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NOMENCLATURE 

A surface area of heated section, ft2 

Ac cross sectional area of heated section, ft2 

Cp specific heat of liquid, BTU. lbm-l '° F-l 

D tube inside diameter, ft 

m 
. 
m 

p 

q 

t 

v 

force in the X-direction, lbf 

conversion factor, 32.2 lbm. lbf-l. 

mass velocity, lbm. hr-1. ft- 2 

-2 ft. sec 

latent heat of vaporization, BTU. lb -l 
m 

test section length, ft 

mass, lbm 
. -1 mass flow rate, lbm min 

-2 pressure, lbf. in 
-2 pressure at the channel exit, lbf. in 

heat flow rate, BTU. hr-l 

heat flow rate r~quired to obtain a saturation condition at 
the channel exit, BTU. hr-1 

time, sec. 

fluid temperature at the channel exit, °F 

fluid temperature at the channel inlet, °F 

saturation temperature at the channel exit, °F 

fluid velocity, ft. sec-l 

. -2 adiabatic pressure drop, lbf. ,n 
. -2 external system pressure drop, lbf. ,n 

xi 



internal system pressure drop, lbf. in-2 

orifice pressure drop, lbf. in-2 

density, lbm. ft- 3 

liquid density, lbm. ft- 3 

-3 vapor density, lbm. ft 

shear stress, lbf. in-2 

vii 



CHAPTER I 

INTRODUCTION 

There are many practical applications in which liquid from a central 

header is distributed to a number of separate parallel channels where 

each channel receives heat and the mixture of liquid and vapor, saturated 

vapor or superheated vapor will discharge into a common outlet. Heat 

exchangers, evaporators, boilers and boiling water nuclear reactors are 

common examples. 

When a large number of parallel heated flow channels are operating 

between common inlet and outlet headers, each channel is subject to the 

same pressure difference and each channel receives a share of .the flow, 

the amount of which depends upon the channel geometry, and pressure drop 

flow characteristic of each channel. Formation of vapor in one channel 

wfll cause less fluid to flow, thereby causing more vapor to form. 

The additional resistance to flow, caused by generation of more 

and more vapor, may even cause the flow of liquid to stop entirely, and 

burnout of the channel may occur. Moreover, with a given pressure drop, 

heat flux, channel flow rate, inlet enthalpy, etc. a resonance condition 

may occur in which the flow rates in the channels may start to oscillate. 

A knowledge of~conditions under which these oscillations occur and 

knowledge of the factors affecting flow distribution is of particular 

importance in the design of heat exchange equipment. 

1 



It is well known that flow oscillations may be prevented by pro­

viding sufficient inlet throttling on the individual channels. Deter­

mination of the minimum adequate inlet throttling which is an important 

economic factor is one of the objectives of this stugy. 

Fl ow i nstabi 1 ity in a forced-convection system with boiling is 

often associated wtth the shape of the pressure drop versus flow rate 

curve. Inlet subcooling, system pressure, heat flux, mass flow rate, 

and inlet throttling have a strong effect on the shape of this curve 

and thus on flow stability. An additional purpose of this study is,to 

find the effect of these parameters on fl ow stability. 

2 

Moreover, the main objective of this work is to find the conditions 

which assure steady operation in a horizontal, parallel-channel, 

forced-convection boiling flow system so as to be able to predict 

whether such systems are stable or not. 



CHAPTER II 

BACKGROUND OF THE PROBLEM AND LITERATURE REVIEW 

2. l Two-Phase Flow Instability 

Because of its technological importance the problem of two-phase 

flow instability has received a great deal of attention in the past sev­

eral years. The results, however, have not given a clear picture of the 

problem and in some areas contradictory conclusions have been obtained. 

This is mainly because of the fact that there are a great number of 

mechanisms which cause unstable behavior and also because understanding 

and analysis of the flow instability problem requires a knowledge of 

many related technical specialties. 

In the following sections the different types of hydrodynamic in­

stability will be reviewed, and an attempt will be made to categorize 

these instabilities. A more general review of this subject is given by 

Bou re , et al . ( l ) . 

2.2 Excursive Instability 

Excursive or Ledinegg instabi-lity is the one in which the operating 

point of the system shifts from one flow rate to another (usually to a 

lower flow) in a non-recurring manner. 

The details of analysis for excursive instability are given in 

Appendix A. The final result is given by the following equation which 

gives the criterfon for instability to happen. 
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(2 .1) 

Equation (2.1) means that if at a certain point the slope of the 

press,ure drop characteristic of the extern a 1 system is more positive than 

that of:the channel, an excursive insta9;lity will take place. 

Figure 1 is a t,ypica1 curve of over all channel pressure drop 

versus flow rate for a given heat flux, inlet subcooling, and system 

pressure. 

Consider line ABC which characterizes a constant pressure drop 

system. Practically, this happens when we are dealing with parallel 

channels between two large common headers. If a significant change in 

flow rate occurs in one channel, the total flow rate will be distribut~d 

in other channels, and the system pressure drop will remain essentially 

constant. At points A and C, 

:rll (tiPext.) - :111 (llPint.)< O 

and the flow is stable. At point B, 

:111 (tiPext.) - :111 (~Pint.)> 0 

an unstable operation is predicted. If the flow rate at point Bis 

decreased slightly, the flow will jump to point A since point A is the 

only stable point for sllghtly lower flow rate .. Similarly a small 

increase in flow rate will cause the operating point of the system to 

shift to point C. 

· Curve EFG shows a typical pump characteristic. In this case, with 

the above arguments, the operation at point Fis unstable and the flow 

will shift either to point E or G. 
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Another external system is shown in Figure 1 which intersects 

channel characteristic curve at point H. Although point His in the 

negative slope region of the channel characteristic curve, the operation 

at this point is stable because 

:m (LiP ext) - !m {LiP int.)< o. 
In a system with many parallel channels, flows between point's M 

and N are never experienced and a small decrease in flow rate at point N 

will shift the operation point to K, and a small increase in flow rate 

at point M will shift the flow rate to point L. 

It is to be noted that in a large bank of parallel tubes between 

common headers where any individual tube sees an essentially constant 

pressure drop, excursive instability is the dominant mechanism. Stable 

operation beyond the minimum point can be obtained only by orificing 

individual channels at their inlet. 

2.3 Flow Pattern Transition Instability 

This type of instability is due to the fact that when gas and 

liquid flow together in a channel, there are many possible configurations 

in which the two phases can arrange themselves. Some of these arrange­

ments known as flow regimes are given in Figure 2. 

The most important regime as far as instability is concerned is 

11 slug 11 flow which is characterized by alternating flow of liquid slugs 

separated by large vapor bubbles. At any point the oscillations in 

pre$sure, flow rate, and heat transfer coefi ci ent can be observed as the 

liquid slugs pass over this point. The reason is that at the point in 

question, the channel is filled alternately by liquid and gas. The time 
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required for the gas bubble to pass a certain point is very important, 

because it is during this time that the heat transfer coefficient is low­

ered considerably and the wall temperature will increase. If the transit 

time of the bubbles is long enough, burnout may occur. 

Another type of flow pattern instability occurs when the flow 

condition is close to the point of transition from bubbly flow to 

annular flow. A temporary increase in the number of bubbles generated 

in the channel will change the flow regime to annular flow which has less 

pressure drop than bubbly flow. This reduction in pressure drop will 

cause the flow rate to increase. When the flow rate increases, the 

generated bubbles may not be sufficient to maintain the annular flow 

and the flow regime will change to bubbly~slug flow and the cycle will 

repeat. 

It should be mentioned here that these types of instabilities can 

not be eliminated by inlet throttling because of the fact that formation 

of either slug flow, bubbly flow, or annular flow is primarily dependent 

on the flow rate and heat flux and independent of any external system 

characteristics. 

2.4 Density Wave Instability 

The origin of density wave osci 11 ati ons can be cl early understood 

by considering a heated channel followed by a flow restriction. A.ssume 

that the heat flux is constant. For a constant pressure drop across the 

flow restriction, the volume flow rate through the restriction is in­

versely proportional to some power of the mixed fluid density entering 

the restriction. A small perturbation to a lower flow rate will cause 

more vapor to form in the heated section, which will decrease the density 
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of the mixture and the less dense fluid will pass through the restriction 

very .. fast. This wnl increase the flow·rate and less vapor will be 

formed in the channel and the density of .the mixture will increase. The 

more dense fluid wi 11 pass through th~ restriction slowly and mor~ vapor 

will be formed in the heated section. As soon as the less dense mixture 

reaches the restriction, the cycle starts over again. At any given point 

in the channel there is an oscillation in pressure, flow rate, and heat 

transfer coefficient~ 

These are low frequency oscillations in which the period of oscil­

lation is approximately of the order of magnitude of the resi_dence time 

of a fluid particle in the heater. 

Density wave oscillations occur in the positive slope branch of the 

pressure 9rop versus mass flow rate, Figure 3. An inlet orifice in 

creases single phase pressure drop which is in phase with the change of 

inlet flow; and thus, it provides a damping effect on the increasing 

flow. Hence, these oscillations can be eliminateg by providing suffi­

cient inlet throttling. 

2.5 Pressure Drop .Oscillations 

Pressure drop oscillations occur in systems having a compressible 

volume upstream of, or within, the test section such_ as a surge tank or 

gas pressurizer. When an attempt is made to op~rate on the negative 

slope region of the pressure drop versus flow rate curve, these oscil­

lations will take place, Figure 3. 

Consider a system which has a_compressible·volume upstream of·the 

test section and in which supply pressure to the test section is a func­

tion of-flow rate. If a small perturbation to a lower flow rate happens, 
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the _supp1y pressure to the test section will Jncrease ·and at the same 

time the channel pres~ure drop will increase. This will cause th_~ liqu_id 

to flow into the compressible volume until the supply-pressure is not 

sufficient to drive any liquid into the compr~ssible volume. At this 

point the flow rate into the test section will increase until it reac;hes 

the initial operating point. However, the ine.rtia of the flow from the 

compressible volu~ will cause the flow in the test section to increase· 

more and more and at the same time the supply.pressure will decrease un­

til the supply pres~ure is no longer sufficient to maintain th:e flow, and 

the flow rate to the test section wi 11 decrease and the cycle wi 11 start 

again. 

The period of pressure drop oscillations is very much longer than 

the residence time of a fluid particle in the. heater. Consider point A 

which is in the negative slope region of the pressure drop-flow rate 

curve, Figure 3. Operation at this point might be unstable. By imposing 

a suffi~ient inlet orifice pressure drop on.this curve, the operation 

point will shift to point B -~hich is in. the positive slope regi,onof the 

overall pressure drop-flow rate curve. Hence, these instabilities can 

be prevented by throttling the flow at the channel inlet. 

The~e are the most important types of ·instabilities encountered in 

a forced-convection system with boiling; however, there are other types. 

of instabilities which have been reported in literatyre and which ~ill 

happen only in .. certain flow arrangements. Bumping, geysering, chugging, 

and acoustic instabi.lities are examples. 
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2.6 Instabilities in a Forced-Convection System 

A forGed-convecti on system wi-th boi 1 ing might be subject to _one or 

more types of the instabilities mentioned above. In the ,following sec­

tions, previous investigations on two phase flow instabilities in a 

forced-convection system will be reported. These investigations are . . 

divided into two major-categories: 1} instc;1bilities .in a single heated 

channel, 2) instabilities in parallel heated channels. 

2.7 Single Heated Channels 

Ledinegg (2) in 1938 was the first to analyze the instability of.a 

forced-convection system. He found that a channel may operate unstably -­

if it is operating in the region where the steady state pressure drop­

versus ·flow rate curve has a negative slope. This behavior requires that 

the channel characteristic exhibits c;1 region where the pressure drop de­

creases with increasing flow rate. More detailed treatment of this s~b­

ject was presented by Chilton (3) and Markels (4). These analytical in-. 

vestigations are identical to Ledinegg 1 s as far as the basic mechanism is 

concerned, but they contain detc;1iled mathematical calculations. 

Lowdermilk, et al. (5) investigated stable and unstable burnouts at 

low pressures in small diameter tub.es. The effects of upstream throt­

tling on a vertical tube were investigated. They found that it was. al­

ways possible to stabilize the flow with enough inlet throttling. 

Fraas (6) analyzed the flow instability in .. a forced-convection sys-. 

tern with. constant heat flux. According to his investigation, -the. nega-. 

tive slope region in the pressure drop versus flow rate curv~ increases 

with increasing-degree of-inlet subcooling and decreasing sys.tern pres-

sure. 



Blubaugh and Quandt (7) observed that a primary ca1,ise of -flow os­

cillations are inlet subcooling and system pressure. 

13 

Mendler, et al •. (8) carried out some experimental investigations un- .. 

der natural and forced-convection conditions using a rectangular ~hannel 

as test sec ti on. They observed some fl ow fluctuations in two-phase nat­

ural circulation flow which were not present in forced-circulation flow 

at the same conditions. They also observed that these fluctuations -in­

creased at lower inlet te,mperatures and pressures. 

Fraas (9.) showed ~hat in a vaporizer ~u~e with constant heat fl1,1x, · 

the stabilizing effect of inlet orificing increases with increasing the. 

ratio of the orifice pressure drop to the pressure drop for the rest of 

the channel. 

A theoretical approach of Jones· (10) about instabilities of-two­

phase flow involves a pc;ii:nt by point computer solution along the heated 

channel. He neglected the effects of subcooled·boiling in his calGula-, 

tions, but considerable attention was given to all other two-phase flow 

calculations. His analysis appears to be the most precise which has been 

presented. However, the physical picture is lost in the mathematics and 

the application of his results is difficult. 

Quandt (11) theoretically studied the instabilities in a heated 

channel. By assuming a homogeneous mixture of liquid and vapor, he 

started his analysi.s by .Jormulating the four basic equations -of two­

phas~ flow:, continuity, momentum, energy, and state. These equations 

then were written for small perturbations and the :per~urbeq equations·· 

were integrated a 1 ong the channe 1 and the LaPl ace . transforms of -the in- . 

tegrated equations were take·n. Constant pressure drop and constan~ heat. 

flux boundary condition.s were applied. Two types of instabilities 
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resulted from the analysis. One was flow excursion and the other was 

oscillatory instability. He further found out that if the system is 

operating at higher pressures, the oscillations have a t~ndency to damp 

out. The mathematical manipulation in his treatment is so complex that 

the physical picture is difficult to grasp. 

Stenning (12) considered the flow of a boiling liquid in a channel 

and analyzed the problem analytically. He confirmed Lowdermilk's (5) 

observations and also showed that as long as the ratio of inlet density 

to exit density across the test section exceeds a critical value, the 

flow oscillations will exist in the system. 

Stenning and Veziroglu (13) carried out some experimental investi- · 

gations with boiling Freon-11 in a horizontal channel with constant heat 

flux. They observed two distinct modes of oscillations: density wave 

oscillations and pressure drop oscillations. They observed that these 

oscillations could be eliminated by providing sufficient orificing at 

the channel inlet provided that no cavitation occurs in the inlet 

orifice. 

Stenning and Veziroglu (14) studied the density-wave type flow os­

cillations in boiling Freon-11 in a horizontal tube. They observed that 

these oscillations occur when the heat input exceeds a critical value for 

each set of ~perating conditions. They found out that an increase in the 

ratio of inlet to exit density across the evaporator decreases stability. 

They also studied the effect of subcooling on the density-wave oscilla­

tions and concluded that subcooling effects are extremely complex and an 

increase in subcooling may increase instability or decrease it depending 

on the conditions of the experiment. 
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Veziroglu and Lee (15) investigated the instabilities in a vertical 

s i ngl e-channe l forced-convection boiling upward fl ow with Freon- ll. 

They studied experimentally the effect of flow rat~, heat input and exit 

restriction on different types of oscillations. They identified two 

major modes of oscillations, namely density-wave and pressure drop os­

cillations. With .regard to density-wave oscillations the following re­

sults were obtained: 

l. Oscillations occur in the positive slope branch of the two-

phase pressure drop versus mass flow rate curve. 

2. An increase in mass flow rate increases stability. 

3. An increase in heat input decreases stability. 

4. Exit res tri cti ans decrease stability. 

With regard to pressure drop oscillations they found that: 

l. Pressure drop oscillations occur on the negative slope portions 

of the pressure drop versus flow rate curve. 

2. An increase in heat input decreases stability. 

3. An increase in the negative slope of pressure drop versus flow 

rate curve decreases stability. They also observed that in general the 

vertical upward flows appear to be more stable than the horizontal flows. 

Maulbetsch (l~) studied pressure drop oscillations in considerable 

detail for subcooled boiling of water in horizontal channels. The ef~ 

feet of compressible volume on this type of instability was investigated. 

He found that: 

1. Pressure drop oscillations are associated with operation on the 

negative slope region of the pressure drop flow rate curve. 

2, In a single tube system, for a known supply .system characteris­

tic, and for a known amount of compressibility upstream of the heated 
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section, a critical slope of the overall pressure drop versus mass flow 

rate curve is required for the initiation of the pressure drop oscilla­

tions. 

3. This critical slope increases with increasing the stiffness of 

the compressible volume. 

4. In systems where the compressible volum~ has ~ssentia1'1y zero 

stiffness, this critical slope is equal to zero and the oscillations 

initiate at the minimum point of the pressure drop versus mass flow rate 

curve. 

5. When the compressible volume is external to the test section, 

this type of instability can always be prevented by sufficient throt­

tling between the compressible volume and the heated section. 

2.8 Parallel Heated Channels 

Gouse and Andrysiak (17) studied the effect of subcooling on the 

flow oscillations in a system of three vertical heated channels. They 

reported that there was a range of subcooling within which the flow 

would oscillate, if the inlet subcooling were either greater or smaller 

than this range, the flow was steady. They also observed that an in­

crease in the flow rate, with other variables held constant, increases 

stabi 1 ity. 

Berenson ( 18) performed some experiments· to investigate fl ow stabi 1-

i ty in a multitube forced-convection vaporizer. He used a five-tube 

horizontal boiler as test section with Freon-113 evaporating inside the 

tubes. The results of his experiments are: 

1. An increase in inlet orifice pressure drop will increase stabil-

ity. 
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2. An increase in entrance subcooling will increase stability. 

3. An increase in the ratio of inlet density to exit density will 

decrease stability. 

Schuster and Berenson (19) continued experimental investigation of 

Berenson (18) with the same loop and the Si;ime fluid te.st and confirmed 

the results of Berenson (18). The additional results of their experi- · 

ments are: 

1. The ratio of orifice pressure drop to two-phase pressure drop 

required to produce stable flow should be within a specific range (0.05 

to 0.9). This range depends on the condition of the experiment. 

2. Entrance subcooling tenqs to destabilize the flow up to a 

critical value (this critical value is dependent on the experiment con­

dition); after this critical value, further subcooling increases stabn­

i ty. 

3. Because of the coupling effect and phase relationship between 

tubes in a parallel tube boiler, flow oscillations out of the boiler 

are usually smaller than flow oscillations out of individual tubes. 

Veziroglu and Lee (20) investigated the instabilities in a two­

parallel-channel forced-convection boiling upward flow system using 

Freon-11. They observed the same two major modes of oscillations en­

countered in single-channel systems, namely the density wave oscillations 

and the pressure drop oscillations. 

