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CHAPTER 1
INTRODUCTION
1. Statement of the Problem

Suppose an experimenter has.obtained..as.the result.of an experiment,
k. means, each based upon n observations, .and.that he is willing to
assume that they are samples from normal populations with common unknown

variance. That is, - are independently distributed as N(ui, 02),

xij
i=1,2, ... ,k; j=1, 2, ..., n. Having now X

1? X2’ e ey
’ii’ he desires a procedure .which, in an unambiguous way will give him
‘(with a reasonable.chance of being. correct) the pattern in the ui's.

By this it is meant that.the experimenter asks for some procedure to give
him q < k groups, such that the means in any one group are not
appreciably different from each other.

The problem is. not.one.of.classification.in.the strictest sense,
because the experimenter.does.not-know a.priori.how.many populations he
must discriminate between; .there..can be.anywhere from 1 to k of them.

Formally, let us .take. the following formulation.as a reasonable ap-

proximation to the situatiomn: Let xl"XZ’ .« « « 5 X. be independently

k
distributed as N(ui,”oz) and .let .s2 be an. estimate of 02, indepen-

.dent of the Xi?s, with .vszlcz distributed .as xz(v). For some q < k,

72
statistic H(Xl, X2, .« e e ,.Xk, 52) is sought which will discern the

there is a set A A o ooy Aq such that each My is some Aj. A



Xj’s. This is essentially the formulation given by Plackett (15);
however, we shall not necessarily take. as .the. primary. goal the esti-
mation of the XA, as he does. The.first objective.is.to determine ¢

N

and which 1u,'s belong together, ‘after which it may be of interest to

i
estimate. perhaps some of the Xj'

There are several procedures the experimenter. might. consider using,
and. he would probably first. try.some..of .the more.commonly- known multiple
comparison techniques. Prior to.applying any formal procedure, however,
it seems likely that he weuld. rank.the k means according to their
magnitude, perhaps even:.plotting them to get a look at:thelr arrangement.
Let.'us. assume. that.this has been done,.-and now.the experimenter wants to

determine if the pattern observed (or tentatively hypothesized) is sup-

ported by further analysis.
2. Procedures Which Do Not Effect Unique Groupings

To implement the techniques to be discussed below,..assume that the
experimenter employs. the ranking and underlining method, whereby series
of underlinings are made under the ranked means.with the. interpretation

- that any group. of means with: a.continuous line under them are to be con-

sidered not signifieantly different from one. another.

2,1 Fisher's L1LSD

Originally proposed by R. A. Fisher (8) in 1935, this test consists
of initially. testing for non-hemogeneity among .the. means-with an F-test.
If the F-test provides.evidenee-.of-non-homogeneity. of-the means, one then
proceeds- to the. second stage, etherwise all means are deelared not. sig-

nificantly different. from each other. At the second stage, the mean



differences are tested pairwise with a series of t-~tests. If the k
means are all based on the same number, of observations, say n,.then the

t—tests can be implemented by- computing the least significant difference,

LSD = (S('ii_'}-{-j)) x ta/z(k(n-l)) = v2/n X 8 X ta/z(k(n—l)),

and comparing the observed mean differences with the LSD. Consider.the

following data presented as an example in Snedecor and Coechran (17) from
a one-way classification experiment. Four classifications are used with
six observations. taken in each class. The data and pertinent statistics

are summarized ip Table I below.

TABLE 1

DATA FROM A ONE-WAY CLASSIFICATION EXAMPLE
TAKEN FROM SNEDECOR AND COCHRAN

Classes: 1 2 -3 4
64 78 75 55
72 91 93 66
68 97 78 49
Responses: 77 82 71 64
56 85 63 70
95 77 76 68
Means: 72 85 76 62

Mean 8quare Between: Classes-= 345.3 with 3 degrees of freedom.
Mean Square Within Classes-= 100.9 with 20 degrees- of freedom.
Fcal = 5.40 with- 3 and 20 degrees of freedom; F.01(3,20) = 4,94,
LSD 05(20) = v100,9/3 x 2,086 = 12.1.



The F-test provides strong evidence that the obserﬁed means do not
all belong to the same population, and one therefore proceeds to step 2.
The means are ranked and plotted on-a horizontal scale,. and the differ-
ences computed and compared with the LSD, The signifieant differences
according to the LSD e¢riterion are indicated by the underlinings as in
Figure 1. One concludes that Class 4 is not different from Class 1,
but is different from Class 3 and Class 2; Class 1 is different from

Class 2; and Class 3 is not different from Class 2.

(4) - (1) (3) (2)
6'0 & 6{5' 7%0 © 7% © s‘b ?ﬁs
l 10 R 9mmmmmm |

Figure 1. Results of the .05 level LSD test

It is now apparent that the original goal of the experimenter has
not been met, in that an unambiguous grouping of the means has not been
obtained;- for example, from a grouping standpoint, the .05 level LSD

would assign Class 1 to two different groups. In other werds, the pro-

—

cedure tells us that ig and X3 are probably samples from populations

having different means, but i1t does not give any indication as to which

of the two populations ii belongs. One might consider overcoming this

difficulty by testing only the differences between adjacent ranked means.



Any significant gaps found would be the breaking points.between groups.
However, a problem is alseo encountered. here.. Returning to the example,
if only adjacent .differences..are.tested, then-at the .05 level of signif-
icance, no significant breaks would be declared, and:only one group
would result, the whole sample. Yet, there are differences within the
group that are significant by the .05 level LSD, if further testing is
done.

It appears that part of the problem arises. frem the fact that with
the LSD procedure, all differences are tested with the.same value,
whereas all differences are not the same, on the .average. Consider
repeated sampling with samples ¢f size 4 from a standard normal distri-
bution. The expected differences of the ordered observations are (see

Table XIX, Appendix)

EX = ,7324

@%@y’

E( = ,5940 E(X(S)*X(l)) = 1.3264

X3y %(2)?

= .7324 E®X = 1.3264 E(X(AY_X = 2,0588

EX4y%(3)) ORIOX )’

while in a sample of size 2, E(X(Z)—X(l)) = 1,1284, Taking the expected
differences as an indication of what happens on the average, it seems
reasonable to conclude that the adjacent differences would be less
likely to be found significant - than other differences and that the

~X

difference X would be: found significant more. eften than it

) "
ought to be, even in null experiments. Thus,.one would be faced with
the dilemma above more often. than he would like. In experiments where
the true differences are large, of-course, there is no problem; all

differences would be almost certainly declared significant. Furthermore,

by performing the -a-level F-test first, one is allewing himself, on



the average, in most 100a% of the null experiments to make the Type I

error of declaring Xmax - Xmin erronecously significant, and, moreover,

in null experiments, each pair of the unranked means has .the same chance
ks - . . . "
of being Xmax Xmin' .The persisting question is, "'In how many of the

non-null experiments are real adjacent differences not being detected?"

2.2 Studentized Range Q-method

This method, called.the Q-method by Snedecor and Cochran (17), and
referred to by Steel and Torrie (18) as Tukey's W-procedure (20), is
similar to Fisher's LSD method, but is based on the distribution of the

studentized range. TFirst. the preliminary F-test is-ébandoned, and then

the problem of making the. Type.Il.error of declaring Xmax - Xmin signif-

icant too often is remedied by comparing.all differences with the null
sampling distribution of the studentized range. This is a.two-parameter
distribution, the parameters being the sample.size n and. the degrees of

freedom v of the studentizing .statistic sy To implement the proce-

dure, one determines the.critical a-level value of Q = X X .)/s=
max min X
for the particular values of n and wv. The criterion W = Q X 5% is

then computed, and all differences.greater than W are declared signifi-

cant at the level .o. For the data of Table I, W (4) (4,20) x

.05 = Qs
4.1 = 16.2. The results of the .05-level test.are .shown in Figure 2, on

the next page.



(4) (1 (3) (2)
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Figure 2, Results of the ,05 level Q-test

Again, the original goal of the experimenter has not been attained; for
example, '"To which group does Class 3 belong?" It .will not do to test
only adjacent differences either, becaus;,.to offset the protection
afforded by a preliminary F-tesf, the Q-method is more conservative
than the LSD when testing adjacent differences, and, in fact, is a
conservative test (with respect to Type I errors) when applied to any

difference other than iﬁax - Xmin’ Hence, one is again faced with. the
suspicion that too many adjacent real differences are declared not
significant.

ﬁeither the LSD nor the Q-method deal with .the logical inconsis-
tency of declaring.a significant.difference and .yet retaining the
original null hypethesis for further testing. Consider a one-way
experiment having four levels, and assume that .the class means have. been
computed and ranked. . Suppese one begins with some difference, say
'§(3) - ikz) and finds this difference significant. By declaring signifi-

cange, he is, in fact, discarding .the null hypothesis that - My = My
u3 =.u4; For any.further .testing among X(l)’ X(z), X(B)’ or X(A)"he
must now take a new tentative null hypothesis of the form, "The two

smaller means are a sample from .the same population, and: .the two larger



means are a sample from the .same population, and the .two populations are

not the same."

.For larger grqup slzes, if significances are found at
this stage, then. the tentative null hypeothesis should.be .changed égain,
and so on. No. reference . .to.this phenomenon .has been found in the litera-
ture, and it is apparentlymﬁot«regarded.as»awserious?problem by most, buF
it is difficult to see how .one .can .avoid dealing with it whenever the
situation requires more than one test and/or decision to.be made. It
may be argued that the LSD.and - the Q-method are nonsequential tests--that
the testing at any stage does not depend.on .the results of previous
tests, but this is invalid, -for.it is impossible to perferm two or.more
tests simultaneously. They“caﬁnot.beAphysically performed in any
manner other than sequentially.

The next two procedures te.be discussed do.take. into account the
"changing null.hypothesis" aspect..of the.probleﬁ,.although.this.particu—

lar feature is not generally .emphasized in discussions of them.

2.3 Student-Newman-Keuls -Sequential Studentized

Range Procedure (SNK)

. This procedure, commonly called.the Newman-Keuls. procedure, is
multistage and is currently carried. out in.a sldghtly different way
than proposed by either Newman (14) or Keuls (1l). The procedure. is
implemented by ranking the means and testing the observed studentized
range <§(n) - Ekl))/si via comparison with the null sampling distri-
bution of this statistic in a sample of size .n. .Lf .significance is

found, one proceeds to test (X(n—l) - X(l))/sf and (X(h) - X(z))/sf'

with the appropriate distribution for n - 1 means. Lf both are de-

clared significant, the three n - 2 ranges are tested, and so on.



If, however, a non~significant range is found at any stage, all ranges
included within that range are declared not significant. The under-
lining technique is then usually applied with .the usual interpretations.
Newman, at the suggestion of 'Student', was the first to tabulate
the percentage points .of the .studentized range .and to advocate its.use
in conjunction with the Analysis of Variance. The sequence of testing
he proposed was determined by.deleting the "most. divergent! mean or means
whenever the range.was .declared significant. Keuls,..on -the other hand,
proposed that the sequence .of testing be done in.two main parts. In the
first part, the.sequence.would.be determined by.eliminating the smallest
mean of a rankedtgroup each time. 1In the second part, the sequence
would be determined. by.eliminating,.each time, the largest mean of a
fanked»group. Presumably,. if the underlining technigue is applied, and
the same stopping rule that is.now. used is applied, the same set of
underlinings would result as those.given by the. current p?ocedure. It
is interesting to note. that.Keuls .suggested that,.in..agricultural experi-
ments, at least, the primary interest of the experimenter is often in
answering the question, '"What.is.the grouping?', .and although he did
not claim that. the procedure provided.the answer,.he hinted that it
could be useful.in. such. an. endeavor. The SNK procedure.can be helpful
in providing a partial answer, but it should be.observed that the pro-
cedure. can also.give. ambiguous. results when applied. as. a. grouping de-
tection procedure.  Applying. .the SNK procedure .to the data of Table I,

.one..computes. - (4) = 16.2 and W 05(3) = 14.7, and obtains the

¥ 05

results shown in Figure 3 on the next page.
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(4) (1) (3) (2)
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60 65 70 75 80 85
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Figure 3. Results of the .05-level SNK Test

In this particular example, one arrives at.the same conclusions as ob-
tained with the Q-method, and consequently, with the. same ambiguities

with respect to the goal .of determining the grouping.

2.4 Duncan's Multiple Range Procedure (DMR)

The DMR procedure proposed by Duncan (6) is identical to the SNK
procedure, with the exception that .a single oa-level is not used
throughout the test. Instead, at the kth stage when groups of
n - k+ 1 means are being tested, the oa-level used is .a(n - k + 1) =

1~ (1~ a)n - k. The.use .of .these "

p-mean significance levels" as
proposed by Duncan, has generated a.great.deal.of debate, and the argu-
ments pro and con will.not.be.discussed here, since.we are interested
.only in whether the procedure.provides .an answer to.the grouping
question. With regard to this, it is evident that .the DMR procedure will
also produce ambiguities.

Other procedures.whig¢h.would.have to be contained.in:.any discussion

of multiple comparison procedures.include, as a.minimum: Tukey's

Studentized Range Simultaneous.Confidence Interval Procedure, Sheffe's



i1

F~projections, Studentized Maximum.Modules Procedures,.Dunnett's
Treatments vs Control Procedures,.Duncan's Multiple .F-test Procedure,
the short-cut techniques of. Kurtz, Link,.Tukey, .and Wallace, and the
several nonparametric procedures. However, since . this discussion of
multiple comparisons is limited to the grouping problem. aspect, descrip-
tions of the above procedures. will.not. be.included, as. they do not
appear to shed any further.light.on.the solution to the problem.

All of the procedures discussed.to this.point employ.the technique
:of ranking the observed.means. Very little thought 1s.needed before .
one .realizes that the. observed ranking does.not necessarily reflect the
true ranking of the populations of which. the means.are.a sample. The
next procedures to be.discussed. deal.with certain.aspects.of..the ranking

problem.

2.5 .Bechhofer, Dunnett, and. Sobel Procedures

Bechhofer (3) and, in a later.paper, Bechhofer,.Dunnett, and
Sobel (4).attacked.the.problem of selecting the. best ks .populations,
the next best ks-l populations, . . . , the worst ‘kl populations for

k means, (k.= kl +,k2 + . . .+ ks)’ from (possibly) different normal

(ui,.aicz) distributions. In the. first paper,. the. a, and 02 were

assumed known, and in the second paper, the ay were. assumed known and

2
0 was assumed unknown. For the latter case, a.two—stage. procedure is
required; however, in. both.cases, the final step is that of ranking the
observed means and.declaring the largest ks means.best, the next

largest ks— next best,.and.so. forth. Thus, the procedures themselves

1

consist. essentially of.stating..a.decision rule, and. then. evaluating the

probabilities of incorrect decisions (rankings) for various. alternatives.
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It might appear at first glance that these procedures would be fertile
ground for the solution of the grouping problem, but further reflection
shows that they are applicable only if the experimenter knows the k's

beforehand; here, it is being assumed that he does not.
3. Procedures Which Do Effect a Unique Grouping

Up to now, the discussion has dealt with.procedures which can be
readily discounted due to the fact that they fail to. yield an unambigu-
ous grouping. The procedures to be discussed below; however, all satisfy
the unique grouping requirement. The first two procedures essen-

tially non-statistical in nature.

3.1 A Graphical Procedure

This technique, proposed as an alternative to multiple comparison
procedures by both Plackett and Nelder (1l5), .consists of plotting the
pairs (iki)’ Ei), where Ei is the expected value of Fhe ith order
statistic in a sample. from the standard normal distribution, and Eki)
is the 1ith of the ranked observed means, 1 = 1, 2, . . . , n. A series
of parallel lines with slope l/si- are. tried on the plotted values, and
a judgement is made as to how many lines are needed for a reasonable fit.
The number of parallel lines required is. taken as the number of groups,
and those points corresponding to a given. line are.taken.to comprise
.that group. The use of the procedure was illustrated by Plackett with
data from an example.by Duncan quoted earlier in the .paper by O0'Neill
and Wetherill (14). In the example, seven varieties.of barley, A, B, C,
D, E, F, and G were tested.in.a randomized block experiment with six

blocks. The ranked variety mean.responses were:
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A . F G D C B E

49.6 58.1 61.0 61.5 67.6 71.2 71.3

and SE’ the standard deviation of a variety mean-was 3.64 with 30 df.
The graphing pr6cedurevyielded (in Nelder's opinion) the pattern shown
in Figure 4, If it is assumed that the observed pattern.is representa-
tive of the true grouping .of the means, then the .conclusion is that there

are three groups: A by itself; F, G, and D together; and C, B, and E

together.

50 55 60 65 70

Variety Mean Responses

Figure 4, Results of the Graphical Procedure
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This procedure has great appeal due to its simplicity; its chief
disadvantage lies in its subjective nature. Nelder presents some
pertinent results concerning the variances and covariances  of the quanti-
ties q; = (iki+l)¥§(i))/(gi+l—gi) and of the residual quantities
e, = (§i¥§) - Eisi’ but in spite of his utilization of .these results, the
procedure remains largely.subjective. It is conceivable-that situations
could arise where different conclusions would be .obtained .depending upon
where one takes his starting point for breaking off .the groups, for
example, starting with.the smallest.means or starting with .the largest
means. Even if the .null .sampling. distributions of the q; were de-
termined, one would .be faced with.both the starting point problem as
well as the problem of the changing null hypothesis. 1f the procedure

were expanded so as to.overcome these difficulties, it would lose its

greatest asset, that of simplicity.

3.2 One-dimensional Cluster Analysis

This procedure has been advanced by.some,.e.g. Plackett and
Jolliffe (15), as a possible approach to the grouping problem. The
essentials of a cluster.analysis-for one. dimension .appear to be:

(i) A set of observations.
(ii) A measure of .distance.between.single points.
(iii) A rule for .measuring distance from a single point to a
group of points.
(iv) An algorithm for determining hew the groups are to be built
up or broken down.
Application of cluster analysis to .the situation of multiple comparisons

with the usual metrics appears to accomplish little more than would be
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accomplished by simply looking at the data. Jelliffe- suggested Fhat
taking the observed significance. levels of the gaps as the metric
might be useful; however, .one .can see difficulties with item (iii) above.
Moreover, after the data.were-.subjected to the cluster amalysis proce-
dure, even with the significance level metric, it is not clear that
definite conclusions would be. reached. with any of the .cluster analysis
algorithms in current use.

The following procedure could be termed.semi=statistical, in that a
preliminary F-test 1s to be.used. to determine if thexe..is more than one

group.

3.3 Mean Range Grouping Criterion

This technique proposed by Ottestad. (16).1s essentially a decision
.rule for grouping the. means in.the event the overall F-test gives
significance. The criterion Vn = E(Wn)/si, where .E(wn) is the

expected range of .a sample of size n from the standard normal, is

.formed, and group.boundaries- are then taken to be X -V and X ., +V .
max n min n

When this is done, one. of. four possibilities will occur:

(i) iﬁin+ anj iﬁax— Vn’ and none. of the .means fall between.
(ii) Eﬁax- Vn < iﬁin+ Vn’ and none of the means fall between.
(iii) Eﬁin+ Vn < iﬁax— Vn, and none of the means fall between.
(iv) iﬁax" V; < Xmin+ Vh’ and none of the means .fall between.

Presumably, in Cases (i) and (il), two.groups . would.be. declared; in
Case (iii), three groups would.be. declared; and in Case .(iv), one is
faced with a serious problem, to.say the least.

The most striking.feature of this procedure. is its .arbitrary

character; no rationale .is offered as to why V, is a reasonable
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criterion, 1f indeed it is. The technique. is.not recommended, since it
seems to offer little advantage over a completely subjective grouping
and since no recommendations- are given. to. the. experimenter for resolving
the difficulty represented by Case (iv)..

The remainder of the procedures. to be discussed could..be .classified
as statistical procedures, in that they are presented in the form of

sequential significance testing.

3.4 F-Test/Maximum Gap Sequential Test

Ottestad (16) also proposed.that it may be possible to determine

the grouping by performing the overall F-test, and, if significant
differences are implied, to take the strongly marked gaps as indication
of the grouping. In order for .this approach to be.useful in practicze, it
should be expanded somewhat .to sequential testing, -and more definite
recommendations in the event .of a.significant .F-test need to be given.
A reasonable method might be to.proceed as.follows:. perform the overall
F-test and if significance.is found, take the break.to be.at the largest
gap. For each of the two groups, . repeat . the procedure.for.the appropri-
ate sample sizes, and continue.in this manner until.no. more.significant
.F values are found. .The.grouping.would then be determined by the breaks
which were declared .over all stages.

.The chief disadvantage.of.a.test such as .this.is .the computation
invelved for forming.the .F ratios. Squares.must.be summed each time,
.and ceomputation of .sums .of .squares .tends .to .be.regarded as cumbersome.
Fer that reason .the procedure is.not recommended.because.the Range/Gap

‘test :to.be .discussed next is simpler to apply.
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3.5 Studentized Range/Maximum Gap Test

Tukey (20) suggests that a test combining tﬁe null sampling distri-
bution properties of both the range and gaps would have merit. There
are, undoubtedly, several ways of doing this, and one way would be to
test the studentized range, and. then test the studentized maximum gap
for significance, if. a significant range is found. A break would be
declared only if the group. ''passes' both tests. This mode of testing is
not recommended, however,.bécause“of the unsatisfactory state of affairs
when one test gives significance and the other does not. What is pro-
posed insteadvis astesting.procedure similar to the F/Gap test discussed
above. One proceeds in.the same manner as before, except that the
studentized range is used in the place of an ¥ ratio. The procedure will
be investigated further .in.later chapters for purposes of comparison with

the studentized maximum.gap procedure.

3.6 Tukey's Gap-Straggler-Variance Procedure

This procedure as proposed. by Tukey (192) has been described in
various pléces (13) .as '"rather.messy', "a.little lengthy", and ''Rube
Goldbergish'", and. has.been.pronounced "entirely obsolete" by its own
author . (20). There.are, however, some points raised in the same refer-
ence which are not obsolete, and which have direct relevance to the
grouping problemi In particular, Tukey noted that there are at least
three ways that a group of (ranked). means:.can:exhibit nen-homogeneity:

(1) There are noticeable gaps between adjacent means.

(ii) When taken as a whele or in groups, some means. straggle from

the rest.
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(iii) The group has excess variability.

Tukey designed the precedure to detect each of these three types of

heterogeneity. A non-detailed description of the procedure is as

follows:

Step 1. Rank the means.

Step 2. Test the differences of adjacent means .(gaps) with the LSD.

Any significances found.are taken as group boundaries.

Step 3. 1In all the groups.formed, test. for stragglers.(outliers), and
break off those found.from the groups. If any new groups are
formed by the stragglers, reapply the straggler test until no
new stragglers are found.

Step 4. Apply an F-test:for homogeneity to each.of .the-groups formed
up to this point.

If at Step 4, some group. is. found. to.be significantly. variable, a con-

clusion such as, "These means do not belong with the others, but neither

do they all belong together.'.would be made.

Tukey's 1949 paper.is.significant for.several.reasons. First, it
gave respectability to.the. idea. that an experimenter's goal could be
taken, in some cases, to be.that. of finding the pattern.or. determining
the grouping and was.directly addressed to.that. preblem...Secondly, as
he later points out. (20),.although. the particular.procedure. is obsolete,
the use of gaps may not-be,.and.probably merits further investigation.
Finally, he suggested.that a.procedure based on.the distribution of the
studentized maximum. gap.might. show some promise.

His comments there and elsewhere. have.been. taken.as a. sgtarting point,
and a sequential test procedure. based upen approximations. to. the distri-

bution of the studentized maximum. gap has been.devised. The procedure is
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outlined and briefly discussed.in-the next chapter. The mathematics and
computing to-arrive at the distributions are presented: in Chapter III.
In Chapter IV, the performance-ef the proposed procedure.is studied,
along with the Range/Gap precedure:discussed earlier;.and, also the LSD

procedure. (applied only to gaps).



CHAPTER II
GENERAL DISCUSSION OF THE PROCEDURE

Let (X . e ey Xn) be a random sample from a standard normal

1’ XZ’
distribution, and let (X(l)"X(Z)’ .« e .y X(n)) be the ordered sample

values. Consider, now, the question, "In repeated sampling, what is the

probability that X, .- X(l) > 17" First, let us ignore the fact that

(2)

X(l) and X(Z) are the two smallest observations -in a larger sample.

In this case, Pr (X(Z)_ X(l) > 1) is computed as

Pr(X(z)— X(py 1) = Pr(X,- X, > 1 or X;- X, > 1)
= Pr(Xz— Xl > 1) + Pr(Xz— Xl < -1)
= 2Pr(X2— Xl > 1)

=2(1 - F(1/V2))

= 0,4795,

where,

X
2
F(x) = <1/J2‘T?>f et /24, .

