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PREFACE

This thesis is a complete expository presentation of the known
characterizations of chainable continua which are derived directly from
the definition of a chainable continuum, While this study was origin-
ally undertaken as a partial fulfillment of the requirements of the
Doctor of Education degree, as the study progressed,; the aim shifted
from just fulfilling requirements to that of providing a complete and
detailed development of the characterizations and to reveal the effec-
tive exploitation of several techniques of proof. This objective, with
limitation to a direct approach, has been achieved,

The first two chapters contain the only results which are either
without proofs or with partial proofs, Those of the first chapter were
considered to be well outside the main objective of the thesis and, of
course, we must begin somewhere., Those of the second chapter were only
indirectly related to the subject at hand and were presented only
because I felt their unusually strong conclusions would help reveal the
degree of control one has over chainable continua, Except for one
reference to the theorems in a later example; no other use was made of
the results of the second chapter,

The proofs of all other results are complete., The detail in some
casesy, may, in fact, obscure the plaﬁ and techniques of proof which are
the important results for any reader, I have attempted to provide
explanation of the plans and to point out the techniques, The level of

presentation is aimed primarily at a reader familiar with R, L, Moore's
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book; Foundations of Point Set Topology. However; the reader who has

successfully completed a year of study in general topology and who has
ready access to Moore's book as a reference; could read the thesis with-
out too much difficulty., Everyone,; regardless of background, is
encouraged to read with pencil in hand and to construct chains in every
conceivable manner,

The second chapter is primarily a presentation of results concern-
ing the construction of chains on chainable continua, Two important
results reveal that all chainable continua are atriodic and hereditarily
unicoherent, I have taken the approach that the converse of this would
be the ideal result, While the third and fifth chapters present results
which successively reduce the necessary additional restriétionsg it is
also noted in the fifth chapter that this ideal cannot be achieved,

It would be impossible for me to acknowledge, by name, the many
individuals,; whose instruction and encouragement have played a part in
helping me achieve this goal, A special note of gratitude must be given
to those friends and colleagues whose support and encouragement have
kept me going., Although it is impossible to do so fully, I especially
wip@ to thank Dr., John Jobe for his patient and understanding direction
of this thesis, which has perhaps taken longer than necessary because of
my interest and desire to take courses beyond those required, His
approach to learning in the c¢lassroom will remain with me throughout my
teaching career,

My thanks also go to Dr., E, K, McLachlan, who has assisted me as an
academic advisor, instructof, and commitee chairman, and to committee
members and instructors; Dr, Roﬁert Alciatore and Dr, Joe Howard, To

the Department of Mathemsties at Oklahoma State Uhiversity for providing



a graduate assistantship for these years, thank you,

Finally, to my family I owe a special debt, My wife Doris, son
Doug, and daughter Debi have endured too long without husband and
father, while I devoted much of my time and energy to this endeavor,

May they recieve fully what benefits this completion may bring,
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CHAPTER I
INTRODUCTION
Historical Development

The notion of a simple chain was first defined by R. L. Moore [25]
in 1916, Although not always using exactly the same definition, numer-
ous references to or uses of simple chains were made during the next
thirty-five years, Notable among these were the writings of B. Naster
(27] in 1922, J. H. Roberts [31]‘in 1930, and E, E, Moise [24], R, H,
Bing [2] [3], O, H, Hamilton [15], and Bing and F, B, Jones [7] around
1950, Most of these publications, however; used simple chains or
particular sequences of chains to produce results not specifically
concerned with the ability to construct chains., Nor did they develop
the consequences of a chain on a continuum, All of the publications,
except that by Roberts, were concerned with what was eventually called
the pseudo-arc and the subject of homogeneous plane continua, Other
work was also being done during this period on such related subjects as
triodic continua [32] and unicoherent continua [23],

In 1951, the publication by R, H, Bing of "Snake-like Continua®,
[4] introduced the study of this classification of continua for its own
sake, This represents the first published result concerning the char-
acterization of the continua which Bing called; snake<like continua,
Bing attributes the actual name to Gustov Chdquet (4], The terms

chainable continua or linearly chainable continua have, however,



gradually replaced Bing's earlier name. The main result of Bing's work
was a characterization of chainable continua in terms of atriodic,
hereditarily unicoherent, and hereditarily decomposable continua,

The interest in chainable continua since the early 1950's has
centered on characterizing these continua without restriction to heredi-
tarily decomposable continua or with the possibility of removing some
of the other restrictions. In 1961, L. K, Barrett [1], utilizing the
results of H, C. Miller [23], was able to prove several characteriza-
tions equivalent to that by Bing, It was not until 1966 and again in
1969 that significant results appeared, reducing the restrictions in the
characterizations of chainable continua. J. B, Fugate [13] and [14] was
first able to show that a compact metric continuum is chainable if and
only if it is atriodic, hereditarily unicoherent, and is the union of
two chainable subcontinua, Among his later results is a characteriza-
tion of chainable continua in terms of the indecomposable subcontinua of
an atriodic and hereditarily unicoherent compact metric continuum,

These results represent the existing state of knowledge of the charac-
terizations of chainable continua, approaching the subject directly from

the definition,
Objectives

The main objective of this thesis is to present as complete a
development of the characterizations of chainable continua as possible,
However, one limitation will be placed on the study and that is to limit
the characterizations to those obtainable directly from the definition
of chainable continua. Thus, the study of chainable continua in terms

of algebraic topology and inverse limit spaces will be omitted. This



limitation is necessitated by the desire to avoid having to assume too
lextensive a background by any reader and to keep the thesis manageable
in terms of length.

Since it is not assumed that every reader will already be familiar
with the terms and basic results needed for this presentation; an aim
will be to develop the background necessary to understand and prove the
theorems, This will be attempted through examples illustrating the
definitions and by discussing the method of a proof both before and
during the actual presentation of the proof of a theorem, An additional
objective is to present in a single reference the works of several
individuals which currently appear only in mathematical journals., Any
pedegogical value in this study must ultimately lie in the opportunity
which it affords to investigate, in depth; a subject of current interest
in mathematical journals and which at present only rarely enters into
courses in topology. There is also the aim of developing the ability
to analyze research developments in mathematics and interpret them in

light of the future of mathematics education.
Thesis Notation and Procedures

In order to help facilitate the reading of this thesis; certain

~ policies regarding notation and procedure should be mentioned. When a
reference is made in the form,; theorem 3,14 or [3,14],; then this refer=-
ence is to the fourteenth result of Chapter III, Generally, except when
the reference is to Chapter I, the complete proof of the indicated
result appears in the thesis, Certain theorems which appear in the lit-
erature and which are used in this presentation, but which are not as

accessible as others, will be stated later,; without proof, in this



_ chapter, References to the literature will be made in the form,

[5 po 14), where the first number indicates the source as given in the
bibliography of this thesis, and the second number indicates the page
number within that source,

Definitions will be numbered consecutively only in the first chap-
ter. In the later chapters, definitions will simply be incorporated
into the discussion. The basic examples will first appear in a section
of this chapter with complete explanation of their construction, They
will be referenced later for illustrating specific definitions and
results, To assist the reader in finding definitions and examples, an
index of the definitions and examples is included as an appendix.

The completion of a proof will be indicated with the symbol |{,

For the reader who does not wish to study each proof in detail, and this:
ig sometimes advisable in order to obtain a good overview of the mater-
ial, this notation will facilitate their reading of the thesis. Some
proofs are quite lengthy and this notation serves to indicate the end of"

the proof and the beginning of the following discussion,
Basic Definitions and Subject Notation

Certain terms and concepts are considered basic to the complete
presentation, Those which relate directly to the subject of chainable
continua are presented in this section along with some basic assumptions
and notational descriptions. Definitions and theorems which are con-
sidered basic to any general development of point set topology are not
included., These may be found in any standard reference such as

Foundations of General Topology by William J. Pervin [29] or General

Topology by John L, Kelley [18]. Additionally, all theorems or defini-



tions which do not appear in this thesis or one of the abowe references,

may be found in Foundations of Point Set Topology by R. L. Moore [26],

The basic topological setting for the definitions and theorems of
this thesis is a metric space with the metric being denoted by p, This
will be assumed, without further mention, in the statement of all
results, Examples will generally be constructed in the Cartesian plane
although this restriction is certainly unnecessary in most cases,

Since the subject of this thesis deals with continua in a metric
space, this is obviously the point at which we should begin the defini-
tions, In order to avoid having to state a condition of compactness in
each theorem, we shall simply define a continuum to include this

property.
1 Definition A compact connected set is called a continuum,

2 Definition Any finite collection C = {dl9 d,, °ceg dm} of

2

open sets is a linear chain, or just chain, if difa\dj A% if and only

if i -3l <1.

It should be noted that the definition of a chain does not require
the existence of a continuum; ie,; chains exist without reference to a
continuum, Also it should be noted that no restrictions are placed on
the open sets involved, That is; they may or may not be connected point
sets, Theorem 2.8 will be a good example of a result which produces a
chain where the open sets may very well not be connected, Chains may
also be denoted by C(dlg 000 dm) or simply by (d19.°°°9 dm)° Once a
particular chain has been defined or denoted in a proof and thus when it

is not apt to cause confusiony; a chain may be further abbreviated as



€(1,m), A subchain of C(1,m) is the collection {dk’ dk+l’ 000y dn}
= C(k,n) which is a subcollection of C = {dl, dye 0oy dm}° The

m
notation C*(1,m) will be used to denote the set, %:{di°

% Definition If C = {d19 d2’ 000, dm} is a chain then each set

d; is called a link of the chain C. If ]1i = j| = 1 then the links
di and dj are called adjacent links of c(1ym), Otherwise; distinct

links are called nonadjacent links,

Although definition 2 requires that d,(M\d, =# for fi = 31 > 1,

J

where di and d, are open sets, it is possible that the links may

J
have some limit points in common, That is; no restrictions have been

placed on the possibility that EE(N\Ej A% with |i - jl > 1. Thus,

the following definition describes just this type of chain,

4 Definition A chain C = {dlg d2

if the intersection of the closures of two nonadjacent links is empty,

s "e°y d )} is taut if and only

That is, C(l,m) is taut if and only if Eiﬂﬁj =@ for i -3l >1,
This is equivalent to requiring that p(digdj) >0 for |i=3|l>1

[139 po 460] o

It will frequently be necessary to construct a chain which is con=
tained within another chain, That isy if C and F are chains, then
F is contained within C if and only if F*C C*, This form of con=
tainment is usually too general and the following definition places

further restrictions on the two chains,

5 Definition et C and F be two chains, The chain F is
said to be a refinement of chain C if and only if each link of the

chain F is contained in some link of the chain C. The refinement is



called a closed refinement if and only if the closure of each link of F

is contained in some link of C,

Definition 6 is the first definition relating chains to continua

and is of course the basis for defining a chainable continuum.

6 Definition Let M be a continuum, If C is a chain such that
each link of C contains a point of M and MC C* then C is a

chain on the continuum M, If C is a chain such that MC c*, but it

is not known whether each link of C contains a point of M or not,

then C 1is said to be a chain covering the continuum M.

This definition does not require a certain type of minimality. That is,
if C = {dl, dyy oeey dm] is a chain on the continuum M, it may also
be that C(1;m<1l), C(2,m); or even that C(2,m=l) is a chain on M,
The definitions of a chain and a chain on the continuum M exclude the
possibility of omitting any other links, This property of minimality is
sometimes desirous and shall be described in the future simply by the

following,

7 Definition If C 1is a chain on the continuum M then C is a

minimal chain on M if and only if no proper subchain of C is also a

chain on M,

This property is also a type of irreducibility and thus we may sometimes
refer to a chain on the continuum M which is irreducible,; meaning that
the chain is a minimal chain on the continuum M,

Thus far, none of the definitions have directly required that the
topological space under consideration be a metric space. The following

two definitions show the necessity of having made this a general requir-



ment when studying chainable continua,

8 Definition If each link of a chain C has a diameter less than

g, then the chain is called an g~chain,.

9 Definition If M 1is a continuum, then M is a ghainable
continuum if and only if for every real number ¢ > O, there is an

g~chain on the continuum M,

An arc in the plane is the simplest example of a nondegenerate
chainable continuum. Because of the ease of constructing such an exam-
ple in the plane, we shall usually not giwe special mention to it,
Examples of chainable continua which are not arcs will be described in
the following section of this chapter,

The remaining definitions relate to specific properties of or

requirements for chainable continua,

10 Definition The continuum M 1is said to be a triod if and only
if M is the union of the three proper subcontinua A, B, and C
such that A/ B = AM\C =B/NC = AMB/MNC and AMNBMC is
properly contained in eaéﬁ”of A, B, and C, A continuum is said to

be atriodic if and only if it contains no triod.

11 Definition A simple triod is a triod such that the common part

of the three proper subcontinua which form the triod is degenerate,

One usually thinks of a simple triod as being a simple "Y" or "IV

shaped continuum.

12 Definition The continuum M is unicoherent if and only if

whenever M is the union of two subcontinua, their intersection is a



continuum., A continuum M is said to be hereditarilx unigoherent if

and only if every subcontinuum is unicoherent,

13 Definition A continuum is decomposable if and only if it can

be expressed as the union of two proper subcontinua. If each nondegen-
erate subcontinuum of a continuum is decomposable then it is called a

hereditarily decomposable continuum,

14 Definition A continuum is indecomposable if and only if it is

nondegenerate and not decomposable, It is hereditari;y indecomposgb;e

if each subcontinuum is indecomposalile.
Fundamental Examples

A number of examples are described in this section for reference
throughout the remainder of the thesis, They also provide immediate
examples of continua which illustrate the definition of a chainable
continuum in the preceding section, The definitions of some of the
terms used in naming or describing the examples will be given in later
chapters and have no significance to the actual description of the
examples, Thus, what is meant by an end point or opposite erd point is

immaterial at present,

A Example Ciosqd;prolqgist's Sine Curve (335 po 137]), Let M

be the closure of { (x,y) s y = sin(%g5, 0<x<1}, Because M is
the closure of this set;, M clearly includes the points { (0sy) ¢

-1 <y <1} (see Figure 1,) For a given e > O the method of con=
structing an e-chain on the Closed Topologist®s Sine Curve is illus-

trated in Figure 2,



‘Figure 1. Closed Topologist's Sine Curve

Figure 2, Chain on the Closed Topologist's
Sine Curve

Figure 3. A Chainable Continuum With Two End Points

10
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B Example A Chainable continuum with two end points, This con-

tinuum is the union of the continuum of example A and the continuum
which is symmetric to it with respect to the origin., Figure 3 illus-
trates this example which is g-chainable in a manner similar to example
A, The significance of this example is that it is a chainable continuum

with the two end points, T and U, but it is not an arc,

C Example A chainable continuum with four end points. This con=

tinuum is the union of the continuum of example A and’the continuum
which is symmetric to it with respect to the point (1,0) or point T
of Figure 1, An illustration of this example is given in Figure 4.

Again, this example is g-chainable in a manner similar to example A,

D Example A chainable continuum (indecomposable) with one end
k

3 -]
X e 2n  2n+l
point [4, p. 662], Let C = ﬁ:}( %zéf = ——E-] ); where [a,b]
. -3 3

denotes the closed interval from a to b, The point set C is the

Cantor set in the plane., Let M, be the union of all semicircles in

0
the upper half plane with both end points being elements of C and
center at the point (%,O). Let My i =1, 2, 3y °°*; be the union of

all semicircles in the lower half plane with both end points being

o0
elements of C and center at the point (—iir, 0). Then M = )y, is
2‘31 1=01

a chainable continuum with only one end point, namely the origin., This
continuum is also indecomposable [19, p. 204] and is illustrated in

Figure 5.

E Example A chainable continuum (indecomposable) with no end

points [4, p, 662]. This continuum is the union of the continuum M of
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Figure &%, A Chainable Continuum With Four End Foints

Figure 5, A Chainable Continuum (Indecomposable) With One Fnd Point
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example D and the continuum which is symmetric to it with respect to the

origin, Figure 6 illustrates this example.

F Example Chainable continuum (indecomposable) with two end

points. Let E = { &zé ( év)[5.2 +23 5.2 +i3+13 ) }, where [a,b]
5

denotes the closed interval from a to b, Then E is the set of all

numbers of the unit interval which can be written in the base five enum=-

eration system without the digits 1 and 3., lLet E_=E(\( 2 _. L

]

for n=0,1, 2, o+ andlet F ={x:l=xce E }o Let M be the
union of all semicircles in the lower half plane with centers at the

point (-—jl—- 0) and end points elements of E s D=0y 1,2, **°,

10.5%'

Let Nn be the union of all semicircles in the upper half plane with

center at the point (l- —-jl—-, 0) and end points elements of Fn’
10

(-]
=0y 1y 2y *+*, Then M = kéé(th,)Nn) is a chainable continuum with
two end points, namely the origin and the point (1,0). This continuum

is indecomposable [19, p. 205] and is illustrated in Figure 7,

G Example ' Hereditarily indecomposable chainable continuum. This
final example is fhe pseudo-arc and except for listing it here with the
fundamental examples, we shall not further define or discuss it., The
pseudo-arc is the subject of a thesis by McKellips [22] and any reader
wishing to pursue the subject further is refered to that source or one

of the original sources [27] or [24],
Reference Theorems

This chapter will conclude with the statement of several results



Figure 6, A Chainable Continuum (Indecomposable) With No End Points

4T



Figure 7. A Chainable Continuum (Indecomposable) With Two End Points

ST
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from the literature which will prove to be essential in the later chap-
ters, They are stated without proof since their purpose in being
presented is to provide easy access by the reader to their statements,
These results do not appear iﬁ texts which could be conaidgred generally

avalilable to the reader.

1.1 Theorem Ev§:1 infinite sequence of sets contains a convergent

subsequence [34, p. 11].

1;? Theorem If (A;)} is an infinite sequence of sets such that
(a) }E{Ai is conditionally compact, (b) for each i, any pair of
points of Ai can be joined in A’i by an si-chgin and ;’1 -0 as
i=o, (¢) lim inf (Ai} £ &, then lim.sup {Ai} is comnected [34,
p. 141, | "

1.3 Theorem If {Ai} is a convergent sequence satisfying (a) and

(b) of [1.2], then 1lim {Ai) is connected (34, p., 15)].

1.4 Theorém Any monotone transformation f(A) =B on a compact
space A 1is equivalent to an upper semi-continuous decomposition of A
into continua, Conversely, any upper ééﬁi-continuous decomposition of
A into continua with hyperspace A'. ;s equivalent to a monotone trans-

formation f£(A) = A' [34, p. 127].

1.5 Theorem If T is compact and the union of three continua
which have a point in'common and such that no one of them is a subset of

the union of the other two, then T contains a triod [32, p. 443].

1.6 Theorem Every compact nondégenerate unicoherent continuum

which is not a triod is irreducible between some two points [32, ﬁ. 4567,



CHAPTER II
FUNDAMENTAL THEOREMS OF CHAINABILITY
Some Necessities for Chainability of Continua

In this section some of the consequences of a continuum being
chainable and in particular its unicoherence and its atriodicity will be
presented,

The first several results illustrate fﬁat if C is a chain on a
continuum M and no subchain of C is a chain on M then in a sense
each part of the chain must meet M, The first result states simply
that each link must meet M and in particular that part of each link
which is not in any other link meets M. Since there is no requirement
that links be connected; it is possible for a link to be the union of
several disjoint open sets with some of these not meeting M. Proposi-
tion 2.3 carries these ideas even further by showing that the common

part of two adjacent links must also contain a point of M,

2,1 Proposition Let M be a connected set and C = {dlg TEIN dn]
be a chain on M such that dI(N\M A @8 and dn(R\M £ @, Then
d;( M £ @ for each i =1; 2, o°°y n, In fact, MMIapN(4; ,\U
4 )1 £@ for i =2, 3; ceoy n=l. Also; if C is a minimal chain on

M, then Mr‘\(dl\\dz) and M(ﬂ\(dﬁ\\dnal) are both nonempty.

Proof: Assume that for some integer j, 1 < j < n, the set
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Mﬁ[dj\(dj_l)udjd)l is empty., Let H = M\C*(1,j-1) and K =
MO\C*(j+1,n). Then M = H(_JK. Now x ¢ H implies that x ¢ d_ for
some ky, 1l < k< j-l. The definition of a chain implies that 4, /Mdy
is empty for each i, Jj+l <i < n. Since KC C*(j+l,n) this implies
that dkfa\K = @ which implies that x £ K. Likewise, x z K implies
that x £ H, Hence, H and K form a separation of M which is a
contradiction to M being connected., Thus, the integer j does not
exist and for each i, 1<i <n, H{A\[di\\(dj+lk~)dj-l)] £ @. There=~
fore, we also have that for each i, 1<i < n, Hf\di #@. The
completion of the theorem is immediate, ||

This proposition can be extended to a result which is more useful
in later theorems and is stated below. Since its proof is similar to

that given above, it is omitted.

2,2 Proposition Let M be a connected set and C a chain such

that MCC* If d/\M£P and d /M AP for some d, and d

J J
in C with i < jy then each link of the subchain C, = C(i,j) con-

tains a point of M.

2.3 Proposition Let M be a connected set and C = {dl. coe, dn}
be a chain on M such that dlf\H A% and dan # #. Then for each
i, 1<4gn-1, Mgy ) #8.

Proof: Suppose there is an integer j, 1 < j < n-l, such that
Mm(djf\djﬂ) =@, Let H=MNC*(1,j) and K = MC*(j+l,n), both

of which are nonempty sets. We must now have that M = H\_/K. The

point sets H and K do not meet since M/ \d {\d 1 = g and
el . . . .
HCC (1,3-1)u(d:]\dj+l)U(djf\dj+l) which implies that
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HC c%1,3-1)\U(d AN j+l>’ This latter quantity being denoted by G.

Likewise, K is contained in the set C*(j+2,n)\_J(d dj) which we

j+i\\

shall denote by G Since dj\\dj+lq; dj and dij\C‘(j+2,n) =@,

2.
thie with the fact that 4 jﬂ(d 3 AN j) = @ implies that dijZ = g.
Likewise, dj+l("\Gl = @, Now by the definition of Gl and G, and

the definition of a chain, Glf“\Ga = @, Thus, H/’\Kq;'Glf“\Ga which
implies that H/ K = g,
Now suppose there is a point x in H\K. Then x e K which

implies that x € G, and thus x ¢ dj v J#l1<j,<n. Since x isa
x

limit point of H, dij,M!. Let yedjﬂn, y # x. Then there
X X

is an integer j_, 1< J_ < jJ» such that ye d and thus d, (\d
y == Iy I

##. This implies that [j, - j | <1 and thus J = 3 i, = 3.

But now y e daf\ngd MM and y s dy,, inplies that ¥y e dy\d .,

3 J+1

(M, a contradiction to the original assumption. Therefore,

A

d;/MNd MM £ g, for eaoh i, 1<i<n-1, |

With the three preceding propositions it is now possible to estab-
lish several important properties of chainable continua. The final
resﬁlt is stated as theorem 2,7 but it is the following which makes this
possible, It should be recalled that by a continuum being chainable we
mean that the links can be made arbitrarily small, Thus, many of the
following resulos are established by simply requiring the links of a

chain to be too small to allow an assumed property to occur,
2.4 Proposition Each chainable continuum is unicoherent,

Proof: Let M be a chainable continuum and suppose that
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M= Mi\“}M2’ with Hi and Mé

q be arbitrary points of leﬁ\Mz which must be nonempty since to

proper subcontinua of M, ILet p and

assume to the contrary would produce a separation of M, We may assume
that p and q are distinct for if leﬁ\Mz = {p} then M is unico-
herent,

Let C = {dl, d,y °°°, dnJ be @ chain on M, Then p e d;, and

2’
q e d% for some i and j such that without loss of generality,

i<jy and p g dipgr 9 £ dj—1° Proposition 2,2 now implies that each

link of C, = C(i,;j) contains a point of M. Let {p = P;s P

0009‘

1 i+1?
Pyyt Py = q)} be a set of points such that for each m, i < m < j,

pm £ Mlm dmo

p* 9o o0 dn} is an g=chain on M, then p(pmgMa) <eg

since each link must contain a point of M2, We also have that

p(pm,pm+1) < 2¢, Since M is chainable, for each € > O; M can be

covered by an g-chain, Thus, there is a sequence of point sets Rig

R,y oo such that for each k, R, = {p = Py,1° P2t "% Pop = q}

2 K
R 1
such that for each i, 1< ign, i€ M) p(pk,i’M2) < g and
1
PP 1 9Py, 5410 < e

Since {Rl’ R29 eso } ig an infinite sequence of poipt sets, some
subsequence has a connected sequential limiting set L [1,1] and [1.2].
But L is contained in le"\Ha and contains p and q, Since p
and q were arbitrary members of leh\Mzg this intersection is con=

nected and M is unicoherent, ||
2,5 Proposition A chainable continuum is not a tried,

Proof: Assume that the chainable continuum M is a triod. Let
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Ml9 M29 and M3 denote the three proper subcontinua such that M is
their union and Mifﬁ\Mj = K; where i, je {1, 2, 3} and i # j, and
K =M sz\ma,, For each i =1, 2, and 3; let p, € M\K £ . Let
6, = p(plgMz\_/H})g 6, = p(pz.MluMB). and by = (pangUMz)o Now
let & = min{élg 62, 63] and let € be a number such that 0 < ¢ < %.
Let C Dbe an g-chain on M. Then no single link of C intersects
any two of {pl}, {pZ}, {p3}9 and K, Now these four distinct point
sets must intersect the chain € in some order., Without loss of gener-

ality, suppose that they meet the links of the chain in the order named,

Suppose that the chain C is denoted by {d,s eeey d_ 4 *¢°y d_ 4, seo,
1 Py | 2

dp v ooees iy soey dn}9 with p; e dIn9 i=1,2, 0or3 and d‘K/\K
> i

# %, Then dp (M M, #¢ and. dKf\MZ £ @ which implies that
2

(\\MZ # & by proposition 2,2 since M

4 is connected, But this e¢on-
Py 2

tradicts the fact that p(p39M2) > b, >8> 2¢ > diameter of d_ .

3 P

Similar arguments hold for any order of these four point sets, Hence,
M is not a triod, ]|

The following proposition will enable us to conclude that each
chainable continuum is in fact hereditarily unicoherent and atriodic,

This will then establish the previously mentioned theorem 2,7,

2.6 ProEosition Fach subcontinuum of a chainable continuum is

chainable,

Proof: Let K be a subcontinuum of a chainable continuum M., Let

C = {dl’ d,y 00, dn) be an g-chain on M, Since C contains a finite

2

collection of links and each point of M is in at least one link, there
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is a first link, d;, 1<i<n such that d,( JK £ @ and there is a

last link, d,, 1< j<n such that djﬂx,lﬁ. with i < j. Then

Jl
K is a continuum with Cl = C(i,j) a covering of K. Proposition 2.2
now implies that for each k, 4 (K #%, i<kg<j. Thus, C, is an

e~chain on K and since ¢ was arbitrary, K is chainable. ||

2.7 Theorem Every chainable continuum is hereditarily unicoherent

and atriodic,

Proof: This theorem follows immediately from propositions 2.4,
2,5, and 2.7. ||

Now that several results have been obtained pertaining to chainable
continua perhaps it is appropriate to pause from the formal presentation
to reflect on the consequences of these results, These informal reflec-
tions will obviously be nontechnical with the inclusion of such
undefined yet descriptive terms as '"thin," "line-like," "circle-like,"

and "looping,"

a) b) c)

Figure 8, Examples of a) A Simple Triod, b) Looping or Circle-like,
and ¢) Non Line-like or Non Thin
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The concept of chainability, which requires chains with arbitrarily
small links, denotes a sort of thinness or line-likeness go the contin-
uum, Perhaps an idea of local thinness is more appropriate since a
chainable continuum can appear to be dense in places. A good example is
‘example A, the Closed Topologist's Sine Curve, which is quite dense
along the interval from (0,-1) to (O,l);

Since every chainable continuum is atriodic by theorem 2.7, any
triod cannot be chainable, This excludes such continua in the plane as
the union of the segments joining (0,~1) to (0,1) and (0,0) to
(1,0), the unit disk, and the union of sin x and cos x for 0 < x < 2Mm
The first example, wﬁich is a simplebtriod, is excluded becausé with
chains having links of diameter less than one-half, a linear chain can-
not cover the continuum, Likewise, the unit disk is excluded, but also
because it contains the afore mentioned simple triod. Thus, continua
which in a sense are not thin or line-like must be excluded because they
contain triods, |

The third example is one which might informally be described as
containing loops. Again such a continuum is not chainable because
locally, about a point of intersection, the continuum contains a triod
which creates the same difficulty as in the first example.

The necgssity of being unicoherent excludes from consideration such
continua as circles since, for example, the unit circle can be written
as the union of two proper subcontinua whose intersection is not con-
nected. The requirement of hereditary unicoherence further excludes
continua such as that previously mentioned which contain loops since a
loop is circle-like,

In Chapter III it will be shown that these requirements of
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atriodicity and hereditary unicoherence are actually sufficient for
hereditarily decomposable continua to be chainable, Such is not the
case for other types of continua, There are however numerous other
fundamental results which must be obtained before considering these con-

ditions of sufficiency further,
Construction Properties of Chains

The results which follow in this section of Chapter II might best
be described as structural theorems since they deal with the_ability to
construct new chains from given chains., The first two propositions
follow rather easily and it should be noted that they are stated without
reference to any particular continuum.

Proposition 2,8 will provide the ability to construct, from the

chain C(dl, d

51 *+*y d )y a new chain, denoted by C/\S, where S

is an open set with a certain property given in the proposition, and the
ith link of C/ \S 4is given by difN\S, for 1< i< n. Thus, this
proposition defines and establishes the collection {dl(“\s, A8y =0,

dh(ﬁ\S} as a chain denoted by C/M\S,

2.8 Proposition If C = (dl, dyy ey dn} is a chain and S is
an open set such that Sf‘\(di{“\di+l) @ for each i, 1< i <n-l,

then C/\S ='(dlf“\S, dzfa\s, cee, dnfa\s} is a chain,

Proof: Clearly, for each i, 1 <i<n, difﬂ\S is an open set.
Now (48X (ayM)s) = (gMNapMs. Mus, - i <1 implies
that j = i-=1 or j = i+l and‘consequently Sf’\(dif“\dj) A8 by
hypothesis. Conversely, Sfﬁ\(difﬁ\dj) £ ¢ implies that di/—\\dj £d

which then implies that |i = jl < 1. Therefore, (di/\ s)~ '\(djf\s)
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#@ if and only if |i - j| <1, and C/\S is a chain. I

While the preceding proposition in a sense provides a means of
reducing the sizes of the links of a chain and thus of producing a
refinement of the given chain, the following simple proposition provides
a means of lengthening chains by joining two chains together. Thus, the
following proposition will define and justify the notation for the chain

denoted by C(1,n) 8 G(1,m).

2.9 Proposition If C = {dl, dyy eeey dn} and G = {gi, Bo1 **%»
gm] are each chains such that di(“\gj AP if and only if i =n and
j = l' then C(l,n) e G(l’m) = {dl, d2’ L XX Y dn, gl’ ga, evey gm} is

a chain,

Proof: This result is apparent from the hypothesis and the defini-
fion of a chain, ||

.The use of the preceding propoSition will usually be with the join=
ing of two chains which may not necessarily have their links numbered
beginning with one. The validity of this should, however, be apparent
from the preceding.

