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CHAPTER I
INTRODUCTION
1.1 Optimal Control Problem Formulation

Over the past two decades, since contro]l systems design was first
formulated as an optimization problem, constant intensive research has
praduced analytical and numerical design procedures which give great
insight into the nature.of efficient"control“systems'v Before
Wiener (1), .control systems design was largely an art, rather than an
engineering science, Since then, the field of optimal control theory
has attempted to evolve a radically different approach to the design
problem. The .engineer must formulate the problem accurately, develop
mathematical models for the system to be controlled and know the
nature of the required measurements. All thé"various control objec-
“tives must be combined into one analytical expfession of the cost of
operating the system, "It is the goal of"modefn control thepry to
assist the engineer at this point'by producing explicitly the control
systems design which will minimize the cost (2)., A general procedure
for nonlinear systems and arbitrary cost functions perhaps cannot be
found, but for certain special problems, excellent design procedures
are available,

The optimal control problem can be formulated as follows; Given

the dynamical model



x(t) = f(x(t),u(t),t) (1.1)
where x(t) is the state n-vector and u(t) the contrel m-vector con-
strained to the set U, it is desired to find the optimal control which
minimizes, over the-set of admissible controls U, the scalar cost
functional or performance measure

te

3= i o(x(t),u(t),t) dt (1.2)
0

subject to initial (and possibly final) conditions. Here t represents
the independent variable time and tg and“tf'the'initia1 and final times
respectively. The dot indicates the time derivative. Also, the vector
function f(-) and scalar functjon g(-) are assumed to be continuous in

all the variables,
1.2 Techniques for Solution

The two main thepretical approaches to the optimal control problem
are Pontryagin's minimum principle and Bellman's dynamic programming.
Basically, the minimum principle provides a set of local necessary
~conditions for optimality in the form of a nonlinear two-point boundary
value problem,  The entire procedure for solving the optimal control
“problem by Pontryagin's minimum principle is summarized in Table I (3).
Although” the" formulation of the solution procedure is quite easy,
" the actual computational problems are very difficult because of the
“resultant two-point boundary value problem (4). "Also, the minimum
“principle gives necessary but not sufficdent conditions. Finally, the
optima]’controi“wi11ibe’obtained“és a function of time (open-loop)

“rather than as a function of states (closed-loop). .



TABLE I

SUMMARY OF PONTRYAGIN'S MINIMUM PRINCIPLE
FOR SOLVING THE OPTIMAL CONTROL PROBLEM

Step 1 Form the Hamiltonian H,

H(Xsus25t) = g{x,ust) + AT F(x,u,t).
Step 2 Minimize H(x,u,x,t) with respect to all admissible

control vectors to find u*(x,r,t) and obtain the

optimal H,
H*(x,a,t) = H{X,u*(x,a,t),2,t) = min H(x,u,x,t).
uel
Step 3 Solve the set of differential equations
dx | H*(x,a,t)
dt A
dr o _ aH*(x,2,t)
dt aX

with the given initial conditions and terminal

boundary conditions and the generalized boundary

condition
( H5(x,2,t) dt = Al dx ) |t = 0.
Step 4 Substitute the results of Step 3 into the expres-

sion for u*(x,A,t) to obtain the optimal control

u*(t).




An alternative approach, which answers many objections to
Paontryagin's method, is Bellman's dynamic programming. This method is
based on the principle of optimality (6), which states:

An optimal policy has thelproperty that, whatever the

initial state and the initial decision are, the remaining

decisions must constitute ap optimal policy with regard

to the state resulting from the first decision.

The complete procedure for the use of this approach is summarized in
Table II (3).

Dynamic programming yields optimal control laws in closed-loop
form in contrast to Pontryagin's minimum principle, Another advantage
of dynamic programming is that it can be used to obtain both numerical
and analytical results (6). The main difficulty with this approach is
the necessity of solving the nonlinear partial differential equation.
In fact, the solution of this equation is so difficult that it has been
accomplished only for a few special cases.

There is one class of problems for which it is possible to solve
the Hamilton-Jacobi-Bellman equation or the two-point boundary value
problem in a reasonably simple manner. This problem is often termed
the Tinear regulator problem. The pioneering work in this area was
done by Kalman (7).

" The linear regulator problem considers linear plants whose per-
formance measure can be expressed by guadratic functions of state and
control. The basic result for this probiem'is as follows (8): Given
a linear and completely controllable system

x(t) = A(t)x(t) + B(t)u(t) (1.3)

and the cost functional



TABLE II

SUMMARY  OF BELLMAN'S' DYNAMIC  PROGRAMMING FOR
SOLVING  THE- OPTIMAL CONTROL PROBLEM

Step 1

Form  the Hamiltonian H, with A replaced by vV,
H(x,u;9V,t) = g(x,u,t)’+'vVT F(X,U,t).

Step 2

Minimize H(x,u,vV,t) with respect to all admissible
control” vectors to find u*(x,vV,t) and obtain the
optimal H,

H*(x,WV,t) = H(x,u*(x,7V,t),wV,t) = min H(x,u,vw,t).
uel

Step 3

Solve the partial differentjal equation

v _
H*(x,WV,t) + 5 = 0

with the appropriate boundary condition to obtain
V(x,t). This equation is called the Hamilton-

Jacobi-Bellman equation for the control problem.

Step 4

Substitute the results of Step 3 into the expres-
sion for u*(x,vV,t) to obtain the optimal control

law u*(x,t),




f.
T {xT(0)A(E)x(E) + uT (BR(E)u(t) 3 dt, (1.4)

J =:x tf)Ax(tf) +

o t

0

where u(t) is unconstrained, Q(t) and A are positive semi-definite
matrices and R{t) is a positive definite matrix, then the optimal
control law is given by
ur(t) = K(t)x(t)
= -R-L(E)BT(t)P(t)x(t) | (1.5)
where P(t) is a symmetric and positive definite matrix which is the

solution of the matrix Riccati differential equation

P(t) = -P(t)A(t) - AT(t)P(t) + P(t) B(t)R7I(t)B
subject to the boundary condition

P(tf) = A, (1.7)

The optimal control Taw 15 thus Tinear with time-varying state
feedback.

If the matrices A(t), B(t), R(t) and Q(t) are all constant
matrices, A = [0] and te = =, the optimal control is given by the
equation

u(t) = R8T

-P-X(t)Q (158)
where P is a constant positive definite matrix which is the solution
of -the nonlinear matrix algebraic Riccati equation

T T

-PA-APF+PBR'B F-qd=r(0]. (1.9)
The optimal control Taw is thus seen to be Tinear with constant
feedback,

The selection of weighting matrices in the quadratic cost func-

tional is not a simple matter. Usually they are selected by the



designer on the basis of engineering experience coupled with simulation
runs for different trial values, In general, it is not possible to
solve ‘analytically for the gain matrix K(t).  Rather, its determination
requires the solution of the Riccati equation by one of several numer-
ical techniques, ' The computational-problems arising in the solution
“by different methods  are described by Fath (9).

Two solution procedures for a rather-general optimal control
problem have been indicated. These approaches rely upon the solution
of either a two-point boundary value problem or a nonlinear partial
differential equation, whith are amenable only to extensive machine

computation, " Even a Tinear plant with quadratic performance measure
“requires a considerable amount of precomputation and storage of gain
“matrix values, Hence, there is a need for a different approach to the
“optimal control .problem which applies to nonlinear systems and a gen-

eral cost functional.
1.3 Subpptimal Control

In spite of the mathematical simplicity of the formulation of the
solution by Pontryagin's and Bellman's techniques, there are certain
'shnrtconﬁnQS‘associated“wﬁthgthe'impiementation'of‘the solution to the
“pptimal control problem.  The application of these procedures to gen-
“eral systems represents a computationally difficult and cumbersome
task, In practice, the determination of optimal controls is limited
* to problems in which the state space i5 not too large, because the
" rapid .access memory requirements of the computer grow exponentially
with the numper of state variables. " Another serious Timitation may

“be the unavailability of all the states for measurement and feedback.



The ‘inaccessible states can be estimated by using a Luenberger observer
(10, but this increases the tost and complexity of the system, Hence,
there is a need for designing approximately optimal or suboptimal
controls.

- Different subsptimal control algorithms have been evolved as a
compromise” between computational effort and a .desireto incorporate
“vealistic implementation, . One approach is to solve a restricted .
problem in which the' form of the contraller that will be allowed is
postulated,” The problem then remaining is”to .choose the values of the
controller parameters” to.achieve optimality within these tonstrainis,
This is the so-called specific optimal: contrel problem (11),

In all suboptimal controller synthesis techniques, knowledge of
the exact solution to the optimal control problem would be of great
benefit, A comparison could be made between the optimal value of the
system cost and the value of the cost obtained by using the suboptimal
controller. In this manner a judgment could be made as to the accept-
ability of the suboptimal controller designed. Unfortunately, it is
rarely possible to evaluate the exact solution.