Now, consider the fact that X and X are part of a larger

(L (2)
sample; then X(Z)* X(l) is gap 1 in a sample of size n.. In Chapter
III, a method of computing the probabilities for the individual gaps is

shown, and given below are the .probabilities that gap 1 is larger than 1

computed by that method for several values of n.

20
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a Pr(X(z)— X(l) > 1)
2 0.4795

3 0.3396

4 0.2733

5 0.2339

6 0.2075

7 , 0.1884

8 0.1738

9 0.1622
10 0.1528

It is evident that two different answers to the question are obtained
whenever the sample size is larger than 2.

For the case where 02 is not known, but is independently estimated,
the foregoing discussion is analogous to two-sample t-tests versus
studentized gap tests, and comparable results are found with respect to
the significance levels. The implication is that a test based on the
null sampling distributionvof‘the.studentized gaps would be more power-
ful than the t-test for. this situation.

Suppose one is convinced that.he wants to use studentized gaps for
testing ranked means for. grouping, and suppose he also has the neces-
sary tables available.to him; how does he proceed? Two problems can be
.anticipated. First, with.a sample before him, one begins testing the
studentized gaps for significance. Suppose, at first, he simply tests
all gaps without regard at.any.stage as to whether any significant gaps
have already been found. Before. long, it becomes evident that when the

first significant gap.is found,. the null hypothesis is, in effect,
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abandoned; that 1s, by declaring.a gap significant, cne is saying,
"This gap is too large for all of these sample means.to.have come from
one distribution." Thus, he.decides that testing.will be.done in light
of this fact, the appropriate.adjustments being.-made for the sample
size at each stage. But.now, he.finds that different.groupings are
obtained, depending.upon.where he begins with the procedure; for

example, beginning with X and working down.or.beginning with

(@) X (@-1)

X, ..,-X and working.up. This. is unacceptable, and.it.is clear, then,

2y ~
that unambiguous grouping.cannot be achieved unless.a starting rule is
adopted, say, "Always start with gap 1.'", or "Always begin in the
middle." Yet, such a solution is unsatisfactory in. that the grouping
‘which results depends on .the starting rule used. What is needed is a
non-arbitrary starting place and a non-arbitrary sequence of testing
which will work for any sample .size or configuration. The studentized
maximum gap procedure.to.be. discussed below, .satisfies these require-
ments and also utilizes sample . size information as individual studentized
gap testing does. Let us examine how such a procedure might be formu-

lated.

. "Xn) be a .random sample from a normal distribu-

Let (Xl, XZ’ . .

\ . . 2 _
tion with mean u and variance. ¢, and let G _]Tifn-l{x(i+l) X(i)}’

where (X "X(n)) are the order statistics of the

(1y* X(2)’ . v e
sample. If s is an unbiased estimate of 02 based on v degrees of
freedom, then by the studentized maximum gap, it will .be meant the
statistic SMG = G/s. The null sampling distribution of SMG will also
involve the parameter v, and SMG .will be said to.have v degrees of
freedom. Given a sample, in order to compute the observed SMG, one needs

2 2
an independent estimate s° of o~ , and to carry out a test of
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significance, he needs the null :sampling distribution of. SMG tabulated
for various sample sizes and degrees of freedom. Suppose these tables
are available, then: the .testing .procedure is as follows:
(i) Order the sample .and compute the observed SMG = G/s.
(i1) Compare SMG with the appropriate tabulated distribution.
(iii) 1If the observed SMG is. declared not significant, stop
testing. If, however, significance is.declared, break the
sample into two groups and repeat the procedure for each
group.formed. Subsequent.tests are.made, .of course, with
the smaller sample.sizes. Continue in .this manner until
no significant gaps remain.
Consider the barley data (Chapter I, p. 13). The ranked means and
8aps were:
A F G D C B E
Means: 49.6 58.1 61.0 61.5 67.6 71.2 71.3

Gaps: 8.5 2.9 0.5 6.1 3.6 0.1

The estimate of the. standard deviation.of ~a barley .variety mean was

3.64 with 30 df. Thus, the observed SMG7 is 8.5/3.64 = 2.34. This is

to be compared with. the. tabulated SMG(7, 30). AssumeWSMG7 is judged

significant; then the.coneclusion 1s that variety. A. does.not belong with

the others. Now, SMG, is computed for the six varieties excluding

6
variety A. This is 6.1/3.64 = 1.68 and is compared with SMG(6, 30).

Suppose this gap is alse.judged to . be real. We.now have the groups A,

FGD, CBE. The next step is to compute SMG3 = 2,9/3.64 and SMGg =
3.6/3.64." Those values are 0.80 and 0.99 respectively. Assume they are

judged not significant; then the conclusion-is. that there are three

groups: . A, FGD, and CBE.
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Let .us turn now .to .a.comparison of the LSD .and .the studentized
maximum gap. To avoid confusion .and to.emphasize .the .faect that the LSD
is being applied .only to adjacent differences, let us call it the GLSD
procedure (Gap .LSD). It_will“be.imﬁlemented.inmexactly.the.same manner
as the SMG procedure, except that the LSD criterion will be used in
place of the SMG criterion. The a=level studentized maximum gap
analogue of the LSD is LSG = g.x SMG&(n, v), where SMGa(n, v) 1is the

a~level eritical value of the studentized maximum gap for .sample size n

and degrees of freedom wv. Let o = .05 and v = 9, then,
LSD.05= 3.20s LSG.05(2,9) = 3.20s
LSG.05(3,9) = 2.96s
LSG.05(4,9) = 2.74s
= 2.56s

LSG.05(5,9)
LSG.05(6,9) = 2.43s

2.33s

LSG 05(7,9)

It is observed that the .05 level critical values for the studentized
maximum gap are uniformly less-than or equal to the .05 level critical
value for the LSD, and that the .05 level critical values for the
studentized maximum gap decrease-monotonically with increasing n.

This pattern apparently :holds for most a-levels:..and .all degrees of
freedom v greater than.2. Henee, the studentized maximum gap test is
generally more powerful than .the GLSD for all cases .except when there are
only two means, in which case the two tests are identical. In other
words, if any gap is .declared .significant . by the GLSD, then .it will also

be declared significant by .the .studentized maximum gap test.
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There is a trade~off, however, and it may be.the following:
- Consider .the .case of .two.gsets.of .observations from.normal populations

with different means, say X. n N(ul, 02) and X., " N(uz, 02) with

1i
Hy > Hye There is a positive probability, depending upon My~ My and

2]

117 %23

.occurs, Whenever this _happens, the-studentized maximum gap test is more

02, that .in a ranked .sample for some i and j the event X

likely than the GLSD to.declare ,X‘i-;X significant. Let us call this

1 23
.-type  oferror -~ that of declaring a wrong way significance -- .a Type III
error. .In Chapter IV, the probability of a Type III error will be
;investigated.

The phenomenon ef deereasing eritical values :with .increasing n was
noted by Tukey (20), and a little.thought reveals .that it.is intuitively
logical and proper that.they should. ..On the other .hand, consider an
.experimenter applying .the .studentized maximum.gap..procedure using the
.LSG technique. At the .first stage, he computes. the observed maximum
.gap..for the whole sample .and compares it with LSG (n, v). Suppose he
declares it significant; then for each of the .groups.formed, he finds
the respective maximum gaps and eompares them with LSG (m, v) and
. LG {m”, v), where m:-+.m”-= n. An apparent legical inconsistency is
now discovered, for - the-.experimenter finds. that-in.oerder for the maximum
- gaps in the subgroups to be declared significant. at. the. same o-level,
they must be larger than .the .largest gap of the whole sample. The
-first .reaction is- that there must-be some mistake; but there is no
mistake; this phenomenen is the very thing that gives the studentized
maximum- gap test greater pewer than the LSD. That is, under the null
’fhyggthesis that all-.observations are from the same-:rermal .distribution,

adjacent4differencgsvbecome smaller on the average .as- the sample size

——

e
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becomes larger. This.property-is not shared by the .sample range
statistic Xmax— Xmin for which, as the sample size increases the ex-
pected range -also increases. . Thus; as the-sample-size increases, al-
though the. observatiens .spread .out farther, at-the .same.time, they get
closer together, The-maximum-.gap alse follows .this .pattern,. decreasing,
on . the average, with .increasing sample size. Thus, .one is faced with a
two~sided .coin -- the .property:.of the maximum gap which allows the
superior test to be .devised-but-.at.the same time.causes.discomfort when
the.test. procedure is first encountered.

Studying. the null.sampling distributions of .the.statistic G/s,
where 52 is an unbiased estimate of 02 based en v .degrees of free-
-dom, -reveals that, here also.the a-level eritieal wvalues..exhibit the
- -property of decreasing.with increasing sample size n. It would be
desirable but not necessary; te find a function of G/s whose crifical
values had the reverse trend.

Let G” = G/o, then G” can be considered. te. be the maximum gap of
a sample from the standard normal.distributien. Denote Var (G”) by
Ki, then, clearly, Var (G) = czni, and if .52 is an estimate of 02,
then SZKi is an estimate of Var (G). Preliminary examination of the
null sampling distributions of G/SKn indicates_that the gritical wvalues
for this statistic may. exhibit the desired trend, but it cannot be
definitely established at this time, due to the faet that precise
estimates of the k, are required. - Estimates .of. the k, -are given in
Table XXIV of the Appendix, and-it is observed that the estimates are
in the range 0.4 - 0.85 making.the.critical values of ,G/smn sensitive
to errors in the én' It..gshould be noted, of ceurse, that comparing

G/SKn with its null.sampling.distribution is exactly equivalent to
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comparing G/s with.its null.sampling.distribution,..since,.for any given
sample. size. mn,.the. tweo.differ_only.by.the constant Koo Thus, the use
.of the former would not.change.in. any.-way the traublesome .pxoperty of the
maximum gap; it would merely.obscure-it. Notwithstanding, if it can be
definitely -established that.the. Kn'Su in the denominator are sufficient
to. reverse. the. trend. in. critical values,. it may.be.desirable to adopt

the use.of. the statistic. G/SKn with the objective of making the proce-

dure.more. esthetically:.acceptable. to. those. who may use 1it.

promise over. any.existing.procedures for the.purpose.of.detecting the
pattern. in a.set.of.observations...It has.several .drawbacks. and limita-
tions, -some. of which.have. been.discussed. above. Some.of the more
apparent of these are:
(i) It must be.assumed.that.the.observations_are normally
distributed,.all with. the.same variance.

(i1) 1If the procedure i1s applied to means,..they must all be

based on the .same number.of observations.
(1ii) The frequency of Type III errors.may.be increased.

(iv). The maximum.gap..and.studentized maximum gap.have the prop-
erty of decreasing.average size and variability with in-
creasing sample .size. -When applying. the procedure, the
consequences .ef .thig-may go contrary to imtuition, and
additional.explanatien.would thereby.sometimes be required.

(v) It may be :that.after.the testing has .terminated, there
still remain-groups. which would-be judged .significantly

variable by -the F-test.or the studentized range test.
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(vi) The procedure requires tables which do not.exist at this

time.

(vii) The exact null sampling distribution .is.difficult to
calculate, so that, at present, this distribution must be
approximated..for all sample sizes other than.sample sizes
3 and 4.

With respect to (d) .and (ii), the restrictions mentioned are also
.shared by the majority .of existing parametric procedures; .the restric-
. tions -are not uniquely a preoperty of the studentized maximum gap
procedure., Item (iii) represents a- compromise which may or may not be
of great consequence, depending upon-hew.serious Type III errors may
be. With respect to. (iv), it may be possible to.find.a simple and
.straightforward transformation.of G/s which reverses. the .trend of the
critical values; however, if not, it should be emphasized that the
usefulness of the procedure is not affected either way. With respect
to (v), the pertinent questien is, '"Can this indeed occur, and, if so,
how often?" In Chapter IV the question will be further investigated.
Finally, if the studentized maximum gap procedure proves as useful as
it first appears, better aznd more efficient ways of calculating and tab-

ulating the necessary tables will surely be devised.



CHAPTER III
THE DISTRIBUTION OF THE MAXIMUM GAP
1. Exact Distribution

Let (Xl, X2, o o sy Xn) be random variables generated by sampling

from a normal (y, 02) distribution,.and let (X(l)’ X(2)’ , X(n))

be the order statistics generated. .Then, the. joint probability density

of '(X(l)’ X(2)’ e e ey X(n)) is given by

n
n. 2 2
B(R(qys Kppys + v o 5 X y) T T eXP (-1/20 )Z(x(i) - )
(1) 7(2) (n) (27r)n/2 .0 4
for -« < x(l) < x(z) < . . . < X(n) < ®
= 0, otherwise. (1)

Let w = x(l) and let g = x(i+l) - x(i), i=1,2, . . « , n = 1; then

this defines a one~-to—~one transformation with Jacobian 1. Thus, the

joint probability density of (W, Gis Gyso v v s Gn—l) is
; iy o ,
h(w, 815 895 « « + » & 1) = ————— exp<(-1/207)|(w - 1)
1’ =2 n-1 /2 n
em™* o

+(w+gl—u)2+a

29
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2
+(w+gl+. . .+gn_l—u)
f&
' for -= < w <o and 0 < g, <= i=1,2, ... ,;n1
= 0, otherwise. (2)
i
Define s0 = 0, s =:§:gj, i=1,2, ... ,n -1, and define z = w-u,
j=1
then the joint probability density of (Z, Gl’ G2’ v e ey Gn—l) can be
expressed as
, n-1
! 2 2
k(Zy 815 8oy ¢ o « s ) = e B expl(-1/2¢67) ZEZ (z + s.,)
1 2 n-1 n/2 n i
2r) o} i=0

for -w < z <o and 0 < g, <

= (0, otherwise.

n-1

Consider the expression :E:(z + si)2 in the exponent. We can express it

i=0
as
n-1 n-1
2 _ 2 2
:E:(z + si) = :E:(z + Zzsi + sy )
i=0 i=0
n-1 n-1
= nz2 + 2z j;:s. + s,2
i i
' i=0 i=0
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n-1 n~1 \2
2
= n|lz" + 2z Zs.i/n + (1/n) ZS
i=0 1=0
n~-1 n-1 2
2
{5 oo 3
i= 1=0
n-1 2
= nl z + (1/n)jEZSi
20
n-1 n-1 2
2
+ :E:si ~ (1/n) s >
=0 i=0
so that,
n!
k.(Z, gl’ gz’ L e | gn) =
/E(Z'n)(n 1)/2 n-1
n~1 n-1 2
2 ‘ 2
x exp(-1/2¢7) s ~-(1/n) s
=0 1=0
n-1 2
< exp(-n/20%) |ar@/m)| Y's,
i=0
The joint density of (Gl, G2’ e ey Gn—l) is then obtained by inte-

grating out z. Thus we have,
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) = n!

Va(2m) (n-1) /20n—1

f(gl’ g2$ A g

n-1

n-1
x exp(—1/202) :E:Siz - (1/n):§:Si
i=]1

i=1

But,

-1

&

=]

ZZ ”i LT

: J= j=1 j'>j

.
=

= (n—l)g‘l2 + (n—Z)gQZ + ...+ gn_lz

+ 2(0-2) g8, + 2(0-3) (g8, + g,8y)
+ 2(n-4)(gig, + 8,8, + 8,8) + . . .

+ Z(glgn_l + gzgn_l + . . . gn_zgn_l)’

and

i=1 i=1

n-1 2 n-1 2
(1/n) (zsi) (1/n) Z (n-1)g,

n-1

n-1
am | Y @’ +2) S @) e,

1=1 3=1 373

]
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_1)2 2 2
- (n-1) g 2 + (n-2) L+ l-g 2
n 1 n 2 n °n-1

+ 2[%3322£E:ll 8,8, * (n;3)((n—l)glg3+(n—2)g2g3)

+ ... (W/n) ((n—l)glgn_l+(n-2)gzgn_l

+ .. .+ 2gn_2gn_£ﬂ s
hence,
n-1 n-1 2
: )3
:E:si (1/n) s;
i=1 i=1
-l 2, 2(n-2) 2 n-1 2. . [-2)
= h &t n 8t etTE 7 2[; n 818
n-3 1
T (esg  2epe ) L L e gt 280
T (n—2)gn_2gn_£ﬂ
Tn-1 n~-1 B
, » ) 2 < . ~ g
= (1/n) z:l.(n—l)gi + 2 z z j(n-j )gjgj
i=1 i=1 j7>j
The joint density of (Gl, G2, . e e Gn—l) is, therefore,
n!
f(g s o ¢« » » 8 ) = "
1? =2 n-1
- ~-1)/2 -1
/n(2ﬂ)(n )/ o™
n-1
2 . . 2
x exp(-1/2nd") 1(n—1)gi
i=1

n-1
+ZZ Zj(n-j’)gj 5

3=1 373
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for 0 < gi <®w, i=1,2, ... 4,0n0=1

= 0 , otherwise. (4)

n = 3 and 02 = 1, the density (4) reduces to

2 2
f(gl, gz) = eXP(—l/é)(Zgl + 2g, + Zglgz)

/§(2n)

= (/3/mexp(-1/3) (&,” + 8,8, + 8,7

gl >0, g9 >0 . (5)

G = max {Gi}, then, for n = 3.

H(g) = Pr(G < g) = Pr(G; < g, G, < g)

88
(/§/w1[ijp exp(—l/3)(gl2 + 8.8, + g22>dgldg2
0 0

g /Eg//E + gz//g
(/g/nifa exp(—g22/4)(l//§F{fo exp(—t2/2)dtdg2

0 g2//6_
g/v6
= (3%%7Wi[° exp(—3u2/2)[F(/§g//§ + u) - F(u)] du,
0

(6)
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Z

where F(z) = (l/ff;)fexp(—tz/Z)dt. The density of G can be obtained

-0

by differentiating H(g) with respect to g.

g//6
h(g) = H"(g) = (3/5//F)(l//EFZJOeXP(—3u2/2)

0

X (l//??)(/E//E)exp(—l/Z)(/Eg//g'+ u)2du

+ (3V6/Vm) exp (~g2/4) [F (V2g/V3 + g/V6)]+ (1/VB) (7)

The differentiation step follows from Leibniz's Rule,

g(y) g(¥)
41y __[3§b£§¢zl dx + hlg(y), ylg”(y) - hlf(y), yI£7(y)
&y (x,y)dx = Ty x + hig(y), ylg"(y y), yif (y

f(y) f(y)

Simplifying (7), ¢/ V6

h(g) (6//?)(l/J§;1[Qexp(—g2/4)exp(-l/2)(2u + g//g)zdu

0

+ (3/VT)exp (-g2/4) [F(V3g/V2) - F(g/V8)]
/3g/v2
(3/V7) exp (-g2/4) {(l/m)f\exp(‘tz/-?)dt +[F</§g//§>—F<g//€>]}

g/v6



36

= (6/Vmexp(-g2/4) [F(V3/V2) - F(g/V6)],0 < g < = (8)

Similarly, for n =4 and 02 =1,

g g 8
(3J§7w3/2Z[i[i{° exp(—l/8)(3gl2 + 4g22 + 3g32

000

H(g)

+ 4g182 + 2glg3 + 48283)d83d82dgl

g
(4/§7ﬂ1]%[°exp(—l/3)(812 +g.8, g22)

00

Ll 25 o5 e,

and,
g

h(g) = H'(g) = (4/§/ﬂ)(/§723[;xp(—1/4)(glz + gz)

0

oo 559
x | (1/V2m)| exp(-1/2) g, t 2 dg, | d8;

0

g
+ <4/§/w)f exp(-1/3) (g, + 8,8 + 8°)
0

x {%[(/5/2)(5g/3 + g/3)]—F[(/§/2)(2g/3 + gl/3£%'dgl
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g
+ (4/§/nlj°eXP(-l/3)(g2 t gg, * gzz)

0

x<F [(/3/2) (4g/3 + 28,/3)]- FI(/3/2) (g/3 + 28,/3)] ds,

g
= (4/§/n1[= (/3/2)exp(-1/4) 2 + g2)

0

x< F[(1/2) (3g + u)]- F[(1/2) (g + w)]

+ exp(—1/3)(u2 + ug + gz)

x<F[(1/2V/3) (58 + u)] - F[(1/2V/3) (2g + w)]

+ F[(/V3)(2g + uw)]- F[(1//3) (1/2g + W]} | du.

For sample sizes larger than 4, the-method becomes-very messy and un-
-wieldy, and-alternative  approaches will be taken.
2. Utilization of the Distribution
of the Individual Gaps
For the random gaps
(Gl, Gz, « o Gy

we have, of course; the identity

Pr(G_, <8) =Pr(G, <g G, <g, .. ,GC ;<8
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If the Gi were independent, we would also have

n-1

<g) =TI Pr(Gi <g . o (9)

Pr(Gma
i=1

X
We know that the G, are mot strictly independent,’ but how 'nearly
independent' are' they? - In other:words,' if one: used (9), how closely
would he approximate-the distribution: of the: maximum gap? -Let us examine
the correlations between’ gaps  for  various sample sizes~as'a measure of
the interdependencer relationships.: For sample' size n, denote Var(Gi)
by-'ei2 and Cov(Gi,_Gj) by eij. Here, and elsewhere, there is no
loss‘of'general:i;‘ty'toassume‘the‘-Gi arise from sampling the.standard
normal’distribﬁ;ion; because, if (X(l)’ X(z),,; N X(n)) are from

a normal (u, 02), then,

E(Gi) = E(X X

(1+1) ~ X(a)? T ELOC g4qy m By 9 BCE iy Bgy) s

where E(j) is the jth order statistic from a standard normal, and

Var(Gi) = cz'Var(E(i+l) - E(i)) .

Assuming Gi is from the standard: normal distribution, it is a simple

and’ .straightforward-matter to obtain

2 - .
ei = Var(G,) = Var(&<i¥1)) + Var(g(i)) - 2Cov(£(i+l), E(i))

e g 2 a2
= 6i+1 + Gi 26ij, sgy (10)

and, similarly,
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8,, = Cov(Gi, G,) =38 $

1j 3 141,41 ~ Ci+1,j cs1,j+1 + csij RCEY

Thus, =0,,/8,0, 1s easily determined from existing tables

P13 7 13771

where the variances and covariances of the. standard normal order
statistics are tabulated. Table XX of the Appendix. shows the correla-
tion structure of the gaps for sample sizes 3 to 20. Let us consider
the correlation matrices of the gaps for several selected sample sizes.
(Only the first [(n=1)/2] gaps need be considered, since the correla-
tion structure is double symmetric. That is," pij = pji = pi’j‘ = pj‘i”
where 17 = pn~i~1 and j° = n-j-1.)

It is observed that: (i) there are no correlations with absolute

value greater than 0.136; (ii) The correlations between adjacent gaps are

Piop ™ pn;n-i 1s the greatest' correlatien; and (iv) all

correlations are reduced as the sample size 1lncreases. Thus, it appears

 greatest; (iii)

that the gaps are ''mearly independent" for the larger sample sizes, and
that a product .of .individual gap probabilities may.furnish an adequate
approximation- to .the.distribution.of the maximum:..gap..  We' should note
that justification for .multiplying probabilities .of non-independent
events based on'.a .correlation argument .is.not .altogether convincing, and
the final judgment .of whether this .should .be .done must rest upon how good
we deem the .approximation to be. . The goodness.of the approximation would
be difficult .to-.quantify since non-=independence:has .no degree and, thus,
"almost independence' is described here .only in.terms.of "small" correla-
tions.: Rathernthanuattempting;to?assesstthe:goodnessnof approximation
analytically, the samplersize:.7 will be arbitrarily taken .as the divid-
ing point,'and'ansubjective:evaluation%ofithe.goodnessﬁofﬂapproximation

will be made-.for that case.



CORRELATION MATRICES OF. GAPS FOR. SOME. SELECTED SAMPLE SIZES

TABLE II
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(a) Sample Size 3

N =

1
1.000
-0.136

(b) Sample Size 5.

—

R

1

1.000.
-0.113

0.068
0.041

2

1.000
-0.110

[0, B S R OVRY G I )

(c) Sample Size 7.

1

1.000
~0.100
-0.064
~-0.043
~-0.029
-0.019

2

1.000
-0.093
-0.064
-0.045

1.000
-0.090

o~ P~ W N

.000
.092
.060
.042
.031
.023
.017
.011

(d) Sample Size 9.

