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CHAPTER I 

U{TRO:OUCTION 

The discavery that .nicotinamide was a compc;ment of .coenzy111e I, (NAD) 

and csenzyme.II (NADl")· (1,2) and the demonstration that nicotinam:!,de 

and nicotinic acid were effective in the prevention and cure of canine 

blac~ tongue (3,4) and human pellegra (5,6) led to an extensive study 

of the metabolism and physfological · effects of this vitamin .• 

The biosynthetic pathways for the formation of NAD from nicotinic 

acid and nicotinamide have.been well established (7), although the 

relative significance of the various pathways is still in dispute. 

Kaplan et al, (8,9) showed that hepatic NAD was markedly elevated 

by nicotinamide challenge (500 mg/Kg), Greengard et al. (10) reported 

that hypaphys~ctomy increased both the degree.and durat:i,on of this 

elevation. Further studies established·that.the pituitary gland may. 

function in the regulation of ~AD biosynthesis primarily through its 

control of the thyroid and adrenal glands (11). Other work has impli-

cated enzyme inhibition by substrates and end products in the control. 

of NAD(P) synthesis (12-16), 

In additton to the unchinged vitamers, seven metabolites of nice-

tinic acid and nic~tinamide have been isolated and identified in the 

urine of various mammalian species. These metab~lites are: Nl-methyl-

nicotinamide.(17), nicotinuric.acid (17), nicotinamide-N-oxide (18), 
• 

Nl-methyl-2-pyridone-5-carboxamide (19), .NLmethyl-4-pyridone-3-_ 
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carboxamide (20), 6-hydroxynicotinamide (21), and 6-hydroxynicotinic 

acid (21). 

Previous studies in t~ese laboratories_demonstrated·that;marl<,e~ 

differences existed between the·met"b0lite excretion pa.tt.erns·observecl 

in not'fflal and hypophysectomized rats whe,;i. eit.her low (Smg/K.~) or 

challenge dos~s of nicotirtam:lde·were,administ~red. (22). The,la-x-gest 

of these differences occurs in.the excretion ef N-metliylnicotina111ide 

where hypophysectombed rats were found· ti!> .excrete approximately. one- . 

quarter of the ,amount observec.1. in. the ur.ines ef normal animals~ 

2 

The latte.r observation suggested that· lower levels of: nicatirtamide-. 

N .. methyltransferase (E.C.ZaL~.1) m.ight.e~ist in the hypophysectomized 

rat as a result.of endl!lcr::tnectc,m.y. Row-ever, preliminary investigation 

(23) showed the basal levels of enzyme.activity present in hypophysect

omized rat liver to be higher than in the liver of the.normal rat, Of 

all treatments tested, only the administration of challenge doses of 

nicot:tnamide appeared to effect any change in the enzyme activity ob

served. This treatment resulted in approximately a two-fold increase in 

the enzyme activity in.both types of rat. 

It was originally hypothesized tha~ ni~otinamide-N-met°Q.yltransfer

ase might.be lower in the.hypophysectcnnized ~at,and wouldbe·elevated 

by glucocorticoid t~erapy as was·found t~ be t~e case with·tryptophan 

oxygenase (24)o · However gluc~corticoids were.found to h~ve n0 influ

ence on enzyme -activity, The-above experiments therefore failed to 

explain the differences in.metabolite excretion which were.previously 

observed and the-two sets of observations appear to be paradoxical. 

It was the purpose of this study to investigate the factor(s) 

responsible for the observed differences in.the excretion of N-methyl-



nicotinamide_and nicotinamide and for the.elevation of nicotinamide-N

methyltransferase activity resulting fro:i;n nicot:lnamide challenge.-·· 

3 



CHAPTER J;I 

LITERATURE REVIEW 

It is not within, the scope, of this· worlJ,<i to attempt,.an in. depth 

review of the discovety and characterization of NAD, nicotinic acid, 

nicotinamide,·and related cempC!lunds. nor.to fully document'tbe many 

physiological·and pharnmcological effects,of these compounds,in biologi

cal syst;ems. For a broad· current coverage. 0f the area as·. it applies 

to mammalian systems, .the reade;r is referred to the,proceedings of a 

workshop on.the metabolic effects of nicotinic acid and its derivatives 

(25) and it$ extensive general bibliography. Special reference shouid 

also be made to reviews by Chaykin· (7), Celowick (Z6), Kaplan (27 ,;ia), 

and Sund (29) o · 

Catabolism of Nicotinic Acid and Nicotinamide 

Since the synthesis of:nicotinic acid-7-14c and ni~otinamide-7-14c 

(30) many papers dealing with the metabolism of the~e coni.pounds have 

been published, These investigations. (18,20,21,31-35) have es.tablished 

N1-methylnicotinamide (N:MNAm),.nicotinic acid (NA), nicotinamide (NAm), 

nicotinamide-~-oxide (NAmNO), N1~methyl-2-pyridone~5-carboxami~e, 

N1-methyl-4-pyridone-5-carboxamide, 6-hydroxynicotinamide (6-0HNAm), 

6-hydroxynicotinic acid (6-0HNA,), and nicotinuric acid (NAgly) as 

urinary excretion products of nicotinic acid and nicotinamide in var

ious mam,malian species. The release of carbon dioxide-14c has been 
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observed in studies using the vitamers labelled in the.carbon-7 position 

(31,35-38). 

The metabolic transformations involved in the conve'l'.'sion· of NA and. 

NAm to their corresponding catab~lites include decarboxylation, conju

gation, methylat:l:.on, · anq oxidatien proces,es. 

Decarbo:xylat:ton 

Carbon dioxide-14c has· been shown to be presen.t in· the· expired air 

of the rat,·mouse, dog, and hani.st~r following the administration of 

either NA-7-14c or NAm-7-14co Lee~ al. (35) showed that decarboxyla-

tion was a microbial process by demonstrating that no labelled co2 was 

liberated when the vitamers were administered to germ-free rats, The 

mechanism of this microbial decarboxylation is unknown. In rats, 

approximately twice as much co2 is released fromN.Am as from NA. (27,36). 

It is possible that the evolution of co2 involves an oxidative deamida-

tion thus requiring NA to be recycled through NAD to NAm before it can 

be subjected to the loss of c-7, or, perhaps, a single enzyme with a 

markedly different affinity for each of the vitamers is responsible. 

No studies have been carried out using the ring-labelled vitamer, there7 
. . 

fore nothing is known about. the fate of the pyridine ring of the 

vitamers in the mammalian gastrointestinal tract. Kung and Tsai (39) 

have shown a pathway for the degradation of NA to pyruvate via 6-0HNA 

which is believed responsible for the degradation of NA in Clostridium 

barkeri (40), In this ·system C-7 of NA becomes.C-1 in pyruvate. If 

such a pathway was possessed by any of the microbial species common,te 

the mammalian gastrointestinal system, this too could explain the 

mechanism of co2 release, If this were the.case, the.greater COz 

release from NAm might be explained on the basis of its more effective 

' 
\ 
'i. 



compartmentalization in the gastrointestinal tract where it·can be 

readily deamidated to supply.NA to.such.a mici:obial. pathway~· S1,1pport 

for such a compartmentalization can be found if one.considers the.free. 

and reversible passage of the vitamers across the gut membranes in com-

bination with the rapid. removal of nicotinic acid from the system by. 

the internal organs. 

Conjugation 

NAgly is.the primary ceindensation product of NAfeund·in:mammalian 

urine" Traces of ~.,.-nicotinyl glucuron:tde have been observed in rat 

urine (41); however, NA administration fails to enhance its excretion 

and its formation appears to be.of no quantitative importance. 

NAgly, on the other hand, can be a quantitatively significant 

urinary metabolite. It.is one of the major compounds obse7ved in urine 

following the administration of large doses of NA, It.arises from the 

condensation of glycine and NA. The synthesis occurs in both.liver and 

kidney. The enzyme.responsible for the formation of this product ap-

6 

pears to be localized in the mitochondria (42,43). A nicotinyl-coenzyme-

A intermediate has been implicated in NAgly biosynthesis. The basis for 

this conclusion was the demonstration that the addition of Coenzyme.,.-A 

to.purified enzyme preparations stimulated ~~e observed activity and 
!. 

that pantot4enic acid deficiency in rats ded\eased the excretion of 

this conjugation product following the administration of large doses of 

NA (44). 

Methylation 

NMNAm is a majer excretion product.of both NA and NAm, Its form-

q1.tion froI!lNAm is catalyzed by a soluble enzyme which is localized, in 



the 1i ver. This enzyme, nicotinamide-N-methyl trans£ erase .(NM'rase) , was 

first studie~ by Cantoni (45,46). Th~ enzyme requires s-adenesyl-L

methionine (SAM) ae a methyl, doncn::. · 

7 

NMTa111e activity :ls net foun<:1 :l:.n. all mammalian systems .• · · It ·is essen

tially absent :t.n · sheep s:t.nce neither the'. enzyme waa de.tected· (45) ner 

its product or.related oxidation products.found. in any·quantity in.sheep 

urine (46), The enzyme dees.not catalyze the methybtien·of·NA (47). 

Trigonelline (Nl...,methyln:Lcot:tn:tc ac:td) is ·net no.rmally observed in 

mammalian urines unlees:tt.or a precursor is censumed in,the diet (48-

50). The only known dietary precursor of trigonelline is niacytin, a 

complex molecule representing the bound NA of cereal grains. The 

mechanism of formation of tr:tgonelline from niacytin is not known but. 

its formation appears tQ take place while NA is in the.bound state. It 

has also been demonstrated that trigonelline is not utilized as a pre

cursor for NA in mammalian systems (51,52), Indeed the only catabolite. 

of either,vitamer which mailllllalian systems have an apparent capacity to 

recover is N.AmNO. 

The excretion of W'iNAm is.depressed in rats suffering from a cebal

amine (vitamin. B12) def:lc:lency (53). This may be.due to a lack of 

methionine required for the formation 0f SAM, It has been established 

that a cobamide enzyme is required £0r the conversion of homocysteine 

and NS-methylpteroyltriglutamic.acid to'methionine in Escherichia coli. 

Such a requirement has not been established in mammalian systems (54), 

This effect of a cobalamine deficiency thus may be.due to some other 

yet to be understood factor or it may. indeed indicate the involvement 

of a cobamide enzyme in the conversion of homocysteine t0 methi0nine in 

mammalian systems. This is distinctly possible, si~ce the utilizati0n 
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of SAM as a me1:hyl·denor generates hf)fflc,cysteine·which.mustrbe,recol'l,vert

ed to methi~nine by the above pathway. Interruption of.thi"·cych could. 

induce a methionine (an4 thus a met~yl denar) ~eficiency in·an:Lmals. 

receiving minimal ,.dietary methionine. · Bef0re .. this finding· can be. 

properly.unde,:stood, e:xper:tments·:f.nyelv:tng B12 deficiency·wl!>uldhave to 

be performed·with·careful cons:tderatic,n being given.ta the methionine/ 

cysteine statijs of such.def:l:.dent animals. 

Oxidation 

Several ox:tdattl9n pr<?>cesses.are-:t.nvolved in thecatabalic transfor

mation of NA and NAm. 

Two minor components of rat urine, which are direct oxidation prod

ucts,of the respective vitamers (6-0HNA and 6-0HNAm) have rec~ntly been 

isolated and shown to be 0£ mam,inalian origin (21), The mode of syn-. 

thesis of. these compounds is.unknown •. 

Another direct oxidatie;,n product. 19£ NAm is .. NAmNO. This compound 

can be.a quantitatively significant component of mammalian urine (18,32). 

Tl).e oxidation is catalyzed by a liver microsomal system which.requires 

both.NADP and molecular oxygen (55,56). ·A soluble enzyme.system has 

been observed to have·the capacity fer reducti~n of NAmNO to N.Ai:n (57). 

This enzyme system was ist;,lated frem hog liver and the'.reduction was. 

shown to be dependent upon NAD~ or a low molecular weight constituent 

found in bailed liver extract. (58). It.was also shown.that the enzyme 

preparation had xanthine oxidase activity, and that all acceptable 

electron donors were known substrates for xanthine oxidase (59). It 

was further shewn. that xanthine o:ddase catalyzed the incorporation ef 

the oxygen of ~AmNO intt:> uric acid as well as the N:ADH dependent 
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reduction of NAmNO (60). These two reduction reactfons are·thus believed 

to be catalyzed by two independent sites on xanthine oxidase. 

Finally, ~Am can be oxidized to either the 2- or. 4~pyridone. 

(~l-methyl-2-pyridone~S-carbexamiqe and Nl-tl\ethyl-4-pyridone~3-carbex-. 

amide, re11pecti'tfe;y), . The formatbn · o:f beth cf: these compounds is .. 

apparently catalyzed by the enzynie Nl ... met~yln:f.cot:tnamide, ;E>xidase. 'l'he 

incorporated oxygen.has been shewn.to'be.derived from·water· (61,6i).· 

The ratio of 2-pyridone. to 4-pyr:t.done. in the urine is.- found: ta be con-:-

stant within-a species but widely variable between spec:Les t"anging frem 

100/1 in the rab'\,it tc, 1.2/l·in the·rat. Us~ng eithe,:- the'.2- sr the 

4-pyrtdone as a measure·of enzyme activity Felsted and Chaykin (63) 

founc;l a censtant ~ for N~Al!l- and differing Vmax values. 

NMNAm oxidase has been shown to be under.both.harmenal and genetic 

control (64-66). The enzyme activity has bee~ demonstrated to vary 

betwe~n sexes within a strain.and between different strains of mice. 

Huff and Chaykin (64) demonstrated that mice. of the C57B~/6 s;rain 

possess ten times,the ox:ldase activity observed in the DBA/2 strain. 

This was credited at.-.least in part to a two-fold change, in Km· These 

wor~ers also showed a two-. to four-feld greater activity in.the a~ult. 

males as C(;)mpared ts the adult-females in each strain.· It was suggested 

that this sex difference was a result ef testosterone mediated.induction 

since androgen was faund to be essential t() the .. initia.tion anci mainten"7 

ance of the increased enzyme activity.· Te~tasterone administration was 

found to'st:l,mulatet-.i.e liver oxidase in both.,intact females and, im-

mature m,ales. The slight- axidaee activity 0bserved in lung tissue was .. 

found to be insensitive to androgenic.influence (65). Ot~er worke;s 

(66) reported similar res~lts in cemparing the t3/t3 strain with the_ 
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DBA/1 strain. They fQundthe liver enz~e t9 be in the seluble fraction., 

In agreement with the findings sf. Huff and Chaykin (64.,65), · br,eding 

experiments (66) indicated that the-level of enzyme act:l,vit:y·was con,

trolled bra pair of autosolhal alleles, ene determining. the high·level. 

and the other the law·level.of enzyme.activity. A.greater·variation in. 

the activity abserved in males as.compared.to fe1I1ales.was:neted. Th,· 

administration of estradiol was-shown ti!> depress enzyme;acti.vity in the 

adult male. Testosterone. administration slight~y stimula.t·ed· the activ

ity in the intact female. Dexa:m.e;has~ne (a potent sy11the.tic glucocorti

oc:ld) was :found· tc, depre~s acttyity: te half the ·normal, levels observed 

in both. sexes, · 

Th~·Absorption and Ex~ret~on of Nicotinic Acid, Nicotinamide, 

and Relate~ Catabolites 

Early studies <Pn,NAm and NAmetabolbm and excretion suffered frc,m 

an.incomplete knowledge of the.compeunds involved and the necessity of. 

utilizing relatively insensitive .. che~ical methods for quantitation of. 

the recognized metabolites. With the-advent of .radiE>tracer methodology 

and the·applicat:lon of chromatc,graphic techniques, quantitative excre

tion studies became more feasible. 

Relatively little is known about the dynamics of the distribution 

of this family of compounds in the intact system. The distributional 

kinetics of the unchanged vitamers with respe9t to dose.is of particu

lar importance to the understanding of their metabolic fate. 

Excretion 

The· quantity and distribution of the catabolites excreted has been 

shown to vary with species, age, sex, di~t, dosage and form of the 
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vitamin administered, and route of administration. The nutritional, 

hormonal, and disease statuses and the,genetic makeup of the animals in 

question are also it1volved (22,31-35,44,45;53,63-69), The inconsistent 

mixing of all of these variables can and indeed has contributed to the 

variability in the excretion data available: Lack of recognition of 

many of these factors combin~d with a get1eral penchant for utilizing 

hyperphysiological,dose~ has contributed t0 the.controversy surrounding 

the metabolism of NAm and NA. 

Th~·most complete data on,e~cretion of the urinary catabolites.of 

N.Am and.NA has been reported by Chaykin ~-,,!!., (32) in mice and by 

Greengard and coworkers (33,34) and Lee, et.al. (22,35) in rats .• All 

of these studies have involved th~ administration of relatively high 

doses of NAm and NA (the lowest in the rat being 5 mg/I<g), The lowest 

of these doses approximates the expected daily intake of an animal 

being maintained on a normal commercial diet. These diets in themselves 

are fortified to levels in excess of both the nutritional requirements 

of the animal and those levels which.would normally be attainable in a 

naturally selected diet. The above doses were administered to fully 

fed animals which had therefore already received more than the physio

logically required amounts of vit~min .. in one form or another. 

In order for the dietary vitamin to.become available, it must be 

solubilized from an essentially dry feed stuff. Th~s necessitates the 

total wetting of the diet.and may also require its partial or complete 

digestion. The daily food consumption is spread over a period of many 

hours. Thus, the dietary vitamin would tend to be infused into the 

metabolit pools over an-extended period, A single intraperitoneal or 

~ ~ administration of. readily available, water solubilized, vitamin 
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equivalent to the expected daily intake in addition to that.·already 

consumed does not.therefore represent a true physiological dose~ Fur-

ther, six,.ce trace doses of nicotin:Lc acid are so readily· taken up by the. 

tissues (liver in particular) and convetted to NAD, onewauldexpect its 

eventual and essentially complete·con:version to NAm, Therefore, no 
' ' 

particularly significant differences\:tn the·metabc,lUe·excret"io~ pattern 

should be. observed. regardless of. the \d:t.etary form of .. the· vitamin· sup-,. 
~ 

plied. Experimental support ft:ir the above argument is.to·be;feund in 

the work of Feigelson et.al. (70). Rats were given.NA in·their drink

ing water at a level yield;tng an intake·of approxima.te.ly-SO·mg/Kg/day. 

Administration of this quantity of the vitamer as a single dose will 

yield a maximumNAmediated elevation of hepatic NAD, After·two weeks 

of NA supplementation at theabove level, however, there was-no change, 

in hepatic pyridine nucleotide content. 

Of the' above cited excretion studie.s; probably the most reliable 

are the:studies of Greengard and coworkers (33). Their work. is based 

on relatively large groups·of animals which were well matched for age, 

weight, sex, anc;l nutritional status. If one cons:l..ders the findings 

obta:lnedfrom the injection of 5 mg/Kg of each vi.tamer reported by these 

workers, there is an ap]?arently marked clifference in the metabolite 

excretion patterns obtained for each of the vi.tamers when excretion is 

considered over a 24 hour period. However, if the data for the first. 

2 hours are eliminated the differences are drastically reduced and if 

the data for the first 4 hours are eliminated the.differences disappear. 

Of the label excreted during the 4-24 hour period, 90% is in the form 

of NMNAm and the 2- and 4-pyridone regarclless of the original form of 

the vitamer administered, It.is noteworthy that 50% of the administered 
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label still remained to be.excreted after 24 hours in both cases. It 

would thus appear that in the rat the.predominant basalurinary catabol-

ites of bothNAm and NA are NM.NAm and the two pyridones.with·NAm and 

NAmNO constituting the bulk of the remaining products,·: Only traces. ef 

NA and/or NAgly are excreted, This latter situation. is: indicative o.f 

the fact that any NA generated under.physiological. conditisn.s·will be 

very effic:tentlyut:Uhed.:tn·the synthesis·of.pyridine nucleotides, 

The administration of hyperphysiolegical doses ofa compound can 

be a useful means of delineating the feasible metabolic pathways in-

volved. in the util:tzatie>n of that cernpoundo However,'. as·is·all too 

. frequently presumed in many areas of, b:tologic~l research,· the results. 

of such investigations cannot be tak,en to.reflect the:physiol.ogical 

norm. A case in point :ts the work. of Chayldn ~ al. .(32} ~ These work-

ers utilized·a very complex experimental design aimed;at·deter:inining 

the urinary·excretionpatterns.o:1:' nicot:tnic acid andnicotinamide in 

mice maintained on.various dietary regimens. It is not clear whether 

the imposition of a "niacin deficiency".was accompanied·by.a concurrent 

restriction of-dietary tryptophan, · Mo,;eover, the duration of the im-

posed dietary restriction was not sufficient to permit the development 

of any clinical symptoms.of such a deficiency even in the absence of 

all exogenous injections. Imposed on this design were marked changes 

in age (2-6 weeks) and weight (13-36 gms). There was one. animal: per 

• dietary treatment to which multiple doses of either NAm or NA (1-500 

mg/K.g) were administered during the experimental period by either the 

intraperitoneal or oral routes. Co~parisons between the excretion 

patterns obtained for NA and NAm did not appear to be based on cempar-

able doses. The best estimate is that the dose of nicotinic acid was • 
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as much as twice that of nicotinamide. All comparisons were·m~de on 

the bases of a complete 24 hour.excretion period or.were restricted to 

the first 4 hours follewing ad,min:t.stl:'atbn when, as pre1riously shewn. in· 

the rat, the.entire and conly ebserva'ble d,:l,fferences. are,seen· (at.a 

S mg/K.g dose level). Unq.er no etrcumstances waa more than:23% ef the 

injected dose accounted, for in the·· short· t~rm s.tudies · and' in· 'Ill.Ost in-

stances. the: in terpretaU.o'l'l.s were ·based. on recoveries of from 1-10% 0f 

the,injected dose~ 

The·. excretien sf NA and NAgly d.er:t.ved- from, the administration of 

hyperphysi0logical doses of NA, or 0f N~ and related:metabelites de-

rived from a;s:t.milar adm:t.n:t.strat:t.on of NAm, cannot. be.taken,as·evic;lence· 

wb,ich bears:on the,metabol:t.c tnvoivemertt of either. of:these vitamers in 

NAD metaboU.sm. · · Nor can the -use .. of such· me,:thod, be expected to yie~d 

phydol1;>g:tcally representative results, Yet· based:· en - th;l.s · type· of data 

derived from a weakly ~esigne~ experiment the above authors (32) have 

reached many conclusions concerning the influence of a dietary niacin 

deficiency, the absorption of the,two vitamers fl:'om the digestive tract, 

and the function of the.pyridine nucleatide cycle. This work has been 

much quoted in subsequent years and it and similar reports·with their 

associated weak and often unfounded presumptions.have contributed sig-

nificantly (in a nonconstructive manner) to the,current controversy 

enveloping the area of pyr:t.din~ nucleotide biosynthesis. 

The work of Lee et -al. (22;35)· is open to the same· criticism with_ 
" --

respect to dose levels used,, In addition the numbers of animals util-

ized was. small and these were run.in groups.rath~r than individually 

thus eliminating any possible-measure of interani~al.variability which 

has in fact never been reported in any of the,recent work, Also 
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comparisons were made between normal· mature .. males and. pre-- or peri-

pubertally hypophysectomized animals obtained from two.different sources, 

although the animals were originally derived from .the. same Sprague 

Dawley stocl<,. A similar criticism applies to·the work:to·be·reported 

here although·differences in age were eliminated and. the:animals were 

run individually. There is, however., a generally good. agreet11-ent be-

tween the findings of Lee ~al, (22) ·and· those of Greengard· et aJ,.·, (34) 

in normal and·hypophysectem:tzedmale (22) and female. (34)·rats·receiving 

a NAm challenge. The·data obtained by Lee (22) using 5 mg/Kg and 500 

mg/Kg doses of NAm. or NA in normal adult males are also in:good agree-

ment with the· findings of Petraclc, ~al.· (33) in similarly· dosed· adult 

female rats. No comparable data are available for hypophysectomized 

animals receiving the lower dose. 

The urinary excretion data discussed abpve are widely considered 

to reflect basal conditions. As should be apparent from the above dis-

cussion such a presumption is probably totally invalid. Thus, any 

conclusions concerning basal.pyridine nucleotide biesynthesis based on 

these proclaimed differences in excretion are likely to be unfoun<ied, 

Absorption 

Traces of NAm, NA, and their catabolites are secreted·into the 

intestine via the bile (71,72), All of these compounds, regardless of 

the means of entry into the gastrointestinal tract (bile, diet, or 

reabsorption) appearto be.very efficiently absorbed fromat·least the 
. '. 

intestine since little or no radioisotope is detectibla in the feces of 

animals which have been injected with the labelled vitamers. (73). 
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Whether the vitamers taken per~ can be. absorbed directly from 

the stomach or must.pass into the intestine prior to being absorbed has 

not yet beei:i definitively demonstfated. 

Classically, the stomach has·. been considered, as a. nonabsGrptive 

organ •. However, the rap::tdity. w:tt.h which;the l~belled 'l::ttamersare 

detected in.the livex-.and bleed.fQllew:lng pet-!!_ administration suggests 

the possi.bility that one sr both of the vitamers might be.absorbed. 

directly from the stomach, On the other hand, th~ method normally 

utilized in oral administ;:ration may merely cause a significant distur

bance of the stomach contents so as t0 give the administered vitamin 

almost immediate access to the small intestine. 

