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PREFACE 

This di,ssertation is concerned witp demonstrating the · 

interrelationships among seqt1eritial propertief.:! in Banacl;l spaces. 

Specifically,. the . relationship between the Dieudonne property and 

property Vis established. An examination of.uc and wcc,operator~, as 

well as the sets K(X) and N(X), reveal important .chara.cterizat.ians 

of the Dieudonne prope;rty a~d property V. In ·addition, sever~!· 

characterizations of uc and wee operators have been discovered. Such. 

findings provide .insight into the underlying structure surrounding 

Banach spaces with praperty V and the Dieudonne property. Finally, the 

roles. of WCG Banach spaces, Qu.asi-:-Reflexive Banach spaces, and Banach 

spaces wi~h H (X) · separable al'.e shown to be decisive in delineat.ing 

the relationships under. study. 
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appreciation for the assis,tance and guidance. provided by my diss.ertation 

adviser, Dr. Joe Howard, wh~ was .always available· for cs;unsel and, 

encouragemen.t, Dr, Howard was also i~strumental in directing my 

mathematical. inclinations in the directicm taken. Other members in my. 

committee who.offered some assist~mce. are: Dr. John W. Jewett, Head of 

the Mathematics and Statistic.s Department, Dr. Jerry. A. Johnson, and 

.Dr. Paul A, McColl um. 
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CHAPTER I 

INTRODUCTION 

Historical Survey 

In 1953, A. Grothendieck (8) studied locally convex topological 

vector spaces X in which every continuous linear operator on X that 

maps weak Cauchy sequences into we~kly convergent sequences is a weakly. 

compact operator. He called this property the Dieudonne property. He 

ascertains that the space C(K), K a compact Hausdorff space, has the 

Dieudonne property. 

A. Pelczynski (19) in 1962 studied Banach spaces X in which every 

unconditionally converging operator on X is weakly compact 

(property V) . Property V was. generalized to locally convex topological 

vector spaces by J. Howard (9) in 1968. Felczynski showed that the 

space C(K), K a compact Hausdorff space, has property V and provides 

a relationship between a Banach space having property V and havfo.g an 

unconditional basis. In Howard's study, detailed information of 

permanence of property V, unconditionally converging operat.ors and the 

relationship of property V to dual spaces are found. 

Prior to introducing property V, Pelczynski (18) in 1958 introduced 

the concept of property (u). His objective was to study the connection 

between weakly unconditional convergence and weak completeness. As is 

later seen, this property for Banach spaces provides a c'lose 

relationship between Grothendieck's work.on the Dieudonne property and 
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Pelczynski's work on property V, However,.Pelczynski shows that C(K), 

K a compact: Hausdorff space, does not have property (u). 

Beginning in 1962, R. D. McWilliams published a series of papers on 

weak sequential convergence, In these papers he introduce.s the set 

K(X), which plays an importan,t·role in the study·of the Dieudonne 

property. 

Preliminaries 

This section is devoted to the stating of ,basic facts, defip.itions, 

and notation. However, definitions and facts found in most Functional 

Analysis textbooks are excluded. Any un9efined notation is the notation 

used in (23). 

Since this paper consists mainly of a study of Banach spaces, the 

symbols X and Y. are assume.cl to represent Banach spaces. The reader 

should note that in this paper a Banach space means an infinite 

dimensional complete real or complex normed linear space. 

If X is a Banach space, X' and X" denote.the dual and second 

dual of X, respectively. Given X, ·. J denotes the c~nonical isometry. 

embedding X in X". 

All lin,ear operators are assumed to be continuous and L(X,Y) 

denotes the set of all continuous linear operators from X to Y. 

Let t · be.a topology on X. If {x} is a sequence in X,. then 
n 

t - lim x will den0te the limit of .the sequence {x} in the t 
n n n 

topology. For example, if t = cr(X,X'), 

denotes the limit of the sequence {x } 
n 

then cr(X,X') - lim x 
n n 

in the weak topology, 0 (X,X'). 

When reference to the unit.disk of a Banach space X is made, it is 

assumed to be the closed unit disk, Le. {x £ X: l!xl\ .::_ l}. 



Definition -2; 1. A series Exi in X is. unconditionally" cori.vergei;it 

· (iic) if. for. ea.ch sub series Exk, there is an element x € x such 
n i 

that x = cr (X,X') - lim ,: ~-. n i=l 1 

Several oth,er condition~ a.re known to b~ equivalent to this 

definition of a· uc . series, bu.t for the _work of this paper, this 

definition seems most appropriate. Equivalent conditicms are found in 

(9), (14)., and (22). 

Definition 2. 2. A seri.es Exi in X is weakly. unconditionally 

convergent if Ejf(x.)I < 00 for every f in X'. 
1 ·. 

Every . UC . series _is a wuc . series' but not conversely. 

3 

Th~orem 2.10 in Chapter II shows a condition under which the converse is 

true. 

Definition 2. 3. Let . T £ L (X, Y). Then T is said t<:> he: 

(a) Weakly compact if 'l' sends bounded sequences int0 sequences 

which have a weakly convergent subsequence. 

(b) Unc,mditionall;r c0nvergent (uc) i:l; T sends wuc series into. 

uc serie1;1. 

(c) Weakly completely .continu0us (wee) if T seqds weak Cauchy 

sequences into weakly canvergent sequeI1,ces •. 

(d) Completely centinuous .if T sends -weak Cauchy sequences iI1,to 

norm convergent sequenc~s. 

(e) · Weak Cauchy if T sends bounded sequeI1,ces into sequences 

which have weak Cauchy subsequence •. 
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(f) Weak* sequentially compact if T sends bounded.sequences into 

sequences which have a weak* convergent subsequence, where Y 

is a conjugate space. 

The abbreviation uc is used for both unconditionally convergent 

series and uncopditionally convergent operators. However, confusion 

should not arise since it is evident from the context whether a series 

or an operator is intended, 

K(A) denotes. the set 

{F e: X': there exists a sequence {art} in A such that 

F = cr(X' X) - lim a} 
' n n '· 

where A is .a subset of a conjugate Banach space X'. K(JX) is simply. 

denoted by K(X). 

N(X) denotes the set 

{F E: X": there exists a wuc. series LX in x such that n n 
F = cr(X",X') - lim I: Jx.}. n i=l 1 

The sets. K(X) and N(X) are decisive in the study of the 

Dieudonne·property and property V which is show·in.Chapter II and 

Chapter III. Thes~ sets provide a characterization of wee and uc · 

operators. 

Definitien 2.4. A Banach space is said to have the Dieudonne property 

if every wee operator on X is weakly c0mpact. 

Definiticm 2. 5. A Banach space X is said to have propei:ty y_ if every · 

uc operat0r .on X is weakly compact. 



De.finition 2. 6. A Banach space X is said to be almost reUexive if 

every bounded sequence in X has a weak Cauchy subsequence.· 

Second Adjoint Characterization 

of Linear Operators 

Sirice a Banach space X can be embedded in its second dual X" 

in a natural way, the second adjoint of an operator T on X is 

related to T by T"jx = T; In this section certain classes of 

operators are characterized by the action ot their first and second 

adjoints. The section ends with a generalization of a theorem by 

A. Grothendieck. 

If A is a linear subspace of X" and JX ~ A c: X", then 

cr (X' ,A) defines a linear topology on 

total cner. X', (6, p. 418). 

X' 
' since JX c: A .. and JX 

Proposition 3 .1. If either X or Y , is reflexive and JX c. A ~ X" 

(A a subspace of X") then T"A C: JY for all T e L (X, Y). 

Proof: Let TE: L(X,Y) and assume Y is reflexive. Then 

is 

T"A ~ Y" = JY. If X is reflexive, then JX = A and T"JX C:: JY, so 

T"A~ JY. 

5 

Definition 3.2. The uniform operator topobgy on L(X,Y), is the metric 

topology of L(X,Y) induced by its norm IITII. = sup{ !TxJ: llxll ~ 1}, 

Notation 3.3. D(A,B) = {T E: L(X,Y): T"A ~ B}, where it is assumed that 

A is a subspace of X", JX~ A, and B is norm closed in Y". Note 

also that D(A,B) ~ L(X,Y) will imply A~ X" and B ~ Y". D(A,B) is 

assumed to 'be a subset of L (X; Y) unless otherw,ise specifically stated. 
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Proposition 3.4. D(A,B) is closed in the uniform operator topology 

on L(X;Y). 

Proof: If {T } is a sequence in D (A,B) such that· {T} 
n n 

converges to T in L(X, Y), then {T"} converges to T" in 
n 

L (X" ,Y"), (6' .p. 478). If a E: A, then T"a.e: B and since B is 
n 

norm closed in Y"' T"a E B which implies that T"A ~ B, hence 

T E: D(A,B). 

Since JY is norm clo.sed in Y" 
' from Proposition 3.4 the· 

following result ensues at one~. 

Corollary 3.5. D(A,JY) is closed in the uniform operator topology on. 

L(X,Y). 

Proposition 3.6. D(A,B). is a linear subspace of L(X,Y). 

Proof: If T, U E: D (A,B), and if a. and S are scalars, then 

( a.T + SU) "A = (a.T" + SU") A C: B. 

Proposition 3. 7. If T E: D (A,B) and W E: L(Y ,Z), · then 

WT E: D(A,W"B) ~ L(X,Z). 

Proof: (WT) "A = W"T"A C: W"B which implies WT E D (A~ W"B). 

Corollary 3.8. If Ts D(A,JY) and WE L(Y,Z), then 

WT e: D(A,JZ) g L(X,Z). 

Proof: By Proposition 3,7 WT E: D(A,W'iJY) ~D(A,JZ) since 

W"JY ~ JZ, 



--Ptapositicm 3.9. If We: D(A,B) C:: L(Y;Z) and Te: L(X,Y), the-n 

WT e: D(C,B-)~L(X,Z) for all C such that T"CC: A. 

Proof: (T.l'l")·"C = W"T"C ,.. W".A c: B' h WT D (C B) vv.i. .- ence. · e: , .• From 

Propasi-tion 3.6 and Corollary 3.8 the following result. is immediate. 

C0rollal'.Y · 3 .10. D (A, JX) is a left ideal · in . L (X,X) • 

7 

Proposition 3.1 through Cor£?11ary 3.10 pr0vide a description of the 

algebraic and topological propert!es af the class 0f operators. D(A,B). 

Next· a study 0f the relationship af an operator in D(A,B) to its 

adjoints is conq.ucted. The study begins wit!:). a characteri.zati0n ·of an 

operator by. the co:nd.nuity of its adjoint;. · 

Theorem 3.11_. T e: D(A.B). !f and anl,y if 

T': (Y' ,cr(Y: 1 ;B),) + (X' ,cr(X' ,A)) 

is contim,1ous. 

Proof: Let {y'} be a n~t·in Y' a such that 

y' = .cr(Y' ,B) - lim y', Suppose T e: D(A,B) .• · If a e. A, then T"a e: B a a 

sa, 

('l'"a)y' = .lim (T"a)y' a Cll.' 

a (T 'y') = lim . a (1'' y') • 
a. a 

Thus, 

T1y'_ ""'-o(Y' ,B) - lim T1y' a a 

and T' is cr(Y',a) - cr(X',A) cont;inuous. 
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Conversely, if T' is cr(Y' ,B) - cr(X' ,A) continuous then, 

T'y' = cr (X' ,A) - lim T'y' 
0\ a.' 

a (T' y') = lim a(T'y'). for all a e:.: A, 
a. 0\ 

(T"a)y' = lim (T"a)y' for all a e: A, 
0\ 0\ 

so T"a is a cr(Y' ,B) continuous linear functional for all a e: A; 

thus, T"ac:.B fora+l as A; henc~, T"A~B. 

Definition 3.12. Let Te:.; L(X,Y) and let t be a linear topology for 

Y. T is said to beat-compact operator if the t closure of· TS is 

t-compact where. S is the unit disk in X. . . 

The above definition is a generalization of the notion of compact 

and weakly compact operators. A CQmpact ope1;-ator is norm-compact and a 

weakly compact operat©r is a cr(Y,Y')-compact operator. 

Corollary 3.13. If· Te: D(,A.,JY) ~ L(X,Y), then T' is a 

cr (X' .,A)-compac t eperator. 

Proof: If S' is the unit disk in Y', then S' is 

cr(Y' ,JY)-compact, so T' is a cr(X' ,A)-compact operator. 

A linear operator.Te:.; L(X,Y) b weakly compact if and only if 

T"X" ~ JY, (6, p. 482). . D (X" ,JY) is the set of all weakly c0mpact 

operators; hence, the following are consequential: 

(a) If either X or Y is reflexive, every operator in. L(X,Y) 

is weakly compact. 