These two types of oscillations were encountered for .all combina­

tions of heat inputs whenever the flow rate through one channel was low 

enough to produce a relatively high inlet to exit ratio (15 or more). 

With regard to the .density wave type oscillations the following re­

sults were obtained: 



1. Oscillations start when the density ratios (inlet to exit for 

one or both channels) are about 15 or more. 
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2. The period of oscillations is relatively low and is approximate­

ly in the order of magnitude of the residence time of a fluid particle 

in the heater. 

3. Increasing the flow rate will increase ~he period of oscilla­

tions. 

4. Decreasing the difference between th_e heat input into two chan­

nels will increase the period of oscillations. This means that the 

system is most stable when both channels receive the same amount of heat 

input. 

5. An increase in total flow rate and inlet pressure drop increases 

stabi·l ity. 

With regard to pressure drop osci 11 ati ons these results were obtained: 

1. The oscillations occur when the pressure drop across the test 

section decreases with increasing flow rate. 

2. The period of oscillations increases with increase in flow rate. 

3. An increase in total flow rate and inlet pressure drop in­

creases stability. 

They also observed that the flow oscillations in the inlet plenum 

were smaller than those of individual channels. In general the system 

could be stabilized by introducing a pressure drop between the inlet 

plenum and any one of the channels, but not by introducing a pressure 

drop on the upstream side of the inlet plenum. 
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2.9 Closure 

The literature review summarized above indicates that the problem 

of two phase flow instability is rather complex and a forced-convection 

system is subject to many different types of instabi.lities. Each type 

of instability is affected by numerous parameters. The following con­

clusions can be obtained from the literature~ 

l. The major part of instabilities in a forced-convection system 

is associated with the minimum point and negative slope region of steady 

state pressure drop-flow rate characteristic of the heated section. 

2. The effect of inlet subcooling on the stability is not straight-. 

forward. An increase in subcooling can either increase or decrease 

stability. However, the experiments seem to indicate that there is a 

range of subcooling within which the flow would oscillate, if the sub­

cooling is either greater or smaller than this range, the flow will be 

stable. 

3. Heat flux has a destabilizing effect and increasing heat flux 

will increase instability. 

4, The effect of system pressure on stability appears to be the 

most definite, because experiments have all shown that as the pressure 

is increased, holding other variables constant, the system becomes more 

stable. 

5. The results of all experiments have shown that an increase in 

inlet orifice pressure drop will increase the stability. 

6. The effect of mass flow rate on stability is that increasing 

the flow rate; with holding other variables constant, wtll increase 

stability. 



CHAPTER I I I 

EXPERIMENTAL APPARATUS 

In this chapter the description, schematic diagrams, and photo­

graphs of the experimental facility which was used to obtain experimental 

data will be reported. 

3.1 Hydraulic System 

A schematic diagram of the apparatus which is of the closed loop 

type is shown in Figure 4. The pipings, fittings, and instruments were 

all built around a test bench which was constructed of plywood and 

slotted angle irons. All the tubing in the main loop was made of copper 

with~ inch outside diameter and 0.032 inch wall thickness. The valves 

and fittings in the main loop were all brass for corrosion resistance. 

The test section line could be isolated from the main loop by means of 

two gate valves. 

A survey of the characteristics of several fluids led to the selec­

tion of Freon-113 as the test fluid. It has low heat of vaporization, 

well established physical properties, and is relatively non-hazardous. 

Freon-113 was stored in an approximately 10 gallon cylindrical stainless 

steel supply tank. The supply tank was tested against pressure with hy­

draulic fluid up to 200 psi before installation. This tank was connect­

ed to the pressurized air line in the laboratory which had a pressure of 

approximately 160 psi. A pressure regulating valve was installed 

?n 
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between the supply tank and the pressudzed air line and by means of 

this valve the system pressure could be easily controlled. 
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Flow circulation was provided by a system of two pumps which were 

connected in series in st,1ch a way that it was possible either to use any 

one of them while the other one was shut-down, or to use both of them at 

the same time whenever high flow rates wer~ required. 

The first pump was a 1/3 horsepower centrifugal pump which was 

capable of handling 18 gallons per minute of water at zero head. The 

second pump was .a 1/6 horsepower centrifugal pump with a capacity of 

10 gallons per minute of water at zero head. 

A filter made of wire mesh was installed just upstream of the pump­

ing system to prevent external particles from entering into the main loop· 

and the test section •. A globe valve was installed on the downstream of . 

each pump. This made it possible to control the flow rate in the main 

loop. The pumping systE!m was connected to the main loop by a piece of· 

short flexible stainless steel tube with an outside diameter of 5/8 

inches. This arrangement was used to prevent transfer of the pump 

vibrations to the main loop. 

The main loop also contained two Brooks flow meters for measurement 

of the flow rates. Two Briskeat electrically heated flexible heating 

tapes of approximately 900 watts were wrapped on the main loop tubing up­

stream of the .test section to control the test section inlet temperature. 

The power outp1,.1t of these t~pes were controlled in a continuous.range 

from Oto 900 watts .by means of a variac mounted on the test.bench. 

The schematic diagram of the test section which was mounted on the 

top of the test bench is shown in Figure 5. T~e test section consistE!d 
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Figure 6. General Arrangement of Apparatus, Front View 

Figure 7. General Arrangement of Apparatus, Back View 
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Figure 8. Inlet Header and Inlet Orifice Arangement 



Figure 9. General Arrangement of 
Apparatus, Side View 
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of two -horizontal parallel tubes between two large common inlet and 

exit headers with a large bypass around them, the two parallel tubes were 

10 inches apart. 

All the tubings and fittings in the test section were stainless 

steel for corrosion resistance except the bypass which was copper. The 

heater section was made of-type 304 stainless steel with an outside di­

ameter of 1/4 inch and an inside diameter of 0.176 inch. The inlet and 

exit headers were each 16 inches long and were m~de of a 2 inch nominaf 

diameter, schedule 40 stainless steel pipe, and were tested against pres­

sure with hydraulic fluid up to 200 psi before installation. The headers 

were mounted on two adjustable supports which made it possible to adjust 

the level of heaters and maintain a horizontal and parallel position. 

The test section flow rate was controlled by a 1/4 inch, Hoke 2300 

series, globe pattern, stainless steel micro metering valve with 1/8 inch 

orifice. The 20 turn stem displacement from closed to open enabled this 

valve to give fine metering performance. This valve was set just up­

stream of the heater section. 

Four different test sections were used with the same diameter, but 

different length~, the complete dimensions of these test sections are 

given in Table I. 

Since the system was.a closed loop, the heat added to the test 

fluid Freon-113 was rej~cted to the city water in a Ross compact shell 

and tube heat exchanger with Freon in the shell side and water in the 

tubes. 

Since the two flexible heating tapes which were wrapped on the tubes 

upstream of the test seGtion to control the inlet temperature did not 

have sufficientpawer to raise the Freon temperature to high values, 
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the Freon temperature was raised in the heat exchanger by increasing the 

water temperature in the tube side. To do so, the hot water line in the 

laboratory was connected to the cold water line. Two globe valves in­

stalled in each line provided sufficient control of the hot water and 

cold water flow rates and consequently, the inlet water temperature into 

the heat exchanger could be wel 1 controlled. The water fl ow rate was 

controlled by means of a globe valve set at the inlet to the heat ex-

changer. The water line also contained a Schutte-Koerting flow meter. 

TABLE I 

DIMENSIONS OF THE TEST SECTIONS 

Test-section Inside Diameter Heated length Heated length to 
Identification inch inch Diameter ratio 

1 0.176 36 204 
2 0.176 27 153 
3 0.176 18 102 
4 0.176 9 51 

3.2 Power Supply 

Power was supplied to the test section by means of a 9.6 KW 

Mallory D.C. power generator. The generator could deliver power in two 

different ranges. In the first range the generator was capable of de­

livering 800 amperes at 12 volts, and in the second range it could 
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deliver 400 amperes at 24 volts. A switch on the generator made it pos­

sible to regulate the power output in 8 equal discrete steps from zero 

up to the maximum power. The generator was driven by a 220 volt, 3 

phase motor. 

A Mullenbach variable resistor, installed in series with the test 

section, made it possible to dissipate the excess power of the genera­

tor whenever it was desired and at the same time made it possible to re­

gulate the power input into the test section. 

The test section tube was used as the electrical resistance for 

providing a uniform heat input. Five copper bus-bars were silver solder­

ed on the test section. At the upstream and downstream sides of the test 

section, the ends of the cable assembly were clamped to the bus-bars. 

The heater tube was electrically insulated from the rest of the 

loop by two pieces of.glass tube on the upstream and downstream of the 

test section. The glass tube on the upstream side was 2 inches long and 

the one on the downstream side was 5 inches long .. These were Corning 

precision bore Pyrex glass tubing and had the same inside and outside 

diameters as the test secti-0n. The use of the glass tube for electri­

cal insulation of the test section made it possible to check and make 

sure that no evaporation started in the liquid before entering the 

heater. 

The glass tubes were connected to the stainless steel tubing of the 

test section by means of four 1/4 inch Cajon ultra-torr stainless steel 

unions. The special feature of these unions were that they permit the 

thermal expansion of the heater tube. 
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3.3 Instrumentation 

Instrumentation was provided to measure the Freon and water flow 

rates and their temperatures at different 1 ocati on~ as well as the ~est 

section pressure drop~ test section exit pressure, and the test section 

heat input. A total of six thermocouples were used for temperature 

measurements; two were installed upstream of the test section, one at 

the test section exit and upstream of the heat exchanger, one at the 

downstream of the heat exchanger. These four thermocouples were used to· 

measure Freon temperature. Two more thermocouples were installed at the 

upstream and downstream of the heat exchanger on the water line to mea­

$Ure th~ inlet and exit water temperature to and from the heat exchanger. 

The thermocouples were iron-constantan and were made of 30-guage wire.· 

At the point of each thermocouple installation a hole was drilled in the 

tube and a short piece of brass tubing which had a blind end was in­

serted into the hole such that the blind end was approximately at the 

center of the tube. The brass tube was then silver soldered on the out­

side to the main tube. The brass tube had an outside diameter of 1/8 

inch and ·an inside diameter of 0.058 inch. The thermocouple junction 

was then inserted into the brass tube such that the thermocouple junction 

was.always in touch with the blind end of the brass tube. 

When the thermocouples were installed, they were calibrated by 

bleeding steam through the tube. Due to the conduction losses, all the 

thermocouples ~howed a t~mperature 1 ess than that of the steam .. The 

maximum temperature difference was less than 1 °F~ This temperature 

deviation "{as.proportional to the temperature .difference between the 

thermocouple junction temperature and the ambient temperature. For 



actual runs, the loop was operating at temperatures much less than 212 

~F., thus, the temperature deviations from the actual values were much 

less than 1 °F. 
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Because of this slight temperature deviation, no corrections were 

made for the temperature readings. A cold junction was maintained by an 

ice-water mixture in a small flask and the thermocouple junctions were 

all submerged in a glycerine-filled test tube which minimized fluctua­

tions in cold junction temper~ture during ice renewal. The thermocouples 

were attached to a Digitec potentiometer by a switch which had six pos­

itions. 

The potentiometer was also calibrated by a galvanometer and the 

accuracy of the potentiometer was within 0.01 millivolts. 

A Wallace-Tiernan pressure gage was used to measure the test section 

exit pressure with an accuracy of 0.05 psi. This pressure gage was 

calibrated by a mercury manometer before installation, the calibration 

curve is given in Appendix C. 

The test section flow rates were measured by three rotameters, a 

Brooks rotameter was used to measure the high flow rates, and a Cox rota­

meter and a Fischer-Porter rotameter were interchangeably used to 

measure the low flow rates. These rotameters were all calibrated for 

water flow rates and the sizing factors of each rotameter was calculated 

at different temperatures. To obtain the equivalent Freon flow rate of 

each rotameter at a specific temperature, the equivalent water flow rate 

of that rotameter was divided by the sizing factor of the rotameter at 

that temperature. 
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The water flow rates into the heat exchanger were measured by a 

Schutte~Koertfng rotameter which was calibrated before installation. The 

calibration curves for all rotameters are given in Appendix C. 

The test section pressure drops were measured by means of a mercury 

manometer system. Basically, it consi~ts of two 48-inch U-tube Meriam 

manometers. The manometer lines could be freed from trapped air through 

appropriate valves. An approximate check on the manometer readings could 

be obtained from the pressure gage. The pressure gage was connected to 

two pressure taps, one at the test section exit and the other one at the 

upstream of the inlet header by two 1/4 inch plastic tubing; and a valve 

was installed on each line. B,y closing one valve and opening the other 

one, it was possible to obtain an approximate test section pressure drop. 

A better way to find out whether the manometer system was working proper­

ly or not, was to determine if, under isothermal conditions, pressure· 

level alone had no effect on the pressure drop. 

A total of six pressure taps was installed on the test section, at 

each location a 1/32 inch hole was drilled in the test section tube, and 

the pressure tap tubes were silver soldered on the outside of 1;:he test 

section tube. The pressure tap tubes were made of brass and had an out­

side diameter of 1/8 inch and an inside diameter of 0.058 inch. Any 

burrs inside the tube were removed before the installation of the test 

section. 

The heat input to the test section was computed from measurement 

of the voltage drop across the heated section and the current to the test 

section .. The voltage drop was read on a Digitec, multirange D.C. volt­

meter with an accuracy of ±_0.1%-of full scale and the same voltmete-r was 



used to measure th~ current to the test section by reading the voltage 

drop across a shunt which was in series with the test section. 
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Fiberglass insulation was wrapped around the tubing in order to 

minimize the heat losses to the surroundings. Most of the components in 

the loop were cleaned with acetone first and then with the water befor# 

installation. 

It should be mentioned here that the system of two identical paral­

lel test sections which were installed between the inlet and exit headers 

were designed for other studies, in this study only one of the test 

sections was used while the other one was removed from the loop. 



CHAPTER IV 

EXPERIMENTAL PROCEDURE 

4.1 Range of Experimental Parameters 

The design of the experimental apparatus provided a rather wide 

choice of variables for studying the system behavior. The final selec­

tion of the range of the variables was based on the equipment availa-

bi 1 i ty. 

Table II shows the range of experimental parameters. 

TABLE II 

RANGE OF EXPERIMENTAL PARAMETERS 

Parameter 

Inlet Temperature 

Exit Pressure 

Mass Fl ow Rate 

Heat Flux 

Length to Diameter Ratio 
of Heated Sec ti on .. 

Range 

85 - 120° F. 

25 - 70 psia 

0.5 - 13 lbm/min 

0.0 - 50,000 BTU/hr-ft2 

51 - 204 
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4.2 Operation Procedure and Data Taking 

After the loop assembly was completed, it w~s hydrostatically tested 

by pressurizing the Freon-filled loop to 70 psi a. The leaks were de­

tected by a Freon leak detector and all of them were stopped. 

The data was obtained at constant heat flux, constant exit pressure 

and constant inlet temperature while varying the mass flow rate. 

At the beginning of each run, the system was.pressurized and the 

vents were opened for the air to escape. When the system was free of. 

air, the pump was turned on and the water line was opened for water to 

flow through the heat exchanger. Before turning on the generator and 

the preheaters, the flow rate was set to a constant value and the test 

section pressure drop was read from the manometer at the same flow rate 

but at different exit pressures under isothermal conditions. Since the 

pressure drop is independent of the pressure level under isothermal con­

ditions, the pressure drops measured for the same fl ow rate but at di f­

ferent pressure levels should be the same. If this were the case, then 

the .manometers were working properly and no air was trapped in the man­

ometer lines; but if this were not the case, the lines were bled and 

similar runs were repeated until constant pressure drop was obtained for 

the same flow ra.te at different pressure levels. 

When the manometer system was working properly, the generatqr and 

the preheaters were turned on. It was necessary for the generator to 

work l~ hours in order to warm up and maintain a steady voltage. At the 

end of this time, the heat flux, exit pressure, and inlet temperature 

were set to desired values and the flow rate was set to a high value and 

the testing began. 



36 

Freon inlet and outlet temperatures, water inlet and outle4 temper­

atures, room temperature, Freon exit temperature from the heat ex~hanger, 

Freon and water flow rates, voltage drop across the test section, current 

through th~ test section. test section exit pre~~ur,, and the test sec­

tion pressure drop were all recorded. The flow rate was then lowered to 

a new value. As soon as the flow rate was changed, the test section exit 

pressure and the Freon inlet temperature were also changed. The pressure 

regulator on the pressurized air.line and the preheaters power output 

were adjusted to maintain the desired values of exit pressure and inlet 

temperature. 

It was very difficult and time consuming to maintain a constant in­

let temperature, so a deviation of+ 1 °F from the desired value in the 
' -

inlet temperature was permitted. 

The flow rate was further decreased until a further decrease in the 

flow rate increased the pressure drop. Since the location of the minimum 

point in the pressure drop-flow rate curve was one of the objectives of 

this study, more data was taken in the neighborhood of this point. The 

flow was further decreased and the pressure drop increased, indicating 

that the system was operating in the negative slope region of the pres­

sure drop-flow rate curve. Operation in this region was ~nstable and the 

pressure drop started to oscillate. This could be seen from the oscilla­

tion of the mercury level in the manometer tube. To obtain a steady op­

eration the fl ow was throttled upstream of the test sec ti on by mi crome-

tering valve. When the system became steady, see Figure 3, the .data tak-

ing procedure started again. The flow rate was further decreased until 

a further decrease in the flow rate resulted in a decrease in the pres­

sure drop. A number of points were taken in the vicinity of this maximum 
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point and the flow rate was again decreased. For low heat fluxes the 

flow was decreased as low as it could be read from the rotameters, but 

for high heat fluxes the flow was·lowered to the point where all the 

Freon was vaporized in the test section.' The flow rate -was not decreased 

beyond this point to avoid burnout. 

When the system was operating at 1 ow flow rates, it was noticed that 

the power input into the test section was changed. This was because at 

low flow rates the wall temperature increased and this changed the 

electrical resistance of the test section. In such cases the power out­

put of the generator was changed to maintain a constant heat flux into 

the test section. 

For the large test section (L/0 = 204) when the system was working 

in the negative s 1 ope region of the pressure drop-fl ow rate curve it was 

not always possible to maintain steady state operation by throttling the 

flow upstream of the test section. This happened especially when the 

system was working at high heat fluxes, low exit pressures, and high 

inlet temperatures. In such cases the flow was throttled as much as 

possible, this throttling reduced the amplitude of the pressure drop 

oscillations and then the average test section pressure drop was record­

ed. For other test sections, the system was always stabilized by up­

stream throttling. 

Every day, before data taking started, the atmospheric pressure was 

read from a Fortin-type barometer and was corrected for the effect of 

room temperature and Stillwater altitude. The effect of altitude and 

room temperature was also applied to obtain specific gravity of mercury. 

These informations were later used to convert the pressure drop from 

inches of mercury to psi and to convert psig to psia. 
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At shutdown, the generatdr was first turned off and ·then the pre­

heaters. The cold water line was fully opened and all the valves in the 

main loop were opened and the system was allowed to operate for 15 min­

utes at zero power. At the end of this time, the system was completely. 

cool and the pump was turned-off and all the valves were closed. 

