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CHAPTER 1
INTRODUCTION

This paper is concerned with charagterizations of continua which
have the property that every two points of the continuum are separated
by a third point. A continuum with this property is called a tree. For
the reader who is familiar with dendrites, several of the characteriza -
tions will gound familiar, There has been a great deal written on the
properties of dendrites. It should be pointed out that a dendrite is a
metric tree. The concept of trees is a generalization of dendrites
singe it is not negessary for the space to be metric.

The first part of this paper will deal with the concept of partially
ordered topological spaces. Chapter II will introduce partially ordered
topological spaces and includes the tools needed to characterize trees
in terms of a partially ordered topological space. The reader need not
be familiar with partially ordered topological spaces. Chapter II
includes all of the basic congepts needed. If the reader would like a
more detailed study and history of ordered topological spaces, he may
refer to Nachbin [12].

The concept of a tree has been contained in the litérature for
many years, However, the characterization in terms of-a partially
ordered topological space is fairly new. It first appeared in a paper by
Ward [24] in 1954. Not only is this characterization new, but the con-

cept of a partially ordered topological space is new, For many years



the study of topological spaces and ordered spaces was carried on ag
two separate topies. Nachbin [12] in 1947 began his research on
spaces which were equipped with a topological structure and an order
strugture, From his efforts he developed the concept of partially
ordered topological spaces. o

In Chapter IV the idea of generélized trees is presented., The
definition of a generalized tree results from weakening the conditions
on the order contained in the characterization of trees in Chapter III,
Several characterizations of generalized trees are given and the weak
cutpoint ordering is introduced.

There seems to be a great amount of material on the fixed point
property., We have added to that amount in Chapter V. Included are
several results of Ward [28], Wallace [18] and Smithson [14], The
only proof included will be the proof of the fixed point theorem for
generalized trees, This proof is included because it is in terms of an
ordered space.

We have required in this paper that the continua be compact,
There has been research done with continua whic¢h are non-compact
with the property that each two points can be separated by a third point,
There have been efforts made to determine the conditions necessary
for such a continuum to admit a nontrivial continuous partial order,
We have not included this topic in the paper because it could very well
be a paper in itself.

The paper is self contained to the extent that the reader does not
need any knowledge of ordered topological spaces. However, the paper

is written at a level that expects the reader to be familiar with the bagic



concepts of a topological space, A semester course in general topology

should be adequate preparation,



CHAPTER II

PARTIALLY ORDERED TORPOLOGICAL

SPACES

We begin with the basic definitions and results for partially
ordered topological spaces that will be used throughout the paper. The
reader who would like a more complete digcussion of partially ordered
topological spaces may refer to Nachbin [12]. Nachbin's book was one
of the first and more complete of the books containing results on the
relationghips between topological and order structures, One may also
refer to Ward [22] for a more complete goverage of partially ordered

topological spaces,

Definitlon 2.1 By a quagi order on a set X, we meana reflexive,

transitive binary relation, denoted by, <,

Definition 2,2 If a quasi order is also anti-symmetric, it is a partial

order,
e ———————————

Definition 2.3 If a quasi order satisfies the following linearity law
if x,yeX, then x <y or y < x,
then it is said to be a linear quasi order,

In other words, if in a quasi order all elemerits are related, then

it is a linear quasi order,



If x <y and x # y, we will denote this by x <y, and we
will often talk about the set of predecessors or the set of successors
of a point or of a set, We will use the following notation to express

these ideas,

Definition 2.4 L(A) = {ye X:y < x for some x ¢ A} .

Definition 2.5 M(A) = {y e X:x <y for some x & A},

Definition 2.6 E(A) = L(A) M M(A),

It is ¢clear from the above definitions that A (C E(A), If we let
X be the set of real numbers with the natural order and
A = [-2,-1] U [1,2], then we have E(A) = [-2,2]. Therefore,

A # E(A), for all A. However, if we let A = [0,1], then A = E(A),

Definition 2.7 If A = L(A), we say that A is monotone dec{easin&

or simply decreasing.

Definition Z,S If A= M(A), we say that A is monotone increasing

or simply increasing,

Let X be the set of real numbers with the natural order. If

A (-0,0] then A = L(A) and is monotone decreasing. If

A

[0, ) then A = M(A) and A is monotone ingreasing. The only
subset of X that is both increasing and decreasing is X,

It is possible to have a set which is both ingreasing and
decreasing., Consider a set X such that there exist an element x € X,

such that x is not related to any of the other elements of X, Then
L(x) = {x} and M(x) = {x}. Therefore {x} is an increasing and

decreasing set.



Suppose that X is a topological space endowed with a quasi

order. We make the following definitions.

Definjtion 2,9 The quasi order is lower semicontinuous provided,
whenever a f_b in X, there is an open set U, with a ¢ U, such

that if x ¢ U then xﬁb.

Definition 2.’10 The quasi order is upper sexpicontinugus provided,

whenever b £ a in X, there is an open set U, with a e U, such

that if x ¢ U then bﬁx.

Example 2.11 TLet X = {a,b,q,d} with a basis consisting of {a},

{a,b}, ¢; {a,b,c¢,d} . Let the quasi order on X be given by the

direction of the arrows jn the following:

as
.

The quasi order is lower semicontinuous, but naot upper semicontinuous.
To show the order is not upper semicontinuous, consider the two points
b and d. b £ d, butany open set containing d will contain a, and

b < a,

—

Example 2. 12 Using the same set X and order given in Example

2,11, we can construct a topology that gives an upper semicontinuous
order which is not lower semicontinuous. By ¢hanging the basis to the

sets {c}, {e,a}, {e,b}, {¢,d}, @, and {a,b,c,d}, we have the



result we want, Again we have b £ d and every open set containing

b contains ¢ with ¢ §_d.

Def'i.nition_ 2,13 A quasi order is semiqontir}gous if it is both upper

and lower semicontjnuous,

Definition 2. 14 A quasi order is continuous provided, whenever

a £b In X, there are open sets U and V, ae¢ U and b e V, such

that if xe¢ U and yeV then x £y,

Definition 2.15 A quasj order is strongly continuous provided;

(i) if a <b, then there exist open sets U and V such
that a ¢ U and be V andif xe¢ U and ye¢ V then
x<y.

(ii) if a and b are not related then there exist open sets
U and V such that a ¢ U and be V and, if xe¢ U

and y e V, then x and y are not related.

It is glear from the above definitions that if a quasi order is
strongly continuous then the order is also continuous and semicontin-
uous, It also follows from the definjtions that a continuous quasi order
is a semicontinuous order. However the converse is not true. There
exist semicontinucus quasi orders which are not continuous quasi
orders and continuous quasi orders that are not strongly gontinuous.
The following examples show that the converse statements are not

true.

o0}
Example 2,16 Let X = U An" where
n=0



g
u

o = {(0y)]o <y <1}, and

"

A

1
o Ugmlosy <} for n=1,2,3,

Let X have the usual topology of the plane. Define an order on X ag
follows:

1

(% L

. b) S_(n,d) if d <b and n=1,2,3,.,.

(0,b) < (0,d) if b<d.

It is easy to verify that the order defined is semigontinuous.
However, the order is not continuous, This gcan be shown by congider-
ing points of the form (0,b) and (0,d), with b <d, If we take open
sets U and V such that (0,b) e U, (0,d) e V, there exist xe U,

y € V such that y <x . This is a gontradiction to the definition of a
continuous quasi order, Therefore we have an example of a semi-

continuous quasi order that is not a continuous quasi order.

Example 2,17 Let X be the unit square of the plane. Let X have

the following order,
(a,b) < (g,d) if a =¢c, b<d
(a,b) < (¢,d) if a <e, b=0

(a,b) < (¢,d) if a=0,d-=1,

By a direct application of the definitions, it can be verified that
the order is semicontinuous and continuous, However, the order is
not strongly gontinuous, This can be shown by considering points of
the form (a,0) and (a,d) where d > 0. Then we have

(2,0) < (a,d), but any open set containing (a,d) will gontain points



that are not related to (a,0), Therefore the order is not strongly

continuous.

Example 2. 18 For an example of a strongly continuous quasi order,

we can use the set of real numbers with the natural order,

If a spage has an order that is not semicontinuous, continuous or
strongly eontinuous it does not follow that such orders on the space do
not exist, In Example 2, 16 the defined order was not continuous.
However, we gan define another order on X that is continuous, We

define a new order on the space X in Example 2,16 as follows:

(i_,b) < (+d) if b<d and n=1,2.3,,..,

(0,b) < (0,d) if b<d.

With this order we no longer have the problem as in Example 2. 16 with
points of the form (0,b) and ﬁhis new order is continuous. Thus a
space may possess hoth a continuous quasi order and a non-continuous
quasi order. The same statements may be made about semicontinuous
and strongly gontinuous orders.

QOur next definitions will relate the goncepts of ordered sets and

topological spaces.

Definition 2. 19 A quasi ordered topological gpace is a topological

space together with a semigontinuous quasi order, We will use the

notation QOTS for a quasi ordered topological spacge,

Definition 2,20 A partially ordered topological space is a topological

spage together with a semicontinuous partial order, We will use the

notation POTS for a partially ordeyred topologigal space.
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Any of the topological spaces with the orders given in Example
2,16, 2,17 and 2,18 are examples of POTS. From the definition of
a POTS it is clear that a POTS is also a QQOTS. The converse is not

true, and the following example verifies this.

Example 2,21 Let X = {a,bh,c} be provided with the discrete

topology, Define an order on X by the directions of the arrows in the

A

The order as defined-is-not a partial order, but it is a quasi order.

following:

Then X isa QOTS that is not a POTS.

As often happens, it is not always easy to prove something
directly from a definition. Therefore our first theorem will be a
characterization for a QOTS, The proof is simple, but gives us a

very useful tool.

Theorem 2,22 X is a QOTS if and only if L(x) and M(x) are

closed sets for each x ¢ X.