(b) The set of weakly compact opel;'ators is closed in the uniform 

operator topology on L(X,Y), 

9 

(c) Linear combinations of weakly compc;ict operators are weakly 

compact. The product of a weakly compc;ict l:f_near operator and 

a continuous linear operator is weakly compact. 

(d) In the uniform operator topology of L(X,X), the weakly 

compact operators form a closed. two-sided ideal. 

(e} An operator in L(X,Y) is weakly compact if and only. if its 

adjoint is co.ntinuous with respect .to the weak and weak* 

topologies on X' and Y' respectively. 

The next the~rem completely characterizes the class D(A,JY) in 

terll).s of continuity of .their first and second adjaints in addition to 

compactness of its first adjoint it1 terms of Definition 3.12, This 

theorem provides rather .comp.:\.ete information about the class D (A,JY). 

Theor.em 3 .14. Let A . be a linear subspace of X".,JX ~ A, and 

TE: L(X,Y), The following conc;l.itions are equival.ent. 

(a) T"A ~ JY, 

(b) T' is a(Y',JY) - a (X' ,A) continuou~. 

(c) T' is a a(X' ,A)-compact operator,. 

(d) T" is T (A,X ')-n0:rm continuous. 

Proof: (a) implies (b) by Theorem 3.11.. (b) implies (c) by 

Corollary 3 .13, (c) implies (d) : The norm ti0pology on . Y" is the 

linear topology generated by the set of polars of bounded sets in 

(23, p. 247). Let N be a neighborhood of O in Y", Then .there 

exists a .bounded set B ~ X' such that BO c: N. Let D be the 

Y' , 
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balanced convex hull of B. D is then bounded, (23, p. 178). Since 

T is a cr(X' ,A)-compact operator, TD is cr(X' ,A) compact. TD is 

convex and balanced, so =:::-0 TD E T (X, X') , Since B C:: D, 

TDC:: TD, so (TD)O C:: (TD)O "" (T')-lDO ~ (T')-1N. Thus, 

(TD)O c:: (T')-1N, which implies that (T')-lN is a neighborhood of O 

in A with the ,(A,X') topology. It then follows that T' is 

,(A,X')-norm continuous. (d) implies (a): A and X' are in duality 

since each is total over the other, and ,(A,X') is compatible with 

11 
the duality. Since X = A and JX is a linear subspace of A, we 

have (JX)OO = (JX)ll = A, so by (23, p. 238, Theorem 1), (JX)OO is 

the ,(A,X') closure of JX in A; hence, it follows that. JX is 

,(A,X') dense in A. Since it is always true that T"JXC:: JY, and 

since JX is r(A,X') dense in A, it follows by hypothesis that 

T"A c JY. 

From Theorem 3.14, the following well-known pnperties of weakly 

compact operators can be deduced. If TE L(X,Y), the following are 

equivalent. 

(a) T is weakly compact. 

(b) T"X" C JY. 

(c) T' is cr(Y' ,JY) - cr(X' ,X") continuous. 

(d) T' is a cr(X' ,X")-compact operator (T' is weakly compact). 

(e) T" is ,(X",X')-norm continuous. 

The sets K(X) and N(X) are linear subspaces of X" and both 

ccmta.in JX, so the set A in Theorem 2 .14 can be replaced by either 

K(X) or N(X), and similar results. about wee and uc operators are 

established in the next chapter. 
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The next theorem relc1.tes the . q (X' ,A) · compactness of a:, bound.ed set 

C in X' to the existence of a ,certain o(X' ,A)-cempact operator, 

where A is a subspace o~ X'' containing X, Besides The,orem 3, 17, 

another application of this fact is made in Chapter III where the 

wuc-limited sets studied by Palczynski (19) are related to co111pact sets 

in the cr(X' ,N(X)) topology. With the above.in mind, let 

S = {x ~ X: ja(x)l < 1 for all a EC}. 

Thell · S is a closed subset in .. X, (23, p. 238, Fact .(X)). If p is 

the gauge of s' then p I is a no.rm on X/Ker p' where p I (x) .. 'p (x) ' 

~ = x + Ker p. Let T be the natural map from X to Y = X/Rer p. 

With the above notation, .the following is evident, 

Theorem 3 .15.. C is cr (X' ,A) co.mpac t if and only if T' is a 

O' (X' ,A)-compact operator. 

Proof: Assume that C is cr(X' ,A) compact. If B · is the, unit 

disk of Y' ' then T'B = C. Since c is a (X' ,A) 

follows that T' is a . cr (X' ,A)-compac t 0perator. 

compact, it 

Conversely, assume that . T' is a cr(X' ,A)~cpmpact operater, Then 

if B is the unit disk .in · Y', T'B = c. Thus, by Theorem 3.14. C is 

a (X' ,A) compact since T' is cr (Y' , Y) - cr (X' ,A) centinuc>Us and. B 

is cr (Y' , Y) cotnpac t. 

Again, as before, let A .. X'' in Theorem 3 .15, 

Corollary 3.16. C is cr(X' ,:X:'') compact if and only if T' is a 

cr(X' ,X")-compact operator. 
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The primary theorem of this chapt~r is presented next. This 

theorem generalizes a theor(;lrtl by A. Grothendieck (8). The theorem is 

used in.Chapter .III to give characterizations of property V and the 

Dieudonne property. 

Theqrem 3.17. Let A1 . and A2 be. subspaces of X" such that· 

JX ~ A1 c A2 ~ X". Thf;ln the following two condit:tons are equivalent. 

(a). Any T e: L (X, Y) such tq.at T"A C JY sati.sfies 1- T"A C Jy·· 2- . 

(b) Any a (X' ,A1 ) compact set in X' is also a (X' ,A2) compact. 

Proof: Assume ccmditio,n (a), and let C be a cr(X 1 ,A1 ) compact 

set. Then in the terminology of Theorem 3.15, T' is a 

cr(X' ,A1 )-compact opera.tor. · Thus by Theorem 3.14, T"A1 C JY. By 

condition (a), T"A2 C:: JY. Applying Theorem 3.14, T' is a 

cr(X',A2)-compact operator and thus .Theorem 3.15 implies that· C is 

a (X' ,A2) compact. 

Ccmversely, assunie c0ndit:ion (b), and. let T e: L(X,Y) be such that 

T"A1 ~ JY. By Theorem 3.14 T' is cr(Y' ,Y) - cr(X' ,A1 ) continu0us. If 

B is the unit disk in Y', then T'B is·. O'(X' ,A1 ) c0mpac:t. 

Condition (b) implies T'B is cr(X' ,A2) compact and Theorem 3.14 then 

implies that· T"A2 c JY. Hel\ce; c0ndition (a) is satisfied. 



CHAPTER II 

wee AND UC OPERATORS 

wee Operate.rs 

Recall that a weakly completely continuous operator (wee) maps weak 

Cauchy sequences into weakly convergent sequences. The intent is to 

characterize wee operators and to investigate the set .. of all wee 

operators in L(X,Y). 

Theorem 1.1. T e; 1 (X, Y) is wee if and only if T"K(X) .C. JY. 

Proof: Let· Fe; K(X). There'exists a weak Cauchy sequence {x} 
n 

such that F = cr(X",X') - lim Jx • n n Since. T is wee, {Tx} 
n 

is a weak 

convergent sequence; . hence, there exists a y e; Y such that 

y = a (Y, Y') - lim Tx, so Jy = cr(Y" ,Y') - lim JTx . But since 
n n n n 

JTx = T"Jx it follows .. that Jy = .a (Y" Y') - lim T"Jx., · Recall, 
n n . . ' . n n 

F = cr(X",X') - limn Jxn, so T''F·= Jy; hence, T"K(X) c: JY. 

Conversely, assume • T"K(X) c: JY, and let {x .} be· a weak Cauchy 
n 

sequence in ){, Then there exists an F e; K(X) such that· 

·F = cr(X",X') - lim Jx. Now T" is weak* continuous, so 
n n · 

Jy = fJ(Y",Y') - lim T"Jx for some. y E:.Y, s:i,nce T"K(X) ~ JY. But n n 

T"Jx = JTx · n · n' thus, Jy = a (Y" ,Y ') - lim JTx . or n n· 

y,= cr(Y,Y') - lim Tx. Hence, T maps weak Cauchy sequences into weak 
n n 

convergent sequences and T is, therefore, wee. 

13 
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The wee.operators are now seen to be a particular class of those·in 

section three of Chapter I. Hence from Proposition 3.1 and 3.4 in 

Chapter I, we have the following: 

Proposition 1.2. (a) If either X or Y is reflexi.ve, every operator 

in L(X,Y) is wee, (b) The set of wee operators in. L(X,Y) is closed 

in the uniform operator topology. 

The algebraic properties for t~e set of wc.c operators in L(X;Y) 

are also readily obtainab.le. If V E L(X,Y) and F E K(X), then 

there exists a sequence {x} 
n 

in X such that F = cr(X",X') - lim Jx. 
n n 

Since V" is weak* continuous, · V"F = cr(Y",Y') - lim V"Jx which in 
n n 

turn equals '"'(Y'' Y.') - .lim JV v , n x , n, 
so V"F e: K(Y); thus, 

V"K(X) e K(Y). Consequently. from Proposition ).6, Corollary 3.8, and 

Propositfon 3. 9 in Chapter I, the next proposition foll0ws. 

Proposition 1.3. (a) Linear combinations of wee operators are wee. 

(b) The product of a wee operator and a continuous linear operator is 

wee. 

In particular, considering only maps from X to X, 

Proposition 1.2 and Proposition 1,3 imply the following corollary. 

Corollary 1. 4. In the uniform eperator topology on L (X,X) the ·wcG 

operators form a closed two~sided ideal. 

Since·a wee operator TE L(X,Y) has peen characterized by 

T''I<(X) ~ JY, Theorem 3.14 in Chapter I can.be applied; the following 

results about continuity of the first and second adj oints of a wee. 

operator can be obtained. 



Theorem 1.5. Let. T L(X,Y). The following are equivalent: 

(a) T is a wee operator. 

(b) T"K(X) c JY, 

(c) TI is a (r' ,J:Y) - a (X 1 ,K(X)) continuous. 

(d) T1 is a cr(X' ,K(X))-compact operator. 

(e)_ T" is T (K(X) ,X 1 )-norm continuous. 

The above indicat_ive theorem deduce~ a relaticmsl;dp b·etween the 

second adjoint and the operator .with respect to their being wee. 

Corollary 1. 6. Le,t · T e: L (X, Y) • If T" is a wee. operator, then T 

is a wee.operator. 
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Proof: By Theorem 1.5, T' 11 is a cr(X 1 ' 1 ,K(X"))-compact 

operator, so T11 ·1 ]Y' is a cr(X 1 ,K(X'\))-,,compact operator •. Since every 

cr(X 1 ,K(X")) compact set in X' is cr(X' ,K(X)) compact, T1 '. 1 jY' = T1 

is a a(X' ,K(X))-compact 1;>perator •. : Theor.em 1.5 then implies, tha~ T · 

is :a wee. operator •. 

By Theorem 1.5, Te: L(X;Y) is a wee op.erator if and only .. if. T1 

is a a (X 1 ,K(X) )-compact. opt;1rater, .However, an operator T being wee. 

(T 1 a cr(X 1 ,K(X))-compact operator) is .neither a necessary nor a 

sufficient condition:for T 1 to be a wee operator. Consider the 

identity map i: c0 -+ c0 • Since .. c0 is not weakly complete, i is not 

a wee. operator; but . i 1 : .e.1 -+ .e.1 is a .wee operator since·· .e.1 is weakly 

cemplete. Thus, it is seen that T I wee·. dees not imply .that T is 

wee. On the.other hand, let_ i be.the identi.ty operator on .e.1 , thE;m 

i is wee:, but. i': m -+ m is. not wee ·since m. is net weakly co.mplete. 

Hence, it is -seen that T wee does not imply tha-t T' is wee. 
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Using the second adjoint characterization of a weakly compact 

operator, T"X" C. JY, the second adjoint characterization 0:f; a wee 

operator, T"K (X) ~ JY, and the fact that K(X) C:: X11, the following 

is apparent. 

Proposition 1.7. If· TE L(X,Y) is weakly compact, then T is wee. 

Proposition 1. 2 showec;l that if either X or Y is reflexive then 

every T E: L(X, Y) is wee.. The next proposition yields the same result 

if either X . or · Y is weakly complete .. 

Proposition 1.8. If TE: L(X,Y) and either X or Y is weakly 

complete, then T is wee. 

