x £ N}

and N_ = {a £ N:0 * a = 0}. Let a £ N . Then x * a = a for all x £ N so *- z
in particular 0 * a = a. Thus a = 0 * a = aOa + (1 - a )a * a(l - a )

so a £ P(1 - aP”^). Then C  P(1 - a^“^). Now let a £ P(1 - of ^).

Then a = a(l - of = a - a a ^ ^  so aa^ ^ = 0. Then aa = aa^ = aaP~^a

= Oa = 0. Now let x e N  then x * a = axa + (1 - a? ^)a = 0 + a = a.

Thus a £ N^ so P(1 - a^”^) C  N^. Therefore N^ = P(1 - ^).

Let a £ N^. Then 0 = 0 * a = otOa +  (1 - ^)a = 0 + a - aa^ ̂  so

aa^~^ = a. Thus a £ P(a) and N c P(a). Now let a £ P(a). Then ao^ ^c
= a or a(l - aP~^) = 0. Then 0 * a = aOa + (1 - ^)a = 0 + 0 * 0 so

a £ N . Thus P(o) C  N . Therefore N = P(a).
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Now we will begin a study of the ideal structure of the special 

p near-ring. Let (N;+,*) be a near-ring and L C  N. L is a left ideal of 

(N;+,*) iff (L;+) is a normal subgroup of (N;+) and xi e L for all x e N  

and for all & e L.

Lemma 2.3: Let (N;+,*) be a special p near-ring. If t e N then P(t) is

a left ideal of (N;+,*).

Proof ; By Theorem 2.1 we know that (P(t) ;+) is a commutative group. Let 

x e N  and a e P(t). (x * a)t^ ^ = (axa +  (1 - ^)a)t^

= (ax + (1 - aP“^))at^ ^ = (ax + (1 - a^ ))a = axa + (1 - ^)a

= X * a. Thus X * a e P(t) so P(t) is a left ideal of (N;+,*).

Lemma 2.4: Let (N;+,*) be a special p near-ring and t e N. If L is a

left ideal of (N;+,*) then L(t) is a left ideal of (N;+,*).

Proof; As noted in Theorem 2.1, (L(t);+) is a group and it is commuta­

tive because (N;+) is commutative. Let x e N  and a e L(t). Then for
0-1 , 0-1 p-1some I e L, a = . Then x * a = axa + (1 - a )a * ax&t

+ (1 - a^ = (x * £)t^ ^ e L(t) since x * i e L.

Theorem 2.5: Let (N;+,*) be a special p near-ring. If L is a left ideal

of (N;+,*) then L = L(1 - a^ @  L(a), a direct sum of left ideals of 

(N;+,*). Conversely if R C  P(1 - a^ and S C  P(a) are left ideals of 

(N;+,*) then R *  S is a left ideal of (N;+,*).

Proof : Since (1 - a^ = 1 - a^ ^ then a e L(1 - a^ iff for some &

a = £(1 - a^”^). Let L be a left ideal of (N;+,*). Then, by Lemma 2.4, 

L(1 - a^ and L(a) are left ideals of (N;+,*). Let y e P(1 - np(a)
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Then x * y = y for all x e N and 0 * y = 0 s o y = 0 * y = 0 .  Therefore

P(1 - a^“S ^ P ( a )  = 0. Then L(1 - aP"l)nL(a)C P(1 - af"l)r\p(o) = 0

so L(1 - ^)l^L(a) = 0. Let a = &(1 - e L(1 - of ^). Then

a = 2(1 - = G * £ e L  since L is a left ideal. Thus L(1 - of ^)C L.

Let a = ^ e L(a). If a = 0 then a e L. If a ^ 0 then (1 - ^)£

= 0 * £ e L. Also + (1 - ^)£ = ^ * £ e L. It follows then
0-2that a = a * £ - G * £ e L .  Therefore L(a)C L. Clearly then

1—1L(1 - of'l) » L(a)C L. Now let £ e L. Then £ = £(1 - + £a

£(1 - ) e L(1 - aP“^) and £a^ ^ e L(a) so L C  L(1 - ) # L(a).

Therefore L = L(1 - @ L(a). Conversely let R C  P(1 - and

S C  P(a) be left ideals of (N;+,*) . R H S C  P(1 - ^P(a) = 0 so

R # S is at least a direct sum of left ideals. Now let x e N and let 

y = r +  S E R 9 ’ S. Then x * y  = x *  (r + s) = x * r + x * s  E R $  S 

because R and S are left ideals. Therefore R & S is a left ideal of 

(N;+,*).

Lemma 2.6; Let (N;+,*) be a special p near-ring and let L C  P(a) be a 

left ideal of (N;+,*). If a e L then P(a) C  L.
p—1Proof : Let a e L C  P(a). Then a = aa . If a = G then P(a) = D C  L.

Let a ^ 0 and x e P(a). Then x = xa^""^. Since y * a e L for all y e N

it follows that (of^^xa? * a e L. But (oP"^xa?"^) * a = ^xa?"^a

= (o^”^a)xaP”2 as axa^”^ = xaP”^ = x. Thus x e L so P(a) C  L. Note that

for the case a = G the conclusion still holds.

Theorem 2.7: Let (N;+,*) be a special p near-ring and L C  P(a). Then L

is an ideal of (N;+,*) iff L is a left ideal of (N;+,*).
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Proof : If L is an ideal of (N;+,*) then clearly L is a left ideal of

(N;+,*). Now let L be a left ideal of (N;+,*). Let x, y e N and a e L. 

Then ( x + a )  * y - x * y =  a(x + a)y +  (1 - ^)y - axy - (1 - ^)y

= aay = aya + 0 = aya +  (1 - ^)a = y * a e L. Therefore L is an

ideal of (N;+,*).

Theorem 2.8; Let (N;+,*) be a special p near-ring and let L C  P(1 - a^”^). 

Then the following are equivalent:

(a) L is an ideal of (N;+,*),

(b) L is a left ideal of (N;+,*),

(c) (L;+) is a subgroup of (P(l - qP“^);+).

Proof : It is clear that (a) implies (b) and (b) implies (c). Now sup­

pose that (c) holds. L is a normal subgroup because addition is commu­

tative. Let X, y e N and a e L then x * a = a since L C  P(1 - aP~̂ )

and by Theorem 2.2, P(1 - aP"^) = Ng. Thus x * a e L. (x + a) * y

- X * y = a(x + a)y + (1 - aP“^)y - oxy - (1 - ̂)y * aay - aya =

ay(a(l - a^ ^)) *■ 0 e L. Thus L is an Ideal so (c) implies (a).

Theorem 2.9 : Let (N;+,*) be a special p near-ring. Then I is an ideal

of (N;+,*) iff I is a left ideal of (N;+,*).

Proof : If I is an ideal of (N;+,*) then it is certainly a left ideal

of (N;+,*). Now let I be a left ideal of (N;+,*). Then, by Theorem 2.5,

I - 1(1 - aP~^) 9 1(a) where 1(1 - aP”^) and 1(a) are left ideals of

(N;+,*) in P(1 - aP“^) and P(a) respectively. Then, by Theorem 2.8 and 

and Theorem 2.7, it follows that 1(1 - aP"l) and 1(a) are ideals. Let

X, y E N and a + b e 1(1 - aP~^) 9 1(a) ■ I then (x + (a + b)) * y - x * y
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= ( ( x + b )  +  a) * y - (x + b) * y  + (x + b) * y - x * y e  1(1 - aP“^) B 1(a)

= I. Thus I is an Ideal.