The experimental procedure which was explained above was repeated 

for all the runs. 

4.3 Test Section Heat Balance 

After the loop assembly was.completed and before the actual data 

taking started, several runs were made to calculate heat losses at 

various pressures, heat fluxes, and inlet temperatures. The heat 1osses 

for highest heat flux and highest inlet temperature was always less -than 

2%. For lower heat fluxes, the losses were always much smaller than 

2%. Due to the fact that heat 1 asses were very sma l1 , they were 

neglected. 



CHAPTER V 

EXPERIMENTAL RESULTS AND DISC~SSION 

5.1 Pressure Drop Flow Rate Curve -

The results for the heated section pressure drop versus mass flow 

rate are given in Figures 10 through 38. These results suggest that 

there are five regions of pressure drop in the pressure drop-flow rate 

curve. The first region is that of pure forced-convection and the flow 

rate is so high that no evaporation occurs in the heated section. The 

pressure drop in this region is si111aller than that of the isothermal case, 

and this is due to the variation in fluid properties especially the vis­

cosity with heat addition. 

As the flpw rate is decreased, the second region begins, which is 

characterized by formation of small b~bbles. In this region which can 

be called 11 partial subcooled boiling 11 or 11 highly subcooled 11 region, only 

few nucleation sites are active and small bubbles grow and collapse 

while they are still attached to the heated surface and do not penetrate 

into the subcooled flow. The growth and collapse of the bubbles will 

cause the slope of the pressure drop-flow rate curve to decrease. It 

is in this region that the pressure drop-flow rate curve.intersects the 

liquid isothermal. pressure drop curve. A further decrease in the flow 

rate will cause the pressure drop still to decrease; however, the slope 

of the pressure drop-flow rate curve continues to decrease -and the pres~ 

sure drop is large~ than that of the isothermal liquid case. 
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Figure 10. Test Section Pressure Drop Versus Mass Flow Rate 
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Figure 13. Test Section Pressure Drop Versus Mass Flow Rate 
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Figure 14. Test Section Pressure Drop Versus Mass Flow Rate 
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Figure 15. Test Section Pressure Drop Versus Mass Flow Rate 
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Figure 17. Test Section Pressure Drop Versus Mass Flow Rate 
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Figure 20. Test Section Pressure Drop Versus Mass Flow Rate 
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Figure 21. Test Section Pressure Drop Versus Mass Flow Rate 
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Figure 22. Test Section Pressure Drop Versus Mass Flow Rate 
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Figure 23. Test Section Pressure Drop Versus Mass Fl0w Rate 
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Figure 24. Test Section Pressure Drop Versus Mass Flow Rate 
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Figure 25. Test Section Pressure Drop Versus Mass Flow Rate 
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Figure 26. Test Section Pressure Drop Versus Mass Flow Rate 
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Figure 27. Test Section Pressure Drop Versus Mass Flow Rate 
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Figure 28. Test Section Pressure Drop Versus Mass Flow Rate 
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Figure 29. Test Section Pressure Drop Versus Mass Flow Rate 
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Figure 32. Test Section Pressure Drop Versus Mass Flow Rate 
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Figure 33. Test Section Pressure Drop Versus Mass Flow Rate 
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Figure 34. Test Section Pressure Drop Versus Mass Flow Rate 
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Figure 36. Test Section Pressure Drop Versus Mass Flow Rate 
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The third region begins with a further reduction in the flow rate 

and it is called 11 fully developed subcooled boiling 11 or the 11 low sub­

cooled11 region. 

In this region the number of nucleation sites increase and more 

bubbl~s grow at the heating surface~ These bubbles detach from the wall, 

and they condenst! slowly as they pass through the slightly subcooled 

liquid. The void fraction in this region rises sharply, and this will 

cause a sharp increase in the pressure drop. It is in this region where 

the pressure drop-flow rate curve passes-through a minimum pressure drop. 

As .the fl ow rate is decreased, the fourth region or 11 saturated 

nucleate boiling 11 region begins. In this region the liquid temperature 

will reach to the saturation temperatureand bulk boiling starts. A 

further decrease in the flow rate will increase the vapor quality. The 

pressure drop continues to increase due to the acceleration of the 

mixture along the tube. Further reduction of the flow rate will in­

crease the vapor quality until all the liquid evaporates, and the fifth 

region begins. This region, like the first region, is that of pure 

forced-convection, and further reduction in the flow rate will decrease 

the pressure drop. It is between the fourth and fifth region where the 

pressure drop-flow rate curve passes through a maximum. The above five 

regions are shown in Figure 39. 

To che~k on the reproducibility of the data, ten different runs 

from the longest test section (L/D = 204) were repeated after twenty 

days. The maximum deviation was about±. 6% while most of the data was. 

close to+ 2% which was considered acceptable. 
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5.2 Effect of Various Parameters 

In the following sections the effect of vario1,1s parameters on the 

pressure drop-flow rate curve will be discussed and their effect on the 

excursive instability will be analyzed. 

5.3 Inlet Subcooling 

A study of the experimental data presented in Figures 10 through 

38 indicated that decreasing the inlet subcooling while holding the 

other variables constant, shrinks the first region (forced-convection 

region) of the pressure drop flow rate curve. Consequently, the second 

and third regions begin at higher mass flow rates and the curve will pass 

through the point of minimum pressure drop at higher values of mass flow. 

This means that increasing the inlet subcooling increases the range of 

the stable operation. Maulbetsch (16) also obtained the same result. 

The review of literature shows that the effect of inlet subcooling 

on the oscillatory instability is complex, and it might have a stabiliz­

ing or destabilizing effect .. In excursive instability this does not 

appear to be the case. 

5.4 Pressure 

The effect of the system pressure on the pressure drop-flow rate 

curve is that it expands the forced-convection region on the liquid side 

due to the ·fact that increasing the pressure wil 1 increase the saturation 

temperature and will cause the minimum pressure drop to occur at lower 

flow rates. Also, increasing the system pressure will increase the vapor 
• 
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density; and consequently, the range of the negative slope region of the 

pressure drop-flow rate curve will decrease. Thus, increasing the system 

pressure increases the range of the stable operation. 

This result, without any exception, is in agreement with all the 

previous investigations on the effect of system pressure on the stabil­

ity. 

5.5 Heat Flux 

The data has been presented in such a way that the effect of heat 

flux can be seen in each figure. At high mass flow rates where no 

vapor is present, increasing the heat flux will reduce the pressure drop. 

This is due to the fact that viscosity near the wall will decrease with 

increasing temperature. However, increasing the heat flux will contract 

the single phase region on the liquid side; and consequently, the second 

and third regions will start at higher mass flow rates, which in turn, 

causes the point of minimum pressure drop to occur at high mass flow 

rates. Increasing the heat flux will increase the test section total 

pressure drop in the 11 highly subcooled 11 region, 11 low subcooled 11 region, 

and 11 saturated nucleate boiling 11 region. Also, an increase in the heat 

flux will increase the negative slope region of the pressure drop flow 

rate curve. This shows that increasing the heat flux decreases the 

range of the stable operation. This result is in agreement with the re­

sult of the other investigators. 

5.6 Length to Diameter Ratio 

An extensive investigation of pressure drop for subcooled boiling 

of water was carried out by Dormer and Bergles (21). They found that as 
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long as the length to diameter ratio remains constant, the diameter has 

a very small effect on the pressure drop and that the length to diameter 

ratio is of prime importance. This is supported by the results of 

Maulbetsch (16). 

It was mentioned in section 5.1 that the pressure drop flow rate 

curve passes through the point of minimum pressure drop in the sub­

cooled boiling region. At the minimum of each curve, a heat balance was 

performed to find out the condition of the flow at the channel exit. It 

was found out that without exception, this minimum occurs at exit con­

ditions which are subcooled. However, it was noticed that degree of 

subcooling at the channel exit corresponding to the condition of the 

point of minimum pressure drop varies with the length to diameter ratio. 

For the large length to diameter ratios the degree of subcooling at 

the channel exit for the minimum is less than those for the small length 

to diameter ratios. 

In two test sections with different L/D, which are operating under 

the same heat flux, inlet subcooling, and system pressure, the minimum 

in the larger test section occurs at the higher mass flow rates than 

that in the smaller test section. This is due to the fact that the total 

heat flow rate into the larger test section is more than that for the 

smaller test section. Thus, increasing the length-to-diameter ratio de­

creases the range of the stable operation proviaed that heat flux, inlet 

subcooling, and system pressure in both cases are the same. 

This result can be justified by the following discussion. Location 

of the point of minimum pressure drop on the pressure drop-flow rate 

curve is strongly dependent on the onset of subcooled nucleate boiling, 



due to the fact that the point of minimum pressure drop occurs some­

where in the subcooled boiling region. 

The res1,Jlts obtained by Bergles and Rohsenow (22), Bowring (23), 

and many other investigators show that the onset of subcooled nucleate 

boiling is a function of heat flux and pressure. 
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Now, consider two test sections with different length-to-diameter 

ratios operating under the same heat flux, system pressure, inlet sub­

cooling, and mass flow rate. If the mass flow rate in both test sections 

is reduced slowly, the wall temperature will start to increase until 

at a specific value of mass flow rate the wall superheat will reach to 

a value which is sufficient to initiate surface boiling. The point of 

initiation of the subcooled boiling is at the same distance from the test 

section inlet for both of the test sections. This is obvious from a 

heat balance. The distance between ~his point and the channel exit is 

larger for the test section with larger L/D; and consequently, the 

temperature of the liquid at the channel exit with larger L/D will be 

more than the liquid exit temperature in the channel with smaller L/0. 

Thus, the exit subcoolings for the test sections with small L/D are 

higher than those corresponding to the test sections with large L/D. 

5.7 Inlet Orificing 

After the data taking was finished and the pressure drop-flow rate 

curves were plotted, three different types of orifice pressure drops 

were imposed on these curves; For each inlet temperature the pressure 

drop-flow rate curve for each test section under isothermal conditions 

was obtained. Three different orifices were assumed to have pressure 

drop-flow characteristics as: 
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bP 6P · 6P 
'"""=""o_ = 0. 5' ..,..6P=-'o~ = 1. 0' 6P o 
bPadb adb adb 

= 2.0. 

Where 6P0 is the orifice pressure drop for a given inlet temperature and 

test section, 6Padb is the test section pressure drop at the same inlet 

temperature under adiabatic conditions. 

It was found that inlet orifice pressure drop will shift the point 

of minimum pressure drop t;o lower mass flow rates and at the same time 

reduces the negative slope region of the pressure drop-flow rate curve. 

Consequently, the inlet orificing has a stabilizing effect on the in­

stability. This has been obtained by many other investigators and ac­

cepted as an establ i she.d fact for many years. 

A typical effect of inlet orificing is shown in Figure 40. 
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CHAPTER VI 

CORRELATION OF THE RESULTS 

In flow stability problems, as well as other heat transfer and fluid 

mechanics problems, it is very important to reduce the variables to a set 

of dimensionless groups. The use of dimensionless groups has many ad­

vantages: 

1. The number of variables is reduced. 

2. The results of different investigations can be compared more 

easily. 

3. Simulation of the practical problem is possible with more con-

venience in the laboratories. 

The literature review revealed that the most important parameters 

affecting the two-phase flow stability are: inlet subcooling, pressure 

level, heat flux, inlet orificing, mass flow rate, and geometry. The 

effect of inlet subcooling is best described by the ratio of the heat 

required to raise the fluid to the saturation temperature to the heat 

required for vaporization. Therefore, the dimensionless parameter 

Cp(Ts-Ti)/hfg was selected to describe the effect of inlet subcooling. 

C and T. are the specific heat and inlet temperature of the fluid 
p 1 

and Ts and hfg are the saturation temperature and heat of vaporization 

at the condition of the channel exit. Since Ts and hfg are dependent 

on the system pressure, the above dimensionless group will also reflect 

the effect of the system pressure. The effect of the system pressure 
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can also be described by the ratio of the vapor density to the liquid 

density (pv/pJ/.,). It was found that the effect of the pressure on the 

dimensionless parameters Cp(Ts-Ti)/hfg and pv/pJ/., is approximately the 

same and that Cp(Ts-Ti)/hfg can describe the effect of the pressure as 

we 11 as p / p JI.,. 

78 

This is justified by the fact that the value of the dimensionless 

parameter (p /pJ/.,)C (T -T.)/hf (which is similar to Jakob number) is in-v p S 1 g 

sensitive to the pressure. 

The primary objective of this chapter is to find a correlation for 

the points of the minimum pressure drop on the pressure drop-flow rate 

curves. 

Maulbetsch (16) found that the point of the minimum pressure drop 

occurs in the subcooled nucleate boiling region. Whittle and Forgan 

(24) suggested that this point is very close to the point of the bubble 

detachment from the heated surface and Bowring (23), Levy (25), and 

Staub (26) found that the point of bubble detachment is in the sub­

cooled boiling region. The results of this study also showed that this 

point is in the subcooled boiling region. It can be concluded that the 

point of the minimum pressure drop is closely associated with the point 

where the subcooled nucleate boiling first starts. The onset of sub­

cooled nucleate boiling is dependent on the heat flux and the saturation 

temperature and the density ratio does not have a significant effect on 

this point, For these reasons, the dimensionless parameter 

Cp(Ts - Ti)/hfg was selected to describe the effects of the inlet sub­

cooling and the pressure at the same time. 

The second dimensionless parameter is selected to be q/A/Ghfg' where 
. 
q is the heat flow rate and G is the mass velocity. This parameter will 
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describe the effects of the heat flux and the mass flow rate. The effect 

of the orifice pressure drop can be expressed in dimensionless form by 

di vi ding it by the adiabatic pressure drop of the test section, thus . 

6P0/6Padb was selected to be another dimensionless parameter. The last 

dimensionless parameter is L/D which describes the effect of the geome­

try. 

At the point of minimum pressure drop on the pressure drop-flow rate 

curve, the above dimensionless parameters were calculated and the re­

sults are presented in Figures 41 through 44. 

For the large test section (L/0 = 204) each data point represents 

the average of five measured points. Since these five points are very 

close to each other only the average is shown. 

The effect of inlet subcooling, system pressure, heat flux, inlet 

orificing, mass flow rate, and geometry on the excursive instability can 

be clearly seen from these curves. 

Figure 41 can be used as a prediction of the onset of excursive in­

stability in parallel channel systems, where the external system pres~ure 

drop is independent of the flow rate (constant pressure-drop supply sys­

tem). Also, Figure 41 is useful in prediction of the location of the 

minimum pressure drop on the pressure drop-flow rate curve for single 

channels. 

With a given .inlet temperature, exit pressure, heat flux, mass flow 

rate, and L/D it is possible to predict whether the system is in the 

stable region or unstable region. If the point of operation happens to 

be in the unstable region and if the system is a constant pressure-drop 

supply system, burnout will occur. If the system is not a constant 

pressure-drop supply system, operation will be in the negative slope 
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region of the pressure drop-flow rate curve and the system will be sub­

ject to the pressure drop oscillations. This might or might not lead to 

the burnout, depending on the external supply system. In such cases, 

by changing one or more of the above parameters, the operation point can 

be shifted from the unstable region to the stable region. However, if 

due to the design considerations it is not possible to change any of the 

above parameters, the only way to operate in the stable region is by 

providing a sufficient inlet orificing. 

In such cases, Figures 42 through 44 can be used depending how much 

orifice pressure drop can be used. 

From Figures 41 through 44 it can be seen that the data points cor­

responding to the onset of excursive instability for a given orifice 

pressure drop fall on a straight line and the slope varies only with 

the length-to-diameter ratio. 

The slope of each line is q/A/CPG(Ts-Ti)' where (Ts-Ti) is the 

difference between the inlet temperature and the saturation temperature 

at the condition of the channel exit. This slope can be written in the 

following form: {q/qse) (l/4L/D) where q is the actual heat flow rate 

into the test section and ~se is the heat flow rate which is required 

to obtain a saturation condition at the test section exit. 

For each test section the value of L/D is constant. For a given 

test section the value of q/qse at the point of minimum pressure drop is 

constant, and the value of this constant changes only with length-to-

diameter ratio. 

This result has been previously noted by Maulbetsch (16). From 

this result it.seems that it is possible to use L/D as a parameter for 
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correlating q/qse and obtain a stability map, To do so, at the points 

of the minimum pressure drops the values of q/q were calculated and the se 
average values of q/qse for each L/D were obtained. The results are 

shown in Figure 45, Maulbetsch (16) obtained pressure drop-flow rate 

curves for water flowing inside small diameter tubes up to the point of 

the minimum pressure drop. To compare his results with the results from 

this study, the values of q/qse at the points of minimum were calculated 

and the results are shown in Figure 45. It can be seen that there is 

a good agreement between the two results. This gives more confidence 

in the experimental results and the fact that a proper set of dimension­

less groups was selected. 

Similar curves were obtained with imposing different orifice pres­

sure drops on the pressure drop-flow rate curves and the results are 

shown in Figure 46, 
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CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

Two-phase flow stability was studied in horizontal channels by 

steady-state measurements of the pressure drop versus flow rate curve. 

The effects of inlet subcooling, system pressure, heat flux, inlet ori­

ficing, and geometry on this curve and particularly on the point of 

minimum pressure drop were investigated. 

The conclusions which have been reached in this investigation can 

be summarized as follows: 

1. In the range of.the variables studied, the pressure drop-flow 

rate curves have distinct minima and maxima. 

2. The point of the minimum pressure drop on the pressure drop­

flow rate curve occurs in the subcooled boiling region where the void 

fraction rises sharply. 

3. Increasing the inlet subcooling increases the range of stable 

operation by shifting the point of the minimum pressure drop towards the 

lower mass flow rates. Decreasing the inlet subcooling will shift the 

point of the minimum pressure drop towards the higher mass flow rates and 

hence decreases the range of stable operation. 

4, Increasing the system pressure increases the range of stable 

operation and reduces the size of the negative slope region of the pres­

sure drop-flow rate curve. 
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5. Increasing the heat flux will decrease the rarige.of stable op­

eration and will increase the size of the negative slope region of the 

pressure drop-flow rate curve. 

6. Increasing the inlet orifice pressure drop will increase the 

range of the stable operation and reduces the si2e of ~he negative slope 

region of the pressure drop-flow rate curve. 

7. Decreasing the length to diameter ratio while holding the inlet 

subcoolingt inlet orificingt system pressuret and heat flux constant will 

increase the range of the stable operation. Howevert decreasing the 

length to diameter ratio while holding the inlet subcooling, inlet ori­

ficingt system pressuret and heat flow rate constant will decrease the 

range of stable operation. 

8. At the point of the minimum pressure drop the ratio of the 

actual heat flow rate to the heat flow rate required to obtain saturated 

liquid at the channel exit is a constant value and the value· of-this 

constant is dependent only on the length to diameter ratio. 

9. The results of this investigation have been correlated and shown 

in Figures 41 through 46. The correlation curves should be useful in 

the design of heated parallel channels with a constant pressure-drop sup­

ply system. The curves show the safe and unsafe regions with respect to 

excursive instability. For such systemst this instability may lead to 

burnout at a heat flux well below the stable critical heat flux. If 

the system is not a constant pressure-drop supply. system, for example t 

if the system has only a few channels, the curves give conservative an­

swerst and may also be useful to predict whether the operation point is 

in the negative slope region or not. 
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10. The results obtained in this study are applicable to horizon-. 

tal, smooth tubes and their validity is not assured in other·sitllations. 