Proof. Let X bea QOTS and y e X. Suppose L(y) is notclosed,
Then there exist z ¢ L(y) such that z is a limit point of L{y). If
z ¢ L(y) then z £ y and, by the definition of a QOTS, there exist
an open set U such that z ¢ U and, forall xe¢ U, x £ y, There-~

fore, U M L(y) = @, and this contradicts z being a limit point of
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L{y). Hence L(y) is closed. By supposing M(y) 1is not closed, a
similar argument holds. Therefore both M(y) and L(y) are glosed,
Suppose L(x) and M(x) are closed sets for each x ¢ X.
Suppose there exist a,b ¢ X such that a £ b. Then define U to be

X - L(b), which is open. Then a ¢ U and, forall ye U, y £b,
Therefore < is lower semicontinuous, Now define V = X --M(a),
which will be open, Then b e V and, forall ze¢ V, a £ z. There-
fore < 1is upper semicontinuous. Then < is both upper and lower
semicontinuous and, from the definition of semicontinuous, < is semi-
continuous, So, X is topological space with a semicontinuous order

or a QOTS. Q.E,D,

In Chapter III and IV much of the results will involve QOTS and
in many cases we will want to show that the quasi order is a continuous
quasi order, The following theorem gives two charagterizations to use
in showing that a quasi order is continuous. One of the characteriza-
tions is given in terms of the graph of an order. By the graph of an
order we mean the following: Given a set X with an order <, the
graph of < 1is the subset of X x X formed by the points (x,y),
where x,ye¢ X and x <y, In the case of the natural order of the
real numbers, this graph is the half-plane situated above the bisector

of the first and third quadrants,

Theorem 2,23 If X is a topological space with a quasi order, then

the following statements are equivalent:
(1) the quasi order is continuous,
(2) the graph of the quasi order is a closed set in

XxX,
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(3) if a £ b in X, then there are neighborhoods N
and N' of a and b, respectively, such that N is

increasing, N' is decreasingand N/ N' = ¢,

Proof, Let < be a continuous quasi order on X, Denote the graph
of < in Xx X by G. Suppose (x,y)e Xx X suchthat (x,y)¢ G,
Since (x,y) is not an element of the graph of <, this implies
x £ y. Since < is continuous, there exist open sets U and V such
that xe¢ U and y e V and forall ae U and b e V such that
a £ b. The definition of a product space implies that U x V is open
in X xX andthat (x,y)e UX YV, The’n,‘ for all (a,b) e UxV,
(a,b) is not an element of G, Thus (UXx V)M G = ¢ and this
implies (x,y) is not a limit point of G. Therefore G contains all
of its limit points and is a closed set. We then have statement (1)
implying statement (2).

Suppose the graph of the quasi order is a closed set in X x X.
Let a,be X suchthat a £ b. Then, from the definition of the
graph, (a,b) does not belong to the graph of <. Since the graph of
< is closed, (a,b) is nota limit point of the graph. Then there exist
an open set of the form U X V where U and V are open sets in X
such that (a,b) e UxV and (Ux V)V G =¢. Then ae¢ U, beV
and, since (Ux V) M G = @, it follows that for xe¢ U and ye V,
x £y and y £ x. Hence, the quasi order is continuous, by the
definition, and we have statement (2) implying statement (1),

Let < be a continuous quasji order on X with a,b ¢ X such
that a ﬁ b, By the definition of continuous, there exist open sets

U, V such that for all xe¢ U and yeV, x £ y. Define N = M(U)
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and N' = L(V). Then N and N' are neighborhoods of a and b
respectively,

Suppose N ) N' # @. This implies there exista z ¢ N () N',
From the definitions of N and N', there exist xe¢ U and ye V
such that x < z and z < y. Then, from the transitive property of
<, we have x <y, This contradicts the relation of the points in U
and V, Hence, we have N () N' = ¢, By the way N and N' were
defined, we have N as increasing and N' as decreasing, Then N
and N' satisfy the conditions of statement (3). Therefore statement
(1) implies statement (3),

Suppose there exist neighborhoods N and N' which satisfy the
conditions of statement (3), Let a,b ¢ X such that a £ b, Then
there exist open gets U and V suchthat ae¢ U (C N and
beV ( N'. Since N is ingreasing and N' is degreasing for all
x e N, and vy e N’,vtzhen x ﬁ y. Thus (a,b)e UX V and, for all
(x,y) e UxV, x fw y. Hence (x,y) is not an element of the graph
of < and gonsequently (U x V) M G = ¢§. Therefore (a,b) is nota
limit point of the graph of <. Hence, the graph is closed and we have
statement (3) implying statement (2).

We can now assume any of the three statements to be true and
show that the other two statements are also true. This completes the

proof that the three statements are equivalent, Q,E.D.

Theorem 2,24 A POTS with continuous partial order is a Hausdorff

space.

Proof, Let x,y e X suchthat x # y. By the def@nition of

continuous order, there exist open sets U, V suchthat x e U,
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yeV and U M V = @ . Therefore X is a Hausdorff space.

Q.E.D.

Theorem 2,25 If X is a topological spage with a linear quasi order,

then continuity and semicontinuity of the quasi order are equivalent

properties of it.

’_P_z:_g_c_{. As pointed out earlier, the definition of gontinuous order
implies semicgontinuous order, To complete the proof of the theorem
we need to show that semicontinuity implies continuity under the
conditions stated in the hypothesis. If a £ b then b <a, since <
is linear. If there exists ¢ such that b < c¢c < a, thenlet
U=X-M{) and V=X -L(c), Then U and V are open sets such
that be U, ae V and U (M V = ¢. If there does not exist such a
c, thenlet U = X -L(a) and V = X -M(b). Then be U, ae V
and, singce < islinear, U/ V = ¢, andforall xe U and yeV |

we have x £ y. Therefore < is continuous. Q,E.D,

As can be seen from some of the previous examples, that it is
not necessary for all of the elements of a set to be related. In
Chapter III and IV we will be concerned with subsets of the space such
that all of the elements of the subset are related, In other words, the
order on the subset is a linear quasi order. The following definitions

formalize this idea,

Definition 2, 26 A chain is a subset of a quasi ordered set which is

linear with respect to the quasi order.

Definition 2.27 A maximal chain is a chain which is properly

contained in no other chain.,
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In Example 2, 16 the subset {(;11-, y)]%— <y <1} isa chain,

but ig not a maximal chain. The subset is contained in the maximal
chain {(i”,)’)ro <v s 1} . In this space there exist an infinite
number of maximal chains, However, in some spaceg there may exist
only one maximal chain. Ag an example of this situation, consider the
set of real numbers with the natural order. The only maximal chain is
the space itself, On the other hand, by applying Zorn's lemma, we are
agsured of the existence of maximal chains in any quasi ordered set,

The following result is due to Wallace [18],

Theorem 2.28 Every maximal chain in a QOTS is a closed set.

Proof, Let C be a maximal chain ina QOTS, We can express C by
C = M {L{x) U Mx)|xeC},

From Theorem 2,22, L{x) and M(x) are closed sets, Then
L(x) U M(x) is glosed and M {L(x) U M(x)|x ¢ C} is closed,

Q. EOD’

Definition 2.29 An element y in a quasi ordered set X is minimal

whenever x <y in X implies y < x,

Definition 2,“30 An element y in a quasi ordered set X is maxima_l

whenever y <x in X implies x <y,

In Example 2, 16, the point (0,0) is a minimal element, as are
all of the points of the form (;11—, 1). In view of this, it is wrong to
conclude that there exists only one rminimal element., There may he

one, any finite number, or an infinite number of minimal elements,
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Also, by considering the set of real numbers with the natural order,
we can see that there may not be a minimal element. The same is true
when considering maximal elements,

In Chapter III when we develop the characterization of trees, we
will be working with compact connected spaces. The next few theorems
will involve compact connected spaces. The next few theorems will
involve compact connected spaces and will give us some results we will

need in Chapters III and IV.

Theorem 2.31 A non-null compact space endowed with a lower (upper)

semicontinuous quasi order has a minimal (maximal) element.

Proof, Let L = {L(x)|x ¢ X}, where X is a compact space with a
lower semicontinuous quasi order. We can partially order L by set
inclusion. Then, by the Hausdorff Maximal Principle (Kelley [8],
p. 32), there exists M ( L such that M is a maximal chain with
respect to the set inclusion relation, Since L(x) is closed and X is
compact, {L(x) l L(x) € M} has the finite intersection property. Then
there exists y e M {L(x) | L(x) ¢ M} (Kelley [8], p. 136), We assert
that y is a minimal element. For suppose there exists z ¢ X such
that z <y. Then y ¢ L(z), which implies y ¢ M {L(x)l L(x) ¢ M}.
This is contradiction to the way y was defined. Therefore y is a
minimal element,

A similar argument gan be used when the quasi order is upper

semigontinuous, Q.E.D,

Definition 2,32 A partially ordered set X is dense in the sense of

order, or, more simply, order dense provided, whenever x <y in

X, there exists z ¢ X suchthat x<z <y,
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As might be expected, not all partially ordered sets are order
dense. Any partially ordered set that contains only a finite number of
elements will not be order dense, An example of an order dense set
that the reader should be familiar with is the set of real numbers with
the natural order. It is possible for a proper subset to be order dense,
The subset of rational numbers is order dense since there always exists
a rational number between any two rational numbers.

In the next three theorems we will investigate conditions
sufficient to ensure the connectednesgs of a POTS and the maximal
chains of a POTS. Only the results we will need in Chapter III have
been included. For further results the reader may refer to Ward [23]

and Eilenberg [4],

Theorem 2,33 A connected chain in a POTS, X, is order dense. If

X has compagt maximal chaing, then any order dense maximal chain

is connected,

Proof, Let C be a connected ¢hain in X. Suppose that C is not
order dense, Then there exist x,y ¢ C such that x <y and
M(x) M L{y) = x U y, This implies that C C L(x) U M(y), Since
there does not exist an element between x and y, we have
L(x) M M(y) = ¢, This implies that L(x) U M(y) is not connected,
Singe x,y ¢ C then C M L(x) # 8 and C /M M(y) # §. Therefore
C is not connected, This contradicts C being connected and, there-
fore, C is order dense,

Suppose X has gompact maximal chains and that C is a non-
connected maximal chain of X. Singe C is non-connected there exist

separated sets P, Q suchthat C = P U Q. Then by Theorem 2,31,
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C contains a maximal element u. Suppose ue Q, Since P is
compact, P contains a maximal element p and p <u. Define
P'=L{p) M C and Q' =C -P'. Q' is non-empty since u e Q',
Then P' and Q' are separated sets and, by Theorem 2.13, Q!
contains a minimal element q. Then M(p) M L(g) = p U q, which

implies that C is not order dense, Q.E.D.

To show that gompactness is necessary to ensure that any order

dense maximal chain is connected, we offer the following example,

Example 2,84 Let X = [-@,0) U (0,®)], with the natural order,

The only maximal chain of X is X, However, X is not compact and
is not connected. The order on X is order dense. Therefore, there
exists an order dense maximal chain that ig not connected. Hence, the

condition of compactness is necessary in the proof of the last theorem.

Theorem 2,35 Let X be an order dense POTS with compact

maximal chains and suppose that either the set of maximal elements
or the set of minimal elements of X is connected, Then X is

connected,

Proof, Suppose the sef of maximal elements of X is connected and
that X = P U Q, where P and Q are separated sets, Then the set
of maximal elements is contained in P or in Q. Without loss of
generality, suppose that the set of maximal elements belongs to Q.
Then there exists a maximal chain C meeting P, Since C contains
a maximal element, by Theorem 2.31, C (1 Q # ¢, Then
C=(CMP)U (CMAQA), whichis a separation of C. This gives a

contradiction ta Theorem 2.33. Therefore X 1is connected. A
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similar argument holdg if the set of minimal elements of X is

connected, Q.E.D.

Theorem 2.36 Let X be a POTS with compact maximal chains,

Then 3 necessary and sufficient condition that every maximal chain be
connected is that L(x) M M(y) be gonnegted for every pair of

elements x,y e X.