2

.000
.083
.059
.043
.032
.024

3

1.000
-0.078
-0.058
-0.044

1.000
-0.076
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3. The Distribution of an Individual Gap

Let (X(l)’ X(Z)’ o e e s X(n))..be'the”orderfstatistlcs generated
"by sampling from the:standard-normal-distributien. Then, the joint
“density for (X(i§’ in#ij)"'lS'glVen by
1

E(r(gys Xegary) = o @/2m [P
(1) T+ (1-1)! (n-1-1)! (1)

X [l—F(x(i+l)]nfi_lexp(—l/2)(x(i)+ x(§+l))

for -= < x(i) < x(i+l) < o

= 0, otherwise. (12)

Let w = x(i), and gi = x(i+l)~ x(i);'thls defines a ene-to-one trans-—

formation with Jacobian 1. Thus, the joint density of ‘W and Gi is

n. n-i-1

(i-1)! (n-1i-1)!

hw,g;) = (/20 [F ) 17 [1-F (v, )]

x exp(—l/2-)(w2 + (w + 81)2)

for —» <w<ewe , 0<g, <=
i

= 0, otherwise

and the marginal density of Gi is

n-i-1

i-1
ﬂ@=%§ﬁwniwmwlmumm%mm%w(m
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The integral (13) does not exist in closed form and must be evaluated

by a suitable numerical quadrature procedure.
4, Studentization

In (9) and an earlier paper, H. 0. Hartley showed how studentiza-
tion may be accomplished. Let (Xl, X2, o v oo s Xﬁ) be a random sample
from a normal distribution with standard deviation o, and let W be a
statistic "proportional to ¢" .in .the.sense that if .the Xi “are measured
in o-units, W is transformed to W/o. Let P(w) be the cumulative
probability integral for W. for the case ¢ =.1, that is, P(w) =
Pr(W < w)., Let 32 be an independent estimate .of~ 02 based on v
degrees of freedom such'that vs,z/c2 is distributed as .XZ(v), and let

R = W/s. Then the cumulative probability function-of R 1is given by

—lvv/2

SV L2y
71 exp (~s“v/2)ds . (14)

F(f) =| Plrs)—
r(v/2) 2

=00

In the case of .obtaining.the .probability integral .ef .the student-
ized maximum gap, this result is easily.derived. Let (X(l)’ X(2)’
o e s X(n)) be the order statistics of .a random sample of size n

X, .\t

from a normal (O,Maz) distribution, and:let G =.m?x{x(i+l)— (1)

2 . . 2
Let s~ be an unbiased estimate of .0~ based.on v degrees of free~-

dom, independent of (X(l)’ X(Z)’ e e e s X(ﬂ)) .such that vsz/o2 is

distributed as Xz(v), and form the studentized maximum gap G/s. Then,

Pr(G/s < g) = Pr(G.< gs) = Pr(G”~ < gs/o)
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where G” = G/g "is the maximum .gap ina sample-of:size- n  from the

standard -normal- distribution:- ~This-probability-can-be:evaluated by

Pr(G” < gs/c)‘iféPr(G‘ < gs/o|s)f(s)ds,
0

where £f(s) 1is-the probability density of s,

o

f S\)-—l\)\)/2 2 |
=|P(gs/0) = exp(-s“v/2)ds
rev2y 222

where P(*) is the probability integral of G”. Thus, the cumulative

probability integral of- the studentized maximum-gap is given by

00

v=1 v/2 9
H(g) =| P(gs) ———> /2_1 exp(-s“v/2)ds . (15)
r(v/2) 2°

0

It is evident that if it were possible to determine- P,. then the
distribution of the studentized maximum gap would be completely deter-
mined. The problem,:as:we have:seen, is in: the determination of P.

The solution proposed-is to calculate- approximations to P. for the
several sample sizes, and to-then apply the exact studentization form-
ula- (15) to these approximations' for the  various-degrees: of freedom for
which- tabulated critical-values are.desired.

In  the same-reference, Hartley also gives-a reduction formula and
an approximation formula, but:unfortunately, neither'of-the two formulas
lend themselves  to straightforward:calculation: by’ computer whenever P

is' notan analytic-function expressible-in’closed form.
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5. Approximate Distribution Functions

for the Maximum Gap

The approach taken to-obtain the desired  approximate:distributions
can be described-as - an-unsophisticated frontal attack: All computer
calculations were done-on an IBM 360+-65: computer with FORTRAN.double-
precision programs-written' by the: author, with the- standard FORTRAN
Library and- IBM SSP routines;:and;with';w01r0utine5'written.by.Dr.

J. P. Chandler of Oklahoma~State University's Department of:Computing and
Information-Sciences. In the.programs:written by the author, a great
deal of care was not: given either: to:programming efficiency. or computa-
tional efficiency. All numerical:integrations were: done with Simpson's
rule integration and: trapezoidal rule:integration by means.of the

DQSF and DQIFE subroutines; respectively, in the  IBM SSP' Library. For
the empirical distributions; a. large:number (25000 = 35000) of simu-
lated normal'samples:of'the:appropriateasize;were“taken; the . maximum
gap computed, and a frequency distribution generated-for the interval
0.0 to 5.0 using .subintervals:of:. length 0.1. The adequacy of the
generating procedure-will:be. examined:for:sample-sizes-3 and 4, where
the  exactdistributions-of:the maximum: gap:can:be derived.

The basic-plan of-attack to:obtain P, the-distribution of the

maximum- gap-.in .standard normal samples will be:

(1) For sample-sizes 3 and 4; calculate-the exact distributions.
(11) For sample-sizes-5- through 7, generate-empirical-distributions.
(i11) For sample~sizes larger:than 7; calculate an approximation

to the distribution: by:multiplying- individual:gap probabilities
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" together, These-are; of course, obtained by evaluation of (13)

by numerical quadrature.

The agreement between the .empirical distribution-and- the:exact distri-
bution-will-be  examined for sample sizes .3 and 4, and the agreement
between :the  empirical distributionﬁand'theﬂproduct%approximated distri-
:bution‘wiil'bE“gxamined'forTsample.sizeh7.

In order to-obtain-simulated:normal-variates, .a routine named
GAUSF, written by J. P. Chandler:was:used. The routine is based on a
generation-algorithm proposed by Marsaglia-and Bray: (12); which utilizes
mixing, in-a specified-way, functions:of:uniform variates. ~The uniform
varlables-were-obtained with-a pseudosrandom number generatgr called
RANF, also written. by:Chandler. As.a.rough indication of CPU time
.requirements, it was possible to:obtain: samples:and tabulate:the fre-
‘quency-distributions-of:all gaps:and. the:maximum: gap:for 25000 samples
of size 3, in 1 minute, 10.864: seconds:of:CPU: time; and-to.do the same
for 25000: samples of -size-6;,: in-2:minutes; 11.522. seconds -of CPU time.

The empirical-distributions of: the maximum-gap-for sample sizes
5. through 7 are given in Tables XXI-through XXIII-of the Appendix.

. Table-II11 and Figure-5-on:the following:pages:give a comparison of the
empirical distribution and the exact: theoretical-distribution for
sample size 3. On'the basis ofthe.ChisSquare goodness -of-fit statistic
calculated, the-agreement between. the two is joadged to be. adequate.

“The calcuiated“ChieSquare”52.984ihas:a:significanCeflevel'of approxi-

‘mately 0.37, and is, therefore, not inconsistent with- the hypothesis of

no:différenceﬁbetween%the%distributions.



TABLE III

EMPTIRICAL AND THEORETICAL DISTRIBUTIONS OF
THE MAXIMIM GAP, SAMPLE SIZE 3

, DBS ERVED THEARETICAL
OBSERVED THEIJIETICAL CUMULATIVE CUMULATIVE
INT ERY AL FREQUENCY FREQUENCY CHI-SQUAIE FREQUENCY FREQJUENCY
0.0 TO 0.1 131 137,40 0.293 0.005240 0005496
. 0.1 TO V.2 409 407 .25 0,208 0.021600 0. 021786
0.2 TO 0.3 591 662 .40 1.235 0.049240 J.048232
0.2 TG 0.4 940 894,20 24 346 0.086340 0.084050
O.4 TO V.5 1061 1095 .42 1.082 3.129280 J.127867
0.5 TO 0.5 1292 1260. 78 0.773 0.180960 J.178295
0.6 TO 0.7 1368 1387.02 0. 261 0.235580 0233779
0.7 TG 0.8 1441 1473.05 0.597 J.293320 0292701
0.8 TG 0.9 1462 © 1519,88 0.511 0.353000 Je353495
0.9 TO 1.0 1576 © 1533.03 1.381 0.416240 Do 414697
1.0 TO 1.1 1459 1507 462 1.568 D 474423 0.475002
1.1 TO 1.2 1454 1457.52 0. 009 3532560 J.533302
1.2 TO 1.3 13385 1385.20 0.000 Ue 588030 Je 588711
1.3 TO l.4 1306 1296.17 0.07% 0.640240 Je540553
le4 TO 1.5 1166 1195.77 O0e 741 0. 686880 Ue535389
1.5 TO l.6 1058 1088 .90 UeB8T7 0.729200 0.731945
le6 TO 1.7 990 979,68 0.109 0.768800 0.771132
1.7 TO 1.8 884 871e62 0.176 0.804160 0. 805997
1.8 TG 1.9 722 76753 2.700 0.833240 0.835698
1.9 TO 2.0 706 669.27 2.015 - 0.861280 J.853469
2.0 TO 2.1 534 578.35 0.423 0.285040 Je 885603
2.1 TG 2.2 4381 4G5 .47 0.623 J.904240 0905422
2.2 TO 2.3 431 421.05 0. 235 0.921520 Ue 923264
2.3 TO 2.4 373 354 .98 0.915 0936440 Oe 937463
2.4 TO 2.5 284 297,10 3.578 0.94733¢C Je949347
2.5 TO 2.6 290 " 246483 7.552 - 0e 959400 0.959220
2.6 TO 2.7 199 203,55 0.106 J.967360 Je 967366
2.7 TO 2.8 166 166,85 04 004 0.6740920 04974040
2.8 TQ 2.9 116 135.80 2.887 0.978640 Ve 979472
2.9 70 3.0 130 109.80 3.717 J.983340 J.983864
3.0 TO 3.1 98 88.20 1,089 0.987760 0.987392
3,1 TO 3.2 62 70.38 0.997 0.990240 J. 990207
3,2 TO 3.3 64 55.78 1.213 0.992320 . 0.992438
3.3 7D 3.4 58 43,95 4.491 0.995120 3994195
3.4 TO 3.5 29 34 .40 0.847 0.996280 Je 995572
3.5 TO 3.6 29 26475 0.189 J 997440 0.996542 .
3.6 TO 3.7 18 20.67 0. 346 0. 998160 0.997469
3,7 TO 3.8 11 15.385 1.484 0.998600 9.998103
3.8 TO 3.9 7 12.10 2.149 0.998830 0.998587
3.9 TO 4.0 9 9.18 0.003 0.999240 0.998954
4.0 TO 4.1 3 6490 24204 0.999360 04999230
4.1 TO 4.2 2 5.18 1.948 " 04999449 04999437
4.2 TO 443 4 3,85 V006 0.999600 Je 999591
4.3 TO 4.4 2 2.82 0.240 049995680 0.999704
4.4 TO 4,5 3 2.10 0« 385 J¢ 969800 0999785
4.5 TC 4.6 2 1.59 D.167 0959830 Ue 999848
4.6 TO 4.7 1 1.10 0.009 04999920 04939892
4,7 TO 4.8 0 0.80 0. 799 0.999920 0999924
4.8 TO 4.9 1 U.58 Ue314 04999960 2599947
4.9 TO 5.0 0 0.40 0.401 04999950 J.399963
TOTAL: 25000 CHI-SQUARE: 52,984 WITH 50 DF
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TABLE IV

EMPIRICAL AND THEORETICAL DISTRIBUTIONS OF
THE MAXIMUM GAP, SAMPLE SIZE 4

- OBSERVED THEORETICAL

OBSERVED. THEIRETICAL CUMULATIVE CUMULATI VE

INTERVAL FREQUENCY FRZQUENCY CHI-SQUARE FREQUENCY FREQUENCY
0.0 TO Q.1 18 18.90 0.043 0. 300720 0.000756
Vel TO 0.2 122 129 .12 J.393 G.u05600 J.005921
0.2 TO 0.3 353 333.95 1,087 0.019720 0.019279
0.3 TO Q.4 592 605,37 0.255 0.0434390 0. 043454
0.4 TO 0.5 9138 908 .05 0.988 2.080920 0.079816
0.5 TO 9.6 1210 1205. 70 0.015 0.129320 0.128044
0.6 TO 0.7 1427 1465.73 1.376 0. 186400 Je 186713
0.7 TO 0.9 1628 1668.13 Je544 0.251920 0.253438
0.8 TO 0.9 1740 1797.35 1. 830 0.321520 0.325332
0.9 TO 1.0 1846 1851.97 V.019 0.395360 0.399411
1.0 TO 1.1 1864 1337.83 0.373 0.469920 JDet72924
1.1 TO 1.2 1776 1766427 0. 054 V. 540960 0.543575
1.2 TO 1.3 1679 1651.37 Veab62 V.608120 0609630
1.3 70 l.4 1480 1507.72 0.510 0.667320 J.569939
1.4 TO 1.5 1327 1348.43 0.340 0. 720600 0.723876
1.5 T0 1.6 1154 1184.47 0.784 0.766560 0.771255
1.6 TO 1.7 1049 1024.23 0.599 0.808520 Q.812224
1.7 TO 1.8 886 873 .43 0.181 V.843960 Je 847161
1.8 TO 1.9 770 735.67 1.602 0.874760 Q.876588
1.9 TG 2.0 615 612.85 J.008 0.899360 J.5601102
2.0 TO 2.1 530 505 .38 1.2490 0.920560 Ve 921317
2.1 TO 2.2 402 412.95 0.290 0.936640 J.337835
2.2 TO 2.3 325 334.52 0.271 0., 949640 Je 951216
2¢3 TO 2.4 272 268 .85 0.037 04960520 0.961970
2.4 TO 2.5 238 214432 2.615 0.970040 0.970543
2.5 TO 2.6 173 169.65 0,066 0.976960 J. 977329
2.6 TO 2.7 139 133.35 0.239 0.982520 0.982653
2.7 TO 2.8 117 104,02 1.618 0.987200 J.986824
2.8 TO 2.9 81 80 .65 0.002 0990440 0. 990050
2.9 TO 3.0 56 62.05 0.590 0.992680 0.992532
3.0 TO 3.1 46 4T.48 0. 046 0. 964520 0.994431
3.1 TG 3.2 34 36.03 V.1l14 0.9958830 0.995872
3.2 TO 3.3 23 27.20 0. 649 0.996800 J.996960
3.3 TO 3.4 26 20.37 1.553 0.997840 0.997775
3.4 TO 3.5 13 15.18 06312 0.968360 0.993392
3.5 TO 3.6 11 11.23 0. 005 0.9598830 0.398831
3.6 TO 3.7 9 8.23 0.073 0.999160 0. 999160
3.7 TO 3.8 2 6.02 2.688 349689240 0.699401
3.8 TO 3.9 6 4435 0.626 0.999480 0999575
3.9 TC 4.0 4 3.15 0.229 0.999640 J. 996701
4.0 TO 4.1 1 225 0.595 04959630 0.999791
4.1 TO 4.2 0 1. 60 1. 600 0. 969680 0.999855
4.2 TO 4.3 V) l.10 1.100 0.,999630 J.999899
4¢3 TO 4.4 2 0.80 1.799 0.995750 0.339931
4e4 TO 4.5 3 055 10.918 V. 969880 J.999953
4.5 TO 4.6 2 0.38 7.028 0.959950 0.99G6968
4.6 TN 4.7 0 0.27 0.274 0.9999590 0.599979
4.7 TC 4.8 0 0.18 0.176 C.e 369360 0. 999986
4.8 TO 4.9 0 0.13 0.125 0.999960 V.999991
4.9 TO 5.0 0 0.07 0. 075 0.999950 0.339994

CHI-SQUARE:

43,215 WITH 50 OF
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Table IV gives a comparison: of: the:rempirical distribution and the
theoretical distribution for sample size 4. Here, also, the agreement
between the two is judged to be. good.

Based on' the results for sample sizes 3 and 4, the empirical

.distributions for sample-sizes 5 through 7 will be taken as. adequate
approximations to the exact distributions; however, some smoothing may be
used.

To obtain- the-distribution- of ~the: maximum-gap for sample sizes
larger“than“7, approximation-of  the: distribution: will be made by obtain-
ing exact distributions-for- the-individual gaps-in-each'case and forming
a product of these. The  exact probabilities for-individual gaps are
computed by  the evaluation-of (13) by numerical-quadrature. The error

of approximation  comes-from- three sources:

(1) Computer round-off error
(1i) Integration error

*(1i1) Lack of independence .of the gaps

Double precision computations help-to-minimize the effects of (i).  With
‘respect to” (1i), there is-some error-introduced in-setting up. the .
function to-be integrated: however; it: is worthy of note that by using
the IBM FORTRAN routine DERF to calculate values for the cumulative
‘normal, one can-obtain:values which agree:exactly with' the fifteen-
place values tabulated by Abramowitz. (1). Also:the IBM function DEXP

is very accurate, so that-errors:in:the:rintegrand:.can: probably.be neg-
lected. Error introduced by the:integration routines-is-more.difficult
to assess; but for smooth functions; one-can:generally achieve sufficient

accuracy with Simpson's Rule by taking small-.enough increments.
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Smaller increments, of course, penalize one: in terms-of computing time,
so that some experimentation is necessary to-determine a reasonable
increment-value to take. For the integral-(13) it was found that .taking
increments smaller than 0.05 or: limits:-of:integration outside of

(-5.5;, 5.5) changed the final answer only .slightly (in:the-sixth decimal
place), so that these:values were taken as adequate working. limits.

The FORTRAN programming necessary’ to-perform- the:calculations is .
straightforwardzandkwill'not'beipresented as part of this study. The
product-approximated maximum gap: probability-distributions are given in
Table: XXV of the Appendix. A typical individual gap distribution is .
.shown: in Table V and Figure: 6 for:Gap 1 in a'sample of size 7.

A comparison of the-empirical:distribution-and:-the  product-approxi-
mated distribution of- the maximom-gap: for:sample-size-7 is shown. in
Table VI and Figure .7. The agreement between the:two"is:good, especially
in the tail areas. Therefore,:1f -we assume that the empirical distribu-
tion for sample size-7 is as close: to. the. exact distribution as it is

‘for sample size 3, then the product=approximated-rdistributions will be
considered satisfactory for the majority:of applications: for sample .
-sizes larger than.7. . A-.point noted:in:passing:is-that-the product-
approximated-.distributions' apparently:havertail areag-which:are slightly
. smaller than the .true tail-areas, makingdany“test'bésed"on'them non-

" conservative with- respect- to:Type:1:error. rates.



TABLE V

DENSITY FUNCTION AND CUMULATIVE DISTRIBUTION FUNCTION
OF GAP 1 IN A SAMPLE SIZE 7

GAP PROBABILTTY CUMULATIVE
SIZE DENSITY DI STRIBUTION
0.0 1.352178 0.0

0.1 1.230890 0.129139
0.2 14112134 04246263
0.3 06997327 0. 351697
0.4 0.887669 0. 445900
0.5 0.78413? 0.529436
0.6 0.687453 0. 602955
0.7 0598140 0.657172
0.8 0.516490 0.722839
0.9 0.442599 0.770729
1.0 0376293 0.811615
1.1 0.317649 0.846256
1.2 0.266024 0. 875382
1.3 0.221081 0.839584
le & 0.182321 0.919805
1.5 0.149199 0.936336
1. 6 0.121153 0.949814
1.7 0. 097619 0.960717
1.8 0.078247 0.969469
1.9 0.061916 0.976441
2.0 0.048737 0. 981951
2.1 Jeu33264 0.986272
2.2 0029497 0.939634
2.3 0.022680 0. 992229
2.4 J.U17301 0.994218
2.5 0.013095 0.995729
2.6 0.00983% 0.996868
2.7 0.007326 0.997721
2.8 0. 005415 0.998353
249 0.003971 0.998819
3.0 0.002889 0.999160
3,1 0. 002085 0.999406
3,2 0.001493 0. 999584
3.3 0.001060 0.959710
3.4 0. 000747 0.999800
3.5 0.000522 0.999862
3.6 0.000362 0.999906
3,7 0. 000248 0.999936
3,8 0.000169 0.999557
3.9 0.00011% 0.999971
4.0 0.000076 0. 999980
4.1 0.000050 0.995987
4,2 0.000033 0.599991
4¢3 0.000021 0. 999993
4ot J..000016 0¢999995
4,5 0.000009 0.999996
446 0.000005 0. 999997
4.7 0.000003 0995997
4.8 0.000002 0.3999998
4.9 0.000001 0. 999998
5.0 J.000001 0.999998

VARIANCE: 0.25623
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Figure 6. Density Function and Cumulative Distribution

~Function of Gap 1 in:a Sample Size 7
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TABLE VI

EMPIRICAL AND PRODUCT-APPROXIMATED DISTRIBUTIONS
OF THE MAXIMUM GAP, SAMPLE SIZE 7

"EMPIRICAL PRODUC T~
OBSERVED RELATIVE  CUMULATIVE APPROXIMATED .SIGNED
INTERVAL FREQUENCY FREQUENCY  FREJUENCY  CUMULATIVE OIFFERENCE

PP P PP PP L PP UV LULUWWLWWONRNRNNNRNNNNN R S - e -~ 0000000000

0 0.0 'O.C 0.00003 J. 00003

«0 TO 0.1

«1 TO Q.2 16 0. 00046 0.00046 0.03125 0.00079
«2 TO 0.3 120 0.00343 0.00389 0.00892 0.00503
«3 TO 0.4 495 0.01414 Q0.01303 U.03136 V.01333
«4 TO 0.5 1200 0. 03429 0.05231 0.07498 0.02267
«5 TO 0.6 2022 0.05777 0.11009 0. 14088 0. 03079
«6 TO Co7 2771 0.07917 0.13926 0.22497 0.03571
«7 TO 0.8 3354 0.09583 0.28509 0.32007 0.03498
«8 TO 0.9 = 3492 0.09977 © 0.33486 0.41846 0.03360
«9 TO 1.0 3554 0.10154 Q.48640 ~ 0.51360 0.02720
.0 TO 1.1 3204 0.09154 0. 57794 0. 60091 0.02297
«1 TO 1.2 2921 0.08346 0.66140 0.67785 0.01645
«2 TO 1.3 2463 0.07037 0.73177 0.74351 0.01174
«3 TO 1.4 2034 0.053811 0.78989 0.79816 0. 00827
«4 TO 1.5 1754 0.05011 0.840J00 0.84272 " U.00272
«5 TO 1.6 1227 0.03506 0. 87506 0.87848 0.00342
«6 TO 1.7 1049 0.02997 0.90503 0.90631 0.00178
«7 TO 1.8 773 0.02209 0.92711 0.92901 0.00190
«8 TO 1.9 608 0.01737 Ve94449 0.94626 2.,00177
«9 TO 2.0 476 0.01360 0. 95309 0. 95955 0.00146
«0 TO 2.1 . 359 0.01026 0.96834 0.,96973 0.001139
«1 70 2.2 253 0.00723 0.97557 0.97747 0.,00190
«2 TO 2.3 216 0.00617 0.98174 0.98333 0. 00159
«3 TO 2.4 183 0.00523 0.33700 0.98773 000073
o4 TO 2.5 125 0.00357 0. 93054 0.99103 0.00049
«5 TA 2.6 101 0.00289 0.99343 0.99348 0. 00005
«6 TO 2.7 T0 0.00200 0. 99543 0.99529 -0.00014
«7 TO 2.8 54 0.00154 0.99597 0.99661 -0.00036
«8 TO 2.9 35 0. 00100 0.99797 0.99758 -0.00039
«9 TO 3.0 22 0.00063 0.99860 0.99829 -0. 00031
«0 TO 3.1 15 0.00043 0.995903 0.99879 -0.00024
«1 TO 3.2 9 0.00026 0. 99929 0.99916 -0.00013
«2 TO 3.3 4 0.00011 0.99940 0499942 0.00002
«3 10 3,4 7 0.00020 0.99960 0.99960 0.0

«4 TO 3.5 5 0.00014 - 0.99974 0.99972 -0.00002
«5 TO 3.6 0 0.0 0.99974 - 0.99981 0.00007
«6 TO 3.7 2 0.00006 0.99980 0.99987 0.00007
«7 TO 3.8 1 0.00003 0.99983 0.99991 0. 00008
«8 TO 3.9 1 0.00003 0.39986 U «965994 0.00008
«9 TO 4.0 5 0. 00014 1.00000 0.99996 -0.00004
«0 TO 4.1 0 0.0 ’ 1.00000 0.99597 -0. 00003
«2 TO 4.3 0 0.0 1. 00000 0.99999 -~0.00001
«3 TO 4.4 0 0.0 1.00000 0.99999 ~0.00001
«4 TO 4,5 0 0.0 1.00000 0.99999 -0.00001
«5 TO 4.6 0 0.0 1. 03000 0. 99999 -0,00001
o5 TO 4.7 0 0.0 1.00000 0.993999 -0.00001
«7 TO 4.8 0 0.0 1.00000 0.99999 -0.00001
«8 TO 4.9 0 0.0 1.00000 1.00000 0.0

«9 TO 5.0 0 0.0 1.0000U0 1.00000 U.0

TOTAL: 35000
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Comparison of the Empirical and Product-Approximated
Distributions of the Maximum Gap, Sample Size 7



Having now approximate values for the cumulative probability
integral of the maximum gap, the integral (15) may be evaluated by
numerical quadrature to yield the distribution function of the
studentized maximum gap and also the various critical values of this
distribution for different sample sizes and denominator degrees of
freedom. Table XXVI in the Appendix gives critical values for the

studentized maximum gap for. sample sizes 2 through 20.
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CHAPTER IV
PERFORMANCE CHARACTERISTICS

1. General Discussion

For multistage procedures such as the studentized maximum gap test
(SMG) or the studentized range/maximum:gap test- (SR/MG), computation
and/oxr discussion of error rates is difficult and confusing, and is
seldom done. Type I error rates are computed under the assumption that
"the null-hypothesis is true and are- thereby: generally more.manageable
than others. However, for the procedures where further testing depends
on rejection of the null hypothesis. at' the: first stage, calculation of
Type I error rates is complicated:by- the:fact that  the probabilities of
such errors at successive- stages are: governed by the decision reached at
the first stage. For example, in a:sample of size 6, the probability of
declaring another false significance;, given that one has been declared
at gap 1 is different: from what it:would be, given that the first false
has been declared-at gap 3. In"the first case’ there is only one null
hypothesiS‘t0'be'tested"at"the'secondistage**that'the'upper,five obser-
vationS’are'like a - sample of five from a' normal distribution; while in
the second case, there are-two:null hypotheses: to be tested.at the second
stage=—-that  the smaller three:observations are like a sample of three
from one'normal distribution: and that' the larger three observations are

like a sample of three from-another’ distribution. When there are three

or four stages to be considered; the 'complication- factor' increases.
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When the null hypothesis is not-true, sgystematic study of multistage
procedures like the SMG and SR/MG becomes all but impossible. First,
consider the possible number-of ‘ways: a random sample of size n may
depart from the null hypothesis. There may be anywhere from 2 to n
“true-populations-involved-and these may:be "configured in an infinity of
ways. Secondly, recall that:the SMG..and SR/MG: tests employ ranking of
sample means-as an’ integral part-of: the: procedures—-another possible
source of error. When one obtains:aiSet?of'means:for”which“the sample
.ranking” is incorrect, an erroneous. grouping can occur in at least three
ways: (i) A significant gap my be. declared between two means that are
reversed with respect to ranking. (This is a Type III error as defined
in Chapter II, p. 25 and also-as defined in (5).) (ii) A significant
gap' may be declared between two means from the same population. (This
error also occurs in samples with: correct.ranking.) (iii) A significant
gap may-be declared-between- two:means:which’are: ranked  correctly by
themselves, but which have an erroneous ranking-elsewhere in. the sample.
(When this error-is-made; both of. the previous two errors are made also.)