The new approach to the optimal control problem to be presented
in subsequent chapters has the advantage that the value of the optimal
cost will be specified.once the form of the performance measure is
chosen. " This .optimal performance value can be calculated even when

“the plant is nonlinear .or time-varying.
1.4 Systems Linear in Control

This dissertation is concerned with the development of a new

optimal control synthesis procedure and its application to a particular



class of nonlinear systems, those which are linear in control. Mohler
(12) has studied the application of such mathematical models to pro-
cesses in socio-ecanomics, ecology and physiology. Systems linear in
control can be described by the mathematical model

“x(t)="alx(t))+ B(x(t))u(t) , (1,10)
where a(-) is ann-dimensional vector-function of x(t) and B(+) is an
n x m matrix function of x(t). If a(+) and B(:) are linear functions
of x(t), the systems are called bilinear. A stationary bilinear system

can be represented by

. m
() = () ¢ BE(E(E) + Cult) (1,11)
where A, Bk (k=1,25..,,m) and C are appropriate constant matrices and

th component of the control vector u(t). Many physical

uk(t) is the k
and biological processes have natural models which are bilinear, As
examples, nuclearreactor kinematics (13), attitude control of satel-
Tites (14), and control of population of species (15) may be mentioped.
It has been shown that bilinear systems are more controllable

and in many cases, .provide more accurate models than'linear systems
(16)." Hofer (17) provides a survey on optimization of bilinear sys-
tems, specifically .discussing the time-optimal and quadratic cost
problems, ~In contrast to Tinear systems optimization, no general
analytical results: have been obtained, and the optimal control of

biTinear systemS'Ts*ﬂargeﬂy'an'untouched field.
1.5 Research Objectives

“In general, given . a mathematical model of the process, a cost

functional and sufficient computational capabilities, Pontryagin's
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minimum principle or Bellman's dynamic programming can be used to
obtain the optimal control . law by minimizing the: cost functional
“subject to the dynamic constraints imposed by the system. Recently,
however, Rhoten-and Mulholland (18,19) presented an approach which
potentially offers Targe reductions in computatijonal  requirements,
First, a general cost™ functional is formulated. ~Next, the optimal
trajectories are found without tonsidering the system dynamics. Then,
the controller structure is designed to.exactly track the optimum
trajectories.  This technigue has  been-used to select the optimal
control Taw for Tinear osciliatory plants (18) and for a class of non-
Tinear plants which .are-called norm=invariant.(19). The intent of
this research is to extend this technique to nonlinear systems which
are not norm-invariant, and particularly to systems Tlinear in control,
The new .synthesis procedure for the optimal control problem has
several merits. " Once the form of the performance measure is chosen.
“the optimal contrpl.is obtained in closed-Toop form, " For an infiniter
time problem, it is not necessary to solve either a two-point boundary
value problem.or.a nonlinear partial differential equation, A finite-
time problem requires' the solution.of a first order parameter
identification.problem irrespective of the order of the system to be

controlled,
1.6 Organization

The remainder-of  this dissertation is arranged in the following
“manner.
"The formulation.of the inner-product control problem is presented

“in Chapter I1.  For. the sake of completeness, the primary results of



1

(18) and (19) are included, with optimal-control- Taws obtained for
Tinear self-adjoint .and.nonlinear norm=invariant systems.

The primary theoretical results representing an extension of the
results of Chapter-II"to the synthesis of optimal  controls for systems
Tinear in control, are  found in Chapter 111, -A- fundamental control
“equality is derived for the more general problem formulation. The non-
uniqueness of the .optimal control” Taws and jts- consequences are dis-

" cussed .with the help.of an electrodrive civrcuit example,

The problem.of .designing.an optimal . inner-product controlier for
a continuous stirred tank reactor is considered in Chapter IV. The
response of the-chemital: reactpr to  the  jnner~product controller and to
a suboptimal controlier obtained by a repeated Tinearization technique
are compared,

"~ The physical- interpretation of the cost functional and other
related topics are briefly discussed in Chapter V. |

Finally, Chapter VI contains a summary of results and conclusions,



CHAPTER II
TNNER=PRODUCT PROBLEM FORMULATION
2.1 .General Cost Functional

“The calculation  of optimal controls is in general a very difficult
problem, especially the problem of synthesizing.contrpl laws realiz-
able in feedback form. - The_previpus chapter has presented a solution
technigue whith® yields - optimal-.closed-Toop control.laws;, but only for
Tinear plants with a quadratic  performance measure, ' In many practigal
control problems  the tost functional may be best described by a non-
quadratic form or the plant model may be nonlinear. " In such cases,
the‘genera1‘éo1utﬁonsﬂ1ead‘to'eﬁtﬁer“a"twowpointﬂboundary valye
problem resulting in an open-loop control (8) or a nonlinear partial
differential equation (20). -

It has been .shown, however, that if the cost functional is judi-
ciously selected, the optimal control laws for a wide variety of plant
descriptionS'can'bE‘obtained"{n't1osed—1oop“form WTthout»actua11y
solving a'.two-point boundary value problem (18,19).  The problem
formulation and a brief summary of results of (18,19) will be presented
in this chapter for- the sake .of completeness.

* The structure of the cost functional to be considered {is consis-
tent“with“thé'objective'ufidriving the state vector to zero in norm,

If x(t) represents the state vector, a primary error signal p(t) is
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defined by

p(t) = x

X1 (2.1)

where p(t) is the inner-product of the state with itself and is the

]

square of the Euclidean distance to the origin in state space, To
enable the error to be penalized in as general a manner as possible,
an error penalty function h(p(t)) will appear in the cost functional
integrand, where h(p) is restricted only by
n(p) » 0 if o0,
and (2,2)
h(0) = 0.
To penalize for excessive control inputs, it is noted that the time
derivative of p(t), denoted by o(t), provides at least an indirect
measure of the power input at any instant of time, As will be shown in
later chapters, a slightly more general form of o(t) will enable p(t)
to be identical to power input for certain problems. In contrast, the
normal quadratic penalty function for control input will not be a
direct power measure. The integral of a non-negative function of p(t)
will thus provide a measure of°the total control energy input. This
discussion leads directly to a general cost functipnal
te
36) = [ tnle(e)) + 52(8)) . (2.3)
to

Since the initial problems considered in (18) and (19) were cast as

infinite-time regulators, tf was assumed to be infinite,
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2.2 Linear Self-Adjoint Systems

The optimal control of linear self-adjoint systems for which the
control is bounded in norm is examined by Athans et al. (21). Rhoten
and Mulholland (18) considered the problem of selecting optimal inner-
product controllers for Tinear self-adjoint systems. The precise
system under consideration is

x(t) = A(t)x(t) +u(t),  x(tg) = x4 (2.4)
where x(t) is the state n-vector, u(t) the control n-vector and A(t)

is an n x n matrix., It is assumed that the system is self-adjoint, or

A(t) + AT(t) = [0] for all t 3 tg. (2.5)

The optimal control law which minimizes the performance measure
Equation (2.3) will be derived now by classical variational techniques.
The procedure is somewhat unusual in that no consideration will be
given to the plant dynamics until the optimal trajectories have been
determined, After the optimal trajectories have been found, the
controller structure will be designed to exactly track the optimal
trajectories,

A curve minimjzing Equation (2.3) (with te = ») must satisfy the

Euler-Lagrange equation and the assocjated boundary conditions:

d?p(t) _ dh t
2-—&%5--—2%- dpiw (2.6)

p(to) = pa
(2.7)

H

T
X0 Xo

Tim (p(t)) = 0. (2.8)
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Multiplying Equation (2.6) by o(t), and integrating once, yields

p2(t) = h(p(t)) + C, (2.9)
"where C is the c¢onstant of integration. Since the final tihe is
allowed to approach infinity, the constant of integration can be shown
to be zero by the use of final boundary condition Equation (2,8), and
" the initial condition Equation (2.7) still holds. Equation (2.9) can
also be written as
o(t) = - A(p(T)) (2.10)
for the infinite-time case, The sign of the square-root must be
negative to yield stable trajectories.
Examining now the plant dynamics, with Equation (2.4) premulti-

plied by xT(t),‘there results

XE)X(E) = x(E)A(E)x(t) + X (t)u(t). (2.11)
From the definition of po(t) and é(t); and using the fact that A(t) is

skew-symmetric, Equation (2.11) reduces to

S(t) = 2 X (£)x(t)

fl

2 x'(thu(t). (2.12)
“The inner-product nonlinear feedback controller structure of
Figure 1 is now hypothesized, This structure indicates that
u(t) = wle)x(t), (2.13)
" where ¥(p) is a nonlinear scalar function of p.  Then, the Equation
(2.12), which is merely a description of the plant trajectories (in
norm), becomes B

(1) = 2 y(p)x  (£)x(t)

2 w(p) o(t). (2.14)



u(t)

'> PLANT
DYNAMICS

Figure 1. Inner-Product Controller Structure
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The objective now is to select the nonlinearity y(*) such that the
solution of Equation (2.14) also satisfies Equation (2.10), which de-
scribes the pptimal trajectories. " Combining Equations (2.10) and
(2,14), and solving for y(p), there results

o(t) = - A(EN)
2 ¥(p)e(t), | (2.15)

"

It

and -

o(o) = =0l (2.16)

20

So, the optimal controller is specified by

u(t) = - Dfed x(t). (2.17)

“Thus, an analytital expression for the optimal control law for a linear
self-adjoint system has been obtained which minimizes a general perfor-
"mance measure.  While only one controller structure was examined, the
~development in succeeding chapters removes this  constraint of fixed

configuration.
© 2.3 Nonlinear Norm-Invariant Systems

This section represents a generalization of the previous section
for a class of nonlinear systems termed norm=invariant. Norm-invariant
systems. have the property that in the absence of control the norm of
the state vector remains constant. The property of norm-invariance for
a physical system is often a consequence of the conservation of
momentum. A physical system which falls in this class is an asym-
metrical body spinning in space. Athans et al. (22) examined the
problems of minimum-time, minimum-fuel and minimum-energy control for

“such norm-invariant systems. Mulholland and Rhoten (19) obtained an
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¥

explicit solution of control Taws which minimize the general cost
functional of Equation (2,3).
A system described by the ordinary differential equation
x(t) = a(x(t),t) + u(t),  x(t) = xq (2.18)
where a(+) is a nonlinear vector function of state and time, is norm-
“invariant if the solution of
x(t) = a(x(t),t) (2.19)
“has' the property that
[IxCe) [T = [ [x(t) ] (2,20)
for.all x(tg) and all t 2 ty. But, for any x(t),

AL - & DT wx(01 ™

t
..1/

= & D001z K (KD

= xT(E)x(t) / [1x(t)]]. (2.21)
Using Equations (2.21) and (2.19) it can be seen that Equation (2.20)

is equivalent to

X (t)a(x(t),t) = 0, (2.22)
for all x(t) and all t 2 ty. Proceeding as before, it can be easily

concluded that the optimal control law Equation (2,17),

u(t) = 2Bl (1), (2.23)

sti11 holds for the norm=invariant systems described by Equation
(2,18).
“An optimization- technique has' thus been presented which permits
“the explicit solution of control laws for linear self-adjoint and
nonlinear norm-invariant systems which minimize a general performance

criterion. The controller structure uses the square of the Euclidean
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distance to the origin in state space-as the primary error signal and
requires one nonlinear- transducer in the- feedback 1oop.

