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PREFACE

This dissertation is concerned with demonstrating the -
interrelationships ameng sequential properties in Banach spaces.
Specifically, the relatioenship between the Dieudonne property and
property V is established. An examination of uc and wcc,operators, as
well as the sets K(X) and N(X), reveal important characterizations
of the Dieudonne property and property V. In addition, several -
characterizatiens of uc and wcc eoperators have been discovered. Such
findings preovide insight intoe the underlying structure surrounding
Banach spaces with property,V and the Dieudonne property. Finally, the
roles of WCG Banach spaces, Quasi-Reflexive Banach spaces, and Banach
spaces with H(X) - separable are shown to be decisive in delineating
the relationships under study.
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Dr. Paul A, McCellum.
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CHAPTER 1
INTRODUCTION
Historical Survey .

In 1953, A. Grothendieck (8) studied locally convex topological
vector. spaces X = in which every continuous linear operator on X that
maps weak Cauchy sequences into weakly convergent sequences is a weakly
compact operator. He called this property the Dieudonne property. He
ascertains that the space C(K), K a compact Hausdorff space, has the -
Dieudonne property.

A. Pelczynski (19) in 1962 studied Banach spaces X in which every
unconditionally converging operator on X is weakly compact
(property V). Property V was generalized to -locally convex tepological
vector spaces by J. Howard (9) in 1968. Pelczynski showed that the
space C(K), K a compact Hausdorff space, has property V and provides
a relationship between a Banach space having property V and having an
unconditional basis. In Howard's study, detailed information of
permanence of property V, unconditionally converging operators.and the
relationship of property V to dual spaces are found.’

Prior to introducing property .V, Pelczynski (18) in 1958 introduced
the concept of preperty (u). His objective was to study the connection
between weakly unconditional convergence and weak completeness. As is
later seen, this property for Banach spaces provides a &ose

relationship between Grothendieck's work on the Dieudonne property and



'Pelczynski's work on property V. Heowever, Pelczynski shows that C(K), .
K a compact Hausdorff space, dees not have property (u).

Beginning in 1962, R. D. McWilliams published ‘a series of papers on
weak sequential convergence. In these papers he introduces the set
K(X), which plays an important role in the study of the Dieudonne

property.
Preliminaries

This section is deveted to the stating eof basic facts, definitioens,
and netation. However, definitions and facts found in mest Functioenal
Analysis textbooks are excluded. Any undefined notation is the notatien
used in (23).

Since this paper consists mainly of .a study of Banach spaces, the
symboels X and Y. are assumed to represent Banach spaces. The reader
should nete that in this paper a Banach space means an infinite
dimensional complete real or'cemplex normed linear space.

If X dis a Banach space; X' and X" denote the dual and secend
dual of X, respectively. Given X, - J denotes the canonical isemetry .
embedding X in X",

All linear operators are assumed to be continuous and. L (X,Y)
denotes the set of all continuous linear operaters from X to Y.

Let t be a topology on X. If {xn} is a sequence in X,  then
t - limn X will denote the limit of the sequence {xn} in the t
topology. For example, if t = o(X,X'), then o(X,X') - limn X
denotes the limit of the sequence {xn} in the weak topology, o(X,X').

When reference to the unit. .disk of a Banach space X is made, it is

assumed to be the closed unit disk, i.e. {x € X: ||| < 1}.



Definition 2.1. A series in in X is unconditienally convergent

(uc) if for each subseries Zxk ,» there is an element x ¢ X such
n i

= 4 - 1

that x = o(X,X") llmn .Z X, -

i=1 i
Several other conditions are known to be equivalent te this
definitien of a uc series, but for the work of this paper, this

definition seems most appropriate. Equivalent conditions are feund in

(9), (14), and (22).

Definition 2.2. A series in in X 4is weakly unconditienally

convergent (wuc) if Z]f(xi)] < o for every f din X',

Every . uc series is a wuc - series, but not conversely.
Theorem 2.10 in Chapter II shows a condition under which the cenverse is-
true.
Definition 2.3. Let T e L(X,Y). Then T is said te be:

(a) Weakly compact if T sends bounded sequences into sequences

which have a weakly convergent subsequence.

(b) Unconditionally convergent (uc) if T sends wuc series into .

uc series.

(¢) Weakly completely.continubus (wee) if T sends weak Cauchy

sequences into weakly convergent sequences.

(d) Completely continuous if T sends weak Cauchy sequehces into

norm convergent sequences.
(e) Weak Cauchy if T sends bounded sequences into sequences

which have weak Cauchy subsequence.



(f) Weak* sequentially compact if T sends bounded sequences into

sequences which have a weak* convergent subsequence, where Y

is a conjugate space.

The abbreviation wuc is used for both uncenditionally convergent
series and unconditionally convergent operators. However, confusion
should not arise since it is evident from the context whether a series
or an operator is intended.

K(A) - denetes the set

{F ¢ X': there exists a sequence {an} in A such that

= ! -
F = o(X',X) limn an},,

where A 1is a subset of a conjugate Banach space X'. K(JX) is simply.
denoted by K(X).
N(X) denotes the set
{F € X": there exists a wuc.series an in X such that
n
F=oX",Xx") - limn .Z in}.
i=1
The sets . K(X) and N(X) are decisive in the study of the
Dieudonne -property and preperty V which is shown 'in Chapter II and
Chapter III. These sets provide a characterization of wcec and uc -

operators.

Definitien 2.4. A Banach space is said to have the Dieudonne property

if every wcc operator on X 1is weakly compact.

Definition 2.5. A Banach space X is-said to have property V. if every"

uc .operater on X is weakly compact.



Definition 2.6. A Banach space X is said to be almost reflexive if

every bounded sequence in X has a weak Cauchy subsequence.’

Second Adjoint Characterizatien

of Linear Operators

Since a Banach space X can be embedded in its second dual X"
in a natural way, the second adjoint of an operator T eon X is
related to T by T"|X = T. In this section certain classes of
operators are characterized by the action of their first and secend
adjoints. The section ends with a generalization of a theorem by
A. Grothendieck.

If A 1is a linear subspace of X" and JX& A&E X", then
o(X',A) defines a linear topelogy on X', since JXE A and JX is

total over. X', (6, p. 418).

Proposition 3.1. If either X or Y dis reflexive and JXg< A g X"

(A a subspace of X'") then T'AES JY for all T ¢ L(X,Y).

Proof: Let T & L(X,Y) and assume Y is reflexive. Then
T"AS Y'" = JY. If X is reflexive, then JX ='A and T'"JXE JY, so

T"A S JY.

Definition 3.2, The uniform eoperater topolegy on L(X,Y) is the metric

topology of L(X,Y) dinduced by its norm ([Tl = sup{|Tx|: llxll < 1}.

Notatien 3.3. D(A,B) = {T ¢ L(X,Y): T"A < B}, where it is assumed that
A is a subspace of X", JX & A, and B is norm closed in Y'". Note.
also that D(A,B) ¢ L(X,Y) will imply A< X" and BS Y". D(A,B) is

assumed to be a subset of L(X,Y) unless otherwise specifically stated.



Propesition 3.4. D(A,B) 1is closed in the uniform operator topology

on L(X,Y).

Proef: If {Tn} is a sequence in D(A,B) such that: {Tn}
converges to T in L(X,Y), then {T;} converges to T" in.
Lx",Y'"), (6, p. 478). If a e A, then Tga.a B and since B is
norm closed in Y", T"a € B which implies that T"A & B, hence

T ¢ D(A,B).

Since JY is nerm clesed in Y", from Proposition 3.4 the

following result ensues at once.

Corbllarz 3.5. D(A,JY) is cloesed in the uniform operator topelogy on.

L(X,Y).
Proposition 3.6. D(A,B). is a linear subspace of L(X,Y).

Proof: If T,U ¢ D(A,B), and if o and R are scalars, then

(aT + BU)"A = (aT" + BU")ACS B.

Propesition 3.7. If T ¢ D(A,B) and W e L(Y,Z),  then

WT € D(A,W"B) & L(X,2).
Proof: (WI)"A = W'T"AC W"B which implies WT ¢ D(A,W"B).

Corollary 3.8. If T ¢ D(A,JY) and W e L(Y,Z), then

WT ¢ D(A,JZ) & L(X,2).

Proof: By Proposition 3.7 WT ¢ D(A,W”JY) S D(A,JZ) since

W'Y € JZ.



Propesition 3.9. If W e D(A,B) € L(Y,Z) and T e L(X,Y), then

WL ¢ D(C,B) & L(X,Z) for all C such that T'CE& A,

Proof: (WI)"C = W'I"C g W'A < B, hence WI e D(C,B). From

Proposition 3.6 and Corollary 3.8 the following result is immediate.
Corollary 3.10. D(A,JX) is a left ideal in L(X,X).

Propositien 3.1 through Corellary 3.10 provide a description of the
algebraic and topological properties of the class of operators . D(A,B).
Next a study of the relationship of an operator in D(A,B)  to its
adjoints is conducted. The study begins with a characterization of an

operator by the continuity of its adjeint. -
Theorem 3.11. T € D(A,B). if and enly if

T': (Y',G(Y',B)) »+ (X',0(X',A))
is coentinuous.

Proof: Let {y&} be a net:'in Y' such that
y' =.0(Y',B) - lim, y&. Suppose T € D(A,B). If a & A, then T"a ¢ B
so,

(T"a)y' =.lima (T"a)y&,

1.1 = 14 TVt
a(T'y") llma g(T ya).
Thus,.
T'y' =.0(Y',B) - lim, T'y

1
33

and T' is . o(Y¥',B) - o(X',A) continuous.



Conversely, if T' is o(Y',B) - 0(X',A) centinuous then, .

T'y' = ¢(X',A) - lima T'y&,

a(T'y") lim a(T'y&). for all a e A,

" ' " ' )
(I a)y lima (T.a)yu for all a € A,

so T'"a is a o(Y',B) continuous linear functional for all a e A;

thus, T"a € B for all a e A; hence, T"AEC B..

Definition 3.12. Let T ¢ L(X,Y) and let t be a linear topolegy for
Y. T is saild to be a t-compact operator if the t closure of - TS 1is

t-compact where, S is the unit disk in X.

The above definition is .a generalization of the notien of compact
and weakly compact operaters, A compact operater is norm-compact and a

weakly compact operater is a o(Y,Y')-compact operator.

Corollary 3.13. If T e D(A,JY) € L(X,Y), then T' is a

o(X',A)-compact eperator,

Proof:. If S' is the unit disk in Y', then S' is

o(Y',JY)-compact, so T' is a o(X',A)-compact operator.

A linear_operatér, T ¢ L(X;Y) is weakly compact if and enly if
X" & JY, (6, p. 482). D(X",JY) is the set of all weakly compact

operators; hence, the .following are consequential:

(a) If either X or Y is reflexive, every operator in L(X,Y)

is weakly compact.



(b) = The set of weakly compact operators is clesed in the uniform
operator topology on. L(X,Y).

(¢) * Linear combinations of weakly compact operators are weakly
compact. The product of a weakly compact linear operator and
a continueus linear operator is weakly compact.

(d) 1In the uniform operator topolegy of L(X,X), the weakly
compact eoperators ‘form'a closed two-sided ideal.

(e) An operator in L(X,Y) is weakly compact if and only if its
adjoeint is continueus with respect .to the weak and weak#*

topelegies en X' and Y' respectively.

The next theeorem completely characterizes the class D(A,JY) in
terms of continuity of their first-and second adjeints in addition to
compactness of its first adjoeint in terms eof Definitien 3.12, This

theorem provides rather complete infermation about the class D(A,JY).