The following suggestions are recommended to extend the range of 

applicability of the ,results obtained in this study: 

1. Similar experimental data are needed for short test sections 

(L/D<SO) and for large test sections (LfD>200) in order ~o extend the 

range of applicability of the correlation curves. 

2. In Figure 45 it can be observed that the slope of the correla­

tion curve will decrease with increasing length-to-qiameter ratio. It 

seems that at higher length-to-diameter ratios, the slope of this curve 

will finally reduce to zero. It would be of particular interest to find 

the value of L/D at which .the slope of the curve becomes zero and-also 

to find the value of e[1-- corresponding to this L/D. 
se 
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APPENDIX A 

DERIVATION OF CRITERIA FOR 

EXCURSIVE INSTABILITY 

The criteri.on for excursive instability was given by other investi­

gators such as Ledinegg (2), Chilton (3) and Maulbetsch (16). However, 

the details of a more general and more complete and at the same time 

more clear derivation are given here. 

Consider a horizontal channel of length Land cross section Ac which 

is subject to some kind of heat flux (not necessarily constant heat 

flux), and a pressure difference of (P1 - P2) which exists at both ends 

of the channel. A fluid with density pl and velocity v1 enters at one 

end and exits at the other end with density p2 and velocity v2. The exit 

fluid might be a fluid with higher temperature, a two-phase fluid or a 

vapor. If the exit fluid is two-phase, it is assumed to be homogeneous. 

Consider Figure 47. If Newton's second law is applied to the control 

volume through which the fluid is flowing, the resultant equation is: 

:F = D(mV) 
x Dt 

P1Ac - P2\-,A = ~t !ff (Vp)d(vol.) + ff V(pVr· dAc) (A.l) 
c.v. c.s. 

Since control volume is stationary, Vr = V. p and V are assumed to be 

average density and velocity along the channel. We can write: 

3
3 t ff! ( V p ) d ( v o 1. ) = L ( V p LA ) = L L ( m) at c at c,v. 
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Figure 47. Schematic Diagram of Heated Section 

Equation (A. 1) becomes: 

.A ·La(") 2 2 
p 1 - p 2 = TAC + Ac_ at m ·+ p2 V 2 - p 1 V 1 (A.2) 

(P1 - P2) is the external system pressure drop which is imposed on the 

system, usually by a pump, and will be designated as tiPext· (T~c) 

accounts for the frictional pressure drop in the channel, which in 

general is composed of two terms: single phase pressure drop and two-' 

phase pressure drop. 

ct ~t (ri,)J is t~e inertia term, which accounts for the local 

acceleration of the flow. 
2 2 -

(p2 v2 - pl v1) is momentum pressure drop. 

(1 t + 2 V~ - P1 V~), which is the channel total pressure drop, 
c 

will be designated as tiPint" 
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It is obvious ·that t.P ext and t.Pint are functions of flow rate (m}; there­

fore, Equation (A.2} can be written in the following form: 

~~t (m} + t.Pint (m) - t.Pext (m) = O. 

If flow rate is changed by Lim such that m = m0 + t.m, we obtain: 

L d (' ') (' ') (' ') ~ dt mo + t.m + t.P int mo + t.m - t.P ext mo + 4m = O 

{A. 3) 

Applying a Taylor 1 s series expansion to Equation (A.3) and neglecting 

the second order derivatives, we obtain: 

L !L ( . ) + !:. d ( t.m) + ( . ) ( . ) a ( ) A;; dt mo Ac dt t.P int mo + t.m at11 t.P int 

- t.Pext (mo) - (t.m) :m (t.Pext) = O 

The steady state condition will cancel out and the resultant equation is: 

(A. 4) 

Solution of differential Equation (A.4) for all values oft (from t = O 

to t = co) i. s : 

c 
t.111 = ---=-------------A . 

EXP {-L c !~ [:m (t.P ext) - :m (t.P int)] dt 

Requirement for stable flow is that (m) be zero; this happens if and 

only.if 

is negqtive. Thus the criteria for flow stability is: 

and the condition for the onset of fl ow i nstabi 1 ity is: 



APPENDIX B 

EXPERIMENTAL DATA 

This appendix contains the experimental data obtained during the 

course of thi.s study. All the raw data are presented in the same order 

as the Figures 10 through 38. 

All important calculated data at the point of the minimum pressure 

drop are also presented in tabular form. 
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INLET TEMPERATURE= 85.0 DEG.F 

E XI T PR E S SUR E - 2 5 • 0 PS I A 

HEAT Fl UX 

L/0 

MASS FLOW RATE(LBM/MIN) 
9.776 
6.484 
5.122 
4.310 
3.497 
2.685 
1.873 
1.466 
1.060 
0.654 

= O. 0 BTU/HR-SQ.FT 

- 204.0 

PRESSURE OROP(PSU 
5.098 
2 .489 
1. 681 
1.241 
0.87J 
0.528 
0.283 
0.180 
0.101 
o.oso 

INLET TEMPERATURE= 95.0 DEG.F 

EXIT PRESSURE 

HEAT FLUX 

l/0 

MASS FLOW RATE (L BM/MIN) 
8. 949 
6.562 
5.105 
4.296 
3.486 
3.081 
2. 676 
2.211 
1.866 
1.462 
1.057 
0.652 

= 25.0 PSIA 

= O.O BTU/HR-SQ.FT 

= 204.0 

PRESSURE DRJP(PSI) 
4.278 
2.526 
1.634 
1.198 
0.850 
0.680 
o.524 
0~407 
0.283 
0.179 
0.077 
0.042 

99 



100 

INLET TEMPERATURE = 110. 0 DEG..F 

EXIT PRESSURE = zs.o PS IA 

HEAT FLUX = o. 0 BTU/HR-SQ.FT 

L/0 = 204.0 

MASS FLOW RATE(LBM/MIN) PRESSURE DROP(PSI) 
10. 783 5. 829 

7.420 3.094 
s.oao 1.599 
4.274 1. 202 
3 .871 0.977 
3.468 0.866 
3.066 0.700 
2.663 o.528 
2.260 0.401 
1.857 o. 283 
1.454 0.100 
1.051 0.104 
0.649 0.047 

INLET JEMPERATURE = 120 .o OEG.f 

EXIT PRESSURE = 2 5. O PSIA 

HEAT FLUX = o.o BTU/HR- SQ.FT 

L/D = 204 .o 

MASS FLOW RATE(LBM/MIN) PRESSURE OROP(PSI) 
10.154 5.457 

a. 2a1 3.767 
6.507 2.475 
5 .062 1.566 
4.661 l.358 
4.259 1.146 
3. 858 0.977 
3.456 o.798 
3.055 0.671 
2.653 0.498 
2.252 0.378 
1.851 0.306 
1.449 0 .179 
1.048 0.104 
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INLET TEMPE RAT URE = 85.0 DEG.F 

EXIT PRESSURE - 25. 0 PSIA 

HEAT FLUX = 14250.00 BTU/HR- SQ. FT 

L/0 = 204 .o 

MASS FLOW RATE(lBM/MlNI PRESSURE DROP( PSI 1 
s.122 1.768 
4. 310 1 .312 
3.903 1.104 
3.497 0.970 
2.685 0.912 
2.604 1.065 
2.482 1.oaa 
2.279 1.179 
2.076 1.296 
l.66q 1.625 
1.466 1.840 
l.060 2. 198 
0.816 2.243 
0.654 2.178 

INLET TEMPERATURE = 85.0 DEG.F 

EXIT PRESSURE = 35.0 PSIA 

HEAT FLUX ·- 14250. o:; BTU/HR-SQ.FT 

L/D - 204.0 

MASS FLOW RATE{LBM/MIM) PRESSURE DROP( PS I) 
11.357 6.411 

7.571 3.106 
s.122 1.775 
4.310 1. 276 
3.497 0.882 
2.685 0.694 
2.197 0.681 
2.116 0.101 
1.873 o.1s2 
1.466 1. 006 
1.060 1.410 
0.654 1.605 
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INLET .TEMPERATURE = 85.0 OEG.F 

EXIT PRES SURE = 45.0 PSIA 

HEAT FLUX = 14250.00 BTU/HR-SQ.FT 

L/D = 204.0 

MASS FLOW RATE (L BM/MIN) PRE SS URE DROP(PSI) 
11.357 6.416 

7. 571 3 .100 
5.122 1. 752 
4.310 1. 280 
4.310 0.876 
2.685 0.609 
1.873 0.544 
1.466 0.586 
1.060 o. 860 
0.654 1.156 

l NLE T TEMPERATURE = 85.0 OEG.F 

EX IT PR ES SURE - 55.0 PSIA 

HEAT FLUX = 14250.00 IHU/ HR-SQ. FT 

LID = 204.0 

MASS FLOW RATE(LBM/MIN) PR ES SURE DROP( PS I) 
11. 306 6.416 
7.571 3. 172 
9.975 4.283 
6.983 2.521 
5.122 1. 755 
4.310 i.286 
3.497 c. 879 
2.685 0.567 
2.279 0.440 
1.669 0.420 
1.466 0.430 
1.060 0.576 
0.654 0.870 
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INLET TEMPERATURE = 85.0 OEG.F 

EXIT PRESSURE = 70. 0 P SIA 

HEAT FLUX = 14250.00 BT U/ HR - SQ • FT 

L/0 = 204.0 

MASS FLOW RATE(LBM/MIN> PRESSURE OROP(PSI) 
9.576 3.947 
6.983 2.475 
5.122 1.752 
4.310 1.211 
3.497 0.873 
2.685 0.524 
2.21q 0.420 
1.466 0.404 
1.060 0.408 
0.654 o.573 

INLET TEMPE RA TURE = 95.Q OEG.F 

EX IT PRES SU RE = 25.0 PS IA 

HEAT FLUX = 14250.UO BTU/HR-SQ.FT 

l/0 = 204.0 

MA SS FLOW RATE(LBM/MIN) PRESSURE DROP (PSI) 
tl. 068 6.145 
7.547 3.151 
5.105 1.745 
4.296 1.286 
3.081 1.048 
2.879 1.058 
2.676 1.090 
2 .271 1. 341 
1.866 1.647 
1.462 1.995 
1.057 2.262 
0.854 1 .347 
0.652 2.187 
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INLET TEMPE RA TURE = 95.0 OEG.F 

EXIT PR ES SURE = 35.0 P SIA 

HEAT FLUX = 14250.00 BTU/HR-SQ. FT 

L/0 = 204.0 

MASS FLOW RAT E ( L 1:3 M/ M IN ) PR ES SURE DRJP(PSI) 
11.210 6.301 

7.547 3.144 
5.105 1.738 
4.296 1.266 
3.486 o.856 
3 .08 l 0.736 
2.879 0.699 
2.474 a. 680 
2 .211 0.690 
1.866 0.804 
1.462 1.064 
1.057 1.403 
0.652 1.559 

INLET TEMPE RA TURE = 95.0 DEG.F 

EX IT PRESSURE = 45.0 PS IA 

HEAT FLUX = 14250.00 BTU/HR-SQ. FT 

LID = 204.0 

MA SS FLOW RATE{LBM/MIN) PRESSURE DROP{PS I) 
11.068 6.140 
7.547 3.106 
5.105 1.748 
4.296 1.263 
3.486 0.892 
3.081 0.876 
2.676 0.755 
2.474 0.100 
2.211 0.667 
1. 866 0.609 
1.462 (J.667 
1.057 0.947 
0.652 1. 1 72 
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INLET TEMPERATURE = 95 .o OEG.F 

EXIT PRESSURE = 55. 0 PSI A 

HEAT FLUX = 14250.00 BTU/HR-SQ.FT 

L/0 = 204.0 

MASS FLOW RATE(LBM/MIN) PRESSURE OROP( PSI) 
11.068 6.148 

7.547 3.106 
5 .105 1. 758 
4.296 1.309 
3.486 o. 921 
2.676 o. 619 
2.211. 0.521 
2.069 0.462 

. 1.866 0.436 
1.664 0.394 
1.462 0.475 
1.057 0.622 
0.652 0.869 

INLET TEMPERATURE = 95.0 DEG.F 

EX IT PRESSURE = 70.0 PSIA 

HEAT FLUX = 14250.00 BTU/ HR-SQ. FT 

l/D : 204.0 

MASS fl OW RATE (L BM/MIN) PRES SU RE DROP ( PS 1) 
11. 068 6.154 
7.547 3.139 
5.105 1. 749 
4.296 1.257 
3.486 o. 853 
2.676 0.524 
l.462 0.352 
1.057 0.423 
0.652 o.557 
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INLET TEMPERATURE = 110. 0 DEG.F 

EXIT PRESSURE = 35.0 PSIA 

HEAT FLUX = 14250.00 BTU/HR-SQ. FT 

l/0 = 204 .o 

MASS FLOW RiTE(LBM/MIN) PRESSURE OROP(PSIJ 
11.871 5.250 
8.805 3.254 
5.080 1. 755 
4.677 1. 518 
4.274 1. 293 
3. 871 1.111 
3.468 C.990 
3.066 0.941 
2.864 0.905 
2.663 o. 951 
2.260 l .026 
1.857 1. 205 
1.454 1.400 
1.051 l. 710 
0.850 1. 733 
0.649 1. 687 

INLET TEMPERATURE = 110.0 OEG.F 

EXIT PRES SURE = 45. 0 P SIA 

HEAT FLUX· = 14250.00 BTU/ HR-SQ.FT 

l/D - 204.0 

MASS FLOW RATE(LBM/MIN) PRESSURE OROP(PSIJ 
l 0.882 4.651 

8.904 3.367 
5.080 1.749 
4.274 1.273 
3.468 0.883 
3.066 o.756 
2.663 0 .687 
2.260 o. 671 
2.058 0.684 
1. 857 0 .681 
l.454 o. 824 
1.051 1.081 
o. 649 1.208 
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INLET TEMPERATURE = 110. 0 DEG.F 

EXIT PRESSURE = 55.0 PSIA 

HEAT FLUX ·- 14250.00 BTU/HR-SQ.FT 

L/0 = 204.0 

MASS FLOW RATE(LBM/MIN) PRESSURE OROP(PSil 
11.772 4.813 
7.914 2.775 
5.080 1.772 
4 .274 1.211 
3.468 · 0.899 
2.663 0.596 
2.260 o.524 
2.058 o.sos 
1. <H8 0.505 
1.454 o.547 
1.051 0.687 
0.649 0.997 

INLET T EM PE RAT UR E = 110.0 DEG.F 

EXIT PRESSURE = 70.0 PSIA 

HEAT FLUX = 14250.00 BTU/HR-SQ.FT 

l/0 = 204.0 

MASS FLOW RATE(LBM/MIN) PRESSURE DROP( PS U 
10.387 4.132 
5.080 1.732 
4.274 1.210 
3.468 0.856 
2.663 o.544 
2.260 0.430 
1.857 0. 388 
1.736 0 • .3 78 
1.535 o. 3 81 
1.051 0.440 
o. 649 0.615 
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INI..ET TEMPERATURE = 12 o.o DEG.f 

EXIT PRESSURE = 45.0 PSIA 

HEAT FLUX = 14250.00 BTU/HR-SQ. FT 

l/0 = 204.0 ~ 

MASS FLOW RATE(LBM/MIN) PRESSURE DROP( PS I) 
5.062 l.761 
4.661 1.556 
4.259 1. 380 
3.858 1.234 
3.456 1.100 
3.055 1.ooq 
2.453 0.960 
2. 252 0.967 
1.851 1.048 
1.449 1.250 
1. 048 1.501 
0.646 1. 507 

INLET TEMPERATURE = 120 .o DEG.F 

EXIT PRESSURE ·= 55. 0 PSI A 

HEAT FLUX = 14250.00 BTU/HR-SQ.FT 

L/0 ·- 204.0 

MASS FL Ow RATE(LBM/MIN) PRESSURE OROP(PSI) 
5.062 1.686 
4. 661 1.475 
4. 259 1.253 
3.858 1.061 
3. 456 0.882 
3.055 o.759 
2.653 0.674 
2. 252 0.638 
2.051 0.626 
1.851 0.110 
1.449 o.798 
1.048 1.025 
0.646 1.1s2 
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INLET TEMPERATURE = 120.0 DEG.F 

EXIT PRESSURE = 70.0 PS IA 

HEAT FLUX = 14250.00 BTU/HR-SQ. FT 

L/D - 204.0 

MASS FLOW RATE(LBM/MIN) PRESSURE DROP ( PS U 
8.873 2.607 
5.062 1.683 
4.661 1.458 
4.259 1.243 
3.858 1.035 
3.456 0.853 
3.055 0.693 
2.653 0.579 
2.252 0.498 
1.650. 0.492 
1.449 o.so1 
1.048 0.645 
o.·646 o. 781 

INLET TEMPERATURE = 85.0 OEG.F 

EXIT PRESSURE = 25.0 PSIA 

HEAT FLUX = 22500.00 BTU/HR-SQ.FT 

l/0 = 204.0 

MASS FLOW RATE(LBM/MIN) PRESSURE DROP(PSI) 
8.828 4.130 
s.122 1.87.3 
4. 716 1.113 
4.310 1.638 
4.107 1.101 
3.903 1.733 
3.497 1.925 
2.685 2.667 
1.873 3.846 
1.466 4.175 
1. 263 4 .2oa 
1.060 4.068 
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INLET TE MP f KAT URE ·- 85.0 OEG.F 

EXIT PRESSURE = ~5. 0 PSI A 

HEAT FLUX = 22500.00 B TU I HR - SQ • FT 

L /D = 204 .o 

MASS FLOW RATE(LBM/M IN) PRESSURE DROP( PSI)_ 
8.379 3.3og 
s.122 1.801 
4.310 1.384 
3.497 1.257 
3. 091 0.954 
2.888 c. 990 
2.685 l .045 
2.279 t.694 
l.466 2. 035 
1.060 2.980 

INLET TEMPE RA TURE - 85.0 DEG.F 

EX IT PRESSURE = 45.0 PS IA 

HEAT FLUX = 22500. 00 BTU/HR-SQ.FT 

l/0 - 204.0 

MASS FLQi.'4 RATE (L BM/MIN) PR ES SURE DROP{PSl) 
B. 878 '3.579 
s.122 1. 755 
4.310 l. 296 
3.497 0.954 
2.685 0.941 
2.279 l .058 
1. 873 1.355 
1.466 1. 775 
1.060 1.863 
0.654 2.016 
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INLET TEMPERATURE - as.o OEG.F 

EXIT PRESSURE = 55.0 PSIA 

HEAT FLUX = 22500.00 B TU/HR.-SQ.F T 

L/0 = 204.0 

MASS FLOW RATE(LBM/M IN) PRESSURE DROP{PSI) 
7.980 2 .918 
5.122 1.873 
4.310 1. 413 
3.497 1.094 
3. 091 0.971 
2.685 0.860 
2.482 0.830 
2. 2 79 0.795 
2.076 0.830 
1.873 0.889 
1.466 1.198 
1.060 1. 586 
0.654 1.628 