Proof, Suppose L(x) M M(y) is connecgted for every pair of elements
'x,y ¢ X and that X contains a non-connected maximal chain C. Then
C=PUAQ, where P and Q are separated sets, Using the same
argument as in Theorem 2,33, we can find points p and q sugh that
M(p) M L{q) = p U q. This contradicts the assumption that
L(x) M M(y) is connected for every pair of elements x,y e X,
Therefore X does not contain a non-connected maximal chain.

Suppose now that there exist p,q ¢ X such that L(p) M M(q)
is not connected. Let C be a maximal chain containing p and q.
Since L{p) /M M(q) is not connected, then there exist separated sets
P and Q suchthat L(p) M M(q) = P U Q. Since L(p) M M(g) is
closed, it is also compact. Then, by Theorem 2.31, L(p) M M(q)
has a maximal element u, Without loss of generality, suppose u e Q,
P is ¢ompact and, by Theorem 2.31, P has a maximal element.

Define P' and Q' as follows:

P! L{u) M [Lp) M M(q)]

At

and

1t

Q' = [L(p) M M(g@)] - P,

Q' is non-empty since ue Q'. Then L(p) M M(g) = P' U Q',
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~where P', Q' are separated sets. By Theorem 2. 31, there exists a
minimal element 2z ¢ Q', Then P' contains a maximal element v
and Q' contains a minimal element z. Therefore

M(v) M L(z) = v U z. Hence, L(p) U M(y) is not order dense
which implies C is not order dense. Then, by Theorem 2,33, C is
not connected. Therefore, if every maximal chain is connected, then

L(x) M M(y) is connected for every pair of points x,y ¢ X. Q,E,D,

Definition 2,37 1If points p and g are not separated by any point, we

write p~q, If two sets A and B are separated sets, we will denote

this fact by writing A|B.

The main result of this chapter is a method to construect a partial
order that will give us a POTS. We want the order to be such that it
will characterize a tree, Up to this point we have not developed a
method to construgt an order that will give us the desired results. The
method is not difficult to develop, but we will need three more defini-
tions and three theorems. Ward [22] was the first to apply the results
to characterize trees in terms of a partial order,

In the three theorems to follow, the space we will work with is a
locally connected space, This is necessary since a tree is locally
connected. It is not obvious from the definition of a tree that a tree is
locally connected, Some definitions do assume a tree to be locally
connected, but we chogse not to include this assumption in our definition,
However, our first efforts in Chapter III will be that of showing that a
tree is locally connected. Therefore, starting from any of the common
definitions we have a tree being locally connected and it is negcessary

to include this fact in the hypotheses of our next theorems.
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Definition 2,38 A point e of a topological space is an endpoint if,
whenever e ¢ U, an open set, there is an open set V such that

ee VCVCU, and V-V isa single point.

Definition 2,839 A prime chain is a continuum which is either an end-

point, a cutpoint, or a nondegenerate set E containing distinct

elements a and b with a ~b, and representable as

E = {x:a~x and x~b}.

Definition 2,40 An endelement is a prime chain E with the property

that if E (C U, an open set, then there is an open set V such that

ECYVCU and V-V isa single point.

Example 2.41 Let X = [o, 1], with the usual topology. The points
0 and 1 are endpoints and all other points are not endpoints. The
space is not a prime chain since for every pair of points there exist a
third point which separates the two given peints. KEach point of the

space would be a prime chain since each point is a cutpoint or endpoint.

Example 2.42 Let X be the following space,

X = ()= +y% = 1} U {6, 9) [ x-2)%+y% =1, a =23}

U {(x,0)]1 <x <2 or -2<x< -1}

with the usual topology of the plane, In this space there are no end-
points. There are cutpoints, however, all points of the form
{(x,0)]1 <x <2 or -2 <x < -1} arecutpoints. The sets
{(x, Y),(x-a)2+ yz =1, a==%3} and {(x, y)lxz-i- yz = 1} are prime

chains. The set {(x,y)]x2+ yz = 1} 1is not an endelement, for any
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open set containing {(x, y)]x2+ YZ =1} is suchthat V - V will
contain at leasgt two points, This gives us an example of a prime chain

that is not an endelement.

- Theorem 2.43 Let X be a connected, locally connected Hausdorff

space. If E is an endelement of X, then E contains at most one

cutpoint of X.

Proof. Suppose E 1is an endelement of X such that it contains two

distinct gutpoints X, and Xy Then we have

X -x,.= A

0 Ao and E-xOCAO,

AU B A

3
R
n

and E—XICAI.

Since X is locally connected we can let AO and A’l be the com-~

ponents that contain E -x, and E -x respectively, Now if

0 0

By- B, = $ then B, C B, and X = (Alu Ay) U B, with

AO UJ A1’ BO , This gontradicts that X is connected. Therefore,

BO - B1 # 0, A similar argument shows that B, - B, # 6. Then

there exist Vo € BO - B, and y;¢B;-B Let Ci be the com-

1 0’

ponent of v in X - X, - Then we have

yOeCOCX—XO, COCBO
and
yleCICX—xl, CICBI'

Suppose coﬂ C1 # . Since C, and C, are connected, then

0
CO M C1 is connected, Since x4 ’{CO’ C0 U C1 C B1 and it
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follows that Cg, C By. If y,eC, then Yo € By, which contradicts

the fact that Yo € BO - B1 . Therefore, we have CO M CJ1 = 0.

The way we picked Yo and ¥y gives us that Yor ¥ { E, If
we let U be the open set defined by U = X - Yo~ V1¢ then U is an
open set such that E C U, UﬂCO# g, Uﬂcl# ¢ and U
contains neither C'O or C1 . Since E is an endelement, there exist
an open set V suchthat EC VC U and V -V = {p}. Since

V-V isa gingleton set, either x_, or x, or botharein V,

0 1

If both x. and x, are in V, then V M CO # ¢ and

0

VM C, # @, since C, and C, are components of X - x, and

X -x. with x eao and xleal, Now (V-V)ﬁco#ﬁ, for

1 0

if not, G, = (Co“v) U (G, M V) with co-‘\"r and C M V non-

void open sets since Co M V # ¢ and Yo € C0 - V. Therefore,

C0 is not connected, a gontradiction to C0 being a component. This

gives us that (V - V) N CO # 0 or (V-Vv)N CO = {zo}. Same
type of argument gives (V - V) M C,= {Zl} ,» since C, M C, = @
and z # Zy This contradicts that V -V is a singleton set. There-~

fore, the assumption that both X and x, are both in V is false.

Hence, x, or x, isnotin V. Without loss of generality, suppose

0 1
x1¢V, Then xleECV or x

1 e V - V., Suppose

(V-V)mclzw. Then C. = (C -V)U(clm\f), cl_'\?;é(a,

1 1

C, MV # @ and C,- V[Cl (M V. This is a contradijction to <y

being a component, Henge, (V - V) M C1 # §. A similar argument

shows that (V - V) M CO # @, Therefore, X, ¢ CO and x) e C1

which contradicts C0 M C1 = ¢, Hence E contains at most one

cutpoint of X. Q.E,D.
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The orem 2.44 If X is a connected, locally connected Hausdorff

space and E is an endelement of X containing a cutpoint x of X,

then E -x and X ~E are separated sets,

_13_1;9_9_5, In a locally connected space a component of an open set is an
open set, Therefore, it is sufficient to show that the eomponent of
X ~x contajning E -x is E -x.

Let CO be the component containing E - x. Suppose there
exista ye Cy-E. Since x separates X then C, # X -x and
there exist a component C distinct from CO . X is a locally connected
'Hausdorff space, so there exist a connected open set U such that
xeU, y¢dU and C-U # ¢, Then (COU U) -y 1is an open set
containing E. Since X is locally connected there exists a connected
open set V suchthat E C V (C (COU U)-y and V-V = {p}.
Suppose p ¢ CO, Then CO = (Co— V) U (CO M V) with

(Cy - V) | (C M V), This gontradigts that C, is a component,

0

Therefore, pe C, and p # x, This implies xe¢ V and

0
CMN V #@. Suppose p¢ C. Then C = (CMN V) U (C -V) with
(CM V) l (C ~ V). This is a contradiction to C being a component,

Then pe C and pe C, which contradicts CO (YC = ¢. There-

0

fore the assumption that there exists vy ¢ CO - E is false, Then the
component of X - x containing E -x is E -x, Therefore E -x

and X -~ E are separated sets. Q,E.D,

We are now ready to present the main theorem of this chapter.
This theorem gives us a method to induce a quasi order on a locally
connected gontinuum with an endelement, The following definitions

establish some of the additional terminology that will be used,
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Definition 2,45 Let X be a locally connected continuum with an

endelement E. Define a relation, <, in X by x <y if, and only
if, x e E, or x =y, or x separates E and y in X, We will

refer to this relation as the cut-point ordering.

. Theorem 2,4_6 The relation < defined in Definition 2.45 ig a semi-

continuous quasi order. If E is a single point, then < is a partial

order.

Proof. To show that < is a quasj order, we need to consider three
cases to show that the relation is transitive, It follows from the
definition that the relation is reflexive.

Let a <b and b < ¢,
(i) If a=b or b =c¢ then the definition asserts a <ec,

(ii) Assume a # b # ¢ and that ¢ ¢ E, Then ¢ f,b and,
since b < ¢, b must belong to E. A similar argument
implies that a ¢ E and it follows that a < ¢. Now
assume that a # b # ¢ and be E. Then b <a and
this implies that a must belong to E. Hence, a < c.

If a# b #c and a ¢ E then a <c.

(iii) Assume that a # b # ¢ and that a, b, c ¢ E. Then

from 1;he definition of <, it follows that

X-a=AUB, A|B, ECA, beB, and

X-+-b

MUBPAH%,ECLce&

Now suppose ¢ ¢ A, Then a is an element of A1 or

B If a ¢ Al then

1°
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X =(AMB;) U (AUB) and (AN B,)|(AU B),

This is a contradiction to the fact that X ig connected.

If aeBl then

X-az= (AmBl) U (AIUB),
with ce A M B, and ECAIUB. Then a < e.
Therefore, we have a < ¢ for all possible arrange-
ments of a, b, ¢. Thus the relation < is a quasi

order.

To show that the relation < is semicontinuous, we use Theorem

2.22 and show that L(x) and M(x) are closed, for each x ¢ X, To

show that

L(x) and M(x) are glosed, we gonsider the two cases,

xeE or xeX - E,

(i)

(i1)

Suppose x ¢ E. Then from the definition of <,
L{x) =E and M(x)=X. E and X are both closed,

so we have IL(x) and M(x) closedif x¢ E.
Suppose x ¢ E, Then
Lx) = {x} U E U {y]|y separates E and x}.

Singe the points of E are not separated by any point,

we have
{yly separates E and x} = {y|y separates a and x,a¢ E},

If a and x are two points in a connected loegally
connected Hausdorff space X, then the set of cut points
separating a and x is closed {Hocking and Young [6],

p. 110, Th 3,8). Then L(x) 1is the union of a finite
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number of closed sets, which implies that L(x) is
closed.

Suppose x ¢ X - E. Then
M(x) = {x} U {y|x separates E and y in X},

Again we ¢an represent {y]x separates E and y} by
{y|x separates a and vy, ae E}. By an argument
similar to that above, this set is elosed. Then M(x)

is expressed as the union of two closed sets, which
implies M(x) is a closed set.

Therefore, we have shown that the relation < isa
semicontinuyous quasi order. We now show that the

quasi order is a partial order if E is a singleton set,

If E is a single pointand a < b, b < a then a=b. For if
a # b then, either a or b does not belong to E. Suppose a ¢ E.
Then a < b, but b cannot separate a from E and b £ a, Then
both a and b do not belong to E. Then we have
Xra=AUB, A|B, ECA, beB

and

X-b=A UB;, A|B;, ECA, acB.

1By
This implies that the following holds,

X=(@ANA)U BUB), (ANA)|[BUB).

This contradicts X being connected. Therefore < is anti-symmetric,

Hence < is a partial order. Q.E.D.

To show that it is necessary for the space to be locally connected

we give the following example.
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) [vo]
Example 2.47 Let X = U A'l where the A'l are defined as

i=-1
follows:
Awlz{(x,O)IOS_xf_l},
Ay ={(0,y)] 0 <y <1}, and
A ={ty)|x=2,0<y<1}, n=1,23,.,,,

We can choose the point (1,1) as the endelement in Definition 2, 45,
Now consgider the points a = (0,0) and b = (Q, *;‘). We then have

a £ b. Every open set U containing a will also ¢ontain a point of
the form (x,0), x # 0. But all points of the form (x,0), x#0
precede b. Thus the order is not semigontinuous. Therefore, the
condition of local connegtedness is negessary for the order to be a

quasi order,



CHAPTER III
CHARACTERIZATIONS OF TREES

In this chapter we develop several characterizations of trees,
some of which afe commonly found in textbooks. The main idea
presented here is the characgterization of trees in terms of POTS, a
characterization which is fairly new and seldom found in textbooks,

Before further discussion, we will introduce the formal definition
for a tree. First, we will agree that when the term continuum is used,

we shall usually mean a compact connecgted Hausdorff space,

Definition 3,1 A tree is a ¢ontinuum in which every pair of distinct

points is separated by a third point.

2
Example 3,2 Let A = U An , Where Ar1 is defined as follows:
T . n:o

g
4
i
o
4
ot
A
%
A
—
—

{(X?y), y

>
i
n
—
1
—
N
<
A
—
[——

and

g
I

, = {xy)|x=-1, -1 <y <1}.

—

Then X is a continuum such that every two points are separated by a

third point, Therefore X is an example of a tree.

Example 3.3 There exist a space such that the space is a connected

Hausdorff space with the property that every pair of points is separated

29
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by a third point, An obvious such example is the spage of real
numbers, However, the set of real numbers is not compact and conse-

quently is not a tree,

There are three things which sould be emphasized about the
definition of a tree. First, we have not assumed the continuum to be
locally connec¢ted, This is assumed in many definitions. However,
one of the first results in this chapter is to prove that a tree is locally
connected.

Second, we point out that the continuum is compact. There has
been some effort to find conditions necessary in order that a connected,
locally connegted space X, with the property that each two points can
be separated in X by the omission of some third point, admit a non-
trivial continuous partial order, Exact conditions necessary for a non-
compact space to admit sugh an order are not known, Ward [25],
However, by adding ecompactness we gan get the desired results. This
will be our characterization, It has been shawn by Wallace [19] that
there does exist a non-compagt space that dees not admit a nontrivial
continuous partial order.

Third, the spage is not negessarily a metri¢c space, If the space
is metric then a tree is called a dendrite and much has been developed
in the study of dendrites or metric trees, For a complete coverage of
the study of dendrites one may refer to Whyburn [29], one of the first
books to contain the concept of dendrites, Ewven though it was one af
the first, it does contain the major part of what is known about dendrites.

An even later reference on this topic is Kuratowski [10],
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In thé last few years there has been some effort directed at
finding conditions for a tree to be metrizable [3]. In other words,
given a tree, under what con,d'lt'lons_is it a dendrite?

In Chapter II, Theorem 2.45, we developed a method of inducing
a partial order on a locally connected continuum, In this chapter we
will use this theorem to induce a partial order on a tree, Before using

the theorem we must show that a tree is locally connected,
Lemma 3.4 A tree is locally connected,

Proof. Let X be a tree, X is regular If, for every point pe X and
every point q of X distinct from p, q is separated from p by a
finite set, (Moore [11], p. 129), We then have that every tree is
regular in this sense, Then by (Moore [11], p. 129, Theorem 178) if
X is a regular continuum f.hen for all points p € X, every domain U
such that p e U contains a domain V containing p and V is bounded
by a finite subset of U. Then by (Whyburn [29], p, 19, Theorem 13,1)

it follows that X is locally connected. Q. E.D.

Our main characterization of a tree is in terms of a POTS and,
as might be expected, we would like to use the results developed in
Chapter II, We can use Theorem 2.46 if a tree gontains an endele -
ment, Also, we would like the endelement to be a point so the order
will be a partial order. We can get the desired results from a theorem

contained in a paper by Wallace [21],

Theor_em 3, 5 If X is a continuum that contains a cutpoint then it

contains an endelement,
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Proof. See Wallace [21], Q.E.D,

Thus, by Theorem 3,5, every tree contains an endelement, But
the only prime chains of a tree are cutpoints and endpoints, Conse-
quently an endelement must be a single point. We now have the tools

to prove the characterization of a tree in terms of a POTS,

Theorem 3,6 Let X be a compact Hausdorff spage. A necessary

and sufficlent condition that X be a tree is that X admit a partial

order, <, satisfying

(1) < is semicontinuous
(ii) < is order dense
{iil) for xe¢ X, y e X, it follows that L(x) M L(y) is
a non-null chain

(iv) M(x) - x 1is an open set, for each x ¢ X.

_I_D_y_ggf_, Let X be a tree and choose e ¢ X, such that e is an endele~
ment and let X have the semicontinuous partial order defined in
Definition 2.45. By this definition, (i) holds. To show that < is
order dense, we consider any two distinct points x,y € X. We must
show that there exist a point z such that x <z <y. From the
definition of a tree there exists a point z which separates x and vy,

. So we have

X -2z = AU B, where A’B, xe A, and y e B.

If x=-e, then from the definition of <, we have x <z <y. If

x # e, then

eeAl, and y € B

1 1?

X—x=AUB1,where AllB 1
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Suppose 1z ¢ Al‘ Then
X = (AUA) U (BMB)), where (AU A)|(BMNB,),

which contradicts X being connected, Therefore, x <z. Suppose

e e B, Then

X = (AUB)) U (A, MB), where (AU Bl)l(AlmB),

which is a contradictioﬁ to X being connegted. Therefore, e ¢ A
and z <y. Hence, x <z<y andcongequently < is order dense and
therefore condition (ii) holds,

To show (iil), we note that e ¢ L(x), for all x e X. Then
L{x) M L(y) # 8, for all x,y ¢ X. Now we must show that L(x) is
a chain. Let X1 Xy € Li(x). If X = e, then we have 2 < X, < x.

Suppose that x, # e and x, # e. Then from the definition of <,

we have

wal = AIU Bl’ where AllBl, eeAl, and xeB1
and

X--x2 = AZU BZ’ where AZ'BZ, eeAz, and xeBZ-

Suppose X4 £ X, and X, £ 3K Then x, ¢ A1 and X € AZ' This

implies that

X = (AU Aa) U (B, M B,), where (A, U A2)|(B1 M B,) .

This implies that X is not gonnected, a ¢ontradietion, Therefore,

x. < XZ or X, < x, and this implies that L(x) 1is a chain, Then

1 1
any subset of L(x) is a chain and, therefore, L(x) M L(y) isa

non-null chain, Thus condition (iii) holds.
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To show (iv), we consider two cases: x=e and x#e, If

x=e then M(x)-x =X -x and X -x jisopen. If x# e then

M(x) -x = {Ba]qu =aA UB_, Aa]Ba, ecA},

For all «, Bo: is open and the union of an arbitrary number of open
sets is open, Therefore, M(x) - x is an open set. This implies
¢ondition (iv) holds, We have now shown that if X is a tree, it admits
a partial order <, satisfying conditions (i) - {(iv).

Now let X be a space that admits a partial order satisfying
conditions (1) - (iv). Suppose there exist two distinct minimal elements
x and y. Then L(x) M L(y) is a non-null chain, by condition (iii),
But L(x)=x and L(y)=y since x and y are minimal elements.
Therefore, x =y, a contradiction that x and y are distinct elements,
Hence X has a unlque minimal element e and, therefore, the set of
minimal elementg is connected, Thus, by Theorem 2.35, X is
connected and is, consequently, a continuum.

Let x and y be distinct elements of X. If x <y then, by
(ii), there exists =z ¢ X such that x <z <y. By (i), M(z) is

closed and, by (iv), M(z) -z is open, Hence
X -z = (M(z)-2z) U (X - M(z)), where (M(z) - z)|X - M(z) ,

ye M(z) -2z, and xe¢ X ~M(z), Therefore z separates x and y.
If x and y are not comparable, then, by (iii), L(x) M L(y) is a
non-null chain. By Theorem 2,31, there exists a maximal element z
of L(x) M L(y). There exists a t such that z <t <x, Then

x ¢ M(t) - t, which is open, and y ¢ X - M(t), which is open, Hence,

we have
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X -t = (M(t) -t) U (X -M(t)), where (M(t) - t)[(X - M(t)),

x e M(t) -t, and y e X - M(t)., Therefore t separates x and vy,

Hence X is a continuum such that every pair of distinct points is

separated by a third point, Q.E.D,

Example 3,7 Let X be the space given in Example 3.2, As an

endelement of X we choose the point (1,1). We then have a partial
order on X, by Definition 2,45, The following relations hold:
(1,1) < (a,b), forall a,be X, (1,0) < (1,-1) and (1,0) < (0,0).
We could have chosen the point (1, -1) as the endelement in
order to obtain a partial order., If (1, -1) is used, we then have
defined the following relations; (1, -1) < (a,b), forall a,be X,
(1,-1) < (1,0), and (1,0) < (0,0). Direct comparison of this
relation with the above reveals that they are different, Therefore, the
partial order given by Definition 2.45 may not be unlqué. In the case
of a tree, there will be at least two distinct partial orders. This is

true begause there exist at:-least two endpoints of a tree,

Since X is compact and L(x) is closed, Theorem 3,‘ 6 could ke
stated with condition (iii) replaced by
(iii') f xe X and ye X then L(x) M L(y) is a non-

empty compact chain.