If (N;+,*) is a near-ring and I is an ideal of (N;+,0 then it is 

well known that N/I is a near-ring. Clearly if (N;+,*) is a p near-ring 

then N/I is a p near-ring also. Under certain conditions N/I is a p 

ring. Now we will investigate these conditions for special p near-rings.

Lemma 2.10; Let (N;+,*) be a special p near-ring. If a, b, c e N then 

( a + b ) * c — a * c - b * c = — (1 - aP“^)c.

Proof ; Let a, b> c e N. Then (a + b) * c - a * c - b * c = a(a + b)c

+ (1 - aP~^)c - aac - (1 - ^)c “ abc - (1 - ^)c = aac +  abc

- aac - abc - (1 - a^ ^)c » - (1 - )c.

Theorem 2.11: Let (N;+,*) be a special p near-ring and I an ideal of

(N;+,*). Then N/I is a p ring iff P(1 - of-l) C  I.

Proof ; Let a, b, c e N. The following statements are equivalent:

((a + I) + (b + I)) * (c + I) = (a +  I) * (c + I)

+ (b + I) * (c + I) , (1)

((a + b) + I) * (c + I) = (a * c) + I + (b * c) + I , (2)

((a + b) * c) + I = ((a * c) + (b * c)) +  I , (3)

(a + b ) * c - a * c - b * c e l  , (4)

- (1 - aP-l)c E I. (5)

Let N/I be a p ring and let x e P(1 - aP“^). Then

((a + I) + (b + I)) (- X + I) = (a + I) * (- X + I) + (b + I) * (- X + I)

for any a, b e N. By the above equivalent statements then

- (1 - aP"l)(- x) E I. However,
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X = x(l - = - (1 - aP” )̂ (- x) so X E I and hence P(1 - aP~^)c I.

Conversely let P(1 - aP“^ )C I. - (1 - ^)c e P(1 - for all

c e N so by the above equivalent statements (1) holds for all a, b, c e N. 

Hence N/I is a p ring.

In approaching the question as to when an ideal of a special p 

near-ring (N;+,*) is a direct summand we first establish the following 

result.

Theorem 2.12; Let (N;+,*;l) be a p ring with identity and let A be an 

ideal of (N;+,*;l). Then A is a direct summand iff A = P(a) for some 

a E N.

Proof ; Let A  = P(a) for a e N. Then N = P(1 - aP“^) $ P(a)

= P(1 - aP~^) $ A. Hence A  is a direct summand. Conversely let A be

a direct summand. Then N = A ■© B where B is also an ideal of (N;+,*;1).

If X £ A and y e B then xy e A H b  since A, B are ideals. Thus xy = 0.

l E N s o l = a  + b where a e A and b e B. Then a = a(l) = a(a + b)
2 2 2= a +  ab = a so a = a. If x e A then x = x(l) = x(a + b) = xa +xb = xa.

Thus xa = X so X E P(a) and A C  P(a). If x e P(a) then x = xa e A

since A is an ideal so P(a) C  A. Hence A = P(a).

Let (N;+,*) be a special p near-ring and let A, B be ideals of 

(N;+,*). Let N = A *  B. Then, since C = C(1 - @ C(a) for C = A or

B, N = (A(l - *  A(a)) 0 (B(l - $  B(a)). It follows then

that N = (A(l - @ B(1 - a^~^)) 9 (A(a) f B(a)). Theorem 2.1 implies

that A(1 - aP-1), B(1 - c  P(1 - and A(a), B(a) c  P(a).
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Thus A(1 - aP'l) e B(1 - a^~^) C  P(1 - a^"^) and A(a) 9 B(a) C  P(o). Let 

X e P(a). Then x e N  = A ® B s o x  = a + b where a e A  and b e B. If
p-1 p—1a = 0 then aa = 0 e A. Let a # 0. Then 0 * a = (1 - a )a E A and 

aP~^ * a = a^ ^a + (1 - ^)a e A  since A is an ideal of (N;+,*). Thus

aa^ ^ = a ^ ^ * a - 0 * a e A s o i n  either case ao^ e A. Similarly 

ba^ ^ e B. Then x = xa^ = (a +  b)a^ ^ = aa^ ^ +  ba^ But x = a + b .
p-̂ 1The uniqueness of representation of elements in A @ B implies that a = aa 

and b = ba^ Thus a e A(a) and b e B(a). Then x = a + b e A(a) ®- B(a). 

Thus P(a)C A(a) $ B(a). Therefore P(o) = A(a) ® B(a) . Similarly one 

can show that P(1 - a^ ^) = A(1 - a^ #  B(1 - ^).

Before we consider the next result recall the following defini­

tions. A group (G;+) is bounded iff nG = 0 for some fixed integer n.

A subgroup (S;+) of a group (G;+) is pure iff the equation mx = a e S is 

solvable in S whenever it has a solution in G. From Fuchs we have 

the following result.

Theorem 2.13; A bounded pure subgroup is a direct summand.

The main result about direct summands is the following.

Theorem 2.14: Let (N;+,*) be a special p near-ring and let 1 be an

ideal of (N;+,*). I is a direct summand of N iff I = P(6) $ M where 

P(6) C  P(a) is an ideal and M C  P(1 - aP”^) is a subgroup, hence an ideal. 

Proof ; Let I be a direct summand of N then N « I ♦ L and L is an ideal.

As noted earlier I = 1(a) *  1(1 - a^~^) where each is a left ideal respec­

tively contained in P(a) and P(1 - a^ ^). By Theorem 2.7 and Theorem 2.8

1(a) and 1(1 - a^ ^) are each ideals. By previous work
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P(a) = 1(a) ■© L(a). 1(a) is a direct summand of P(a). (P(a) ;+,• ;aP“ )̂

is a p ring with identity so, by Theorem 2.12, any direct summand of 

P(a) is of the form P(5) for 6 e P(o). Thus 1(a) = P(6) for 6 e P(a). 

Hence I = 1(a) $ 1(1 - aP“^) = P(6) $  1(1 - aP“^). Then P(6) = 1(a)C P(a) 

is an ideal and 1(1 - a^”^ ) C  P(1 - a^”^) is an ideal. Conversely let 

I = P(6) ® M where P(6) C  P(a) is an ideal and M C  P(1 - aP“^) is a 

subgroup. Since (P(a) ;+,• ;aP“^) is a p ring with identity then, by 

Theorem 2.12, P(6) is a direct summand of P(a). The group M  is bounded 

since pM = 0. Let a e M, m be an integer and mx = a have a solution 

in P(1 - aP~^). Thus mx' = a where x' e P(1 - aP“^). Let i be an 

integer such that im = 1 modulo p so x' = ia e M. Hence mx = a has a 

solution in M so M  is pure. Therefore, by Theorem 2.13, M  is a direct 

sunmand of P(1 - aP“^). Thus P(a) * P(5) B A and P(1 - aP“^) = M @ B 

where A, B are ideals. Then N = P(a) & P(1 - aP~^) = (P(6) ® A) # (M # B)

= (P(6) ® M) * (A @ B) = I * (A @ B). Hence I is a direct summand of N.