Rerat ~ al. (74) found that NA was absorbed from the abomasum but 

not the rumen of sheep and that this absorptive capacity continued 

throughout the small. intestine •. On the other hand, Tanigawa et al. (75) 

claim that NA is not absorbed by rat stomach but report ne supporting 

evidence for this;claim. On the basis.ef relatively.indirect evidence, 

Shimoyama et al. (76) argue that NA must pass inte the small intestine 

of the rat prior te being absorbed, These werkers also claim that NAm 

is deamidated.in the ste:mach by microorganisms prior to its entry into 

the small intestine and have convincingly demenstrated the capacity of. 

the rat stomach to perform this function (75,76). 

Once in the small intestine NA is readily absorbed. This vitamer 

has been shown.to diffuse passively across the intestinal wall with 

equal facility in either direction (77,78). NAm is.apparently capable 

of passing through theintestinal wall in the same manner (79), 

As indicated above, once in the body both.vitamers can easily re

enter the small intestine by reabsorption or to a limited extent.via 
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the bile. Ijichi et al. (73) clearly demonstrated the.reentry·of label: 

into. the stomac;hs of :mice following the administration. of:· either vitamer. 

This result was. also observed. by Petra'Ck et al. (33). following t;he ad

ministratfon of NAm t;o rat!\!, The mechanism of.this entry inte the, 

stomach has not been elucidated. Th±s:subject will be. discussed.further 

below with respect to its potel'.ltial s:tgn:t:U.cance in. ijA:p:· biesynthesis. 

One furthe~ point of interest is th,t dietary pyridine·nucleoticles. 

or those admin:tste~ed directly into the gastreintestin,·;~).· system cannot 

enter the body wit:hout.f:trst being 9,egraded to the.vi.tamer. level (78). 

;Further it has been demonstrated that N.AD(H) cannot. pass·from the cir-

culation into liver cells (80). 
I 

This is in contrast.to a report by 

Everse et al. (81). The conclusion~ reached in the latter report are, 

based on the gross misinterpretation of radioisotope studies which can-

not or do not yield any meaningful information concerning the passage 

of these nucleotides across membrane barriers. On the other hand there 

is strong indirect evidence.in th~ latter work to support.the findings 

of Turner and Hughes (78). 

The Biosynthesis.of Nicotinic Acid and Nicotinamide 

NA and NAm arise directly or indirectly from the degradatio~ of 

various pyridine nucleotides. Th~se nucle9tides must first be derivecl 

from the "de nc;,vo" pathways.for pyridine nucleotide biosyntbesis. Ne 

biosynthetic sequence has yet-.been demonstrated.which gives rise to 

either vita.mer without.the prior formation of a.pyridine nucleotide 

excepting the direct conversion ef NAm te-NA. Thus, although the. 

vitamers.are significant contributors to the biosynthesis·and mainten-

ance of normal pyridine nucleotide levels, they are intermediates in 
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salvage pathways only. The s:!.gnificance of these salvage.- pathways shouJ,.cj 

not-be belittled, however, for they are the only rou~es for NAD hie-

synthesis available 1 to tissues <:>ther than liver and poi;isil!>ly kidney. 

The de Novo Biosynthesis of Pyridine Nucleotides --·--- . . . 

At least three de novo pathways for the biosynt"Q.esis of pyridine 

nucleotides have been identi.fied (82,83). One of these, the aspartat~ 

pathway, involves the;formation of quinolinic acid (QA) from aspartic 

acid and a three carbon precursor. This pathway is restricte<;l to higher 

plants and microorganisms. RecentJ,.y it has been shown that, in E.coli 
' . '-~ 

at least, the three carbon precursor is dihydroxyacetonephosphate 

(DHAP), and that the conversion of DHAP and aspartic acid to QA in-

valves at least two proteins and requires FAD (84). A second pathway 

involving N-formyl-L-aspartate as.an intermediate in the formation of 

QA has been identified in Cl. butylicum (85,86). The last and most well 

defined pathway is that which involves the .conversion of- tryptophan t;o 

QA (7), The tryptephan pathway is.the only one to.be found in ma"lfilllalian 

and avian speciei;i. It.is also present in Neurospora crassa, Fusarium 

oxysporum, ·and Xanth6monas.pruni (82,83), The-yeast Saccharomyces 

cereviseae.is capable of utilizing both the tryptephan and aspartate 

pathways, the former when grown under aerobic and t4e latter under 

anaerobic conditions. (8.7). · 

All of the above pathways have QA as a common intermediate (Figure .. 

1). This compound is converted to NAD via a series of reactions.which 

are common to all living systems so far investigated. 

Ni~hizuka and Hayaishi (88) isolated from rat liver a system cap

able of converting 3-hydroxyanthranilic acid to n:Lcotinic.acid 



Figure 1. NAD Biosynthesis from Tryptophan, NAm, and NA. 
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mononucleotide (NAMN) in the presence of PRPP. Subsequently, the PRPP 

dependent formation of N~ was shown.to eccur ;l.n mic'l;'aorganisms, .higher 

plants, and fungi (89-91). GhQlson et aL (92) isolatec;lanenzyme cap"."' 

able of converting QA to ~A.MN. Th~s enzyme, QA phosphoribosyltrans

ferase (decarb(!>xylat:tng) (QAR.Tase), requires.PRPP.and.was:demonstrated 

to be different from NA, ph0sphe11:t.b"syltraneferase (NARTase) (E.C.2.4.2,1). 

This latter· enzyme also requires l'R.PP, cortverts NA to. the·same·product, 

a1J,d its activity is stimulated by ATP (93).. NAMN is converted to. 

desamido-NAD (dNAD) by an ATP-requiring enzyme, NAMN·adenylyltransferase 

(E.C.2.~.7a). dNAD is-then converted to NA:P by NAD synthetase (E.C.6.3. 

5.1) in the presence of glutamine and ATP. Thereaction sequence.from. 

tryptophan toNAD constitutes thE! tryptophan pathway for the "de novo" 

biosynthesis of NAD. 

Salvage Pathways for NAD Synthesis 

The Pyridine Nucleotide Cycle, 

The reaction sequence.from NA to NAD is known as the Preiss-Handler 

pathway (94,95). NAD can be hydrolyzed at.the NAm-ribose linkage to 

yield NAm and ADPR. This reaction is catalyzed by NAD glycohydrolase 

(E,C,3.2.2.5). NAm can then be deamidated by NAm deamidase to form NA. 

These two reactions.in combin~t:lon with the.Preias-Handler pathway con.,

stitute the pyridine cycle.(96), one of the two potential salvage 

pathways for the conservation of NA and NAm, 

There is much experimental evidence which supports the existence 

of such a cycle.for the reutilization of NAm. The first strong evi

dence was provided by Langan et al. (97) who demonstrated the ability 

of NA to interfere with the incorporation of NAm into hepatic NAD. 
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Subsequently, Narrod !E_ al. {98), utilizing NAm-14c and :-~SN demonstrated 

the marked·di:l.ution of lSN relat:t.ve·to that of 14c·in the:resulting 

NAD. Petrack et al. (99) then demonstrated the existence sf a NAm 

deamidase activity in rat liver which was sufficiently activ~ to·account 

fol;' the .NAD synthesis.,wh:tch was. observed .under the .challenge cenditiens 

in the above experiments, Finally, !jichi ee al. (73) clearly demon~ 

strated that NAm-l~c gave rise to all the intermediates of the Preiss

Handler pathway and showed the inhibitory infl~ence of NA on their 

production, Unfortunately, all of this research was carried out using 

large doses of the vitamers. Though the concept of the pyridine nucleo

tide cycle is sound.in so.far as it pertains to NAm metabolism under 

challenge.cenditions, the significance of this pathway in the mammalian 

system at physielogical levels of NAm has come,under strong attack, 

Regardless of the importance of this pathway in mammals, it is the only 

one.available to other organisms lac~ing the NMN pathway and is, 

therefore, still a pathway of biological import. 

TheNicstinamide Mononucleotide (NMN) Pathway 

A second possible salvage pathway.is via the NMN pathway. In this 

pathway, NAm is converted to NMN·by the enzyme, NAm phosphoribosyl

transferase (NAmRTase) (E.C.2.4.2.12). This enzyme:requires PRPP and 

its activity is modified by ATP (100,101). NMN is then converted to 

NADby NMN-adenylyltransferase (E,C.2.7.7.1), which again requires ATP. 

There is a possibili~y that this enzyme.is identical to NAMN-adenylyl

transferase. The eyidence for this is.relatively weak, being based 

entirely on the copurification of the two activities which has been 

shown in both red blood cells (95) and Erlich ascites cells (102). 
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Further support for this idea is to be found in the obse:i:vation· that the 

only pyridine nucleotide cycle enzyme which is apparently·active in rat 

mammary gland is NAMN adenylyltransferase (103), 

A Critic;al Evaluation of the Pathways Available fo+· the 

Synthesis of NAD in Manunalian Tissu~s 

The-contribution of the various pathways of N!D biosynthesis to.the 

maintenance of the.normal levels of this and related coenzymes is the 

subject of great controversy, in particular when one considers-the 

metabolism of NAm. for thi$ purpose, It is generally agreed that hepatic. 

NAD synthesis.from.NAm, under challenge conditions, is predominantly, 

if not exclusively, via the pyridine nucleotide cycle.. In vitro evi

dence suggests, however, that_mannnalian tissues have insufficient.NAm 

deamidase activity for the pyridine nucleotide cycle to function at 

physiological NAm concentrations. 

In the face of this objection, one_school has _suggested that the 

gastrointestinal microflora carry out the deamidation step of the cycle. 

Someevidence,supporting this position has been obtained although the, 

necessity for such a systemic cycle has not been demonstrated, 

A second.school has presented evidence indicating that NAm can be 

incorporated into hepatic NAD without deamidation via the NMN pathway. 

These workers have concluded, on the.basis of sometimes.strong but never 

definitive evidence, that the hepatic pyridine nucleotide cycle is not 

functional at physielog:lcal.levels of NAm, They have further drawn the 

unsubstantiated conclusion that·the sµggested systemic pyridine nucleo

tide cycle is of_no significance. 
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Based on.the literature-to 1968, Dietrich (104) prc;>pof$ed·two 

metabolic schemes for the:utilization of NAm and NA in the synthe~is of 

NAD in mammals, one for hepatic and the other for extrahepatic tissues. 

'l'he hepatic systel}'l differs. trom. the e~trahepatic in two ;Ways·~ First, it 

has the capacity tQ incorporate QA into NAMN: via QARTase,·which, linl,<.s 

tryptophan·to NAD synthesis (88,92). Secon~, a tentative·capability 

for the deamidation of NAm to NA, the closing link in the pyridine 

nucleotide cycle. (92); is considered.· 

Extrahepat:Lc· tissues lack any demonstrable .. NAm. deamidase: or QARTase 

activities (105,106). Dietrich (100) fo1:1nd that NAmRTase·in various. 

tissues is capable;of functic:,ning at physiological. levels·of·NAm in 

vitro. Further, a C(?mparative s.tudy ot the -distribuUon·.of NAmRTase 

and NARTase·. showed: that tissues appeared to fall into three .classes 

based.on their expected ability te.utilize NAm or.NA via these two 

enzymes,(104). Based on these findings, Dietrich (107) further suggest

eq. that NAm formation from..hepatic,NAD served as the·primary.source of 

NA;m for non~NA utilizing extrahepatic tissues. 

At that time,.the function o:f the.hepatic pyrid::lne cycle.was being 

questioned since the high apparent Kin of NAm deamidase made its function 

at physiological levels of NAm seem untenable. Demonstration of the 

synthesis of NAD from NArn via NMN in ascites cells (102) and later in. 

rat mammary·gland (103) further supported the contention that the 

hepatic pyridine nucleotide cycle may not be functional under physio

logical conditions. Recent reports by Orunicke et alo (71,72) and. 

Stretfer and Benes. (108) extend this argument by demonstrating the 

apparently direct synthesis of hepatic NAD from NAm via NMN at physio

logical NAm levels. These authors have concluded that the pyridine 
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nucleotide cycle is physiologically insignificant in perfused liver and 

in vivo. 

Though they may.preve to be correct with respect. to. the.significance 

of the hepatic cycle, th, dismissal of a posa:tble,systemic·function of 

this cycle is not. justi.fied on the basis of thetr. observations. The 

existence of a system:tc,pathwayinvolving the participatisn·of,gastro-

intestinal microsrganisms is l!IUppei'ted by the early worl:tof.Ijichi.~ 

al.- (73) and strengthened by me,re recent reports (75., 76) · which appear 

to demonstrate that Nkl,. :tn the gut (stomach) does.not.survive·digestion. · 

It _is possible· that a mechanis,;n :favoring NAm. transport.; te· the gastro-, 

intestinal tract·e.xists (73). If .such.a system were functioning, the 

hepatic capacity to incorporate NAm into NAD via NMN under normal 

physiological conditions might well be of no in~ significance. 

Nicotinamide Deamidase 

The functioning of the pyridine nucleotide cycle is dependent on 

the presence of an active NAm dea~idase system. Th:!-s enzyme is local-

ized chiefly in the microsomes·of mammalian liver (105,109). Its 

activity is ciifficult to.detect, even in liver, the apparent Km for ij.Aml 

being repol;'ted as 40.mM te, 900 mM, depending on the purity of the prep-

aration. One-of the primary objections to the existence.of a physielog-

ically functional pyridine nucleotide cycle.is that most of .the 

supporting data were collected unq.er challengecond:!,.tions (500 mg N,N.n/. 

Kg), a dose sufficient to cause a marked elevation in.hepatic NAP and 

circulating NAm •. Unde; such conditions it is possible that even an 

enzyme with a high Km for substrate could bring a~out significant 

deamidation of NAm to'NA. l;ndeed deamidatian does occur in vivo and at 
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doses well below challenge levels, Wheth.er it is totally· attributable 

to the hepatic enzyme. is not certain, Dalton et al.. (110) · best demon

strated the extent of this deamidation by the ~easurement of changing 

serum NA content following varying doses of NAm, They. reported an ele

vation of serum NA with as little as lOmg/Kg doses, 

Petrack ~ al. (99) presented in.vitro evidence that rat liver con

tained sufficient deamidase activity to account for the increased 

synthesis.of hepatic NAD observed.under challenge conditions. They 

also obs~rved·a stimulation of activity by addition of bovine serum al~ 

bumin (BSA)· tothe~r assays. This finding.was. interpreted·as.being the, 

result of the removal of some. end©genous inhibitor of the enzyme,· They 

hypothesized that the deamidation of NAm was the first and rate limiting 

step in its conversion to hepatic NAD •. It appears that this is indeed 

the-route of hepatic NAD synthesis followed under challenge conditions 

(73). The commonly used dosage of 5 mg/Kg, while insufficient to mark

edly increase hepatic NAD content, is still sufficient to allow tissue 

dependent deamidation to occur in both normal and germ free animals (22, 

35). It.is noteworthy that the quantities of NA and NAgly which were 

found in the urine of germ free animals treated with NAm were equal to, 

if not greater than, those observed in normal.animals, Even-this dose. 

is excessive in comparison to normal physiological exposure of the 

animal to NAm, however. 

Hormonal influences may be involved in the activity of NAm deami

dase, Greengard ~.al, (111) observed a three-fold increase in rat 

liver deamidase following hypophysectomy. This increased activity 

appeared to be due to.a decrease in content of an endogenous inhibito:i:;-, 

Pe track ~ al. (112) purified the enzyme. to the point where the BSA 
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stimulatory effect noted in crude.homogenates was lost and found.only a 

slight decrease in Km· The Km observed did not approach that;·ebserved 

in avian liver (pigeon) whe+e BSA stimulation is not. ebserved · ·and where 

NA and NAmmetabolism may be grossly dtfferent. from.maronialian·spedes. 

Dietrich et·al.:(113) showed.that the effects of hypophysectomyceuld be 

reversed by replacement therapy with somatetropic hormone but that; the. 

ability ofhexesterol to depress N.Am deamidase_noted:previously in 

normal animals (l:L4) was lost in hypophysectomized animals,· ·Other 

estrogens, ACTH, and adrer1ocort:lco:tds had no influence·en· the enzyme 

activity observed in hypophysectomized animals. 

Kirchner.et.al. (105) showed.that rabbit liver homogenates also -·- ' 

contained inhibited de~midase which was stimulated by the addition of 

BSA. Purification yielded an enzyme with a Km of 40 rnM which was not 

influenced by BSA.· The degree of inhibition of isolated enzyme was 

shown to depend upon the isolation conditions and the nutritional status 

of the animal. Su~ al. (115) purified the enzyme and found two.frac-

tions with activity. The most abundant one was characterized and found 

to be a glycoprote;t.n (MW 222,000) containing 36-38 moles of mannose and 

7-8 moles of glucosamine per mole of enzyme.· They demonstrated that NA 

was a competitive inhibitor of the enzyme (Ki approx. 10 rnM) and that 

high levels of thyroxine were also inhibitory. 

Greengard ~ al. (116) isolated an inhibitory fraction from liver 

homogenates and found it.to be.predominantly polyunsaturated fatty 

acids. 

It is quite possible that the inhibition and high Km of NAm deami-

<lase observed in vitro,in homogenates is artifactual, ·The mammalian 

enzyme has not been studied for cofactor requirements (e.g.; anions, 
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cations, phospholipids). Rajagapolan et al. (117) studied NAm deamidase 

in mammalian species and could find no activity in the liver of the rat, 

guinea p:lg, sheep, hog, or cattle, They detected some._activ'ity in rab

bit liver and found high levels of activity :ln .. pigeo.n. liver·,· pigeon 

kidney, and chicken kidney. The same workers subsequently·reported the 

inhibition of NAm deamidase·by EDTA, 8-quinolinol,. and 2,2i bipyridine 

in preparations obtained from pigeon liver, ch:l,.ck. kidn~y:-,: L'actobacillus 

arabinosus (plantar:!.um), N. crassa, Asperg:Ulus niger., .·and·~-. · cerevisiae 

(118). They note~ that the addition of Fe+!- was effective in reversing 

the inhibition of the pigeon and chick preparations, Mg+!- was effective 

in the A. niger system, and Mn+!- in the N, crassa. Further studies 

(119) demonstrated NAm deamidase in the kidneys of 6 and the livers of 

3 avian species but none in the:liver or kidneys of the monkey, bat, or 

mouse. No effort has been made to incorporate metals into the assays 

of mammalian preparations and no studies verifying the metal require

ments of this enzyme in avian or microbial species have been published. 

In this respect, it is worthy of note that the simple.addition of metal 

to an assay may not be:sufficient to permit the observation of an enzyme 

activity which is dependent upon that metal. A case in point is 3-

hydroxyanthranilic acid oxygenase. In this system, incubatiQn under 

rather rigorous pH conditions. (pH 3.5) or heating (3-5 min. at 55°C.) in 

the presence of ferrous iron are required before one observes signifi

cant in vitro activity (120,121). The enzyme, once activated, then 

appears to.have the capacity to carry out only a limited amount of 

catalysis before it must be againrecharged with ferrous iron. (122). 

This would indicate the possibility that, in vivo, another reaction is 

catalyzed by this enzyme or some specialized conformational change 



takes place which allows for the.reduction of the metal or its replen

ishment from the media, 
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Although the absence of high NAm deamidase activi.ty makes such, 

studies difficult,.and unpromising, little c,r nothing .. is:known·about.the 

potential forallosteric 0r feedb~ck inhibition phenomena·involving the 

end products of this vitamin's metabeliam, · The. possibility·exists that 

a loosely bound.protein or peptide is required for ertzyme·activity such 

as is tqe case with lactese. synthetase (:1.23), It is interesting that 

Erlich ascites cells (see bel©w) are the only cells of:mammalian erigin. 

demonstrated to possess a NAm deamidase. having .. a low Kin· · This cell line 

was derived from a spontaneous mouse mammary carcinoma, an organ where 

the enzyme.is supposed to be·ineffective or lacking (103). It is there

fore interesting to speculate.that.this enzyme.may be present as an 

inactive apoenzyme or that its synthesis is repressed in normal liver 

when more than sufficient dietary tryptophan, NA, and/or NAm are avail

able, and th~t a prolonged dietary restriction wou.ld be accompanied by 

a release of the cryptic activity. NAm deamidase has not been thoroughly 

studied. Though the weight of in vitro evidence argues against.its 

having any significance in vivo, at physiological concentrat:i,.ons of NAm, 

this evidence does not prove the case.· 

Studies with Erlich Ascites Cells 

The first strong argument against tq.e function of the pyridine 

nucleotide cycle was raised by Grunicke and coworkers. Their.argument 

was based on the;poor apparent kinetic character of mammalian NAm 

deamidas~, the fact that.all studies supporting the function of this 

cycle utilized high levels of NAm, and primarily on. their·finding (102) 



that Erlich ascites cells appeared to C<llnvert NAm to.NAD:via NMNin 

preference to the utilization of the NA pathway, Greenbaum·and Pinder 

(103) further fueled th:ls argument by <iemonst:rating the· direct, NAm 

deamidase independent, incorporation d NAm into NAD in rat mammary 

tissue. 
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Holzer ~~o (124) reported that·Erlich ascites. cells·preferen

tially incorporated label from NAm into NAD relative tolabel·from NA, 

Subsequently, Dietrich and coworkers (125) demonstrat.ed, that·. significant 

incorporation of labelled NA into.dNADand NAD occurred in.this cell 

type, dNADwas.preferentially la.bell!?Jd in.the absenceef.a glutamine 

supplement and NAP became the primary repository of label in the pres

ence of such a supplement. Tl:l.is indicated that a glutamine deficiency 

was probably respoi::,.sibl,.e for the•. previously observed preference, shown 

for NAm by these cells (124). No net NAD synthesis occurred from either 

NA or·NAm in these experiments (125). The abc;,ve findings were verified 

by Grunicke et al. (102). Their cl.at~ demonstrate that the incorporation 

of NA into.NAD in the:presence of glutamine was essentially equal to. 

that.of NAm, They, however, apparently ignored the potential implica

tions of this observation. 

It was also shown that significant incorporation of labelled NA 

into NAD occurred at levels of 10-7 and 10-8 M NA whereas NAm at these 

concentrations. produced much. less extensive labeling· .(125). · It was. 

further observed that the optimum concentratiort for NA incorporation 

was.1 x 10-5 M, Abave this level inhibition occurred, whereas with 

NAm, parallel increases in the specific activity of NAD and dNAP occur

red as NAm concentrations were increased up to 1 x 10-3 M. It is 

perhaps noteworthy that although .. NMN was not measured or at least not 



31 

reported, these authors did observe measureable labeling·in·dNAD even 

at the level of 1.6 x 10 .. 7 M NAm (125). The inhibition of.NA incorpor

ation above 1 x 10-S M involved both labeling of NAD and·dNAD implica

ting the inhib:l.tion of one or both. of the first twG> steps in·. the 

conversion of NA to NAD. Tbe potential for feedback inhibition·of the 

first of these enzymes, NARTase, has; been .demonstrated. (16) ~ · 

Dietrich and Ahuja (126) reported that the mechanism of NA uptake 

differed from that of NAm in.these cells. !t had been previously re~ 

ported by Holzer and BQltze (127) that the two vitamers were equally 

well absorbed by Erlich ascites cellso It would appear that these 

cells have the energy independent capacity to concentrate NAo This 

concentrating mechanism is temperature sensitive and does not involve 

the rapid incorporation of NA into nondiffusible.intermediates as is 

the,case in erythrocytes (128). NAm on the.other hand is absorbed by 

passive diffusion (126) and the two vitamers do appear to be equally 

well absorbed under neutral or alkaline conditionso It is of interest 

however that.these cells apparently can under certain condition~ dis

tinguish between NA and N.Am. If such a.condition existedin vivo in 

the liver it would fit well with the previeusly mentioned.hypothesis 

put forward by Dietrich ~ al. (10?) •. 

Another point used.by Grunicke ~ al. (102) to argue the predom

inance of the.NMN pathway in this cell line was the finding by Dietrich 

~·al. (100) that Erlich ascites cells apparently contained low levels 

of NARTase activity relative to NAmRTase activity, However, such an 

extrapolation of in vitro assay findings. to th~ situation existent is 

intact cells innot.necessar:tly valid, which is apparent froui-the above 

discussion. 
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The most convincing piece of evidence. presented by.· Grunicke et ·al.. 

(102) is the demonstration that 5 x 10-2 M 5-MN'Am essentially eliminate~ 

the activity of NAD glycohydrolase and simultaneously reduces both the 

NAmRTase activity and the,incorporation ll)f label froi;n.NAmby50%. The, 

above compound (5-MNAr!I) has beei;,. shown to. :tnhibi t anether · enzyme: (QART-

ase) related to NAD bhsynthesb· (These are unpublished data·obtained by 

Streff er and· Benes. and commented· on by. these' authors. in: another publi-

cation (108))~ Due to the striking similarity between the.reactions 

catalyzed by NAr!IR.Ta.se, QAR.Tase, and NARTase one. might.· expect the ;latter 

to be.inhibited by 5-MNAm, Thie.apparently is.not the:case~ ·In other 

work (129), evidence is presented which.indicates that 5-MNAm does not 

influence the incorporation of NA into NAP in these cells, 

Marki. and Greengard. (130) demonstrated the, presence· of a low Km, 

(10-5 M) NAm deamid~se in Erlich ascites cells which, in combination 

with the demonstrated formation of dNAD at low concentrations of label-

led NAm in this cell type (125), convincingly demonstrated the potential 

of these cells to dea.midate N:Amand make use of the pyridine nucleotide 

cycle. The presence of such.an enzyme casts some dl'.)ubt.uponthe inter-

' pretation of.the above.experiments with 5-MNAm, since the latter may be 

an effective NAm deamidase inhibitor. 