While the optimization approach presented in" this-chapter is new,
the class of systems for which-it-is applicable-is rather restricted,
“Very few systems satisfy  the norm-invariance criterion, and the
“dimension of the control-is usually Tess  than that of the state.
Moreover, some applications may require a finite terminal time.
Extension.of .the results presented here to inciude a more general class
of nonlinear systems, especially systems linear-in control, will be
“presented in-.the next chapter and form the primary theoretical contrj-

“bution of this dissertation,



CHAPTER III

OPTIMAL INNER-PRODUCT CONTROL OF
SYSTEMS LINEAR IN CONTROL

3.1 Introduction

In this chapter, which represents-a generalization of the results
" of Rhoten and Muthplland (18,19), the problem of optimal inner-product
control is  examined for a  general class of nonlinear systems. A funda-
mental control equality is derived for the more general problem formu-
lation, and the optimal- control-laws are obtained as a function of the
“state vector, Both infinite and finite final-time problems are con-
“sidered, Finally, the non-uniqueness of the optimal control law and

its consequences are discussed.
3.2  Fundamental Control Equality

For.a plant described by the differential equation
x(t) = F(x(t),u(t),t), x(tq) = xg (3.1)
where x(t) represents the state and u(t) the contrnl, it is desired to

select a control u(t) such that the cost functional

f
L(p(t),p(t)) dt

[

f’
{h(p(t)) + a(t)?) dt (3.2)

Pt Pt

(4
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is minimized when evaluated-along the-solutjon trajectories of Equation
(3.1). .Here, p(t) represents  the primary error signal .and is defined

by the relation

o(t) = x (1)a(t)x(t), (3.3)

where Q(t) is a positive definite symmetric weighting matrix and h(.)
is a positive definite real-valued function with h(0) =0, The philo-
sophy of the new.approach is  to evaluate .the splution trajectories (in
norm) which minimize the chosen.cost functional Equation (3.2), and
then to select the controller structure such that the norm of the solu-
. tion of Equation (3.1) exactly tracks the predetermined trajectories,

A necessary condition for the cost functional Equation (3.2) to
have a relative extremum.is provided.by the Euler-lLagrange equation and

the associated .transversality conditions,

R
p(to) = po

= x30(te)xq (3.5)

and
Tim p(t) = 0 for variable terminal point (3.6)

toroo

or

p(tf):tpf for.fixed terminal point, (3.7)

where Pe is .the final value.of the inner=product of the state vector,
It should be noted that‘pf doés.not determine a unique combination of
final states, .If.a.specific point.in.state space is the desired target
~ set, rather.than.a.sphere.of certain radius.a simple transformation of

variables is required.to. transform the target set to the origin.
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Sufficient conditions for a weak minimum of the functional Equa-

tion (3.2) require (20)

2 L]
el , g, (3.8)

5

and

aZng,é} d_ 132L(ps0)

It can be easily verified that Equation (3.2) always satisfies Equation
(3.8), while Equation (3.9) requires that

2

For example, if

hip) = p2" , n=1,2,...,
Equation (3.10) is satisfied and a weak minimum is guaranteed, It is
possible, of course, to have a weak minimum even if h(p) is not an even
power of p and Equation (3,10) cannot be satisfied.

Multiplying Equation (3.4) by p(t) and integrating once yields
p2(t) = h(p(t)) + C , (3.11)

where C is the constant of integration to be evaluated using the final
boundary condition Equations (3.6) or (3,7), and the initial condition
Equation (3.5) still holds. Equation (3.11) can be written as

p(t) = /A ()] + C . (3.12)
The selection of the sign of the square-root is not a major problem,
as the correct choice is usually obvious from the boundary values,
For regulator-type problems, where the final value of p(t) is smaller
than the initial value of p(t), the negative sign holds, On the other
hand, for problems requiring increase in the state norm, the positive

sign of the square-root is the correct choice,
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As an example consider the problem of minimizing the functional

In2
J= | [e2(t) +2(t)] dt (3.13)
such that
p(0) = 5
and (3.14)
p(In 2) = 1,

The Euler-Lagrange equation for this problem is therefaore

o(t) = o(t), (3.15)
the solution of which can be written as

p(t) = ¢ et + cy et. (3,16)

The constants ¢y and c, are determined by applying the boundary condi-

tion Equation (3.14), and Equation (3.16) becomes

o(t) = 6 et - et (3.17)
It is simple to demonstrate that a minimum is indeed obtained since the
sufficient condition Equation (3.10) is satisfied.

‘Multiplying Equation (3.15) by o(t) and integrating once yields

p2(t) = p2(t) + C, | (3.18)
where C is the constant of integration. "Since the minimizing trajec-
tories are.already known, the value of C can be easily obtained,

C = 02(0) - p2(0)
49 - 25

i

24,
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Equation (3.18) can be written as

o(t) = £/p2(E) + 24 , (3.19) -
and a simple substitution of p(t) and o(t) in Equation (3.19) will

reveal that the negative sign of the square-raot-holds. Alternatively,

if
p(0) =1
and (3.20)
o(1n 2) = 5,
the minimizing solution is
p(t) = - 2eF+ 3¢t (3.21)

and the value of C 1s still 24. For this set of boundary values, only
the positive sign of the square-root satisfies Equation (3.19), Since
the problems considered in this work are cast as regulators, the sign
of the square-root in Equation (3.12) will be taken as negative.

To begin the solution of u(t), the plant dynamics are considered,

T

If Equation (3.1) is premultiplied by x (t)Q(t), it can be dempnstrated

that

—

(1) = p(0)A)x(E) + X (DAF(x(t),u(t),t) ,  (3.22)

™

where it is noted that

7 o(t) = 7 x (D)Q(t)x(8) + X ()Q(B)k(t)  (3.23)

from the definition of p(t). In order for Equation (3.22), which is
merely a description of the plant norm trajectories, to describe opti-
mal trajectories, Equation (3.12) must also be satisfied. Thus, the
selection of the optimal control u(t) has been reduced to the solution

of the scalar fundamental control equality
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- 3 AGTEITFC = 5 x (£)Q(t)x(t) + xT(£)Qt)F(x(t),u(t) ). (3.24)

At this point it would perhaps be well to relate the fundamental
control equality Equation (3.24) to the optimal- control laws of the
preceeding chapter. If Q(t) =1, te > = and the plant is described
by

x(t) = a(x(t)) + u(t), (3.25)
where a(x(t)) satisfies the norm-invariance property of Equation

(2.22), Equation (3.24) reduces to

- & MGTEIT = x1(t) u(t), (3.26)
and the results of Chapter II follow.
Suppose, however, that while Q(t) = I and te ~ «, the system is

not norm-invariant.  The control equality Equation (3.24) then becomes
1. 2 T T
- 7 /h(e(E]] = x (t) a(x(t)) + x (t) u(t), (3.27)

Even if the controller structure of Figure 1 is assumed, thus expres-
sing the optimal control as a scalar nonlinear transducer which is
closed form in o(t) multiplying the state vector, the transducer char-
acteristic cannot usually be evaluated. This fact is not unexpected,
since nonlinear differential equations are not linear with respect to
initial conditions.
Nevertheless, if it is desirable to implement the controller

structure of Figure 1, this can be accomplished.  For known initial

conditions, the optimal trajectories are simulated using the control

%_¢ﬁ(gT(t) x(t)) + xT(t) a(x(t))
u(t) = - ™ "
| x(t) x(t)

where it is seen that Equation (3.28) satisfies the fundamental control

x(t), (3.28)
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equality Equation (3.24). Then, the many-to-one relationship between
x(t) and p(t) is evaluated-along the optimal trajectories and the
appropriate nonlinearity can be reconstructed. O0f course, different |
initial conditions would yield different trajectories and hence differ-
ent transducer characteristics.

As an exampie,“suppose“uift)'and”uz(t)'arE“to be selected to mini-

mize the performance measure

o

0= [ 1o2(t) + 2(1)7 at (3.29)

4

0

along the solution of

X)(8) = 2 x,(t) + eT5x (8) + xp(£)T2 + uy(t) (3.30)
kp(t) = - x3(t) - x,(t) + up(t), (3.31)
with
o(t) = xT(t) x(t). (3.32)
Then the solution of Equation (3.24) for u1(t) and uz(t) yields
u(t) X, (t)
P T xen | (3.33)
uy(t) Xy (t)
where
2%, (t) + e F(xq (t)+x,(t))2
[x,(8) x()]] ° P
T 1 -x§(t) - xz(t)
V() x(t)) = - 97t BEHOEEUON :

(3.34)
The optimal trajectories, simulated on a digital computer for the
system of Equations (3.30) and (3.31) using the initial condi-

tions x1(0) = xz(O)“= 5, yield the characteristic presented in
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Figure 2, ~Since different initial conditions would yield different
characteristics, an optimal transducer would be represented by a sur~
face, and an example is presented in Figure 3 for the above problem
with x](O) =5, -5 £ x,(0) = 5.

The fundamental Controi“equaﬂi%y"iS“vaiid for a general error
function h{p), but the primary error signal p(t) is somewhat con-
strained.” However, several useful possibilities for p(t) cause no
difficulties. " As  an example, if a performance measure were desired
which would more” nearly  correspond to the quadratic form, p(t) could

be defined by

o(t) = I (£)Q(t)x(t). (3,35)
Here, p(t) represents' the Euclidean distance in state spage rather than
the square of distance as defined by Equation  (3.3). By now setting
h(p) = p%, the performance measure of Equation (3.2) is seen to closely
resemble the familiar quadratic cost functional. A1l of the aforemen-~
tioned analysis can be performed for this p(t), and the fundamental

control eguality becomes

-o(t) EGETEITF T = 5 x' ()Q(£)x(t) + %! (£)Q(t) F(x(t),u(t),t).
(3.36)
To recapitulate, the optimal control problem has been reduced to
the evaluation of a' constant of integration, to be discussed in the
next section, and the solution of the algebrait Equation (3.24) (or

th'order set of

Equation (3.36)) for u(t). Specifically, neither the 2n
differential equations with split boundary conditions of the minimum
principle npr the nonlinear partial differential equation of dynamic
programming need be solved. - Of course, the difficulties to be encoun-

tered in the solution of Equation (3.24) or Equation (3.36) depend



¥e) g

-10 L

i
Figure 2. Nonlinear Transducer Characteristic
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Figure 3. Nonlinear Transducer Surface
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inherently on the plant dynamics. As the results of the previous chap-
ter has indicated, the solution is indeed simple for linear self-
adjoint and nonlinear norm-invariant systems. Succeeding sections will

illustrate solution techniques for systems 1inear in control.
3.3 "Evaluation of the Constant of Integration

For the asymptotic control  problems™ in which the final time
approaches infinity, the constant of integration, C, in Equation (3.11)
can easily be shown to be zero by the final condition Equation (3.6).
While many applications of performance measures with infinite final
time are known, others require a fihite terminal time. For example,
air-to-air and surface=to-air missiles must have their performance
indicated with respect to a finite, and often quite small, intercept
time, For such applications the numerical evaluation of the constant
of integration, C, in Equation (3,11) is required, resulting in a
second order two-point boundary value problem. The order is empha-
sized, since the primary restriction to the use of the minjimum
principle is the inability to accurately solve the required two-point
boundary value prob1em'when“the“system dimension becomes quite large,
Here, only a second order problem must be solved, independent of the
plant order. Additionally, this problem can be reformulated as a para-
meter identification problem which is always first order in p(t).

This procedure and an appropriate numerical algorithm are presented
in the Appendix.

The final advantage of this technique is concerned with the
evaluation of a constant rather than a time trajectory, In general,

if the plant is nonlinear or the performance measure is non-quadratic,
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the optimal control law derived from the mﬁnimum'princip1e will be in
open-loop form, requiring the entire trajectory solution of the two-
point boundary value problem.  The resultant control Taw must be stored
as a function of" time, often requiring excessive computer memory capa-
city., The goal of this approach is to reguire only the precomputation
and storage of" the constant C, with  the  remaining control law evalua-

“tions accomplished in real” time-and implemented in closed-loop form.
3.4 Systems Linear in Control

The optimal immer-product controller will  now be designed for a
specific plant structure in which the control-enters linearly. The
“system equation” is’ given by

| X() = a(x(t)) + B(x(t))u(t) B (3.37)

where x(t) is the state n-vector, u(t) is-the control m-vector, B(x(t))
is an n x m matrix function of the state and a(x(t)) is an n-vector
function of the state, " The optimal inner-product control of such
systems” when the' control matrix is not a function of the states has
been- considered by Leeper (23). For systems described Equation (3.37),
the  fundamental control eguality Equation (3.24) reduces to (time

arguments” are suppressed for notational simplicity)

- 5 AT ¥ € =5 x"0x + x'Qa{x) + x"QB(x)u. (3.38)
Defining
o(x) = [y x'0x + 5 FGETFC+ x'Q a(x)], (3.39)

Equation (3.38) can be written as

o(x) = x'Q B(x)u. (3.40)
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While it is true that Equation (3.40) does not determine a unique con-
trol u, all the controls which satisfy Equation (3.40) force the system
to track the optimum trajectories (in norm). To illustrate the non-
uniqueness of the optimal control, it is assumed for the moment that

the state and control vectors are of same dimension. Then,

i

PP 19 IV (3.41)

xTQ B(x)x
satisfies the fundamental control equality. Notice, though, that this

controller becomes-unbounded whenever

xTQ B(x)x = 0. o (3,42)

While this doeS'nqt‘ﬁnvaiidate the optima11ty‘bf“thE“so1ution, it
“obviously implies that implementation is not possible.  In general,
it is not possible to know in advance whether or not’ the solution of
the differential Equation (3.37) with the control described by Equation
(3.47) will satisfy Equation (3;42)0 Furthermore, the chojce of the
weighting matrix Q also influences when Equation (3.42) is satisfied.

~ Another solution which satisfies the fundamental-control equality

Equation (3.40) is given by

u = X B'1(x) X, (3.43)
X Qx
requiring that
' det (B(x)) # 0 (3.44)

along the optimal-state trajectories. It is often possible to deter-
mine the region in the state space where Equation (3.44) is not
satisfied from the  knowledge of the system dynamics alone. Systems
which do satisfy Equation {3.44) are termed as directly controllable

(24). " The control action, in such systems, can affect the derivatives
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of each of the components- of  the state vector directly and
independently.

A more general solution of-Equation (3.40), applicable when the
dimension of" the state is not egual to the dimension of the control,

can be written as

x'Q B(x) M(x)x

where M(x) s an arbitrary m x n matrix function of the state vector.
Equations (3.471) and (3.43) can be  obtained by setting M(x) equal to
the 1dent1ty"matfﬁx"and'B’](X)‘respectﬁveﬂy;““In'genera1, the compon-
ents of M(x) can be" constants  or functions of the states. It is
important. to note, of course, that Equation (3.45) does provide a
closed-Toop system.
The general control’ law of Equation (3.45) can still become
unbounded if
X1 @ B(x) M(x) x = 0. (3,46)
But, since M(x) is arbitrary, it may be possible to select its entries
so that Equation  (3.46) is never satisfied.- Unfortunately, Equation
(3.46) must be evaluated along the  possible system trajectories. So,
extensive simulation may be required in the selection of an- appropriate
M(x). ' Another approach is to provide several gain matrices, using one
unti]'xTQ'B(x)M(XDX“becomES‘smaﬂier"than'some“preseﬂected'va1ue, at
“which time an alternate M(x) is used.
It may be that neither of the above approaches  can succeed. That
is, B(x) may be such" that for some value of x, no M{x) exists which
will not satisfy Eguation (3.46). If such is the case, control must be

provided by'somE'suboptima1”scheme;'“However;“if"a‘suboptima] control
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law is required,'the“VaﬂueS”of“the”cost“functiona1‘for"both the unob-~
tainable optimal so1utﬁbn"and”the“suboptima1“so1ution can be found by
simulation. - Thus, the exact degradation in system performance can be
found, and various suboptimal  control” laws compared.

While 1t is true- that the~non=uniqueness-of- the controller struc-
“ture might be" interpreted-as- a-source” of some" concern, it does allow
greater design flexibility in selecting the-optimal controller, In
addition to changes in M(x) required for finite control signals, simu-
lations may indicate changes-whith will reduce the chances of
unexpected probiems such as control magnitude and/or rate saturations, .

Some of these different aspects will now be illustrated with the

help of a simple example.
3.5 Control ofan Electrodrive Circuit

The model of a simplified electrodrive circuit which was proposed
by Feldbaum (25) can be written as
Xy = Xy Uy | (3.47)

Xy = Uy (3.48)

The time-optimal and quadratic cost problems for this circuit have been
investigated by Hofer (17). InWtHiS“gtudy;“it”waS‘shown that extensive
computations were required to evaluate the optimal control laws, and
that the resultant controllers were rather complex to implement. More-
pover, for the time=optimal case, the-optimal- trajectories were not
unique.

Iniorder to-design an optimal- inner=-product controller for the

" electrodrive circuit, the performance measure was chosen as
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o= [Irm +srmlan o (3.9)

where

Tet) x(t). e (3.50)

T X x M1 My
u = —— X (395])

el Xs 0 {Im m
XT [j 2 ] 11 12 X Mo 1 M)y
0 Tl{myy my,

where m 5 (i,j=1,2) are the entries- of the arbitrary matrix M(x) and

can be ejther constants or functions of x(t).
In order-to illustrate the capabilitiesas well as the limiations

of selecting M(x), three choices will be considered;

] 0

My = , (3.52)
2B s

M2 = 11 (3.53)
0 7

and

1 0

M3 = . (3.54)
0 x2
|

For all three of" these cases, the optimal control becomes unbounded
as’ X, ~ 0. Indeed, a brief examination of Equation  (3:41) shows that
there is no'M(x)“that”wiiﬂ“yie1d'a“bounded”contro1‘for‘x2 = 0 and

X # 0. Even:iffnﬁ] = Moy = 0 (an attempt to make the numerator small

for xq # 0), the control is given by
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1
- 5 (x4 + x3) m X
A B 12 %2 (3.55)

Xo (Mo X1 Xo + Moy X,)
2¥V12 °1 72 22 72 Moo Xo

and x, (m]2 Xy Xp ¥ Moy Xo) ~ 0 with the square of X5, while the
numerator“for“each“component"ofmu'approacheS‘zero only as Xy * 0.

In addition to x, = 0, M, and Nb yield additional lines of infinite u.
These are easily shown to be

= - x% (M(x)

il

X, M), (3.56)

and

-4 x5 (Mx) = M,). (3.57)

X2

To first examine the problem of selecting a single M(x), the
circuit model was  simulated on a digital computer with M(x) = M] and
an initial state (3,2).  The resulting state trajectory is shown in
Figure 4 as a-c, with the lines of infinite u also indicated for each
M(x). When the time reaches 4.4 seconds*xz'approacheS'zero, resulting
in a simulation halt or giving results-which- are not meaningful, depen-
ding on the" type of integration routine-used. "~ In general, a fixed step
routine may'"miss""th‘e*t'ime..at"wh‘it:h"x2 = 0'while a variable step size
algorithm, in an attempt to- reduce error, will- decrease the step size
until simulation is halted.

Since u tendS'tb"infinity*aS“xz approaches zero for all of the
M's, one must be'chosen‘such‘that“x1 approaches” zerp more rapidly than
Xy does, The choice‘of‘Mz‘accgmp1ishes*this,"with‘the“resu1tant tra-
jectory a-0, If, however, the initial state is changed to (3,-2),
neither Mj nor'M2 will yield bounded controls;, with the sample trajec-
tory d-f shown for“M(x)'=‘M1. A selection of M, does provide an

acceptable solution, with trajectory d-0 indicating a control bounded
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Figure 4. State Trajectories for Electrodrive Circuit:

Without Switching
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for all t. This change in character of solutions due to changes in
initial conditions is a manifestation of the nonlinear character of the
problem.

The preceeding example has indicated how simulation may enable the
design engineer to-select an appropriateM(x). Remaining problems
arise if simulation is not possibﬂe'or‘if'xz(o) = 0. If the former is
the case, it might be desirable to use any reasonable M{x) until the
control became  too-large, and  then change to a new gain matrix. Such

“an approach is shown in Figure 5. With the initial state (3,2), M
is used unti] Xo becomes close to zero, at which time the gains are
changed” to correspond to M3u The resultant-trajectory is shown as
a-b-0.

Although a change in control law has been-made while the system
was in operation, the solution is stil1-optimal, though not uniquely
s0. The inner-product time history will remain the same no matter when
the change from'Mi t0'M3'occurs;'on1y the individual state trajectories
will differ. Also shown in Figure 5 is the trajectory d-e-0 resulting

from an initial state (3.-2), an init1a1'M(x)"=‘Mi; and a change to

Considering now the prob1em'of'x2(0)“='03'1t might at first be
thought that the proposed solution is of no value, since u will ini-
tially be unbounded  for any M(x). However, if any control which will
drive X, away from zero is momentarily appiied, and then an optimal
controller used, the'exact'degradation'iﬁ'performance can be found,
Since the optimal:norm trajectory is known to satisfy

o(t) = -p(t), (3.58)
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the performance measure reduces to an elementary quadrature. Thus, the
optimal, though-unattainable, value is found to be

7% = x4(0). (3.59)

A simulation  of the-actual {rajectory will allow calculation of the
actual J obtained.

As an examp1e3'if'x1(ﬁj“= 3 and'xz(o) = (0, the optimal cost is 81,
If a linear control

-1 0
(3,60)

k=
il
x

1
7 0

is applied for 0,5 seconds, and-then the optimal control used with
‘M(x)‘=“M3;”the“soiution trajectory‘g;h;o‘of"Figure'5’resu]ts in an
index value of 84,52, an intrease of less than 5%.

To summarize, the nonunigueness of control laws aljows the design
engineer great  flexibility:. ~1f numerous simulations are possible, a
single M(x) may be" found to be acceptable. If not, alternate M's may
be used as.conditions warrant. Finally, if no optimal control is
implementable, a suboptimal .controller may be briefly used to drive
the system to a"point in- state space where an optimal controller is

“bounded;,” and" the-resultant  performance  degradation calculated exactly.



CHAPTER 1V
THE CONTINUOQUS STIRRED TANK REACTOR
4.1 Introduction

This chapter considers the problem of designing an gptimum inner-
product controller for the con%inuous stirred tank reactor (CSTR), The
CSTR is used extensively in the organic chemical industry for a wide
range of reactions. Its virtues are its simplicity of construction and
ease of temperature control. The study of the CSTR as a control pro-
cess has received considerable attention in chemical engineering
Titerature (26-32). Fournier and Groves (26) applied parameter search
techniques to determine an approximate control algorithm, and Weber and
Lapidus (27) presented a suboptimal controller design with a quadratic
measure of performance. Fournier et al. (28) demonstrated that a
hybrid controller can be used tb implement the suboptimal control law.

In this chapter, the CSTR dynamical model is presented and an
optimal inner-product controller is obtained. The response of the CSTR
to this optimal inner-product controller and to a suboptimal controller
obtained by a repeated linearization technique are compared. Finally,

a discussion of the results is provided.

4.2 The CSTR Dynamical Model

The CSTR consists of a tank of volume v, into which there is in-

jected a continuous flow of reacting material at a feed rate w. The
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reacted material passes continuously from the tank at the same rate,
The reactor is well stirred so that the concentration, CA, and the tem~
perature, T, of the reactants are constant throughout the volume. It
israssumed that a second order irreversible reaction of the form
2 A~ B is taking place, and that the reaction rate is given by kCﬁ,
where k is the reaction rate constant.

Under these assumptions, a mass balance gives

dCA W

V—-s—--::

w_ - - kC2

& = oy CarCa) - KCE (4.1)
where t is the time, Pg is the density and CAf is the inlet concentra-
tion. The reaction rate constant can be expressed as a function of

temperature by using the Arrhenegus expression

k = ko eXP(-a/T) s (4»2)

where ko is the frequency factor and a is a constant. An energy

balance gives

dT
Vpde dt

H

total heat generated - total heat removed

kvCy (-aH) + Cw (Te-T) +q (4.3)

P
where AH is the heat of reaction, Tf the feed temperature, Cp the
average heat capacity of the reactor, and q the heat added,

It is simple to assume that the amount of heat added is directly
manipulated and enough heat transfer is available so that no saturation
occurs. But in practice, g is a function of temperature of the reac-
tants and the form of cooling chosen. If the temperature of the
reactor is controlled by a jacketed pot through which a coolant flows

at a sufficiently high rate to maintain a uniform coolant temperature,

Tc’ then,
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q=hA (T-T,) ., (4.4)

where h is the overall heat transfer coefficient and A, is the area of

the cooling surface.
4,3 Steady State Values

The accepted procedure for the operation of a CSTR is to design
the chemical reactor to operate at a steady state condition. This
approach is based on the implicit assumption that some steady state
system will always correspond to the most profitable plant. Douglas
(29) presented a detailed account of optimum steady state design. At
steady state the rate of change of concentration and temperature are

zero, This gives,

W

S - - 2 =

- (Cpp - Cp) = v kg CRg = 0 (4.5)
cp Wg (Tf - TS) +qq - (aH) v ke cﬁs =0, (4,6)

where the subscript 's' denotes steady state values. In general, any
solution to Equation (4.5) and Equation (4.6) is a steady state solu-
tion, and due to the nonlinear nature of these equations, multiple
solutions are possible. Perlmutter (30) discussed how unique solutions
to Equations (4.5) and (4.6) can be obtained by establishing ranges of
the system parameters, Since there are two equations with six vari-
ables, four of them must be chosen while the other two variables can
then be calculated.

If feed conditions and heating mechanisms are specified, there are
normally three equalibrium points. Rajagopalan and Seshadri (31) pre-

sented a computer a]gorithm to find the equalibrium states. An
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alternative technique is to specify the concentration and temperature
of both the feed and the product. Then, the steady state values of

feed rate and heat added can be calculated easily:

ke = ko exp (—a/Ts) (4.7)
Wg = v kg Co pg / (Cpp = Cpg) (4.8)
= 2 . -
ag = (aH) v kg CZ Cp v (T = TJ)- (4.9)

A stability analysis of possible steady states can be found 1in

Perimutter (30).
4.4 Control of Steady State

If the desired steady state solution is unstable, or if perturba-
tions die away too slowly, it is necessary to dynamically control the
reactor, The simplest control system measures the deviations of con-
centration and temperature from their steady state vaJues and varies
the feed rate and amount of heat added (i.e. coolant flow rate).
Usually, the control law is determined from among an admissible set of
controls such that some suitable performance measure is minimized.
Since the reactor dynamics are nonlinear, the evaluation of such con-
trols poses a complex computational task in the form of solving either
a two-point boundary value problem or a nonlinear partial differential
equation.

By selecting the performance measure in the general form as
discussed in section 3.1, it is possible to obtain an analytical
expression for the optimal inner-product controller rather easily.

It is convenient to first introduce the normalized dimensionless

variables
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C, - C T-T
A As ' s
Xy = e (a) X, = (b)
1 CAS 2 TS
W-w q-9q
s s
up = (c) uy = ——  (d)
1 W 2 dg
s 4,1
t*vg';q (e) (4.10)

Substituting the relations Equations (4.10a) - (4.10e) and (4,2) into

the reactor Equations (4.1) and (4.3), there results
k] = ¢p(xq+1)? exp(~a/xy*1) + CoXpteoxqUyteauyteg (4,17)
iz = c4(x]+1)2 exp(—u/x2+1) + CpXptCpXolytCely ey teatey (4,12)

where definitions of the c's and a are shown in Table III. Equations

(4.11) and (4.12) may be written compactly as

x = a(x) + B(x)u , (4,13)
where
x =[x %] T
u = [u-! UZ] T
C,(X,+1)? exp(-a/x,+1) + c, Xq¥C
a(X) = 1 1 2 271 3 (4@14)
§4(x]+])2 exp(-a/x2+]) * CgXptegtey
and

Ch Xq + ¢C 0
Cp Xp + G5 G
So, the reactor dynamics Equation (4.13) are seen to be Tinear in
control and of the form as discussed in section 3.4, and the results

of that section apply. Hence the optimal control law which minimizes

the performance measure
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TABLE III
NORMALIZED CONSTANTS

Constant Definition Value
-vk p,C
c 0 "d "As -1.630 x 10°
1 W
s
c2 -1 -1.000
Che = €
s ‘Afc As 1.000
As
-AMH v k_C%
0 As
c 1.078 x 108
4 Cp Tg W
c5 -1 1,000
Te =T
c f S 1,515 x 107}
6 T
s
s 8,540 x 1072
o . et . X
7 Cp TS W

21.120




47

J = J [ hip(t)) + p2(t) 1 dt (4.15)
Q
where
o(t) = x'(£)Q(t)x(t), (4.16)
is given by
1 ‘ 1 .T; T
7 Mlp) + 5 x'Q x + x'Q a(x)
7 - - - M . 4,17
- [:- xTQ B(x) M(x) x :} (x) x ( )

Alternatively, if p(t) is defined by

o(t) = A (t) Q(t) x(t), (4.18)

the optimal control becomes

1

TA T

we [l R AL X A0 200 i) x, (4.19)
x' Q B(x) M(x) x

The matrix M(x) in Equations (4.17) and (4,19) is an arbitrary matrix

to be selected.
4.5 Simulation Results

The values of physical constants which have been chosen to simu-
late a realistic situation are presented in Table IV, with the
corresponding values of normalized constants given in Table III. The
feed temperature and feed concentration are adjusted to coincide with
the initial conditions.

The first problem of the design process is to select a suitable
performance measure. To initially provide a performance measure some-

what similar to the familiar quadratic cost functional,



TABLE IV
PHYSICAL CONSTANTS

Constant Value Units
v 13.38 ft3
Py 55,00 Tb/ft3
Cp 1.00 Btu/1boR
AH -12.00 x 103 Btu/1b mole
a 14,00 x 103 OR
Ko 83.33 x 107 ft3/1b mole min
Cps 0.40 1b mole/ft3
Tf 560,00 OR
Chs 0.20 1b mole/ft3
Ts 660.00 0R
kg 0.51 ft3/1b mole min
W 75.20 Tb/min

42.38 x 102 Btu/min
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3= [ [ n202(t) + p2(t) ] dt (4.20)

will be minimized, where

o() = AT (1) Q(8) x(t) (4,21)
and n is a constant. Since precise concentration levels are usually
considered of more importance than temperature variations, the weight-

ing matrix is selected to be

1 0
Q(t) = l: :‘ . (4.22)
0 100

Further, Jetting the arbitrary matrix M(x) be the unit matrix in

Equation (4.19), the optimal control law becomes

y = _E‘; 4 g x+ X Qa(0)7 (4.23)
x Q B(x) x

where a(x), B(x) and Q are given by Equations (4,14) and (4.22)
respectively. The reactor dynamics, with the control of Equation
(4.23), were simulated on a digital computer and the resulting state
trajectories are shown in Figures 6 and 7 for two values of n, It is
clear that as n increases, errors are penalized more heavily than
error derivatives and the controls increased to more rapidly drive the
state variables to the desired steady state values.

To provide comparitive solutions, a repeated linearization tech-
nique is used. The nonlinear system of CSTR equations can be linear-

jzed about the assumed trajectories x(t) = X, and u(t) = 0, to obtain

X(t) = A X(t) + B G(t). (4,24)



Figure 6.

Concentration Versus Time
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Selecting a quadratic cost functional

0= [ 5T & 2e) + 87w d(e) 1 at, (4.25)

the control law which minimizes Equation (4.25) can be seen from
section 1.2 to be of the form

a(t) = K x(t). (4.26)
This control, obtained for the linearized system, is applied to the
actual nonlinear system as long as the state trajectories remain within
certain prescribed Timits about x , with the Timits selected to insure
a valid linearization. Suppose t; is the time when these limits are
exceeded, and let x(t1) and u(t]) be the state and control values at
that instant. The CSTR equations are then Tinearized about x(t1) and
u(t]), and ‘a new value for K found as before. The new control is
applied, and the process repeated. Curves resulting from this approach
are also presented in Figures 6 and 7, It can be easily observed that
two rather distinct optimization techniques have resulted in signifi-
cantly different controller structures having solution curves which
are not entirely dissimilar.

In Chapter III it was demonstrated that the arbitrary matrix M(x)
in the optimal control law could usually be selected to yield bounded
controls; it may also be possible to choose M(x) to give not only
finite but also desirable .control Taws. The control trajectories for
the above example are shown in Figure 8 with n = 2. Atlthough through-
out the synthesis it was tacitly assumed that the control vector was
unconstrained, it js clear that the controls as shown could be im-
proved with respect to their relative magnitudes. That is, a reduction

in the normalized flow rate Uy might be desirable even if the
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normalized feed rate, Uys were increased.

1 0
M(x) = [: :l (4.27)
0 10

in Equation (4.19), the control trajectories are changed considerably,

By setting

and are also shown in Figure 8, The new control curves are certainly
more balanced in terms of maximum magnitudes, and the state trajec-
tories changed very 1ittle. However, even if the individual state -
trajectories were changed in a significant manner, the performance
measure would not increase, as system optimality is independent of the
choice of_M(x),

The control signals resulting from the repeated linearization
technique are also shown in Figure 8. It is of interest to note that
such different control trajectories can yield solution trajectories
which are quite similar. It-is impossible, however, to really cpmpare
the two solution processes, The repeated linearization scheme is not
suitable for on-line implementation, since the Riccati equation must
be solved at each time of-]inearizatibn, While this would be possible
if the dynamical system being controlled were quite slowly varying and
a large computer were available in an on-line mode, both of those
conditions are rarely satisfied.

The closed-loop implementation of the inner-product controller
might also be considered somewhat complex, and would indeed be so if
the control signals were to be generated in an analog process, How-
ever, a very small digital machine would be quite capable of pekforming

the indicated operations.



25

In order to demonstrate the intuitive idea that
t
E,(t) = f 02(7) dt (4.28)
0
provides an indirect measure of control cost, normally indicated by

t
Ey(t) = f () ult) dr, (4.29)
o]

the time history of E,(t) and E,(t) are plotted in Figure 9 for the
above example with M(x) given by Equation (4.27). The plots of E](t)
and E5(t) clearly indicate the close relationship for this particular
example.

While the preceeding controllers were designed with a constant
matrix M, it is certainly acceptable to select the entries of M(x) as
functions of the state variables. Indeed, a rather obvious choice for
M(x) would be B*](x) with the optimal control Equation (4.23) then

becoming

ey Q 2 x a(x) B 1(x) x. (4,30)
x Q x

The necessary condition for B-1(x) to exist for all t » t, is
det ( B(x) ) # 0 for all x(t). (4.31)
From the definition of B(x) and the c¢'s, it can be noted that
Equation (4.31) is equivalent to !
x(t) # - c3/cy
)s | (4.32)

and the control prbvided by Equation (4.30) becomes singular at the

initial time to° To overcome this difficulty, the control of Equation
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Figure 9. Control-Cost Trajectories
for the CSTR
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m o
M(x) = [ ] (4.33)
o 0 10

is applied for a‘short time (0.25 seconds) and then the control law is

(4.19) with

- switched to the expression given by Equation (4,30). The resylting
Z‘state'ﬁrajéctories,ake shown in Figure 10.
- To illustrate the effect of different selections of h(p), the

~state trajeétbries’resultingjfrom minimizing the performance measures

- ahd 

EE [ (o) + 52001 0t (4.38)
o]
- f-[p?(t) +p2(t) + $2(t)] dt (4.35)
wfthnv'v: ; ‘
o(t) = xT(t) Q(t) x(t), | (4.36)
om0 |
10 100
and

‘ B I )
M(x) = [ } , (4.38)
0 10

are provided in FigUre 11.  If it were desired to heavily penalize
large error signals, an integrand containing a p* error term would be
an éppropriaté perfofmance measure. - However, such an integrand will
simultaneously penalize sma]] errors hardly at all, leading to a solu-

tion which "drifts" as soon as the error norm becomes less than one,

1



58

Xy

6
0 T
“M(x) = B (x)
X2 -008t -
! 1o
;"‘M(x) —[ o]
y
- ‘| i 1
0 60 2 q 6

Figure 10, State Trajectories for
the CSTR: Switching
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If such a solution is undesirable, an additional term p2 could be
added to the integrand. This error term is dominated by p* for p »>> 1,
yet dominates o for p << 1. The generality of the error function h(p)
is thus seen to provide an additional design tool not avajlable from

control solutions with restrictive measures of system performance.



CHAPTER V
RELATED TOPICS

This investigation has led to several new and unanswered questions
concerning the optimal control of nonlinear systems. While they are
interesting and of importance, the nonlinear nature of the problem
precludes a genera] analysis, and extensive treatments of specific
examples 1ie beyond the scope of this dissertation. However, several
of these questions will be briefly examined for the sake of complete-

ness.
5.1 Performance Measure Interpretation

Since the design procedure presented herein is intimately related
to the form of the performance measure chosen, the physical interpre-

tatjon of the general performance measure

te
9= | TG) 61 (5.1)
t

0
should be examined (;ime arguments are again suppressed forbnotationa1,
simplicity). While it is clear that the term h(p) in the integral |
Equation (5.1) is an error penalty function, it is not at first clear
how the term p2 is related to the control power inputs. The following
example will illustrate that o2 may indeed be a power measure which is

superior to the standard uTRuo It will also show that a plant descrip-
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tion which at first does not appear to be norm-invariant may, through
a suitable transformation of state variables, possess this desirable
property.

Consider a body spinning in free space and let 1,2,3 denote the
body-fixed principal axes through the center of mass. Let Ik and Y
(k=1,2,3) represent the moments of inertia and angular velocities about
the principal axes respectively. It is well known (8) that in the
absence of external torques, the differential equations satisfied by .
the three angular velocities are

Lyy= (1, - 13) vy v3

H

(13 - I]) Y3 ¥ (5,2)
I3¥3= (11 - L)y 95
Computing the rate of change of the magnitude of the velocity vector

y yields

Sl =% A3+ 3

11, - 1 I,-1 In =I5l ¥ ¥ ¥
{22 3,73 1,1 2717273 (5.3)
I I I, I

F 0.

It is thus clear that the differential equations describing the angular
velocities y are not norm-invariant. Suppose, however, thaf it is
desired to write the system equations in terms of angular momenta x
instead of angular velocities y. Then x is defined by the transforma-

tion
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X1 I] 0 0 Yy
X, = [0 I, 0 Yo (5.4)
X 0 0 I| |y

and Equation (5.2) yjeld

I, -1
2 3
X, = - Xo X
1 I2 13 2 "3
I, -1
. 3 '|
Xo = Xo X (5.5)
2 13 I-l 3
I, -1
. 1 2
x = —_——— X X .
3 I]_I2 1 72

It can now be easily shown that

d d '
HEI|X|| = I V&% + x% + x3
0,

(5.6)

and the system Equation (5.5) is norm-invariant.
If u represents a vector of control torgues, the equations of

motion become
=Iz'13

: Xo Xq + U
I, 13 2 "3 1

R P
X2 = —Tg—'f-_l- X3 X-l + us , (5»7)

I - I

Xq = == X; X
37T, 12

tug
Since the objective of controller design is to reduce to zero each
component of angular velocity (or, correspondingly, each component of

angular momentum), an appropriate primary error can be defined by

p = X! Q x (5.8)
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where Q is any positive definite symmétric matrix, If a particular

choice of Q is made, given by relation, -

1/1 0 0
21 1
Q=7
0 /1, 0 . (5,9)
0 0 /14
it is seen that
5= 2! QX
= 2xT Qu
3
= § =+ X, U (5.10)
3
= kz] (angular ve1ocity)k (torque)k

H

Total Power ,
Thus, it is seen that p is an appropriate error signal for a wide
variety of Q's, and by proper choice of Q, p? can be made equal to the
square of the total power.
The designer who wishes to obtain a minimum-energy controller
usually tries to minimize the integral
tf .
E= J u Ru dt, (5.11)
to
where R is a positive definite weighting matrix. However, as has been
clearly noted in. (8), Equation (5.11) may only be an indicator of
total energy and not proportional to the energy irrespective of the
choice of R, Thus, for a body spinning in free space, the integral of

o? is related to the total energy while Equation (5.11) is not.



65
5.2 Inverse Problem

The inverse problem of optimal control can be stated Toosely as
follows: "Given a dynamical system and a known control law, find the
performance criteria (if any) for which this control is optimum."
Kalman (7) considered a precise formulation of this problem for linear
non-autonomous systems, and Thau (33) investigated the inverse problem
for certain nonlinear control systems. Debs and Athans (34) examined
the problem of reducing the angular momenta of a space vehicle to zero,
with the method of solution based on the inverse problem of optimal
control.

It is easy to show that an inverse problem has also been solved
for the norm-invariant systems of section 2.3, in that if the control
Taw is known, a performance measure which is being minimized can be
found in closed form. That is, if the optimal control is specified by

u=1vy (p) x, (5.12)
h(p), in the performance criterion
te
J = f [h(p) + p2] dt (5.13)
t

which is being minimized, can be written as

h(p) = [2u(p)o]? . (5,14)
5.3 Controllability

The concept of controllability of 1inear systems was introduced
by Kalman (7), and recently extended to nonlinear systems (35-37).

A state x, is said to be controllable at time t  if there exists a
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control function u(:), depending on X, and t , and defined over some
finite closed interval [to,tf], such that x(tf) = 0, If this is true
for every state x , then the system is said to be completely control-
lable,

Lee and Markus (35) applied this concept of controllability to
autonomous nonlinear systems represented by

x = f(x, u), (5.15)

where f(+) is a n-vector function of state x and control u, It was
further assumed that the system Equation (5.15) is sufficiently smooth
in a neighborhood of the origin and f(0,0) = 0. Letting

_ of
A= (0,0) (5,16)

and
H =2 (0,0 (5.17)

it was shown that if the linear system

x=Ax+Hu (5.18)
is completely controllable, then the set of points from which the
origin can be reached in finite time by Equation (5.15) is an open
connected set containing the origin. Of course, this is only a Tocal
controllability condition.

Hermes (36) extended the concept of complete controllability to
systems linear in control using the geometric interpretation of the
nonintegrability of Pfaffians. The system under consideration is

x = a(x,t) + B(x,t) u (5.19)

where B(x,t) is a continuous n x m matrix function of state and time.

It is also assumed that 1 <m g n. Let D(x,t) be a continuous (n-m)

x n matrix function of state and time such that
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D(x,t) B(x,t) =0 (5.20)
in some domain of interest., The Pfaffian system associated with Equa-
tion (5.19) 1s then given by

D(x,t) dx - D(x,t) a(x,t) dt = 0, (5.21)

The system Equation (5.19) is completely controllable at (xo,to) if the
associated Pfaffian Equation (5.21) is not integrable at (xo,to). On
the other hand, if the Pfaffian is integrable, then the system Equation
(5.19) is not completely controllable. As an illustration, consider
the example treated by Geshwin and Jacobson (37). The system is

Xp ==Xy (2 %) %y + 1) u (5.22)

Xs Xy = X5 u . (5.23)
Let the matrix D(x,t) be chosen as

D(x,t) = (x5 2xyxp+1) . (5.24)

The associated Pfaffian equation is

X3 dxq + (2%1x+1) dxp = (xp#x7x3) dt = 0. (5.25)
Letting
r o= (x1 Xo t) (5.26)
and
Z(r) = (x% 2% X5*1 —x2—x]x%) , (5.27)

Equation (5.25) can be written as
Z(r) - dr = 0. (5.28)

The necessary and sufficient condition that the Pfaffian Equation

(5,28) 1is integrable at a point (xo,to) is that

Z(r) « curl Z(r) = 0, (5.29)

in a neighborhood of (Xo’to)° A simple computation will reveal that
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Equation (5.29) is satisfied by Equation (5,27) and hence the Pfaffian
Equation (5,25) is integrable. Thus the system of Equations (5,22)
and (5.23) .is not completely controllable.

For higher order nonlinear systems it is not easy to use the
Pfaffian approach. However, a few results have been obtained for
certain special cases. Geshwin and Jacobson (37) presented only suffi-
cient conditions for complete controllability for systems of the form
Equation (5.19). Their development was motivated by Lyapunov stability
and optimal control theory.

For successful control, it is normally necessary that systems be
completely controllable. It is rather easy to determine the control-
lability of linear systems. The controllability conditions for general
nonlinear systems either do not exist or are extremely difficult to
apply even in special cases. So, the questjons concerning the exist-
ence of optimal controls for nonlinear systems cannot be answered
completely. Hence, in this dissertation, optimal controls are charac-

terized assuming that they do exist.
5.4 The Epsilon Method

If, as 1s occasionally the case, no bounded optimal inner-product
controls -exist, a suboptimal control must be utilized, at least momen-
tarily, The question, then, is how much computing time should be
devoted to the design of the suboptimal controller? To illustrate, a
modern suboptimal synthesis procedure, the epsilon method (38), will be
briefly described. Let the dynamical system and the cost functional be

given by



x(to) = Xy
and
tf .
J = j [n(e) + 2] dt,
to
where

p=XTQX.
This method seeks to minimize the epsi]on functional

t

tf] . f B
ouse) = [ oIk - Feu,0) 12 de + [ [nGe) + 521 ot

tg to

as epsilon approaches zero.
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(5.30)

(5.31)

(5.32)

(5.33)

Taylor and Constantinides (39) have discussed the essential points

of this approach. The epsilon method provides a non-dynamical formula-

tion, since no dynamic equations are explicitly solved.

As epsilon

approaches zero, Equation (5.33) provides a sequence of trajectories -

and controls that can be made to be arbitrarily close to the optimum

value,

The functional minimization can be transformed to an ordinary

minimization using the Rayleigh-Ritz expansion. One of the most ob-

vious functions to use in such an expansion is the function

sin(int/tf). Thus, the state and control variables can be written as

o B TR R VR IR
= = t + = t.)-ylt + .
¢ TPl Mg WM LT B Sin(mrt/tc)

u

(5.34)
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where Dm is an 1 x m matrix of the parameters dij to be optimized.
Here 1 is the sum of the dimensjons of state and control vectors and m
is the number of terms in Rayleigh-Ritz expansion. The derivative of y

can be written as

-%— Cos(nt/ty)
f
. 1
Y [y(ty)-y(t )] + D . -(; | (5.35)
— Cos(mmt/t,
A "

and the norm in Equation (5,33) will thus not be identically zerq if
Equations (5.34) and (5,35) are used for X, x and u. However, the
dynamic error will approach zero as the optimum parameter matrix Dm is
obtained, A modified Newton-Raphson method for minimizing the epsilon
functional was used in (39) to obtain an iterative sequence which
converges to the optimum solution.

It is clear thét such an involved procedure calls for extensive
off-line computing. If a simple controller can be momentarily applied
to the system, and cause only a small amount of performance degrada-
tion, 1t would appear that complex suboptimal schemes are not required. .
In the electrodrive circuit example of section 3.5, a simple Tinear
control caused less than a 5% increase in system performance cost, a
probably acceptable increase considegjpg'ease of'bothﬁdé§ign and

implementation.



CHAPTER VI
SUMMARY AND CONCLUSIONS
6.1 Summary

A comprehensive treatment of the optimal control of a general
class of nonlinear systems which are linear in control has been pre-
sented. The design procedure is somewhat unusual in that a general
performance measure is formulated with the objective of driving the
state vector to zero in norm without extreme error derivatives. The
optimal trajectories which minimize the chosen cost functional are
then determined and the controller structure finally designed to
exactly track the optimal trajectories in norm.

The selection of the optimal control has been reduced to the
solution of the scalar fundamental equality. While the constant of
integration in this equality has been shown to be zerp for asymptotic
control problems, finite final-time problems require the evaluation of
the constant resulting in a parameter jdentification problem which is
always first order in the state inner-product.

The optimal inner-product controllers have been designed for
systems Tinear in control. These control laws are not unique and could
become unbounded at some points in the state space. However, the non-
uniqueness of the controller structure allows greater design flexibi-

Tity and could be used to obtain bounded controls. Some of these

71
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aspects have been illustrated with the help of a simple g1ectrodrive
circuit problem,

The new synthesis procedure develpped in this dissertation should
be applicable to a wide variety of engineering problems. Specific
application of the results presented has been made to the problem of
optimal regulation of a continuous stirred tank reactor. To provide
comparative solutions, a well known technique employing repeated 1in-
earizations has also been used. The two distinct optimization
techniques have resulted in significantly different controljer struc-
tures having state trajectories which are not entirely dissimilar.

Finally, the physical interpretation of the jnner-product
performance measure, a discussion of complete controllability and a
brief description of a suboptimal technique using the epsilon technique

have been presented,
6.2 Conclusions

Optimal control laws synthesized by the design procedure presented
herein are closed-loop in structure and superior from an engineering
point of view, to open-loop solutions. The complex computational
problems of solving either a two-point boundary value problem or a non-
- Tinear partial differential equation have been avoided, This technique
requires the evaluation of just a constant rather than a time trajec-
tory with the remaining control law evaluations accomplished in real-
time, Because the controls do not require on-board storage of computed
signals, the rapid access memory requirements for large scale systems

have been greatly reduced.
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The primary disadvantage of this new procedure is that it may
require unbounded control inputs at isolated points in time. As indie‘
cated by the example of the electrodrive circuit, it may or may not be
possible to change, as those points are approached, to an alternative
optimal, yet bounded, controller. If this is not possible, a subopti-
ma] controller is required; however, the values of the performance for
both the optimal solution and the suboptimal solution can be evaluated.
Thus, the exact reduction of the system performance can be calculated
and various subaptimal schemes compared.

The inner-product controller approach offers a number of areas for
further research. It would be desirable to have a systematic proce-
dure to select the gain matrix in the optimal control law, The
sensitivity analysis of the control solution may provide some ¢lues
to this procedure. It is also felt that the selection of weighting
matrix Q in the inner-product will dictate whether or not the optimal

bounded inner-product controls exists for a given performance 1index.
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APPENDIX
FINITE TERMINAL-TIME PROBLEM

The finite terminal-time optimal inner-product control problem
requires the evaluation of the unknown constant C in the differential

equation
o(t) = ~/h(o(E)) + C, p(to) = 04 (A1)

such that p(tf) = pe = 0. In Equation (A1), p(t)eR? and h(+) is a
continuous scalar function of p(t), Here t represents the independent
variable time and t, and t. the initial and final times respectively,

This problem can be viewed as a parameter identification problem,
and an iteratjve method termed "The Method of Seeking Principal Planes"
can be used to determine the unknown constant (40). This method uti-
lizes the performance 1index

PI = (o(te) - pg)? s (A.2)

and requires the determination of the values of PI, the gradient of PI
(GPI) and the second partial of PI (SPI). Taking the partial deriva-
tives of Equation (A,2) with respect to the unknown constant C twice,

the following is obtained:
3PI o0 ()

= 3Pl _ —
6PI = <= = 2 (p(tg) - o) —5¢ (A.3)
2p1 o a%p(ty) (te) 2

SPL = Sz = 2 (olte) - og) —pr—+ 2 (—p— ) - (R.4)

77



78

Next, the values of ap(tf)/ac and azp(tf)/ac2 must be obtained,
Taking partial derivatives of Equation (A.1) with respect to'C

twice and reversing the order of partial derivatives yields

T (R =-Fme e (Blel., (A.5)
e (38) = - 3 (n(o)se) (el 20 o Shlo) (28 )%
_%’(h(p)+C)'3/2 ( Qﬂé%l-§%-+ 1) . (A.6)

Since the initial condition of p(t) is independent of the parameter

guess,

If a guess is made for the unknown parametér, Equations (A.1), (A.5)
and (A.6) can be integrated from t, to te and will yield all the
information needed for evaluating PI, GPI and SPI.