If by "a correct inference'" it is meant a correct grouping, then
when the null hypothesis is not true, i.e., true gaps exist in the popu-
lation, a correct inference will. be.made. for:' a. given sample only if the
sample ranking is correct and-all:of the true gaps are detected. All
other-situations-lead"to-an-incorrect. inference.

It appears; then, that hoping to.draw general conclusions about
the behavior-of procedures such-as the SMG .or the SR/MG when the null
hypothesis is not~true, is probably being: too optimistic. Certainly,
examination of-every potential: situation:is not: possible, and apparently

some have-felt that the-choice-is between doing this .or doing nothing
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and have consequently chosen the latter. In the writer's opinion, the
choice is somewhere in between; it is felt: that in the literature, .too
much attention-is given-to performance under. the null hypothesis, and
that performance under-alternative hypotheses is all-but ignored, due
to' the difficulty of “studying such cases in a systematic way. A recent
empirical evaluation of palrwise multiple comparison procedures by
Cramer and Swanson (7) and an- earlier empirical sampling experiment by
Balaam (4) are a couple of the few cases known to the author where such
studies have been attempted.

In this chapter, certain aspects of: the performance of three pro-
cedures—~the LSD applied only to gaps (GLSD), the Studentized Maximum
Gap (SMG), and the Studentized Range/Maximum: Gap (SR/MG)--will be
studied, both under- the -null hypothesis: and under selected alternatives,
and some general conclusions-will be. drawn based on.the special cases
studied. Topilcs to be discussed: include: single. stage Type I error rate
of the SMG, multistage Type-I error.rates; probability of: incorrect

‘ranking, and. comparisons of GLSD, SR/MG, and SMG with respect to error

rates and power characteristics for three selected cases.

2. Single-stage Type .l Error Frequency

of the SMG Procedure

In Chapter III, it was conjectured. that critical values for the .
studentized maximum gap- based-upon the  product=approximated distribution
of" the maximum gap would yleld tests which are' non-conservative with
respect to Type 1 error frequency. In this section, a particular case
will be examined to determine if the-degree-of non-conservatism appears

to be serilous.
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One thousand pairs of samples.of size 7 and .1l respectively were
drawn from a simulated standard normal population. ' For the first sample
of each pair, the maximum gap G was,determined,:andmfor the second
sample, the sample standard .deviation..s.was:.computed.  The statistic
G/s was then-formed and compared with. the .05 level critical values
computed by the studentization integral of.the:product«approximated
distribution for sample-size 7.and:10: degrees of freedom. In Table VII
are. tabulated the number of cases. out.of lOOO:where’the’sample value
of G/s exceeded the a-level critical value of the approximated null
sampling distribution of this statilstic.for sample size 7:and 10 degrees
of freedom. If this particular.case: is any indication .of:what. happens
in general, the most serious-disc¢repancies appear to be in. the a-levels
.01l to .05, and the amount: of. disagreement-might’ be'.considered quite
unsatisfactory 1f the attitude were:. adopted: that strict Type. I.error
rates must be maintained: -However,: when' the:discrepancies: are considered
“in: the context .of significance. testing, they do' not seem so serious.
That is, when one computes~the' probability of obtaining a value greater
than that observed, it seems likely to be of no great conhcern.that the
probability is actually, say, .056.rather:than .05, -Also, the approxi-
mation to the distribution-of. the maximum gap improves with larger
sample sizes, so that the non<conservatism of~the procedure will not

"be considered .as a serious problem.
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TABLE VII

EMPIRICAL CHECK OF TYPE I ERROR RATE FOR THE APPROXIMATED
DISTRIBUTION OF THE STUDENTIZED MAXIMUM GAP,
SAMPLE SIZE 7 AND 10 DEGREES OF FREEDOM

ALPHA CRITICAL SIGNIFICANT VALUES

LEVEL VALUE - NUMBER %Z OF TOTAL SID. DEV.
.500 1.03 507 50.7 % 2.50 7
. 400 1.17 412 41.2 7 2.42 7
.300 1.33 312 31.2 % 2.15 %
.200 1.55 215 21.5 % 1.69 %
.150 1.50 163 16.3 % 1.36 %
.100 1.91 109 10.9 % 0.97 %
.050 2.27 56 5.6 % 0.53 %
.040 2.38 45 4.5 % 0.43 %
.030 2,53 37 3.7 % 0.36 7%
.025 2.63 33 3.3 % 0.32 %
.020 2.75 27 2.7 % 0.26 %
.015 2.90 20 2.0 7 0.20 %
.010 3.12 11 1.1 % 0.12 %
.005 3.52 6 0.6 % 0.06 %
.001 4,51 1 0.1 7% 0.01 %
.0005 4.97 1 0.1 % 0.01 %

TOTAL SAMPLES 1000

3. Overall Error Rates under the Null Hypothesis

As noted earlier, in multi-staged procedures such as the SMG or the
SR/MG, the calculation of Type I error rates is more complicated than
for single stage procedures; however, in this section a few observations
concerning Type I errors will be made for the SMG test.. The conclusions
will apply to any procedure structured like the SMG, GLSD, or the SR/MG

tests.
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To simplify the discussion, assume that some o-level is chosen and
maintained for all stages of testing, and also.assume that there is no
error of approximation with: respect  to the a-level critical values.

The first point to be made is that in any procedure where further
testing depends on significance' at a:previous stage, if an a-level
test is consistently used at-the. first:stage, then the probability of
making one or more Type I errors:in'any experiment-is exactly a. In
other words, in any large set of:null expetriments;, on the-average only
1000 % of them will have erroneous sipgnificances declared. This follows
from the fact that the set of null experiments for which more .than one
erroneous significance: is declared is a subset of the set of null ex-
periments for which exactly one' erroneous:significance is declared.
Stated another way, two .or more Type I.errors cannot be made in. any null
experiment unlegs one has already been made. ' 1f Tukey's (20) definition

of “experimentwise error rate is used:

Experimentwise error rate

_ Number: of [null}'experimentwaith one or more erroneous. inferences,

Number of [null] experiments

then the above discussion condenses to:. At a=level testihg, the Type I
experimentwise error rate of:the:SMG.or: the SR/MG is exactly a.

For questions such as, "What is the probability that two or more
Type I errors will be made?" or, "Given. that one Type I error has been
made, what 1s the probability that-at least one more will be made?", the
answers are more difficult:to-obtain.:: Supposerthat  in" an'ordetred set of

‘means” from a null experiment;.the: studentized: maximum’gap was erroneocusly

declared significant. ' To assess .the probabllity of now declaring yet
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another erroneous significance, it must be: considered where the first
.significance was found. Suppose, for example, that the original sample
.size was 7 and that the third gap was:declared significant, then at the
second stage, one would be testing, reséectively; the first two gaps
out of a sample size 7 and the upper four gaps from a sample.of. 7. It
is now clear that the conditional probability of declaring more erroneous
significances, given that one has been declared is less than 2a,
because, as has been noted earlier, the lower J gaps of a sample of
size n are smaller, on the average, than the j gaps of a sample of
size j + 1, and similarly for the.upper n - j - 1 gaps. In any case,
it is easy to see that the multiplicity of:.cases to be considered makes
.answering either of the two questions above a formidable task.

For purposes of illustration let us. suppose. that: 1,000,000 null
experiments are performed for:which.seven means are to be tested by the
SMG procedure. Assume that o = .05 1is to be used  throughout. Let
E, denote the event {Gap 1 1is the largest gap}, then empirical

sampling for sample size 7 has established that, approximately,

[}

.P(Ei)'= P(Es) .2635

P(E2)

P(Es) = .1354

.1011

[l
]

P(E3) P(E

4)

Let F.i denote the event {Gap i is erroneously declared significant.},

then at-the .05 level,

P(Fl) = P(F6) = .05 % ,2635 = .0132
P(Fz) = P(FS) = .05 x ,1354 = .0068
P(F3) = P(Fa) = .05 x ,1011 = ,0050
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To carry the calculations any further, it is necessary.to be able to
calculate probabilities of declaring significant gaps in the upper
(lower) k observations of 7 when testing with the k-sample studentized
maximum gap (k <7). Rather than actually calculating these probabili-
ties, the assumption will be made that the probabilities are proportional
to the ratio of the respective ranges for the case 02 = 1, No claim

is being made for the validity .of such an assumption; the purpose is to
ascertain what sort of results one could obtain if he knew the proba-
bilities in question. Let R(k) = denote the range of the upper (lower)
"k . observations in a ranked sample of size 7, and let S(k) denote the
range of a sample of k observations. From Table XIX of the Appendix,

we can obtain

E(R(2)) = 0.5948 E(S(2)) = 1.1284
ER(3)) = 0.9995 E(S(3)) = 1.6926
E(R(4)) = 1.3522 E(S8(4)) = 2.0688
ER(5)) = 1.7049 E(S(5)) = 2.3258
E(R(6)) = 2.1096 E(S(6)) = 2.5345
Let r, = EQR(L))/E(S(1)); then

r2 = 0.5271 rS = 0,7330

-r3 = (0.5905 r6 = 0.8324

r4 = 0.6536

Let Hk denote the event {A significant gap is declared in the k

upper (lower) observations of.the ordered sample}. Then
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P(HZ) =oaxr, = .05 x 5271 = ,0264
P(H3) =g X ry = .05 x .5905 = .0295
P(H4) = q X r, = .05 x ,6536 = .0327
P(HS) =X I, = .05 x .7330 = .0367
P(H6) =axr.= .05 x .8324 = ,0416

Let S be the event {At least one gap is declared significant at the
second stage} and let F = F.UF,U. . . L)F6, so that F is the event
{a significance is declared at the first stage}. As noted earlier, S

does not occur unless F occurs, i.e., S& F; hence,

P(SMF) _ P(S) ,

P(s|P) = P(F)  P(F)
but | |
P(S|F,)P(F.) + . . . + P(S|F.)P(F,)
p(s|F) = 17”1 s 67 6.
P(H,[FP(E,) + PH,UH|FOIP(F,) + . . . +P(H|F )P (F,)
- P(F)

because Sf\Fl = H6f)Fl, SﬂF2 = (HZLJHS)(\FZ, etc.

) P(H6)P(Fl) + P(HZL)HS)P(FZ)_+ . e+ P(H6)P(F6)
P(F) ?

since (H2’ e e ey H6) and (Fl, ..y F6) are mutually independent,



= (2/.05)[(.0416) (.0312)+(.0264 + .0367)(.0068)+(.0295 + .0327) (.005)]
= (2/.05) (.00055 + .00043 + .00031)

= .00258/.05

= .0516

The answers to the two questions posed above are given by P(S) and
P(S|F) respectively; hence, the unconditional probability that two or
more Type I errors will be made is .00258, and the conditional probabil-
ity that at least two Type I errors will be made, given that one has been
made is .0516.

To further illustrate these ideas, assume that of the 1,000,000
null experiments, the proportion satisfying any condition is exactly
equal to the expected proportion, that is, expected: number of cases will
be taken as the actual realization of cases satisfying some condition.
With this agreement, 50,000 of. the null experiments: will be cases where

false significances are declared at the first stage. Of these 50,000:

26.35 % or 13173 will have. declared. gap 1 significant (Fl)
13.54 %Z or 6772 will have declared: gap 2.significant (FZ)
10.11 % or 5055 will have declared gap 3 significant (F3)
10.11 %Z or 5055 willlhave,declared.gap’4 significant (F4)
13.54 % or 6772 will have declared gap 5 significant (FS)
26.35 % or 13173 will have declared gap. 5 significant (F6)

At the second stage, the numbers of cases where .at: least one additional

significance will be declared are:
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4,16 7 of the 13173 in Fl’ or 548
6.31 % of the 6772 in F2, or 427
6.22 % of the 5055 in.F3, or 314
6.22 % of the 5055 in F4, or 314
6.31 % of the. 6772 in FS’ or 427

or 548

4.16 % of the 13173 in F6,

Thus, a total .of 2580:.0f .the null experiments:will be cases where two
or more false significances are-declared.:.Unconditionally this . is 2580
out of 1,000,000 or-..258 %Z. Conditionally,: .it.is. 2580:0out - of 50,000 or
5.16"%. These values coincide with:.the probabilities 'P(S) and P(SIF)
obtained earlier.

One other point may .be. inferred from this exercise, and that is that
of the 50,000 expected cases where at.least one Type I error is made,
2580 are expected to"be'.cases: where more .than .one.Type I error is made,
therefore; 47,420 cases where exactly one Type I error is made are
expected. "Hence, the probability of-exactly-one Type'I-error is..04742.

The  validity .of the-specific:probabilities-obtained rests, of
course,'upon%hoWTrealistiC'the approximations-.for: the-probabilities of
the ’Hk "eventsrare. - The-assumptions made in .order:.to:compute those
probabilities are not- altogether unreasonable, and it .is conjectured
that the final-answers. computed:with:the: exact .probabilities would not
differ materially from-those obtained:.: In:any: .case, it 1s felt that the
expenditure .of computer-.time to-calculate  the-exact probabilities is not

warranted at this time.
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4. Probability of. Correct Rankings

Any procedure which employs the: .practice of ranking sample means
must contend with: the  possibility that,.when: the:rmeans .are: from differ-
ent populations, the .sample ranking-may net reflect-the true ranking .of
the means. - Consider .the case’of two .normal.populations with common .
variance :02.<and whaose: means differ:by:.a positive: quantity measured in
o-units.’ Specifiéaily,,léf’ (ikl)"i(Z)’ e ey ikk)) be k means, each
based on' n ' observations randomly selected from a normal (O, 02)
population,land'let,‘(?kl), §k2)’ Ve ?km))‘ be m means, each based
on n observations randomly selected from .a normal . (Ac, 02) popula-
tion. Note that there is no loss in .generality by assuming My = 0,
uy = Ac, since the controlling quantity is uyf”px.=*Ac.. The .problem .is .
to determine the probability that all .the ?kj) “are’ larger than .all the
iki)' This probability can be evaluated by writing it as
Ex{Pr(§kl)'> X|§kk) = x)}. Let us evaluate the slightly more general
expression Pr(?kl) >.§kk) - ¢c) where ¢ is some.positive constant,
which is the probability that the X's and the Y's do not overlap by

more than c.

o]

Pr(Y(l) > X(k) - ¢c) =;[ér(Y(l) > x—c[ikk) = x)f(x)dx

-0

o]

=fE/r—1m//§1rc) [1-F(Va(t/o-0))]™ T

—-C

X exp(—n/202)(t—oA2)d€}
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x k[?(/;k/c)]k—l(/H//Egb)exp(—nxz/Zoz)dx

o

= (kn/21r)(|/;/crzfa [l—f(w)]m_lexp(—wz/Z)dW

[x
-0

| /;(x/c—c/o—A)

x [F(/Ek/o)]k_lexp(—nx?/Zoz) dx

oo 00

= kn/2m)] | [1-FG) 1P LR ]¢7T
- v=v/n(c/o+h)

x exp(—l/2)(w2 + v2)dwdv . 1)

Note that (1) is a function of k, m, vnc/o, and vnA, and for c¢ = 0,
is a function of k, m, and VoA only. Bechhofer (3) evaluated proba-
bilities of this sort for the case c¢ =0 for the purpose of determin-
ing the number of observations 'n necessary to achieve a given proba-
bility p of correct ranking for given k, m, and A, and his tables
can be utilized with minor modifications.. The integral (1) was evaluated
by numerical integration for selected cases: and the results checked
against Bechhofer's tables; the.two agreed.in every case.

To obtain exact probabilities:.of correct: ranking in cases where
more than two populations are involved, numerical evaluation of multiple
integrals is unfortunately necessary. . To see that this is' true, consider
the general cvase. .For each i, let i& be a .mean based on n observa-

. 2 ,
tions chosen at random from.a normal (Aiog ¢”) population,
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i=1, 2, ..« . 5, k, and assume that 0 =A, 2 A, <, . . 2 A The

1~ 72 k*

' case where only two populations are .invelved is obtained-when, for some

q < k, Al = A2 = .. .= Aq = (0 and Aq+l =, ., .= Ak > 0. Let

Al, e e e Ar represent the set of distinct Ai other than those equal
to Al = 0. Then the first kl of" the . i; will be from the population
with mean- 0} the next k2 of the'.iit“wiil be .from the population with
mean Alc; . + « 3 and the remaining kr+l of the Xi' will be from the

population with mean Arc. A correct .sample.ranking occurs if and only

if the event

occurs, where

=max{X,, . . « » X, 1}, X_. = min{X s o e s s }, etc.
max, 1 Xkl min, kl+l Xkl+k2
Denote the probability of correct ranking by P(kl, k2, o e e kr+l;
Al’ N Ar). Then, if the events {XmaX < Xmin. } 1i=1, 2,
4 i+l
. 5 ¥, were mutually independent events, we would have
T
Pl kys v v o s ks Aps Ags v - 0 s A = [[REE < X )
1 i i+1
T
- P(kl’ k1+l; >1 Ai—l)
(2)

so that productsrof probabilities of the form (1) could be employed.

Unfortunately, the events {X < X } are not mutually
max, mini+l
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independent. Thus, P(k,, k

10 Koo v o 0 kr+l; Al’ AZ’ « e, Ar) #

T
EIP(ki, ki+1; Ai - Ai_l). This brings up the question of what to do

when it is desired to study.cases involving more . than only' two popula-
tions. There.are at least .three alternative:.approaches, all of which

are approximate solutions:

(i) . One could form .the . appropriate .multiple integrals and
estimate .their .solution by Monte Carlo.techniques.
- (ii) The product probabilities .in (2) could be multiplied to-
gether..as if the:events.involved were mutually independent.
(iii) Empirical .sampling.from.the appropriate simulated

populations-.could be done.

“Alternative (i) will not be considered here, but.a ''one shot" comparison
of (ii) and (iii) will be made. ' Consider a .situation where in a sample
~of size 7, there are .four: true.populations involved. .Let each of the
seven means be based on the. same: number .of observations, say n, and let
each population mean. be.separated.from the rest by a constant amount
measured in units.of. 0, say..Ad...Suppose the .subsample: .sizes from the
respective populations are: 2, 2,.2, and.l...Then:.the probability sought .

is P(2, 2, 2, 1; Ao, 2Ac, 3Ac), and .the appropriate product would give,

P(2, 2,.2, 1;'AU,‘2Ac,'3Aa);;'P(2,.2;Ao).x P(2, .2; Ao) x P(2, 1; Ao) (3)

Shown on the following page.in Table:VIIT . is:a.comparison of results.

obtained by methods (ii):and: (1ii) for the:estimation of - the probability

(3). The estimated probabilities  are.given.as~.a function of nA2n
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TABLE VIII

COMPARISON OF EMPIRICAL SAMPLING AND PRODUCT APPROXIMATION FOR
THE PROBABILITY OF: CORRECT: RANKING, SAMPLE SIZE 7

P(2,2,2,1; Ac,2A0,3A0)

nA2 P(2,2; Ac) P(2,1; Ac)  Product-approx. Empirical*
0 0.1667 0.3333 0.0093 0.0095%*
1 0.4625 0.6337 0.1356 0.100
2 0.5527 0.7449 0.2276 0.226
4 0.7749 0.8658 0.5199 0.479

6 0.8702 0.9260 0.7012 0.674

10 0.9562 0.9760 0.8925 0.886

16 0.9913 0.9996 0.9783 0.983

* Each number is based on.1000 samples.
*% Exact value, computed as (21)(2!)(2!)/(7!)

The results of the two methods are in relative agreement, and for rough
calculations, multiplication of Bechhofer's probabilities is adequate.
If more precise estimates:are.needed, then either: empirical sampling or

Monte Carlo estimation of multiple-integrals should probably be used.

5. Comparison.of. the GLSD, .SMG, and SR/MG with
VRespect.to.Correct Detection of Grouping

and Certain Error Rates

5.1 Special .Case:.l, Group Size .4, One True Gap

Let ii and" ié “be means based.on’ n. observations each from a

normal (u, 02) population, and let. is. and iz be means based on n
observationS‘each'erm:a:normélf'(u+Ao; 02)’ population:: Since it is

not necessary to distinguish between ‘ii “and ié, nor between iﬁ and
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iﬁ, denote, for any given sample,:ii and ié by< A an& ié and iz
by B.

Recall that by a Type III error is meant declaring a wrong-way sig-
nificance. A Type.IIl.error.would.occur for the .situation above if, for
example, a sample ranking resulted in tﬁe order " ABAB' and a significance
was declared at the second.gap.. Suppose, on the other hand, that the
sample ranking iS'correct,;i.e:‘ AABB is the order. A correct grouping
is still not;guaranteed;:becausewI;iQBGiH\Bé“possibie“for'the first gap
or the third gap to-be: the: largest-and be declared: significant. An error
of this type would be a form:of a.Type I error; however, let us reserve
the name Type I erroxr for: erroneous significances:under the null hypoth~-
esis and call this. error a Type IV error. Thus, a Type IV error is
simply a Type I error when .the: null. hypothesis is not true.