A final point used by.Grunicke.to argue in favor of the NMN path-

way in Erlich ascites cells was the demonstration that NA incorporation 

was extremely sensitive to azaserine while that of NAm was relatively 

insensitive to its effects, Azaserine is a glutamine inhibitor and 
j 

functions by blocking the NAD synthetase reaction (131) and results in 

a marked depletion of hepatic NAD (18), Since the data for the actual 

NAD content of the.cells are not reported by Grunicke et al. (102), one. 
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can only presume. that the same effec.t was obtained in. the· tumor cells • 

• In the presence of pyridine nucleQtide depletion one.would·certainly 

expect the activity of the NMN pathway to be observed since the·feedback 

inhibition of NAmRTase mediated by the coenzymes (16,104) would be.re-

lieved, and thus the.experiment·has no bearing on.the problem being 

investigated. 
1 

The presepce of a low-~ (4. x 10-5 to 1 x 10-4 M) .. NAmR'I'ase has been 

demonstrated in Erlich asc:ttes cells (101), There is little doubt that 

this cell line can produce NMN from NArn (102) and that·under some_ con-

d:ltions the NMN pathway.may be dominant in the formation of NADo How-

ever, these experiments, which led to the.claim .tha.t . .theNMN·pathway 

was dominant in the intact mammalian system; cannot be considered as 

definitive •. The data indicating that the.pyridine nucleotide cycle.is 

of little importance in Erlich ascites cells themselves, appear to be 

more the result of a glutamine deficiency in the medium than an enzymatic 

preference for one or the other of the two pathways.· Indeed it would 

appear that these cells possess all of the required en,zymes for a func-

tional pyridine nucle0tide cycle and that one or more of these enzymes 

is under some sort of substrate and/or product related control. 

'.(he most.complete and dependable data available indicate that, 

contrary to the.claims of Grunicke.et al, (102) and despite the pres-. 

ence.of a low~ (101) and active (101,102) NAmRTase system, the pyridine 

nucleotide cycle in Erlich ascites cells is possibly the preferred 

pathway in the presence of adequate glutamine, Dietrich and Fuller 

(133), utilizing NAm as.the substrate, demonstrated that the specific 

activity in the NMN moiety of NAD, measured by the incorporation of 32p, 

pea~ed at an NAm concentration of approximately 1 x 10-5 Mand decreased 
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with further" increases in concentration, Their previous· studie.s (125) 

had shown a:similar pattern for NA incorporation and that the incorpora

tion of label from NAm cc,n.t:tnued .to rise up to 1 x 10-3 M (the maximum 

concentration studied), '.I:he· fact. that,32p incorporation shows an opti

mum well below this level when NAmis;the substrate strongly suggests 

that the continued increase in NAD labeling previously observed with 

labelled NAm was due to an isotopic exchange, catalyzed by NAD glyco

hydrolase, since the incorporation via NMN would require a continued 

increase :tn the 32p specific activity observed in the NMNmoiety of NAD 

over the.entire concentration range, These findings do not in thel)l

selves.demonstrate that the pyridine nucleotide cycle is the preferred 

biosynthetic pathway,· However, the fact that no net synthesis.occurred 

in the experiments of Dietrich et.. al. (125) and the. similarity in pattern 

between 32r and NA incorporation is more easily explained on the basis 

of the function of this cycle.combined with the essentially total, 

pyridine nucleotide rr,,ed:tated, inhibition of the NMN pathway.which has 

been.demonstrated by Dietrich et·~l. (16,104), 

Thus, . the .. only well documented systel)l wherein the NMN pathway is 

clearly domirtant :ts.the bQvine mammary gland (103), and in this tissue 

the activities of three of the enzymes of· the pyridine nucleotide cycle 

have been shown to be very low or.absent, Further, it has.been demon

strated that this high mannnary.NAmRTa.se activity, :the.highest then 

documented, was present only in lactating mammary tissue and it is 

therefore directly or indirectly subject to multiple general hormonal 

influences (134). 

There is evidence that the direct conversion of NAm to NAD via the 

NMN pathway., occurs in the brain and skeletal muscle (135)0 However, no 
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evidence was presented which can be used as the demonstration of a 

preference for NAm or the exclusion of NA utilization in these tissues. 

Indeed, brain has been shown to utilize NA quite readily (136) and to 

respond to NA.in challenge in a manner si'inilar to liver though less mark

edly (137).· !nno case, however, could such information have any true. 

bearing on the. concept of a functional, hepatic or sys~emic pyridine nu

cleotide cycle. This,becomes evident if one considers the postulations 

of Dietrich and coworkers (16,107) with respect to NAm wett;Abolism. 

Dietrich (16,104) presented in vitro data indicating that NAmR,Tase 

is strongly inhibited by physiological levels of pyridine nucleotides. 

The potential fox stringent metabolic control and low I.Sn of this enzyme 

are more satisfying conditions for an NAD synthesizing system, and add 

theoretical weight to the argument. against. at. least ti;te hepatic pyridine 

nucleotide cycle:and·in favor of the NMN pathway. Several very recent 

reports :l!rom three di:f:ferent sources (71,72,108,135) claim that the 

NAmRTase pathway is indeed the only one functioning under physiological. 

conditions. However, in each case, ei~her the e~perimental data pre

sented do not definitively support the arguments made by the authot;'s, or 

the validity of the interpretations.presented are open to question. 

Liver.Perfusion Studies 

It should be pointed out immediately, that one major shortcoming of 

the perfusion studies to be discussed is that they are closed loop 

systems. As a consequence there is no opportunity for competition for 

substrates from other organs as would occur under in vivo conditions, 

Grunicke et al, (71,72) perfused rat livers with.either labelled 

NA.in or NA in the presence and absence of 1 mM NA in th~ perfusate. In 
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a 2.5 hour experiment (71) the inclusion of 1 mM NA resulted·in a 95% 

reduction in the amount of label incorporated intoNAD/gm:of·liver when 

5 x 10-6 MNA was the labelled substrateo A similar experiment with 20 

x 10-6 M NAm resulted in no change :tn label incorporation·int9NAD, Un

fortunately no dat~ are given for the NAD content of the liver after 

the various treatments, and no data are given concerning the composition 

of the perfusates. It.is therefore difficult to interpret these re

sults. Apparently no effort was made to measure NA 14c in the NA pool 

when NAm was. the source of label.. The absence of labdled Nk in the 

NA pool, in· itself, cannot. prove. that NAm deamidase was·nonfunctional 

under normal conditions, since the enzyme-may be urtder strict control by 

NA. In the absence of data concerning the concentration of NAD in the. 

livers it is also impossible· to comment definitively on the function of 

the NMN pathway (see below). In a similar experiment perfusing for 10 

minutes (72) it was shown that a.1 mM NA trap resulted in a99.5% re

duction in the specific activity of NAD when perfusing with NA and onty 

a 50% reduction when perfusing with NAm-14c, These data·are taken to 

indicate_ that a considerable fraction of the NAm. incorporation occurred 

via NMN.- Again no data are given-showing the presence or absence of 

NA~l4c in the·perfusate when NAm-14c was. the label. source, or the NAD 

content of the livers. A comparison between the two experiments is 

essentially impossible and at most the data can be taken to·indicate 

that a portion of the NAD synthesis from NAm is possibly occurring via 

NMN, and this under conditions of unknown pyridine nucleotide\content, 

In Grunicke's experiments utilizing azaserine it is not clear 

whether the inhibitor was added when perfusion began, or with the label

led sub~trates some 30 to 40 minutes later, The,effect of azaserine is 
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to markedly inhibit the incorporation of. NA into. NAD., and· to· cause large, 

rapid, and pe~sisting reductions in hepatic NAD. content;. (18·, 71, 72; 98, 

131), Under conditiens of. depresse9, NAD concentra.tion one:. would expect 

the feedback inhibit;:lonof NA.mRTase (16,104,138) ta.be.released and 

incorporation via thi$ pathway- te be .increased, . In _a. 20 minute experi- .. 

ment, Grunicl<,e et!!!., (72) showedthatazaserine resulted in a 90% re

duction in the specific activity of NAD when perfusing.with,5 xio-6 M 

NA but essentially no change in the specific activity of NAD when per

fus:lng with 10 x. 10-6 M NAm. However, the ccmcentrations ef NAD and 

total incorporation of each labelled substrate are not reported. In·a 

60 minute experiment (71) a 70% reduction in NAD specific activity was 

accompanied by an 87% reduction in the incorporation of label per gram 

f li d 71% d i i NAD h f ' . h 5 x 10-7 o . ver.an a ore, uct on n content wen per using wit 

M NA, On the.other hand, a 225% incre~se in the specific activity of 

NAD accompanied by a 45% reducti.on in incorporation of label per· gram 

of liver and an 87% reduction in NA];) centent was observed when perfusing 

with .1 x 10-5 M NAm. 'I'hese.data seem to indicate that N.Amis being in-

corporated into NADvia a pathway independent of both.N.Amdeamidation 

and of a. NAD glycohydrolase mediated exchange reaction, i.e.; via the 

NMN pathway .. Howeyer, this. is expected under conditfons of ree:l.uced NAD 

content,.anc;i.suchfindings cannot be taken as being indicative of the 

synthetic activities under normal liver,conditions, Further, the 

azaserine mediated inhibition 0f NA incqrporation into NAD does notre-

fleet on hepatic capacity for NAm deamidation, the primary point in 

question. Moreove+, these experiments indicate that under conditions 

of azaserine inhibition the NMN pathway of NAD synthesis is incapable 

of maintaining normal hepatic NAD levels in the presence of physiological 

concentrations of NAm, 
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In this latter respect, it is of interest that Hagino ·et·. al, (139), 

perfusing livers with high concentrat:tc>ns of NA (approx;. 2 · x 10-2 M), 

demonstrated a marked decrease in hepatic NAD content. during· a· three .. 

hour perfusion perfod whereas they were able .to.meast,1re:a2,5 fold in

crease when perfus:tns with high ccmcentratbns of. N.Am. {apprax. · 4 x 10-2 

M). 2 x 10-2 M NA is in excess. of that concentraticm which would re

sult from a 500 mg/Kg injection of NA (110). Under these conc:litions, 

the NA pathway is highly inhibited, and any possible N.Am deamidase activ ... 

ity is without consequenceo Here agsin,.with the NA pathway.bloc~ed, 

the NMN pathway was, insufficient t.o maintain normal. hepatic NAD con-

centrations. ·The NAm concentr:at:ton perfused is about.8 times that 

observed following 500 mg/Kg NAm injection (99), . Under the~e conditions, 

hepatic NAD was elevated in.the perfused liver, paralleling in vivo ob

servations, and this would be expected to be .. mainly due to a pyridine 

nucleotide cycle function, i,e,, via.deamidation, as is the case in vivo. 

5-MNAm is.a potent inhibitor of NAD glycohydrolase (102,129,140), 

Using only NAm-14c, Grunicke et al, (71) perfused rat liver with 5 x 

10-2 M 5-MNAm for a period of 2.5 hours.· Th~ result was reported, as.an 

apparent increase in the specific activity of the NAD to 150% of that 

observed in a control accompanied by a simultaneous increase in NAD 

content to about 118% sf the contrc,l. The control liver in thiE!i experi

ment was perfused with 2 x 10-5 M NAm and the 5-MNAm perfused liver was 

perfused with only 1 x 10-5 MNAm, The data were interpreted as indica

ting that the incorporation of NAm was not due to an ~AD(P) glycohydre

lase mediated exchange reaction and the,concl.usfan made that it .must 

therefore have occurred via,the NMN pathway. Al;hough the evidence 

seems to support this conclusion, it is not a definitive experiment, 
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since no previous experiment has, in this author.'s. opinion;:clearly 

eliminated a significant contribution from the pyridine nucleotide cycle, 

The only apparently safe conclusion which can be drawn:· from~ the· results 

of·thisexperimen.two11ld be that the.ebserved-in,corporatio~·of·label 

into Nl\D was: not .the .result of. an ex.change ·rea.o.tion· •. : ;·However·,· c~oser 

analysis of·tb,.e·da.ta, presen'!:ed seems·ta>•makethe-supp0rt:.of even this 

conclusion rather tenuo~s. · 

The above comparisons., concerning the, effli!cts of· 5""'MNAm were made 

on the. b!'.isis of t:he. final NAD content in two. livers, one: treated _and one 

untreated,·.· No··rep],ication of the experiment was reported~ It ·shquld 

be pointed ou.t:, that all the above. p.erfusion .. experiments. (71, 72) were 

performed without.replication (at least, none. is implied). In the in-

stances where it is reported, the final NAD can.tent in the livers 

varied over. a range ef at least· 35%, not allowing for time differences .. 

in the perfusiens. For e~ample, in the'.experiments using azaserine, 

after 1 hour·.of perfusion with 1.x 10-5 ·M NAm the NAD content in,the 

co_ntrol liver was reported to, be 0.64 pmeles/gm liverc In the same 

experiment, perfusing with 5 x 10-7 M NA, the NAD content in·the control 

liver was 0~42 µmoles/gm H.vero tn·the 5-XNAm experiment, after 2.5 

h"u+s t?>f perfusion the cont~ol liver contained. 0.42· µmoles/gm liver 

while the 5..-MNAm perfused' liver. contained Oo49 ,µmvles/gm liver. In this 

latter experiment, the data i~dicate'that the NAD was:disappearing at 

the rate of about. 0.14 pmoles/gm liver/hr in the control liver and at . . . 

the rate of.0.10 J.Jmoles/gm liver/hr in the 5-MNAm perfused·.liver, if_one 

presumes th.at both livers contained 0.64 ·1-1111oles/gm li:ver after one hour 

of perfusion •.. Thus, the reported 18% increase in N'.AD· synthesis in the 

5-MNAm experiment h most probably due .to a decrease in the.rate of NAD 

loss and not an increased synthesis. 
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These authors previously. demons.trated .. tllat.: the. NAD. glycohydrj!)lase,. 

exchange. reaction catal'rzed by t~e · en.zyme •· ol;>tained. from.: Erlich· asci tes 

cells was almost completely eliminated by 0.05 x to~i M: 5:-MNAm' (102)., 

!t has also been clearly- demonstrated._ that· th,:ls;.c.ompound,.: strongly. in-. . . 

h:lbits the: net hydrolysis of NAD catalyzed by. the:, enzyme· from· mammalian 

liver (108 ;140). · There:!;ore, on the basis of the::abc:ve· calculations., 

one is drawn· to·· either, of two · conclusions,. First.,· .t;hat· 5 .. MNAm0 does not ; 

extensively inhibit NAD glycony~relase·activity in perfused rat:liver.. 

tf _this: were. the case; . the exchange reaction could. have.· accounted for an 

indeterminate amount of the incorporation of NAm-14c into:NAD observed 

in this experiment. Therefore, the above findings. would be relatively 

meaningless and the.conclusions drawn.unfj!)unded. Se<?and, one.m:1,.ght con-:-

elude 'that S•MNAm·did indeed eliminate the NAD· glycohydrolase exchange 

reaction to-.th,e e~tent that one. would expect 01;1 the. basis of previeus 

studies. In thi~ case, it .would be ·predicted. that .. little change. would 

occur inthe·NADcontent of the 5-~Amperfused liverduringthe experi-

mental perfod. · Si~ce the levels.o{ NADobserved in a·liver after 1 hour 

perfusion withNAm are significantly higher than. those observed in.the 

5-MNAm·perfused liver after 2.5 hours of perfusionone·couldconclude 

that the initial levels of N.AD were markedly different. If·this were 

so, any comparisons. basecl on the quantitative aspects of die above .. per-

fusion studies based only on- the final. NAD c0ntents of the·. livers would 

be of questionable value,.since, quite obviously, th~ final specific 

activities of the·NAD·would be highly dependent upon both· the initial 

NAD content in the livers and the changes in that content which occur 

during the perfusion. 
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Perfusion under aerobic-and anaerobic conditions·was. also reporteq 

by Grunicke and cow.o:i:kers (7Z). · The data show that under: anaerobic 

conditie>ns hepati.c ATP concentrations are rapidly diminisli,ed·. '..·Evidence. 

is presented·showingthat NA accumulates in the;anae,;ebi.c:.liver·wh~n 

perfused with· NA.· · Livers perfused. with NA a.ccumulated.- NAm· '@c:.,re· rapidly 

than under aerobic·· cond:tt:t.ons indicating that NAD- glycohydr<i>lase con-

t;inued to func t;il!ln · unc;ler . anaero tdc ccindi tiQns. . When 1i vers were per ... 

fused with NAm under ana,erobic ·. conditions they· accumulated NA.ln; however, 

apparently no effort was made to,meas~re NA in these latter experiments. 

Had the authors made such a.measurement and found no labelled NA o~e 

would expect strong emphasis to be placed en. such evidence.. This woul(,i 

be the only experimental situation in which; barring. the use.of high, 

concentratbns:of NA as a trap, any NAwould be.expected te accumulate. 

Indeed it is the only experiment performed by these workers which .is 

capable of looking directly at NAm deamidase activity·in tb,e intact per ... 
,, 

fused liver in absence.of any complications involving tb,e-otber en:11y~es 

in'.the,system·and/or.,the use ef incompletely characterized inhibitors •. 

The absence of NA ac:cumulatbn weuld be strong evidence for the lack of 

NAm deamidaae activity i'Q. perfused livers •. It wb~ld- net:betotally 

definitive, however, since it is- possible that the: deamic\ase could be 

directly or indirectly.oxygen dependent •. 

Data concerning the .. appearance l!lf label. in the various intermediates 

in the;synt~esis of NAD frs~ NAl.n-~ave been used to argue that only the 

~ pathway is of physiological significance. (71 9 72}. These arguments 

are based primarily upon the labeling af.NMN by N~,·while NA inter-

mediates are not'.obse;ved to be.as heavily labelled and the fact that 

NA gives rise to NMN labeling particularly in the.later stages of the 
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experiment when .most. of the NA has been converted to NAD.-. ·: The· possibil-

ity that labelled NMN might .. arise as a. result. of .• an.- exchange· reaction 

is ignored. The same enzyme is apparently responsible.· for the· conversion 

of NAMN to dNAD and of N:MN: to NAD (9.5,102,129). Thcr reaction· has been 

demonstrated· to be. reversible in the presence. of PPt· in: :vitro· and it: is 

quite feasible:that,labelled NMN can arise from labelled NADvia the 

following reaction sequence; 

NAMN + ATP ---> dNAD + :PPi 

PPi + NAD ·> ~·+ATP · 

without the direct synthesis of NMN from NAm.· NMN. could·also arise frem 

cleavage of NAD to NMN and.Am' by nucleotide pyrophosphatase, Either 

of these possibilities could explain not only the;formation of NMN from 

NA but also the time dependent natur~. of that f(Jrma.t:ion. 

The·weight ,of evidence presented by G;unicke et al. (71;72) indi ... 

cates that liver is in<ieed capable of the synthesis .. of NAD yia. NMN at 

physiological concerttrat:t.Qns of NAm·. However, the;e is. no definitive 

evidence. presented to · show that the '•pyridine nucleotide cycle is an in- . 

significant pathway in.hepatic utilizatfon of NAm •. Further, evidence. 

is presen~ed that throws doubt on'.the ability of-the. hepatic NMN path-

way to maintain h~patic NAD levels in perfused livers at normal physio-

logical concentrations ef N:Atn. Finally, once .traces .. of NA· are formed 

in, or introduced.into, an actively synthetic system,·e,ren· trace con-. 

centrations of this vitamer.will be rapidly incorporated· intq NAD • 

. Labeling in NA, NAMN, and dNAD would be difficult to detect·in such.a 

system. In both short and long term perfusions.with. labelled NAm, 

Grunicke,et al. (71;?2) did indeed observe some labeling in th~se inter~ 

mediates. Such a finding indicates th,at at least some deamidation of 

N.Am was occurring under their conditiens. 
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In Vivo Studies 

Streffer and Benes (108) studied the incorporation. of.NA-and NAm 

into hepatic NAD and its intermediates in mice, Based. on:the appearance 

of labelled· NMN relative to NA and . dNAD they._ ar.gue that- NA' is· rapidly. 

utilized and converted to NAD and that·NAm resulting. from. NAD·breakdown. 

is reutilized for btosynthes:ls of NAD via NMN, The basis of this ar~ 

gument, that.the labelled NMN can only arise from NAm, is not necessarily 

compelling, as discussed above. 

These authors previously observed that NAD formation from NA was 

diminished in animals receiving multiple doses of NA (141). Whether 

such a reduction is due to dilution of the administered label as a re

sult of the presence of non-physiological.levels of.NA or is·a real loss 

in synthetic capacity is.not clear. The·results. presented (108) show 

that the total incorporation of·. labelled NA into liver was reduced by 

about.30% following such treatment; however, the total incorporat~on 

sJ:111 represents a 2-fold increase c::>ver the.incorporation of label seeI), 

in mice receiving an equal amount of labelled NAm. If .these data are 

recalculated and the amount of the label in the individual components 

isolated i$ expressed relative. to the total quantity of label isolated 

one finds that NA pretreatment had little or no influence on the.rela

tive d:tstrib~tion of the label among the various metabolites stuclied. 

Similar treatment of the NAm data indicates a reduction in the relative 

quantity of label recovered as NA and dNAD. 

These authors suggest that the failure of Ijichi !!. al. (73) to 

observe NMN accumulation was due to the fact that they. injected·directly 

into the portal vein. They claim that this route of administration 

resulted in non~physiologically high levels of NAm in the liver leadi~g 
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to an inhibition of NMN formation. Such an at.tempt,.to. explain·away the. 

contradictory data of these other workers is unfounded. If·the NMN 

pathway is inhibited, it is the end products (nucleo.tides) · not· NAm· which 

inhibit its function. Considering the rate of up.take of:?ITAm:·from the. 

medium in. the work of Hagino · et : al. (139), Grt,tnicke. ~ al.· ('72), and 

Ijichi ~al.· (73), one :l!:l:.nds th.at the rate .of remo'.'lral: of· NAm· from the 

circulation is. relatively slow. Rough. calculaU.ons: indica.te · that the 

in vivo NAm· concentrations. a.t.ta:tned via. :tn.traport:al injection are un

likely to approach. those.used by Streffer and Ben1;3s in vitro (108) and 

therefore direct inhibition by NAm is improbable. Further, if the 

effective dose and time involved were ep.ough to cause ap·increase in 

nucleotide levels sqff:tc:tent to prevent the formation of·NMN and NAD via 

that pathway, then the hepatic function of that pathway at physiological 

levels of NAD and NAm is of doubtful significance, since any changes in 

nucleotide concentration occurring in the 1 to 2 minute.period in ques-,

tion are innneasurably small, 

Direct incorporation of. NAm into NAD via NMN. is apparently indicated. 

by the findings of the above authors (108). The data again, however, ~o 

not definitively eliminate a significant contribution from a pyridine 

nucleotide cycle.and a functional NAm deamidase, Indeed the.persistent 

observation of NA and the intermediates involved in its conversion to 

~AD suggest that deamidation of NAm, even at physiological levels of 

NAm, is occurring. Further, the much higher rate. of incorporation of 

NA into liver relative to NAm supports the-suggestion that some mechan-,

ism is operational, even at physiological levels of the vitamer, which 

favors the flow of-NAm away from the liver to some other site where it 

may.be utilized (107) or deamidated (e.g.,.gut)~ 
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Collins and Chaykin (135) have recently. studied. the:in vivo metab

olism of N.Am and NA in mice,. These authors av~r. that .their studies 

are done under truly physblogical conditions. However~.basedupon their 

procedures,· this implies that the .. intraperitoneal or: irttragastrointes

tinal adm:t.n:tstrationof the estimated tstal daily vit.amin·intl:l.ke· (3-4 

mg/Kg) as a single· dose; into fully acl libitum fed ·animals· consuming a 

complete commercial diet, constitutes a normal physiological condition. 

That this is a highly disputable presumption has already been previously 

discussed at some length. Support for this argument is to be found in 

a comparison of the hepatic labeling patterns observed by Lee (142) 

following the intraportal administration of microgram quantities of NA 

and N.Am to normal rats with those observed by Collins and Chaykin in 

the mouse. It should be noted that the doses utilized by Lee (9 or 25 

µgms/animal) were being administered to adult rats weighing about 10 

times as much as the mice utilized by Collins and. Chaykin whose.animals 

received 110 µgm doses of the vitamers, 

When an intraportal dose of 25 µgm of NA was administered, Lee 

found a maximum of 22% of the injected dose of 14c in NAD 5 minutes 

after the injection and this slowly decreased to a level of 15% of the 

dose at one hour. NAm, on the other hand, reached a level of 9% of the 

injected dose 10 minutes after treatment and slowly. rose.to a level.of 

12% of the dose at the end of one hour •. When the dose was·reduced to 

9 µgms, a maximum of 22% of the dose was found in NAD after 10 minutes 

and the level slowly decreased to 19.8%.of the dose after one hour. 

Simultaneously, NAm was found to contain about 2% of the dose from 10 

through 40 minutes and 3,47o of the dose at the end of one hour. In 

contrast, Cellins and Chaykin, utUizing NA and the intraperitoneal 



46 

route of administration found a maximum of 0.8% of the dosein·NAD after 

5 minutes and this level dropped rapidly to about.0.1% by·15 minutes 

and was relatively constant thereafter. NAm rose rapidly·to·a·level of 

about 4.5% of the dose. at 15 minutes and remained relatively constant 

thereafter. 

Using NAm._14c (25 1-1gm/animal), Lee observed an initial burst of 

NAD labeling similar to that previously observed by Ijichi et al. (73). 

A relatively constant amount (about 4-6%) of the dose was isolated as. 

NAD throughout the entire experimental period, including the initial 

measurement made only 20 seconds following the administration of NAm, 

Following an initial equilibration period, NAm represented approximately 

3% of the dose throughout the duration of the experiment. Collins and 

Chaykin (135), by comparison, reported that, after equilibration, a 

roughly constant level of NAm was present in the liver, The level of 

labeling in NAD rose through 30 minutes following an initial lag period 

and was subsequently maintained throughout the remainder of the hour 

and represented somewhat less of the dose than did NAm at all times. 

Lee (142) found 28-35% of the label from NA-14c to be retained in 

the liver after 1 hour whereas Collins and Chaykin (135) found less than 

5% was present after 1 hour. Using NAm-14c, Lee (142) observed 15-18% 

of the injected dose remaining in the liver after one hour while well 

under 1% of the dose was found to.be present after one hour in the ex

periments of Collins and Chaykin (135). 

The above described differences in labeling patterns and label re

tention accompanying marked reductions in the administered dose of each 

vitamer seem to quite clearly indicate that the work of Collins and 

Chaykin (135) is, contrary to their claim, far from being representative 

of the physiological events surrounding NA and NAm metabolism. 
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It is agreed that the differences.in route. of administration· (~nd 

species) present in the above comparisons might. influence. the·. level of 

label retention observed in a given organ, but this should have· little 

influence on the label d:tstr:tbut:ton observed if no marked·· physielegical 

i,iibalance has been imposed by the.treatment.· !n.this;regar"d;· the data 

reported by Streff er. and Benes. (108) · is of interest,.·. These workers used 

mice as did Collins and Chaykin·but adm:tn1,stered only·about.10% of the 

dose that was used by the latter werkers (2. 7 µmole.s/Kg) .. The vi tamers 

were administered by the :tntraperttoneal route. It was found that the. 

proportion of the dose retained in the• liver a.s NAD was about three 

times. that found inNAm, 10 minutes.after the administration of NA-14c. 

This quite clearly is a reversal of the findings of·Collins and Chaykin 

(135) and in agreernertt with the findings of Lee (142). 

Based on the results of their experiments, Collins and Chaykin con-. 

eluded that in all tissues studie~, with the exception of liver, NAm 

tvas.a better precursor-of NAD than was.NA. They. further concluded that 

the metabolism of the mouse is designed for the utilization of NAm as a 

(systemict) precursor ef NAD and that NA is converted to.NAm in the liver 

for this purpose. Studies performed in vive and involving the incor-. 

poraticm of NAm-14c, must be interpreted with great caution because ef 

the potential fer an NAD glycohydrolase catalyzed exchange of the label 

into the NAD pools. Because of this exchange reaction it is impossible 

to stat~ with certainty that any observed incorporation·of·NAm inte 

MAD was nec::essarily due to the action of a pathway-with the·capac:l.ty of 

bringing about the net synthesis of NAD. In this regard, Deguchi et 

al. (136) have reached,. a conciusicm which is contrary to th13t. of Collins 

and, Chaykin (135). They found that both NA-14c and NAm-14c were readily 
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incorporated into brain. They were able to detect all of·the intermed":"' 

iates of the Preiss-Handler pathway and to show their appearance in the 

proper time sequence. However, they were unable·to detect·any NMN even 

though NAm was readily incorporated into bra.it). ~AD. The:Y· therefE>re con

cluded that the incorporation occurred as the result. of an exchange 

reaction and that NA was the only precur$or utilized for net synthesis 

:tn brain. It .is granted that the failure to observe.an intermediate of 

a synthetic pathway does net necessarily preclude the function of that 

pathway. On tl:ie ether hand, neither can the 14c incorporation data ob

tained by Collins and Chaykin, indicating that NAm is the·. better pre

cursor. of brain NAD than is NA, be taken as.being necessarily represen

tative of net NAD synthesis. 

The conclusions reached by Collins and Chaykin (135) support a 

portion of the hypothesis put forward by Dietrich et aL (104) in 1968 

and expanded and restated by him in 1971 (16). The primary difference 

between these two hypotheses is that the-latter workers do not preclude 

the function of the systemic pyridin, ,_ucleotide cycle or the extra

hepatic.significance 0£ NA as-a precursor for NAD biosynthesis. Collins 

and Chaykin, on the other hand, (135) claim that the pyridine nucleotide 

cycle (hepatic or. systemic) is of no consequence in the intact mouse. 

The argument is based, cm their failure te observe. either NA or nicotin

uric acid in the 60 minute urines of animals dosed with NAm. The 

validity of an argument based on excretion data, in particular short. 

term excretion data, has already been previously discussed and the same 

argument applies here, !he other portion of their argument is based on 

the observation that the deamidation of NAm is not prerequisite tQ the. 

ahsorptien of the vitamer frsm the digestive tracto However, the direct 
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absorption of NAm from the digestive tract after the administration of 

non-physiological doses of this vi tamer does not reflect·. upon. the po

tential function of a. systemic.pyridine nucleotide cycle; As will be 

discussed below in detail, no claims have ever been made. that the deamid~ 

ation of NAm is prerequisite to its absorption from the gastrointestinal 

system. Indeed, there is previous evidence in the literature which dem

onstrated the direct absorption of NAm from the intestine (79). The 

proponents of a systemic pyridine nucleotide cycle have merely shown 

that the per£!_ administration of physiological quantities of labelled 

NAm (i.e., the gastric introduction of µgm quantities,about 5 µgms) 

leads to the gastrointestinal deamidation of the vi tamer, th~t this 

deamidation is relatively rapid and extensive, and that the short term 

labeling observed in liver NAD is identical for both vitamers when 

administered .E!:E.~ but much slower in the case of NAm when they are 

administered intraperitoneally. 

Possible Involvement of the Gastrointestinal 

Tract in the Metabolism of.NAm to NAD 

Ijichi et al, (73) reported that a large portion of a loading dose. 

of NAm (400 mg/Kg) was rapidly excreted in the urine, but·that 20% was 

located in the gastrointestinal tract at one hour while only 3% was 

found in the liver and 2% in other.tissues •. The greatest recovery of 

label in the gut was in the stomach. When the route of administration 

was changed.from IP to IV (intraportal), and the dose reduced to 200 

mg/Kg, 50% of the dose accumulated in the gastrointestinal tract at one 

hour. About 90% of the gastrointestinal label was found in the lumen 

and the amount of labelled NAm decreased while that of NA increased with 
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time. Little label was, found in the feces, indicating essentially total 

resorption of the vitamin.from the tract. The fact that a decreased 

do1:1e of NAm resulted in increased recovery of, label in- the· gut suggests 

some mechanism which is concentrating NAm in vivo inthe:gastrointestinal

system. Further support for this is. given by Deguchi ~ aL (136), 

These workers stated that large-ameunts of the label f:rom·an·intraper

itoneal dose of NAm-14c (approx. 2,8 mg/Kg)·were found in the gastro

intestinal tract of mice. 

Tanagawa ~ al, (75) demonstrated the presence of microorganisms 

with a low Km nicotinamide deamiclase (1 x tei:-6 M) in.· the- pars preventric

ularis of normal rat stomach. Upon administration of 45 nmoles of 

labelled NAm per os they found that:all the gastrointestinal label was 

in the form. of NA at 2 and 4 hours following administration,. They. also 

:reported thatNAmand NA gave rise·to liver NAD at·the same rate when 

administered per~ but that NAm was a much slower precursor than NA 

when the two were administered intrape:ritoneally. 

Shimoyama et al. (76) isolated several organisms from the preven

tricular region of the stomach and showed all to have deamidaseactivity 

(at· least two of these, !· co:U and Streptococcus faecalis, are also 

common to.the intestinal microflora). After administration of 45 nmoles 

of NAm-14c, these workers also noted that as the label in the stomach 

decreased, the intestinal and liver label content. increased in parallel.· 

From this observation they conclude that ijAm is deamidated in the 

stomach and that the resultant NA enters the intestine for absorption, 

Unfortunately the time course of these experiments is too long (2 hours) 

and therefore such a conclusion concerning absorption of the vitamer(s) 

is not neGessarily valid. One hour following the~ os a.dministratfon 
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of labelled NAm the only labelled compound isolated in the·stomach or 

intestines was NA, These workers conclude that physiological·quantities 

of NAm do not survive passage.through. the gut.· This :Ls:in·contr!ist to 

Chaykin ~-- al. (32,135). Ho'ltlever, th~ latter workers utilized much 

higher doses of NAm and/or based their conclusion on:the·finding that 

the metabolite excretion patterns were similar when NAmwas administered 

either per£.!. or IP and that these patterns were different·from those 

observed with NA; As previously rnenticned, such. excretion·datadonot 

necessarily reflect hepattc -metabolism of the vitamers in the NAD bio

synthetic pathways. 

Grunicke et al. (72) observed only a very small loss of isotope in 

the bile from perfused. livers. T~ese authors assume that the isotope 

appearing in the gastrointestinal tract reported by Ijichi et al. (73) 

must enter through the bile. Since they observed,very little influx of 

label into the bile they concluded that the findings of Ijichi ~ al. 

are artifacts.of the high NAm levels used and that the.involvement of 

the.gastrointestinal.tract is of no significance in themetabolism of 

NAm or NA. Although.this-too may be the correct conclusion, it cannot 

be made on the basis of their evidence. They overlook the fact that in 

the studies of Ijichi. et al. (73), the concentration of label in the gut 

increased. with decreasing dose and that the primary concentration of. the 

label occurred in the stomach above the point of bile entry into.the 

gastrointestinal tract. 

:Cn spite of the-fact that the time periods involved in the studies 

of Tanagawa etal. (75) and Shimoyama ~ al, (76) were too long for 

definitive statements to be made concerning the site of vitamer absorp

tion, their evidence for the gastrointe~tinal deamidation of ~Am at 

physiological concentrations is still very convincing. 
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As shown by the data of Pe track et al, (33), and as: .previously 

mentioned, differences in metabolite distributibn disappear rapidly.with 

time in animals receiving 5 mg/Kg dose~ of NAm and NA, · It appears prob-

able that if physiological dos~sof the vitamer were administered, the 

differences· in· excretion patterns obse~ved for the two.· vitamers· at 

higher levels would essentially if not.totally dis~ppear.·:Such a con-

clusion is. supported by the perfusion studies of: Hagino: et· al. (139), 
. . --

who could detect no· d:tf ferences .. in the urina?:y met.abc,lites.· found·. in the 

perfusates from livers pe'l:'fused w:tth. phys:tclog:tcal concentrations .. of NAm 

and NA. 

The Control of NAD Biosynthesis 

The consistency of tissue NAD levels has often been mentioned as 

one .. of the most. striking phenomena of living cells. The efforts to 

elucidate the. contr.ol mechanism(s) i1;rvolved in maintaining· these con".'" 

sistent levels have been manifold. Many factors have been implicated 

in the control of NAD biosynthes:ls as.a result of these-studies. Th~se 

can be. classified into two general-catagorief, substrate and/or product 

related effects and hormonal effects,-

The· AT.P Theory 

It has been sugge~ted·by several groups that NAD synthesis was 

controlled by the intracellular concentration of ATP. This hypothesis 

was based on the obser~ation that lowered pyridine nucleotide levels 

were accompanied by lowered ATP levels in hyperth:r,,1:;>~d rats (143, 144) • 

Glock and McLean (145) have attempted to relate thyr0xine and the de-

pression of NAD levels in hyperthyreidism to.AT.P syn.thesis. The theory 
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received.experimental support from in.vitro enzyma.tic evidence'indicating 

the conversion of NM1N tC!l · NA in the • absence of ATP (146., 147) which was 

believed at the time· t0 represent· a r~versal of the .. :NAR'l'ase· reactien 

(146). Finally, ethbnine, which is known tc cause'a mar.ked·red,uctbn 

in ATF (148), ·was. reported. to result :tn a t:ransient: .deer.ease· in· hepa,tic 

NAD · content· (14 9) • · Much. of this apparently supp0rtive. evidence has now 

been retracted er prcven :tnconststent, · The enzym.at:Lc·.evidence· was re-:

tracted (150) upon the :demonstr,t:tc,n that;· enzymes . .o.the:r;-· than· NARTase 

were.responsible fer the,c,rig:lnal observatbns, The experiments with 

ethionine have been repeatedo Though a rapid decrease in ATP leveis to 

50% of normal was de~onstrated, essentially no-change in either endo

genous NAD levels or in NAm induced NAD levels was observed. (151). 

Since every enzyme in the Preiss-Handler and.NMN pathways is de-

pendent upon ATP as a substrate or.an allo~teric effector, a 4rastic 

depletion in intr:acellular ATP will eventually limit.these pathways.· It 

would seem,·however, th~t any mechanism which does not el:1,cit,an effect 

during a decrease of ATP cmntent tG>. half its normal levels ;ls af no 

physiological significance •. 

Other Substrate and Product. ,Influences 

As has been preyic,usly mentioned, small quantities of NAare,rapid

ly incorporated into hepatic NAD, whereas similar quantities of NAm 

enter the .. NAD pool more slowly and to a lesse~ extent. This observation 

has led to the acceptance.of the idea that NA is the,preferred precursor 

for NAD synthesis.· Chaykin·(7) has ques~ioned thi~ concept. The basis . . 

of his qu:tte·convinc:lng argument is that the biosynthesisof:NAD from 

NAm is.possibly under the,tight restraint of some_phys:i,ological control 
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proper substrate is not necessarily the only requirement for, the in

itiation of NAD synthesis. It is interesting that this 1967 argument 
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was conveniently forgotten when claiming NAm was superior to NA as a 

precursor in all tissues excepting liver (Collins and Chaykin, 1972 (135)). 

The study of the efficacy C!>f the various precurs(l)rs for the pro

motion of NAD biosynthesis yielded an apparent paradox. Early work by 

Feigelson et·!!_. (70,152) demonstrated the ability of NA, NAm, and tryp

t©phan to increase hepatic NAD content well above nG>rmal.whensupplied 

in high dietary amounts or by single injectiC!>n, Kaplan,et ~· (8,9) 

demcmstrated that hepatic NAD was markedly elevated ,by NAm: challenge. 

Subsequently several gr<riups have investigated the efficacyof these and 

related compc,unds as.precursorsef NAD bfosynthesis (33~73,97,136,153). 

At doses of up to 50 mg/Kg, NA is a better precursor of NAD than is 

NAm. Beyond this dose the response to NA begins to decrease while that 

to NAm continues to increase. At approximately 250 mg/Kg NAm becomes 

equivalent to an optimum dose of NA, but the response to NAm continues 

to increase markedly with increasing dose until a maximum is attained at 

a dose of between 500 and 1000 mg/Kg. Further, it has been demonstrated 

that equimolar doses of tryptophan are essentially equal to NA up to SQ 

mg/Kg, at which point tryptophan becomes the superior of the two as a 

precursor for NAD synthesis (152). 

Langan et al. (97) demonstrated that a 250 mg/Kg dose of NA result

ed in only one-third of the increase mediated by an NAm challenge, 

Combining the. treatments was less effective than NAm alc:me, indicating 

that NA was inhibiting NAD synthesis from NA!m, The fact that NAm is a 

better precursor of NAB than NA at higher levels of administration has 
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been ascribed to two factors, It has bee~ argued that. the longer.half

life of NAm is,a significantfactor (33) and it no daubt is under single 

dose conditions. However, the primary factor is:slow release of NA from 

NAm. Such an explanation was put forward by Petrac].c. et: al·.· (99), who 

argued that the high~ NAnl deamidase was the.first. and·rate:limiting 

step in NAD biosynthesis from NA.in,·· ltegardless of the validity of· this 

statement, suc~-a mechanism does permit the,slow release of·NA into the 

Preiss-Handler pathway, preventi'Qg the-accumulation of.inhibgory levels 

of NA and/ or related nucleotides. . That· _s\lch, inhibi tic>n ;Ls , th,e primary 

factor .contributing to t~e results. observed is supported by the finding 

that 6 mg/Kg·of NA administered every 15 minutes for 4 hours (90 mg/Kg 

total) yielded the same levels of hepatic NAD as NAm ch~llenge (104). 

This is further supported by the,demonstration that multiple doses of 

NAm (500 mg/Kg at zero time followed by 100 mg/Kg every 2 hours) resulted 

in a decrease in the.maximum level.a£ NAD obtained (34). 

Di~trich· (16) presented i'Q..vit:ro data demonstrating the spEacific 

feedback inhibition of NARTase by dNAD, In this work, 5 x_lo-4 M dNAD 

was.utilized (an unlikely invivo concentration in the absence.of com

partmentaliza·tion). An 87% inhibition of NARTase activity was. observed 

when NA was present at physiological cancentrations (1 x 10-5 M). This 

inhibition was. reduced te> .54% by increasing the,NA concentration to 1 x 

10-4 M. It is possible that an accumulation of dNAD might contribute 

to the reduction of NA utilization at high concentrations of this sub~ 

strate. However, the fact that the inhibition is substrate reversible 

implies that·other factors.are also involved. 

It is apparent that-some.control of NAD biosynthesis from NA exists. 

rhe mechanism(s) only come into.play under pharmacological circumstances. 
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They appear to be represented mainly by substrate and/or product mediated 

inhibition. The degree to which .this inhibition occurs is dependent 

upon the dosing conditions and the extent to which. they promote. the 

rapid accumulation of NA, NA.MN, anq/or dNAD. 

The contributbn of variable half-life, undet" cha1.1enge·conditiens, 

is due primarily to marked differences in the rate of. excretion of the 

two v:tt:amers. · NA is very rap:tdly excreted, having. a: half--lif e of about 

one hour. N.Am is excreted much more slowly, having. a half-life of 

approximately· 5·heurs (33), On~ major factor contributing to this dif

ference is th_e eHect:tve tubular .reserption of N.Am (154), which does 

net appear to occur in.the case of NA. Superimposed upon this is the 

stimulation of renal filtration resulting from an increase.in renal 

blood flow (l,~q,,,156)~ Whether NA causes this circulatory effect.direct

ly, through the stimulation of glucocorticoid and/or thyroxine output. 

or both, is not clear. The net.result, in any event, is a more effective 

removal of NA from the system and a consequent reduction in the duration 

of its availability tQ the synthetic pathways. 

The possibility that.the mammalian system may have a capacity to 

adapt to the continued presence of hyperphysiological levels of NA or 

tryptophan has·been eliminated by the work of Feigelson et al. (70). 

These authors incorporated high concentrations of·NA and/or tryptophan 

into the diet of rats for a period of two weeks, At the end of this 

time, the hepatic pyridine nucleotide levels were found to be elevated 

above normal. The findings indicate that tryptophan is capable of over

riding the proposed mecQ.anism for the;control of its input intQ the, 

Preiss-Handler pathway (see below). Such.a finding should not be per

mitted to detract from the significance of this mechanism 9 in as much 
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as high levels of tryptophan are not naturally occu:rring:and·the purpose. 

of such a mechanism is presumably to spare tryptophan under conditions 

of limited supply. 

The concern voiced by Chaykin (7) over the lack. of·an·effective 

physiological control on NA.input int~ NAD becomes impor.tant'.only if 

prevention of NAD synthesis beyond.a given level is to. be·desired. To 

the best of· this authorts knowledge, it.has not be~n demonstrated that 

the marked elevation of NAD which occurs in response·.to the·vario1,1s 

pharmacological conditions discussed results i~ any metabolic disruption 

or physfological damage. to the anim.al o . 

The levelof precursors ut:t.ltzed.in all of the above studit;!s are 

unattait'!,ableunde:t' natural conditions.and, as a consequence, no selective 

pressure has been placed cm the organism requiring these dietary pre..

cursors. to develop any such.control mechanism. The basic problem con

fronting such species is one.of maintaining the minimum levels of 

cofactors required for normal metabolic function. This is the point 

where maximal selective pressure would be exerted. Thus, mechanisms 

which minimize the loss.of diffuseable int~rmediates, provide for their 

proper.interstitial distribution and restrict the metabolic turnover 

of the nucleotides would be most likely to develop. 

In this sense, th~ frugal use of tryptophan would be advantageous 

to the organism. The potential for feedback control on the input of 

tryptophan into the "uncontrolled".Preiss-Handler pathway has been 

demonstrated (12-14). Of particular interest is the work of Cho-Chung 

and Pitot (12,13). These workers have demonstrated a strong inhibitory. 

effect of pyridine nucleotides, NADH and NADPH in particular, on 

tryptophan oxygenase. Further work demonstrated that the tryptophan 
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mediated elevation of this enzyme. (157,158) was-eliminated·by·NAm 

challenge, It appears that: the pyridine nucleotides .. bring. abou.t an. 

allosteric mec;lificatiQn of tryptoph~n oxygenase, . This: .interferes with 

the substrate protection afforded by tryptophan (157,158)and simultan

e<1>usly depresses. the activity of the enzyme.· The en,t:ry of·. tryptophan 

into this pathway :ts thus-:tnh:lQited. This mechanism appears·to.be 

sensittve enough to contribute at physblogical levels:.· · The· classical 

nutritional evidence·concerning the tryptophan sparing effect of .NA and 

NAm also supports. the f!unctt.on of such a mechanismo . 

Excellent supportive evidence for the constraint on NAm incorpora

tion into NAD hypothe51ized by Chay)dn (7) has been presented by Dietrich 

et al. (16,104). In.vitro evidence demonstrated that.a marked inhibition 

of NAmRTase was effected by normal physiological concentrations of a. 

mixture of pyridine nucleotides (104), Ut~lizing 5 x 10-4 M NAD, a 65% 

decrease in NAmRTase was observed with NAm at:a concentration of 1 x 

10-4 Mand an 88% inhibition was.observed when NAm was present at 1 x 

10-5 M. NMN at,5 x 10-4 M was found to be an equally effective inhibitor 

(16). However, its concentratton is not likely to reach such a level 

in vivo in the absence of compartmentalizatfono The feasibility of the 

in vivo operation of this mechanism is easily based on NAD alone.since 

the.levels of.NAD utilized in the experiments are lower than those 

normally observed in vive. The mechanism of this inhibition has been 

recently studied (138)0 All oxidized pyridine nucleotides containing 

a "S" nicotinamideribose.linkage were found to be.potent competitive 

inhibitors of NAmRTase when NAm was the variable substrateo 

The imposition of such a control mechanism on the incorporation of 

NAm. into NAD need not merely serve.the pQrpose.of maintaining the 
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intrastitial levels of NAD as suggested by Chaykin (7). By limitation 

of the levels. of NAD which can be synthesized by the liver·. from· NAm t~e 

organism can assure that all tissues receive a supply. of· precursor fer 

NAD synthesis. The liver being the cmly l!lrgan capable .of·generation of 

any quantity of NAm therefore is forced to permit its. ex-it· to the gen':"' 

eral circulation :for U$e·by the other·tissues. If therewere no restraint 

placed uponhepatic reuse of NAm one would expect its very effective 

retention.by the liver, particularly in times Gf dietary restriction, 

The net result would be that the remaining tissues would be rapidly 

starved for precursors, Since the net synthesis of NAD from NMN can be 

initiated by NAm deamidase it would be neces~ary that constraint be 

placed on this enzyme also, Regardless of the manner in which it.is 

accomplished, this indeed appears to be. the case. 

Hormonal Influences 

Many apparent hormonal influences~ NAD biosynthes:l,.s.have been 

observed. The data obtained,from such studies are, however, often 

contrad!ctory and d'itU:tcult to interpret. 

G:reengard et al. (10;11,159) demonstrated that.NAm challenge in 

hypophysectomized rats·resulted in a marked increase in both the ex

tent and duration of the NAD elevation observed in normal animals, 

Utilizing combinations of endocrinectomy, these workers demonstrated 

that the loss of the thyroid and adrenal funcUons.associated with 

hypophysectomy made the primary contribution to this phenomenon, Com

bined-adrenalectomy and thyroidectomy accounted for 80% of the respc,nse 

observed in the hypophysectomized animal, each gland being shown to 

contribute about equally. Either thyroxine, ACTH, or glucocorticoid. 



therapy resulted in a complete or partial, dose dependent, reversal of 

these effects. All of these studies were based on the response of 

hepatic NAD levels to a challenge dose of NAm. 

6([) 

Bosch and Harper (143) observed a sim:tlar phenomenon.· .. in' rats 

afflicted with induced hyperthyroidism. In. this· study, ·.tQEf hyperthyroid 

rats responded to NArrl challenge with a marked reduction· in· the extent 

and duration of the NAD elevation as compared to normaL animals. 

Similarly, induced hypothyroidism has been shown to elevate an4 prolong 

this response (160). 

Hyperphysiologi~al doses of estrogens have been. demonstrated to 

have a marked effect ort NAD metabolism in normal and adrenalectomized 

an.imals (161,162). The estrogens decrease the response to NAm challenge. 

This estrogen:tc influence is not .seen in the hypophysectomized animal. 

The influence of these hormones cannot be mediated through the pituitary 

adrenal axis since they continue to be effective in adrenalectomized 

animals (161). Since,the above.authors did not measure the effect of 

estrogens on the NAD response in their thyroidectomized animals, the 

possibility exists that·the response is mediated through.the pituitary 

via the thyroid. 

In addition to apparent hor~onal influences.on NAm deamidase pre

viously presented, Dietrich et ·al. (163) have shown that·hypophysectomy 

and adrenalectomy result in:about a 40% decrease in .NAmR'rase·activity. 

In the same study, hypophysectomy was shown to dep.re.ss· NAD: kinase by 

about 30% while·adrenalectoirny was without effect. 

It ·would eeem that the abeve·rete~enced changes in enzyme.activity 

are of little or no consequence to a consideration of.the observed 

responses to NAm challenge. (Indeed they appear to be of no real 



consequence under any.circumstances.) It1,stead, these.hormonal effects 

seem to be predominantly due to a change in the duration,of substrate 

supply following NAm challenge, as•is.di~cussed beiow •. 
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It has been demonstrated that the .. admin.istr,a.tit;,n, of; NA- anc;l NAm to• 

normal. animals increases. enzyme activities (24) which.. have· previously 

been shown.to be.induced by glucocorticoids. These vitamer·effects.are· 

elim:lnatedbyhypophysectomyor adrenalectomy, indicating·thattheir 

influence on enzyme activity is mediated via the pituitarr adrenal axis, 

Johnson and Kanics (164) have proven this to be the case by demonstrating 

a 2- to 3 ... fold increase in plasma corticosterone following vitamer. 

challenge. This response was abolished by prior hypophysectomy, It · is .. 

possible that the vitamers also stimulate thyroid function; however, no 

reports could be found which would either support.or refute.this con-. 

clusion. It has also been demonstrated that endocrinectomy has a marked 

influence on renal function. Al+ changes. that have been observed are 

in the:direction of reduced excretory funct:f.on. The renal changes ob

served·:ln hypophysectomized animals have been shown to be dependent.upon 

both,glucocorticoid and thyroxine replacement for their complete re

versal (154,165-173). 

In this light, one of the.most significant observations made by 

Greengard ~ al. (34) is that the half-life of NAm following NAm chal

lenge was increased. from about 4 to.· about 20 hours by hypophysectomy, 

It would appear that this marked increase in precursor half-life in 

hypophysectomized animals is.responsiple for the increase in the extent 

and duration of the.hep?t:ic NAD elevation observed following NAm 

challenge. This increase in NAm half-life seems to result primarily 

from changes in kidney.function. That is, hypophysectomy, in itse+f, 
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leads to a decrease in renal function and, at the.same time prevent1;1 

any ancillary stimulation therec,:I! which might be effe.cted.· by· a phar:ma-

cological dose. of the vitamer in the intact animal.··.· If: these· conclusions 

are valid, one would predict that: an increase :tn the exten,t ·and· duration 

of the NAm induced elevation of hepatic NAD should occur in·any endo.,. 

cr:tnectom:tzed·an:tmal,where thyroid or adrenal function is·decreased or 

eliminated. - Indeed, the above. predicted changes. in: hepatic· NAD have 

been observed· :tn all studies involving such. ertdoc:r..inectomy· (!)r· hypoendo-

crine function. Conversely, in the.instance of hyperendocrine function, 

one would expect the NAD response to be decreased in both extent arid 

duration and this too w~s found to be the case in induced hyperthyroid.,. 

ism. Pata will be presented herein which .supp.ort the above conclusions. 

An exceptien to. the above predicted r·esults in terms of the. changes 
i 

in N'AD content but n0t in precu~so:r:,half-life will be·pointEld out in 

connection with the discussion of.glucocorticoid influences on NAD bio-

synthesis. 

Insulin has been implicated as being impertant in the .. control of 

tryptophan incorperation _into NAD, Alloxan diabetic rats·were observed 

t© have a slight (15%) reduction in.hepatic pyridine nucleotide content 

(174). · Mehler et al. (175) observed a ten~fold increase in picolinic 

acid decarboxylase activity in alloxan.diabetic. ratso It·was subse-

quently proposed that this enzyme syphoned away the.tryptophan inter-

mediates normally available for ~AD biosynthesis (176), an hypothesis 

which subsequently received exten$ive experimental support (106). 

Clearly th_is is a direct hormonal influence on the synthesis of NAD from 

tryptophan. However, the implication that th~s is a mechanism which 

has the purpose of c~ntrolling ~AD biosynthesis is n0t obvious. It 
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may well be that th.e stimulation of tryptophan catabolism:.v;La·· the glu

tarate pathWt\lY is. a reflection of an c,verall physiolagical response 

aimed.at the· gene't'at:ton of glucose.and maintenance'af.anaplurotic·inter~ 

mediates, !n.this·case, insulin wuld net.be funct:tenal·in:tqe purpose

ful control.of NAD·biosynthesis under nonnal.physiolc,gical·circumstances, 

and the sma11decrease·in hepattc.NAD centent observed in.the diabetic. 

rat would be, purely coincidental.. 

The· influence o! glucecorttceic;ls en: NAD. metab~l,.isnr .presents. a· fur

ther paradox· in the study ef. thb area. . As . note~ above.,: glucocort:t.coid 

therapy resu1 ts· in at least a part.bl re..,ersal. of .the. response· of hypo-. 

phys~ctomizecl an:tmal,.s te :Nk:n challenge· (l,l) •.. Greenga,rd,:·. ,!t' at~· (177) 

also demonstrated that chrenic gluccco;ticoid therapy prevented the 

symptoms of ~A deficiency. in the dog and the reproductive· disruptiol'!

therefrom in:p:t:'egnant.rats. This effect was subsequently demonstrated 

to be due to a glucocorticoid mediated increa~e in the availability of 

tryptophan, presumably.·due to. a stimulation of protein catabol.ism (178). 

Th~s co1:1clusien was based. on the observation that.· glucocorticoid therapy 

res1,1lted in an increase in plasma tryptophan and· .a maintenance of normal 

liver N~ levels::l:.n ani~als fed a tryptophan-niacin defici~nt·diet. 

Further, in· animals wi tb depletec:1 ~AD:· levels, a. single dose of gluco

corticoid resulted :l:.n an increase in hepatic NA,D.·whi.ch: was: prec~ded by 

an· increase iJ'l plasma. tryptophan, This ~esp.onse was definitely not due·· 

to a glucocorticll>id mediated increase in tryptophan oxygenase since 

thb enzyme activity was found tE> be dsubled in pregnant rats regardless 

of their nutritional stat~s (179), 

After 30 days 0f dietary deficiency, the hepatic NAD· conte.nt of 

rats had fallen to abaut 60% of n0rma.l, Half of this loss oc;curred 



during the first 3 to 4 days :following exposure.to .t~e. deficient diet, 

The remaining decrease took place during the next·2 tq 3. weeks·with a 

sudden drop recorded at the 12th to 14tl}. day. Hepatic,NAD levels :re

mained essentially constant through the last 10 d,ays .o.f .these. trials, 

The NAD'.!?/NADPH cc,ntent o! the liver did not cban.ge during· the· entire 

period. Daily injei;:tfons · of gluc.ocottico:td were capable, in· a d1Dse 

dependent w.anner, of mainta:tn:t.ng hepatic NAD le:velsatnormal or above 

normal levels during the entire per:tod of deficiency •. 
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The most·i~pressive finding made in the above experiments is the 

total failure of the reproductive function of the animals.on th~ de

ficient diet, Pregnant rats.were placed on the deficient diet .on the 

day of conception. On the 13th day of pregnancy, the uteri of these 

animals bore essentially no.viable fetuses and no young were ever de

livered, Th~ sensitivity of such a vital species survival function to 

a relatively sma]..1 decrease in an essential. cofactor is indeed l:Jmazing, 

It is tempting on the basis of the dual effects of glucocorticoids 

to propose, as Greengard and coworkers did, that the pituitary adrenal 

axis plays a significant role.in NAD homeostasis. However, hypophy

sectmmi~ed and adrenalectomized rats maintain normal hepatic NAD levels 

when supplied with .an adequate diet in the absence of a functional 

pituitary adrenal axis. This fact, combined with the .above demcrn,strated 

inability of the rat to successfully maintain so vital a function as 

reproduction, in the.presence of such'a potentially effective survival 

mechanism, makes the concept that gluc1:>corticoids play an important.· role. 

in NAD homeostasis rather tenuous. Th~ ability of endocrinectomized 

animals to maintain normal NAD levels also seems to eliminate the ab<Dve 

mentioned enzyme changes as being of any significance. 
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The Influence.of Drugs 

Burton et: al, (180) demonstrated, in normal animals,:that·reserpine -- ' 

and chlorpromazine increased the duratio11, of the NAD,elevatfon which 

occurs in response to ~Am challenge. These.drugs have·been·shown to 

have a marked influence on pituitary-adrenal function .. (181)~ The above 

findings were confirmed by Greenga.rd ~ aL (1$2). Subsequently, Fratta 

et al, (183) demonstrated that chlorpromaz:tne and impramine had the 

ability tc, prevent fetal death in the ,pregnant rat being fed a deficient 

diet, 

These tranqu:tliz.ing drugs have been shown to stimulate adrenal 

glucocorticoid output. (184), It is interesting that these drugs are 

capable of preventing reproductive failure via stimulation of gluco-

corticoid production on the one hand while, ~n administered at the 

same dose,level, they appear to counteract a ~ocorticoid mediated 

response on the other, In this apparent contradiction seems to lie the 

answer to the paradoxical effects.of the glucocorticoids. 

In a more. recent st4dy (185), utilizing normal,rats, the effects 

of ACTH, ch~orpromazine, and physical stress, induced by limb ligation, 

on the changes in h~patic NAD following NAm challenge were investigated. 

All ancillary treatments resulted in a marked elevation of hepatic NAD 

as compared to those observed in rats receiving only the NAm challenge. 

After 24 hours, these levels had begun to return to normal. The ACTH, 

physically stressed, and chlorpr0mazine treated animals were found to 

have ~AD levels which were, respectively, 1,6, 2.1, and 3 times those 

found in NAm challenged animals. The results of all treatments were 

the same, differing only in degree, It is clear that the drug effects 



are due to a stimulation in glucocqrticoidoutput which in turn induces 

an increase in the hepatic NAD levels, 
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The explanation of the "Greengard glucocorticoid .pa.radqx'' · seem& to 

lie·in d:tfferences·:tn.the duration and potency of the, glucecorticoid. 

levels resulting from any given treatment. There is no doubt·that these 

hormones reverse.the differences in.NAn, excretion observed·between nor

mal and hypophysectomized rats when using radfot:race.r met:hodoJ,.ogy and 

that, this .effect· is. a :result ed! glucoc'.orticc;>id stimulation· c,f, renal 

function in t;he endocrinect<llm;lzed animal. On.the other.hand, it is 

obvious that:glucocortico:lds st:tmulate.NAD synthesis by increasing the 

availability of tryptophan for that purpose (178). It is probable that 

the influence of chlorpromazine is effected by this same mechanism and 

that it is more potent and long lasting in this regard than a single 

administration·c,f ACTH (185). The influence of these drugs upon NAD 

levels following NAm challenge is therefore explicable on the basis of a 

marked increase in tryptophan availability for NAD synthesis, which 

maintains the elevated levels long after the NAm supplied by the challenge 

has been eliminated. Support for this.explanation b to·be found in the 

original work of Greengard et al,· (11), In their studies with gluco-. 

corticoid replacement therapy, .the most potent glucocorticoids were the 

least.effective in reversing the effects of.NAm challenge in hypophy

sectomized rats, Such a result can be explained on the basis of the 

above argument, i.e,, the more potent glucotorticoids .stimulate ren~l· 

function reversing the NAmexcretion phenomena while at the same time 

increasing the availability of· tryptophan for NADbiosynthesis·thus cqun

teracting the.extent of the depression observed in NAD levels by making 

an alternate substrate available for its synthesis" 
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NAD Glycohydrolase 

Little attention has been giyen .to the possible .involvement of NAD 

glycohydrolase in the: contiol of intercellular NAD levels·,· ·· Jacobson and 

Kaplan (186)have demonstrated the wide distribution of this enzyme in 

the tissues of several mammalian species, 

Clark and· Finder (151) have esti111ated that-the rate· of·,hepatic 

nucleotide hydrolysis observed in vivo can be.accounted for by about 

LO% of the NAD glycohydrolase activity measured in vitro, A s.imi,.lar 

observation has been made in Ehrlich ascites cells (187). The hepatic 

e11:zyme activity has been shown to increase dµring fasting and the hepatic 

NAD content has been shown to drop simultaneously (188,189). 

At least.one carcinostatic drug, Trenimon (2,3,5-Tris(l-aziridynyl)

p-benzoquinone), has been shown to release NAD glycohydrolase activity 

of intact Ehrlich ascites cells (129)·and also to markedly reduce the 

cellular NAD content (187,190). The action of this drug is complex. 

!t releases NAD glycohydrolase activity, in a dose dependent·manne+, at 

concentrations above 4 x 10-6 Mand simultaneously has an.ability to 

inhibit both the NAMN and NMN adenylyltransferase activities of.these 

cells above a concentration of 2 x 10-5 M. The drug has no effect on 

NAD glycohydrolase activity when measured in cell free extracts. 

The now generally fav0rec;l NMNpathway for the synthesis·of,NAD from 

NAm has been demonstrated tc:> be unable to maintain hepatic NAD levels 

under a drug stress imposed by azaser:tne. In experiments utilizing this 

drug as an inhibitor of NA incorporation into NAD, marked de~reases in 

hepatic NAD were found to occur in both perfused liver (71) and in vivo 

(98), In.liver perfused with physiological levels of NAm, under con

ditions shown to permit the maintenance of hepatic NAD centent, NAD 
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dropped rapidly to less than 30% of the initial concentration·when 

azaserine was added to the.perfusate, Similarly, in.vivo studies demon.,. 
' ---,-

strated that azaserine administraUon to. fully fed animals< resulted in 

a rapid-decrease in hepatic NAD to 25%-of the normal.levels.· ·A rapid 

depletion in.the elevated NAD levels produced by N.Am·challenge·was also 

demonstrated·,· · NA:m challen2!e prior to or stmultaneous; with azaserine. 

administratbn was shown te enable· the liver to: main.tain· normal NAD 

levels. NAm challenge :l!oll(,w:tng depletbn permitted these levels to re-

turn to normal while those in unchallenged azaserine treated subjects 

remained markedly depressed, 

It seems obvi~us that the net synthesis of NAD observed following 

N.Am administration to azaserine treated rats must be taking place via 

the NMN pathway, That this synthes:l.s occurs.only until normal or slight-

ly higher levels are reached supports. this hypothesis and the· .. concept 

that NAD biosynthesis via.this pathway is under tight end product con-· 

~t+aint. However, azaser:tne treatment.does deplete.hepatic NAD in the 

absence of an NAm challenge; Although no effect of azaserine on NAD 

glycohydrolase was. demonstratable in vitro (191), it seems prebable that 

a parallel can be drawn with the similar effects of Trenimon:on NAD 

glycohydrolase activity in .. vivo, Since the hepatic capacity for the 

destruction of pyridine nucleotides far e~ceeds.its ability to-synthesize 

them with substrates available at normal physfological levels, one.is 

drawn to the.conclusion that some very tight constraints are placed upon 

the activity of.NAD glycohydr©lase, 

Bock et al, (192)-have attempted to study this phenomenon in.Ehrlich. 

ascites cells, It was found that the intracellular NAD content was con-

stant (300-400 nmoles/ml of cells) during incubatiGn, The estimated 
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intracellular rate of NAD degradation was 60 nmoles/hr/ml of·cells, In 

contrast to this, the cells were :found to have a. ca.pa.dty· to· degrade 

exogenous NAD at a.rate of 3200 nmoles/hr/ml of cells, Th.is figurewas 

equivalent to the degradative capacity l!;f a DNase treated:sonicate Gf 

an equivalent volunie of such 'cells, These :findings.led to·the conclusion 

that the microsomal.N'.AD glycohydrolase is focalized on the·outside of 

the·.plasmamembrane eir <!In tne inside of the·en.do.plasmic:.tubu:j.es, the 

latter having b~en thec,rized to have a direc.t cennettion· with· the extra-

cellular space (193), Hew,such a co'D\pa:ctmental:Lzatfon is se radically 

disrupted by a carcinostatic agent is not immediately apparent. 

The potential importance of NAD glycohydrolase in the control of 

NAD content is further emphasized by the data of Brown (194), It was 

observed that du~ing the development of severe niacin deficiency the NAD 

content.of blo~d-and liver dropped to about 50% of normal while that of 

brain remained unchanged, These results might.be taken as being indica-

tive of a tissue priority for precursors or of a difference·in the rate 

of turnover in NAD which would.implicate NAD glycohydrolase. Deguchi 

et al, (136) demonstrated.that both N.Am and NA were. taken up only slowly ....__.. ·_......;... 

by the brain and invoked the-argument that .this was due to the relative 

impermeability of the blood brain barrier, One could reverse such an 

argument and claim that ence inside the brain, the exit of these pre-

cursors would also be slow and.thus expl.ain the observatio'Q.s of·Brown, 

However, Gerber and Dereo (195) have presented data which i.vcl.icate tl?,at 

both the brain and skeletal muscle,of the meuse and rat.have an extremely 

slow pyridine nucleotide turnover rate. 

These authors injected rats and mice with traces of NA-14c and 

followed the time course of changing tissue'specific activities as was. 
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previously done by Shuster !! al. (196) utilizing N.Am .challenge. In 

addition to the tissues studied by the latte,;', the bra4'n·, skeletal mus

cle, and testis were studied. The d,ifferences in.the resulte·were dramat~ 

ic, Shuster et, al.. (196) had observed. tissue isotope half,..iives· measured 

in terns of2· to 3 hours. Gerber and Deroo, .em the c,ther·hand· (195), 

found the labeling of liver, kidney,. spleen, and intes.tine· rapidly 

reached maximum values :followed by a decrease in tissue specifiq·activity 

with a half-U.fe of 2 · to 3 days. · In. contrast, the maximum· specific 

activity of skeletal mus~le and heart required 1 to 2 days to reach a 

maximum. This was :l!l!lllowed by.a decrease with a half-life 0£ between 10 

ana 30 days. Though the blood brain barrier might be used to explain 

the results observed.in brain, it cannot.explain the similar observation 

in skeletal muscle, 

That there are interstitial variations in the.extent of NAD turn

over is apparent. NAD glycohydrolase would seem to be the.key to these 

differences. Whether the r©le.of this enzyme.in NAD regulation is under 

hormonal control, or _whether it is simply compartmentalized ina manner 

suggested by Bock et.aL ·(192) is at the mament a question without an 

answer. 

The study of NAD biosynthe~is and its control ,is, quite clearly, a 

difficult and complex one, A great Aeal of very careful experimentaticm 

is required .before· this subject can, be fully under~toocl, A' cqmparative 

study of representative mammalian and avian spectesmight yield some in

sight on this.subject. The careful study of the enzymology 0f.the 

various tissues and the kinetics 0f the.distribution of these v:;i.tamers 

throughout the intact systemis need,ed. The utilization and catabolism 

of these c~mpounds under very carefully controlled E_hysiological 
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conditions and perhaps conditiqns of mild or even relatively·severe de-

ficiency might alee::> prove fruitful. · ?n .any case the centinued investiga

tion of this subject under the generally used conditions:of·dosing is 

probably fruitless and can yield no further useful informatien than has 

already been made available1 

The concept of both the.hepatic and systemic·pyxidine:nuclec!>tide. 

cycles has been serbtisl.y questic:,ned. As a result of concet3tual·errors 

and/or inadequate experiments, many of th~ claims made·in·the·literature 

concerning the nonfuncti~n of either of.these cycles are either not 

applicable to physiolegical circumstances the~selves or are not supported 

by de:finitive·evidence. 

The evidence.in support of the existence of a systemic pyridine 

nucleotide cycle has been attained from-a sounder set of experiments, in 

the physiological sense, than any of that reported by its detractors. 

It seems clear that·at least a systemic system is,,operational under. 

normal physia,logical conditions. What is not clear is whether tµis 

cycle plays any vital physiological role. It is possible that this sys

tem, though a biological reality, is without a purposeful function. 

The information that is lacking, then, is definitive evidence that NA 

~ se is an essential metabolic entity. 

The weight of currently available evidence·suggests tqat the function 

of NAm deamidase is limited in mamms.1:ta.n liver under conditions of nor

mal substrate supply. Thus, under such.conditio~s, the proposed hepatic 

pyridine nucleotide cycle. must .be assumed to tt;irn only sl,owly. As to 

whether the in vitro evidence supporting sue~ a conclusi0n is correct 

or whether the situation is more cqmplex than it.would appear remains to 

be seen. This conclusion is not intended to imply that the NMN pathway 



is of greater import to hepatic NAD bi~synthesis than is the pyridine 

nucleotide cycle. 
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There is little doubt that NAm is the vitamer form of· central im

po?:'tance when constdering the systemic synt:he6,!is of pyridine· .nucleotides. 

This conclusion :ts reacbed-predoi:qirtantly,on the-basis of,its·preponder,

ance as the circulating form of the v:ttamer. Having.:l!eached-this con

clusion, it is easy to disregard the pyridine nucleo.tide·cycle:concept 

and accept the NMN pathway as the primary salvage pathway being utilized. 

in mammalian systems. There is a great deal of evidence·which indicates 

the wide distribution of the .NMN pathway in mammalian tissues and the 

kinetic character of the system, as studied in.vitro, suggests its 

function in the control of NAm utilization, · However, this body of. evi

dence does not preclude.a real and absolute requi:re~ent for N~ and thus,. 

the C(;')ncept of an hepatic and/or systemic.pyridine nucleotic;le cycle 

cannot be justifiably ignored. 

!t would seem that t;:he liver is predominantly a user of tryptophan 

and ef any NA that enters the system and at the.same time is the supplier 

ef NAm to. all of those tissues requiring it for NAD synthesis.· With the 

data available to date; it is the author's opinion that the best overall 

conceptual consideration of NAD biosynthesis has been·put forward by 

Dietrich (16) and an adaptatien of this concept is presented in Figu~e 

2, It should be neted that this scheme, contrary to the claims of 

Grunicke and Chaykin, provides for at,least a systemic pyridine nucleotide 

cycle and also for the use.of either NA or NAm by the extrahepatic 

tissues. 

Only two currently defined control mechanisms appear to have any 

effect on basal NAD biesynthesis, These involve the feedback inhibitiqn 
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of tryptophan oxygenaae in the : liver, wh~ch liinit1 . the·. ea,.t%y~ of· trypto

phan into the Preiss-Handler and glutarate ·pathways,. and . .t:~e· feedback 

inhibition of NAmRTase, which .limits th~ incorporatien of'..NAnr inta NAD 

via the ,NMN pathw~y. · :Beth· 0:! the11e :tnhibit;iens. are .med:L,a,ted·:.by· the 

pyridine nucleGtid.es. themselves. Theugh. there may .be e.ther· factors in

volved in the direct control of .NAD bbsynthesis, .none:.ef· .tho$e proposed 

:tn the literature 'to. date, c,ther th,n the· twc, ·abe!lve .:J.n.dicated, · are sup

ported . by any· compelling evidence· which ,i.nd:tca tea·. that they· are· of any 

significance· :tn· tl)e normal. antma.1: being fed an adeqt,ta.t.e. er· less· than 

adequate diet :tn,terms.ef the·NAD precursors supplied. 



Fig~re 2o The Systemic Pyridine Nucleotide Cycle. 
Adapted fr0m Dietrich (16). 
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CHAPTER III 

MATERIALS AND METHODS 

Materials 

Nicotinamide-1-14c (59-60 mCi/mmole), n.icotinic.acid-;7 .... 14c· (59.1 

rnCi/mmole), L-methy1-14c-rnethbn:tne'(60 mC:1./mmole), S-ad,enosyl ..... 1..,meth

ionine (58 mCi/mmole), and s~hydroxytryptamine 3H-(G) creatinine sulphate 

(8.5 Ci/mmole) were obtained, from Ame:rshall'I/Sea:1:).e. Nicotinamide-7-14c 

(5.0.rnCi/mmole), N1-methyl-14c-n:Lcot;in.amide chloride (3.86 mCi/mmole), 

and L-methionine (11 mCi/mmole) were obtain.ed from New England Nuclear. 

Urea-14c (48.2 mCi/mmole) was obtained from International Chemical and 

Nuclecir Corporation, NAD was, a gift from Dr. D, ·Bruse.a of Enzomedic 

Laboratories Inc. S'.""adenosyl-L-methionine was obtained from Sigma 

(Grade I, chloride salt) or from Calbiochem (B-grade, iodide salt), 

N:l.cotinamide, .triarnc:l.nolone, and hydroxycorticosterone hemisuccinate 

were obtained from Sigma. ' Adenosine triphosphate and, N1-methylnicotin

amide iodide were obtained from Calbiochern, N-acetylserotonin was 

purchased from the Regis Chemical, Co. and BioSolv-BBS-3 from Beckman. 

Instruments !nco PPO (2,5 diphenyloxazole) and POPOP (1;4-bis-2.-(5-

phenyloxazole) benzene) were obtained from the Packard Instrument Co. 

Quenched Liquid Scintillation Standards were obtained from the,Nuclear 

Chicago Corp, 

CM-82 (Carboxymethylcellulose), P-81 (phosphocellulose), and DE-81 

(diethylaminoethylcellulose) ion exchange papers were obtained from the 



Reeve Angel Co. Cellex-P (phosphocellulose powder) was purchased from 

Biorad Laboratories. Amberlite CGSO(H) (now Rexyn 102 H) was obtained 

from the Fisher Chemical Co. All other chemicals were reagent grade. 

Bovine pineal glands were purchased from Pel-Freeze Biologicals 

Inc. 

Liquid Scintillation Counting 
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All liquid scintillation counting was done utilizing·a·toluene 

ethanol cocktail unless otherwise specified, This cocktail contained 

400 ml of absolute ethanol, 600 ml of toluene, 4 gm of PPO, and 0.2 gm 

POPOP per liter, All counting data were converted to disintegrations 

per minute (dpm) utilizing the channels ratio correction method. A set 

of acetone quenched sealed toluene-14c standards was used as the master 

reference throughout. 

Animals 

All experiments were .performed.with male rats, Normal animals were 

obtained from the Holtzman Co. These animals were held in these lab

oratories for 3-7 days prior to use.at which time they weighed between 

90 and 110 gm. Hypophysectomized animals were obtained from Hormone 

Assay Laboratories, These animals were connnitted to surgery at a weight 

of 90-100 gms. They were maintained in these laboratories for at least 

one week and were not utilized until at least 10 days after surgery at 

which time their weights ranged between 80 and 100 gms. 

All animals were supplied with a standard pelleted COilllllercial diet 

and water ad libitum. The hypophysectomized animals received water 

containing 5% glucose. 
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All compounds were either dissolved or suspended in sterile 0.9% 

saline and were administered intraperitoneally. The specific-details 

of the treatments will be presented with the experimental results, 

In Vivo Time Course Studies 

As a result of preliminary investigations it became desirable to 

reinvestigate the time dependent changes in NMTase activity and hepatic 

NAD which had been previously observed while simultaneously monitoring 

any changes which might occur in hepatic SAM and methionine adenosyl-

transferase (MATase) activity and the effects of glucocorticoid therapy 

thereon, 

Normal animals and hypophysectomized animals were divided into 

groups of three animals each, Animals were sacrificed at O, 4, 8, 12, 

24, 36, and 48 hours after receiving a nicotinamide challenge, A second 

set of hypophysectomized animals received a single- injection of hydro-

cortisone hemisuccinate simultaneously with NAm challenge and were 

sacrificed at 8, 12, 24, 36, and 48 hours following treatment. A third 

set of hypophysectomized animals, run subsequent to the main portion of 

the experiment, was subjected to chronic.glucocorticoid (triamcinolone) 

therapy for a period of 5 days prior to the administration of a NAm 

challenge, This group of animals is represented by only the 24, 36, and 

48 hour time points, The animals allocated to the earlier time periods 

died during a period of extremely high temperatures resulting from an 

air conditioning failure and analysis of the data indicated that little 

would be gained by repeating the experiment, 

At the appropriate time each animal was sacrificed by decapitation 

and the carcass allowed to bleed out while held under cold running water 
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(approximately 30 seconds), The liver was then rapidly.excised, rinsed 

with cold water, blotted, and weighed. A 0.5-0.7 gm sample·.of· the liver 

was. removed and a 25% (w/v) homogenat~ was prepared,· us~l\g· a·, Potter

Elvehjem homogenizer, for use in the assay of MATase activity·.· Details 

of this preparation and assay prccedurearegiven be.low~ ·Approximately 

1.0 gm of the remaining liver was taken and a 20% (w/v) homogenate was 

prepared in ice'-cold 0,4 M HC:104. This preparation was centrifuged at 

0-4°c~ for 10-15 minutes at full speed in a clinica~.centrifuge •. · The 

resulting supernate was ae,ayedfor bl!>th.NAD and SAM as described below. 

Th~liver remaining after the above two samples were·removed was 

immediately· frozei;,.:l:.n liquid N2 and stored.in a deep freeze for use in 

subsequent determination of its NMTase activity. Two people were in-. 

volved in.the above,procequre which permitted the completion of all of 

the above sampling and homogenizing steps within a period of 3-5 minutes 

following sacrifice of the.animals. 

All reagents utilized in the above experiments were.prepared in a 

single batch, subdivided and stored in a deep freeze until·required, 

All animals were treated in groups.of 6/day, such. that. they would 

be sacrificeq at 30 minute intervals between the hours of 9:00 and 11:30 

AM. The MATase assay was routinely initiated 45 minutes·after each 

animal was sacrificed, The SAM and NAD analyses were completed by 2:00 

PM on the afternoon.of th~ same day, 

The Determination of Hepatic SAM 

The measurement of hepatic SAM was based on the methed reported by 

Baldessarini and Kopin. (197). This method is based on a double label 

isotope dilution analysis measured by the incorporation of 3H from 
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N-acetylserotonin (N-acetyl-5-hydroxytryptamine) and·J4c·.£rem· t;he· methyl 

group of SAM-methy1-14c into melatonin (N.;.acetyl-5-,,metho1>tyeer(!)tenin). 

This incorporation was catalyzed via the enzyme hydroxyindole70-methyl 

transferase (E. c. 2, L 1. 4) (HIOMTase), The quantity of SAM in the sample 

was determined by obtaining the ratio of 3H/ 14c in the isolated.melatonin 

and comparing it to a standard curve, 

The Synthesis.of N.;.Acetylserc,tonin. N-acetylserotonin:..3H-(G) was 

prepared from s .. hydro:xytryptam:lne-3tt (G) creat:lnine sulphate using the. 

method of Ke!>pin et ... al. '(198). The prscedure involve~ formation of N, 0-

diacetylserotonin with ace.tic anhydride in triethylamine 9 followed by 

mild alkaline hydrolysi, :ln sodi~m carbonate to remove the 0-acetyl

group. Unhydrolyzed N,0-d:!.acetylserotonin is extracted with chloroform, 

the solution acidified with 6N HCl and the N-acetylserotonin extracted 

with ethyl acetate. The ethyl acetate extr~ct of the.above reaction 

mixture was found to yield only one significant peak of radioactivity 

following thin layer chromatography on activated silica gel in a chlsro-

form:methanol:glacial acetic acid (93~7:1) selvent system (199). This 

pea~ co-chromatographed with authentic carrier N-acetylserotonin. The 

ethyl acetate was removed under a stream of dry nitrogen. The residue 

was dissolved in water to tl:,le isotopic concentration desired and utilized 

without further purification since.no measureable chl9roform extractable 

radioactivity was presento The sGlution was kept frozen until needed 

and protected from light at all timeso 

The Synthesis and Quantitatien of Double Labelled Melatonit10 To 

1.0 ml of the above described HC104 liver extract, Oo2 ml ef SAM-methyl-

14c (0.3 µCi~ 50 µCi/mmole) was added, A fixedi predetermined velum~ of 
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a 3M potassium carbonate: 0.5 M triethylamine .mixture was then added 

with vigorous stirring in order to neutralize the extract and, precj,.pitate 

the perchlorate (final pH of 6,5-7.0). Two 0.5 ml aliquots:of· the re-

sulting supernate were transferred ts H!O}t'ase assay.tubes.containing· 

1.0 ml of phosphate buffer (0;067 M,: pH 6.7) in 0.05 M' sodium·bicarbonate 

and O;l ml of N-acetylseroton:tn-3R (G) (0.4 µGi; 14 mCi/nmole), Tqe 

assay was initiated by the addition of 0.2 ml of bovine pineal gland 

extract, The HIOMTase preparation was. obtained by centri~ugation of a 

0 25% homogenate at 35,00('} x g for 1 hour at,2 C •.. (N,B, .. If·a·crudeenzyme 

preparation is.used, it must be dialyzed prior to use.) The reaction 

was terminated after 60 minutes of incubation at 3B0 c. by add.ition of 

2.0 ml of lN sodium hydroxide •. A series of standard assay tubes con-

taining 0, 1, 2, 3, 4, or 6 µgm of added SAM were run with each set of 

livers assayed, 

The alkaline assay ll).ixtures were extracted,-twice with 5 ml aliquots. 

of chloroform.. The combined extracts, were washed with 2 ml of lN sod,:i,um 

hydroxide, transferred to sc:tntillat~on counting vials, and evaporated 

to dryness. · Toluene-ethanol cocktail (10 ml) was.added and the samples 

counted. 

The-Determination of Hepatic NAD 

The remainder of the perchlorate extract was neutralized by the 

addition of a predetermined proportion of 3M potassium carbonate: 0.5 

M triethanolamine and tte potassium chlorate was allowed to precipitate. 

The NAD content of the·neutralized.extract was determined in duplicate 

by the alcohol dehydrogenase method (200), 



Assay.for L-Methionine Adenosyltransferase 

(MATase) Using P-81 
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Because of the limit,d amount~ of liver available·and the·number of 

analyses required per liver, it ,was necessary to utilize ,a:.sensitive 

assay requiring only small quant-ities G>f · tissue o 5everaJ,: worl<,ers have 

c;leveloped assays· !0r the estimation of· this enzyme'. ,based·.on·spectro-

photometric· or·. radi10:tsetop:te meth.eds.; h,ciw.ever, they all.· are· e+thel;' c,um-:-

bersome, time consuming, insensitive and/0r have been developed and use~ 

at substrate concentratfons (L~ethion:tne) well below Kin levels (201-

205), 

Biochemical assays :J!or several kinases and.phosphoribosyltransfer-

ases using DEAE cellulose ion-exchange.papers have .been developed dur:lng 

recent years (206-210). Th~se assays, in.general, ar.e rapid·and·sens:l.,.. 

tive. Th=!-s type of analysis.is feasible :lf any limitations :lmposed by 

the ion exchange.capacity and selectivity of the ion exchange paper can 

be overcome. Newsholme ~ al. (207) · suggested that carboxyinet~ylcell\1-

lose and phosphocellulose,papers ma~e possible the extension of.such. 

assays to-enzymes with cationic products,. Apparently no advantage b,as_ 

been-taken of this possi~ility. It was. the purpose of the experiments· 

described below to develop a method·making use of a cation exchange 

paper in the analysis:of a radioisotope incorporation assay· for MATase, 

while at the same time optimizing the assay conditions· fer use in com~ 

paring the leyels of enzyme activity present in the liver:s ef,rats 

treated as described abQve. 

The EnzyP!e Assay. The assay was performed with·crude homogenates 

of rat.live;,:, The·liver was homogenized.in 1 x.10-2 M Tris,...HCl buffer 

\ 
( 
\ 
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(pH 7.6), 0,2 M KCl, 0.15 M MgCl.2, 0.02 M ATP (neutralized· to·pH 7.0-7.4 

with KOH). The specific activities of L-methionine-14c used· ranged from 

20-200 µCi/mmole. The assay was incubated at 37°c. for 30. minutes using 

enzyme representing 20% of the final assay volume. Final·assay volumes. 

were 0.25 ml. Incubations were terminated by addition of· 10% perchloric 

acid (20% of the assay volume)~ 'L'he tubes· were neutralized to·approxi

mately pH.6-7 by addition of a fixed volume of a 3M potassium carbonate: 

0.5 M triethanolamine mixture with rapid stirring to avoid localized 

highly alkaline conditions. The samples were kept frozen or at 0-4°c. 

until assayed, Protein concentration was determined by the Biuret assay 

(211) using bovine serum albumin as a standard, 

Quantitation of s-Adenosylmethionine-14c (SAM-14c) •. The sample to 

be assayed (normally 0.~2 -ml from a clinically centrifuged assay tube) 

was applied with an Eppendorf micropipet (Brinkman. Instruments Inc,) to 

the center of a square (3 cm x 3 cm) of P-81 ion exchange paper, support

ed by its edge on a stainless steel test tube.rack. The syringe tip 

was rinsed twice with deionized water and the square was just saturated· 

by the dropwise application sf deionized water to the original site of 

application. This square was placed on top of a second square supported 

in the same manner and both layers were saturated by the further drop

wise application of water to the center of the original square. The two 

layers of ion exchange paper were placed in a Buchner funnel (size O), 

over two layers of Whatman No. 1 filter paper (4.25 cm discs), and 

mounted on a 500 ml Buchner flask. The squares were rinsed with six 

volumes of deionized water (approximately 300 ml), Six samples were 

run simultaneously. This procedure permitted 24-30 samples to be. run 

per hour. The water rinsing was performed under vacuum by connecting the 

six flasks in parallel to a water aspirator. 



After rinsing, the sEJ.uaret were removed and allowed: .. to:,air dry. The· 

two s-tacked squares were cut .:tn half and the, resulting 1 .• s· x· 3 cm pairs 

of strips were placed on edge :t.n a. counting vial s0 tha.t·.ther formed- an 

almost. conttnuous · do'!lt?le; layer around the walls of the /Vial;.·· Scintilla

tion cocktail: "(H> ml ·of BioSolv .... :sBs ... 3 cocktail) was added.,al'\d" the vial.s 

were shaken for 15 minutes cm a. reciprocal sh4ker· (240 .excursit,ns per 

minute) to· solubilize_the r"°dioa-ctiv:lty (i12). The·samples were counted 

in a Model 3003 Packard Liquid Scintillation Spectrameter. 

The BBS-3 scintillation cocktail.contained 170 ml of BioSolv BBS-3, 

60 ml·of deionized ws.te~; 770 ml of toluene, 0.2 gm,of.POPOP and 4 gm 

of PPO per liter. A noneluting toluene-ethanol cocktail previously 

~es~rib~d was also used in this work9. 

The counting data were converted to·disintegrations per.minute using 

t~e channels ratio corre9t:ton method. The influel'\ce.of the solid support 

on this determination was studied and .will be discussed below. 

Several methods.of assay termination were attempted during· the 

development of this procedure and are. disc~ssed. Duplicate·internal 

standard tubes,were prepared in the normal manner for each set of assays 

and immediately heat inactivated (2 m:tnut~s at. 90°C~) upon addition of 

the enzyme.' Th~se tubes,were centrifuged in a clinical centrifuge.at 

2°c.~ a_quantity of. SAM-14c was added to t~e,resulting supernatant sol

utions., and these were kept in an ice bath. Subsamples of these tubes 

were put througp..thesame assay termination and analytical procedures 

as the;enzyme as,ays in questiQn. The relative values,of these control 

tubes were used to correct :for artr product .loss~s occurring during the. 

termination procedures. 
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The Binding of SAM and L-Methionine to P-81 •.. An as.say· ;ttibe· was run 

using the conditions of Mudd and Cantoni (202,); inactivated by two min

utes of heating, and centrifused. A small quantity of-.SAM._,14c or L.;. 

methionine_..14c was ad_ded to a porthn of the. ch,illed supernatant salutien 

(approx. · 1 · x. 105 dpm/ml in each·. case) . and the ibinding.- .. ca.pacity· for each 

compound on the paper assay system· previously described was·· tested. Ten 

samples were run in each test, · The· percent. retenti.et). was: calculated by 

comparing the·, d:lsinteg.rat:t.on rate of samples that had.· been· washed te 

that of samples·wh:l:.ch were not washed, Co"1nti:r;ig was-done in 10 ml of 

the toluene-ethanol cocktail~ 

SAM was retained on F~81 at a level.of 95,5 ± 2,.9% (standard de-

'viation) when assayed at a level of 0;02 ml and 96.0 +2,5% when assayed 

at a level of 0.04 ml,. Up to 5% of the retained label was found in the 

second layer of paper at thelower level and 10% at the higher level of 

sampling. The use of a double layer-system yielded more consistent re-

sults than did a single layer system, 

Under the conditions 0f high ionic strength.used in this·assay 

system, carboxymethylcellulose (CM-82) proved unsuitable, Less than 50% 

of the product was retained at a sampling level of o.02·mland less than 

30% at a level of 0,04 ml. 

Approximately 0,5% of the original L-methionine-14c was retained on. 

P-81. This value led to high backgr0und counting rates in'.early trials. 

This problem was largely eliminated by prepurification of the methionine, 

The purification was accomplished by passing the labelled substrate 

·+ 
through a Cellex-P(Na) coluwn eluted with water. Presoaking the squares 

of P-81 with.unlabelled 200 mM L':'"methionine or the rinsing of the samples 

into the P~~l with this solution and doubling the volume of water used 
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in washing the assay papers yielded no further bacltg-rcund ... reduction, 

Prepurifioation x-educed substx-ate ret~ntion to. about 0,1%. · · This accam..,. 

panied by an increase in substrate specific activity resulted in back-. 

ground values being reduced. to abc,ut 5% .. c,r less of the ... to.tal · inc1;1rporatiE>n 

of label observed in a n0rrnal ·assay •. The b~ckground act;ivity observe4 

was- time independent, 

guanti tat ion ·of • S.,;..Adenesrl.,;.t-Methie>rt:trt~.;.;.14c. · An assay tube- was. 

prepared and heat inactivated and SAM-14c (diluted to approximately the 

same spec;:ific activity as the methionine.substrate) was added to a por

tion of the supernatant solution to yield a disintegration rate well in 

excess of that of typical assays, A dilution series was prepared using 

the remainder of the unlabelled supernate as the diluent. This prepara

tion was.done. in plastic tubes since it was found that SAM·bound to 

glass resulting in erroneous.results. The original sample and the di

lution were:assayed in triplicate'at each fill three volumes (0.01, 0.02, 

and 0.05 ml). The samples were ce:iunted in the,non-eluting teluene

ethanol cocktail. The results are shown in Figure 3~ The opserved 

dis~ntegration rate.was found.to be,linear an4 independent of the quan

tity of. sample bound. This.result is .in agreement with the findings af 

Nunez and Jacquemin (213) and it permits the use of a single correction 

factor for all assays when accounting fer the self-absarption effect in 

a non~eluting counting system, 

As mentioned above, it,was found that SAM bound tp glass. This was 

first sbservedwhen an effort was made tG determine the.preport:ion of 

counts unaccounted for by channels ratio correction due te self-absorp~ 

tion. It.WQuld be expected that the disintegration rate calculat~d from 

the sample.on the:solid support.wQuld be lower. tQan for the same sample 



Figure 3. The froportionality of Disintegration Rate to the Quantity c 
SAM Bound on P~81. 

o- indicates the dilution series sampled at 0.05 ml, 

0- indicates the dilution series sampled at 0.02 ml. 

The data for 0.01 ml sampling are not shown. 
Each point represents the average of three determinations. 
Methods are described in the text. 
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in free solution. It was found, howeyer, that SAM_,14c samples counted 

on P-81 and in a free solution yielded essentially the same disintegra..,.. 

tion rate, if not somewhat higher for the, P-81 beund material. It ,was 

further shown that less than 2% of the counts. were. eluted·.from the paper 

by the toluene-ethanel cocktail, indicating a glass binding phenomenon 

and not the release of labelled product from the support·into solution 

was responsible. Further, th~·addit:ton of unlabelled SAM res'\lltecl in an 

increase in· counting rate· o:f! samples in "free" solution·.· · Counting the 

liquid samples in polyethylene v:talsalso resulted, in an.increased 

counting rate relative to the S.!lme samples counted, .:tn.glass·v:tals. SAM 

is very sensitive· tcr heat and heating the samples in a boiling water 

bath for 30 minutes prior to addition of the-cocktail resulted in an.in

creased counting rate. · It was. finally determined that the·. disintegra

tion rate calculated for samples bound on the P-81 support.was 78% ±. 2% 

of the total observable in free ~olution when the btnding phenomena had 

been reverse4, This value, being independent of sample size; was 

routinely used :tn accounting for self absorptive losses when counting 

in the toluene-ethanol cocktail. 

Elimination of Counting Losses Due to Self-absorptfon. A:l,J.. of the 

results reported herein have been quantitated with the method described

above •. Recently, however, a procedure was deyeloped which permits the 

in-vial elution of the sample from the ion exchange paper, thus permit

ting a direct calculation of the results from the observed counting 

rates and affording about~ 20% increase in assay sensitivity (212). 

TheBBs ... 3 cocktail described above results in essentially a t0tal 

release of the SAMfrom the P-81 into solution, Thus, the.disintegra

tion rate obtained from a previously bound sample duplicates that of an 



90 

equivalent sample in free solution and the channels ratfo·method yields 

the true disintegration rate with.out further correction· •. · In· practice it 

was found that the disintegration rates obtained for samples bound on 

P-81 and released by shaking in BBS-3·cocktail range between 96-99% of 

those for similar samples :tn free solutio.n :tn the same· cocktail, 

Both of the above'methods of quant:ttation yield equally satisfactory 

results when·working with 14c. Alt;hough a simple non"'"eluting· toluene 

cocktail is· the most economical, the·choice as to which·is the most 

desirable is· left to ti:te preference of the· user, On. the· .. other ha,nd, 

self-absorption losses as$ociated, with cl!)un:t:tng 3H: en·:a· solid, support 

are very large·.·· When counting 14c on a. solid support: the· disintegration 

rate is underestimated by about 20-30% (about.22% in this instance) due 

to self-absorption. Under the same conditions, di~integrations rates 

obtained when counting 3H.are underestimated by 75-95% ·(212). There

fore, the added cost of using an eluting cocktail such as the one des

cribed in the present study is easily justified on the.basis of the 

increase in sensitivity and precision of the estimation, 

Conditions for an Optimal Assay. _ The above experiments indicated 

that the P-81 analytical system was suitable for a sensitive·comparative 

assay and a series of experiments were run in order to determine the 

conditions, required for ap optimal.assay, The assay composition given 

above yielded results equally as good as those obtained using the con

ditions of Mudd and Cantoni. (202). The lowering of the L-methionine 

concentration from 0.02·M to 0,01 Mand the MgC12 concentration from 

0.3 M to 0.15 M resulted in no reducti.on in the.observed activity. This 

permitted a reduction in ionic strength and also doubled the sensitivity 

of the assay without,increased use.of labelled substrate, The addition 
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of unlabelled SAM or sulfhydryl reagents.to the-assay system:using·crude 

homogenates resulted in no stimulation of enzyme.aotivity·in·cont:rast to 

the findings of Mudd et.!!· ·(203). However, much. of the· work· done by 

these authors· was performed w:tth partially purified enzyme· and·· the L

methionine content of their assay was below Km. .. levels. Eithe-r of these 

conditions might.e:itplain their tindings. 

Assay Terminat:ion. · Due-to t~e high, icnic strength of the,assay and 

the limited exchange, capacity of the-paper, the inttial experiments were 

terminated by two mtnutes·of.heating at 9oec. 'in.order to avoid further 

increases in ion conte.nt. tt was found, however, that ,heating resulted 

in a large and rapid loss of product ai;i measured·by loss·of binding on 

P-81. The time course of this loss b shown in.Figure 4. As would be 

expected, it.is a pseudo first order decay with.a rate constant k = -0.235 

min~l. For this reason: acid. termination was attempted in the manner 

described·above. A c~mparison of the results for acid.and heat termina

tion is shown in. a typical time course plot (Figure-5). Both.methods 

yielded excellent results in:terms of linearity and reproducibility. 

The acid termination, however, is.easier-and results in little.or no. 

loss. of product, th':ls eliminating the; need for a. large·, potentially 

variable, correction factor in the: calculaUons., .Any increase in ionic 

strength t~at occurred caused none ef the proble~s expected. The acid 

termination procedure·therefore became the methed of choice. Both 

methods yielded preparation~ which were stable to storage for at·least· 

10 days. Care must be taken, hrl'wever, to keep the pH' belew 7. e- when 

neutralizing the;acid terminated assay,.otherwise some degree of alk,a

line hydrolysis of SAM can occur.· 



Figure.4. Th~ Time Course of Thermal.Degradation of SAM. 

SAM-14c was added to the supernatant solution from a heat 
terminated label· free standard assay, Triplicate aliquots 
of this supernatant were the~ placed in a·water bath at 
90°C. for the tines specified and the recovery e:,f SAM 
determined by the F-81 assay descri.bed. Each point rep
resents the average of 6 assays run in duplicate on the 
triplicate aliquots. 
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Figure So Comparison of Heat vs. Acid Termination of the·MATase Assay 

()- indicates acid terminated assays, 

e..,. indicates heat terminated assays •. 

The a~sa.y contained 16 111g of protein/ml.• 
Acid terminated standards were 98.1% and heat te:1;minated 
standards were 61, 6% of the internal standard,· SAM· control: 
The specific activity of the enzyme was calculated to be 
129.3 and 130.7 nm.oles/mg.protein/hr by the·acidand heat 
terminated assaysrespect;tvely. Assaypreparations and 
cond:ttions·were as rep~rted_under methods. 
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An effort was,made to terminate·the assays by chelating the magnes,

ium with EDTA. This method proved unsuitable, sinc;:e. ED'I'A,at·a·concen

tration of 0.075,M (sufficient to supply a maximum of only·one potential 

bin~ing site per.magnesium ion) resulted in almost a complete loss of 

SAM binding on. p,-81, 

Assay Linearity. The relation,hip between en.zyme activity and 

assay incubation. t:t:11\e and protein cori.centration are ,shown· in· Figures·. 6 

and 7, respectively. The assay ie l:tnear for about 25-30minutes and 

over the entire range· of proteil} eoncentratiom~ studi.ed, The upper 

curve in·each figure represents the;dataobtainedwith·the·BBS-3 cock

tail and the lower,curve in each case represents the.same series of 

assays counted in the non-eluting toluene-ethanol cocktail. The latter 

data have not been corrected for the self absorption losses, The 

activity measured on the toluene-ethanol derived line is approximately 

79% of that from the BBS-3 derived line. 

The Enzyme Preparation. This enzyme is relativelyunstable in the 

supernatant solutions obtained from crude homogenates, A relatively 

rapid loss in activity (8-10%/hr.) was noted when the supernatant sol

utions were held at o0 c. in an ice:water bath. When 1 ml aliquots of 

freshly prepared supernates were placed in a deep freeze, this loss 

occurred to essentially the same extent during the first three to four 

hours. The substitution of 5 x 10-3 M dit:hiothreitol or dithioerythritol 

for mercaptoethanol in the homogenizing media did not prevent or reduce 

the rate of this activity loss, 

In order to minimize errors introduced by this loss of enzyme ac

tivity when making comparisons between animals, all preparative procedures 



Figure 6. SAM Formation as a Function of Incubation Time. 

O- indicates samples counted in the BBS-3 counting syste: 
(each point is the average of 6 assays run in tripli
cate on duplicate incubations). 

e; indicates samples counted in the toluene: ethanol 
, system (each point is the average of duplicate assays 

on a single incubation). 

A fresh preparation of enzyme was used. All assays were 
terminated with acid, The assays contained 7.9 mg protei 
ml. Assay conditions and preparations were as reported i 
the text-. 
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Figure 7. SAM Formation as a Function of Protein Concentration. 

O· indicates samples counte-a in the BBS-3 counting system 
(each po;!.nt is the.average of 6 assays run in tripli
cate on duplicate incubations). 

•-indicates samples counted in the. toluene:ethanol 
system (each point is the average of 4 assays run in 

· duplicate on duplicate incubations). 

A.fresh preparatisn of enzyme was used. All assays were 
incubated for 20 minutes and terminated with acid, Assay 
conditions and preparations were as reported in the text. 
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were done as quickly as possible and at fixed times relative· to· the time 

of sacrificing each animal as was described previously. 

Assays for Nicot:l:.namide-Nl-Methyltrans:ferase 

(NMTase) 

Two assay systems and tWG analytical pracedureswere·used in meas

uring the NMTase activity in the above experiments. The assays were 

initiated by the addition of enzyme, incubated at 38°c. for 60 minutes, 

and terminated by 2 minutes af heating in a boiling water bath regard

less of the assay conditions or analytical systems used. 

Sodium Acetate Buffered Assay. This assay, with the exception of 

the termination procedure, was run under conditions identical to those 

used previously by Flesner (23) and essentially as reparted by Cantoni 

(214). The final reaction mixture contained 1 x 10-2 M NArn (0.2 mCi/ 

mmole NAm-7-14c if an isotope incorporation assay was being used) and 

2 x 10~3 M SAM. Sodi4m acetate buffer (O.l M, pH 5.0) was added at a 

level of 20% of the assay volume and the .NMTase preparation was added 

at a level of 40% of the assay volume. The enzyme preparation used was 

the supernate obtained from a 20% (w/v) liver homogenate. This homo

genate was prepared in ice cold sodium acetate buffer (0,1 M, pH 5.0) 

using a Potter-Elvehjem homogenizer, and centrifuged at 25,000 x g for 

30 minutes at 2°c. 

Tris-HCl Buffered Assay. This assay was identical to that des

cribed above in terms of NAm and SAM content, Tris-HCl buffer (0,2 M, 

pH 7.6) was substituted for sodium acetate buffero The enzyme was 

prepared irt exactly the same manner except that Tris~HCl (0.05 M, pH 
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8~1) was used as the homogenizing medium (215). Both sets·of·assay 

condition~ reported above have been previously_det11-onstra.ted· to·be.l;l.near 

with respect·to time and protein concentration ranges used (23,215). 

This was checked and confirmed. 

Fluorescence Analrsis of NMTase Activity. The spectrofluorometric 

determination of NMNAm was based on a procedure reported by Huff and 

Perlzweig (216). A 0.1 or 0.2 ml aliquot of the assay supernate was 

made to 1.0 ml with glass distilled water and 0.5 ml of 2-butanone were 

added. To this mixture 0.2 ml of 6N sodium hydroxide were added with 

immediate vigorous mixing and the reaction mixture was.incubated at 

room te~perature for 5 minutes. Then, 0.3 ml of 6N hydrochloric acid 

were added and the mixture placed in a boiling water bath for 3 minutes. 

The reaction tubes were cooled to room temperature, loO ml of 20% potas

sium phosphate (monobasic) were added and the mixture diluted to 11 ml 

with glass distilled water, SAM free incubations were run and processed 

in the same manner and utilized to correct for the fl~orescence con

tribution made by any comp<Dunds other than NMNAm which were present in 

the reaction mixture; in particular NADo All assays were analyzed in 

duplicate and every tenth reaction tube was an NMNAm standard. 

The relative fluorescence was d,etermined in an.Aminco Bowman Spec

trofluorometer at 2s0 c. A 365 nm excitation wave length was used and 

the fluorescence output measured at 460 nm. 

Radioisotopic Incorporation Analysis of NMTase Activity.· The 

radioisotope incorporation analysis for NMTase activity was performed 

in exactly the same manner as that for MATase activity above, The binq

ing and counting characteristics of NMNAm-14c on P-81 ion exchange paper 
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were found to be identical to those reported for SAM-14c. However this 

assay was not as precise as that for MATase due to the presence of a 

relatively high and variable background counting rate, This background 

was time independent, Unlike the :MATase assay, prepurification of the 

NAm-14c on Cellex-P columns had little effect on the background count

ing rate observed, Presoaking the P-81 with 0,3 M NAm did not signifi

cantly improve the background counting rate observed, Although this 

assay was sufficiently accurate for use with the saturation assays per

formed in the time course studies, the variability in, and the extent 

of, the background counting rate resulted in this methodology being 

unsuitable for enzyme kinetic analysis in the vicinity of~ concentra

tions of either substrate, Recently, some promising results were 

obtained when paper strip chromatography on P-81 with buffer elution 

was used in an effort to reduce the background, This system, however, 

has not yet been perfected. 

Excretion Studies 

These studies were aimed at determining the basis for the differ

ences observed between normal and hypophysectomized rats subjected to 

NAm challenge, 

Urine Callee tion 

The animals were housed in individual plastic cages (4" x 4" base) 

with wire mesh floors, supported in the mouth of a large polyethylene 

funnel (6,5 in. ID) which was loosely plugged with glass wool, The 24 

hour urine samples were collected in large test tubes which were held 

in plastic beakers packed with powdered dry ice, The animals were 
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fasted during the period of urine collection but had access·to·water ad 

libitum. At· the end of the collection pel;'iod, the fu1;1nels:were thorough .... 

ly rinsed.and the sample plus washings kept frozen until analyzed. 

Determ:tnatic.m of the Tetd tsoecipe Exeret:ton 

The urine samples were thawed and filtered through Whatman No. 1 

filter discs into a 125 ml Buchner flask under a slight vacuum supplied 

by a water aspirator. The v<!llume of the sample was determined and 

triplicate 0.05 or 0.1 ml aliquots were placed in 10 ml of scintillation 

cocktail for the determination of the total radioactivity excreted. 

Determination of the Isotope Excreted as NAm 

and NMNAm 

The determination of specific catabolites was restricted to NAm and 

NMNAm since they were the two major components found in the urine and 

showed the largest and therefore most easily measurable differences. A 

0.1 ml aliquot of each urine sample was spotted in a band across the 

entire width of each of 4 WhatmanNo. 1 paper strips (4 x 50 cm, 8 cm 

from one end), Th~ strips were developed by descending chromatography. 

Two were developed with n-butanol saturated with 3% ammonium hydroxide 

and two with n-butanol saturated with water to which glacial acetic 

acid was added just prior to use (60:1), The strips were developed for 

a period of 14-18 hours which permitted a frontal migration of 30-35 cm. 

The two solvent systems were utilized because they afforded a more 

certain separation of the compounds of interest, The alkaline .solvent 

system moved NAm well in front of the next fastest migrating labelled 

component (Rf 0.7 vs 0.5) but did not separate NMNAm from NAgly, The 
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acidic solvent, on the other hand, permitted the separa.t:Lon:ofNMNAm 

from all other catabolites; however, a clean separation of NAm was not 

so ce-rtain. 

The radioactive peaks. were located with a Nuclea:r-.Chicag·o· Actigraph 

III 4 ,r paper strip scannero The peaks c0rresponding to·NMN.Am·on the 

acid developed and NAm on the alkali developed strips were cut out, 

placed in scintillation vials containing 10 ml of cocktail, and counted, 



CHAPTER IV 

RESULTS AND DISCUSSION 

The studies repC>rted here were initiated as a result·ef the para

doxical outcome of previous research in these lab0ratories, 

It was. observed by Lee et~· (22) that marked differences existE!d 

in the metabolite excretion patterns of normal and hypophysectomized 

rats following the administration of a NAm challenge, In particular, 

the excretion of N'MNAm by hyp©physectomized rats was markedly lower than 

in normal rats and the time cou:r:se of its excretion was. radically ~if

ferent (Figure 8), 

These observations led to the hypothesis that NMTase might play a 

significant role in the camtrol c,f NAm metabolism, It was. thought that 

the synthesis of NMTase might be mediated by glucocorticoids, in a 

manner similar to that previously observed with tryptophan oxygenase 

(24). One would thus predict that glucocorticoids would stimulate an 

increase inNMTase activity and that a similar :response would be observed 

in the normal but not in the hypophysectomized animal following NAm 

challenge, A series of experiments was performed to test this possibil

ity and a partial sunnnary of results obtained is presented in Table 1. 

The basal levels of NMTase activity were found to be considerably higher 

in the livers of hypQphysectomized rats than in those of normal rats, 

Of the treatments attempted, ©nly NAm challenge was found to have any 

effect on the NMTase activity. The effeqt observed~ an apparent 

1 ne;. 



Figure 8. The Time Course of NMNAm Excretion in Normal and Hypophy
sectomized Rats Following N~ Challenge. 

Solid bars represent NMNAm excretion by hypophysectomized 
rats and the open bars that by normal rats. The methodol· 
ogy used was essentially identical to that described in 
Chapter III and has been previously reported in detail 
(142), Adapted from Lee et al, (22). 
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TABLE I 

THE TIME COURSE OF CHANGES .IN NMTASE ACTIVITY 
FOLLOWING VARIOUS TREATMENTS 

NMTase Activity 
nmoles/mg protein/hr 

Animals/ Hsurs After Treatment 
Treatment 

0 4 8 12 

Normal/ 
500 mg NAm/Kg (6) 24,2 47.6 59,0 57.6 

Normal/ 
50 mg NA/Kg (3) 27.1 24,2 24.3 26.4 

Normal/ 
5 mg HC/Kg (3) 23.5 29.6 22.6 27.7 

Hypophysectomized/ 
500 mg NAm/Kg (3) 37.2 68.0 61.8 70.9 

109 

24 

43.7 

24.3 

23.6 

78.5 

The enzyme was prepared and assayed using the sodium acetate 
buffer system described under Meth~ds. The assays were terminated by 
the addition of two V<!Jlumes of 10% trichloroacetic acid and analyzed 
fluorometrically as prevfously described with the exception that in
stead ef running SAM free ci,ntrol assays, the assays were corrected 
for the fluorescence contributfon from NAP by determining the latter 
compound separately on the bash of.its fluorescence in alkali (217). 
Adapted from Flesner (23). 
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two-fold increase in enzyme activity, was the same in both hypophysec-

tomized and normal animals. 

The results of the~e experiments are inconsistent with the hypothe

sis mentioned abc,ve. The pc,tent:tal for .hormonal. influenc.e.s· is· essentially 

eliminated by the observation of an increase :tn enzyme activity in the 

hypophysectomized rat,· ?twas concluded, therefore, that the elevation 

of enzyme.activity was directly related to the increase in hepatic NAD 

content which results from NAm challenge, This is the only o~vious 

factor connnon to both the normal and hypophysectomized rat under such 

conditions. Thus, the working hypothe,is was.changed to assume that 

NAD is an allosteric modifier of NMTase, and preliminary experiments 

were performed to test the effect of NAD on the in vitro activity of the 

enzyme (23). These experiments indicated that NAD had no influence on 

the enzyme activity observed, Eowever, the levels of NAD added to the 

assays were insufficient to approximate those normally observed in~' 

ang were much less than those 0bserved following NAm challenge. 

Influence.of NAD on the In Vitro Activity of NMTase 

The studies reported here were initiated with an. attempt t(!) deter

mine the in vitro effects <llf appropriately high.concentrations ofNAD 

upon NMTase. 

Upon addition of high concentrations 0f NAD to the assays, the 

fluorescence methodology previously employed for the analysis of enzyme 

activity became unuseable. The added NAD became the primary contribu-

tor of fluorescence in the reaction mixture, making an accurate estimate 

of NMNAm impossible. Rather than attempting to modify the fluorescence 

methodology, it was decided that the use of a radioisotope incorporation 
. I 



assay would be simpler and would simultaneously af:(:ord an independent 

confirmation of the previous findings. 
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The original analyses were conducted by placing. 0.1 ml-aliquots of 

heat terminated assay supernatant solutbns cm Afaberlit;e· . .cd'50(R) columns 

(O. 6 x 6, 0 cm, 1. 5 ml bed volume) which were washed with' 12'"-13 column 

volumes of deionized water to remove the NAm-14c. The NMNAm~l4c was 

then eluted in 8.0 mls.of 0.5 M HCl and the radioactivity present de

termined, This· system was tedious, relatively insensiti'l!e, · atld was sub-:

sequently abandoned :t.n favor of the previouslydescribed·me~hodC1logy. 

However, using this assay methodology it w-as determined that the addition 

of exogenous NAD at levels of up te €L 02 M had no significant influence 

on the in vitro activity of NMTase •. Representative data drawn from ex

periments demonstrating this pdnt .are presented.in Table II, 

Not only was the addition of NAD found to be without effect, but 

dialysis of the enzyme supernate against homogenizing buffer to remove 

endogenous NAD was also found to be without influence on the activity 

observed. 

The above experiments did nothing to help explain the in vivo ob

servations. It was therefore presumed, perhaps too quickly, that the 

observed phenomena were due to in vivo effects, 

MATase is the enzyme responsible for the synthesis of SAM, which 

is, in turn, the methyl donor for the NMTase catalyzed reaction, The 

activity of this enzyme is depressed in adrenalectomized animals and 

is inducible by glucocorticoid therapy (218), It was thought possible 

that the supply of SAM might be depressed in hypophysectomized rats and 

thus become limiting under N.Am challenge, The time course of NMNAm 

elimination (Figure 8) shows a decreasing rate of excretion with time 



TABLE II 

THE INFLUENCE OF NAD ON NMTASE ACTIVITY IN V .. I'.i'RO 

NAD ADDED 

NMTase Activity8 

nmoles/mg·prot/hr. 

(final concentration) undialyzed- · ·· ·· · dialyzed 
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{m:molar) homogenate homogenatee 

Source of 
Liver 

Normal Rath 

Hypophysectomized 
Rate 

Normal Ratd 

Normal Ratd 

0 
0.5 
1.0 
2.0 

0 
0.5 
1.0 
2.0 

0 
1 
5 

0 
1 
5 

a) Assay.procedures are described in the text 

13,4 
13.0 
13,0 
15.0 

24,1 
23.7 
23.7 
23,3 

11.5 
10,5 
12.6 

10.0 
11.9 
12,l 

b) Injected with 1.0 ml of saline and sacrificed immediately 
c) Sacrificed 12 hours after NAm challenge 
d) Sacrificed 8 hours after injecti0n of 1,0 al saline 

12,5 
12.5 
11.9 

12.0 
12.9 
13.0 

e) Homogenates were dialyzed against .H)O volumes of homogenizing buffer 
at 4°c. for eight h.~urs 

b),c) Assayed in sodium acetate buffer system, d) Assayed in Tris-HCl 
buffer system 
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in the hypophysectomized rat .as compared to the relatively·constant out":"" 

put by the normal animal. Such a pattern fits with the possibility of 

a developing methyl donor deficien~y and such an occurrence·would permit 

an explanation of the apparently contradictory findings of Lee (22) and 

Flesner (23). 

Preliminary Excretion Studies 

If the above hypothesis were ca,rrect, it weuld dic.ta.te·that sluco-. 

corticoid therapy wmuld reverse the previously observed:differences in 

the excretion patte~ns of .normal and hypophysectomized rats. Greengard 

et al. (11) had already demonstrated the reversal of the.increased ex--- ' 

tent and duration of the NAm induced elevation of hepatic N~ in hypo-

physectomized rats by both glucocorticoid and thyroxine therapy, There-

f~re, a partial repetition of the excretion studies with the addition of 

slucocorticoid treatment to the experiments was initiated. 

In these experiments, all animals (5/treatment group) received an 

N.Am-14c challenge (500 mg/Kg, approximately 5 µCi-14c). Those rats 

receiving glucocorticoid therapy simultaneously received a single dose 

of hydrocortisone hemisuccinate (175 mg HCHS/Kg). This.was equivalent 

to the dose previously utilized by Greengard in reversing the hepatic 

NAD response. For the purposes of.this study it was thought sufficient 

to measure cmly total excret:lon and the excretion of NAm and· NMNAm. 

The results of.this experiment (with standard deviations) are presented 

in Table III. 

The administration of glucocorticoids completely reversed the.ex-

cretion differences between normal and hypophysectomized animals. 

However, while manipulating these data it became apparent that the 



TABLE III 

THE EXCRETION OF NAM-14c, NMNAM-14c, AND TOTAL RADIOACTIVITY BY 
NORMAL·AND HYPOPHYSECTOMIZED RATS FOLLOWING AN NAM-14c 

CHALLENGE WITH AND WITHOUT HYDROCORTISONE THERAPYa 

% of Injected 14c % of Total 14c 
Excreted Excreted 

Animal/ as as as··-· as 
Treatment Total NAm NMNAm NAm NMNAm 

Normal/ 72. 7 43.3 6.5 59.5 9.0 
500 mg NAm/Kg +6.5 +4.3 ±0,5 +4.4 +1.2 

Normal/ 77.5 50.0 5.4 64.9 7.0 
500 mg NAm/Kg +5.7 +~ .4 +0.9 +3.9 +o. 9 
175 :mg :acHS/Kg 

Hypophysectomized/ 46.9 27.8 2.7 57.8 5.7 
500 mg NAm/Kg +8.5 +4.8 +0.8 +7. 6 +0.8 

Hypophysectomized/ 83.0 47.2 6.1 56.7 7.3 
500 mg NAm/Kg +1.6 +3.8 +1.0 +4.7 +1.1 
175 mg HCHS/Kg 

aAll results are given with standard deviations. 
Experimental methods are described in the text, 
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relative excretion of NAm was essentially the same in all animals. The 

differences in NMNAm excretion when expressed on a relative basis were 

reduced by half. It should be pointed out that the excretion of NMNAm 

observed in the normal animals was only about half of the amount pre

viously recorded (Figure 8). In a subsequent experiment·.' to· be reported 

below, hypophysectomized rats receiving glucoccrrticoid therapy· excreted 

quantities of NMNAtn at the levels previously observed by Lee (22) in 

no:rmal rats. 

The expressiem of the data on a relative basis seemed· to indicate 

the possibility that t'L'luch of the difference in the observed·excretion 

patt.erns, in, the case of NAm at least, .was attributable to nothing more 

than a decrease in the relative rate of excretion in the hypophysectom

ized rat. Such an argument was rather cursorily suggested by Greengard 

et al. (34) in an effort to explain their observation of a marked in

crease in the half life of NAtn in hypophysectomized rats. 

Despite the paucity of data concerning the effects of glucocorti

coids and endocrinectomy on renal function, a review of the literature 

supports such an argument,· White et al, demonstrated a depression of 

renal function in the hypophysectomized dog (166). While sodium and 

potassium excretion remained normal, there was an increase in plasma 

urea and nonprotein nitrogen, This is indicative 0f a reduced renal 

clearance of these co~pounds, Sodium and potassium excretion is control

led by metallocorticoids produced by the~ glomerulosa of the adrenal 

cortex, This region of the adrenal gland does not atrophy following 

hypophysectomy. On the other hand, glucocorticoids are produced by the 

zona fasciculata of the adrenal cortex" Extensive atrophy of this 

region occurs following hypophysectomy and is reversible by ACTH therapy 
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(165), Ingabar ~ al. (167), studying the renal influences of adrenal 

insufficiency in man, demonstrated that ACTH and cortisone therapy in

creased both glomerular filtration rate and renal plasma flow, both of 

which were depressed under these conditions, Similar evidence in support 

of adrenal involvement in urine production is to be founq in reports by 

Gaudinio and Levitt (169) and· Boss et aL (170), 

Earle et al. (172) demonstrated that ACTH and gl,uco,e<1>rticoid re

placement therapy in the hypophysectomized dog could enly acctmnt fol;" 

about one half tc, two thirds of the observed depression·inrenal function. 

Thie implies a contribution from other hormonal sources·,·· Braun-Mendex 

(171) demonstrated that thyroid extract had the effect·of.reversing the 

reduction :l:n kidney we:t.ght.observed in hypophysectomized rats and showed 

that thyroidectomy alone was sufficient to account for this weight loss, 

Davis et al. (173) sh@wed that the decrease in renal blood flow accom

panying hypophysectomy was.not due to changes in adrenocortical function. 

This too may be a thyroxine mediated effect. GSH has also been demon~ 

strated to have an influence in renal function in hypophysectomized 

animals (168). A brief review of this area (168) indicates that in all 

cases of adrenalectomy, hypophysectomy, thyroidect0my, or hypoendocrine 

activity of these glands, a general reduction in renal function occurred, 

Conversely, in cases of hyperend0crine activity there was a stimulation 

of renal activity. There is a direct parallel between the observed 

changes in the extent and duration of the NAm induced elevation of hep

atic NAD and the influence of these endocrine factors on renal function, 

as has been previously discussed, 

Beyer et al. (154) have shown that NMNAm is excreted by both glom

ular filtr~tion and tubular secretian mechanismso It .has subsequently 
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been demonstrated that the tubular secretion of NMNAm is·inhibited by 

other basic compounds and by general alkalosis (219-221). The ability 

of basic compounds to inhibit NMNAm secretion decreases with' decreasing 

basicity. Thus, it is feasible that the differences in NMNAm excretion 

are also due only to changes in kidney functicm, In light· of this pos-

sibility, experiments aimed at determining the influenceof,g1ucocorti-

coid therapy on the NMNAm excretory capacity of the hypophysectomized 

rat were performed, 

In the first of these experiments, five hypophysectomized rats were 

challenged witk NAm. Simultaneously, trace doses of urea-14c (approxi

mately 2 µCi, 2 µmoles) and NMNAm-14c (approximately 1.5 µCi, 1.7 µmoles) 

were administered. A second group of five animals received identical 

treatment and, in addition, 175 mg HCHS/Kg were administered. Urine 

sall\ples were collected for 24 hours. Aliquots of each sample were chro-

' matographed in the butanol-ammonia solvent system previously described 

and the peaks corresponding to urea and NMNAm cut out and counted, In 

addition, samples of each urine were incubated with urease for 30 minutes 

at 38°C. after the method of Conway (222), The incubations were then 

acidified with 6 N HCl, placed in a vacuum desicator for 30 minutes to 

allow for the removal of 14co2 and the residual 14c determined. The 

results of this experiment are presented (with standard deviations) in 

Table IV, 

Though not t~e ideal test compound, urea-14c was used on the pre-

sumption that the blood urea of the hypophysectomized rats would be 

elevated and that the dilution of urea-14c therein would reflect any 

differences in glomerular filtration (urea clearance) caused by gluco

corticoid therapy, The excretion of urea-14c was considerably lower in 



TABLE IV 

THE EFFECT OF RYDROCORTISONE REPLACEMENT THERAPY ON THE'ABILITY 
OF NAM CHALLENGED, HYPOPHYSECTOMIZED.RATS TO EXCRE'l'E 

TRACER DOSES OF UREA-14c AND NMNAM .... 14c.a · · · 

% Injected Dose Recovered in the Urineb 

14 Urea- C NMNAm~14c 

118 

(chromatographic) (chrG>matographi.c) (after urease) 

Hypophysectomized 

Hypophysectomized 
(175 mg HCHS/Kg) 

72+5.2 

98+5,9 

83.7+4.3 79.2+5,l. 

88.8+5.5 83.5+7.7 

a) All experimental details are described in the text. 

b) The% of the injected dose recovered in each compeund is 
based on the radioactivity originally injected as that com~ 
pound. 
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the hypophysectomized rat. This indicates that urea clearance is de-

pressed in hypophysectomized rats and that this function can be 

stimulated by hydrocortisone therapy. There was also a slight increase 

in the excretion of NMNAm following glucocarticoid administration, how-

ever, this change was small and does not appear to be sufficient to 

account for the differences observed in the excretion of NMNAm arising 

from a N.Am- 14c challenge. 

The above experiment was criticized. It,was argued that a trace 

dose of NMNAm-14c ad~nistered with an NAm challenge might not be suf-

ficient to demonstrate a difference in the renal capacity for its 

elimination, In retrospect, the methods of quanitation were also open 

to some question. In response to this criticism, the experiment was 

modified and rel:"un in two parts. In.the first part of the experiment, 

the animals were treated as above with the exception that only a tracer 

dose of urea-14c was administered. _One week later, the s,ame two grou,ps 

of animals were again treated and at.this.time they received NMNAm-14c 

(60 mg/Kg, 1.5 µCi), This dbse 1$ equivalent to the amount excreted by 

a normal rat in the first 24 hours following an NAm challenge (Figure 

8). The excretion of the label was quantitatedsimplyby counting ali-

qu~ts of the urine samples. The results, with standard deviations, are 

presented in Table Vo Again no apparent difference in the capacity to 

excrete NMNAm is indicated. The differences in urea excretion, although 

somewhat smaller, remain, 

The above described excretion experiments indicated that th.e pri-

mary differences (NAm and total excretion) between the excretion patterns 

of normal and hypophysectomized rats were probably due to a depression 

of renal function in the hypophysectG>trl:i.zed animals, Further, this 
'·i 



TABLE V 

THE EFFECT OF HYDR.OCORTISONE REPLACEMENT THERAl'Y 
ON THE ABILITY OF HYPOPHYSECTOMIZED RATS TO 

EXCRETE UREA AND N-METHYLNICOTINAMIDEa 

120 

% of Injected Dose Recovered in Urine 

4 Comp(!)und Inje.cted · · ·· · 
Urea-1 q NMNAm-14c 

Hypophysectomized (5) 84+4.5 9o+8.4 

Hypophysectomized 
+ Hydrocortisone (5) 92+5.3 91+9,9 

a) Complete experimental details are given in the text. 
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function appeared to be sufficiently stimulated by a single dose of 

glucocorticoid to permit the general reversal of these patterns. At the 

same time, no evidence was obtained supporti~g the conclusion that the 

differences in NMNAm excretion were due metely to changes·in·renal 

activity. · !twas cc,ncluded, therefere, that the basis for this differ

ence might lie elsewhere. 

In Vivo Time Ceurse Studies 

A preliminary experiment. had failed to uniformly.: reproduce· the 

NMTase response previously C!>bserved by Flesner .in NAm.: challenged· animals 

(Table !) . It was thus decided te, re:tnve$.tigate the· irr vivo time depend

ent changes in NMTase. The experiment was· designed·for the·simultaneous 

measurement of NMTase, NAD, MA'l'ase, and SAM. Hypophysecta,mized animals 

received either no treatment, single doses of-hydr0cortisone, or chronic 

triamcinolone therapy. Thus, while checking the influence of NAm 

challenge on NMTase, this experiment afforded a simultaneous ma~surement 

of the influence of glucocorticoid therapy on the NAm induced changes in 

hepatic NAD in hypaphysectomized rats. This phenomenon had previously 

been studied by Greengard et al. (11), Also, the experiment permitted 

a test of the hyp0thesis that the decreased NMNAm excretion in hypo

physectomized rats might be due to the develapment of a methyl donor 

deficiency. In the event that such a change was noted, the influence of 

glucocorticoid replacement therapy would be known. The general procedures 

and methodology used in this study have been previously described. 

The Responses of Hepatic NAD 

The time course.of the changes occurring in hepatic NAD levels are 

presented graphically in Figure 9, and the numerical data, wieh standard 



Figure 9. Changes in Hepatic NAD Levels of Normal Rats and of Hypophy
sectomized Rats (With and Without Glucocorticoid Therapy) 
Following NAm Challenge. 

0 Normal Rats 

D Hypophysectomized Rats 
' 

/l. Hypophysectomized Rats (175 mg HCHS/Kg) 

• Hypophysectomized Rats (chronic triamcinolone 5 days 
at 60 mg/Kg/day) 

Experimental details are described in the text. 
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deviations are presented in Table VI. The general pattern of the·changes 

in the normal and hypophysectomized animals are in reasonable agreement 

with those previously reported by Greengard ~ al. (10). Contrary to his 

findings ts the fact that :tn normal animals, hepatic NAD.did·not return 

to basal levels within 24 hours, The influence of glucocorticoid therapy 

in hypophysectomized animals was to she:rten the duration of the elevation 

of hepatic NAD, Triamcinolone was mc,re e:ffect:Vve than. hydrocortisone in 

this respect. This too is in contrast to what would be predicted on the 

basis of. the data of Greenga:rd -~ &, (11), It ·is possible that an 

explanation of this contradiction might be found in the differences in 

methodology used in the two studies. Greengard ~ al. administered 

both hormones at the level of 125 mg/Kg in a single subcutaneous dose. 

By comparison, an equivalent dose of hydrocortisone and chronic tri

amcinolone (60 mg/Kg for 5 days) were used in the present study, Both 

were administered intraperitoneally. The change in the route of ad

ministration, in particular, may be the critical difference. This might 

lead to the much more rapid inactivation of these hormones, thus lessen

ing the extent and duration of their relative effectiveness. If this 

is the case, the reversal of the effectiveness in the two hormones in 

depressing hepatic NAD levels is of no consequence. That is, the pre

vious hypothesis put forward in explanation of the paradoxical effects 

of glucocorticoids on hepatic NAD levels wcmld still be valid, since 

one can argue that as administered in these experiments, neither drug 

was capable of invoking a sustained increase in circulating tryptophan. 

The Responses of Hepatic MATase 

Prior to the initiation of this study, a report was uncovered which 

indicated that the activity of MATase was not depressed below normal in 
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TABLE VI 

CHANGES IN HEPATIC NAD LEVELS OF NORMAL RATS· ANif OF 
HYPOPHYSECTOMIZED RATS.(WITH.AND WITHOUT 

GLUCOCORTICOID THERAPY) FOLLOWING 
N:AM CHALLENGE 

HEPATIC NAD 
(µmoles/gm liver) 

Animals Ryp~physectomized 

Ancillary none. HCHS T 
Treatmenti3-

0,49 
+0,09 

LSS, 
+0.14 

2,88 2.75 
+0.88 +0.19 

2o24 3.13 
+0.38 +0.19 

3,42 3.89 L48 
+L25 +L02 +0.30 

2.42 1.36 0.65 
+0,27 +0.66 +0.08 

0.93 0.66 o. 70 
+0.18 +0.04 +0,04 

Normal 

neme 

0.49 
+.06 

1.49 
+0.25 

L69 · 
+0.61 

L9,.Q 
+0.49· 

L02 
±0,39 

0.61 
+0,09 

0.47 
+0,05 

aHCHS; hydrocortisone hemisuccin~te (175 mg/Kg); T, chronic 
triamcinolone (60 mg/Kg/day for 5 days). 
Experimental details are described in the text. 
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hypophysectomized rats as had been sh0wn in adre.nal:ectemized· rats 

(223). If this were the case, the basis of.the hypothesis·relating 

reduced NMN.Am excretion ts a reductiq,n in methyl dener availability 

would be eliminated. In the absence ef a decrease in }fA.Tase·activity, 

there wmuld·be-no rease,n to suspect a methyl dsn,r defieie?cy. It had 

been previeusly demt!lnstrated that large doses,c,f NAm did·nc,t·deplete 

the SAM pools in nCllrmal rat.liver (224). Therefore, it is absolutely 

mandat0ry to the abQlve.hypothesis that MATase activity be depressed to 

a level where the capacity for S.AM synthesis becemes limiting.· 

The observation that MATase levels were nermal in the hypdphysec

tomized rat was.unpredicted and with0ut obvious explanation. It had 

been demonstrated that thyroidectomy resulted in an incre~se in hepatic 

MATase above normal levels and that thyroxine therapy could reduce the. 

activity present in thyrl!>idect0mized, hypophysectemized, adrenalectem.,

ized, and normal rat·liver (223). Growth hsrmone was also shown to 

depress MATase activity in.the liver of hypephysectomizedrats. On 

the surface, this seems te indicate that,hypophysectemy·eliminated the 

depressant effects Cllf these h0rm.ones and thus the enzyme remained at 

normal levels. However, glucocorticGids stimulate the synthesis ef 

this.enzyme (218,223). In the absence of a normal gl~cacerticoid 

stimulus, it did not appear reasonable.that removal of the,Aepressant 

effect of other herm1.mes shmuld necessarily permit enzyme producticm 

to proceed at normal levels. Thus, b~fo~e disc~rding the hypothesis 

and eliminating this portion of the time course study, a'preliminary 

experiment was performed. The MATase activity present in normal and 

hypophysectomized rat liver.was determined, In.contrast te Pan and 

Traver (~23), the enzyme activity in hypophysectomized rat liver was 
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found to be only about 50% of that in normal rat liver. The MATase 

study was therefore retained and the results are reported in Figure 10 

and Table VII (with standard deviat:1:.ons)o 

The data obtained using chronic triamcinolone therapy· is in excel

lent agreement w:tth tne findings of fan and Trave.r .(218):, · These. results 

also confirmed. the preliminary observation that the basal·MATase activ

ity was depressed in the liver of hypophysectomized rats. 

When expressed on a per mg prc,tein basis, the. activity of MATase in 

hypophysectomized rat liver i~ l®wer than in the normal:rat~ This ac

tivity was elevated to, or in excess of, normal by the administration cif 

a single dose of hydrocottisc,ne, ~uch a pattern of enzyme activity and 

influence of hydrocortisone would be predicted if the SAM hypothesis 

were valid. However, presuming all other factors to be equal, the most 

important figure is the total enzyme activity available, This is more 

clearly reflected by the expression of the enzyme activity on the basis 

of tissue weight. When expressed on this basis, the patterns of MATase 

activity appear to change, The influence of hydrocertisone therapy does 

not seem to be nearly so marked, The level of MATase in the hypophy

sectomized rat is essentially unchanged during the course of the experi

ment. The enzyme activity in normal rat liver, on the other hand, after 

an apparently brief elevation appears to decrease through the.first 24 

hours following NAm challenge, 

It .is interesting to speculate that the apparent changes in total 

MATase activity in the liver of the normal rat are a reflection of a 

changing balance of hormonal events induced by NAm challenge and mediated 

via the hypophysis. However, though fj and NAm have been demonstrated 

te elevate the ci:rculat:1:.ng levels of glucocorticoids (164), there is no 



Figure 10. Changes in Hepatic MATase Activity in Normal Rats and in 
Hypophysectomized Rats (With and Without Glucocorticoid 
Therapy) Following NAm Challenge, 

O Normal rats 

O Hypophysectomized rats 

ll. Hypophysectomized rats (175 mg HCHS/Kg) 
f<i:i:· 

.,., Hypophysectomized rats (chronic triamcinolone, 5 day 
at 60 mg/Kg/day) 

Experimental details are described in the text. 
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TABLE VII. 

CHANGES IN HEPATIC MATase ACTIVITY IN NORMAL RATS AND IN HYPOPHYSECTOMIZED RATS (WITH AND WITHOUT 
GLUCOCORTICOID THERAPY) FOLLOWING NAm CHALLENGE. 

MATase Activity (nmoles/hr) 

Animals Hypophysectomized Normal 

Ancillary 
Treatments 8 none HCHS T none 

Units per mg mg mg mg mg mg mg mg 
protein liver protein liver protein liver protein liver 

Time (Hours) 
0 128 +11 10, 768 ±2136 2o4 ±_47 16, 585 ±) 181 

4 114 ±_17 9719 ±724 181 ±)6 ~-9,446 ±5620 

8 72 ±_11 10,548 ±_1602 131 ±_14 13, 135 ±_1364 157 ±_13 14,499 ±.974 

12 98 ±_18 11,500 ±_892 164 +10 14,o89 ±_1849 156 ±_20 15,845 ±_2136 

24 120 .±32 12,600 ±_1338 231 ±_61 15,251 ±_2598 298 ±42 33 ,617 ±_2030 191 ±_21 11,464 ±_819· 

36 102 +8 9210 ±_812 137 ±.11 10, 924 ±_678 359 ±.17 31,324 .±3017 129 .±33 11, 510 ±_2489 

48 78 ±5 8448 ±_1176 117 ±_20 8442 ±_1094 272 ±.43 2 9, 982 ±_2223 157 ±_60 12, 467 ±_2285 

aHCHS; hydrocortisone hemisuccinate (175 mg/Kg); T, chronic triamcinolone (60 mg/Kg/day for 5 days). 
Experimental details are described in the text. 
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direct evidence, of which the.author is aware, in support of· the pre

sumption that thyroxine or growth hormone.levels are. influenced by the 

administration of pharmacological doses.of either vitamer. 

The Response of Hepatic SAM 

Baldessarini and Kopin (197), whe developed the methodology used in 

this· study, found that the hepatic SAM· ccmtent of rats of· approximately 

the age and weight of those·used in this·study wasextremely·variable. 

Th~ values they obtained ranged frOffl.25 to more than 100 nmoles of SAM/ 

gm of U.ver·. · · Alt;hough one would like to argue that a naturally eccurring 

variability could account for the range of values observed in this study 

(Table VIII), such is not the case. The variation within the groups of 

animals is.quite possibly due to such an interanimal variation. How

ever, due to an oversight in.the experimental procedures, the SAM data 

obtained in this study has lost mast of its value in terms of a time 

course comparison. 

The data presented in Table VIII are the ~verage values·of two 

determinations on each liver. The disagreement between these· determina

tions was rarely in excess of 10%. Th~ groups between which direct 

comparisons. are deemed appropriate are indicated by identical subscripts. 

Th~ values in these groups were obtained on the same day and from a 

simultaneously generated standard curve. Th~ reasons. for res•trict:i,ng 

interpretation of the data in such a manner are twa-fold. First, in at 

least two instances, (a and i) the SAM-14c was not added ta the,samples 

prior to the neutralization step. Thus, any SAM deg~adation that might 

occur during this st~p was unaccounted for. Second, though originally 

intended, the HIOMTase preparations were not dialyzed prior t0 use. The 
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TABLE VIII 

HEPATIC SAM CONTENT OF NOBMAL RATS AND OF HYPOPHYSECTOMIZED RATS 
(WITH AND WITHOUT GLUCOCORTICOID THERAPY) 

FOLLOWING NAM CHALLENGE 

HEPATIC SAM 
(nmoles/gm liver) 

Animals Hypophysectomized Normal 

Ancillary 
Treatment none HCHS none 

(Hours)/Ani~al No" 

0/1 58,8 47.5 
/2 34;8 a 57,5 g 
/3 30.0 46.3 

4/1 35.0 43.8 
/2 35,2 a 40.0 g 
/3 35.0 37.5 

8/1 61.0 95.0 80.0 
/2 38.8 b 95.0 b 45.0 
/3 73.8 78.8 66.3 

12/1 87.5 56.3 76.3 
/2 56.4 c 82,5 c 77,5 h 
/3 100.0 6L3 81.3 

24/1 90.0 65,0 25,0 
/2 74,0 d 72,5 d 30,0 i 
/3 100.0 68.8 31.3 

36/1 48,8 38.8 77 .5 
/2 46,3 e 38,8 e 62.5 h 
/3 42,5 45.0 76.3 

48/1 47.5 36.3 42,5 
/2 38,8 f 30,0 f 36.3 i 
/3 42,5 48,8 42.5 

HCHS, hydrocortisone hemisuccinate (175 mg/Kg) 

All other experimental details are described in the text. 
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Groups with coll!l'llon subscripts were determined on the same day (a-i). 
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pineal gland is an organ rich in SAM and essentially unique for N-acetyl

serotonin, Several different enzyme preparations, from two different 

batches of pineal glands, were used, In several instances the prepara

tions were used over a span.of several days. Sil).ce both of the above 

compounds are highly unstable, their addition· to the s.tanda~d· assays 

with the H!OMTase had an unquant:tUed effect up.cm both the· slope and 

intercept values of the ind:tv:tdual standard curves, Tht,is ·,·.any compari

son of the data obtained on different days is rather tenue::,us. A repeti"'."' 

ti.on e::,f these measurements was not possible due te:, the limited amounts 

of tissue available. 

Restricting the comparise::,ns to the groups indicated, no patte+ns 

emerge with respect to the relative levels of SAM observed in these 

groups and the MATase activity found in the same livers. In particular, 

the hepatic SAM content of the hydrocortisone treated hypophysectomized 

rats is not consistently different from that of the control animals. 

It was thus concluded, that no marked changes in the hepatic SAM content 

of either normal or hypophysectomized rats occurred as a result .of NAm 

challenge. That is, although capable of stimulating an.increased form

ation of MATase, hydrocortis@ne therapy did not result in any marked 

changes in hepatic SAM content, while conversely the depressed levels of 

MATase present in hyp0physect0mized rat liver are sufficient to main

tain adequate SAM synthesis~ 

Although these conclusions are considerably weakened·by the poor 

quality of the SAM data presented, it would appear that any attempt to 

explain the differences in NMN.Am excretion on the basis of a methyl 

donor deficiency is unfounded, Evidence supporting the validity of this 

conclusion, at least under normal physiological conditi0ns, is presented 

below. 
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The Responses of Hepatic NM'l'ase 

The results of the NMTase study are presented in Figure 11 and 

Table IX (with standard deviations)o· When expressed on a per mg c,f pre

tein basis, the curves fluctuated widely, As. will be .shown· below, this 

pattern at least in the normal rat series Sf!!ems te:, be real. that is, it 

is primarily a reflection of the variability in the groups of animals 

and not in the analytical procedures. 

The data do not replicate the findings of Flesner .(Table I). If 

any real increase in enzyme activity ~ccurred, it was, at the maximum, 

abl!>ut 40% of basal compared to the·Hl0% increase reported by Flesner 

when expressed on a per mg of protein basis and only slightly in excess 

of 20% when expressed on a per gm of liver basis, In.even more marked 

contrast to the findings of Flesner (23), the hepatic enzyme levels 

present in the hypophysectomized rat do not.appear to respond at all, 

As indicated by the previous data, the apparent basal NMTase 

activity in normal rat liver is lower than that in the hypophysectom

ized rat and this difference is by and large maintained throughout the 

treatment period studied, particularly through the first 24 hours. 

Hydrocortisone therapy appeared to have little influence on this activ

ity regardless of the mode of expressing the datao Triamcinolone 

therapy, on the other hand, appeared to increase the total·NMTase activ

ity present by about 20%. However, this increase in activity is not 

clearly reflected in the specific activity of the enzyme. 

The wide variability in the data and the almost complete lack of 

agreement with the previous finding promoted a partial reanalysis of the 

tissues. The series of n©rmal rat livers was rehomogenized in sodium 

acetate buffer and the isotope incerporaticm assay rerun, At the same 



Figure 11. Chapges in the Hepatic NMTase CG>ntent of Ne:rmal Rats and of 
Hypophysectomi.zed Rats . (With and With<!>ut Glucocorticoid 
Therapy) Following NAm Challenge. 

O Normal rats 

[J Hypophysectemized rats 

6. Rypephy-sectemized rats (175 mg HCHS/Kg) 

t,· Hypophysectomized rats chronic Triamcinolone (60 mg/Kg 
day for 5 days) 
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TABLE IX. 

CHANGES IN THE HEPATIC NMTase CONTENT OF NORMAL RATS AND OF HYPOPHYSECTOMIZED RATS (WITH AND 
WITHOUT GLUCOCORTICOID THERAPY) FOLLOWING NAm CHALLENGE. 

NMTase Activity (nmoles/hr) 

Animals Hypophysectomized Normal 

Ancillary 
Treatments a none HCHS T none 

Units per mg mg mg mg mg mg mg mg 
protein liver protein liver protein liver protein liver 

Time (Hours) 
0 16.5 ±4.o 3420 .±550 9-1±1.1 1720 .±585 

4 13 .2 ±1.1 2780 ±220 11.5 ±1.3 2050 ,±205 

8 14. 7 ±3. 5 3420 ±240 18.3 ±2 .2 3o80 ±190 12.7 ±1.3 2130 ±330 

12 17 .2 ±1.7 3220 ±335 17 .7 ±1.3 3010 ±260 10.1 +2.0 1990 ±160 

24 15. 9 ±3. 7 3210 ±340 17 .2 ±3.4 3390 ±285 14.5 ±2.1 3960 ±295 7 .5 ±2.3 1940 ±295 
l 

36 17 .4 ±1.7 3010 ±285 20.3 ,±2.6 3310 ±160 20.0±1.7 4270 :530 12.7 ±2-5 2320 ±230 

48 11.8 +1.0 3000 ±220 13 .5 ±3 .6 2690 ±,375 18.7 ±4.5 · 4130 ±415 12.6 ±5·7 2360 :!:525 

aHCHS, hydrocortisone hemisuccinate (175 mg/Kg); T, chronic triamcinolone (60 mg/Kg/day for 5 days). 
Experimental details are described in the text. I-' 

w 
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time, the previous Tris-HCl assays were reanalyzed fluorometrically. 

The results of these analyses.are presented in Figure 12. The pattern 

of change in NMTase activity- yielded by each of the analytical procedures 

was essentially the same, This indicates that the v.a:ria:tion is predom-

inantly due to real differences between the various groups of animals. 

No plausible explanation seems tc, fit this pattern, Thus.,; one is ferced 

to presume that it is a result of randC!lm v·ariaticm among. the animals and 

that no real· increase :tn NMTase activity occur~ed-in response to NAm 

challenge. 

One other possibility existed which had to be checked·before the 

original NMTase data could be found to be in 1omplete disagreement with 

the present data. It was possible that the original data had been ob-

tained from livers which had been stored for a considerable period of 

time. An early experiment hadshown that the preincubation of either· 

dialyzed or undialyzed enzyme preparations at 25°c, for one hour in the 

absence of either substrate resulted :tn about a 60% loss of enzyme 

activity. If the enzyme was preincub~ted in the presence of 2 x 10-2 M 

NAD, this loss in enzyme activity did not occur, A similar protecUon 

of NMTase activity by SAM had been previously demonstrated by Burton et 

al, (215). If the original data had been obtained from stored livers, 

it was possible that the differing NAD levels in the livers could have 

yielded differential protection against losses in enzyme.activity during 

the storage period. Thus, after ten months of storage~ samples of all 

the remaining livers from the series Cilf hypophysectomized control animals 

were reanalyzed using the fluorescence methodology previously desGribed. 
I 

The relative fluorescence patterns in the SAM free assays paralleled the 

time cours~ of NAD content originally obser:ved in these livers, indicating 



Figure. 12. 

• 

The Time Course of Changes in Hepatic NMTase Activity as 
Determined by Three .. Independent Analyses. 

O· Tris.,.HCl Buffer, NAm-14c Inc0rparati10n Analysis 

[:], Sodium Acetate Buffer, NAm~14c Incorporation Analysis 

/::;. Tris-HCl Buffer, Fluorescence Analysis 
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that NAD and or an NAD related substance was still present. The NMTase 

activity measured in the 0, 4, 8, 24, and 36 hour treatment groups was 

found to be 8.8, 9,1, 9.3, 9,4, and 7.7 nmolee/mg protein/hr, These 

data ind·icate that stime loas c,f enzyme activity occurred during the ten 

month storage pe+iod; htiwever, the enzyme activities were still essen

tially the• same .in all groups tested. 

Influence of Multiple NAm Challenge a,n Hepatic 

NMTase Activity 

It had been previously shown by Greengard ~ al. (34) that multiple 

injection o.f NAm maintained the elevatien of hepatic NAD in nermal rat. 

livers through 30 hours in a manner similar to that observed in hypo

physectomized rat livers following a single NAm challenge. In ·this 

work, they treated normal rats with an NAm challenge and followed with 

the injection of 10(:) mg NAm/Kg every tW()) hours" 

In anticipation of the repetition of the results previously obtain

ed by Flesner (23), a few animals w~re submitted to multiple NAm 

challenge as a preliminary test 0f the effects of this treatment on 

hepatic NMTase activity and NAD levels. It was expected that the ele

vated ~nzyme levels wc,uld fall as the,NAD levels returned to normal and 

thus by maintaining or even increasing the.extent of NAD elevation, a 

corresponding increase in NMTase activity wauld accur, 

The animals received an NAm ch~llenge every 12 hours and were 

sacrificed 12 hours after the final challenge dase. Normal rats were 

challenged two, three, or four times (one per gr~up) and a hypophysec

tomized rat was challenged '4 times. 
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Drawing conclusions from such a limited experiment. is admittedly an 

unsound practice, However, since the author sets no precedent.in this 

area by so doing, the data are presented in Table X, For comparative 

purposes, the NMTase activity observed in the ccntrol ra.t.s. (zero time) 

and the hepatic NAD content a,f the N.Am challenged rats (12 hours after a 

single challenge dose) as obtai~ed fr~m the time course experiment are 

included. These preliminary findings indicate that elevation of hepatic 

NAD for extended periods of time :ts without marked influence· cm hepatic 

NMTase, The data. also indicate that multiple challenge results in a 

decreaee ::tn the hepatic NAD levels observed relative to that which arises 

from a single NAm challengeo If this is indeed the case, it indicates 

that such treatment yields inhibition of the Preiss-Handler pathway 

probably through the generation of excessive levels of NA. 

The maintenance of high levels of NAm would also be predicted to 

pr0mote a maintained elevation of circulating glucocorticoids, