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CHAPTER I 

INTRODUCTION 

Thhi paper is concerned with c;hara~terizations of continua whtc;h 

have the property that every two points of the continuu:rn are separated 

by a third point. A continuum with this property is called a tree, For 

the reader who is familiar with dendrites, several of the charaeterlza

Hons wUl sound familiar, There has been a great deal written on the 

properties of denclrites. It should be pointed out that a dendrite is a 

metric; tree. The concept of trees is a generall2iat'lon of dendrlte13 

since it i.s not ne<:iessa.ry fo:r the space to be metric. 

The first part o! this pap(:lr wtll deal with the ei;onoept of partially 

ordered topological $paces. Chapter II will introduce partially ordered 

topolog'Lcal spaces and inc;:ludes the tools needed to characterize trees 

in terms of a partially ordered topological space. The reader need not 

be familiar wHh p;:1.rtially ordered topological spaces, Chapter II 

iri.Gluqes all of the basic;: c;:onc;epts needed, If the reader would like a 

mpre dl9talled study and h"istory of ordered topologic:al spac;es, he may 

refer to Nac:hbin [12]. 

The concept of a tree has been contained in the literatµre for 

many ye,;1.rs, However, the c;:haracterizaHon in terms of a partially 

ordered topological space is fairly new. It first appeared in a paper by 

Ward [24] in 1954. Not only is tMs c;;haracterization new, but the con

cept of a partially ordered topologic;al space is new, For many years 
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the stµdy of topologieal spaces and qrdered spaces wa.s carried on a~ 

two separate topics, Nachbin [12] in 1947 began his research on 

spaces which were eqµtpped with a. topological structure a.nd an order 

struqture, From his efforts he developed the concept of partially 

ordered, topological spaces. 

In Chapter IV the idea of generalized trees is presented. The 

definition of a generalized tree results from weakening the conditions 

on the order contained in the characterization of trees in Chapter III. 

Several characterizations of generaHzed trees are given and the weak 

c;utpoint ordering 'ls introduced. 

There seems to be a great amount of material on the fixed poipt 

property. We have added to that amOl,mt in Chapter V. lncluded are 

several results of Ward [28], Wallace [18] and Smithson [14] ~ The 

only proof lnclud,ed wUl be bhe proof of the fixed point theorem for 

generalized trees, This proof ls in<;!luded because it is in term is of an 

ordered space. 

We have required in this paper that the continua be compact. 

2 

There has been research done wHh continua which are non -compact 

with the pr ope ;rty that each two points can be separated by a third point, 

There have been efforts made to determine the eonditions necessary 

for S\;I.Oh a continuurp to admit ,a nontrivial contlnuou!'l partial order, 

We have not includ,ed this topie in the paper because it c;ould very well 

be a paper in itself. 

The paper is s1:1li containE;id to the extent that the reader does not 

need any knowledge of ordelJ'ed topological spaces. However, the paper 

is written at a level tb,at expects the reader ho be famil·iar with the ba~ie 
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~oncept~ of a topologlcal spac;e, A semester cou,rse in general topology 

should be adequate pl'eparation.. 



CHAP'l' ER II 

PARTIALLY ORDERED TOPOLOGICAL 

SPACES 

We begin, with the ba13ic definHions and results for partially 

ordered topologi~al e;paces that will be used thro"Ughout the paper. The 

reader who would like a more c;ompLete dh1cussion of partially ordered 

topological epac;es mfl.y refer to Nachbin [lZ]. Nachbin'i; book wais one 

of the first and more complete of the l::>ook.s containing results on the 

J;'~lation'3hips between topologicaL and o~de:r strµ.c;:tq.res, One may also 

refer to Ward [ZZ] for a more complete (;overage of part'lally ord~req. 

topoLogtcal spac;e s, 

Definition 2. 1 l3y a g_u<iL~,i order on 1;1. set X, we mean a reflexive, 

transitlve binary relation, denoted by, :s_ , 

DefiniHon 2, 2 If a quasi order is also antl-symmetrlc, it is a partial 
I 

order, 

Definition 2. 3 If a quaei order satisfi(fl s ~he following linearity law 

then it is said to be a li,tiear qual:li order. 

In other words, if in a qua1;1i o:rde:i; all elemenh; are related, then 

it is a linear gyasl order, 



lf x ~ y and x f y, we wlU denote this by x < y, and we 

will often talk abo-ut the set of predecessors or the set of successoJ;"s 

of a point or of a set. We will use the following notation to express 

these ideas. 

DeflniHon 2, 4 L(A) = {ye X: y < x for some x e A} . 

Definition 2. 5 M{A) = {ye X: x :::_ y for some x e A} , 

Definition 2. 6 E(A) = L(A) n M(A), 

It is c:::lea:r from the above c:lefinitions that A C E(A), If we let 

X be the set of refl.l n-umber s with the n~tu.ral order and 

A,... [-2,-1] U [1,2]. then we have E{i\) = [-2,2]. Therefore, 
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A I E(A), for all A. Howeve v, if we let A = [O, I], then A = E(A). 

Definition 2. 7 H A;= L(A), we say that A 'Ls monotone dec:r:easinS 

o:r simply dee reasing. 

DefinHion 2, 8 If A = M(A), we say that A ·Ls monotone inc;;:reasing 

or simply increasing, 

Let X l:>e the set of real numbers with the natural order. If 

A = { -~, 0] then A = L(A) and is monotone dec;:reasing. If 

A = [0 1 oo) then A = M(A) and A is mop.atone inc;reasing. The only 

subset of X that is both increasing and decreasing is X. 

It ifl poss\ble to have a set whi~h is both increasing and 

decreasing, Consider a set X such that ~heve exist an element ~ E X, 

such that x is no~ related to any of the other elements of X, Then 

L(x) = {x} and M(x) "' {x} , Therefore {x} is an increasing and 

decreasing set. 



Suppose that ~ is ~ topological space endowed with ~ quai;i 

order. We make the followiri.g definitione. 

DtflnltionJ. 2 Thi!! Q.Uiil,Sl order ls lower semlconbinuouJ pl'ovided, 

whE,never ~ ! b ln X, there is a.n open set U, wHh a c U, sueh 

that if x E t,J then x ! b, 

Definltlon 2. 10 The quasi order is UJ?per serni.oontlnuous provided, 

whenever b "£. a in X, there is an open set U, with a e U I such 

that if x E U then b ,(:. x . ...,. 

ltxample 2. 11 Let X = {a, b, c::, d,} with a basis Gonsisting of {a}, 
.,, A. 

{a, b}, 0, {a, b, «:, d}. Let the quasi 9rder on X be given by the 

directi,on of the ?1,rrows in the following: 

a, . 

6 

The qu;u~i order is lowe :r semicontinuoua, but not upper semiqontinuous. 

To show the order h not upper se:i:nicontinu<;>us, (;onsider the two pointi;; 

b and. d, b "!:.. d, hut any open set c;ontalning d will contain a, and 

b < a . .,... 

ExamEle 2, 12 Using the same set X and order given in Example 

2, 11, we qan construqt a topology that gives an upper semicontinuo1;1s 

o;rder wh'ic:h 'ls not lower semic;onti,nuous. By ~hanging the basis to the 

sets {c}, {e, a}, {c;, b}, {c;, d}, 0, and {a, b, c:, d}, we have the 
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result we w~nt, Again we have b '/:_ d and every open set containing 

b contains a with c < d . ...... 

Definition 2, 13 A quasi orde'.1," is sem!continuous 1£ it is both upper 

and lower semic:onHnuous, 

Pfll,ftn\tion 2. 14 A quasi order is continuouf'$ provided, whenever 

a '/:_ b ln X, there are open sets U anq. V, a e U and be V, suc:h 

th~t if x e U and y e V then x !:.. y . 

DefiniHon 2. 15 A quasi. order is s~rongly con.tinuous provided; 

(i) if a < b, then there exist open sets U and V such 

that a e U and b e V and ·~f x e U and y e V then 

x < y. 

(i.i) 1f a and b are not related th1rn thE:ire exist open sets 

U and V suc;h thc1,t a e U and b e V and, if x e U 

and y e V, then x and y are not :t;'elated. 

It ls t;lear from the above defip~tions that if a qui:tsi order is 

strongly c:onti.nuous then the order is also continuous and semicontln-

uous. It also foHows from the definition13 that a c;oµtinuous <;1ua1:ri order 

is a semtcontlnuous order. However the c;;onven;e is not true. There 

exiEit semieront·~muous ql:!-asi orders wMch are not continuous quasi 

orders and c;ontinuous quasi orders that are not strongly c;onHnuous. 

The following examples show that the s;onverse statementi;i are not 

true. 

Example 2, 16 
Cl) 

Let X = U A , where 
n=O n 
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A 0 = { (O, y) Io ~ y ~ 1} , an,d 

An= {(! 1 y)jO :s_ y ~ l} for n::: 1,2,3, ... 

Let X have the usual topology of th~ plane. Define an order on X as 

follows: 

( -n1.,b) < (n1 ,d) 'f d b d 1 2" . l < an n = , , :;, , . i • 

(O I b) :'.:., (O' d) if b < d 

It is ea13y to verify that the order defined ~s semi~ontinuous. 

However, the order i1;1 not ~ontinuoµ1;1, This c::an be shown by consider· 

ing poin,ts 0£ the form (0, b) and (0, cl.), with b < d, H we take ope1.1 

sets U and V sµ,e;h that (0, b) E lJ, (0, d) E V, there exist x e U, 

y e V su<;:h that y < x . TMs ls a c::ontradtc;::tion to the definition of a 

continuous quasi order, Therefore we have ap l;)Xample of a semi" 

continuous quasi ord~r that is not a 1;:ontinuous quasi orde:v. 

E~am£le 2, 17 Let x b\:? the 1.init 1;1q1,lare of the plane. Let x hav~ 

the following order, 

(a, b) < (c;,d) if a ;: c: • b < d -

(21.. b) < (G, d) if a < q ' b = 0 - .,...,. 

(a. b) :s_ (~. d) if a :;: 0' d = 1 1 

By a pire~t applic;::ation of the definitions, it Gan be verified that 

the order i1;3 semicontinuous and continuous, H:owever, the order is 

not strongly a;oq.tinuous, This c;::an be shown by consideri,.ng points of 

the form (a, 0) and (a, d) where d > 0, Then we have 

(a, O) < {a, d), but any open set containing (c1, 1 d) will qontain points 



that are not related tq (a, 0). Therefore the order is not strongly 

continuous. 

Example 2, 18 For p.n example of a strongly continuous quasi order, 

we can use the set of real numbe:rs with the natural order, 

9 

If a spa<;;e has an o:rder that is not semic;ontlnuous 1 continuoµ.s or 

strongly (!!Ontinuous it does not follow that such orders on the space do 

not 19xist. In Example 2, 16 the defined order was not eontinuous. 

However, we c;an define another order on X that is continuousi We 

define a new ol'de r on the spa ct;: X in Example 2 1 16 as follows: 

( ~, b) :S ( ~, d) if b < d and n = 1, 2, 5, , .. , 

(0, b) < (0, d) if b < d. 

With this order we no longer have the problem as in Example 2. 16 with 

points of the form (0, b) and this new ord,er is c;onHnuous. Thus a 

13pa!;:e may possess both a cpqtin\.1,ous quasi order and, a n1:m "continuous 

q\lasi order. The same 13tatements may be made about semicontinuous 

and 13tron~ly c;ontinuous orders. 

Our next definitione;; wUl relate the c;oncepts of ordered sets and 

topological spaces. 

Definition 2. 19 A 9.t,1asL ordered toeological i;pa9e is a topological 

space together with a semt!:;ontinuous quasi order 1 We will use the 

notation QOTS for a quasi ordered topologi~al spac;e. 

Deflnihon 2, 2 0 A pa:rtialLy ordered topological spac!:l ls a topological 

spaqe tog19ther with a semi<ronHnuous partial orcler 1 We will use the 

notation POTS for a partially ordered topologic;al ~pace. 
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Any of the topological 1:1pace $ wLth the orders given in Example 

2, 16, 2. 17 and 2. 18 are e:x:amples of POTS, From the definition of 

a POTS it is ctear that a POTS is also a QOTS. The converse is not 

true, and the following example verifies this. 

E:xamele 2, 21 Let X = {a, Q, e} be provided with the discrete 

topology, Define an order on X by the directions of the arrows in the 

following: 

/\ 
b· >· ~ 

The order as define-d---1-s--n,pt a pcp;tial order, but it is a quasi order. 

';['hen X is a QOTS that ls not a POTS. 

As often happ~ns, it if'? not always easy to prove something 

q.lrectly from a definition. Therefore our first theorem will be a 

c::haracterizaHon for a QOTS, The proof is simple, but gives us a 

very useful tool. 

Theorem 2, 22 X is a QOTS if and only if L(x) and M(x) are 

c:;losed sets for each x e X. 

Proof. Let X be a QOTS and y e X. Suppose L(y) is not dosed, 

Then there exist z i L(y) such that z is a limit point of L(y). If 

z i L(y) then z 1..., y and, by the definition of a QOTS, there exist 

ap. open set U such that z e U and, for all x e U, x 1. y, There~ 

fore, U n L(y) = (/), and this <;;ontradicts z being a limit point of 
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L(y), Hence L(y) i1:1 closed, By supposing M(y) is not eloseq., a 

13imilar a:rgument holds. Therefore both M(y) and L(y) a:re c;~osed. 1 

Suppose L(x) and M(;x:) are closed sets for each x E X. 

Suppose there f;lXist a, b e X such that a /. b. Then define U to be 

X .. L(b), which is open. Then a e U and, for all y e U, y "£. b, 

Therefore ~ is lower semiconti,nuous, Now define V = X - M(a), 

which will be open, Then b e V and, for all z e V, a /. z. There ... 

fore ~ ls upper semiaontinuous. Then ~ is both upper and lower 

semicontinuous and, from the definition of semiQontinuous, ~ is semi ... 

con.Hnu.ous I So, X is topological space with a semicontinuous order 

or a QQTS. Q. E, D, 

In Chapter II~ and IV much of the :results wUl involve QOTS and 

in many cases we will want to show tha,t the quasi order h a c;ontinuous 

quasi order, The following theorem gives two c;harac:;terizations to use 

in showing that a quasi o:t;"der is continuous. One of the characteriza ... 

tions is giv~n in terms of the g:t;"aph of an order. By the graph of an 

order we mean the following: Given a set X with an order < , the 

graph of ~ ls the sul:;>set of X >< X formed by the points (x, y), 

where x, y e X and x :5. y, Jn the case of the natural order of the 

real numbers, thia graph is the half-plane situate<;i above the bisector 

of the first and third quadrants, 

Theorem 2, 23 !£ X is a topological space wit4 a quasi order, then 

the followlng statements are equivalent: 

( 1) the quasi order is continuous, 

(2) the graph of the quasi order is a closed set in 

xx x, 
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(3) 1f a "!:.. b in X, theq. there are neighborhoods N 

and N' of a and b, respectively, such that N ls 

Proof, Let < be a continuous quasi orcler on X, Denote the graph ..,... 

of < in X x X by G . Suppose (x, y) e X x X such that (x, y) ;. G 1 

Since (x, y) is not an element of the graph of :::,_, this implies 

x "!:.. y. Since :S.. is continuous, there exist open sets U and V such 

that x e U and y e V ancl for all a e U and o e V such that 

a "!:.. b. The definition of a product space implies that U x V is open 

in X x X and that (x, y) e U X V, Then, for all (a, b) e U x V, 

(a, b) is not an elemen.t of G. Thus (U x V) n G = 0 and this 

implies (x, y) is not a limit point of G. Therefore G c;ontains all 

of its limit points and "Ls a closed set. We then have statement (1) 

implying statement (2). 

S1.,1ppose the graph of the quasi order is a closed set in X x X. 

Let a, b E X such that a 1- b. Then, f:i;om the ddinitiqn of the 

graph, (i=J,, b) does not belong to the graph of < . Since the graph of 

;S_ is closed, (a, b) is not a limit point of the graph. Then there exist 

an open set of the form U x V where U and V are open sets in X 

such that (a, b) e u x v and (U x V) n G = 0. Then a e u, b e v 

and, sinc;;e (U x V) n G = 0, H follows that for x e U and y e V, 

x </:. y and y f x. Hen<;e, the quasi order is continuous, by the ..... 

definition, and we have statement (2) implying statement (1), 

Let ;S_ be a continuous quasi order on X with a, b e X such 

that a f b, By the definition of continuous, there exi,st open sets 

U, V such that for all x e U and y e V, x f y. Define N = M(U) 
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a,:id N' = L(V). Then N and N' are neighborhoods of a and b 

Su.ppose N n N' # 0. This ·Lmplies there e;X:ist a z e N n N', 

From the de!~nitions 9f N and N'. there exist x e U and y e V 

such that x ~ z and z ~ y. Then, from hhe t:ranE!itive property of 

< , we have x ~ y, This contradi~ts the relation of the points in U 

and V, Henee, we have N r'! N' = 0, By the WfJ.Y N and, N' were 

defined, we have N cil-S inc::reasing and N' as decreasing, Then N 

and, N' satisfy the conditions ot statement (3). Therefore statement 

(1) implies statemen.t (3), 

Suppose there e~dst neighborhoods N and N' which satisfy the 

conditions of statement (3), Leb a, b e X such that a ! b, Then 

there exist open sets U and V such that a e U C N and 

b e V C N', Since N is inc;:reasing and N' is deQ:re;a..sing for all 

:x: e N, c1rnd y e N' ~ then x 1- y. Thus (a, b) e U x V and, for all ..,.., 

(~, y) e U x V, x 1- y, Henc;e (x, y) is not an element of the gr;;i.ph ,..,,. . 

of ~ and gon1,1equently (U x V) 11 G = 0, There.fore (a, b) is not a 

limit point of the graph of ~, Hence, the graph is elosed and we have 

sta~emi;,nt (3) implying statement (2). 

We can now assµme any of the three statements to be true and 

shQw that the other two atatement~ are aho true. Thls qompletes the 

proof that the three statements are equivalent, Q, E. D. 

Theorem 2, 24 A POTS wtth qontlnuous partial orcle:i:- is a Hausdorff 

space. 

Proof, Let x, y e 4 1:1uoh that .x # y. By the def\nition of 

continuous order, ther~ ex'lst open sets U. V such that x e U, 



y e V and U n V = 0 . 'l'herefore X is a Hau1:1do:rff space. 

Q,E,D, 

J4 

'rheorern ~. 25 If X is a topologic;al 111pac:;ie with a linear quasi order, 

th~:m continuity and semic;onti.nuity of the quasi order are equivalent 

propertle13 of it. 

Proof. As pointed out earlier, the defiQition of ~ontinuous order 

implies semlc;;on~inuous o:rder, To complete the proof of the theorem 

we need to show that semicontinuity implies continuity under the 

,;;pndittons stated in the hypothesis. lf a f:_ b then b <a, since < 

is linear. If there e~'lsts e such that b < c < a, then let 

U = X - M(c) and V = X ,. L(c), Then U and V are open sets s-u.ch 

that b e U, a e V and U n V :;: 0. If there does not exist such a 

c, then let U = X - L(a) and V = X - M(b), Then b e U, a e V 

and, !$in~e ~ is linear, U fl V :;: 0, and for all X E U and y E V 

we have x 1- y. Therefore < is contin:1,1oui;;. Q, E, D, 

As ean be seen from some of the previous exarnples, that it is 

not nece si;;ary for aU of the elements of a set to be related. In 

Chapter II~ and IV we will be concerned with subsets of foe spa.ce such 

that a.11 of th(;) elements of the subset are related, In other words, the 

order on the subset is a linear quasi order. The following definiUons 

formalize this idea, 

Definition 2, 26 A chc:1-in is a subset of a quasi ordered set which is 

Unear with re spe~t to the quasi order. 

Definition 2. 27 A maximal chaLn is a chain whi~h ls properly 

contained in no other chain, 



1 I 1 In Exam pl~ Z, 16 the subset { ( n' y) f ~ y .~ 1} 

but h not a. :m.a.:>dmal ~ha.in. The a'l;Lbset ·Ls conta·tn.ed, in the ma:,c:imal 
. 1 

chain { (-, y) IO < y < 1} . In thh space there exist an infinite n ....,. ..... 

numbe11 Qf ma,ch;nal chains, However, in some spac::es there may ~xht 

only one maximal Qhi;i.i.tl, As an example of this situation, consider the 

set of real numbers with the natural order. _'rhe only maximal chain i1:1 

the space itself, On the otheJ;' hand 1 by applying Zorn's lemma, we are 

a.1:1surecl of the existeq.1;e of max\mal ehains in any quasi ordered 11et, 

The following result 'ls d,:i,e to Walla~e [ 18], 

Theorem 2. 28 Every maxhnal chain in a QOTS is a closed set. 

Proof, Let C be a maxhnal chain ·in a QOTS, We can e~press C by 

c = n {L(x) u M(x) Ix E C} T 

From Theorem i. ZZ, L(~) and, M(x) are <;;losed sets, Then 

L(x) U M(~) hi qlos~d a.nd n {L(x) U M(x) Ix E C} is c::;lo~ed, 

Q.E.D, 

Definltion z. 29 An element y in a q\.'l.a.si ordered set X is mir.i.imal 

wheq.ever ~ 5. y in X implies y < x. ,,-

Definition z, 3 0 An 1;1le:rpent y in a quasi ordered. set X ii; mi,a.ximal 

whenE;iver y ~ x in X implies :x: ~ y, 

In Example Z, 16, the point (0, O) is a mlnirpal element, as are 

all of the po,ints of the form ( ! , 1). In view of this, it is wrong to 

conc:;h,1de that there ex\sts only one minimal element, There may l:1e 

one, any f\nite number, or an inflµlte number of minimal elem~nts, 
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Also, by considering the set 0£ real nq.mbers with the natural order, 

we can see that there may not be a minimal element. The same is tru,e 

when considering maximal elements, 

In Chapter III when we develop the characterization of trees, we 

will be working with compact connected spaces, The next few theorems 

will involve compact connected spaces. The next few theorems will 

Lnvolve compact connected spaces and will give us some results we will 

need in Chapters III and IV. 

Theorem 2. 31 A non-null compact spac::e endowed with a lower (upper) 

semicontinuous quasi order has a minimal (maximal) element. 

Proof, Let L = {L(x) Ix e X}, where X is a compact space wLth a 

lower semicontinuous quasi o:rder. We can partially order L by set 

inclusion. Then, by the Bausdorff Maximal Principle (Kelley [8], 

p. 32), there exists M C L such that M is a max\mal chain with 

respect to the set inchision relation. Since L(x) is closed and X is 

compact, {L(x) I L{x) e M} has the finite intersection property. Then 

there exists ye n {L{x) I L(x) e M} (Kelley [8], p. 136), We assert 

that y is a mintmal element. For suppose there exists z e X such 

that z < y. Then y ii. L(z)' wMch impHes y ii. n {L(x) I L(x) E M} . 

This is contradiction to the way y was defined. Therefore y is a 

minimal element. 

A similar argument can be used when the quasi order is upper 

semicontinuous, Q. E. D, 

Definition 2, 32 A partialLy ordered set X is dense in the sense of 

order, or, more simply, order dense provided~ whenever x < y in 

X, there exLsts z e X such that x < z < y. 
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As might be expec;ted, not all partially ordered ·13ets are order 

dense. Any partially ordered set that contains only a £in'lte number of 

element$ wiU not be order dense, An exa:r;nple of an order dense set 

that the reader should be familiar with is the set of real number$ with 

the natural o:J;'der. It is posstble for a proper subset to be order denee. 

The sµbset of rat-tonal m;i.mbers is order dense since there always exists 

a rational number between any two rational numbers. 

In thl;l next three ~heorems we wUl investigate conditions 

sufficient to ensure the ~onnectedness of a POTS and the maximal 

chains of a POTS. Only the results we wUl need in Chapter III have 

been included. For further results the reader may ref~r to Ward [23] 

and Ellenberg [4], 

Theorem 2. ~3 A connected c:ha'in in a POTS, X, is order dense. If 

X has cornpac;t ma:x:imal chains, then any order dense maximal cha·in 

is conne<:ited, 

Proof, Let C be a c:onn!;lcted ~haln in X. Suppose that C is not 

order dense, Then there exist x, ye C su~h that x < y and 

M(x) 11 L(y) = x U y, This implies that C C L(x) U M(y), Since 

there does not exist an element between x and y, we have 

L(x) 11 M(y) = Qj, This irnplLei:i that L(x) U M(y) is not e;onnected, 

Since x, y E c then c n L(x) f Qj and c n M(y) f Qj. Therefore 

C Ls not c;onnected. This contr;:3.dic;ts C being connected and, there -

fore, C is order dense, 

St:1.ppose X has <;ompact maximal chalns and that C is a non

conneczted maximal chain of X. Sinc;,:e C is non-connected there exist 

separated sets P, Q suc;h that C = P U Q. Then by Theorem 2,31, 



C contains a maximal element u. Suppose u e Q, Sinc;e P is 

eompac;t, P tlontains a maximal element p and p < u. Define 
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pr = L(p) n C ap.d, or = c .. pr. or is non-empty sinee u e Q•, 

Then P' and qr a:re separated 1:1ets and, by Theorem 2. 13, Qr 

contains a mlnimal element q. Then M(p) n L(q) = p l0 q, which 

implies that C is not o:rder dense, Q, E. D. 

To show that qompactness is necessary to ensure that any order 

dense maximal c;hain ia connected, we o££ev the following example. 

Example 2 !, 84 Let X = [.,.a:,, 0) U (O, m)], with the natural orde:r, 

The only maximal chain of X is X, Howev1;1r, X ia not c;ompact and 

is not c;onnected. The order on X is or4er denee. Therefore, th.ere 

exil!lts an order dense maKimal chain that is not connected, Henee, the 

condition of c:ompac:~ness is necessary lp the proof of the last theorem. 

Theorem 2, 35 Let X be an order dense POTS with compact 

maximal chains and suppose th~t either the set of maJC:imal elements 

or the i;;et of minimal elements of X is c;onneeted, Then X is 

CJonnected, 

Pr?o£, Suppose the se~ of ma:x;imal elements of :X is eonnected and 

that X ;:, P U Q, where P and Q are separated sets, Then the set 

of maximal eleme11,ts is qontained. in P or in Q. Without loss 0f 

generality, suppose that the set of maximal elements belongs to Q, 

Then there exists a maximal chain C meeting P, Since C contains 

a ma:dmal element, by Theorem 2. 31, C n Q :f. 0. Then 

C = (C n P) U (C n Q), which is a separation of C, Thi1:1 gives a 

contradtci:ition to Theorem 2. 33 . Therefore X is connected. A 



simUar argument holds if the set of minimal ~lements of X is 

c;:onnected. Q,.E. D. 
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Theorem 2, 36 Let X be a POTS with c;ompaet maximal chains. 

Then a necessary and sufficient cond'ltlon that every maximal chaln be 

conp.ected is that L(x) n M(y) be qonneqted for every pair of 

elements x:, y , X. 