INLET TEMPE RA TURE ·- 85.0 DEG.F 

EX IT PRESSURE = 70.0 PSIA 

HEAT FLUX = 22500.00 BTU/HR-SQ.FT 

L/0 = 204.0 

MASS FLOW RATE (L BM/MIN) PR ES SURE DROP (PSI t 
a. 000 3.071 
5.122 1.808 
4.310 1.361 
3. 497 1.306 
2.685 0.716 
2.279 0 .622 
1.873 o. 599 
1.669 0.642 
l.466 0. 749 
1.060 1. 088 
0.654 1. 238 
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INLET TE MP ERA TURE = 95.0 OEG.F 

EX IT PRES SURE = 25.0 P SIA 

HEAT FLUX = 2 25 00. 00 BTU/HR-SQ.FT 

l/0 = 204.0 

MASS FLOW RATE (L BM/MIN) PRESSURE OROP(PSit 
7. 358 3.328 
s.105 2. 387 · 
4.903 2.341 
4. 700 2.325 
4.498 2. 302 
4.296 2.315 
4.093 2.413 
3.891 2. 475 
3.486 2.774 
3. 081 2.970 
2.111 3. 344 
2.211 3.803 
1.866 4.178 
1.462 4.373 
1.259 4.350 
1. 05 7 4.194 

INLET T P.1 P ER A TUR E = 95.0 DEG.F 

EXIT PRES SURE = 35.0 PS IA 

H':A T FLUX = 22500. 00 BTU/HR-SQ.FT 

LID = 204.0 

MA SS FLOW RATE(LBM/MIN) PRESSURE OROP(PSII 
10.838 4.741 
1. 95 1 ... 3.100 
5.105 1. 817 
4.700 1.609 
4.296 1.482 
3. 891 1.416 
3.486 1.400 
3.283 1.426 
3. 081 1.429 
2.676 1. 631 
2 .211 2.283 
1.866 2.686 
1.462 2.794 
1. 057 2.989 
o. 854 2.895 
0.652 2. 520 
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INLET TEMPERATURE = 95.0 DEG.F 

EX IT PRESSURE = 45.0 PSIA 

HEAT FLUX = 22500.00 BTU/HR-SQ. FT 

L(O = 204. 0 

MASS FLOW RATE (LBM/H IN) PRESSURE DRJP(PSI) 
5. 105 l .895 
4.296 1.563 
3 .• 891 1.355 
3.486 1.244 
3.081 1.112 
2.879 1.136 
2.676 1.169 
2. 271 1.244 
1.866 1.599 
1. 462 1.911 
1.057 2.243 
0.652 2.019 

INLET TEMPERATURE = 95.0 DEG.F 

EXIT PR ES SURE = 55. 0 PSIA 

HEAT FLUX = 22500.00 BTU/ HR-SQ. FT 

LID - 204.0 

MASS FLOW RATE(LBM/MIN) PRESSURE DROP(PSI) 
5.105 1. 725 
4. 296 1.289 
3.486 1.149 
3. 081 1.029 
2.676 0.938 
2.211 0.947 
2.190 0.960 
1.866 1. 078 
1.462 1.416 
1.057 1.729 
0.854 1.787 
0.652 1.657 

-----
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INLET TEMP ERA TUR E = 95. 0 DEG.F 

EXIT PRESSURE = 70.0 PS I A 

HEAT FLUX = 22500. 00 BTU/HR-SQ.FT 

LID = 204.0 

M~SS FLOW RATE(L8M/MIN) PRESSURE DROP( PS It 
8.451 3. 210 
5 .105 l .830 
4.296 1.413 
3.486 1. 058 
2.676 o .au 
2. 2 71 o.736 
2.069 0.123 
1.947 0.726 
1.664 0.794 
1.462 o. 876 
1.057 1.299 

· o. 854 1.299 
0.652 1.210 

INLET TEMPERATURE = 110 .o DEG.F 

EXIT PRESSURE = 35. O PSIA 

HEAT FLUX = 22500.00 BTU/HR-SQ.FT 

L/D ·- 2 04 .o 

MASS FLOW RATE(LBM/MIN) PRE SS URE OROP(PSI) 
8.211 3.145 
5. 080 2.178 
4.677 2. 081 
4.274 1.999 
4. 073 2.003 
3.871 2.042 
3.468 2.087 
3.066 2.328 
2.663 2~ 64 7 
2.260 2.940 
t.857 3. 289 
1.454 3. 481 
1.051 3.386 
0.850 3. 201 
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INLET TEMPERATURE = 110.0 DEG.f 

EXIT PRESSURE = 45. 0 PSIA 

HEAT FLUX = 22500.00 BTU/HR-SQ.FT 

L/0 = 204 .o 

MASS FLOW RATE(LBM/MIN) PRESSURE DROP(PSI) 
10.783 4.344 

7. 914 2.953 
5.080 1. 947 
4.677 1.111 
4. 274 1.638 
3.871 1. 501 
3.468 1.423 
3.267 1.403 
3.066 1. 410 
2.864 1.426 
2.663 1.475 
2.260 1.703 
1.857 2.011 
1.454 2.380 
1.051 2. 507 
0.850 2.348 
o. 649 1. 973 

INLET T tMPERATURE = 110. 0 DEG.F 

EXIT PRES SURE - 55.0 PSIA 

HEAT FLUX = 2 2500. co BTU/HR-SQ. FT 

LIO = 204.0 

"1ASS FLOW RATE( LBM/MIN) PRESSURE DROP(PSil 
8 .904 3.725 
5.080 1.9 27 
4.677 1.742 
4.274 1. 550 
3.871 1.406 
3.468 1.286 
3.066 1. 231 
2 .864 1.188 
2.663 1.192 
2.461 1. 211 
2.260 1.289 
1.857 1. 53 7 
1.454 1.843 
1.051 2.090 
0.649 1. 641 
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INLET TEMPERATURE :: 110 .o DEG.f 

EXIT PRE: SS UR.~ ·- 10.0 PSI A 

HEAT FLUX = 22500.00 BTU/i-tR-SQ.FT 

L/0 :: 204 .o 

"'1ASS FL Ow RA TE ( L BM /WIN) PRE SSURF. DROP( p sn 
8.963 3.533 
5. 080 1.830 
4~677 1.605 
4.274 1.452 
3. 871 1.273 
3.468 1.126 
3.066 1.019 
2. 663 0.912 
t..461 a. 886 
2.260 0.866 
2. 099 0.879 
1.857 0.899 
1.454 1.133 
1 •. 051 1.270 
0.649 1.341 

INLET T EM PER.ATUR E = 120 .o DEG.F 

EXIT PRESSURE = 45.0 PSIA 

HEAT FLUX = 22500.CO BTU/HR-SQ.FT 

L/D = 204.0 

MASS FLOW RATE(LBM/MIN) PRESSURE DROP(PSI) 
7.690 3.178 
5. 062 2 .136 
4.661 2.006 
4.259 1.947 
3. 85 8 l .885 
3.456 1.901 
3.657 1.882 
3.256 1.957 
3.055 2. 002 
2.653 2.243 
2. 2 52 2.533 
1.851 2. 793 
1.449 2.992 
1.248 2.999 
1.048 2. 875 
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INLET TEMPERATURE -- 120.0 DEG.F 

EXIT PRESSURE = 55.0 P SIA 

HEAT FLUX = 22500.00 dTU/HR-SQ.FT 

L/D = 204.0 

MASS FLOW RATE ( L BM/ M IN I PRE ssuq1: DROP (PS I) 
5.062 2.011 
4.661 1. 901 
4.259 1. 745 
3.858 1.605 
3.456 1.498 
3.256 1. 452 
3. 05 5 1.426 
2.653 1.442 
2.252 1. 599 
1.851 1.908 
1.449 2.139 
1.048 2.237 
0.847 2.155 

IMLE T TEMPERATURE -- 120.0 DEG.F 

EX IT PRESSURE = 10.0 PSIA 

HEAT FLUX = 22500.00 BTU/HR-SQ. FT 

l/D - 204.0 

MASS FLOW RATE(LBM/MIN) PR ES SURE DROP(PSI) 
5.062 l.;696 
4 .661 1.488 
4.259 1. 302 
3.858 1.149 
3.456 1.035 
3.055 0.977 
2.653 0.964 
2.453 0.964 
2.2s2 0.970 
1. 851 1. 084 
1.449 1. 302 
1.048 1. 520 
0.847 1.543 
0.646 1. 332 
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INLET TEMPERATURE = as.a DEG.F 

EXIT PRESSURE = 25.0 P SIA 

HFAT FLUX = 30600.00 BTU/HR-SQ.FT 

L/0 = 204.0 

MASS FLOW RATE (L 8M/M IN) PRESSURE DROPCPSI) 
a. 076 4.388 
7 .193 4.053 
6.032 3.828 
s.122 3.913 
4.919 . 4. 043 
4. 716 4.160 
4. 310 4.434 
3.903 4. 851 
3.497 5.398 
3. 091 6.062 
2.685 6. 657 
2.279 1.110 

· 1. 873 7.308 
1.669 1. 234 
1.466 6.856 
1. 060 5.391 

INLET TE'-1 PERATURE = 85.0 OEG.f 

EXIT PRESSURE = 35.0 PS IA 

HEAT FLUX = 30600.00 BTU/HR-SQ.FT 

LID = 204.0 

MA SS FLOW RATE(LBM/MIN) PRESSURE OROP(PSIJ 
11.105 6.196 
7.193 3.379 
5. 122 2.523 
4. 716 2.426 
4.310 2.380 
4.107 2.439 
3.903 2. 553 
3.497 2.836 
3. 091 3.256 
2.685 3. 891 
2.279 4·.473 
1. 873 4.962 
1.669 5.073 
1.466 5.007 
1. 345 4.867 
1.263 4.630 
1.060 3.933 
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INLET TE MP ERA TURE = 85. 0 OEG.F 

EXIT PRESSURE = 45.0 PS IA 

HEAT FLUX = 30600.00 BTU/HR-SQ.FT 

L/0 = 204.0 

MASS FLOW RATE (LBM/ MIN) PRESSURE OROP(PSI) 
9.969 5.112 
6.562 2.829 
5.122 2.129 
4. 716 1. 976 
4.310 1.862 
3.903 1.797 
3.700 1. 791 
3.497 1.797 
3.091 1.947 
2.685 2.393 
2.279 2.966 
1.873 3.510 
1.466 3.770 
1.385 3.728 
1.263 3.653 
1 •. 060 3.142 

INLET TEMPERATURE = 85.0 OEG.F 

EXIT PRESSURE = 55.0 PS IA 

HEAT FLUX = 30600.00 BTU/HR-SQ.FT 

LIO = 204.0 

MASS FLOW RATE(LBM/MIN) PRESSURE DROP(PSI) 
9 .590 4.854 
6.562 2.842 
s.122 1.866 
4.716 1.696 
4.310 1.556 
3.903 1. 491 
3.497 1.439 
3. 091 1.426 
2.929 1.442 
2.685 . 1. 579 
2.279 2 .012 
1.873 2.439 
1.466 2.885 
1. 304 2.898 
1.060 2. 611 
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INLET TEMPERATURE = 85.0 DEG.F 

EXIT PRESSURE ' - 10. 0 P SIA 

HEAT FLUX = 30600 .oo BTU/HR-SQ.FT 

L/0 - 204.0 

MASS FLOW RATE(LBM/MIN) PRESSURE DROP(P SU 
9.565 4.705 
6. 562 2. 719 
s.122 1.794 
4. 716 1.576 
4.310 l.413 
3.903 1. 286 
3.497 1.195 
3.091 1.133 
2 .• 685 1.110 
2.482 1.133 
2.279 1.244 
1.873 l.615 
1.466 1.999 
1.263 2.103 
1.060 1.970 
0.857 1.644 

INLET TEMPERATURE = 95. 0 DEG.F 

EXIT PRESSURE - 25.0 PSIA 

HEAT FLUX = 30600.00 BTU/HR-SQ. FT 

L/D ·- 204.0 

MA SS FLOW RATE(LBM/MIN) PRESSURE OROP(PSII 
9.559 5.124 
7.547 4.261 
6.792 4.140 
6.289 4.163 
6.037 4.192 
5.105 4.466 
4.700 4. 717 
4.296. 5.075 
3.891 5.466 
3.486 6.134 
3.081 6.,593 
2.676 7.160 
2.211 7.525 
2.069 7.600 
1. 866 7.564 
1.785 1. 538 
1.097 5. 733 
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INLET TEMPERATURE = 95. 0 OEG.F 

FX IT PR E:S SURE = 3 5. o P SIA 

HEAT FLUX = 30600.00 BTU/HR-SQ.FT 

L/0 ·- 204.0 

MASS FLOW RATE(LBM/MINJ PRESSURE DROP(PSI) 
11. 068 6. 082 

9 .056 4.270 
7.547 3.316 
5.105 2.707 
4.700 2. 668 
4.498 2.642 
4.296 2. 671 
3 .891 2.831 
3.486 3.153 
3. 081 3. 694 
2.676 4.199 
2 .211 4.687 
1.866 4. 987 
1.664 5.088 
1.462 4.990 
1.057 3.779 

INLET T EM PERATUR E = 95.0 DEG.F 

EXIT PRESSURE = 45.o PS IA 

HEAT FLUX = 30600.00 tl TU/HR-SQ. FT 

LID :: 204.0 

MASS FLOW RATE(LBM/MIN) PRESSURE DROP(PSI) 
9.056 4.394 
6. 037 2.557 
5.105 2.078 
4.700 1.948 
4. 296 1.883 
3.891 1.857 
3.688 1.883 
3.486 1.899 
3.081 2.153 
2.676 2.593 
2. 271 3.042 
1. 866 3.576 
1.664 3.641 
1. 462 3. 713 
1.259 3. 576 
1.057 3.225 
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INLET TEMPERATURE = 95. 0 OEG.F 

FX IT PR ES SURE = 55.0 PS IA 

HEAT FLUX = 30600.00 BTU/HR-SQ. FT 

L/0 - 204.0 

tl.1ASS FLOW RATE(LBM/MIN) PRESSURE DROPCPSll 
11. 068 6.094 
6 .792 2. 821 
5.105 2 .029 
4.700 1. 857 
4.296 1.642 
3.891 1.534 
3.486 1. 469 
3 .28·3 1.462 
3.081 1.475 
2.676 1.612 
2.211 1.954 
1.866 2.560 
1.624 2.840 
1.462 2.941 
1.057 2.664 

INLET TE~PERATUPE - 95.0 DEG.F 

EX IT PRESSURE = 70.0 PSIA 

HEAT FLUX - 30600.00 BTU/HR-SQ.FT 

LID = 204.0 

MASS FLOW RATE(LBM/MIN) PRESSURE UROP(PS I J 
9. 811 4.9~4 
6.289 2.909 
5.105 2.006 
4.700 1.850 
4.296 1. 622 
3. 891 l .4 75 
3.486 1. 332 
3.081 1.228 
2.676 1.169 
2.474 lol99 
2 .211 1.267 
1.866 1.629 
1.462 1. 948 
1.057 2.052 
0.854 1.687 



123 

INLET TEMPERATURE =· 110.0 DEG.F 

EXIT PRESSURE = 35.o PS IA 

HEAT HUX = 30600.00 BTU/HR-SQ.FT 

LID = 204.0 

MASS FLOW RATE(LBM/MINJ PRESSURE OROP(PSlt 
10.988 s. 936 
10.011 5.141 

0. 51 o 4.206 
7.008 3. 708 
6.007 3.607 
5. 080 3.744 
4.274 4. 177 
3.468 5.083 
2.663 5.757 
1.857 6.080 
2.058 6.125 
1. 4.54 5.663 
1.051 4.620 

INLET TEMPERATURE = 110 .o DEG.F 

F. XIT ·PRES SURE = 45. 0 PSIA 

HEAT FLUX = 30600.00 B TU I HR - SQ • F T 

l/0 = 204 .o 

MASS FLOW RATE(LBM/MIN) PRESSURE DROP(PSI) 
9 .511 4.802 
7. 509 3.460 
6.257 2.919 
5.080 2.704 
4.677 2.668 
4.475 2. 652 
4.274 2. 710 
3. 871 2.880 
3.468 3.202 
2.663 4.049 
1.857 4.619 
1.696 4. 597 
1.454 4.333 
1. 051 3.316 
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INLET TEMPFRATURE = 110.0 DEG.F 

EXIT PRESSURE = 55.0 PSIA 

HEAT FLUX = 30600.00 BTU/HK- SQ.FT 

LID = 204.0 

MASS FLOW RATE(LBM/MIN} PRESSURE DROP(PSI) 
11.038 6.043 

8. 760 3.668 
7.008 3.186 
5.080 2.241 
4.677 2.137 
4.274 2.078 
3.871 2.052 
3. 468 2 .111 
3.066 2. 310 
2.663 2.723 
1. 857 3.548 
1.454 3. 421 
1.051 2. 730 

JNLE T TEMP!: RA TURE = 110.0 DEG.F 

EX IT PRESSURE ·- 70.0 PSIA 

HEAT FLUX = 30600.00 BTU/ HR-SQ. FT 

L/0 = 204.0 

1'1ASS FLOW RATE (l BM/M [N) PRESSURE DROP(PSI) 
11. 063 6.105 

8 .259 3. 694 
6 .758 2.665 
5.080 1.909 
4.274 1. 661 
3.871 1.583 
3.468 1.525 
3 .066 1. 492 
2.864 1.531 
2.663 1.616 
2 .260 1.932 
1.857 2.300 
1.454 2.469 
1.253 2.274 
1.051 2.020 
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I'l!LET TEMPERATURE= 120.0 DEG.F 

t XI T PRFSSURE = 45.0 PS IA 

1-F'.AT FLUX = 30600.00 BTU/HR- SQ.FT 

LIO ·- 204.0 

MA SS H.dW RATE{LBM/MIN) PRESSURE DROP ( PS 1) 

10.750 5. 922 
8.979 4.463 
1. 482 3.551 
5.986 3. 117 
5.487 3.062 
5.062 3.042 
4.661 3.072 
4.259 3 .130 
3.456 3.632 
2.653 4. 4 30 
2 .252 4.756 
1.851 4. 785 
1.449 4.489 
1.048 3.251 

INLET TEMPERATURE = 120.0 DEG.F 

EXIT PRESSURE = 55.0 PS IA 

HEAT FLUX = 30600.00 BTU/HR-SQ.FT 

L/0 = 204.0 

MASS FLOW R AT E ( L 13 M/ M IN ) PRESSURE DROP(PS I) 
8.979 4.163 
6.485 2.110 
5.062 2.397 
4.661 2.339 
4.259 2.257 
4.018 2.215 
3.858 2.300 
3.456 2. 450 
2.653 3.095 
2.252 3.427 
2.051 3. 691 
1. 851 3.668 
1.449 3.531 
1.048 3. 531 
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INLET TEMPE RAT URE = 120.0 DEG.F 

EX IT PRESSURE = 70.0 P SIA 

HEAT FLUX = 30600.00 BTU/ HR-SQ. FT 

L/0 = 204.0 

MASS FLOW RATE (L BM/MIN) PRESSURE DROP (PSI) 
lo. 999 5.994 
7.981 3. 580 
5 .062 2.182 
4. 661 2.039 
4.259 1. 915 
3.858 1.ao 1 
3.456 1.694 
3.296 1. 739 
3 .055 1.766 
2.653 1. 961 
2.252 2.290 
1. 851 2.681 
1.010 2. 661 
1.449 2.599 
1~048 2 .o 13 