Theorem 3.14. Let A be a linear subspace of X",JX& A, and

T e L{X,Y). The following conditioens are equivalent.

(a) T'AES JY.
() T is o(¥',JY) - o(X',A) centinuous.
(¢) T' is a o(X',A)-compact operator.,

(d) T" is 1(A,X"')-norm centinuous.

Preof: (a) implies (b) by Theorem 3.11l. (b) implies (c) by
Corollary 3.13. (c) implies (d): The norm topelogy.on. Y" is the
linear topology generated by the set of poelars of bounded sets in Y',
(é3, p. 247). Let- N be a,heighborhood of 0 in Y". Then there

exists a bounded set B & X' such that BO € N. Let D be the
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balanced convex hull of B. D is then bounded, (23, p. 178). Since
T is a o(X',A)-compact operator, "TD is o(X',A) compact. TD is

convex and balanced, so —TT)-O e T(X,X'). Since BE D, DO end BO <€ N.

D & TD, so (ﬁ)og m? = @™l ')y, Thus,

Cfﬁ)o g;(T')_lN, which implies that (T')_lN is a neighborhood of 0
in A with the 71(A,X') topology. It then follows that T' is
T(A,X')-norm continuous. (d) implies (a): A and X' are in duality
since each is total over the other, and 7(A,X') is compatible with
the duality. Since X L = A and JX 4is a linear subspace of A, we
have (JX)OO = (JX)J"L = A, so by (23, p. 238, Theorem 1), (JX)OO is
the t(A,X') closure of JX in A; hence, it follows that JX is
T(A,X') dense in A. Since it is always true that T"JX& JY, and

since JX is <tv(A,X') dense in A, it follows by hypothesis that

T"AC JY.

From Theorem 3,14, the following well-known preperties of weakly
compact operators can be deduced. If T e L(X,Y), the following are

equivalent.

(a) T 4is weakly compact.

(b) T"X" & JY.

(¢) T' dis o(¥',JY) - o(X',X") continuous.

(d) T' is a o(X',X")-compact operator (T' is weakly compact).

(e) T" is T(X",X')-norm continuous.

The sets K(X) and N(X) are linear subspaces of X" and both
contain JX, so the set A in Theorem 2.14 can be replaced by either
K(X) or N(X), and similar results about wecc and uc operators are

established in the next chapter.
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The next theorem relates the. ¢(X',A) - compactness of a‘bOuﬁdéd set
C in X' teo the existence of a.certain o¢(X',A)-compact operator,
where A is a subspace of X" containing X. Besides Theorem 3.17,
another application of this fact is made in Chabter III where the .
wuc-limited sets studied by Pelczynski (19) are related to compact sets

in the o(X',N(X)) topology. Wifh the above, in mind, let
S={xeX: |a@x)] <1 for all a e Cl.

Then - S is a closed subset in X, (23, p. 238, Fact (X)). If p is
the gauge of S, then p' is a norm on X/Ker p, where p'(¥X) = p(x),
{ = x + Ker p. Let T be the natural map from X to Y = X/Ker p.

With the abeve netation,.the follewing is evident.

Theorem 3.15. C is o(X',A) compact if and only if T' dis a

g(X',A)-compact .operater.

Proof: Assume that,_C is o(X',A) cempact. If B is the unit
disk of Y', then -T'B = C. Sincé C is o¢(X',A) compact, it
follows that T' is a o(X',A)-compact operator.

Conversely, assume that T' dis a o(X',A)-compact operator. Then
if B is the unit disk in "Y', T'B = C. Thus, by Theorem 3.14 C is
o(X',A) compact since T' dis o(¥',Y) - o(X',A) centinuous and B

is o(Y',Y) compact.
Again, as before, let A = X" in Theorem 3.15.

Corollary 3.16. C is o(X',X") compact if and only if T' dis a

c(X',X")-compact operator.
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The primary theorem of this chapter is presented next. This
theorem generalizes a theorem by A. Grothendieck (8). The theorem is
used in Chapter III to give characterizations of preperty V and the

Dieudonne  property.

Theorem 3.17. Let Ai' and A, be subspaces of X" such that-
JXc Al c A2 € X". Then the following two conditions are equivalent.

(a) Any T e L(X,Y) such that T"A, € JY satisfies T"AZQ_JYL

(b) Any U(X',Al) compact set in- X' is also G(XY,AZ) compact.

Proof: Assume condition (a), and let C be a G(X',Al) compact
set. Then in the terminology of Theorem 3.15, T' is a
O(X',Al)—compact operator. ' Thus by Theorem 3.14, T"AEVSZJY. By
conditien (a), T"A2 c JY. Applyiné Theorem 3.14, T' is a
c(X',Az)—compact operator and thus Theorem 3,15 implies that- C is
G(X’,Azj compact. .

Conversely, assume cenditiom (b), and let T e L(X,Y) be such that
T"Ai < JY. : By Theorem 3.14 T' is VG(Y',Y) - G(X',Al) continuous. If
B is the unit disk in - Y', them T'B m30@fﬁﬁfcwm&t.
Condition (b) implies T'B is G(X’,Az) compact and Theorem 3.14 then

implies that - T"A2 € JY. Hence, condition (a) is satisfied.



CHAPTER II
WCC AND UC OPERATORS
WCC Operators

Recall that a weakly completely continuous operator (wee) maps weak
Cauchy sequences into weakly convergent sequences. The intent is to
characterize wcc operaters and to investigate the set of all wcc

operators in L(X,Y).
Theorem 1.1. T e L(X,Y) is wece if and enly if T"K(X) & JY.

Proof: Let  F e K(X). There “exists a weak Cauchy ‘sequence {xn}
such that F = oX",X') ~ limn Jx . Since T is wee, {Txn} is a weak
convergent sequence; hence, there exists a y e Y such that .

= Ty o 14 ; = nogry 14 .
y = o(Y,Y") llmn Txn{ soo Jy = o(¥Y",¥Y") llmn JTxn. But since
JTx . = T"an it follows that Jy = o(Y",Y') - lim T"an.. “Recall,

Jy; . hence, T"K(X) € JY.

F = G(X"3X’) - limn an,, so TfF;
Conﬁersely, assume . T"K(X) € JY, and let {xn} be a.weak Cauchy

sequence in [X. Then there exists an F ¢ K(X) such that

'F = o(X",X") - lim Jx . Now T" is weak*® continuous, so

Jy = e (Y",Y') - limr1 T"an. for some y e Y, since T"K(X) & JY. But

" = o . = "ot __ :
i an : JTxn,_ thus, Jy“ o(Y",Y") 11mn JTxn: or
y.= o(Y,Y'") --rlimn Txh. Hence, T maps weak Cauchy sequences into weak

convergent sequences and T is, therefore, wcc.

13
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The wcc. operators are new seen to be a particular class of those'in
section three of Chapter I. Hence from Propositioh 3.1 and 3.4 in

Chapter I, we have the following:

Propesitien 1.2. (a) If either X or Y is reflexive, every operator
in L(X,Y) is wces (b) The set of wcc operators in  L(X,Y) is closed

in the uniform eperator tepology.

The algebraic properties for the set of wce operators in L(X;Y)
are also readily obtainable. If V e L(X,Y) and F e K(X), then
there exists a sequence {xn} in- X such that F = o(X",X") - limn an.
Since V" is weak* ceontinuous, V"F = og(Y",Y') - limn V”an which in
turn equals o(¥Y",Y') - limn JVxn, so V"F e K(Y); thus,
V'K(X) € K(Y). Consequently from Proposition 3.6, Coreollary 3.8, and

Proposition 3.9 in Chapter I, the next proposition foellows.

Proposition 1.3. (a) Lineay combinations of wcc operators are wcc.
(b) The product of a wce -operator -and a continuous linear operator is

WCC. -

In particular, considering only maps from X 6 to X,

Proposition 1.2 and Proposition 1.3 imply the following corollary.

Corollary l.4. In the uniform operator topelegy on L(X,X) the wce

operatoers form a closed two-sided ideal.

Since -a wcc operator T € L(X,Y) has been characterized by
T"K(X) ¢ JY, Theorem 3.14 in Chapter I can be applied; the following
results about continuity of .-the first and second adjoints of a wec

operator can be obtained.
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Theorem 1.5, Let T L(X,;Y¥). The following are equivalent:

(a) T 4is a wcc.operator,

(b) T"KX) < JY.

(¢) T' dis o(Y',JY) - o(X',K(X)) continuous.
(d) T' dis a o(X',K(X))-compact operator.

(e) T" is 1(K(X),X')-nerm continuous.

The above indicative theorem deduces a relationship between the

second adjoint and the operator with respect to their being wce.

Corellary 1.6. Let T e L(X,¥Y). If TI" dis a wcc.operator, then T

is ‘a wcc. operator.

Proof: By Theorem 1.5, T''' is a c(X'f',K(X"))—cempact
operator, so T'''|Y' is a o(X',K(X"))-compact eperater. Since every
(X' ,K(X")) compact set in X' is oX',K(X)) compact, T'f']Y'v= T'
is a o(X',K(X))~-compact operator. Theorem 1.5 then implies that T

is a wcc.operator,

By Theorem 1.5, T é L(X,Y) 1is a wec operator if and only.if - T'
is a o(X',K(X))~-compact operater, However, an operator T being wee.
(T' a o(X',K(X))-compact operator) is neither a necessary nor a
sufficient condition for T' to be a wecc operator. Consider the
identity map i: ¢ > o Since,cO is not weakly complete, i is not
a wcc.operator; but i': Zl > Kl is a wce operator since Kl is weakly
complete. Thus, it is seen that T' wcc.does not imply that T is
wee, On the other hand, let i be the identity operator on Kl, then
i is wee, but i': m > m is not wcc since m. is not weakly complete.

Hence, it is seen that T wcc does not imply that T' is wec.
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Using the second adjeint characterizatien of a weakly compact
operator, T"X" & JY, the second adjoint characterization of a wce
operator,  T"K(X) € JY, and the fact that K(X) € X", the following

is apparent.
Proposition 1.7. If T e L(X,Y) is weakly compact, then T is wcc.

Proposition 1.2 showed that if either X or Y is reflexive then
every T ¢ L(X,Y) is wcc. The next proposition yields the same result

if either X or 'Y dis weakly cemplete.

Proposition 1.8. If T e L(X,Y) and either X or - Y is weakly

complete, then T is wcc.

Proof: Suppose that Y is weakly complete and {xn} is a weak
Cauchy sequence, then {Txn} €Y is a weak Cauchy sedquence; hence,
weakly coenvergent. If X is weakly complete, then {xn} is weakly
convergent to an x € X. So x = o(X,X') - limn X and

= 1Y - 14n .
x.= g(Y,Y") 11mn Txn.

The relationship of wcc.oeperater to other operators in products
and adjoints is a natural question, and the next objective is to study.

these relationships.

Proposition 1.9. If T is wec and V 'is;Weak,Cauchyi then TV, V'T'

and T"V" are weakly compact.

Proof: 1If {xn} is a bounded sequence, then {Vxn} has a weak
Cauchy sequence {Vxn }, and hence, {TVxn‘} converges weakly. Thus,
i i

TV is weakly compact, and so are V'T' and T"V" by Gantmacher's

‘theorem (6, p. 485).
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It appears that the weak Cauchy operators are not-a special class
of the .type discussed in Chapter ‘I. However, .the second adjeint of a

weak Cauchy operator does characterize the operator.,

Propesition 1.10. Let T e L(X,Y). T is weak Cauchy if and enly -if.