D“efin';t'lo‘n' ‘3,,‘8 A Hausdorff space X is said to be dendritic if and only

if it is connected, locally connected, and has the property that each two

points can be separated in X by the omission of some third point,
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The reader should not confuse a dendritic space with a dendrite.
As mentioned earlier a dendrite is a metric tree. One should notice
that in the above definition the space is not required to be compact
while a compact dendritic space is a tree. We mentioned earlier in
this chapter that it is not known just how nice a space must be in order
to admit a nontrivial continuous partial ocrder. However, Ward [25]
has stated conditions for a semicon‘tinuous order, The conditions are

those stated above, using condition (iii') instead of condition (iii),

Theorem 3.9 A necessary and sufficient condition that a locally

connected Hausdorff space be dendritic is that it admit a partial order

satisfying (i), (ii), (iii') and (iv),
P;‘oof, See Ward [25]. Q.E.D,

It is natural to seek, at this point, conditions under which a
compactification of a dendritic space results in a tree, Ward [25] has
found some conditions that imply that a compactification of a dendritic

space is a tree,

Definition 3. 10 A space X is convex if the sets L(x) and  M(x)
constitute a subbasis for the closed sets of X, that is, if every closed
set of X is the intersection of some family of sets, each of which is

the union of a finite family of sets of the form IL(x) or -M(x),

Theorem 3.11 A convex dendritic space admits a compactification as

a tree,

Proof. See Ward [25], Q.E.D.
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The condition that the spage be convex in Theorem 3,11 is
necessary, For an example of a dendritic space which admits no
compactification as a tree see Ward [25].

In the last two theorems we have wandered from our main theme
in this chaptar. We have included these important related results in
hope that it may inspire the reader to further investigate this area and

at this point we return to our main efforts of this chapter.

Theoxjem 3,12 If X ig a tree then < is continuous,

P_g_g_g_fr. To show that < is continuous it is necessary to show that, if
x £y, then there exist open sets U and V, with xe¢ U and yeV,
such that a 2(_ b whenever a ¢ U and be V. Since < isorder
dense, by (ii), we may choose t e X such that t<x and t f_y.
We then can choose U = M(t) -t and V = X - M{t). U and V are

open sets with the desired properties, so < is continuous. Q.E.D,

The order which was developed in Chapter I is often referred to
as the eutpoint ordering and we will adopt this terminology in the rest
of the paper. It should be pointed out that later on we will introduce
another type of ordering which will be referred to as the weak cutpoint
ordering.

In Theorem 3,6, the gutpoint ordering was used to get a charac-
terization of trees, The next theorem uses the cutpoint ordering to

characterize trees, but with fewer conditions,

Theorem 3.13 Let X be a locally connected continuum. A necessary

and sufficient condition that X be a tree is that the gutpoint ordering

be order -dense.
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Proof. Suppose the cutpoint ordering is order dense. Let x and y
be distinct elements of X. If x <y in the cutpoint ordering then

X =€ or

X -x = AU B, where A|B, eec¢ A, and y e B,

Since X is locally connected we can pick A guch that A is a com-
ponent, The cuﬁpo‘lnt ordering is order dense so there exists a point p
such that x<p<y, If x=-e then, by the definition of the ordering,

p separates x and y. If x # e then
X-p=CU D, where C|D, ee C, and ye D.

Now pe B, since x <p. Singe A is connected, A (C C. Then
x e C, since AU {x} is gonnected, This implies that x ¢ C and
y ¢ D and therefore p separates x from vy.

If x and y are not gomparable, let z be a maximal element in
L(x) M L(y). Since the order is dense, there exist a p such that

z <p<y. Thus we have

X-p AU B, where A|B, e¢ A, and ye B

X -z = CU D, where C|D, eeC, and peD.

Since X is locally connected we can pick C sugh that it is connected,
Since C U {z} is connected, we have C (C A. Thus M(p) = BU {p}
and p f_x, Hence, x ¢ A and y ¢ B and, therefore, p separates
x and y, Thus, if x and y are distinct elements, there exist a
point separating x and y. Therefore, if the cutpoiﬁt is order dense,
then X is a tree. If X is a tree then, by Theorem 3.6, the cutpoint

ordering is order dense. Q, E,D.



-39

Definition 3.14 A property P of a space is hereditary if and only if

each subspace of a gpage with P also has P,

In this paper the spaces under consideration are continua and
because of this we will use the term hereditary to mean the following:
a property P of a continuum is hereditary if and only if each subcon-
tinuum also has property P,

The property of a continuum being a tree is hereditary, as is
stated in the next theorem. This proof is fairly obvious, but it is

included here because we will need this result to prove a later theorem,

Theorem 3,15 Ewery subcontinuum of a tree is a tree,

Proof, Let K be a subcontinuum of a tree X, If x and y are
distingt points of K, then there exists a point p of X such that p

separates x and y. Suppose p¢ K, Then

K = (KMA) U (KM B)
where

X-p=AUB, A|B, xeA, and ye¢ B,

Hence (KM A)| (KM B) and K is not a subcontinuum of X. This
contradicts the fact tha.!: K is a subcontinuum of X. Therefore

pe K and p separates x from y. Hence K is a tree, Q.E.D,

Defi.nition 3,16 A continuum C is unicoherent provided that, if
C = HU K, where H and K are subcontinua, then H (M) K is
connected, A continuum is hereditarily unigoherent if every subcgon-

tinuum is unicoherent,
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Example 3.17 Let X be the unit circle, H = {{x,y):(x,y)e X,x < -;-}
and K = {(x,y)i(x,y)eX, x > -—é—} ., H and K are subcontinua of X
and HM K 0. HMK = {(x,y): (x,v) ¢ X, --zl-r- <x < -1-}, which
is not connected, Therefore X is an example of a ¢ontinuum which

is not unicoherent. The real number line is an example of a non-

compact continuum that is unicoherent and hereditarily unicoherent.

The next characterization is in terms of a hereditarily unicoher~
ent locally connected continuum. This is one of the more standard
characterizations, and it is included because the proof illustrates a use
of the cutpoint ordering, Part of the proof depends on what will be
developed in Chapter IV, but care has been taken to avoid a circular

argument.

Theorem 3.18 A necessary and sufficient condition that X be a tree

is that X be a hereditarily unicoherent locally connected continuum.

Proof. By Lemma 3,4, a tree is locally connected. In Chapter IV we
introduce the gongept of a2 generalized tree and it is shown that every
tree is a generalized tree and that every generalized tree is
hereditarily unicoherent, Using these results of Chapter IV, it follows
that every tree is a hereditarily unicoherent locally connected
c»ontinuum.

Let ee¢ X and xe¢ X suchthat x#e. Let Aa be the
collection of all econtinua containing e and x, This collegtion is non-
empty since X e A‘a' Define U(x) = mAa. Since X is hereditarily
unicoherent, U(x) is a continuum gontaining e and x which is also

irreducible about e and x, Now define x < vy, if U(x) C Uly).
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To show that X is a tree, it is necessary to show that < is the cut-
point ordering and is order dense. It will follow, by Theorem 3, 13,
that X is a tree,

Let pe X and let

X-p = AU B, where A|B and e ¢ A.

Since X is locally connected, we can choose A such that A is
connected. Since A is connected it is not possible to find a smaller
connected set containing e in X - p, If there did exist a smaller

open connected set containing e then it would follow that
X-p=C\UD, where C|D, ANC # @ and AMD # ¢,

This contradicts the fact that A is connected, Therefore,

AU {p} = Ulp) and U(p) C U(x) if and only if x e¢ B, Hence if

x is greater than p in the cutpoint order, then x ¢ B and x is
greater than p inthe order <., Also, if x is greater than p in the
order <, then xe¢ B and x is greater than p in the cutpoint order,
Consequently < and the cutpoint ordering are the same,

Also < is order dense, For suppose not, Then there exist
points x and y such that x <y or U(x) (C U(y) and there does
not exist a point p sughthat x<p<y. Henge U(x) U {y} = Uly)
where both U(x) and {y} are closed, But a connected set cannot be
written as the union of two disjoint closed sets. Therefore,

Uly) # U(x) U {y} and there must exist p e U(x) - U(y) such that
U(x) C Ulp) C U(y) or x<p<y. Therefore < is order dense and,

by Theorem 3.13, X is a tree. Q.E.,D,
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In this chapter we have stressed the charagterization of trees in
terms of a POTS, In the next chapter we will introduce a new congept
by weakening the conditions in Theorem 3.6 . As usual, when conditions
are replaced by weaker conditions, certain properties are lost. As
will be seen, the condition required in Lemma 3.4, that of local

connectedness, will no longer have to hold.



CHAPTER 1V
GENERALIZED TREES

In Chapter III, a characterization of trees, in terms of a partial
order was given in Theorem 3.6, In this chapter some modifications
are made on the conditiong stated in Theorem 3.6 and the result is a
generalization of the congept of a tree. This generalization was first
developed by Ward [28], In this q:ha,pfer we have included results of
some of Ward's earlier efforts and several characterizations developed
by others at later times.

The first results in this chapter establish the fagt that all trees
are generalized trees. Ags one might expect, several of the character-
izations of generalized trees are very similar to what was developed in
Chapter III, but one of the main properties of trees that does not
necessarily carry over to generalized trees is that of being locally
connected. We will include an example of a generalized tree that is not
locally connected.

Before further discussion, we formally state the definition of a

generalized tree,

Definition 4, 1 A zero of a partially ordered set is an element which

precedes all other elements of the set,

Definition 4.2 A compact Hausdorff spage X is said to be a

,gggenaliged tree if and only if X admits a partial order satisfying:

4%
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(i') < is eontinuous,

(ii) < 1is Qrder dense,

(iii) for x e X, ye X, it follows that L(x) M L(y) is a
non-null chain, and

(iv') if Y is a closed and connected subsei: of X, then Y

contalns a zero.

There are two important requirements apparently missing in the
definition of a generalized tree, The first is that of local connected-
ness, as has already been pointed out, and the second is that X be a
continuum.