There is yet a. further:distinction to be .made. Consider, again,
the incorrect sample ranking: ABAB. "If the second gap is declared sig-
nificant, then, as was:noted:above,:an explicit Type III error would be
made, but, in addition, two: Type IV errors would be implicitly committed"

“also. Notationally, let:this:distinction:be.made by the:terms

Type III(EX) and. Type. IV(IM). For:the erroneous ordering ABBA with gap

2 being declared significant,:along with'.the Type IV(EX) error committed,
one. Type IV(IM) error. and: one Type III(IM) error: would also result.

For the situation under: consideration, let-.us .employ the technique

..of vonstructing .a .two~way table of all possible .relevant states of nature

versus all possible .decisions, and in'.each cell indicate  the result of
each decision with.respect.to Type.III errors .and Type IV errors for the
given state of nature.. For:.the.letters A,A,B,B, there:.are six possible

orderings, one of which represents a torrect ranking, so that there are



73

six possible states of:nature. Also; .there:are eight distinct decisions
possible: declare no gaps:significanty .declares.one gap significant at
‘gap 1, gap .2, .or .gap 33 declarextwo:gaps.significant at gaps 1l and 2,
gaps 1 and 3, or gaps 2 and 3; and.declare all three gaps significant.
Table IX shows that a correct grouping occurs in only 1 out of 48
possible outcomes for this case of two sample means from two populations,
the correct grouping occurring, of course, when a correct sample ranking
is obtained and a significant gap is declared at gap 2 alone. Each of
the other decision/ranking combinations represents an error in grouping,
certainly, and invelves errors of the sort discussed above in varying
number and form.

The construction.of a table such as Table IX is a valuable exercise
because it illustrates.very plainly the difficulty in calculating
specific Type III and Type IV error rates. It shows, for example, that
the type and number. of errors made depend upon what decision is made
for a given sample ranking configuration... When .one considers construc-
tion of such a table for other cases, he realizes .that the size and com-
plexity of the .table increase. very rapldly as .the sample size or the
number of true gaps increases, and the business of assessing Type III
and Type IV error rates.is all but hopeless, .except. .on.a .case-by-case
basis for a few simple cases.

For the case of sample size 4, one .true gap, empirical sampling was
done to estimate Type III and. Type. IV error rates and .also to compare
performance characteristics for the GLSD,. SMG, and SR/MG procedures. A
constant o~level of .05 was chosen; .similar results would be obtained for
other levels. As was shown in Section 4. of this' chapter, the amount of

separation of the populations in relative o-units can:be represented by



POSSIBLE OUTCOMES, GROUP SIZE 4, ONE TRUE GAP AT GAP 2

TABLE IX

Correct Incorrect
Ranking Ranking
AABB ABAB ABBA BAAB BABA BBAA
Declare No Gaps
Significant
1 Type IV(EX) 1 Type IV(EX)
Gap 1 Type IV(IM) 1 Type IV(IM) 1 Type IV(IM) Type IV(IM)
1 Type III(EX) Type III(EX)
1 Type III(IM)
Declare 1 Type IV(EX) | 2 Type IV(EX)
One Gap Gap 2 Correct Type IV(IM) Type IV(IM)
Significant Grouping Type III(EX) 1 Type III(EX)
1 Type III(IM) | 1 Type III(IM) | 1 Type III(IM)| 3 Type III(IM)
. 1 Type IV(EX) : 1 Type IV(EX)
Gap 3 Type IV(IM) | 1 Type IV(IM) | 1 Type IV(IM) Type IV(IM)
1 Type III(EX) Type IIT(EX)
2 Type III(IM)
Gap 1 1 Type IV(EX) 1 Type IV(EX) | 1 Type IV(EX) 1 Type IV(EX)
and .| . Type IV(IM) |1 Type IV(IM) | 1 Type IV(IM) | 2 Type IV(IM)
Gap 2 1 Correct Type III(EX) 1 Type III(EX) Type III(EX) | 1 Type III(EX)
1 Type III(IM) | 1 Type III(IM) Type III(IM) | 3 Type III(IM)
Declare Gap 1 2 Type IV(EX) 2 Type IV(EX)
Two Gaps and Type IV(IM) {1 Type IV(IM) *| 1 Type IV(IM) Type IV(IM)
Significant | Gap 3 : 1 Type III(EX) | 1 Type III(EX) Type III(EX)
2 Type III(IM) | 2 Type III(IM) Type III(IM) | 3 Type III(IM)
Gap 2 1 Type IV(EX) 1 Type IV(EX) | 1 Type IV(EX) 1 Type IV(EX)
and Type IV(IM) |1 Type IV(IM) | 1 Type IV(IM) Type IV(IM)
Gap 3 | 1 Correct 1 Type III(EX) Type III(EX) | 1 Type III(EX)
Type III(IM) | 1 Type III(IM) | 1 Type III(IM)| 1 Type III(IM) [ 3 Type III(IM)
2 Type IV(EX) 1 Type IV(EX) |1 Type IV(EX) 2 Type IV(EX)
Declare Three Gaps Type IV(IM) 1 Type IV(IM) 1 Type IV(IM) Type IV(IM)
Significant 1 Correct Type III(EX) | 1 Type III(EX) | 1 Type III(EX) Type III(EX) | 1 Type III(EX)
1 Type III(IM) { 1 Type III(IM) Type III(IM) | 3 Type III(IM)

ve
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the\quantity /nA, where Ao is the distance between: the- unknown true
means of the populations and n is the number of observations upon which
each mean is based. For convenience, let the parameter' vnA be called
the separation index. For each of the eighf.values.avgh =1, /E, 2, /g,
JTG,-a, 5, and 6, 700 random samples of size 4 were drawn, with X1 and

X2 from a simulated normal (0, 1) population, and X3 and X4 from a
simulated normal (fgl,.l) population. It should be noted that sampling
in this manner simulates .the general formulation of.ii and ié from a

normal (u, 02) population and ié and iz from a normal (ut+4, 02) popula-

tion, with.each i; based on n observations.  For each of the 700
samples of size 4, an in&ependent sample of size 10 was also drawn from
a simulated normal (0, 1) population in order to obtain an independent
estimate of 02_(=1), The observed t-values, studentized maximum gaps,
and studentized ranges were therefore based on 9 degrees of freedom.

For each of the 700 pairs of samples, the GLSD, SR/MG, and SMG tests were
performed, and the results tsbulated in the format of Table IX. Table X
shows .the empirical percentages obtained for the events identified in
Table IX. From the table, it is conéluded that, for this case, the
SR/MG and .SMG procedures give comparable results with respect to obtain-
- ing a correct- grouping, (These are the numbers in the (3,1) cells; see
Table IX), with the SR/MG obtaining slightly more ceorrect groupings in

. most: cases..: Both, however;, are.superior.to the GLSD in that respect. It

is .also observed that the SR/MG. and SMG procedures have higher frequen-

. cles:.of Type III and Type IV errors: than the GLSD (an' expected result).

- From Table IX and Table X, the.specific frequencies: of Type III(EX),
Type III(IM), Type IV(EX), and Type IV(IM) errors may be calculated.

. Table XI contains the results of such calculations.
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TABLE XI

ERROR FREQUENCIES OF THE:GLSD, SR/MG, AND SMG
OBTAINED .BY- EMPIRICAL-.SAMPLING, (N = 700)

Type IV(EX) . Type IV(IM) Type III(EX) Type III(IM)
nA~ GLSD SR/MG SMG GLSD SR/MG SMG .GLSD SR/MG SMG GLSD SR/MG SMG
1 18 37 28 9 22 23 0 1 1 5 6 7
2 19 52 33 16 27 34 0 1 2 1 1 1
4 43 86 70 25 25 34 0 0 1 2 2 2
6 52 98 81 9 10 17 0 0 0 0 1 0

10 61 132 91 3 8 7 0 0 0 0 0 0
16 73 123 94 0 1 1 0 0 0 0 0 0
25 75 103 83 0 0 1 0 0 0 0 0 0
36 86 94 90 0 0 0 0 0 0 0 0 0

Several observations may be made from Table XI. First, the occur-
rence of Type III errors does not appear to be of major concern. The
explanation for this is that Type. III errors occur only when incorrect
rankings occur, and the cases. for. which: incerrect rankings are more
likely are also cases:where. the:breaks:. are less likely to be declared
significant. Another thing to note.is that the- frequency of Type IV
errors is greater than might have: been: suspected, .and- that the absolute
frequeney of explicit Type IV errors increases-with-.the separation index
VnA. However, when the-.change:in. frequency of explicit Type IV errors
with increasing /nA 1is eonsidered relative to the number of signifi-
cances declared in each case, then.the percentage of declared signifi-
cances resulting in explicit Type IV.errors deecreases on the average with
VnA (with GLSD and SMG yielding .the smaller percentages) as shown in

Table-XII on .the following page.
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TABLE XII..

PERCENTAGE- .QF.- DECLARED .SIGNIFICANCES RESULTING
IN TYPE.IV(EX) ERRORS

nA2 GLSD. . SR/MG SMG

1 55 % 56 % 47 %

2 40 % 49 % 36 %

4 44 % 52 % . 44 7,

6 43 % 43 % 38 %

10 29 % 37 % 30 %
16 20 % 24 % 20 %
25 14 % 17 % 14 %
% 13 %

36 13 % 14

Recall that explicit and implicit Type IV errors-occur when means
from the same population are put into different groups. Is this a
serious type error? The answer, of course, depends (as with all other -
errors) upon the partieular situation. - If he is faeced with a situatien
where Type:IV(EX) errors:-are-a major consideratien, then one should be
aware that in the: case under .study,: at-.least, the:-absalute percentage of
such errors was observed to go as.high as 19 7.

Of greater:interest, however,:is: the: relative performance of the
tests  with respect to .obtaining .a.correct:grouping. Figure 8 gives a
comparison .of the power: characteristies: of .the .three procedures with re-
spect to estimated probability:of correct grouping. The curves are
given as functions of .the..squared separation index nA2, and graphs of
this type could:be used in at-least .two. ways. One might fermulate his
requirements .as, ''If the true distance between the-populations is A

sigma units, then I want teo have probability of at least p of correct
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grouping.'" The minimum sample size ..n .for each mean which is required
in order to attain the objective.is .then determined by n = k/AZ, where
k 1is the value of nA2 " corresponding.to. the ordinate p for the
particular procedure .under .consideratien. Alternatively; .ene might ask,
"With a sample like .the one I.have, what chances .do I have of obtaining
a correct grouping if the true:separation is A . sigma units?" The
answer is obtained, .of .course,.as .the ordinate .p .correspdnding to nA2
A word of caution-here--the term ''correct greuping' requires special
interpretation  in thencasestanA2.=rO, Literally, a‘.correct grouping
when nAZ = 0 1is obtained-when all means  are grouped: together into one
group, and the probability:.cf doing this is 1 — o .in accordance with
Type I error specifications. However, consider what:correct grouping
means when .the: true separation .is some small quantity. A correct
grouping for the case under study. is obtained when the:sample ranking
configuration is '~ AABB  and'.the:second .gap is declared significant.
Taking the separation index to 0, .it.is seen that the event being
examinéd.fo: nA2 = 0 .is the simultaneous occurrence .of the sample rank-
ing AABB and the (erroneous) significance:of gap.2. The probabilities
of these .events .are, .respeetively,.1/6 = .1667: and:-.approximately .0181.
Thus, p for nA2 = 0 1is about .003 for .all .three procedures when they
are conducted at an o-level of. .05,

Figure 8 clearly shews .that: the .SR/MG .and:.SMG procedures have uni-
formly greater preobability  of:detecting the correct grouping than the
"GLSD.. It also indicates that there is essentially no difference between

the performances of SR/MG and SMG in this regard.
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5.2 Special Case 2, Group Size 7,

One True Gap at Gap 4

X2, X3, and X4

2 -— —
from a normal (u,0”) population, and let X5, X6’ and X7 be three means,

each based on n observations from a normal (u+io, 02) population. Using

Let X

1° be four means, each based on n observations

the same convention as earlier, a correct grouping is obtained when the
sample ranking is AAAABBB and a gap is declared between the A's and B's.
A study of this case similar to that of the previous case is not at
all practical, as .there are (7!')/(4!)(3!) = 35 incorrect sample rankings
possible and a similar expansion in the number of cases with regard to
the possible decisions. Re—-examination of Case 1 reveals the following
trend: = For.the smaller values of the separation index./gﬁ, where incor-
rect sample rankings are more likely, the most prevalent errors are
Type II errors ( failure to detect .the true gaps), whereas, for larger
values of /EA, where .correct .sample rankings have. higher probabilities,
the most common errors are Type II .and Type IV(EX). This suggests that
for Case 2, it may be possible to extract most .of .the relevant perfor-
mance information about thezprocedures under consideration by examining
only the conditional sampling space of correct  sample rankings. Without
studying incorrectly .ranked samples, we can still assert that for those
samples, it would be .expected that the majority .of errors would be
Type II errors with a smattering of Type III .and Type IV errors. For
Case 1, it was found that Type IV(EX) .errors were the most common of the
four: Type IV(EX), Type IV(IM), Type III(EX), and Type III(IM). A
little further calculation reveals that of .the Type IV(EX) errors

committed, for each value of vYnh examined, no less than 75% and,
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generally, 95-100% of them were made when the .sample ranking was correct.
Therefore, for Case 2, correctly ranked samples only will be analyzed
with the GLSD, SR/MG, .and .SMG procedures; when .an .incorrectly ranked
sample is drawn, it  will be .counted .and discarded, and another sample
drawn.

For the correctly ranked samples, .the results of testing in each
case can be cross-classified. by how many gaps were:.declared significant,
versus how many were'.correctly declared. The number and type of errors
resulting for each case are given .in Table XIII .on-the next page.

For each of the seven values of the separation index,

/nb = 2, /IB, 4, 5, /55, /ZE, /EE, samples of size 4 and 3 were drawn
from simulated normal (0, 1) and normal (/EA, 1) populations, re-
spectively, until 100 samples with correét sample ranking had been
drawn and analyzed by the GLSD, SR/MG, .and .SMG procedures. The
studentizing statistic .s was based, as before, .on an independent
sample of size 10 from a simulated normal ..(0, 1) population, making
each of the tests based on 9 degrees of freedom. The results are

tabulated in Table XIV using the format of Table XIII.



TABLE XIII

BREAKDOWN OF CORRECTLY RANKED SAMPLES, TYPE II
AND TYPE IV(EX) ERRORS, GROUP SIZE 7,
ONE TRUE GAP AT GAP 4
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Number of Number of Gaps Correctly Declared
Gaps Declared :
Significant 0 1
0 Impossible
Event
0
1 0
1 N
1 0
1 0
2 ______
2 1
1 0
3 e e
3 2
1 0
4 [ ——
4 3
1 0
5 —— ——
5 4
I . 0
6 mpossible | __ o
Event
| 5

Number of Type II Errors

* Cell Entries are: = -
Number of Type IV(EX) Errors




TABLE XIV

RESULTS OF EMPIRICAL SAMPLING, GROUP
SIZE 7, ONE TRUE GAP AT GAP 4

a2 = 4.0 nA2 = 10.0
182 Total Samples 111 Total Samples
82 Incorrectly Ranked ’ 11 Incorrectly Ranked
GLSD SR/MG SMG GLSD SR/MG SMG
Gaps Gaps Correct Gaps Correct Gaps Correct Gaps Correct Gaps Correct " Gaps Correct
Declared 0 1 4] 1 0 1 0 1 0 1 (4] 1
0 97 - 73 - 81 - 84 - 48 - 64 -
1 -1 2 19 6 14 5 2 12 24 25 11 20
2 0 0 1 1 0 0 1 1 1 2 2 2
3 0 0 0 0 0 0 0 0 0 0 0 1
4 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0
6 - 0 - 0 - 0 - 0 - 0 - 0
|
na2 = 16.0 ‘ nAZ = 25.0
100 Total Samples 101 Total Samples
0 Incorrectly Ranked 1 Incorrectly Ranked
GLSD SR/MG SMG GLSD SR/MG SMG
Gaps Gaps _Correct Gaps Correct Gaps Correct Gaps Correct Gaps Correct Gaps Correct
Declared 0 1 1] 1 0 1 0 1 0 1 0 1
0 77 - 28 - 47 - 48 - 18 - 23 -
1 1 21 22 42 8 42 2 4s 10 58 7 64
2 0 1 3 5 0 3 0 3 3 10 0 4
3 0 0 0 0 0 0 0 2 0 1 0 2
4 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 - 0 0 0 0 0 0 0
6 - 0 - 0 - 0 - 0 - 0 - 0
na2 = 35.0 nA2 = 45.0
100 Total Samples 100 Total Samples
0 Incorrectly Ranked ) 0 Incorrectly Ranked
GLSD SR/MG MG GLSD SR/MG SMG
Gaps Gaps Correct Gaps Correct Gaps Correct Gaps Correct Gapas Correct Gaps Correct
Declared 0 1 0 0 1 0 1 0 1 0 1
0 18 - 4 - 6 - 6 - 1 - ] -
1 0 7 1 89 [} 89 1 87 0 8 1 88
2 0 3 0 6 0 3 0 ) 0 8 0 10
3 0 0 0 0 0 2 0 .1 0 3 0 1
4 0 0 0 0. 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0o .0 0 0 0 0
6 - 0 - 0 - 0 - 0 - 0 - 0’
na? = 55.0
100 Total Samples
0 Incorrectly Ranked
GLSD SR/MG SMG
Gaps Gaps Correct Gaps Correct Gaps Correct
Declared [1] 1 1] 1 Q 1
0 2 - 0 - 1 -
1 0 95 0 89 0 91
2 0 3 0 10 0 6
3 0 0 0 1 0 2
4 0 0 0 0 0 o
5 0 0 0 0 0 0
6 - 0 - 0 - 0
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In an attempt to summarize some of the results presented in
Table XVI, let us define a loss function and examine what the expected
loss is for each test for each value .of nAZ, where estimated probabil-
ities are taken from Table XVI, To further simplify, let us consider
only expected losses within the conditional sample subspace of correct
sample rankings, since, if this is done, the numbers in Table XVI can
be used as probability estimates directly without modification.

To devise a loss function, let it be based on relative costs of
Type II and Type IV(EX) errors. Suppose 100 .units of cost are to be

divided so that the cost of a Type II error is ¢, wunits and the cost of

1
a Type IV(EX) error is ¢y units. (cl + c, = 100). Let
t = Number of true gaps,
i = Number of gaps declared significant,
j = Number of gaps correctly declared significant.

From Table XIII, it is easily determined that

t—j Number of Type II errors in the (i+l, j+1) cell,

L[]

i~j Number of Type IV(EX) errors in the (i+l, j+1) cell.

The loss associated with condition (t, i, j) could .then be taken as
L(t,i,j) = cl(t—j) + cz(i—j), for i=0,1, . . . , 6 and j = 0,1 (3)

which is simply a weighted sum of the number of Type II and Type IV(EX)
errors. The estimated average loss with respect to this loss function

for a particular procedure at a .specified value .of nAz would be

E@L) =ZL(t,'i,j)'ﬁi, = 5= 28, fe (=) + ey (1-)] (4)
i3 - Sl

where the ﬁij or the ﬁij are taken directly from Table XIII.
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The estimated average loss for each of the three procedures GLSD, SR/MG
and SMG are shown in Figure 9 as a function of,,nAZ, The costs are
varied so as to .also .study .the effects .of changing the relative serious-
ness of Type II and Type IV(EX) .errors; .five .cases .are .taken: (a) St

= 35:65, and

c, = 100:0, (b) cyic, = 65:35, (c) cl:c2 = 50:50, (d).c

2 1°¢2

(e) ¢ = 0:100. Thus, (a) represents loss from Type II errors only,

1'%
and (e) represents loss from Type IV (EX) .errors only.
oA ot ( ox Talh , Appendi )

/ The graphs in Figure 9 illustrate the essential fedtures of the
three procedures with respect .to' Type .II and Type .IV(EX) errors, given
correct sample ranking. The GLSD is a less sensitive test than SR/MG
or SMG, declaring fewer gaps significant in every case. The SR/MG, on
the other hand, declares more significances .than .the other two, but has
the greatest tendency to declare wrong .gaps significant. The SMG is seen
as a compromise .of .sorts; it declares more significances .than the GLSD,
but declares fewer wrong gaps than the .SR/MG. . Thus, the GLSD suffers
most when Type II errors are heavily penalized .(Figure 9(a)), while the
SR/MG suffers most when Type IV(EX) errors .are heavily penalized
(Figure 9(e)). Across-.all conditions, .the SMG .yields .the smallest
average loss.

V" The performance of the .three procedures with .respect .to probability
of correct grouping may also be estimated from .Table XIV with the aid of
Bechhofer's ranking probabilities  (3).' That'is, the values in the (2,2)
cells of Table XIV' .are estimated probabilities .of correct grouping, given
correct .sample ranking. Multiplying these by’ the probability of correct
ranking taken from Bechhofer's tables yields the unconditional probabili-
ty of correct grouping. A comparison of the GLSD, SR/MG, and SMG for

the case under study is given in Figure .10 .on the following page.
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The variation .in. the esfimates precludes making any distinction between
SMG-and SR/MG, but it is possible .to.assert that both SMG' and SR/MG have
uniformly greater probability of correct:.grouping than GLSD for nA2 be-
tween 10 and 40. Some estimated . standard deviations' for the curves in
Figure 10 for the three procedures are in .the .range of .03-.04 at

nAZ =10, .05 at.nA2 = 25, and ..03 - ..038 at nA2 = 40.

/ In summary, .as far as .Case .2 .1ls  concerned, .SMG .is .the preferred pro-
cedure because it apparently yields the  least .average loss the majority
of the time, and it appears' to have .power greater .than GLSD and at least
as great as .SR/MG.  Whenever Type IV(EX) .errors are not serious, the

SR/MG would also be preferable to the GLSD.

- 5.3 Special Case 3, Group Size .7, Three True

Gaps at Gaps 2, 4, and 6

This is a case where it might be expected that the SR/MG procedure
would have an advantage, since more..real gaps would tend .to make the
sample range larger. ' It will be’ seen .that, although the SR/MG does tend
to' identify more of  the  true gaps' than the other procedures, it does not
appear to give a correct grouping.any more frequently than the SMG be-

“cause of the tendency .to’ make Type IV (EX) .errors.

For each of the seven values of the separation index, VA = /g, /56,
4, 5, 6, 7, and /65, samples of size 2, 2, 2, and 1 were taken from
simulated normal (0,1), normal (Vgﬁ,l), normal (ZVEA,l), and normal
(BJEA,l) populations, respectively, until .100 groups of such samples were
obtained for which the sample ranking was.correct, that is, the sample
configuration AABBCCD, where the A's are from the normal (0,1) distribu-

tion, etc. Note that as a simplification, all .the true gaps are taken
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to be the same size. As with Case 2, for each correctly ranked group of
samples drawn, an additional sample.of size.10.was drawn from a simulated
normal (0,1) population to obtain an independent estimate s2 based on 9
degrees of freedom; o = .05 is used throughout for all three procedures.
For the correctly ranked samples,.a.cross-classification similar to

Table XIII can be made, and .is shown .below in Table XV.