T'"JS . is weak* sequentially compact where S is the unit disk of X.

Proof: If T is weak Cauchy, and {Gn}* is.a sequence in T'JS,

then G = T"Jx_ for some sequence {x } in S, so G = T'"Jx =.JTx .,
n - n - n n n n’
{xn} is bounded and T is weak Cauchy so - {xn} has a subsequence
{z_} such that {Tz_} is weak Cauchy, so {JTz '} - is, therefore, weak*
n n" n -

Cauchy which implies G = o(Y",Y') - 1im.n JTz  exists. . {JTzn} is a
subsequence of {Gn}§ hence, {Gn} has a subsequence that converges
weak* to an element G e Y"; thus, T'"JS 4is weak* sequentially compact.

Conversely, assume T"JS 1is weak* sequentially cempact. If {xn}
is a sequence in S, then {T"an} is a seguence in T'"JS. Hence,
{T"Jxﬁ} has a subsequence _{T"Jzn} which cenverges weak* in Y". But .
T"Jz. = JTz_, so {Tz_} is weak Cauchy; hence; T is a weak Cauchy

n n’ : n°

operator.

If T e L(X,Y), and S and. S" are the unit disks in X and X"
réspectively, then T'"JS & T"S". Se if T is a weak* compact operator,
then T"S" will be weak* sequentially compact. Consequently, T"JS
is also weak*® sequentially compact. Thus, Proposition 1.10 implies the

following result.

Corollary 1.11. Let T e L(X,Y). If T" is weak* compact, then T

is weak Cauchy.
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The converse to. the above corellary is not true. Let K =.[0,27]
and let 1i. be the identity eperater on cO(K). Since - co(K)' ig’
almost reflexive every bounded sequence will have a weak Cauchy
‘subsequence, so 1 will be a weak Cauchy operator. However,

i": m(K) > m(K) 1is not weak* compact since the unit disk of ﬁkk)‘ is
net weak* sequentially compact. Indeed, define a sequence: {xn} in
m(K) - by . xn(a) = gin na for all o ¢ [0,27] and fer =n =.1,2,3, ... .
Suppose {xn} has ‘a weak* convergent subsequerce {xn.}. 1f {xﬁi}
converges in thevﬁeak* topoloegy, then'it;must.convergelﬁointwise oen K.

limi sin n,o must exist for each o € K , However, this is net-

i
possible.
Let- T e L(X,Y) and let S" be the unit disk in X". If T" 1is
weak Cauchy, then anylsequénce.in. T"S" will have a weak Cauchy
subsequence. Thus,;tﬁe‘subsequence will be weak® Cauchy.and, therefore,

weak* convergent. So T"S" is weak® sequentially compact and, hence,

T" is weak* compact. Thus, atother immediate result is the following.

Corollary 1.12. Let T e L(X;Y). If T" is weak Cauchy, then T" is

weak* compact; in particular, T dIs weak Cauchy,

The above corollary also shows that if T ¢ L(X,Y) and Y is a
conjugate Banach space, then T weak Cauchy implies T is weak*
compact: The converse, however, is not true. The identity map on 21‘

is weak* compact since ¢ is separable, but it is not weak Cauchy

0
since ‘ﬁl is weakly compléte and not reflexivé.
Corollary 1.1l can now be used to obtain 'a result about the

product .of a weak* compact operator and a wcc operator. If T & L(X,Y)

and T" is weak* compact, then by Corellary 1.1l T is weak Cauchy.
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Proposition 1.9 then implies that . V'"T" is weakly compact for any wecc.

“operator V e (Y,Z).

Corollary.1.13. If T" e L(X",Y") is weak* compact and V e L(Y,Z) is

wee, then V"T" is weakly compact operator.

For completeness, the following results concerning weak Cauchy

and weak* compact operators and their adjoeints are included.

If T e L(X,Y) dis weak Cauchy, then T" is not necessarily weak
Cauchy. Since if T" were weak Cauchy, then by.Cerollary 1.12 T" is
weak* compact. The example following Cerellary 1,1l -shows- that this is
not true. |

If T e L(X,Y) is weak Cauchy, then T' is not necessarily weak

Cauchy. The identity operator on ¢. is weak Cauchy since ¢, is

0 0

almest reflexive, but the identity operator on Kl is not weak Cauchy
since ﬁl is not almest reflexive.

If T ¢ L(X,Y), then T" weak¥* compact dees imply. T is weak*
compact, assuming the range space Y 1is a conjugate space. T" weak*
compact implies T is weak Cauchy} hence, T dis ﬁeak* compact.
However, thé converse is not true. Ceonsider the iden£iﬁy operater
i: ﬂl > Kl. i is weak* compact since <o separable implies .the unit
disk of ﬁl;,is weak* sequentially compact. But: i"  is not weak¥
compact since in m' weak* convergence is ‘equivalent to weak
convergence; hence, tﬁe unit_diskhin m' 1s not weak* sequentially
compact. Thus, T weak* compact does net imply T" is weak* compact.
In particular, T weak* cempact does not imply- T' dis weak* compact .

since the identity operator on m. is weak* compact.
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The following questions remain unanswered:

(a) If T' 4is weak* compact, is T - weak* compact?

(b) If T' is weak Cauchy, is T weak Cauchy?
UC Operators

A continuous linear operator is said to be uncenditioenally
converging (uc) if it maps wuc series into uc series. The intent -is to
show that the uc operators are a particular class of these operators

given in section three of Chapter I.
Theorem 2.1. An operator T e L(X,Y) dis uc if and only if T"N(X) < JY.

Proof: Let -F e N(X). There exists a wuc series in such that
n .
F.o=o(X",X") - limn z in._ Since' T is uc, -,ZTxi is a uc series
i=1
and, therefore, there exist a y € Y such that

n
y=0({,Y') - 1lim I Tx,
and ‘
n
Jy = e(¥Y",¥') - limn b JTxi'.
i=1
n
= . "oty _ 14
F=aoX",X") 11mn 'Z in
i=1
n
™F = o(Y¥",Y') - 1im I T"Jx,
n . i
i=1
n
™F = o (¥Y',Y'") - lim r JIx,
By *

T"F = Jy
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hence,

T'"N(X) € JY.

Conversely, suppese T'N(X) < JY and let in be a wuc series.

Let Zzi be a subseries of in. Since Zzi is wuc, there exist
. n

o(x",x") - limn L Jz;. Since T"N(X) € JY,
i=1

there exists a y € Y such that T"F'= Jy;  thus,

F € N(X) such that F

n

Jy = o(¥",¥") - limn .Z T"Jzi.
i= :

. and, therefore,
n
= T _ 14
y = o(Y,Y¥") 11mn 'Z Tzi.

i=1

This shows that ZTxi is subseries convergent in the o(Y,Y') topology,

hence -uc.

The following facts are known, (9), but they also follow from

Chapter I and Theorem 2.1.

(a) If either X or Y is reflexive, everyloperator in L(X,Y)
is uc.

(b) The set of uc operators is closed in the uniform operator
topology on L(X,Y).

(¢) Linear combinations ef uc operators are uc operators. The
product of a uc operater and a centinuous.linear operator is
uc.

(d) 1In the uniform operator topology on L(X,X), the uc operators

ferm a closed two-sided ideal.
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Similar to wcc operators, the following result about continuity

of the first and second adjeints of a uc operater can be obtained,

Theorem 2.2, Let T £ L(X,Y). The following are equivalent:

(a) T 4is a uc operator.

(b) T"NEX) & JY.

() T' dis o(¥',JY) - o(X',N(X)) continuous.
(d) T' is a o(X',N(X))~-compact eoperator.

(e) T" dis. T(NX),X')-norm continuous.
Proof: This follows from Theorem 3.18 in Chapter I and Theorem 2.1.

The following corollary was. first proven by Howard (9) using an

entirely different method.

Corellary 2.3, Let T e L(X,Y). If T" dis a uc operator them T is

a uc operator.

Proof: By Theorem 2.2, T"'"'' is a o(X''',N(X"))-compact operator,
so T'''|Y'" is a o(X',N(X"))-compact operator. Since,ever&
o(X',N(X")) compact set in X' dis oX',N(X)) compact T"']Y' =T
is a o(X',N(X))-compact operator. Theorem 2.2 then implies that T is

a uc operator.

Another application of Theorem 2.2 can be deduced directly from

(9, Corollary 3.2.4).

Corollary 2.4. Let T e L(X,¥Y). T" is a o(Y",N(Y'))-compact operator
if and only if:there do not exist epimerphisms hl € L(X,Zi) and

h2 € L(Y,ﬂi) such that hl = h2T°
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A substantial amount of work has been done recently in representing
uc operators with domain in C(S), S a compact Hausdorff space.
However, the representation of uc operators with range in C(S) remains
untouched. This is probably due to the fact that a suitable topolegy

for the conjugate of a Banach space was missing.

Theorem 2.5. (6) Let S be a compact Hausdorff space and let T be
a continuous linear operator from X. to C{(S). Then there exists a
mapping v: S » X' which is continuous with the o(X',X) topology

such that:

(a) Tx(s) = v(s)x, x e X, s € S,

® = P [ve) ]

Conversely, if given such a map v, then the operator »T defined by
(a) is a continuous linear operator from X te C(S) Qith nerm given
by (b). T dis weakly compact if and only if v is o(X',X")
continuous, T d1s-cempact if and enly if v dis continucus with respect

to the norm topolegy en X',

It is also known that T is cempletely continueus (maps weak
Cauchy sequences into norm convergent sequences) if and only if v is
t(X',X) continuous (Mackey topology).

The objective is to show:

(a) T is uc if and only if v is o(%X',N(X)) continueus.

(b) T is wde if and enly if v is o(X',K(X)) continuous.

Only (a) will be proven. The proof of (b) is similar and simpler.
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v 1s defined by v = T'nm where m: S~ C'(S) is given by.
n(s)(f) = f(s), f & C(S), s e S. 1w 4is a homeomorphism of S into a

‘compact subset of C'(S) with the o(C'(S),C(S)) topoloegy.
Theorem.2.6. T is uc if and only if. v is o(X',N(X)) continuous.

Proof:. If T dis uc, then T' is . o(C'(S),C(8)) - o(X',N(X))
continuous; thus, v = T'm will be o(X',N(X)) continuous.

Conversely, suppese v is o(X',N(X)) continuous. Let Zyn be
a wuc series in X and Zxﬁ be an arbitrary subseries of Zyﬁ. It
suffices to show that B = { 31 Txi] n=1,2, ...} dis o(C(8),C"(S))
conditionally compact,,sincei;hen T would be uc (di.e. ZTyﬁ would be
0(C(S),C'(S)) subseries convergent; hence, uc). B& C(S), so by
(6, p. 269, Theorem 14) B dis  o(C(S),C'(S)) cqnditiénally compact if
and only if B dis bounded and quasi-equicentinuous. But- B = TA,
where A‘= { g xi] n=1,2, ...}, and- A is bounded, so B is

i=1

bounded. -

To see that- B is quasi—eqdicontinuous, let s, +s in S8, let

e > 0, and let o, be given. Since v is o(X',N(X)) continuous
%*

0
n
v(s ) > v(s) in o(X',N(X)). Since Ix_ is wuc, 3 Jx, 2> F ¢ N(X).
o ! n =1 i n
Thus, Al =AU {F} is a o(X",X') compact set and V(Sd) and v(s)

are in C(Al). Singe  v(s) € C(Al)" then by -Arzela's theorem
(6, p. 268, Theeorem 11) the cenvergence- V(Su) +~ v(s) dis quasi-uniform
on Al; hence; quasi-uniferm on A. Thus, there exist a finite set of

indices & s o > o, such that for each a € A,

1’ 0 a2 %

min

l<i<n Jv(sai)a - v(s)a] < €.
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. k k
min [
. v(is. ) I x, -v(s) I x,| <e for each k.
1<i<n oy =1 | j=1 i
min k k
' ] T. Ix,(s ) - T Tx.(s)] < ¢ for each k.-
1<i<n j=1. 3 % j=1 3
min _ :
1<i<n ]f(s_ai) f(s)] < e for each f e B.