Our next example will show that local connectedness is not
necessary. This example will also show that there exist generalized
trees which are not trees, We will then show that all trees are
generalized trees, which will establish the facét that generalized trees

are indeed a generalization of the concept of trees,

[<e}
Example 4.3 Let X= U 1 {An} , where A is defined as follows:

A_l:{(x,O):O <x <1},
AO = {(0,y): 0 <y <1}, and
1 :
An = {(H’aY):OiYil}’ n=12,3,,,,
Define (Xl’yl) < (XZ’YZ') if and only if x1_<_x2 and vy = 0, or

Xy = %Xy and Y £ Yy One can show that this is a partial order
satisfying the four conditions stated in the definition of a generalized

tree. By considering any point of A -(0,0), it can be seen that X

0
is not locally connected. Hence X 1is not a tree.
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Since X 1is not a tree, then the partial order defined must fail
to satisfy one of the conditions stated in Theorem 3,3, Condition (iv)
of Theorem 3,3 states that if x ¢ X, then M(x) - x is an open get,
If we let x = (O,—élj), then M(x) -x = {(0,y): % <y<1}, However,
M(x) - x isg not open, If we take any open set ¢contalning a point of
M(x) - x, it will contain points outside of M(x) - x, It follows that
condition (iv) of Theorem 3.6 is stronger than condition (iv) of

Definition 4, 2,

Theorem 4.4 If X is a tree then X is a generalized tree,

E.E.?,Q_f: It is sufficient to show that the order given in Theorem 3,6
satisfies the conditiong given in Definition 4,2 . Conditionsg (ii) and (iii)
of Theorem 3,6 are exactly the same as conditions (ii) and (iii) of
Definition 4.2. From Theorem 3,12, the order of Theorem 3.6 is
gontinuous., We then have condition (i') holding, By Theorem 3.15,
the property of being a tree is hereditary with respect to subgontinua,
Since every tree has a zero, every subcontinua also has a zero, and,
therefore, -every closed connected. subset of X containg a zero,
Consequently, condition (iv') holds for the order of Theorem 3,6, and
every tree satisfies the four conditions of Definition 4.2, Hence, every

tree is a generalized tree. Q. E.D,

As pointed out earlier, it was not stated in Definition 4.2 that X
was a continuum, However, it follows from the definition that X is a
continuum, as the next theorem demonstrates. One will notice that
this theorem is much like Theorem 3. 18 and that, again, one econdition

missing, that of local connectedness.
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Theorem 4.5 . A generalized tree is a hereditarily unicoherent con-

tinuum. Conversely, a hereditarily unicoherent continuum which
admits a partial order, with zero, satisfying (i') and (ii) is a general-

ized tree.

Proof. Condition (ii) of Definition 4.2 implies that X is order-dense,
By Theorem 2.33, all of the maximal chains of X are connected. All
of the points of X will be in one of the maximal chains. Since X has
a zero element, all of the maximal chains will intersect. Thus X 1is
the union of connected chains having non-empty intersection and is,
therefore, a continuum.

To show that X is hereditarily unicoherent, we first show that,
if a and b are elements of a subcontinuum A such that a <b, then
M(a) M L(b) C A. If this is not true, then we can choose a and b
such that Mf(a) () L{b) - {a,b} M A = ¢. Now, since X is order-
dense, there exists p such that a<p<b. Let U = X - M(c),
where a<c<p, Then L(a) C U and T M M(z) = §. | Let B be
the component of A - U which contains b. By (iv'), B must have a
zero. But the way U was picked implies that B () L(b) = b. This
implies b is the zero. Hence B (C M(b) and B M U is empty.
But U must contain a limit point of each component of A - U; other-
wise there would exist a separation of A, contradicting the fact that
A is a continuum. Since B (N U = ¢, then U does not‘contain a
limit point of B, a contradiction. Therefore, Mf(a) (M L(b) C A.

Now suppose C and D are subcontihua of X, with C/\D £ ¢.
If C D ={z}, C D is connected and is a continuum. Suppose

that
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{x,y} C C N D, where x # vy,

Let p=supL(x) M L(y). Then p does exist, since (iii)

implies L(x) M L(y) # 8. From the above
P= [MzNLx]U Mz NL(y))] CAMNB

and will be connected. Hence every pair of points of A () B lies in

a connected set which is a subset of A () B, Therefore, A () B is
closed and connected, Hence, X is a hereditarily unicoherent contin-
uum,

Let X be a hereditarily unicoherent continuum admitting a par-
tial order which is continuous, order dense, and has a zero., First, we
show that condition (iii) holds. To show that L(x) () L(y) is a non-
empty chain, we need to show that L(x) is a chain for all x ¢ X,
Suppose there exist elements a and b of L(x) such that a and b
are not comparahle, Theorem 2,35 implies that L(a) U [M(a.) M L(x)]
and L(b) U [M(b) M L(x)] are connected and, therefore, are continua.

Since X is a hereditarily unicoherent continuum, then
[L(a) U (M(a) N L)] M (L) U (M(b) N Lix))] = P
must be connected. But P can be expressed as follows:

P = {[L(a) U M(2) M L{x)] M [Lb) U (M(b) N LN} M{LE) - a}
U {[L(a) U (M(a) N L{=)]T M [Lb) U (M(b) M Lx))]}
M {M(a) -a} .

This exhibits a separation which contradicts the fact that P is

connected. Therefore, Li(x) is a chain, for all x e X, For all
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x,y e X, L(x) and L(y) contain the zero element of X. Hence,
L{x) M L(y) # ¢ and is a chain.

Let Y be a closed connected subset of X. Suppose there exist
two distinct minimal elements x and y of X. Then, L(x) U L(y)

is a continuuf’h-and
L) UL MY = {xv},

which is not connected. This is a contradiction to the fact that X is a
hereditarily ynicoherent continuum. Therefore, there exists only one
minimal element of Y. Hence the order on X satisfies the conditions

of Definition 4.2 and, therefore, X is a generalized tree. Q.E.D.

+

Before stating and proving the next theorem regarding generalized
trees, we define a new concept and state a lemma that is necessary to

establish the theorem.

Definition 4.6 An order is monotone if L(x) is connected for each

x € X,

Lemma 4.7 If X isa POTS and < is monotone then < is order-

dense,

Proof, Let x and y be elements of X such that y <x. Then
y € L(x), which is a connected chain. By Theorem 2,33, L(x) is
order dense and there exist a point z such that y <z <x., Hence,

< is order -dense. Q.E.D.

Theorem 4.8 If X isg an hereditarily unicoherent continuum with an

order < which is a monotone closed partial order with a unique

minimal element then X is a generalized tree,.
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Proof. Lemma 4.7 implies that the order is order-dense. Since the
partial order is closed, then, by Theorem 2.33, < is continuous,
Therefore X 1is a hereditarily unicoherent continuﬁm with a continuous
and order~dense order with a minimal element. Hence, by Theorem

4,5, X is a generalized tree. Q. E.D,

In Chapter III the partial order used to characterize trees was
referred to as the cutpoint ordering. In this chapter was introduced a
new congept, that of generalized trees. At this point we introduce a
new partial order which will be called the weak cutpoint ordering,
Before giving the formal definition of the weak cutpoint ordering and

the characterization, several definitions and lemmas are needed,

Definition 4,9 If W is an open set, the set W- W will be called the

boundary or frontier of W and will be denoted by F(W),

Definition 4. 10 A space X is said to be an arc if and only if it is

homeomorphic with the closed interval [0,1] of the space R of real

numbers (Hall [5]).

Another common definition of an arc is; an arc is a compact non-
degenerate continuum that does not have more than two non-cut points

(Moore [11]) .

Defini_tion 4.11 A set X will be said to be arcwise connected

provided every two paints of X can be joined by an arc lying in X.

It is possible for a space to be arcwise connected, but not be an
arc, The space in Example 4.3 is not an arc, but every two points of

X can be joined by an arc lying in X, Hence, X is arcwise connected.
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Lemma 4.12 Let X be a compact POTS and let w be an open set

in X, If
(i) the graph of < is closed and
(ii) for any x e¢ W, each open set about x contains an

element y with y <x,

then any element x of W belongs to a compact connected chain C

with C with C /() F(W) # § and x = supC.
Proof. See Koch [9]. Q.E.D.

Corollary 4.13 Let X be a compact POTS with unique minimal

element 0., If
(i) the graph of < is closed and

(ii) Li(x) 1is connected for each x ¢ X,

then X is arcwise connected.
Proof. See Kock [9]. Q.E.D.

The last theorem of this chapter contains three characterizations
of generalized trees. Before stating and proving the theorem, several
new concepts will be introduced and the new ordering which was
mentioned before, the weak cutpoint ordering, will be defined.

One of the characterizations is stated in terms of nets and below
are given the definition of a net and two examples of nets. The reader
who would like a more detailed treatment of nets may refer to Kelley

[8] and Wilansky [30],

Definition 4,14 A set D is directed if D 1is non-void and there exist

a binary relation > such that
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() if m, n and p are members of D such that m > n
and n > p, then m > p;

(b) if me D, then m > m; and

(c) if m and n are members of D, then there is p in

D suchthat p > m and p > n.

A directed set is a pair (D,>) such that > directs D,

Example 4. 15 The set of positive integers with the natural order is a

directed set. The set of real numbers in (0, 1) with the usual order

is a directed set.

Definition 4, 16 A netis a pair (S,>) suchthat S is a function and

> directs the domain of S.

Example 4. 17 Let D be the set of positive integers directed by the

natural order. Define S:D- D by S(n)=2n. Then (S5,>) is a net.

The above net is also a sequence and, in general, if the under-
lying directed set is isomorphic to the set of positive integers then the

notion of a net is equivalent to that of a sequence.

Example 4. 18 Let D be the set of real numbers in the interval (0, 1)

with the usual order of the reals, Let f be any real valued function

defined on (0,1). Then (f,>) is a net.

Definition 4.19 A subset D' of a directed set D, is called cof‘i.ng.l if,

for any m e D, there exist m' e D' with m' > m.
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Example 4,20 Let D be the directed set in Example 4.18. Let D'

be the subset of all rational numbers in D. Then D' is a ¢ofinal

subset of D,

.Definit“lon 4.21 A subset D' of a directed set D, 1is called r‘_‘esidua.‘_l

if there exist m' ¢ D' such that for all m e D with m > m',

m e D',

Example 4,22 TLet D be the directed set in Example 4. 18 and let D!

be the subset [%, 1). Then D' is a residual set of D,

Definition 4.23 If D is a directed set and if {Ayz ve D} is a family
of subsets of X, then we define lim sup 'AY by: x € lim sup AY if
for each open set U about x there is a ¢ofinal subset D(U) C D

with U mAY # 8, foreach y ¢ D,

Definition 4.24 I D is a directed set and if {Ayz vyeD} Ilsa
family of subsets of X, then we define lim inf AY by: x ¢ lim inf AY
if for each open set U about x there is a residual subset D(U) C D

with U M AY # @, for each vy e D(U).

Definition 4,25 We write lim AY = A or AY—»A provided

lininf A = A = lim sup A_ .
Y Y

=]
Example 4.26 Let X = U An’ where

n=0
Al = {(x,y):x=0, 0<y<1},
A = {(5=,y):0<y< >}, k=1,2,3 and
2k kay __Y____4_’ E Rk B B ?

1
At1 2 G Y 7
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Let D be the set of positive integers and consider the family of sets
{An: ne D}. Here, lim sup A = A, and
lim inf An = {(x,y): (x,y) € AO’ ‘% <y < %}, Thus, the above is an

example of a family of subsets where lim inf An # lim sup An .

w
Example 4.27 Let X = U An’ where
n=0

A9

1"
,—A—‘
A
=

bt

1l

(]

o
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<
I A

—
Nt

)

)

[o N

An = {(=,y):0<y <1}, n=1,2,3,..,

Let D be the set of positive integers and consider the family of sets

{An;n ¢ D}, In this case lim inf An = lim sup An = AO'

Lemma 4,28 An order < isclosed if and only if, for any net {XY}

in X with xY - x, it follows that lim sup L(xY) C L(x).
Proof, See Strother [15]. Q.E.D,

Lemma 4,29 If X is a hereditarily unicoherent continuum then any

two points are contained in a unique minimal continuum,

Proof. Let x and y be distinct points of X, a hereditarily uni-
coherent continuum, Let {Aa} be the collection of all continua
containing x and vy, {Aa} is non-empty since X e {Aa«} . Define

K = mAa . Since each Aa is closed, K 1is closed. By the definition
of a her‘editarily unicoherent continuum, K is ¢onnected., Therefore,
K is a continuum that gontains x and y. We now assert that K is
the unique minimal continuum ¢ontaining x and y. For if not, there
exlsts a continuum K' such that x,y e K', But K!' = Aa , for some

@, Therefore, K ( K' and, consequently, K' is not a minimal
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continuum containing x and y. Hence, in order to avoid a contradicg-
tion, K must be the unigue minimal continuum containing x and vy,

Q.E.D,

Definition 4,30 Let X be a hereditarily unicoherent continuum,

Denote by [x,y] the unique continuum irreducible from x to vy.

Definition 4,31 Let X be a hereditarily unicoherent continuum. Fix

p € X and define a ip b to mean that any continuum K of X which
contains p and b also contains a. This ordering is called the weak

cutpoint ordering of X with respect to p.

Q0
Example 4.32 Let X = U An , where
o n=0 ‘

A, {(x,y)| y=0, 0 <x <1} and

A

"

{(x,y)]| (x,y) ¢ !Zn, where fn is the closed line
segment joining the orgin to the point (1, ;11—)} .

n=1,2,3,...

This space is often called the closed infinite broom. It is easy to see
that X is not locally connected by considering any point on A0 other
than (0,0). Therefore the gutpoint ordering defined in Chapter II
does not apply here. However, the space is hereditarily unicoherent
and, hence, X can be ordered by the weak cutpoint ordering, The
fixed point p may be any point of X. However, if p ¢ A‘O , then the
corresponding ordering will not be continuous. Theorem 4.5 states
that if X admits a continuoys order dense order then X is a general-
ized tree, Consequently, if X is a generalized tree there must exist

another order. If pe X - AO , the weak cutpoint ordering will be
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continuous and order dense, Therefore X is a generalized tree. This
example is to point out that every order dense order of a generalized
tree is not gontinuous. However, a continuous order gan be induced by

choosing an appropriate point p,

In Theorem 4.8 it was proved that, if X is a hereditarily uni-
coherent continuum with an order which is a monotone closed partial
order with unique minimal element, then X 1s a generalized tree. In
the next theorem there are two statements that are equivalent to
requiring that an order be a monotone closed partial order with unique
minimal element. From these are obtained two more characterizations
of a generalized tree. One of these characterizations is stated in terms

of the weak cutpoint ordering.

Theorem 4,33 Let X be a hereditarily unicoherent continuum and let

p ¢ X, Then the following statements are equivalent:
(1) "<-p is a monotone, closed partial order on X,

(ii) there exists a monotone, closed partial order < on

X with a unique minimal element p,

(iii) X is arcwise connected and, for any net {Xy} in X,

it is true that [p,xy] - [p,x], if xy ~ X,

M' Proof that (i) implies (ii): From the definition of _<_p, p is
a minimal element. Suppose there exists another minimal element p'.
Every continuum containing p and p' also contains p. Hence, from
the definition of ip’ p < p'. Now p' is a minimal element and is
related to p. Thus p' < p, But p' < p if and only if every con-

tinuum containing p also contains p'. Therefore {p} is a continuum
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containing p but not p'. This implies that p' ﬁ p, a contradiction
to the fact that p' is a minimal element, Hence, p is the unique
minimal element.

Proof that (ii) implies (iii), Since the conditions of Corollary
4,13 are satisfied, then X is arcwise connected. Since [p,x] is an
irreducible continuum from p to x, then [p,x] ig an arc. We now
assert that [p,x] is a ghain, From Theorem 4.12, there exists a
compact connected chain C from x to p, Since X is compact, then
C is closed and is a continuum, We will next show that [p,x] C C.
Suppose [p,x] C C. Then there exists a point y ¢ [p,x] such that

y ¢ C. Define x' and x'' as follows:

1]

x! sup [C M [p,x]], and

min [C» M [y,x]] '

H

XII

Let C' denote that part of C between x' and x'', Then C' is
connected; for if not, then C is not connected. Since [x',x"] C [p,x]
and [x',x"] M C' = {x',x"}, then [x',x"] is nota unique minimal
continuum between x' and x''. It must be the case, therefore, that
[p,x] C C, which implies that [p,x] is a chain.

Let {xy} be a net in X such that x - x . It must be shown
that [p,x\{] - [p,x], To show this, consider the following chain of set
inclusions:

[p,x] (C lim inf [p,x] C lim sup [p, Xy]

C lim sup L(Xy) C L(x).

Suppose there exists a y ¢ [p,x] - lim inf [p, Xy] . Then there is an

open set V suchthat ye V and V M [p,xy] = @, for a cofinal set



57

of y's. Let A = {y| VN [p,xy] = ¢}, and B = U {[P'XY]I'Y € A},
The closure of B, B will be a continuum and, since xY ~ x, then

x€B. Thus, [p,bx] C B, yeB, and VN [p,x ] # 8, for some

x
Y
v € A, which is a contradjction. Therefore, we have
[p!x] C lim inf [p, xy], From the definitjons of lim sup and lim inf,
it follows that lim inf [p,xy] C lim sup [p, xY]. Since [p,xy] is the
minimal continuum containing p and xy, then [p,xy] C L(xy),
Consequently, lim sup [p,xy] C lim sup L(XY) . This last set inglusion
and Theorem 4,28 imply that lim sup L(XY) C Li(x).
It is next shown that lim sup [p,x] C [p,x]. Let

z € lim sup [p,xy], To show that z ¢ [p,x], it will first be shown that
z compares with each element of lim inf [p, xy] . Suppose
y € lim inf [p, xY] and that y does not compare with z, By Theorem
2,23, < is a continuous order. Hence, there exist open sets U and
V suchthat z2e¢ U and ye V _and such that no element of U
compares with an element of V. But there exists an y such that
UM [p,XY] #0 and V M [paxy] # #. Since [p,xY] is a chain, the
elements of U M [p, XY] compare with those of V M [p,xy], which
contradicts the above., Therefore, z compares with every element of
lim inf [p, xy] , Since lim inf [p, xy] is a chain, then

{z} U lim inf [p, xy] is a chain in L(x).

We now assert that =z e [p,x]. For suppose that z ¢ [p,x].

Define x' and x'' as follows:

xl

sup {L(x) M [p,x]} and

min {M(z) M [p,x]} .

n

XII

Since x',x'' e [p,x], then [x', x''] C [p,x]. Consequently,
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[x', z] U [z,x"'] is a continuum and it follows from the definition of x!'

and x'' that

{x',x"} = ([x,2z] U [z,x"']) N [x', =],

Thus [x',x''] is not a unique minimal continuum containing x' and
x'', This ¢contradicts the fact that X is a hereditarily unicoherent

continuum. Therefore, 2z ¢ [p,x] and, by the above,

[p,x] C lim inf [p,xY] C lim sup [p, XY] C [p, xl.

Hence

[p, %] = lim inf [p, XY] = lim sup [p, xy] or [p, XY] ~ [p,x].

Proof that (ili) implies (i): To show that f—p is monotone, it
will be shown that L(x) = [p,x], forall xe X. Let z e [p,x].
Xince X 1is unicoherent, each continuum containing p and x also
contains z. From the definition of ip’ it follows that 2z ¢ L(x),
Hence, [p,x] C L(x). Now let z ¢ L{x). The definition of <_p
implies that every continuum ¢ontaining p and x also contains =z,
Therefore, [p,x] will contain z and L{x) C [p,x]. Hence,

[p,x] = L(x) and, since [p,x] is connected, L(x) is connected and
S—p is monotone,

Let x,y ¢ X and suppose that x _<_<Fp y and vy ipx. By the
above, [p, y] = L(y) and [p,x] = L{x). Now x Sp y implies that
Lix) C L(y) and y fpx implies that L(y) C L(x). Therefore
L(x) = L(y) or I[p,y] = [p,x]. Singe [p,y] and [p,x] are unique
minimal continuum, then =x =y, Hence, ~<—p is antisymmetric and

this implies that _<_p is a partial order on X,
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Now if {xy} is any net in X with x\/ - x, then [p,xy] - [p, x].
But [p,x] = L(x) and [p,xy] = L(xy), so lim sup L(xy) = L(x).
Consequently, by Theorem 4,28 -<—p is clogsed. Therefore, s»p is a

monotone closed partial order on X. Q,E.D,

After reading the last example and theorem, one might expect
that all hereditarily unicoherent continuum admit a monotone, closed
partial order with unique minimal element, In other words, it might
be expected that every hereditarily unicoherent continuum is a
generalized tree. The following example demonstrates that this is not

the case,

Example 4, 34 Let Z be the subset of the plane which consists of the

unit segment on the x-axis, the unit segment on the y-axis and the
vertical segments of length %f er‘ected over the points with coordinates
(t-ll—,O), n a positive integer. Let B be the reflegtion of A through
the line y =1, andlet X = A U B,

Suppose X admits a monotone, closed partial order with unique
minimal element. Then, by Theorem 2. 23, if the order is clqsed,
the order is ¢ontinuous. Also, the minimal element p is either in A
orin B, If pe A, gonsider points x and y such that x = (0, i—)
and y = (0, %), Hence, x <y and, if U and V are open sets such
that x ¢ U and y ¢ V, then there exist points of U that are greater
than points conta.fmed in V, This contradicts the definition of a
continuous order. Hence, X does not admit such an order and is not

a generalized tree, Therefore, there do exist hereditarily uni¢goherent

continua which are not generalized trees,



CHAPTER V

A FIXED POINT THEOREM FOR

GENERALIZED TREES

In this ¢hapter we develop a fixed point theorem for generalized
trees by using the order properties of the space, Although the result
is not new, the approach is different than that used in most proofs,

The study of the fixed point property was initiated by Brouwer's
[2] classical theorem introduced in 1912. Since that time, many
mathematicians have spent much time and effort in the study of the
fixed point property and from these studies have come a variety of
results.

One of the early results in this area was a fixed point theorem
for dendrites proved by Scherrer [13] in 1926 . Several years later,
in 1941, Wallace [20] proved that a tree has the fixed point property
and, in 1954, Ward [22] proved the fixed point theorem for trees by
using the order-theoretic characterization of trees. When Ward [28]
introduced the idea of generalized trees, he also proved the fixed peoint
theorem for generalized trees and his proéf depended upon the order
properties of these spaces. This is the approach we will use in this
chapter,

The reader interested in fixed point properties for a larger

variety of spages may refer to Van Der Walt [12]. This book contains

60
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a rather complete history of the development of the fixed point property
and, although it does not contain proofs, has a very complete bibliog-
raphy on the topic.