As noted previously results in this section generalize some of 

the results of Clay and Lawver [4]. Now we consider a result in that 

paper that is incorrect. The statement of Theorem 5.1 [4] in the notation 

of this chapter would be as follows. Let (B;+,-;l) be a Boolean ring 

with identity. Let o ,t e B define special Boolean near-rings (B;+,*o) 

and (B;+,*t) respectively. Then the following are equivalent;

(a) (B;+,*o) is isomorphic to (B;+,*x),

(b) P(1 + a) is isomorphic to P(1 +  t) as subrings of (B;+,*;l),

(c) P(o) is isomorphic to P(t ) as subrings of (B;+,*;l),

(d) There exists an automorphism f of (B;+,-;l) such that f(o) = t .
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Consider the following counterexample. Let the index set I be 

{1,2,3,* and let B be the complete direct sum of for i e I where 

each B^ = %2. Let a = (1,0,0,0,•••) and t = (1,1,0,0,*••). Then 1 + a 

= (0,1,1,1,**•) and 1 + T = (0,0,1,1,*‘*). By definition P(1 + o)

= {a £ B:a(l + a) = a} or P(1 + a) = { (0,X2,X2,* **):x^ e Zg}. Similarly 

P(1 + t ) = {(0,0,Xg,x^,* * •) :x^ £ Zg}. Define f : P(1 + a) -»■ P(1 + t ) 

by f(0,a^,a2,a2»••*) " (0,0,a^,a2,ag,...). It is clear that f is an 

isomorphism of P(1 +  a) onto P(1 +  t ) . However, it is also clear that 

P(a) is not isomorphic to P(t) since 0(P(o)) = 2 and 0(P(x)) = 4.

3. Some Results About the (g,g) p Near-Ring

Now let us return to the more general case of an (a,B) p near-ring. 

When a and 6 are mentioned it will be understood that they are the a 

and S in the definition of *. It will be noted that each result in this 

section has as a corollary a result in section 2. For the special p 

near-rings the results were much more complete. For this reason they 

were presented first. Now let (N;+,*;l) be a p ring with identity.

If s, t £ N then define P(s,t) = {a e N;sa = 0 and atP“^ = a}. We 

may note that 0, (1 - sP"^)t £ P(s,t). If s, t e N and L C  N then 

define L(s,t) = {a e N:sa » 0 and a = &tP"^ for some 2. £ L}. It is 

possible for L(s,t) to be empty but not in the cases we will consider.

In particular when (L;+) is a subgroup of (N;+) then 0 £ L(s,t).

Theorem 3.1; Let (N;+,*;l) be a p ring with identity. Let s, t £ L 

and L C  N . Then

(a) P(s,t) is an ideal of (N;+,*;l) with identity tP"^.
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(b) If (L;+) is a subgroup of (N;+) then (L(s,t);+) is a subgroup of 

(N;+).

(c) If (L;+,*) is a subring of (N;+,*;l) then (L(s,t);+,-) is a sub­

ring of (N;+,- ;1).

(d) L(s,t)C P(s,t).

Proof : (a) Let a, b e P(s,t). Then sa = sb = 0, atP“^ = a and btP~^ = b.

Thus s(a - b) = sa - s b  = 0 - 0 = 0  and (a - b)tP~^ = atP“^ - btP~^ = a - b 

so a - b e P(s,t). Let x e N. Then s(xa) = x(sa) = 0 and (xa)tP~^

= x(atP“^) = xa so xa e P(s,t). Hence P(s,t) is an ideal and clearly tP“^ 

is the identity.

(b) Let a, b e L(s,t). Then sa = sb = 0, a = î,tP“^ and b = £*tP“ ^ 

for some £, e L. Then a - b = £tP“^ - = (£ - £ ’)t^”^ where

Z - a' e L. Finally s(a - b) = sa - sb = 0 -  0 = 0 so a - b  e L(s,t) .

Hence (L(s,t);+) is a subgroup of (N;+).

(c) Let a, b e L(s,t). Then ab = (£tP”^)(£*tP“^) = (££*)(t^”^)^

= (££')tP~^ and ££' e L since L is a ring. Thus (L(s,t);+,*) is a subring.

(d) Let a e L(s,t). Then sa = 0 and a = £tP”^ for some £ e L. Thus 

atP“^ = (£t^ S t ^  ^ = £(tP = £t^ ^ = a so a e P(s,t). Therefore 

L(s,t) C  P(s,t).

Theorem 3.2: Let (N;+,*) be an (a,B) p near-ring. Denote the maximal

sub-Z-ring by and the maximal sub-C-ring by N^. Then = P(a,6) 

and Ng = P(B,1 - B).

Proof ; By definition Ng = { a e N : x * a  = a for all x e N} and

Ng E { a s  N:0 * a = 0}. Let a e Ng. Then x * a = a for all x e N. Thus
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0 * a = yOa + aOa + 8a = Ba so 8a = a. a * a = (1 - - 8)a^ + o^a

+  8a = 0 + a^a + a = a^a +  a so a^a = 0. Then aa = a^a = aP“^(a^a)

= aP"2(0) = 0 so a e P(a,8). Thus C  P(a,8). Now let a e P(a,8) so 

aa = 0 and a8 = a. Let x e N. Then x * a ■ (1 - aP“^ - 8)x^~^a + axa

+  8a = 0 + 0 + a = a. Hence a e so P(a,8) C  N^. Therefore = P(a,8)

Now let a e Nj, then 0 * a = 0. But 0 * a = yOa + aOa + 8a = 8a so

8a = 0. (1 - 8)2 = 1 - 28 + 8 = 1 - 8 so (1 - 8)P"^ = 1 - 8 .  Thus

x(l - S)P~^ = X iff x(l - 8) = X. Then a(l - 8 )  = a - a 8 = a - 0 = a  

so a e P(8,l - 8). Hence Ng C  P(8,l - 8). Let a e P(8,l - 8). Then

8a = 0 and a(l - 8) = a. 0 * a = yOa + aOa + 8a = 0 + 0 + 8a = 8a = 0.

Thus a e N^ so P(8,l - 8)C  Ng. Therefore Ng = P(8,l - 6). (Observe 

that P(8,l - 8) - P(8,l).)

We will now examine the ideal structure of the (a,8) P near-ring.

Lemma 3.3; Let (N;+,*) be an (a,8) p near-ring. If s, t e N then P(s,t)

is a left ideal of (N;+,*).

Proof : By Theorem 2.1, (P(s,t),+) is a commutative group. Let x e N

and a e P(s,t). Then sa - 0 and at^ ^ » a. Thus s(x * a)

= s(yxP“^a +  axa + 8a) ■ (yxP~^ +  ax + 8)sa » (yxP“^ + ax + 8)0 ■ 0 

and (x * a)tP"l = (yxP”^a +  axa +  8a)t^ ^ = (yx? ^ +  ax +  8) at^

= (yxP~^ + ax + 8)a = yx^ + axa + 8a = x * a. Hence P(s,t) is a

left ideal of (N;+,*).

Lemma 3.4: Let (N;+,*) be an (a,8) p near-ring. If L is a left ideal

of (N;+,*) and s,t e N then L(s,t) is a left ideal of (N;+,*).

Proof ; By Theorem 3.1, (L(s,t);+) is a group. (N;+) is a canmutative
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group. Let x e N and a e L(s,t). Then sa = 0 and a = for some

£ £ L. From the proof of Lemma 3.3 we have s(x * a) = 0. Then x * a 

= yxP +  axa + 6a = yx^ ^ + ax£t^ ^ + 6£tP~^

= (yxP~^£ + ax£ +  6£)t^ ^ = (x * £)t^ However, x * £ e L since L is a 

left ideal so x * a e L(s,t). Thus L(s,t) is a left ideal of (N;+,*).

Theorem 3.5; Let (N;+,*) be an (a,6) p near-ring. If L is a left 

ideal of (N;+,*) then L = L(a,6) 0  L(6,l - 6), a direct sum of left 

ideals of (N;+,*). Conversely if R C  P(a,6) and S C  P(6,l - 6) are 

left ideals of (N;+,*) then R *  S is a left ideal of (N;+,*).