INLET TfMPEPA TURE ::: 85.0 DEG.F 

EX IT PRESSURE = 25.0 PSIA 

HFAT FLUX = 35700.00 BTU/ HR-SQ. FT 

L/D - 204.0 

MASS FLOW RATE(LBM/MIN> PRESSURE DROP (PSI) 
10. 877 6. 053 

9 .590 5.076 
8.076 4. 352 
7.067 4.095 
6.814 4. 105 
6.562 4.121 
6.057 4.147 
5.122 4.444 
4.310 5.242 
3.497 6.424 
2.685 7.558 
2.279 8 .10 2 
1.873 a. 066 
1.466 7.134 
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I NlET TEMPERATURE = 85.0 OEG.F 

EX IT PRESSURE = 35. 0 PSlA 

HEAT FLUX = 35700.00 BTU/HR-SQ.FT 

l/D = 204.0 

MASS FLOW RATE CL BM/MIN) PR ES SURE DROP (PSI) 
9. 086 4.476 
1. 571 3. 584 
6.057 2.991 
s.122 2.844 
4.716 2. 851 
4.310 3.079 
3. 903 3.515 
3.497 4.137 
3.091 4.786 
2. 685 5.398 
2.279 5. 923 
1.873 6.046 
1.669 5.857 
1.466 5.427 
1.263 4.300 

INLET TEMPERATURE = 85 .o DEG.F 

EX IT PRESSURE = 45.0 PSIA 

HEAT FLUX = 35700.00 BTU/ HR-SW. FT 

L/D = 204.0 

MASS FLOW RATE(LBM/MIN) PR ES SURE ORJP (PSI) 
8.581 4 .039 
7.571 3.342 
6.057 2.498 
s.122 2.248 
4.716 2.160 
4.310 2.137 
4.107 2.209 
3.903 2.248 
3.497 2.508 
3. 091 3.023 
2.685 3.616 
2.279 4.283 
1. 873 4.596 
l.669 4.508 
1.466 4.173 
1.060 3.127 
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INLET TEMPERATURE = 85.0 DEG.F 

XI T PRESSURE - 55.0 PSIA 

HEAT FLUX = 35700.00 BTU/HR-SQ.FT 

LIO = 204 .o 

MASS FLOW RATE(LBM/MIN) PRESSURE DROP(PSI) 
11.105 6. 169 

9.086 4. 387 
6.057 2. 41 7 
5.122 2.078 
4.310 1 .883 
3.903 1.844 
3.700 l.830 
3.497 l.847 
3.091 2. 091 
2.685 2.573 
2.279 2.830 
1. 873 3.612 
1.629 3.576 
1.466 3.348 
l.060 2.606 

INLET TEMPERATURE = 85.0 DEG.F 

EXIT PRESSURE ·- 10.0 PSIA 

HEAT FLUX - 35700.00 BTU/HR-SQ.FT 

L/0 = 204.0 

MASS FLOW RATE(LBM/MIN) PRESSURE DROP( PS I) 

11.130 6. 153 
9.086 4.306 
6. 057 2.606 
5.122 1. 863 
4.310 1. 596 
3.903 1.488 
3.497 1. 420 
3.294 1.401 
3.Qql 1. 401 
2.685 1.544 
2.279 1.896 
1. 873 2.417 
1.669 2.554 
1.466 2.469 
l.060 1.909 



129 

INLET T EMPERATURf = 95.0 DfG.F 

EXIT PRESSURE - 2 5. 0 PSIA 

HEAT FLUX = 35700.00 BTU/HR- SQ. FT 

L/0 ·- 204 .o 

MASS FLOW RATE(LBM/M IN j PRESSURE OROP(PSI) 
10.817 6.226 

9. 559 5.408 
8.553 5.023 
8.050 4.994 
1. 54 7 4.939 
7.044 4.958 
6.037 5.154 
5.105 5.532 
4.296 6!' 232 
3.486 7.353 
2.676 8.506 
2.474 s. 701 
2 .211 8.832 
2.069 8. 780 
1.866 8. 565 
1.462 7.265 

INLET TEMPE RA TURE = 95.0 OEG.F 

EX IT PRESSURE ·- 35.0 PS IA 

HEAT FLUX = 35700.00 BTU/ HR-SJ. FT 

LID = 204.0 

MASS FLOW RATE(LBM/MIN) PRESSURE DROP (PSI) 
11. l 94 6.151 
8.553 4.023 
6.540 3.307 
5. 786 3.294 
5 .283 3. 352 
5.105 3.355 
4.700 3.460 
4 .296 3. 759 
3. 891 4. 229 
3.486 4.870 
2.676 5.880 
2 .211 6.336 
2.069 6. 385 
1.866 6.369 
1. 462 .5 .603 
l.057 4.326 



INLET TEMPERATURE = 95.0 OEG.F 

EXIT PRES SURE = 45.0 PSIA 

HEAT FLUX = 35700.00 BTU/HR-SQ. FT 

L/D = 204.0 

MASS FLOW RATE(LBM/M IN t PRESSURE OROP(PSI) 
11.320 6.290 

8. oso 3.626 
6.540 2. 792 
.5 .105 2.476 
4. 700 2.424 
4.498 2.407 
4.296 2.430 
3. 891 2.606 
3.486 2.974 
2.676 4.042 
2. 271 4.580 
2.028 4.769 
1. 866 4.860 
1. 664 4.743 
1.462 4. 326 
1 •. 057 3.323 

INLET TEMPERATURE - 95.0 DEG.F 

EX IT PR ES SURE - 55.0 PSIA 

HEAT FLUX = 35700.00 BTU/ HR-SQ. FT 

L/0 = 204.0 

MASS FLOW RATE (l BM/MIN) PRESSURE DROP(PSI) 
11. 320 6.241 
8 .553 3. 977 
7.044 2.886 
5.105 2. 052 
4.700 1.928 
4.296 1.902 
3.891 l.870 
3.688 1.876 
3.486 1.9 22 
3. 081 2.176 
2.676 2. 612 
2.211 3.277 
1.866 3.687 
1.664 3.707 
1.462 3 .49 2 
1. 057 2. 7Ci4 
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INLET TEMPERATURE = 95.0 DEG.F 

EXIT PRES SURE = 70.0 PSIA 

HEAT FLUX = 35700.00 BTU/HR-SQ.FT 

l/D = 204.0 

MASS FLOW RATE(LBM/MIN) PRE SS URE DROP( PS I) 
11.320 6.209 

8. 553 3.831 
7.044 2.736 
5.105 1.a 11 
4. 700 l.648 
4.296 1.537 
3.891 1.453 
3. 486 1.401 
3.283 1.397 
2.676 l.606 
2. 271 2.001 
1.866 2.450 
1 •. 664 2.599 
1. 462 2.528 
1.057 1. 987 

INLET TE..,PERATURE = 110 .o DEG.F 

E Xl T PRESSURE· = 35.0 PSIA 

HEAT FLUX = 35700. CO 8 TU/HR-SQ.FT 

LID = 2 04 .J 

MASS FLOW RATE(lBM/MIN) PRESSURE DROPCPSIJ 
10.762 6.011 
10. 011 5.516 
s.s10 4.747 
7.509 4.546 
1. 008 4.422 
6.758 4.487 
6 •. 507 4.500. 
6. 007 4.519 
5.080 4.780 
4.274 5.4.57 
3. 468 6 .252 
2.663 1. 007 
2.461 7.085 
2.260 7 .us 
1.857 6.870 
l.454 5.959 
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INLET TE MP ERA TURE 11 o. 0 DEG.F 

EX IT PRESSURE = 45.0 PS IA 

HEAT FLUX = 3570\l.OO BTU/ HR-S Q.fT 

LID = 204.0 

MASS FLOW RATE(LBM/MINt PRES SU RE DROP (PSI) 
11. 013 6.161 

9 .010 4.630 
6.507 3. 360 
5.757 3.1.78 
5.080 3. 145 
4.878 3.191 
4.677 3.256 
4.274 3. 425 
3.871 3.745 
3.468 4.226 
2.663 5. 053 
2.461 5. 294 
2 •. 260 5. 418 
2.058 5. 431 
1.857 5.353 
1.454 4.624 
1.253 4. 233 

INLFT TEMPERATURE = 110 .o OEG.F 

EXIT PRESSURE = 55. 0 PSI A 

HEAT FLUX = 35700.00 BTU/HR-SQ. FT 

l/D = 204.0 

MASS FL OW RAT E ( L BM/ M IN ) PRESSURE DR:JP(PSII 
11. 013 6.071 

7.509 3.452 
6.007 2.801 
5.080 2.527 
4.677 2.430 
4.274 2.377 
4.073 2.384 
3. 871 2.430 
3.468 2.586 
3.066 2.899 
2.663 3.335 
2.260 3.758 
1.857 3.986 
1.454 3. 602 
l .051 3.029 
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INLET TEMPE RA TURE = 1io.o DEG.F 

EX IT PRESSURE = 10.0 PSIA 

HEAT FLUX = 3 5700 .oo BTU/ HR-SQ. FT 

L/0 = 204.0 

MASS FL6w RATE(LBM/MIN) PRESSURE OROP(PSI) 
11. 088 6.142 

9 .010 4. 364 
6.007 2 .410 
5. 080 2.104 
4.274 1. 869 
3.871 1.112 
3.468 1.120 
3.267 1. 733 
3.066 1.778 
2.663 2.045 
2.260 2. 417 
1.857 2.a20 
1.454 2. 638 
1.051 2.019 

INLET TEMPERATURE = 120 .o DEG.F 

EXIT PRESSURE = 45.0 PSIA 

HEAT FLUX = 35700.00 BTU/HR-SQ.FT 

L /D = 2 04. 0 

MASS FLOW RATE(LBM/MIN) PRESSURE DROP( P Sl) 
10.875 5.874 

8.480 4. 285 
7.482 3. 933 
6.984 3.855 
6.734 3. 797 
6.485 3. 751 
6.235 3.725 
5.986 3. 758 
5.487 3.790 
5.062 3 .849 
4.259 4. 285 
3.456 5.099 
3. 055 5.438 
2.653 5.744 
2.252 5.815 
1. 851 5.587 
1.449 4.624 
1.048 3.451 
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INLET TEMPE RA TURE = 12 o. 0 DEG.F 

EXIT PRESSURE = 55.0 P SIA 

HEAT FLUX = 35700.00 BTU/ HR-SQ. FT 

LID = 204. 0 

MASS FLOW RATE CL BM/MIN) PR ES SURE DROP (PS I ) 
8. 480 4.246 
6.984 3. 347 
5.986 2.983 
5. 487 2.878 
5.062 2.747 
4.661 2.768 
4. 259 2.774 
3.858 2.944 
3.456 3. 211 
3. 055 3.601 
2.653 3. 985 
2.252 4.344 
1. 851 4.331 
l.449 3.745 
1.048 2.800 

[NLE T TEMPE RA TURE = 120.0 DEG.F 

EX IT PRES SURF: = 70.0 PSI!\ 

HEAT FLUX :: 35700.00 a,u, HR-SQ. FT 

L /0 = 204.0 

MASS FLOW RATE (L BM/MIN) PRESSURE OROP{PSI) 
a. 4 so· 3.927 
6.984 2.957 
5.986 2.403 
5. 062 2.234 
4.661 2. 129 
4.259 2 .058 
4. 058 2. 032 
3.858 2.006 
3.657 2.064 
3.456 2.136 
3.055 2. 354 
2.653 2.709 
2.252 3. 061 
1.851 3. 256 
1.449 2.690 
1.048 2. 090 
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INLET TEMPERATURE = 95.0 DEG.F 

EXIT PRES SURE = 25.0 PSIA 

HEAT FLUX = 40800.00 BTU/HR-SQ.FT 

LID = 204.0 

MASS FLOW RATE(LBM/MIN) PRE SS URE OROP(PSI) 
10.465 6.397 

9. 559 6.026 
9.056 5. 947 
8.553 5.892 
8. 05 o 5.908 
7.798 s. 915 
7 •. 547 5.928 
1. 044 5.941 
6.540 6.032 
6.037 6.228 
5. 105 6. 7.55 
4.700 7.140 
4.296 1.100 
3. 486 9.107 
3.081 9. 726 
2.676 10. 227 
2. 271 10.286 
1.866 9. 250 
1.462 7.719 

INLET TEMPE RA TURE = 95.0 DEG.F 

EX IT PRESSURE = 35.0 PSIA 

HEAT FLUX = 40800.00 BTU/ HR-SQ" FT 

LID -= 204.0 

MASS FLOW RATE(LBM/MIN) PRESSURE DROP(PSI) 
11. 018 6.146 
9.559 5.052 
8.553 4.518 
1. 54 7 4 .192 
7.044 4.094 
6.792 4.042 
6. 540 4.075 
6.037 4.094 
5.786 4 .121 
5. l 05 4. 3 81 
4.296 5. 159 
3.486 6.348 
2.676 7.361 
2.474 7. 534 
2 .271 7.586 
2. 069 7.469 
1.866 7. 10:J 
1.462 5.798 



136 

INLET TEMPERATURE = 95.0 OEG.f 

EXIT PRESSURE = 45. 0 P SIA 

HEAT FLUX = 40800.00 BTU/HR-SQ. FT 

l/0 -- 204. 0 

MASS FLOW RATE(LBM/MIN) PRESSURE OROP(PSI) 
11. 169 6.133 

a.553 3.889 
7.044 3.198 
6. 037 2.957 
5.534 2.951 
5.105 2.977 
4. 700 3.016 
4.296 3. 172 
3.891 3.426 
3. 486 4. 039 
2.676 5.224 
2.474 5.459 
2. 271 5.622 
2.069 s. 693 
1.866 5 .504 
1. 462 4.443 
1.259 3. 987 

INLET TEMPERATURE = 95 .o DEG.F 

EXIT PRESSURE ·- 55.0 PSIA 

HEAT FLUX = 40800.00 BTU/HR-SQ.FT 

l/D = 204 .o 

MASS FLOW RATE{LBM/MIN) PRESSURE DROP(PSI) 
11.320 6.259 

1. 547 3.328 
6.037 2.905 
5.105 2.397 
4. 700 2.299 
4.498 2. 254 
4.296 2.260 
4.093 2.267 
3 .891 2. 306 
3.486 2.905 
3. 081 3. 042 
2.676 3. 648 
2 .211 4.188 
2. 069 4.312 
1.866 4. 279 
1.462 3.498 
1.259 3.172 
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INLET TEMPERATURE = 95.0 DEG.F 

EXIT PRESSURE = 10.0 PSIA 

HEAT FLUX = 40800.00 BTU/HR- SQ.FT 

LID = 204.0 

MASS FLOW RATE( LBM/MIN) PRESSURE DROP(PSIJ 
11.320 6.175 

7.547 .3 .094 
6.037 2.221 
5.105 1.935 
4.700 1.824 
4.296 1. 759 
3 .891 1.687 
3. 688 1.674 
3.486 1. 680 
3.283 1.739 
3. 081 1 .817 
2.676 2. 202 
2. 271 2.723 
2. 069 2 .996 
1.866 3.074 
1.664 2.899 
1.462 2.566 

INLET TEMPERATURE = 110.0 DEG.F 

EXIT PRESSURE = 35.0 PS IA 

HEAT FLUX = 40800.00 BTU/HR-SQ.FT 

LID = 204.0 

MA SS FLOW RATE(LBM/MIN) PRESSURE DROP ( PS I) 
10. 512 6.299 
9.511 s .au 
a. 51 o 5.426 
8.009 5. 3 74 
7.759 5.355 
7. 509 5.361 
7.008 5.426 
6.507 5.465 
6. 007 5.687 
4.505 6. 547 
4.274 7.270 
3.468 0.201 
3.066 B.475 
2.663 B.566 
2.260 8.306 
1.857 7.068 
1.454 5.928 
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INLET TE MP ERA TURE = 11 o. 0 DEG.F 

EX lT PRESSURE = 45.0 PS IA 

HEAT FLUX = 40800.op BTU/HR-SQ. FT 

l/0 = 204.0 

MASS FLOW RATE(LBM/MIN) PRESSURE DROP(PSI) 
10.888 6. 058 

9 .010 4. 781 
8.009 4. 299 
7.008 4.045 
6.507 3. 980 
6.007 3.960 
5.757 3.999 
5.256 4.084 
5.080 4.195 
4.274 5.041 
3.468 5.895 
3.066 6.409 
2.663 6. 579 
2.260 6.403 
1.857 5.419 
1 .. 454 4.527 

I NL ET T EM PERATUR E ·- 110 .o OEG.F 

EXIT PRESSURE = 55.0 PSIA 

HEAT FLUX = 40800.00 BTU/HR-SQ.FT 

l/D = 204.0 

MASS FLOW RATE(LBM/MlN) PRESSURE OROP(PSH 
11.013 5.985 
9.010 4.312 
7.509 3.530 
6.507 3.204 
5.757 3.081 
5.256 3. 028 
5.006 3.035 
4.505 3.055 
4.274 3.269 
3.468 4.103 
3. 066 4.507 
2.663 4. 898 
2.260 5.047 
1. 857 4.390 
1.454 3.660 
1.253 3.289 
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INLET TEMPERATURE = 110. 0 DEG.F 

EXIT PRESSURE = 10.0 PSlA 

HEAT FlUX = 40800.00 BTU/HR-SQ.FT 

L/0 = 204.0 

.MASS FLOW RATE(LBM/MlN) PRESSURE DROP ( PS l) 
11. 088 6.161 

8 .510 4.090 
6.507 2.924 · 
5. 757 2.625 
5.006 2. 468 
4.505 2.377 
4.005 2.332 
3.754 2. 351 
3.504 2.416 
3.003 2.742 
3.066 3. 081 
2.663 3 .504 
2.260 3. 738 
1.857 3.178 
1.454 2.677 
1.051 2.175 

I NL ET TEMPERATURE = 120.0 DEG.F 

EXIT PRESSURE = 45.0 PSIA 

HEAT FLUX = 40800. 00 8 TU/HR-SQ.FT 

L/0 = 204.0 

MASS FLOW RA TE( LBM/MI NI PRESSURE OROP(PSI) 
10.525 6.084 

9.478 5.452 
8.480 5. 022 
7 .482 4.768 
6.984 4.658 
6.734 4.632 
6.235 4.651 
5.986 4.677 
5.487 4. 827 
5.062 5.062 
4.259 5.680 
3.456 6.540 
3.055 6.814 
2. 653 6.918 
2.252 6. 592 
1.851 5.504 
1.449 4.592 
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INLET TEMPERATURE = 120.0 DEG.f 

EXIT PRESSURE = 55.0 PS IA 

HEAT FLUX = 40800.00 BTU/HR~SQ.FT 

L/0 = 204 .o 

MASS FLOW RATE(LBM/MIN) PRESSURE OROP(PSI) 
10. 750 5. 968 
7.482 3.994 
5.986 3.538· 
5 .487 3. 518 
5.238 3.538 
5. 062 3. 635 
4.661 3.844 
4.259 4 .163 
3.456 4. 971 
3.055 5. 290 
2.653 5.492 
2. 252 5.323 
1.851 4.463 
1.449 3.720 

INLET TEMPERATURE = 120. 0 DEG.F 

EX IT PRESSURE. = 70 .o PSIA 

HEAT FLUX = 40800.00 BTU/HR-SQ.FT 

LIO ·- 204.0 

MASS fl OW R AT E ( LB M/ M IN J PRESSURE DROP(PSI) 
lo. 974 5. 902 
7.482 3.381 
5. 986 2.880 
5.487 2.749 
5.062 2.111 
4.861 2.704 
4.661· 2.658 
4.460 2.665 
4.259 2.678 
3.858 2. 756 
3.456 3.036 
3. 055 3.388 
2.653 3. 733 
2.252 3.935 
1.851 3.355 
1. 449 2. 847 
1.248 2.541 
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INLET TEMPE RAT URE -= 95.0 OEG.F 

EXIT PRESSURE = 35. 0 P SIA 

HEAT FLUX = o.o BTU/HR-SQ• FT 

l/D -= 153.0 

MASS FLOW RATE(LBM/MIN) PRESSURE OROP(PSI) 
12.452 5.932 
10. 062 4.053 

7.547 2. 430 
5.966 1.651 
5.369 1. 384 
4.773 1. 117 
4.176 0.873 
3.579 0.664 
2.983 0.476 
2.386 0. 318 
1.790 0.197 
1.193 0.090 
0.597 0 .031 

INLET TEMPERATURE = 110.0 OEG.F 

EX IT PRESSURE = 35.0 PSIA 

HEAT FLUX = o.o BTU/HR-SQ. FT 

L/D = 153.0 

MASS FLOW RATE(LBM/MIN) PRES SU RE DROP (PSI) 
12.264 5. 708 
10.012 3.904 
7.509 2.351 
5.1136 1. 596 
5.342 1. 317 
4.749 1.065 
4.155 o. 841 
3.561 o. 637 . 
2.968 0.468 
2. 374 0.315 
1. 781 0.111 
1.187 0.090 
o. 594 o. 031 
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INLET TEMPERATURE ·- 95.0 DEG.F 

EXIT PRESSURE = :, 5. 0 PSI A 

HEAT FLUX = 2 25 00. 00 B TU/ HR - SQ • FT 

l /0 = 153.o 

MASS FLOW RATE ( l BM /M IN ) PRESSURE DkOP(PSit 
12.326 5.769 
10. 062 3.932 
1.547 2.379· 
5.966 1. 596 · 
5.369 1.321 
4.773 1.097 
4.176 0.983 
3. 878 0.944 
3.579 0.928 
3.281 0.904 
2. 983 0.897 
2.685 0.924 
2 .386 0.995 
1. 790 1.329 
1.193 1. 691 
o •. 895 1.781 
o. 597 1.514 

Ir-.JL ET TEMPERATURE = 95.0 DEG.F 

EXIT PRESSURE = 45.0 PS IA 

HEAT FLUX = 22500. 00 BTU/HR-SQ.FT 

l/0 = 153 .o 

MA'SS FLOW RATE(LBM/MIN) PRESSURE DROP(PSit 
12.402 5. 769 
10.062 3 .916 

1. 54 7 2.340 
5.966 1. 589 
5.369 1.321 
4. 773 l. OM, 
4.176 o. 861 
3.579 o. 739 
2. 983 o. 704 
2.685 0.653 
2.386 0 .637 
2. G88 0.668 
1.790 0.724 
1.193 1.022 
o. 597 1.140 
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INLET T EMPf.RATURE = 110.0 DEG.F 

EXIT PRESSURE = 35.0 PSIA 

HEAT FLUX = 22500.00 BTU/HR-SQ.FT 

LID = 153.0 

MASS FLOW RATE ( LBM/MIN) PRESSURE DROP(PSI) 
12.264 5.595 
10.012 3.857 

1. 509 2.292 
5 .936 1.573. 
5.342 1.317 
4.749 1.201 
4.452 1.180 
4.155 1 .1 ao 
3.858 1.180 
3.561 1.164 
3. 265: 1.100 
2.968 1.201 
2.671 1.294 
2.374 1.415 

.1.781 1. 702 
1.484 1.797 
1.187 1.903 
o.a9o 1. 860 
0 .594 1.494 

INLET TEMPERATURI:: = 110.0 OEG.F 

EXIT PRESSURE· = 45. 0 P SIA 

HEAT FLUX = 22500.00 BTU/HR-SQ. FT 

L/0 = 153.0 

Mi\SS FlOW RATE(LBM/MIN) PRESSURE DRJPCPSI) 
12.264 5.621 
10.012 3.848 
7.509 2.304 
5.936 1.576 
5~ '342 1. 313 
4.749 1. 081 
4.155 0.967 
3.561 o. 916 
2.968 0.873 

. 2.671 0.865 
2.374 o. 896 
2 .077 0.955 
1.781 1.097 
1.187 1.329 
0 .594 1.160 
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INLET TEMPERATURE = 95.0 OEG.F 

EX IT PR ES SURE = 35.0 PSIA 

HEAT FLUX = 30600.00 BTU/ HR-SQ• FT 

l/0 = 153.0 

MASS FLOW RATE{LBM/MIN) PRESSURE DROP(PSl) 
12. 452 5. 713 
10.062 3.912 
7.547 2.312 
5. 966 1.102 
5.369 1.612, 
4. 773 1.553 
4.176 1.510 
3 .878 1. 502 
3.579 1.518 
3. 281 1. 620 
2.983 1.020 
2 .386 2.253 
1.790 2. 733 
1.491 2. 878 
1.193 2.878 
o. 895 2.646 
o.597 1. 573 

INLET TEMPERATURE = 95.0 DEG.F 

EXIT PRESSURE = 45.0 PSIA 

HEAT FLUX = 30600.00 BTU/ HR-SQ. FT 

l/0 = 153.0 

MASS FLOW RATE(LBM/MINI PRESSURE DROP(PSI) 
12.452 5.693 
10. 062 3. 873 
7.547 2. 316 
5.966 1.588 
5.369 1. 372 
4.773 1. 262 
4.176 1.195 
3.878 1.148 
3.579 1. 109 
3.281 1.101 
2. 983 1.109 
2.685 1. 168 
2 .386 l.;337 
1.790 1. 809 
1.491 1. 982 
1.193 2.198 
o. 895 2.045 
o.5'H 1.258 
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I NlET TEMPERATURE = 110.0 OEG.F 

EX IT PR ES SURE = 35.0 PSIA 

HEAT FLUX = 30600.00 BTU/ HR-SQ. FT 

L /0 ·- 153. 0 

MASS Fl OW R AT E ( l BM/ M IN ) PRESSURE OROP(PSII 
12.264 5.508 
10.012 3.810 
7.509 2.323 
5.936 l .887 
5.342 1. 860 
5.045 1.828 
4.749 1.848 
4.452 1.895 
4 .155 1.977 
3.561 2 .202 
2.968 2.544 
2 •. 374 2.831 
2.011 2.929 
1.781 3.110 
1.484 3.161 
1.187 3.043 
0.890 2.673 

INLET TEMPERATURE = 110.0 DEG.F 

EXIT PRESSURE = 45.0 PSIA 

HEAT FLUX = 30600.00 BTU/HR-SQ.FT 

L/0 = 153.0 

MASS FLOW RATE(LBM/MIN) PRESSURE OROP(PSII 
12.264 5.508 
10.012 3.794 

1. 509 2. 280 
5 .936 1.671 
5.342 1.565 
4.749 1. 490 
4.155 1.435 
3.858 1.415 
3. 561 1. 392 
3 .265 1.419 
2.968 1.470 
2.374 1.848 
1.781 2.237 
1.484 2.504 
1. 187 2.441 
0.890 1.730 
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INLET TEMPERATURE = 95.0 DEG.F 

fX IT PRESSURE = 35.0 P SIA 

HEAT FLUX = o.o BTU/HR-SQ.fl 

L/0 -= 102.0 

MASS FLOW RAT E ( L BM/ M IN ) PR ES SURE DROP (PSI t 
12. 452 4.074 
10.062 2.824 
7.547 1. 719 
5.966 1.184 
5.369 o. 971 
4. 773 0 • 787 
4.176 o. 629 
3.579 o.472 
2 .983 0 • 342 
2.386 0.236 
1.790 0.142 
1.193 0.079 
o. 597 o. 020 

INLET TEMPERATURE = 110. 0 DFG.F 

EXIT PRESSURE = 35.0 PSIA 

HEAT flUX = o. 0 BTU/HR- SQ.FT 

LID -- 102 .o 

MASS FLOW RATE(LBM/MIN) PRESSURE DROP( PS I) 
12.389 4. 015 
1 o. 012 2.796 

1. 509 1.695 
5.936 1. 156 
5.342 0.948 
4. 749 o.783 
4 .155 0.621 
3.561 0.472 
2.968 0.338 
2.374 0.232 
1.781 a .13a 
1.187 0.079 
0 .594 o. 020 
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INLET TEMPE RA TURE :: 95.0 DEG.F 

EX IT PRESSURE = 35. 0 PSIA 

HEAT FLUX = 22500.00 BTU/ HR-SQ. FT 

L/0 = l 02. 0 

MASS FLOW RATE(LBM/MIN) PRESSURE OR'.J P IP S I I 
12. 452 ~.02, 
10. 062 2. 753 
7.547 l.652 
5. 966 1.111 
5.369 0.936 
4.773 0.755 
4. l 76 0.633 
3.579 iJ. 594 
3. 281 J.551 
2. 983 o.519 
2.685 a. 484 
2.386 0.464 
2. 088 J.456 
1.790 J. 4 72 
l.491 o.543 
1. l 93 J.649 
0.895 o. 771 
0.597 o.790 

INLET TEMPERATURE = 95. 0 OEG.F 

EX IT PK.ES SURE = 45.0 PSIA 

1-iEAT FLUX = ?. 2 5 00. 00 BTU/HR-SQ.FT 

LID = 102.0 

MASS FLOW RATE(LBM/M!Nt PR. ES SURF DROP(PSI) 
12.452 4.023 
10.062 2. 753 
7.547 1.652 
5. 966 1.111 
5.369 0.928 
4. 773 o.747 
3.579 0.515 
2.983 0.448 
2.386 o.381 
2. 088 0.346 
1.790 o. 322 
1.491 0. 330 
1. 193 :J. 3 81 
0.895 0.480 
o.597 u.566 
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INLET TEMPERATURE = 110. 0 DEG.F 

EXIT PRES SURE - 35.0 PS IA 

HEAT FLUX = 22500. 00 BTU/HR-SQ. FT 

LIO = 102.0 

MASS FLOW RATE(LBM/MIN) PRESSURE DROP (PSI) 
12.264 3. 881 
10.012 2.690 

7. 509 1 .636 
5.936 1. 101. 
5.342 0.908 
4. 749 0.798 
4.155 0.763 
3.561 0.704 
2. 968 i).637 
2.671 0.629 
2.374 0.629 
2.011 0.669 
1.781 0.11& 
1.484 o.so6 
1.187 0.873 
0.890 0.924 
o.594 0.865 

[NLE T TEMPERATURE = 110.0 DEG.F 

EX IT PR ES SURE ·- 45.0 PSIA 

HEAT FLUX = 22500.00 BTU/ HR-SQ. FT 

l/0 ·- 102.0 

MASS FLOW RATE(l8M/MINt PRESSURE DROP(PSI) 
12. 314 3.893 
10 .012 2. 686 
7.509 l.632 
5.936 1. 101 
5.342 o. 912 
4.749 0.747 
4.155 o. 645 
3 .561 o. 598 
2.968 0.523 
2.374 0.452 
2.011 o. 440 
1.781 0.456 
1. 484 0.480 
1.187 a. s10. 
o.890 0.661 
o. 594 0.661 
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INLET TEMPERATURE = 95.0 OEG.F 

EXIT PRESSURE ·- 35.0 PSIA 

HEAT FLUX = 30600.00 BTU/HR-SQ. FT 

LID = 102 .o 

MASS FLOW RATE(l BM/MIN) PRE SS URE DROP(PSI) 
12.326 3.976 
1 o. 062 2. 713 
7.547 1. 648 
5.966 1.111 
5. 369 1.022 
4.773 0.963 
4.176 0.865 
3.579 0.787 
2.983 0.120 
2.685 o.1oa 
2. 386 0.747 
1.790 0.979 
1.193 1.251 
o. 895 1. 310 
o.597 1. 101 

INLEt TEMPERATURE = 95.0 DEG.F 

EXIT PRES SURE = 45.0 PSIA 

HEAT FLUX = 30600 .oo BTU/ HR - SQ • FT 

L /0 = l 02 .o 

MASS FLOW RATE(LBM/MIN) PRESSURE OROP(PS!l 
12.452 3.968 
10. 062 2. 713 
7.547 1. 652 
5.966 1.121 
5.369 o. 944 
4.773 o. 822 
4.176 0.743 
3.579 0.637 
2.983 0.574 
2.685 o.ss1 
2.386 0.527 
2.088 o.535 
1.790 0.558 
1. 491 o. 629 
1.193 o. 826 
0.895 0.944 
o.597 0.865 
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·INLET TEMPERATURE = 110 .o OEG.F 

EXIT PRESSURE ; 35.0 PSIA 

HEAT FLUX = 30600.00 BTU/HR-SQ.FT 

LIO ·- 102 .o 

MASS FLOW RATE(LBM/MIN) PRESSURE OROP(PSI) 
12.2(,4 3.861 
10. 012 2.642 
7.509 1. 585 
5.936 1.258 
5.342 1.14() 
4.749 1.066 
4.155 1.001 
3. 858 0.963 
3.561 0.944 
3.265 o.951 
2. 968 1.014 
2.374 1. 191 
1. 781 1.400 
1. 484 1.494 
1.187 1. 510 
0.890 1.455 
o. 594 1.180 

INLET TE~PERATURE = 110.0 OEG.F 

EXIT PRESSURE = 45.0 PS IA 

HEAT FLUX = 30600.00 BTU/HR-SQ.FT 

LID = 102 .o 

MASS FLOW RATE(LBM/MIN) PRESSURE DROP (PSI) 
12.389 3. 920 
10. 012 2.678 

1. 509 1.612 
5.936 1. 121 
5.342 1.010 
4.749 0.908 
4.155 o. 826 
3.561 o.716 
2.968 0.668 
2.671 0.649 
2.374 0.657 
2. 077 o. 672 
1. 781 o. 751 
1.484 0.893 
1.187 o. 983 
0.890 1. 022 
o.594 0.141 
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INLET TEMPERATURE = 95. 0 OEG.F 

EXIT PRESSURE = 35.0 PS IA 

HEAT FLUX = o. 0 BTU/HR-SQ.FT 

LID = 51.0 

MA SS F l OW RATE ( l BM/ MI N t PRESSURE OROP(PSI) 
12.452 2.451 
10 .062 1.676 
7.547 1 .023 
s.966 o. 700 
5.369 o.582 
4.773 0.472 
4.176 o. 378 
3.579 o. 287 
2.983 0.205 
2. 386 0.142 
1.790 0.083 
1.193 0.1)47 
o.597 o. 012 

INLET T EM PERATUR E :: 110.0 DEG.F 

EXIT PRESSURE = 35.0 PSIA 

HEAT FLUX = o.o 8 TU/HR-SQ. FT 

LID = 51.0 

MASS FLOW RATE(LBM/MIN) PRESSURE DROP( PS It 
12. 389 2.438 
10.012 l.660 

7.509 1. 015 
5 .9 36 0.696 
5.342 0.570 
4.749 0.464 
4 .155 0.370 
3.561 0.275 
2.968 o. 205 
2.374 0.138 
1. 781 0.079 
1. 187 o. 043 
0 .594 0.012 
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I~LE T TEMPE RA TURE = 95. 0 DEG.F 

EXIT PRESSURE = 35.0 P SIA 

HEAT FLUX = 37700.00 BTU/HR-SQ. FT 

l/0 = 51.0 

MASS FLOW RATE(lBM/MIN) PRESSURE OROP(PSU 
12. 326 2.356 
10 .062 l.612 
7.547 0.991 
5.966 0.135 
5.369 0.645 
4.773 0.558 
4.176 0.480 
3.579 0.417 
2.983 0.378 
2.386 0.346 
2.088 0.338 
1.790 0.346 
1.491 0.358 
1.193 0.401 
0~895 0.484 
o. 597 o. 452 

INLET TEMPERATURE - 95.0 DEG.F 

EXIT PRES SURE = 45.0 PSIA 

HEAT FLUX = 37700.00 B TU/HR-SC,l. FT 

LID = 51.0 

"1ASS FLOW RATE( LRM/MIN) PRESSURE DROP(PSI) 
12.452 2. 391 
l0.062 1.632 

7. 547 1 .. 003 
5.966 0.696 
5.369 0.606 
4.173 o.s21 
4 .176 o.444 
3.579 0.377 
2.983 o. 319 
2.386 0.263 
1.790 0.236 
l.491 0.236 
1.193 0.252 
0.895 0.307 
o. 5'H 0.334 
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INLET TEMPERATURE = 110 .o DEG.f 

EXIT PRESSURE = 35. 0 PSI A 

HEAT FLUX = 37700.00 BTU/HR-SQ.FT 

L/D = 51.0 

MASS FLOW RATE(LBM/MIN) PRESSURE DROP(PSIJ 
12.389 2.335 
10. 012 1.608 
7.509 l.026 
5.936 0.790 
5. 342 0.704 
4.749 0.625 
4.155 o.550 
3. 561 0.480 
2.968 0.448 
2.671 0 .436 
2. 374 0.43& 
2.011 0.448 
1.781 0.464 
1.484 o.so3 
1.187 o. 566 
0.890 0.621 
o. 594 0.523 

lNL ET TEMPERATURE = 110.0 OEG.F 

EXIT PRESSURE = 45.0 PS IA 

HEAT FLUX = 37700. 00 BTU/HR-SQ. FT 

LIO = 51.0 

MA SS FLOW RATE(LRM/MIN) PRESSURE DROP( PS It 
12.389 2. 339 
1·0.012 1.612 

1. 509 o.991 
5.936 . o. 727 
5.342 0.633 
4. 749 0.550 
4.155 0.476 
3.561 0 .401 
2. 968 0.354 
2.374 o. 318 
2.011 o. 307 
1. 781 0.307 
1.484 o. 318 
1.187 0 .334 
0.890 0.397 
o.594 0.373 
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J NLET TEMPERATURE = 95.0 DEG.F 

!:X IT PRESSURE = 35. 0 P SIA 

HEAT FLUX = 47000.00 BTU/ HR-SQ. FT 

L /0 = 51. 0 

MASS FLOW RATE(LBM/MIN) PRESSURE DRJP(PSI) 
12.452 2.367 
10. 062 1. 604 
7.547 1.097 
5.966 0.837 
5.369 o. 731 
4.773 0.641 
4.176 0.566 
3.579 o. 531 
2 .983 0.480 
2.685 0 .472 
2.386 0.472 
2.088 0.495 
1.790 o.519 
1.491 J.570 
1.193 0.692 
o. 895 J.747 