Proof: · Sµppose that Y · is weakly complete and {x } 
n 

is a weak 

Cauchy sequence, then {Tx } ~ Y 
n. 

is a weak Cauchy sequence; .hence, 

weakly convergent. If X is weakly complete, then 

convergent to an x E: X. 

x = o(Y,Y') - lim Tx. n n 

So x = cr(X,X') - lim x · n n' 

{x} is weakly 
n 

and 

The relati,onship of wcc,operator to other operators in products 

and adjoints is a natural questicm, and th.e next objective is te study 

these. relation,ahips. 

Propositiqn 1. 9. If T is wee and V is ·weak Cauchy, then TV, V' T' 

and T''V" are weakly compact .. 

Proof: If {x} 
n 

is a beunc:led. sequence, then {Vx} has a weak 
n 

Cauchy· sequence {Vx . } , and hence,. {TVx } converges weakly. Thus, 
ni ni 

TV is weakly compact, and so are V'T' and T"V" by Gantmacher's 

theorem (6, p. 485). 
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It appears that-the weak Cauchy operators are not·a special class 

of the . type. discussed in Chapte:r ·I. However, -. the second adjoint of a 

weak Cauchy operator does characterize the _operator. 

Proposition 1,10. Let Te: L(X,Y). T is weak Cauchy if and·only if. 

T"JS is weak* sequentially compact where S is the unit disk of X. 

Proof: If. l' is weak Cauchy and {Gn} · is a sequence in T"JS, 

then G = T"Jx for some sequence {x} in s, 80 G = T"Jx =.JTx n n n· n n n 

{x } is bounded and T is weak Cauchy so. {x } has a subsequence n n 

{z } such that {Tz n} is weak Cauchy, so {JTz } is, therefore, weak* n n 

Cauchy which implies G = a (Y" ,Y') - lim JTz 
n n 

exists. {J!z} is a 
n_ 

subsequence of {G } • hence, 
n ' 

{G} has a subsequence that converges 
n 

weak* to an element.Ge: Y"; thus, T"JS is weak* sequentially compact, 

Conversely, assume T"JS is weak* sequentially compact. 

is a seqtience in S, then {'.I'"Jx } is a sequence in T"JS. 
n 

If {x } 
n 

Hence, 

{T"Jx ·.} has a subsequence {T"Jz } which converges weak* in Y". But· 
n n 

T"Jz = JTz , so {Tz } is wea_k Cauchy; hence, T is a weak Cauchy 
n n n . 

operator. 

If Te: L(X,Y), and S and S" are the unit disks.in· X and X" 

respectively,. then T"JS c:: !"S". So if T · is a weak* compact operat0r, 

then T"S" will be weak* sequent:l.ally compact. Consequently, !"JS 

is also weak;'; setJ.uen t;i.ally compact. Thus, Proposition 1.10 implies the 

following result. 

C(;)rollary _ 1.11. Let T e: L (:X, Y). If T" is weak* compact, . then T 

is-weak Cauchy. 
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The converse to the above cor01lary is not true. Let K = [0,27T.] 

and let i be the identity operator on c0.(K). Since c0 (K) · is· 

almost reflexive every bounded sequence will have a weak Cauchy 

subsequence, so i· wiJ,1 be a weak Cauchy 0perator. However, 

i'': m(K) ~ m(k) is not weak* compact since the unit .disk of niCK} is 

not weak* sequentially compact. 

m(K) · by x (a)= sin na 
n 

for all 

Ind,eed, define a sequence · { x } in 
n 

a. e: [0,21r) and for n = l,2,3, .... 

Suppose {x J has a weak* convergent subsequertce {x }, If {x· } 
n n. n. 

1 1· 

converges in the .weak* topology, then it. must ccmverge pointwis~ ori K. 

limi sin nia mus!; exist for each a e: K, However, this is not 

possible. 

Let T e:. L (X, Y) and let S" be the unit ·disk in X". If T" is 

weak Cauchy, .then any sequertce in T"S" will have a weak Cauchy 

subsequence. 'l'hus, the subsequence will be weak* Cauchy.and, the.refore, 

weak* convergent. So T"S" is weak* sequentially cempact and, hence, 

T" is weak* compact. '1'hus, ah01;her immediate result is the following. 

C0rollaryl.12. Let Te: L(X;Y). If T" is weak Cauchy, then T" is 

weak* compact:; in particular, T is weak Cauchy, 

The ab0ve corollary also shows that .if T e: L (X, Y) and Y is a . 

conjugate Banach space, then T weak Cauchy implies T is weak* 

compact~ The converse, however, is n0t true. The identity map on £1 

is weak*. compact since c0 is separable, but it is not wea~ Cauchy 

since. £1 is weakly complete and p.ot reflexive. 

C0rollary 1.11 can n0w be used to obtain a result about·the 

product of a weak* compact operator and a wee operator. If Te: L(X,Y) 

and T" is weak* compact, then by Corollary 1.11 T is weak Cauchy. 
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Propo~itfon 1. 9 then implies ·that•· V"T" is weakly compact fo.r any wee. 

· operator V £ (Y,Z). 

Corollary 1.13. If T" E L(X'',Y") is weak* cempact and VE: L(Y,Z) is 

wi;:c, then V"T" is weakly compact operator. 

For completeness,.the follev;ring .results concerning weak Cauchy 

and weak* cempact operators and their adjoints are included. 

If T E L (X, Y) is wet;ik Cau.chy, then T" is not. necessarily weak 

Cauchy. Since if T" were weak Cauchy, then by Corollary 1.12. T" is 

weak* compact. The example.following Corollary 1,11 shows· that this is 

not true. 

If T £.L(X,Y) is weak Cauchy, then T' is not necessarily weak 

Cauchy. The identi.ty operator an c0 is weak Cauchy since is 

almest reflexive, .but the identity operator on £.1 is not weak Cauchy 

since £.1 is not almost. reflexive, 

If T £ L(X,Y), then T" weak* compact does imply. T is weak* 

compact, assuming the range space Y is·a conjugate space. T" weak* 

compact implies T is weak Cauchy~ hence, T is ..teak* compact. 

However, the converse is not. tru~. Consider the identity aper a tor 

i: £.1 -+ £.1 • i is weak* compact since c0 separable implies the unit 

disk of £.1 . is weak* sequentially compact. But· i" · is not we.ak* 

compact since in m' weak*. convergence is equivalent to weak 

convergence; hence, the unit disk. in m' is not weak* sequentially 

cGlmpact. Thus, T weak)~ compact does n~t imply T" is weak:* compact, 

In particular, T weak'~ compact does not imply. T' is weak* compact. 

since the identity operator on m is we1;1k* compact. 
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The following questions remain unanswered: 

(a) If T' is weak* compact, is T · weak* compact? 

(b) If T' is weak Cauchy, is T weak Cauc)::iy? 

UC Operators 

A continuous linear operator is said to be unconditionally 

converging (uc) if it maps wu.c series into uc series. The intent is to 

show tha.t the uc operators are a particular class of th0se operators 

given in section three of Chapter I. 

Theorem 2.1. An operator T e: L(X,Y:) is uc if .and only if. T"N(X) c JY. 

Proof: Let· FE N(X). There exists a.wuc se,ies 
n 

F = cr (X" ,X') - lim E Jxi •. Since· T is uc, ETx. n i=l l. 

and, therefore, there exist a y E y such that 

n 
y = CJ (Y 'y I) - lim E Tx. n i=l 

l. . 

and 
n 

Jy = ,CJ (Y" 'y I ) - lim E JTx .• 
n i::al l. 

n 
F = cr (X'' ,X') - lim E Jxi n i=l 

n 
T"F = cr (Y", Y') - lim E T"Jx. 

n i=l l. 

n 
T"F = o (Y'', Y') - lim E JTx1 n i=1 

T"F = Jy 

is 

Ex. such that 
l. 

a UC series 
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hence, 

Let 

F e: 

T"N (X) C JY. 

Conversely, sup1>ose T"N (X) c JY and let Ex. be a wuc series. 
J. 

Ez. be a sub series of Ex .. 
1 1 

N(X) such that F cr(X",X') 

Since 

- lim n 

Ezi 
n 
E 

i=l 

is wuc, there exist 

Jz .• Since T"N(X) C JY, 
1 

there exists a y e: y such that T"F = Jy; thus, 

and, therefore, 

This shows that 

hence uc. 

Jy 

y 

n 
= cr (Y", Y') - lim E 

n i=l 

n 
cr(Y,Y') - lim E 

n i=l 

T"Jz. 
1 

Tz .. 
1 

ETx. is sub.series convergent in the cr (Y, Y') 
1 

topology, 

The following facts are known, (9), but they also follow from 

Chapter I and Theorem 2.i. 

(a) If either X or Y is reflexive, every .operator in L(X,Y) 

is uc. 

(b) The set of uc operators is closed in the uniform operator 

topology on L(X,Y). 

(c) Linear combinatio1=1s of uc operators are uc operators. The 

product of a uc operator and a continuous linear operator is 

uc. 

(d) In the uniform operator topology on L(X,X), the uc operators 

form a closed two-sided. ideal. 



Similar to wee operators, the following result ab.out. continuity 

of the first anq second adjoints of a uc operator can be obtained, 

Theorem 2.2. Let Tc:: L(X,Y), The following are equivalent: 

(a) T is a uc operator. 

(b) T"N (X). C JY. 

(c) T' is cr(Y' ,JY) - cr(X' ,N(X)) continuous. 

(d) T' is a O"(X',N(X))-compact operator. 

(e) T" is. r(N(X),X')-norm continuous. 
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Proof: This follows from Theorem 3.18 in Chapter I and Theorem 2,1. 

The foll0wing corollary was.first proven by Howard (9) using an 

entirely different method. 

Corollary 2.3, Let Tc:: L(X,Y), If T" is a uc operator then T is 

a uc.operator. 

Proof: By Theorem 2,2, T''' is a a(X''' ,N(X"))-compact operator, 

so T''' Jy' is a cr(X' ,N(X"))-compact operator. Since every 

cr(X' ,N(X")) compact set in X' is a(X' ,N(X)) compact T''' jY' = T' 

is a cr(X' ,N(X))-compact operator. Theorem 2.2 then implies that T is 

a uc operator. 

Another application of Theorem 2.2 can be deduced directly from 

(9, Corollary 3,2,4), 

Corollary 2.4. Let TE L(X,Y). T" is a cr(Y",N(Y'))-compact operator 

if and only if there do not exist epimorphisms h1 E L(X,l1) and 

h2 c:: L(Y,l1) such that h1 = h2T. 
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A substantial amount of work hc;is been done.recently in representing 

uc operators with domain in C(S), S a compact Hausdorff space. 

However, the representation o~ uc operators with range in C(S) remains 

untoucl).ed. This is probably due to the fact that a suitable topology 

for the conjugate of a Banach space was missing. 

Theorem 2.5. (6) Let S be a compact Hausdorff space and let T be 

a continuous linear operator from X to C(S). Then there exists a 

mapping v: S + X' which is cont:i.nuous with the cr(X' ,X) tapology 

such that: 

(a) Tx(s) = v(s)x, x E X, s E S. 

(b) IITII = s.u.ps Jv(s)J, s ·E: 

Conversely, if given such a map v, then the operator 'I' defined by 

(a) is a contint10us linear 0perator from X te C(S) with norm·given 

by (b). T is weakly compact if and only if v is cr (X' ,X".) 

continuous. T is campact if and only if. v is continuous with r~spect 

to the norm topology on X'. 

It is also known that T is completely continu~us (maps weak 

Cauchy sequences into norm convergent sequences) if and only.if v is 

T(X' ,X) continuous (Mackey.topology). 

The objecdve is to show: 

(a) · T is uc if and only if v is cr (X' ,N (X)) continuous. 

('b) T is wdc if and only if v is cr (X' , K (X)) continuous. 

Only (a) will be proven. The prodf of (b) is similar and simpler. 
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v is defined by v = T'TI where TI: S ·+ C'(S) is given by 

TI (s) (f) = f (s), f e: C (S), s E S. TI is a homeomorphism of S into a 

compact subset of. C'(S) with the a(C'(S),C(S)) topology. 

Theorem2.6. T is uc if and only if. v is a(X' ,N(X)) continuous. 

Proof:. If T is uc, then T' is cr(C' (S) ,C(S)) - a(X' ,N(X)) 

continuous; thus, v = T'TI will be cr(X' ,N(X)) continuous. 

Conversely, suppose v is a (X' ,N (X)) continuous. Let 'i.y be 
n 

a wuc series in X and 'i.x be an arbitrary subseries of 'i.y , . It 
n n 

n 
suffices to show that B = { 'i. Txij n = 1,2, ••. } is a(C(S),C'(S)) 

i=l 
conditionally compact, since then T would be uc (i.e. 'i.Ty · would be 

n 

a (C (S), C' (S)) sub series convergent; hence, uc). B C: C (S), so by 

(6, p. 269, Theorem 14) B is a(C(S),C'(S)) conditionally compact if 

and only if B is bounded and quasi-equicontinuous~ But B = TA, 
n 

where A= { 'i. xii n = 1,2, ••. }, and A is bounded, so B is 
i=l 

bounded. 