Proof ; Let L be a left ideal of (N;+,*). By Lemma 3.4, L(a,6) and 

L(6,l - 6) are left ideals of (N;+,*). Let a e L(a,6). Then aa = 0 

and a = £6 for some £ e L. Thus a = £ B = 0 * £ e L s o  L(a,6)C L.

Next let a e L(6,l - 6). Then aS = 0 and a = £(1 - 6). Thus

£6 = 0 * £ e L and £ £ L so a = £(1 - 6) = £ - £6 £ L. Hence

L(6,l - 6) C  L. If y £ P(a,B) np(6,l - 6) then x * y = y for all

X £ N and 0 * y = 0. Then y = 0 * y  = 0 s o  P(a,6) Hp(B,l - 6) = 0 .

Hence L(a,6)^L(B,l - 6) C  P(a,6)nP(6,l - 6) ” 0 so L(a,6)fYL(6,l - 6)

= 0. It is immediate that L(o,6) ® L(g,l - 6) C  L. Now let £ £ L.

Then £ = £6 +  £(1 - 6) £ L(a,B) » 1(6,1 - 6). Thus

L C  L(a,6) 1(6,1 - 6). Therefore L = L(o,6) # L(6,l - 6), a direct

sum of left ideals of (N;+,*). Conversely let R C  P(a,6) and

S C  P(6,l - 6) be left ideals of (N;+,*). Since R H S C  P(a,6-) np(6,l - 6)

= 0 then R * S is at least a direct sum of left ideals. Let x e N

and y = r +  s £ R  * S. Then x * y = x * (r + s) = x * r + x * s e R ^ S

since R and S are left ideals. Thus R $ S is a left ideal of (N;+,*).
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Theorem 3.6; Let (N;+,*) be an (a,6) p near-ring and let L C  P(a,B).

The following are equivalent;

(a) L is an ideal of (N;+,*),

(b) L is a left ideal of (N;+,*),

(c) (L;+) is a subgroup of (P(a,g);+).

Proof : Clearly (a) implies (b) and (b) implies (c) . Now let (L;+) be

a subgroup of (P(a,3);+). Let x, y e N, a e L C  P(a,3). Then

X * a = a e L. a e  P(a,3) implies that aa = 0 and a3 = a. Then

ay = a(l - aP“^ - 3) = a - 0 - a = 0 .  Thus ( x + a )  * y - x * y

= y (x  +  a)P“^y + a(x + a)y + By - yx^'^y - axy - By =y(x + a)P"ly

+ a ay ~ yxP“^  = y(x + a)P”^y - yx^ ^y = Z ^ ^a^y » 0.
i=l

Hence (x + a) * y - x * y e L so L is an ideal of (N;+,*). Therefore

(c) implies (a).

4. Further Results About the (a,3) p Near-Rings

The following results concerning p rings are well known. They 

are found, for example, in McCoy [9].

Theorem 4.1: A  finite p ring has p^ elements for some positive integer

k. It has a unit element and is isomorphic to the direct sum of k fields

Zp, where Zp denotes the integers modulo p.

Theorem 4.2: A necessary and sufficient condition that a ring be

isomorphic to a subdirect sum of fields Zp is that it be a p ring.

For a detailed treatment of the direct sum and subdirect sum 

of rings one source is McCoy [lO]. For a similar treatment of 

near-rings a source is Fain
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If (N;+, *;1) is a p ring with identity then N is isomorphic to 

a subdirect sum of fields for i in some index set I and with each 

= Zp. An element in this subdirect sum will be of the form (x^)^ g j 

If I is finite, say 0(1) = k, then (x^)^ g j will be simplified to 

(x]^,X2, • * * .Xj^). This isomorphism will be used to identify x e N with

(^i>i E I (xi,X2,'-',Xk), if 0(1) = k.

Now let (N;+,*) be an (a,6) p near-ring. Then a, g e N such that 

ag = 0 and g^ = g. g = (b^)^ ^ j and g^ = g implies that b^ = 0 or

1 for all i E I. Similarly y - 1 ~ - g is such that y^ = y. If

y = (ci)i g 2 then c^ = 0 or 1 for all i e I. The conditions that

ag = gy =ay = 0 and 1 = aP”^ +  g + y imply that for each i e I exactly

one of a^, b^, c^ will be nonzero, where a = (a^)^  ̂^

Theorem 4.3; Let (N;+,*;l) be a p ring with identity and 0(N) = p^.

Then there are (p + 1)^ choices for the pair o and g that will result 

in an (a, g) p near-ring. Furthermore (p)k of these result in special 

p near-rings and (p - 1)^ result in p rings.

Proof ; Let 6 be a k-tuple with i G's and k - i I's as its components.

There are (̂ ] such elements. The only condition on a is that og = 0.

Thus a must be 0 in the places where g is 1 and in each of the i places

where g is 0 then a can be any element of Zp. For any such g there are

p^ choices for a. The total number of choices for a and g is k
Z (^)p^ = (p +  1)^. To obtain a special p near-ring g = 1 - oP~^ 

i-0
where a is any element of N. Since 0(N) = p^ there are p choices for 

a and then g is determined so there are p^ special p near-rings. Finally 

we recall that an (a, g) p near-ring is a p ring iff cP~^ = 1. 1 e N is
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the k-tuple having each component equal to 1. If a e Zp and a 0 

then a^”^ = 1. Thus the only condition on o that need be imposed is 

that a be nonzero in every component. That leaves p-1 choices for each 

of the k components so the number of these (a,6) p near-rings that are 

p rings is (p - 1)^.

Consider now an (a,g) p near-ring (Zp;+,*). Since ag ■ ay = By 

= 0 and +  B + y = 1 it follows that exactly one of a, B and y

is nonzero.

Lemma 4.4: Let (Zp;+,*]^) and (Zp;+,*2) be (a,B) p near-rings determined

by a^, 0 and «2» where o^, «2 sre both nonzero. Then (Zp;+,*j^) is 

isomorphic to (Zp;+,*£).

Proof ; Define h : Z^ +  2^ by h(x) = for all x e Zp. Now let

X, y e Zp. h(x + y) = o^ag^^x + y) = o^a^^x + G^a^^y = h(x) +  h(y).

h(x y) = h(aj^xy) = a^02^(oj^xy) = a^a^^xy and h(x) *2 h(y) =

= a^a“^xy. If y e Zp then h(a^^02y) = y. If
h(x) = h(y) then G^o^^x = G^o ^ ^  so x = y. Thus h is an isomorphism.

The conclusion of the previous lemma was perhaps obvious since 

each near-ring was actually a p ring and isomorphic to Zp. The inter­

est in this lemma is in the construction of the isomorphism.

Theorem 4.5; Let (N;+,*;l) be a p ring with identity and a, 6 e N. If 

aB = 0, B^ = B and y = l - a ^ ^ - B  then

(a) oN, BN, yN are ideals of (N;+,*;l) and

(b) N = aN * BN $ yN.

Proof; (a) Let ax, ay e aN and z e N. Then ox - ay - a(x - y) e aN.
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z(ax) = a(zx) e aN. Thus aN Is an ideal of (N;+,*;l). Similarly gN, 

yN are ideals of (N;+,‘;l).