The philosophy to be employed for obtaining the next guess of the
parameter is to move in the negative gradient direction far enough so
that the PI is reduced to zero. The block diagram of the algorithm is
given in Figure 12,

The computational algorithm for this problem is composed of three
subroutines, FINCON, DERFUN and RKINT. The 1istings for these subrou-
tines are given at the end of this appendix. The subroutine RKINT is
called by FINCON, and its purpose is to provide the values of p(tf),
ap(tf)/aC, and sz(tf)/BCZo Subroutine DERFUN provides the values
of derivative functions for RKINT. In all the subroutines, the follow-

ing definitions are assumed:



Y(1) = o(t)
Y(2) = &
v(3) = 28
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In order to use the computational algorithm, the user must supply

the cards defining the derivatives YD(k) of Y(k) for k = 1, 2 and 3,

These cards are placed in the subroutine DERFUN between the COMMON and

RETURN cards,

The data card to be supplied by the user has Format (6F10,0,

E15.5, I5) and contains

Column
Column
Column
Column
Column
Column
Column

Column

1
11
21
31
41
51
61
76

- 10
- 20
- 30
- 40
- 50
- 60
- 75
- 80

Initial value of p(RO@)
Final value of p(ROF)
Initial guess for C

Initial time (TQ)

Final time (TF)

Integration interval (TSTEP)
Tolerance on PI (EPS)

Integer number corresponding to the

maximum number of jterations (NMAX).



L)

Assume an initial
value for C

)

Integrate eduations (A.1), (A.5) and‘(A,6)
from to‘to tf and determine the values of
PI, GPI and SPI using (A.2), (A.3) and (A.4)

yes i no _
\\\Qgivj/g///
’ 4 . y .
C=C- (PI/GPI) v C=C -~ (GPI/SPI)
. 2 /
1 , , . \v ‘ j ‘ -
‘ —|Is PI < EPS
ne " yes
y
END

Figure 12, Block Diagram of the Computational
Algorithm
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TABLE V.

PROGRAM TO EVALUATE THE UNKNOWN CONSTANT

CUMMON Y3} YDT 314 TIME, TSTEP o TF INAL oNSYSEPRINTC o KR pKiW
KR = 5 : .

K = & . i

CALL FINCON -

STCP .

END
SUBROUTINE FINCOUN

Py

THIS PROGRAM FINDS THE CONSTANT C OF THE DIFFERENTIAL
EQUATION
RODOT =~SURT{H(RO}4CI, REBIOI=ROC

SUCH THAT RO(TFINAL)=ROF, AN ITERATIVE METHOD CALLED
STHE METHOD OF SEEKING PRINCIPAL PLANES® IS USED.
REF: OETERMINAT ION OF OPTIMAL PARAMETERS FOR DYNAMICAL
SYSTEMS BY D.R.UNRUWH, DOCTORAL THESIS, OKLA. ST. UNIV.
STILLWATER, 1970, I[N THIS PROGRAM

Yil)s RO .

v(2)= FIRST PARTIAL OF RO W.R.T €

Y{3)= SECOND PARTIAL OF RO WeReT C

* . SUBROUTINE DERFUN DEFINES THE DERIVATIVE FUNCTIONS
YOIK} OF Y(KDs K=14243,

* SUBROUTINE RKINT IS A FORTH CROER RUNGE-KUTTE .
INTEGRATION ROUTINE

* USER PROVIDES THE FOLLUWING QUANTITIES (6F10.8, E15.0s 15}
RUOO = INITIAL VALUE OF R

ROF = FIMAL VALUE OF RQ
< = INITIAL GUESS FOR €
10 = INITIAL TIME
TFINAL = FINAL TINME
TSTEP = INTEGRATIUN INTERVAL
£PS = TOLERENCE

=

NMA X MAX. NO. UF 1 TERATIONS

* (CHVERGENCE IS ACHIEVED whoN PI={RU{TFINALI-ROF }*%2
IS LESS THAN EPS

* KR IS THE READING UNIT NU. AND KW IS THE wRITING UNIT NQ.:

sees P . PP

CCMMUN ¥{3) oYD(3) s TIME, TSTEP JTF INAL 4 NSYS o IPRINT 9 C s KRoKW
1 FORMAT(BF10.0,E15.0415)
2 FORMPAT(1H1)
3 FURMAT(/s 9Xs8H RO{O)= 4ELl2.4¢ 5SXyi2H RO{TFINAL)I= 4 E12.4s 5As

1] 4H TO= 4E120445KkeBH TRINALS 1E1Z44:/7/49%Xe8H EPS= €126y

* 5Xy OH NMAX= 4 13¢//1
4 FORMAT(/, 9X, 22H INITIAL GUESS UF € = ,€12.4¢//}
5 FORPAT(/ 210X ¢SHNITER, 13Xs2H Col9Xe2HP 1918Xy 3HOP [+ 18X, 3HSP 14/}
6 FORMAT{ 8Xy [5+ S5{1X,E20.441
T FORMAT(//,+ 9%, 234 CONVERGED VALUE UF € = 4E13.658Xs4H Pl =ELl3.6,
$ 171
8 FORMATU//y 9X, 34H *% TAKES TOU MANY ITERATIONS ®= ,//)
9 FURMATU /4 9%y 95(1H+)s// 1}
READ(KR ¢1) ROOQROF 3C o TO yTFINAL ¢ TSTEP EPS o NMAX
WRITE(KWs 2}
WRITE(KW49)
WRETE{KWy3) ROOCROF ¢ TOe TFINAL EPSyNMAX
HRITE{KWs 4} C
WRITE {Khy5)

IPRINT = O
ASYS=3
NITER = O
i0 Y{1)} = ROO
¥{2) = 9.0
¥i3) = C.0
TIME = TO
Cmremme
19 CALCULATE Pls GRADIENT OF P! ANU SECOND PARTIAL UF PI
p———
CALL RKINT
ouM = Y{1) - ROF
Pl = DUM*OUN
GPI = 2.0%DUMeY (2}
SPT = -2,0%0UM*Y{ 3} + 2.C*YL2)*Y(2)
[ ——
[ DETERMINE THE NEXT VALUE CF C
==
1F{SPI +LE. C.03 GJ TO 20
C = - toPl/SPLY
G0 19 30
2C C = ¢ - {PI/GP1)
30 NITER = NITER + 1
Commmm
A TEST FOR CONVERGENCE
C—--—-
IF (PF JLE. EPS) LU TO 40
WRITE(KN 63 NITERWCoPIoGPI,SPI
G-
4 TEST FOR MAX. NO. OF ITERATIONS
C--—.——--
{FA(NITER +6T. NMAX) Gu YD 50
GC TC 10
4C {PRINT =}
Y(1) = RGO
Y{21 = n.0
Y(3} = 2.0
TiME = 76
CALL RKAINT
WRITE(KMT) C4PL
Cu TU 60

50 WRITE(KW 8}

€0 WRITE(KW,9)
HRITEAKW, 2}
RE TURN

18
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~No-

1C
1Y

20

30

0

50

PROGRAM TO EVALUATE

END

SUBRUUTINE UERFUN

O‘O"l“tl‘t‘ttt‘t"‘;ttttt‘#ttttttttt#t#tttttfﬁ#ttttttttl#(tt‘ttt
L3ER PRUVIDES THE EQUATIONS ODEFINING THE DERIVATIVES

CF RO, FIRST PARTIAL UF kJ ANL SECUND PARTIAL OF RU

PHENEEES *RESEE KEERECKEERESERE ER LS R ERXR KK SRR X ERER DK

COMMON Y(3) oYUU 3} s TIME, TSTEPy TFINAL ¢ NSYS ¢ IPRINT 4C s KoKW
Y01 = =SQRTAY(L)*Y (1) +C) = .
Y042) = (Y(1)»Y(2)+0.5)/YD1L)

YOU3) = (YCLI®Y(3}+Y(2)*Y(2)-YU(2)*YD(2))}/YD(1)

RETURN ) :

END
SLBRUUTINE RRINT
FEERERRER SRR EE IR E SRR AR E RN RN A PR A RN R RE KA AR R R RS EREER N

FOUKTH-ORDER RUNGE-KUTTE INTEGRATION RubTine

BEIERERNERAISREC AR REREERREXRRR R GRS RR R KRS ER CRERREKE R A FR R SR RS RRE R £ &

COMFGN YU3),YD{3) TIME,TSTEP,TFINAL JNSYS IPRINT,C KR JKW
DIMENSION YU(3) 4DELAL3) (DELB(3) yDELCU3},0ELO(3)
FORMAT (///412Ks5H TIMEs 15X, 3H RO, /)
FORMAT (BX, £12.4¢ 8Ky El24%)

STPBY2 = TSTEP/2.0

NTIMES = TFEINAL/TSTEP + 0.5

IF (IPRINT LEG, 0) GO TO 70

WRITE(KW, 1)

WRITE(KNo2) TIME,Y (i)

CONTINLUE

DU €0 I=LyNSYS

Yuild = ¥(i)

CALL OQERFUN

DC 100 17=1,NTIMES

UO L0 [=1,NSYS

VELALE) = TSTEP*YD(I)

YOL) = YUGL) ¢ 0,5%DELA{ 1}

1IMe = TIME + STPBY2

CALL UERFUN

CC 20 1=1,NSYS

DELBLI) = TSTEPEYULI)

YUID = YULL) + 0.5%ELBLID

(ALL DERFUN

DU 30 I=1,NSYS

CELCUI) = TSTEP®vE(l)

Y1} = YU(I) + DELCII)

TINE = TIME + STPBYZ2

CALL .CERFUN

DO 40 I=1,NSY¥S

DELDILY = TSTEP*YD(L)

DG 50 l=1,NSYS

DEL = (DELALE) ¢ 2.0%CELB(I) + 2.,0*DELLiL) + DELUIL})/0WY
YULId = YUll) ¢ 9EL

Yil) = vutld

TABLE V. (Continued)

THE UNKNOWN CONSTANT

100

CALL DERFUN

IFUIPRINTOEWLO) GC TL 100

AR ETE(KiWy 29
CUNT INUE

RE TURN

END

TIME, Y(1}

8
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