Proof, Suppose L(x) n M(y) is c;onnec;bed for every pair of elements 

x, y E X and bhat X contains a non-connected maximal chaln C, Then 

C = P U Q, where P and Q are separated sets, U1:1ing the same 

argument as in Theorem 2, 33, we c:a,n find points p and q su~h that 

M(p) n L(q) = p U q. This contrad·Lc;ts the assumpt~on that 

L(x) n M(y) ·~s conne~ted for every pair of elementis x, y E X. 

Therefore X does not contain a non-connected maximal chain. 

Suppose now that the:re exht p, q e X s1,:u~h that L(p) n M(q.) 

is not c;onne<,:ted. Let C be a maximal c;hain coq.tain.ing p and q. 

Since L(p) n M(q) is not c:onne<,ted, then there exist sepa:vated sets 

P and Q such that L(p) n M(q) = P U Q. Since L(p) n M(q) is 

elo!:!ed, it i~ also c;ompc!-ot. Then, l:)y Theorem 2. 31, L(p) n M(q) 

has a maximal element u, Without loss of generality, suppose u e Q, 

P is <;ompact and, by Theorem 2. 31, P has a ma~imal element. 

Define P 1 and Q I al;! foLlows: 

P' :;:: L(u) (') [L(p) n M(q)] 

and 

a, = [L(p) n M(q)J - P' . 

Q 1 isnon-emptysince ueQ'. Then L(p)f)M(q) = P 1 UQ 1 , 



20 

where pr, or are separated sets. By Theo rem 2. 31, there exists a 

minimal element z E or. Then pr contains a maximal element v 

and Qr contains a minimal element z . Therefore 

M(v) n L(z) ;:: v U z. Hence, L(p) U M(y) is not order dense 

whic;h implies C is not order dl;!nse. Then, by Theorem 2. 33, C is 

not connected. Therefore, if every maxtmal chain is connected, then 

L(x) n M(y) is connected for every pair of points x, y e X. Q, E, D. 

Definition 2. 37 If points p and q are not separated by any po·ir:it, we 

write p "'q 1 If two sets A and B are separated sets, we will denote 

this fact by writ'ing A/ B. 

The main result of this chapter is a method to construct a partial 

order that will give us a POTS. We want the order to be suc;h that it 

will qharacterize a tree, Up to this point we have not developed a 

method to construc:it an order that will give us the desired results. The 

method is not difflcuH to develop, but we will need three more defini ~ 

tions and three theorems. Ward [22] was the first to apply the res11lts 

to character·tze trees in terms of a partial order. 

In the three theorems to follow, the space we will work with \s a 

locally connected spac;e, This is neeessary since a tree is locally 

connected. It is not obvious from the deHnitLon of a tree that a tree is 

locally connected, Some definitions do assume a tree to be locally 

c;onnected, but we chose not to include this assumfi;ion in our definition, 

However, our first efforts in Chapter III will be that of showing that a 

tree is locally connected. Therefore, starting from any of the common 

definit·~ons we hc1,ve a tree being locally connected and it is nec;e s sary 

to include this fa<it in the hypotheses of our next theorems. 



Definition 2, 38 A point e of a topological space is a,.n endpoint if, 

whenever e E U, an open set, there ls an open set V such that 

e E V C V C U, and V - V is a single point, 
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Definition 2, S 9 A prime c;ihain is a continuum which is either an end ... 

point, a cutpoint, or a nondegenerate set E containing distinct 

elements a and b with a""' b, and representable as 

E = { x : a ,..._, x and x ,..._, b} . 

Definition 2, 40 An endelement is a prime chain E with the property 

that 'if E C U, an open set, then there is an open set V such that 

E C V C U and V ..., V is a singl(il point. 

Examl?le 2, 41 Let X = [O, l], with the usual topology. The points 

O and 1 aJ;e enc;lpoi11,ts al:'.ld all othet points are nqt endpoints. The 

space is not a prime chain since for every pal:r of points there e::dst a 

thircl point which separates the two given poLnts. Each point of the 

space would be a prime chain since each point is a cutpoint or endpoint. 

Exam:pll;;l 2. 42 Let X be the following space, 

. I 2 2 I 2 2 X = {(x,y) x +y = l} U {(x,y) (x-a) +y = 1, a= ±3} 

U { (x, 0) / 1 ~ x ~ 2 or -2 < x < -1} 

with the usual topology of the plane, In this space there are no end-

points. There a17e cutpoints, however, all points of the form 

{ (x, 0) / l < x < 2 or -2 < x < -1} - ...,.. 
are cutpoints. The sets 

{(x, y)/ (x -a)2 + y2 = 1, a= ±3} and I 2 2 
{ (x, y) x + y = 1} are prime 

chains. The set {(x,y)/x2 + y2 = I} is not an endelement, for any 
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qpen set containing { (:x;, y) :x; + y = 1} is such that V ... V w'Lll 
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contain at least two points. This gives us an example of a prime cha~n 

that is not an endelement. 

Theorem 2. 43 Let X be a connected, locally connected Hausdorff 

space. If E is an endelement of X, then E contains at most one 

cutpoint of X. 

Proof. Suppose E is an endelement of X such that it contains two 

dietinct cutpoints x 0 and x 1 . Then we have 

X - :x; 1 = A 1 U B 1 , A 1 / :e 1 and E - x 1 C A 1 , 

Since X is loGally connectt;:)d we can Let A 0 and A 1 be the com

ponentei that c:ontain E - :x:0 a1;1d E .,. x 0 respectively, Now if 

B 0 - B 1 = ~ then BOC B 1 and X = (A 1 l)A0 ) U B 0 wlth 

A 0 U A 1 / B 0 , TMs (;ontradicts that X ls connected. Thel;'efore, 

B 0 - B 1 :J (/J, A similar argument shows that B 1 - B 0 # (/J, Then 

ponent of yi 

and 

in X - x,. 
1 

Then we have 

Let C. be the GOm-
1 

Suppose c 0 fl C 1 # (/J. Sinqe c 0 and C 1 are connected, then 

c 0 fl c 1 is connected 1 Since x 1 r/ c 0 , c 0 U c 1 C B 1 and it 
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follows that c 0 C B 1 . If y0 e c 0 then y O e B 11 whLc;:h eontr;1dicts 

the fa~t that Yo E Bo - B 1 . The:refore, we have co n c 1 ;: 0. 

The way we picked y 0 and y 1 gives us that y0 , y 1 t E, If 

we let U be the open se~ defined by U = X - y0 - y 1 , then U is an 

open set such that E ( U, U (') c 0 :/- 0, U n C 1 f 0 and U, 

qontains nei~her c0 or C 1 . Since E is a,n endelement, there exist 

an open set V such that E C V C U and V - V = {p} • Since 

V - V is a singleton set, either x 0 o:r x 1 or both are in V I 

If both XO and xl are in v, then v n Ca :/- 0 and 

V n C 1 f 0 1 slnee c 0 and C 1 are comppnents of X - x 0 and 

x - XI whh XO e co and xl E <\ 1 Now (V .. V) n co I 0, for 

i.f not, co ;: (Co~ V) u (Con V) with co - v and c n v non

void open sets since c 0 n V :/- 0 and y O E c 0 "' V. Therefore, 

c 0 is not eonnected 1 c;\ c;ontradiction to c 0 being a component, This 

gives us that (V - V) n co :/- 0 or (V - V) n co = {zo}. Same 

type of argument gives (V - V) (') c 1 = {z 1}, since C 0 (') C 1 = 0 

and z 0 f z 1 , This c;ont:q::1.dicts that V - V is a singleton set. There .. 

fore, the assumption that both x 0 and x 1 are both in V is false. 

Hence, x 0 or x 1 is not in V. Without loss of generality, suppose 

x 1 t V, Then x 1 e E C V or x 1 e V .,. V, Suppose 

(V -V) (') c 1 = 0. Then c 1 = (C 1 -V) U (C 1 (') V), c 1 -V f 0, 

C 1 11 V f 0 ~nd C 1 - V j C 1 11 V. Thi$ is a contradi~tion to Cl 

being a component, Henc;e 1 (V - V) n C 1 f. 0 . A similar argument 

shows that (V - V) n co f 0. Therefore, xl e co and xl e cl 

which c:ontrac:licts c 0 n C 1 = 0, Hence E ~ontains at most one 

cutpoint of X. Q. E. D. 



Theorem 2. 44 If X is a connected, locally connected Hausdorff 

space and E is an endelement of X containing a cutpoint x of X, 

then E ... ~ and X .. E are separated sets. 

Proof, In a locally connec:ted space a component of an open set is an 

open set, Therefo:re, it is sufficient to show that the component of 

X ... x contain~ng E ,. x is E - x. 

Let c0 be the component containing E - x. Suppose there 
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exist a y e c 0 - E. Since x separates X then c 0 # X - x and 

there exist a component C dieHnat from c 0 . X is a locally connected 

· Hau13dor£f liilpac;:e, so there exist a qonnected open set U such th&t 

x e U, y ,/ U at'lrd C - U f (/J, Then (C 0 U U) ,., y is an open set 

containing E. Since X is loc&.\ly connected there exists a connec;:ted 

open set V such that E C V C (C0 U U) - y anq. V - V == {p}. 

Suppose p r, c 0 r Then c 0 ;:: (C 0 - V) U (C 0 n V) with 

(Co - V) I (Con V). Thh qontradi~ts that co ii;; a component. 

Therefore, p e c 0 and p f x. This implies x e V and 

c n v I 0. Suppose p v. c . Then c ;:: (C n V) U (C - V) with 

(C n V) / (C ... V) . This ls a c;ontradic;tion to C being a component, 

Then p E c and p E co whic;h contradicts co n c = (/J. There ... 

fore the assumption that the:re exists ye c 0 - Ji: is false, Then the 

component of X - x containing E - x is E - x, Therefore E - x 

and, X .... E are separated sets. Q. E. D, 

We are now ready to present the main theorem of th·is ~hapter, 

This theorem gives \lS a method to induee a quasi order on a locally 

connected c;rnntinuum with an endeLement, The following definitiions 

establil:ih some o! the additionq.i terminology that will be used, 



Definition 2. 45 Let X be a locally connected continuum with an 

endelement E . Define a relation, ~, in X by x ~ y if, and only 

if, x E E, or x = y, or x separates E and y in X, We will 

:refer to thi!il relation as the cut-point ordering. 

Theorem 2, 46 The relation ~ def'lned in Definition 2. 45 i~ a semi-

continuou~ quasi order. If E is a single point, then ~ is a partial 

order. 

Proof. To show that ~ is aquas\ order, we need to consider three 

c;ases to show that the r~lation is transitive, It follows from the 

definition that the ;relation is ll'eflex:ive. 

Let a < b and b :s_ c; , 

(i) If a = b or b = c;: then the definition asserts a :s_ c, 

(ii) Assurne a f b f c and that c e E, Then c < b an('!., ,..... 

since b ~ c, b must belong to E. A similar argument 

implies. that a e E and 'Lt follows that a ~ c . Now 

assµme that a f. b f. c and b e E. Then b < a and 

this i:rnplies that a must belong to E, Hence, a < c. 

I£ a f. b f. c and a e E then a < c . 

(iii) As13ume that a f. b f. c and that a, b, c i E. Then 

from the definition of ~, it follows that 

x - a = AU B, A I B, E c A, b E B, and 

x ,. b = A 1 U B 1, Al I B 1 , E c A, C E B, 

Now suppose C E A, Then a is an elemen,t of Al or 

Bl' If a e A 1 t:hen 
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X = (A n Bl) U (A U B) ar.td (A (') Bl) I (A U B) . 

This is a contradiction to the fact that X is connected. 

If a E B 1 then 

wlth c e A (') B, and E ( A 1 U B. Then a < c. 

Therefore, we have a < c for all pas sible arrange~ 

ments of a, b, c. Thus the relation < is a quasi ..,... 

order. 

To show that the relation < is sem:icoqtinuous, we use Theo:i,em 

2. 22 and show that L(x) and M(x) are cloliled, for ea~h x e X, To 

show that L(x) and M(x) a.re <:;losed, we qonsider thee: two i;:a.ses, 

x e E or x e X "' E , 

(i) Suppose x e E. Then f;rom the definition of :s_, 

L(x) = E and M(x) = X. E and X are both closed, 

so we have L(x) and M(x) dosed if x e E. 

(ii) Suppose x I E, Then 

L(x) = {x} U E U {YI y separates E and x}. 

Sirn;:e ~he points of E are not separated by any point, 

we have 

{y!yseparates E and x} ={ylyseparates a andx,aeE}, 

If a and x are two points in a connected loq;ally 

qqnnec ted Hausdorff space X. then the i,et of eut points 

separc;1.ting a and x is dosed {Hoc;king and Young [6), 

p. 110, Th 3, 8). 'then L(x) is the union of a finite 



number of c;:losed sets, which implie1:1 that L(x) is 

<;:losed. 

Suppose x E X - E. Then 

M(:,,;:) = {x} U {yJx s~parates E and y in X} 1 

Again we c:;an represent { y J x separates E and y} by 

{ y Ix sepal;'ates a and y, a e E} . By an argument 

slmilar tq that above, this set is elosed. Then M(x) 

is expressecl as the union of two closed sets, which 

implies M(x) ii; a c;losed set. 

Therefore, we have shown that the r13laHon < is a 

semicontin'l:l,ous quasi order. We now show that the 

q1,1a1;ii order is a parHal order if E is a singleton set. 

If E is a single point and a ~ b, b i a then a = b, For if 

27 

a :f. b then, either a or b does not belong to E. Suppose a e E. 

Then a ~ b, but b c;;annot separate a from E and b l a, Then 

both a an,d b do not belong to E. Then we have 

X,..a=AUB, E c A, b EB 
and 

This implies that the following holqs, 

This contradicts X b~~ng c:onneqted. The re fore < is anti-symmetric, 
~ . 

Hence ~ is a partial order. Q,E,D. 

To show that it is neee s sary for the space to be locally connected 

we give the following e:xcample. 



;Example Z. 4 7 
' ' 

follows: 

A .. 1 

Ao 

A 
n 

eo 
Let X = U A. where the ,41. are defin~d ~111 

i:;: .. 1 t 

;::: { <x, o) I 0 < x < 1} -

= {(.01Y)I 0 < y < l} and 
~ -

{ <x, y) I 
1 

0 ~y < 1} ' 1,2,3,." = x = n' n = ! -

We Gi';I.P c:;h0ose the point (1, l) as the endelement in, Defin'ition 2, 45, 

1 
l\l'ow <;Qn~ider the points a = (0, O) and b = (Q, 2). We then have 

a 1:. b. Every ope11, set U c;:on~aining a will also c;ontain a point of 

~he fo:rm (x, 0) 1 x f. 0 . But all points of the form (x 1 0), x ,f. 0 

precede b. Thus the orcler 1$ not semi!;ont'inuous. Therefore, the 

condtt\on of lo<!;al eonnec:tedneijs is nec;;essary for the order to be a 

qua~i order, 
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CHAPTER III 

CHARACTERIZATIONS OF TREES 

In this chapter we develop several characterizations of trees, 

some of wh'lch are commonly found tn textbooks. The main idea 

presented here Ls the cha;r;:it;teri:zation of trees in terms of :POTS, a 

charac;terization whi9h is £aidy new anc;i seldom fqund in t~xtbooke, 

Befol,"e further disc;i.;1.s13\on, we wU\ tntrodu~e the formal definition 

for a tree, First, we will agree that when the term oontinuum is -qsed, 

we shall uirnally mean a <;;ompact c:onnec;ted Hausdorff space, 

Defi.p.ition 3 r 1 A tree ts a qontinu.um in whic;h <t,very pair of di13tinct 
I F ~ 

points is separated by a third point. 

2 
Exampl~ 3, 2 Let A = U A , where 

n=O n · 

AO = { (x, y) I y = QI ~l 

Al = { (x, vl / x = 1 ! -1 

and 

Az = {(x,y)/x= -1 I ,..1 

A 
n 

< x 

:::. y 

~y 

is defined as follo~s: 

< 1} I -

< 1} ' 
'""" 

< l} . -

Then X is a c;ontinu1,1m suc:,h thc1,t every two point~ are ~eparated by a 

thircl point, Therefore X is an example of a tree. 

Exc1;mple 3. 3 There ex·ist a spl:1,ce such hhat the spa<:re is a connected 

Hc1,usdo:df space with the property that every pair of points is separated 

29 
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by a thll'd point, An. obv\ous sue~ example i~ the sp~~e of real 

numbe;rs, However, the set of real numbers is not compaet and c:;;onee.,. 

q,u~ntly 'lei not a t;ree, 

There are three things whieh sould be emphasized about the 

definition of a tree. First~ we have not assumed the c;onUm.1um tQ be 

loea.lly conr;.i.ec;;ted. Tll.h 'ls assumed in many definitions. However, 

one of the flrait resuhs in this ci;hapte r is to prove th,at a tree is locally 

~ 011,ne e h!!c\. 

Sec;o'lld, vyre poii;i~ ol,lt that the conhinul,lm ii!! compac:it. There h.as 

been some effort to f:l,nd eond·iHone nec;essary ip. order that a ,::onnect~d·, 

locally c;onne(;!teg. spa,.~e X, w,ith th!=! property that ea1;h two points ean 

be separated in X by the omission of some thtrd potnt, ;admit a non

trivial c;ontinuou19 part\~l orde;1:t', E.;x:act c:;ondUionEl l'.leGf.ilssary for a non .... 

compact ~pa.c;1e to ~dmit sl,l<;h an o~de r a:re not known, Ward [is], 

However, by ad.ding eompac;:tnE\'l1;1s we c;an get the dei;lred tesults. Thi1:1 

will be ou:r ~harac:::terizq.Uon, ~t has been sbowri by Wallace [ 19] that 

there c;1.oE,!s exist a non-c;omp~t spa(;;e that does nqt adm\t a nontrivial 

c:ontinuous :partiai o:rder, 

Th\:rd~ the i;pac;e ls not ne<;;~l:lsarily a metri<i.: spc;1.c:;e, If the spa<;e 

i~ metri~ then a tre~ is e;q.lled a dendrite and much has been developed 

tn the study of dend:1;ites or metric trees, For a complete <::overage of 

the study of dendrites one may :t;'efe:r tq Whyburn [29], one of the first 

books to contain. the coneept of deP.dr'ltes 1 Even thol,lgh U was one of 

the £i:r~t~ it does ¢ontain the majo:r part of what is known about dendrites. 

An even later refe:,:,en~e oq. tlrhi topic; ·is Kuratowski [ 10], 



In the last few years there has been sqme effort directed at 

finding c;:ondiHons for a tree to be metrizable [3]. In other words, 

given a tree, under what aoq.ditlons is it a dendrite? 
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In Chapter lI, Theorem 2. 45, we developed a method of Lnd\ilcing 

a par~ial orde!" on a loca!ly connected continuum, In th'is i;:hapter we 

will use this th,eorem to inq.uce a partial order on a tree, Before using 

the theorem we must show that a tree is locally connected, 

Lemma 3, 4 A tree is Loc;ally ~onnected, 

Proof. Let X be a tree. X is regular if, for every point p e X and, 

every point q of X dietint;;t from p, q 'is separated from p by a 

finite set, (Moore [11L p, 129), We then have that every t:ree is 

regular in thii:i sense, Then by (Moore [11], p. 1Z9, Theorem 78) 1f 

X Ls a regular ~ontLnuum then for all poin~s p E X I every domain U 

suc;h that p e U contains a doma·~n V containing p and V is boundE;id 

by a finite subset of U .. Then by (Whyburn [29], p, 19, Theorem 13, 1) 

it follows that X is locally connected. Q. E. D. 

01;1.r main characte:dzaHon of a tree is in terms of a POTS and, 

a;;i might be expected, we would like to use the results developed in 

Chapter II, We qan use Theorem 2. 46 if a tree qontains an endele -

ment, Also, we would like the endelement ho be a point so the order 

will be a partial order. We can get the desired results from a theorem 

c;;ontained Ln a p~per by Wallace [21], 

Theorem 3, 5 If X is a <1;ontinuum that contains a <;utpoint then it 

contains an endelement, 
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Proof. See Wallac~ [Zl], Q, E. 0, 

Thus, by Theorem. 3, 5, every tree eonta~rui an eq.del,rnent, But 

the only prime c;hains of~ tree are cutpoin~s and endpoints. Const,!,,. 

q1;1,ently an endelem~p.t must be a single point. We now have the tooh 

to prove the cha:t"acterizaUon of a tree in terms of a POTS I 

Ihee>re,rn. ~,. 6 Let X be a c::ompa.e t Hausdorff epa.qe, A necessary 

and suff'l<;rle~t cond1Hon that X be a tree is that X admit a parHal 

(l)rder, ~, satisfying 

(i) ~ ls 11emic;ont~nuous 

(H) < is order dense ..... 

(iii) for x e x' y E x' it follows that L(x) n L(y) is 

a n:on ·null qhain 

(iv) M(:x;) • x is an open set1 for ~ach x & X. 

Proof, L!:)t X be a tret!l and <;:l,.ooise e E X. such ~hat e is a.n endele .. 

ment and let X have the semic;ontinuous partial order defined in 

Definition i. 45. By this definiHon, ~i) holds. To show that ~ is 

order dense, we conside:i:- ~ny two distinc;:t points x, y e X, We must 

show that the;i;-e exist a point z i;iuc;;h that x < z < y. From the 

defin\t·ion of a tree the;re ex~sts a point z wht<:lh separatei; x and y, 

So we have 

X .. z = A U B • where A I :a • x e A • and y e B . 

If X· = e, then from the definition of ~, we have x < z < y. If 

x; f e, then 



Suppose z e .A. 1 , Then 

whiqh contradic;ts X being Gonnected, Therefore, x < z, Suppoise 

e e B. Then 

which is a contradicticm to X being connected. Therefore, e e A 
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and z < y. Hen,c:;e, x < z < y 1:1-nd con~equently ~ is order dense and 

therefore condition ('Li) holqs, 

To show (iii), we note thc!-h e e L(x), for alL x e X. Then 

L(x) rl L(y) :f. 0, fo:r all x, y e X. Now we mul!lt show th~t L(x) is 

a c:ha.in. Let x: 11 x 2 1;: L(.:x:). If x 1 = e, then we have x 1 < x 2 < x. 

Suppose that x: 1 :f. e and x~ :f. e . Then from, the definition of ::5.., 

w~ have 

and 

Suppose xl f:. Xz a!!J,d Xz f:. xl. Then Xz e Al and xl e A2. This 

implies tthat 

This implies that X is not c;;onnected, a ~ontradietion, Therefore, 

x 1 < x 2 or x 2 < x 1 and !this implie1;1 that L(x) is a <;;:hain. Then 

any subset of L(x) is a chain and, therefore, L(x) n L(y) is a 

non .. nulL chain, Thus condition (iii) holds. 



To show (iv), we c;onijicl~r two cases: x = e and x :/:- e, If 

x = e then M(:x) - x = X - x and X - x is open. If x # e then 

M(x) ,. x = {B /X., x = A. U B , A /B , e EA } , 
l1! l1! l1! l1! l1! l1! 

For alt a I B l1! is open and the \inion of an arbitrary numbe:r of open 

set$ is open, Therefore, M(x) - x is an open set. This implies 
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condition (tv) holds, We have now s:ti.own that if X is a tree, it: admits 

a partial o:rdl!l r < , s~tisfying conditions ('l) - (iv) . .,.., 

Now let X be a spac;e that ad1;:r.dts a partia.l order satisfying 

cqnditions ('L),., (iv). Suppose there exist two distinct minimal elements 

x and y. Then L{x) n L(y) ls a non-null c;hain, by condltion (Ui): 

But L(x) = x a.nd L(y) = y sinqe x and y are m.inimal elements. 

Therefore, x = y, a contradiction that x and y are disth1ct elements, 

Hence X has a unique miqlmc;1.l elemen.t e aml, therefore, thE;J set of 

minim~! elemeri.t~ 1$ eonne~ted, Thus, by Theorem 2. 3 £?, X is 

c;:onnected and is, c;onsequently, a continm,1m. 

Let x and y be distinct elements of X. If x < y then 1 by 

(H), there exists z E X suc;h that x < z < y, By (i), M(z) is 

aloised and, by (Lv), M(z} • z is open, Hence 

X - z = (M(z) - z) U (X - M(z)), where (M(z) - z)/X - M(z) 

y E M(z) - z, and x e X ~ M{21) , ';['here fore z separates x and y. 

If x anq. y are not comparc;1.ble, then, by (iii), L{x) n L(y) is a 

non-null chatn. By Theorem 2. 3 l, there exil:'lts a maximal element z 

0£ L(x) n L(y). Th~re e:x·~sts a ~ sui:h that z < t < x, Then 

x E M(t) - t I whic;1h is open, and y e X - M(t), which is open, Henee, 

we have 



X - t :;: (M(t) - t) U (X - M(t)), where (M(t) - t) I (X - M(t)) , 

x E M(t) - t, and y E X .. M(t). Therefore t separates x and y. 

Hence X is a. continuum suGh that every pair of distinct po~nts is 

separated by a third point, Q. E. D, 
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E~ample 3, 7 Let X be the space given in Example 3, 2. As an 

endelement pf X we choose the po·Lnt (1, 1). We then have a partial 

order on X, by Definit.lon 2, 45, The following relaHons hold: 

(l, 1) ~ (a, b), for all a, be X, (1, O) ~ (1, -1) and (1, 0) ~ (0, O). 

We could have chosen the point (1, -1) a.13 the endelement in 

order to obtain a pa:rtial order. If (I, -1) i$ used, we then have 

deftned the foLlowin$ relaHons; ( 11 ,.1) ~ (a, b), for all a, b E X, 

(1, -1) ~ (1 1 O), E1-nd (1, 0) ~ (0, O). Direct compar~son of this 

relaHon with the .;l-bove reveals that they are diffe;rent, Therefore, the 

partl~l order g'Lven by De{lrrLHon 2. 45 may not be unique, In the case 

of a tree, thl;l+e will be at least two disHnct partial ord!2)rs. Thls is 

true bec:;ause there exist at-least two endpoints of a tree, 

Since X is eompact and L(x) is closed, Theorem 3 1 6 could be 

st~ted with condition (iii) replaced by 

(iii') lf x e X and y e X ~hen L(x) Ii L(y) is a non

empty compac;;:t chain. 

Definition 3., 8 A Hausdorff space :x; Ls said to be dendrit'ic; Lf and only 

i£ it is connec:ted, locally connected, and has the property that eaoh two 

point!'; can be separated in X by the omission of some third po\nt. 
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The reader shouid not confuse a dendritic space with c1, dendrite, 

As rnentLonec;l earlier a dendrite is a metric tree. One should n<;>tlce 

that in the above definition the space is not required to be compaet 

while a compact dendritic space is a tree. We mentioned earlier in 

this chapter that it is not known just how nice a space must be in orde:t:' 

to admit a nontrivial continuous partial order. However, Ward [25] 

has stated 1tonditions for a semicontinuous order, The condltionFi are 

those stated above, using condition (iU 1 ) instead of condit"ion (iii), 

Theorem 3. 9 A necessary and suffic;Lent condition that a locally 

c:onnec;ted Hausdorff space be dendritic is that it admit a partial order 

satisfying ('l) 1 (ii), (Hi') and (lv) 1 

Proof, See Ward [25]. Q. E. D, 

It is natural to seek, at thii;1 point, conditions under which a 

compactification of a dendritic space results in a trtile, Ward [25] has 

found some conc;iitionf;I that imply that a compactification 0£ a dendritic 

space is a tree. 

Deflnition 3. 10 A space X is coqvex if the sets L(x) and M(x) 

c;onsHtute a subbasis for the closed sets of X, that is, if every closed 

set of X is the intersec;;Hon of some family of sets, each of which is 

the union of a flnlte family of sets of the form L(x) or · M(x), 

Theorem 3. 11 A convex denclritic space admits a aompa~ti,fication as 

a tree, 

Proof. See Ward [25], Q.E.D, 



The condition, that the spaQe b~ convex in Thec:>rem 3, 11 is 

necessary. For an example of a dendritic spac:e whi~h admits no 

compactlfi<;ation as a tree see Ward [25]. 
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In the last two theorems we have wandered from our main theme 

in this chapter. We have inclµded these important rela,.ted results Ln 

hope that it m.1;ty inspire the reader to fµrther investLgate this area and 

at this point we return to our mc:1.in efforts of this chapter. 

Theorem 3, 12 If X is a tree then :::, is conbinuous. 

Proof. To show that < is continuous it is necessc\.ry to show that, if 

x i:_ y, then ~here exist open sets TJ and V, with x e 'CJ and y e V, 

s1,1ch that a f b whenever c\. e U and b e V. Since < is order 

dense, by (ii), we may choose t e X such that t < x and t "l y. 

Wr:; then can choose U = M(t) ~ t and V = X - M(t). U and V are 

open sets with the desired properties, so < is conbinuous. Q. E. D, 

The order which was developed in Chapter II is often referred to 

as the cutpoint ordering and we will adopt this terminology in the re st 

of the paper. It i,hould be pointed out that later on we will introduce 

another type of ordering whic;h will be referred to as the weak cutpoint 

orclering. 

In Theorem ~, 6, the qutpoint ordering was used to get: a c;harac; -

terization of trees, The next theorem uses the cutpoint ordering to 

characterize trees, but with fewer conditions, 

Theorem 3. 13 Let X be a locally c;onnec;ted continuu.m. A necessary 

and sufficient condition that X be a tree is that the cutpoint ordering 

be order -dense. 



:Proof. Suppose the G1.J.tpoiqt orde:ring is order dense. Let x and y 

be distinct elements qf X. If x < y in the c;utpoint ordering then 

x = e or 

X .. x = A U B , where A / B , e e A , and y e B . 
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Since X is locally connected WEl can pick A s-u.c:h thah A is a com ... 

ponent, The cutpoint ordering ls order dense so the:,;e exists a point p 

such that x < p < y, lf ;x = e then, by the definition of the ordering, 

p sepa::1;ate s x and y. If x # e then 

X - p = C U D, where C / D, e e C, and y e D. 

Now p e B, since x < p. Sir;i,!;e A is connected, A,. C C . Then 

x e C, s·~nce A U {x} is connecteo., This implies that x e C and 

y e D and therefore p separates x from y. 

lf x and y are p.ot c:;ompa,rabll;l 1 let z be a maximal element in 

L(x) n L(y) , since the order is dense, there exist a p such that 

z < p < y. Thus we have 

X - p ,... A,. U B, whe:re A / B, e E A, and y e B 

X - z = C:: U D, where C / D, e e c. • an,d p E D. 

SinGe X is locally (lonnected we c;an, pic:k C suc;;h thati it is connected, 

Sinc:e CU {z} is connected, we have CC A. Thµs M(p)= BU{p} 

and p 1:... x, Hence, x e A and y e B and, therefore, p separates 

x and y I Thus, if x and y are dii;itinct elements, there exist a 

point separating x and y. Therefore, if the cutpoint is order dense, 

then X is a tree. If X is a ~ree tihen 1 by Theorem :3. 6 1 the cl,ltpoint 

ordering is order dense. Q, E, D. 
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Definition 3. 14 .A p:l;'ope;rty l? of a. spa.ee is h~redita;ry if and only if 

each st,:i,bs]?ace of a 11pa(,;e with P ah,Q ha1:1 P, 

In this paper the spaces under c:;onsi,deraUon are eontinua and 

because of th'is we will use the term he:i:"edita,;y to mean the followini: 

a p;r;-operty P 0£ a ~ontinuum is herjdi,tary if and only if eaqh eubcon ... 

tinuum also has property l?. 

The property of a c:;onti,nuum being a tree h hereditary, as ie 

etated in the next theo:J;'em, Thh p:roof is fairly obvious, but it is 

inc;:luded here beic;au.se we will need this result to prove a 11',,ter theorem, 

Theorem 3 ~ 1, 5 Eve 11y SQ.beontinuum of a tree h a tree~ 

Proof, Llilt I< be a subcontlm,:i.um of a tree X, If x !;l.nd y are 

dist·Lnc:;t points of K, th~n thenil e.x:ists a point p of X such that p 

separ~te s x and y. Suppose p I K, Then 

K = (K n A) u (Kn B) 

where 

X ~ p = A U B , A I B , x e A , and y e B , 

;Hence {Kn A) I (K n B) and K ia not a subGontinuµm of x. This 

<;01;1tr~dicts the fa.ct tha~ K la a. subGontil'luum of X. Therefore 

p e I< and p separates x: frotn y, Henee K is a tree, . Q. E. D, 

Definition 3, 16 A c;ont"tnuum C 'Ls -q.niqoherent prov"Lded that, if 

C ;:,: ;H U K, where H and K are subcont:i,nua, then H n K is 

eonnect:ed, ,A continuum is he1"editarily uniqoherent if every sub¢on ~ 

tinuum is unieoheren~. 
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1 Let X be the u,nit c;ircle, H = {(x,y):(x,y)E X,x < z-} 

and 
1 

K = { (x, y):(x, y) Ex, x ~ - z}. H 13,nd K are subc;ontlnua of x 

and · H n K # 0 . a n K ;:: { (x, y) : (x, y) e x, ~} < x ~ ! } , wl}i<;h 

is not connecteq 1 The},'efore X is an example of a qont\nuum whLch 

is not unic::oherent. The real number line is an exampL~ of a non ... 

compact continuum that is unlcoherent and hereditarily unicoherent. 

The next characterization i1:1 in terms of a hereditarily unieoh.er"' 

ent locally conne<;ited GO!'ltinuum. This is one of the more standard 

chara.c;ter\zations, and it is included because the proof illustrates i!J. use 

of the cutpoint orde:ring 1 Pc3.l;'t 0£ the proof depends on what will be 

developed in Cha.:pbe:r tV, but ca,r~ has been taken to avoid a c\reular 

argument. 

Theorem 3. 18 A nece~~ary and sufficient ~ondition that X be a tree 

is that X l:?e a her~~i'ttarily urric;ohe:rent locally q onq.eGted eon.ti nu.um. 

Proof. By Lemma S, 4, a tree is locaHy c;onnected. In Chapter IV we 

int;rqduce the c;;oncept of a generalized tree and it is shown that every 

tree is a generalized tree and that every generalized tree is 

hereditarHy unicoherent, Using these ref!ults of Cl:tapter IV, H follows 

that evel;'y treEl is a heredUarUy untcoherent lo~c1,lly connected 

continuum. 

Let e e X and x e X s11eh that x # e. ;Let Aa be the 

coUection of aU continua c;ont;;1.ining e and x, This eolle~tion is non-

empty since x EA ' a 
Define U(x) = n A . a 

Sinqe X is hereditarily 

uni.coherent, U(x) is a continuum qontaining e and x which is also 

irreduc;·Lble about e and x, Now define x ~ y, 1f U (x) C U(y). 
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To show that X is a tree, it is necessary to show that < is the c;;ut.,. 
' ~ 

point ordering and is orde:i,- denije. It wiU follow, by Theorem 3, 13, 

that X is a tree, 

Let p e X and let 

X - p = A U B, where A / B and e e A. 

$inee X is locally c;onnected, we c;an choose A such that A is 

c;onnected. SinGe A is conn(;)~ted it is not possible to find a smaller 

c;:onnected set containing e in X - pr If there did exist a smaller 

open connected set containing e then it would follow that 

x - p = c U D, where c / D, A n G :/- </J and An D :/- 0 . 

This contradicts the £ac;:t that A is connected, Therefore, 

A U {p} = U(p) and U(p) ( U(x) if and only if x e B. Hence if 

x ls greater than p in th~ c;µtpoint order, then x e B and x is 

greater than p in the order :s_. Also, if x il?J greater than p in the 

order :£, then x e B and x is greater than p in the cutpoint order, 

Consequently < and the eutpoint o:r;der~ng are the same, 

Also < is order dense, For suppose not, Then there exist 

points x and y such that x < y or U{x) ( U(y) and there doe13 

not ex'Lst a point p suc;;h that x < p < y. Henc;:;e U(x) U { y} = U(y) 

whe:re both U(x) and { y} are closed, But a <::onnected ~et cannot be 

w:rltten as the union of two disjoint c;losed seti;;. Therefore, 

U(y) :/- U(x) U { y} and there must exist p e U(x) - U(y) suc;h that 

U(x) C U(p) C U(y) or x < p < y. J'herefore ~ is order dense and, 

by Theorem 3. 13, X i$ a tree. Q. E, D. 
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In this eh~pter we have atres13ed the chara.~terization of tre,es in 

term13 of a POTS, Iq. the next chapter we wUl ir+troduce a new conqept 

by weaken·~p.g the conditions in Theorem 3. 6. As UE!\llal, when conclitic>ns 

are replaced by weaker condit'lons, certain propertles are lost. As 

wUl be seen, th,e c;onqition required il'l. Lemma. 3. 4, that of local 

conneQtedness, will no longer have to hold. 



CH.A.PT ER IV 

GENERALIZED TREES 

In Chcq:>ter III~ a c;haractedzation of trees, in terms of a partial 

order was gtven in Theorer,n 3. 6 r In th·~s chapter some modifLcatlons 

are made on the c;ondition!;l stated in Theorem 3. Q and the result ·Ls a 

generalization of the eari,Gept of a tree. TMs generall.zc1,t·Lon was fi;r,st 

developed by Wa;i;-d [2~], In this 9hapter we h~ve included results of 

some of Ward's l=larlier efforts and several charact~r~zations developed 

by others at later times. 

The first ;r,es'lllts in th'is cl1,apter establi.sh the faGt that all tre~s 

a.re generl:itlized trt::f)$, .A13 one might exp£;19t, sieveral of the eharai;:;ter .. 

izations of generaHzed, trees are very similar to what was developed in 

Chapter II~, but one of the main proper~ies of trees that does not 

necessa;rUy c:arry over to genera\·Lzed trees isi that of being loc;;a~ly 

connected. We wUl iq,clude an example of c1. gen!2raHzed tree tp.at ts not 

loea.Hy conne9ted. 

Before further disc:ussi0n 1 we formally state the definlt'ion of a. 

gl;!nl:'l ralized ~ree, 

Definition 4, 1 A zero of a partially ordered set is an element whic;:h 
~ 

prei;:ede s all other elements of ~he set, 

Definition 4. 2 A compact Baui:iclorff spac;e X is said to be a 

gene11ali;,::;~d tree lf and only Lf X admi~s a partial order satiq;fying: 
r ,, ,.....,--,--.., 
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(i') < is c;:ontinuotis, 

(ii) < is 9rder denee, 

(ii'l) for x E x I y E x, it follow1, that L(x) n L(y) is a 

non-null c.hain, and 

('~v') if Y is a closed and conne,;ted subset of X, then Y 

eontalns a zero. 

There are two 'l:tnportant rElquirem11ints appa,renHy missing in the 

c;lefio.ition of a, generalized t;ree, The Hrst is that of locai eonneeted.,,. 

ne!:!s, as hi;1.s already been pointed out, and the seoond ~s that X be. a 

oontin1.,1um. 

Our nel!:t examp!e will show that loeal cono.ectednesf! is not 

necessary. Th·~s example wUl l:1-isl:' show thii\.t there exist generalized 

~;reeia whic::h are not ~rees, We wUl then show tha~ all trees are 

generalized trees, wMch wLi~ est~bl~sh the fa<:;t that gene:valized trees 

a:re indeed a gene ral·~~ation of the c;onc;ept of trees, 

CQ 

Let X;: U {A } , where A ta def'Lned as foltowa: 
n= -1 n . n 

A..,l = {(x1 0) : 0 < x < l} ' ,..., 

AO = {(O,y):O < y < 1} ' ari.d ....,. -
A 

1 
0 1} ' 1,2,3,p, .,., {(n,y): < y < n:;;: 

n ,..... 