TABLE XV

BREAKDOWN OF .CORRECTLY RANKED. SAMPLES, TYPE II AND
TYPE IV(EX) ERRORS, GROUP:SIZE 7, THREE
TRUE .GAPS AT GAPS 2, 4, AND 6

Number of Number of Gaps Correctly Declared
Gaps Declared
Significant 0 1 2 3
3
0 0
1 SN N
1 0
9 3 - 2 1 ]
2 1 0
3 3 2 1 0
3 2 1 0
4 2 1 0
3 2 1
5 L 1 0
3 2
6 0.
3

Number of Type II Errors _

* Cell Entries are:

Number of Type IV(EX) Errors




TABLE XVI
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« ‘RESULTS OF EMPIRICAL SAMPLING, GROUP SIZE 7,

THREE TRUE GAPS AT GAPS 2, 4, 6

Gaps
Declared

Vs WLWNEO

Gaps
Declared

0

AV B WN -

Gaps
Declared

0

W WN -

Gaps
Declared

Vs WN=O

nd2 = 6.0

142 Total Samples

42 Incorrectly Ranked

na2 = 10.0

106 Total Samples

6 Incorrectly Ranked

GLSD SR/MG sﬁc GLSD SR/MG SMG
Gaps Correct Gaps Correct Gaps Correct Gaps Correct Gaps Correct Gapa Correct
0 1 2 3 0 1 2 3 0 1 3 0 1 2 3 0 1 2 3 0o 1 2 3
67 ~ =" = 3 - - - 3% - - = 0 - - - 0 - - - 9 - - -
320 - =~ 12 51 - = 9 3% - - 4 3 - - 4 37 - - 9 42 - -
1 5 4 - 3 13 13 - 1 9 9 - 0 4 18 - 1 17 31 - 0 8 26 -
0 0 0 O 0o 3 2 o0 0 1 1 0 1 0 1 2 1 3 3 2 1 0 2 2
- 0 0 O - 0 0 0 - 0 0 O - 0 0 O - 0 0 1 - 0 0 1
- = 0 0 - = 0 0 - - 0 0 - =- 0 O - = 0 0 - - 0 0
- - -0 - - =0 - - = 0 - - =0 - - =0 - - - 0
na2 = 16.0 na? = 25.0
101 Total Samples 100 Total Samples
1 Incorrectly Ranked 0 Incorrectly Ranked
GLSD SR/MG SMG GLSD SR/MG MG
Gaps Correct Gaps_ Correct Gaps Correct Gaps Correct Gaps Correct Gaps Correct
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 2 3 0 1 2 3
17 - - = 0 - - - 1 - - = 2 - - o - - - o - - -
1 33 - - 0 13 - - 2 22 - - o013 - - 07 - =~ o 7 - -
1 1 26 =~ 2 9 40 - 1 7 39 - 0 2 3 - o 2 31 - o 2 30 -
0 0 6 13 0o 2 15 17 0 1 8 16 0 0 8 39 0 0 14 40 0 0 10 45
- 0 2 0 - 0 2 0 - 0 2 1 - 0 0 4 - 0 0 4 - 0 0 4
- = 0 0 - = 0 0 - - 0 0 - - 0 2 - - 0 2 - -« 0 2
- - -0 - = =0 - = - 0 - - =0 - - 0 - - =0
na2 = 36.0 naZ = 49.0
100 Total Samples 106 Total Samples
0 Incorrectly Ranked 0 Incorrectly Ranked
GLSD SR/MG MG GLSD SR/MG MG
Gaps Correct Gaps Correct Gaps Correct "~ Gaps Correct Gaps Correct Gaps Correct
o 1 2 3 o 1 2 3 o 1 2 3 o 1 2 3 o 1 _ 2 o 1 2 3
0 - - - 0 - - = 0 - - - 0 - - =~ 0 -~ - - 0 - - -
01 - - 0 0 - - o 0 - - o 0 - = o 0o - - o 0 - -
0o 0 12 -~ o 0 13 - 0o 0 10 -~ o 0 1 - o 0 4 - o o0 1 -
0 0 2 69 0o 0 2 69 o 0 2 72 0o 0 :0 80 0 0 0 77 0 0 0 8o
- 0 0 15 -0 0 15 - 0 0 15 - 0 0 18 - 0 0 18 - 0 0 18
- - 0 1 - = 01 - - 0 1 - - 0 1 - - 01 - = 0 1
- - = 0 - = =0 - = =~ 0 - = =0 - = =0 - - - 0
na2 = 65.0
100 Total Samples
0 Correctly Ranked
GLSD SR/MG SMG
Gaps Correct Gaps Correct Gaps_Correct
0o 1 2 3 0 1 2 3 o_1 2 3
0o - - - 0 - - - 0 - -
o 0 - - o0 - - 0o 0 - -
o 0 0 - o 0 o0 - o 0 o0 -~
0 0 o0 82 0 0 o0 82 0 0 o 82
- 0 0 14 - 0 0 1.4 - 0 0 14
- = 0 4 - = 0 4 ~ - 0 4
- = - 0 - - =0 - - = 0
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The results of empirical sampling are given in Table XVI for each
of the procedures. To assess the performance of the procedures with
respect to Type II and Type IV(EX) errors, a loss function of the form of
(3) can be defined, and average loss may be estimated as in (4). Un~
fortunately, the comparison . of average loss does.not lend itself readily
to graphical presentation in.this instance,.because.all three procedures
have very similar . average loss curves. Instead, the results are summar-
ized in Table XVII on the next page. The same trend as in Case 2 is
observed here also, although not as pronounced. That is, the GLSD pro-
cedure has greatest average loss except when Type,II.errors are lightly
penalized or not penalized at all.. The SMG and .SR/MG procedures have
similar average loss, both less than GLSD for the most part, and SR/MG
suffers most when Type IV(EX) errors are penalized.. .The overall average
loss for SR/MG and SMG is about.the same, however, it appears that for
smaller values of. nAz, the SMG .average .loss is generally greater than
that of SR/MG, while for larger values of nAz, the average losses are
about the same with.that .of.SMG .being, perhaps, .slightly less than that
of SR/MG.

The estimated probability of a correct grouping .may.be computed for
the three .procedures from Table XVI and from Table VIII,.p. 71. To form
the probability curves, an eyeball smoothing.of the walues in Table VIII
and the..(4,4) cells.of Table XVI.is.made, and the .curves '"multiplied"

" together .to yield unconditional probability of:..correct grouping. As with
the average loss curves, the procedures .are. so.nearly the same as to make
graphical comparison  of power.characteristics . .impractical, hence the re-

“sults are. summarized..in Table.XVIII on page 96.
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TABLE XVII

ESTIMATED AVERAGE LOSS FROM TYPE II AND TYPE IV(EX)
WHEN THE SAMPLE RANKING IS CORRECT

c; = 100 - c; = 65
c; = 0 ‘ co = 35
na?2 GLSD SR/MG SMG GLSD SR/MG SMG
6.0 264.0 200.0 231.0 175.1 - 143.3 158.2
10.0 220.0 165.0 183.0 147.2 119.8 127.0
16.0 157.0 111.0 121.0 106.9 84.7 : 87.7
25.0 74.0 63.0 58.0 54.4 49.3 44.7
36.0 16.0 15.0 12.0 16.7 16.0 14.1
49.0 1.0 4.0 1.0 7.7 9.6 7.7
65.0 0.0 0.0 0.0 7.7 7.7 7.7
c; = 50 . e = 35
cy = 50 cy = 65
GLSD SR/MG SMG GLSD SR/MG SMG
.0 137.0 119.0 127.0 98.9 T 94.7 95.8
.0 116.0 100.5 103.0 84.8 81.1 79.0
.0 85.5 73.5 73.5 64.0 62.2 59.2
.0 46.0 43.5 39.0 ' 37.6 37.6 33.3
.0 17.0 16.5 15.0 17.3 16.9 15.9
.0 10.5 12.0 10.5 13.3 14.4 13.3
.0 11.6 11.0 11.0 14.3 14.3 14.3
cl-O
¢y = 100
2 GLSD SR/MG SMG
6.0 10.0 38.0 23.0
10.0° 12.0 36.0 23.0
16.0 14.0 36.0 26.0
25.0 18.0 24.0° 20.0
36.0 18.0 18.0 18.0
49.0
65.0

20.0 20.0 20.0 o1
22.0 22.0 22.0 '
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TABLE XVIII

COMPARISON OF ESTIMATED PROBABILITY OF
CORRECT GROUPING FOR THE GLSD,
SR/MG, AND SMG PROCEDURES

Probability Conditional Probability  Unconditional Probability

of Correct of Correct Grouping of Correct Grouping

nh Ranking GLSD SR/MG SMG GLSD SR/MG SMG
2 .226 .000 .000 .000 .000 .000 .000
5 .580 .005 .005 .005 .003 .003 .003
10 .886 .020 .030 .030 .018 .027 .027
15 .975 .100 .130 .120 .098 127 117
20 .995 .230 «255 .270 .229 .254 .269
25 1.000 .380 .405 440
30 1.000 .525 .540 .575
35 1.000 .660 .660 .710
40 1.000 .740 .740 .755
45 1.000 .770 .765 .780
50 1.000 .790 775 .790
55 1.000 .805 .785 .805
60 1.000 .810 .800 .810

v It is somewhat surprising to find that the SR/MG and SMG procedures
do not appear to be much more powerful than GLSD for correct grouping in
this case. A possible explanation for this phenomenon is that Case 3
deals with more true gaps in the group, and, hence, smaller true sub-
groups of means result, i.e., groups of 2, 2, 2, and 1. .As was noted
earlier, when smaller groups of means are being analyzed, the difference
between Student's t and the SMG or SR criteria becomes less and less,
until with group size 2, all three criteria are the same, except for a
constant (/§f = SR = SMG). Another surprising observation about the
power characteristics of the pracedures is that they all three seem to

level off to around .80. Examination of Table XVI p. 93, shows that for
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nA2 greater than 50, the errors are mostly Type IV(EX) errors, so it
may be that a 19-20% Type IV error rate prevents any greater power being
attained. Recall that Type. IV .error rates .of 19-20% were observed in
Case 1.

To sum up, Case 3 was thought beforehand to be a case where the
SR/MG procedure would have a distinct .advantage .over the GLSD and SMG
procedures, but no support.for that conjecture has been found. The SMG
and SR/MG procedures proved to be about the same with respect to average
losses from Type II and Type IV(EX) errors and with respect to power
characteristics for grouping with the GLSD not far behind in either

category.
6. Brief Summary of the Chapter

The studies in thils chapter were undertaken with the .objectives of
determining some of the performance characteristics .of the SMG, as well
as a comparison of the SMG and .the competing procedures GLSD and SR/MG.
An analytic treatment would have been desirable; however, the multi-
plicity of ways that a sample may depart from the null hypothesis appears
to preclude such .a study. Even when .the null hypothesis is true, it was
shown that systematic study of multistage procedures .can be .complicated.
The discussion in Section .2 peinted’' out, however, .that Type I error rates
under the null hypothesis should not be considered a major problem. The
special cases studied also indicate that Type 111 error rates should be
de-emphasized. The unexpected result .coming .out of the .case studies was
that the SMG and SR/MG procedures are apparently more .susceptible to
Type IV errors than previously thought. Recall that Type IV errors occur

when gaps are erroneously declared significant, but, perhaps a
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distinction should be made between .(i) .the .situation where the true gap
is not detected and another pgap .1s erroneously declared significant in
its place, .and .(ii). .the situation where the .true .gap is detected but an
additional gap .is also .declared significant. . The two procedures
mentioned .are more prone .toward the latter.

Before  any sweeping generalities are made .cohcerning the power
characteristics .of .the .three procedures studied, their performance should
be systematically studied .over a wider range of alternatives and sample

"sizes. The preliminary indications are, however, that both the SMG and
SR/MG procedures are superior to .the GLSD procedure with respect to
grouping detection. -~ From .a performance standpoint, the-.results in this

- chapter indicate .that the .SMG .1s the preferred procedure, as it apparent-
© 1y tends to make fewer Type IV errors than the: SR/MG without severe

“sacrifice of power for correct grouping.



CHAPTER V

SUMMARY, CONCLUSIONS, AND SUGGESTIONS

FOR' FURTHER INVESTIGATION
1. Summary

The  common’ denominator of the majority of statistical procedures
commonly referred't0'aS'multipleiinference“andfor"multiple decision pro-
cedures is the .fact that whenever the experimental-.objective is to
determine the underlying grouping pattern in'.a .set of observed means,
none of them tan .guarantee an .unambiguous answer. . The .reason is, of
course, that they were designed for a different purpose, namely

“inferences about  some .or-.all .of the contrasts among the means. The first
procedure designed specifically toward grouping detection was put for—,
"ward by Tukey (19) and has since become known as' the Tukey Gap-Straggler-

Variance Procedure. In .developing . the procedure, Tukey noted that de-
partures from homogeneity in means could be partially .characterized by
large gaps between observed means.

The objective of this study has been:.to investigate some procedures
which can be used to detect underlying .grouping patterns in a set of
observed means.  The primary emphasis has been .on the development of a
procedure based .on'.the distribution of- the largest gap in a set of k
ordered observations .from .a normal distribution. ~From a practical stand-

"point, this distribution can be .calculated exactly only for three or
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four of the smallest values .of "k. For:larger values, .approximations to
the distribution have been proposed.:. The approximations  are of two
types: empirical approximations, .subject .to.sampling variation; and
“approximations by multiplicationof probabilities  of non-independent
events. To eliminate the necessity of knowlng . .o when the observations
are taken from naormal distributions .with standard deviation o, the
distribution of the maximum gap is '"studentized" by calculating the
distribution of the ratio (maximum gap)/S,iwhere',sz'hiS'an independent
estimate of" 02 based on v degrees of freedom. . This, of course, has
the effect of replacing the unknown parameter"cz' in the distribution
with a set of parameters' . {v}. The situation is completely analogous to
the relation between the normal distribution and Student's t-distribution
(the original studentization problem).

Using the distributions  calculated by the .abhove methods, a sequen-
tial multi~staged procedure was devised, the studentized maximum gap
procedure (SMG). Two other procedures, based on well-known distributions
were also constructed along the same: lines, the maximum gap LSD procedure
(GLSD) and the studentizedﬂrange/ma&imdmagap;procedurEG(SR/MG). In
developing these procedures, it was .noted: that  although some of the
multiple inference procedures are referred- to by some  authors as simul-
taneous inference procedures, they.are not .simultaneous .at all. In a
significance~testing context, (or,.perhaps more properly, a hypothesis-
testing with variable a=level cpntext) the procedures .are carried out in
practice as multiple decision procedures: in which .the decisions are made
sequentially, not simultaneously. Thus, it was discovered that when
testing is done this way, a single' tentative null hypothesis that all

means are the same will not suffice, for as soon-.as the decision that
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two means are not the same is made, .the null hypothesis cannot still be
that all means are the same if any further testing is to be done. We
have referred to this phenomenon as the changing null hypothesis aspect
and have constructed the SMG, GLSD, .and SR/MG procedures .in such a way
as to incorporate it into their\logic. The essential steps in each
procedufe can be described as follows:

(1) Rank the observed means..

(1i) Examine the group as a whole for departure from homogeneity.

(11i) 1If evidence of non~homogeneity is found, break the means

into two groups.

(iv) Repeat steps (ii) and (iii) for each new group formed until
no more evidence of non-homogeneity within the groups can
be found.

Included in the study .is an evaluation of the comparative perfor-
mances of the GLSD, SR/MG, and SMG procedures with respect to power for
grouping detection and certain.error tendencies.

The evaluation was carried out.by means of computer simulated
sampling from normal distributions for which the .true grouping pattern
was known. Of necessity, the performance study was limited in scope,
due to the fact that funds  for computer: time were limited and extensive
tabulation of critical values for the SMG would have been unwise while
its performance relative to the GLSD and SR/MG procedures remained in
question. The latter two procedures, of course, have tabulated critical
values which are readily available,.so.that: if it had turned out that
the SMG was clearly inferior, it would likely have been discarded in
favor of some  other procedure. The.conclusions about the performance of

the three procedures is therefore based on results obtained for three -
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special cases. Since a general treatment of the procedure performances
for all possible departures from.the null hypothesis would be formidable,
if not impossible, the case-study approach represents a reasonable and

informative alternative.
2, "Conclusions

0f the existing multiple inference.procedures, the LSD, Studentized
Range, and Multiple-F procedures can. be adapted for use as statistical
grouping‘pfocedures. "The performance of an F/Maximum Gap procedure would
be expected to be very similar to. the: SR/MG procedure studied. For the
SMG procedure, although exact distributions cannot be obtained in
general, reasonable approximations .can'be made (and .improved upon)
yielding a procedure adequate tq.most situations encountered in practice.
This study has shown that viable solutions:.to the grouping problem exist.
On the basis of  the evaluations: of- the. performances of the three pro-
cédures treated, it 1s concluded that'theltwo,competitors are the SMG
and SR/MG procedures. If forced to a decision at this time, the SMG
procedure would probably be chosen:as' the preferred procedure. However,
the SR/MG has the distinct advantage of having readily accessible

critical values extensively tabulated.
3. Further Study

A more extensive study .of the performances of .the SMG and SR/MG
under alternative hypotheses should.be: made with .a more systematic
choice of alternative hypotheses. If: such studies indicate that SMG
is still the preferred procedure, then better and more efficient methods

of approximating the null sampling distribution should be devised. The
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present study .should be:.considered only a first=cut attempt in both
respects.  More accurate  approximations-.should also help establish

whether or not' studentizing with =& = 8K rather than s only, will

G
reverse the trend with respect-.to the-critical-values. It was con-
jectured in Chapter II that this may be the case, but it has not been
established at this time.

The procedures have been'.formulated and studied under assumptions
of normality, homogeneous-variances, .and:equal sample-sizes. Many cases
in practice do not conform to these assumptions, .and therefore, should
not be ignored if workable solutions: can.be. found.

It is the author's opinion: that.the sort of experimental objective
which has been here referred to.as:the: grouping detection problem is
a very real problem encountered-.frequently in research .and which has

“heretofore received too: little:attention.: It has been shown that
existing procedures are inadeguate: and.that new procedures are needed to

~£fill the void. 'The alternatives presented .in this study represent a

"beginning.
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TABLE XIX

EXPECTED VALUES AND VARIANCES OF GAPS
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EXPECTED ) EXPECTED

N GAP VAL UE VARTANCE N GAP VALUE VARTANCE
2 1 1.12838 0.72675045 15 1 0.48797 0.18390352
3 1 0. 84628 0.45680940 : 2 0.30025 0.07531835
4 1 0.73237 0.36098516 3 0.,23281 0. 04653739
2 0.594Q2 0.24902284 4 G.13918 J.03463794

5 1 0.66794 0.31039107 5 0.1R040 0.02369533
2 0.49592 0.13148172 ) 0. 17000 0.02562169

6 1 0.62545 0.27849383 7 0.16530 3.02428635
2 0.44021 0.14781833 16 1 0.48125 017962754
3 0.40310 0.12587947 2 0.29447 0.07245076

T 1 0. 59481 0.25625259 3 J.22710 J.044%46297
2 0.40455 0.12748778 4 0.19316 0.03271478

3 0.35271 0.09904873 5. 0.17379 0.02675138

8 1 0.57138 0. 23968339 6 0.16247 0.02352342
2 0.3794D 0.11377305 7 0.15646 0.02188758
3 0.32031 0.,08323812 8 0.15458 0.02138436

4 0.30502 0.07602142 17 1 0.47516 0.17579073
9 1 0.55271 0.22676331 2 0.28932 0. 07019007
2 0.326033 0.10284679 3 0.22208 0.04266913

2 0.29744 0.07275550 4 0.18792 0.03108319
4 0.27453 0.06267738 5 0.16813 0.02513692

10 1 0.53739 0.21634215 6 2.15614 0.02182330
2 0434530 0.09628218 7 0.14G520 0. 02000042

3 0.28030 G.06533756 8 0414599 0.01918269

4 0.25309 0.05397496 18 1 0.45962 0.17232259
5 0.24534 0.05050987 2 0.28458 0.06818116

11 1 052452 0.20771545 3 J.21751 J.04110022
2 0.33308 0.09020253 4 0.18333 0.02557371
3 0.26685% 0.05974436 5 0.16321 0.02377333

4 0.23709 0. 04784516 6 0.15074 0.02041691

5 0.22489 0.04331355 7 0.14310 0. 01847583
12 1 0.5138% 020042522 8 V. 13894 0401745639
2 0.32253 0.08543921 9 J.13760 0.01713711

3 0.25600 0.05537699 19 1 0. 46454 0.16916782

4 0.22459 0.04328711 2 0.28049 0.06638151

5 0.20966 0.03800508 3 0.21359 0.03371455
6 0.,20518 0.03648642 4 0.17925 0. 02845817

13 1 0.50391 0.19416386 5 0.15890 0.02260520
2 0.31425 0.08139360 6 J.14607 0.01923335%

3 0.24638 0.05186326 7 0.,132790 0.01722061

4 0.21452 0. 03975897 8 J.13302 0.01606692

5 0.19781 0.03409432 9 0.13072 0.01553783
6 0.19052 0.031751569 29 1 0.45988 0.1662814V

14 1 0.49548 0.18870938 2 0.27665 0.36475788
2 0.30677 0.07796615 3 0. 20597 0. C3848029
3 0.23937 0.04395850 4 C.17540 0.02738415
4 0.20619 0.02694233 5 0.15508 - 0.02159238
5 0.18827 0.03108419 6 e 14197 0.01822285
& 0.17914 0.02827829 7 0.12340 0.016166¢64
7 0.17632 0.027430644 8 0.12797 0.01492449
9 0.12496 0.01425397
0

—

2.12400

0.01404163




TABLE XX

CORRELATIONS OF GAPS
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N I J VALUE N I J VALUE N I J VALUE

3 1 2 }1-0.1361849 10 2 3 | -0.0791782 12 3 7 | -0.0322475
4 2 | ~0.1231622 : 4 | -0.0568594 € {-0.0257677
3 1 -0.,0681794 5 | ~0.0425047 9 | ~0,02064548

5 2 1-0.1133406 6 | -0.0323949 4 5 [=-0.,0538033
3 | -0.0679069 7 |-0.0247623 6 | -0.0504139

4 | -0,0406390 8 [ -0.0136011 7 | -0.0403196

2 3 |~-0.1096829 3 4 | -0.0736256 8 | -0.03236472

6 1 2 | -0.1060835 51-0.0555529 5 6 [-0.0622217
3 |~0.0657781 6 | ~0.0426471 | 7 | -0.0500295

4 | -0,0428443 7 1-0.0327936 13 1 2 { -0.0824582

5 | -0.0269995 4 5 | -0,0711508 3 [-U.U543442

2 3 [ -0.0998312 5 | -0.,0550910 4 | -0.0392223

4 | -0.0666367 {111 1 2 | -0.0857541 51-0,0297770

7 1 2 | =0.1005064 3 | -0.0567240 6 1 -3.0233066
3 }-0.0635514 . 4 | -0.0405002 7 | -0.0185803

4 | -0.,0429828 5 1-0.0302047 8 }-0.0149537

5 1 -0,0295039 6 | -0.0233857 9 | -0.0120525

6 | -0.0193011 7| -0.0180906 10 | -0.,0096349

2 3 | -0.0926231 8 | -0.0140350 11 | -0.0075175
4 | ~0.0638961 9 ) -0.0106709 12 | -0.0054852

5 1-0.0445219 10 | ~0. 0075997 2 3 | -0.0714552

3 4 | -0.,0901780 2 3 1-0.0761949 4 | -0,0521293

8 1 2 | ~0.0960636 4 1 =0.,0550781 5 1-0.0398709
3 1-0.0615200 51-0.0417381 6 | -0.0313790

4 | -0.0425276 6 | -U.0319831 7 |-0.0251227
5]~0.0303351. 7| -0.0251064% 8 | ~0.0202892

6 | -0,0215994 8 | -0.0195615 S | -0.0164003

7 | -0.0145392 9 | ~0.0149288 10 { -0.0131437

2 3{-0.0871151 3 4| -0.0701922 11 | -0,0102789

4 | -0.0612459 51-0.0534262 3 4 | ~0.0648929

5 | ~U.0442302 6 | ~0.0415642 S | ~0.0499720

6 |-0.,0318059 71-0,0326308 6 | -0.0395308

3 4 | ~0.0831705 8 | ~0.0255337 7|-0.0317773
51-0.0608509 4 5 ]1-0.0671192 8 | -0.0257486

9 1 2 1 -0.0924211 6 1-0.0525722 91 -0.0208717
3 { -0.0597200 7 | -0.0415027 10 ) -0.0167686

4 1~-0.0418816 S 6 | -0.0661702 4 5 1 -0.0610532

5 { ~0.0305530 12 1 2 ) -0.0844886 6§ -0,0485518

6 {~0.0226039 3 1 -0.0554696 7 {-0.0391937

7| -0.0165399 4 | ~0.0398425 8 | -0.,0318689

8 {-0.0113883 51-0.0300584 S| -0.0259101

2 3 | =-0.0827465 6} -0.0233366 . 5 6 | -0,0590179

. 4 1 -0.0589013 71 -0.0184060 7 | ~0.0478622

5 1-0.0434308 8 | -0.0145573 8 | ~0.U390677

6 | -0.0323981 9 })-0.0115130 6 7 | -0.0583785
7{-0.0238703 10 | -0.0088774 14 1 2 | -0.0807309

3 4 | ~0.0778400 11 | -0.0064052 31-0.0533280
51-0.0580182 2 3 1-0.0736535 4 | -0.0386410

6 | —0.0436527 4 | -0.0535138 5| ~-0.0294845

4 5| -0.0763550 5 | -0.0406955 6 | —0.0232252

10 1 2| ~0.0893654 6| —-0. 0317829 7 | -0.0186659
3 1-0.0581313 7| -0.0251847 §1-~-0.0151827