INLET TEMPERATURE = 95.0 DEG.F 

EXIT PRES SURE = 45.0 PS IA 

HEAT FLUX ;:: 4 7000. 00 BTU/HR-SQ. FT 

LID :: 51.0 

MA SS FLOW RATEtLBM/MIN) PRESSURE DROP( PS I) 
12.452 2. 371 
10.062 1.612 

5. 966 0.790 
4.176 o. 531 
3.579 0.460 
2. 983 0.405 
2.386 0.370 
2 .088 o.358 
1. 790 0.185 
1.491 o. 417 
1.193 o.472 
o. 835 o.sso 
0 .597 o. 511 
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INLET TEMPERATURE = 110.0 DEG.F 

EX IT PRESSURE = 35. 0 PSIA 

HEAT FLUX = 47000.00 BTU/ HR-SQ. FT 

l/D = 51. 0 

MASS fLOW RATE (L BM/MIN) PRESSURE DROP(PSit 
1.2. 389 2.351 
!0.012 1.612 
7.509 1.132 
5. 936 o.884. 
5.342 0.786 
4.749 0.115 
4.155 0.668 
3.561 0.645 
3.265 0 .629 
2.968 0.637 
2.374 a. 660 
1. 781 0.778 
1. 484 0.857 
1.187 c. 900 
0.890 0 .916 
o. 594 0.747 

INLEt TEMPERATURE = 110. 0 DEG.F 

EXIT PR ES SURE = 45.0 PS IA 

HEAT FLUX = 4 7000. 00 BTU/HR-SQ. FT 

LID = 51.0 

MASS FLOW RATElLBM/MIN) PRESSURE OR:JP( PS I) 
12.389 2.354 
10.012 1.608 

7. 509 l • ()85 
5.936 o. 825 
5.342 J.727 
4. 749 0.668 
4.155 o. 590 
3.561 0 .511 
2. 968 0.464 
2.671 0.440 
2.374 0.444 
2. 077 0.456 
1.781 0.472 
1.484 o.523 
1.187 0.594 
0.890 0.649 
0.594 0. 511 



gj.A._ x 1 o4 
Ghfg 

2.46 
2.42 
2.55 
2.39 

3. 11 
3.49 
3.40 

3.48 
4. 21 

4.13 
4.08 

4. 18 

4. 81 

5.00 

5.00 
4.89 

5.93 
5.99 
5.99 

5.88 

2. 15 
2.27 
2.09 
2.52 
2.44 

2.44 
2,52 

3,25 

3.39 

CALCULATED DATA FOR TEST SECTION WITH L/D = 204 
AND ZERO ORIFICE PRESSURE DROP 

Cp (T -T.) 
9L!l_ x 104 

C (T -T.) 
-.-9- p s l s ] 

hfg qse Ghfg hfg 

0.226 0.89 2. 19 0. 190 
0.226 0.88 2. 15 0 .190 . 
0.226 0.92 2.88 0.276 
0.226 0.86 3.09 0.276 
0.312 0.82 3. 14 0.276 
o. 312 0. 91 2.96 0.276 
0.312 0.89 2.93 0.276 
0. 312 0. 91 3. 77 0.349 
0.385 0.89 3.85 0.349 
0.385 0.87 3.88 0.349 
0.385 0.86 3. 91 0.349 
0.385 0.88 3.78 0.349 
0.453 0.87 4.34 0.415 
0.453 0.90 4. 61 0.415 
0.453 0.90 4.58 0.415 
0.453 0.88 4.65 0.415 
0.544 0.89 4.59 0.415 
0.544 0.89 5.50 0.506 
0.544 0.89 5. 71 0.506 
0.544 0.88 5.58 0.506 
o. 190 0.92 5.54 0.506 
0.190 0.97 5. 81 0.506 
0.190 0.89 2.38 0.224 
0,224 0.92 3.73 0.327 
0.224 0.89 3.74 0.327 
0,224 0.89 3.57 0.327 
0.224 0.92 3.60 0.327 
o. 296 0.89 4.54 0.416 
0.296 0.93 4,63 0.416 
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. 
~ 
qse 

0.94 
0.92 
0.85 

0.91 
0.93 

0.88 
0.87 

0.88 
0.90 

0.91 
0.92 

0.88 

0.85 
0.90 

0.90 
0. 91 

0.90 
0.89 
0.92 
0.90 
0.89 
0.94 
0.87 

0.93 
0.93 

0.89 
o. 90 · 

0.89 
o. 91 



157 

gjl__ x 104 CE (\-T;) . 
~x 104 CE(\-T;) . 

__g_ __g_ 
Ghfg hfg qse Ghfg hfg qse 

3.3 0.296 0.90 4.65 0.416 0.91 

3.25 0.296 0.89 4.74 0.416 0.93 

3.20 0.296 0.88 4.60 0.416 0. 90 · 
3.80 0.363 0.85 
3.98 0.363 0.89 
4.00 · 0.363 0.90 
4.04 0.363 0.91 

3.93 0.363 0.88 
4.86 0.453 0.88 
5. 01 0.453 0.90 
5.02 0.453 0.90 
5. 11 0.453 0.92 
5.36 0.453 0.96 
2.86 0.261 0.89 
2.87 0.261 0.90 
2.92 0.261 0.91 

2.82 0.261 0.88 · 
2.93 0.261 0.92 
3.52 0.327 0.88 



9!A_ 104 
Gh x 

fg 

2.61 

2.74 
3.73 
3.63 

4.45 

4.47 
5.28 
5.23 

5.29 
6.42 

6.57 
2.29 

2.35 
3.33 
3.35 

3.30 

4.06 

4.10 

4.10 

5.02 
4.87 
4.90 
5.94 

CALCULATED DATA FOR TEST SECTION WITH 
L/0 = 204 AND ~P 0/~Padb = 0.5 

CQ(\-1;) . 
9!A_ x 1 o4 _g_ 

hfg qs~ Gh · fg 

0.226 0.95 6.07 

0.226 0.99 2.62 
0.312 0.98 2.76 
0.312 0.95 3.45 

0.385 0.95 3.54 

0.385 0.95 3.55 
0.453 0.95 4.38 
0.453 0.94 4.22 
0.453 0 .. 95 5.35 
0.544 .o. 96 5.38 
0.544 0.98 3.12 
0.190 0.98 3.24 

0. 190 1. 00 3.93 
0.276 0.98 3.85 
0.276 0.99 3.83 
0.276 0.97 5.02 

0.349 0.95 4.86 
0.349 0.96 
0.349 0.96 

0.415 0.98 

0.415 0.96 
0.415 0.96 
0.506 0.96 
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C (T -T.) . 
Q s l _g_ 

hfg ~Se 

0.506 0.98 
0.224 0.96 

0.224 1.00 
0.296 0.95 
0.296 0.97 
0.296 0.97 
0.363 0.98 
0.363 0.95 . 

0.453 0.96 
0.453 0.97 
0.261 0.97 
0.261 1 .00 · 

0.327 0.98 
0.327 0.96 
0.327 0.96 
0.416 0.98 
0.416 0.95 



g/A .x 104 
Ghfg 

2.83 
2.96 
3.87 
3.78 
4.79 
4. 87. 
5.70 

5. 77 
7. 06 
6. 99 · 

2.47 
2.61 

3.58 
3.64 

4.49 
4.53 
4.58 
5.38 
5.34 
5. 31 

6.50 
6.52 

CALCULATED DATA FOR TEST SECTION WITH 
L/D = 204 AND 6P0/6Padb = 1.0 

C (T -T·) . 
gf_A_ x 104 ~ S 1 _g_ 

hfg C!se Ghfg · 

0.226 1.02 2.~9 
0.226 1.07 3.02 
0. 312 1.02 3.00 
0.312 1.00 3.83 
0.385 1.02 3.90 
0.385 1.03 3.83 
0.453 l. 03 4 .81 
0.453 1.04 4.63 
0.544 1.06 4. 71 
0.544 1.05 5.89 
o. 19 1.06 5.98 
0. 19 l. l O 5. 91 
0.276 l.06 3,43 
0.276 l. 07 3.48 
0.349 1.05 4.29 
0.349 1.06 4.34 
0.349 1.07 5.35 
0. 415 1.06 5.44 
0.415 l.05 
0.415 1.04 

0.506 l. 05 
0.506 1.05 
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C(T-T·) . 
~ . S 1 ~ 

hfg qse 

0.224 l .05 · 
0.224 l. HJ 

0.224 1.09 
0.296 1.05 
0.296 1.07 
0.296 1.05 
0.363 1.08 
0.363 1.04 
0.363 1.06 
0.453 1.06 
0.453 1.08 
0.453 l .06 · 
0.261 1.07 
0.261 1.08 
0.327 1.07 
0.327 l. 08 . 

0.416 1.05 
0.416 l . 06 · 



9./.A_ x 104 
Ghfg 

3.17 
3.29 
4. 36 
4. 31 
5.39 
5.20 
6.33 
6.24 
7.88 
7.55 

2.67 
3.85 
3.86 

3.89 
4.82 

4.90 
4. 91 
5.79 
5.87 
5.82 
7.39 
7. 01 
3.28 

CALCULATED DATA FOR TEST SECTION WITH 
L/D = 204 AND tP0/tPadb = 2.0 

Ce(T5 -T;) . 
9.Lh__ x l o4 ....9-

hfg qse Ghfg 

0.226 l.15 3.28 
0.226 l.19 4.27 
0.312 l.14 4. 11 
0.312 l. 13 4.22 
o. 385 l.14 5.05 
0.385 l.ll 5.22 
0.453 l.14 5.04 
0.453 l. 12 6.36 
0.544 l.18 6.40 
0.544 l. 13 3.79 
0.19 l.14 3.81 
0.276 l.14 4.66 
0.276 l.14 4.62 
0.276 l. 15 4.63 
0.349 l.13 6.00 
0.349 l. 15 6.06 
0.349 l. 15 6.05 
0.415 l.14 
0.415 l.15 
0. 415 l.14 
0.506 l.19 
0.506 1.13 
0.224 l. 19 
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Ce (\-T;) ....9-
hfg qse 

0.224 l.19 
0.296 l.17 
0.296 l.13 
0.296 l.16 
0.363 l.14 
0.363 l.17 
0.363 l.13 
0.453 l.15 
0.453 l.15 
0.261 l.18 
0.261 l.19 
0.327 l.16 
0.327 l.15 
0.327 l.15 
0.416 l.17 
0.416 l.18 
0.416 l.18 



CALCULATED DATA FOR TEST SECTION WITH L/D = 153 

~ 104 
Gh x 

fg 

3.81 
3.78 
4.82 
4. 60 · 
3.03 
2.99 

~hA x 104 
fg 

4.01 
4. l O 
4. 96 
5.06 

. AND ZERO ORIFICE· PRESSURE DROP 

C (T -T ·) . 
9f.L x l o4 Q S 1 _g_ 

hfg qse Ghfg 

0.276 0.84 4. 15 
0.276 0.84 4.24 
0.349 0.85 6.79 
0.349 0.81 2.63 
0.224 0.83 5.76 
0.224 0.82 

CALCULATED DATA FOR TEST SECTION WITH 
. L/0 = 153 ANb AP 0/APadb = 0.5. 

C (T -T·) . 
~x 104 Q s ,_ _g_ 

hfg ~se Gh · fg 

0.276 0.89 3.46 
0.276 0.90 3. 29 · 
0.349 0.87 4.40 
0.349 0.89 4.42 

C (T -T ·) Q S · 1 

hfg 

0.296 
0.296 
0.506 
0.19 
0.415 

C (T -T·) Q s l 

hfg 

0.224 
0.224 
0.296 
0.296 
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. 
_g_ 
C!se 

0.86 
0.87 
0.82 
0.84 
0.85 

_JL_ 

C!se 

0.89 
0.9 
0.9 
0.91 



9/A_ x 104 
Ghfg 

4.52 
4.28 
5. 72 

5.62 

~x 104 
Ghfg 

5. 16 

4.92 
6. 20 · 
6.29 

CALCULATED DATA FOR TEST SECTION WITH 
L/D = 153 AND AP0 /APadb = 1.0 

C (T -T.) 
a,/A 1 o4 ·. E s , _g_ 

h qse Gh x 
fg ·fg 

0.276 1. 00 3.64 

0.276 0.95 3.62 
0.349 1. 00 4. 99 · 

0.349 0.99 4.85 

CALCULATED DATA FOR TEST SECTION WITH 
L/D = 153 AND AP0 /APadb = 2.0 

CE!(T5 -T;) . 
~x 104 ....9-

hfg qse Ghfg 

0.276 1.14 4.27 

0.276 1. 09 5.34 
0.349 1. 09 5.65 
0.349 1.10 
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C (T -T.) . 
E! s l _g_ 

hfg C!se 

0.224 0.99 

0.224 0.99 
0.296 1.03 

0.296 1.00 

CE!(T5 -T;) . 
_g_ 

hfg qse 

0.224 1.16 
0.296 1.10 
0.296 1.16 



~ x 104 
Ghfg 

5. 16 
5. 178 
6.20 
6.33 
4.28 
4.12 

~x 104 
Ghfg 

5.56 
5.78 
6. 77 
7.23 

CALCULATED DATA FOR TEST SECTION WITH L/D = 102 
AND ZERO ORIFICE PRESSURE DROP 

CE(Ts-Ti) _g_ g/A . x l o4 
hfg qse Ghfg 

0.276 0.76 5.34 
0.276 0. 77 5.65 
0.349 0. 73 9.54 
0.349 0.74 3.52 
0.224 0.78 7.67 
0.224 0.75 

CALCULATED DATA FOR TEST SECTION WITH 
L/D = 102 AND AP0/APadb = 0.5 

CE (Ts-Ti) 
~x 104 _g_ 

hfg qse Gh · fg 

0.276 0.82 4.54 
0.276 0.85 4.49 
0. 349 0.79 6.23 
0.349 0.84 6.36 

CE (Ts-\) 

hfg 

0.296 
0.296 
0.506 
o. 19 
0.415 

C (Ts-Ti) ~-.-
hfg 

0.224 
0.224 
0.296 
0,296 
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_g_ 
qse 

0.74 
0. 77 
0. 77 
0.75 
0.76 

. 
_g_ 
C!se 

0.83 
0.82 
0.86 
0.87 



~x ,a4 
Ghfg 

6.03 

6. 15 
7.44 

7.78 

~x 104 
Ghfg 

6.58 
6.82 
8.27 

8.43 

CALCULATED DATA FOR TEST SE.CTION WITH 
L/D = 102 AND ~P0 /~Padb = 1 .0 

C (T -T ·) 
.JL 9/..A_ x ,a4 E s 1 

hfg qse Ghfg 

0.276 0.89 5.19 

0.276 0. 91 4.94 
0.349 0.87 6.80 

0.349 o. 91 6.78 

CALCULATED DATA FOR TEST SECTION WITH 

CE(Ts-Ti) 
hfg 

0.224 

0.224 
0.296 

0.296 

L/D = 102 AND ~P 0/~Padb = 2.0 . 

C (T -T.) . 
gL_L_ x ,a4 

C (T -T.) E s 1 .JL E . s 1 

hfg qse Ghfg hfg 

0.276 0.97 5.59 0.224 
0.276 1. 00 5.49 · 0.224 
0.349 0.97 7.48 0.296 

0.349 0.99 7.27 0.296 
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_g_ 
qse 

0.94 

0.9 
0.93 

0.93 

. 
_g_ 
qse 

1.02 
1.00 
1.03 

1.00 



9l.L x 1 o4 
Ghfg 

8.66 
8.89 

11. 34 

11. 10 
7. 17 

6.90 

gi_L x 104 
Ghfg 

l 0. 10 
9.44 

12.47 
11. 96 

CALCULATED DATA FOR TEST SECTION WITH L/D = 51 
AND ZERO ORIFICE PRESSURE DROP. 

C (T -T.) . 
gi_L 1 o4 E s , .JL 

hfg qse Gh. x 

0.276 0.64 9.64 
0.276 0.66 8.68 

0.349 0.66 16. 29 

0.349 0.65 5.93 

0.224 0.65 13. 64 

0.224 0.63 

CALCUL~TED DATA FOR TEST SECTION WITH 
L/D = 51 AND 6P0 /6Padb = 0.5 

CE(\-T;) . 
~~A x 104 ....9-h . qse fg fg 

0.276 0.75 8.72 
0.276 0.70 8.44 

0.349 0.73 l 0.44 
0.349 0.70 l 0.42 

C (T -T.) 
E s l 

hfg 

0.296 
0.296 

0.506 

0.19 

0.405 

Ce(\-T;) 

hfg 

b.224 
0.224 

0.296 
b.296 
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. 
~ 
qse 

0.66 
0.60 
0 .66 · 

0.63 

0.67 

. 
_g__ 
qse 

0.79 
0.77 
0.72 
0.72 



9/.A_ x 104 
Ghfg 

11. 02 
10. 79 

13. 86 
12.95 

9l..L x 1 o4 
Ghfg 

12 0 12 
12 0 59 ' 

15. 59 
15.55 

CALCU~ATED DATA FOR TEST SECTION WITH 
L/D = 51 AND AP 0/APadb = 1,0 

C (T -T.) . 
~/A x 104 e s , _q_ 

hfg C!se hfg 

0.275 0.81 9.37 
0.276 0.80 9.49 

0.349 0.81 12. 53 
0.349 0,76 12. 02 

CALCULATED DATA FOR TEST SECTION WITH 
L/D = 51 ANO AP0 /APadb = 2.0 

C (r -T.) 
9/.A_ x 104 e s , _q_ 

hfg C!se Ghf ' g 

0.276 0.90 11. 07 
0,276 0.93 10. 24 
0.349 0. 91 13. 93 
0.349 o. 91 13. 63 
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CE(Ts-\) . 
_q_ 

.hfg qse 

0.226 0.85 
0.226 0.86 

0.296 0.86 
0.296 0.83 

C (T -T.) . e s , _q_ 
hfg qse 

0.224 1.00 
0.224 0.93 
0.296 0.96 
0.296 0.94 



APPENDIX C 

CALIBRATION CURVES FOR MEASURING DEVICES 

The calibration curves for measuring devices are presented in this 

appendix. The curves were obtained by applying the least square criteria 

to the data obtained from the calibration of each device. 



Cl 
c: 

•r-
"'O 
Ill 
QJ 

0:: 

QJ 
,-. 
Ill 
u 
V) 

80 

70 

60 

50 

40 

30 

20 

10 

0-----------------------------------------------o 1 2 3 4 5 
G. P. M. Liquid Specific Gravity= 1.0 

Figure 48. Calibration Curve for Water Flow Meter 

6 



O'l 
c 

0.6 

:S o. 5 
~ 
QJ 

0::: 

QJ 
,-
~ 
u· 
v, 0.4 

0.3 

0.2 

0. 1 

0 

G.P.M. Liq'i.tid Specific Gravity= 1.0 

Figure 49. Calibration Curve for Freon Flow Meter 
( Cox Rotameter) 

169 

0.6 



100 

90 

80 

g> 70 ..... 
-0 
ltl 
Q) 

c::: 
Q) 60 ,..... 
ltl 
u 
V) 

50 

40 

30 

20 

10 

0.1 0.2 0.3 0.4 0.5 

G.P.M. Liquid Specific Gravity= 1.0. 

Figure 50. Calibration Curve for Freon Flow Meter 
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