The next several results continue in the same vein as the two
preceding propositions. They deal primarily with the ability to con-
struct a particular type of chain or to guarantee that a sequence of
chains with a particﬁlar structure exists. These results will, howevar,
again be relative to an arbitrary but given chainable continuum. Since
the details of the proofs become quite involved, although not difficult,
any reader might find it advantageous to initially omit a detailed study
of tﬁe proofs and to first seek to understand the conclusions of the

lemmas and their significance in arriving at the primary result which is
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stated as theorem 2,13,

2,10 Lemma If M is an e-chainable continuum, then there is a

taut ¢~-chain on M,

Proof: Let C = {dl, dys toty dn) be any e-chain on M. Although

M a  # # if and only if [k - j| <1, it is possible that

?fkf\aj #P and |k - j| > 2. Suppose first that El(ﬂ'aj AP and

|k - j| = 2. Then there is an integer i such that, without loss of
generality, k=31 -1 and j=1i + 1. We note at this point that this
intersection is compact. Let Y, € di_lf\ d; and y, € dif\ dae
Then ¥y £ d;,; and ¥y, £ di-l‘

Now for each x ¢ (di-lm di_'_l)mdi, there is an open ball
B(x;ex) contained in d; and such that e < p(x,yi), i =1 and 2,
Also for each x e (di_lf\ di+l)\di’ there is a 6x > 0 such that the
open ball B(x;bx) does not intersect M and p(x,yi) > 6 for is=

€
. Xy L - - .
1 and 2, The collection { B(x;=) : X e di_lf\ di_._lmdi YU

b .
Xy . 3 I . ; 3 3
{ B(x; 2) : X € (di_lm di+1).\di } is an open cover of di-lm di+l'

1\ €x. 5,
Let the collection | A{ B(xl;—), ses, B(xk;'?), B(*k+l;?)’ soe,
5, - -
B(xk_'_m;-?) } denote a finite subcover of di-lm di 41
€ g b &
Let & _-_-’min{ -E]-'-’ oo, —2£, —é!'--’ e, _EIEI_ }. Then for all x in
Ei_lf\ﬁiﬂ, p(x,y;) > 26, for i =1 and 2, and for all x e

(d;_;Md, 1)Nd;y plx,y) > 26, for all y in M. Let
0=\J{B(x,0) : x¢ di_lmdiﬂ }. Then O Qdi_lm d, ., and
yi,fﬁ, i =1 and 2,

1 and hi.+1

Let hi-l = di_l\o and hi-l-l = di *-_1\0. Then hi-
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are disjoint nonempty open sets such that hialm d, £ @ and hi_'_lm d,
£ @ since they contain y, and y, respectively. Because h, , and

h are contained in di- and di+l respectively, their diameters

i+l 1
are less than €. If ¥y ¢ M(ﬁ\ag_lfﬂ\a£+l then since C is a chain on
My, ve dio Finally, hi—l meets M since y € (di_l\\di)(\\M g
and x e (d;_;~\d;)\0 implies that B(x;6)( M = ¢ and thus y £ 0.
leew:Lseg hi+lmH % ¢. Now Cl = {dl’ so00 g hi"l’ dig hi+19 coog dn}
is an e-chain on M and h, .k, ; =&,

Now suppose that Ek(“\ﬁj A% and |k = j| > 2. Then there does
not exist a link d; of C such that difﬁ\dk A ¢ and dif'\\d‘_j £ D
Als0, (E%("\Eﬁ)(”\m = f since to assume not implies there is a point x
of ai\\dk and d.~d. which is also in M. But because C covers

J J 7

M, x ed; for some link d; of C and thus dkf\ d; and dj (Mdy
are both nonempty which is contrary to the above. Hence, EL(A\Ej(A\M
=g,

Since this intersection is empty and M is compact, there exists
a number & > O such that for all x in Ei(ﬁ\gﬁg p(xM) > 26, Then

(I B(x36) 3 x ¢ E&(‘\E& } is an open set O such that O M = @,
Thus; M is contained in the complement of 0 and if g = dk\\ﬁ' and
g, =4d

h| J

gk’ oo0og 8j’ LXK Y dn}° Slnce gkgdk a.nd gjgdjg both gk and gj

\33, then M 1is covered by the collection 02 = {dlg 0oe,

have diameters less than g. To see that 8y and Sj are links of a
chain, we note that dk‘l(ﬁ\dk(ﬂ\M A% and O~M = @ and hence

~ T . . ° °
dk-l(ﬂ\(dk\\O)(N\M # @. Therefore, d 1/ V8 £ @, Likewise, we obtain

gk(ﬁ\dk+l £ D djalf"\gj A @, and gj(ﬁ\dj+l # @, Also, g, and g;

are themselves nonempty. Thus, C2 is a chain on M and Ek(“\gj =@,

Since either of the above procedures can be repeated finitely many
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times, the chain C may be made into a taut e-chain on M, ||

2.11 Lemma Let M be a chainable continuum and C a taut

on M such that C

e=chain on M, Then there is a taut -;-e-chain Cl 1

is a closed refinement of C,

Proof: lLet C = {dl, d2, ses, dn}. Without loss of generality,

n > 2., Since M is compact and the complement of c*, ~c*, is

closed, there exists a number « > O such that p(M,~C*) > 2a, Let
a— . . N -

D = }E{{B(x,a). Then DC C*,

For each i, 1<i <n-l, let Hy =D/ \~C*(i+l,n) and K, =

i
D~C*(1,i). Now for each i, Hi' and K, are closed subsets of
= »* *, . _ % . . .
DC C* such thgt Hig (di\di+l)UC (1,i=1) = C (1’1)\di+l which is
contained in C¥*(1,i+l) and Kig (di+l\ di)UC*(i+2,n) =
C"’(i+l,n)\di+1C_: c*(i,n). To see that H,MK; = @ for each i, 1let
x ¢ H;» Then x ¢ C*(1,i) which implies that x £ d; for i#2<jgn
4 Nf o o o

and x £ d; ,Nd; and thus x £ Kig_ (_di+l\di)uc (i+24n). Simi-
larly, X ¢ Ki implies that x £ H; and we have that Hif\K =@ for
1<ign-1. Then b, = p(H,,K;) is positive for 1< i g n-l,

Since C is a taut chain, Eiﬂﬁk =@ for |i - k| > 2, and thus

- = 1. - -

p(d;d,) > 0. Now let B = Smin{ p(4;,4 ) :1<i<n, 1<kgn, and

|i =k| >2 )}, Then B>O0.

a £ 61 62 6n-l
Let 6 = min{ 51 5 B, T T ceey — 5 }_. Since M 1is chainable
there is a 6-chain Gl on M which by lemma 2,10 can be considered
taut, With 6 < %e, we have that Cfl is a taut %e-chain on M, Let

d be any link of Cl' Since the diameter of d is less than or equal
to 6 with 6 < a, and d/ M £ @, we have that AdC D which implies

that Eg BC_: C*, Also, 6 < B implies that d cannot meet two
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nonadjacent links since to assume that y ¢ ETﬁ\dj and 2z g E(ﬁ\dk
with |j = k|l > 2 implies that p(y,z) < 6 < B. But by the definition
of B, p(ysz) > B and the result follows,

Since 4 WM # @, let x ¢ d/\M, Then X g.d; for some d; g C,
If EC_—_- di’ then we are done. Thus, suppose that Eq di nor for that
matter, any other link of C, Again, by the definition of B, d can
meet only adjacent links of di and then at most one of thenm, Thué;sJ
assume a7f\di+l # #. By the supposition we have that there is a point
y in (di\di+1)f\a and a point z g (di.,hl\di)(\a;.> Because E_C_:nﬁg

yeD and 2z e 5. Hence, Y € Hi and z g Ki which implies that

plysz) > éi > 6, But y and 2z being elements of d implies that

p(y42) < &, Therefore, d must be contained in either di or di+1
and C1 is a taut %euchain on M which is a closed refinement of Cofi

‘Before stating and proving the concluding theorem of this section,
the following corollary is established, Although it is not necessary
for theorem 2,13, it is a structural result and further illustrates the

degree of control possible over chains on a continuum,

2,12 Corollary Let M be a chainable continuum, k a positive

integer, and C a taut g-~chain on M, Then there is a taut %enchain

02 on M such that 02 is a closed refinement of C and any subchain

of less than k+l links of C., cannot intersect two nonadjacent links

2
of C,

Proof: Lemma 2,11 implies there is a taut %euchain GI = {dE° v00g

dn} on M such that C is a closed refinement of C, Let B be the

1
min{ p(di,dj) s di’ dj € Cl’

lt -3l 22, B>0, Let 6=min( % o) and G, be a taut b~chain

li = 5l >2 ). Since E&fﬁ\ﬁg = ¢ for
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on M such that C, is a closed refinement of C,. Then C, isa
taut %e-chain on M which is a closed refinement of C,

Suppose there is a subchain H = {hl, h29 so0g hk} of k or iess
links of C, such that hlﬂdj #@ and hkﬁdm #@% with }j = mf
> 2; ie, H intersects two nonadjacent links of C, Let x ¢ hlfﬂ\dj,
yen(Vd, and x; eh(Oh o for 1<i<kl, Then p(x,x;) <6,
p(y,xk_l) < b, and p(xi,xi+l) <6 for 1<igk-1, and p(x;y) <
P(xax;) + p(x 4%5) + eoo + p(x, ;4y) < (k#1)6 < Bo  Thus, p(Ej,Ek) < Bo
However, the definition of B implies that p(Eﬁ,Ek) > B and we have
that the subchain H cannot exist., Therefore; any subchain of less
than k+l links of C, cannot meet two nonadjacent links of C, I

Theorem 2,13 concludes this section of Chapter II. When needed it
allows us to work with a particular sequence of chains on a continuum,

A sequence {Ci} of chains on a continuum M will be called a defining

sequence of chains on M if and only if {Ci} is a sequence of taut

einchains on M °such that Gi is a closed refinement of Ci and

+1

€5 = 0 as i = «, Theorem 2,13 asserts the existence of a particular

defining sequence of chains on any chainable continuum,

2,13 Theorem If M is a chainable continuum then there is a

defining sequence {Ci} of chains on M with g = l{,
2

Proof: Lemma 2,10 implies the existence of a taut %mchain C, on

1
M and lemmg 2,11 implies the existence of a taut %bchain 02 on M
which is a closed refinement of Cl° Induction on i with lemme 2,11
implies there is a taut j%wchain C., on M, such that C, is a

ot i i+l
closed refinement of Ci' Thus, the defining sequence {Ci} of chains

on M with e, = = exists. I'
i 21
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Home omorphisms and Chainable Continua

In this section some consequences of chainability will be presented
which are concerned with the existence of homeomorphisms. The first
concerns & homeomorphism between any two hereditarily indecomposable
chainable continua and the second, a homeomorphism between any chainable
continuum and a plane continuum, While these theorems are not specif-
ically needed for the development of later material, they are presented
because they are important consequences of chainability; because they
might be considered as unexpected consequences of chainability, and
because they are certainly not obvious,

The first theorem is just stated since its development and proof

appear in the thesis by McKellips [22, p. 99].

2,14 Theorem If M and N are two nondegenerate, hereditarily

indecomposable, chainable continua then they are homeomorphic,

Before preceding to the second of the two theorems, the following
lemma is stated. The statement is not easily followed and except for
the requirement that T is a homeomorphism mapping Ml onto M29 the

proof may be found in either [2, p. 738] or with more detail in

[229 Po 5O] °

2.15 Lemma Suppose that M, and Mé are chainable continua in

1
the metric spaces (Xl,p1) and (X2,p2) respectively. Let

<€x
€11 By °°° be a sequence of positive numbers with iglei finite, If

{C., .} and {0291} are sequences of chains on M1 and M2 respec-

1,1

tively such that

1) cl,i and C2,i are eiachalns on M1 and M2 respectively



32

for each i, and

2) if the jth link of Cn intersects the kth link of Cn 39

$

gi+l

n=1or 2, then the distance between the jth link of C d&

. an
mei+l

the kth link of Ch i m=1and 2, is less than €4

]

then there is a homeomorphism T mapping Mi onto M2°

Since the ability to duplicate the pattern of one chain within
another is required in the next proof, the following notation is

defined, The chain C(d19 dog *°°, dn) follows the pattern (19k1)9

29
(2,k2)9 ceoy (n,kn) in the chain G(gl, o9 209 gm) if and only if

the ith link of € 1lies in the kith link of G, Theorem 2,16 is the
final result of this chapter and as was noted earlier it may seem to be
an unusually strong consequence of chainability. A brief outline of the

proof is included,

2,16 Theorem Each chainable continuum is homeomorphic with a

plane continuum,

Proof: Theorem 2,13 states that there is a defining sequence {Ci}

of chains on M with €5 = $%° These chains are; without loss of gen-
2
erality; minimal in the sense that no proper subchain of f.‘,?.i contains

M, Corollary 2.12 implies that each member of the sequence may be

selected such that ne subchain of Ci+l of less than nine links inter-

sects two nonadjacent links of Ci°
It can be shown that in the plane there is a sequence of c¢hains

Dl’ D2, oo such that Di is a l?mchain whose elements are the inter-
2

iors of rectangles, Di+1 follows a pattern in Di that Li+1 follows

in Ci9 and each element of Di contains the closure of an element of
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D, (4, p. 654]. Lemma 2.15 will apply to this construction and implies

that M is homeomorphic with Dl'*m Dz*(\ voo, |1



CHAPTER III

SOME CHARACTERIZATIONS OF THE CHAINABILITY OF

HEREDITARILY DECOMPOSABLE CONTINUA

The objectives of Chapter II were to acquire the ability to con=-
struct chains satisfying criteria of refinement, tautness, and chaining,
and to show some consequences of a continuum being chainable, We were
particularly interested in the atriodicity and unicoherence of a chain-
able continuum. In the present chapter this latter objective is
reversed iﬁ that our attention will be directed toward shoﬁing atriodic
and hereditarily unicoherent continua to be chainable, However,»thisv
is accomplished in this chapter, as. theorem 3,20, only under the addje
- tional hypothesis that the continﬁum be hereditarily degomposable.

The proof of this theorem will be Sy contradiction. va a contin-
num is not chainable, a subcontihuum will exist which is irreducible
with respect to not being e-chainable for some ¢, By then splitting
this subcontinuum into two pfOper subcontinua, chaining on each of
these, and thgn fitting the chains together, an g~chain on the_irreduc-
ible subcontinuum is produced thus contradicting its existence. The
idea for the proof is simply stated but as will be evident, it is not
easily achieved,

There are a number of preliminary results necessary before attempt-
ing to prove the above assértion. These include first some consequences

of continua being atriodic, hereditarily unicoherent, or hereditarily

34
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decomposable, These are followed by the development of an upper semi-
continuous decomposition of an atriodiec, hefeditarily unicoherent
continuum which contains no indegomposable subcontinua with interior
points relative to the continuum, The third section of this chapter,
containing an introductory development of terminal subcontinua and end
points of continua, is an essential ingredient'in the process of fitting
chains on subcontinua together to form a chain, Whemn all of this has
been developed, then the objective of this chapter will be attained,

along with some equivalent conditions,
Preliminary Properties

With hereditarily unicoherent continua the definition implies
immediately that the intersection of any finite collection of subcon=
tinua is a continuum, Proposition 3.1 shows that this result extends to

any collection of subcontinua.

3,1 Proposition Let M be a nondegenerate continuum which is
hereditarily unicoherent. The intersection of any collection of subcon=

tinua of M is a continuum,

Proof: Let {Ma}’ a eI, be a collection of subcontinua of M
indexed by I, If the intersection of 2ll the Ma°s is empty then this
intersection is a continuum. Thus, suppose that K = (){ M : a eI }
is nonempty. Consider I to be a well ordering of the Ma“s with Ml
denoting the first element and ‘M1+ denoting its successor {(the first
element of { M, : e I~{1} }.) Since le°\1~41+ £ @ MIUM1+ is a
subcontinuum of M, If M1\*)Mi+ is degenerate; ie, MiK“)Ml+ = {x}

for some x € M, then lea\Ml+ = {x} and is a continuum. If MM,
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is nondegenerate; M being hereditarily unicoherent implies that

M M

14 is a continuunm,

Let P eI and assume that [ ){ M& s a< B, a eI} has been
shown to be a nonempty continuum, é’»ince KC M@(m{ M :a<P 1,
this latter intersection is nonempty and thus Mﬁ\v)({ﬁ\{ L a<f)s=
Mo is a subcontinuum of M, If Mb is degenerate, theﬁ Mb = {x} =
(MY Ma s+ a< P} for some x ¢ M and the intersection is a continuum,
If M, is nondegenefaée then it is unicoherent and MBfﬁ\((ﬂ\{ LI
a<B DD =M\ M& s a< B} is a continuum, Transfinite induction now
implies that K is a continuum, ||

Focusing attention on the property of atriodicity, we have the
following intuitively obvious result. If one removes a subcontinuum
from the "middle" part of an atriodic continuum; then two connected

parts remain. If the subcontinuum removed is at one end then the single

part remaining is connected,

3.2 Proposition Let M be & nondegenerate continuum which is
atriodic, If H and K are subcontinua of M then M~H doces not
have more that two components and M~(H\_JK) does not have more than

three,

Proofy Assume that M~H has at least three components C.,, 629

and c3° Now the Ci's are mutually exclusive although E; may meet

53 for some i # j, but only if aifﬂ\ESC;‘H, Also, for each i,
E&(\\H # @ since to assume Eg(A\H = ¢ for some k implies a eepara-

tion of M by Ek

H(A\E}‘ is connected. Considering only 019 gé; and 039 let Mi =

and U (\U{ Ci ¢+i#k}). Thus, for each i,

2

H\y)Ei\y)Eévaaég a subcontinuum of M which islélso the union of
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HU_C,, H\UK,, and HUCB° Since C‘ag Hucluc3 and is non-
empty, Ei is nondegenerate, Since the intersection of any two or all
three of H\_JC , H(JC,, and HUEB is H, M, isa triod. But
this is not possible since M is atriodic, Thus, M\H cannot have
three or more components,
Now suppose that M~(H\_JK) has at least four components Cig

C and Cy. If HYK # @, then H\_K is a subcontinuum of M

23 Cas
and the first part of this proposition implies that M~(H\_JK) has at
most two components., Thus, suppose that H({ YK = @, Then H and K
are mutually separated, As before, each 6; must meet H\_K or M
would have a separation. If we suppose that each 5; meets at most one
of H:.and K, then M = (H\_J{ C, : C;MNEAF NUEKUIT,
E;(“\x # @ }) and this would form a separation of M, Thus, there is
a component C of M~(H\_K) such that C meets both H and K,
¥Without loss of generality, Gl = C, Considering only C19 02, 039
and 04, if we let N = H\,}K\_}E}, then N is a2 continuum and 029
03, and Gu are components of M~N which is a contradiction of the
first part of the proposition, Thus, M~(H\_/K) has at most three
components, ||

Capitalizing on the combined properties of atriodicity and hered-
itarily unicoherence, the following proposition shows that if a
nondegenerate continuum with these properties has three subcontinua,
each meeting the other two, then one of them is contained in the union
of the other two, This will prove to be an extremely useful result and

will normally be applied as a contradictionvtb a result which has been

proven based on some assumption,

3.3 Proposition Let M be a nondegenerate continuum which is
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atriodic and hereditarily unicoherent, If each pair of the subcontinua

Hl’

union of thé other two,

H2, and H3 of M intersect then one of them is a subset of the

Proof: Since H,( )H, and Hzfﬂ\H% are nonempty, M, =

Hl\'/HZK*)H3 is a subcontinuum of M, If Ml is degenerate; then

Hl = H2 = H3 and the proof is complete, If Mi is nondegenerate, Ml

is the union of the subcontinua Hl\ysz, and H3° If Hl\_,JH2 or H3

is not proper in M then again the proof is complete, Thus, we may

19
assume that Mi is the union of the proper subcontinua Hl\v)H2 and
3 The unicoherence of M, implies that (Hl\,)Hé)(ﬁ\HB is a contin-
wum, Now Hl("\Haf—‘\H3 = (Hlfa\HB)(ﬁ\(Hzfﬂ\H3) is nonempty since to

H

assume so implies that (Hlkvjﬁz)(ﬁ\ﬂs = (Hl(\\H3)\v)(H2(R\H5) is the
union of two closed, disjoint, nonempty sets HlfN\H% and Hth\H3
which is a separation, Hence, Hlfa\HZ(A\HB # @. By an argument simi-
lar to the above, (HlfA\Hz)\v)(Ha(ﬁ\HB) is a continuum, Thus,

Hy = (Hl(\\HZ)k_)(Hz(A\HB)KJ)(H3(R\H1) is a continuum and nonempty.

Proposition 3.2 now implies that M \\HO has at most two compon-

1
ents, If Mi\\HO = @, then Ho = Mi and HI\,)HéKN)H3 = (HI{”\H%)\V)
(Hzf\HB_)U(Hsf\Hl) QHIVHZ? Thus, HBC_;H]_UHE and the proof is
complete, Thus, suppose that Hl\\HO #@ and let C denote one of its
components,

If any two of C( \(H\EH,), cf\(’Ha\Ho), and Cm(HB\HO) are
nonempty, say the first two, then C = [C(A\(Hl\\HBYJKV)
[cﬂ(HZUH3)\HOJ,, But this is a separation of C since
CN(ENHy) # ¢, cﬂ(quHB)\Ho £ B [cmcgl\HO)Ju

(CMIENAJE)NH 1Y = O IENE) ) (HNH)\) (BB =

j'.
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c(\(Ml\Hfzo) =C, and x a limit point of c/\(Hl\Ho) implies that

either x ¢ Hi\\Ho and thus x £ (H2\“}H3)\\HO or X g HO and thus

x £ (H2\“}H3)\\HO° In either case x f£ CKA\[(Ha\“)HB)\\HBJ° Similarly,
x a limit point of C(A\E(HZK,)H3)\\HO] implies either x ¢
(H ) HE)\HO and thus x £H, or x ¢ Hy and hence x £ C“m(Hl\Ho)o

Because C is connected we have that C meets at most one of Hl\\HO,

Ha\\HO, and HE\\HO° It follows that C meets at most one of H.,

Ha, and H30 If C is the only component of ‘M \\HO and without loss

1

of generality, C meets H then H2UH3§HO which implies that

19
Hy G (Hlﬂﬂz)U(Haf\HB)U(HBHHl) CH)\UH, and the proof is

complete,

Finally, if Mi\\HO does have a second component B, then B by

the preceding argument will meet at most one of H H or H

30
which

1° 72r
Thus, one of these subcontinua fails to meet C\_/B; say H3Q

implies that H,C H, and thus H3§.Hlu H, and again the proof is

3
complete, ||
Proposition 3,4 illustrates theuﬁse of proposition 3.3 to prove
results by contradiction, This prOpoéition requires that the three
mutually exclusive subcontinua ng H29 and H3 of M contain inter-
ior points relative to M. The condition is clearly necessary when one
considers the continuum M to be the Closed Topologist's Sine Curve,
example A; with the three subcontinua being H1 = { (x;7) e ™Mz x =04
%‘S y<1ll H, = { (Xsy) eM:x=0, =1 <¥y< a% }, and H3 =
{ (xyy) e W ¢ z <x<1l}. Both H and H, fail to contain interior
points relative to M and no one of the three subcontinue separates the

other two from each other in M, That is, M\Hi cannot be written as

the union of two separated sets each containing one of the other two



subcontinua for any 1i.

3.4 Proposition ILet M be a nondegenerate continuum which is
atriodic and hereditarily unicoherent. If each of three mutually exclu-

sive subcontinua H H and H, of M contain interior points

1* 2° 3

relative to M; then one of the continua separates the other two from

each other in M,

Proof: Assume to the contrary that neither H H nor H

1° 72? 3

separates the other two from each other in M, Since M #£ Hig i=1,
23 3 and by proposition 3.2, M\Hi has at most two components; then

some component Ci of M‘\Hi must contain Hk9 k £i, Now for each

i, E;(A\Hi # @ and since Ci(A\Hi = @, 5; contains no points of the
interior of Hi with respect to M.

Considering specifically Ci and Ca, we have that 61:;>H?\VJH 9

52 DH \_H;, and both are subcontinua of M. Hence El\vlﬁé is =
nondegenerate subcontinuum of M. Thus, E&(’\Ea is a subcontinuum and

it contains H at least one limit point of each of H., and H but

39 1 29

no interior points of these two subcontinua relative to M, Let

K3 = Ei(“\éa, The continua K, and K., are similarly defined such

1 2

that Ki contains Hi but no interior points of the other two continua

H k # i, Thus, each pair of the subcontinua K19 K,, and K, of

k? 2 3
M intersect and proposition 3,3 implies one of them is contained in the
union of the other two. Suppose KBQEfKIK,/Kzo Then H3 E;K1\“)K2 and
one of Kl or K2 must contain the interior points of H3 relative to

M., But this contradicts the definition of Kl or K2° Therefore, our

assumption is false and one of H19 H2, or H3 separates the other

two from each other in M, 'l
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A partial converse to the above is given in proposition 3.5 which
asserts the existence of a third subcontinuum which separates two mutu-
ally exclusive subcontinua of a continuum M and which contains
relative interior points of M. The additional hypothesis condition is
that M contain no indecomposable subcontinua with interior points
relative to M, That this additional condition is necessary is illus-
trated by a continuum M formed with example F, which is indecomposable.
Let M Dbe the union of the two segments L = { (xoy) : ¥y =0,
<1 <x<0} and L, = { (x3y) : y=0, 1<x< 2} and the contin-
uum of example ¥, Then Ll and L2 are mutually exclusive subcontinua

of M which no subcontinuum of M can separate,

3.5 Proposition Let M be a nondegenerate continuum which is
atriodic; hereditarily unicoherent, and which cqntains no indecomposable
subcontinua with interior points relative to M. If each of two mutu=
ally exclusive subcontinua Hl and H2 contain interior points with

respect to M; then there exists a subcontinuum with interior points

which separates Hl from H2°

Proof: Clearly M\\lﬁl\,)Hz) # @ since to assume so implies a
separation of M, Now assume that there does not exist a component C
1 and Hza There is at

least one component and by proposition 3.2, at most three, Each of

of M\(Hlu Hz) with limit points in both H

these cbmﬁonents ﬁas a‘lihif-point in one of H1 or H, but not both

by the assumption. Now let N be the union of Hl and all components

of M‘\iHl\ija) with 1imit points in H,, Let K be similarly defin-

ed with respect to H Since H1 CN and Hz(;;xg these are nonempty

20

disjoint sets whose union is M, Thus N and K form a separation of
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M since H2 is closed and has no points in common with Hl or the

components included in N and the components in K are disjoint from

the components in N and Hl

ents in N or Hl' A similar argument holds for H1

components in N relative to K., Since M is a continuum our assump=-

and have no limit points in the compon-

and the

tion is false and we let C denote the component of M‘\iHl\v)Hz)

1 and H2°

Now C is a subcontinuum of M and C is open relative to M

which has limit points in H

since to assume that every set Q open relative to M and containing

a point x of C meets either H H or some other component of

li 29
M\\(Hl\v/H%) would imply that x is a limit point of one or more of
these sets which is impossible,

Since C is then a nondegenerate subcontinuum of M with interior
points relative to M, the hypothesis implies that it is decomposable
By the unicoherence of 33

into two proper subcontinua C., and C

1 2°
Ci/“\cz is a continuum, Now C, closed in € implies that C, is
closed in M, Also, C™C, # @ since to assume that C\C2 =g
implies cfgcz which implies Eg C, and thus C = C,s a contradic-
tion of its being proper. Thus, for x ¢ C\\Cé, X & Ci and there is
an open set Q relative to M such that x g Q, Qfﬁ\02‘= g, and

QC C which implies that Q CC~C,. Thus, Cl 02 has an interior

2\\Cia

= Ci‘\fCl/"\Cé)'= E\QS2, is a continuum,

point relative to M as likewise does C

2
it suffices to show that Ci\\(Cl("\CZ) is connected, Hence suppose

To see that K1 = Ci\\C

that K and N form a separation of Cl\\ﬂclf”\cz)o Then
'ﬁ'ﬂ(clf\cz) # ¢ and 'N-ﬁ(j’C‘lm C,) # # which implies that T =

x,\J(clf\cﬂz) and T°* = N\_J(C,(M\C,) are connected and in fact both
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are subcontinua of M. Now C = T\~)T°\~)Cé implies that C isa
triod which is impossible since M is atriodic and C is nondegen=

erate, Thus, KII is a subcontinuum of M and contains an interior

—————Ca—-

point relative to M. Similarly Cé\\cl is a subcontinuum and contains

interior points of M,

Arguing in a manner similar to the above except with Gz instead

of C;, we can produce subcontinua K2 and K3 such that C2 =

Ké\vjkjg each of K2 and K3 have interior points of C, relative to

2

M which are not in each other and necessarily not in Kig and only one

of K, or K3 intersects K, to form Cz(ﬁ\Ki, Thus, C =

Ki\*jxé\“)KB with each containing an interior point relative to M
which is not in either of the other two,

10 o
and this Ki satisfy proposi?ibn 3.4 and we have in fact that this Ki

Now if Ki/ﬁ\(Hl\u)Hzﬁ = @ for one of the K.'s then H

separates H, from H2 in M., If, however, each Ki meets at least

1
one of Hl or H,, suppose that Klfﬁ\Hi £ 4, Ka("\H2 # @, and
KB(A\H2 # @, Also, since K, meets one of K, or K; suppose

Ki(N\Ké # @. Then Hl\ulxl\J)Kzg H,\ UK\ UK;s and C are three sub-
continua which are pairwise intersecting and by proposition 3.3, one is
a subset of the union of the other two, However, Hlk“)Kl\*/K2 con=
2? Kz”
Also, Hi(;:E: Thus, ﬁl\“/xi\“}KZ cannot be contained in the

tains a point interior to Ki relative to M but not in H or

K.,
3
union of the other two., Arguing similarly we have that no one of the
three is contained in the union of the other two and thus one of the
Ki“s must fail to meet Hlk,/H2 and will therefore separate Hl from

H2 in M, Thus; we have a subcontinuum with interior points relative:

to M which separates Hl from H2 in M. )
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The concluding result of this section is designed to provide a
means of constructing a particular nested sequence of continua, The
particular property desired is that each subcontinuum contain the suc-
ceeding subcontinua interiorly. A set A will be said to contain a set
B interiorly if and only if A contains an open set which contains B,
Since the following proposition; and all others which apply this result,
are stated in terms of a continuum M containing 4 and B, we shall
take this definition to mean that A contains an open set relative to

M. which contains B,

3,6 Proposition ILet M be a nondegenerate continuum which is
atriodic, hereditarily unicoherent, and which contains no indecomposable

subcontinua with interior points relative to M, If Hl and H2 are

subcontinua with interior points relative to M such that H1 contains

H2 interiorly, then there exists a continuum H, such that Hl conw=

3

tains H, interiorly and H interiorly.

3

contains H

3 2

Proof: Proposition 3.2 implies that M\\Hl has at most two com-

ponents, If it has none, then M = H, which implies that Hl is open

1

relative to M and we let H, = Hi to satisfy the theorem., However,

3 1
if M\H1 # @, let Ci denote a component of M\\ch Since Hl cone
tains JHy interiorly and Ci is in the complement of Hl

M, Cl/"\H2 =@ and in fact Ci/“\HZ = @, Thus, Ci and H2 are two

contains interior points

relative to

mutually exclusive subcontinua of M, H2
relative to M, and since Q1€;E%. is open relative to M, it also
contains relative interior points,

Proposition 3.5 .implies the existence of a subcontinuum K of M

which separates H2 from Ei in M, Therefore, M~K = S\_/N with
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3l

H,CS, €, CN, SOW =g, KW =g, 5NK£g, GUKNMNC =g,

and S\_UK is a subcontinuum of M containing H, interiorly, If

2.

M*\Hl has only the one component, let H3 = §1~)K° Then H3 is a

subcontinuum of M containing H2 interiorly and since M\H1 = Cl

and (§UK)mai = ¢, we have S\UKC M~C,, But M\El is open

relative to M and M\Jilg;faf Thus, H1 contains H3 interiorly

and we are done,
If M*\Hl has a second component 02, we may repeat the above

procedure to produce a subcontinuum T of M containing H2 inter-

5 If we let H3 = P/Y(S\UK) then H

will also contain H, interiorly and since H3§; (M\\Eé)(h\(M\Jsi) =

iorly and such that T C M~ 3
M~\(Ei\,)éé), which is open relative to M and is properly contained

in M\\(CI\“)CZ) = H19 H3 is contained interiorly in H Thus, we

lo

have found the desired continuum, ||
An Upper Semi=Continuous Decomposition

This section of Chapter III has a single purpose and that is to
show that a particular collection of subcontinua of an atriodic and
hereditarily unicoherent continuum is upper semi~continuous and to show
certain properties of this collection, These results are vitally
important for the proofs of theorems 3.21 and 5,11,

Throughout this section, M will denote an atriodic; hereditarily
unicoherent continuum which contains no indecomposable subcontinua with
interior points relative to M and except for special emphasis, this
will not be repeated in the statements of the results, For each point
p in M, 1let Eﬁ denote the intersection of all subcontinua of M

which contain interiorly a continuum that contains p interiorly.
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Then & will denote the collection of all such Gp for p e M,
Another approach to defining Gp is to first define; for p ¢ My the
collection #p = { H : H is a subcontinuum of M containing interiorly
a continuum K which contains p interiorly }. Such a collection will

be called a défining sequence of continua for SE since Gp =

(M H:Heg up }. The objective of this section is to show that €& is
an upper semi-continuous decomposition of M,

A collection & of mutually exclusive closed point sets is said to

be upper semi-continuous if ggg only if whenever G is a member of the
collection & and G19 G29 ceo is a sequence of point sets in this
collection and, for each n, an and bn are points of Gn and the
sequence &, 8,5 cco has a sequential limit point lying in G; then
every infinite subsequence of blg bag cce has a subsequence having a
sequential limit point that lies in G [26, p. 273]. If & is an upper
semi-continuous collection of compact subsets of a metric space M and

every point of M belongs to a set of &; then & is said to be an

upper semi-continuous decomposition of M, When this latter property

holds, which is equivalent to requiring that &* =M, then & is said
to fill up M. Further information regarding upper semiscontinuous
collections or decompositions may be found in (265 p. 273], [34, p. 1221,
and [28].

The following several results establish respectively that the
collection & is a collection of mutually exclusive continua filling wup
M, that no element of & contains an interior point relative to M,
that for any three distinct elements of & one of them separates the
other two from each other in M, and as theorem 3,12, that & is an

upper semi-continuous decomposition of M. Another important result
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will be that & is an arc with respect to its elements, That is, con-
sidering its elements as points and appropriately defining various terms
relative to these elements; & 1is an arc, There will be more on this
later.

To illustrate the preceding and hopefully to clarify the following,
we might consider several examples of continua and the definition of &
on them, If M is an arc which is also atriodic and hereditarily
unicoherent, then the elements of the collection & in this case are
simply the points of M, However, if M is the Closed Topologist's
Sine Curve; example A, then the collection & consists of the segment
{ (x5y) :x=0, =1<y<1l} asa singie element along with each

point (x,y) of M where 0<x <1,

3,7 Lemma The collection & is a collection of mutually exclu-
sive continua filling up any nondegenerate, atriodic, hereditarily
unicoherent continuum M which contains no indecomposable subcontinua

with interior points relative to M,

Proof: From proposition 3,1 we have that Gp is a continuum for
each Gp € & To see that the elements of & are mutually exclusive we

shall first show that q ¢ Gp implies that Gp = Gqo Assume that Gq
does not contain a point p' of GPo Then there exists a continuum Hl

of M~Up'} such that Hl contains interiorly a continuum H2 con-

taining q interiorly. Applying lemma 3,6, we have the existence of a

continuum H3 contained interiorly in H, and containing interiorly

1

H2° Repeating the process, we have a continuum H4 interiorly con=

tained in H, and containing interiorly H,. Thus, if iM(H) denotes

3

the interior of H relative to M, then from the above we now have that
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¢ e i (L)CH, Ci(H) CH,C :LM(H3) CH; ¢ iy(E) CH, .

If we now assume that p ¢ H, then p e iM(HB)g;II° By defini-
tion then qu;lHl and hence p' £ Gp° Since this contradicts our
initial assumption we must conclude that p £ Hq and consequently
p £ H,.

Let K2 denote the closure of the component of M\H2 which
contains p, Likewise, let K4 denote the closure of the component of
M~H, containing p. Now H2§; iM(Hh)q;Iﬁ+§;M implies that
M\\HAQ;FP\HE, Also; the component of M\\Hh which contains p is
open relative to M and is contained in K2 which in turn is contained

interiorly in the component of M~H, which contains p, a subset of

2
K,. Hence, Gpg; K, and because q ¢ H2i q £ Gpo Since this contra-

dicts the fact that q is an element of Gp, our original assumption
is false and p' ¢ Gp. Arguing in a similar manner, the assumption that
Gp does not contain q°f ¢ Gq leads to a contradiction and we have that
G =G, Thus, if G G for any G. and G_ in then

P q s pm qiég J -’p 8,

q

Gp Gq and the elements of & are mutually exclusive, Sinece it is

clear that ©* is M, the proof is complete, ||

it

It is the following result which directly uses the hypothesis con-
dition that M contain no indecomposable subcontinuum with interior

points relative to M,

3,8 Lemma No element of the collection & on M contains an

interior point relative to M,

Proof: Suppose there is an element G1 of & such that G, con=

1

tains an open set relative to M, If G1 is degenerate then G1 is

itself open relative to M which implies that G, is both open and

1
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closed, Hence, Gl and M‘\Gl form a separation of M, if M\\Gl is

nonempty, Since M 1is connected we must conclude that M\\Gl =@ and

thus M =G But this implies that M 1is degenerate which contradicts

10
the hypothesis, Therefore, Gl is nondegenerate and since M is a

continuum containing no indecomposable subcontinua with interior points

relative to M, by the construction of lemma 3,5, Gl is the union of

10 Co» and Cz each of which contains interior

points relative to M which are not in either of the other two. I%

three continua C c
follows from lemma 3,3, that one pair of these three continua must fail
to intersect. Without loss of generality, suppose that Cl('\\C3 =g,
Lemma 3,5 now implies the existence of a continuum Ch with inter=
ior points relative to M such that C# separates C., from C, in

1 3

G Hence, CAQ;:Gl\\(Cl\ijB) which is open relative to M and is

1°
contained in 02. Let p be a point of 04 which is an interior

point relative to M, By definition, Gp g;CZ since 02 contains
interiorly the continuum 04 which contains interiorly p. Also, Gp
is a proper subset of Gl since Cl and C3 each have interior points
relative to M which are not contained in 02, Since we have previ=
ously shown that any two distinct members of & must be disjoint, it
is impossible for Gp to be properly contained in Grl° Hence our

assumption is false and G, contains no interior points relative to

1
M. |
3,9 Lemma The collection & is such that if Gp c® and C is

any continuum of M with C(A\Gp = @, then there is a continuum HO

containing Gp and interior points relative to M such that

HOmC =4,
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Proof: Let HP denote a defining seguence for Gp; We note that

1 2
and K, of M such that p e iy(K)C XK Ci(HICH for i=1, 2

if H, and H. are elements of Hp’ then there exist continua Ki

Thus, p e 1y(K )Mi(K,) = 1\ (K MK, C K MK, iy (K ME) ¢

Hlfﬁ\Ha, Now if either Kl or K, were degenerate, this would imply

2
that {p} is open relative to M and since it is also closed, that
{p} and its complement relative to M would form a separation of M,
Thus, K1 and K2 are both nondegenerate and consequently so also are
Hl and H2° Then Kl\v}Ké and Hlk“jﬂé are nondegenerate subcontinua
of M which implies they are unicoherent., The unicoherence of KiK“}KZ
will imply that Klfﬁ\Ka is a continuum, Likewise, HI/”\Hé is a con-
tinuum, Finally, we have that H,, H, ¢ Hp implies that Hlﬂﬂz € Hpo
Therefore, for any finite collection of elements of Hpg their inter-
section is in Hpo

If we assume that every member of a defining sequence of continua
for Gp meets C, then consider the collection ¥ = { K ¢ X = H/\C,
He Hp }. By assumption, each K in X is nonempty. let nKig K29
ceay Kn be any finite collection of members of H., Then (K, =

i=1"1
( : { HIil : Ky = H/C, H e W) )M = B ,(NC for some H, & Mo
Thus, {;}Ki #@ and K has the finite intersection property. Since
M iscompact, (Y K:KeX }=(\{H:H¢ ﬂp D(C  is nonempty
which implies that prﬁ\c # @, Since this contradicts the hypothesis,
there exists a member HO of Hp such that Hb/ﬁ\c =@, Therefdreg
HO contains Gp and contains p interiorly which satisfies the
conclusion, ]l

The following lemma makes it possible to show that & is an arc

with respect to its elements,



3.10 lemm& The collection & of mutually exclusive continua
filling up M is such that for any three distinct elements of &; one

of them separates the other two from each other in M,

Proof: The collection & 1is nondegenerate since to assume other=
wise would contradict lemma 3,8, Let Gp, qu and Gr denote any
three distinct members of &, Lemma 3.9 implies the existence of a

ti H h that G CH i (H and H G =g,
continuum H .= suc p S Hyge D€ M( pq)° n pq(ﬁ\ q )

a
A continuum Hpr is similarly defined, Now if H__ = H__, then define

rq pr

Kp to be Hpq° If Hpq # Hbr, then as is argued in lemma 3,7,
Hpq(“\Hpr is a member of Hp’ a defining sequence of continua for
Gp, and consequently this intersection contains Gp, is a continuum,
and contains points of the relative interior of M. In this case we
define Kp to be Hpq(”\Hbr and in either case Kp is a continuum
with interior points relative to M which contains Gp and fails to
meet Gp\~)Gr°

Applying lemma 3.9 to the continua Kp9 qu and Grg we can by
the above method produce a continuum Kq which contains qu contains
g interiorly, and fails to meet KP\JGr and consequently Gp\“)Gr°
Similarly, the continuum Kr is produced containing Grg containing »r
interiorly, and failing to meet Kp\“qu and Gp\v)qu

Thus; the continua Kpg Kq, and Kr are mutually exclusive and
contain respectively Gp’ Gq’ and Gr and contain interior points
relative to M, Proposition 3.4 now implies that one of Kpg qu or
Kr separates the other two from each other in M, Without loss of
generality, we may assume that & and N form a separation of M by

Kr with Kpg_ S and Kq C N, It now remains to show that Gr - Kr
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actually separates Gp from Gq in M,

If Kr = Gr then we are done., However, if Kr # Gr then lemma
3.2 implies that Kf\\Gr has at most two components and by the first
statement, at least one component. If Krﬁ\Gr =Cy, where C 1is a com-
ponent, then E/“\Gr and ﬁ/ﬁ\Gr are empty since GrQE'Krg Kr € X.»
and lemma 3.6 implies the existence of a continuum Kr" which is con=
tained interiorly in Kr and which contains interiorly Kr" the
continuum associated with Kr by the definition of Gr“ Thus,
GrgKr" giM(Kr)C_: K. and G  contains no limit points of S or N,
However, since Kr(ﬁ\g and Kr("\ﬁ are nonempty, we must have S/ )C
and N/\C nonempty as well as Gr(ﬁ\a nonempty. Thus, M =
TS'UI-\I'k/(_J'UGr is a triod with continua E\fd, N\UC, and Gruffo
Since M is not a triod, Kr\\Gr must have two components C and

1

Cz.

Again, we must have that Ei(ﬁ\Gr and aé(h\Gr are nonempty,
Also, g(ﬁ\Kr and ﬁ(h\Kr are nonempty while EYA\Gr and ﬁ7ﬂ\Gr

are empty. Since Kr = Gr\“)Cl\“Jc2 this implies that S meets C1

or 02 and N meets Cl or C2°

To see that S cannot meet both C, and C,,

E(”\cl #¢ and gyﬁ\cz # #. Since Eifﬁ\Gr A¢ and EE(A\Gr £ 3y we

we assume that

have that §\_}Ei\v)Gr and §\~}6é\~)Gr are distinect nondegenerate
continua, It also follows that their union §\~J5i\b)65\~)er is a
nondegenerate subcontinuum of M and is hence unicoherent. But
(E\.)Ei\~)Gr)(ﬁ\(§\~)6é\v)Gr) = g\_}Gr which is not a continuum,
Therefore, S cannot meet both C1 and C2° Likewise, N cannot

meet both C and Ca,

1
Since §(ﬁ\(cl\v)02) #@ and ﬁ?ﬁ\(cl\vjca) A8, § and N must
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each meet one of C, or C,. Now we assume that 37”\01 #¢ and

1
ﬁmcl ##@. Then, 5\JC, N\JC), and G\JT] are each distinct

continua with a common intersection of C. since 5/ W, if nonempty,

1
is a subset of Kr but not in Gr or Cé as a result of the preced-
ing, which means that S( )NC C,. Hence, the union of these three

continua forms a triod in M which is not possible. Thus, S and N

cannot both meet C., and finally we have that, without loss of gener-

1
ality, 5/\01 £ @, 'é'i(\c?_ =g, N‘f\ca #d, and ﬁ'f\cl =g,

Now we have that M\G_ = (E\vjcl)\uj(ﬁ\\ch) and this is a sep-
aration of M\G. with G C §\C, and quﬁ’UCa and the lemma
is proven, ||

The statement that the collection & has certain properties with
respect to its elements should perhaps now be clarified., If & is an

upper semi-continuous collection of mutually exclusive closed point sets

then by a region with respect to & is meant a subcollection R of &

such that ® contains no limit point of & ®* [26, p. 273], With
this definition, if & is an upper semi-continuous collection of mut-
ually exclusive closed point sets, then words and phrases, previously
defined in terms of points and regions, can be extended to apply tc &
by replacing the term point by element of & and the term region by
region with respect to &, The following few definitions will illus-
trate this process, The element G of & will be said to be a limit
element of the subcollection Y of & if and only if every region
with respect to & which contains G contains at least one element of
¥ distinct from G [26, p, 274]. The subcollection ¥ of & is said
to be closed if and only if every limit element of ¥ belongs to ¥

{26 p. 274), Finally, of immediate importance to the development of
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this section, the collection § is an arc with respect to its elements

if and only if & is a compact nondegenerate continuum with respect to
its elements which does not have more than two non-=cut e}ement&o
Further definitions and discussion of this process and pafticularly of
the relationship between M and @& with respect to its elements may

be found in [26, p, 273].

3,11 Theorem If M is a nondegenerate; atriodic, hereditarily
unicoherent continuum which contains no indecomposable subcontinua with
interior points relative to M; then & 1is an upper semi=continuous

decomposition of M,

Proof: By the preceding lemmas we have shown that & is a eollec=
tion of mutually exclusive continua filling up M, Assume that & is
not upper semi-continuous, Because of this,; there are two sequences of
points Pys Pos °°° and Gy Qo *°° converging to points p and g
respectively such that for each n, P, and q, are both members of
some Gn in & but p and q do not belong to the same element of
6. Let Gp and Gq denote these two distinct continua.

Suppose there are only finitely many distinct continua in the
sequence Gl’ G29 eocs, By applying lemma 3.9 finitely many times it is
possible to produce a continuum H such that H contains interiorly a
continuum K c¢ontaining p interiorly and thus, a set 0, open rel-
ative to M, containing p and lying in H, This continuum and hence
the set O may be selected to be disjoint from each of the finitely
many distinct Gi's which are distinct from Gpo But since Pys Pos
coo converges to p, for any set open in M; mnamely O, there exists

an integer N such that for each n > N, Ofﬂ\Gn # @, Thus, for all
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n >N, Gn = Gp and Qs Ape oce must converge to an element q in
Gp. This contradicts our assumption and & is upper semi-continuous in
this case,

If, however, there are infinitely many distinct continua in the

sequence‘.Gl, G s then applying lemma 3.9 we may, as in lemma 3,10,

29
produce two disjoint continua Hp and Hq such that each interiorly
contains respectively continua Kp and Kq which contain respectively
p and q interiorly, Hence, Gpg; Hp and qu; Hq but more impor-
tantly there are sets 0p and 0q both of which are open relative to
M; - contain p and q reSpectifelyg and lie in Hp and Hq respec=
tively, ©Since the sequence of pi‘s converges to p, there exists an
integer N such that for all n > N, Op(”\Gn # @, Because only N = 1

continua of the sequence of Gi's are being omitted there must exist

two distinct continua among those remaining, say GN and GN s with
1 2

0/ G, #¢@ and 0 fh\GN # @, Now we note that for i =1 or 2,
@ N @ N

GNi/\op # @ implies that GNif\ HP £ @, GNimoq # ¢ implies
GNif\Hq # @, and Hp # Hq implies GNig‘ Hp and GNig qu Thus,

H H and H G. H are distinct continua in M whose
p\v/GNl\,/ a p\”/ NZ\,/ a onti n oBe
union is Hp\“/GN \J/GN \v}Hq’ a nondegenerate subcontinuum of M, But

> :

1

this implies that H_\_G,\_/G, \_ H_ is unicoherent and yet
. p NN, g

(HPU GNlu Hq)ﬂ(Hpu GNZU ) = H\JE  which is not a continuum,

Thus, again our assumption is false and therefore;, & is an upper semi=

continuous collection,. That it is also an upper semi-continuous



decomposition follows immediately, ||

3.12 Corollary The upper semi-continuous collection & on M is

an arc with respect to its elements,

Proof: Using lemma 3.8 we again note that & is nondegenerate,
By theorem 3,11; & is an upper semi=continuous collection on M.
Theorems 4, 6, and 13 [26, p, 275] show that & is closed, compact,
and connected and is thus a continuum with respect to its elements,
Lemma 3,10 implies that & has at most two non-cut pointsy ie, for any
three elements of &; one of them separates the other two from each
other in M and thus in & [26, p., 2751, Therefore, © is an arc with
respect to its elements, ||

The final result of this section establishes an additional rela-
tionship between the collection & and the continwum M upon which it
is based, Since corollary 3,12 asserts that & is an arc with respect
to its elements, it ﬁ;s two end eleﬁents° Thus, in the continuum M
of example C, the line segments ‘PQ and RS are end elements of the
arc €& with respect to its elements which is the upper semi-continucus

decomposition & of M,

3,13 Corollary If a and b are points of different end
elements of the collection & on My then M is irreducible from =

to b,

Proof: let Ga and Gb denote the elements of & c¢ontaining a
and b respectively, By hypothesis, G, # G, and thus Gaf"\Gb =,
Iet N be a subcontinuum of M containing a and b, Assume that N

is not M, Let C1 be a component of M~N, If x ¢ C19 then nggNu



Suppose that ka\N = @. Then a £ G, and b £ G, imply that

GG, =¢ and G (G =@, end since G (G =g, G, G

b9

Gx are three distinct members of &, Lemma 3,4 implies that one of

and
a

them must separate the other two from each other in M., Since Ga and
Gb are end elements of the arc & with respect to its elements, we
have that H and K form a separation of M\Gx with Gag H and
Gbg_K. Since N is a continuum and Nf\Gx =@, NCH, But N must
also be contained in K which is impossible. Thus, Nme £ ¢ and
yet Gng,

If NUGx =M then Clg Gx° However; C, 1is open relative to

1
M and Gx’ by lemma 3,8, contains no interior points relative to M,
Thus, NUGXQM and M\(NUGx) has a component Czo Arguing as
before, we can produce an element Gy of & such that y ¢ 029

Gy #£ Gos Gy OF Gy .ZiNf,'_\‘\Gy # @, and N\_)Gy g M, Finally, a similar
argument produces a third element G, of & such that z ¢
,%T\(Gy\v}Gx\;)N), G, # Gy, Gy G5 or G, and N(’\GZ # @, Then
NUGXUGyU GZ is a nondegenerate subcontinuum of M which by
considering the continua Gx\J N, GyUN,, and GZUN forms a triod,

Since M 1is atriodic, this is impossible and N must equal M,

Therefore, M 1is irreducible from a to b, I
An Introduction to Terminal Subcontinua

The notion of a terminal subcontinuum is a generalization by
Fugate [13, p. 461] of the term terminal point as defiﬁed by Miller
(23, p. 90] and later the term end point of a chainable continuum as
defined and used by Bing [4, p, 660], Intuitively, terminal subcontinua

and terminal points are subcontinua of a continuum which are at the end
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of the continuum, for example, an end point of an arc, The definition
of a terminal subcontinuum is as follows, A subcontinuum T of a con-

tinuum M is said to be a terminal subcontinuum of M if and only if

whenever A and B are both subcontinua of M meeting T, then one
of A or B is contained in the union of T and the other subcontin-
uum [13, p, 41], That is, either ACT\UB or BC T\ A, &

terminal point is then a degenerate terminal subcontinuum, Since it

will be shown in Chapter IV that the notions of a terminal point, as
defined by Fugate and Miller, and the notion of an end point; as defined
by Bing, are equivalent, these terms will be used interchangably,

Examples Ay B, Cy D, E, and F illustrate the terms, terminal sub-
continua and terminal point. The Closed Topologist's Sine Curve,
example A, has exactly three end points, namely the points R, S; and
T. The segment RS = { (x,y) s x =0, =1 <y<11} of example &, is
a terminal subcontinuum and any terminal subcontinuum or continuum
meeting RS and included in the continuum must contain RS, By appro-
priately joining two Closed Topologist’s Sine Curves, examples can be
created of & continuum with two end points which is not an arc, example
B, and a continuum with four end points, example C,

Examples D; E, and F provide illustrations of indecomposable
continua with one,; zero, and two terminal points respectively, Bing
shows that every point of a pseudo-arc, example G; is in fact an end
point of it [4, p. 602].

The purpose of considering terminal subcontinua, and in this chap-
ter end points in particular, is that they provide a means of chaining
on certain subcontinua of a continuum, with some degree of control or

assurance that certain links contain the terminal subcontinua, This
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ability is established, with considerable effort; for terminal subcon-
tinua in proposition 3,18, Corollary 3.19 then follows for terminal
points, Theorem 3.20 will then illustrate the use of these results and
the previously mentioned process of fitting chains together, Further
consideration will be given to terminal subcontinua in Chapter IV where
some sufficient conditions will be presented for terminal subcontinua
and certain results concerning chains will be established,

Proposition 3,14 and its corollary 3,15 provide a characterization
of terminal subcontinua in terms of the irreducibility of the continuum
M between & pair of points, one of which must belong to the terminal
subcontinuum, Corollary 3,14 will then establish that the definitioms

of a terminal point by Miller and Fugate; are equivalent.

3,14 Proposition If M is an atriodic, hereditarily unicoherent
continuum and A is a subcontinuum of M; then A is a terminal sub-
continuum of M if and only if for each subcontinuum B of ¥ such
that B meets A and A\_/B is nondegenerate, A\_/B is irreducible

between some pair of points,; one of which belongs to A,

Proof: Suppose that A 1is a terminal subcontinuum of M and B
is a subcontinuum of M meeting A such that A\_/B> is nondegenerate,
Since A\_/B is again a subcontinuum of M; A\B is atriedic and
hereditarily unicoherent, Theorem 1.6 implies that there are two points
p and g of A\_B such that A\_/B 1is irreducible between them,

Now assume that the two points p and q are always in B\A,
let r ¢ A, By the assumption, A\_/B is not irreducible between p
and r nor between q and r., Thus,; there are proper subcontinua L

and K of A\_B such that {p, r}C L and {q, r} CK, Since A is
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a terminal subcontinuum of M; either KC AL or LCA\K, Withe
out loss of generality, suppose that LC A\_K. Then p ¢ A\U/K,

Since p £ A, this implies that p ¢ K and thus K is a proper sub=-
continuum of A\_/B containing p and g which is contrary to the
earlier conclusion that A\_UB was irreducible between p and q,
Hence, our assumption that {p, q} g;B\\A is false and one of p or g
is contained in A and this part of the lemma is established,

For the converse statement suppese that A is not a terminal sub-
continuum of M, This assumption then implies that there are
subcontinua D and E of M, each meeting A  such that A\ _E and
A\_/D are nondegenerate, Dgaun, and E@AUD, Then A\_D\UE
is a subcontinuum of M, If p:é,A and q & A\UD\UE, p # q, then
A\_D\_E 1is not irreducible between p and q since A, A\_D, and
A\_E are each proper subcontinua of A\_/D\_JE and one of them con-
tains both p and q., Since p and q were arbitrary with one of
them in A, we have established the contrapositive of the statement

and the proposition is proven. M

3,15 Corollary If M is an atriodic; hereditarily unicoherent
continuum and p ¢ M; then p is a terminal point of M if and only
if for each nondegenerate subcontinuum B of M which contains p, B

is irreducible from p to some other point of B,

Proof: The proof follows immediately from proposition 3.14 and the
definition of a terminal point, ||

Lemma 3,16 will make it possible to show the existence of two par-
ticular terminal subcontinua of a continuum M under the stated

hypothesis, This hypothesis is sufficient to allow the use of the
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upper semi-continuous decomposition & of the continuum M which was
presented in the preceding section. It was shown there that & is an
arc with respect to its elements and lemma 3,16 makes extensive use of
this fact., The result concerning terminal subcontinua is stated as

corollary 3,17,

3,16 Lemma Let M be an atriodic, hereditarily unicoherent con-
tinuum which contains no indecomposable subcontinuwa with interior
points relative to M, Each end element of the upper semi=continuous
collection & on M contains a point p such that each nondegenerate
subcontinuum of M containing p is irreducible from p to some other

point of M,

Proof: Let Gl and G2

points, of &, considering & as an arc with respect to its elements,

denote the two end elements, non-cut

Let ¥ be the collection of all proper subcontinua H of M such that
if H 1is a proper subcontinuum of a subcontinuum N of M then there
is a point p of N (and consequently of N\H) such that N is
irreducible from H to p. The following Qill show that Y is non-
empty by Ehowing that the end elements G1 and G2 of & are in fact
in ¥.

ILet N be a subcontinuum of M such that G1 is properly con-
tained in N, If N = M; then by corollary 3.13; M is irreducible’

from any point of G, to any point of G2 and consequently is irre=

1
ducible from Gl to a point p ¢ Gaq; M. If N is properly contained
in M then by the preceding argument; N must not meet G20

Let ¥ denote the collection of all members of & such that

Ke¥X if and only if K/ N # @, Also, let &€ = &K which is
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nonempty since Gé/ﬁ\N =@, Nowlet Hegf and Keg¥, If H= G,
then clearly H precedes K in the order from G2 to G1 in &,
Thus, assume that H # G2, Then ©&~\{H} = ®\_/8, where R and § are
each connected and mutually separated with respect to their elements,
Since N/ \H = @, N is connected; and without loss ¢f'géneralityg

G1 ERy N Q;ER* which is also connected, Thus, K/ \®* # @, Since R*
and 8* are also mutually separated [26; p, 275) and K/ \H = @, K
connected implies KC ®* and consequently K ¢ ®. Hence, each element
of & precedes each_element of X in the order from G2 to Gl

in &.

Since & is an arc with respect to its elements and K\ _ = 6,
X\ = @, and each element of @ precedes each element of ¥ in the
order from G2 to Gl’
either G is the first member of ¥ or the last member of ¢

there exists an element G of & such that

(26, p. 421, If G is the first member of ¥ then ¥ is an arc from

G to Gl and ¥ is an upper semi=-continuous decomposition of ¥*

(26, p. 273], Corollary 3.13 is again used to imply that ¥* is irre-

ducible from G to G1° Thus,; since N meets both G and Gl

a subcontinuum of ¥*; N = }¥* and N is irreducible from G to Gl°

and is

If G is the last member of ¢ then adapting a theorem to &
with respect to its elements, ¥ is connected with respect to its
elements, X\ _J{G} is an arc;, and G is a limit element of ¥ [26,
p. 40] and [26, p. 25]. Then for any open set @& with respect to 6
which contains G, & contains an element K of ¥ and consequently
a point of N, Let Gl’ eég see be a sequence of open sets with
respect to & which closes down on G, Then for each n, there is an

element K of X such that K e (snm ¥). Thus, for each n,
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Kn g_en* and GC en*. Now for each n, let x €N such that

X, € Kn' Since M is compact, some subsequence X, converges to a
i

point x, By the definition of {xn}, x is in G, However, N
closed and compact implies that x ¢ N, This is impossible, thus, G
is not the last member of ¢, Therefore, N is irreducible from G

1

to some point p of N, The same argument also shows that G2 has

this property and thus G, and G, are members of ¥.

1 2
let Hl’ Hz, seo be a sequence of members of Y such that
©
H C H , We wish to show that H = ()H, is a member of H and thus
n+l = 'n i=1"1
that the property of being in Y is inductive, Assume that H is not
in Y. Then H is a continuum properly contained in a subcontinuum N
of M such that for each x ¢ N, there is a proper subcontinuum Nx

of M with Nxf\\H #8 for xelN_

If for some iO’ Hio is properly contained in N; then for all

iz io, Hi is properly contained in N, Now since Hio is a member

of M, there exists a point Py of N\Hi such that N is irreduc-
0] 0

ible from H, to p, . But HC H, implies that p, & N~\H and
o *o - Yo *o

hence that there is a subcontinuum Ni of M such that Nj (NHZY
0 0

and consequently N, (YH, # @&, p. €N, , and N, is properly
iy i, ig i, ig

contained in N, But this contradicts the irreduciblity of N and
therefore, for all i, Hi cannot be properly contained in N,
Since H is properly contained in N there is a point x of

N~H such that x is eventually not in the intersection of the Hi"s°
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That is, there exists an integer il such that for all i > ilg

x £ Hi' Now Hi \_/N 1is a subcontinuum of M properly containing
1

H. . Since H, is a member of }, there is a point p. ¢
i, i, i

such that Hi \_ N is irreducible from Hi to p; -

(Hi \J)N)\\Hi _
1 1 1 . 1 1

But p; is then in NXH, which implies that p, £ H. Thus, there
1 1 1

is a proper subcontinuum N, of N such that H/"\Ni # @ and hence
1 1

H. "W, #¢@ and p, N, . But again this implies that H, \UN is
11 ll 11 ll 11

not irreducible from Hi to p; . Since this contradicts the member-
1 1

ship of Hi in Yy H e ¥ and membership in Y is inductive,
1

Now if we consider ul to be the collection of all members of ¥
contained in Gl and partially order Hl by set inclusion, then for
any linearly ordered subcollection P of L the common part of the
members of P is a subcontinuum of Gl and is a member of ¥ by the
preceding. Thus, applying Zorn's lemma, there is a minimel (irreducible)
element with respect to being in ¥} and being contained in Glo A sim-
ilar argument produces a minimal element with respect to being in ¥
and being contained in G2.