4 [ -0.0411873 6| -0.0200493 9 |-0.0124158

5 | -0.0304975 9| -0.0158644 10 | -0.0101394

6 | ~0.0230700 10| -0.0122684 11 | ~0.0081973

7| -0.0175366 3 4 | -0.0673280° 12 | -0.0064607

8 | -0.0131075 51-0.0515829 13} -0.0047603

9| -0.0091928 6 | -0.0405138 2 3 | -0.0695292




TABLE XX (Continued)
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N J VALUE N 1 J VALUE N J VAL UE
14 4 [ -0.,0508943 15 3 9 | -0.0210776 16 7 | -0.0363234
5 1 -0.0391062 10 | -0.0175317 8 | -0.,0302108
6 ] -0.0309628 11 | -0.0145261 9 | -0.0253296
7 ]1-0,0249836 12 | -0.,0118945 10 | -0,0213193
8 { -0,0203864 4 5 1-0.0566967 11 | -0.,0179383
9§ ~0,0167154 6 | =0.0455044 12 | -0.0150127
10 | -0.0136817 7 {-0.0371966 & | -0.0521522
11 | -0.0110834 8 | -0.,0307610 7 [-0.0429620
12 | -0.0087517 9 | -0.0256008 8 | -0.0358290
4 [ -0.0627905 10 | -0.0213371 9 { -0.0301084
51 ~0,0485517 11 [-0.0177108 10 | -0.0253910
6-0,0386230 5 6 | =0.05409566 11 | -0.0214009
71-0.0312798 7 1-0.0443813 7 ] -0.0504928
8 | =0,0256007 8 | -0.0368127 8 1-0,0422331
9 ] ~-0.0210436 9 1-0.0307150 9 | -0.0355780
10 | -0.,0172619 10 | -0.,0256558 10| -0.0300681
11 { -0.0140109 6 7 | ~0.0526810 8 1 -0.0497143
5] ~-0.0587138 8 | -0.0438410 9 | -0.0419964
6 | -0.0469301 - 9 ]1-0.0366819 17 2 | -3.0764171
74)-0.0381516 7 8 | -0.0522306 3 | -0,0508906
8 1-0.0313220 16 1 2 1=0.0777172 4 | =0.0369926
9 | -0.0258141 3 [-0.0515612 51-0.0286224
10 | -0.0212235 4 | -0.0375896 6 | -0.0228395
6 | ~0.,0563544% 51-0.0289028 71 -0.,0186475
71 -0.,0459992 6 | ~0.0229814 8 [ ~0.0154657
81 -0.0378920 7| ~0.0186837 91 -0.0129629
3| -0.0313186 8 | -0.0154168 10} -0,0109355
7 | -0.0552654% 9 | -0.0128414 11 ] -0.0092506
8 | ~0.0456967 10 | -0, 0107484 12 | -0.0078167
15 2 ] =0.,0791473 11 | ~0.0090003 13 | -0.0065658
3| -0.0524047 12 | -0.0075001 14 | ~0.0054426
4 | -0,0380975 13| -0.0061725 15| ~-0.0043899
5 1 -0.V291912 14 { =0.0049451 16 1 -0,0033101
6 ~0.,0231126 15} -0,0037033 3]1-0.,06647613
7| -0.0186940 2 3]-0.0662991 4 | -0.0480604
8 | -0.0153282 4 | =0.0487810 51-0.0371376
9 | -0.012666¢ 51 -0s0377442 6 | -0.0297642
10 | ~0.0104932 6 | —0.0301494 71-0.0243824
11 | =0, 0086636 7| -0.0245977 8 | ~0.0202759
12 | -0.0070715 8 1-0.0203537 © | -0.0170315
13 | ~0.0056222 91 -0.0169926 10 | ~0.0143939
14 | -0.0041783 10 | -0.0142505, 11 | -0.0121952
31-0.0678235 11 | -0.0119527 12 { -0.0103188
4 | —0,0497847 12 | -0.0099752 12| -0,0086782
5| -0,0383988 13 | -0.0082205 14 | -0.0072017
6 | -0.0305502 14 | -0.0065944 15| -0.,0058151
T | -0.0248020 3 4 | -0.0593259 4 | -0.,0578751
8 |-0.0203971 51 —0. 0461577 5| -0.,0451369
91 -0.0168968 6| -0.0370212 6| -0.0363153
1¢| -0.0140267 7| -0.0303005 7 |-0.0298381
11 | -0.0116020 8| -0.0251367 8 | ~0.0248721
12 | -0.0094854 9| -0.0210302 9 1 ~-0.02093235
13} -0,0075531 10 | -0.0176682 10 | -0.0177211
4 | -0.0609517 11 | -0.0148425 11 | -0.0150356
5| -0.0472890 12 | -0.0124040 12 }§-0.0127383
6| ~-0.0377884 131 -0.0102352 13 | -0.0107252
7] -0.0307831 4 51 ~-0.0549345 14| -0.0089098
8 | ~0.0253857 6 1 ~0.0442397 51 -0.0533791




TABLE XX (Continued)
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N J VALUE N J VALUE N J VALUE

17 6 | -0.0431089 18 8 | -0.,0246027 19 6 | —0.0290457
7 1~0.0355245 9 1~-0,0208070 7 1 -0.0239450
8 | ~0.02906826 10 [-0.0177194 8 {-0.,0200628
9 | -0.,0250316 11 [-0.,0151481 9 { -0.0170056
10 [ -0.0212258 12 [-0,01296038 10§ -0.0145309
11 | -0.0180354 13 | -0.,0110611 11 { -0.0124807
12 |-0.01529%4 14 | -0.0093740 12 { -0,0107471
13 | -0.0128965 15 1-0.0078341 12 | -0.0092529
6 | ~0.0504557 5 1 -0.0519923 14 | -0.0078630
71-0.0417053 6 | -0. 0420505 15 | -0.0068319
8 | ~0.0349334 7 1-0.0347916 16 | -0.0055780
9 | -0.0295206 8 }1-0.0291809 17 | —0.0046362
10 | -0.0250764 9 |-0.0247242 4 | -0.0553879
11 | -0.0213400 10 }-0.0210879 5 1 —0.0433641
12 | -0.0181274 11 | -0,0180519 6 | —0,0350612
7 |-0.0486105 12 1 -0.0154634 7 -0.0289317
8 | ~0.0408252 13 | -0.0132107 8 | -0.0243348
9 1 -0.0345763 14 [ -0.0112065 9 | -0.0206627
12 | -0.0294272 6 | -0,0489551 10| -0.0176816
11 | -0.0250845 7 | -0.0405834 11 | -0.0152059
8 | ~0.0475862 8 | -0. 0341164 12 } -0.0131080
9 1 -0.0404012 9 |~-0.0289609 13 ]1-0.0112965
16 | -0.0344574 10 | -0.0247414 14 | -0.0098026
9 1-0.0472574 11 | -0.90212091 15 | -0.0081810
18 2| =0.0752279 12 | -0.0181902 16 | -0.0069487
21 -0.0500723 13 { -0.0155574 5| -~0.0507462
4 1 -0.0366691 7 | -0.0469666 6 -0.0411673
5| -0.0283517 8 | ~0.03958u5 71 -0.0341175
6 1-0.0226923 9 | ~0.0336673 8 | -0.0287068
71-0.0185935 10 | -0.0288113 9 1-0.0244168
8 1 ~-0.0154861 11 | -0.0247355 10 | -0.0209244
9] -0.0130459 12 | -0.0212429 1 -0.,0180169
10 | -0,0110737 8 1-0.0457572 12 {-0.0155480
11 | -L. 0094403 S | ~0.0390067 13 ] -0.0134122
12 | -0.0080575 10 | -0, 0334443 14 | -0.0115296
13 ] -0.0068615 11 | -0.0287600 15 | ~0.00%8356
14 | -0.0058035 9 | -0.0451815 6 | —0.0476263
15 | -0.0048412 10 | -0.0388199 7| -0.0355744
16 | -0.,0039284% 19 2 | =0.0741343 8| -0.0332691
17} -0.0029806 31-0.0494104 9 | -0.0284324
3 | -0.0636799 4 | ~0.0362512 1C | -0.0244020
4 | -0.0470321 5 | -0.0280913. 11 | -0.0210383
51 -0.,0365741 6 | ~0.0225429 12 [ -0.0181758
6 | ~0.0293962 71-0.0185274 13| =0.0156947
71-0.0241634 8 | ~0.0154860 14 | ~0.0135041
8 | -0.0201762 9| ~0,0131305 7| ~0.0455233
9 | ~-0.0170319 10 | -0.0111758 8 -0.0384709
10 { -0.0144820 11 | -0.0095856 9 | -0.0328403
11 | -0.0123640 12 | -0.0082442 10| -0.0282295
12 | -0.0105663 13 | -0.0070605 11| ~-0.0243715
13| -0.0090082 14 ) -0, 0060750 12 | -0.,0210809
l4 | —0.0076270 15§ -0.0051730 13 {~0.0182229
15 | -0.0063685 16 ] ~0.0043396 8 [ -0.0441642
16 | =0.0051725 17| -0.0035405 9 | =0.0377756
4 | -0.0565701 18 | -0.0027014 10| ~0.0325274
5] -0.0442102 3 1 -0.0625430: 11 ] -0.0281238
6| -0.0356639 4 | -0.0462639 12 | ~0.0243584
7] -0.0293983 5| -0.0360494 9 | -0.0433989
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-0.U374395
-0.0324240
-0.0431516
-0.0731241
~0.0487950
~0.03538581
-0.0278414
~0.0223935
-0.0184531
~0.,0154708
~-0.0131333
~0.0112507
-0.0096977
-0.0083910
-0.0072714
-0.0062954
~0.0054292
~04 0046450
~0.0039164
-0.0032108
~0.0024625
-0.,0614997
~0.0455544
-0.0355597
-0.0287125
~0.0237299
-0.0199410
-0.0169606
~0.0145516
-0.0125596
-0.0108797
-0.0094375
-0.,0081780
-0.0070585
-0.0060435
~0.,0050991
-0.0041834
~0.05431 04
~0.0425876
~0.0345018
-0.0285876
-0.0240720
-0.0205082
-0.0176196
-0.0152256
-0.0132026
~0.0114628
-0 .0099410
~0.0085865
-0.0073567
~0.0062111
-0.0496185
-0.0403256
-0.0334953
-0.0282600
-0.0241151
-0.0207466
~0.0179485

-0.U155795
-0, 0135385
-0.0117505
-0.0101568
- 0. 0087081
~0.0464297
-0.,0386609
-0.0326832
-0.0279355
-0.0240667
-0.0208456
-0.0181130
~0. 0157546
-0.0136853
-0.,0118382
-0, 0442363
-0.0374740
-0.0320854
-0, 0276822
~0.0240074
~0,0208833
-0.0181819
-0.0158078
-0.0427611
-0.0366793
-0.,0316950

| =0s0275247

-0.0239713
-0.0208927
-0.0418475
-0.,0362223
-0.,0315027
~0.0274715
-0.,0414099
-0.0360732
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EMPIRICAL DISTRIBUTION OF THE MAXIMUM GAP, SAMPLE SIZE 5

0B SERVED SMOOTHED EMPIRICAL SMOOTHED

INTERVAL FREQUENCY  FREQUENCY CUMULATIVE  CUMULATI VE
0.0 TO 0.1 9 9.38 0.000257 0.000268
0.1 TD 0.2 73 71.50 0. 002343 0.002311
0.2 Y0 0.3 292 294425 0.010686 0.010718
0.3 TO 0.4 642 668,12 0.029023 0.029806
0.4 TO 0.5 1186 1157,09 0.062914 0. 062866
0.5 TO 0.6 1676 1689.63 0,.,110800 0.111140
0.6 TD 0.7 2188 2205. 65 0.173314 0.174158
0.7 TOD 0.8 2664 2620.52 0.249429 0.249028
0.8 T0 0.9 2860 2862.57 0.331143 0.330815
0.9 TO 1.0 2927 2943, 27 0. 414771 0.414907
1.0 70 1.1 2915 2913.22 0.498057 0.498140
1.1 10O 1,2 2789 2776479 0.577743 0.577476
1.2 TO 1.3 2539 2533.15 0. 6502 86 0. 649 851
1.3 TO 1.4 2197 2213.59 0.713057 0.713095
1.4 TO 1.5 1915 1899, 84 0.767771 0.767375
1.5 TO-1.6 1576 1616 .46 0.812800 0. 813559
1e6 TO 1.7 1414 1368.64 0.853200 0.852663
1.7 70 1.8 1100 1115, 28 0. 884629 0.884527
1.8 TO 1.9 878 889 .16 0.909714 0.909931
1.9 70 2.0 706 697.23 0.929886 0329852
2.0 TO 2,1 553 547,77 0. 945686 0.945502
2.1 YO 2.2 410 425462 0.957400 0.957663
2.2 YO 2.3 348 338,03 © 0967343 0.967320
2.3 TO 2.4 276 274.08 0.975229 0.975151
2.4 TO 2.5 207 217.44 0.981143 0.,981364
2.5 TO 2.6 186 166.56 0.986457 0.986122
2.6 T0 2.7 103 121.68 0.989400 0. 989599
2.7 70 2.8 99 94,30 0.992229 0.992293
2.8 TO 2.9 78 71. 73 0. 994457 0.994342
2.9 TO 3.0 48 50 .00 0.995829 0.995771
3.0 TO 3.1 26 31.14 0.996571 0.996660
3.1 TO 3.2 29 27.15 0. 997400 0.997436
3.2 TO 3,3 29 26447 0.998229 0.998192
3.3 70 3.4 22 21.71 0.998857 0.998813
3.4 TO 3.5 11 13.77 0. 999171 0. 999206
3.5 TO 3.6 11 8.35 0.999486 0.999445
3.6 TO 3.7 3 5. 03 0.999571 0.999588
3.7 T0O 3.8 4 3.59 0.999686 0. 999691
3.8 TO 3.9 4 2.58 0.999800 0.999765
3.9 TO 4.0 0 1. 91 0.999880 0.999819
4.0 TO 4.1 3 2.00 0.999886 0.999876
4.1 TO 4e2 2 2.14 0.999943 0.999937
442 TO 4.3 2 1. 64 1. 000000 0.999984
4,3 TO 4.4 0 0.50 1,000000 0. 999998
4,4 TD 4.5 0 0.06 1,000000 1.000000
4.5 TO 4.6 0 0.0 1. 000000 1. 000000
4.6 TO 4.7 0 0.0 1.000000 1.000000
4.7 TD 4.8 0 0.0 1.000000 1.000000
4.8 TO 4.9 0 0.0 1. 000000 1. 600000
4.9 T0 5.0 0 0.0 1.000000 1.000000

TOTAL: 35000
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EMPIRICAL DISTRIBUTION OF THE MAXIMUM GAP, SAMPLE SIZE 6

OBSERVED SMOOTHED EMPIRICAL SMJIOTHED
INTERVAL FREQUENCY FREQUENCY CUMULATIVE CUMJLATIVE
0.0 TO 0.1 2 4.01 0.000080 0.000160
0.1 TO 0.2 23 14.97 0.001000 0.000759
0.2 TO 0.3 117 129. 04 0.005680 0.005919
0.3 TO 0.4 380 393,20 0.020880 0.021643
0.4 TO 0.5 795 804,32 0.052680 0.,053807
0.5 TO 0,6 1313 1295.07 0.105200 0.105595
0.6 1O 0.7 1757 1773.74 0.175480 0.176526
0.7 TO 0.8 2153 2141.87 0. 261600 0.262177
0.8 TO 0.9 2374 2324,57 0. 356560 0. 355134
0.9 TO 1.0 22179 2329.25 0.441720 0.448279
1.0 TO 1.1 2238 2236432 0, 537240 0.537707
1.1 TO 1.2 2093 2059 .65 0.620960 0.620070
1.2 TO 1.3 1800 1819.92 0.662960 0.592847
1.3 TO 1.4 1516 1535.77 0. 753600 0.754261
1.4 TO 1.5 1327 1274.34 0.806680 0.805220
1.5 TO 1.6 364 1037. 94 0.845240 0.846726
1.6 TO 1.7 308 860.54 0.881560 0.8811138
1.7 TO 1.8 692 697 .86 0.909240 0.909045
1.8 TO 1.9 540 550. 97 0. 930840 0.921078
1.9 TO 2.0 427 415.80 0.947920 0.94770%
2.0 T0 2.1 307 316.16 0.960200 0.960348
2.1 TO 2.2 244 239,85 0. 966960 0.969940
2.2 TO 2.3 184 185.59 0.977320 0.977361
2.3 TO 2.4 148 148,76 0983240 0.983310
2e4 TO 2.5 120 117.07 C. 988040 0.98799¢2
2.5 TO 2.6 89 87.49 0.991609) 0.991490
2.6 TO 2.7 57 6l.54 0.993880 0.993951
2.7 T0D 2.8 45 43,76 0. 995680 0. 995701
2.8 TO 2.9 34 30.32 0.997040 0.996914
2.9 TO 3.0 16 20,06 0. 997680 0.597716
3.0 TO 3.1 14 14.72 0.998240 0. 998305
3.1 TO 3.2 18 13.68 0.998960 0.,998852
3.2 TO 3.3 7 10. 80 0. 999240 0,999284
3.3 TO 3.4 10 6.92 0.999640 0.999561
3.4 TO 3.5 1 3,09 0.999680 0.999684
3.5 TO 3.6 2 1.77 0. 999760 0. 999755
3.6 TO 3.7 2 1.36 0.999840 0.999810
3.7 TO 3.8 1 1.67 0.999880 0.999876
3.8 TO 3.9 2 1.19 0.999960 0. 999924
3.9 TO 4.0 0 0.54 0.999960 0.999945
4,0 TO 4.1 0 0.11 0.9999 60 0.999950
4.1 TO 442 0] 0.0 0.999960 0. 999950
4.2 TO 4.3 0 0.0 0.999960 0.999950
4.3 TO 4.4 0 0. 08 C. 999960 0.999953
4.4 TO 4.5 o 0.30 0.999960 0.999965
4,5 TO 4.6 1 0.47 1.000000 0.399984
4.6 TO 4.7 0 0.30 1. 000000 0. 999996
4,7 TO 4.8 0 0.10 1.000000 0.999999
4.8 TO 4.9 0 0.0 1.000000 0.999999
4,9 TO 5.0 0] 0.02 1. 000000 1. 000000

TOTAL:

25000




TABLE XXIII

114

EMPIRICAL DISTRIBUTION OF THE MAXIMUM GAP, SAMPLE SIZE 7

OBSERVED SMIDTHED EMPIRICAL SMOOTHED

INTERVAL FREQUENCY  FREQUENCY CUMULAT IVE  CUMULATIVE
0.0 TO 0.1 0 3.56 0.0 0.000102
0.1 TO 0.2 16 1.75. 0.000457 0.000152
0.2 TO 0.3 120 141.37 0.003886 0.004189
0.3 TO 044 495 1533.93 0.018029 0.019436
0.4 TO 0.5 1200 1199.94 - 0.052314 0.053702
0.5 TO 0.6 2022 2017.20 . 0,11 0086 0.111305
0.6 TO 0.7 211 2767.78 10.189257 0.190343
0.7 TO 0.8 3354 3304.36 0.285086 0.284703
0.8 TO 0.9 3492 3532.12 0.384857 0.385568
0.9 TO 1.0 3554 3500.16 0.486400 0.485519
1.0 TO 1.1 3204 3252.96 0.577943 0.578412
l.l TO 1.2 2921 2890. 06 0. 661400 0.660941
1.2 TO 1.3 2463 2477.75 0.731771 0.731696
1.3 70 1.4 2034 2068, 64 0.789886 0.790769.
le4 TO 1.5 1754 1677.69 0. 840000 0.838678
1.5 T0 1.6 1227 1305.49 0.875057 0.875958
1.6 TO 1.7 1049 1012.28 0.905029 0.904864
1.7 TO 1.8 773 780.95 0.927114 0.927165
1.8 TO 1.9 608 613.66 0.944486 0.944689
1.9 70 2.0 476 467462 0. 958086 0.958043
2.0 T0 2.1 359 355.01 0.968343 0.968181
2.1 70 2.2 253 266,53 0.975571 0.975792
2.2 T0 2.3 216 212.16 0.981743 0. 981850
2.3 T0 2.4 183 173.23 0.986971 0.986797
2.4 T0 2.5 125 133.27 0.990543 0.990603
2.5 T0 2.6 101 97.94 0.'993429 0. 993400
2.6 TO 2.7 70 71.65 0.995429 0.995446
2.7 TC 2.8 54 52,43 0.996971 0.996943
2.8 TO 2.9 35 35.24 0.997971 0. 997949
2.9 T0 3.0 22 23.00 0.998600 0.998606
3.0 TO 3.1 15 14409 0. 999029 0.999008
3.1 T0 3.2 9 8462 0.999286 0999255
3.2 10 3.3 4 6.00 0.999400 0.999426
3.3 TO 3.4 7 5.35 0. 999600 0.999579
3.4 TO 3.5 5 4.08 0.999743 0.999695
3.5 TO 3.6 0 2.00 04999743 0.999752
3.6 TO 3.7 2 0.78 0. 999800 0.999775
3.7 T0 3.8 1 1.24 0.999829 0.,999810
3.8 TO 3.9 1 2.24 0.999857 0.999874
3.9 70 4.0 5 2.58 1.000000 0.999948
4.0 TO 4.1 0 1.51 1.000000 0.999991
4.1 TO 4.2 0 0.33 1.000000 1.000000
4.2 TO 4.3 0 0.0 1.000000 1. 000000
403 TO 44 0 0.0 1.000000 1.000000
4.4 TO 4.5 0 0.0 1. 000000 1.000000
405 TO 4.6 0 0.0 1.000000 1.000000
4.6 TO 447 0 0.0 1.000000 1.000000
4.7 TO 4.8 0 0.0 1. 000000 1.000000
4.8 TO 4,9 0 0.0 1.000000 1.000000
4.5 T0 5.0 0 0.0 1.000000 1.000000

TOTAL:

35000
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MEANS, VARIANCES, AND STANDARD DEVIATIONS OF THE MAXIMUM GAP

Sample Size Mean Variance Standard Deviation

* 2 1.128 0.7262 0.8522
3 1.239 0.4648 0.6817

4 1.218 0.3344 0.5783

5 1.174 0.2688 0.5185

6 1.130 0.2268 0.4762

7 1.087 0.2038 0.4514

8 1.025 0.1945 0.4410

9 0.995 0.1810 0.4254

10 0.969 0.1709 0.4134
11 0.945 0.1631 0.4039
12 0.925 0.1570 0.3962
13 0.906 0.1520 0.3898
14 0.890 0.1479 0.3845
15 0.875 0.1444 0.3800
16 0.861 0.1414 0.3761
17 0.849 0.1389 ?0.3727
18 0.838 0.1367 0.3697
19 0.827 0.1347 0.3670
20 0.818 0.1328 0.3645

*

Taken from Standard Tables
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TABLE XXV