Before proving the main theorems, we prove several lemmas,

Definition 5.1 A subset A of a QOTS, X, is convex provided

A = E(A). X isgquasi-locally gonvex provided, whenever x e¢ X and

E(x) C U, an open set, there is a gonvex open set V such that

Ex) C vV C U, X is locally eopvex provided, whenever x ¢ X and

x ¢ U, an open set, there is a convex open set V such that

xe X C U,

Definition 5,2 A net {XY} Is monotone increasing (decreasing) if,

< i < < .
whenever N < p in 2, we have XX—»XH (x'_L x)\)

Definition 5.3 If X is a topological space and {xy} is a net, we
say {xy} clusters at the point z ¢ X provided, whenever z ¢ U,

an open set, and A\ ¢ @, there is p € ©, X\ < p, such that xHeU.

Definition 5,4 The net {x\/} gonverges to z provided, whenever

z ¢ U, an open set, there is X ¢ Q@ such that XHE U, for all X\ <y,

Lemma 5.5 Let X be a compact Hausdorff QOTS with continuous
quasi order. Then every monotone net in X clusters and the set of

cluster points is gontained in E(z), for some =z ¢ X.

Proof, Let {xy} be a monotone decreasing net in X, Singce X is
compact, every net has a gluster point (Kelley [8], p. 136), Let z
be a cluster point of {Xy} and let U be an open set such that

E(z) C U, Singe X is a compaet Hausdorff QOTS with continuous
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quasi order, X is quasi-locally convex (Ward [22], P, 147), Then,
from the definition of quasi-locally convex, there exist an open set V
such that V = E(V) and E(z) C Vv C U, Since {xy} clusters at
z, there exist a N\ such that xy, € V. Let p > \. Then there is
p' > p such that xH, € V, Since x is monotone decreasing,
x , <x <x, 2 and V is convex, sothat x € V, Then, for all
pm TR T A B

X

> N, " €V and {xy} cannot cluster at a point outgide of V., If

M
y ¢ E(z), define -Uy = X -y, Then E(z) C Uy' From the above
argument {xy} can gluster only at points of E(z). The same type of

argument holds if {Xy} is monotone increasing, Q,E,D.

Corollary 5.6 If X is a compact PQOTS with continuous order, then

every monotone net in X gonverges.

Proof, By Theorem 2.24, a POTS with a continuous partial order is
a Hausdorff space, In every Hausdorff space a net converges to its
cluster points, Also, in 3 Hausdorff space a net converges to one and

only one point, We then have the desired result, Q,E.D,

Lemma 5,7 Let X be a topological space, f: X -~ X continuous, and
x ¢ X guch that the sequence fn('-x), n=12,.,., clusters at some

z ¢ X. Then fn(x) clusters at f(z).

n,
Proof. Let f L(x) =y, be a subsequence that converges to z. Sinee
f is contlnuous, f(yi) converges to f(z), But

n,L ni+1 ni+l
fly,) = f[f (x)] = f (x) and the subsequence f (x) converges

to f(z) or f’(x) clustersat f(z), Q.E,D.
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Lemma 5,8 Let X be a topological space, f: X - X continuous and
{xn} , n=1,2,,.,, asequenge in X such that x = f(an). If

{xn} clusters at z, then {xn} clusters at f(z),

Proof, If {xn} clusters at z, then {f(xn+1)} clusters at z., Since
f is continuous, {f(xn)} clusters at f(z), But f(xn) =X 1 which
implies that {Xn.—l} clusters at f(z), Since {Xn 1} and {xn} are

the same sequence, the sequenge {xn} clusters at f(z), Q.E.D.

Definition 5,9 If X and Y are quasi ordered sets, a function

f: X—-Y is o;dgr-pxjeserving provided f£(a) _<_f(b) in Y whenever

a<b in X.

Lemma 5.10 Let X be a Hausdorff QOTS with compact maximal
chaing, f: X - X continupus and order preserving, A necessary and
sufficient condition that there exist a non-null compact set K (C E(z),
for some 1z e X, such that f(K) = K, is that there exist x ¢ X sugh

that x and f(x) are comparable,

Proof. Suppose there exist a non-null gompact set K C E(z), for
some 2z ¢ X, such that f(K) = K, Let xe K (C E(z). Then
x e f(K) and f(x)e K C E(z), If xe f(K) and f(x) ¢ E(z) then
x<z<x and f(x)<z <f(x). Hence, x < f(x) and f(x) <x, Then,
for every x e K, x is gomparable to f£(x).

Now suppose there exist an x ¢ X such that x and f(x) are
comparable. Then either x <f(x) or f(x)<x, Since f is order-
preserving, either =x < f(x) < fz(x) or fz(x)'< f{x) <x. By induction,

1,2,,..} forms a monotone sequenge or

I

the sequence (%) | n

chain. Then {f*(x) [ n=12,...} is contained in a compagt maximal
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chain, From Theorem 5,5, {fn(x)} clusters at some point 2z and all
cluster points are contained in E(z). Let x e E(z). Then z<x <z
and f(z) < f(x) < f(z). By Theorem 5.7, f (x) clusters at f(z),
which implies that f(z) ¢ E(z). Therefore, f(x) ¢ E(z) which implies
that £(E(z)) C E(z) and £E(z)) C £ N(#(E(2))). Let

K =M {f(E(z)) | n=1,2,...}. From the fact that

Y (E(z)) C © Y£(E(z))), K is non-empty. E(z) is closed and is a
subset of the maximal chain, so E(z) 18 compact, Since f is
continuous and f(E(z)) C E(z), then frl’(E(z)) is compact for each n
and K is compact, By the definition of K, f(K) = K, Therefore,

K is a non-empty compact subset of E(z) and f(K) = K. Q.E,D,

Definition 5,11 TLet X be a topological space and f a function such

that £(X) C X. A point x ¢ X is a fixed point for f if f(x)=x,

Corollary 5,12 If X is partially ordered, then a necessary and

sufficient condition that f have a fixed point is that there exist x ¢ X

such that x and f(x) are comparable.

Proof. Ina POTS, E(x)=x forall xe¢ X, Hence, the set K of
the theorem will be K =x and f(x)=x, Therefore f(x) and x are
comparable.

On the other hand, if x and f(x) are gcomparable then there
exists a set K (C E(z), for some z ¢ X, with f(K) =K. But, since
X isa POTS, K =2z and, therefore, f(z) =z, Hence, z is ia fixed

point, Q,E.D,

We now prove two theorems concerning the fixed point property

for generalized trees. The first theorem is rather restrictive and
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holds for only special types of continuous functions. The second
theorem is much more general and the only restriction on the function

is that it be continuous.

Theorem 5,13 If X isa generalized tree and- £(X) C X is

continuous and order preserving then f£(x) = x for some x ¢ X.

Prpof. Since X is a generalized tree, there exist a zero z and
z < f(z). Then from Corollary 5.12 there exists an x ¢ X such that

fix) =x. Q,E.D.

We are now ready to prove the main theorem of this chapter, As
pointed out earlier, this is not a new result, but the approach is not
the one commonly used. Since we have shown in Chapter IV that a tree

is a generalized tree, the theorem also applies to trees,

Theorem 5,13 If X is a generalized tree and £(X) C X is

continuous, then f(x) =x for some x e X,

Proof. The set P = {x| x < f(x)} is non-empty since X has a zero.
Let C be a maximal chain in P and z = supC, First we show that
z ¢ P. Suppose z ¢ X - P. Then, from the definition of P, either
f(z) <z or f(z) is not related to z. L(z) M L{f{z)) # § since
there‘ exists a zero, Let vy = supl[L(z) M L(f(z))]. Then y <z and
there exists an increasing net {xa} such that y < x, <z and such
that lim {xa} =z, Since {xa} C P, then f(xa) € M(xa), for each
a, and, since f is continuous, lim{f(xa)} = f(z), Since

f(z) e M(Xa)’ for all a, then f(z) € m{M(xa)} = K. Since {M(xa)}

is a collection of nested continua, then K {s a gontinuum. Therefore,
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K has a zero, k, Since z and f(z) are in K, then k is a

predecessor of hboth z and £(z) and, for some o, k<xa. But

then, k¢ M(xa) , which contradicts that ke /M) {’M(xa)} . Therefore,

ze¢ P or z < f(z) and z is maximal with respect to this property.
Suppose z < f(z). Then, there exist y such that z <y < {(z).

Since z = supC, then f([z,y]) M Ml(y) = f(z). Now

L{f(y)) M L(y) # ¢ and both of these sets are continua. Therefore,

L(f(y)) U L(y) is a continuum. Now, f(y) ¢ f([z,y]) and

f(y) € L(f(y)) U L(y). Therefore, f(lz,y]) U L(f(y)) U L{y) isa

continuum. If x'e€ [y, f(z)] and x' # y or x' # f(z), then

x' ¢ L(y) and x'¢ L(f(y)), since z <x' and, by the above,

x' ¢ £([z,y]). 1 x'ef([z,y]) U Li(y)) U L(y) and x' # y or

x' # f(z), then x'¢{ [y,f(z)], Therefore

{Iy, £(2)]1} N {f([z,y]) U Lify) U Ly} = {y, £(=z)},

which is not a connected set. This contradicts the hereditary uni-
coherence of X, Therefore, z ¢ f(z), which implies that z = {(z),

Q.E,D,

Using the order properties of trees, Smithson [14] has proved
a fixed point theorem for lower semlcontinuous functions., The follow-

ing is Smithson's theorem,

Theoz_‘em 5,14 If X isatreeandif F:X -+ X is a lower semi-
continuous mulfifunction such that F(x) is connected for all x e X,

then F has a fixed point.

Proof, See Smithson [14]. Q.E.D.
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There have been many results developed about the fixed point
property for trees and generalized tree~g, but there still exist
unanswered questions. One of the unsolved problems, presented by
Isbell [7], is the following: ¥ F is a commutative family of
continuous mappings of a tree T into itself, does there exist a point

x ¢ T such that f(x)=x, forall fe F?



CHAPTER VI
SUMMARY AND CONCLUSIONS

It was intended that this dissertation he written in such a way
that a good undergraduate student who has had a first course in topology
might grasp the material presented here and that it could be of some
use as a guide for a seminar or independent study eourse for advanced
undergraduate students, It should reinforce many of the basic ideas
‘learned in a beginning coursge in tapology and would introduce the
student to the concept of a partially ordered topological space; a notion
which is seldom found in elementary topology texthooks or is only
briefly discussed there,

Chapter II introduces the basig notions of quasi and parti\all‘y
ordered topological spages and a glance at the number of papers and
books that were referred to here indicates that this chapter could be
extended into a study in itself. We have just touched on the material in
this area and have included only those results needed to get the desired
characterizations of trees.

In Chapter IIl, we have given several characterizations of trees
and have emphasized those characterizations involving partially
ordered topological spaces. In Chapter IV, we have discussed the
concept of generalized trees, a notion which is gotten by weakening

the order gonditions in the characterization of trees. In Chapter V,

AR
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the main emphasis is on the fixed point theorem for generalized trees

and on the proof given, using order theoreti¢c methods,
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