To see that B is quasi-equicontinuous, let s + s in S, 
a 

let 

E > O, and let a 0 be given, Since 

cr(X',N(X)). Since 

v is a(X' ,N(X)) continuous 

v(s ) + v(s) in a 

Thus, 

are in 

'i.x 
n 

is wuc, 
n 
l, 

* w 
Jx.--+ F e: N(X). 

J. n 

{F} is a cr(X",X'.) 
i=l 

compact set and v(s ) . a and 

Since v(s) e: C (A1), . then by Arzela' s the.orem 

v(s) 

(6, p. 268, Theorem 11) the c<mvergence v(s ) + v(s) 
a is quasi~uniform 

on Ai; hence, quasi-uniform on A. Thus, there exist a finite set of 

indices a1 , ... ,an.:. a0 such that for each a EA, 

min J J l<i<n v(sai)a - v(s)a < e. 



mi.n 
k k 

jv(s ) I: x. - v(s) I: x. j < E l<i<n a. j=l J j=l J 1 

k k min 
l<i<n l I: Tx. (s ) - I: Tx . ( s ). j < E 

J Cl.. j=l J. j=l 

min 
l<i<n 

. 1 

jf(s ) - f(s)j < e 
ai 

for each 
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for each k. 

for each k. 

f €: B, 

Thus, B is quasi-equicontinuous; and it, therefore, follows that· B 

is cr(C(S),C'(S)) conditionally c(;)mpact; and, hence, T is uc. 

It is natural to ask what relationship, if any, exists between uc 

and wee operators? To aqswer this, the foll0wing result is needed. 

Lemma 2. 7, JX C:: N (X) c K (:X) C:: X", 

Proof: The inclusfons JX .s;; N (X) and K (X) c X" are clear. If 
n 

F e: N(X), then F = a (X" ,X') - lim I: Jx. 
n n i=l 1 

r Jx. = Jz fo.r some 
1 · n 

i=l 
in x. But notice 

for some wuc series 

z f; X, :fience , 
n 

Ex. 
1 

F = a (X" ,X') - lim Jz., which implies F .f; K(X) and it follows that 
n n 

N(X) C K(X). 

The next result shows that the class of :wee operators in L(X,Y) 

is a subclass of the class of uc operators in L(X,Y). 

Proposition 2.8. If T f; L(X,Y) is a wee operator, then T is a uc. 

operator. 

Proof: By Lemma 2.7 N(X) .c; K(X); thus, T"N(X) C:: T"K(X), Since 

T is wee· T"K(X) ~ JY and, therefore, T"N(X) c JY. By Theorem 2.1 

T is a uc operator, 
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It is of interest to know when either K(X) = N(X) or N(X) = JX. 

See Chapter III and also the next theorem. A condition under which 

both conditions are satisfied is now stated. 

Lemma 2.9. If X is weakly complete then K(X) = N(X) = JX, 

Proof: If F .E K(X) there exists a.sequence {x} in X such 

that F = cr(X",X') - lim Jx , 
n n 

n 

Since X is weakly complete and 

is weak Cauchy, there exists an x EX such that x = cr(X,X') 

J is continuous with respect to .the weak and weak* topolegies so 

{x} 
n 

lim x , 
n n 

Jx = F which implies that FE JX, K(X) C:: JX and Lemma 2.7 then 

implies K(X) = N(X) = JX, 

Conditions when a Banach space X has no subspace isomorphic to 

c0 has been shown to be useful (9), Equivalent conditions are: 

X" has no subspace isomorphic to m, and the identity operator on X 

is a uc operator (9), It is new shewn that N(X) = JX can be added to 

the list. 

Theorem 2.10. The following are equivalenti 

(a) i: X -+.X is a uc operator (i is the identity operator). 

(b) N(X) = JX,. 

(c) X has no subspace isomotphic to c0 • 

(d) X" has no subspace isomorphic to m, 

Proof: Suppose i: X-+ X is a uc operator. By .Theorem 2.1, 

N(X) c JX and Lemma 2.7 then implies that N(X) = JX. Conversely,. if 

N(X) = JX, then i"N(X) C: JX · a,nd Theorem 2,1 implies i: X-+ X is a 

uc operator, 
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The next lennna can be proven using a technique due to A. Pelazynski, 

(22, p. 446), A proof will not.be provided here since it is extremely 

long.and easily verified by using Pelczynski's technique. 

Lemma 2.11. Let i. be the. identity map of a subspace Y. into X. If 

F e; N(X) and G e; K(Y). are such .that i"G = F, then G e: N(Y). 

In (16) Theorem 2.12 ·is prove.n. It is stated without,proof in this 

paper, then a similar result is established for N(X} and N(Y). In 

the ,next two th.eorems let Y be a subspace of a Banach space X and 

let i be ·the identity map of Y into X.· 

Theorem 2.12. (16) i''K(Y). = (i"Y") n K(X). 

Theorem 2,13. · i"N(Y) = (i"Y") n N{X),. 

Proof: First observe that i". is an isometry from Y'' into X" 

and if F=i"G and Ge:Y", then F(f)=G(f[Y) foral,1 fe:X'. 

Suppose F e: i"N(Y), then there exist51 .a wuc, series E~i in Y such 
n 

that if y •"E.z1 then G=(Y",Y'.)-l;Lm Jy and i"G=F. So 
n i=l n n . 

F(f) = G(fjY) = 'limn Jyn (fjY) = lim0 f(yn) for every f e: X' and, 

henc.e; Fe: (i"Y") n N(X). It. then follows.that .. i"N(Y) C:: (i'1Y") n N(X),. 

Conversely, if F e: (i ''Y") n N (X) · then there e~is ts a G in Y" 

such that i "G = F ·. and a.l,so F .e: N (X) • Sirice N (X) c:: K (X) , 

(i"Y") n N(X) C:: (i"Y") n K(X)· = i"K(Y). So. Fe; i"K(Y), i.e .. Gs K(Y)~ 

F e; N(X), G e; K(Y), an,d i"G = F imply. by ,Lemma 2 .11 tb,at G e:, N(Y); 

hence; F e; i"N(Y) · and it follo'(t.ts · that (i"Y") n N(X) C: i"N(Y). 

Corollary ,2.14. Let . Y be a subspi3,ce pf X. If N(X) = JX, · then 

N(Y) = JY. 



Proof: i"N(Y) • (i"Y") r, N(X) = (i"Y") n JX = ;i"JY. 

The next easily verified result 13hows that it is sufficient to 

consider only separable subspaces te obtain the converse. 

Corollary 2.15. N(X) = JX if and only if N(Y) = .JY for each 

separable subspace Y of X. 

If TE: L(X,Y) is a uc operator, then T"N(X) c JY,. Hence, if 

N(X) = X", then. T is weakly compact. The next corollary desc.ribes 

this behavior with respect to subspaces. 

Corollary 2.16. If X is a Banach space such that. N(X) = X", · then 

N (Y) = Y" for all subspaces Y of X~ 

Pr0of: i"N(Y) "" (i"Y") n N(X) = (i"Y''.) n X" = i"Ylf. 
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If N(X) = X", then X has property.V. The above ·corollary shows. 

that • if N (X) = X", · every sub space Qf X has property V; al the ugh in 

general not every subspace of a space with property V has property.V. 

Two·examples are now given, one.where N(X) ii X" and a non-reflexive 

one where N(X) = X''· 

Consider the space· C[0,1], In this case N(C[0,1]) ,/: C[b,1]" . 

.e.1 is isomorphic to a .subspace of qo,1], so if N(C[O,ll) equals 

c [0,1]", then N(l1) = .e.1; thus, .e.1 would then have property V 

which it does. not. Note that C[0,1] does have pi;operty V; hence, 

property V does not imply N(X) = X". 

Since K(cQ) = c0, and K(c::0) = N(c0) ai;; will be seen in 

Chapter ILI, it follows that N(c0) = c0. 
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If N(X) can be shown to be weak* sequentially closed., the next 

two corollaries provide useful information cc;mcerning the ,space X. 

Coro:llary 2.17. Let X be a Banach space, N(X) is weak* sequentially 

closed in X'' if and only if . N (Y) is weak* sequen tia],ly c1,osed in Y" 

for each separable subspace Y of X. 

Proof: Let x1 = N(X), x2 be the weak* sequential clo.sure of x1 

in 

Y"' 

X" ' Yl = N(Y), and 

Since i "Y C i "Y" and 2-

be the weak* sequential closur.e of y 

it follows · that 

i"Y2 c (i"Y") n x2• Supp0se N(X) · is weak* sequentially closed in 

then x1 = x2 • ·For an arbitrary.subspace Y of X by The0rem 2.13, 

in 

X" ' 

i"Y2 C (i"Y"). n X = (i"Y") n X = i''Y 2 · 1' so Y1 = Y2 which implies that 

N(Y) is weak* sequentially closed in ·Y". 

Conversely, suppose that 

Let F = a (X" ,X') - litnn F n 

Y1 = Y2 for each separable. Y in x. 

where {F } c X. Fer each n there is a 
n 

ex, 

wuc. series rynk with partial sum sequence {xnk}k=l in X such that .. 

F = a (X'' ,X' ) - li~ Jxnk' If z is the subspace of x spanned by 
n , 

{y' nk: n,k = :!. , 2' ... } ' and if i is the identity map from z into x, 

then there exists G,G1 ,G2 , ... in· Z'' such that 

G = cr(Z",Z') - li~ Jxnk and G = cr(Z",Z') - limn G . Now each 
n n 

G e: N(Z) since LY · is wuc.in x, SC> by .the Hahn..;Banach theorem 
n nk 

Lynk is wuc in z. Thus, G = (i")-1 F e: zl and G = (i")-lF. 
n n 

Since z is separable, by .hypothesis zl = z2 so it follows that there 

exists a wuc series Ltn in Z with partial sum sequence {zk} such 

that G = cr(Z",Z') - lill\c Jzk; hence,. F(f) = G(f]Z) = lill\c f(zk) for 

every f e: X' so F = cr(X",X') - lill\c Jzk and thus F e: x1 . Hence, 
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Chapter III will. show the usdulness of .the condition K(X) = N(X), 

and McWillia,ms (16) has studied the implications of K(X) being weak* 

sequentially closed. With these two facts in mind, the fol10wing is 

given. 

Corollary 2.18. Let X be a Banach space. N(X) is weak~'( sequentially 

closed. if and only if K(X) = N(X) and . K(X) is weak* sequentially 

closed. 

Proof:. If N(X) is weak* sequentially closed, then since 

JX C:: N(X) · and K(X) is the weak* sequential clo.sure of JX, it 

follows that K(X) C:: N(X) C:: K(X). Hence, K(X) = N(X). If N(X) · is 

weak* sequentially closed, then K(X) will be weak* sequentially 

closed since K(X) = N(X), The converse is obvious. 



CHAPTER III 

PROPERTY V AND THE DIEUDONNE PROPERTY 

Operators defined on a Banach space appropriate1y give some 

characterizations and/or properties of the respective Banach. space. 

Two such properties of interest ·(in this chapter) are property V and 

the Dieudonne property. The purpose, therefore, is to closely 

scrutinize these properties: conditions for a space to possess or to 

lack this property, permanence of the property, and other 

characteristics. 

Property (u) 

During an investigation of the Dieudonne property and property V, 

it. was natural to inquire whether or not there was.a connection between 

the two. As is shown, p:i;operty (u) p:i;ovides a connecting link. Thus, 

property (u) merits consideration. 

Definition 1.1. A Banach space X is said t0 have property (u) if for 

every weak Cauchy sequence {x} there exists a wuc series 
n 

that {x 
n 

n 
~ 

i=l 
u.} 

1 
converges weakly to o. 

A. Pelczynski (18) intr0duced the concept of a space possessing 

pr0perty (u) and gave several rei,u'lts without proof. Simple proofs are 

provided in this paper. First a c:haracterization of property (u) is 

provided by using the .sets. K(X) and N(X). 

31 
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Theorem 1. 2. A Banach space X has property (u) if and only if 

K(X)· = N(X). 