Define (x 1, y 1) < (x~, y2 ) lf ;aq.d only if x 1 ;::_ x 2 and y 1 ::: 0, or 

x 1 = x 2 and y 1 ~ Yz, On~ can show that this is a, partial order 

sati1:1fyin.g the four 1;:ondHions stated in the cl.efinition of a gene;rallzed 

tl'ee. By con side ring any point of A 0 .., (0 ~ 0) , i.t cap. be see a that X 

is not lqcally ~onnected. :H~nc;:e X is not a tree. 
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Sine~ X ie not a tree, then the partial order deflned must faH 

to satisfy one of the conditio11s stated iq Theorem 3, 3·, Condition (iv) 

of Theorem 3, 3 stat1;is that if x e X, then M(x) ~ x is i,,.n open 1:1et. 

l 1 
If we let x;::; (0, 2 ), then M(x) .,. x = {(O, y): 2 < y < l}: Bewever, 

M(x) ~ x is not opan, If we take any open se~ c;ontalning a point of 

M(x) ,.. x, it wiLl contain points outsidf;l of M(x) .. x. It follows that 

condition (iv) of Theorem 3. 6 is stronge:J; than c;op.diH,;m (iv) of 

Defin'Ltlon 4, 2 1 

Theorem 4. 4 ~f X is a tree then X 'ls a generaHzed tree, 

Proof. I~ is suff"tc;ient to show that the ordeir given in Theorem 3, 6 

of Theorem ;3, 6 are e:,ca~tly the same as ~onqltions (U) and (HL) of 

Def"Lnitlon 4. 2. From Theorem 3, 12 • the order of Th~ore:m 5. 6 'Ls 

qontinuotts: We then have l'.:QndLtioi;i (l') holding. By Theorem 3. 15, 

the property of being a tree is l:ieredttary with respect to subqon.t'Lnua, 

S'Lnae every tree has a z.;ero, every subc;ont\nua i:1-ho has a zero, and, 
-

therefC;lre, -every c~osed c:;:onnec;ted.-lil\l.bset of X cop.tain!ii a zero, 

Consequently, condi~ion (iv') holds fo:r: the order of Theorem 3, 6, and 

every tree satlE:;fie,s th!:! fou:r c;;ondiHcins of Definition 4. 2, H~nce, every 

tree is a generii.ltzed tree. Q. E. 0 1 

As pointed out earUer, it was not stated in Definitiori. 4. Z that X 

wal:! a. <;:onUnuumr However, H foHows f:rom the definition that X ts a 

c;:onhln.u,urn, as thE;J next theorem demonstrates'. One will n.otio:e that 

this theorem i~ much Uke Thl;':or~m 3. 18 and that, again, one epnditton 

missing, ~hat of locai c;onnectedness. 
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Theorem 4o 5. A generalized tree is a hereditarily unicoherent con

tinuum. Conversely, a hereditarily unicoherent continuum which 

admits a partial order, with zero, satisfying (i') and (ii) is a general

ized treeo 

Proof. Condition (ii) of Definition 4. 2 implies that X ls order-dense, 

By Theorem 2. 33, all of the maximal chains of X are connected. All 

of the points of X will be in one of the maximal chains. Since X has 

a zero element, all of the maximal chains will intersect. Thus X is 

the union of connected chains having non -empty intersection and is, 

therefore, a continuumo 

To show that X is hereditarily unicoherent, we first show that, 

if a and b are elements of a subcontinuum A such that a < b, then 

M(a) n L(b) C A, If this is not true, then we can choose a and b 

such that M(a) fl L(b) - {a, b} n A = 0. Now, since X is order .. 

dense, there exists p such that a < p < b. Let U = X - M(c), 

where a < c < p. Then L(a) C U and U fl M(z) = 0. Let B be 

the component of A - U which contains b. By (iv'), B must have a 

zero. But the way U was picked implies that B n L(b) = b. This 

implies b is the zero. Hence B C M(b) and B n U is empty. 

But U must contain a limit point of each component of A - U ; other~ 

wise there would exist a separation of A, contradicting the fact that 

A is a continuum. Since B fl U = (/J, then U does not contain a 

limit point of B, a contradictiono Therefore, M(a) n L(b) C A. 

Now suppose C and D are subconi:ihua of X, with C n D :f. 0. 

If C fl D = {z} , C n D Ls connected and is a continuum. Suppose 

that 



{ x, y} c c n :p , where x # y . 

Let p = sup L(x) n L(y). Then p does exist, since (iii) 

implies L(x) n L(y) # 0. From the above 

P = [M(z) n L(x)] U [M(z) n L(y)] C A fl B 
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and will be connected. Hence every pair of points of A n B lies in 

a connected set which is a subset of A n B. Therefore, A fl B is 

closed and connecte¢1.. Hence, X is a hereditarily unicoherent contin-

uum, 

Let X be a hereditarily unicoherent continuum admitting a par

tial order which is continuous, order dense, and has a zero. First, we 

show that <;ondition (iii) holds. To show that L(x) n L(y) is a non

empty chain, we need to show that L(x) is a chain for all x e X. 

Suppose there exist elements a and b of L(x) such that a and b 

are not comparable, Theorem 2. 35 implies that L(a) U [M(a) n L(x)] 

and L(b) U [M(b) n L(x)] are conp.ected and, therefore, are continua. 

Since X is a heredUarily unicoherent continuum, then 

[L(a) U (M(a) fl L(x))] n [L(b) U (M(b) n L(x))] = P 

mui,t be connected. But P can be expressed as follows: 

P = {[L(a) U (M(a) fl L(x))] fl [L(b) U (M(b) fl L(x))]} fl {L(a) - a} 

U {[L(a) U (M(a) fl L(x))] fl [L(b) U (M(b) fl L(x))]} 

fl {M(a) - a} . 

This exh~bits a separation wh·Lr.:h contradicts the fact that P is 

connected. Therefore, L(x) is a chain, for all x e X. For all 
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x, y e X, L(x) and L(y) contain the zero element of X. Hence, 

L(x) 11 L(y) if, 0 and is a chain. 

Let Y be a c;:losed connected subset of X. Suppose there exist 

two dh;tlnct minimal elements x and y of X. Then, L(x) U L(y) 

is a contihuu¢.and 

[L(x) U L(y)] (') Y == {x, y} , 

which is not c;:onnected. This is a contradiction to the fact that X is a 

hereditarlly ~nicoherent cont"lnuum. 'l'herefore, there exists only one 

minimal element of Y. Hence the order on· X satisfies the conditlons 

of Definition 4. 2. and, therefore, X is a generaUzed tree. Q. E. D. 

Before stating and proving the next theorem regarding generalized 

trees, we define a new conc:ept and state a lemma that 'ls necessary to 

estabUsh the theorem. 

Definition 4. 6 An order ls monotone if L(x) is connected for each 

XE X. 

Lemma 4. 7 If X is a POTS and < is monotone then < is order~ 

dense, 

f>roof, Let x and, y be elements of X such that y < x. Then 

y e L(x), which is a c;9nn,ected chain. By Theorem 2, 33, L{x) is 

order dense and thel;'e exht a po'lnt z such that y < z < x. f.lence, 

< is ordel;'-dense. Q. E, D . .,... . 

Theorem 4. 8 If X is an hereditarily unicoherent continuum with an 

order ::5_ whic:h is a monotone closed part·ial ord,er with a unique 

minimal element then X is a generalized tree. 
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Proof. Lemma 4. 7 implies that the order is order-dense. Since the 

partial ord,er is closed, then, by Theorem 2. 33, ::::_ is continuous, 

Therefore X is a hereditarily unicoherent continuum with a continuous 

and order-dense order with a minimal element. Henee, by Theorem 

4. 5, X is a generalized tree. Q. E. D, 

In Chapter IJI the part~al order used to characterize trees was 

referred to as the cutpoint ordering. In this chapter was inhroduced a 

new concept, that of generalized trees. At this point we introdU<::e a 

new partial order which will be c:alled the weak cutpoint ordering, 

Before giving the formal definition of the weak cutpoint ordering and 

the characterization, several definitions and lemmas are needed, 

De£in'Ltion 4, 9 If W i~ an open set, the set W ~ W will be called the 

boundary or frontier of W and wiH be denoted by F(W) ! 

Definitior,i. 4. 10 A space X is said to be an arc if and only if Lt is 

homeomorphic with the closed interval [O, 1) of the space R of real 

numbers (Hall [5]). 

Another common definition of an arc is; an arc is a compact non

degenerate continuum that does not have more than two non-cut points 

(Moore [11)). 

Definition 4. 11 A set X will be said to be arcwise connected 

provided every two paints of X can be joined by an arc lying in X. 

It is possible for a space to b13 arcwise connected, but not be an 

arc. The space in Exa~ple 4. 3 is not an arc, but every two points of 

X can be joined by an arc lying in X, Hence, X is arcwise connected, 



Lemma 4. 12 Let X be a compact POTS and let w be an open set 

in X, If 

(i) the graph of < is closed and 

(ii) for any x e W, each open set about x contains an 

element y with y < x, 

then any element x of W belongs to a compact connected chain C 

with C with C n F(W) -f. (/J and x = sup C. 

Proof. See Koch [ 9]. Q. E. D. 

Corollary 4. 13 Let X be a compact POTS with unique minimal 

element O • If 

(i) the graph of < is closed and 

(ii) L(x) is connected for each x e X, 

then X is arcwise connected. 

Proof. See Kock [9]. Q, E. D. 
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The last theorem of this chapter contains three characterizations 

of generalized trees. Before stating and proving the theorem, several 

new concepts will be introduced and the new ordering which was 

mentioned before, the weak cutpoint ordering, will be defined. 

One of the characterizations is stated in terms of n~ts and below 

are given the definition of a net and two examples of nets. The reader 

who would like a mo:t;'e detailed treatment of nets may refer to Kelley 

[8] and Wi,Lansky [30], 

Definition 4. 14 A set D is directed if D is non-void and there exist 

a binary relation > such that 
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(a) if m, n and p are members of D such that m > n 

and n ~ p, then m ~ p; 

(b) if me D, then m> m; and 

(c) if m and n are membe;rs of D, then there is p in 

D such that p > m and p ~ n. -

A direc;ted set is a pair {D, ~) such that > direc;ts D. 

Example 4. l!? The set of positive integers with the natural order is a 

directed set. The set of real numbers in (0, 1) with the usual order 

is a directed set. 

Definition 4, 16 A net is a pair (S, ~) such that S is a function and 

> directs the domain of S. 

Example 4. 17 Let D be the set of positive integers directed by the 

naturai order. Define S: D- D by S(n) = Zn. Then (S, ~) is a net. 

The above net is also a ~equence and, in general, if the under -

lying directed set is isomorphic to the set of positive integers then the 

notion of a net is equivalent to that of a sequence. 

Example 4. 18 Let D be the set of real numbers in the interval (0, 1) 

with the usual order of the reals, Let f be any real valued function 

defined on (0, 1). Then (f, >) is a net. 

Definition 4. 19 A subset D' of a directed set D, is called, cofinal ~f, 

for any me D , there exist m' e D' with m' > m. 



Example 4, 20 Let D b~ the cUrected set in, Example 4. 18. Let D' 
' 

be the subset of all rational numbers in .0. Then D' is a c;ofinal 

subset of D, 

. Definition 4. 21 A subset D' of a direc:ted set D, ii; c;:alled residual 

if there e~ist m' e D' i;ueh that for a!l me D with m ~ m', 

me D', 

Exa,mJ?le 4, 22 Let D be the directed set iJ;l Example 4. 18 and let D' 

be the subs~t 

Definition 4. 23 

'l:'hen D' is a residual set of D, 

:U D is a directed set c;1.nd, if {A : 'I e D} is a family 
'{ 

of i;ubsets of :x;, then we define liqi sup ~'I by: x e lim sup A'I if 

fo;r e41ch open set U about x there is a ~ofinal subset D(U) C D 

with u n A :f. 0 , for each " e D , 

" 
Def'lnltion 4, 24: 

• I 

If D is a directed set and if {A : 'I e D} ls a 
'{ 

fa~ily of subsets of X, then we define lim tnf ,A byi x e Hm inf A 
. . '{ '{ 

if for each open set U about x there il3 a residual subset D(U) C D 

with U fl A :f. 0 , for e ae h '{ e D ( U) . 
'{ 

Deflnition 4, 25 We write lim A = A or A - A provided 
'{ y 

lin inf A = A = lim sup A , 
'{ '{ 

Example 4. 26 
(I!) 

Let X = U A , where 
n n=O 

= {(x,y):x= 0, 0 ::_ y ~ 1}, 

1 3 
= {(2,k'y): 0 < y < 4}, k= 1,2,3, ... , and 

1 1 
A2k+ 1 :;:, { ( mT, y): 4 ~ y ~ 1}' k = 1, 2, 3',. , • 



Let D be the set of positive integers ~nd c;:oni;rtd~r the family of sets 

{A : n e D}. 
n Here, lirn sup An = A 0 and 
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llm inf A 
n 

1 3 = { (x, y) : (x, y) e A 0 , 4 ~ y ~ 4 }, Thus, the above is an 

example of a family of subsets where lim inf A -/; lim sup A . 
n n 

Exampie 4. 27 
OD 

Let X = U A , where;i 
n=O n 

A 0 = { (x, y) : x = 0, 0 ~ y < 1} and 

A 
n 

1 = {(-,y):Q<y<l} 
q. - - ! 

n= 1,2,3, .. , 

Let D be the set of positive integers and c;ons\der the family of sets 

{A ; n e D} , In this case, lim inf A = Um sup A = A . n n , n O 

Lemma 4, 28 An order < i.s closed if and only if1 for any net 

in X with x ...,.. x, it follows that lim sup L(x ) ( L(x). 
'( '( 

Proof. See Strother [15). Q.E.D, 

{x} 
'( 

Lemma 4, 29 If X is a hereditarily unicoherent continuum then any 

two po~nts are contained in a uniquff minimal continuum, 

Proof. Let x and y be di13tinct points of X, a heredltarily uni~ 

coherent continuum, 

containing x and y, 

Let {A } be the collection of all continua 
a 

{A,J is non~empty since X .e {A } . Define 
.... a 

K = n A . Since each A is closed, K ls closeq.. By the definition a , a 

of a hereditarily unicoherent continuum, K is connected. Therefore, 

K is a continuum that c;ontains x and y. We now assert that K is 

the unique minimal continuum qonfiaining x and y. For if not, there 

exists a c:onUnuum K 1 suc;h that x, ye K 1 , But K 1 = A , for some 
a 

a, Therefore, K C K 1 and, consequently, K 1 is not a minimal 
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c;:ontlnuum contain·Lng x and y, Hence, in order to avoid a c;:ontradic ... 

tion, K must be the unique minimal c:::ontinuum containing ~ and y, 

Q.E.D, 

Definition 4. 30 Let X be a hereditarily unicoherent continuum, 

Denote by [~, y] the unique continuum irreducible from x to y. 

Definition 4, ~ 1 Let X be a hereditarily unicoherent c;ontinuum. Fix 

p E X and define a < b to mean that any continuum K of X which -p 

contains p and b also c;ontalns a. This ordering is c;alled the wealc 

cutpolnt order·Lng of X with respec;t to p. 

CX) 

E":ample 4. 34 Let x = u A n' where 
n=O 

AO :;: {(x, y) I y = 0 , 0 < x < l} and 

A = { (x, y) I (x, y) E J. , where J. is the clqsed line 
n n n 

segment joining the or gin tQ the point ( 11 ~)} , 

This space is often called the closed infinite broom. It is easy to see 

that X is not locally c;onnected by considering any point on A 0 other 

than (0, O). Therefore the Ciutpoint ordering defined ·in Chapter II 

does not apply here. Howl;':lver, the spac;e is hereditarily unicoherent 

and, hence, X can be ordered by the weak outpoint ol'dering. The 

fixed point p may be any point of X. However, if p e A. 0 , then the 

<:;orresponding ordering will not be continuous. Theorem 4, 5 states 

that if X admits a contLnq.o-qs orcler dense order then X is a general~ 

ized tree, Consequently, if X is a generalized tree there must exist 

another order. H p e X - A 0 1 the weak cutpoint ordering will be 
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contim,1ous and order dense, Therefore X is a generalized t;ree. Th~s 

example is to point out that every order dense order of a generalized 

tree ls not Qontinuous. However, a continuous order can be induced l;>y 

choosing an appropriate point p, 

In Theorem 4;. 8 it was proved that, if X is a hereditarily uni.,. 

coherent continuum with an order whic;h is a monotone closed partial 

order with unique minimal element, then X ls a generalized tree. In 

the next theorem there are two statements tha~ are equivalent to 

reqµir'Lng that an order be a monotone c;iosed partial order w~th unique 

minimal element. From these are obtained two more characterizations 

of a generalized tree. One of these characterizations is stated in terms 

of the weak cutpoint orderh1g. 

Th~orem 4 1 33 Let X be a hereditarily unicoherent continuum and let 

p e X. Then the follow\ng statements are equl v;;i.lent: 

(i) < is a monotc;me, closed partial orqer on X, 
-p 

(U) there exists a monotone, C.Losed pc1,rti,cil order < on 

X with a unique minimal element p, 

(iii) X is arcwise connected and, for any net {x } in X, 
"'( 

it is true that [p, x ] - [p, x], if x - x. "'( . . "'( 

Proof. Proof that (i) implies (ii): From the definition of :::_p, p is 

a minimal element. Suppose there exists another minimal element p'. 

Every cc;:mtinut:1-m c;ontaining p and p' also containEi p. Hence, from 

the definition of < , p :::_ p'. Now p' ls a minimal element and is -p ~ 

related to p. Thus p' :::_ p, But p' :::_ p if and only if every con-

tinuum containing p also contatns p'. Therefore {p} is a continuum 
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cont~ining p but not p'. This implies that p' i:,. p, a cont;radiction 

to the fac:t that pl is a minimal element. Hence, p ii~ the un'l~'Q.e 

min'lmal element. 

Proof that (U) implies (Hi), S·~nee the conditions of Corollary 

4, 13 are sat"Lsfied, then X is arcwise connected. S·lnce [p, x] 'ls an 

i;rl'educible contlnuum from p to x, then [p, x] is an arc. We now 

assert that [p, ~] is a qhain, From Theorem 4. 12, there exist1;1 a 

compact connected c;hc1,in C from x to p, Since X is compact, then 

C is closed and is a continuum, We will ne:x;t show that [p, x] C C. 

Suppose [p, x] C C. Then there exists a point y E [p, x] ijUCh that 

y IC. Define x' and x" as follows; 

~ I = $Up [C n [p, :,c]], and 

x" = min [G n [y, x]]. 

Let C' denote that part of C between x' and x'' 1 Then C' ilil 

connected; for if not, then C i~ not connec;te)d,. Sinc;e [x', x"] C [p, x) 

and [x',x") n C' = {x 1,x11}, then [x 1,x 11 ] isnotauniqueminimal 

continuum between x' and x''. It must be the c;:ase, therefore, that 

(p, x] C C, which implies tha.t [p, :)(:] is ~ c;hain. 

Let {x } be a net in X sui;h that x -+ x. It must be shown 
y y 

that [p, xy] ..... [p, x], To 1;1how tlhis, consider the following chain of set 

lnclusions: 

[p, x] C lim inf [p, x] C lim sup [p, x ] 
y 

C Hm f'iUP L(x ) ( L(x) . . y 

Suppose there exists a y E [p, x] - lim inf [p, x ] . 
y 

Then there is an 

open set V such that y E V and V n [p, x ] = </J, for a cofinal set 
y 
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of 'I's • Let A == { 'I I v n [p, x ] == 0} , and B = U { [p, x ] I 'Y e A} , 
'I 'I . 

The ciosure of B I B will be a continuum and, sinee x - x, then 
'I 

x e B. Th\ls, [p, x] C B, y e B, and v n [p, x ] .; 0, for some 
'I 

'I E A, which is a contradiction. Therefore, we have 

[p, x] C 1im inf [p, x), From the definitions of Hm sup and lim inf, 

it follows that Hm inf [p, x ] C lim sup [p, x ] . 
'I 'I 

minimal continuum containing p and x , then 
'I 

Since [p, x ] is the 
'I 

[p 1 x ] C L(x ) , 
'I 'I 

Consequently, lim sup [p, x ] C lim sup L(x ) . This last set lnc;lusion 
'I 'I 

and Theorem 4, 28 imply that lim sup L(x ) C L(x) . 
'I 

It l.s next shown that lim sup [p, x] C [p, x]. Let 

z e lim sup [p, x ] , To show that z e [p, x], it wUl first be i;hown that 
'I 

z c;ompar1;is with each element of lim inf [p, x ] . 
"( 

Suppose 

y e lim inf [p, x ] and that y does not compare with z I By Theorem 
'I 

2. 23, ~ is a continuous order. Hen<,e, there exist open sets U and 

V such that z e U a11-d y e V anq suqh that no element of U 

c;ompare s with an elenwnt of V. But there exists an 'I such that 

U n [p, x ] f. 0 and V (1 [p, x ] f. 0. Since [p, x ] is a chain, the 
'I '( '( 

ehi;ments Of u fl [p1 X ] c;:ompare With those Of v n [p, X ] I Which 
'( 'I 

co)'.ltrad1cts the above. Therefore, z comparl;l s wHh every element of 

lim inf [p, x ] , $ince lirn inf [p, x ] is a chain, then 
'( . '( 

{ z} U lim inf [p, x ] is a c;hain in L(x) . 
'( 

We now assert that z e [p, x]. For suppose that z i [p, x]. 

Define x' and x 11 as follows: 

x 1 = sup {L(x) (1 [p,x]} and 

x 11 = min {M(z) n [p,x)} 

Since x 1,x' 1 e [p,x], then [x 1,x 11 ] C [p,x]. Consequently, 
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[x 1,z] U [z,x 11 ] is a c:ontinm,1.m and lt follows frqm the definition of x' 

and x'' that 

{x',x 11 } = ([x 1,z] u [z,x 11 ]) n [x 1,x 11 ]. 

Thus [x\ x''] is not a unlqµI;) minimal continuum containing x' ;9.nd 

x'', Th'ls ~ontradicts the fa<::t that X is a he:redttar,Uy unic;oherent 

continuum. The:,;efore, z E [p, x] and, by the above, 

[p, x] C lim inf [p 1 x ] C lim sup [p, ~ J C [p, x]. 
'y 'y 

Henc;:e 

[p, x] = Hm inf [p, :x: ] = lim sup [p, x ] o:r 
'y . 'y 

[p, x ] ,.,i. [p, x]. 
'y 

Proof that (Ht) implles (i) , To show that < ii; monotone, "it 
-p 

will be shown that L(x) = [p, x], for all x e X. ;Let z e [p, x]. 

Xince X is uni~oherent, eac;h c;ontlp.uum containing p a:q.d x also 

<;:ontains z. From the c;lefinition of < , i~ follows that z e L(x), 
-p 

HE:ln<;:e, [p, xJ C L(x). Now let z e L,(x) , The defi.nition of < -p 

implies that every continuum c;onta·Lning p and x; also contc1,ins z . 

Therl;'lfore, [p, x] wiU (!;ontain z c1,nd L(x) C [p, x]. Hence, 

[p, x] = L(x) and, sin~e [p, x] ilil i;onnected, L(x) is c;onnected and 

< is monotone. -p 

Let x 1 y E X and isuppose that x ~p y and y :S.p x, By the 

above,. [p, y] = 4(y) and [p, x] = L(x). Now x < y implies that -p 

L{.,c) C L(y) and y < x implies that -p 

L(x) = L(y) or [p, y] = [p, x], $ince 

L(y) C L(x), Therefore 

[p, y] a,nd [p, x] are unlque 

minimal c;ontinuum, then x = y, Hi;mce, < is antisymmetric and 
-p 

this implies that ~p is a partial order orr;_, X. 
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Now if {x } 

" 
i~ any net in X wi,th .:,,:; - x, then [p, x ] - [p, x], " . " 

But [p, x] = L(x) and [p, ~ ] = L(x ) , so lim sup L(x ) = L(x). 

" " . " 
Consequently, by Theo;rem 4, 28 < ls clQaed. Therefore, < is a -p -p 

r;nonotone closed partial order on X, Q, E. D, 

After rea~iing th!:! last example an,d theorem, one might expect 

that all heredi,tarily unicohe rent contlnu.um adrr~.it a monotone, c;:losed 

partial order with unlqµe minimal element, In other words, it mLght 

be expected that every heredltarily -q.nLcoherent c:ont"lnuum is a 

generalized tree, The foliowing example demonst:i,a.tes that this is nc;,t 

the case, 

Exam12Le 4, $4 Let Z be the sub~et of the plane which ~onsi~t~ of the 
I ' ,,L' i 

untt segment on the x~axis 1 th,e µnit ~egment on the y-.axis and the 

vertical segmente of i~ngth ~ erected over the points with c:oordln,ates 

( .!., 0), n a. positive i,qtegeJ;'. Let E be the refleqHon of A through 
n 

the: line y = 1 , a.n~ let X = A. U B . 

S1,1ppoise X admHs a monotone, ele>sed partial order with unique 

minimal element. Then.. by Theorem 2. ZS, if the order is closed, 

the order h1 9on.Hnuous, Also, the minimal element p is either in A 

or in B , If p ~ A, <;:onslder points x and y sueh that x = (0, ~·) 

3 
and, y = (0, 4 ). :flen«:;e, x < y and, ~£ U and V are open sets such 

that ~ E U and y E V, then there exist poln~s of U that are greater 

than points <;ontained in V, This contradicts the definition of a 

continuoU,s qrd~r. Henc::;e, X does not admit ~ugh an order and ls not 

a. generalized tree, 'rherefore, there do exi13t hereditarily uni~oherent 

continua whic;h are not gE:lnera~i:zied trees, 



CHAPTER V 

A FIXED POINT THEOREM FOR 

GENERALIZED TREES 

In this chapte:r we develop a fixed point theorem for generalized 

trees,by using the order properties of the spaae 1 Although the result 

i$ not new, the approach is different than that used in most proofs. 

The study of the f~ed po"lnt property was ini~iated by Brouwer's 

[2] classioa.l theo;-em i11-troduced in 1912. Sinae that time, many 

mathematicians have spent muc;h time aq.d effort in the study of t4e 

fixed point property and from these l;lt\ldies have c;ome a variety of 

results. 

One of the early resulhs in this q.rec;!. was a fi,xed point theorem 

fo:r dendrLte ~ proved by Sohe rrer [ 13] in 1926 . Several years later, 

in 1941, Wallac;e [20] proved that c1, tree has the fixed point property 

and, ·Ll'.'.l 1954, Wa:i;d [22] p:r;oved the fixed point theorem for trees by 

using the order~hheoretic; qharacterization of t:rees. When Ward [28] 

introduced the idfila of generalized trees, he also proved the fixed pqint 

theorem for generalized trees c;3.nd his proof depeqded upon the order 

properties of these spi:l,ces. This is the approach we will use in this 

chapter, 

The reac;l.er interested in fixed po·int properties fo11 a larger 

variety of spaces may refer to Van Der Walt [12] ~ This book eontains 

60 
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a :rather ~omplete histo:ry of the development of the fixed point pr<:>p~:,:,ty 

and, although it does not i;ontain proofs, h~s a very complete bibliog

raphy on the topic. 

Before proving the main theorems, we prove several lemmas. 

DefiniUon 5;, 1 . A subset A of a QOTS, X, lij convex provideq. 

A = E(A). X is 9,uas·L-lo9ally ~onvex provided, wh~mever x e X ~nd 

E(x) C U, an open set, there ~e a c;:onvex: open set V such that 

E(x) C V C U, X is L?Galty c;op.vex provided, whenever x e X and 

x e U, an open eet, the:re is a convex open set V sl,lch that 

xeX(U. 