Thus, B is quasi-equicontinuous; and it, therefore, follows that B

is o(C(8),C'(S)) conditienally compact; and, hence, T is uc.

It is natural to ask what relationship, if any, exists between uc

and wcc operators? To answer this, the follewing result is needed.
Lemma 2.7. - JXE N(X) € KX) € X",

Proof: The inclusiens JX& N(X) and K(X) € X" are clear. If

n
F e N(X), then F = o(X",X') - limn pX in for some wuc series Ix,

n i=1 +
in. X. But notice I in_= Jzn for some- z € X. Hence,

i=1
F=oX',X") - limn Jzn, which implies F ¢ K(X) and it follews that

NEX) £ K(X)-

The next result shows that the class of wcc operators in  L(X,Y)

is a subclass of the class of uc operators in L(X,Y).

Proposition 2.8. If T e L(X,Y) is a wcc operator, then T is a uc

operator.

Preof: By Lemma 2.7 N(X) < K(X); thus, T'"N(X) € T"K(X). Since
T is wee' T'"K(X) € JY and, therefore, T"N(X) €& JY. By Theorem 2.1

T dis'a uc eperator.
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It is of interest to know when either K(X) = N(X) or N(X) = JX.
See Chapter III and alse the next theorem. A condition under which

both conditions are satisfied is now stated.
Lemma 2.9. If X is weakly complete then K(X) = N(X) = JX. -

Proof: If F e K(X) there exists a‘sequencev,{xn} in. X such
that F = o(X",X') =~ limn an, Since. X 4is weakly complete and {xn}
is weak Cauchy, there exists an. x ¢ X such that x = g(X,X") - limn’xn.
J 1is continuous with respect to the weak and weak® topelogies so
Jx ='F which implies that F e JX. K@X) € JX and Lemma 2,7 then

implies K(X) = N(X) = JX.

Conditions when a Banach space X has no subspace isomerphic teo
¢y has been shown to be useful (9). Equivalent conditions are:
X" has no subspace isomorphic to m, and the identity operator on X-

is a uc operator (9). It is now shewn that N(X) = JX can be added to

the list.

Theorem 2.10. The following are equivalent:

(a) 1i: X > X dis a uc operator (i dis the identity operator).
() NX) = JX.
(c) X. has no subspace isomorphic to cy

(d) X" has no subspace isomorphic to m,

Proof: Suppese i: X » X . is a uc operator. By Theorem 2.1,
N(X) € JX and Lemma 2.7 then implies that N(X) = JX. Conversely, if
N(X) = JX, then 4i"N(X) € JX'  and Theorem 2.1 implies 1i: X > X is a

uc operator,
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The next lemma can be proven using a technique due to A. Pelezynski,
(22, p. 446), A proof will not be provided here since it is extremely

long and easily verified by using Pelczynski's technique.

Lemma 2.11. Let 1. be the identity map of a subspace Y. into X. If

Fe N(X) and G e K(Y) are such that i"G = F, then G e N(Y).

In (16) Theorem 2,12 is proven. It is stated without preef in this
paper, then a similar result is established for N(X) and N(Y). In
the next twe theorems let Y be a subspace of a Banach space X and

let i .be the identity map of Y into X.
Theorem 2.12. (16) 4"K(Y) = (i"Y") N K(X).
Theorem 2.13, = i"N(Y) = (1"Y") N N(X).

Proof: First observe that 1" is an isometry from Y'" dinte X"
and if F = i"G and G ¢ Y", then F(f) = G(f|Y) for all f ¢ X'.
Suppese F ¢ i''N(Y), then there exlsts a wuc.series Zzi in Y such
that if v, =;igi z, then G = x",y') - limn Jyn and 1'"G = F. So
F(f) = G(f]Y) = Lim Jy, _(f}Y) = lim £(y ) for every f & X' and,
hence, F e (1"Y") N N(X). It then follows that i'"N(Y) € (i"Y") N N(X).

Conversely, if F ¢ (i"Y") N N(X) - then there exists a G in Y"
such that 1"G = F and alse F e N(X). Since N(X) EK(X),
@'Y N NE) € (A"Y") NK(X) = i"K(Y). So F ¢ i"K(¥), i.e. G ¢ K(¥).
FeNZX), GeK(), and i"6 = F imply by Lemma 2.11 that G e N(Y);

hence, F g i"N(Y) - and it follows that (i"Y") N N(X) € i"N(¥).

Corellary.2.14. Let Y be a subspace of X. If N(X) = JX,  then

N(Y) = JY.
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Proof: 4i"N(Y) = (1"Y") N N(X) = (4"Y"). N JX = i"JY.

The next easily verified result shews that it is sufficient to

consider only separable subspaces to obtain the converse.

Corollary 2.15. N(X) = JX if and only if N(Y) = JY for each

separable subspace Y of X.

If T e L(X,Y) 1is a uc operator, then T"N(X) € JY. Hence, if
N(x¥) = X", then T is weakly compact. The next cerellary describes

this behavior with respect to subspaces.

Corellary 2.16. If X is a Banach space such that N(X) = X",  then

N(Y) = ¥" for all subspaces Y of X.

£

Proof: i"N(Y) = (i"Y") N N(X) = (d"Y") N X" = i"Y".

If N(X) = X", ' then X has property V. The above corollary shows
that-if N(X) = X", every subspace of X has property V; although in
general not every subspace of a space with property V has preperty V.

Two examples are now given, one where N(X) # X" and a non-reflexive
ene where N(X) = X',

Consider the space  C[0,1]. In this case N(C[0,1]) # C[0,1]".

£, is isomorphic to a .subspace of C[0,1], so if N(C[0,1]) -equals

1

c[0,1]", then N(Zi) = f!'"s thus, £, would then have property V

1
which it does not. Note that C[0,1] does have property V; hence,
property V dees not imply N(X) = X".

Since K(co) = ¢, and K(co) = N(co) as will be seen in

Chapter III, it follows that N(cG) = cqye
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If N(X) can be shown to be weak* sequentially closed, the next

two corollaries provide useful infermation concerning the space X,

Corollary 2.17. Let X be a Banach space, N(X) is weak* sequentially
closed in X" if and only if . N(¥) is weak* sequentially clesed in Y"

for each separable subspace Y of X.

Proof: Let X, = N(X), X, be the weak* sequential closure of X

1 2 1

in X", Yl = N(Y), and Y2 be the weak* sequential closure of Y in
Y". Since i"Y2 € i"Y" and i"Y2 L= Xy it follows that -

i"YZSE (i"ym N X2, Suppose N(X) = is weak* sequentially closed in X",
then Xl = Xz. -For an arbitrary.subspace 'Y of X by Theorem 2.13,
i"YZSE 1"y n X2 = (1Y N x= i”Yl, so Yl = Y2 which implies that

N(Y) is weak* sequentially closed in - Y'".

Conversely, suppese that Y Y for each separable. Y in X.

12
Let F = oX",X") - lim F_ where {Fn}s;ih For each n there is a

}

wuc. series D with partial sum sequence { in X such that .

*nk k=1
= "oty ) - .
Fn c(X iX ) limk ank. If Z 1is the subspace of X spanned by

{ynk: n,k = 2,2, ...}, and if i 4is the identity map from Z dinto X,

then there exists G,G;,G in - 2" such that

2’ LN BN
= 1" 1 — i 1m. = " \ - .

Gn o(z",Z") 11mk ank and G = o(2",Z'") limn Gn Now each

Gn e N(Z) since Zynk is wuc.in X, so by the Hahn-Banach theorem.

Zynk is wuc in Z. Thus, Gn = (:'n")—l Fn e Z, and G = (i")_lF.

1

Since Z is separable, by hypothesis Zl = 22 so it follows that there

exists a wuc series It in Z with partial sum sequence {zk} such

= " ! - i . 3 ) = = i
that G = o(2",Z2") l:Lmk Jzk, hence, . F(f) = G(£]2) l:.mk f(zk) for

every £ e X' so F=oX',X') - limk Jzk and thus F ¢ Xl' Hence,

Xl = XZ'
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Chapter III will show the usefulness of the condition  K(X) = N(X),
‘and McWilliams (16) has studied the implications of K(X) being weak*
sequentially cleosed. With these twoe facts in mind, the following is

given.

Corollary 2.18. Let. X be a Banach space. N(X) is weak* sequentially
closed if and enly if K(X) = N(X) and  K(X) is weak* sequentially

closed.

Proof: If N(X) is weak* sequentially clesed, then since
JX & N(X) and K(X) is the weak® sequential clesure of JX, it
follows that K(X) € N(X) & K(X). Hence, K(X) = N(X). If N(X) is
weak* sequentially cleosed, then K(X) will be weak* sequentially

closed since K(X) = N(X). The converse is obvious.

i



CHAPTER III
PROPERTY V AND -THE DIEUDONNE PROPERTY

Operators defined on a Banach space appropriately give some
characterizations and/or properties of the respective Banach space.
Two such properties of interest (in this chapter) are property V and
the Dieudonne property. The purpose, therefore, is to closely
scrutinize these properties: conditions for a space to possess or to
lack this property, permanence of the preperty, and other

characteristics.
Property  (u)

During an investigation of the Dieudonne preperty and property V,
it was natural te inquire whether or not there was a connection between
the two. As is shown, property (u) provides a connecting link. Thus,

property (u) merits consideration.

Definition 1.1l. A Banach space X is said to have property (u) if for
every weak Cauchy sequence. {xn}‘ there exists a wuc series Zui such
that {xn - g ui} converges weakly to O.
i=1
A, Pelczynski (18) introduced the concept of a space possessing
property (u) and gave several results without proof. Simple proofs are

provided in this paper. First a characterization of property (u) is

provided by using the sets K(X) and N(X).

31
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Theorem 1.2, A Banach space X has property (u) if and only if

K(X) = N(X).

Proof: ~Assume. X has property (u). If F e K(X): there exists a
weak Cauchy sequence {xn} in X such that F =.0(X",X') - 1imn JXﬁ;

Since X has property (u) there exists a wuc series Zui in X such

n
that {x - I wu,} converges weakly to 0. Hence,

Bo4e1 Y on
F=oX",X") - lim I Ju, and, therefore, F & N(X). K(X)& N(X)

i=1
implies K(X) = N(X) since N(X) is always a subset of K(X).

Conversely, assume K(X) = N(X) and let {xn} be a weak Cauchy
sequence in X. There exists an F € K(X) such that
F=oX",x") - limn an, Since. K(X) = N(X), F e N(X) which implies

r

there exists a wuc series _Zui in X such that
n n

F=o0(X",X') - 1lim I Ju,; thus; {X - I u,} converges weakly to
n i n i

i=1 i=1.

0 L] '

Weak completeness and property (u) are closely related as is

illustrated by the following.

Corellary 1.3.  (18) Every weakly complete Banach space has property

(u). 1In particular, every reflexive space has property (u).

