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-CHAPTER I 

INTRODUCTION 

The usual parametrization of the distribution of a (random varia-

ble) X which follows an inverse Gaussian probability law results in the 

representation of the density as~ 

:x '7 0 (1.1) 

elsewhere 

where both~ and A ar~ positive real numbers. A considerable body of 

knowledge concerning this distribution is available, Its characteristic 

function and distribution function are known in closed form as are its 

moments. The usual moments of interest are the mean(µ) and variance 
,, 

(iJ,-> /ti.). The density is positively skewed. 

This probability law apparently was first encountered by 

Schrodinger (23) in 1915 in the study of Brownian motion. He determined 

that the time required for a particle under one dimensional B:r1ownian 

motion with constant velocity v to travel a distance d follows ( 1.1) 

with parametersµ= d/v and A= d2/~ wrtere ~ is the diffusion constant. 

' Following this Wald (~:6) encountered the :inverse Gaussian distribution 

as a limiting form of the distribution of the sample size of certain 

procedures in his development of sE;:quential analysis. These densities 

are of the ~ame form as ( 1.1) with µ = 1 and are frequently referred to 

as "Wald distributions." 



The emergence of this probability law as a dtstribution ot general 

practical import was due to Tweedie (25) who noted~ relationship between 

the cumulant gen~rating fu,µctions of the Gaussian and inverse GaussiEl.ll 

distributions and so named the latter. It is, as Schrodinger observed, 

the waiting-time distribution for a Gaussian process as the gamma dis

tribution is the waiting time distrihutio:p. for a Poisson process. 

Tweedie studied this distribution extensively and sparked sufficient 

interest in it to attract the attention of Wasan and Roy (27) and 

Shuster (24) among others. More recently Chhikiira developed UMP and 

UMPU tests for the parameters of this distribution and studied its 

usage in reliability where an object is subjected to a stress that can 

be characterized by a Gaussian process. A summary of the classical 

procedures available for dealing with this distribution is given by 

Johnson and Kotz (12) and Chhikara (4). 

There appears to be little in the way of positive results con

cerning the inverse Gaussiap that have been developed through Bayesian 

procedures. Hunt (10) in 1971 considered a Bayesian approach to not only 

the (µ,A) parametrization but also several others with the objective 

of making inferences about the mean of the distribution. He estab

lished that the natural conjugate prior for the mean failed to exist 

and that the posterior distribution obtained with at least one type of 

diffuse prior failed to exist. The author has independently verified 

these assertions. Nevertheless, this does not preclude the use of non~ 

classical techniques. This study i.s divided into two sections the fi,rst 

of which is concluded iri. Chapter IV and which pertains to the usual 

Bayesian approach as applied to this distrtbution. Chapter II consti

tutes the a priori analysis and modifications of the usual Bayesian 
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teclm.iques. Chapter III is concerned with point estimation and poste

rior probabilities. Chapter IV presents some results and algorithms 

for determining :Highest Posterior Density; regions for one of the 

parameters when the other is either lmown or of no interest. The second 

section deals with an empirical Bayesian approach to the analysis of the 

inverse Gau,ssian probability law. Chapter V provides an introductory 

framework for the ':Empirical Bayes_: analysis which follows. phapter VI 

is directed toward point estimation and Chapter VII introduces EB test 

procedures and related them to thosf;') '1,4Sed in the non ... B$Yesian frarneworik. 

Chapter VIII attempts to assess the utility of the procedures derived 

and considers what areas would seem profitable to pursue further. 



CHAPTER II 

A PRIORI ANALYSIS 

The Bayesian approach to inference is based on the concept of 

regarding some or all of the parameters of a population to be random 

variables. The probability str·ucture associated with these variates 

usually has a d1..fferent :lnterpretation than that of classical analysis. 

In the Bayesian analysis the probability law describing the random 

parameter does not necessarily represent a frequency distribution but 

rather a distribution of beliefs held by the user. The latter point of 

view will be adopted by the author in the .following. 

Definition 2.1.: A prior distribution IT0 ( 9) on the parameter e 

of the distribution F(xle) is a nonnegative measure defined on the 

measurable space (E),S) which represents an experimenter's subjective 

measure of confidence that 8eA for any AeS prior to the performance of 

an experiment resulting in a realization( s) of the random variable X. 

One may visualize that for a given parameter under consideration 

the Bayesian would have a limitless number of prior distributions to 

select from in representing his beliefs. In point of fact the litera

ture indicates th.at only two types of prior distributions have found 

much prominence. These are the paturaJ. conjugate prior and the diffuse 

prior distribut:ions. The author will likewise limit the analysis to 

these two classes of prior distributions. 



Definition 2.2: Let X be a r,var. with c.d.f. F(x;0) where eeE). 

Let t(x) be sufficient for 0 with t(x) ~. Then dF(x; e) = h(x)dG( t(x); 

e) by the Neymann-Fisher factorization theorem ~s referenced in Hogg 

and Craig (9). The factor dG(t(x);S) is a kernel of F(x;e). Suppose 

f G( t(x) ;d9) < oc then the distribution function defined by n0 ( 8') = 

G(~;9')/ja(~,d9) for ~6.A a,nd 9sE) is a natural conjugate prior of 

F(x; 9). A natural conjugate distribution may not exist and may not be 

unique. If TIO ( 8) exists it may be "enriched" either by increasing the 

range of at or by introducing additional parameters as explained in 

Raiffa. and Schlaifer (19). 

5 

Defin1:,tion 2 .• J: Let X bear.var. with c.d.f. F(x;S) .• Let I(9)= 

(imn) be the Fisher information matrix where im,n=-E {Dan9n+ogDxF(x; 6) }. · 

If K= f J F(x; 8) ~ det !(9) dxd0<00then rrJ( 9)cK ... l(det I( 0) )t is the ~'s 

invariant prior distribution for F(xi6). The use of the Jeffrey prior 

i;s partially based on the assumption that 11J( 8) is not•. 9-integrable. 

Definition2.4: Assume IT0 (e) is a prior distribution on parameter 

9 of the distribution F(x; a) such that f- ~ F(x; 9 ) TT0 ( d9 ) is a probabil-
-e1> 0 0 

ity measure on Gx X, Assume an experiment is conducted resulting in 

realizations of the random vectors (x1,ej) i=l,2, ••• ,m, jsl,2, ••• ,n; 

n~m; and where the 9j's are i.i.d.110 (9) and xii e1,e2 .•• n and x1)e;1.,e2 

a are independent for i 1i' • Then the po.sterior distribution of.' ••• n ~ . 

(81,62,···en) is the conditional distribution of01,e2,,··8n I x1,X2,···xm. 

It is usually assumed that 9 is fixed throughout the experiment so 

that n+l and the posterior distribution is defined on a spece whose 

dimension is the same as that of e. For example, suppose X is 



absolutely continuous with density f(x; 0). Suppose also that {9 is 

thought to be described by a prior density n O (9). An eJCperiment is 

conducted resulting in realizations x1,x2 , ••• xn. Then tne posterior 

density of e is given by 

n 1J 11(~ 1'8) n0 (e) 
n( e)= ........._1.;;..;=. .... 1 __ -"----

J ( tr(xi; 0)) TI ( fl)d8 0 .. 

6 

The posterior d::j..stribution represents the experimenter's subjective 

measure of confidence regarding th,e possible values of e in light of 

the experimental data. 

Before applying these concepts to the inverse Gaussian distribution 

the author will briefly discuss the twp types of prior distributions 

previously introduced. 

The popularity of using tne natural conjugate prior distrioution 

appears to be based on tne property that tne posterior distribution is 

usually of the same form as the pr·ior distribution. This has appeal 

in two respects. First, the posteri.or distribution is easy to find 

since its functional fo:i;•m is known. Second, there is an appeal to a. 

consistency of beliefs of the experimenter. It is felt that the 

experimenter's beliefs should not be altered so drasti.cally by the data 

as to result in a change of distributional families. 

The Jeffrey's prior is used to represent a prior state of no 

lmowledge in that no probability statement about beliefs regarding the 

value of the parameter.· can be derived from such a prior distribution. 

This type of diffuse p:tior distribution is used because of' its invar·iance 

properties. Hartigan has shown that the Jeffrey's prior possesses six 
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invariance properties and the interested reader is referred to Zellner 

(.28) for an enumeration of these results. The author will limit his 

remarks to that property originally discovered by Jeffrey (11). Briefly 

this property i;=i that all posterior probability statements about the 

parameter of a distribution are invariant under any bijective dif ... 

ferentiable transformations of the parameter. This would seem to be a 

requisite property of a diffuse prior distribution. 

1. Conjugate Prior Distributions 

'fhe .first case to be considered is that for which both µ. and :\ are 

unknown. The existence of the natural conjugate distribution for this 

situation will now be discussed. 

The dens.ity function of the inverse Gaussian can be written in 

the form: 

(2.1) 

The statistic (x,x-1 ) is a joint sufficient statistic for the 

parameters (µ, ;..) and a kernel of f(x;µ,, ,.) is the second factor within 

brackets. If a natural conjugate prior exists it will necessarily be 

of the same form as that of a kernel so that: 

*( ) d ( ( -2 ..,1 ) ) TI µ, , i,. c:e A exp - A aµ - bµ + c 
a 

o < µ c:. ea (2.2) 

= 0 elsewhere. 

Since ,.(x 2 µ, 1.2 > o it is necessary that aµ - 2 - bµ-l + c > o. 
2µ, x 

2 To accomplish this it is required that a~ o, b - 4ac < o. 



In addition it is necessary that d ~ -1 in or~er that TIO(µ,A) be A 

integrable. The correspondi,ng posterior disi;.ribution would then be of 

the same form with paranieters 

nx 1 n ~1 
a' = a + -2 , b' = b + n, c' = c + -2 1. X. and d' = 

. 1 ]. ]_;,:: 

Let A= A0 Qlld consider lim TI0 (µ,A 0 ). The limit of the exponent 
µ'7= ' 

of n0 (µ,A0 ) is zero so that lim TI (µ,A)? constant. Consequently, 
µ<+oo O 

n0 (µ,A) is not µ-integrable for any A and therefore the natural con-

jugate prior does not exist. 

8 

Since the conjugate prior fails to exist one may; (1) just discard 

the concept for the inverse Gaussian; ( 2) reparame.trize to a parametriza

tion for which a natural conjugate e~sts; (3) force iJ;ltegrability on 

the functional form already obtained. The first is not constructive nor 

in general is the second. A large body of knowledge is available about 

the (µ,A) parametrization and it will be beneficial, in the author's 

opinion, to remain with this representation as much as ~ossible. 

One may retain the essential feature of the natural conjugate 

prior by truncating (2.2) with respect toµ. This gives: 

( ) d ( -2 -1 ) TI µ , A oc A exp - A aµ · - bµ + c 
0 

(2.3) 

= 0 elsewhere 

It is the author's belief that if one possesses sufficient 

knowledge concerningµ to use the functional form above and specify the 

required four parameters then it seems reasonable that one will be able 

to place an upper bound p onµ. 

Let Q(µ) = aµ""'2 - bµ-l + c, For any µe:(o,p) n0 (µ,A) is seen to be 
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in the form of a gamma depsity so that: 

Jco Qd 1) 2(d+l) 
I(µ.) = n: (µ;, ~)d>i. oe; + ~ ... µ. . . . cl 

o o [Q(µ.)Jd+l (a _ bµ. + cµ2) +I 
(2.3.1) 

Therefore lirn I(µ)== o so that I(µ) is bounded at zero and sinee 
µ,o 

b2 - 4ac < o the denominator of l(µ) is nonzero for realµ. Hence I(µ) 

is bou:nded and continuous on ( o, p) and therefore integrable. By Tonelli' s 

theorem one can then conclude that Tf0 (µ,A) is (µ,A) integrable and 

therefore a proper density. 

It should be recognized that n0 (µ,A) as defined differs from the 

natural conjugate prior also in that the parameter p does not change in 

;e€lsponse to experimental data. This can be rectified by taking 

p 1 = max (x, p). 

Now suppose~ is known andµ is the parameter of interest. 

Examining equation (2.1) it is easy to see that xis sufficient forµ 

and that the functional form of the natural conjugate is; 

~( ) -1( -1 ) rr µ. oc exp - µ aµ · - b 
0 

== 0 elsewhere 

where a> o and b > o. 
A~X· 

The posterior distribution is of the same form with a'== a+ T 
* and b' = b + nA. As in the case with both 'parameters unknown., 110 (µ) is 

not a proper density since it is not integriable. 

Therefore the same approach will be used here as in the preceding 

case. The range ofµ is assumed to be truncated thereby defining 

rr0 (µ) oc exp[- µ,-1(aµ-l - b)] o < µ, < p (2.4) 

0 elsewhere 



The last case consider~d is t~e development ot the n~tural con

jugate prior when µ. is !mown and X is llll.known. If one writes the 

inverse Gaussian density in its usual torrn as 

* 2 f(x;µ.,A) = A. exp - A (x - µ.) 
, ~ 2µ.~x 

lO 

then a kernel o! the Ne;yman-Fisher factorization is A.* exp - A(x - ~)2 
. 2 

* p 2µ x so that the natural conjugate is of the form n0 (h)c:<: h exp (-aA.). 

This is recognized as a gamma density. Therefore take 

p>.p-,,1 -a>i. 
: rro~A.) = a r (p) 0 < A. <.. c..o 

= 0 elsewhere 

(2.5) 

wher·e a ') o, p '> -1. The poe;terior distribution of >i. is then gamma 

distributed with parameters a' = a + ~ µ. ""'2 I_ (:x:i .., µ.)2 a;n(i p' = p + ~
i=1 ···· ·~· 

2. Jeffrey's Prior Distributions 

1t·· 

It may be the case that an experimenter's p~ior kp.ow+edge is not sut-, 
ficient to warrant the use of~ infor~ative prior such as those pre

viously developed. In such cases one may then consider the Jeffrey prior 

distribution to represent a lack of lmowledge re~ard:ing the parameters 

of interest. Accordingly such representations will now be developed. 

As stated in definition 2 • .3 it is necessary to bui).d th.e Fisher 

information matrix. 

Letting f represent the inverse Gaussian density function th.en 

apart from terms of no consequence log f = 1 log·\ - A.(X .... ~),2 

2.xµ. 

giving: 

1 1 (x - µ.)2 
D~ log :f ;: m;: "" 2x . . z , , 

2 1 µ. 
D;\.;\ log .f = - 2 "),._2 , 



l1 

2 -3( ) Dµ{I. log f = µ x - µ • 

Ta.king expectations with respect to X produces; 

-E D2 log f = J~ EX~ .ZJi,. = {l.µ-3 
x µµ ~- x ~ 

(2.6) 

1 1 

Therefore 1 rr/µ,,11.) oe (det I(µ,,S2 = (2NJ,3)'""2" or eg_ui.valently 

n.(µ,/1.)Gl(. {·{l._,1/2µ-3/2 
.J 

0 

µ>O i,,>o 

elsewhere 

This distribution is improper ;:iince it is not >..-,.integrable. 

·ro determine the posterior distribution the likelihood is formed 

giving: 

from which the posterior is obtained througp. the relg.tionshi.p 

n(µ,A)oc L(µ,A;i)nJ(µ,/1.) which apart from factors which do not ~ffect 

the normalizing constant is 

n-1 

TT(µ, ).)oe ,T µ-3/2 exp[- ). t~i µ-2 - nµ-1 + t i::x;:1)] (2.7) 
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It is necessary to demonstrate that the above can be normed. and is a 
' 

proper density. Substitute a= ~;J, and b = i I:X11 in (2.7) to simplify 

notation. Since rr(µ.,>.) is an algebraic eompositiort, of eont:tnuous 

functions it is itself continuous on T = (o,~) x (o,c.c) and therefore 

measurable over the open first quadrant. Since TT(µ., '.>I.) is nonnegative 

in this ;region Tonelli' s theo:rem as re;fenmc~d in Royde:n. ( 19) may be 

applied to conclude that: 

The first iterated integral can be integrated by the defi,nition 

ot' the gamma function giving: 
n-1 

Jocon( µ. r ?I. )d>. «:: µ.-'3/2. J: >.2 e:x!p .... >.( aµ.-;2 - nµ.-l + b )d7i. 

= r(~) • ~ u-:1/2 ,m 

(a - nµ. + bµ. 2)~ 
(2.8) 

It is now sufficient to establish that the above is µ.~integrable. 

Write the relevant portion o.f (2.8) as 

t~ n-1/2 h n .... 1/2 n-1/2 
r bl:, . d11. = r 1,11 d~ + ~Co U. dµ. o E±1. r Jo ' '. .. ... . . « n+l h c . . . n+l 

2 2 - -(a -: nµ. + bµ. ) (a .... nµ. + bµ.2) 2 . (a ,... nµ. + bµ.2) 2 

(2.9) 

where h > o. -2 -1 Recall that aµ - nµ. + b being an expan~ion of 

( )2 2 · -1 
I: Xi, - µ. is nonnegative. Therefore if aµ ....... nµ.· + b = o the root 

2 2 
µ. Xi 

must be double. Examining the discriminant yields as a necessary 

consequence n2 - (nc1)(Dei1) = 0 which occurs only it 
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x1 = x2 = ~·· = :l\i = 1 an event with probability zero. therefore 1 

a - nµ + bµ2 > o almost SU+ely and the integrand of (2.8) has no dis-

continuity point in the range of integration. The first summand on the 

right in (2.9) clearly exists since the integrand is bounded and con

tinues in ( o, h ) • The second integral exists by the litl]it comparison 

test. The following jl~stifies this statement. 

n-1/2 
!!..._ 

n+l 
2 ~ n+l 

lim l!L::-Bi::..+ b~) = lim ~ n+l 
µ, -:>C...O -,-1._ µ. ~<a 2 ---

~.312 ( a - nµ, + bµ, ) 2 
µ 

1 . n+1 = im v 
v-~o n+lc 2 b.) v av - nv + 

= 1 >o n+1 
2 

b 

:n~ "° 1 c:.o µ 
Therefore, since Jh µ.3/2 dµ. exists so also does fh ._....,..__,, _____ n+1 dµ. 

(a - nµ. + bµ2)2 

Applying Tonelli's theorem establishes that n(µ,t...) is proper density 

fur1ction. 

The foregoing is appropriate when both parameters are of interest. 

Consider now the case whenµ is known· and t... is unknown. If one refers 

to definition 2.3 and equation (2.6) then the first element of the 

principa1 diagonal of I(µ,~) indicates the form of the Jeffrey's prior. 

That is nJ(A)oe 1· Forming the product of the likelihood and prior 

gives: 

(2.10) 



Inepeotion ot (2.10) ~hows th$t it ie >--integrable being of the 

gamma family. In fact A is gamma distributed with paramet~rs 

14 

a • aµ.;2 - nµ; 1 + b and p "" i or equivalently 2(aµ~2 - nµ,;1 + b)A ""~2(n) ~ 

Likewise when "- • ~ and µ. is unknown the form of. Jef'f:rey' a non .... 
0 

::Lntorme.tive prior onµ is :proportional to the square root o:t: the second 

e'.!.e!ment a:t: the principal diagonal of the information matrix in (2.6). 

TM.s gives rriµ) °' ""p',J,,-'3/Z from whi,ch the posterior is determin~d as 

above to be of the fo:rm 1i 

11( ) -~/2 ( . . ...1( ... 1 ) ) . µ oc µ ~ exp· - k. µ aµ ... n . 0 0 (2.11) 

Comp.a.re (2.11) wiMi (;1.'7) and one observes they ar-e of the same form 

w:tth respect, t,o µ, ... :tntegr~bility. It ha$ been demonstrated thp.t (2. 7) 

ls $. ~~-in:tesr&ble so likewiese is ( 2 .1:1.) • 

Thi~ concludes the a priori analysis as limited to this study. 

The determinat:i.on of norma:J.i:zing conetants is deferred to the ohapter 

ccinoer:ning point estimation. 



CHAPTER III 

POINT ESTIMATION 

A posterior distribution of a parameter is the Bayesian's basis 

for inferences concerning that pa:tameter. It is the purpose of this 

chapter to refine the work of Chapter II by determining normalizing 

constants for the sundry posterior d:Lstributions therein derived and 

developing point estimates for these parameters. The author will 

develop these quantities in closed form to the exte;nt of l+is abilities. 

However, it will be apparent that even in cases for wh~ch such closed 

expression exist numericaJ., procedq.res would be more versa.tile. 

The reason for this is that the requisite numerical procedures are to 

a much greater degree independent qf the sample size. 

1. Point Estimates of µ, Averaged Over "' With 

an Informative Prior Distribution 

Suppose now that the experimenter's pr:Lor knowledge is expressed 

by the truncated conjugate prior given by (2.3) and that although '),, 

is unlm.own it is of no interest to the experimenter. The investigator 

will then be concerned with the marginal ofµ given by (2.3.1) as 

2(d+1) 
( ) oc: hit TT µ . . ... .. . d+l 

( a .,. bµ + cµ,2) 
(3.1) 

0 elsewhere 

1 i:: 
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2 , t and where b - 4ac < o, a~ o, and d > -1. It is of interest to de er-

mine JP µkn(µ)dµ. fork= o (normalizing constant), k = 1 (mean), and 
0 

k = 2 (variance). These j_ntegrals can be' determined in terms of' ele-

mentary functions. The author will assume that dis a nonnegative 

integer assuming that the,evaluations so obtained are rea.sonab:J,e ap-,-

proximations for· other real permissable values of d. 

Applying the transformation x = l to the definite inte~tal µ 

~
0
Pµkn(µ)dµ results in: 

dx 

Let X: ax2 ~bx+ c, g = 4ac - b2 and utilize the following; 

J9f =JArctan 2~ b , 

f fx_ = "fc log ~
2 

- 2~ J 1 ' 

f~ = 2ax + b + 2( 2n - 1) J 2! , 
xn+l ngXn gn Xn 

J~ = ·. 1 . . . . - ....£ J ,S2£ + l f. dx ' 
xXn 2c(n _ l)Xn-1 2c Xn c xXn-1 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

Note that (3.2) is of the form (3.7). Equations (3.5) tmd (3.6) 

will be used to reduce (3.7) to a manageable fonn and equatiQns (3.3) 

and (3 .4) will be used for the final evaluatlon. 
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The author deems it expedient to simplify the present notation. 

. ( .) . 1 b 1 I dx Therefore J.n formula 3. 6 put a = · ·· · ·.ri, ~ = -2. , Y = -, and ep, = -. 
n 2cnX. c c n x.Xn 

Applying the :reduction formula in (.3.6) n - 1 times gives: 

n-2 n-1 !: k ~ k-1 6 n-1 
q,n "" ~n-k-1 Y - ~ L. Y · n-k+l + Y q:il 

k~o k=l 
(3.8) 

where en = J ~ in formula (3. 5). xn 
I ddit . . . _._ 2ax. + b and n a . ion pu't un = · n · 

ngX 

6ri == 2(2nn; l)a in equation (3.5) Repeated application of the recurrence 

relation (3.5) yields after k iterations that: 

and fork= 1 the second summand van;ishes. One me.y now :substitute 

equation (3.9) in equation (3.8) which results in the equation for 

cpn below. 

n-2 
q:in= 2 a.kl k n- -=O 

k ! 1 k-l { . n-k-1 j"'l'l 
y - ~ y on-k· + r ( --1.1 e ... k· ...• h k .· k-1 ·-1 · rr- -i. n .... -J - J~ 1=0 

(
n-k-1 ) 

+ 7T en-k-i 
l=O 

2 5 n-1 1 x b 
81 } + Y [ 2c log X .,. 2c 81 . 

Note that by equation (3 .3) e1 = -4 Arctan · 2ax + b 
--jg -Jg 

Now in equation (3.7) put 'li =f ~ 1 rn i"xn+ 
.,. = _ n. + m h and W = _ 2n + m ~. 
'm m c' m m c 

The :reader will please observe that ~O ::: 811 and 1¥1 = ·'Pn+l • 

(3.9) 

(3 .10) 

The evaluation of the integral in (3.2) fork= 0, k = 1, and k = 2 

can be accomplished by determining ~2 , t3' and v4 respectively. 

peatedly using the reduction formula (3.7) generates: 

Re-



'ir.3 = "2 + 'f"2n1 + ( Tl T2 +W2)cpn+1 +W1 "29n, 
I 

~4 = TT3 + T3TT2 + ~ 73trl +W3TT1 + ( 1 'T:2 'T3 + 'J~ + '7'f~)q:h+1 

+ ('T2'TfJ1 +Wf~)en .. 

18 

Each term in the expansions above has been previously determined through 

definition or evaluation and represents a constant or finite sum of 

anti-derivatives defined in (3. 9) and (.3 .10). Therefore, 

p 
f o rr(µ.)dµ. = ~2 

p f 
O 

µn(µ.)dµ. :;:; w3 

:lC::;: ()C!I 

'x=l/p = K, 

IX:::;00 

= 2'.. ' X=l/p . 1 

p 2 IX:;~ 
( µ. rr(µ.)dµ. = ~4 = 2.2' 
Jo X=l/p 

so that E(µ. I 1) = 2-1 , and 

(3.11) 

(3.12) 

(3.13) 

It may be the case that the experimenter is not interested in the 

posterior mean but rather the posterior mode. One reason for this is 

that the mode is computationally much easier to calculate. Another is 

that a knowledge of the mode may be required to determine tqe existence 

and construction of the HPD region forµ.. A discussion of these 

regions is presented in Chapter IV. 

To determine the mode of the marginal posterior dtstribution of 

µ. write (3 .1) as; 
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TT(µ.) 0C (aµ. '"'"2 - bµ.-l + c)"·(d+l) O < µ. < p (3.12) 

= 0 elsew:11ere 

Noting that the value of K in (.3.11) determines the magnitude of 

the density at the mode but not the location of the mode; .oci one may dif

ferentiate (3.12) and set Dµ..TT(µ.) = o. This results in the equation 

-2a + bµ.m = o or µ.m =~where µ.m represents the mode. An examination 

of (3.12) in light of the fact that d > -1 indicates an interior 

extremum exists and that it must be located at the previously derived 

µ • m 

It is irrelevant to the Bayesian to consider the sampling properties 

of a Bayesian estimator sj,nce this is fundamentall,y at odds with the 

premises of Bayesian analysis. The author is not in total agreement. 

First some experiments usi~g a Bayesian analysis may attach a frequency 

interpretation to the posterior distrioution. Second some sort of 

comparison meaningful to the frequency oriented experimenter may be ob

tained by a study of the sampling attributes of Bayesian estimators. 

Therefore the author will make remarks concerning sampling 

properties of Bayesia;n estimators. First it is intµttively clear that 

Bayesian estimators will be biased in general·since they are influenced 

by the bias of' the prior distribution. 'l'he bias in the previously 

derived modal estimator can be easily determined. The posterior distri

bution ofµ. has parameters a'= a+~ and b' = b + n so that: 

E (µ.) = 2a + nµ0 
x I µ.o. m b + n 

where a and b are the 
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parameters of the prior distribution. 
p 2a 1 

However, lim µ =limb + lim · · 7 · x 
n~oo n n-f>-a + n n--Jic,() 1 + b n 

p 

by Slutsky•s·theorem as refereneed by Fisz (6) so that µmis a con

sistent estimator of µ0 • 

The third estimate of central tendency an experimenter may con-

sider is the median of the posterior distribution ofµ· The med:lan me 

is of course the solution to ~2 17/me = ,t1\12 I VP" The author has not 

been able to present an expression for me explicitly and assumes the 

determination of m9 must be accomplished by numerical quadrature. 

2. Point Estimation of;.... Averaged Overµ 

With an Inform13.tive P:dor 

From equation (2.3) describing the joint p:,:,ior distr:Lbution ofµ 

and A. the marginal prior or posterior is of the form 

rr(A) a: ;...d J exp ( -.).,(aµ-2 .,.... bµ-l + c)} dµ o < A < 00 (3 .13) 

0 elsewhere. 

As far as the author is aware the integral in (3 ~ 13) can be pre-

sented only in tabular form. The author will develop an approximation 

to (3 .13) as an alternative to tabular representatiop. 

Rewriting (3 .13) as TT( r,.) cc ),. de-"'cf. p exp(.., ~ (J!. - b )) dµ 
0 µ, µ, 

and making the transformation v = l gives 
µ, 

f P f 00 -lv( av-b) 
o exp [- ! (; .-b)Jdµ = 1/p _e - .. /- dv. (3.14) 



Leth= i and h' = N(l + h). As v becomes unbounded the integrand of 

(3.l4) approaches zero so that the right side of (3.14) ~s approximated 

by 

Jh' 1 _,._v( av ... b) dv 
h ~ e, (3 .15) 

For N sufficiently large the er~or of trunction will be bounded by 

1 N{l + b.)" Since the integral of (3.15) is now proper one has rnore 

freedom in attempting a term by term integration. Accordingly (3 .15) 

can be written as: 

n 

Jh' 1 . -\••(a~.·-b) Jh' oe! l "'v v· d ( l)n,n (-l)kan· ,,,k k. ·.v2n-;k-2 d·v (3• l 6) '""'2 e v 1z: h - .· ,... --b 
11 v n=o ,' k=o n. 

Since the series :i.,s convergent and the partial sums are bounded over 

the interval (h,h') the series of (3.16) may be integrated term by term. 

To simplify t]'le notation of the resuJ,,tant :Lntegration, put · 

to obtain: 

f h' 1. ...,,..v( av-b) ~ j 
h ....., e dv ~ 2. k j 7-.. • 

v- j=o 
(3.17) 

Since the series ot (J.17) is alternating the error of truncation 

is bounded by the first term neglected. The final approx;imation to 
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(3.18) 

0 elsewhere, 
i 

k .. 
where H j = =m--.....,... ... •-..---..-

2. r(i + d + 1): J 
i=j ci+d+1 

i~ a normi~g constant. 

The posterior mean and variance o! >,. can be approximated by 

The approximation of rr( t..) by TTA ( t..) can be circ1,ID1vented in deter ... 

mining the posterior. mean and variance of A. when dis an integer. 

Recall that tne previov.sly defined function ~2 is impl;i.citl;y dependent 

upon the sample size n. One may therefore write: 

Therefore from (2.3.1) 

p Joo d . 2 1 J
O O 

"' exp(-;\.( aµ - - bµ- + c) ) di\.~: 

= r(d + 1) 1: (aµ.'""2 ,.. bµ-l + c)-(d+l) dµ 

= d! t.,( d) 
it-

(3.19) 

Space will be conserved if the limits of the 'V functions are sup-

1 pressed. They are from p to C?O as specified above. 



Equation (3.19) represents the normalizing constant for the bi

variate prior distribution given in (2 • .3). In a like manner one may 

obtain the posterior mean and variance of A: 

E(i1. I '.3t) ;:: (d + 1)1 llt~(d + 1) = (d + l), .. *2(d + 1) 

d! '¥2(d) ~2(d) . 

and Var(t.j x) == (d + U [(d + 2) ~2(d + 2) - (d + l)C'1112(d + 1))2] 
·~;/d) . ~2(d) -
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An expression for the posterior mode of A is not readily obtainable 

whenµ is unknown and the experimenter is not interested in making 

statements aboutµ,. The author will give no expression for the pos-

terior mode but indicate what approaches might be used in obtaining a 

numerical solution. First, if one is satisfied with the approximation 

(3.18) one could attempt to maximize (3.18) with respect to A. Second, 
p ' 

one could maximize f 
O 

TT(µ, il.)dµ where the integral is determined by 

numerical quadrature. These are the obvious procedures. One should 

note that nAtA) given in (3.18) is a linear combination of gamma 

densities and one can be reasonably confident that it possesses at 

least one mode. Assuming this only indicates that n(A) possesses a 

mode. Therefore, it would be useful to know beforehand if a solution 

exists. The author will leave this as an open question since its 

practical import is negligible. 

The posterior median of;>.. is most readily obtained by numerical 
p 

quadrature of either TT A ( A) or J n( µ, A)dµ. One can substitute a series 
• 0 

expansion of the incomplete gamma function in the ~quation 
m Jen (il.)d~ = i to obtain the relation: 
o A 
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It is the author's opinion that attempting to extract the solution 

me in the above is not an efficient program to follow. 

The inverse Gaussian distribution is normally not parametrized in 

terms of its variance o'2. In some cases some inferences concerning;;, 

may be required. These conclu$ions can be obtained by simultaneous 

inferences about µ. and A. As an alternative the author will develop 

the posterior distribution of the variance and investigate its utility. 

3. Posterior Dist:dbution of rJ, With 

Both µ and ;>... .Unk;nown 

If X follows an inverse Gaussian probaM,lity law with parameters 
3 

µ and i.. then it is known that J2, = .r· If one asswnes a prior distri-

bution of the form specified in (2.5) then the density of (µ,11.) has been 

determined to be 

d ( -2 -1 ) ( ·) = 11. exp - ~, aµ. - bµ. + c 
n µ.'"' ' · · · ·· , cff ~2( d) ·.· ·· · (3.19.J.) 

µ3 1/3 for nonnegative integer d. Put X = ....... , Y = A • ;.. 
The Jacobian of the 

transformation is: 

y 1/3 y3 
J = 3x'2/'J x = '71'5 

3y 2 
0 

The support of rr(µ,~) is [(µ.,11.): o < µ. < p, o <A< o.:i}. The sup

port of f(x,y) is {(x,y): o < x, o < y, x < p3/y }. The transformed 

distribution becomes: 
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i3 ( d+ 1 ) 2/.3 1/.3 2 f(x,y) = ~ · 213 exp - y(a:x- - bx- y + cy) (3.20) 
d! v2(d)x 

The marginal of a2- is obtained by integrating (3.20) over y. To 

simplify notation consider those factors of x to be absorbed in a and b 

and temporarily ignore coefficients not involving the variable of inte-

gration y. That is take (3.20) as: 

f(x,y) = y3(d+l) exp - y(a - by+ cy2) 

CCI 

The exponential factor can be written as 2 
n:::;O 

(-1tyn ( a - by + cy2)n 
n! 

and 

Since the range of integration of y is the finite interval (o,~) x_.J../;; 

the sequence of partial sums of the exponential series is uniformly 

bounded and consequently term by term integration is permissible. For 

all values of the indices the power rule will suffice. So incorporating 

the normalizing constant, ignored and absorbed factors of x, substi

tuting a2- for x yields: 

where J = n 

f Jn(a2)-(n+d+2) 
n=o 

f f 
j.::::O k=O n! (3n + 3d + 4 - j - ~) 

4. Estimation of µ When X. is Known 

With an Informative Prior 

2 
0 <cr <oo 

From (2.4) the appropriate functional form of the prior and 

posterior distribution is 
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11(µ.) oc exp - .! ~ - b) 
µ. µ. o<µ. <.c (3.21) 

Actual determination of the meal'l, va~iance, and median are by 

numerical, quadrature. These quantities are dependent upon the nor

malizing constant from equation (3.21) and presumably this would be 

computed by numerical procedures also. The author will now develop a 

series expansion of the integral / 0 c exp -(;z + ;) dµ, which some readers 

may find more palatable than numerical quadrature. 

Let t = 1 in the above integral and perform the change of variables 
µ, 

to obtain 

c 
r exp_ l 

Jo µ. (! - b) dµ, = Joo ~ e-a(t-- ~)2 dt • 
µ 1/c t 

b2 --4a e 

Joo 1 -a(t- !.-)2 
Let I= ~ e 2a · dt and utilize integration by parts by 

1/c t 

letting 

( b 2 dt 
µ,=exp (-at - 2a) dv = t2 

then: 

dµ = -2a (t - .!?._) exp (-a(t - ]?_)2) v = --t1 
2a 2a 

From this comes the equation: 

. 1 b 2 (1 b )2 I = l1m - t exp - a( t - -2 ) + c exp - a - - -2. t-+oc . a c a 

f oo b 2 JO() b 2 
-2a exp - a(t - -2. ) dt + b exp - a(t - -2 .. ) dt 

1/c a 1/c a 

Taking the limit and evaluating the third summand above gives: 



f oo 1 b 2 
+ b t exp - a( t - 2 ) dt 

1/c a 

where cp(•) is the cumulative normal distribution function. 

l oo 1 b 2 
Let r1 = 't exp - a(t - 2°") dt and perform a.pother 

1/c a . 

variable by letting t = ~ + ~ , dt .. ~ • 

The equation for I 1 now becomes 
2 -x f. oO 

Il = 1 b 
1 2 1 

.,..., -· -· --b-· e na d.x .../2a.(- - -) c 2a ~+2a 

=~:a_~ 
c -{2a 

x2 --2 e 

Used~-~ to obtain: 
-v2a 2 

-X 
OQ r 

Il = J-d +-/J:i e + d d.x 
c x 

_x2 - x2 d 

=t+~ e 2 d.x + Joo e ~ 
x + d 0. x + d c 

dx 
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change of 

with obvious substitutions being made. To continue the development in 

this manner requires that c be chosen large enough so that 

-cl+~< d. If this is not desirable then it is not necessary to 

decompose r 1 and the choice of c is not crucial to a ser;i,es development 

of I. 

Re.:t,'erring to I 2 it is true that for I x I ~ d the expansion 



is convergent. The partial sums of this series are b9unded on (-d,d) 

and Riemann integrable so by Arzela' s theorem Apostal ( 2 ) : 

o0 d 2/ f ( )-k k -x 2 
I 2 = 2 -f2a -d x e dx 

k=O -,d~ c 

2/2 oo ( l)j 2j 
In a like manner c-x = 2- % x . for all real x. 

j=o 2Jj! 

Again conditions for term by term integration are met so that 

therefore 

00 00 d f k k '2· 
I2 = 2 2 (-dF x (-l)Jx J dx 

k:;:O j:::O -d +-'2a_ J. 
'1~ 2 • I 

oO C>O 

12 = I [ 2 
k=O j=O 

(-1)k+j 

c J· 

k+2j+1 
x 

d 

-f2a J 
x=---d c 

This leaves only the integral 13 to be expanded. Within the range of 

integration for 13 the relation I x I > d holds and the expansion 

l oo 1:::£!2. k , 
d = 2 k 1 is convergent. 

x+ k + ==OX 

Again applying Arzela's theorem generates the series expansion: 

28 

(3.22) 

At this point it is necessary to begin developing asymptotic ap

proximations by truncation. The first integral in (:1.22) is approxi-

mated by 

!We,_x2/2 
--..... dx 

d x 
(3.23) 
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where Joo 2;2 fw 2;2 I e -x dx - e -x dx I < .....[i; ( 1 - ¢ tJ)) 
d x d x 

provided0...lz 1. It is apparent thatc.µ need not be large in order for 

this approximation to be quite accurate. 

Since one has a finite range of ·integration in (3.23) and since the 

partial sums of the series expansion of e-x2/2 = 1 (-1)'jx2j-1 

x j=O 

are Riemann integrable and uniformly bounded then term by term integra-

tion can be performed. 
w 

This gives ( -x2 /2 oo 
lct e dx = 2 x . 

J=-0 
(3.24) 

Consider the second summand of (3.22). Those terms of the series 

i.nvolving even-powered terms in X can be evaluated by 1,1.se of the formula: 

f oo e-x2/2 dx:;: 1'2rr [1 -¢(d) ... e-d2/2 Q(d)) 
d x2n+2 ~ 

where Q(d) 

(-l)n+l 1·3·5 ••• (2n + 1) 

••• + (...,1)n 1.3 ... (2n - 1) 
d2n 

n 2: o 

The above formula is obtained from Abramowitz a.pd Segun ( l). 

The odd powers occurring in (3 .22) can be evaluated by the same 

procedure after repeated application of the reduction formula! 

f o0 -x2/2 ( c0 -x2/2 f oJ _ .. //2 
e -1 f e .. e ) 

d x2n+1 dx = 2n d x2n dx + d x2n-1 dx 
(3.25) 

f c,0 -x2/2 
'rhe use of (3. 25) will result in a term invol v:ing d e x dx 

for which (3.23) was developed. 

The previous development indicates the difficulties one may expect 
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in attempting to produce simple expression for normalizing constants, 

means, etc. for the posterior distribution contained in this chapter. 

Such illustrative develop!I)ents are always productive in that they indi-

cate the utility of a particular procedure. The reader is not encouraged 

to think that those numerical examples in this study were accomplished 

through series developments. Professor Chandler kindly provided a 

numerical quadrature procedure called SQANK (15). Because of certain 

shortcomings in the error control of SQANK and economic disadvantages 

the author developed the program RINT. The interested reader will find 

a listing of this program in the appendix. In light of these diffi-

culties the author is forced to state that the posterior mean, variance, 

and median ofµ have not been determined in explicit form. 

The mode of the posterior distribution is determined in the usual 

manner to be 

If 11. = 11. then µ o m 
verified that since 

thenµ ~ µ. max 

= 2a + A.oL;:t 
b + nr..o 

b > 0 

b < 0 

for b ~ o and it is easily 

µ 2a -
max = ;-"' + i,,0 x 

b 
- + A.a n 
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5. Estimation of A Whenµ is Known 

With an Informative Prior 

The prior distribution of A is taken as in (2. 5) to be 

P,p-1 -,aA. a (\, e 
r(p) 

A. ') 0 (3.26) 

o elsewhere 

The mean and variance of X are well known to be l2 and ~ , 
a a .. 

reE3pecti ve1y. a The mode occurs at p-,,l for p > 1 and;.,= o otherwise. 

The posterior median can be formulated in several ways. The median i.s 

the solution to X ptp-1 ~at The integral 
F(x) =f a r e dt = t • 

0 (p) 

F(x) 

can be simplified by transformation of variables. 

The function F(x) can then be rewritten as . . . (. ax zP-le-z 
H(x) =JO r(p) dz. 

The equation H(x) = t can then be soJ.ved and the rel:lultant solution 

divided by a to yield the posterior median m6 • The reason H(x) is 

preferable to F(x) is that tables and programs are available for evalu

ating the incomplete X 2 distribution. It is known from Abramowitz 

and Segun ( 1 ) that H(x) = P(X~ IV) where P( )'.'.'~IV) = Pr [ ;:k: 2 ~.l; 5 
and where ~ 2 has 1J degrees of freedom. One obtains l:'2 and V by the 

0 

translation')(, 2 = 2ax and V = 2p. The IBM subroutine CDTR in the 
0 

scientific subroutine beries evaluates Pr( 1:".'.~I v ) for continuous 

This does not change the problem of using an iterative procedure on 

H(x) but does circumvent the necessity of employing numerical quadrature. 

One may use AINVRT developed by the author for solving H(x) = ~. A 
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listing of AINVRT is supplied in the appendix for the interested reader. 

6. Posterior Distribution of the Variance When µ. 

is Known With an Informative Prior 

Definition 3.1: A random variable X follows a gamma-2 distribution 
I 

with parameters 1jr > o and V > o if X can be shown to have a density of 

the form 

for x > o and zero elsewhere. 

De!ini!f:j.o:g 3.2: The r.var. Y fol.lows an inverted gamma, dietri

bution with parameters t > o, v > o if Y possesses a density function 

of the form 

for y > o and zero elsewhere. 

If X has a standard gamma distribution with parameter~ then 

Y =~.follows a gamma-2 distribution with parameters v and 1jr as shown 
1 in LaValle (14). Further y follows an inverted gamma distribution with 

parameters v and 1jr. 

Therefore since A is assumed to follow a g~~ma distribution with 

parameters a and p (denoted "'"'""Ga(a,p)) then~ = ....13 ,...., Ga(µ. 03a,p). 
3 <S µ.o 3 

From this it follows that ~ ,.., Ga( l., p) • Let ting v ::: 2p and "1 = ~ 
a2- ,1, p 

then from the above discussion one can conclude that~ ~ c:l- follows 
2µ.0 a 
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an inverted gamma distribution with parameters v and~. Sinc:e the mean 

and variance of an inverted gamma distributed variate are given :in 

La Valle ( 14) vy .. 2v2w2 . 
as v- 2 and [(v- 2){v- 4)]' respectively, the appropri-

2 ate expressions for the posterior mean and variance of o a.re: 

and 

E( cr2 I 5c) 
3 

=~ 
p - 1 

- (Ec2)2 
- p - 2. 

7. Simultaneous Estimation o.f µ and 11. 

With an Informative Prior 

The only point estimators of µ, QTid '!I. that may be of value that have 

not been previously discussed are the simultaneous modal estimators of 

p, arid>... Take the posterior distribution of the form (3.19.1). That 

is take n(µ, 1 >..)oc 11.d exp - 11.(aµ,-2 - bµ,-c + c) and form the equations 

Dµn = o and ~An= o. These equations give 

D TT ex: Ad exp[-11.(aµ-2 - bµ,.., 1 + c)](-2aµ,-3 + bµ-2 ) 
µ 

which gives the solution: 

,:;; 0 

which is the same as that obtained from the marginal of µ given in the 

paragraph following (3.12). 

Letting Q(µ,11.) = ->,.(aµ-2 - bµ-l + c) then 

( ) d-1 ( ) d . ( ) ( -2 -1 ) D'll.n µ, 11. cc d11. exp Q µ, 1 ;... - 11. exp Q µ"" a~L - bµ + c = o 

which gives the modal estimator: 

d >,. = ~----~~~~-
max aµ-2 b -1 

max - µ,max + c 



or upon substitution 

>. = 4ad 2' 
max 4ac .. b 

The nervous reader may recall that 4ac - b2 > o almost surely. 

8. Estimation ofµ. Averaged Over tUsing 

a Diffuse Prior Distribution 

·rhe functional form of the density of µ. with the Jeffrey diffuse 

pri.or was given in (2.8) as: 
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n-i 
n(µ.)OC 2 n+i (3.27) 

. (a - nµ. + bµ.) 

h - 2X1· . 1, -1 w ere a - - and b == 2 L)(. • 
2 J. 

It has been sh9wn in Chapter II that the 

function of (3.27) possesses a convergent integral for µ.e(o,oc;,). However, 

i.t can be shown that E(µ.) does not exist. Without going into great 

detail the reason for this is that for iarge µ. the n1;!.merator ofµ~(µ.) 

is of order n + t while the denominator is of order n + 1. Therefore, 

the integrand is then of order -4 .for largeµ,. Loi> 1 

Since µ.~dµ. diverges 
p 

one likewise can conclude E(µ.) = ca also. Consequently, no higher moment 

exists forµ.. 

To compute the median of this distribution or to d17.·velop probability 
co · n-t 

statements requires the evaluation of 1 · 11' 2 ri+I dµ, to 
0 (a - nµ. + bµ. )-Z-

obtain the normalizing constant. Since the integrand in the above 
-3/2 -2 -1 - n+l . integral c~n be written as µ. ·(aµ, - nµ. + b) -Z- then one f).nds 

that: 
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1 
n+l dv 

2 2 
(av - nv + b) 

Completing the square on v gives 

2 v-n ( )
2 

av - nv + b = a 2a 

n n2 
Substitute c = 2a and d = b - 4a in the above and the quadratic becomes 

a(v - c)2 + d. Now let x = v - c to give: 
dx 

I -Jo0 n+l 
2 2 

-c -"'Jx + c ( ax: + d) 
(3.28) 

Finally make the change of variable defined by y2 x + c and (3.28) 

is then represented by: 

.r~ Ql 
I =Jo E.;tl 

[a(y2 - c)2 + d] 2 

ct:> 

= fo f(y)dy 

Although the present development is directed toward the determina

tion of the normalizing constant for (3.27) it would also be of value to 

be able to determine I(p) = J: f(y)dy. As far as the author is aware 

this integral ls not expressible in terms of elementary functions or 

elliptic integrals and therefore must be computed by numerical quadrature. 

However, the normalizing constant can be represented explicitly for par-

ticular n by the application of results in the theory of functions of a 

complex variable. 

1'he author will a.rJsume that n = 2k -1 for some k ~ 1 and let 

f( z) = ______ 1 _____ n_+_l = ___ ..... 1 __ 2_· _..,...k 

2 -r- [a(z - c) + d] 
[a(z - c) + d] 



where z is complex. 

Noting that f(y) is an even function of y then it follows that: 

co oO 

r r(y)dy = ~ r r(y)dy 
)_°"' Jo 

o0 N 
Therefore, from Pennisi (18) ( f(y)dy::.:: TTi 2. Re(f'(z);z.) where the Jo i=l l 

zi are the poles off in the upper half plane and Res(f'(z) 1 zi) is the 

residue off at the pole z .. 
],. 

It is a tacit assumption of this procedure 

that f( z) has no real zeroes and it is evident that th:i,s is th0 t'.:ase. 

The poles of f(z) are the values z.; such that a(z. - c)2 + cl ""' o. 
l l 

The roots of this equation ar·e z2 = c .:!: i-f. One will note that . . li 2 

a = 2.~i > o and since 4ab - n :> o then, d = b - Za is also positive. 

·rherefore-. rr:s real. 

Let ev:-{f and r = -{c2 + e2 • From these define 82 = Tan-1(~) and 

-lee) . ( 2 )2 e2 = Tan ""c. Then the four roots of a z - c + d =oar~: 

e1 e1 
z1 =-fr [cos ~ + i:;iin 2 ] 

z2 =-fr [cos('f + n) + isin (-f' + n)J 

-L" 82 82 z3 == --ir [cos 2 + isin 2 J 

z1+ =-.Jr [cos(¥,+ rr) + isin ("f + 11)] 

Of these zeroes the Qnly ones of interest are z1 and z4 since the 

remainder fall in the lower half plane. Each pole is of order k so 

that 

(3.29) 
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This is a reasonably compact e~pression for the normali~ing con-. 

stant. A problem may arise in determining the reqµired residues. ·rhe 

author is not aware of numerical procedures for computing residues but 

this of course does not preclude the existence of such techniques. 

Therefore, the author will complete the discussion of the evaluation of 

I by giving explicit formulae for the computation of the required 

residues. 

Again from Pennisi (18) one obtains the equation 

D~k-i)[ ( z ..... z2Jf z - Z3 Ttz - Z4r-k I z = zl 

(3.30) 

Let u(z) = (z - z1)-k, v(z) "" (z - z2)-k, w(z) == (z .... z3)-k and 

x(z)"" (z - z1)-k. One may then laboriously expand (3.30) whic:h yields 

the following expression for Res(f,z1). 

11.es(f z) = ~ 1_ ~l .,g1(k-l)(~)D(j) v D(m-j) w D(k-l-m) xi z = '4 k - 1)! L ~· m J z z z zl 
ffi:;::O J=O 

Similarly 

( ) ~.-1. ; (k-l)(~)D(j) u D(m-j) v D(k-l-m) w I z = z4 Res f' z 4 = ( k - 1) ! L .L- m J z z z 
m:=:O J=O 

One may further simplify the computations by substituting A =i r ~ c , 

B =-{9° then it follows that ~1 = A + iB, z2 = -z1 , z3 = z1 , and 

z4 = - z1• It is apparent that the computation of I for large sample 

sizes would be tedious s:i,ne,;e the number of terms in each summation 

:increases at approximately the square of the sample size. 

Once I is determined then the normalizing constant for the joint 

Jeffrey's posterior i.s from (2.8)[ rcn;l)I]-1, provided n is odd. 



Since the mean fails to exist and the computation of the median 

appears to be a numerical process, the only alternative for this case 

is to consider the moqal estimator. n 1 1 _....,. __ 

The density n(µ)cc µn~(a - nµ + bµ2) 2 2 

o elsewhere 

Forming the equation Dµ.rr(µ):::: o gives: 

n 1 

µ > 0 

(n - t) µn-3/2 (a - nµ + bµ,2)2-2 - (n ; 1) µn-i (2bµ, ~ n) • 

_!!_2. 
( a - nµ + b1-/) 2 2 "" <:i~ 

n 2. 
n+~/2 0 -21 2· 

Multiply both sides of the above by 2µ -.. j ( a - nµ + br .• -) -

to obtain: 

(2n - l)(a - nµ, + bµ 2) - µ(n + 1)(2bµ - n) = o 

or 

2 2) -3bµ + (2n - n µ + (2n .... l)a = o 

Taking the positive root yields: 

µmax = ~ [-(n2 - 2n) + ~ (n2 - 2n)2 + 12ab(n - 1)] 

Now substitute a = lXi, b .:: tlx-:-1 , and assume n f 2 to write: 
2 l 
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µmax = n(n -}.l f-1 + / :_: ~EXi EXJ:1 (2n - 1)} (3 .31) 
3 ~X7 1 \I n(n ~ 2) 

l ~ 

Denote the harmonic me an of the sample ~ x1 , x.2 , ••• , xn by 5S1• The 
n 

harmonic mean is defined bjr ·:x.h = --=I . Then equation (3.31) can be 
EX" l 
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written in terms of the arithmetic mean X and harmonic mean Xh. This 

equation is: 

n - 2 {-µmax"" 3 -~ + x~ + 3(2n - 1)xi~} 
(n - 2) 2 

The author will demonstrate th.atµ viewed a(:\ a sampling esti-max 

ma.trJr is consistent. Recall tnat Xi > o almost (3urely. Therefore 1 it 

can be shown that Xh ~ X with equality occurring only if x1 :::: x2 "" 

- - -:2 -, •• xn = 1. Hence, XhX ~ X • Since X is a consistent estimator of 11,, 

X is stochastically bounded, i.e. given e > o there exists an M such 

that e :> Pr(X >-{M) ::; Pr(x2 > M) as l'.'efe:renced in Feller ( 5 ) • Since 

-2 -- (-2 ) (-- ) --x ? XXh then Pr X > M z Pr X.Xh > M so that X.Xh is stochastically 

bounded. Therefore, 3( 2n - l)X.Xh converges to zero in probability. 
(n - 2) 2 · 

Now for small k the approximation -Vy + k ~'Vy+ .Js.._ is valid. 
' 21Y 

Putting y = xh and k = 3( 2n - l)XXh one obtains twough this approx:Lma~ 

(n - 2) 2 

tion that 

14m µ. _ lim n - 2 [ - - 1 ,3(2n ,... l)XXh] 
....... - -~+~+2x n _. = max n _.oo 3 h --( n---2-)_2_. 

1 • 2n - 1 x-_ P= µ. = :;i.m n,i,.,.c, 2n - 4 

9. Estimation of µ, When A is Known With 

a Diffu.se Prior Distribution 

When A = t.. the Jeffrey; prior on µ, is proportional to µ,-3/2 so 
0 

that the posterior distribution ofµ, is; 
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TT(µ.) OC µ.-3/ 2 exp - A(/aµ.-2 - nµ.-1 ) 0 < µ, < CKJ (3 .32) 

0 elsewhere. 

As in the previous case n0 (µ,) i:;, integrable but fails to possess a 

first moment since 

i oo -3/2 -;.., v(av - n) dv + v exp o 
n/a 

'l'he first integral sumrna:n.d above fails to exist so likewise does E(µ). 

The author's opinion is that a search for a normalizing constant 

and explicit determination of the median would be, as past experience 

has indicated, fruitless from the practical standpoint. The author has 

provided sufficient numerical procedures in the appendix to determine 

both for any of the distributions in this paper. 

The modal estimator for this distribution will be diseussed since 

it is independent of the proportionality constant in (3 .32). As µ 

becomes unbounded the numer·ator of (3 .32) remains bounded so that 

limn(µ).= o. This is of course necessary for integrability. Atµ= o 
µ-"o 
one has that: 

exp [ lim - ;.., (av2 - nv + 3/2 log v) f exp [ li.m - )... (av2 - nv + 3/2v) =i 

v~- o v~~ o 

exp { lim - ),.. v(av - n + 3/2)3. Since a> o this limit is zero. 
v -'),&0 0 



Since n(µ.) > o it is evident that the mode(s) are interior points. 

Forming the equation Dµ;TI(µ.) = o results in: 
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Solving the above gives the solutions determined by 2aµ.-2 - nµ.-1. - 3/2 

= o. Since µ. is constrained to be positive the only solution to this 

equation is 

lfa 
µmax = n + ~ n~ + 12a 

-nx 
Now since a = 2 then the above may be rewritten as: 

(3.33) 

Since xis a consistent estimator ofµ then from (3.33) it is evi-

dent that lim µ =µso thatµ is a consistent estimator ofµ. n-.oo max max 

In this particular instance the author has been able to derive the 

sampling distribution ofµ. • Inverting (3.33) gives x = µ + max max 
6 2 
~ µmax" Note that (3.33) is a one-to-one transformation so that if 

Q µ ( ·) represent the c.d.f. of µ one has the relationship that max max 

where F-(·) is the c.d.f. of the mean of a sample of' size n from an 
x 

inverse Gaussian r.yar. with parameters µ and ;;,.. From Chh.ikara ( 4) x 

follows an inverse Gaussian distribution wi.th parameters µ, and nA• 

Also from Chhikara (5) one can obtain an expression for evaluating the 



c.d.f. of an inverse Gaussian. Utilizing this one obtains 

• rn>: v ~ -~ v 
F µmax ( µ o) = 1 - ¢> [ -Y ~ ( 1 - f) J + e 2 [ 1 -<P ( 1J f ( 1 + 1)) J 

0 0 ~ 

:3µ0 
wherecp (•) is the c.d.f. of a standard normal and v0 = µ0 (1 + 2 ). 

10. Estimation of >.. Averaged Over p. With 

a Diffuse Prior Distribution 

The joint posterior density o.f µ and 11. in this case is 

n-1 
2 
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TT(µ, 1 A) = A ----- µ ') o, A.) 0 

/ n+l 
rµ.3 2 r(T) 

where I is determined elsewhere by (3.29). It was assumed in that 

development that the sample size n was odd. For large n this distinction 

ts probably of no consequence. 

The first estimator of interest is the posterior mean defined by: 

n+l 
OQ oc 2 '( -2 -1 

= f f A e~p .,. , /\' aµ, - n~ + b 

o o r(n;l) Iµ)/2 

n+3 
= r· 2 1 

dr,;dµ. 

. . dµ 

r(;1 n+,2 
3/2( -2 -1 + b) 2 µ aµ ... nµ . . 

(3 .34) 

This last integral is of the same form as that of (3. 27). The evalua

tion of (3.34) can be accompJ,.ished in the same manner as that of (3.27) 

the only difference being that the poles z1 and z4 are of order k + 1 

rather than k;. Denoting the integral of (3 .34) by I' and r4~ducing the 



gamma coefficient gives 

In a like manner one concludes that the second moment is: 

(3.36) 

where I" is likewise of the form (3.27) with poles at z1 and ?i4 of order 

k + 2. From this the variance of A is determined to be: 

The author is not aware of any technique for obtaining the marginal 

distribution of A in closed form. The evaluation of the moments of the 

distribution was accomplished by interchanging the opder of integra

tion ofµ and A which is permissible by Tonelli's theorem as referenced 

in Royden ( :21). Since rr( A) is unavailable q1J.antile estimates and 

probability statements concerning A are not available. The author can 

suggest but two approaches to the problem of quantile estimation in 

this case. First one may obtain .T!1(.A). in tabular form by computing 
n-1 Joo 2 

A ( -2 -1 ) . . 
0 . n+l exp - ')... aµ - nµ + b dµ by numer:ical quadrature. 
r - 3/2 2 Iµ, 

Numerical quadrature could then be applied to these tabled function 

values. Secondly E( Ak I ~) may be readily calculated eith~r by the 

techniques of complex variables utilized in obtaining (3.35) or 

preferably by numerical qua,.dratu;re. An approximating distribution 

from the Pearson fa.mily could then be fitted. The author is not aware 

of how satisfactory either of these approaches would be to the approxi~ 

mation of rr( A) • 
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Even modal estimation in this situatiori is somewhat cumbersome. 

First 11( >..) is known to be contin1,1ous a,nd integrable. Therefore n( ;..) is 

not monotone increasing on ( o,00). Also the integrability of rr( 11.) 

implies 11(~) is not constant~ Hence TT(>.) must possess a mode. Since 

rt( A = o) = o the mode does not occur at zero and therefore rr( A) has a 

mode in the interior of (o, .... ). 

Again since tr(X) is continuous q.0d integrabJ,.e, rr(11.) is bounded so 

that the mode is a solution to D)l.11( 11.) = o. Since !1-0 formu.la exists for 

11(11.) the process of determining D;i..n(A) will involve appro:x;imation of 

,TT( A) and then approximation of Di.rn(q."). This would seem to be an un

desirable procedure. A more desirable procedure would be to evaluate 
00 f DATT(µ,, A)d~1 for successive values of 11. thereby replacing one numerical 

0 

p:cocess with an exact procedure. The justification of the above inter-

change of limits is the following topic. 

In order to show that n( r,,) is differentiable and that the afore .... 

mentioned interchange is permissible it is sufficient to show the 

follow;ing Apostal ( 2 ) : 

(i) Dr.ff(µ, 11.) is continuous for o < t.. < oo, o <. µ. < oo 

(ii) J:(µ., 11.)dµ. converges pointwise for \e( 0 100) 

(iii) J;-;_rr(µ,t..)dµ. converges unj_formly fol'.' t..e(o,.;xi) 

Apart from the normalizing constant; 

n-3 
D ( ) [n - 1 ( -2 ~1 )] 2 -3/2 ( -2 -1 ) /I.TT µ, , >.. . = 2 - A aµ - nµ + b t.. µ, exp ... >.. aµ - nµ, + b 

'rhe derivative D).. n( µ,, t..) is composed of continuous functions of µ. and >.. 

and therefore continuous fo:r o < µ, < oa and o < A < oe. Condition ( ii) 

will be established by use of the Wei:rstrass M test given by Apostol 



n-.1 
oo I -

( 2). This will show that f µ.-3 2 ). 2 exp - A(aµ.~~ - nµ.""1 + b)dµ. is 
0 . 

uniformly convergent. This can be accomplished by maximizing the 

integrand above with respect to A for each value orµ.. The resulting 

function ofµ. which bounds the preceding integrand is 

n-1 
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(3.37) 

For n > 1 the function in (3.37) is integrable on (9,a) where a> o. 

For largeµ, (3.37) behaves as µ,-3/2 on (a,00) and could be show:p to be 

integrable over that region by the l.imit comparison test. One therefore 

concludes that is finite which implies, 

,oO 

by the Weirstrass M test, that f 11(µ., A.)dµ, converges uniformly and 
0 

therefore pointwise. 

Finally consider (iii)~ Apa.rl .f:rom a constant 

<;)O 00 ~ f r\-rr(µ.,A)dµ. = n;:l J µ.-3/2 ,._ 2 exp (~A(aµ.-2 - nµ, ... 1 + b))dµ. 
0 0 

00 .S;l -f µ, .... 3/2(aµ.-2 - nµ,-l + b)A 2 exp (-A.(aµ,-2 - nµ.-l + b))dµ, (3.38) 
0 

provided both integrals exist. It has already been established that 
I 

integrals of the form of the first summand of the right hand side of 

(3.40) are uniformly convergent for Ae(o,oc). Applying the Weirstrass M 

test to the second integral by maximizing the integrand with respect to 

A for each value ofµ. gives a bounding function (apart from a constant) 

to be 
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f(µ) oC-----n-5 (3 .39) 

(a - nµ + bµ,2) 2 

The function f(µ) specified :in (3.39) possesses a convergent 

integral on the interval (o,a) for n ~ 6 and the integrand is of 

order µ-3/ 2 on the interval (a,c:.o) for largeµ. One therefore concludes 
O<) c,o 

that for n ~ 6 f f(µ)dµ <. 00 and consequently f DAn(µ, A)dµ is uniformly 
0 0 

convergent. It is reasonable to assume that a sample will contain at 

J.east 6 observations and in such cases it has been established that: 
,OQ 

(a) rr(t..) is dif'ferentiable and (b) D,._n(A) == J
0
nli.11(µd1.)dµ. 

11. Estimation of A Whenµ is Known With 

a Diffuse Prior Distribution 

As determined following (2.10) the posterior distribution when 

( -2 -1 ) X2C ) µ = µ0 of ·A is gamma distributed or A aµ 0 - nµ 0 + b - n. From 

this one concludes that 

E( A I x) = -2 n -1 · · . 
2(aµ - nµ + b) . 0 0 

Var( 11. -1 3r) 

Amax 
n - 2 

( .. .:..2 -1 ) 
2aµ -nµ +b 

0 0 

1 ,. 1' -1 where a= 2 LX. and b ~ 2 LX .• 1 . 1, 

The posterior median can be determined by iterative evaluation of 

the incomplete X2 distribution. Procedures for evaluating the median 

in a similar case were discussed following formula (3.26) on page 31. 
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For n > 30 the posterior median of a><...2 v~iate with n degrees of freedom 

is approximately n ( 1 - ~)3. 

12. Sj,multaneous Modal Estimation ofµ and A With 

a Diffuse Prior Distribution 

It is sufficient to maximize the log of the density or f(µ,A) = 

n; 1 log A - i logµ - ,.,(aµ-2 - nµ.-l + b). Setting D f::: o and 
µ 

D,..f = o gives the inte:rmedia;te results: 

2 ;.. - .-31.1, . · d 
- 2(nµ - 2a). an 

respectively. 

Equating these expressions for;.. gives 

;.. == __ (n_ .... -l ..... )h"-~-
2( a - nµ + b1/) 

In the same manner as was employed in the case o:;f th1;:: margjnal mode of 

µ one can show thatµ is a consistent estimator ofµ. In fact for max 

large n µ .Z: ( 2n - 5)x. 
' max 2n - 8 

Substituting this asymptotic value of µmax into the equation for 

>.. results in the asymptotic expression: max 

"A ~ ~ 
max (__!L\31: _ 2n(2n 7 BJ x 

,n ~ l) (2n _ ~)2 h 

The maximum likelihood ~stimator '5:: for 11. is obtained from Chhikara ( 4): 



/.+8 

and it is known that ~,..,.,X2(n - 1). From this one concludes that 1 
follows an inverted gamma distribution with parameters 'V ""' ·11

11~ 1 and 

" n)I, "' 2n2 b:2 
v "" n ... 1. Therefore E( 11.) = .. 3 and Var A = · 2 

n - · (n - 3) (n - 5) 

Consequently-1; .-1:.,E('x) by Chebyshev's Law of Large Numbers. Since 

lim E(t) "' I\ pointwise .t:h~n t ~ ,.,. Now since 11. converges po:Lnt-
n400 max 

A 
wise to 11. then given e > o there exist natural numbers N1 and N2 such 

that for n > ma:x. { N1 ,N2 } the following hold simultaneously 

I A - XI· < e and Pr [l 1 ... "t.. I < e] > 1 - e max · 

For any such n It.. - 11. I - e i 11 - ;.. I by the triangle inequality. max 

Hence, Pr ( I 11.max - ,.. j - e < e) ~ Pr ( / ~ - ;.. I < e) > 1 - e or 

Pr ( I Amax - ;.. I ~ 2e) > 1 - e > 1 - 2E:~ One then concludes that 

~max is a consistent estimator of A• 



CHAPTER IV 

HPD REGIONS 

A region of credibility is the Bayesian analogue of the classical 

confidence interval. and may be used to provide an interval estimate of 

a parameter or to provide a test o!' hypotheses on a simple null by-

pothesis. The difference between th,e classical confiq.ence interval and 

a credibility region is that the confidence coefficient associated with 

a confidence :j.,nterval arises from considerations of the sampling distri-

bution of whi.dh it is a realization while the confidence coefficient of 

a credibility region is a subjective probability associated with that 

particular interval. 

Definition 4.1: Let F(x,8) denote the distribution of the r.var. X. 

Assume a prior'.i. that 8 is distributed according to G( 8) such that the 

posterior distribution of 8 is absolutely continuous with density p( 8). 

11hen a ( 1 - et) HPD region is a subset H of the support of p such that: 

(i) f p( 6)d( 8) =-· 1 - Ct 
H 

(ii) If \ eH and 82 eH then p( 81) $ p( 9;) 

If a s~bset A of the parameter space satisfies (i) above then A is 

said to be a ( 1 - Ct) cir·edible regiorn for 9. An experimenter may not 

desire to construct an HPD region but some other type of credible region. 

For example, one may desire to bound the parameter above or below which 

mtght not lead to a region that satisfies (ii). 

I r> 



In general there are severaJ. reasons for constru,cting HPD regions 

in preference to other credible :r•egions. By ( ii) of definition L~.1 an 

HPD region contains the most likely values of the parameter. A second 

facet of property (ii) is that an HPD region is·, of all credible reg:Lc,ns 

with equal probability content, the smallest in terms of generalized 

volume. In the univariate case this amounts to possessing min:1.mum 

width. 

Unfort1Jnately HPD regions have some shortcomings. The most im-

portant of these from the practical standpoint is that HPD regions are 

more difficult to construct for asymetrical distribution tha:n other 

common credible regions. Of lesser practical importance bu.t worthy of 

comment are the following deficiencies. First I an HPD region may not 

exist. For example, if the posterior distribution were of the form 

( e) lsinel 8 p .·. ·. = 4 1 o < < 2n and zero elsewhere then no HPD region could be 

developed for e. Second, H;PD regions are not unique for r. variables 

following a uniform probability law. Last, HPD regions are not invariant 

under bijective transformations of the parameters but are invariant under 

nonsingular linear transformations as referenced in Zellner (28). 

Box and Tiao ( 3 ) have developed an equivalent deflinition of HPD 

regions which is sometimes useful in construction of HPD regions. 

Definition /±.2: Under the same distributional assumption as in 

definition 4.1 the (1 - ~) HPD region H can be defined as: 

The boundary B(H) is represented by 



Without dwel,ling on the equivalence of 4.1 and 4.2 one may note 

that Pr [ p(9) > p(0.0 )] is non ... increa.sing in p(B0 ). Therefore, if 

61 eH and p( 92) > p( 91) then Pr t p( 8) > p( e2f} ! Pr [ p( 6) > p( 81) j 
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:S. 1 - OI so that e2 dl:. Therefore, definition 4.2 implies constraj_nt, (ii) 

of definition 4.1. 

Some of the techniques for constructing HPD regions will now be 

discussed. This discussion will, be principally limit,ed to the develop-

ment of univariate HPD regions. Multi.variate HPD regions can be con-

structed but the computational difficulties encountered are dispro-

portionately greater than those for the one dimensional case. One 

procedure that is fairly obvious is to employ Newton's iterative tech .... 

n:i.que. Given a unimodal differentiable density p(0), the HPD region 
t 

will be of the form H::. (s,t) where f p(8)d6 = 1 - 01 and p(s):::: p(t). 
t Js 

Define P(s,t):: Jsp(8)d8 ... 1 + Q' and Q(s,t) ~ p(s) - p(t). Then the 

boundary of the (1 - Q) HPD region His the simultaneous solution of: 

P(s,t) = a 

Q(s,t):;: o 

If one employs the bivariate Taylor's expansions of P and Q to 

obtain approxi.mating equations and substitutes these in (4.1) one 

obtains: 

P(s ,t) + D P(s ,t )(s - s0 ) + DtP(s ,t )(t - t 0 ):;: o 
O O S O O ~ 0 0 

Q(s ,t) + D Q(s ,t )(s - s) + DtQ(s ,t )(t - t 0 ) = o 
0 0 S ' 0 0 0 · 0 0 

Here (s ,t) is arbitrary and represents a trial solution for H. 
0 0 

Solving the system (4.2) yields the iterative equations required. 

(4.1) 

(4.2) 



They are: 

s = s0 + p'(t0 )P(s0 1t0 ) + p(t0 )Q(s0 ?t0 ) 

p(s0 )p 1 (t0 ) '- p'~s0 )ptt0 ) .. 
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(4.3) 
t = t 0 + p'(s0 )P(s0 ,t0 ) + p(s0 )Q(s0 ,t0 ) 

p( so)p' ( to') - p' ( so)p( to) ·~ 

The convergence of (4.3) to the desired solution depends upon the 

proximity of the trial, value to the true value and the magnitude of the 

,Jacobian at the point of intersection as refe:renceq. in Hildebrand ( 8). 

Dlle to the author's ignorance of the general stabi.1,ity of the 

aforementioned method it was decided to approach the construction 

p1·oblem in a different mamier. Noting that the magnitude of the density 

plays a crucial role in the definition of an HPD region and considera-

tion of graphical displays motivated. the author to solve the problem in 

two stages. First 1 define F( c) ::;, f p( 9)d8. Then given Cl solve 
p(,6) > c 

the univariate equation F(c) = 1 ... °' f6r-c 0 • Finally solve the eq1,1.ation 

p( 8) == c0 to obtain the endpoints of the HPD region. The author was 

not able to locate a numerical procedure for fin.ding h-1(c) for a.rbi-

tra;ry h and c. In each case h was required to be differentiable or a 

polynomial. Therefore, the author developed the subroutine AINVRT 

listed in the appendix. This procedure is somewhat more general than 

is required since the author intended to display a bi.variate HPD region. 

The procedure AINVRT is easy to use; it will handle any univariate con-

ti:nuous function h that, is defined ever·ywhere, it is reasonably stable 

and is therefore slow. Its speed is a function o.f the mode in which it 

is employed and whether there are muitiple sol,u,ticms indicated. The 

numerical examples on page 62 were obtained by using the routine HPDU 



which uses AINVRT and the previously mentioned nume:ri.cal quadrature 

program SQANK. This procedure was developed independently of Box and 

Tiao definition but is closely linked with it in that it amounts to 

determining c such that Pr [ p( 8) > c] = 1 - ex and letting B(H) = 

[ p-\c)}. 
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Box and Tiao have used definition 4. 2 i:n another way to construct 

HPD regions. Starting from the same point, i.e. finding a solut1on to 

Pr { p( 8) > c } = 1 - ex they attempt to determine the distri,bution of 

p( fi) and determining the 1 - ex ql.i.anti.le or by inverting the expression 

:i.n defini.tion 4. 2. and using the distribution of 8 to find 

A 8omplication in the last representation is that the form of p may 

make the form of p ... 1(pC 9) ) c) impossible to represent in terms of 

(4.4) 

algebraic expressions. The author encountered this repeatedly in this 

study. Box and Tiao appa.rently prefer to generate the distribution of 

p( 8) or to approximate the distribution of p( 8). Th€;: author will 

demonstrate the procedure to be followed in fitting a member of the 

Pearson's family of distribution to that of p( 8) and then discuss those 

cases where (4.4) may be of value, 

Let the density o:f the r.var. Y be f(y) an,d suppose one desires to 

approximate the distribution of f(y) by a member of the Pearson family. 

In general the moments of f(y) can. be approximated by expanding f(y) 

about its mean µ~, taking e:x:pectB.ti.orn-3 and dropping all terms greater 

than a predetermined order. Si.nee all members of the Pearson family 

are determined by their first four moments it is sufficient to approxi

mate the first four moments of f(y). The author assumes that these 



moments may be adequately approx;i.m~ted by the first four t;.erms of the 

expansion of f(y) aboutµ'. In the following µn = E(y - µ~)n. One y . . y y 

then obtains the follow;i.ng formulae for approximating the moments o;f 

f(y). 

To simplify notation, the substitution z = µ' is made. y 

. ( ( )) • ( ) . f"(z)µ 2 .f"'(z)µ.3 f""(z\, 4 
Efy =:fz + y+ y+ '): 

'2 '6 '24 

E(f2(y)) ~ r 2(z) + [f(z)f''(z) + (f'(z))2]µ2 
y 

+ [f(z)f'''(z) + 3f'(z)f''(z)]µ3 
f 

+ [f(z)f' 111 (z) + l.i-f'(z)f' iv(z) + 3(£' 1 '(z))2]~ 

24 
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+ [2(f'(z))3 + 6f(z)f'(z)f''(z) + (f(z))2f'''(z)]µ3 
;_]£. 
2 

+ [23(f'(z))2f''(z) + 12f(z)(f''(z))2 

+ 14f(z)f'(z)f'"(z) 

+ 6(f'(z))2f 1 '(z) + [(f(z))2f''' '(z)]µ4 
t 

E(f4(y)) ~ f4(z) + 2[3r2(z)(t''(z))2 + .r\z)f"(z)]µ; 

+ 2[6f(z)(f'(z))3 + 9(f(z))2f 1 (z)f 11 (z) 

+ r'.3(z)f'''(z)]µ3 
'::..Y.. 
3 

+ [6(f•(z)) 4 + 54f(z)(f'(z))2f"(z) 

+ 21(f(z))2f 1 (z)f 111 (z) 



Let µk = Et=(y). Then the author has displayed above µ.1, µ.2, 
µ3, and µ4. 
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The second, third, and forth central moments can then be det~rmined 

by 

(4.5) 

(4 .• 6) 

2 4 µ4 = µ.' - 4µ.'µ' + 6µ' µ' - 311 1 
4 1 3 1 2 ~1 (4. 7) 

The particular member of the Pearson fami1y which is appropriate 

for approximating the distribution of f(y) is determined by calculating 

2 
where ~1 = ~ 

µ3 
2 

K = ~1(~? + 3)2 

4(2~2 - 3~1 - 6)(4~2 -3~1) 

and ~2 = ~ • 
µ2 

The interested reader is referred to 

(4.8) 

Kendall and Stuart (13) for a more comprehensive discussion regarding 

this procedure. 

The above procedure cannot be applied if the r. var. Y possesses 

no moments. This is the case with the posterior distribution of'µ 

when the Jeffrey prior distribution is utilized. One particular case 

that can be examined in more detail is that in which A is unknown,µ 

is known, and the Jeffrey prior is chosen as representative of the prior 

knowledge on L The r•eader may recall that the posterior distribution 

of A. is such that Y == kt.-X2(n) where k = 2(aµ-'2 -nµ-1 ,-i- b). One may 
0 0 

then find a (1 - a) HPD region for Y and due to the aforementioned 

inva,riance thereby obtain a (1 - ~) HPD region for A.• 
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In this case one need not use the approximating formulae of page 
oO 

55 since ~[f(y)]kdy is readily integrable. 
0 2 

If Y"" X (n) then the (k - l)st moment about zero o;f the density 

of Y is: 

f= k(n/2-1) -k/2Y 
E[tc-l(y)J = ;{ kn e dy 

0 -
22 [r(n/2)]k 

r(~ - (k-1)) 

This after some simplification becomes: 

re (.£ -v + 1 ) 
E[fk"""l(y)] = _ .k 2 . 

k-1 k(~ -1) + 1 .,..{!1) k 
2 k [1 '2] 

'l'he first four moments about ze:i;,o of f(y) are~ 



'l'he author will not present a complete example o.f' this process 

but will only indicate th~ direction in which the analysis leads~ 

If, for e~ample, a sample of size ten is obtained then th~ above 

formula for the moments of a')(.2 density are calculated: 

µi ~ 6.8359 x 10-2 

µ2 = 5.43.33 x 10-3 

-4 µ.3 = 4.5884 x 10 

-5 µ4 = 4.0047 x 10 

Using the above in formulae (4.5), (4.6) and (4.7) gives: 

6 -h µ2 = 7. 034 x 10 
-5 µ3 =-1.6528 x 10 
-6 µ4 = 1.4119 x 10 
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from which we note tl:1,c;1.t the distribution of aX2 (10) density is compact 

and skewed to the left. 

Finally, from µ2 , µ3 , and µ4 above one can compute: 

which gives: 

~1 = .6215 

~2 = 1.'8570 x 10-3 

-2 k = 9.5910 x 10 . 

Referring again to Kendall. and Stuart ( 13) one determines that since 

o < k < 1 the appropriate approximating density is: 

-m . 
g(t) == k(l + a-2t 2) exp [-v Tan-1(a-1t)J (4. 9) 

c:>Q < t "- ~ 



where t represents the r.var. defined by theX2(10) density function 

applied as a transformation on aif variate. 

The constants a, v, and m can be determined by formulae given in 

Kendall and Stuart. Tl).e factor c must be determined by nume;dcal 

quadrature. Since the author has al.r·eady expended considerable fLu1ds 

on numerical integration this example will not be continued numerically. 

The essential idea is that after fitting (4.9) one would then determine 

the ( 1 - a,) qua..YJ.tile of t and then solve the equatio;q 

for values y1 and y2 • The values y1 and y2 consti.tute the (1 - et) HPD 

region for the X: variate Y. The corresponding approximate HPD region 

for 11. .would then be obtai,ned by setting 11.i = Yi/k where 

Corresponding to each case of point estimation treated in Chapter 

III there is associated the problem of interval estimation. As disc;ussed 

any of these u,nivariate cases can be handled in a direct numeri.cal 

fashion by programs referenced in the appendix. The question arises, 

however, as to which of' the estimation situations of Chapter ru can 

be handled directly by (4.4). The author has not been particularly 

successful in this regard. This is because the distribution is not 

known or the inversion procedure i.s not algebraic. Even in those cases 

for which an expression for H is determined the r•eader will note th,at 

the endpoints are not specified. This limits the direct use of these 

expressions to testing a simple null hypothesis. 
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1. An HPI;) Regio:n. £or µ Averaged Over -;,. With 

an Informative Prior Distribution 

In this case the posterior distribution ofµ is 

2(d+1) 
n(µ) «: . 2 d+l 

( a .... bµ. + cµ. ) 

The HPD region for µ is defined by H(µ) = f µ0 : Pr f n(µ.) < rr( u. 0 )} 

2!. rx. Let k(µ 0 ) = rr(µ. 0 )l/d+l then (4.5) is the above is equivalently 

expressed as: 

H(µ.) ·-

or H(µ) = 

L~t h = 

and let R = 

{ µ.o ~ Pr { . _2 2 < k(µo) J ~ er} 
a ... bµ + cµ 

{ µo: Pr { (ck(µ 0 ) - 1)µ2 } 
. I k(µ ) - bµ + a ) 0 ~ 

0 

2 - 4a[~(µ )c - 1 
0 

(b + h)k(µo)J n [o,p] 
(2ck(µ) -1) 

0 

Q' ] • 

then H(µ) == [µ 0: [k(µ. 0)< i)A (Pr [ µeR] 2,c.- )] v [(k(µ 0) > i)A 

(Pr t µeR] ~et )i, (4.10) 

From (4.10) one can determine whether or not a given 90 falls in 

the (1 - ~) HPD region. 

2. An HPD Region for µ When A Is Known With 

an Informative Prior Distribution 

Referring to Chapter II one finds that H(µ) has the form: 



Pr { l (! - b)) k(µ. )} > Q' } 
µ ~ 0' ~ 

where k(µ.) ~ - n rr(11) 
0 · ""O 

Let h = -J b2 + 4ak(µ. ) 
0 

and R = [~(~J , ;lic:J] n [o,p] 

then H(µ.) = f µ. 0 : (k(µ 0 ) > o A. (Pr(µ. 0 ~)i) ~ Q') v (k(µ 0 ) < o A 

(Pr(µ. 0 eR) ~ a)) 

The author has considered the other cases with no success. 

In the author's opinion these representations are of little value 
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in general because the endpoints are not displayed. All but one of,' the 

univariate cases can be ha:qdled by HPDU, however, so in practice these 

regions could be determi~ed as required. 

The author will illustrate a particular HPD :region with a numerical 

example. Suppose that both µ. and 11. are unknown and a l - ex HPD region 

is desired forµ. From (2.8) the marginal ofµ is given as: 

rcn;l) 
rr(µ) I:(. - ........ -------n-.+..,.l (4.11) 

µ.3/2caµ-2 - nµ~l + b) 2 

A sample of size 50 is drawn. The data represented in Table I were 

generated by a program developed by the author. A listing of INGAUS is 

included in the appendix.. The data in the table come from an inverse 

Gaussian distribution with parameters µ. = 2 and "- "" 8. The data points 

were calculated to seven decimal places. 'l'he data in the Table have 

been rounded to two decimal places for ease of presentation. 



TAeLE I 

A RANOOM SAMPLE OF ·50 R.ANOOM DEVIA'rE;s FROM AN INVERSE GAUSSIAN 
DISTRIBUTION WlTH PARA.METERS MU=2 AND LAMBDA~8 

1.20 

1.81 

3.10 

0.92 

0.87 

1.75 

1.46 

3.54 

1.47 

1.62 

1.24 l+.13 5.21 1.6:3 

0.71 1.74 2.36 1.26 

1.63 0.83 4.88 1.02 

3.78 1.77 1.92 J+.40 

0.64 1.7/+ 2.37 2.32 

1.71 1.24 1.06 3.77 

0.99 1.73 1.04 1.89 

2.27 0.95 2.16 3.76 

1.88 i.56 2.29 1.95 

2.23 1.57 4.40 1.07 

-1 
Recall that a = IXi , n is the sample size, and b ::;; i ~i . • For 

2 
the data in the above Table, the constants in (4.11) are a= 51.4109826, 

n "" 50, and b == 15. 8444061. From Table I the following statistics were 

also calculated: 

x = 2.0567627 

xh = 1. 5778437 

s = 1.1548328 x 

X = 6.7761965 



The modal ~~timators ofµ. were calculated to be 

A 
µ1 ~ 2.038683552 (ayer~ ove~ ~) 
A 
µ2 = 2.03799392 (simultaneous) 

The author note~ that in this case both Bayesian estimators are 

nearer the true value ofµ= 2 than the classical estimator x. The 
-1 

normalizing constant for ( 4.11) is ( 1. 4 77 x 1.0 9) • This canst ant has 

an absolute error of less than 1. x 105 or a relative error of about 

10-3. 

The density that was used in this example i!3; 
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A 95% and 99% HPD forµ will be displayed. Approximately 30 to 35 

iterations were required to determine each of the reg~ons. 

The 95% and 99% HPD re$ions computed by HPDU forµ were (1.76, 

2.1~) and (1.68, 2.59), respectively. If one fits a confidence interval 

based on x and s2 one obtains the corresponding intervals (1.78, 2.33) 

and (1.63, 2.48). The major discrepancy is due to the fact that rr(µ.) 

is positively skewed causing larger departures ~t the right endpoints 

of the actual and approximated intervals. 

The author regrets that he is not able to display a multivariate 

HPD region forµ and~. This numerical problem took up appro:,dmately 

one month of the author's time with no results. The reader should not 

infer that the problem cannot be solved. It was merely felt that the 

expenditure of t:ime and money for a single numerical examp~e were 

becoming unrealistic. 
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The reader may find the follow:l.r!.g contour graph of the posterior 

of n(µ., i\) to be informative. One may note that for some values of. a 

the HPD region may not be a convex set. 

6 .4 

In concluding this chapter the author will briefly explain the basis 

for INGAUS, the generator used for seleeting the fifty data points em

ployed in the numerical examples involving HPD regions. 

y = 

If X.....,Inverse Gaussian (µ.,A) then from Chhika~a (4) it is known that 

A(X - y.)2 ....,, X2(1). If one solves .for Y in terms of X one obtains: µ.zx . 

x1 = f(A - B) and X2 =MA+ B) 

where A~µ~+~) and B = ~ ~~y (4 + ~)· 

The fact that this relationship between th,e ~nve:rse Gaussian distri .. 

bution and the chi-square distribution is not one-to-one does not create 

insurmountable problems. The reason is that if one examines the graph, 

of Y = A(X2- ~) it is apparent that x1 <µ.and x2 > µ.. 
µ. x 

Since µ. and >i. are input variables to INO-AUS it is eaey to determine 

Pr ( X ~ µ. } = p to be: 

p == • 5 + exp(2)/µ.)[1 ..,. <P(2 ~ >i./~) J 

where 'P(•) is the cdf of a standard normal deviate. The procedure fol-

lowed is then: 

(1) generate a standard normal deviate Z by GAUSF; 

(2) generate Y, a .X2(1) deviate by using [QAUSF(0)]2; 

(3) solve for x1,x2; 

(4) compute p; 

( 5) generate a uniform ( 0, 1) deviate R by RANF; 

(6) select x1 if R < p and x2 otherwise. 
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CHAPTER V 

SOME PRINCIPLES OF EMPIRICAL BAYESIAN ANALYSIS 

Empirical Bayesian (EB) procedures are applicab:\e in the following 

context. An experimenter b,as available m samples of distinct r.var. 

These samples may be labeled f Xu 3 :=l' { x2i} :=l" •• { Xmi} :=l" 

It is not necessary or even very probable that eac.h of' the samples 

will be of the same size. However, using equal sample sizes simplifies 

the notation and in practice is no hindrance. The;::ie distinct Si3,!nples 

may have been collected by the experilnenter at different times or in 

different places. In any case the experimenter bel.ieves that although 

the r.var. x1,x2, ••• xn are distinct they ori$inate from the same co;n

dit,ional distribution defined by the cdf F(;1<:I e). It is assumed that 

x1 ,X2, ••• xn are independent and are distinct r.va:tl. only through random 

fluctuation in the r.var. E) • The distrihution G( 8) is assumed to 

remain constant throughout all experimentation. The experimenter may 

know the functional form of G(e) or he may not. It is the purpose of 

EB techniques to develop inferential procedures r·egarding the realiza,... 

tions of 8 in this experimental situation. In the resolution of 

questions regarding the unknown variate 8 one makes a decision d 

dependent upon the outcome of the experiment resulting in a realization 

of X. Let D denote the space of all possible decisions d regarding 9. 

Further suppose that upon observing X = x and in mak;:j.ng the decision 

d(x) one incurs a. loss denoted by L(d(x), 9), where 8, is the true value 

LL 



of e whe~ xis obs~rved. 

Definition 5,1: The risk B.E$~oc;i,.ated with the decision ruled is 

the expected loss when E) "" ,9. The risk iEi denoted R( d; 6) and is 

therefore defined by 

R(d; 8) ""f L(d(x); &)f(xl 8)dx 
x 

assuming X I e is abs. continuous. 

Definition 5.2; The Bayes Risk W(d) associi:i.ted with the decision 

rule d is the expected value over 8 of the risk R(d; 0) i.e. 

W( d) ::; J Ix L( d(x); S)f(xl 6)ci:xg( 8)d8 r 

Definition 5 .3: The Bey-es estirnatori of e is that function d(x) 

for which W(d) is mini,mi,zed so that d is a Bayes estimate with respect 

to g( 9) and L( d,, e) iff for each d* it follows that W( d) s W( d*). 
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The most commonly encountered loss functions are squared~error loss 
. 2 

(L(d(x);8)) = (d(x)-8) ) and absolute err0r loss. These are frequently 

used when d(x) represents a point estimate of e. When d(x) is used in 

the context of testing then a O - 1 or linear loss function is most 

frequently used. These loss functions will be discussed in greate:r 

detail in Chapter VII. 

The author will now present some general results of Bayesian 

estimation which are i.ncorpora.ted in EB procedu:res. 

Theorem 5 .1: The Bayes estimator of' 8 with respect to the distri-

bution g(e) and loss function L(d(x);9) 
2 . 

= (d(x)~e) is the mean of the 

posterior dis~~ibution of e. 



Proof: 

The Bayes estimator is that estimat9r which minimizes W( d) where 

By Tonelli's theorem the order of integration ma,y be interchanged 

so that W(d) may be rewritten as 
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W( d) = f [ ( d(x)-~1 2f(xl S)g( 9)d8]dx (5.1) x . 

The function W(d) will be minimized if for each fixed x the inte

grand in brackets above is minimized. Expanding the integrand in (5.1) 

one obtains: 

[d(x) J2f(x) - 2d(x) J 8 f(x; e)de + J e2rc~,, i)w:. .. , 

The above is a quadratic function of d and for each fixed x attain 

its minimum at 

d(x) = 

Therefore, the decision rule minimizing w(d) is the posterior 

mean of e. 

As was previously discussed the assumption in EB situations is 

that the experimenter has a sequence of past observation from which 

have been derived a sequence of estimators ct1(x) i=l,2, ••• ,m. The 

form of dk ( • ) is dependent upon the previous observation8 i 1 , ~, •• ·\. 

Because all EB proced11res require estimation of g( 9) or of /r(xl e)g( S)d8 

and because there are various approaches available in these estimation 
m 

procedures there may be several distinct sequences { di (x)) i==l" It is 

therefore necessary to consider what woul.d be desirable properties of 
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an EB estimator, Since the EB estimtte <ii (x) :Ls ~ function o:f the 

r. var. X the EB estimat<;>r is a r.va.r-. Tpe l,oss inc-ur·red i.n this manner 

is taken into account by thE;J Bayes :r:i,sk, However, the form of the EB 

estimator d (x) depends upon then previous realizations of the r.var. X 
n 

so that the Bayes risk is itself a random variable. The author will 

denote the Bayes risk associated with dn(x) by W(dn)· From Maritz (16) 

one observes that one measure of the effectiveness of an EB estimator 

dn(x) is EnW(dn) where the e~pectation is with respect to all past and 

present 

respect 

samples of size n. That is the expectation is taken with 
n 

to the unknown density TT (/f(x. I e)g(S)dS). 
. 1 1 l.= 

Definition 5,lt,; An EB estimator dis strongly asymptotically 

optimal (a.o.) iff 

lim E\ W{d ) = W(d*) 
n-i'oo n n 

where d* is the Bayes estimator of e with ~es~ct to g(S), 

Definition 5,5: An EB estimator dis weakly asymptotically 

optimal iff 

lim W(<\i) ~ W(d*) 
n~oo 

Proposition 5,1: If dis strongly a.o. then dis weakly a,.o. 

Proof: 

Let d* be the Bayes estimator of e with respect to g{ e). Then by 

definition it must be the case that W(dn) 2: W(d*) so that EnW(dn) ~ 

EnW(d*) = W(o.*). Now suppose that dn is strongly a.0.1 i.e. 



lim En(W(dn)) = W(d*). Therefo:re, lim E (\;(d.) = lim [E (W(d) -
n~oo n-+f&!iJ n n n~eo n n 
E (W(d*)] = lim E (W(d) - W(d*» = lim E W(d) - W(d*) = Q. 

n n-.oo n n n"1>~ n n 

Let A= [t: W(dn)..,, W(d*) ~ I} and let B = -A. 

Then given ~ > o there e~sts an ;N" such that for n > N 

W(<\i) - W(d*) 
< e because of the pointwise convergence. 

One may then write: 

E 
n 

W(d ) - W(d*) n 

I W(ci,,) : W(d'i 

dF (t) 
n 

By the definition of B the last in,te~ra,1, is not l~ss than f dF n (i) == 
B 

Pr [ I W( c\i) - W( d*) I > e } • Therefore, given e: > o there exists an N 

such that for n > N it follows that Pr f J W( dn) - W( d*) I > e ] < e. 

Hence, dn is weakly a.o. fore. 
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A few theorems regarding asymptotic optimality that are relevant 

to this study will be presented. The following j_s due to Robbins (2Q). 

Theorem 5.2: Qiven the EB estimator dn(x) of e with respect to 

g(6) and loss function L(d(x);:9) then dn(x) is strongly a.o. if 

( i) J { sup L( d(x); .e) J g( e),cte ( oo 
d 

and (ii) The Bayes risks for d (:x) converges in probability to the n 
Bayes risks of the Bayes estimator for almost all x. That 



is dn(x) is wealcly ~.o. 

If the parameter space is not bou,n4ed then (i) above cannot hold for 

the squared error loss function. 
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The following two results are due to Rutherford and Krutchkoff' (22). 

Theorem ,2 ·~; Oi ven the EB estimator dn ( x) of. 0 with respect to 

quadratic loss and density q(9) then dn(x) is weakly a.o. if 

(i) g(e) possesses a bounded moment of order greater than 2, 

and (ii) dn(x) is a consistent estimator of the Bayes estimator d*(x) 

Theorem 5./±: If X is an ab::wlutely continuous r.var. for all 

values of E) such that the density s~tisfies 

Dxlog f(xle) ~ a(x) + b(x)e 

where a(x) and b(x) are any functions of x such that b(x) f o 

and if J Dxf(x I e) g(' e)d6 = Dx f f(x I e) g( 9)d9 tqen tqe Bayes estimator 

of e is: 

where f(x) = 

d*(x):;; h(x)~(iJ Dxt'(x) 

f f(xl 8)g(-8)d8. 

From the work of Parzen (17) one may obtain a consistent sequence 

of estimators for d*(x) by using consistent estimators of f(x) and its 

derivatives. Some of the tec;h.niques suggested by Parzen are discussed 

below. The utility of the last result is that it provides a method for 

obtaining EB point estimate in a manner which circumvents e~licit 

estimation of g(e). 

It should also be remarked that apart .from comparing EB procedures, 

the determination of EnW(dn) is useful for comparing non~Bayesian pro

cedures with those derived by EB techniques. 



CHAPTER VI 

EMPIRICAL BAYESIAN POINT ESTIMATION 

1. Estimation When),. is Known 

The standard parametrization of the inverse Gaussd.an density is 

given in ( 1. :1,). In the formulation of EB problems the density g( e) of 

Chapter Vis frequently called a "mixing; cii:;3tribution" instead of the 

previously used "prior, distriibution." At this point the author desires 

to avoid estimation of the mixing distribution. To this ~oint the 

author has consistently used the (µ.,A) parametrization of the inverse 

Gaussian distribution as many classical results are formulated in these 

tet'ms. It is now necessary to reparametrize the d13ns:i,.ty to obtain 

estimates and simultaneously avoid the mixing distribution. To this 

end the author will apply the transformation v = µ-2• The parameter v 

so defined is, in terms of the Brown:i.an motion desGribed in Chapter I, 

equal to ( velocity/distance/ so that the parameter v is connected with 

the kinetic energy of the particles under Brownian motion making the 

transformationµ= v-i gives: 

( 1 ,1/2 -3/~ [~4v ( -1/2)2] .f x;v, ,..) = - I\. x. exp x - v -{2n- 2x 

where o < v < oo. 

If a random sample of size n is obtained then the distribut:l,on x 
is: 

,.., ... , 
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for o < x < oc> and zero elsewhe:re q 

Following Rutherford and Krutchkoff technique presented in theorem 

5.4 one obtains: 

where: 

and 

log h(j;v, >..) = i log (n~/2n) - ~ log x "" n>.vx/2 

+ n>..vt .... nA/2x 

= a(x) + b(i).v 

From theorem 5.4 the Bayes estimator with respect to any mixing 

distr-ibution G(v) and quadratic loss is: 

dg(x) ~ Dx h*(x)/(q(x)h*(x)) - a(x)/b(x) 

or in this case: 

(6.1) 

where h*(x) = /h(x;v, X)G(dv) is unknown and must be estim~t~q. 

It is the author's purpose to obtain the classical competitor of 

dg(x) since it was not possible by this procedure to obtain the EB 

competitor of x under the p~ametrizati.on of ( l.1). To this end note 

that since x is sufficient for µ. it is suffic:ient .for v. Also the 



family of inverse Gal,lssian, diet:rtbu.t,tons :l,.e complete ~Q th~t xis a 

complete sufficient statistic for Vo From Johnson ~d Kotz (12) one 

obtains: 
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E(l/x) = 1/µ + 1/nA = v* + 1/n~ (6.2) 

and (6.3) 

From (6.2) and (6.3) one ma, then conclude that 

is unbiased estimator of v and since it is b~sed on the eomplete suf

ficient statistic it is therefore possible to conclude f~om an extension 
. A 

o:f the Rao-Blackwell theorem as found in, Hogg and Ora:ig ( 9 ) that v c is 

the MVUE of v. 

If one compares (6.1) w;tt'.Q (6.4) it i.~ appar~I?,t that the Bayefjl 

estimate is biased by n»i£(x) Dx:h¥(r). 

A difficulty encountered in using dg(x) is that its estimation 

;requires the estimation of h*(X) a:nd its derivative D,x.h*(X). Rutherford 

and Krutchkoff (22) refer to Parzen (17) who develops COilSistent esti

mates h;(x) of h*(x) of the fo!'lll 

hn(x) = 1:p(n) ~(~(ri)y) dH~(y) 

where H~(y) is the empirical cdf of x. The function K is thought pf as 

a weig~ting function and p(n) is a constant dependent upon the sample 

size. 

Parzen shows that if the fo).lowing hold then h*(X) is asymptotically 
n 
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unbiased at the conti,nuity point~ of h*(X). The s.fo,reme:ntioned condi-, 

tions are: 

(i) lim p(n) = o 
n~oo 

(ii) sup I K(y)lc:: 00 

yeR 

(iii) J_: I K(y) I dy < 00 

(iv) lim lyK(y) / = o 
y400 

( v) 1: K(y)dy "' 1 

If one replaces ( i) by ( i') ~ lim np(n) = oo t.hen ©Pe obtains a. 
Il""?'oo 

mean square consistent estimator of h*(n). Parzen also additionally 

l~~its K(y) to be an even function of y and establishes that 

lim np(n) Var[~(n)] = h*(x) ~
00 

K2(y)dy~ 
n~oo J-oo 

Some of the K(y) suggested by Parzen q.re given below: 

K(y) 

(2n)~ exp (-y2/2) 

l exp .... I y I 

[rr(l + y2)]-1 

(1/2n)(sin(y/2)/(y/2)) 

1/2fn 

1/2 

1/in 
1./Jn 

Given Pa,rzen's consistent estimate of a densi.ty it j,.s possible to 

develop consistent estimates of the derivative of tne denf;lity. There 

are likely more powerful assertions thaJ1 the following but the author 

believes this to be sufficient for most purposes. 

Proposition 6.1: Suppose an unknown density f(x) is estimated by a 



sequence f f n J defiz+ed by: 

(0 

f (x) = J ~ K; (~) dF (y) n _oo P\l'lJ ptn) n 

where Fn(y) is the empirical c.d.f. of' x and where: 

(i) lim n[p(n)]2 = i:;o, 

n ""'? '» 

(:i,.i) sup I K(y) I < .pa, 
y 

f : I I (iii) - K(y) dy ~ oo, 

(iv) 1im I yK(y) I = o, 
y-7.oO . 

(v) f'_~ K(y)dy = 1, 

(vi) K(y) = K(-y), 

• 

(vii) f(x) is uni.fo:rmly continuol;j.s and differentiq.ble, 

and (viii) K(y) is diff~rentiable. 

Then f' (x)4f' (x). 
n 

Proof: 

Under conditions (i) - (vii) Parzen (17) establishes that given 

e > o there exist an N such that for each n > N then Pr { sup If. (x) ..... 
-oool\,11"00 n 

f(x) I > e J ( e. Let h > o and consider l f (x + h) - f(x + h) I. Let n 

xc:t<x+h - -
Then from P arzen' s results one concludes that sint;e I f) x + h) I + 

Ir (x) - f(x) I< 2 Ir (x*) - f(x*)lthen: n n. 

Pr ( I fn(x + h) ,.. f(x + h) I + I fn(x) - f'(x) I > ~} < 

76 
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This gives: 

Pr [ l f (x + h) - f(x + h) I + I f'(x) - f (x) I > E J < e (6.5) n 11 

From the triangle inequality one obtains: 

If (x + h) - f(x + h) I+ I f(x) - f (x)I > Ir (x + h) - f (x) - (f(x + h) n n - n n 

- i'(x)) 1. 
Using the above in (6.5) gives: 

Pr [ If (x + h) - f (x) - (.f(x + h) - f'(x)) I > e} < e. r1 n 

Now put e :::: ho to obtain: 

Pr f j r,/x + h) - fn(x) .., f(x + h) ':" r(:x), I > o} < h6 < 6 
~ h h 

for· small h. Therefore since f)x) and f(x) are both differentiable it 

follows th~t : 

Pr [ lim j fn(x + h) - , fn(x) ... f(x + h) ... f(x) I > 6 } <. 6 
h70 h h 

or Pr [ I f~(x) - f' (x) I > 6} < 6· Bence f~(x) is q, consistent 

estimator of f'(x). 

2. Parametric Estimation of µ, 

In this case the author makes the accumption that the mixing distri..-

bution is known to be a member of a particular family. It is the 

author's opinion that this is an unusual situation bµt poss:j.ble. For 

example, the mixing distribution ofµ, might actually be believed to be 

a modified conjugate prior or perhapsµ. is thought to be normally 

distributed. This is dependent upon t;,he investigator's opinion or on 

real prior knowledge. 



In this context asswne µ. has a d19naity g(µ.;~)~ If m samples of 

size n are obtai,ned then the appropriate li~elihood is 
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(6.6) 

~ 

where x represents all present and prior observations and >,. is asswned 

known. 

One of the ~ost acceptable solutions to the problem would be to 

maximize (6.6) with respect to~ by numerical procedures. In some 

cases there will be less sophisticated ]:rut computatio:p.,:;11ly simpler pro

cedures. If we assume the ML estimate of '5 obtrrl.ned from (6.6) is ~l<· 

then the EB estimate of µ at the mth stage is 

/\ 
ag(x) 

The ML estimate~ is generally a consistent estimate of~. If one 

can conclude that di('x)~dg(x) then d~'cx) is weakly a.o. provided g 

possesses a bounded moment of order exceeding two. 

Other methods may be employed to estimate et as will be seen later. 

However, it is more plausible to believe that even the functional form 

of g is unknown. One then must choose some procedure for estimating g. 

Since any continuous function can be approximated within any 

desired degree of accuracy by a step function [Royden (21)], one method 

of estimating the mixing distribution in point estimation probl.ems is 

to take 

e. ~ 9 < e. l where j - 1,2 ••• k - 1 
J J+ 

(6.7) 
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Now i.f G(9) is unknown the;n both the pi and Sj must be dete:rmined 

in some manner. If one assumes m sample:, q;f' si~e n are a,vailable then 

the joint l:i,kelihood o~ (p,9) based,on ell sample~ is: 

:m k 
1(i;p1 ,P2 , ••• pk.e1, ••• A.) = TI [2 p.r(x. I e.)J 

J ~ . 1 . 1 J 1 J l= J= 
(6.8) 

One may determine the step function appro:ximati.on either by: 

(i) Use a numerical optimization procedure to maximize L(x;p,i) 
.l,,. ..:,. 

with res~ct to p and 9. 

~ A ~ 
or (ii) Obtain from each xi the ~ 9i and then maximize L*(1;p, ti) 

with respect to plllXl-
or (iii) 

1 A 
Set pi ;:; iii and u13e the MLE 9i 

Any of these procedures result~ in a step .func~ion which approxi

mates to G(0) and results in an EB estimator of e of the form: 

There are other procedures for obtai:ri.ing "smooth estimates" of the 

miring distribution and not all of these procedures will be considered 

in this chapteI•. An alternative to (iii) above is to estimate G by a 

finite mixture of densities. In the case of estimation ofµ with m 

samples of size none could do the following~ The ML estimate ofµ is 

x and i follows an inverse Gaussian probability law with parameters µ 

and nA.• If the i th st;i.mple results in µ. = x. then a smooth esti,mate 
1 ]. 

of dG is obtained by taking 
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Sm(µ) 

The practical utility of any EB proceq.ure is di,fficult to determine. 

This investigation takes on the aspect of a case study .anq. inferences 

to other situations could be misleading. 

What is involved in su.ch a study? First, one must guess as to 

what type of mixing distribution is likely to be encountered and then 

this distribution must be specified e;xactly for• simulation purposes. 

The conditional distribution of the observable r. var. is known. One 

may then have one or more EB estimation and classical procedures that 

one may wish to compare. 

Since the mixing distribution is known the Bayes risk for the 

classical estimator can be computed ar;id is a constant W0 • The reader 

wi11 recall that the Bayes risk for any EB p:rocedµre is a random vari-

able. The question is whether or not to use an EB estimator in pref-

0rence to a classical estimator. The answer is a f-unction of the 

individual sample size, the loss function, the number of samples, and 

the mixing distribution. If all of these are f:;i.xed then the investi-

gator can approximate the distribution of the Bayes risk Wd for the EB 

estimator d. One then attempts to determine t:\1,e answer to the fol.lowing 

questions: Is EWd < W/ What is Pr [ Wd < We J ? How m~y past samples 

m of size n are required so that Pr [ W d < W c J > 1 - e: f o:r a speaified 

12,? 'I'hese questions are of paramount i.mport.qnce to determine the 

utility of d. Unfortunately they may also be quite expensive to cal-

culate. This is due to the fact that the EB estimator is e:xpensive to 

calculate and one must determine the value of the EB estimate repeatedly 
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to determine a single realization of the Bayes ri$k (definition 5.2). 

As a compromise between, doing a Ct!,lSe study on potnt estimates 

based on. a step function and the economically unfeasible case study 

involving smooth EB estimates, the author will present an evolutionary 

example illustrated in Table II. The example is not based on real data 

but does depart from using a "natural conjugate prior." The between 

sample distribution ofµ is N (µ = 1, ~= .2) and the hypothetical 

experimenter has specified a normaJ.ity constraint on the mixing distri-

bution. For each value ofµ a sample of size ten is taken which is 

used for estimating the parameters of the normal mt:xing distribution. 

At preselected potnts the total nwnber of samples taken a~ that point 

is noted and the other quantities identified are printed. This example 

cannot be presented as representative, si,nce no 11eplieat:i,.on at any stage 

is presented and because the stopping points are weighted tQward those 

points with a large number of previous samples. The parametric Bayes 

estimate at stage i is: 

where n = 10 and ;., = 1, and T(µ.) is given by: 

3. Estimation When A is Known 

As before the author will initially derive t,he. Bayes estimate of A 

which bypasses estimation of the mixing distribution of A• When µ. is 

known T(x) = ~ C:1, - µ.) 2 is sufficient for ;., and from Chhikara ( 4) 
i=l xi 



NUMBER OF 
SAMPLES 

5 
7 
9 

12 
15 
20 
27 
35 
47 
62 
81 

107 
142 
188 
248 
328 
433 
573 
757 

TABLE II 

AN EXAMPLE OF CLASSICAL AND PARJu\ffi:TRIC EB ESTIMATION 

ESTIMATED PARAMETERS ACTUAL VALUE CLASSICAL 
MU-HAT SIGMA-HAT OF MU ESTIMATE 

o.9522E oo 0.1455E 00 0.9149E 00 0.1024E 01 
0.1108E 01 o.4737E oo 0.9070E 00 0.8508E 00 
0.1106E 01 0.4609E 00 0.1109E 01 0.6781E 00 
0.1293E 01 o.6802E oo O.l295E 01 0.2697E 01 
o.1221E 01 0.6433E 00 0.1114E 01 0.1423E 01 
0.1171;.E 01 0.5816E 00 0.6645E 00 0.8247E 00 
0.1103E 01 0.5418E 00 o.7242E oo o.3714E oo 
0.1174E 01 0.5143E 00 0.1049E 01 0.1488E 01 
0.1189E 01 o.4957E oo o.9975E oo 0.1230E 01 
0.1234E 01 0.5565E 00 0.9867E 00 0.1677E 01 
0.1241E 01 o.5277E oo 0.1325E 00 0.9273E 00 
0.1256E 01 0.540JE 00 0.8143E 00 0.8022E 00 
0.1240E 01 0.5306E 00 0.1040E 01 0.1849E 01 
o.1212E 01 0.5575E 00 0.109GE 01 0.1604.E 01 
0.118/+E 01 o.5337E oo o.9631E oo 0.1194E 01 
0.1176E 01 o.5352E oo 0.1019E 01 0.6320E 00 
o.1171E 01 o.5154E oo o.7877E oo 0.6354E 00 
0.1181E 01 o.5237E oo 0.9843E 00 0.7728E 00 
0.1165E 01 0.5146E 00 O.ll59E 01 0.5343E 00 

PARAMETRIC 
BAYES ESTIMATE 

0.9765E 00 
0.1059E 01 
0.9010E 00 
0.1958E 01 
0.1498E 01 
O.l057E 00 
0.4588E 00 
o.1481E 01 
0.1340E 01 
0.1570E 01 
0.1122E 01 
O.llO'{E 01 
0.145l;E 01 
0.1591E 01 
-O.l289E 01 
0.8651.;.E 00 
0.8516E 00 
0.1017E 01 
o.7198E oo 

-

~ 
!\) 



T(~) ;Ls distributed as a µ.2f />.. var;i.~te. Fr9m thi,s one can conclude 

that 

h( t; ).) = 

... ~t 
). r/i tn/2 .... 1 e 2µ. 

2µ2 I 'r(~) 
0 

t ) 0 

elsewhere 

e.3 

Now employing the aforementioned procedure of Rutherford and Krutchkoff 

gives; 

(6.9) 

Equation (6.9) satisf:l.es the conditions of Rutherford and Krutchkoff 

with: 

Therefore the EB estimator of >.. when µ i~ k:nown is: 

where h*(t) is the esti~ated density oft. 

In the previous section some general estimation techniques were 

discussed. The estimates so obtained ca,nnot in general be presented 

unless the mi.xing distribution is known or data are available. For 

example, the mean of the truncated conjugate prior is not known ex-

plicitly so the EB estimator cannot be given in closeq. form. This is a 

partial motivation for the preceding numerical example. Then th~ case 

whenµ is known the situation is artificially improved in that the 

natural conjugate prior distribution of~ is the well~known gamma 

.. 
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probability law. From Ma,ritz (16) one no~es that even in EB problems 

there appears to be a magnetic attraction to ~sing the natu~~l conjugate 

prior as the mixing distribution. This is again a case of parametric 

EB estimation, in that the mixing distribution is taken as 

Q A. < 0 

Chhikara previously provided the ML estimators of~ and A which 

were modified to prod~ce µ and tf' of the previous numerical example. 

Iri tlrl.s case the author will demon~trl;lte that direct ML estimation of 

the parameters a and pis not possible. 

The likelihood for a simple sampl~ is: 

00 

L(a,p;J1:) = £ ~(:x;;µ., >i)g(µ.)d~ 

where f(i;µ.,>i.) == (>i./2rrt/2 (fr xi'""J/2) exp [-.. ....A-.. 2 .£ (~ - µ.) 2. J (6.10) 
1=1 2~ 1=1 ~i 

Upon integrating ( 6 .10) one obtains: 

L(a,p;i) 

where t = (1/2 2) ~ (xi - µ.) 2 
µ. ., . . 

i=l x. 
J.. 

so that 

n n 
logL = c + pl.na - (2 + p) ln(~ + a) + 1n rc2 + p) - ln r(p) 



Taking DalogL, DplogT." and equating t,;heee to zero givesi 

n 
ln I · a ) - ,jr( p) + 1\1(~ + p) "' o 

a + I: 

where v(x) = DX ln f(x) is the digarnma function. 

(D logL) 
a ~ - (~ + p)/(~ +a)= o 

or a = 2PI: 
n 

(6.u) 

(6.12) 

S . a 2p ( 6 ) ( 6 ) ince a+ I:= 2P '+ n substitution of a from .12 in .11 gives: 

ln[2p/(2p + n)] - *(p) + ,ir(n/2 + p) ""' o (6.13) 

If one notes that 1n(2P 2; n) = ... 1n(2B ; n)+ lnp then equation (6.13) 

can be written as 

W(p) - ln(p) = ,jr(p + n/2) - l.11.(p + n/2) (6.14) 

If one defines z(p) = ,jr(p) - ln(p) then (6.14) indicates z(p) is cyclic 

with period equal to one-half. 

Consequently, since tQe likelihood eq~~tion is continuous the 

derived equation either has an infinite number 9f solutions or no solu-

tions. 

From Abramowitz and Segun ( 1) one .f,'i:p.d:;, that 

~ 

ljr(p) = _ 2e ( t • ex~(-2ntl dt 
Jo t2 + P2 

1 ... -+]np 2p . 
co 

hence z(p) = .,. 2e ( · 2 t 2 e:iqJ(-2TTt)it 
Jo t + P 

1 .... - < 0 2p 
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Sin,ce the derivative of the l:i,.kelihooo. is bo'\l,lldeq. aq.d no;n.iero f.'or pin 

( o,~) one must conc],ude that L has no interior eJCtrema~ In view of this 

it is not possible that the joint likelihood of m sampl~ will possess 

interior extrema. 

A much simple~ technique may be developed by using ML estimation 

in conjunction with the method of moments. Each sample yields a ML 

estimate of X. given by 
1. 

By the method of moments one obtains the equations~ 

-
E( A) = J2 ; 'i"' a 

2 
( ') .£.. • s .... Var 1v. = z = X .. 

a 

From the above, estimates of a and p can pe depived. These esti· 

mates are: 

rl (:;:::,)2/ 2 p = A s1. 

The EB estimator corresponding to this estimation scheme is then: 

d(:it) = (P + n/2)/~a + .. 12 ~ (~J ... µ) 2] 
2µ. J=l x. 

J 

4. Smooth EB Estimation Whenµ is Knoylil 

It is now assumed that the m:Lx:ing distribut!ion of A is unknown. 

The author will p~esent no material regarding the step function approxi.-

mation of the mixing distribution as these prace~ures are inherently 



numerical and the a.uthor intends to 'UI'ldertake no additiorial numerical 

analyses. 

If one reparametrizes the inverse Gaussian by 0 = f then one can 

obtain a smooth approximation to the mixing d:i,stribution based on MVUE 

of e. From Chhikara ( 4 ) one can conclude that 

A 2 ll 2 
if 9 = ( 1/nµ. ) i:: (x. - µ.) /x . 

. 1 J. l 
J= 

then 
-" ( n n) 8 ,.., Gamma a ;:: 2S , p = 2 

A A 
Gi.ven m samples and the corresponding est,imates a1 ••• em then a 

smooth estimate of g(S) is: 

n 
m A /2 2 -1 

g*(e) =}:; (1/m)(n/28.)n . e exp( ..... ne/29.) 
. 1 1 . 1 1= .· . . . . . 

r(~) 

with the resultant EB estimator of e being 
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d(xm) = J ev( 9)de/ J v( e)de (6.15) 

where v( e) = f(xm I 9) g*( 0). 

The above parametrization is not necessary but may be of practical 

value since e is proportional to the diffusion constant in the context 

of Brownian motion mentioned in Chapter I. 

If one is interested in smooth estimation of A then noting that 

t(t) = ~(x. - µ) 2 is sufficient for A and that 
l 

x. 
J. 

t - Gamma ( a c. ~ , p = n/ 2) 
2µ2 
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then ·\ t- Ga(l, ~) .from whic4 one conclude:, that W;;; ~ .A...2. g1;:2 - !.! 
2µ. µ. 11.t - t 

fallows an inverted gamma distribution wi;t,h paramete;rs v .. n and 

$ = A/µ.2. 

Since E(W) - Wy . - nA 
- v - 2 - µ.2(n _ 2) 

it is apparent that t ;;:; (n .":. 2)~2 w 
n 

A 
is unbiased for"/,. and since"/,. is a one to one transfomnation of the 

I\ 
complete sufficient statistic t then ;., is MVUE ;('or ;.,. 

The point is, however, that the density of 1 can be determined to 

be: 

n ,'\ 2 +1 A 

g(1) = [ (n "" 2) "/,./2X] e;x:p [ .... (n - 2) >,./2>.] 

(n - 2) i.. r(~) 

A A A 
20 that from m samples one first obtains the estimates A1,A2,,~·,Aro and 

take 

g*( >,.) 

n 

= i (1/m)[(n ... 2);;2..,.,J2 ;:~ exp[.,.(n ~ ~r;_12,.J 
i;;:1 

(n - 2) 1i re~) 

The resulting smooth EB ~stirnation is then of the same form as 

(6.15), with the obvious substitutions. 

5. Simultaneous Estimation of µ. and >. 

As far as the autho;r- is aware multiparamete:r estimation problems 

have not received much attention in EB literature. The work put .forth 

involves location and scale parameters which is not appropriate for the 

inverse Gaussian under the µ., i.. parametrization. In this situation the 

author is not aware of estimation procedures which bypass explicit 



estimation of the mixing distribution g(µ,X). Of ~oµrse g(µ,~) could 

be approximated by a bivariate step functton. Since no real evaluation 

of any EB procedure is presently possiblE;i the a,utbor will present a 

smooth EB procedµre. In determining a smooth approximation to the 

mi.xing density the reader w:i,11 note that the ML est:i,inates of µ. and >..-1. 

are: 

lt has been established as referenced in Johnson and Kotz (12) that"µ 

-1 -1 
and);. are independent. Therefore, p; and g(>..-) are independent. One 

also notes that 

µ ......, Inverl:le Gaussian ( µ., n,,,>..) 
,.. 

and that µ is MVUE for µ. For this case the author has deduced from 

the fact that )):(~~1 - x-1)- x;,\n ... 1) that 

follows an inverted gamma distribution with parameters v:;:: n - 1 and 

~ = (n - 3h/(n - 1). 'J;'his asswnes that n > .3. In this case~ is MVUE 

for >.. and being a .function of 1:'"'"1 alone is independent of µ. This inde,

pendence permits the formation of the joint density of (µ,1) which, as 

before, is the basis of the author's smooth estimati9n procedure. Fol-

lowing the previous developments, the a.uthor' s estimate of the <;iensity 

g(µ,A) based on m samples is: 

m 
g*(µ,>..) = ~ (1/m)h.(µ,>..) 

i:::.l J. 



where hi(µ,>,.) = .Jn>,.1/(2rrµ.3) exp[ .... n~1(i,i, - ~1)2 /(2~~µ)] 

x 

n+l 
"' T . [(n - 3)~/2>,.J e11:p(<cf(n .... ;3)~/(21\)] 

[(n ~ 3)\/2] rc.11 ; 1) 

.for µ. > o, >,. > o, zero elsewhere. 

From this the EB estimate ot µ based on the mth sample is: 

where 

w(t ,µ,>,.) == f('i'. µ.,>,.)"'*. (.µ.,>,.) m ... m; 5· 

The EB estimate for>,. is simila,rly d~fined. 



CHAPTER VII 

TESTS OF HYPOTHESES 

l, IntroductiQn 

First, a general introduction to some of the Bayesian procedures 

used in hypothesis testing will be discussed. These techniques are 

those that are used in Empirical Bayes proc~dtu:res. 

One will be interested in testing H0 : 

be assumed that P0 and P1 may be simple o~ 

6eP vs. H1: eeP1• It wil.l 
Q 

qomposite c;Ind that p 0LJ p 1 

covers the parameter space. The Bayesian approach to testing H0 vs. H1 

is usually of one of two forms. One procedl,l.~ entails computing th~ 

(1 - ~) HPD region Q for 6. Recall that this .i~ the Bayesian analogue 

of a classical confidence interva_:i. The procedure is to then accept H0 

and reject H1 if Pr [ P0n Q} > Pr { P/) Q} or, in the case of a 

simple vs. composite accept H0 = e == 80 if 90 ~. I.;f both H0 and H1 are 

simple one accepts H0 if d(P 0n Q) > d(P 1n Q) where d is the posterior 

density of e and all aforementioned probabilities are with respect to 

this posterior distribution. 

Another Bayesian approach that sometimes leads to the same pro-

cedure involves selecting a rejection region from the s~ple space of 

the observed r.var. with the criterion that the rejection region should 

result in the minimization of the Bayes risk (for a specified loss 

function and mi:xing distribution) with respect to all such rejection 

regions. This is a more versatile approach.. In ciassica.l. testtng 
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procedures one may encounter sit~ation~ where no UMP ~est ey.::l,sts. Like-

wise one may encounter situations Wi'h),n1 no reje,H.rt:ton ri$giQ:r! €;';Xists which 

minimizes the Bayes nisk. 

In EB procedures there are two forms of loss functions that are 

most commonly encountered in tests of hypotheses. Thef!e are the O.,.. 1 

loss and linear loss. The latter loss fµnction will be treated below. 

By O .... 1 loss it is meant "!:,hat the exp~rimenter i11-curs O loss if a 

correct decision is made and a unit loss i.f an incorrect decision is 

rendered. Let X denote the sample space of the Qbse:rved deviate X and 

let R and A denote respectively the rejection and acceptance regions for 

the test Ho: eeP O vs. Hl: e~ 1 • Let f(x j e) and g( e) represent the 

conditional of X and. m13,rginal of e. The Bayes risk; is then; 

W(R) = Pr { An incorrect decision is made] 

= JR JP f(;x: I 8)dG( 8)d:x: + IA JP f(:x: I 0)dG( S)q.x 
0 . . 1 

Letting fi (x) =JP. f(x I 9)dG( 9), i = O, 1 then 
1 

W(R) =fR f 0 (x)d:x: + JA r1(x)d:x: > o,,, ( 7 .1) 

It will be assumed that X = RUA so that nq seq~ential or randomized 

decision rule is encountered. Under this constraint; 

where 

W(R) = JR f 0 (x)d:x: + fx-R r1(x)dx 

= K + hi (f0 - t 1)(x)dx: 

K = f X f 1 (x)d:x: > o. 

(7.2) 

In view of (7.1) W(R) will be m:Lnimized by l;lllo¥ing the integration 

in (7.2) to be over regions where f 0 - r1 < o. 
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+he O - 1 loss f'un,cM,on then leads to the test criteria of ''h:i,ghest 

posterior odds" si,nce if q(x) is the marginal of X then £0 /r.1 = 

{f0/q)/(f1/q) is a ratio of posterior probabilities. 

Frazer ( 7 ) has shown that the above analysie can be extended to 

multiple hypotheses and that the procedure which minimizes the Bayes 

risk is that which accepts the hypothesis with highest posterior 

probability. The above tests c~ also be conside~ed from the classical 

v:tewpo:!.nt. 'l'hat is , one may inquire as to their size, power, and 

expected power. These compa:risons are interesting but are usually of 

little value since the two approaches have fund~enta.lly di;t'ferent goals. 

It may be well at this point to introduce some notation and simul-

taneously :tieview the notion of. asymptptio optimality. For a given EB 

procedure concerned with discriminating between H:0 : ~e;A0 an<:i H1: SeA.1 

there will exist a sequenc~ of rejection regions Rm,m ~ 1,2 •••• The 

Bayes risk is 

(7.3) 

As before, the EB procedure is strongly asymptotically optimal iff 

E W(R ) --..w(R ) pointwise I where Rg is the Bayes region which minimizes m m g 

equation (7.3). The procedure is weakly a.o. iff W(~)~W(Rg). 



2. EB Test Procedures for Simp~e ffy,p?thts~s for 

the Inverse Gaussian Di~tributi,o~ 
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~twill be assumed throughout that there a~~ ava:1.lable a se~uence 

ot samples (.11} ~-l each ot size n. 

Consider first the problem of discriminJti~s betw~~n the simple 

bypotheees: 

Ho: µ, :;;: µ,o 

Hl: µ, " µ.1 

where µ.0 < µ.1 and ~ may or may not be known. A 'l,lenial El3 procedure is 

uised and it is assumed that the O - l loss .t'uneti,on is M~ept.;a.ble. 'rne 

distribution, G(µ,) is ass1,ll'lled to b~ of t:he ,t'(!)~; 

dG(µ, 0) ::i p0 

dy(µ,1) "' P1 

The mean of the r.var. xis then giv~n by 

so that 

At the mth stage of the dec~sion process o~e ma,r estimate EX by 

ri../m. Using tqe method of moments one obtains: 
]. 
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One may the;n take al:! an estimate of p0 

p* ... max [o~p J om · ·· om 

P!m • 1 ... P~m 

and in this manner avoid negative estimates of p0 • 

1 m -
Consider now t~e behavior of m ; X:1,· :C.f one bears in mind that 

;i.:;z;l 

xi is the sample me~ of reali~ations of ~j I Mi' j ~ 1,2, •• ,n then one 

may write 

l.m_ lm lm 
m I: X1, - -m- ~ M. =; - Il [ (x1 I M.1) • M. J 

i=l ·· i=;l 1 m 1,..1 ii, 1 

and emplo;ying Ch,ebyshev' s first inequ1'3,;I.ity as pe.t'e:r~n<;ect in Fisz ( 6 ) 

G:n,;; obtains :f:r·om ( 7. 4) that 

Pr t .L2 (~.- ((x. IM.) .... M._,_))2 > e} . l l 1 1 -m 1== 

is less than or equal to ~2 E [Li (x1 I Mi) - Mi j 2 • Since tile Mi are 

indepe,ndent r. var. and Xi I Mi and :x; j I M j are indepefldent ;f'or i I j 

then the a,bove expectation is ~ E[ (X. I M. ) .... M. ]2 which is just the 
. · 1 1 1 
1::::l · 

3 conditional variance of X. I M. or M. • Hence 
l. 1 . -2;. 

n). 

Pr { 1 t[(X.I M.) ... M.] I> e} 
m i 1 1 -

Now note that the random v~iables MI are independent identicaj.ly 

distributed. If E(M~) < oo then by Ko:I,mogo;rov' s Law of large numbe;rs the 
1 
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m 
l t M~ ~ ~ a.s. so that if one takes the limit of (7.6) as m ~ 00 
m . 1 1 1 

1;:: 

m 
one obtains that the l !: (X. I M.) ~ .! IM. a.s. (G(µ.)). By assuming m . 1 1 1 m 1 

1::; 

M possesses a bounded third moment one insures that l IM. p(µ.).~ E(M). m · 1 

1 m -
Hence, m ~ Xi almost surely converges in probability to the mean 

1:::;l 

of the random variable M. The only constraint the author imposed on the 

mix.i.ng r.var. M is that it have a bounded third morn~nt exist. There are 

perhaps weaker conditions which can be imposed, 

Referring again to equation (7.4) in conj'unction with Slutsky's 

"""' p theorem, one can. conclude that for almost all µ,, p001 --=...,) Po· In this 

case G (µ.)-->G(µ.). 
m 

Consider W(Rm) - W(Rg) = 

f JL(R ) ; L(R ) (j;l)dF(x I µ)d[Gm(µ) - G{µ)] 
m g 

+ J f L(R ) = L(R ) L(Rg,µ)dF(x I µ.)d[Gm(µ.) - G(µ.)] (7.7) 
m g 

The quantity defined by Equation (7.7) is less than 

< lim I p - p I + lim I Pim - p1 I = o in probability 
- m~QO om o m~IXl 

so that W(R )~ W(R) and Rm is weakly a.o. m g 

One may derive in a similar manner procedures for testing H0 : 

~ = A0 vs. Hi: l = Ai• In thie case it is assumedµ is known and 
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"-o < \· 
Using the same tormul~tion a~ before one obtains 

Using the estimate ot the variance from all samples and the method 

ot moments, one ob:tains as an estimate o:r p0 ,a;, Pr { A =- A0 } ; 

m n 
t E ( )2 

AOAl i·l j=o:l ~j .... µ. ... mn>..o 

mn( "-1 - ).o) 

The resultant estimator is Porn = mu[o,p0m]. I.t Pom ~ P0 (1,1i) 

then a.s be.fore the sequence Rm 0£ EB decisi<m rulel!I is wtakly a.o. 

J. One Sided Tests With One Parameter Known 

Consider first the hypotheses H0 : µ. !; ~o vs. H1: µ > µ0 • It is 

a const':!qu.ence of the Bayes test procedure that the hypotheses With the 

hi.ghest posterior p:i;,obability is aecepted wher1 a O ... 1 loss !unotion 1s 

w:HJd. For the one sided hypothel$es the ju<:lgement ma1 be made 

eithe~ by computing the probabilit~es or by computing the posterior 

median µ. 5 0£ the parameter. The decision procedure is then to accept 

H0 iff µ.. 5 f µ.0 • As far as the author is aware these procedures require 

explicit. estimation of the mixing distribution of µ. 'l'he author will 

discuss methods that have been euccesaful in other applications. 

The author has previously discussed some methods for obtaining 

smooth estimates or g(µ) in the context or estimation. Maritz (16) 

suggests using the following approltimation G*(µ) of G(µ) where 
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and j = 1,2 •••• ,k - 1 
A A A 

and where µ1,µ.2 , ••• µk are obtained by maximizing: 

m k ... 1 Jµ.j+l [ (- )2] . 1 ·· ·.· · ... n"- ... µ. 
I log [ I {k _ i)(µ .;. µ. , µ. 8~ .. ·. exp .,. •1 • *' dµ.} 
i=l j=l j+l j j ,., _,_ 211 x. 

~ 1 ~ ·~ 

with respect to µ1,µ.2, ••• µ.k. The EB decision rule is to accept H0 iff 

the solution 1Ji.; too:(µ.)= .5 is less than or equal to µ.0 • 

The il'lottvation .for this technique il:J the minimization of' the 

Kulbeek ... teibler distance between the actutal and app~oxi.m*te msJ;"gin~ 

distribution of the r.var. X. Marit,z indicateli! that this procedure is 

useful in that it is weakly a.o. or almo~t weakly a.,o. in the sense 

that, the Ba.yes risk for the EB procedure converges in proobab;i.lity to 

t,he W(dg) + 5 where dg is the Bayes rule. The que$tion aa to whioh is 

·cne case cannot be resolved Without knowing G(µ) exactly. The utility 

of this decis:i.on process as applied to the inverse GaussiE".n is ·~mknown 

a:nd could be determined only through Monte Carlo studie::h 

The author previously remarked that an alternate loss structure is 

30!netimes of value in EB tests of hypotheses. This loss structure is 

introduced :i.n the context of testing: 

Partition the sample space of X into A0 $Ild A1 so that 

A0 = ( i I H0 is accspted}and A1 = -A0 • The loss f\tnction is de:t'ined 
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in the following manner: 

The corresponding Bayes risk is: 

+ f J µ.o (µ. 0 .... µ.)f('Sc I µ.)dG(µ,)dx i. 

A1 -ao 

The Bayes decision rule is by d~finition the rule which minimizes 

W(t\) with respect to A0 • 

Rewriting equation (7.8) gives: 

Since W(A0 ) > o it is apparent that W(A0 ) is minimized by choosing 

A0 so that 

~ { J.: (µ - µ0 )t(x I µ)ciG(µ) } dx < o • 
0 



This is accomplished by assigning to A0 each l' such that 

Rewrite (7.9) to obtain: 

1:µ.t(x I \.,.)dO:(µ.) 

£:r(x I µ)ctG(µ) 

Equation ( 7 .10) represents the basic eonc~pt in the Bayes and EB 

tests involving the so-called linear ;Loss. From (7,10) one concludes 

that the Bayes rule is to accept H0 if'.f' :E;(µ. I' x) $ µ.0 • 
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The EB procedure mirni,cs the above through estimation ot Cl(µ). The 

~eason that the linear loss function is popular is perh~ps two-fold. 

First, it conf,:i.ders the magnitude of t,he er·ror and second, it leads to 

(,7· "0 1 
~~ 11,1 .• l. J q. As was mentioned in Chapter VT. 1 the estim.a.t:ion tif the posterior 

niea11 in zome cases can be accomplished without ~stimat:Lng the mi.xing 

distribution. In this case the hypotheses ca.n:not be ·t.eitecl in th1$ 

rr,~tm.er but must be formulated in te:rms of v == ~ • Under this param- .· 
µ, 

etrization one-~sided h..ypotheses about, v may be tested. B<1C&use of the 

pe.rss.'tBter space of µ. t.he above repa.rs.met:rization does not preclude the 

ut:Uization of this pr·ocedure for one-sided test of µ.. The same pro-

.::edure may be used to test one .... eided hypOtheses concerning ). without 

:t.'epar.:1.metrizing the density. 

Not all hypotheses that could be formulated have been discussed in 

this chapter. It is hoped that sorn~ of the gene:r·al approaches used 

have been inf'o:rmati ve. Some furthel" remarks conce,.·ni,ng the content of 

this chapter will be presented in the next and final chapte1•. 



CHAPTER V!II 

SUMMAR! ANP ~'raNSIONS 

1, Sumrne,ry 

This study wa.s d;i.rected tow~d devel,oJ)ing Bayijsi,m SJ1.d Ea procedures 

wllich were use;t'ul, in mak:;i,ng interenees re~~rding the par~eters of the 

inverse Gaussian distribution. 

The Bayesian study was l:i.rnited to oon~i~ering the results obtained 

in the stap.dard analysis ;Lnvolving a Jettre1's dtftu~e prior or mo~fied 

natur$1 conj~gate prior. Chapter II was 4ev~,~~ to d~veloping the pos~ 

terior distribution eorresPQnc\ins to the ve,iQ~~ c~se§ ;in whicn one or 

both of the paramete:i;,s we?'e 'I.U'Uffl.OWll• 'l'hefil, den.siti,es were the basis for 

the .following two chapters. ln Oha:pter III th,e ~sults o! Chapter II 

w~re extended by de~e:rmining t~e no:rmf3J.iz;ui~ c~µstant~ t9r t~ posterior 

distributions. The existence a,i.d. derivation ot mf1)&n, median, and modal 

estimates were alsQ presented, In addition, some ot tb~ sampling 

properties of tne modal estimators were presented, In Chapter IV the 

HPD. region, or Bayesian analogue of the cla,ssiea~ cQnfidepce interval, 

was introduced. Closed expressions were presented where possible and a 

numerical procedure was devised for, QQm:puti~g the lfPD ~egipn for the 

othe:i;- univariate pos.te:rior den1;1ities, A nl,l.IIle:rical example illustrating 

this analysis was pr~sente~ along with the qlassio~ re,\llts. 

Chapter V provides an intrQductory fr8.Qlework fQ~ the ~mpirical 

Bayesian anal,ysis inclµding theorems of general utiltt1 in.~B procedures. 



Chapter VZ and Chapter VII l;U'e concerned with EB :pQ:Lr!.t estimation and 

testing ppocedures applied to the ::Lnverse Gaussi~ f~ily of distribu~ 

tio;ns. Although some re~atively simple point est:inl~tors az,e developed 

in Chapter Vl, this chapter is more o~ ~ a~aptatiQn of suitable EB 

technique and algorithms. A num!!lrical. exlllln;ple i~ pr~1;1ented, where:i,n, a 

parametric EB estimate ii;! ~omputed along with i~s e+assical competitor, 

Chapte:r;- VII: is a J;"athe:r brie.:f' invest;i.gat:i,.on of E:a testing procedures. 

The author considered the more cQrnmonl,y e~co~tered test o~ hypotheses 

tor which there e:>d.st applicable EB pro~,~u,;-es. 

2. E;xte;ru~ions 

With regBJ;'d to the pure B~es:i,an anal.ys;is the fe;J,,low:i,n~ extensions 

would be useful. 

1. Investigate the variety of fami1~es of p~tgr d:i,.~tribut:i,ons 

derived in tbis stu~y. 

2. Consider alternative p~am~~nizatic~s o! the inverse Ga~ssian 

that lea~ to prior an~ poaterio~ 4~stributio~s w1P.ch are more 

mathematically tractabi~. 

3. Develop other families of 4istributions wl:p.cb Pan represent 

plausible priop lq}.owledge ot the p~~ete~(s) o! the inverse 

GaussiaJ:l and which are mathematically tractable, 

4. Determine the predictive densities as~QCiated with the pos

terior distriQutions derived in tnis ~tµdy. 

5. Develop numefica;L algorithms fo~ co~strueting ~µlttva:riate 

HPD regions for the inverse Gaussian. 

The empirical Bayesian analysis eoµl.d be ~xtended in several ways. 

1. Consider alte~ative $B procedures. The.re are many iech,ni~ues 



for d~nsity est;l.rn~t~o~ not cons~~ereg ;Ln t.bis paper, 

2. Con,eider ~he eubject of idei,tit:l,abilitf ,. Clilft tbe rn:i.Jd.ng 

d.:l.st~tbuti9n be uniquely Qete:rmi,ie~? 
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3. Oon$ider the utilit1 of a p~tie'Ula!l Ea ttcn,liq~e by varying: 

(a) tile loss function 

(b) the mi,Jd..ng distrib~tiQn 

(c) the sample size 

( d) the nW11bez, 9f' samples 

(e) tne tolerabie com:pltattonelr ~os\ ~t th~ p~oeedl,U'e 

4. Develop EB techniques ~ppJiopr;i.ate ~o:, test~g ~oml)Osite hy,,,, 

potheses conoe%1'ling bothµ and A, 

Fifially, one might consider the mixing distribution as a stochastic 

process and e,onsi~e~ the possibilitf Qt estirn1t:1.rlg this prqcess. 
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SUBROUTINE RI NTC A, B, F, ERROR, TER,OP ,HESS, AREA,COYI 
C A ••• LEFT ENOPT 
C B ••• RIGHT ENOPOiNT 
C F •• • FUNCTION TO INTEGRATED ••• REQUIRES EXTERNAL DECLARATION IN CALLING PROG 
C TER ••• MAX # OF F~NCTION EVALUATIONS PERHITTED ••• REAL 
C OP.• .OPTIONS ••• OP•l, INTEGRATION FROM A TO B ••• OP•2 INTEGRATION FROH 
" A TO INFINITY ••• OP•31NTEGRATION FORH - INFINITY TO A ••• OP•4 INTEGRATION 
" FRCM -INFINITY TO INF-INITY 
C MESS=l ••• ERROR MESSAGE PRINTED 
C MESS•2 ••• ERROR MESSAGE SUPPRESSED 
C AREA ••• ESTIHATE OF THE DESIRED INTEGRAL, THE INTEGl<ATION FROH LE-FT TO RIGH 
c cov ••• fSTIMATE OF THE COEFFICIENT OF VARIATION OF, AREA HEN ROUTINE 
C TERMINATED. EXCEPTIONS:WHEN AREA•O OR OVERIUNOERIFLOW CONDITICNS 
C ARE ENCOUNTERED COY IS SET TO O. 
c ERROR ••• OESIREO UPPER BOUND ON COY, NORMALLY RINT TERMINATES WHEN COY.ie. 
C ERROR. . 

INTEGER OP 
ASSIG·N 40 TO M 
ASSIGN 61 TO N 
A·SSJGN 13 TO ~ 
S•O. 
ss .. o. 
CNT•O. 
GO Tei 110,20,30,35,1,0P 

10 C•B-A 
11 X•C*RAN.F(Ol+A 

X•F(XUC 
12 S•S+X 

CNT-.CN'l'+l. 
IF·CCNT.EO.TERIGO TO 60 
GO TB K,Cl3,4U 

13 Y•ABS·I XI 
IF1Y.-EO~O •• OR.IY.GT.l.E-37.ANO.Y.LT.l.E3711GB TO 14 
ASSIGN 71 T-0 lll 
ASSI-GN 41 TO K 
GO TO U5,4lhMESS 

15 WRITEl6,ll . 
1 FORMAT llH , • SUUDUE TO THE SUE OF THE NUMBERS ENCOUNTERED CONTINUED 

2UEO CALCULATION OF COY COULD IIE MEAIHNGLESS AND WILL RESULT IN A' I 
WRITE'6.21 . 

2 FORHATHtt ,•PROGRAM INTEIIUPT. THEREFORE THIS PORTION .QF THE ROUTINE 
2E IS DISCONTINUED .lND COY rs SET TO O AND ALL ITERATIONS ARE USED.' I 
3'' . 

GO TO 6-l 
14 S.S•SS+lC*X 

GO TO M, (40,5.01 
20 X•A-ALOG(RANFIOII 

X•F ex Ill EXPI A-X 11 
GO TO 12 

30 X•A+At.OGIRANFIOI I 
X•F ex II C EXPCX-A 11 
GO TO 12 

35 X•lO.•GAUSFCOI 
X•25. 066282nF (XII( EXPCC-x•x 11200. 11 
GO TO 12 

·40 ASSIGN 50 TO H 
41 GO TO C 11, 20,30,351 ,OP 
50 A~EA•S/CNT . 

b 
-..J 



••• RINT CONTINUED 
IFIAREA.EQ.O.JGO TO 41 
E•SQRTICSS-S•S/CNTI/CCNT•ccNT-1.JII 
COV•E/AREA 
IF I CCV.GT .ERROR JGC TO 41 
RETURN 

60 GO TO N,161,711 
61 AREA•S/CNT 

IFCAREA.EO.O. JGO TO '11 
E•SQRTI c-ss-s•S/CNT I /CCNT•CCNT-1.111 
COV•E/AREA 
RETURlt 

71 AREA•S/CNT 
COV•G. 
RETURN 
ENO 

r'1 
0 
·oo. 



1lEAL FUNCTION I-NGAUSI AMU,ALA"41 
C INGAUS "'UST BE DECLARED REAL IN ANY ROUTlNE WHIC-H CALLS INGAUS 
C PET-UP.NS AN INVERSE GAUSSIAN VA'1.UTE WITH HEAN AMU AND PARAMETER ALAM 
C INGAUS IIEQU IRES GAUSF TO GENERATE STD NORMAl J>EVUTES 
C INGAUS US-£S RANF TO GENERATE UNIFORM 10,11 DEVIATES 
C lNGAUS USES CNOIIM TO EVALUATE THE STD NORMAL OtsTRIBUTION FUNTION 

P•O. S+EXP-C 2.o•ALAM/AMUI • u.O-CNORMC z.o•SQRTI ALAM/AMUI U 
Y•CG-AUSFCOll ••n 
B•SQRTt I 4.0+AIIU*YIALAMl *Y*CAIIU .. 31-/ALAMI 
A• AMU*-12 • O+Al'U*Y-IAlAII I 
IFC RANF'COI-P 11, 1,2 

1 lNGAUS•U-11112.0 
-JtET'IJRN 

2 t-NGAUS•C A+ll 112.0 
ffTURlil 
END 

I-" 
0 

"° 



SUBROUTINE AINVRTIA,B,C,F,ERROX,ERROY,ITER,BIN,Ml 
C AINVRT ATTEMPTS TO FIND SOLUTIDNCSI TO FIXl•C WHERE A<SOLUTION<B 
C PARAMETERSO A.,.LEFT ENOPT 
·C 8., .RIGHT EN DPT 
C C •• ,VALUE OF F TO BE .INVER'TEO 
C ERROX, •• ERPOR TOLERANCE ON X, •• ABSIX1·X2l>ERROX CAUSES CON· 
C TINUATION . 
C ERROY .. ,ERROR TOLERANCE ON FIXl·C,,,ABSIFIXl·Cl·ERROY>O 
C CAUSES CONTINUATION . 
C ITER~.,NUMBER OF ITERATIONS 
C AIN ••• F-INVERSECCI 
C M,,,CONTROL VARIABLE.,, 
C M<O SINGLE VALUE RETURNED 
C M•O ALL ROOTS lN IA,B.l DISCOVERED ARE PRINTED 
C M•l, .. SMALLEST ROOT RETURNED 
C M•2 .. ~SECOND SMALLEST ROOT IS RETURNED, ETC 

EXTERNAL F 
IFIB·All,1,2 

1 WRITEC6,3IA,B 
3 FORMATUH ,•LEFT ENDPT',El0,3,' > RIGHT EIIIDPTl',El0,31 

RETURIII · 
2 IFIMJ5,6,6 
5 BIN•TECBlN IA,B,C, F,ERROX,ERROV, ITERl 

RETURN 
6 CALL 8MTPLRCA,B,C,F,ERROX, ITER,BIN,MI 

AE•TU·RN 
.eND 
SUBROUTINE 8MTPLRIA,B,C,F,ERROX,ITER,BIN,MI 
-EXT-ERNAl. F 
DIMENSION RClOOl,RDUOOI 
1(•0 
Hl•C B·A I /F.LOATf ITER I 
Xl•i\ 
DO 20 l•l,JTER 
·xz•Xl+IH 
Yl•F(Xl l·C 
Y2•.FIX21·C 
.U•Yl*Y.2 
IF·CUll,10,13 
K•K+l 
RIX I •TI.NRT (Xl ,X2 ,C, F, ER ROX, IJERI 
Xl•X2 
GO TO 20 

10 tFCYllll,12,11 
12 K•K+l 

RIKI •Xl 
Xl•X2 
GO TO 20 

11 IF~Y2l13,14,13 
14 K•.K+l 

RIKI •X2 
Xl•X2 
GO lO 20 

13 Xl•X2 
20 CONTINU! 

JFIK.121,21,22 
21 WRITEl6,31 

3 FORMAT(lH ,'*****NO ROOTS FOUND*****lNCREASE lTER'l ,_. ,_. 
0 



••• AIN~T CONTINUED 
RETURN 

22 IFIM124,24,27 
24 WRITEl6,51R{ll 

5 FOPMATCl-H ,••••••ROOT•',El4.71 
I•l 

37 I•I+l 
36 IF1J-Kl38~~8.27 
38 J•J-1 

JFIR( II-RCJI 125,37,25 
25 WRJTEC6,5IRCJJ 

GO TO 37 
27 RDU l•RCll 

L•l . 
DO 30 1•2,K 
J•l-1 
JFCRCll-RIJI 128,·30,28 

28 L•L+l 
RDrLJ•RHI 

30 CONTINUE . 
DD 3S l•l,L 

35 Rfl I •ROH I 
.1-F IM-Ll65,65, 70 

65 BIN•.RfMI 
:REJURrt 

70 WRlT-£16,lOOU 
100 FORMAT< lH , ••••••AUIVRT •• .ONLY ', 12,' ROOTS FOUM>, LARGEST RE TURNE 

20"1 
BIN•,RUI 
RETURN 
END 
f'UNCT-ION TINRTCA,B,C,F,ERROX, ITERI 
JF(B-All,112 

1 ·WRITEl6,3IA.,B 
3 FORMATClH ••••HTJNRT WAS <:ALLED WITH LEFT ENDPT1 1 ,El4.e7,'> 'l'-HAN RlGHT 

UGHT ENDPT1 1 ,-EHe7,• NO VALVE :RETURNED•) 
RETURN 

-2 Xl•A 
XZ•B 
DO. 60 I•l,IT-ER 
Y2•FIX21-C 
Yl•FIXll-C 
lFW2-Yl 110., 15, 10 

15 IFCY2116,17,1'1 
l6 IFCYl'ltl,19,18 
17 TINRT•XZ 

RETURN 
19 TINRT•Xl 

11-ETURN 
18 WRITEl6,51Xl,X2,Y2 

5 FORMAT(l-H , • •***TINRT ERROR-••Xl•' ,El4. 7, 1 X2•' ,-El4e 7,' FCXll"'C• 
2•FIX21-C• 1 ,El4e7, 1 X2 RETURNED') 

TINRT•X2 
RETURN 

10 X3•X2-Y2*CX2-Xll/lY2-Yll 
IFCAISC X3-X2 l-ERROXi.20, 20,25 

20 TINRT•X3 
RETURN 

~ 
~ -~ 



••• AINVRT C!JNTINUEO 
25 IFIABSIX3-Xll-ERROXl20,20,30 
30 Y3=FIX31-C 

IF(Yl*Y3135,50,40 
35 X2•X3 

GO TO 60 
40 XlsX3 

GO TO 60 
50 IFIY3160,55,~ 
55 TINIHsX3 

RETURN 
60 CONTINUE 

X3=X2-Y2*1 x2-x1 I IIY2-Yl I 
WRITE16,651X2,X3 

65 FORMAT(lH •'*****TINVRT*****ERROR BOUND NOT ATTAINED, LAST TWO VALUES 
2UES: •, 21 El 4. 7,2X II 

RETURN 
END 
FUNCTION TEC BIN CA, B,-C, F, ERR OX ,ERROY, ITER I 
EXTERNAL F 
Xl•A 
X2•B 
DO 50 I•l,ITER 
Yl•F C Xll-C 
Y2•F I x21-c 
IFCV1-Y2U,ll ,3 

3 XJ•X2-V2*C X2-Xl I /IY2-Yl I 
Xl•X2 
X2•X3 
1FIABS1Xl-X21-ERROXl16,16,5 

16 IF(ABSCY2t-ERROYl45,,u,s 
5 U•( FI Xll-C ,., F C x2·1-c I 

IF.IUl6,7,50 
6 U•AMINlf Xl ,X2 I 

V•AMAX11Xl,X21 
TECBJN•TINRTIU,V,C,ft.ERROX,l"TERI 
RETURN . 

T IFCFC-X·ll-CHl,9,1 
·B IF IF I x21-c 150, 10,50 

10 TEC8IN•X2 
RET.\JRN 

9 'l'EC8.tN•Xl 
RETURN 

11 lFi ABSI Xl-X2'1-ER1tOX145,45, 14 
14 Xl•.AMINlfXl,X2.J 

X2•A"MAXlfX1, X21 
X4•Xl+IX2-Xll/3, 
X5•X4+CX2-Xl1/3, 
Xl•Xli 
X2•X5 
X3•CXl+X21/2, 
Yl•FJXll-C 
Y2•FIX21-C 
Y3•FCX31-C 
Sl•A8SIY3-Yll 
S2•ABSCY2-Y31 
lFISl-S2tl7,17~18 

18 IFIABS(Yll-ABSIY31120,20,21 
20 X2•Xl 

Xl•X3 

...... 
..... 
ro 



••• AINVR'T CONTINUED 
GO TO 50 

21 X2•X3 
GO TO 50 

17 lF(ABSIY21-ABSIY31122,22,23 
22 Xl•X3 

GO TO 50 
23 Xl•X2 

X2•X3 
GO TO 50 

45 IFIA-X2147,47,46 
46 WRITEl6,l001X2 

100 FORMAT( lH ,'*****AINVRT RETURNS THE VALUE' ,El0.3, 1 < LEFT ENDPT S·PE 
2CIFIED'I 

TECBIN•X2 
RETURN 

47 IF(XZ-8148,48,49 
49 WR !TEI 6, 1011 X2 

101 FORMAT UH ,'*** .. AINVRT RETURNS THE VALUE' ,El0.3, 1 > RIGHT ENOPT SP 
2ECIFI!:D 1 I 

TECBIN•X2 
RE TUR~ 

48 TECBIN•X-2 
RETURN 

50 CONTINUE 
Ti:Cc8-IN•X2 
WRITEl6, 1021 Xl, X2 

102 FORMATUH ,'*****AINVRT •••• A8S(Xl-X21>ERRDR ••• LAST TWO VALUESI Xl• 
2' ,El4. 7,2X, 1 X2• 1 ,E14.71 

RETURN 
END 

.... 
·~ 



C••••••••••PROGRAH USED TO GENERATE UNIVARIATE HPD REGION FOR HU•••••••••••••••• 
EXTERNAL AUC, F 
CO~HON XMAX,ALPHA,ERROR 
Xl4AX•2.0386836 
ALPHA•.01 
XP•XHAX/ ALPHA 
ERROR,. • .001 
A•-ALPHA 
8•1.-ALPHA 
Y•AINVPT(A,8,0.,AUC,ERRORI 
XL•AINVRTIO,XHAX,Y,F,ERRORI 
XR=AINVRT(XHAX,XP,Y,F,ERRORI 
WRITE( 6, 11 ALPHA ,XL,XR 

1 FORMATClH ,• ••• THE l-',F4.3,' HPO REGION IS 1',El4.7,•,•,EHto7,'1' 
21 

CAll EXIT 
END 
FUNCTION FCXI 
A•5l o41908268DO 
8•15.844406100 
IFIX 11, 1,2 

1 F•O. 
RETURN 

2 C•GA14HAl25.51 
CL•,UOGCCI 
DL•A1.0GI XI *l • 5 
E•A/X••Z-50./X+B 
EL•ALOGCEl*25.5 
-GL•CL-DL-EL 
F•EXPCGLJ/.l477325El0 
RETURN 
END 
FUNCTION AUCICI 
EXTERNAt. F 
COMMON X~AX,ALPHA,ERROR 
ERR•.00-1 
XL•BINVRT--C Oo ,XMAX,C_.f,ER110RI 
XP•XMAX/AlPHA 
XR•B INVR TC XMAX,XP,C,F, ERROR I 
CALt SOANKIO. ,XL, ERR,FJFTH,RUM,NO, F,AREA I 
AREAl•AREA 
XTRUN•iO.•XR 
CALL SOANK( XR,XTRUN,ERR ,FIFTH, RUM,NO,F ,AREAi 
AREA2•AREA 
SU14•AREAl+AREA2 
AUC_•SUl!-ALPHA 
WRITEC6,llXL,AREAl,XR,XTRUN,AREA2,SUM 

1 FORMATllH ,•JCO,',El0.3,'I • 1 ,El0.3,' 11',El0.3,','•El0.3,'I • '• 
2,El0.3,• TOTAL TAIL AREA•',El0.31 

R~TURN 
ENO 

-1-" 
~ 
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