A net {x } ii; mo1;1otone increasing (dec;reasing) if, 
'I 

whenever >.. ..... < µ. i.n O. we have x'\ < x (x < x,). ' . (\..,.. fJ- µ.,.,... f\ 

OefiniHon S~ 3 I£ X is ~ topologiea.l space and {x } i,:i a net, we 
'I 

Sc!-Y {x; } <Jlusters at the poh1t z E X provided, whenever z E U, 
'I 

an open set, and >.. E n, there is µ. E n , >.. < µ., suc;h that ..,.. X EU, 
µ. 

The net {x } c;:onve:rges to :z; proYided, whenever 
'Y 

z e 'C,J, ~n open set, there is >.. e. n sµeh ~hat x e U, for ~11 >.. < µ., 
µ. -

Lemma. 5. 5 Let X be a ~ornpaQt f!ausdo::rff QOTS with t;ontinuoµs 

quasi order. Then every monotone net in. X c;:lu1:1ter~ and the set of 

q luster points is Qonta ined in E (z) , for s c;ime z e X . 

Proof, Let {,x } be a monotone de1;reasing net in X I Sinc;e X is 
'I 

compaqt, eve:ry net has a ,;luster point (Kelley [8], p. 136) 1 Let 2; 

be a. cli;i.lilter point of {x } and let U be an open set sueh that 
'I 

.E(z) C U, Since X is a c;ompaet Bausdorff QOTS wUh continuous 



quas'l order, X ls quF1,si ... loc;ally convex (Ward [22), :p, 147), Then, 

from the def'~nttion of quasi ... locally convex, there exist an open set V 

such tha~ V = E(V) and E(z) C V C U. Since {x } c;lusters at 
'Y 

z, there exist a X. such that xx. e V. Let µ :::. X.. Then there is 

such that x I e V, 
µ 

Sinc;e x is monotone de~rE;lasing, 

X I < X < X:\ 
µ - µ- I\ 

µ>X., x eV -, µ 

i;l.nd, V is convex, so that x e V, Then, for all 
µ 

and {x } cannot Gluste::r at a point out13ide of V. 
'( 

y ,/ E(z), define u = x - y. y Then E(z) C U . y From the above 

If 

argument {x} 
'( 

can cltister only at points of E(z). The eiame type of 

argument holds if {x} 
'( 

Cor'ollary 5. 6 If X ls a compa<;::t POTS with continuous order, then 

every mon.otone net iQ. X c,onverge s. 

Proof, l3y Theorem 2. 24, a POTS with a Gontinuous partial o:rder is 

a Haµsc;1.orf£ space 1 In every HauE?dorff space a net c0ave:t;'ge13 to its 

cluster points, Also, in q. Hausd.orff i;pa<:;e a net conver$es to one P.nd 

only one point. We then have the desll'ed result, Q, E. D. 

Lemrna 5, 7 Let X be a topolc:;igi<;al r3pace, f: X .,... X continuous, and 

XEX 
n 

~rnch that the E>equen.\::e f (x), n = 1, 2, . , . , clusters at some 

Z EX, 

Proof. 
n. 

1 Let f (x) = yi be a subsequence that c;onverges ~o z. Since 

f is c;onUnuous, f(y1) converges to f(z), But 
ni n/1 

f(y1) = f[f (x)] = f {x) and the subaequence 
n.+l 

f 1 (x) converges 

to f(z) or fn(x) <::lusters at f(z), Q. E, D. 



I.,.emma 5, 8 Let X be a topolagi(;al space, f: X ..,. X conti~1,1ou1:1 and 

{x0 }, n = 1, 2,,. 1 , a. 1;1equen~e in X suc;h that x0 = f(xn+l), lf 

{x0 } clusters at z, them {x0 } clusters at f(z), 

f is oontlnuous, {f (x )} 
n clusters at f(z), 

implies that {x~ _ 1} <;lusters at f(z), Sinc;e {x 1} and {x } are n,- n 

the same sequenGe, the sequenc;e {x } c::lust:ers at f(z), Q. E. D. n 

Def'Lnltion 5, 9 If X and Y are quasi ordered set13, a function 

f: X ... Y i1:1 ord~r-preserv~ng provldecl £(a) ~ f(b) in Y whenever 

a < b in X. 

Lemma S. 1 O Let X be a Bausdorff QOTS with compac:t maximp.l 

c:\la,:Lns, f: X,.... X cont~nuous and order preservlng. A necessary and 

sufficient c;on.ditlon that there exist a non-null compact set K C E(z), 

for some z e X, sw;h tha,t f(K) ::: K, is that there exist x e X ~uf;;h 

that x and f(x) are c;;omparable. 

J;=>roof. Suppose then~ exist a non-,null qompa~t set K C E(z), for 

some z e X, suc;h that f(K) ::: K, Let x e K C E{z). Then 

x e f(K) and f(x) e K C E(z), If x e f(K) an,d f(x) ~ E(z) then 

x < z < x and f(x) < z < f(:;sc), Bence, x < Hx) and f{x) < x, Then, 

for every x E K, x is <;omp<;l.rable to f(~). 

Now suppose thi;:re ~xist an x e X such that x and f(x) are 

c;ompa:i;able. Then either x < f(x) or f(x) < x I Sine;;e f is ol!'del',. 

preserving, either ~ < f(x) < £2 (x) or f2 (x) < f(x) < x. By incluc:;tion, 

the sequence {fn(x) I n::: 11 2 1 ••• } forms a rnonotqne sequenc;e or 

chain. Then {fn(x) I n::: 1, 2, ... } is contained in a c;ompa~t ma>.;:ir.pal 
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chain. FrQm Theorem 5. 5, {£1'(x)} clusters at some point z and a.U 

c;;lueter points are conta'lned in E(z). Let x E E(z), Then z < lf. < z 

and f(z) < f(x) < f(z). l'l. By Theorem 5. 7, f (x) ch;i.steri; at f(z) 1 

which implies that f(z) E E(z). Therefore, f(x) e E(z) which impLLes 

C n C n,-1 that f(E(z)) E(z) <jl-nd f (E(z)) · f · (f(E(z))). Let 

K = r1 {fn(E(z)) j n = 1, Z, .. ,} , From the fac:t that 

n . C n-1 f · (E(z)) f (f(E(z))), K is non-empty. E(z) is closed anq is a 

subset of the maximal chain, so · E(z) ls compact, Sinc;:e f is 

con~i,nuous and f(E(z)) C E(z), then £11-(E(z)) is compact for each n 

and K is compa~t. By the q.efinitlon of K, f(K) = K I Therefore, 

K is a non-empty GQmpact subset of E(z) <;1.nd f(K) = K, Q. E, D. 

Definition 5. 11 Let X be a ~opologi~al spaee and f a fl,mction such 

that f(X) c x. A poin.t x E x is a nxed ,Eoint for .. f if f(x) = x. 

c:;orollary 5, lZ If X Ls pa:t.'tlally ordered, then a necessary and 

suffident condition th?t~ f have a fixed point is that the.re exist x e X 

such that x and f(x) arE;:l comparable. 

Proof. In a POTS, E(x) = x for all x E X I Hence, the set K of 

the theorem w~ll be K = x and f(x) = x, Therefore f {x) and x are 

comparable. 

On the other hand, 'if x ap.d f(x) are comparable then the re 

exists ci, aet K C E(;z:) 1 for some z E X, with f(l<) = K. But, since 

X is a POTS, K = z ,;1.nd, the:r;!;lfore, f(z) :;: z, Hence, z is a fixed 

point, Q, E. D, 

We now pl'ove two theorf;lms concerning the fixed point property 

for gene:rc;1..H:?,ed tl'~es. The first theorem is rather res~richve arid 
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hol<h for only spe(;:ial types of continuous £unctions. Th~ secqnd 

theorem ls much more general and the only re strlc:tion on the function 

is that it be continuous. 

Theorem 5, 1~ If X is a generalized tree and- f(X) C X is 

continuous anq order pre serving then f(x) = x for some x e X. 

Proof. S·lnc;e X is a generalized tree, there exist a zero z and 

z ~ f(z). 'l'hen from Corollary 5. 12 there exists an x e X such that 

f(:,c) = x. Q, E. D. 

We are now ready to prove the main. theorem of this ehapter, As 

po;ri.ted, out eerrUe;r, this ts not a r.i.ew rei;rn.lt, put the app:ro11c;;h is not 

the one commonly used. Since we hav, shown in Chapter IV that a tree 

is a generalized tree, thl;l theo:rem A.ho ~ppl'ies to trees. 

Theorem 5, 13 If X is a generalized tree an.d f(X) C X is 

(;Ontln1.;1.ous, then £(x) = x for sqrne x e X, 

Proof. The set P = {x I x < f(x)} is non~empty since X has a zel"o. 

Let C be a maximal cha.in in P and z = sup C. First we show that 

z e P. Suppose z e X ~ P. Therm, from the defin:ition of P, ei,ther 

f(z;) < z OJ;' f(z) is not relafled to z. L(z) n L(f(z)) :f. 0 since 

there exists a zero, Let y = sup [L(z) n L(f(z))]. Then y < z and 

there ex;ists an increasing t'l.et {xa} such that y < x < z and su~h 
a 

that lim {x } = z, Since {x } C P, then f(x ) e M(x ) , for each 
~ a a a 

a, and, since f is continuous, lim {f(x )} = f(z). Sinee 
a 

f(z) e M(xq), for all a 1 then f (z) e r\{ M(xa)} = K. Since { M(xa)} 

is a collection of nei;;ted continua, then K is a GOnt°~nu1;1.m, Therefore, 



K has a zero, k. Since ~ and f(z) are in K, then k Ls a 

predecessor of qoth z and f(z) ar,i.d, for sqrne a , k < xa. But 

then, k ,/. M(xa), which contradlc:ts that k e n {M(xa)}. Therefore, 

z e P or z < f(z) and z is maximal with respect to this property. 

Suppose z <:: f(z) . Then, the re exist y such that z < y < f(z) . 

Since z ;: sup C, then f( [z, y]) n M(y) = £(~), Now 

L(f(y)) n L(y) # 0 and both of these sets are c::;ontinua. Therefore, 

L(f(y)) U L(y) is a c;ontinuum. Now, f(y) e f( [z, y]) and 

f(y) e L(f(y)) U L(y). Therefore, f( [z~ y]) U L(f(y)) U L(y) is a 

cont·Lnuum. If x' e [y, f(z)] c;1.nd x' I, y or x' I f(z), then 

x' ,/. L(y) and ,c;' ,/. L(f(y)), since z < x' and, by the above, 

x' ,/. f( [z, y]). If x' e f( [z 1 y]) U L(f(y)) U L(y) and ~· # y or 

:l(: 1 # f(z), then .:x:' ,/. [y, f(z)], Therefo:i;-e 

{ [y, f(z)]} n {f([z, y]) U L(f(y)) U L(y)} ;.: {y, f(~)} , 

which is not a connected set, TMs qqntradiets the hereditary uni .. 

coherence of X, Therefore, z 1:. f(z), whic;h implies that z = f(z). 

Q,E,D, 

Using the order propertief;i of trees, Smithsqn [14] has proved 

a fixed point theorem for lower 13emicontinuous fqnctions. The follow

ing is Smithson's theoremr 

Theorem 5, 14 If X is a tree and if F: X-+- X is a lower semi

<:;ontinuous multifunc:tton su<:;h that F(x) is ~onnec;ted for all x e X, 

then F has a fixed point. 

Proof, See Smithson [14]. Q. E. D. 



There have been many re1;1ulte developed abo1,1t the fixed point 

property for t:rees ane;l generalized tree,, but there still ex\st 

unanswered questions. One of the up.solved problems, prel!!lented by 

I1:1bell [7], ls the following: lf F ·ls a commutative famUy of 

continuous mappings of a tree T into itself, does there ·ex"lst a point 

x E T suQh that f (x) = x , for all f e F ? 
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CHAPTER VI 

SUMMARY ANO CONCLUS~ON~ 

It was tnt~nd,ed thc:1,t this dlssertat'ion be written in. su~h a way 

that a good undergra,duate atudent who has had a first course in topology 

might grasp thf:l matei,-ial presented here c:1,ncl that it could be of so;me 

use as a guld,e for a seminar or independent study course for advanc~d 

undergraduate students, n shoulcl reinforce many of the basiQ ideas 

learn,ed in a beginning course in topology and, would introduc;e the 

studen~ to the concept of a part'LaLly orcie:red topological space; a not'Lon 

wh'lch is seldom found ·~n elementary topology te.:,ctbooks or 4s only 

briefly discussed there, 

Chapter ir introdu,lil l\l foe bas·~c:; notions of quafil anq. parttaHy 

ordered topologic;al spac;ea and a glance at the number of pa,pers and 

books that were referred to here indicates that this chapter could be 

ex:tended into a study in itself. We have jui;it touc;heg on the material ip. 

this area and have included only those results nee<;led to get the desired 

characterization~ of p:rees. 

In Chapter Ill, we have given several charac.;:terizations of treesi 

and have emphasized those 1'.':haraeterizations ·tnvolv·Lng partiaUy 

ordered topologici:1-1 spaces. In Chapter IV, we have d~scussed the 

c;onc.:ept of generalized. trees, a notion whic;h is gotten by wec1,kening 

the order c;onditions in the characterization of tr~es. In Chapter V, 



the main emphasis ls on the fi,,xed point theorem for generalized tll'~es 

and on the proof given, l,l.si,ng order theoreti<;; methods, 
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