Proof: Recall JX < N(X) € K(X). If X is weakly complete

JX = K(X), so N(X) = K(X).

Corollary 1.4. (18) If in a space X  having preperty (u) wuc series

are yc series then X is weakly complete.



Proof: By Theorem 2.8 in Chapter II, N(X) = JX since-all wuc.

series are uc series. Since X has preperty (u), N(X) = K(X).

K(X) = JX, i.e. X 1is weakly cemplete.

Corollary 1.5. (18) If X has property (u), then X is weakly

complete if and enly if no subspace of X 1s isemorphic te ¢

Proof: If X  is weakly complete, K(X) = N(X) = JX; ' thus,
N(X) = JX. By Theorem 2.8 in Chapter II, no subspace of X is

Conversely, if N(X) = JX and N(X) = K(X),

isomorphic to o

JX = K(X).

Property (u) can be considered as an inherited property.

Theorem 1.6. (18) If X has property (u), then every subspace .

has property (u).

Proof: If X has property (u), then K(X) = NX). By

Theorem 2.9 and Theeorem 2,10 in Chapter II,

CATNQY) = @™Y') NONGX) = (A"Y") N KX =-1"K(Y),

so N(Y) = K(Y); thus,. Y has property (u).

Corollary 1.7. (18) The space X ﬁas_property (u) if and only if

every .separable subspace has property (u).

Proof: Let Y be a separable subspace. If  N(Y) = K(Y), it

follews from Theorem 2.9 and Theerem 2,10 in Chapter II that.

"Y' N KE) = 1"K(¥) = i"N(Y) = @E"Y") N N(X),

O ‘o
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Thus,

then
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so. (A"Y") N K(x) = (1"Y") N N(X) for every separable subspace Y. If.
T ¢ K(X), then there exists a sequence. {xh} in X such that
F=o0(X",Xx") - limn an. If- X - is the separable subspace generated by
{x_}, then Fei™"; so Fe ("Y")N K@ = (i"Y") N N(X), and it
follows that F ¢ N(X). Thus, K(X) = N(X). The converse follows

from Theorem 1.6.

When does ‘a space with a basis possess property (u)? To partially

answer this, the feollowing definitien is needed.

Definitien 1.8. A basis- {xn} of ‘a Banach space is said to be.
uncenditional if every convergent series of the form Zuixi is

uncenditienally cenvergent.

If a Banach space X has an ‘unconditional basis, then X has
property (u) (22, p. 445). This fact yields many examples of spaces
with property (u). In additien, with Theorem 1.6 the follewing result

is ebtained.

Corellary . 1.9. (18) Every subspace of a space with an uncenditional

bases has property (u).

The natural bases for ¢y and Ep, p > 1, are uncenditienal

bases so. 4 and ﬂp, p > 1, have property (u). The Haar basis of
LP ([0,1]), 1 < p < =, is an unconditional basis seo Lp([O,l]),

1 < p <=, has property (ﬁ).~ Ll([O,l]) has property (u) since it is
weakly complete, but Ll([O,l]) - does not have aﬁ uncenditional basis,

(22, p. 441, Theorem 15.3). Thus, property (u) does not .imply the

existence of an unconditional basis.
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Certain spaces have been seen to have property (u). What spaces
do not have preperty (u)? The following is an aid in answering this

question.

Propesition 1.10. Let X be a non-reflexive Banach space such that X"

is separable. Then X. does not have property (u).

Proof: Since X" 4is separable, X contains no subspace

isemorphic te hence, N(X) = JX. Suppese X has property (u),

o’
then K(X) = N(X) =JX which implies that X is weakly complete. X'
separable and ' X weakly complete imply that X is reflexive,

(4, p. 58), a contradictien. So - X does not have property (u).

Bém), n>3 m<n-2, do not have

Any of James' spaces (11),
property (u).

c[0,1] does not have property (u). Thus,: C[O,l]b can net be
embedded in a space with property (u). In particular, C[0,1] can not-
be embedded in a Banach space with an unconditional basis. - Since every
separable Banach space is isemetrically isemerphic te a subspace of
c[o,1], C[0,1] contains a subspace isometrically isomerphic to B3.

If C[0,1] did have property (u), then B, would have property .(u)

3
which it doees not,

Many of the classical Banach spaces have been shown to possess
property (u). In view of Theorem 3.6, their possession of property V
is equivalent to their possession of the Dieudenne property. However,
other classical Banach spaces, such as - C[0,1], separate inquiries into

their pessession or lack of property V and the Dieudonne property must-

be conducted.
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An explication of the Dieudenne proeperty and property V are the.

ensuing tepics.
The Dieudonne Preperty

A Banach space X is said to have the Dieudonne property if every
wee operater T e L(X,Y) dis weakly compact where Y dis an arbitrary
Banach space. The following theorem prevides an equivalent conditioen
for a space X  to have the Dieudenne preperty independent of any
reference to operators and their range space. A, Grothendieck proved a
similar result for locally cenvex spaces (8); however, condition (c) in
this paper does not require the set to be convex and balanced as does.
Grothendieck's theorem. In any case, it follows directly from

Theorem 1.1 in Chapter .II and Theorem.3.1l7 in Chapter I.

Theorem 2.1. (8) The following conditions en X are equivalent:

(a) X has the Dieudonne property.
(b) Any T e L(X,Y) such that. T"K(X) € JY satisfies T"X" g JY.
(¢) Any oX',K(X)) compact set in X' is also o(X',X")

cempact.,

When a Banach space X is reflexive, every continuous linear
operator en X dis weakly compact. Thus, the next ebservatien by

A. Grothendieck (8) feollows.
Lemma 2.2. (8) Every reflexive space has the Dieudonne preperty.

Proposition 2.3. (8) A weakly complete Banach space. X has the

Dieudonne property if and enly if it is reflexive.
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Proof: If X has the Dieudonne property and i is the idéntity
map from X to X, then 1 is a wcc operator and, therefore, weakly-
compact. If 1 is weakly compact, then X has a weakly compact unit

disk and, hence, reflexive. The converse is Lemma 2.2.

The Banach space Zl does not have the Dieudonne property since it -
is weakly complete and not.reflexive, Ll is also weakly coemplete;
hence, it will have the Dieudenne property only when it is reflexive,
i.e. when it is finite dimensioenal,

The natural question of the permanence of the Dieudenne preperty
under inductive limits, preojective limits, direct preducts, direct sums,
quotient spaces, and subspaces arises. A. Grothendieck (8) stated
without proef that for Banach spaces the Dieudonne property is preserved
for direct factors, products, and quotients. Not only willl these
results be shown, but an extensive inspectien of the permanence.
properties is cenducted.

If E 4is the inductiyve limit‘br projective limit eof Banach spaces,
the space E 1is not necessarily a Banach space. However, E would be
a separated lecally convex topolegical vector space (LCTVS). Hence, the
following definition would be appropriate in dealing with such

situatiens.

Definition 2.4, A LCTVS' E dis said te have the Diéudonne‘property if
every wce operator T ¢ L(E,Y) is weakly cempact where Y is an

arbitrary Banach space.

Theorem 2.1 holds for LCTVS with the additional assumption that the

set in conditien (c) is also equicontinuous, convex, and balanced (8).
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Proposition 2.5. If a space E . has (lacks) the Dieudonne property
with a compatible topelogy, then E with any other compatible topology

has  (lacks) the Dieudonne property.

Proof: Condition (c) of Theorem 2.1 is a condition on E', and

all compatilble topologies for E have the same conjugate.

Since Zl with the norm topology dees not have the Dieudonne
property, Kl with the weak topolegy does not have the Dieudonne

property.

Definition 2.6. Let -{(Ea’fa)} be a family of LCIVS E and fa be
linear maps from Ea inte a space E such that tJfa(Ea) spans E.
Furnish £ E with the weakest convex topelogy so that all the fd's are

continuous. E with this topoleogy is said te be the inductive limit of

the Ea’s; E 4is said to be .the regular inductive limit if for every

bounded set B in E there exists a B such that B is -bounded in

EB.

Propesition 2.7. Suppose E 1is the regular inductive limit of

{(Ea’fa)}' If each Eu has the Dieudonne . preperty, then E has the

Dieudonne property.

Proof: Let T be a wcc operator from E dinto a Banach space Y
and let B be a bounded set in E. There exist a B such that f;l(B)

is bounded in EB. Let_ATB =To fB' T is wece so TB is wee, and

since E, has the Dieudonne property T

B B8
TB(f;lB) is weakly relatively compact, but TB =To fB’ so

is weakly cempact. Hence,

Ts(f;lB) = T(B) which implies that T is weakly compact. It then

follows that E has the Dieudonne preperty.
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For LCTVS the Dieudonne property is not,necessarily preserved for
quotient spaces; in particular, the property is not necessarily
preserved for inductive limits.  In (21, p. 195, problem 20) there is
given a Montel space E which has a quetient -space isomorphic te 21.
Since E 1is a Montel space, E is reflexive and, hence, has the
Dieudeonne property. However, .Kl does not have the Dieudonne property.
The natural map T from E onto the quotient space isomorphic to Kl

defines . Kl as the inductive limit.of E.

Proposition 2.8. If a Banach space X is the inductive limit of a,
finite number .of Banach spaces Xn with the Dieudenne property, then

X has the Dieudonne property.

Proof: Let- T be a wcc operator from X to a Banach space Y.
Define T =T oo £ where f maps X inte X. T 1is wcec so T

- ~n n n n . n

is wce.and, therefore, Tn is wéakly,compact. Let B be a bounded
set in X; then f;l(B) is relatively weakly compact since Tn is
weakly compact and the unien is finite. But UTn(f;lB) =TB, so T

is weakly compact and, thus,” X has the Dieiidonne property. -
Each qﬁotient space 1is the finite inductive limit of the space.

Corollary 2.9. (8) Every quotient space of a Banach space with the

Dieudonne property has the Dieudonne property.

Banach space may.be.replaced by normed linear space in
Proposition 2.8 and Corollary 2.9 since the completeness is not used in

the proof.
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Definitien 2.10. Let E be a vector space. For each o 1in some index
set, let fa, be a linear map from E to a LCIVS Eq, such that
ﬂf;l(O) = {0}, Furnish E with the weakest topology 'such that each

fa is centinuous. Then E 1is said to be the projective limit ef the

family {(Ea,fa)}e

If A= {fa}’ then in the terminoelogy of (23) fhe topology en. E
is o(E,A).

A subspace E of a LCTVS F- is a special case of a projective
limit. Consider the natural embedding map i frem E dinte F; then
the relative topelogy on E d1s the weakest topolegy making i
continuous; hence, E is the projective limit of F.

The Dieudenne property is net necessarily preserved for subspaces.
In particular, projective limits do not necessarily preserve the
Dieudonne preoperty. ﬂl is linearly isemetric te a subspace of C(S),

S a compact Hausdorff space. C€(S) has the Dieudonne property, but Kl

does not have the Dieudonne proeperty.

Proposition 2.11. (8) Suppose E is the direct product of a family
{Ea} of LCTVS. If each Ea has the Dieudonne property, then E has

the Dieudonne property.

Proof: Let T map E inte a Banach space Y .Be a continuous
operator, and let ha be the-ﬂaﬁural map . of Ea inte E. Then
Ta’= T o hu is continuous from Eu into Y. Since Y is a Banach
space, the continuity of T entails that‘_Tu = (0 for all but a finite

set of indices a. 1It, therefore, suffices to handle the case of a

finite product. It is easy to see that for a finite set of LCTVS
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Fl,...., F, E= le ...'an, that T mapping F into a Banach space

n®

Y is weakly cempact (wecc) if and enly if T, =T o h, is weakly

k k
compact (wecc) for each k =1, ..., n. It then follows that the

Dieudonne .preperty is preserved under direct products.

The direct sum of spaces with the Dieudonne property has the
Dieudonne property. The preof is analogous to Propesition 2.11. It can
also be seen that, although the Dieudonne property is not preserved for
subspaces, a space E has the Dieudonne property if and only if every
complemented subspace has the Dieudenne preperty.

The question of whether a Banach space has the Dieudonne property
can be converted to a question of whether a space of continuous
functions has the Dieudonne property. The space C(S), S a compact
Hausdorff space, has the Dieudenne preperty (8). Let C(S;X) denote
the set of continuéuS’functions on a compact Hausderff space S with
values ‘in X. In (19) it is shown that C(S;X), feor reflexive X, has
property V. In the next section it is shown that property.V implies the
Dieudonne property; hence, for reflexive X, C(S;X) has the Dieudenne
property if and only if X has the Dieudonne property. The following

theorem provides a partial answer for arbitrary X.
Theorem 2,12, If C(S;X) has the Dieudenne property, then so does X.

Proof: Define TS g L(C(S3X),X) by Ts(f) = f(s). TS is ‘an onto
map, so - C(S;X) has a quetient space isomerphic te X and, thus, by

Corollary 2.9, X has the Dieudonne property.

It '‘is -an open question if the converse to the previous theorem is

true. However, in a special case it ‘is true. The following definitioen
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~ is needéd to obtain a characterizatien of the Dieudonne property in this

special case.

Definition 2.13. Denete by Cx the Banach space of all X wvalued,

convergent sequences, {xn} equipped with the nerm

Hx i = sup {lxl: n > 1},

Cy is the space C(S;X) where S is the one-point

compactification of the poesitive integers. A continuous linear operator

T mapping ey inte Y has a unique representation in the form

y'(Tg) = (T, (Lim _xn))(y') + n=Z=l y'(Tnxn) (1)

where ¢ = {xn} € Cys y' eY', T, maps X into Y", and T~ maps

X inte Y. are continuous linear operators, and the series on the

right hand side of equation (1) satisfies Iy @)l <=, (7, p. 738)

Theorem 2.14. T ¢ L(cX,Y) is wece if and enly if:

(a) each Ti in equation (1) is wecc, and
(b) the series ZTi is such that ZTixi converges for each

sequence {x;1S X, [x] < 1.

Proof: Suppoese that T ds wcc. Define a continuous linear
operator Pi (1 > 1) frem X 1nt0’hCX by Pix = {ginx}n=l. Let -
{x,} & X be such that |lx) < 1. { % P,x.} is weak Cauchy,

i i - i=1 i7i
. (2, Lemma 2.11). Since T dis wcc,

n
{® TP.x,}
. il
i=1
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is weakly convergent. But TRx, = T x; by equation (1) so-

n .
{1 is uc and conditien (b)
i=1

“is satisfied.

xi} is weakly convergent. Thus, IT,x

i i

For i > 1 and x e X, equation (1) yields TPin= Tix; Since T

is wecce,, Ti is wce.

Define Q mapping X inte c, by Qx = (x,%,X, v.s)w
x=TQx - I T,x for
0 g=1 1 :
all xe X, i.e. T & L(X,Y). Conditien (b) and (1, Theorem 2) show -

X
Condition (b) and equation (1) together imply T

that . T is the limit in the uniform operator topelegy on L(X,Y) of
n .

the sequence of wce oeperators: {IQ - = Ti}. By Propesition 1.3 in
i=1

Chapter II, T is wce.

Conversely, suppese T satisfies conditions (3) and (b). For-

each n, _let'Sn mapping ¢, dinto Y be defined by

X

n. .
Snc = To(llm xn) + iil Tixi’ z =‘{xn}.

TO is wce, and lim dis.a centinueus functien so TO o 1im is wce by

Proposition 1.2 in Chapter II. Se each Sn ié.wcc,since
. TO o lim, Tl’ .,.,-Tn are all wec operators. Applying (l, Theorem 2)
and condition (b), it follows that T is the limit of "{Sﬁ} in the

uniform operater topolegy en L(c,,Y); hence, T is a wcc operator.,

Corollary 2.15. A Banach space X has the Dieudenne preperty if and

only if ey has the Dieudenne property.

Proof: 1If cx has the Dieudenne property, then by Theerem 2.12,

X has the Dieudonne property.
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Conversely, suppose X has the Dieudonne property and T ¢ L(cX,Y)
"is wece. Each Ti in equation (1) is wecc.by Theorem 2.14. X has the
Dieudonne ‘property so each Ti is weakly compact; hence, by -

(1, Corollary 1) T is weakly compact.

The following theorem will list some of the conditioens that imply:
that a Banach space has the Dieudonne property. It is not intended to

be exclusive.

Theorem 2.16. X has the Dieudonne property if any of the fellowing

conditions-'are satisfied:..... . .

(a) X has a norm closed subspace Y such that Y" is separable
and X/Y is reflexive. \

(b) X"/JX 4is separable.

(?) K(X) = x".

(d) The unit disk of X" is weak* sequentially compact.

() X is almest reflexive.

(f) X' 1is WCG (weakly compactly generated).

(g) X has property V.

(h) C(S;X) has the Dieudenne property.

Proof: (a) implies (b) implies (c): By (15). (c) implies the
Dieudenne property follows from Theorem 1.1 in Chapter II. (d) implies
(e): 1If {xn} is a bounded sequence in X, then {an} is ‘a bounded
sequence in X'"; thus, it has -'a weak* convergent subsequerce {an,};
hence {Xn.} is a weak Cauchy subsequence. (f) implies (d): By (;O)._

i

(g) implies the Dieudonne property is shown in.the next section. (h)

implies the Dieudonne property is Theorem 2.12. The demonstration (e)
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implies the Dieudonne property will complete the theorem. Let {xh} be
a bounded sequence in X and let T e L(X,Y) be wec, Since- X is

almost reflexive there exists a weak Cauchy subsequence {yn} of {xn}.
T wecc. implies {Tyn} is weakly convergent. Hence, Txn has a weakly

convergent subsequence; thus, T. is weakly compact.
Property V

A Banach space X 1s said teo have property V if every uc operator
T ¢ L(X,Y) 1is weakly compact where Y is an arbitrary Banach space.
The definition of the set N(X)' and the characterization of uc operators-
allows a new manner by which to view this property. Theorem 3.17 in
Chapter T with Theorem 2.1 in Chapter II -yield the following important
characterization of ﬁroperty V in terms of compact sets rather than in

terms of operators.

Theorem 3.1. The follewing conditions on X are equivalent:

(a) X has property V.
(b) Any T e L(X,Y) such that T'"N(X) € JY satisfies T"X" & JY.
(¢) Any o(X',N(X)) compact set in X' is alse o(X',X")

compact.

A discussion of the permanence of property V is given by Howard 9.
An application of Theorem 3.1 is included, but first the fellewing

definitiens are needed.

Definition 3.2. Let T be a separated locally comﬁact space. CO(T)

is the space of continuous functions x- - on T such that given € > 0,
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the set {t € T: |x(t)| > e} dis relatively compact in T. CO(T) is a

Banach space with norm ||| = sup{|x(t)]|: t e T}.

Definitien 3.3. M(T) 4is the Banach space of bounded Radon measures on
T, the norm being [|ull =;/Pd]u[ where T is a separated locally

compact space.

If T 4is compact then CO(T) is the space C(T). Pelczynski (19)
showed that C(T), T a compact Hausderff space, has property V. A
simpler alternative'proof is presented. Recall that the dual of CO(T)
may .be identified with M(T) by associating with each 1 € M(T) the

linear form x +</p x du on CO(T).
T

Theorem 3.4:. (19) For any separated locally compact space T, CO(T)

has property V.

Proof: Let u: CO(T) ~ F be a uc operater; and let F be an
arbitrary Banach space. Grothendieck (8, Theeorem 6) proved thét u is
weakly compact if and only if wu transferms any bounded monetene
increasing sequence in CO(T) inte a 'sequence converging weakly in. F.
If {xn} .is a bounded monotone increasing sequence in CO(T), it
suffices to show that x =.o(M(T)',M(T)) - limnxn is in N(CO(T_))e
Since then u being a.uc operator would imply u"(x) ¢ JF and, hence,

u(xn) converges weakly to soeme y ¢ F. Define vy =%

l’
y2 = x2 - xl, ceny yﬁ =‘xn - Xn-l’ ..é . Then Zyn4 is a series in
CO(T), If u e M(T), then u(xn -z yi) = u(0) = 0; hence,
n - d=1.
{xﬂ - yi} converges weakly to 0. Since {xn}' is a weak Cauchy
i=1

sequerice, limn u(xﬁ) < o for each p € M(T). To show Zyn_ is.a wuc .

series, it suffices teo only consider positive Radon measures, so let
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u be an arbitrary positive Radon measure. Since xn(t) - xn_l(t) >0
for all t e T, ]u(yn)] = P(yn) and, thus,

n n

z

n
11mn .Z ]u(yi)l = llmh ey U(Yi) = 11mn .E
i=1 i=1 i=1

.lm51Mﬁ9 < o,

Hence, Iy is indeed a wuc series. Now since {x - I vy.}
, n nooyq i
converges weakly to 0, the weak limit point of {xn} is in N(CO(T)).

The relationship between property V and the Dieudonne preperty .is

given in the next two propoesitioens.

Proposition 3.5. A Banach space X with property V has the Dieudenne.

property.

Proof: " If T is a wcc operater on X, then by Propositien 2.8
in Chapter II, T dis a uc eperator. Since X = has property V, T is-

weakly ceompact, and it follows that X has the Dieudonne preperty.

The converse of Proposition 3.5 is not true. James (11) defined a

Banach space B3 such that ~33, Bé, and B; are separable, but Bé"
is not separable, and Bg =3B, 6 Kl._ Since Bg is separable, Bé will
be almost reflexive and, hence, Bé has the Dieudonne property. But
the ‘identity map i omn Bé is a uc .operator since if 1 were not a
uc gperator, then by Theorem 2,10 in Chapter II Bé would centain a
subspace isomorphic to cg* But Bé is a conjugate Banach space so. Bé

would then centain a subspace isomorphic te m which would. imply that

Bé is not separable; a contradiction. If 1 were weakly cempact, then
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the unit disk of Bé would be weakly compact; hence, Bé would be

reflexive which it is net. Thus, Bé does not have property V.
The above example alse shows that the converse to Propesitioen 2.8

in Chapter II is not true. i as above is a uc operator, but net a wcc

operator.

Proposition 3.6. If a Banach space X has property (u), then the

following are equivalent:

(a) X has property V.

(b) X has the Dieudonne property.

Proof: (a) always implies (b) by Propesition 3.5. Assume (b) and
let T e L(X,Y) be a uc operater. Thus, T'N(X) € JY, but X has
property (u) so K(X) = N(X) and, therefore, T"K(X) ¢ JY: hence, T
is ‘a wecc.operator. Since X has the Dieudonne property; T is weakly:

compact; hence, X has property V.

A Banach space may have the Dieudenne property and preperty V and
not have property (u). C(S), S a compact Hausdorff space, is an
example of such a space.

The basic characterization used by Pelczynski (19) te study
property V is " X has property V if and only if every wuc=limited set

in X is weakly compact."

Definition 3.7. A S X' is wuc-limited if limn sup x'xn = 0 for

every wuc series an. in. X.
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Theorem 3.9 answers the question of what tepolegy on X' will-
induce compactness on wuc-limited sets. But first the follewing

propoesition is needed.

Proposition 3.8. T e L(X,Y) 1is uc if and enly if T' maps bounded

sets into wuc-limited sets.

Proof: Let T be uc, an be wuc, and A a bounded set in Y',

Since T 1is uc, ZTxn is uc. Hence, Txn + 0 and, thus,.

lim sup
n A

lim su
y'(Tx ) =T 2R T'y'(x ) = 0

therefore, T'A is wuc-limited.

Conversely, suppose A 1is bounded in Y', an is wue, and

lim sup
n T'A

ZTxn is a uc series by a result of McArthur (13, Cendition (H)). Thus,

T'y'(xn) = 0. . Then 1im‘n sup, y'(Txﬁ) = 0, and it fellows that

T 1is a uc eperator.

Let K be a bounded set in X'. Let' p be the gauge of the set
{x ¢ X: |a(x) <1l for all a e K}. Then p' is a norm on X/Ker p
where p'(@) = p(x) and A =.x + Ker p. Let T be the natural_maﬁ
from X te -Y = X/Ker p. As in Theorem 3.15 in Chapter I, it can be
shown that K is wuc-limited if and only if T' maps bounded sets
into wuc-limited sets. Since the proof is almest.identical, it is
omitted, With the above notation and ebservations, the problem is -

solved.

Theorem 3.9. The following are equivalent.

(a) K is wuc-limited.
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(b) T' maps bounded sets into wuc~limited sets..
(c) T 4is uc.
(&) T' is a o(X',N(X))-compact operator.

(e) K is o(X',N(X)) compact.

Proof: (a) if and only if (b) follows by the remark preceding the
theorem, (b) if and only if (c) follows by Propesition 3.8. (c) if
_and only if (d) follows by Theorem 2.2 in Chapter II. (d) if and only

if (e) follows by Theorem 3.15 in Chapter I.

Thus, it is seen that K& X' is wuc-limited if and only if it is

g(X',N(X)) compact.



CHAPTER IV

CONJUGATE ‘BANACH -SPACES WITH WEAK* .

SEQUENTTIALLY COMPACT UNIT DISKS

It is well known that a Banach space is finite dimensional if and
enly if its unit disk is norm compact and is reflexive if and enly if
its unit disk is compact in the weak topolegy. Alsc the unit disk of a
conjugate Banach space is always compact in the weak¥® ﬁopology. Since
conditional compactness and sequential compactness are not equivalent
in the weak* topolegy, an inviting question would be: can weak®
sequential compactness of the unit disk characterize .or be. characterized
in a Banach space? A result of Banach is that if X 1is separable,
then the unit disk of X' 1is sequentially compact in the weak* topology.
An up-dated study of this is certainly in order. These results provide

further conditions for a. Banach space to have the Dieudonne property.
Banach Spaces With H(X) Separable

H(X) denotes the quotient space X"/JX..

When H(X) 1is separable, it is shown that X and X' are almest
reflexive, and X" and X''' have weak* sequentially compact unit
disks. This implies that X and X' have the Dieudonne property.

Weak* sequential compactness is closely related to the concept of

a Banach space being almost reflexive. If a Banach space X 1is such

51
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that its second conjugate has a weak* sequentially compact unit disk,
then X 1is almost reflexive.

For a conjugate Banach space X, almost reflexivity is a stronger
condition than the weak* sequential compactness of its unit disk. If
X' 1is almost reflexive, then a sequence {x;} in the unit disk has a
6(X',X") Cauchy subsequence {xé.}; thus, {x;;} is o(X',JX)
Cauchy; hence, o(X',JX) converg:nt. .

Theorem 1.1. (3) If Y is a closed subspace of a Banach space X,

1l
then JX + Y is a closed subspace of X" and
11
HEX) = (JX+Y )/JX
H(X/Y) = X"/ (X + Y11
where 2= means linearly homeomorphic..

It should also be observed that -H(X/Y) dis linearly homeomorphic -

to H(X)/H(Y).
Lemma 1.2. [H(X)] =H(X').

1
Proof: By (5, Theorem 15), H(X') = (JX) . Since JX is a norm
1 1
closed subspace of X", it follows that [H(X)] = (JX) . Se.

' L '
[H(X)] = (X)) = HEX'); thus, [H(X)] = H(X').

1
If H(X) is separable, the unit disk of [H(X)] is weak*

1
sequentially compact. But  [H(X)] = H(X'), hence, Corollary 1.3.

Corollary 1.3. If X 1is a Banach space such that H(X) is separable,

then the unit disk in H(X') is weak* sequentially compact.
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Lacey and Whitley (12) show the usefulness of the almost reflexive
property. The folleowing lemma characterizes this property by the use

of weak* sequential compactness.

Lemma -1.4. X dis almost reflexive if and only if JS is weak¥*

sequentially compact in X" where S is the unit disk in X.

Proof: Assume X is almost reflexive. If - {an} is a sequence
in JS, then {xn} is bounded and, therefore, has a weak Cauchy
subsequence . {Xn.}" Thus, {an.} is a weak* Cauchy subsequence and
by the Banach St:inhaus closure iheorem the sequence {an;} converges
in the o(X",X') topology to an element of X". :

Conversely, assume JS 1s weak* sequentially compact .in X". If
{Xﬁ} is a sequence in S, then {an} is a sequence in JS; hence,
there exists a subsequence {ani} which converges in the o(X",X")

topology, and it follews that {xﬁ } is a weak Cauchy subsequence of
i

{x }.
n
Many Banach spaces are complemented in their second conjugates
(23, p. 214, Problem 29), (5). For those spaces, a characterization is

given in the next lemma.
Lemma 1.5. Let a Banach space X be complemented in X". X" has a-
weak* sequentially compact unit disk if and only if

(a) X dis almost reflexive, and

(b) H(X) has a o(X",X') sequentially compact unit disk.

Proof: Let {x;} be a bounded sequence in X". Each x; is of

the form x" =Jx + h where x € X and h ¢ H(X). Since {x"} is
n n n n n : n
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bounded, both sequences {xn}_ and {hn} are bounded. Thus, there
exists a subsequence {Jyn} »?f; {an} which converges in the o (X",X")
topology. If {wn} is the cérresponding subsequence .obtained from
{hn}, it also,hés a G(X",ng convergent subsequence {mn}, Let
{Jzn} be .the corresponding subsequence of {Jyn}. Then {Jzn + mn}
is a o(X",X') cenvergent subsequence of {an + hn}, so X" has a
weak* sequentially compact unit.disk.

Conversely, assume X" has a weak* sequentially ceompact unit disk.
Let {xn} be a bounded sequence in  X. Then _{an} is a bounded
sequence in X" so {an} has a o(X",X') convergent subsequence
{Jyn}. Thus, {yn} is a weak Cauchy subsequence of {xn} and X 1is,
therefore, almost reflexive., - If {hn} is a bounded sequence in H(X),
then {hn} is a bounded sequence in X'". {hn} has a oX",X'")
convergent subsequence since X" has a weak* sequentially cempact unit

disk.
A conjugate Banach space is complemented in its second dual (5).

Corollary 1.6. If X 1s a conjugate Banach space, then the conclusien

of Lemma 1.5 helds.

As can easily be seen, preperties of H(X) are very useful. For

example, one has the following.
Theorem 1.7. If H(X) is separable, then X' is almost reflexive.

Proof: Let {fn} be a bounded sequence in X' and let M be the
closed linear span of the sequence {fn}. M is separable so M' is
separable (15). M' separable implies that M" has a weak* sequentially

compact unit disk which in turn implies that M is almost reflexive.
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Hence,; the bounded sequence {fn} in M has a subsequerce {gi} such
that {gi} is o(M,M') Cauchy. For each G e X", G]M e M' so
{G(gi)} = {(G]M)(gi)}v sinceugi ¢ M. This implies that {G(gi)} is a
Cauchy sequence for all G e X", and therefore, {gi}‘ is a o(X',X")

Cauchy sequence. Consequently, X' is almost reflexive.

Although characterizations of weak* sequential compactness of the
unit disk for an arbitrary conjugate space are sought, the following

assists with the delineation of this problem.

Theorem 1.8, If H(X) is separable, then X'''. has a weak*

sequentially compact unit disk.

Proof: - If . H(X) is separable, then by Theorem 1.7 X' is almest:
reflexive. Since H(X) 1is separable, Corollary 1.3 implies H(X')
has a weak* sequentially cempact unit disk. X' almost reflexive and
the unit disk of = H(X') weak* sequentially compact teogether imply by

Corollary 1.6 that X''' has a weak* sequentially compact unit disk.

For H(X) to be separable is very useful. For instance, if H(X)
is separable, then X is almost reflexive, X' 1is almost reflexive,
and X''' has a weak* sequentially cempact unit disk. It is now shown

that X' has a weak* sequentially compact unit disk.

Theorem 1.9. If H(X) is separable, then the unit disk of X" is

weak* sequentially cempact.

Proof; Let U" be the unit disk in X" and let U be the unit
disk of X. McWilliams (15) has shown that H(X) separable implies

K(U). = U". Assume {Fn} is a sequence in U" = K(U). For each Fn



56

(o]

there exist a sequence {Jx .} such that F_ = o(X",X') - lim, Jx ..
=1 n i “ni

Let M be the closed linear span of {x_

ni}’ n,i = 1,2, .. . M isa

closed separable subspace of X, and H(X) is separable so it follows
that H(M) 1is separable (15). Now H(M) and M separable imply that
M" is separable (15). So 8", the unit disk of M'", is weak*

sequentially compact since. M" 1is separable. By coenstructien

[+ o]

{Jxﬁi} is a sequence in S", seo it has a o(M",M') convergent
i=1 w
= "oty 14 »
subsequence {Jyni}igl. Let Gn o (M",M") llmi Jyni and note that

each G_ e S". Recall

= - "oty o o1as »
Fn g (X",X") 11mi ani

so
= O. " L - LI .
F (X",X") - lim o

If fe X', then £|M e M' and since

Gn(g) = limi [Jynil(g) for all g e M

= ) . : 1
Fn(g) Lim, [Jynil(f) for all. £ ¢ X',

it follews that F o= Gn]X'. The sequence {Gn} is a sequence in S§",
and S" is weak* sequentially coempact so there exists a subsequence

{Gn }  such that
i
G =o(",M') - Lim, G_;
i
thus,

| - " 1 - '
Glx o(X",X") - lim, Gni]X ,
or
= n 1 -
F=o(x",X') - lim, Fni
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where F =G|X' and F_ =G |X'; hence, {f_} has a weak*
ng n; n
convergent subsequence and, therefore, U" is weak* sequentially

compact.

If H(X) is separable, then X and X' are almost reflexive; and
X" and X''' have weak* sequentially compact unit disks. . Furthermore,
letting X2 denote the nth conjugate, McWilliams (15) showed that if
: H(Xn) is separable, then H(Xn_l)' is separable, and it then fellows
that Xi for 1 =1, ..., ntl are almest reflexive and Xi,
i = n+2,n+3, have weak* sequentially cempact unit disks. Combining
this result with Theeorem 2.20 in Chapter III, the following coroellary

is ebtained.

Corollary 1.10. If H(Xn) is separable, then- Xl; i=1,2, ..., nt+l,

have the Dieudonne preperty.