(b) Let X E a N H g N  then x = aa and x = gb. Hence x^ = (aa)(gb)

= (ag) (ab) = 0(ab) = 0. Thus x = 0 so aNflgN = 0. In a similar way

we see that a N H y N  = g N O y N  = 0. Clearly aN $ gN ® y N C  N. Now let

X e N. Then x = Ix = (a^ ^ 4- g +  y)x ® a(a^ ^x) + gx +  yx. Hence 

N C  aN $ gN @ yN. Therefore N = aN * gN @ yN. If p = 2 then this is 

simplified to N = a N @ g N  where a = 1 + g.

Lemma 4.6; Let (N;+,*) be an (a,g) p near-ring and let z be a nonzero 

element of N. Then z is right distributive iff z e aN.

Proof ; First let p = 2 so a = 1 + g. Now let z e aN = (1 +  g)N and 

X, y e N. Then (x + y) * z = a(x + y)z + gz = a(x +  y)z = axz + ayz 

= axz + gz + ayz + g z = x * z + y * z .  Thus z is right distributive. 

Conversely let z be right distributive. Then (1 +  g) * z

= l * z + g * z o r ( l +  g)z + gz » (1 + g)z + gz + (1 +  g)8z + gz.

Thus gz = 0 so z E (1 + 6)N » aN. Now let p > 2. Let z e aN then

z = az' for some z’ e N. For x, y e N we have (x + y) * z * a(x +  y)z

= axz + ayz = x * z +  y * z. Hence z is right distributive. Now let 

z be right distributive. If N = aN then z e aN. Now let N f aN.

Either y = 0 or y ^ 0. If y = 0 then for x, y e N, (x + y) * z 

= x * z + y * z  implies that a(x + y)z + 6z * axz + gz + ayz + gz.

Thus gz = 0. z = z(l) = z(a^~^ +  g) ■ a(za^ ^) e aN. Finally if y # 0

then let x = y = y. Then ( y + y )  * z = y * z + y * z  implies that

y(2y)P"^z + gz = yz +  gz + yz + gz. However (2y)P“^  = = y so

this results in yz + gz " (y + g)z = 0. Then z = z(l) = z(aP“^ +  g +  y)

= a(zaP”^) +  z(g +y) * a(zaP”^) e aN.
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Lemma 4.7: Let (N;+,*^) and (N;+,*2) be (a,3) p near-rings determined

by and 02, 62 respectively and let 0(N) = p^. Let and 02 have

exactly i^ and i2 nonzero components and let them occur in the first i^

and Î2 places of and «2 respectively. Let 8^ end 62 have exactly

end 2̂ nonzero components and let them occur in places î  ̂+  I,--*,

il + 3l and i2 + l,***,i2 + of 6^ and $2 respectively. Then (N;+,*^)

is isomorphic to (N;+,*2) iff i^ = I2 and = j 2*

Proof : First let i^ = i2 = i and “ ̂ 2 ~ 3 - Because the nonzero

elements of 6 and y are I's it follows that 6^̂ = $2 end * '^ 2 ’

i = 0 then = ^2 = 0. Thus x *1 y = y^xP'^y +  g^y = y^x?"^ + 82?

= X *2 y so clearly (N;+,*^) is isomorphic to (N;+,*2). If i > 0 then

let a^^ be the r^^ component of and 82^ the r^^ component of «2 for

1 < r < i. Let g : Z_ ^  be defined by g (x) = a. a“^x. If x e N—  —  r p p ®r Ir 2r
then X  = (x^,x2 ,‘ • • ,x^) . Define g : N  + N by g(x) s (gj^(x^) ,%2^^2) »* * * » 

SiCxf),x^^2 >*'*>^k). is routine to verify that g is 1 - 1, onto and 

that g(x +  y) “ g(x) +  g(y) for all x, y e N. Then by the nature of 

&1 » ^1 » Y 2 end g it follows that g(8^y) “ B^y = ^2? " end

g(y^xP“^ )  = Y^xP \  = y 2%^ \  = y 2g(x)^ ^g(y). Now consider g(aj^xy) 

and a2g(x)g(y). g(a^xy) “ gCa^j^Xj^y^, • • • ,a^j^x^y^,0 ,0 , • • • ,0)

= (8l(eiiXiyi),'-' , g i ( a i i X i y i ) , 0 , 0 , ' ' ' , 0 )  - *

*2iSi(*i)Bi(yi),0,...,0) - (^11^21* 1^1 ' " '’̂ l i ^ i i ^ i ^ i ‘*»0)•
Thus g(aj^xy) = 02g(x)g(y). Hence g(x y) ” gCyi^f'^y + o^xy + B^y)

= gCŷ x̂  + gCâ xy) + g(8iy) = Y2g(x)̂  ĝ(y) + 02g(x)g(y) + 628(7)
= g(x) *2 g(y). Therefore g is an isomorphism. Conversely let g be

an isomorphism of (N;+,*i) onto (N;+,*2). If x, y e N then
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g(x y) = g(x) *2 g(y). Therefore g(Y^x^'^y) + gCa^xy) t.gCB^^y)

= Y28(x)P“^g(y) + Ü2g(x)g(y) + BgSCy)- If x = 0 then gCg^y) = 828(7) 

for all y e N. Assume 4 ^2* Then without loss of generality let 

> 22' g(Siy) = 628(7) means that gCg^N) C  $2^. However

O(g^N) > OfggN) so it is impossible to _iap g^N into g^N with a 1 - 1 

mapping. This contradiction means that = j 2 » Now assume i^ ^ ig 

and again without loss of generality let i^ > l2* Let x, y e N and

z e Then z is right distributive. Hence (x + y) %

= X *1 z + y *1 z so (g(x) + g(y)) *2 g(z) = g(x) *2 g(z) + g(y) *2 g(z). 
Therefore g(z) e «2N and furthermore g(ûj^N) C  02N. However 

OCa^N) > 0 (q2N) so it is impossible to map a^N into 02N with a 1 - 1 
mapping. Again we have a contradiction and are forced to conclude? 

that i^ = i2* Note that for p = 2 we could have terminated this proof

when = Î2 was established. In that case i^ = k - = k - j2 = i2

because of the condition that a * 1 + g .

Let (N;+,*) be an (a,g) p near-ring and 0(N) = p^. Suppose that 

a and g have exactly i and j nonzero components respectively. Because 

a and g are never nonzero in the same component there is at least one 

permutation f of N such that f(a) = a ’ and f(g) = g' where o' and 6 ' 

have the following properties. The i nonzero components of a* occur 

in the first i places. The j nonzero components of g' occur in places 

i + l,''",i +  j . This will be used in the following theorem.

Theorem 4.8; Let (N;+,*^) and (N;+,*2) be (a,6) p near-rings determined 

by g^ and 02» 62 respectively and let 0(N) = p^. Let and «2 

have exactly i^ and i2 nonzero components respectively. Let 3^ and Sg
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have exactly and J2 components respectively. Then (N;+,*^)is 

isomorphic to (N;+,*2> iff i^ = ig and = jg.

Proof: For r = 1, 2 let f^ be a permutation of N such that f^Ca^) ■

and fp(6p) = 3^ where is nonzero in its first i^ places and 3^ is 

nonzero in places i^ + l,.-«,ij. + Thus fj. is an isomorphism of

(N;+,*^) onto (N;+,*^), the (o,3) p near-ring determined by and 

3y. Let i^ = ^2 ■ j2 « Then, by Lemma 4.7, there exists an

isomorphism g of (N;+,*|) onto (N;+,*p. Then

^1 8 *2^ 1 (N;+,*^) (N;+,*p (N;+,*2) so h = f2 gf^ is an

isomorphism of (N;+,*j^) onto (N;+,*2). Conversely let h be an isomor­

phism of (N;+,*^) onto (N;+,*2). Then

f'l̂  h f2 1
(N;+,*p ^  (N;+,*^) ^ (N;+,*2> (N;+,*^) so g = f^hf"! is an

isomorphism of (N;+,*^) onto (N;+,*p. Hence by Lemma 4.7 we have

that i^ = i^ and

It is of interest to know how many distinct classes of isomorphic 

(a ,3) P near-rings are associated with a fixed p ring with identity 

(N;+,*;l) and how many (a ,3) P near-rings belong to each class. To that 

end we prove the following theorem.