Proof: Assume. X has property · (u), If F i:: K(X) · there exists a · 

weak Cauchy sequence {x } 
n 

in X · such that F = .a (X" ,X') - lim Jx .· 
n n 

Since X has. property (u) there exists a .wuc series Lui in X such 

that {x -
n 

converges weakly to o. 
n 

F = 0(X",X') - limn L · Ju. 
i=l J. 

and, therefore, 

Hence, 

F e: N(X). 

implies K(X) = N(X) since N(X) is always a subset of 

K(X) ~ N(X) 

K(X), 

Conversely; assume K(X) = N(X) and let {x} be a weak Cauchy 
n 

sequence in X. There exists an FE: K(X) such that 

F = cr(X",X') - lim Jx, Since K(X) = N(X), Fe: N(X) which implies 
n n 

there .exists a wuc series . LUi in x such that 
n n 

- lim L Ju.; thus; {X - L U,} converges weakly to n i=l + n i=l. J. 
F = 0' (X" ,XI) 

o. 

Weak completeness and prnperty (u) are closely related as is 

illustrated by the following. 

Corollary 1. 3. (18) Every weakJy complete Banach space has property 

(u), In particular, every_reflexive space has property (u). 

Proof: Recall JX c N (X) ~ K(X), If X is weakly complete 

JX = K(X), so N(X) = K(X). 

Cqrollary 1. 4, (18) If in a space X. having property (u) wuc .series 

are 4c series then X is weakly complete. 
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Preof: By Theorem 2,8 in Chapter II, N(X) = JX since all wuc. 

series are uc series. Since X has property (u), N(X) = K(X). Thus, 

K(X) = JX, i.e. X is weakly complete •. 

Corollary 1. 5, (18) If X has pi;operty (u), then X is weakly 

complete .if and only if no subspace of X is is0morphic to c0 . 

Pro0f: If X .· is weakly complete, K (X) = N (X) = JX; · thus, 

N(X) = JX. By Theqrem 2,8 in Chapter II, no subspace of X is 

isomorphic to c0 . Conversely, if N(X) = JX and N(X) = K(X), then 

JX = K(X). 

Property (u) can be c0nside'):'ed as an inherited property.. 

Theorem 1. 6, (18) If X has property (u), then every subspace . Y 

has property (u). 

Proof: If X. has property (u), then K(X) = N(X). By 

Theorem 2.9 and Theorem 2.10 in Cj:J;apter II, 

' i"N(Y) = (i"Y") n N(X) = (i"Y") n K(X)· = i"K(Y)' 

so N (Y) = k (Y) ; thus, Y has property . (u) . 

. 
Corollary 1.7, (18) The space X has property (u) if and only if 

every. separable subspace has _property. (u), 

Proof: Let Y be a separable subspace. If· N(Y) = K(Y), it 

follows from Theorem 2.9 and l'heorem 2.10 in Chapter II that 

(i"Y'') n K(X) illK(Y) = i"N(Y) = (i"Y") n N(X), 
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so. (i''Y") n K(x) = (i"Y'') n N(X) for every separable subspace Y, If . 

Fe: K(X), then there. exists a sequence. {x } in X such that 
n 

F = cr (X" ,X') - lim . Jx . If X is the separable subspace generated by n n 

{x } , then F e: i"Y",; so F e: (i"Y") n K(X) · = (i"Y") n N(X), and it 
n 

follows that Fe: N(X). Thu~, ·K(X) = N(X). The converse follows 

from Theorem 1,6, 

When does a space.with a basis possess property (u)? To partially 

answer this, the following definition is ne.eded. 

Definition 1. 8. A basis - {x } of a Banac;h space is .said to be. 
n 

unconditional if every convergent series of the form 

unconditionally convergent, 

Ea.x. 
1 1 

is 

If a Bana.ch space X has an unconditional basis, then X has 

property (u) (22, p. 445). This fact yields many examples of spaces 

with pr0perty (u), In additicim, with Theorem 1.6 the following result 

is obtained. 

C 0rollary 1. 9. (18) Every subspace of a, space with an unconditional 

bases has property . (u). 

The natural bases for c0 and lP, · p.::. 1, are unconditional 

bases so. c · 
0 

and 
p 

l ' 
p . .' L ([0,1]), 1 < p < oo, 

p .::. 1, have prC:>perty • (u). The Haar basis of 

is an unccmditicmal basis so 1P([O,l]), 

1 < p < 00 , has property (u). 1 1 ([0,1]) has ~roperty (u) since it is 

weakly c0mplete, but L 1c [ 0, 1]) dees not have an unccmdi tional basis, 

(22, p. 441, Theerem 15.3). Thus, preperty (u) does n0t imply the. 

existence of an unconditional basis. 
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Certain spaces have been seen to.have property .(u). What spaces 

do not have property (u)? The following is an aid in answering this 

question. 

Proposition 1.10. Let X be a ncm.,..reflexive Banach space such that: X" 

is separable. Then X does not have property (u). 

Proof: Sine~ X" is separable, X contains no subspace 

isom0rphic to c0 ; hence, N(X) = J°X. Suppose X has property (u), 

then K(X) = N(X) = JX which implies that X is weakly c0mplete. X' 

separable and· X weakly complete imply that X is reflexive, 

(4, p. 58), a contradictipn. So· X does not have property (u). 

Any of James' spaces (11), B(m) 
n , ' n ~), m < n - 2, do n0t have 

property (u), 

C[O,l] does not have property (u). Thus, C[O,l] can not be. 

embedded in a space with property (u), In particular, C [ 0, 1] can n0.t · 

be embedded in a Banach space with an unconditional basis.· Since every 

separable Banach space is isometrically isomorphic to a subspace of 

C[0,1], C[0,1] contains a subspace isometrically isomorphic.to B3• 

If C[0,1] did have property (u)., then B3 would have property (u) 

which it does not. 

Many of the cl.assical Banach spaces have been sh0wn to possess 

property (u). · In view of Theorem 3.6, their possession .of property V 

is equivalent to their possession of the Dieudonne property. However, 

other classical Banach spaces, such as C[0,1], separate inquiries into 

their possessi.on or lack, of prG>perty V and the Dieudonne property must 

be conducted, 



An explication of the Dieudonne property and property V are the 

ensuing t0pics. 

The Dieudonne Property 
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A Banach space X is said to have the Dieudonne property if every 

wee operator Ti:: L(X,Y) is weakly c0mpact where Y is an arbitrary 

Banach space. The following theorem provides an equivalent condition 

for a space X to have the. Dieudonne property independent of any 

reference to operators and their range space. A. Grothendieck proved a 

similar result for locally convex spaces (8); however, condition (c) in 

this paper does not require the set t0 be c0nvex and balanced as does 

Grothendieck's theorem. In any case, it follows directly from 

Theorem 1.1 in Chapter ,II and Theorem 3,17 in Chapter I. 

Theorem 2.1. (8) The following conditions on X are equivalent: 

(a) X has the Dieudonne property. 

(b) Any T E: L (X, Y) such that . T"K(X) C: JY satisfies T"X" C::: JY. 

(c). Any a(X',K(X)) compact set in X' is als0 a(X',X") 

compact. 

When a Banach space X is reflexive, every continuous linear 

operator on X is weakly compact. Thus, the next observation by 

A, Grothendieck (8) folhws. 

Lemma 2.2. (8) Every reflexive space has the Dieudonne property. 

Prop0sitfon 2.3. (8) A weakly complete Banach space X has the 

Dieudonne property if and only if it is reflexive. 
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Proof: If X has the Dieudonne propert;y and i is the identity 

map from X to X, then i is a wee operator and, therefsre, weakly· 

csmpact. If i is weakly compact, then X has a weakly.compact unit 

disk and, hence,. reflexive. The converse is Lemma 2.2. 

The Banach space l 1 does not have the Dieudonne property since it 

is weakly complete and not.reflexive, 11 is also weakly complete; 

hence, it will have the Dieuqonne property only. when it is reflexive, 

i,e. when it is finite dimensional. 

The natural question of the permanence of the Dieudonne property 

under inductive limits, pr0jective limits, direct products, direct sums, 

quotient spaces, and subspaces arises. A. Grothendieck (8) stated 

with.out pr0of that for Banach spaces the Dieudonne property is preserved 

for direct factors, products, and quotient$, Not only will these 

results be shown, but an extensive inspectian of th~ permanence .. 

pr0perties is conducted. 

If E is the inductiye limit or projective limit. of Banach spaces, 

the space E is n0t necessarily a Banach space. However, · E would be 

a separated locally co.nvex topological :vector space (LCTVS). Hence, the 

following definition would be appropriate in dealing with such 

situations. 

Definition 2.4. A LCTVS E is said to have the Dieudonne property if 

every wee operator T E L(E, Y) is weakly c0mpact wher.e Y is an 

arbitrary.Banach space. 

Theorem 2.1 holds for LCTVS with the additional assumption that the 

set in conditfon (c) is also equicontinuous, convex, and balanced (8). . . . . 
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Proposition 2.5. If a space E has (lacks) the Dieudonne property 

with a compatible topology, then E with any other compatible topology 

has·(lacks) the Dieudonne property. 

Proof: Condition (c) of Theorem 2,1 is a condition on E' 
' and 

all compatible topologies for E have the same conjugate. 

Since l 1 with the norm topology does not have the Dieudonne 

property, l 1 w;lth the we.ak topology does not have the. Dieudonne 

property. 

Definition 2.6. Let { (E ,f ) } be a family of LCTVS E and f 
. 0\ 0\ Ct 

linear maps from E into a space E such that U f (E ) spans 
a a · a 

be 

E. 

Furnish E with the weakest convex topology so that all the f I 9 are 
a 

c~ntinuous. E with this topology is said to be the inductive limit of 

the E 's. E is said to be the regular induct~ve limit if for every 
0\ 

bounded set B in E there exists a S such that B is bounded in 

Proposition 2.7. Suppose E is the regular inductive limit of 

{(E ,f )}. If each E has the Dieudonne property, then E has the a a a 

Dieudonne property. 

Proof: Let T be a wee. operator from E into a Banach space y 

and let B be a bounded set in E, There exist a s such that f;\B) 

is bounded in ES, Let TS = T 0 fs. T is wee so TS is wee, .and 

since ES has the Dieudonne property TS is weakly compact. Hence, 

-1 is weakly relatively but fs, T8(f 13 B) compact, T = T o so 
13 

-1 T8cf 13 B) = T(B) which implies that T is weakly compact. It then 

follows that E has the Dieudonne property. 
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For LCTVS the Dieudonne property is not necessarily preserved for 

quotient spaces; in particular, the property is not necessarily 

preserved for inductive limits. In (21, p. 195, problem 20) there is 

given a Monte! space E which has a quotient space isomorphic to £1 • 

Since E is a Montel space, E is reflexive and, hence, has the 

Dieudonne property. However,. £1 does not.have the Dieudonne property. 

The natural map T from E onto.the quotient space isom0rphic to £1 

defines £1 as the inductive limit of E. 

Propositicm 2.8. If a Banach space X is the inductive limit of a 

finite number of Banach spaces X with the Dieudonne.property, then 
n 

X has the Dieudonne property. 

Proof: Let T be a wee operator from x to a Banach space Y. 

Define T = T o f where f maps x into x. T is wee so T 
n n n n 

is wee .and, therefore, T is weakly .compact. Let B be a n 

set in x· , then is relatively weakly compact since 

weakly compact and the union is finite. But UT (f-lB) = TB, 
n n 

is weakly compact and, thus, X has the Dieudonne property. 

n 

bounded 

T 
n 

is 

so T 

Each quotient space is the finite inductive limit of the space. 

Corollary 2.9. (8) Every quotient space of a Banach space with the 

Dieudonne property has .the Dieudonne property. 

Banach space may.be replaced by normed linear space in 

Propo~ition 2.8 and Corollary 2.9 since the completeness is not used in 

the proof. 
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De.finition 2.10. Let E be a vector space. For each a. in some index 

set, let f be a linear map from E to a LCTVS E, 
O'. O'. 

such that 

n f-l (O) = {O}. Furnish E with ~he weakest topology such that each 
O'. 

f is continuous. Then E is said to be th.e projective limit of the 
O'. 

family { (E , f ) } , 
O'. O'. 

If A= {f }, then in the termin0logy of (23) the topology on E 
O'. 

is cr(E,A). 

A subspace E ·of a LCTVS F is a special case of a projective 

limit. Consider the natural embedding map i from E into F· 
' 

then 

the relative topology on E is the weakest topology making i 

continuous; hence, E is the projective limit of F. 

The Dieudonne property is not necessarily preserved for subspaces. 

In partic4lar, projective limits de not necessarily preserve the 

Dieudonne property. l 1 is linearly isometric t0 a subspace of C(S), 

S a compact Hausdorff space. C(S.) has the Dieud0nne property, but l 1 

does not have the Dieudonne property. 

Pr0position 2,11, (8) Suppose E is the direct: product of a family 

{E} of LCTVS. If each E has the Dieudonne property, then E has 
O'. O'. 

the Dieudonne property. 