Suppose that G 1is one of the irreducible elements produced above
and assume that G is nondegenerate, Theorem 1.6 implies that G is
irreducible between some two points a and b, Let Ml denote any
subcontinuum of M vprowgrly containing a, Then either Ml\“/G =G or

Mlk“jG is a subcontinuum properly containing G, In the first case we

have that G, and hence Ml is irreducible from {a} to b, But this
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implies that {a} ¢ ¥ which contradicts the irreducibility of G, In
the second case, by the membership of G in ¥y there is a point ¢

of M,~\G such that Ml\‘/G is irreducible from G to ¢, Since &

1

is irreducible, the sets {a} and {b} are not in ¥ and hence there

exists a proper subcontinuum M, of M\ /G such that szﬂ\{a} A

3

and ¢ g MZ; ie, a and ¢ are elements of MZ“ But now >M2 is a

proper subcontinuum of M;\_JG such that Mz("\G #% and ceM,

which is contrary to the membership of G in ¥H. Thus; either case
leads to a contradiction and irreducible elements of } are degenerate.

Therefore, Gl and G2 each contain points Py and Po such that

each nondegenerate subcontinuum of M containing or p, is

Py

irreducible from P, or p, to some other point of M, 1]

3,17 Corollary The two end elements of the upper semi-continuous

decomposition & on M are terminal subcontinua of M,

Proof: Let B be a subcontinuum of M which meets G1° If
B\*/Gl = G1 then B\JG1 is irreducible between some pair of points of

G If B\_/G; properly contains G, then lemma 3,16 implies that

10
B\V/Gl is irreducible between G

1

1 and some point p of B and thus

of B\Glo Therefore, with the two cases, lemma 3,14 implies that G

is a terminal subcontinuum of M, Il

1

Proposition 3,18, which follows, is one of the most involved of
the results which will be presented in full detail and will be cited
frequently later, Although it is quite involved and while any reader
enduring to this point might justifiably skip over the proof, the
details are presented here because they use two important methods which

will be used repeatedly, and because they show the complications
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encountered in joining two chains together, In the proof,; two of three
possible situations are easily dispensed with and it is the third possi-
bility which proves to be difficult,

The continuum M; of the proposition, is shown to contain a proper
subcontinuum Ml which is irreducible with respect to a defined pro-
perty P. A similar procedure of producing an irreducible subcontinuum
will be used in several later results,

A proper subcontinuum Nl of Ml is constructed on which a chain

will exist satisfying the results of the proposition., Using this chain

on N, and the given chain which covers M a chain is constructed on

1 1°
Ml which will contradict the existence of Ml° This brief sketch of
the plan of the proof, and descriptive remarks throughout the proof are
intended to help clarify what has occurred and where the proof is

headed. The primary difficulty is in verifying that the c¢laimed coliec=

tions do actually form chains,

3.18 Proposition Iet M be an atriodic, hereditarily unicoherent

continuum with A a terminal subcontinuum of M and C = {dlg eoo, dn}

a chain on M, Then there is a chain C, = {f,y £, »°5, £ } on M
1 1’ "2 : ny
such that

1) C, is a refinement of C,

1
2) (fﬁ\Enl”l)mA # &

3) if C is taut then so is C1°

Proof: If (dﬁ\\ag_l)(ﬁ\A £ ¢ or (di\\aé)(ﬁ\A # @, then the
results clearly follow with either C; =C' or Ci(lgnl) = C(n,l), If

the preceding does not occur and yet A/ﬁ\dn # @, then let U be an

open set such that U/ YA # @ and ff§;>dnq This is possible by the
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normality of the space, Now for i # n<l and 1 <i<ny, let fi = di°
Let f . = dn_l\'ﬁ. Then f MM # ¢ since [d .~(d ,Md )M
M #d by proposition 2,1, It is now claimed that C, = {flp f29 sooy
fn-l' fn} is a chain on M satisfying properties 1, 2, and 3 of the
lemma,

Clearly, C1 is a refinement of C, Since U/MN\A # @, 1let
x g U/ A, Then x e A and TC d =f implies x ¢ fn;, Also, x £ U
implies that x £ dn_.l\ﬁ =f, 1o Since xeU and UNL , =&,
x££ . Thus, Xe (fn\;‘;_l)f\A and (fn\?ngl)hA £ g, If we
suppose that C is taut, then ?;ﬂafp\E; = E;aa(’\3£ = @, ?;93(”\?;=1 -
s N NBCT N, = ¢ e T

w2 di/ﬂ\di+2 =§ for

1<ign-k, Thus, C, is also taut and C, satisfies properties 1,
2y and 3 if A4 # 4.

If we now suppose that A(ﬁ\d1 ##, then C, is produced in the
same manner as above except that C1 is based on the chain C! =

', d2|’ cvo, dn'} where div =d for 1 Si < n,

{d n-i+l

1

Hence we now consider the case where (dl\,)dn)(”\A = @, let us
assume that the lemma fails and define a property P as follows, The
set B  has property P if and only if B is a subcontinuum of M,
AC B, and no refinement of C covers B and satisfies properties 1,
2, and 3 of the proposition., By assumption; M has property P and
certainly the terminal subcontinuum A does not. The following will
show that the property P is inductive.

Assume there is a sequence K1, Kag soe of subcontinua ef M,

necessarily compact, with Kn+1§;_Kng and each member of the sequence

[-d
having property P, but such that g:}Ki does not have property P,

00
Since 'Aq;'g;lKi, this intersection is a nonempty subcontinuum of M
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c:Ptaining A, By assumption there is a refinement C2 of C covering
g;}Ki which satisfies properties 1, 2, ani 3

Now Cz* is an open set containing g:}K . Because the sequence
{Ki] is decreasing, there exists an integer j such that Kjg;_ca*
since to assume not would produce a sequence Pys Ppo °°° of points in

Ki\\C which would necessarily have a subsequence converging to a

2
(-
point p not in Ce*' and hence not in g;lKi. But this is impossible

and qu;_C ¥ This implies that K, does not have property P which

J
is contrary to its existence. Thus, property P is inductive and the

Brouwer Reduction Theorem [18, p. 61] implies the existence of a minimal
element Ml of M with property P. This set Ml is then irreducible

with respect to having property P and clearly A is properly con=

tained in M

1

Since Ml is a subcontinuum of M, the chain C covers Ml° Let
G = {dj’ dj+l’ ooy dk}’ 1< j<k<n, denote the minimal subchain of
C which covers Ml, minimal in the sense that no proper subchain of G
covers Mlq Since Ml has property P; we must have that AN

(dj\_/dk) = # and thus; G contains at least three links,

Since Ml is a subcontinuum of M, Ml is atriodic and hereditar-
ily unicoherent and A is also a terminal subcontinuum of M.,
Proposition 3,14 implies that Ml is irreducible from some point p of
A to some point g of Ml\A° Now the composant of Ml determined by
p is dense in M, [26, p. 58] and thus for each i, j < i < k, there
exists a proper subcontinuum of Ml containing p and meeting dio
Their union, denoted by N; is a proper subcontinuum of Ml which

meets each link of G and contains p., The subcontinuum N is proper

since q cannot be contained in any of the proper subcontinua forming
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N, Since q €A and p e AVN; A\UN is a proper subcontinuum of

Ml which meets each link of G,

If we let Nl = A\_N then N1

and hence does not have property P, Thus, there is a chain H =

is a proper subcontinuum of M1
{hl, hZ’ eeoy hm} covering Nl ‘such that H is a refinement of C,
Aﬁ(hm\'ﬁm_l) # %, and C taut implies that H is taut, We may
assume that no chain with fewer links than H will also have these
properties; ie, H is minimal with respect to being a chain with the
three properties., Without loss of generality we may also assume that H
is a refinement of G, It should be noted that by its existence, H has
at least two links,

To show that either the first link of H or the last link of H
meets (dj\vjdk)fﬁ\Nl, we assume instead that (hl\,/hm)(A\(dj\v/dk)/ﬂ\

Nl = @, Since N, meets each link of G, there must be some link of

1
H which meets (dj\../dk)/ﬁ\Nl° let h denote the first such link

and, to be specific, assume that hs/ﬁ\d KA\NI # @, Now let hy

J
denote the first link of H such that ht/ﬁ\dk/A\Nl # #. By their

selection under the assumption, 1 < s <t <m, It is important to note

that htq;~dk= Because H 1is a refinement of G

1 1°

there must be some link of G containing hl° Let dIv dencte this

and h_ C d.
8= "j+

link and then we have that j+l < r < k=1 since (hluhm)ﬂuju d,)
ﬂnl =g.
Since H is a refinement of G, hs/’\dj # @, and ht/"\dk # B

it follows that some link of the subchain H(s,t) = {hsg h coog ht}

s+1?

<t

must be contained in d ., For, assume that h, QL d for s < i
r 1O r == 0

The above implies j+l < r < k=1, Then either h, - £=§ii or
o =
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k rel k i:}
hiog i=r+ldi° Since (Mdi)m(igldi) = @ and because h - 1_;jdi
) -
and htq;:iér¥ldi’ there must be some integer jo, S SFJO <ty such

r-1 -

k
tat hy C bJd; amd n j0+lgi¥-ldi° But this implies that

= @# which is impossible, Thus, dr contains some link of

+1

hjof\h

j0
H(s,t) and hence some link of H(1l,t) distinct from h1°

Since G could not previously be required to be minimal on N19

let G(jl,kl) = {dj g s+0, d_ '} denote such a minimal chain, Then,

1 K

j£3; 341 and k-l <k <k because N;

Also, hs("\dj # @ and we have the relationship j < gl grg
1

meets each link of G,

k-1 < k, < ko

1
At this point in the proof the objective is to construct a new

chain covering N, from the chains G(jlsk-l) and H(l;m) which will

1
satisfy'properties 1, 2, and 3 and also have fewer links that H. Since
this is contrary to the existence of H the assumption that (hl\*)hm)
(ﬂ\(djku}dk)(A\Nl = @ will be false, The construction and verification
of the afore mentioned new chain however requires the consideration of
several very involved cases, Any reader still intent upon continuing
may well wish to just scan the descriptions of the cases and the devel-
opment of one of them and then skip to the point in the proof where the
objective is acknowledged,

Case i, Suppose that h, . C d, and that htHQd Then we

K-1°
shall show that [G(;jl,k-l)/\H*(nl,t)J ® H(t+l,m) is a chain covering

N, with the required three properties, The collection G{J;sk=1)/")

H*(1,t) must first be shown to be a chain for which, by proposition



71

2,8, it sufficies to show that the open set H*(1,t) meets the common

part of each pair of adjacent links of G(jl,k-l)°

Suppose that for some j,» J; < J, < k-1, (dja/\\djo+1)(ﬁ\H”(l,t)
= @, Then (i=jldiyr\(i=30+ldi)(\\H (1,t) = #. But as argued previ-

ously, this contradicts the fact that H(1l,t) is a chain, Therefore,
G(jl,k—l)f”\H*Tl,t) is a chain by proposition 2,8,

To show that [G(J;,k=1)(VH*(1,t] ® H(t+1l,m) is a chain, it is
sufficient by a previous proposition to show that the last link of
G(jl,k-l)ﬂH*(l,t), namely, dk_lr\H*(l,t), and the first link of

H(t+1l,m), h are the only links of the two chains which meet,

t+1?
Clearly, for t+l < i < m, hi/"\H*(l,t) = @ which implies that

* _ . S e e . v

[dj("\H (1,£))M\h; =g for j; < j <k-l. Since h,C d ., we have
*

ht/’\ht+lq; d, s and consequently dk‘l(ﬂ\H (lgt)fﬁ\ht+l # g,

Finally, [dij*(l,t)]f\hi =@ for j;<J<k-l and t+lgigm

since hi/\H*(l,t) #@ if and only if i = t+1 and H"’(l,,t)/\ht+lg_;

dk with dk/“\dj =@ for jl < j < k=1, Therefore, proposition 2,9

implies that [G(jl,kml)mH*(l,,t)] ® H(t+l,m) is a chain,
It remains to be shown that this chain satisfies properties 1, 2,

and 3 of the proposition and covers N Clearly, this chain is a

lo
refinement of G and hence of C., For the second property, two

possibilities arise., If t+l < m, then H(t+l,m) includes h . and

hm° By their existence, (hm\\ﬁ;_l)(”\A # ¢ and thus the new chain has

this property,

If t+1 = my then the link adjacent to hm = ht+1 is
* . . by
dk+1/”\H (1,t). Again by selection, (hm\\hmml)(ﬁ\A £ @ and we let
m"l m=1 m=1

X e (hm\\hm—l)(A\A° Then,; x £ }E{hi = }E{hi and hence x g N(}E{hi)
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AT AT _
or x e h (MM{4h). Thus, x e (h\Jqh )M NG ) =

hm\\(g;ihi(ﬁ\ak_l)g;l%;\jdk‘1(°\(§;ihi)]. Therefore; in either possi-
bility, this chain satisfies the second property,

For the third property, if C is taut we necessarily have that G
is taut since G is a subchain of € and H is taut by its selectien,
Thus, the chain G(jl,k-l)/“\n*(l,t) is taut as is the chain H(t+l,m).
The only problem which might occur is with the joining of the two
chains, Since ﬁ‘ﬁﬁ)/‘\‘ﬁi =@ for t+2<1i < my m)mﬁi -
Ej(‘\ﬁ*{fj{)f‘\hi = @, for 3 £k, Thus, the links of
G(jl,k-l)/‘\H*(l,t) are a positive distance from the links of
H(t+1,m).
is a

Since - dk and dk/\dj =@ for jj£3gk=2; h

Bt t+l
positive distance from the links of G(jl,knl)/’\H*(lgt) and the con-

structed chain is taut, It is easily shown that the chain covers N10
Since dr contains at least two links of H and each link de

jl < j £ k=1, contains at least one link of H, the new chain has

fewer links than H and this contradicts the existence of H., There=
fore, (hl\,/hm)[”\(dev)dk)/”\Nl £

Case ii, Suppose that ht+1.§;(1 and m > t+2, Then we wish to

k=1
show that [G(J,k=2)MVEX(1,t)] @ [(d, ,MEAL,t))\ b, 110 H{ts2sm)

is a chain covering N. with the required three properties,

1
The argument to show that G(jl,kaa)f”\H*(lgt) is a chain is
essentially the same as that given for the corresponding part of case i,

Thus, we shall conclude that G(jlgk-2)fﬁ\H*(1,t) is a chain,
. * —
Since h Mh, C d ., the set [(d , ENL,£))\ b ] =
dk_l{ﬁ\H*Tl,t+1) is nonempty and also open. To show that



[G(jl,k-Z)/'\H*(l,t)] ® [dk_lf“\H*(lgt+l)] is a chain, only the last
link of G(jl,k-Z)/»\H*(l,t), namely, dk_zfﬁ\H*(l,t), must meet
4, oVENL,t41). Since d, ,(Nd; = ¢ for j; i < k-2,
[a,MNEXL,)IN Y, MEX1,8)] = g, Also, h,  Cd ., implies that
[dimn*(l,t-l)]/\ht+l =@, Thus, for j; <i < k-2, [dif\H*(l,t-l)]"
m[dk_lmn*(l,ul)] = ¢, Finally, [dk_zﬂH*(l,t)]m[dk“lm
H*(1,t+1)] # ¢ since again as argued previously, H¥(1,t) meets the
common part of d, , and d ., or otherwise H(1,t) would fail to be
a chain, Thus, [G(j),k=2)/\EX1,t)] @ [4 _,/VE*1,t+1)] is a chain,
To include the last part in the chain we must argue much the same
as in the preceding paragraph, Clearly, each link of H(t+2,m) fails
to meet HY1,t) and hence none of its links meet a link of
G(jl,k-z)‘f\H*(l,t). For t+2 < i < m, if any such links exist,
hy(ME*(1,841) = g, Hence, h (M\[d ,(MENL,t+1)] = ¢, Since
by, hy,, #% and h . Cd ., [4 MNENL DI Nn, , # ¢ and
the last link of [G(j;,k-2)MVE¥(1,t)] @ [d, ,MEF(1,t+1)] meets the

first link, h of H(t+2,m). Again, proposition 2,9 implies that

t+2?
[6(3 k=2)MVEX(1,8)] @ [d,_, M EX1,t41)] @ H(t+2,m) is a chain.

To complete case ii it remains to show that this chain covers N19
satisfies properties 1, 2, and 3, and that the chain has fewer links
than H, Clearly, Nl is covered by the chain and the chain is a
refinement of G and hence C, Under the supposition of this case,
that m > t+2, (hﬁ\\iﬁ-l)/\\A # @, as a property of H, Hence
(hﬁ\\éafﬂ\A # § vhere g denotes the link preceding h =~ whether it
actually is hm-l or, as might well be the case, it is

*
dk-lmH (1’t+l) .

Since C taut implies G is taut and also that H is taut, the
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chain [G(jl,k-Z)(ﬁ\H*(l,t)] ® [dkal(ﬁ\H*(lvt+l)] ® H(t+2,m) is easily
shown to be taut., Thus this chain satisfies properties 1, 2, and 3 of
the proposition. Since each link of G(J,;k~2) contains at least one
link of H, dr contains two links of H; and ht+1
dk l(N\H*(lgt) to form a single link, this new chain has fewer links

is joined with

than H which is contrary to the selection of H, Therefore, one of

h. or h meets (d.\_4d ) N, for this case,
1 m J k 1

Case iii, Suppose h, , C d , and m = t+l, Then an argument
similar to that of case ii yields the fact that
3 * N - 2 - 8
[G(3) k=2 (VEXL,£) (b VG )] @ [q, MVEX1,;841)] is a chain
on Nl with properties 1 and 3. Only the second property requires
special mention., The set (ht+i\\it)(H\A is nonempty as a result of

the existence of H, Thus, it can be shown that { [dkmlfﬁ\H*(19t+1)]\\

r / NH¥(1,t)] }/A is nonempty and the conclusion of case ii
-2 P
follows,

Case iiii, Suppose ht+l >

basically similar to those of the preceding cases it can be shown that

g dk_ and ht+1<2 dka,1° With methods

[G(jl,k-a)f\(H*(l,t)\i”tﬂ):l ® [d ., VEN1,t)) 8 H(t+2,m) is a chain

covering N, with properties 1 and 2, To insure that the constructed

1

chain is taut when C is taut we may need to consider a set @ which

t+1?

possible since the space is normal and S% l/A\E£+1 = @, Then the chain

is open, contains and is such that 67”\3%@1 = §, This is
[G(jl,k-a)ﬂ(ﬂ*(l,t)\ﬁ)] ® [dkalmH*(l,t)] ® H{t+l,m) will cover
Nl' satisfy properties 1; 2, and 3, and have fewer links than H,
Since this again contradicts the existence of H, we have that
(hl\Jhm)ﬁ(dj\Jdk)f\Nl # &,

The four cases have now all shown that one of hl or hm must



meet (de dk)f\Nl, In order to be specific, let us suppose that

hl/\djf\Nl # B. Since the original supposition was that (dl\Jdm)f\

A = ¢ and consequently that (djudk)f\!\ = #, we must have that
Am(hlf\djf\Nl) = 4.

Let x ¢ hl/\ djf\Nl, Since x £ A and hlf\ dj is open, there
is an open set @ containing x such that Qg_'_(hlf\dj)\Ao Without
loss of generality, wer may assume that Q g(hlf\ dj)\A by applying
the normality of the space. Since Ag Ml'\Q, let R denote the com-
ponent of M \Q containing A. Because M;\Q is closed, R C My \Q

and hence R = ﬁ', Now each of R and Nl are subcontinua of Ml

intersecting A, Since A 1is a terminal subcontinuum of M19 either

ng R\UA or Rg'Ale =N Now Qf\Nl # @, they both contain

10
x, and since QC~A and RCM, R, Q WR\A) =g, Hence,
N1¢'AUR and necessarily then R N,,

Since R is a component of MI\Q and Nl is covered by H,
RC N implies that RC H* and thus RC_:,(M:!_\Q)/\H"*a Then no con-

tinuum in M, \Q meets both A and (Ml\Q)\H*=M1\H* since

QC h1° Recall that Ml\H* cannot be empty since to assume sc would

have H being a chain on M. satisfying properties 1, 2, and 3, con-

1

trary to Ml having property P, Thus, since Ml\H'* is ¢losed and

nonempty, Ml\fQ is the union of two disjoint closed sets, El and

E,, with E, containing A and E, containing Ml\H* [26, p. 151,

By the normality of the space; there must be two open sets S and T

such that ACE C 8, MNH*CE,CT, §NT=g, ad M QC

E\JE,C S\UT.
We now claim that Ezmﬁ # #. For suppose that Ez/\‘ci =@,

Since El and E2 are closed and disjoint, we will have that
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Ml = E2U[(le\6)UE1] which is a separation of Ml by E, and

(Ml/"\a)UEl. Hence, Eaf\ﬁ;éfd and similarly El/\a# g. With

5 )
QC hlmdj it follows that Ezf\dj # @, Now suppose that E2/\dj+1

# ¢ and that Ezm(djr\dj+l) = @, Let E3=E2\dj,, Then E3 is

closed, Also, EZ\EBQEZ\(djﬂ

closed, Because Qg_ dj’ EBf\'Q = ¢ and because E

\Jeoo\/d.k) and thus E2\E3 is

CEy By E)

3 3

= #, Then E3 and [(E2\E3)U(§/\M1)UE1] form a separation of

M Since this contradicts the existence of Ml’ we must have that

10
c'o » K] 1)
Ezm(djf\djﬂ) # @, Similarly, if Ezf\di # @ and L2mdi+1 PR

then Ezﬂ(dim di+l) # @ and also Ezf\dio #¢ and Ezf\dia £

implies that E /) dil ## for j<iy<i;<i,<ks

with the preceding, let G(jgkz) = {djg LAY dk }9 j S k2 < kg
2

deﬂote the minimal subchain of G(j;k) containing E2° Then since
Ezg S and E2 meets the common part of each pair of adjacent links of
G(j,k,)s proposition 2,8 implies that G(j,,kz)f\s is a chain
covering E,. Now if k, > j+l, G_(j+19k2)/\3 is also a chain,
Otherwise, considdration of G( j+1,k2)f\S in the following may simply
be omitted.

Since (dj/\'r)ﬁ(dif\ T) # % if and only if i = jl <1, we
have that this intersection is nonempty if and only if i = j+1 (other
than for i = j,) With RS dys d;(MQ =g for j+2<i < k,o Thus,
[(djf\T) S| m(di/\T) A@ if and only if i = j+1 or j. There=
fore, [G(‘kzgj-kl)f\'l"] e [(djf\T) \_/Q]} is a chain by proposition 2.9.

Since S/ T = &, hlf\s, which is nonempty, has an empty inter=

section with each link of G(kz,j+l) (T, However, S/ \Q # § and
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QC hy implies that [(d,/\T) UQ]/\[hlf\ 8] # #, Thus, we also have

J
by proposition 2.9 that [G(k,,j+1)}( T @ [(’dJ./\T)UQJ ® [hy/ 8] is
a chain,

Now consider El“ As noted earlier, Elf\ﬁ # @ and hence
Eif\hl # #. Also, if Elr\hio # %, then E,/M\h, #§ for

1<igi, and Elm('himh. ) AP for 1<i<i

141 Thus, El Cs

o) o°
implies that S meets the common part of each pair of adjacent links of"
H(1,m) since ACE, and A() (’hm\’ﬁm_l) £d.,

Since h, exists, [(’hzf\s)\ii](\Ez # @, Since TS = g,
[('hzms-)'\&]m{[G(’ka,je’»l)f\T] ® [(’djf\T)'UQ]}* =, However,

[hl/\ smr\[(‘haf\s)’\'@‘i% #. Thus, [G‘("kz,j+1)f\T‘J e L‘(djf\T)UQ] @
[, VST @ [(hy\S)\&] is a chain,

Finally, if m> 3, then S meets the common part of each pair of
adjacent links of H(3,m) as noted earlier and thus H(3,m)( S is a
chain, Each link of H(3,m)( \S fails to meet each link of
[6(k,,J+1)(T] @ [(d j/'\T)\JQJ ® [h,(\8] either because T( \S = g
or because it fails to meet h

Since haf\h g~"§9 and

1° 3
By thS # s [(hzms)\éi]m[h}m 81 #¢ while [{h,M) SINQIM
(”himS) =g for 4¥<i<m, Therefore, F = [G('k2,5+1)f\T] ®
[(’djf\r)ucu ® [h, 8] @ [(hyN8)NQ] @ [H(3,m)(\S] is a chain,
Let x ¢ M, Then x ¢ BE\UQUE,. If xeQ then x¢ F*, 1If
X € EZ
X e T/"’\d.:.L and x g F*, If x ¢ E:L\IS~ then x &S and x ¢ h, for

then x ¢ T and x ¢ d:aL for some i; j<icg k2° Hence,

some, 1 < i <m. Thus, x e S h; and x ¢ F* If x g E(\Q then
x ;_Sﬁ and x ¢ h,, Thus, x ¢ F*, Therefore, F is a chain covering
Ml"

By its construction, F is a refinement of C, Since
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Af’\(hm\ﬂm_l)-;éga and ACS, A/\[(hmf\s)\(m)] A¢ and F
satisfies properties 1 and 2.
As noted earlier, C taut implies G and H are taut; Thus, the
links of F in [G(k,,J+1)/NT] and in [h ST ® [(hzms)\Q‘,’Jjg
g EADTANGAD =
g for j+2 < i < k. Because T/ S = ¢, (E;'l'“'f"\'_'f)ﬂ("ﬁlﬁ'é) =g as

well as any other comparison of links inveolving only T or S, By

[(H(3,m) 8] will be taut, Since QC d

definition we have that [(dj/\T“)U»Q]f\[(haf'\Sv)\ﬁj = @, Thus, by
considering individually any pair of nonadjacent links; F can be
shown to be taut when C is taut,

Thus; we have finally produced & chain covering M, satisfying

1
properties 1, 24 and 3, Since this is contrary to the existence of HI?
we have that there must exist a chain on M satisfying conditions 1, 2,
and 3 of the proposition, Therefore, the proposition is proven, I

The latter part of the preceding proof presents the most important
method of this thesis, Based on a theorem by Moore [26, p, 15], Fugate
uses this method repeatedly to decompose point sets into two disjoint
closed sets, The noﬁmalify of the space then permits the separation of
these two sets by disjoint open sets which can be used to produce dis=
joint chains on the two closed sets. From these disjoint chains, a
chain on the continuum is constructed. This same basic method is
applied to several theorems in Chapter V,

Corollary 3,19 applies to 2 terminal pocint p and follows very
easily after the effort expended on proposition}»,-l'S° The corollary is

actually the result needed for proving theorem 3,20,

3,19 Corollary If C = {dl, d2, seog dn} is a chain covering a

continuum M and p is a point such that each nondegenerate subcontinuum
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of M containing p is irreducible from p to some other point of M,
then there is & chain G = {g1, g1 °°°s gm} covering M such that G
is a refinement of C, p ¢ gl\\Eé, and C taut implies that G is

taut.

Proof: Corollary 3.15 implies that p is a terminal point of M
and hence {p} is a terminal subcontinuum of M, PrOpositioﬁ 3,18 now
implies there is a chain Cl = {fl, £y ooy fm} covering M such that

Ci is a refinement of C and (fm\\?;ml)fﬁ\{p} # @, which implies

that p e fm\fmml.

3.18 implies that Qi, and consequently, G is taut, and we are done, ||

Let G(1,m) = Ci(m,l). If C is taut, proposition

Some Sufficient Conditions For Chainability

We finally arrive at the first of several characterizations of
hereditarily decomposable chainable continua, Theorem 3,20, the first
majo? tﬁeorem attempting to characterizerchaingble continua, was proven
by R, H, Bing and appeared in 1951 [4, p. 660], L. K. Barrett, also
working under the restriction of hereditary decomposability, extended
the result slightly by using characterizations of atriodic and heredi-
tarily unicoherent, hereditarily decomposable continua [1, p. 517].
Three of these results appear here as theorem 3.26, summarizing the
efforts of Chapter III and in particular, this section of the chapter,
Aside from these two theorems, this section is devoted to proving each
of the characterizations of atriodic, hereditarily unicoherent, and
hereditarily decomposable continua used in theorem 3.26, The hered-
itary decomposability is essential to the proof of these theorems but,

as will be seen in theorems 5,1, 5.4, 5.11, and 5.12, this restriction

can be considerably relaxed, Some restrictions, other than those of
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‘Theorem 3,20 again uses a method noted earlier in proposition 3.18
and is typical of the approach taken in several forthcoming results.
That is, showing the existence of a‘subcontinuum of M which is irre-
ducible with respect to not being g-chainable, #An g-chain is then
cohstructed covering this subcontinuum contradicting its existence.
This theorem is the culmination of the large number of intermediate
results which have been presented. The hereditary decomposability
implies that M contains no indecomposable subcontinua with interior
points relative to M, Thus, the upper égmi—continuous decompoéitibn
6 of M may be and is used extensively. In particular, thé fact that
6 1is an arc with respect to its elements provides the key to proving
theorem 3,20,

Before presenting the theorem and its proof, it is necessary to
introduce some of the notation and definitions used., Since & is an
arc with respect to its elements, & has two end elements as has been
noted earlier, If A and B denote these two end elements then we
could equivaléntly denote & by AP, meaning the arc from A to B,

‘Sihilarly, subarcs may be denoted by their end elements,

For any three distinct elements, P, Q, and R of G, one must
separate the other two from each other in & by virtue of its being
an arc with reépect to its elements, That is, without loss of general-
ity, subsets ¥ and ¥ of & must exist such that they form a
separation of &~{Q)}, P e ¥, and R ¢ X. This fact is denoted by
PQR. Similarly, the notation PQRS means, PQR, PRS, PQS, and QRS,

To return to the discussion of the method of proving theorem 3.20,

we make the final note that the irreducible subcontinuum is chained by
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appropriately decomposing it into two chainable proper subcontinua and

then joining these two chains together,

3.20 Theorem A hereditarily decomposable continuum M is chain-

able if and only if it is atriodic and hereditarily unicoherent,

Proof: Since every chainable continuum is atriodic and heredi-
tarily unicoherent by theorem 2.7, the conditions are necessary, To see:
that they are sufficient, suppose the contrary. Then there exists a
positive real number g such fhat M is not g=chainable, Clearly, M
is nondegenerate, Let )Y denote the collection of all subcontinua of
M which are not g-chainable, Since M g Hy ¥ is nonempty. The
collection ¥} can be partially ordered by set inclusion and we let &
be any linearly ordered subcollection of H, Let N=(Y{L: Lg8g )},
If N £ ¥, then since N is a subcontinuum of M, N is g=chainable,
let F = {fl, £59 eees fk] be an g-chain on N, Then there is an
element LO of 8 such that F is a chain covering LO since to
assume not implies that for all L e¢§, F i§ not a chain covering L,
Since F is a chain, it follows that L F* Thus, fof each L ¢ §,
let Xy € LN\F*, Since M is compact, this collection { X, ¢ Leg )
has a subcollection converging to a point which is not in F* and hence
not in N, Since this is impossible, there is a member LO of Y such
that LO gF* and F is a chain covering LO‘ Since NC LO’ F is a
chain on LO. This contradicts the fact that LO € § and hence the
assumption is false and N ¢ N,

Zorn's lemma now implies that there exists a minimal subcontinuum
in ¥, minimal in the sense that every proper subcontinuum is g-chain-

able, Let N denote such a minimal element., By selection, N is
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is irreducible with respect to not being coverable by any eg~chain,
Again, N is necessarily nondegenerate,

Since M is hereditarily decomposable, N contains no indecom-
posable subcontinua, Thus, let & denote the upper semi-continuous
decomposition of N described by theorem 3,11, Corollary 3,12 shows
that & is an arc with resﬁect to its elements, Let A and B denote
the two distinct end elements of &. Let C ¢ 6~(A, B}. lLet peC
such that every nondegenerate subcontinuum of C containing p is
irreducible from p to some other point of C, With C nondegenerate,
lemma 3,16 assures the existence of such a point p by considering C
to be the continuum of the lemma,

let 8 ={CN\_J{(Gg6S:C separates G from B in & } and
éimilarly, let X={C)\_J{( G e® : C separates G from A in G },
This is the same as to say that 8 and X are the subarcs of & from
A to C and from B to C respectively, Now, 3*\ _X* =N since to
assume not implies that 3*\_¥* is properly contained in N and thus

there is an element G, of © such that Gof\(a*ux*‘) =¢@g. Thus, C

0

does not sepérate G, from A or B in &, Since AC 3* and

0
BC X¥, G, #A or B and thus G, separates A from B in 6,
Because C separates A from B in 6, either AGOCB or ACGOB
[26, p. 32]. In the first case G, C 3* and in the second case

G, © ¥*. Thus,  G. cannot exist and &M _JX® = N. Also, 8* X*=¢C

(0]
since 8 and X are subarcs of & with end elements C,

It is the present objective of the proof to produce proper subcon-
tinua of N, namely, 8 and X*, which would then be g-chainable and

which could be used to produce an g-chain on N, We must first show

that g% and X* are connected, Since 3 and X are subarcs of 6,
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and hence are connected with respect to their elements, 3* and X*
are connected [26, p, 275]. It also follows that since & and X are
closed with respect to their elements, so also are a* and Xx* [26,

Po. 275] and hence & and ¥* are proper subcontinua of N, By the
selection of N, 3% and K™ are both g~chainable. Let C1 = {fl’ f2,
coey fn} and Dl = {kl, Koy cooy km] be the chains on &* and ¥*
respectively which by the following may be assumed to have the property

that p ¢ fn\\fn and p e k?\kz°

=1 1

In order to justify the assertion of the preceding paragraph, we
shall show that corollary 3.19 applies., Suppose there is a nondegen-
erate subcontinuum L of &#* such that p ¢ L and Ll!is"feducible
from p to any point of L, If LC K* also, then LC C which is
contrary to the selection of p in C, Thus, L 1is not contained in
K* but L/X* £ ¢ since both contain p. Now, L\_XK* is 2 non-
degenerate subcontinuum of N such that LK™ #¢ and AC ¥* which
implies, by lemma 3,16, that there exists an element r of A and an
element g of L\UX* such that I/ ¥* is irreducible from r to
g, If q ¢ ¥* then X* is a proper subcontinuum of AN e contain;
ing both q and r which contradicts the irreducibility of LA_K* from
r to q., Therefore, q £ R*, q € INX*., Since 1 is redﬁcible from
P ’io gy there exists a proper subcontinuum Ll of L such that
{ps a}C L. Then Ll\;jn*‘ is properly contained in IL\UX* and
L\,}H* is not irreducible, Again this is a contradiction and therefore
every nondegenerate subcontinuum of d* containing p 1is irreducible
from p to some other point of 3%, Likewise, the subcontinuum X*

has this property., Corollary 3.19 now asserts that the chains Cl and

Dl on &% anda x* respectively, may be selected such that
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pef T , and pe ky Nk
We begin the process of fitting these two chains together to form
a chain on N which of course is contradictory to the selection of N,
Let U be a neighborhood of p such that UC (fn\\ﬁiml)(ﬁ\(kj\\ﬁé)
Furthermore, U exists such that U/ \(A\UB) = ¢, Since U/ N # &,
U N is open relative to N, and consequently, Uf\H¢Q§C by lemma
3.8, Also, N~U = N/ )~U is a nonempty closed proper subset of N,
If N~\U 1is connected it is a proper subcontinuum of N containing
both A and B, This is impossible since N would be reducible from
agld to b egB contrary to corollary 3.13. Thus, let Hl. and K

1

form a separation of N\U such that K, C X* and 0 C a*,

Since Hl and Kl are both closed and compact, let & denote a

positive real number less than half the distance between H1 and Klo
Let Op = (J{B(x36) : x e H; } and Op = \J{ B(x30) : x ¢ K; ),
Then H, C Oy X C Op OH(A\OK = @, and Oy and Oy are both open
sets, Now Cl and Dl are still chains covering Hl and Kl respe¢-
tively., Since fi/“\fi+l(ﬁ\OH #%y 1<i<n=1; and kj/A\kj+1/“\OK #
#y, 1< j<m<ly, proposition 2.8 asserts that CIKN\OE, and leA\OK
are g=-chains covering Hl and Ki respectively, Furthermore; the
links of leN\OH are respectively disjoint from the links of Dl(ﬁ\OK°
Now since U meets C, only in the link £ , (£ MO0\ JU 1is an
open set of diameter less than ¢ which contains p and hence meets
N, Likewise, so does (kj/NOp)\ U, Then C, = {£,/ 0y, £,/ 0
ceo, fnml(”\oﬂ, (fn(ﬁ\OH)\“)U} is a chain covering H; as is D, =
((klf\oK)uU, sz“\oK, coo, km/\oK} a chain covering K.

Finally, [(£ MO)\JUIMN[(k MO JU] = U and £, 0y

fails to meet any link of D2 for 1 <ign-~l and kjfﬁ\OK fails to
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meet any link of 02 for 2< j<m, Thus, 02 (] D2 = {fl(’“\oH29 coo,
fn_lf\oH, (£, MO\ ITs (e MOINITy ks (O ooy k (M0} is an
g~chain covering N,

To see that C, O‘Dé- is an g-chain on Ny, let x ¢ N, Then

* P’ .

X € Hl\“jKi\“/U° If x ¢ Hl’ X g [C2 6 D2] since x ¢ OH and
X g fr for some r; 1< r<n, Similarly, x’shKl implies
x ¢ [C, 0 DZJ*. Also, x ¢ U implies that x ¢ [C, ® D,1* since

Ugic, e Daj"‘. Finally, since H, C N, K CN, fif\Hl A g for

1
1<1ign-l, kjf\xl A¢ for 2<J<m H COy and KO, we
have that (fi(ﬁ\OH)(m\N #£¢ and (kjfﬁ\OK)fﬁ\N #@., Also, pel
implies that both (fn/\oH)uU and (klr‘\ OK)UU meet N and

therefore C2 (+ D2

Since this contradicts the selection of N as a member of ¥, the

is an g-~chain on N,

subcontinua of M which were not g-chainable, M must be g-chainable,
Thereforey, M is chainable and the theorem is proven. I

The next several results are presented to yield characterizations
of atriodic and hereditarily unicoherent; hereditarily decomposable
continua, which can then be used to provide variations on the preceding
theorem, If a continuum is irreducible between some two of its points,

then the continuum will be called an irreducible continuum, If a and

b denote these two points, then the notation ab is intended to
emphasize this irreducibility of M between a and b, A continuum

is hereditarily irreducible if and only if each subcontinuum is irreduc=

ible between some two of its points [23, p., 180], Propositions 3,21,
3,22, and 3,23, and corollary 3,24 deal with the relationship between
the hereditary irreducibility and the hereditary unicoherence and

atriodicity of a hereditarily decomposable continuum,
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3,21 Proposition The continuum M is hereditarily unicoherent
if and only if for a, b g M, there exists only one irreducible sub-

continuum ab of M,

Proof; let M be a hereditarily unicoherent continuum and suppose
there are two points a and b of M such that A and B are dis-
tinct subcontinua of M each containing both a and b, Then A\U/B
is a subcontinuum of M which by the hereditary unicoherence of M
implies that A/ )B is a subcontinuum properly contained in A and B
and containing a and b, Thus; neither A nor B is irreducible,

Now suppose that for any two points a and b of M; there
exists only one irreducible subcontinuum ab of M, To assume that M
is not hereditarily unicoherent implies there exists a subcontinuum N
of M such that N = A\UB with A/ )B not a continuum, Since
AB is closed, let R and T denote the separation of A/ B, If
reR and t ¢ T, then by hypothesis,; the irreducible subcontinuum rt
of M exists, Because r, t g A implies that‘ rtC A and r, teB
implies that rtC B, rtC A( )B. But this implies that rtC R\UT,
the separation of AMB,

Since r ¢ R implies rtCR and t ¢ T implies rtC T,
clearly r and t cannot exist and hence neither can N. Therefore,

M is hereditarily unicoherent if and only if for any two points of M
there is only one irreducible subcontinuum of M containing these two

points, '

3,22 Proposition The point set M is an atriodic, hereditarily
unicoherent continuum if and cnly if

1) if a and b are any two points of M, then there does not
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exist more than one irreducible subcontinuum ab of M,
and 2) every nondegenerate subcontinuum of M is irreducible between

some two of its points.

Proof: Suppose that M is atriodic and hereditarily unicoherent,
Proposition 3,21 implies that there does not exist more than one irre-
ducible subcontinuum ab of M, Theorem 1.6 implies that every
nondegenerate subcontinuum of M 1is irreducible between some two of its
points.

Suppose that conditions 1 and 2 are true. Again, proposition 3,21
implies that M 1is hereditarily unicoherent., Now assume that there is
a subcontinuum T eof M such that T is a triod, Then T =
MU/VAUW  with subcontinua UMW = UMW = VW = U7 W/ W, no one
of U, Vy, or ¥ is contained in the union of the other two, Since T
is irreducible between some two points, let a and b denote these
points, If a g U/ W/ W and b g U, then U is a proper subcon-
tinuum of T containing a and b, Since this contradicts the fact
that T was irreducible between a and b, neither a nor b is in
UV W, Also, a and b cannot both be contained in either U, V,
or W, Thus, suppose that a ¢ UN(VA\W) and b g VUMW), Then
a and b are elements of U\_/V, a proper subcontinuum of I, Again,
this contradicts the existence of a and b, Hence, M does not

contain a triod and M 1is atriodic and hereditarily unicoherent, P

3,23 Proposition If a hereditarily irreducible continuum M is
the union of two continua H and K whose common part is the union of
two mutually separated sets U and V, then H and K contain inde=-

composable continua whose common part is the urion of two mutually
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Proof; By hypothesis we have that M = H\_K and that U and V
form a separation of H( K, Since UCH and VC H;, there is a
subcontinuum H' of H where H' ‘is irreducible from U to V., Like=
wise, since H'/\U CK and H'/’\VC__:. K; there is a subcontinuum KXK'
of K such that K' is irreducible from H'/N\U to H'/\V, Now
HYO\K' # 8, HN\UK' CUUV, E'NKNU £g, and H\KNV # g,
imply that there are sets U' and V' which form a separation of
H'/ONK' with U'CU and V'C V., The point set H' is clearly
irreducible from U' to V', So also is K' irreducible from U' to
Ve, |

Suppose that H' = W\_/Z where W and Z are each proper subcon-
tinua of H', Then without loss of generality, W contains no point
of V' for suppose W/ \U' and W/ W' are nonempty, Then HY | is
not irreducible from U' to V' which is contrary to the above. Thus,
W contains no point of V' and Z c¢ontains no point of UY,

Now W/NK'C HYN\K' = U"\_JV' and W/ V' =@ implies that
WK' CU', Also, Z(K' CV', Hence, W Z/K' C UV =g,
Since W/N\K's Z/\K', and W/ \Z are mutually exclusive closed sets,
no one of the continwa W, Z, or K' is a subset of the union of the
other two, For suppose that WC Z\_JK', Then WC (Z/MW)\J(K'/ W)
which implies that either WC Z(OW  or WC K/ \W since these two
sets are mutually separated and W is connected, Now W gzmw
implies that W(C 2, But then W/ XK' ng\K' which contradicts their
being mutually exclusive, Thus, W2\, Similarly, W Z/OK',
Therefore, no one of W, Z, or K' is a subset of the union of the

other two,
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Since H"\_JK' is irreducible between some two points by hypoth-
esis, let a and b denote two such points, Without loss of
generality, a ¢ H'\K' and b g K'"\H'., Then a g W\_/V. But a g W
implies that a g W\_/K' which is a continuum properly contained in
K'\_H', Similarly, a ¢ V implies that a ¢ V\_JK',; a proper subcon-
tinuum of H'\_JK'. This contradicts the irreducibility of H"\_/K'
and therefore, H' is not decomposable, Therefore, H' and K' are
indecomposable, |I

Proposition 3.23 now makes it possible to prove the first charac-
terization of atriodic, hereditarily unicoherent, hereditarily

decomposable continua,

3.2k Corollary A hereditarily decomposable continuum M is
atriodic and hereditarily unicoherent if and only if M is hereditarily

irreducible,

Proof: That the result is necessary follows from proposition 3,22,
Now assuming M to be hereditarily irreducible it follows from the
proof of proposition 3,22 that M is atriodic, Suppose that M con-
tains a subcontinuum N which is not unicoherent, Then N = H\UK
with H and K proper subcontinua of N and the sets U and V form
a separation of H/ K, Proposition 3.23 implies that each of H and
K must contain indecomposable subcontinua, Sinee M is hereditarily
decomposable, this is impossible and M is hereditarily unicoherent, H

The second characterization is presented as proposition 3.25 and is
stated in terms of the property of a point weakly separating two other
points, If a; b; and ¢ are three points of a continuum M, then

b weakly separates a from ¢ in M if and only if every
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subcontinuum of M which contains a and ¢, also contains b [23,
p. 180]1. ’Consider for exemple the three end points of a "Y' shaped
simple triod, No one of the three weakly separates the other two.
Proposition 3,25, of course, shows that every triod must contain three
points such that each of them fails to weakly separate the other two
from each other in M, Actually, the proof as presented here; is
restricted to hereditarily decomposable continua, However, it is

claimed that this restriction can be removed [23, p, 180].

3.25 Proposition The hereditarily decomposable continuum M is
atriodic and hereditarily unicoherent if and only if for any three
points of M, there is one which weakly separates the other two from

each other in M,

Proof: let ay, b, and ¢ be three distinct points in M and
assume that no one of a, b, and ¢ weakly separates the other two
from each other in M, Then there exists a subcontinuum Mab of M

such that ¢ £ M M of M such that b £ M+ and M of M

ab’ Tac
such that a £ M, .. Since a e Mab(“\Mac, Mab\“)nac is a continuum
containing a and Ta = Mab(ﬂ\nac is a continuum containing a,

Let Lbc = Mbc(ﬂ\(Mab#’)Mac)° Since b and ¢ are members of
Mab\*)Mac° Lbc is a continuu? containing b and ¢, Now consider
Lpo{ WMgpe We have that Lbe/«\Mab = Mbc(ﬂ\(Mab\—’)Mac)/ﬁ\Mab =
[Hﬁc/«\Mabrﬂ\MabJ\~)[Mbc(«\Mac('\Mab] = (Mbc(ﬂ\Mab)k~)[Mbc/A\Hac(\‘Mab]°
Since [M, (MM (M T CM (MM, we have that L ("M, =
Hbc/”\Méb which we denote by Tb‘ Then Tb is a continuum containing

b, Similarly, Lbc/"\Mac =T , a continuum containing ¢,

Now T\ T = (I’bcmMab)U(LbcmMac> = Lbcm[ma'dpmac]' =
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Mbcfﬁ\(Mﬁb\*)Mac)/-\(Mab\~)MaJ = Lbco Therefore, T,\JT, is a con-
tinuum which implies that Tb/”\Te is a nonempty continuum, By
definition T, (T, = (M, MM )L MM ) = Mabm(]‘bnmmac) =
L E(Mbcm(MabuMac))mMac] =
(M M DL, A \ UM )M, T =T, (T . Thus, by similar
arguments we have that Ta(A\Tb = Ta(A\Te = Tb(”\Tc°

Since a £ Mbc’ a g Mbc{"\Mac = Tc° Also, a é'Tbg which implies
that a £ Ta('"\Tb° Likewise, b £ Ta/”\Tb and ¢ £ Taf”\Tb° Thus,
neither a, b, nor ¢ is an element of Taf”\Tb = Ta/A\Tc = Tb/A\Tc°
Since Ta/"\Tb is contained in each of Ta’ Tb9 and TG,
Ta\“/Tbk*)Tc is a continuum, Now, Ta/F\Tb(”\Tc =
(Mab(H\Mac)(n\(Mabfﬁ\Mbc)(A\(Macfﬁ\mbc) = Mab(ﬁ\Mac/ﬂ\Mbc
M WM IO, (M, T = T (T, Thus, Ta'mef\Tc =T,MT, =

Ta/“\Tc = Tb(ﬁ\Tc and Ta\,/Tb&~)Tc is a triod in M, Since M is

i

atriodic, this is impossible and therefore for any three points of M
one weakly separates the other two from each other in M,

For the converse, suppose that for any three points of M there
exists one which weakly separates the other two from each other in M,

If M contains a triod N; then N = A\_B\_/C with A, B, and C

]

fl

continua, A/B/\C = A B = A€ = B/\C, and each of A, B, and
C containing a point not in the other two, Assume that a; b, and c
denote these points respectively, Then A\_/B is a subcontinuum of M
containing a and b but not ¢, Also, A\_/C c¢ontains a and ¢
but not b and B\ _/C contains b and ¢ but not a, Thus,; no one
of a, by, and ¢ weakly separates the other two from each other in

M.

Assume that M 1is not hereditarily unicoherent, Proposition 3.21
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then implies that there exist two points a and b in M for which
there exist two distinct irreducible subcontinua, A and By, in M
from a to b, Let x e ANB and y ¢ BN\A, Since A 1is a subcon-
tinuum of M containing a, b, and xy clearly, y does not weakly
separate any pair of these elements from each other in M, Likewise, x
does not weakly separate any pair of a; by, and Yy from each other in
M, Thus, qﬁgpy subcontinuum containing x and y must also contain
a and boy

let H1 ={ 2zgh A is irreducible from a to 2z }, Then Hi

is a proper subset of A and by [26, p. 61] H, is a subcontinuum of

A, Now, H, is nonempty since b ¢ H let Ho={zedA : A is

1 1° 2
irreducible from b to 2z }., As before, H2 is a nonempty proper
subcontinuum of A containing a. To see that Hl/'"\H2 = @, assume to
the contrary that ¢ g HI(A\HZ. Then by definition, A is irreducible
from a to ¢ and also from b to e¢. Therefore, A is indecom
posable [26, p, 59]., But since M is hereditarily decomposable; we
must have that H/\H, = B

Now let Kl = {2 ¢gB 3B is irreducible from a to 2z } and let
K2 ={zgegB ¢ B is irreducible from b to z }, From the preceding
paragraph we have that Ki and Ké are disjoint nohempty subcontinua
of B containing respectively, b and a, The following cases will
show that the assumption that M was not hereditarily unicoherent has
led to a contradiction,

Case i, Suppose that x ¢ H, and y ¢ Ki (equivalently, x ¢ H2

1
and ¥ € K2°) Then Hl\“jKl is a subcontinuum of M containing a,

Xy, and y but not b. This contradicts the earlier conclusion that

every subcontinuum containing x and y must also contain b,
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Case ii. Suppose that x g Hl and y #£ Ky (equivalently, x ¢ H,
and y £ K,y or yekK and x fH, or yeK, and x £H,,) Since
vy £ Kl’ there must be a proper subcontinuum KO of B such that
{ay y1C Ky Because B' is irreducible from a to b this implies
that b £ K.. Thus, Hl\')Kb is a proper subcontinuum of M contain-
ing a, %X, and y but not b, Again this is a contradiction of an
earlier conclusion,

Case iii. Suppose that x £ (Hlk,)Ha) and that y £ (K;\K,),
Then x £ H1 implies that there is a proper subcontinuum H of A
containing a and x but consequently not b, Likewise,; there is a
proper subcontinuum K of B containing a and y but not b, Then
H\_/K is a subcontinuum of M containing a, x; and y but not b
which is a contradiction,

Since these cases have exhausted the possible combinations of
locations of x and y in A and B respectively, and each has led
to a contradiction, the assumption that M was not hereditarily unico-
herent is false and the proposition is proven, ||

Theorem 3,26, which follows,; concludes Chapter III, Summarizing
the results of theorem 3,20 and the characterizations of atriodic and
hereditarily unicoherent,; hereditarily decomposable continua just pre=
sented; this theorem presents three characterizations of hereditarily

decomposable c¢hainable continua,

3,26 Theorem If M is a hereditarily decomposable continuum
then the following are equivalent:

1) M is chainable,

2) M is atriodic and hereditarily unicoherent,

3) M is hereditarily irreducible,
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k) M is such that for any three points of M there is one which

weakly separates the other two from each other in M,

Proof: 1) is equivalent to 2) by theorem 3,20, 2) is equivalent to
3) by corollary 3.24%, and 3) is equivalent to 4) by proposition 3.25,

Therefore, the theorem is proven, I



CHAPTER IV
TERMINAL SUBCONTINUA

Chapter III included an introduction to the subject of terminal
subcontinua, That material, and in particular the results on terminal
points, was sufficient for the purposes of Chapter III. However; the
remaining attempts to characterize chainable continua are very dependent
on the ability to chain on terminal subcontinua and in a very restricted
manner, For this pufpose, Chapter IV continues the development of
terminal subcontinua and in particular the definition and development of
a property for chaining on terminal subcontinua called exact containe
ment, In additiony the intuitively obviously concept of opposite end
points and opposite terminal subcontinua will be defined and developed
for later use,

Proposition 4.1 asserts that it is always possible to chain on a
continuum M with terminal subcontinuum A, such that the last link of
the chain must meet A, This illustrates, as is its eventual purpose,
an additional degree of contreol over an smchain'oh a chainable continuum
M, The second result extends this property to a characterization of
terminal points, Since this is the definition of an end point of a
chainable continuum as used by Bing [4; p. 660], proposition 4.2 estab-
lishes the equivalence of the three definitions of terminal point or end

point by Miller, Bing, and Fugate,

95
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b1 Proposition Suppose that M is a chainable continuum and A
is a subcontinuum of M with the property that for every g > 0, there
is an g=chain C = {dl, d2, ese, dm} covering M such that A/A\dm

# #. Then A is a terminal subcontinuum of M,

Proof: Assume that A is not a terminal subcontinuum of M, Then
by definition there exist two subcontinua H and K of M, each
’ meeting A, but such that neither is contained in the union of A and
the other, Let p e HN(K\_JA), q g EN(H\_A);, and ¢ be & positive
number such that ¢ = %min{ plpsK\_J4), plqH\4) },

Since M is chainable, let C = {d1, d2’ sooy dm} denote an
e-chain on M, By hypothesis we may have that dm/A\A # @, Let dj
denote the first link of C such that dj/\(H \K) £ g, Let d . and

dt denote links of € such that p ¢ ds and q g dt° By their

selection, j<s<m j<t<m s#t;, and in fact dS/ﬁ\(K\\jA)
=g and d (VELA) =4,

Without loss of generality, we may assume that dj/ﬁ\H # @, Since
H\_A is connected with de\(HUA) #¢ and d M(H\A) # &,
proposition 2.2 implies that di/”\(H\\)A) P for j<i<m and
hence H\_JA meets each link of C(jsm). Thus, dt/ﬁ\(H\‘)A) # @, But
this is contrary to the existence of dt and therefore A is a termi-

nal subcontinuum of M, !/

4,2 Proposition If M is a chainable continuum then p ¢ M is

an end point of M if and only if p is a terminal point of M,

Proof: Proposition 4.1 clearly implies that if p is an end point
of My, then p is a terminal pecint of M., For the converse; if p is

a terminal point of M; corollary 3.15 iﬁpliés that every'nondegenefate»
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subcontinuum B’ of M which contains p is irreducible from p to
some other point of B, But now corollary 3,19 implies that for ewvery
g¢=-chain on M, there is a refinement of this chain on M, which will
of course still be an g-chain, such that p ¢ dl\\a;. Therefore, p is
an end point of M and the proposition is established. ||

Construction Properties of Chains

on Terminal Subcontinua

It has been previously noted that the purpose of studying terminal
subcontinua and the chains on such continua, is to provide a means of
isolating this part of a continuum in a particular part of a chain. The
concept involved is that of exact containment, If M is a continuum,

A is a subcontinuum of M, C = {dl, d2, coey dm} is a chain on M,

and 1< j<k<m then A is said to be contained exactly in the

subchain C(jsk), denoted A C*(j,k), if and only if
1) A CC*(3,k),
2) A is not contained in any proper subchain of C(j,k), and

3)  AMCF(T, j-L)\_C*(k+1,m)] = & [13, p. 4631,

Thus, not only can the link dj-l

closure, Since our concern is primarily with terminal subcontinua and

not meet A Dbut neither may its

particularly with chains having an end link meeting the terminal sub-
continuum, this definition of exact containment will usually involve one
end of the chain, Thatlis, J may be one and hence A(;f C*(l,k) or
conversely, k may be mnm,

Proposition 4.3 shows that if M is an atriodic and hereditarily
unicoherent continuum with terminal subcontinuum A and chain C on

M, then there will exist a refinement of C exactly containing A in
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an end subchain, Also the property of tautness is inherited by the
refinement. It is of course noted that the subcontinuum A may be M
itself, in which case if C is the chain on M, then C and the des-
‘cribed subchain are considered to be the same, This result is achieved
rather easily compared to previous chain construction type theorems,; but
it is lemma 3,18 which eases the burden of this result. There is ample
opportunity later in this and the following chapter for the reader to
exercise his a&bility to construct illustrations for the proofs

encountered,

4,3 Proposition Suppose M is an atriodic and hereditarily
unicoherent continuum, A is a terminal subcontinuum of M, and
C = {dl, dyy voey dm} is a chain on M, Then there is a chain
G = {gl, Bos ***s gn} on M and an integer 8, 1 < s < n; such that
1) G is a refinement of C,
2) A ge G*(syn).

3) If C is taut then G is taut,

Proof: By lemma 3,18, there exists a chain F {fl, £,9 o0y fn}
on M such that F is a refinement of C, (fn\\¥£al)(ﬁ\A # @, and
C taut implies F 1is taut, Then there exists an integer s such that
A C F¥(s,n) but is not contained in any proper subchain of F{s,n).
Because F(s,n) is a chain, F*(1,5=2)( \F¥(s,n) = @ (particularly if
F(1,s-2) contains no links,) Thus, FN1,8-2)( YF¥s,n) = @ and
hence, F¥(1,8-2)( VA = @, If ?sc-lmA = ¢, then let G =F and the
proposition is proven,

Suppose that .fs_lf\A # @, Since ACF*(s;n), A and

M\\F*(s,n) are disjoint closed subsets of a normal space, Thus, there
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exist disjoint open sets U and V such that AC U and
MNF*(s,n) C V. For each i, 1<igs-l, let g = £,V 2nd for
each i, s8< i< n, let g = fi. Then G = {gl, Bo1 °°°s gn} is
clearly a chain which is a refinement of F aﬂd hence C,

By the definition of G, A C G*(sy,n) and A is not contained in
any proper subchain of G(s,n) = F(s,n). Also, A/ \GN1,s=1)C
ANV = g, Thus, Aq;? G*(s,n), Finally, since nonadjacent links of G
are contained in nonadjacent links of F, C taut implies F is taut
which implies that G is taut, ||

Lemma 4,4 is another of the highly specialized results required to
produce the proper type of chain on a continuum, It should be noted
that the hypothesis only requires that the continuum A be atriodic,
hereditarily unicoherent, and g-chainable. Also, the hypothesis
requires that A/ )B be a terminal subcontinuum of both A and B,
Proposition 4,5 will show that if M is the union of proper subcontinua
A and B, then this will in fact always be the case, Again, the
objective here is to increasingly isolate terminal subcontinua in a
chain, If M is the union of proper subcontinua A and By perhaps
each being chainable, then by chaining on A and B with chains
exactly containing A/ B and satisfying the other consequences of the
following lemma, then a chain may be constructed on M, There will be
more on this later,

Lemma 4,4 uses another technique which will be exploited in later
results énd that is the existence of a Lebesque number for an open cover
of a compact subset of a metric space, Any reader unfamiliar with this
term is refered to the reference by Kelley [18, p, 154] for an unusually

nice proof of this result, The use of a Lebesque number guarantees the
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existence of an g-chain with links sufficiently small in diameter to
accomplish desired results, Although the complete proof is somewhat
involved, this technique is developed in the early part of the proof and

should be understood because of its later use,

L 4 Lemma Suppose that A is an atriodic, hereditarily unico-
herent g-chainable continuum, B is a chainable continuum,- A/ B ¥ &,
and A )B is a terminal subcontinuum of A and B. Then, there exist
g=chains C = {dl, d2, evey dm} and F = {fl, f29 veey fn} such that

1) C and F are taut eg-chains on A and B respectively,

2) AMBCT c*(j,m) and A/MBC® F¥(k,n).

3) F(k,n) is a closed refinement of C(j,m).

b TRI,3-DE* = g,

5 F(1,k-2)/ \C* =g,

6) ?k_lfﬁ\A = § and there is a positive integer t, j< t < m,

such that -fk_l/\C* g‘dt and ?k- meets no other 1link of C.

1

Proof: Since A is g-chainable, let CO denote an g~chain on A,

Using lemma 2,10 we may, without loss of generality,; assume that CO is

taut, Proposition 4.3 implies the existence of a refinement G of Cog

G = {gl, Bo1 *°*» gm}9 such that G is a taut g-chain on A and
A/”\B<;f G*(j,m), Let a denote the minimum distance between the non=-
adjacent links of G,

Since the collection {[gj\\Gle,j-l)], g con, gm} is now a

j+1°®
finite open cover of A/ B, recall that the definition of exact con-
tainment requires that (A/\B)/M\GF(1,3-1) =@, let B> 0 be a

Lebesque number for this cover of A/ B [18, p. 154]. Let & denote

half the minimum of &, B, €, and p(A YB,G*(1,3-1)) (if G™(1,j-1)
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is empty, which is possible, then this latter value is infinite,)

By considering theorem 2.13%, we have the existence of a taut

b~chain H, on B, Since & < %B, the closure of each link of Hl

which meets A/ B 1is contained in some link of G(j,m). Also, since
6 < %p(‘Af\B,G"Zl,j-l)), the closure of each link of H,, which meets
A/M\B, fails to meet G*(1,j-1). Applying proposition 4,3 to B

relative to the chain Hl’ there exists a taut é-chain H an B

which is a refinement of H1

the closure of each link of H(k,n) is a subset of some link of G(j,;m)

and such that A(MBC® H*(k,n). Thus,

and does not meet GY(1,3-1).
Let t = greatest lower bound of { i : Fkg gy J<igm }; ie,
g, denotes the first link of G(jym) properly containing Kk° At this:
point we note that should it be the case that A/ \B = B; ie, BC A,
then the desired chains are C =G and F = H, 8Since this case is now
easily shown to satisfy properties 1 thru 6, sometimes vacuously, we
continue the proof considering A~NB and B™~A to be nonempty, Since
B~A and ANB are nonempty separated point sets; and a metric space
is completely normal, there exist two disjoint open sets S and T
such that ANBC S and BNACT.
Let f, =h,/ T, if 1<i<k-1l, and f, =h;, if k<1ignm
By applying proposition 2.8, F = {fl, 9 eooy ﬁn} is a chain since T
is open and (hif\ hi+l)mB is nonempty by proposition 2,1 for
1 <i< k-2, and is contained in T. Ve also claim that
{d; =g;MS : 11 <3~ N g = g \FRLk-D) ¢ jgigm,
i#t H A a, = gt\m) } i= a chain. Since A‘f\(gif\g.

i+l

)
#P for 1<i<m and because A/ B _C__G*(j,m), ANB meets each

pair of adjacent links of G(1,j-1), &and the collection
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{ di = gif“\s :1<i<j-1)} is a chain by proposition 2.8,

Similarly because Af\Bge H*(kon), A C ~H¥(1,k-1) and since A
meets the common part of each pair of adjacent links of G(jsm), prop-
osition 2.8 again implies that G(j,m)(\[~F*(1,k-1)] is a chain,
Since FRIR=2) C FNIED), ~FNIED) C ~FRIED). Thus, the
effect of making dt = gé\\fzri:E:I) is simply to include fk_i\<?£_2,
an open set, in the t-th link. Since fk-i\\¥£-2q; 8y

{d.y 00y & .y eoey dm} will still form a chain,

t
Finally, since ¢ # (gj_lf\gj)mA - (gj_l/\gj)m(A\B") C 8 and

g. AC~FF(1,k-1), d. ./ \d. # #, However, d./ \d, =g for
j=1 = j=1 J i, i,

j’

1<,

because d. and d.
11 i

£J-2 and jgi,g<m or for 1 <iy <j-1 and J+l i, <my

are contained respectively in g, and g. .
2 et g

Therefore, the collection {dl, d2, so0, de is a chain,
For the chains C and F, properties 1 and 2 are immediate from

the chains G and H, Let f,. ¢ F(kyn), Since F(k,n) = H(k,n),

Ky

F(kyn) is a closed refinement of G(j,m) and hence for some Jpo

i< <m 'fklggj . If k =k, then f (C~FN1,k=2) because F

1 1 K

If kl;ék., k <ky <y

is taut”and hence ?klg g, ~FN1,k-2) = d
£ C~F*1,k-1) and thus ?kl
1

k
F(k,n) is a closed refinement of .C(j,m) and property 3 holds,

to

g_gj ~FF(1,k-1) = dj . Therefore,
' 1 1

By the definition of C, C*Zl,j-l)q; S and by the definition of
F, F*(1,k=1) C T. Thus, CA(1,3=1)( YF*¥(1,k-1) = #. Also, by defini=
tion and as noted earlier, F™(k,n)/ YC™1,j-1) = @#, Therefore, these

results imply that C*(1,3-1)/ "F* = g, and property 4 is satisfied,
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Property 5 follows directly from the definition of C,

To see the last property, recall that A/“ﬂ3§f F*(k,n), which
implies that (AMB)E, ..
(A\\B)/”\?k_l = ¢ and we have that A/

Because CT and ANBC S,

1

kel = #. The definition of

d, is that d = gé\\F*zl,k-Z) with g being the first link of G

to contain Ek = ?k. Since C*/\F*(1,k-2) = # by the definition of
C, and difﬂ\F*ZI,k-l) =@ for i # t, the previously defined integer
t satisfies the remainder of property 6, This completes the proof of

the lemma, Il
Some Sufficiencies for Terminal Subcontinua

Several of the results of this section will be intuitively clear
and will not rely on the complicated theorems or chain constructions
which have been presented. Their significance will, however, be appar-
ent in light of previous discussions of the use of terminal subcontinua
in chaining on a continuum. Several more results concerning special
chain constructions on terminal subcontinua will also be presented here
and in the next chapter.

Proposition 4,5 shows that if M is the union of two proper sub-
continua, they are terminal subcontinua of M and their intersection is
a terminal subcontinuum of each of them, That it is necessary to have
proper subcontinua should be clear by considering an arc and subcontinua
of it,

4.5 Proposition If the atriodic, hereditarily unicoherent con-
tinuum M is the union of two proper subcontinua A and B, then each
of A and B is a terminal subcontihuum of M, Moreover, A/ \B is a

terminal subcontinuum of each of A and B,
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Proof: Suppose that M = A\_/B with A and B proper subcon-
tinua of M, To assume that A is not a terminal subcontinuum of M
implies,; by proposition 3.1ll4; the existence of a subcontinuum H of M
such that A\_H is either degenerate (which is impossible) or A\_JH
is irreducible between some pair of points p &and g9 with neither in
A, Then {py, q}C HNAC B, Since p and q are contained in the
continuum B, the irreducible subcontinuum pq; which is unique by
proposition 3,21, is contained in B, Thus, A\UHC B and hence
A C B, which is contrary to B being a proper subcontinuum of M,
Thus, A 1is a terminal subcontinuum of M and likewise B is a ter=
minal subcontinuum of M,

For the remaining part of the proposition, assume that A( B is
not a terminal subcontinuum of A, Then by the definition, there are
subcontinua H and K of A such that H/MAMB £ @, KMNAMNB #£ &,
(e K\_(A/B), and K H\(A/B). Also note that B\(H\K)
which contains B\A is nonempty., Thus, K\_/(A/\B), H\_(A/B),
and B are three continua each pair of which intersect and no one of
which is contained in the union of the other two, But since M is
atriodic and hereditarily unicoherent, this is contrary to proposition
3,3, Thus, A/ B is a terminal subcontinuum of A and similarly
B, |l

If a terminal subcontinuum K of an atriodic and hereditarily
unicoherent continuum M is the union of two proper subcontinua, then
by the preceding, these subcontinua are terminal subcontinua of K, The
following proposition shows that at least one of these subcontinua must
also be a terminal subcontinuum of M, The proof uses proposition 3,14

which is a characterization of a terminal subcontinuum T in terms of
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the irreducibility of T\_/A between some pair of points, one of which
must belong to T, where A is a subcontinuum of M and T\_JA is

nondegenerate,

k.6 Proposition Let M be an atriodic, hereditarily unicoherent
continuum, K a terminal subcontinuum of M, and A and B proper
subcontinua of K such that K = A\_B, Then at least one of A and

B is a terminal subcontinuum of M,

Proof: Assume the proposition fails. Since A is not a terminal
subcontinuum of M, by proposition 3,14, there exists a subcontinuum N
of M such that A/\N # # and N\_JA, being atriodic and hereditarily
unicoherent, is irreducible between some pair of points, neither of
which belongs to A, This property of N\_/A not being irreducible
between any pair of points with one of them belonging to A is hence-
forth refered to as property P.

By an argument similar to that presented for proposition 4,5, we
have that ACN, If N (CK, proposition 4,5 implies that A is a
terminal subcontinuum of K and hence NA\_K is irreducible between
some pair of points with one belonging to A, Since this is contrary
to the existence of N, we must have that N~X # @, Since N meets
the terminal subcontinuum K and by hypothesis, K is nondegenerate,
applying proposition 3.14 again, we have the existence of the points p
and q such that N\_/K is irreducible from p to g and without
loss of generality, q ¢ K. Since NNXK # &, p e N\X. We\alsd have
that q € B\\A since to assume that q ¢ A implies, since ACN,
that N is a subcontinuum of N\_JK containing both p and q. Hence,

N K =N and N =N\_A is irreducible from p to g with q ¢ A,
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But this is contrary to property P, Thus, N\_/K is irreducible from
p to q with p e N\K and q ¢ BNACK,

Arguing similarly to the breceding paragraph, there is a subcon-
tinuum S of M such that S/ B # @ and S\_B is not irreducible
between any pair of points, one of which is in B, Then S\_/B =S and
there are points r and s such that S\ _JK is irreducible from r
to sy with s g S\K; and r ¢ ANBCK.

Since N and S are both subcontinua of M intersecting K, the
definitiggnof terminal subcontinua implies that either SC K\_UN or
NC K\_/S. Suppose SC K\_/N. Since s e¢ S\K; s g N\K. From
property P we have that N = N\_/A 1is reducible from p to r g 4,
and thus there is a proper subcontinuum L of N such that
{p) r}C L. Thus, q gL, Now r e L/ X since r ¢ L and
r ¢ ACK, and hence L\_K is a subcontinuum of K\_/N containing
p and q, Therefore;, K\ _N =K\ _JL and s e L since s ¢ S\NK(C
K\UN by supposition; But since q g BNU[L/ Y(S\_/K)] which is
contained in S8, L/M(8\_UK) is a proper subcontinuum of S\_K con-
taining s and r which means S5\_/K 1is reducible from s to r,
contrary to the existence of s and r. Thus, at least one of A or
B is a terminal subcontinuum of M, ||

Proposition 4,7 and lemma 4,8 show how to develop, and then show
a consequence of, a terminal subcontinuum which is indecomposable,

This will prove helpful later when tryiné to chain on a continuum, by
providing a particular terminal subcontinuum upon which to base a chain
construction., It should be noted that the lemma does not require that
the continuum be atriodic and hereditarily unicoherent as has generally

been the case,
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L,7 Proposition Let M be an atriodic, hereditarily unicoherent
continuum with a terminal subcontinuum K, Then there is & subcontinuum
L of K such that

1) L is a terminal subcontinuum of M,

2) L is irreducible as a terminal subcontinuum of ﬁ.

3) L is indecomposable or is a terminal point of M,

Proof: If BC M, then B is said to have property P if and
only if B is a terminal subcontinuum of M and B C K, Clearly, K
has property P, We shall show that this property is inductive,

Suppose that the collection {Nl, N.,, e+0} 1is a sequence of continua

2

of M such that for each i, Ni has property P and Ni+l

o
Clearly, N = g:lNi is a subcontinuum of M contained in XK, If N

Shye

does not havg property P, then N must fail to be a terminal subcon-
tinuum of M, Thus, there are subcontinua R and S ‘of My, each
intersecting N, such that R S\ N and {S‘@R‘UN.

Let r ¢ RxN(3\UN) and s gS8~(R\_/N), Since M~J{r, s} is
open in M and contains N, there exists an integer j such that
Njg; M~J{r, s}. Thus, each of R and S intersect Nj and neither
is contained in the union of Nj and the other subcontinuum, Hencg,

Nj is not a terminal subcontinuum of M contrary to its selection,
Therefore, property P is inductive. Applying the Brouwer Reduction
theorem [18, p. 61] to the terminal subcontinuum X of M; there exists
a subcontinuum L of K which is a terminal subcontinuum of M and is
irreducible with respect to this property. If L 1in nondegenerate; the

third result of the proposition follows from proposition 4.6 since L

decomposable implies the existence of a proper subcontinuum H of L

which would be a terminal subcontinuum of M, This contradicts the
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irreducibility of L and the three results are established, If L
is degenerate, then I is a terminal point and the proposition is

proven. ||

4,8 Lemma Suppose that M is a continuum and K is an indecom-
posable terminal subcontinuum of M, Further, suppose that there is a
subcontinuum A of M such that A/MK # ¢, K@ &, and A¢Ko Let
D denote the composant of K containing A/ K., If B is a subcon=-
tinuum of M intersecting K, such that BKQK' and KQB,, then

B/KC D,

Proof: Assume there is a subcontinuum B of M such that
B/ K #£ &, BgK, KQB, and Bmxgn, Then B/\K is a proper
subcontinuum of K not contained in D, Assume x ¢ (B/\K)/\D, Then
there is a proper subcontinuum L of K such that x ¢ L and
LAYAMNK) £#@. Then (B/\K)\_L is a subcontinuum of K, The point
set (B/NK)\UL is a proper subset of K since K; by hypothesis, is
indecomposable, But now y g (B/)K)\D is contained in L\_J/(B/ D)
which implies y ¢ D, But this is impossible. Thus; x fails to exist
and (BAK)/\D = ¢,

Thus, certainly, A/ XK/ B =@, Since K is a terminal subcon-
tinuum of M it follows that either AC B\_K or BC A\_JK. Suppose
A C B\_K. Since Agx, A/\B #@. Then (A\UB)/ K is a subcon-
tinuum of K intersecting disjoint composants of K, namely D and
the composant of K containing B/ K, Since (A\_/B)/ YK cannot be
a proper subcontinuum of K and meet the two composants, we must have
that (A\_UB)/ YK = K, But this implies that K is the union of the

two proper subcontinua A/ YK and B/ \K contrary to the
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indecomposability of K., Therefore, the continuum B as described
cannot exist and if B is a subcontinuum of M such that B/ K # &,
B K, and K B, then BAKCD. [

Opposite end points and more generally opposite terminal subcon-
tinua, are terms which are intuitively easy when applied to continua
such as arcs but which have unusual results when applied to other
continua, The definition of opposite end points is given in terms of a
chain while the general definition of opposite terminal subcontinua does
not require a chainable continuum, Proposition 4.9 and lemma 5.9 will
establish the equivalence of these definitions for terminal subcontinua
of chainable continua, The points p and gq of the chainable contin-

uum M are called opposite end points (or opposite terminal points) of

M if and only if for every ¢ > O, there is an g=chain {d1° dys 20y

1\\d2 1°

if M is a continuum and each of H and K is a terminal subcontinuum

dn} on M such that p e d and q g dn\\dna More generally,

of M then H and K are opposite terminal subcontinua of M if and

only if there are points h of H and k of K such that M is
irreducible from h to k [14, p. 386].

Examples A, B, C, and F are designed to illustrate various possi-
bilities, The Closed Topologist's Sine Curve (example A) has two pairs
of opposite end points, namely the pairs (R,T) and (S;T), Example B
has one pair while example C has four pairs, namely, (PR), (P8},
(Q;R); and (Q,5), Finally, example F has one pair of oﬁpséite end
points and is indecomposatile, In example C, the segments PQ and RS
are two nondegenerate opposite terminal subcontinua, Other possibil-

ities exist through unions of these examples,

Proposition 4.9 relates the existence of opposite end points to the
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irreducibility of a chainable continuum between two of its end points,
The chainabiliﬁz;of the continuum is necessary for the proof since it
employs lemma 2,11, The method of proof is similar to the approach
taken in proposition 2,4, That is, a sequence of point sets are con-
structed such that their limit superior is a proper subcpntinuum

between the two end points, contrary to the hypothesis,

k.9 Proposition If the chainable continuum M is irreducible
between two of its end points, then these end points are opposite end

points of M.

Proof: SuprSe that M is irreducible between two of its end
points p and q. Let ¢ > O be arbitrarily given less than p(p,q).
Lemma 2,10 and corollary 3,19 combine to imply the existence of a taut
g=chain C = {dl, d2, seey, dm} (m Z»2) on M such that q ¢ dm\§aﬁhl,
If p g{,dl‘\d2 and yet p e dl’ then there is an open set O contain-
ing p such that 0C d)/Md,. Then the collection {dl; d2\6, dss
seoy dm} is an g=chain on M and p g dl\\(da\\a), Thus, p and gq

are opposite end points,

B

Suppose p £ d,. Since € 1is a chain on M, M/ﬁ\(dl\\da) £ @,

Let Xy € M(’\(dl\\da). Since the space is normal, let @ be an open

set containing Xq such that ng;dl. Then p and q are not members

0

on M with [dl\('da\ﬁ)]f\M‘# g. We note that the point X

member of dl\(da\ﬁ) and that xo £ co"(a,m). Assume that for every

of § and the collection C. = {dI’ da\ﬁ9 d39 °e°,,dm) is an g=chain

is a

positive &6 < g, if B = {bl, b2, seo, bv} is a b-chain on M with
P E bl\\gé and q eb,, for some a, 1l<agv, then by gidl,

l1<i<a, Lemma 2,11 and corollary 3,19 combine to imply the existence
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of a taut Swchain H, = {h, h,, ss01 by} on M such that E isa

refinement of CO and p e hi\\ﬁé. Let h, denote the last link of

H, containing q. By assumption, hi¢d1, for 1<i<r., Ths,

hig C‘O'*(Z,m), 1<igr, and consequently, X, £ Hi gCO;E(Z,m). Let

!

X
r

P [ hlmni x2 6 hamng "" Xr_l E_{ hr_lf\Mg an

q e hrmn a-nd let Rl = (P$ x2‘l x}! *°%y xr‘_lw“l q}.

Iet 6, = jée. Assume that for 1l < i <n, a taut ©6,-chain H,
i 5 -7 = i i

-

i-1?

and not in the closure of the sec-

has been defined on M such that Hi is a refinement of H P is

contained in the first link, hi 1
9

ond link, *h, of H,, and h,

i,2!

o

is the last link of Hw}_
X _

containing q. By the assumption, of course, no link of Hi between

and including h, and h, is contained in d,, Thus,
i, i,r. 1

1 1

X £ .h:.“:j c_;co*Z,a,m). Assume also that the point set R; = {p, x, 20

ver, xi,r 10 q} has been defined with xi’ € hi’j/'\M.

4,3 j

Lemma 2,11 and corollary 3,19 combine to guarantee the existence of

a taut 6n+1-cha1n Hn+1

Hn' and thus of GO, with p e hn

on M such that H is a refinement of
n+l

\\hn+1,2' If hn+l,r denotes

+1 ’1 n+l

the last link of Hn+ containing q then the assumption implies that

1
; , T R
hn+1,j¢ d, for 1< j<r ., andhence x, £ hn+1,j C ¢, (2,m),
For each j, 1< j< T let xj € hn+1,j/~\n and let Rﬁ+1 =
{p» xn+l,2’ xn+1’3, vee, xn+1,rn+1-l' q}. By induction, we have defined

an infinite sequence of point sets Rl’ RZ’ s+ in M with
. *p , , , .
R, C B (_l,mi) gcoﬂa,m), with x, £ coﬂa,m).

Since M 1is compact and the limit inferior of [Ri} contains
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{p» g}, and is thus nonempty, the method of defining the point sets
Ri yields the fact that the limit superior L is connected [1.2].
Since L contains {p, q)} and is closed, L is a subcontinuum of M
containing p and q. Since R, gm) for each i, Lgm)
and X, £ L, Thus, L is a proper subcontinuum of M containing »p
and q contrary to M being irreducible from p to q. Hence, there
isa &< gy 0 positive, such that F = {fl, f2’ ees, fn} is a

b-chain on M, p e fl\fa’ and if q e f

some f. eF, 1< j<k, £,Cd.,
JE ’n__j__! j”l

Let N =‘§=%fi' Then q ¢ N and N is an open set, Let

K and q £ fk+l’ then for

G = {fl, f2, sy, fj-l’ Nfﬁ\dl, N/*\da, soe, N/A\dm}. Then G 1is a
chain on M since F(1l,j-l1) is a chain, C(1,m)/\N is a chain by
proposition 2,8, and fj_l(’\(N/”\dl) # @ while all other pairs of
links from the two chains will have empty intersection which with
proposition 2.9 implies that G is a chain, The chain G is clearly

on M and is a b-chain with p e f;\f, and q¢ (N/A\dm)\\(N(‘\dm l)°

1
Therefore, p and q are opposite end points of M, I

Proposition 4,10 will provide momentary relief for any detail weary
reader, Except for the use of a terminal subcontinuum, which; if not

understood may confuse the result, the proof could have been left as an

easy exercise for the reader,

k.10 Proposition If M is an atriodic, hereditarily unicoherent
continuum and the proper subcontinuum K is a terminal subcontinuum of

M, then M\X is a subcontinuum of M,

Proof: Proposition 3.2 implies that MK has at most two com-

ponents and the fact that K is a proper subset of M implies there is
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at least one component, Suppose A and B are distinct components of
MNK. Then A/ B =@ and B/ A = @#., Also, A and B are distinct
continua each meeting K, Since K is terminal then either'KQ;.K\_}E
or §@;_K\,)K which is contréry to A and B being distinct, Thus,
MNX has one component and M~X is a subcontinuum of M. Il

The final result of this chapter is designed for use only in
theorem 5.11 and is included here because it deals primarily with
terminal subcontinua, This lemma differs from all preceding results in
that the hypothesis requires a function f on a continuum which, among
other things,; is a monotone map. A continuous transformation is called
monotone if and only if the inverse image of each connected set is
connected, As we shall see later, the upper semi-continuous decomposi-
tion described and used extensively in Chapter III gives rise to a
monotone map between the continuum and the unit interval. This is
therefore the basis for the restrictions in thé hypothesis of lemma
4,11, The third conclusion of the lemma is a continuation of propo=
sition 4,7 and is again designed to show the existence of a particular
terminal subrontinuum of two proper subcontinua whose union is the
continuum, This can be the basis for constructing chains on each of the
two proper subcontinua from which a chain on the continuum may be con-

structed,

4,11 Lemma ILet M be an atriodic, hereditarily unicoherent
continuum, If f is a continuous, single=valued, monotone mapping of
% U ~1:1 o4

M onto [0,1], A =Tf [sz], and B =T Ezwll then
1) A/ MBX\A) is a terminal subcontinuum of both A and B\A,

2) If @ is a subcontinuum of both A and B~A such that
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(\A/\(B\A) #d and QQA/\(B\A), then Am(B\A)CQo
3) There is a subcontinuum K of A/ (BNA) such that K is
either a terminal point of B~A and A or a nondegenerate indecom-

posable terminal subcontinuum of both BN\A &and A,

Proof: Since A and B are proper subcontinua of M, proposi=
tion 4,5 implies that A is a terminal subcontinuum of M, Proposition
4,10 implies that B~A = VX is a subcontinuum of M which must be
proper since B~A (B, Applying proposition 4.5 again, A/(BXA) is
a terminal subcontinuum of both A and E::K, Thus, the first conclu-
sion is proven,

Suppose that Q is a subcontinuum of B~A such that
UOANGEBRE) £, Q¢ ANGERE), and ANBXE) € Q. Let
p e [AM(BA)INQ. Let U denote an open set containing p such

that U/ Q = @, Since QgAf\(B\‘A') and QC BXA, Q¢A and

roj=

hence there is a point q in QN\A. Thus, f(q) is greater that 3,
Since p ¢ ACMBNE), pe A and p e B, This implies that f(p) =‘%
and hence p ¢ f-](o,f(q)ﬁ. Thus, U/"\fnl(o,f(q)f is an open set
containing p which necessarily meets B\A, Let

re UKA\[f-l(O,f(q))]/A\(B\\A). Since r £A and r ¢ f=1(0gf(q))9
%-< f(r) < £f(q), Also, since UN\Q =g, r £ Q.

Now the fact that f is monotone implies that fnl[%@f(r)] is a
subcontinuum of M, Since (f‘l[%gf(r)])(ﬁ\(ﬁt:x) # @y their intersec=
tion is a subcontinuum and each of (f~ [ f(r)T)(”\(B\\A) and Q is a
subcontinuum of BNA intersecting A/ V(BNA), Since AMN(BNA) is

a terminal subcontinuum of B~A,; either

- QC AN BRI\ U{(£7 [Z,f(r)J)ﬁ(B\A)} AR N (£ %sf(r)l)
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or (f-l[%gf(r)])fﬁ\(E::K)q;:[A/A\(ﬁ::x)]\ij. However, both are
impossible since q ¢ Q but q £ [A("\(EF:K)]\,jf“l %,f(r)] for the
first case, and in the second case, r ¢ (ﬁt:x)/“\fml %9f(r)] but
r£A and r £Q which implies that r £ [A((BNA)J\_Q., This con=-
tradiction establishes the second conclusion,

For the final result, proposition 4.7 proves the existence of a
subcontinuum K of A/ WBNA) such that K is irreducible with
respect to being a terminal subcontinuum of A, Also; K is either a
terminal point of A or a nondegenerate indecomposable subcontinuum of
A, Assume that K ‘is not a terminal subcontinuum of B~A, Then
there are subcontinua L and R of B~A such that L/ K £
RMN\K # 4, Lg_ K\_JR, and RCZ K\_JL, Since K is a terminal subcon-
tinuum of A, L\JR{A. Suppose that L A, Then LgAF\('B—\—A’)
and the second conclusion implies that A/ )V(BNA) C L. Since R(;ilw
it follows that R A/ WBXA) and thus A(NBNA) CR. Thus, L,
R, and A are three continua which intersect, no one of which is
contained in the union of the other two, Since M is atriodic and
hereditarily unicoherent, this is contrary to proposition 3.3, There=
fore, K is a terminal subcontinuum of B~A and the third conclusion

follows, ||



CHAPTER V

SOME CHARACTERIZATIONS OF CHAINABILITY

ON CERTAIN CONTINUA

Most of the effort expended in the preceding chapters has been to
achieve the results of this chapter. Chapter III included some charac-
terizations of hereditarily decomposable chainable continua, The
purpose of this chapter is to present primarily the work of Fugate in
extending these characterizations to continua which are not hereditarily
decomposable, These results can be divided very nicely into two cate-
gories, Characterizations concerning finite unions of chainable
continua and a characterization requiring that all indecomposable sub-
continua be chainable, This latter characterization also produces a
result concerning countable unions of chainable continua, The methods
of chaining which have been described and used previously will again be

utilized to construct chains with certain properties,
Finite Unions of Chainable Continua

The first six results of this chapter deal primarily with finite
unions of chaingble or e-~chainable continua., Theorem 5,1 requires that
the atriodic and hereditarily unicoherent continuum M be the union of
an g-chainable continuum A and a chainable continuum B, The result
is that M is only e-chainable however, This is immediately extended

by corollary 5.2 to M Dbeing chainable if it is the union of two

116
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chainable continua, This could obviously be extended immediately to
finite unions, However, we first present lemma 5.3 in order to reduce
the hypothesis to require that M be unicoherent instead of hereditar=-
ily unicoherent, This is possible as long as M is the union of two
hereditarily unicoherent subcontinua such as two chainable subcontinua,
This result, in terms of chainability, is presented in theorem S.4 and
extended by the two corollaries which follow theorem Sk,

Of the results of this section; theorem 5.1 is certainly the most
involved. Under the condition that A and B are proper subcontinua
whose union is M; the terminal subcontinuum A/ YB of A and B is
used to produce a chain on M, Most of the effort is devoted to showing
that a defined collection actually is a chain, Tt should also be noted
that the technique of using an open set G to form a closed set M\G
which can be separated into two disjoint closed sets is effectively

employed to produce a chain on M,

5.1 Theorem let M Dbe an atriodic, hereditarily unicoherent
continuum and £ > 0, If M is the union of two subcontinua HA and B

with A g=chainable and B chainable, then M is g-chainable,

Proof: Clearly, if either of A or B is not proper, then the
result is proven. Thus, we may assume that A and B are both proper
subcontinua of M, Proposition 4.5 implies that A/\B is a nonempty
terminal subcontinuum of M, Lemma &.4 implies the existence of two
g~chains, C = {dl, d2, osoy dm} and F = {fl9 £59 200y fngg on A
and B respectively, which satisfy the six results of the lemma,
Again, ANF¥ and B \C¥ are nonempty since otherwise the theorem is

praoven,



118

Case i, Suppose that ?;clfﬁ\CT*g;>dm, That is, in terms of
result 6 of lemma 4.4, t = m, Since ?;nlfnwc*(l,m-l) =@, also by
result 6, we claim that C(1,m) ® F(k=1,1) is an g-chain on M,
Certainly, C(1,m) and F(k-1,1) are chains which together cover M,
Result 5 of lemma 4.4 states that no link of F(k-2,1) meets a link of
C(1,m) and the above discussion shows that no link of C(19m°l) meets
a link of F(ke~l,1)., Because fk_lf“\dm # @, proposition 2,9 asserts
that C(1,m) ® F(k-1,1) is a chain on M, Therefore, the theorem is
proven when case i holds,

Now suppose that -f;_lf\c* idmo Then result 6 of the lemma con-
cludes that §£-1/A\dm = @, An additional consequence of result 6 is
the existence of an integer t, j <t <m, such that ?kglmC*_C_j dt
and ?l;_lm [C*(1,t=1)\_/C*(t+1,m)] = @, Consider the set,

{1i: ?ijgc*(j,m-l), k<ig<n)}, Since AmBge c*(jom), by result
2, there exists a point y of A/ \B such that y £ C*(j,m-1). But

Yy e fi s for some i
0

k<i, <n; since A’f\Bg_e F*(kyn), Thus,

0’ 0

the sbove set is nonempty and being bounded, has a greatest lower bound,
r, Since F(k,n) is a closed refinement of C(j,m) and Fr ¢
C*(jym=l), it follows that 'frg d . Since ?k_lf\c*(jgm) Cd, with
t <m, T, CC*(jm-1) and thus r > k#l and r-2 2 k-l

If r-2 = k=l; let dé = dm and if r-<2 > ks 1let
dl = & \F¥(kyr-2). Let Cy = {djy dyy *o09 d 15 dl). If re2 = kel

then C. is the chain C and consequently is a chain on A for which

1

the six results of lemma 4.4 are valid, Also, ?1"-2 = Fkul and thus,
dm/\Fr_a = dmf\r-'*(k-l',r-z) =@ and F*(k-l,k) = F¥(k-1,r=1),

If r~2>k, then f; CCX(jym-1) for ki gr-l, by result3
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of the lemma and the definition of r. Thus, AmF*(k,r-Z) QC*(jgm-l)

and d (MF*(k,r-2) CC*(jym=1) which implies that C, covers A,

1
Since fr-lmfr £ @, fr-lg dm-l’ and frg_dm, we have that
dm-lm dm contains fr-lm fr and is nonempty, Because fr does not
meet Fr(k,r-2), f, (V£ Cd \F(k,r-2) = d!, and thus
]
dm_lf\ ! # #. |
Finally, by its definition, d['n fails to meet any link of

C(l,m=2) and C. is a chain on A, Since C is taut, the defined

1
chain Cl is taut and the remaining results of lemma 4,4 similary
follow from the definition of C,. For notational conveniehcg s wé.shall

1

assume that C =C Then C and F are chains on A and B respec-

l.
tively, having the six properties of lemma b b, and in addition,
dmf\F*Zk-l,r-E) = ¢ and F*(k-l,k) gF*(k-l,r-l).

let D = L Since t < my, d \dm # @ and hence

t
Hm(dt\dm) # #. Thus, D is a nonempty point set,

Case ii, Sﬁppose that D CF*(1,r-1). The definition of r then
implies that fr-lmdm £#@ and F*(l,r-Z)f\dm = ¢, Then the collec-
tion {fl, f2, oo, fr-2’ dm} is clearly an g-chain on M and the
theorem holds for case ii,

Case iii., Suppose that D € F¥(1,r-1). Since FXr,n) CCX(j,m),
by the definition of r and result 3 of lemma 4,4, and BCF*
DN\F*(1,r-1) C C*, Of course the definition of D implies that
DNF¥(1,r-1) C C™(1,m-1)\d . Let x g DNF1,r-1), Then x ¢ d, for
some i, 1< i< m-l, Hence, the set { i : dif'\M g_F*(l,rcl)Udm,
1<igml}, is nonempty. Again, the greatest lower bound of this
set exists and is denoted by s, Then the definition of s implies

that DNF*1,r-1) CC*(sym-1) and that this latter set is nonempty.
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We note that MC C*(s,m)\ U FX1,r-1),

Since ?k_lfﬂ\dm is empty and fk_lf“\M is nonempty, ?LOIKA\D
is certainly nonempty. Thus, the two sets ¥£-I(\\D and DNF¥(1,r-1)
are nonempty and we shall show that they are also disjoint, Suppose
there is a point p in both sets, Then p ¢ ?;_lfﬁ\D implies that
p € B since ?&clfa\A = f, Since F is a taut chain on B, this
implies that p ¢ F¥(k-2,k), The definition of r and the conditions
of this case resulted in F¥(k-2,k) being contained in F*(1,r-1),
Therefore, p £ MN\F*(1,r-1) and the two sets are disjoint,

To see that no continuum in D intersects both -L_l/ﬁ\D and
D\F*(1,r-1), assume to the contrary that the continuum K meets both
sets, Then Kf\(?k_lf'\ D) #¢ and -k-lmA = ¢ imply that K meets
BN\A, Now if K/ \(ANB) # @, then K meets both of ANB and B\A
which form a séparation of MN(A/\B), Thus, since K is a continuum,
by the hereditary unicoherence of M; K/ Y(A/)B) # @, Therefore,
AMK, B/\K; and A/\B are three subcontinua of M each pair of
which intersect,

Now (A/NB)Nd # ¢ which implies that (A/NB)YN\D and thus
(A/NBYN\K is nonempty. Since by supposition, K/ N(ANB) # @ and
K(B\A) # @ by previous proof, no one of AMK; BMK, or A( B
is contained in t@g‘union of the other two. However, this is contrary
to proposition 3.3, Therefore, K/ Y(ANB) must be empty and hence
KCB.

Now KC B and KNIDNF*(1,r-1)] # #§ imply that there exists a

link f, of F, r<i.<n,; such that K/ f, # @. Since
lo -~ T - ) 10

KMVE,_, ## and thus KN\FXk-2,k) # #, as noted earlier,
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proposition 2,2 implies that K meets each link of the chain ‘F(k,io),,

Since iy >r, f(K#f@ and thus K/"\dw # & contrary to K being

a continuum in D, Therefore, the original assumption that K existed

if false and no subcontinuum of D meets both of ?k-lmD and

DN\F*(1,r-1).

Since D 1is a closed and compact point set containing the disjoint
k=1

D meets both sets, D itself is the union of two disjoint closed sets:

closed point sets D/ and DN\FX1,r-1) and no subcontinuum of

one containing Df\'i-‘k and the other containing D~F*(1,r-1) [26,

-1
p. 15]. The normality of the space thus guarantees the existence: of two
open sets S and T such that ST =g, DNE, , CT,
DNF*(1,r-1)C 8, and DC S\ T,

With these sets S and T the objective is of course to construct
a chain o# M using C and F, First, however, we shall verify
several necessary facts,

Since DN\F*(1,r-1) is, by the supposition of this case; nonempty,
and by its definition, d_/MIDNF*(1,r-1)]1 # § while
d;MIDNF*(1,r-1)] = @, for 1 <i <8<y let
X g dsf\ [DN\F*(1,r-1)]. Let Nx denote the component of M\(’Mf\?i:n_)
= M\Em, Since M/\Em is a closed proper subset of the continuum M
and .M_ﬁ; is compact, _Mf\am contains a limit point p of N'x.
Thus, ﬁxm(mm?i'm) # @, Since ﬁxC_;M this implies that ﬁxr\'&’m #

@, Since C is a taut chain p ¢ dm 10 Also, since N.C M\Em

which is contained in M\dm, Nx - H\dm and since Nx is connected
and ﬁxm [DN\F*(1,r-1)] # &, ﬁx C S, Proposition 2.3 now implies that
ﬁx meets the common part of each pair of adjacent links of C(sm<l),

Then S similarly meets the common part of each pair of adjacent links
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of C(s,m=l) and proposition 2,8 implies that C(sym-1)/\S is a
chain,

In a manner similar to the preceding, let ¥ s'fk_lfﬁ\D -
F*(k-2,k), If Ny denotes the component of M‘\EQ containing 1y,
then ﬁ;_ is a connected subset of M meeting the common part of each
pair of adjacent links of F(k,r-l), Since y g T, ﬁ;q; T and thus,
T meets the common part of each pair of adjacent links of F(k,r<1), In
fact, since y g T, T/"\fk_l # @, Therefore; F(k,r-1)/ T is a
chain. |

We shall now show that G = [C(s,m=1)/"\S] & [dm] ® [F(r<1,k)/\T]
] [(fk_lfﬁ\T)\vj(fk_l\\a;)] ® [F(k=-2,1)] is an g=chain on M, Clearly,
each member of G is an open set of diameter less than g, From the
preceding, C(s,m=1)(")S and F(r-l1,k) \T are chains, Also, d s
(fk_lf"\T)\_)(fk_l‘\§¥), and F(k-2,1) are each chains, Thus, it
remains to satisfy the remaining conditions of proposition 2,9,

SMw(%JPWMﬂ&g¢zmiﬁgs,QMKWW\%%m
Then di/A\dm =@ for 1<iml implies that [C(s,m=1)/"\S] [dm]
is a chain, Similarly, ﬁ&(ﬁ\(fr;lfﬁ\dm) #£@ and NQC; T implies that
(fralr”\T)/”\dm # @ and since F*(l,ruz)(”\dm =@ and ST = ¢,
[C(ssm=1)/NS] @ (¢ ] ® [F(r-1,k)(T] is a chain,

Now ¢#um{ﬁﬁyﬂng§4PWQT°Tma
(fk(”\T)/'\(fknlf“\T) # @ while the conditions S/ )T = g,

‘1/’\dm =g, and fk_lr”\fi =@ for i >k all combine to imply that

fkclfﬁ\T meets no link of [C(s;m-l)(A\S] @ [dm] ® [F(r-1,k)\T]

other than fk/A\T. Since “C* does not meet C*(s,m-1), d s or

e
F¥(r-14k), f, 0¥ meets no link of [C(sm-1)/)S] @ [d ] @

[F(r-1,k)(" \T], Therefore,
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[C(s,m-1)/N\8] @ [d ] @ [F(r-1,k)/TT @ [(f, , MIIJ(f, NTH] isa
chain, ‘
Finally, since F*(k=2,1)/ \C* = g by result 5 of lemma 4.4, no
link of F(k-2,1) meets a link of [C(s,m-1)/\8] & [d 1@
[F(r-1,k) ], Yet, since (fk_'l\E?F)f\fk_‘2 # @, F(k=2,1) does
meet (fk_lfﬂ\T)\“)(fk_i\\aw). Since F is a chain, no link of
F(k-2,1) meets fk-l except fk-2 and therefore, G is a chain,
To see that G covers M, let x e DNF¥(1,r<l). ZThen
x € C*(s,m=1) by definition of D and s, Also; X & S and is thus
contained in C*(sym-1)/\S, For x ¢ M/A\dm, X is still contained in
d . If x e D/F¥1,r-1) then either x ¢ F¥(r-l;k), x e f, _,C

k-1=
or x ¢ F¥Nk-2,1), Now x g F¥(r-l,k)/ D implies also that

fk-l’

x ¢ T and is thus in F¥(r-1,k)/\T. For x ¢ f x ¢ T by the

k-1’
definition of T and hence x ¢ fk_lfﬁ\T. Clearly, x ¢ MNC* implies
that x e FMk-1,1) and thus G covers M. Therefore, G is an

g-chain covering M and M is g-chainable, ||

5.2 Corollary If M is an atriodic and hereditarily unicoherent
continuum which is the union of two chainable continua A and B, then

M is chainable,

Proof: The proof is immediate from the preceding theorem since
A is g-chainable for all e > O, ||

As was noted earlier, the following lemma is presented in order to
remove the requirement that M be hereditarily unicoherent, This is
possible but at the expense of having to require that both A and B
be chainable, It is however the first attempt to prove chainability

without first requiring that a continuum be atriodic and hereditarily
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unicoherent, Corollary 5.6 will make a similar effort concerning the
atriodicity of M but will necessarily require that M be unicoherent

and decomposable with each proper subcontinuum being chainable,

5.3 Lemma If the atriodic, unicoherent continuum M is the union
of two proper subcontinua A and B, then A and B are unicoherent,
and if N is a non-unicoherent subcontinuum of M intersecting A

then NC A [23, p. 180]1.

Proof: Suppose to the contrafy that B is the union of two sub-
continua H and K such that the point sets U and V form a
separation of H/ YK, Then U and V are mutually exclusive closed
sets and clearly H and K must be proper subcontinua, Since M is
by hypothesis nondegenerate, not a triod, and unicoherent, M is
irreducible between some two points a and b [1.6], Clearly, these
two points must not both belong to eifher A or B. Thus,; without
loss of generality, a g AN\\B and b g B\A,

Since B = H\_/K, we may assume .that b gH, If AM\H =@, then
K'YA #¢ since A/B £@. Now M= (AAUK)\UH with U and V
forming a separation of (A\UK)( YH = K/ \H, contrary to M being
unicoherent, Thus, the supposition A( )H = ¢ is false and A and H,
having points in common, form the continuum A\_H of M containing a
and b, But M being irreducible from a to b implies that
M = A\UH, Since K¢H, KA £ &,

Suppose that b £ K, Then A\_K is a proper subcontinuum of M
and hence (A\_K)/\H is a continuum by the unicoherence of M, Since
U and V are disjoint closed subsets of a normal space, there exist

two open sets GU and GV containing U and V vrespectively, such
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that Z;'Uf\'év =@, Let p and q denote points of U and V respec-
tively and let Cp and Cq denote the components of p and q in
KAGU and K/N\G, respectively. Now K/\G; is open relative to K
énd is a proper subset of K since q ¢ K\Gﬁ, Since Wp is
compact, the boundary, with reSpect to K, of K/\GU contains a limit
point x of Cp [26, p. 18], Then x ¢ M and in fact x ¢ K, If
xgH then xeU or x gV since x ¢ H K, However, EUAEV =g
and thus x £V, But x gU and x ¢ K implies that x ¢ KU

K( G, which thus implies that x £ boundary of K/\G‘U,g relative to

U
K; contrary to the preceding., Therefore, x £ H and Ep(:__ KC M and
contains at least one point not in H, Similarly, qu_ KCM and v
Eq\H # @#. Because EPQEU, Ep g'é'v, .and EU/\-G-V = @ 'Ep/\’é’q =@,
It was shown previously that (A\_K)/ H was a subcontinuum of #
and clearly it contains H( YK, Thus, (A\_K)/\H contains points of
both Ep and Eq" Consequently, S = [(AUK)/\H]UE; and
T = [(AL K)f'\H]U(_fq are two subcontinua of M which are proper and

are not contained in H since Ep and Eq each contain distinct
points of M\H, Since b £ K by supposition, ’é"pg K, and "c”qg K,
b is not in either of Ep or Eq. With b ¢ H this implies that K,
S, and T are three distinct subcontinua of M no one of which is
contained in the union of the other two, Also, S/ YH is the subcon=
tinuum (A\UK)/\H since E;K\HQHAKC_: (AAUK)(H, Similarly,
each of T/ \H, S/ T, and SK\TK'\H is the subcontinuum
(A\UK)/MH, But this implies that S\ _UT\_H is a triod contrary to
M being atriodic. Therefore, the supposition that b £ K is false
and b ¢ HOK,

Since A contains a and M is irreducible from a to b,
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MNA is a proper subcontinuum of M [26, p. 60], Also, b ¢ K implies
A\UK =M since AMNK # ¢ implies A\ UK is a continuum,

{ay, b} CA\K, and M is irreducible from a to b, Thus, M\& =
(AA\UH)NA = HNA and MNA = (AAJK)NA = KNA, Therefore; MN\A C
(ENA)M(KENA) = (HMKNAC HMK, a closed set and consequently,
<A CHK., Since U and V form a separation of H/ K, M<A is
contained in one of U or V, Hénce, neither of H or K is a subset
of M\A.

Since M = A\_H, M = A\_K, and M is unicoherent, A/ \H and
A/K are contihua. Because M is a continuum,; properly containing
A, (ME)MA is nonempty, Witﬁ M<E CH/K from the above,
(M<E)(MA C HOK A and the latter set is nonempty., Thus, the three
continua AmH', A/\K,’ and M~A all have at least one point in
common, Now, b g M<AZ and b not contained in either of A/ )H or
AMK implies that MNA 1is npt contained in either of A/ H or
AMK, Also, since HNA = KNA = MNA and H # K, neither of A( )H
nor A/ K contains the other, Finally, since M~A contains neither
of H nor K, MNA  does not contain either of A/\H and AMNK,
Therefore, the three continua A/ NH, A/\K, and M~A have a common
point and no one is a subset of the union of the other two, Theorem 1,5
implies that M contains a triod; contrary to its being atriodic,
Therefore, the continuum B, and similarly A, is unicoherent,

Suppose that N is a non-unicoherent subcontinuum of M inter=
secting A and that N is not contained in A, If A is not
contained in N then the contrapositive of the first part of this lemma
implies that A\_/N is not unicoherent, If A is contained in N

then A\_N =N and A\_N 1is not unicoherent in either case, Since
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M is unicoherent, A\_/N is a proper subset of M., Thus,
M = (A\UN)\UK, where each of A\/N and K is a proper subcontinuum
of M and A\_N 1is not unicoherent, But this is contrary to the
first part of this lemma, Therefore, N C A, |!

Theorem 5.4t and its firgt corollary utilize the preceding lemma in
combination with corollary 5.2 to produce characterizations of atriodic

and unicoherent continua,

5.t Theorem Suppose that each of A and B is a chainable con-
tinuum and A/ \B ¥ @#. Then A\_/B' is chainable if and only if A\UE

is atriodic and unicoherent.

Proof: Theorem 5.1 clearly implies that A\_/B 1is atriodic and
unicoherent when chainable. Thus,;Suppose that A\_/B 1is atriodic and
unicoherent, If there exists a subcontinuum N of A\_/B such that N
is not unicoherent, then without loss of generality, AN #£ g, Lemma
5.3 implies that NC A, But A being chainable implies it is hered-
itarily unicoherent, Therefore, N does not exist and A\ /B is
hereditarily unicoherent. Theorem 5,1 now implies that A\_J/B is

chainable, ||

5.5 Corollary Iet A1, A2, LEEIN An be a finite collection of
chainable continua such that AimAi+1 #@s for 1<ign=1l. Then

n
M= }={Ai is chainable if and only if M is atriodic and unicoherent,

Proof: The proof follows immediately from theorem 5.4, |{
Corollary 5.6, the last result of this section, presents a suffic=
ient condition for a decomposable unicoherent continuum to be chainable,

The proof need only show that M is not a triod since each proper
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subcontinuum is chainable and hence atriodic,

5.6 Corollary Suppose that M is a decomposable unicoherent
continuum and each proper subcontinuum of M is chainable, Then M is

chainable.

Proof: Because of theorem 5.4, it sufficies to show that M is
atriodic, Suppose to the contrary. The hypothesis forces M to be a
triod, Then there are three proper subcontinua A, B, and C of M
such that M = A\_UB\_C and A/ )B =A/ N =B/ \C = A/ \B X is a
proper subcontinuum of each of A, B, and C. Then A\ _/B is a
proper subcontinuum of M, Let p g AB and q g C\(A\UB). Then
p € C and there exists a subcontinuum D of C such that D is
irreducible from p to q. Since gq £ A\,}B, a closed set, let G
denote an open set containing q such that G/ WA\ UB) = ¢,

Since the composant of D determined by p is dense in D and
q € G/ YD, there exists a proper subcontinuum E of D such that
EMNG # § and consequently, -E/ Y[C~(A\_B)] # @. Then the three
subcontinua E\_J(A/ )B), A, and B form the triod E\_A\_B
which is properly contained in M, But since E\_JA\_UB is chainable
by hypothesis, this is impossible and M 1is nét a triod. Because
every proper subcontinuum of M is chainable, M is in fact atriodic

and theorem 5.4 implies that M is chainable, |/

Continua With Chainable Indecomposable

Subcontinua

This section includes the final proofs to be presented in this

thesis, The eventual result is a characterization of chainability in



129

terms of the indecomposable subcontinua of an atriodic and hereditarily
unicoherent cohtinuum M. This result is stated as theorem 5.11 and the
proof is accomplished only after showing four rather involved lemmas.
The reader might find it advaﬁtageous to turn first to the fheorem,
studying the intervening results only when utilized., Their purpose is
to further make it possible to isolate a point in the continuum M
ﬁpon which to base the construction of a chain, Most of the techniques
developed earlier will be used to ease the burden of construction. An
effort has been made to reference these methods when possible and thus
avoid complicating an already involved proof, It will be necessary to
first present a definition of what‘are called inéccessible-points of a
terminal subcontinuum, This will be followed by several lemmas,

Let M be an atriodic, hereditarily unicoherent continuum and
K  an indecomposable terminal subcontinuum of M, If there exists a
subcontinuum A of M such that A/ K # #, Kg; A, A@K, and D
is the composant of K containing K/ A, then D is called the

accessible composant of K, All other composants are inaccessible, If

no such subcontinuum 4 exists, then all composants are inaccessible.

In either case, a point of an inaccessible composant is an inaccessible

point of K [14, p. 386].

5.7 lemma If M is an atriodic, hereditarily unicoherent contine
uumy, K is an indecomposable terminal subcontinuum of M, w is an
inaccessible point of K, ‘and N is a subcontinuum of M containing

w, then either NC K or KCN,

Proof: Since w is an inaccessible point of K, w is contained

in an inaccessible composant B of K, Now, N/ B # @, they both



130

contain w, as does N/ YK, If there is an accessible composant D of
K, then by definition, there exists a subcontinuum A of M such that
AKX #£ ¢, Agz K, ng A, and D is the composant of K containing
A(MK, Clearly, D/ B =g [26, p. 57]. If NG K and KN then
lemma 4.8 implies that N/ \KC D, But this implies that w si D which
is contrary to their being disjoint. Thus, either KCN or NCK,

If all composants are inaccessiblé, then the definition implies
immediately that either NC K or KCWN, |l

Lemma 5.8 continues in the vein of earlier results. The effort
here is to show the existence of a chain on M which contains an inac-
cessible point w of the terminal éubcontinuum K in its last link,
The proof is accomplished, as have several others, by first showing the
existence of an irreducible subcontinuum of M which does not have a
defined property P, This proof is very similar to the approach taken

for proposition 3.18 and parts of theorem 5.1,

5.8 Lemma Suppose that M is an atriodic, hereditarily unico-
herent continuum; K is a nondegenerate terminal subcontinuum of M,
C=(dys dyy eoey 4} isachainon M, F = {f, £,y ***y £} isa
chain on K which is a refinement of C, and Q is an inaccessible
point of K contained in f (K. Then there is & chain H = {h;, by,

ceey hr} on M such that H is a refinement of C and w ¢ h..

Proof: Assume the lemma fails, If B(_C M, then we shall say
that B has property P if and only if B is a subcontinuum of M
containing K and no chain on B is a refinement of C and contains
w in an end link, The continuum M itself has:property P by assump;

tion, Suppose there is a sequence Nl’ N,y *++ such that for each i,

2’
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o
Ni has property P and Ni+l€;Ni' If No = g;iNi does not have

property P then there is a chain G = {gl, 8r9 *°°» gt} which is a

chain on NO’ is a refinement of C, and w g By Since G* is an

open set containing NO’ the compactness of M implies there is an

integer j such that qu: G* But now G is a chain on N G is a

j’

refinement of C, and w ¢ Bye Since this is contrary to the existence

of Nj’ No has property P and property P is inductive., Since M

has property P while K does not; the Brouwer Reduction theorem

implies the existence of a subcontinuum Ml of M such that Ml is

irreducible with respect to having property P. Let C(ilgml) denote

the minimal subchain of C on Ml.

Since K is a terminal subcontinuum of M, K will also be a

terminal subcontinuum of Ml. Since Ml properly contains K, Ml\_}K

is nondegenerate and hence proposition 3,15 implies the existence of two
points p and q such that Hlk,}K = Ml is irreducible from p to ¢

and p € K., It necessarily follows that q e M, \K, As was argued in

1

proposition 3,18, the fact that the composant of M. determined by p

1

is dense in M implies the existence of a proper subcontinuum N of

l’
Ml such that KCN and N meets each link of C(ilgml), Since N is

properly contained in Ml and Ml is irreducible with respect to

having property P, N does not have property P, Thus, there is a
chain G = {gl, go9 *°°s gr} on N such that G is a refinement of C
and W g e We may assume that no chain with fewer links than G will

cover N and have these properties.

We shall now show that (gl\Jsr)f\N/\(di_ \Jd_ ) #£g. If
: 1 .

m:L

N = K, this is certainly true and the following may be omitted.
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Suppose that K is properly contained in N and that (gl\,)gr)/ﬁ\N(”\

(dilkwjdml) £ @. Then there is a link dj of C(1l,m1) with

1,41 < § < m-1 such that gl/‘\Nq;,dj.' Since G*/ N meets both

d and d_, let g_ be the first link of G which meets
4 ™ & |

N/"\(di \_d_ ). Clearly, 1< s. In order to be specific, let us
1 1

suppose that gs/”\N/’\di £@. Let g, denote the first link of G
1

which meets N(”\dm . Then clearly; t < r, Since G(s,t) is a
1

refinement of C(i,,m,) which meets 4, and 4  some link of
1" 11 ml

G(s,t) is contained in dj‘ Thus, d, contains a link of G(1,t)

3

distinct from 8.

Since g, is the first link of G which meets d_ (N,
1

Now there is a link di of C(1l,m1) such that

B O 1 )
G*(1,t)C ¢¥(i,,m -1) and G*(1,t) is not contained in any proper
= vt P

subchain of C(iz,ml—l). Because G*(1,t) meets both d; and d_,
1

we must have that i, <i, <i,+l1 < j<m=1l. The objective is now to

1="2="11 1
show that [6%(1,t-1)C(i,m-1)] & [6¥(1,8)MNd ;] @ G(t+l,r) is
i}

a chain covering N, is & refinement of C, and has w in its last
link, Since G is a refinement of C, if this collection is a chain,
it is clearly a refinement of C, Since t < r, G(t+l,r) is a non-
empty collection containing Bpo Since W g Bny We again easily

have that w is contained in the last link, if the collection is a

chain,
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Thus, it remains to show that [G*Tl,t-l)(ﬁ\c(iagmlelD] ®

[G*(l,t)/ﬁ\dm _1] ® G(t+1l,r) is a chain covering N, The definition of
1

the integer i, was such that G*(l,t)q; C*(i2,m1=1), Since g, 1is in
fact contained in 4 1 and 12 was defined such that no proper sub=
chain of C(i,.m-l) contained G*1,t), G*(l,t.l)ﬁdiz;é;zf and

hence, G*(l,t-l)fﬂ\dm -1 * #. Suppose that for some i,
1

<i<m=2, G*(l,t-l)(ﬁ\(difa\di+l) = @, Because G is a refine-

12 1
ment of C, there is a link, g, of G such that gkc_c*(iz,i) and

Ccc (1+1,m =1)., The supposition implies that e C*(iz,i)\\d.

Brsl = i+l

and gk+lq; c (1+1,m1-1)\\.di and consequently that gk/”\gk+l =g
contrary to G being a chain, Thus, G*(1,t-1) meets the common part
of each pair of adjacent links of C(ia,ml-z) and proposition 2,8
implies that G*(l.tml)/"\C(iz,ml-Z) is a chain,

The definition of t implies that 8¢ 1(”\gtq;qdm 1° Hence,
- )~

G*(l,t)fﬁ\dm -1 is a nonempty open set and from the preceding para-
1

graph, G*(1,t)/ (4 ) # @, Thus, [G¥(1,t-1)Ma 1M

M= 2 mB.l M=

* ; - .
[G¢ (l,t)/“\dmlnll_# #, However, because di/’\dml=l =g for i< my =35

[6*¥(1,t-1)\ ay IIE*(L, )M dml 3] = @ and proposition 2,9 implies
that [G¥(1,t-1)MC(i,m=2)] @ [G*(lgt)f\dmﬁ_]_] is a chain,
Now because gtq; dm 10 gt/“\gt+l m1 -1 and
1
[G*(1,t)M) dml_ljr‘\gt+l # #. But since gimG*(l,td) =g for
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i > t+1, and because gif\ G*('l,t) =@ for i > t+2; the nonadjacent

links of [G*(_l,t-l)mc(iz,ml-z)]o [G*(l,t)mdmﬂ_lj and g(t+2,r)

do not intersect. Therefore, proposition 2,9 again implies that

[G*(l,t-l)/\c(iz,ml;z)] ® [6*(1,t) r\dml_l] ® G(t+l,r) is a chain,

Since this chain clearly covers N, it is a chain covering N, it is
a refinement of C, and w ¢ 8. the last link. However, since each
link of C(iz,ml-l) contains at least one link of G and

dr € C(ia,ml-l) contains at least “two links of G, the constructed
chain has fewer links tham G, contrary to its selection, Therefore,

(g, \Jg )MNM(d; \Ud ) # @, We shall in fact suppose that
1

m:u
g dilf\N £d.

Since W e g, w,{glmd o Thus, (glf\di

1 \{w} is an open
L H

I
set which by the preceding contains a point of N, The normality of the
space implies the existence of an open set U such that U/ N # ¢ and

ﬁ’g [(gl/\di INN{w}]. Let R denote the component of M\U; neces-
1

sarily closed, which contains w, Since each of N and R is a
subconfinuum of Ml intersecting the terminal subcontinuum K; either
RC K\_N =N or NC K\_R. We shall show that the latter alternatiwe
is impossible,

If U/MNC K, then since W 1is an inaccessible point of K,
lemma 5.7 implies that RC K because U/ WC K and RC ~U, Now,
NC EKE\/R implies that NC K which is contrary to the fact that N
properly contains K, Thus, Ng K\_R, If U/NN g K then

U/'\NQKUR since U/ N gR. Hence, again, N_¢ K\_R, Therefore,
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NC K\_R 1is impossible and we have that RC K\ UN = N,

Since G is a chain on NQM:L and is a refinement of C with

w contained in the last link, and M, has property P, Ml\G* #d.

JNG¥ and RCNCG* are disjoint closed subsets of MU,

Since ﬁC_ c*, (Ml\UT)\G* = Ml\G,*. Suppose there is a continuum H

Thus, M

in M\U which meets both M;\G* and R. Then H\JR contains a
connected subset of Ml containing w;, properly containing R, and

contained in Ml\U". But R, being a component of Ml\II, is a

maximal connected subset of - Ml\U containing w, Thus, H cannot

exist and no continuum in Ml\U meets both Ml\G* and R, There-

fore, Hl'\U is the union of two disjoint closed sets, one containing

Ml\G*, and the other containing R [26, p. 15]. Using the normality

of the space, there exist two disjoint open sets S and T such that

M NUC ST, M

The following argument is essentially the same as that given in

~\6*C T, RCS, and 5/ T =g,

case: iii of theorem 5,1, Since Ml\G*;é g, and Mlg C*(ilgmi)9 let

m, denote the lea_st integral value, il < m,, < my such that

M NG*C c*(iyamy). Let x e MNG*CM

1 U such that x e d . Let

1 >

fo denote the component of Ml\ﬁ containing x, Since le-\ff is a

closed proper subset of the continuum M., Ml\(Mlm%‘) = Ml\il- is

compact, and Cx is g__c:omponent of M‘\E, M/ T contains a limit
point of Gx [26, p. 18], Since fo\Ml\G' #@ and MNUC S\UT
with S and T separated and x ¢ T, Cxc T, Then Cx and conse-
quently T meets the common part of each pair of adjacent links of

C(mz,i]l) by proposition 2.3. Therefore, C(mz,il)f\T is a chain by

proposition 2,8,
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From the preceding we also have that (d, /" Yd, ) \T #g and
11+2 11+1

since TC dil and dilﬁ dil+2 = &, (dil+2f'\T)n[(dil+lf\T)\Uj %7,

whereas (4, \T)M[(d, . MNIINT] =g for i.+2<1i < m, since
i 11+l 1l = "2
difﬂ\di =g for i.+2<i<m Thus, [G(m2,11+2)/A\T]30

l+l 1 2

[(di +1/\T)\ﬁ] is a chain by proposition 2.9,
1l

Since UC d; and by its existence, U £ &, 4 MT # 4,
1 1

Furthermore, the argument of the a&bove implies that

(dil+lmdil)ﬂT # @ and hence [(dil*lf\rr\ujf\(dilfw) £d.

Again, because d, (\d, =g for i

+2 < i < myy proposition 2,9
1

1

implies that [C(m,,i +2)/NT] @ [d, +1f\T)\‘ﬁ’] ® [d, MT] isa
1 1
chain,
Because S/ )T = @, any links determined by S and T are neces-

sarily disjoint, Thus, (gl/\s) meets no link of [C(m29i1+2)/-\T] ®

[(4q. MTINT] @ [d, (\T]. However, since UC d, ,
:|.l+l i, =i,

U NDNT] =g, and UM, =F for L,41<igm

9
1] 2

(glmS)UU meets only the last link, namely, di T, of the above
1l

chain, Thus proposition 2.9 again implies that [G(m2,i1+2)/-\T] ®

[(dil+lr\tr)\ﬁ’:| ® [dilm T] ® [(g,M8)\JU] is a chain,

Finally, since UC g, and gimgl =@ for 3<igr,
[(gl/'\S)UU]m[gi/'\s] =@ for 3<i<r, Ina manner similar to

a preceding argument, it can be shown that S meets the common part of
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each pair of adjacent links of G(1l,r) by considering the component

Cy of MN\T, where y ¢ gr(”\N, Thus, G(2,r)/\S 1is a chain by
proposition 2,8 and (32/"\5)(“\[(glfﬂ\S)\yjuj # @ while no other link
of G(2,r)(ﬂ\s meets any link of the previously determined chain,

Therefore, [C(m,si +2)/M\T] @ [(di;+1("\T)\\ﬁj ® [d; (MTI ®
' 1 1

[(gl(‘\s)\_)U] @ [G(2,r)/\S] is a chain, Since this chain covers M, s
is a refinement of C, and contains w in its last link, gr(ﬁ\S, we
have constructed a chain on Ml with the above properties contrary to
its having property P, Therefore, the assumption is false and there is
a chain H on M such that H is a refinement of C and w is an
element of the last link of H. ]|

The following lemma shows the existence of a particular chain on a
continuum with disjoint opposite terminal subcontinua., Its results
and use will be very similar to those of lemmas 4,3 and 4.4, The
purpose is to permit the isolation of opposite terminal subcontinua in
different parts of a chain, No effort however, is made here to prevent
the two terminal subcontinua from meeting the same links of the chain,
Bach is required to meet an end link of the chain., The proof is
obviously one of involved chain construction and effectively uses the

normality of the space to separate disjoint closed sets with open sets

which, as in the past, will help produce a chain on the continuum,

5.9 lemma Suppose that M is an atriodic, hereditarily unico=-
herent continuum, K and 1 are disjoint opposite terminal subcontinua
of M, and GO = {di, dé, ceo, dé,} is an g-chain on M, Then there
is a chain F = {fl, £2, soe, fn} on M such that

1) F is a refinement of Cp.
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2) flr\x #@ and fnf\L £ 7.
3) there are positive integers i and k with Kg;? F¥1,i) and

LC® PX(k,n).

Proof: Lemma 4,3 implies the existence of an eg-chain

C = {dl’lda’ eeo, dm} on M such that € im a refinement of C. and

0
Kq;e C*(’jl,m)e Without loss of generality, we: may assume that € is a
minimal chain on M. Applying this lemma a second time, we obtain an
g=chain G = {gl, 8o 9 gt} on M SESE that G is a reffinement of
C, and hence of CO’ and LQ;e G*(ja,t). We may assume that no chain
with fewer links than G will cover M, be a refinement of Co9 and
have a subchain exactly containing L.

Case i, If dlfﬁ\L #48 or glfA\K #@ then let F, =C(ml) or
Fb = G respectively. Then F, = {fi, £y oooy fé) will be a chain on
M satisfying results one and tweo of the lemma, It remgins to construct
a refinement of FO which will also satisfy the third result,

Since K and L are disjoint closed subsets of M and the space
is normal, there exist two disjoint open sets Q and R such that
KCQ, LC R, and @R =@, Iet Fo(1,i) denote the minimal sub~
chain of ‘F, covering K and Fo(kgn) the minimal subchain of ¥,
covering L. Since Fo*(l,i) and FO*(k,n) are open sets containing
K and L respectively, we may assume that QZ;LFO*(I,i) and
i’gFo*(k,n), Let £y = fg for j#i+l and J A k#l, If kel = i+l
then let £, . = £ .~\(QU/R)., Otherwise, let f,

1 1

- ] n s 4 = oo
fk-l fk»i\\R° In either case let F {fl, f2, R fn}° We must

show that ¥ is a chain,

= 7 Q F1
fi+l\\Q and

If k-l = i+l, then F(1l,i) and F(kyn), as defined, are each
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chains, none of whose links meet, Now, f! /A\f'+l # ¢ and f“/q\R =y
since R Fo*(k,n) = Fo'*(i+2,n), and consequently fim [f:‘i,.+1 R] # 4.
It £3V0£] NR] £ B, then £.NE o = £IN[E]  NRUD] £ and
F(1,i) @ [f ] is a chain, Thus, it remains to show that
f'f\[f“_:L Q] # #. If the contrary is true then f'f\f" IQQ and
necessarily M/ V(£}/Mf! ) C Q. Let H=MMF*1,i) and
K = M\\Fb*(l,i), Then K is clearly a closed point set,

Let x be a limit point of H, Then x ¢ M and suppose that
x ¢ K. By definition, x £ Fb*(l,i) and hence x g Fo*Ti+lgn)o Also,
xrA'Fo*(l,i) implies that x £ @ and thus x ¢ Fo*(i+1,n)\J§; Since
Fo*(i+l,n)‘\§ is an open set containing x it necessarily meets H,
Thus, [Fo*(i+1,n)‘\@j/ﬂ\ro*wl,i) # @ contrary to the fact that
Fo*(i+l,n)/”\Fo*(1,i)Q;aﬁ Thus H and K form a separation of M
contrary to hypothesis and we have that fi/A\(f“ Q) # #. Therefore,
F(1,i) & [fi+1] is a chain, Similarly, [fi+1] ® F(i+2,n) is a chain
and the collection F,; -as8 defined when k<1 = i+l; is a chain,

If kel # i+l, then without loss of generality, i+l < k=1 and
by an argument similar to the preceding we have that fi+1mfi # 9,
fi+1/\fi+2 PR fk‘_lf'\ f, #%, and fkﬁlf\fk_a # #., Thus,

F(1,i) © [fi-t-l] ® F(i+2,k=2) @ [ ' @ F(kyn) is a chain,

k—ll

In either of the preceding situations, F is a chain,

KC F*(1,i), K is not contained in any proper subchain of F{1l,i),

and FR(1+1,m)/ K = (F; ;M K)U[(Jkﬂz J)ml{] Since KC FX1,i),

?\_{\K =@ for i+2 < j<n and hence (j%ZfJ)mK = @#. Also,
KC @ implies that T, (K = (f' 1 NONK =g, Thus,
KN\F¥isln) = g and Kc; F*(l,i). Similarly, LC® F*¥(k,n). There=-

fore, F = {fl,l}iﬁa, TN fn} is a chain on M satisfying the three
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results of the lemma when the conditions of -this case are met,

Case ii, The objective of this case and thus the remainder of the
proof is to construct a chain FO = {fi, fé, ooo,,fﬁ} from the chains
C(1,m) and G(1l,t), where dlf\L #¢ and glf\x # @, such that
fi(”\L # #. The first case of this proof will then apply to F, to
yield the desired chain F,

Bince C is a minimal chain on M and G is a refinement of C,
there is a link - of G contained in dl and a link 8 of G
contained in dm° We wish to show in fact that either g or & is
contained in dlu dm and eventually that 8 (- d1° Suppose that
neither g, nor g, is contained in dl\__)dm° Then there is a link
da of C such that glq; da with 2 <a < m=1l, As was argued in
leﬁma 5.8, since G(r,s) is a refinement of C with g.Cd; and
g,C d o+ there is a link g, of G(rys) such that 8, < dgo Thus,
gu is a link of G(l,s) distinct from gl and both are contained in
da. Again, the argument of lemma 5.8 produces the chain
Gy = [6*(1,8-1)MNC(1,m-2)] @ [G*(1,8)/ N4, _,] @ G(s+1,t) on M which
is a refinement of C,

The following will show the existence of a refinement G, of G

1 0

which has the same number of links as G is a refinement of C;

09

covers M, and which has a subchain exactly containing L, However,

by its definition, Go has fewer links than G and thus the existence

of Gl is contrary to the selection of G, Thus, if Gl can be
constructed, as claimed, its existence will produce a contradiction and
the assumption that neilther g, mnor g, is contained in dl\“/dm is

false,
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Subcage iia, If J, > s+l then LC" G¥(J,,t) and G(j,.t) is

G

a subchain of G.., Thus, the claim is easily established with Gl = Gj.

0

Subcase iib, If J, < &y then Lfﬁ\gj # ¢ and hence if
2

£ Cd; s 1< J,<my then Lf\djo #¢. Since g C d and prop-

osition 2,2 implies gsf\L # @, we have that dm/‘\L # ¢ and by the
same proposition, dj/A\L #9 for jy<J<m Let C(bym) denote the
minimal subchain of C(l,m) on L, Since L/”\dl =@, 2<b<m It
follows that the collection {db/\\G*(l,sml), eoo dm_afﬁ\G*(lgs-l),

dm_lf'\\G*‘(l,s)9 g *e¢y g} is & minimel subchain of G, containing

s+1’
L, Because Lq;e G*(jz,t), the normality of the space implies there is
an open set Q such that LC QC Qg 6™(j,»t) NC*(bym), Then

Q\d, = @, and hence Q/\Ej =@, for 1< j<b=2, This implies that

J
Lf\?i”j =¢ for 1< j<b-2, If we redefine the link d, , to be
db_l\Qﬁ, then the closure of this link will also fail to meet L,

Thus, if 1 < b=l < m=2, then (db_lf\a)fﬁ\G*(l,sml) replaces
db_lf“\G*(l,sal) and if bel = m<l then (db_l‘\iﬂfk\G*(lgs) replaces
db_lf"\G*(l,s)° The result is the desired chain Gl which is a refine-
ment of G

has the same number of links as G and exactly

o o?
containe L in the subchain {db/”\G*(l,sel), soey d 2/’\G*(1,so1)9
dm_lfﬁ\G*(l,s), Bge1? °°°9 gt}, Therefore, with either of the subcases,
the chain Gl exists contrary to the existence of G and we have that
either g or g, is contained in dl\“/dm°

As was noted earlier, we shall now show in fact that glq; dlo For
suppose not. Then glg; dm by the preceding. One of the conditions of
this case is that g /K = g, Since KC® C*(jpam)y (4 N\& ) K #

@ and thus there is a link - of G, 2L r<t, such that grq;_dm,
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Thus, 8, and g, are distinct links of G contained in dm. Let
C(vym) denote the minimal subchain of C such that G*(1,r) C C*(vym).
Arguing in a manner similar to that in the proof of lemma 5,8,
[C(vym=1) \G*(2,r-1)] ® fa, M G*(1,r)] © G(r+1,t) is a chain which
covers M, is a refinement of C, and because each link of C con-
tains at least one link of G and dm contains at least two links of
G, this constructed chain has fewer links than G, It remains to be
shown that some subchain of this chain exactly contains L. Since this
is argued in exactly the same manner as was presented in subcases iia
and iib of this proof, we shall omit repeating the argument and note
that the constructed chain now contradicts the selection of the original
chain G, Thus, the supposition that g, CL dl is false and this claim
is established,

Since K and .L -are opposite ferminal subcontinua of M there
are points p and g with p g K and g ¢ L such that M is irredu-
cible between p ‘and d. Now the composant of M determined by q is
dense in M (26, p. 58]. Hence, there is a proper subcontinuum N of
M such that g ¢ N and ngl # B. Since &G d, it also follows
that N /\dl # #. Because N 1is a proper subcontinuum of M, p £N
and since p £ L, N\_L is a proper subcontinuum of M, Le.t N0 =
N\UL, |

Iet V be an open set such that V/'\NO # @ and ifc_:glg dl'
Since dlf\L =@ and dl/\K =g, VWKL) =g, If I is a sub=-
continuum of ‘M\V such that H meets both K and, L then H\UK\UL
is a proper subcontinuum of M containing p and g contrary to the
existence of p and q. Thus, K and L are closed disjoint subsets

of MV and no_subcontinuum of M~V meets both K and L.
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Therefore, M~V is the union of two closed disjoint sets one contain-
ing K and the other containing L [26, p. 15]., The normality of the
space now guarantees the existence of two open sets S and T such
that MN\VC S\UT, KC S, LCT, and ST = 4,

Let Fy = [C(m,3)M8] @ [(a,NSINT] @ [, 8] 8 [(g,MTIUV]

® [G(2,t)NT), The argument that F. is a chain on M is virtually

0

the same as that given in the conclusion of the proof of lemma 5,8 and

is thus omitted., Since FO is & refinement of C, FO

required in result one of the lemma, Also, fi = dm/“\s meets K and

f; = gt(ﬁ\T meets L, Now the conditions of case i are met and the

refines CC as

existence of the chain F is assured. This case completes the proof
of this lemma, ]l

One last lemma is needed before we attempt the proof of theorem
5.11, The complexity of just the statement of the lemma indicates that
it is intended for specific use in theorem 5.11 to help ease the effort
there, Perhaps an illustration will help to understand the objectives
of the lemma, The continuum M is the union of subcontinua Ay B,

and N with A/\N and B/\N being opposite terminal subcontinua of

%::aﬁe!%ﬁemﬁ

Figure ¢, Illustration for Lemma 5,11
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N. These terminal subcontinua are in turn exactly contained in sub-
chains of chains on A and B, We wish to produce chains on N, A,
and B which will appropriately contain A/ N and B/ \N, which
will be refinements of the chains on A and B, and which will also
not have too many links in common. This is obviously an over simplifi-

cation of the problem involved,

5.10 Lemma Let M be a continuum such that M is the union of
three distinct proper subcontinua A, B, and N with NN = A\UB,
A\B =g, ANN#g, B\N#@, and AN and B/ N are opposite
terminal subcontinua of N, Suppose that N is chainable while

Bb = {hi, hé, coe, h;o} and FO = {fi, fé, ceey fgo} are taut g-chains

on A and B respectively with AMNC® Hg‘(to,ro) and

B(“\Nq;? Fg(uo,so). Then, there: are taut g~chains H = {hI7 hyy o0
hr) and F = {fl, fa, oeo, fs} on A and B respectively with
AMNC® BXt,r) and BANC F¥(u,s), a taut e-chain € = (&3, do,
ovog dm} on N, and positive integers i and k such that
1<i<k-2<kgm AMNC® C¥(1,i), BNNC c¥kem), C(1,i) and
C(ksm) are closed refinements of H(t,r) and F(u,;s8) respectively,

and CF O\ [AN1,t-L)\UF*(1,u-1)] = &.

Proof: Since A/“\ﬁ' and B/ N must be nonempty or a separation
of M would exist, proposition 4,5 implies that A/ N and B/ N are
also terminal subcontinua of A and B respectively., Since
AN(ANN) = AN and NN(AMN) = NNA are two separates sets and
because the space is completely normal, there are disjoint open sets

0

A and ON containing ANN and N\A& respectively, Similarly,

1 1
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there are disjoint open sets 0B and QN containing BN\N and N~B
1 2

respectively, Finally, since A and B are disjoint closed sets the

normality of the space implies the existence of two open sets 0A and
2

O  containing A and B respectively such that EA (”\65 =g,

2 2 2

Then O, =0, /N0, 4 O, =0_ /N0, , and O_  =0O_ /\O, are pair=
AT A A BT By B, NN, N,

wise disjoint open sets containing AN(N\UB); BN\(N\_/A), and
N\(A\_/B) respectively. Also, 5A/"\5ﬁ =@,

Ss . . € ¥
ince H, is & chain on A with A/NNC HO(tO’ro)’

(»my\myﬂﬁﬂ)fﬁfw 1<igty-1. Hence, ANNC O, implies

0

that 0A meets the common part of each pair of adjacent links of
Ho(l,to) and by proposition 2.8, Hb(l,to)("\oA is a chain, Now,

(hé _lfﬂ\hi YW NA £ @ and this intersection must be contained in ANN
0 (0]

by the definition of exact containment., Thus, (h%

MO0, ) N\h! £
ol A ty

while d meets no other link of H.(1,t)/ Y0, and h! ./ )0, meets
to (0] A towl A

no other link of H(to,ro). Therefore, Hy =‘[HO(1,tO)/ﬁ\OA] ()

Ho(to,ro) is a chain on A by proposition 2.9. Since Ho(to°r0) is

unaltered in Hl’
. , e ¥

Fl = [Fo(l,uo)/ﬁ\OB] () Fb(uogso) on B such that N/ \BC Fi(u0950)°

A/’\Flgf H{(togro)° Similarly, there is a chain

Since Hl and F1 are derived from the taut g-chains HO and Fbg

Hi and Fl are also taut e-chains,
Lemma 2,11 and proposition 4.3 combine to guarantee the existence
of a closed refinement Hz(l,r) of H1 such that for some positive

integer t, A/’\PIQ;e Hg(t,r)° Then as before;, H = [H2(1,t=1)/ﬁ\OA] o
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H,(t,r) 1is a taut e-chain on A which will also be a closed refinement

of H1> and A/ N ge H¥t,r). In a similar manner, a taut e-chain F

can be produced on B which is a closed refinement of Fl and such
that B/ N C_'_e F*(u,s), for some 5. As a result of their construction
H¥(1,t-1)C 0, and FX1,u-1)C 0, which implies that
H¥(1,t-1)( YF™1,u~1) = # and neither H¥(1,t-1) nor F¥1,u-1) meets
Oy |
Since NN\(A\_/B) is a nonempty subéet off M which is open
relative to M, there is an open set QO such that Qof\M = QOF\N =
N~N(A\U/B). Let Q = QOK\ON which implies that Q is an open set
such that Q/\OA =, Qf\OB = ¢; Q'/\M = Q/NN = N~(A\U_/B). Since
QOE*(t,r) = F or Q\F*(u,s) = & would imply a separation of N,
these sets must have nonempty intérsections. Thus, U = {ht, hf+1' see,
hr' Q, fu’ fu+1’ ree, fs} is a finite open cover of N, let & be a

Lebesque number for this cover. ILet be a positive number less

€0
- than the minimum of ¢, &6, and %p(A,_B). Since N is chainable, let
Co = {di, Al ceey dt;!,} denote an gy-chain on X,

It .di is a link of C, such that d]!_m(a'&f\N) # @, then d]!_

is contained in some link of H(t,r) since gg < 6 and neither @ nor
any link of F meets A, Similarly, if ds./\(Bf\N) # @, then d.:i

is contained in some link of F(u,s). Also, every link d{ of CO

is contained in' some element of U, Now lemmas 2.11 and 5.9 combined
again imply the existence of a taut chain C = {dl, d2, esey dm} on N
such that C is a closed refinement of C,, d.l/\(Af\N) # @
dmf\(Bf\N) # §, and for some integers i and k, Af'\Nge C*(1,i)

and Bf\NC_e c*(k,m). Since C is a refinement of C the defini-

o'l

tion of implies that C is an e~chain and that

€
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1<ic<k=2<kgm Also, C(1,i) is a closed refinement of H(t,r)
and C(k,m) is a closed refinement of E(u,sa. Because C*1l,m) is

contained in CH(1,m)) C U¥, CTNI1,m)( ) [ENI,t-1)UFK1,u-D)] = 4.

This completes the proof of the lemma, ||

The final characterization of chainable continua is presented as
theorem 5.11, Although theorem\5.12 follows, it does so easily after
the effort expended to produce the following. Many previous techniques
are again effectively employed and much detail is omitted by referencing
similar efforts in other results. There are two basic cases which are
further classified for ease of presentation, The two main cases are
derived by considering the existence of an indecomposable subcontinuum

whose interior relative to M is either nonempty or empty.

5.11 Theorem A continuum M, is chainable if and only if M, is

0 0

atriodic, hereditarily unicoherent, and each indecomposable subcontinuum

of MO is chainable,

Proof: Propositions 2.6 and 2,7 readily imply that the three con-

ditions are necessary for 'MO o

is an atriodic, hereditarily unicoherent continuum; each indecomposable

to be chainable, Thus, suppose that M

subcontinuum of which is chainable.,

If MO fails to be chainable, then there exists an ¢ > 0 such

that no eg~-chain covers MO, The proof of theorem 3,21 implies the exis«-

tence of a nondegenerate subcontinuum M of MO such that M 1is not

g-chainable but every proper subcontinuum of M is g=chainable, That
isy, M 1is irreducible with respect to the property of not being
g-chainable, Since each indecomposable subcontinuum of Mo is chain-

able; M 1is decomposable.
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Case i, Sﬁppose there is an indecomposable subcontinuum N of M
such that the interior of N, relative to M, is nonempty. In terms
of previous notation, iM(N) £d.

Subcase ia, Suppose N is a terminal subcontinuum of M. Propo-
sition 4,10 implies that M~N 4is a subcontinuum of M and because
iy(N) £ &, M<XN is a proper subcontinuum of M, Thus, M = N\_}(ﬁ::ﬁ)
where N is an indecomposable subcontinuum of M and NN is a
proper subcontinuum of M, By hypothesis, N is chainable. Since M
is irreducible with respect to the property of not being eg=chainable,
MK is e-chainable, Therefore, theorem 5.1 implies that M is
g-chainable and this contradiction establishes the theorem for
subcase ia,

Subcase ib., Suppese N is not a terminal subcontinuum of M,
Then M~N is not connected since to assume that M~N is connected
implies that M 1is the union of two proper subcontinua and proposition
4.5 would imply that N is a terminal subcontinuum., Since this is
contrary to the situation in subcase ib, MN is not connected,

Thus, M\N = A\_/B with A and B being the two components of

MNN [3.2], Now, M<N =K(UB = A\/B with A and B being dis-
joint proper subcontinua of M, We also note that the sets ANN and
B\ are nonempty. The existence of M thus implies that E and B
are g-chainable, Applying proposition 4,5 again, A/\N, which must
be nonempty or otherwise X and N\_UB would form a separation of M,
is a terminal subcontinuum of A and N, Likewise, B/ W is a ter=
minal subcontinuum of B and N;

Since iM(N) # B iM(N) is not contained in either A or B

and consequently N/NA and N/\B are proper terminal subcon tinua
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of N, Suppose that N is a proper subcontinuum of N which meets

0
both A and B. If N\NOQA-UE and, without loss of generality,
(N\No)mi;é;zs, then N = (A/MN) u[Nou(Er\N)]_. Since AN and
NOU(EK\N) are continua, this contradicts the indecomposability of N
and NO cannot exist, If N\(NO\JT\'\JE—);! #, let K = (KmN)U'
NOU(EmN), a proper subcontinuum of M, Then A\UK, B\_UK, and
N are distinct subcontinua of M with (R\UN)DM(BUN,) =

(RUN)NIN = (BN = (K‘UNO)F\(E‘UNO)K\N =N_.. Thus, the

0°
union of these three continua form a triqd in M contrary to its

atriodicity and again No cannot exist., Since no proper subcontinuum
of N meets both & and B, N is irreducible from A/ N to B/ N,
Therefore, AN and BN are opposite terminal subcontinua of N,

Since A and B are g-chainable, let Hy = {h']'_, hi, °°°y b }

0]
and F. = {f!, £, eee, f' } denote taut g-chains on A and B
0] 1 2 SO‘
respectively. With proposition 4.3 we may assume that ..
-— ~y o * |
Af\Nge Ho(to,ro) and ang’ Fo (uo,so) for 1< t,<r, and

l1<u,<s

0 o°
H = {hlghz, sy hr} and F = {f1, fz' so0o, fs} on K and E

Lemma 5,10 now: implies the existence of taut e-chains

respectively such that A/ \NC® H¥t,r) and §f\NC;? FXu,s), for
1<t<r and 1 <ux<s, Also, there is a taut g-chain C = {dl’ dss
ovey dm} on N and positive integers i and k such that
1<i<k-2<kgm EONC ¢X1,i), BONC cXkem), C(1,i) and
C(k,m) are closed refinements of H(.‘J__‘,r) and F(l,s) respectively,
and C*/M\[EN1,t-1\ FX1,u-1)] = #. The chains H(l,r) and C(1,m)
on K and N vrespectively, now satisfy the first four of the six

results of lemma 4.4, The proof of lemma 4.4 however shows that H' and
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€ can be modified slightly to also satisfy the last two results, Thus,
without loss of generality, we may assume that H and C satisfy all
six results of the lemma,

The construction of theorem 5.1 can now be carried out to produce

an g=-chain G on A\_UN which is a refinement of H and C such

0

that the links of G. covering B/ N are precisely those of C(kym),

o)
The chains G. and F on K\,/N and B respectively, with the common

0
terminal subcontinuum B/ )N, can be joined in exactly the same manner
as H and C by the construction of theorem 5.1; to produce an g-chain
G on M contrary to its existence, This contradiction concludes the
proof of subcase ib,

Case ii, Suppose that each indecomposable subcontinuum of M has
an empty interior relative to M, With this additional hypothesis,
theorem 3,11 and coreollary 3.12 show that there is an upper semi-
continuous decomposition & of M which is an arc with respect to its
elements, Let MM - [0,1] denote the composition of the projection
map of M onto the decomposition space of & and the homeomorphism of
& onto [0,1), Let A = n’lto,%ﬂ and Bi:‘ﬂpl %,l], Since 1T is
monotone [1.4], each of A and B is a proper subcontinuum of M,
Thus, A_ and B are both g-chainable by the existence of M. Propo-~
sition 4.7 and lemma 4;11 now imply that A/ \(BNA) is a terminal
subcontinuum of both A and BNA and establish the existence of a
subcontinuum K of A/N(BNA) such that K ié either a terminal
point or a nondegenerate indecomposable terminal subcontinuum of both
A and BXA,

Let Cy = {d], dby e-+5 dl,} and F = {f], £3, ooy f1,} Dbe

g~chains on A and B\A respectively, The objective now is to
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construct refinements C and F of CO and FO respectively such
that the last link of C meets the last link of F in a point of K,
If K is a terminal point of A, as may be the case, then K is also
a terminal point of BNA, In this situation, proposition 4,3 immed-
jately implies the existence of the chains. c(1,m) and F(len) such

that C and F are refinements of C. and Fo respectively, with

0
KQ;? dm and KQ;? fn. Thus, we may assume that K is a nondegenerate
indecomposable subcontinuum and is therefore chainable,

Since K is contained in both A and BN\A, the chains C0 and

FO both cover K, ILet bo and 61 denote Lebesque numbers for the
covers CO and FO respectively, If & is the minimum of g, 60’

and & then as was shown in lemma 5,10, & 6-chain G(l,k) on K

1°
exists which is a refinement of both CO and FO’ Since K 1is a non-
degenerate indecomposable continuum and gkf"\K # @, every composant
of K contains a point of gk/“\K [26, p., 58]. Since there are
uncountably many composants of K [26, p. 59], and at most two of them
are accessible from either A or BNA, there is a point a in
gk/“\K which is inaccessible from either A or BNA, Lemma 5.8
implies the existence of a chain C(1,m) on A which is a refinement
of CO and which contains a in dm/"\K, Similarly there is a c¢hain
F(1,n) on BNA which refines F, with a e £ /K.

Let U denote an open set containing « such that UTC dmmfn-“
We shall show that-no continuum in MU meets both ANU and
(MNTU)NC* = M\c*. Suppose that N is such a continuum, Then
N/ NWBX\A) # 4 since N@C*. Now assume that N/ \AMN(BNA)T = g.
Since MN[A/XBXZ)] is the union of the two separated sets

AN(BA) and B\A, and N is a connected set, if N fails to
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intersect A/ Y(B\A), then it is contained in either BN\A or

AN(BN\A) [26, p. 11]. But this is impossible since N/ \(BN\A) # &

and N/ A £ @ which implies that N/[AN(BNA)] # @, Now,
N(BXA) is a subcontinuum of BNK which intersects both
AMN(EXE) and BNA, Tmus, NOENK) €AMNESE) and  the
‘

second conclusion of lemma 4,11 shows thét AM(BXA) must be con-
tained in N/ (BNA), However, a ¢ KC ANBNXRAE) and a £N, This
contradiction then implies that no subcontinuum of MU meets both
ANU and MN\C*,

It follows that M\U is the union of two disjoint closed sets,
one of them containing ANU and the other one containing M~\C* [26,
P. 15]. Since the space is normal, there must exist two open sets S
and T such that MNUC S\UT, ANUC S, MNC¥CT, and §/T = ¢,
Arguing in exactly the same manner as that given in lemma 5,8, it can
be shown that [C(1,m-2)/8] @ [(d ./ M\S)NT] @ [d (s] @
[(fnlﬁ\T)\u/Uﬂ_O [F(n-1,1)/\T] is an eg-chain on M contrary to its
existence, Therefore, the theorem is proven, ||

Theorem 5.11 has approached characterizing & chainable continuum
in terms of its atriodicity and hereditary unicoherence, However,
characterizations of chainable continua will apparently have to include
some restrictions concerning the chainability of indecomposable subcon-
tinua similar to those included in theorem 5,11, The dyadic solenoid,
S, is an indecomposable, atriedic; and hereditarily unicoherent contine
uunm, In fact, each proper subcontinuum of S is an arc, However, S
cannot be embedded in the plane and thus cannot be chainable by theorem
2,16 [14, p. 383].

The concluding theorem of this thesis significantly extends
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earlier results which had been restricted to finite unions, It does
however, follow only after the considerable effort expended to produce
theorem 5,11, The ease and brevity of its proof is extremely pleasant

relative to those proofs which have preceded it,

5.12 Theorem Suppose that M is an atriodic, hereditarily
unicoherent continuum which is the union of countably many chainable

continua., Then M is chainable.

Proof: Suppose that Ml, MZ’ coe is a sequence of chainable sub-

continua of M such that M

]

M., If N i ind b
}E{ T N is an indecomposable

subcontinuum of M, then N %:Z(Nf*\Mi), Since, for each i,

1

N/”\Mi is a continuum and no indecomposable subcontinuum is the union
of countably many proper subcontinua [26, p. 58 and 59], there must
exist an integer k such that N = N/ﬂ\Mk. Thusy, N is a subcontinuum
of Mk and is hence chainable, Since each indecomposable subcontinuum
of M is therefore chainable; theorem 5.11 implies that M is

chainable, ||



CHAPTER VI
SUMMARY

The main objectivé of this thesis has been to present a complete
exposition, by a direct approach, of the characterizations of chainable
continua, This approach, of working directly from the definition of
chainable continua, does not require the additional background required
when developing the subject in a more indirecp manner, such as the
inverse limit approach, to be mentioned later, After a presentation in
Chapter I of the historical background of the subject and an intro-
duction which included the basic definitions, the thesis has presented
the complete proofs of all results directly involving sufficient condi-
tions for a continuum to be chainable. While some proofs were, perhaps,
far more detailed than some readers might have desired, it is hoped
that the several methods of approaching problems of chainability are
sufficiently detailed so that they might be added to the readers arsenal
of research techniques,

Chapter II presented many of the basic consequences of a continuum
being chainable or just e-chainable, including several of the funda=
mental techniques of constructing chains on a continuum from given
chains, These results were repeatedly applied throughout the following
chapters, The fact that all chainable continua are atriodic and
hereditarily unicoherent was first presented and proven in this chapter.

The significance of this lies in the effort expended to show that, while
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these conditions alone are not sufficient to guarantee chainability; the
early additional restrictions could be considerable reduced,

The first notable efforts to show sufficient conditions for chain-
ability included a restriction to hereditarily decomposable continua,
This result, along with several equivalent conditions; occupied our
attention in Chapter III, A large number of intermediate results and
techniques were required, however, before this objective was finally
realized, Included in this development was the general idea of split-
ting a continuuﬁ into two disjoint pieces, chaining on each separately,
and then joining the chains together to form a chain on the entire con=-
tinuum, This process necessitated the introduction and eventual
development of the subject of terminal subcontinua. This became the
objective of Chapter IV along with the further development of chaining
abilities on terminal subcontinua,

Chapter V began with the first of several results attempting to
weaken the restriction of hereditarily decomposable continua, Addition-
ally, it was possible to show that the conditions of atriodicity or
hereditary unicoherence. of the continuum could be partially reduced,
if other restrictions were imposed on the continuum or its proper sub-
continua, This chapter concluded with the proof that any atriodic and
hereditarily unicoherent continuum is chainable if each indecomposable
subcontinuum of it is chainable., An example was also stated to show
that some restrictions along this line are essential to insure chain=
ability.,

Closely allied or continuing to build on the material presented in
this thesis are several topics which might prove interesting for future

study, other Ed, D, theses, and future research, Among these would be



the study of chainable continua as the limit of an inverse limit
sequence or system, Some results which are laboriously proven directly
are apparently simpler when this approach is taken,

Related to this is the study of the continuous images of chainable
continua in general and in particular, the continuous images of the
pseudo-arc and the pseudo-circle, Parallel to the development of
linearly chainable continua, herein called simply chainable continua,
and having many of the same results, is the subject of circularly
chainable continua or circle=-like continua, Iach of these subjects
would provide a challenge equivalent to or exceeding that encountered in

developing the material to the extent attempted in this thesis,
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APPENDIX

INDEX OF DEFINITIONS AND EXAMPLES

Accessible composant, 129
Adjacent links, 6
Atriodic,

C(l,m) 9 6
C(1,m)/\D, 2k
C*(l,m) 9 6
Chain, 5
covering a continuum, 7
defining sequence for, 30
E~=y
linear, 5
minimal, 7
on a continuum, 7
pattern of, 32
taut’ 6
Chainable continuum, 8
Closed refinement, 7
Closed Topologist's Sine Curve, 9
Composant
accessible, 129
inaccessible, 129
Contained exactly, 97
Continuum, 5
chainable, 8
decomposable, 9
indecomposable, 9
irreducible, 85

Decomposable, 9
hereditarily, 9
Defining sequence of chains, 30

End point, 58
g-chain, 8

Exact containment, 97
Example A; 9

Example B; 11

Example C, 11

Example D, 11

Example E, 11
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Example F, 13
Example G, 13

Fill up, 46
G, 45

P

8, 46

region with respect to, 53
arc with respect to its elements, Sk

Hereditarily
decomposable, 9
indecomposable, 9
irreducible, 85
unicoherent, 9

Inaccessible
composant, 129
pOint 9 129

Indecomposable, 9
hereditarily, 9

Interiorly,

Irreducible, 85
hereditarily, 85

Limit element, 53
Linear chain, 5
Link, 6
adjacent, 6
nonadjacent, 6

Minimal chain, 7
Monotone transformation, 113

Nonadjacent links, 6

Opposite
end points, 109
terminal points, 109
terminal subcontinua, 109

Refinement, 6

Closed, 7
Taut, 6
Terminal

point, 58

subcontinuum, 58

Unicoherent, 8
hereditarily, 9

Upper semi-continuous,
decomposition, 46
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