Theorem 4.9 : Let (N;+,-;l) be a p ring with identity and let 0(N) - p^.

(a) Let o', 3’ e N determine an (a,3) P near-ring. If o' has exactly 

i nonzero components and 3' has exactly j nonzero components then there 

are ^ k-i-j^ - 1)^ elements in the equivalence class of (a,3) p 

near-rings isomorphic to the one determined by this o ' and 3 '.

(b) There are (k +  l)(k + 2)/2 distinct equivalence classes of (o,3) 

p near-rings associated with the given p ring.
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Proof ; The nonzero components of g' are I's so there are (^jchoices

for g '. For a ' each nonzero component could be any of p - 1 elements

so there are (p - 1)^ choices for o'. There are then (p - 1)^

choices for a,g that result in an (a,g) p near-ring isomorphic to the

one determined by o', g'. But ( j ) ( p  - 1) “  ̂ k i

The number of distinct equivalence classes may be counted by considering

f ^ 1 for all possible i, j. If 0 < r < k and i = r then j'“i i k-i-i''
k
j k-i-j

could be 0,1,2,'"',k - r. Thus the total number of classes can be

found by letting r range from 0 to k and adding the choices for j .

Hence the number of equivalence classes is (k + 1) + k + (k - 1) 
k+1

+ ... + 2 + 1 = I s = (k +  1) (k +  2)/2. 
s-1

Theorem 4.10; Let (N;+,*) be an (a,g) p near-ring. Denote (N;+,*) 

by N. N is isomorphic to a subdirect sum of subdirectly irreducible 

near-rings where each is one of the following types :

(a) is (Zp;+,*), the integers modulo p,

(b) is (Zp;+,'), where x ' y ■ y for all x, y e Zp,

(c) is (Zp;+,"), where 0 " y = 0 but x " y ■ y otherwise.

Furthermore if 0(N) ■ p , a has exactly i nonzero components and g has 

exactly j nonzero ccmponents then N is isomorphic to a direct sum of

exactly i near-rings of type (a), j near-rings of type (b) and k - i - j

near-rings of type (c).

Proof : Elements in (N;+,*;l) and (N;+,*) have the same representation.

That is if X e N then x « (x^)^ g j and x^ e where ■ Zp. Hence N 

is isomorphic to a subdirect sum of near-rings for i e I and each 

is a near-ring (Zp;+,") where " is some multiplication determined by *. 

Clearly each of these is subdirectly irreducible. Let o ■ (8^)^ g i*
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S ~ (bi)i e I and y = (c^)^ ^ As noted earlier for each i e I

exactly one of a^, or is nonzero. Let a^ f 0 then = 0.

Now consider x * y for x, y e N. Then x * y  = ((x * y)i)i g j and 

(x * y)^ = a^x^y^. Hence N^ is (Zp;+,.). Let # 0 then bg = l 

and &g = Cg = 0. For x, y e N we again consider x * y.

X * y = ((x * y)i>i g I and (x * y)g = yg. Hence Ng is (2^;+,') as

described in (b). Let c^ ^ 0 then c^ = 1 and a^ = b^ = 0. For x, y e N 

we have x * y = ((x * y)±)^ ^ i and (x * y)^ = xP"\^. Thus if

Xt " 0 then x^'^y^ * 0 but if x̂  ̂^ 0 then x^'^y^ * y^. Hence N^ is

(Zp;+,") as described in (c). The remainder of the proof is routine.

A  near-ring (N;+,*) is small iff for each x e N either xy = y

lor all y e N or xy “ Oy for all y e N.

Corollary 4.11; Let (N;+,*) be an (a,S) p near-ring and denote it

by N. Then N is isomorphic to a subdirect sum of subdirectly 

irreducible near-rings N^ where N^ is one of the following types:

(a) N^ is Zp,

(b) N^ is small.

Proof : This is inmediate from Theorem 4.10.

Theorem 4.12: Let (N;+,*) be an (a,S) p near-ring. Then (N;+,*) is

d.g. iff (N;+,*) is a p ring.

Proof : Let (N;+,*) be a p ring then it is distributive and hence d.g.

Conversely let (N;+,*) be d.g. Thus there exists a subset S of N whose 

elements are right distributive and additively generate N. However, 

by Lemma 4.6, S C  aN. By Theorem 4.5, aN is an ideal of (N;+,«;l) so
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N C  aN. But it is known that o N C  N so therefore N » oN. Then for 

some X E N, 1 = ax. Then ^ = a^~^ax = a^x = ox = 1. Thus

(N;+,*) is a p ring by Theorem 1.1.



CHAPTER IV

OTHER RESULTS

1. Introduction

Let (N;+,*) be an (a,3) p near-ring and x, y, z e N. x * y * z

= yx^ ^y^ ^z + a^xyz +  3z = yy^ ^x^ ̂ z +  o^yxz + 3 z * y * x * z .

The purpose of this chapter is to study near-rings (N;+,*) with two 

properties. The first is xyz = yxz for all x, y, z e N. The second

is that for each x e N there exists a positive integer n(x) > 1 such

that x^^^^ = X.

2. Weakly Commutative and ^  Near-Rings

In the earlier chapters it was important to identify a near­

ring by symbols like (N;+,*) because of the presence of a p ring with 

identity (N;+, *;1) where * and * were, in general, different multipli­

cations. This will not be a problem in this chapter so a near-ring 

(N,+,*) will be denoted by N. Let N be a near-ring and x e N. Then 

define A% = {a e N:xa * 0 } .  For left near-rings the definition of a 

right ideal is not standard so this is the definition that will be used. 

Let N be a near-ring and I C  n . Then I is a right ideal of N iff (I;+) 

is a normal subgroup of (N;+) and (x + a)y - xy e I for all x, y e N 

and for all a e I.

40
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Lemma 2.1; If N is a near-ring and x e N then is a right ideal of N. 

Proof ; Let r, s e N and a, b e x(a - b) ■ xa - xb ■ 0 - 0 = 0 so

a - b E A*. x(-r + a + r) = - x r + x a  +  x r » - x r  + 0 + xr = - x r  + xr

= 0 and hence - r + a +  r e Ax. Thus (Ax;+) is a normal subgroup of 

(N;+). x((r +  a)s - rs) « x(r +  a)s - xrs ■ (xr + xa)s - xrs ■ (sjr +  0)s

- xrs = xrs - xrs = 0. Therefore (r + a)s - rs e Ax so we conclude that

A% is a right ideal of N.

Lemma 2.2; Let N be a near-ring and e e N. If there exists a positive 

integer k > 1 such that e^ = e and Ag = 0 then e^”^ is a left identity.

Proof ; Let x e N. Then e(e^”^  - x) “ ee^^^x - ex = e^c - ex ■ ex - ex

= 0. Thus e ^ ~ ^  - X = 0 for all x e N or e^”^x = x for all x e N.

A near-ring N is weakly commutative iff = yxz for all x, y ,

z e N. The next result is due to Szeto [l2l.