The ‘almost reflexive property is useful in working with .the sets
K(X) - which are considered throughout this paper. This theorem can be
used to determine whether a space possesses or lacks the almest
reflexive property. The examples which fellow the theorem demonstrate

this.

Theorem 1.11. If Y is a closed subspace of X and § is the-
natural mapping from X onte Z = X/Y, then

Jz =-§"JX < 8"K(X) € K(2),
and

P'R(X) = R(Z)

if X is almest reflexive.
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Proof: Civin and Yood (3) showed JZ = ¢"JX, and since  JX & K(X)
it follows that @"JX ¢ @"K(X). If F e K(X), then there exists a

sequence {xn} in X such that F = o(X",X') - lim Jx_ .
no " o1y _ 1as ] = "oty 14 "
P"F = o(2",2") llmn @ an o(z",z2") ].1m.n J@ x

so - @"F ¢ K(Z) and, therefore, @"K(X) € K(Z) is established.

Assume X 1is almost reflexive and let H & K(Z). There exists a
sequence {zn} in Z such that H = ¢(2",Z2') - limn>Jzn. There exist
a bounded sequence - {xn} in X such that ¢xn =z . Since. X is
almost reflexive, there exists a o(X,X') Cauchy sequence {xn.} of

i.

{x_} such that F = o(X",X') - lim_ Jx- .
n n ni

1"y Mooty 14 " = "oty s
@"F = o(2",2") l:Lmi @ an o(z",Z2") 11mi J¢xn

i i.

a(Z",2') - limi Jzn =H,
i

so  @"F = H. Thus, given H e K(Z) there exists an F ¢ K(X) such

that  @"F = H, i.e. K(2) € 0"K(X).

Consider the space Kl. There exists a closed subspace Y of Kl

such that ﬁl/Y\E c Let § be the natural map frem ﬁl te ¢

0"

and K(co) # Jco since <y

o.
Since Kl is weakly complete, K(Ll) = Jﬁl

is not weakly complete. So
" - AN = . .

thus, ¢”K(ﬂl) # K(CO)’ and it follews from Theorem 1.11 that Kl is

not almost reflexive. Lemma 1.5 then implies that m' does not have a
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weak* sequentially compact unit disk. Theorem 1.10 implies that- H(Kl)
is net separable.
The converse to Theorem 1.9 is mot true. Consider the space g

Since Zl is separable, cs has a weak* sequentially compact unit-

1"

disk. However, if H(co) were separable, it would follew that CO is

separable which it is not (15).
QuasirRefléxive Banach Spaces

Civin.and Yeod (3) introduced the concept of a quasi-reflexive .
space. A study of the relationship between quasi-reflexive Banach
spaces and weak¥* séquential compactness is the theme treated in this

section.

Definitioen 2.1l. A real Banach space X 1s quasi-reflexive of order n

if H(X) has dimension n.

Immediately it is observed that if X is quasi-reflexive then
H(X) 1is separable; hence, X is almost reflexive. Indeed, since
[H(X)]' = H(X"), the dimension of H(X) dis n if-and only if the
dimension of H(EX') is ﬁ. Therefore, if X 1s quasi-reflexive of
order n, then Xi is quasi-reflexive of order n for 4i.=1,2, ... .
It is clear that if X 4is quasi-reflexive of order n, then X and
all its conjugate spaces are almest reflexive., Therefore, all

quasi-reflexive spaces and their conjugates have the Dieudonne proeperty.

Definition 2.2. The Banach space X is said to have property Pn if
every norm closed subspace S of X' has codimensien < n in its

weak* sequential closure. K(S) in X'.
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This property was intreduced and used by McWilliams (17). By °
using almost reflexive and the Pn property, one has necessary and

sufficient conditiens for quasi-reflexivity of order < n.

Theorem 2.3. A real Banach space X is quasi-reflexivity of order

<n if and only if X' is almost reflexive and X has property Pn'

Proof: If X dis quasi-reflexive of order < n, then X' is
almost reflexive. McWilliams (17) has shown that if X, is
quasi~reflexive of order < n, then X has propertynPn.

bonversely, let X" be almost reflexive and let X have
property Pn' Let Y be a norm closed subspace of X and let i be
the identity mapping of Y into. X. It will be shown that Y has
property Pn. It then follows that X is quasi-reflexive of order < n:
(17, Theorem 3).

To show 'Y has property Pn’ let S bg a norm closed subspace of
Y'. (i')-l(S) is then norm closed in X', and since X has
property Pn’ the dimension of K((i')_l(S))/(i')_l(S) is < n, Let
T =-i'[K((i')_l(S))]. T is a subspace of Y' containing S, and the
dimension of T/S 1s < n. It is now shown that f = K(S) and, hence,
the dimension of K(S)/S is <n. Y then has property Pnf If ge T,
then g = i'f for some f ¢ K((i')_l(s)). There then exists a sequence

-1

{fn} in (1') “(S) such that f = o(X',X) - limn fn. Clearly,

i'f, € S, and since 1i' is weak* continuous i'f = o(Y',Y) - 1imn i'fn,
but i'f =g so g=o0(Y',Y) - limn i'fn which implies g e K(S)
since all the i'-fn 's are in S. Consequently, T & K(S).

To show K(S) & T, let g e K(S). There exists a sequence {gk}

in S such that g = o(Y',Y) ---limk 8 {gk} is bounded-sé there is
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a bounded sequence. {hk} in X' such that ‘i'hk =g for each k.

X' is almost reflexive so {hk} has a o(X',X") Cauchy subsequence

{h, }; thus, there exists an- h ¢ X' so that h = o(X',X) - 1lim, h, .

kE £ kﬂ
hk[ is contained in (i‘)_l(s) so h e K((i')_l(s)); thus; i'h ¢ T.
Since

h = o(X',X) - limz‘hkz

’

'_l
=
|

= o(¥',Y) - lim, i'hkz

and

i
= n
[

= g(¥',Y) - limﬂ g = g.

ke
The o(Y',Y) topology is Hausdorff se g = i'h ¢ T. Consequently,

K(S) & T.

In the proof of Theorem 2.3 it suffices to require X' to have a
weak* sequentially cempact unit disk rather than the stronger cendition

that X' be almost reflexive.

Corollary 2.4. A real Banach space X 1is quasi-reflexive of order < n
if and only if X' has a weak* sequentially compact unit disk and X

has property Pn.

The next theorem summarizes results derived in this paper and these

of McWilliams (15).
Theorem 2.5. If X 4is a real Banach space with property Pn? then the
follewing are equivalent.

(a) H(X) 1is separable.

(b) K@X') = X',
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(¢) X' 1is almost reflexive.
(d) X' has a weak* sequentially cempact unit disk.

(e) X is quasi-reflexive of order < n.

A Banach space X  1is said te be a Grothendieck space if each
o(X',X) convergent sequence in X' is . o(X',X") convergent. m is

such a space.

Corollary 2.6. A nonreflexive real Grothendieck space does not have any

of the properties listed in Theorem 2.5.

Proof: If X 1is a nonreflexive Grothendiéck space, then X has
property PO (15). Thus, all five preperties in Theorem 2.5 are
equivalent. But fotr a nenreflexive Grothendieck space X, X' can not

have a weak* sequentially compact unit.disk (10).
WCG Spaces -

A Banach space X is said to be weakly compactly generated (WCG)

if there exists a weakly compact set.such that X is the closed linear
span -of that set.

A WCG Banach space is a generalization of reflexive and separable
Banach spaces. Indeed, if X is separable then' X is norm cempactly
generated, hence WCG; and if X 1s reflexive the unit disk of X is
weakly compact, hence X is WCG.

The class of WCG Banach spaces is included in the class of all-
Banach spaces whose conjugates have a weak* sequentially compact unit
disk. If X' is a WCG conjugate Banach space them X" has a weak¥*

sequentially cempact unit disk (20), and it follows that X is almost
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reflexive. Thus, X' WCG dimplies that X has the Dieudenne property.
A condition that seems weaker than X' being WCG will alse imply that
X has the Dieudonne property. If X' 1is isomerphic to a subspace of
a WCG Banach space, then the unit disk of X" will be weak¥
sequentially compact (20). X would then be almost reflexive. It is an
open question if every cleosed subspace of a WCG Banach space ig itself
WCG.

A well-known property which many authors find useful is that known

as the Dunford-Pettis property.

Definition 3.1. A Banach space X . is said to have the Dunford-Pettis
(DP). property if every weakly compact operater on X is completely

continuous.

The following, which is of interest in this paper, illustrates a

characteristic of Banach spaces by using the DP preperty.

Theorem 3.2. (20) Let the Banach space X satisfy the DP preperty.
Then if X (X') is isomorphic to a subspace of a WCG cenjugate Banach
space (WCG Banach space), every weak Cauchy sequence in X . (X')

converges in the nerm tepelogy of X (X').

By bringing several preperties together which have previously been

considered, we obtain the following.

Theorem 3.3. If X 1is a WCG cenjugate Banach space, then X has no
subspace isomorphic to an almost reflexive Banach space with the DP

property. In particular, X has no subspace isomorphic to ey
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Proof: Let. Y be an almost reflexive Banach space with the DP
property., If Y is disomorphic te a subspace of X, then by
Theorem 3.2 every weak Cauchy sequence in Y converges .in the norm
topology on Y. 1If {yﬁ} is a sequence in the unit disk of Y, then
{yn} . has a weak Cauchy subsequence {yni} since 'Y 41is almost
reflexive. Thus, '{yn‘} converges in the norm topelogy, and it follows
that the unit disk of lY is compact; hence, Y . 1s finite dimensienal,
a contradictien.

c is almest reflexive and alse has the DP property so in

0
particular X  has no subspace isomorphic to 5
1"

Since "X has no subspace isomerphic to <y is equivalent to

N(X) = JX, the next corollary is immediate.

Corellary 3.4, If X 4s a WCG conjugate Banach space, then

N(X) = JX.

Corollary 3.5. If X 1is a WCG coenjugate Banach space, then X has

property V if and enly if X is reflexive.

Proef; If X is reflexive then X has propert§ V. Cenversely,
since X is a WCG conjugate Banach space, X has no subspace

isomerphic te ¢ Pelczynski (19) has shown that if ‘X has no

0-

subspace isomorphic te ¢, and has preperty .V, then X dis reflexive.

0

It can be observed from Cerollary 3.5 that ne nonreflexive
separable conjugate Banach space has property V. Kl is nonreflexive,
separable and a conjugate Banach space, so as already ebserved El does

not have property V. If X" is nonreflexive and separable, then X'
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does .not have property V, has the Dieudonne property and does not -have

property (u).

Corollary 3.6. If X' dis a WCG conjugate Banach space with the .

DP property, then X" is not WCG.

Proof: If X" 1is WCG, then X''' has a weak* sequentially
compact unit disk and, therefore, X' would be almost reflexive. This

contradicts Theorem 3.3.

The next corellary eliminates many Banach spaces from having the

Dieudenne preoperty.

Corollary 3.7. A WCG cenjugate Banach space X with the DP property

does not have the Dieudonne property.

Proof: Let 1 be the identity operater en X. By Theorem 3.2
every weak Cauchy sequence in X converges in the norm topolegy of. X.
Thus, 1 - is a wcc. operater. If X . had the Dieudonne property, then

i would be weakly compact. X would be reflexive. A centradictionm,

since ne space with the DP property is reflexive.

The Dieudenne property is a necessary condition feor a Banach space

to have preperty V.

Corellary 3.8. A WCG conjugate Banach space X with the DP property

doees not have property V.
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