Proof: Let· T map E into a.Banach space Y be a continuous 

operator, and let h be the natural map of E into 
a a. 

E, Then 

T =Toh is continuous from E into Y. Since Y is a Banach 
a. a a 

space, the continuity of T entails that T = 0 
O'. 

for all but a finite 

set of indices a. It, therefore, suffices to handle the case of a 

finite prod~ct. It is easy to see that for a finite set of LCTVS 
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F1 , •.. , Fn, E ·= F1x ••• xFn, that T mapping F into a Banach space 

y is weakly compact (wee) if and only if T = T o h k k is weakly 

compact (wee) for each k = 1, ... , n.· It then follows that the 

Dieudonne.property is preserved under direct products. 

The direct sum of. spaces with the Dieudonne property has the 

Dieudonne property. The proof is analogous to Proposition 2.11. It can 

also be seen that, although the Dieudonne property is not preserved for 

subspaces, a space E has the Dieudonne property if and only if every 

complemented subspace has the Di_eudonne . property. 

The question of whether a Banach space has the Dieudonne property 

can be converted to a question of whether a space of continuous 

functions has the Dieudonne property. The space C(S), S a compact 

Hausdorff space, has the Dieudonne property (8). Let C(S;X) denote 

the se_t of continuous functions on a compact Hausdorff space S with 

values in X. In . (19) it is sh0wn that C (S ;X), for reflexive X, has 

property V. In the next section it is shown that property V implies the 

Dieudonne property; hence, for reflexive X, C(S;X) has the Dieudonne 

property if and only if X has the Dieudonne property. The following 

theorem provides a partial answer for arbitrary X. 

Theorem 2.12. If C(S;X) has the Dieudonne property, then so does X. 

Proof: Define T E L(C(S;X),X) 
s 

by T (f) = f (s). 
s 

T 
s 

is an onto 

map, so C (S ;X) has a quotiimt space isomorphic to X and_, thus, by 

C~rollary 2.9, X has the Dieudonne property. 

It ·is an open question if the converse to the previous theorem is 

true. However, in a special case it is true. The following definition 
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is needed to obtain a chara.cterization of the Dieudonne property in. this 

special case •. 

Definition 2.13. Denote by ex the Banach space of all X valued, 

convergent sequences, {x} equipped with the norm 
n 

II {x }LJ = sup {JJ x ·II: n .::_ 1}. n n 

ex is the space C(S;X) where S is the one-point 

compactification of the positive integers. A continuous linear operator 

T mapping into y 

y' (Tl';) 

has a unique representation in.the form 

00 

(T0 (lim xn))(y') + E 
n=l 

y I (T x ) 
n n (1) 

where 1'; = {xn} E: ex, y' E: Y', T0 maps X into Y", and T maps 
n 

X into Y. are contim.\ous linear operators, and the series on the 
co 

right hand side of equation (1) satisfies E. Jly' (Tn)I! < co, (7, p. 738} 
n=l. 

Theorem 2.14. TE: L(cx,Y) is wee if.and only if: 

(a) each T. i11 equation (1) is wee, and 
J. 

(b) the series ETi is such that ETixi converges for each 

sequence {xi} C:: X, II xi'! < 1. 

Proof: Supp0se that· T is wee. Define a continuous linear 

operator. P. ( i .::. 1) from 
J. 

{xi}~ X be· such that llxill 

(2, Lemma 2;11). Since T 

X. into . ex by 

< 1. 

is wee, 

n 
{ E 
i=l 

n 
{ E Pix.} 
i=l J. 

TP.x.} 
J. J. 

co 

P.x = {?;in x} . Let 
J. n;::;:l 
is weak Cauchy, 
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{_r · Tixi} is weakly convergent. Thus; rTixi is uc and condition (b) 
. ;=l 
'is satisfied. 

For i > 1 and ~ E X, equatipn (1) yields • TP ix,= Tix. Sinc_e T 

is.wee, Ti is wee. 

Define Q mapping X into. ex. by Qx = (x,x·,x, ·• •• ) •. 
00 

Condition (b) and equation (1) together imply T x = TQx - L T.x· for 
O i=l ·i . 

a.11 XE X, i, e •. Te L(X,Y). Condition (b) and (1 ~ 'theerem 2) sh~w . 

· that . T is the limit in, the uniform operat .. or topelogy en L (X, Y) of 
n. 

the sequence of wee _operators· {TQ - 1:. T.}. By Prc;,position L3 in 
i=l J. 

Chapter II, T is wee. 

Conversely, suppese T satisfies conditions (a) and (b). Fo.r ·· 

each n, :. let- Sn mapping ex into Y be defined by 

s I; 
n 

z; = {x }. . n 

T0 is wee, .and lim is a continuous function so T0 o lim is wee by 

Proposi~ion 1. 2 in Chapter II. Se eacq. S is. wcc,since 
n 

TO G lim, Tl' ... ' T are all wee operators~ Applyiµg (1, Tq.ec;irem · 2') · 
n 

and condit:i.on (b) ,· i~ follows that. T is the limit of {S} in the 
n 

uniform operator topelegy on L(cX,Y); hence, T is a wee operator. 

Corollary 2.15. A Banach space X has the ,Dieudonne property if and 

only if ex has the:Dieudonne property, 

Proof; If cX has :the Dieudonne property, then by Theei>rem 2.12, 

X has the Dieudonne property. 
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Conversely, suppose X has the Dieudonne property and T g L(cX,Y) 

is wee. Each T. in equation (1) i~ wee.by Theore~ 2,14. X has the 
J. 

Dieudonne property so each T. 
J. 

is weakly ·compact; hence, by · 

(1, Corollary 1) T is weakly compact, 

The following theorem will .list some of the conditfons that imply 

that a Banach space has the Dieudonne property. It is not intended to 

be exclusive. 

Theorem 2 .16. X has the Dieudonne property if any of the following 

condit.i.ons · are satisfied: ... 

(a) X has a norm closed subspace Y such that Y" is separable 

and X/Y is reflexive. \ 

(b) X" I JX is separable •. 

(ct) K(X) = X". 

(d) The unit disk of X" is weak* sequentially compact. 

(e) X is almost reflexive. 

(f) X' is WCG (weakly compactly generated). 

(g) X has property V. 

(h) C (S ;X) has the Dieud@nne property. 

Proof: (a) implies (b) implies (c): By (15). (c) implies the 

Dieudonne property follows from Theorem 1.1 in Chapter II. (d) implies 

(e) : If {x} is a bounded. sequence in X, then {Jx} is a bounded 
n n 

sequence in 

hence {x } 
n. J. . 

(g) implies 

X"; thus, it has a weak* convergent subsequence 

is a weak Cauchy subsequence. (f) implies (d): 

{Jx }; 
ni 

By (20). 

the Dieudonne property is shown in the next section. (h) 

implies the Dieudonne property is Theorem 2.12, The demonstration (e) 
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implies the Dieudonne property will complete. the theorem. Let· {xrt} be 

a_bounded sequence in X and let.Te: L(X,Y) be wee. Since· X is 

alino.st reflexive there_ exists a weak Cauchy subsequence {y } of 
n 

{x }, 
n 

T wee.implies {Ty} is.weakly convergent, 
n 

Hence, Tx has a weakly 
n 

convergent subsequence; thus, T: is weakly .compact. 

Property_V 

A Banach space X is said to have property V if every uc opel;'ator 

Te: L(X,Y) is weakly compact where Y is an arbitrary Banach space. 

The definition of the set N(X) and the characterization of uc operators· 

allows a new manner by which_ to view this propel;'ty. Theorem 3.17 in 

Chapter I with Theorem 2,l in Chapter _II yield the following important 

characterization of property Vin terll).s of.compact sets rather that!, in 

terms of operators. 

Theorem 3.1. The following conditions. on X are equivalent: 

(a) X has property v. 

(b) Any T e: L (X, Y) such that _ T"N (X) C::: JY . satisfies T"X'' .£ JY. 

(c} Any cr(X' ,N(X)) compact set in ·X'; is also cr(X' ,X") 

compact. 

A discussion of the permanen.ce of property Vis-given_ by Howard (9). 

An applicatio:n of _Theorem 3 .1 is included, but first the following 

definitions are needed. 

Definition 3,2, Let T be a separated. locally com~~ct space. c0(T) 

is the space of continuous .funct_ions x ·· on T such. that; given E > 0, . 
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the set {t E: T: jx(t) I 2:_E} is relatively compact in T. c0 (T) is a 

Banach space with norm JJxlJ = sup{ I x(t) I: t E T}. 

Definition 3.3. M(T) is the Banach space of bounded Radon me~sures on 

T, the norm being I] µJI = f d Iµ I where T is a separated locally . 

compact space. 

If T is compact then c0 (T) is the space C(T). Pelczynski (19) 

showed that C(T), T a compact Hausdorff space, has property V. A 

simpler alternative proof is presented. RecaJ.1 that the dual of c0 (T) 

may be identified with M(T) by associating with each µ E M(T) the 

linear form x -+ J x dµ on c0 (T). 
T 

Theorem 3.4. (19) For any separated locally compact space T, c0 (T) 

has property V. 

Proof: Let u: c0 (T) + F be a uc operator; and let F be an 

arbitrary Banach space. Grothendieck (8, Theorem 6) proved that u is 

weakly compact if and only if u transforms any bounded monotone 

increasing sequence in c0 (T) into a sequence converging weakly in F. 

If {xn} is a bounded monotone increasing sequence in c0 (T), it 

suffices to show that x = cr(M(T)' ,M(T)) lim x is in N(C 0 (T)), 
n n 

Since then u being a. uc operator would imply u" (x) E: JF an.cl, hence, 

u(x) 
n 

converges weakly to some y s F. 

y 2 = x2 - xl' ' ' ' '· y n = · xn - xn-1' 

{x. 
n 

If µ E: M(T), then µ(x -
n 

converges weakly to 

n 
L 

i=l 
o. 

Define 

Then LY is a series in 
n 

yi) = µ(O) = O; hence, 

Since {x} is a weak Cauchy 
n 

sequence, lim µ(x.) < 00 for each µ s M(T). 
·n n 

To show LY is .a wuc .. 
n 

series, it suffices to only consider positive Radon measures, so let 
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µ be an arbitrary positive Radon measure. Since x (t) - x 1 (t) > 0 n · n-

for. all t e: T, j µ (y n) I = µ (y n) and, . thus, 

n n ~f lim I jµ(y1)l = lim I µ(yi) = lim (xi - xi-l)dµ n i=l 
n i=l n 

i=l 'I 

= lim 11 (x ) < 00. 

n n 

n 
Hence, I:y is indeed a wuc series. Now since {x I yi} n n i=l 
converges weakly to 0' ' the weak limit.point of {x} is in N(C0 (T)), 

n 

The relationship between property V and the Dieudonne property is 

given in the next two propositions. 

Proposition 3.5. A Banach space X with property V has the Dieudonne 

property. 

Proof: If T is a wee operator on X, then by Proposition 2.8 

in Chapter II, T is a uc operator. Since X has property V, T is 

weakly compact, and it follows that X has the Dieudonne property. 

The converse of Proposition 3.5 is not true. James (11) defined a 

Banach space B3 such that . B3' B3, and B" 
3 

are separable, but BI I I 

3 

is not separable, and B" = 
3 B3 ED- ll, Since B" 

3 
is separable, }3 I 

3 
will 

be almost reflexive and, hence, B3 has the Dieudonne property. But 

the identity map i on B' 
3 

is a uc operator since if i were not a. 

uc operator, then by Theorem 2,10 in Chapter II B3 would contatn a 

subspace isomorphic to c0 . But B' 
3 

is a conjugate Banach space so B3 
would. then contain a subspace isomorphic to m which would. imply that 

Bj is not separabJ,.e; a contradiction, If i were weakly compact, then 



the unit disk of B3 would· be weakly compact; hence, B3 would. be 

reflexive which it is not •. Thus, Bj does not have property V. 
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The above example also i;hows·that the converse to Proposition 2.8 

in Chapter II is not true. i · as above. is a uc ·operator, but not a wee 

operator. 

Proposition 3. 6. If a _Banach space X has pr0perty (u), then the · 

following are equivalent: 

(a) X has property V. 

(b) X has the Dieudonne property. 

Proof: (a) always · implies (b) by Proposition 3. 5. Assume (b) and 

let TE L(X,Y) be a uc operator. Thus, T"N(X) C: JY; but· X has 

property (u) so K(X)· = N(X) and, therefore, T"K(X) ~ JY; hence, T 

is a wee. operator. Since · · X has the Dieu,donne property, T is weakly. 

compact; hence., X has property ·V. 

A Banach space J11ay have the Dieudonne property and praperty V and 

not have property (u). C (S), S a _c0mpact Hausdorff space, is an 

example of such a space. 

The basic character~zation used by Pelczynski (19) to, study 

property Vis" X has·property V ;if and only.if-every lwuc .. limited set 

in X is weakly compact." 

Definition 3. 7. A .c,. X' is wuc-limit.ed if limn sup A x'xn = 0 for 

every wuc series LX in .. X. 
n· 



49 

Theorem 3.9 answers the questiG>n of what t0pology on X' will 

induce compactness on wuc-:-limited .sets. But first the following 

proposition is needed. 

Proposition 3.8. TE: L(X,Y) is uc if and only if T' maps bound.ed 

sets into wuc-limited sets. 

Proof: Let T be uc, rx be wuc, and A a bounded set in Y'. 
n 

Since T is uc, ETx is uc. 
n 

lim sup 
n A y' (Txn) 

therefore, T'A is wuc-limited. 

Hence, Tx ~ 0 and, thus,. 
n 

lim sup 
= T'y'(x) = O,· n T'A n 

Conversely; suppose A is bounded in Y' 
' Ex 

n 
is wuc, and 

limsupT' '() n T'A y xn = O .. Then limn supA y'(Txrt) = O, and it fellows that 

ETx is a uc series by a result of McArthur (13, Condition (H)). Thus, 
n 

T is a uc operator. 

Let· K be a bounded set in X' , Let p be the gauge of the set 

{x E: X: ja(x) < 1 for all a e: K}. Then p' is a norm on X/Ker p -
where I\ p(x) and 

/\ 
be the natural map p' (x) = x = x + K.er p. Let T 

from x to ·Y = X/Ker p. As in Theorem 3.15 in Chapter I, it can be 

shown that K is wuc-limited if and only if T' maps bounded sets 

into wuc-limited sets. Since the proof.is almost identical, it is 
. ' 

omitted. With the above notation and observations, the problem is 

solved. 

Theorem 3.9. The following are equivalent. 

(a) K is wuc-limited. 
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(b) T' maps bounded sets into. WUC7limited sets, 

(c) T is UC, 

(d) T' is a cr(X' ,N(X))-compact operator. 

(e) K is cr(X' ,N(X)) compact. 

Proof: (a) if and only if (b) follows by the remark preceding the 

theorem. (b) if and only if (c) follows by Proposition 3.8. (c) if 

and only if ( d) follows by Theorem 2. 2 in Chapter II. ( d) if and only 

if (e) follows by Theorem 3 .15 in Chapter I. 

Thus, it is seen that KC:: X' ;is wuc-limited if and only if it is 

cr(X' ,N(X)) compact. 



CHAPTER IV 

CONJUGATE ·BANACH.SPACES WITH WEAK* 

S.EQUENTIAl,LY COMPACT UNIT DISKS 

It is well known that a Banach space is finite dimensional if and 

only if its unit. disk is norm compact and is reflexive if and only if 

its unit disk is compact ii;1 the _weak topology. Also the.unit disk of a 

conjugate _Banach space is always compact in the weak~~ topology. Since 

conditional compactness and sequential compactness are not equivalent 

in the weak* topology, an inviting question would be: can weak* 

sequential compactness of the unit disk characterize .or be. characterized 

in a Banach space? A result of Banach is that if X is separable, 

then the unit disk of X' is sequentially compact in the weak* topology, 

An up-dated study of thiEl is certainly in order. These results provide 

further conditions for a Banach space to have the Dieudonne property, 

Banach Spaces With H(X) Separable 

H(X) denotes the quotient space X"/JX, 

When H(X) is separa_ble, it is shown that X and X' are almost 

reflexive, and X" and X' '' have weak* sequentially compact unit 

disks. This implies that X and X' have the Dieudonne property. 

Weak7' sequential compactness is closely related to the ccmcept of 

a Banach space being almost .reflexive. If a Banach space X is such 

51 
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that its second conjugate has a weak* sequentially compact unit disk, 

then X is almost reflexive. 

For a conjugate Banach space X, almost reflexivity is a stronger 

condition than the weak* sequential compactness of its unit disk. If 

X' is almost reflexive, then a sequence {x'} 
n 

in the unit disk has a 

cr (X' ,X") Cauchy subsequence {x' } . 
n. ' 

1 

thus, {x' } 
n. 

1 

is cr (X' , JX) 

Cauchy; hence, cr (X' ,JX) convergent. 

Theqrem 1.1. (3) If Y is .a closed subspace of a Banach space X, 
11 

then JX + Y is a closed subspace of X" and 

11 
H(X) ':!:! (JX + Y )/JX 

H(X/Y) .:!! X"/(JX + yll) 

where :!! means linearly homeomorphic~ 

It should also be observed that H(X/Y) is linearly homeomorphic 

to H (X) /H (Y) • 

Lemma 1.2. [H(X)] :!! H(X'). 

l 
Proof: By (5, Theorem 15) , H (X') :!! (JX) , 

clos~d subspace of X", it follows that [H(X)] 
' l 

' 

[H(X)] ::'::! (JX) :!! H(X'); thus, [H(X)] :!! H(X'). 

Since JX 
l 

:!! (JX) • 

is a norm 

Se . 

If H(X) is separable, the unit disk of [H(X)] is weak* 

sequentia],.ly compact. But [H (X)] :!! H (X') , hence, Corollary 1. 3. 

Corollary 1.3. If X is a Banach space such that H(X) is separable, 

then the unit disk in H(X') is weak* sequentially compact. 
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Lac~y and Whitley (12) show the usefulness of the almost reflexive 

property. The following lemma characterizes this property by the use 

of weak* sequential compactness. 

Lemma 1. 4. X is almost reflexive if and only if JS is weaktc 

sequentially compact in X" where S is the µnit disk in X. 

Proof: Assume X is almost reflexive. If {Jx} is a sequence 
n 

in JS, then {x} is bounded and, therefore, has a weak Cauchy 
n 

subsequence {x } • Thus, {Jx } 
ni ni 

is a weak* Cauchy subsequence and 

by the Banach Steinhaus closure theorem the sequence {Jx . } 
ni 

converges 

in the a(X",X') topology to an element of X". 

Conversely, assume JS is weak* sequentially compact in X". If 

{x} is a sequence in S, then {Jx} is a sequence in JS; hence, 
n n 

there exists a subsequence {Jx } whicl:i converges in the cr (X" ,X') 
ni 

topology, and it follows that {x } is a weak Cauchy subsequence of 
ni 

{x }. 
n 

Many Banach spaces are complemented in their. second conjugates 

(23, p. 214, Problem 29), (5). For th0se spaces, a characterization is 

given in the next lemma. 

Lemma 1. 5. Let a Banach space X be complemented in X". X" has a· 

weak* sequentially compact unit disk if and only if 

(a) X is almost reflexive, and 

(b) H(X) has a a(X",X') sequentially compact unit disk. 

Pro0f: Let {x"} be a bounded sequence in X". Each x" is of 
n n 

the form x" = Jx + h where x s X and h s H(X). Since {x"} is n n n n n n 
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bounded, both sequences {x} and {h} are bounded. 
n n 

Thus, there · 

exists a subsequence {Jy} 
n 

of. {Jx } 
n 

which converges in the er(X",X') 
v j 

topology. If {w} is the c.orr~sponding subsequence obtained from 
n 

{h } ' it also has a er (X" ,X ') convergent subsequence {m }. Let 
n ~:A' n 

{Jz } be .the corresponding subsequence of {Jy } . Then {Jz +m 
n n n n 

is a er(X",X') convergent subsequence of {Jx + h } , so X" has n n 

weak* sequentially compact unit disk. 

} 

a 

Conversely, assume X" has a weak* sequentially compact unit.disk. 

Let {x } be a bounded sequence in X. · Then {Jx } is a bounded · n n 

sequence in X" so {Jx } has a er (Xll,X') 
n 

convergent subsequenc.:e 

{Jy }. 
n 

Thus, {y} is a weak Cauchy subsequence of {x.} and. X is, 
n n 

therefore, almost reflexive. If {h} is a bounded sequence in H(X), 
n 

then {h } is a bounded sequence in X". {h } has a er (X" ,X') n n 

convergent subsequence since X" has a weak* sequentially compact unit 

disk. 

A conjugate Banach space is complemented in its second dual (5), 

Corollary 1.6. If X is a conjugate Banach space, then the cenclusien 

of Lemma 1.5 holds, 

As can easily be seen, preperties of H(X) are very useful. For 

example, ene has the following. 

Theorem 1. 7, If H(X) is separable, then X' is almost reflexive. 

Proof: Let {f} be a bounded sequence in X' and let M be the 
n 

closed linear span of the sequence {f }. 
n 

M is separabl~ so M' is 

separable (15), M' separable implies that M" has a weak* sequentially 

compact urtit disk which in turn implies that M is almost reflexive. 
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Hence; the bounded sequence {f} in M has a subsequertc~ {g.} such 
n l. 

that {gi} is o (M,M') Cauchy, For each G E: X" ' G!M e: M' so 

{G(g.)} = {(GjM)(g.)} since gi E: M. This implies that {G(gi)} is a 
l. l. 

Cauchy sequence for all G .E: X" 
' and therefore, {gi} is a o (X' ,X") 

Cauchy sequence. Conseqmfr1tly, X' is almost reflexive. 

Although characterizat.ions of weak* sequential compact:ness of the 

unit disk for an arbitrary conjugate space are sought, the following 

assists with the delineation of this problem. 

Theorem 1. 8. If H(X) is separable, then. X' '' has a weak* 

sequentially compact unit disk. 

Pr0of: If. H(X) is separable, then by Theorem 1.7 X' is almost· 

reflexive. Since H (X) is separable, Corollary 1. 3 implies H (X') 

has a weak* sequential.ly compact unit disk. X' almo.st reflexive and 

the unit disk of H(X') weak* sequentially compact together imply by 

Corollary 1.6 that X''' has a weak* sequentially compact unit disk. 

For H(X) to be separable is very useful. For instance., if H(X) 

is separable, then X is almost reflexive, X' is alm0st :i:-eflexive, 

and X' '' has a weak* sequentia~ly compact unit disk, It is now shown 

that X" has a weak* sequentially compact unit disk. 

Theorem 1. 9. If H (X) is separable, then the unit disk of X" is 

weak* sequentially compact, 

Proof, Let U" be the unit disk in X" and let U be the unit 

di.sk of X. McWilliams (15) has shown that H(X) separable implies 

K(U) = U". Assume {F } is a sequence in U" = K(U). 
n 

For each F 
n 
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00 

there exist a sequence {Jx . } such that· F = a(X" X') - lim Jx . , 
ni i=l n ' i ni 

Let M be the cl.osed line.ar span of {x .. }' ni n,i = 1,2, •••• M is a 

closed separable subspace of X, and H(X) is separable so it follows 

that H(M) is separable (15). Now H(M) and M . separable imply that 

M'' is separable (15). So s II' the unit disk of M11 

' is weak* 

sequentially compact since. M" is separable. By ccmstruct;ion 
00 

{Jx .} 
ni i=l 

is a sequence in 8 11 , so it has a cr(M",M') convergent 
co 

subsequence {Jy . } , Let 
ni i::;l 

G = a (M11 ,M') - lim. Jy i 
n i n and note .that 

each G s 811 • Recall 
n 

80 

F = 0 (X11 ,X') - lim. Jx . 
n i ni 

Fn = cr(X",X') - limi Jyni' 

If f s X', then f/M e: M' and si,nce 

it ·follows that . . F = G jX'. 
n n 

The sequence {G} 
n is a sequence in 

and 8 11 is weak* sequentially compact so there exists a subsequence 

{G } such that 
n. 

i 

thus, 

or 

G/X' 

G = a (M11 ,M') - lim. G • 
i n.' 

i 

= cr(X",X') - lim. G. Jx', 
i ni 

F = cr(X11 ,X') - limi F 
ni 

s II 
' 
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where F = GjX' and F = G IX'· hence, {f}. has a·weak* 
n1 · ni ' n 

convergent subsequence and, there.fore, U" is weak* sequentially 

compact. 

If H(X) is sepa,rable, then X and X' are almost ,reflexive; and 

X" and X''' have weak* sequentially cqmpact unit disks. Furthermore, 

letting xn th denote then conjugate, Mct\l'ill,iams (15) showed that if 

H(Xn) is separable, then H(Xn-l)· is separable, and it then follows 

for i = ,1, .•. , ·n+ 1 are almost · re~ lex;i ve and i x ; 

i = n+2,n+3, have weak* sequentially. comps.ct unit.disks. Combining 

t~is result with Theo.rem .2.20 in Chapter III,, the following cerollary 

is obtained. 

Corollary 1.10. If H(Xn) i 
is separable, then· X ; i = 1,2, ••• , n+l; 

have the Dieudenne preperty. 

The almost reflexive prope:r;-ty is usefµl in working with ,the sets 

K(X)· which are c~nsidered threughout this paper. This theorem can be 

used to deterll).ine wheth~r a space possesse.s or lacks the .almes.t · 

reflex~ve property. The examples which ,follqw the theqrem .demcmstrate 

this. 

The0r~m l ,_ 11. If Y is a closed . subspace of. X and (11 is the· 

natural. ma~ping from X onto Z = X(Y, th,en 

JZ = ·(ll"JX c: (ll'iK(X) C: K(Z), 

and 

(ll"K(X) = K(;?:) 

if X is almost reflexive. 
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Proof: Civin and Yood (3) showed JZ = ~"JX ,VJ . ' and since- Jx·c: K(X) 

it follows that 0"JX-'=-- 0"K(X), If F E K(X), then there exists a 

sequence {x} 
n 

0"F 

in X such that F = cr(X",X') lim Jx. 
n n 

cr(Z",Z') - lim 0"Jx. = cr(Z",Z') - lim J0"x 
n n n n 

so 0"F E K(Z) and, therefore, 011K(X) c:: K(Z) is established. 

Assume X is almost reflexive and let HE K(Z). There exists a 

sequence {z } in Z such tha,t H 
n 

cr(Z",Z') lim Jz , 
n n 

There exist 

a bounded sequence· {x} in X such that 0x ~ z Since X is n n n 

almost reflexive, there exists a cr (X,X' ), Cauchy sequence 

{x} 
n 

such that F = cr(X",X') - lim 
n 

{x } of 
n. 
1· 

0 "F' = a (Z" ,z') - lim. 0"Jx = cr(Z",Z') - lim. J0x 
J. n. 1 n. 

J. 1. 

= cr(Z",Z') - lim. Jz = H, 
1 ni 

so 0"F = H. Thus, given HE K(Z) there exists an FE K(X) such 

that· 0''F = H, i.e.. K(Z) c 0"K(X). 

Consider the space l 1 . There exists a closed subspace Y of l 1 

such that. l /Y ~ c 1 ,- o· Let 0. be the natu.ral map from 11 

is weakly complete, 

is not weakly complete. So 

K(l) = Jl 
1 1 

0"Jl 
1 

to 

since 

thus, 0"K(l1) 'f K(c0), and it follow:s from Theorei;n l.ll that .e.1 is 

not almost reflexive. Lemma 1.5 then implies that· m' does not have a 
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weak* sequentially compact unit disk. Theorem 1.10 implies that H (l1) 

is not separable •. 

The converse to Theorem 1. 9 is not true. Consider the space c0 . 

Since .e.1 is separable, c0 has a weak* sequentially compact unit 

disk. However, if H(c0) were separable, it would fo,llow that C II 
0 

is 

separable which it is not (15). 

Quasi-Reflexive Banach Spaces 

Civin and Yood (~) introduced the concept of a quasi-reflexive. 

space. A study of the relationship between quasi-reflexive Banach 

spaces and weak* sequential compactness is the theme treated in this 

section. 

Definition 2.1. A real Banach space X is quasi~reflex:i,ve of order n 

if H (X) has dimension n ~ 

Immediately it is observed that if X is quasi-reflexive .then 

H(X) is separable; hence, X is almost reflex;i.ve. Indeed, since 
I 

[H (X)] ~ H (X') , the dimension of H (X) is n if and only if the 

dimension o:f; H(X') is n. Therefore, .if X is quasi-refle}l:ive of 

order n, then Xi is quasi-reflexive of order n for i = 1,2, ••• 

It is clear that if X is quasi-reflexive of order n, then X and 

all its conjugate spaces are almost reflexive, '.(herefore, all 

quasi'.'""reflexive spaces and their conjugates have the Dieudon:ne property. 

Definition 2.2. The Banach space x is said to have property p 
n 

every norm closed subspace S of X' has codirnension < n in its 

weak* sequential closure K(S) in X'. 

if 



This property was introduced and used by Mcwilliams (17). · By 

using alniost·reflex:i,ve and the p 
n 

property, one has necessary and 

sufficient conditions for quasi-reflexivity of order < n. 

Theorem 2. 3. A real Banac.h space X is quasi-reflexivity of order 

< n if and only if X' is almost reflexive and X has property P . 
n 

Proof:. If X · is quasi-reflexive of order . ..'.:. n, then X' is 

alm0st reflexive. McWilliams (17) has shown that if X; is 

quasi-reflexive of order ..'.:. n, then X has property P . 
n 

Conversely, let X' be almost reflexive and let X have 

property Pn. Let Y be a norm closed subspace of X and let i be 

the identity mapping of Y. into. X. It will be shown that Y. has 
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property P , It then follows that X is quasi-reflexive of order < n 
n 

(17, Theorem. 3). 

To show Y has property P , let S be a .norm closed subspace ef n . 

Y'. (i')-1 (s) is then norm closed in X', and since X has 

property P , the dimension of K((i')-1 (S))/(i')-1 (s) is < ni Let 
n 

T = i'[K((i')-1 (S))]. T is a subspace of Y' containing S, and the 

dimension of T/S is < n. It is now shown that T = K(S) and, hence, 

the dimension of K(S)/S is < n. y then has property P. If g ET, . n 

then g = i'f for some f E K((i')-l(S)), There then exists a sequence 

{£} in (i 1 )-1 (S) such that f ~ cr(X',X) 
n 

lim f . Clearly, 
n n 

i 1 fi ES, and since i' is weak* continuous i'f = cr(Y' ,Y) - lim i'f n n' 

but i'f = g so g 

since all the i'f 's 
n 

cr (Y' , Y) - lim i' f which implies g e K (S) 
n n 

are in S. Consequently, T C:: K(S). 

To show K(S) ~ T, let g E K(S), There exists a sequenc;.e {gk} 

in · S such that g = cr (Y' , Y) li~ gk. { gk} is bounded so there is 
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a bounded sequence {hk} in X' such that i 'h f h k k = gk or eac . 

X' is almost reflexive so {hk} has a cr(X' ,X") Cauchy subsequence 

thus, there exists an h EX' so tllat h = cr(X' ,X) - limt hk. 
t 

is contained in 

Since 

and 

(i'),-l(S) so 
-1 h E K((i') (S)); 

h = cr(X' ,X) - lim,e_ hk, 
t 

i 'h = cr (Y', Y) - lim,e_ i 'hk 
t 

i'h = cr(Y' ,Y) ~ lim,e_ gk g. 
t 

thus; i'h ET. 

The cr(Y' ,Y) topology is Hausdorff s0 g = i'h F.: T. Consequently, 

K(S) C:: T. 

In the proof of Theorem 2.3 it suffices to require X' to have a 

weak* sequentially compact unit disk rather than the stronger condition 

that X' be almost reflexive, 

Corollary 2,4. A real Banach space X is quasi-reflexive .of order < n 

if and only if. X' has a weak* sequentially compact unit disk and X 

has property P • 
n 

The next the0rem summarizes resµlts derived in this paper and those 

of McWilliams (15). 

Theorem 2. 5. If X is a real Banach space with .property P , then the · 
n 

foll0wing are equivalent. 

(a) H(X) is separable. 

(b) K (JX I) = x I I I • 



(c) X' is almost reflexive. 

(d) X' has a weak* sequentially compact unit disk. 

(e) X is quasi-reflexive of order ~ n, 

A Banach space X . is said to be a Grothendieck space _if each 

cr (X' ,X) ccmvergent sequence in X' is cr (X' ,X") convergent, m is 

such a space. 
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Corollary 2.6. A nonreflexive real Grothendieck space does not·have any 

of the properties listed in Theorem 2.5. 

Proof: If. X is a nonreflexive Grothendieck space, then X has 

property P0 (15), Thus, all five properties in Theorem 2.5 are 

equivalent. But for a nonteflexive Grothendieck space X, X' can not 

have a weak* sequentially compact unit.disk (10), 

WGG Spaces· 

A Banach_ space X is said to be weakly compactly generated (WCG) 

if there exists a.weakly compact set.such that X is the closed linear 

span of that. set. 

A WCG Banach space is a generalization of reflexive and separable 

Banach spaces, Indeed_, if X is separable then· X is n0rm CC:?mpactly 

generated, hence WCG; and if X is reflexive the unit disk of X is 

weakly compact, henc~ X is WCG. 

The class of WCG Banach spaces is inclucj.ed in the class. of all · 

Banach spaces whose conjugates have a weak* sequentially compact unit 

disk. If X' is a WCG conjugate Banach space then X" has a weak* 

sequentially .compact unit disk (20), and it follows that X is almost 
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reflexive. Thus, X' WCG implies that X has the Dieudonne pr0perty. 

A condition that seems weaker than X' being WCG will also imply that 

X has the Dieudonne property. If X' is isomorphic ,to a s1,1bspace of 

a WCG Banach space, then the unit disk of X" will be weak* 

sequentially compact (20). X would then be almost reflexive. It is an 

open question if every closed subspace of a WCG Banach space is itself 

WCG. 

A .well-:-known property which many autho~s find useful is that known 

as the Dunford-Pettis property. 

Definition 3.1. A Banach space X is said to have the Dunford-Pettis 

(DP) property if every weakly compact operc1.t0r on X is completely 

continuous. 

The following, which is of interest in this paper, illustrates a 

characteristic of Banach spaces by using the DP property. 

Theorem 3.2. (20) Let the Banach space X satisfy the DP property. 

Then if X (X') is isomorphic t0 a subspace of a WCG conjugate Banach 

space (WCG Bana.ch· space), every weak Cauchy sequeric~ in X (X') 

converges in the norm topology 0f X (X'). 

By bringing several propetties together which have previously been 

considered, we obtain the foll0wing, 

Theorem 3.3. If X is a WCG c0njugate Banach space, then X has no 

subspace isom0rphic t0 an,almost reflexive Banach space with the DP 

property. In particular, X has no subspace isom0rphic to c0. 
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Proof:. Let, Y be an almost reflexive Banach space with the ·DP 

property. If Y is isomorphic. to a subspace of X; then by 

Theorem 3.2 every weak Cauchy sequence·in. Y converges .in the norm 

topology on Y. I~ {y ·} is a seq:uence·in the unit disk of Y· 
' then n 

{y}, has a weak Cauc;:hy su,bsequence {y } since Y is almost 
n ni 

reflexive. Thus, · {y } 
ni 

converges in the no.rm topology, and it follows 

that :the ut;1it disk of Y is compact; hence, Y is finite dimensianal; 

a contradiction. 

c0 is almost reflexiye and also. has the DP. praperty so in 

particular X . has no subspace isomorphic to. c0• 

Since "X has no subspace isomorphic to c0 " is. equivalent to. 

N(X) .... JX, the next coro,llary is immediate. 

Corollary 3.4. If X is a WCG conjugate Banach space, then 

N(X) = ·JX. 

Corollary 3. 5. If X is a WCG .cemj ugate Banach space, then X has 

property. V if and only i~ X is reflexive. · 

Proof; If X. is reflex:i,ve then X has prope~ty V. Conversely, 

since X is a WCG conjugate Bana_.ch space, X has no subspace 

i1;1omorphic to c0. Pelczynski (19) has shown.that if •x has no 

subspace .isomorphic to c0 . and_ has property ,V, then · X is reflexive. 

It can be ebserved from Corollary 3.5 that no nonreflexive 

separable cQnjugate Banach space has property V. l 1 is nonreflexiye, 

separable and a conjugat:,e Banach space,, so as already obse;rveq l 1 does 

net have property V. If X" is nonreflexive and separable, then X' 
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does.not have property V, has the Dieudonne property .and does not have 

property (u). 

Corollary 3, 6. If X' is a WCG conjugate Banach space with. the . 

DP property, then X". is nqt ·WCG. 

Proof: If X" is WCG, then X' '' has a weak* sequentially 

compact unit disk and, therefore, X' would be almost.reflexive, This 

contradicts Theorem 3.3. 

The next cor01lary .eliminates many· Banach spaces fr0m having the 

Dieudonne.property. 

Corollary 3. 7. A WCG conjugate Banach. space X with the DP property 

does not have the Dieudonpe property. 

Proof: Let i be the identity operator on X. By Theorem 3.2 

every weak Cauchy sequence in X ccmverges in the norm topo+ogy of X. 

Thus, i· is a wee operator. If X had the Dieudonne property, then 

i would be weakly compact. X would be reflexive. A contradiction, 

sinc.e no space with the .DP property is reflexive. 

The Dieudonne·property is a necessary condition for a Banach space 

to have property V, 

Corollary 3.8. A WCG conjugate Banach space X with the DP property 

does not have property .v. 
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