Theorem 2.3; If N is a weakly commutative near-ring and x e N then A^

is an ideal of N.

Let N be a near-ring such that for every x e N there exists an

integer n(x) > 1 such that x^^*) ■ x. By convention n(x) will mean the

smallest integer greater than 1 such that x^(*) ■ x. By this convention 

n(0) = 2 since 0^ » 0. A near-ring N is a v near-ring iff for every 

X £ N there exists an integer n(x) > 1 such that x^(*^ - x and xyz ■ yxz 

for all X, y, z e N. Clearly every (a,6) p near-ring is a v near-ring. 

Similarly every weakly commutative p near-ring is a v near-ring.
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Theorem 2.4; Let N be a weakly commutative near-ring. Then for every 

X, y £ N and for every positive integer..k, (xy)^ - x^^.

Proof ; The proof is easy by induction. Let x, y e N. It is certainly

true when k = 1. Next note that (xy)^ = (xy) (xy) = x(yxy) » x(xy^) =

x2y2. Now assume that (xy)^ = x^^y^ for some positive integer n. Then 

(xy)^"^^ = (xy)^(xy) = (x^^) (xy) = x“ (y%y) = x^(xyn+l) « x*+ly°*^. 

Therefore (xy)^ ■ x ^ ^  for every positive integer k and for all x, y £ N.

Theorem 2.5: Let N be a near-ring such that for every x e N there exists

an integer n(x) > 1 such that x^(*) ■ x. If N has a right identity e 

then e is an identity.

Proof : Let x e N such that ex = 0. Then x = x^(^) = (xe)®^*^ «

(xe)(xe)...(xe)(xe)» x(ex)...(ex)e = xOe = xO ■ 0. Thus Ag ■ 0. e^ = e 

so by.Lemma 2.2 e is a left identity. Therefore e is an identity.

Theorem 2.6; If N is a small near-ring then N is weakly commutative.

Proof ; Let x, y, z e N. There are four possible cases.

(1) X, y are both left identities. Then xyz - yz = z and yxz ■ xz - z.

(2) X is a left identity and yw ■ Ow for all w e N. Then xyz ■ x(yz)

■ yz and yxz - y(xz) - yz.

(3) xw ■ Ow for all w e N and y is a left identity. Then xyz ■ x(yz)

» xz and yxz - y(xz) • xz.

(4) xw ■ ow and yw ■ Ow for all w  e N. Then xyz = x(yz) - x(Oz) * (xO)z

= Oz and yxz - y(xz) - y(Oz) ■ (yO)z - Oz.

Therefore xyz ■ yxz for all x, y, z e N so N is weakly commutative. 

Theorem 2.7; Let N be a subdirectly irreducible near-ring such that
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for every x e N there exists an integer n(x) > 1 such that x®^*) « x.

If Ajj is an ideal for every x e N then N has a left identity.

Proof; If N = 0 then the result follows. Let N 0 and define

R • {x e N:Ax ^ 0). Also define A = 0{Ax:x e R}. If R is empty then

A = N. If R is not empty then because N is subdirectly irreducible it

follows that A f 0. Let x e A and x ^ 0. Assume that R = N. Then

X e Ay for all y e N. Hence x e A^(x)-1 so x” ^^^ ^x = 0. But 

X = x"^*)"lx so X = 0. This is a contradiction so R ^ N. Hence there 

exists an e e N such that A^ = 0. By Lemma 2.2 then N has a left 

identity, namely e°^G)-l,

Corollary 2.8: If N is a subdirectly irreducible v near-ring then N

has a left identity.

Proof : By Theorem 2.3 A* is an ideal for every x e N so the hypotheses

of Theorem 2.7 are satisfied. Thus the conclusion follows and N has a 

left identity.

Theorem 2.9: Let N be a subdirectly irreducible v near-ring. If a e N,

a 0 and A# ^ 0 then ay ■ Oy for all y e N and Ag = A©.

Proof : Let R » {x e N:Ax ^ and A  ■ fl{Ajj:x e R}. Note that a e R. 

Since N is subdirectly irreducible A  ^ 0. Let w  e A and w f 0. Then 

xw * 0 for all x e R and in particular aw ■ 0. Assume A* ^ 0. Then 

w e A c Â j So w e  A^. Then e A^ since A* is an ideal. Thus

w » ^,^(w)-l _ Q which is a contradiction. Hence A^ “ 0 and by Lemma 

2.2, is a left identity. If n(w) - 2 then - aw ■ 0.

If n(w) > 2 then aw°(*)"^ ■ g^n(w)-2^ . ^aw ■ ^0 ■ 0. Let

y e N. Then ay ■ a(w®('^)“ly) ■ (aw^^'^^~^)y * Oy. Finally ay ■ 0 iff
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Oy * 0 so Ag - Aq .

Corollary 2.10; Let N be a subdirectly irreducible v near-ring such 

that ON * 0.

(a) For every nonzero x e N, A% * 0 so is a left identity.

(b) N has no zero divisors.

Proof ; If N = 0 then the conclusions follow so now let N 0. Let

X e N and x f 0. Assume Ajç 0 then by Theorem 2.9, xy ■ Oy for all

y e N. But ON = 0 so Oy * 0 for all y e N. Then x ■ %xn(x)-l . Ox“ ^^^”^

= 0 which is a contradiction. Hence Â  ̂“ 0 and by Lemma 2.2,

is a left identity. Let a, b e N such that ab ■ 0. Then a - 0 or a f 0.

If a ^ 0 then by the preceding ànC*)"! is a left identity. Thus

0 ■ gn(a)-2Q _ ^n(a)-2(g);) » gu(a)-ly « b. Hence N has no zero divisors.

The following theorem is due to Frohlich (b].

Theorem 2.11; Let N be a d.g. near-ring with identity. Then each of

the following conditions Is necessary and sufficient for N to be a ring.

(a) N is distributive.

(b) (N;+) is commutative.

Theorem 2.12; Let N be a subdirectly irreducible v near-ring such that 

ON - 0 and let e be a nonzero element of N such that for every nonzero

X c N, ^ = e. Then N is a field.

Proof ; Let x, y e N and x, y f 0. Then xy ■ xy^(y) - xyyn(y)-l . %ye

■ yxe ■ yxxn(x)-l _ Thus (N; •) is commutative so N is distributive 

and hence d.g. By Corollary 2.10, N has a left identity e which by

commutativity is a right identity. Thus N is a d.g. near-ring with
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identity which is distributive. Therefore by Theorem 2.11 N is a ring.

Let X E N and x / 0. If n(x) = 2 then x = e so x ^ = e. Tf

n(x) > 2 then x ^ = x"^*^ Thus N is a field.

Corollary 2.13; Let N  be a subdirectly irreducible weakly commutative 

p near-ring such that ON ■ 0. If there exists a nonzero e t: N such that

for every nonzero x e N, xP“^ ■ e then N is Zp.

Proof; It follows from Theorem 2.12 that N is a field. Therefore N 

is a subdirectly irreducible p ring with identity. The only subdirectly 

irreducible p ring with identity is Zp so N is Zp.

The following theorem is due to Fain [5J.

Theorem 2.14; Every near-ring N is isomorphic to a subdirect sum of 

subdirectly irreducible near-rings N^.

Before proceeding further consider the following definition. Â 

near-ring N is almost: small iff {A^^ix e N} contains at most two distinct 

sets. Clearly every small near-ring is almost small. However, there 

are almost small near-rings that are not small. Examples In the cyclic 

4 group as listed in Clay [3J  are ( 3 ), (7) and (12). Furthermore there 

are v near-rings that are not almost small. Examples as listed in Clay 

[sj are (7) in the Klein 4 group and (27) in the cyclic 6 group. How­

ever these are both rings. An example that is not a ring is (53) of 

the cyclic 6 group. Hence there is some merit to the following theorem.

Theorem 2.15; Every v near-ring N is isomorphic to a subdirect sum of 

subdirectly irreducible v near-rings Nĵ  where each N^ is one of the 

following types:
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(a) Nj is a field.

(b) is almost small.

Proof ! By Theorem 2.14 N is isomorphic to a subdirect sum of subdirectly

irreducible near-rings Each %  is the homomorphic image of a v near­

ring so each is a v near-ring.

(1) ONi ■ 0 and there exists a nonzero e e such that for every non­

zero X E Nj, _ g It follows then, by Theorem ?.l?, that

Nj is a field.

(2) « 0 and there does not exist a nonzero e e such that for

every nonzero x  e N^, ■ e. By Corollary 2.10 for every nonzero

X e Ni, A% " 0 and furthermore has no zero divisors. Then

and Ax = 0 otherwise. Thus is almost small.

(3) ON^ f 0. Let X e N^. Then A^ " 0 or A% ^ 0. If A% 0 then by 

Theorem 2.9 A^ ■ Ag. Thus A% - 0 or A%. = A@ so is almost small.

Recall that a v near-ring N is a 6 near-ring iff for every x e N, 

xf m X (or n(x) ■ 2). The following result due to Ligh [s] may be 

obtained now as a corollary.

Corollary 2.16: Every B near-ring N is isomorphic to a subdirect sum

of subdirectly irreducible near-rings where each is one of the 

following types:

(a) Nj is Zg,

(b) is small.

Proof : By Theorem 2.14 N is isomorphic to a subdirect sum of subdirectly

irreducible near-rings Each is the homomorphic image of a 6 near­
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ring so each is a g near-ring.

(1) ONi = 0 and there exists a nonzero e e such that for every non­

zero X e N^, X “ e. Thus contains only 0 and e. By Theorem 2.12

is a field. Thus N. is Zj.

(2) = 0 and there does not exist a nonzero e e such that for

every nonzero x e N^, x = e. Either * 0 or ^ 0. If ■ 0 it is

small. If Ni ^ 0 then, by Corollary 2.10, for every nonzero x e N^, x 

is a left identity. Thus is small.

(3) ON^ f 0. Let X E N^. Then A% - 0 or 0. If = 0 then, by

Lemma 2.2, x is a left identity. If A% Y 0 then, by Theorem 2.9, xy = Oy 

for all y E N^. Thus is small. Hence the conclusion follows.

Corollary 2.17: Every weakly commutative p near-ring N is isomorphic

to a subdirect sum of subdirectly irreducible p near-rings where

each is one of the following;

(a) Ni is Zp,

(b) Ni is almost small.

Proof : By Theorem 2.14 N is isomorphic to a subdirect sum of subdirectly

irreducible near-rings Ni. Each Ni is a p near-ring.

(1) ONi ■ 0 and there exists a nonzero e e Ni such that for every non­

zero X e Ni, xP“^ ■ e. Then by Corollary 2.13 Ni is Zp.

(2) ONj = 0 and there does not exist a nonzero e e Nj such that for 

every nonzero x e Nj, ^ = e. By Theorem 2.15 N. is almost small.

(3) ON.  ̂ 0. Again by the proof of Theorem 2.15 Nj is almost small.

Theorem 2.18: Let N be a subdirectly irreducible v near-ring with a

nonzero right distributive element r c N, Then N is a field.
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Proof ; If Af ^ 0 then ry ■ Oy for all y e N by Theorem 2.9. Then 
r -r^(r) » rrn(r)-l . Qj.n(r)-1 _ q ^^ich Is a contradiction. Thus 

Aj. «= 0 so is a left Identity. Now define = {a e N:ar = 0}.

It is routine to show that Lj. is an ideal. Define R  = {x e NzA^ ̂  0}

and A  ■ H  {A^zx e R}. Since N is subdirectly irreducible A f 0. Assume 

A  ̂  Lp 0. Then let w  e A  D  and w f 0. If w  E A n 1^ then 

•v^(w)-l e A  n  Lp because A n  1? is an ideal. Either = 0 or A* f 0. 

Let Aj, 0. Then A C  A^ so e A^. Thus w  ■ » 0 which

is a contradiction. If A* = 0 then is a left identity. Then

r ■ w^^^^ ^r » 0 because *i^(v)-l ^ Lj.. This too. is a contradiction so

A  n  Lj » 0. Therefore Lj. » 0 so yr * 0 iff y * 0. Let x  e N then

(xr^(f)"l - x)r = xr^^^) - x r « x r - x r « 0 .  Then xr°^^^“^ = x for 

all X e N. Thus r’̂Cî )“l is a right identity. It is known to be a left

identity so is the identity for N. Let x, y e N. Then

xy = = yxr*(^)"^ - yx so (N; ) is commutative. Thus N is

distributive and hence d.g. By Theorem 2.11 then N is a ring. Thus N 

is a cosmut stive ring with identity. By Corollary 2,10 for every non­
zero X e N, * yn(r)-l ^hus by Theorem 2.12 N is a field.

Corollary 2.19: Let N be a subdirectly irreducible v near-ring with

right identity e # 0. Thee If is a field.

Proof : N has a nonzero right distributive element, namely e. There­

fore the conclusion follows by Theorem 2.18.

Theorem 2.20: Let N be a subdirectly irreducible weakly commutative p

near-ring with a nonzero right distributive element. Then N is Zp.
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Proof: By Theorem 2,18 B is a field. Thus B is a subdirectly

irreducible p ring with identity. Hence I is Z^.

Corollary 2.21; Let N be a subdirectly irreducible weakly commutative 

p near-ring with right identity e ^ 0. Thai N is Zp.

Proof ; N has a nonzero right distributive element, e. Thus the hypo­

theses of Theorem 2.20 are satisfied so the conclusion must follow.

Hence N is Zp.

Theorem 2.22; Let N be a v near-ring. N is a commutative ring iff 

every nonzero homomorphic image of N contains a nonzero right distribu­

tive element.

Proof : If N = 0 then the conclusion follows. Let H ^ 0. If N is a

commutative ring then every nonzero homomorphic image of N is commuta­

tive. Thus it contains a nonzero right distributive element. Con­

versely let every nonzero homomorphic image of N contain a nonzero right 

distributive element. By Theorem 2.14, N is isomorphic to a subdirect 

sum of subdirectly irreducible v near-rings By hypothesis each

contains a nonzero right distributive element. By Theorem 2.18, each 

Nj is a field. The direct sum of the N. is a commutative ring with 

identity. However N is a subdirect sum of the Nj. Therefore N is a 

commutative ring.

Corollary 2.23; Let N be a weakly commutative p near-ring. Then N is 

a p ring iff every nonzero homomorphic image of H contains a nonzero 

right distributive element.

Proof ; If N ■ 0 then the conclusion follows. Now let N f 0. Let N be 

a p ring. Then N is a commutative ring so, by Theorem 2.22, every
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nonzero homomorphic image of N contains a nonzero right distributive 

element. Conversely let every nonzero homomorphic image of N contain a 

nonzero right distributive element. Then, by Theorem 2.22, N is a com­

mutative ring. It is known that px = 0 and x? = x for all x e N. 

Therefore N is a p ring.
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