PROBABILITY INTEGRAL OF THE MAXIMUM GAP

GAP SAMPLE SIZE
SIZE 3 4 5 6 7 8 3 12 11
0. 3.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0055 0,0008 0.0003 0.0002 23,0031 0,3000 3.2300 0.3222 0.02300
0.0218 0.,0059 0.0023 0.0008 0,0002 0.0008 0.0006 0.0005 0.0004
0.0483 0.0193 0.0107 0.0059 10,0042 U.0075 0.0066 0.0062 0.0059
0.084Y 0.0435 0.0298 0.0216 0.0194 0.0297 00,0294 0.0302 0.0312
J.1279 0.0798 DJ.0629 0.0538 0.0537 0.,0762 0.0795 0.0844% 0.0905
0.1783 0.1280 0.1111 0.,1056 0.1113 0.1484 10,1586 0.1708 0.1843
0.2338 0.1867 0.1742 0.1765 0.1903 0.2409 0.2594 0.27392 03.2999
0.2927 042534 0.2490 0.2622 0.2847 0.3442 0.3699 0.3958 0.4209
0.3535 0.3253 0.3308 0.3551 0.3856 0.4489 3.47951 0.5079 0.5344
0.4147 043994 0.4149 0.4483 0.4855 0.5476 0.5793 0.6081 0.6335
0.4750 0.4729 3.49831 J,5377 0.5784 0.6356 0.6664 0.6930 0.,7157
0.5333 0.5436 0.5775 0.6201 00,6609 0.7110 0.7392 0.7626 J.7819
0.5887 00,6096 0.6499 0.6928 0.7317 0.7737 0.7983 0.8181 0.8340
U,6406 Q.6693 0,7131 0.7543 00,7938 0.8246 0.8454 0.8616 0.8744
0.6884 0.7239 0.7674 0.8052 0.8387 0.8652 0.8823 0.8953 0.9055
0.,7319 (0.7713 0.8136 0.8467 0.8760 0.8971 0.9109 0.9213 0.9293
0.7711 0.8122 0.8527 0.8811 0.9049 0.9220 0.5330 0.9411 0.9473
2.8060 0.8472 0.8845 0.9090 0.9272 0.9412 0.%9498 0.9561 0.9509
0.8367 0.8766 049099 02.9311 0.9447 0.9559 0.9626 0.9675 0.9712
0.8635 0,901l 10,9299 0.9477 0.9580 0.9671 D.9723 00,9761 0.9789
0.8866 069213 0.9455 0,9603 0.9682 0.9756 0.9796 0.9825 0.9845
0.9064 0.9378 0.9577 0J.9699 0.9758 0.9820 0.9851 0.,9872 0.9889
0.9233 0.9512 0.9673 0.9774 0.9818 0.9868 0.9851 0.%9908 02.9920
0.9375 0.9620 0.9752 0.9833 10,9868 0,9904 0.9921 0.9934 0.9943
0.9493 0.9705 0.9814 0.9880 0.9905 0.9930 0.9943 0.9953 0.9959
0.9592 0.9773 0,9861 0.9915 0.9934 0.9950 0.9950 0.9965 J.997!
0.9674 0.9827 0.9896 0.9940 0.9954 0.9964 0.,9971 0.9976 0.9980
0.9740 0.9868 0.9923 10,9957 0.995%59 0.9974 0,9980 0.9983 0.9986
0.9795 0.9900 0.9943 0.9969 0.9979 0.9982 0.9986 0.9988 0.9990
0.9829 0.9925 0.9958 0.9977 0.9986 0.9987 0.9990 0.9992 0.9993
0.9874 0.9944 0,9967 0.9983 0.9990 0.999! 0.99393 0.%395 0.9996
0.9902 0.9959 0.,9974 0.%989 0.9993 0,9994 0,9995 0.9995 0.9997
0.9924 0.9970 0,9982 0.9993 J3.9994 0.9996 0.9997 0.9998 0.9998
0.9942 0.9978 0.9988 0.9996 00,9996 0.9997 0.9998 0.9998 0.9999
0.9956 0.9984 0,9992 0.9997 0.9997 0.9998 0.9999 0.9999 0.9999
0.9966 0.9988 069994 (0.9998 029998 " 0.,9999 0.9999 0.,9999 0.9999
0.9975 0.9992 0.9996 0.9998 0.9998 0.9999 0.9939 1.0000 1.0000
0.9%81 0.,999% 0.9997 0.9999 0.9998 0.9999 1.000Q 1.0000

0.9986 0., 9996 0.9998 0,9999 02,9999 1.0000 1.0000

0.9990 0.9997 0.9998 0.9999 0.9999 11,0000

0.9992 0.9998 02,9993 J2.9999 1.0000

0.9994 00,9999 0.9999 1.0000

0.9996 0.9999 1.0000

0.9997 0.9999

0.9998 1.0000

0.9998

0.9999

0.9999

0.9999

1.0000
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TABLE XXV (Continued)

1
>
°

SAMPLE SIZE
S IZE 12 13 14 15 16 17 18 19 20

0.0000 0.0000 0.,3233 2.2300 J.0000 043323 23.3333 0.0300 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ©2.3223 12.02J
0.00032 0.0003 92.0002 0.0002 0.0002 0.000? 0.0002 0.0002 0.0002
0.0059 0,0060 0.,00%52 02.0065 2.0358 0.0272 )J.0078 0.0084 0,009
0.0330 0.,0352 0.0378 0.0408 0.D441 0,0%75 0.2514 0,055% 0.,0596
0.0975 0.1053 J.1137 12,1225 2J.1316 0.1409 0.1502 0.1596 10,1688
0.1986 0.2134 J3.2283 0.26¢32 3.2577 2J.2719 2.2855 0.2985 2J2.3109
0.3205 0.3405 0.3598 0.3781 0.3953 0.,4113 0.4262 0.%%01 0.%4529
0.4467 0.4669 J,%87% 2J.5061 12,5230 0.5285 0.5524 0.5651 0.5767
0.5585 0.5801 0.5993 0.6163 0.6314 0.64%49 0.5553 DJ,5577 0.5774
3.55556 0.6749 J.6916 0.706) 0.7188 0.7300 0.7398 0.7487 0.7566
J.7349 0.7512 J3.7651 0.777) DJ.7872 10,7963 J3.8042 92,8113 0,8175
0.7979 0.8112 0.8223 0.8219 0.,8401 0.8472 02,8535 0.853) DJ.8639
0.86459 0.8575 0.866% 0.8733 02.8804 0.8860 0.8909 0.8952 0.8990
0.8847 0.8931 0.9001 0.905)2 2.311') 0.%183 ).9192 0.9225 0,9255
0.9136 0.9202 0.9256 0.9302 0.,9341 0.9375 0.9404 0.9430 0.945%
0.9356 0.9607 2.3%4%3 03,9484 J3.9515 0.9541 0.9564% 0.9584 0,9602
0.9522 0.9562 0.9594 0.9621 0.9545 0.3665 02,3582 02.9533 12,9712
0.9547 0,9678 0.9702 0,9723 0.9741 0,9757 0.9770 0.9782 0.9792
0.9741 0.976% 0.9783 0J3.3739 J.9813 0.9825 0.9335 0.9844 0.9852
0.9811 0.9829 0.9843 0.9855 0.9866 0.9874 0.9882 0.9383 00,9895
J.9853 0.9876 0.9887 0.9896 0.9904 0.9911 0.9916 0.9921 0, 9926
0.9901 0.9911 0.9920 0.9925 D02.9932 0.9937 3.3941 0.9945 0.9948
0.9929 0.9937 0.9943 0,9948 0.9952 0.99%6 0.3359 0.9352 J.935%
0.9950 0.9955 0.9960 J.3964 J.9967 0.9969 0.9972 0.9973% 0.9975
0.9965 0.9969 0.9972 0.9975 3,9377 0.9979 2.9980 0.9982 0.9983
0.9975 0.9978 0.9981 0.9983 0.9984 0.9985 0.9987 0.9988 0.9389
0.9982 0,995 02.9937 0.2988 02,9989 0.9990 0.9991 0.9992 0.9992
0.9988 0.9993 10,9991 0.9992 0J.9933 0.9993 0.339% 0J.933% J.9995
J.9932 0.9993 0.9994 0.9995 0.9995 0.9996 0.9996 0.9995 0.9997
0.9994 0,9995 J.9935 J3.93996 0J2.9997 0.9997 2.9957 0.9998 0.9998
0.9996 0.9937 0.9997 0.9998 0.9998 0.9998 0.9938 2J.9333 3.9399
0.9998 0.9998 0.9998 0.9998 0.9999 0.9999 0.%999 0.9999 0.9999
0.9998 0.9999 0.9999 0.9999 2J.9333 0,9999 D2.9999 0.9999 0.9999
0.9999 0.9999 0,.9999 0.9999 049999 0.9999 1.0000 1.8033 1.02300
0,.9999 0.5999 2.393%9 1.0300 1.0000 1.0000 1.0000 1.0000

1.0000 11,0000 11,0000 1,0000 1.0022 1.2233 1.30200

1,0000 1.0000 1.0000 1.0000 11.0000 11,0000

1,0000 1.0000 1.0022 1.2300 1.0000

1. 0000 1.0000 11,0000 1.0000

1.,0000 1Y.0000 11,0000

1.0000 1.,0000

1. 0000
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APPROXIMATE CRITICAL VALUES OF THE STUDENTIZED MAXIMUM GAP

TABLE XXVI

SAMPLE SIZE 2

SAMPLE SIZE 3

SAMPLE SIZE 4

df .1 .05 .025 .005 .1 .05 .025 .01 .005 .05 .025 .01 .005
1 8.93 17.97 36.0 9.8 20.0 39.1 82 9. 19.5 38.8 78
2 4,12 6.08 8.78 . 19.9 4.2 6.2 8.8 14.1 20 4, 5.9 8.4 13.4 19
3 3.33 4.50 5.91 8. 10.54 3.30 4.39 5.70 7.92 10.07 3. 4.14 5.38 7.36 8.95
4 3.02 3.93 4.94 6. 7.92 2.95 3.76 4.67 6.09 7.37 2. 3.52 4.35 5.66 6.85
5 2.85 3.64 4.47 5. 6.75 2.76 3.44 4,17 5.26 6.19 2. 3.20 3.87 4.86 5.71
6 2.75 3.46 4,20 5. 6.11 2.64 3.25 3.88 4.79 5:54 2. 3.01 3.59 4.41 5.09
7 2.68 3.34 4.02 4, 5.70 2.57 3.12 3.69 4.49 5.14 2. 2.89 3.40 4.12 4.71
8 2.63 3.26 3.89 4, 5.42 2.51 3.03 3.56 4.28 4.86 2. 2.80 3.28 3.93 4.45
9 2.59 3.20 3.80Q 4. 5.22 2.47 2.96 3.46 4.13 4.66 2. 2.74 3.18 3.78 4.26
2.56 3.15 3.73 4, 5.06 2.43 2.91 3.39 4.02 4.51 2. 2.69 - 3.11 3.68 4.12
2.54 3.11 3.67 4. 4.95 2.41 2.87 3.33 3.93 4.39 2. 2.65 3.05 3.59 4.01
2.52 3.08 3.62 4, 4.85 2.39 2.84 3.28 3.86 4.30 2. 2.61 3.00 3.52 3.92
2,50 3.06 3.58 4. 4.77 2.37 2.81 3.24 3.80 4.22 2. 2.58 2.97 3.45 3.85
2.49 3.03 3.55 4. 4,70 2.35 2.79 3.20 3.75 4.16 2. 2.56 2.93 3.42 3.79
2.48 3.01 3.52 4. 4.65 2.34 2,77 3.18 3.70 4.10 2. 2.54 2.90 3.38 3.74
2.47 3,00 3.50 4. 4.60 2.33 2.75 3.15 3.67 4.06 2. 2.53 2.88 3.35 3.69
2.45 2.97 3.46 4, 4.52 2.31 2.72 3.11 3.61 3.98 2. 2.50 2.84 3.29 3.62
2.44 2,95 3.43 4. 4.46 2.29 2.70 3.08 3.57 3.92 2. 2.48 2.81 3.25 3.57
2.42 2.91 3.37 3. 4.35 2.27 2.66 3.02 3.48 3.82 2. 2.44 2.76 3.17 3.47
2.40 2.89 3.34 3. 4.29 2.25 2.63 2.99 3.43 3.76 2. 2.41 2.73 3.12 3.41
2.38 2.86 3.29 3. 4.20 2.23 2.60 2.94 3.37 3.68 2. 2.38 2.68 3.06 3.34
2.37 2.84 3.27 3. 4.15 2.22 2.58 2.92 3.33 3.63 2. 2.36 2.66 3.03 3.30
2.35 2.80 3.22 3. 4.06 2.19 2.54 2.87 3.26 3.54 2. 2.33 2.61 2.96 3.21
2.33 2.77 3.17 3. 3.97 2.17 2.51 2.82 3.19 3.46 2. 2.29 2.56 2.90 3.14

8TT



TABLE XXVI (Continued)

SAMPLE SIZE 6 SAMPLE SIZE 7

SAMPLE SIZE 5

.05
9.3 18.8 37.3

.025 .01 .005
66

.05
8.6 17.4 34.6

.025 .01 .005
69

.05
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.01 .005
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1.91 2.20 2.49 2.84 3.10
1.88 2.17 2.44 2,78 3.02
1.86 2.14 2.40 2.71 2.94

1.73 2.00 2.26 2.59 2.82

1.81 2.08 2.35 2.67 2.91
1.79 2.05 2.30 2.61 2.83
1.77 2.02 2.27 2.56 2.78
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100

1.70 1.97 2.22 2.54 2.74
1.68 1.94 2.19 2.48 2.68
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TABLE XXVI (Continued)

SAMPLE SIZE 8

SAMPLE SIZE 9

SAMPLE SIZE 10

df .1 .05 .025 .01 .005 .1 .05 .025 .01 .005 .1 .05 .025 .01 .005
1 8.1 16.5 32.5 61 7.9 16.0 31.6 - 59 7.7 15.6 30.7 57
2 3.4 4.9 7.0 11.1 16 3.3 4.8 6.8 10.8 15 3.2 4.6 6.6 10.5 15
3 2.58 3.40 4.40 6.11 7.79 2.50 3.30 4.27 5.92 7.56 2.43 3,21 4.15 5.77 7.36
4 2.28 2.88 3.56 4.63 5.60 2,20 2.79 3.46 4.50 5.44 2,14 2.71 3.36 4.38 5.30
5 2.12 2.61 3.16 3.97 4.67 2.05 2.53 3.06 3.86 4.54 1.99 2.47 2.98 3.76 4.42
6 2,02 2.46 2.93 3.60 4.17 1.95 2.38 2.84 3.50 4.05 1.90 2.32 2.76 3.41 3.95
7 1.95 2.35 2.78 3.37 3.86 1.89 2.28 2.69 3.27 3.75 1.84 2.22 2.62 3.19 3.66
8 1.90 2.28 2.67 3.21 3.65 1.84 2.21 2.59 3.12 3.54 1.79 2.15 2.52 3.04 3.46
9 1.87 2.23 2.59 3.09 3.49 1.81 2.16 2.51 3.01 3.39 1.76 2.10 2.45 2.93 3.32
10 1.84 2.18 2.53. 3.01 3.38 1.78 2.12 2.46 2.92 3.29 1.73 2.06 2.39 2.85 3.21
11 1.82 2.15 2.49 2.94 3.29 1.76 2.08 2.41 2.86 3.20 1.71 2.03 -2.35 2.79 3.96
12 1.80 2.12 2.45 2.88 3.22 1.74 2.06 2.38 2.80 3.13 1.69 2.00 2.32 2.74 3.06
13 1.78 2.10 2.42 2.84 3.16 1.73 2.04 2.35 2.76 3.08 1.68 1.98 2.29 2.69 3.01
14 1.77 2.08 2.39 2.80 3.11 1.71 2.02 2.32 2.72 3.03 1.67 1.97 2.26 2.66 2.96
15 1.76 2.07 2.37 2.77 3.08 1.70 2.00 2.30 2.69 2.99 1.66 1.95 2.24 2.63 2.93
16 1.75 2.05 2.35 2.74 3.04 1.69 1.99 2.28 2.67 2.96 1.65 1.94 2.22 2.60 2.89
18 1.73 2.03 2.32 2.70 2.98 1.68 1.97 2.25 2.62 2.90 1.63 1.91 2.19 2.56 2.84
20 1.72 2.01 2.29 2.66 2.94 1.67 1.95 2.23 2.59 2.87 1.62 1.90 2.17 2.53 2.80
25 1.70 1.98 2.25 2.60 2.87 1.64 1.92 2.19 2.53 2.79 1.60 1.87 2.13 2.48 2.73
30 1.68 1.96 2.22 2.57 2.82 1.63 1.90 2.16 2.50 2.75 1.58 1.85 2.11 2.44 2.69
40 1.66 1.93 2.19 2.52 2.76 1.61 1.87 2.13 2.45 2.69 1.57 1.83 2.08 2.40 2.63
50 1.65 1.92 2,17 2.49 2.73 1.60 1.86 2.11 2.43 2.66 1.56 1.81 2.06 2.37 2.60
100 1.63 1.89 2.13. 2.44 2.66 1.58 1.83 2.07 2.38 2.59 1.54 1.78 2.02 2.32 3.01
o 1.61 1.86 2.09 2.39 2.60 1.56 1.80 2.03 2.33 2.54 1.52 1.76 1.99 2.28 2.49
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TABLE XXVI (Continued)

SAMPLE SIZE 13

SAMPLE SIZE 12

SAMPLE SIZE 11
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1.55 1.85 2.17 2.59 2.93
1.53 1.83 -2.13 2.54 2.86
1.51 1.80 2.10 2.49 2.80
1.50 1.79 2.07 2.46 2.75
1.49 1.77 2.05 2.43 2.71
1.48 1.76 2.03 2.40 2.68
1.47 1.75 2.02 2.38 2.65
1.46 1.73 1.99 2.34 2.60

1.57 1.88 2.19 2.62 2.96
1.55 1.85 2.16 2.57 2.89
1.53 1.83 2.12 2.52 2.83
1.52 1.81 2.10 2.48 2.78
1.51 1.79 2.08 2.45 2.74
1.50 1.78 2.06 2.43 2.71
1.49 1.77 2.04 2.40 2.68
1.48 1.75 2.02 2.37 2.63
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1.40 1.65 1.89 2.19 2.42

1.40 1.64 1.87

1.42 1.67 1.91 2.22 2.45
1.41 1.66 1.89 2.20 2.42
1.40 1.63 1.86 2.15 2.36
1.38 1.61 1.83 2.11 2.31

40

1.45 1.69 1.94 2.25 2.47
1.44 1.68 1.92° 2.22 2.45
1.42 1.66 1.89 2.18 2.39

2.17 2.39

50
100

1.38 1.61 1.84 2.13 2.34
1.36 1.59 1.81 2.09 2.29

1.40 1.63 1.86 2.14 2.34
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TABLE XXVI (Continued)

SAMPLE SIZE 14 SAMPLE SIZE 15 SAMPLE SIZE 16

df .1 .05 ,025 .01 .005 .1 .05 .025 .01 .005 ol ,05 .025 .01 ,005

1 7.1 14,3 28,2 53 6.9 14,1 27.8 52 . 6,8 13,9 27,3 51
2 2.9 4,2 6.1 9.6 14 2.9 4,2 6.0 9,5 13 2,9 4.1 5.9 9.3 13
3 2.24 2,95 3.83 5.32 6.80 2.22 2.92 3.78 5,23 6.64 2.17 2.87 3.72 5.17 6.60
4 1,97 2,50 3.11 4,05 4.90 1.95 2,47 3,07 3.99 4,84 1,91 2.43 3,02 3,94 4,77
5 1.83 2.28 2.76 3.48 4.10 1.80 2.24 2.72 3,43 4.05 1.78 2.21 2.68 3.39 3.99
6 1.75 2,14 2,56 3,17 3.67 1l.72 2,11 2,52 3,12 3,62 1,70 2.08 2,49 3,08 3,58
7 1.69 2.05 2.43 2.97 3.40 1,66 2,02 2,40 2.93 3,36 1.64 1.99 2.37 2.89 3.32
8 1.65 1,99 2,34 2,83 3.22 1.62 1,96 2,31 2.79 3,18 1,60 1,93 2,28 2,76 3,15
9 1.62 1,94 2,28 2,73 3.10 1,59 1.91 2.24 2,70 3.06 1.57 1.89 2.22 2.67 3.02
1.59 1.91 2.22 2,66 3,00 1.57 1.88 2,19 2.62 2,96 1.5 1,8 2,17 2.59 2,93
1.57 1.88 2.19 ~2.60 2.92 1,55 1.85 2.16 2.57 2,89 1.53 1.83 2.13 2.54 2.86
1.56 1.85 2.15 2.55 2.86 1.53 1.83 2,12 2,52 2,83 1,51 1,80 2,10 2,49 2,80
1.55 1.84 2,13 2,52 2,82 1.52 1,81 2,10 2,48 2,78 1,50 1,79 2,07 2,46 2,75
1,53 1,82 2,10 2,48 2,77 1,51 1,79 2.08 2.45 2,74 1,49 1.77 2.05 2,43 2,71
1,52 1,81 2,09 2:46 2,74 1.50 1,78 2,06 2,43 2,71 1,48 1,76 2,03 2,40 2.68
1,52 1.79 2,07 2,43 2,71 1,49 1.77 2,04 2,40 2,68 1,47 1,75 2,02 2,38 2,65
1.50 1.77 2,04 2,40 2,66 1.48 1,75 2,02 2,37 2,63 l.46 1,73 1,99 2,34 2,60
1,49 1,76 2,02 2.37 2.63 1,47 1.73 2,00 2,34 2,60 1.45 1,71 1.97 2.31 2,57
1.47 1,73 1.99 2.32 2.56 1.45 1.71 1.96 2,29 2,53 1.43 1,69 1,94 2.26 2,51
1.46 1,71 1.96 2.29 2.52 1.44 1.69 1,94 2.26 2.49 1.42 1,67 1.92 2.23 2.47
1.45 1.69 1.94 2.25 2.47 1.42 1,67 1.91 2,22 2.45 1.40 1.65 1,89 2.19 2.42
1.44 1.68 1,92 .2,22 2,45 1,41 1,66 1.89 2.20 2.42 1,40 1.64 1.87 2.17 2,39
1.42 1,66 1,89 2,18 2,39 1.40 1,63 1,8 2.15 2,36 1,38 1.61 1.84 2,13 2,34

1.40 1.63 1,86 2.14 2.34 1.38

1,61 1,83 2,11 2.31 1.36 1.59 1.81 2,09 2.29
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TABLE XXVI (Continued)

SAMPLE SIZE 17

SAMPLE SIZE 18

SAMPLE SIZE 19

df 1 -~ ,05 ,025 .01 ,005 o1 .05 ,025 .01 ,005 .1 05 .025 .01 ,005
1 6.7 13,7 26,9 51 6,7 13,7 26.5 50 6,6 13,3 26,1 49
2 2,8 4.0 5,8 9.2 13 2,8 4,0 5,7 9.1 13 2,8 4,0 5,7 9,0 13
3 2,14 2,83 3,67 5,11 6.52 2,11 2,79 3.63 5,05 6,44 2,09 2,76 3,59 4,99 6,37
4 1.87 2,40 2,98 3,89 4,71 1.86 2,37 2,95 3,85 4,66 1.84 2,34 2,91 3.81 4,61
5 1.75 2,18 2,65 3,35 3.95 1.73 2,16 2,62 3.31 3.91 1,71 2,13 2.59 3.28 3.87
6 1.67 2,05 2,46 3,05 3,54 1,65 2,03 2,43 3,02 3,50 1,64 2,01 2,41 2,99 3,47
7 1.62 1.97 2.34 2,86 3.28 1.0 1,95 2.31 2,83 3.25 1.58 1,93 2,29 2.80 3.22
8 1,58 1,91 2,25 2,73 3,11 1,56 1,89 2,23 2,70 3,08 1.54 1,87 2,21 2,68 3,05
9 1.55 1.87 2,19 2.64 2.99 1,53 1.8 2,17 2.61 2,96 1,52 1,83 2,15 2.59 2.93
10 1.53 1.83 2,14 2,57 2.90 1.51 1.8 2,12 2,54 2,87 1,49 1.79 2,10 2,52 2.84
11 1,51 1,81 2,11 "2.51 2,83 1.49 1.79 2.08 2.49 2.80 1.48 1,77 2.06 2.46 2,77
12 1.49 1.78 2.08 2.47 2.77 1.48 1,76 2.05 2.44 2,74 1.46 1.75 2,03 2.42 2.72
13 1.48 1.77 2,05 2,43 2.72 1,46 1.75 2,03 2,41 2.70 1,45 1,73 2,01 2.39 2,67
14 1.47 1.75 2,03 -2.,40 2.68 1,45 1,73 2,01 2.38 2,66 1.44 1,71 2.00 2,36 2.64
15 1.46 1.74 2,01 2337 2,65 1,45 1.72 1,99 2.35 2,63 1.43 1.70 1.97 2,33 2,60
16 1.45 1,73 2,00 2.35 2.62 1.44 1.71 1.98 2.33 2.60 1,42 1,69 1.96 2.31 2.58
18 1.44 1,71 1.97 2.32 2,58 1,42 1,69 1.95 2.29 2.55 1.41 1.67 1.93 2,27 2,53
20 1.43 1.69 1.95 2.29 2.54 1.41 1.68 1.93 2,27 2.52 1,40 1.66 1.91 2.25 2.50
25 1.41 1.67 1.92 2.24 2.48 1.40 1.65 1,90 .2.22 2,46 1.38 1,63 1.88 2,20 2,44
30 1.40 1.65 1.89 2.21 2.44 1.39 1,63 1.88 2,19 2.42 1.37 1.62 1,8 2.17 2,40
40 1.39 1.63 1,87 2.17 2,40 1,37 1.61 1.8 2.15 2.37 1.36 1.60 1.83 2,13 2.36
50 1.38 1.62 1.85 -2,15 2,37 1.36 1,60 1,83 2,13 2,35 1.35 1.59 1,82 2,11 2,33
100 1.36 1.60 1,82 2,11 2.31 1.35 1,58 1,80 2.09 2.29 1,33 1.56 1.79 2.07 2.27
o 1,34 1,57 1,79 2,07 1,33 1,78 2,25 1.32 1,54 2,03
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2,05

1,76
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TABLE XXVI (Continued)

SAMPLE SIZE 20
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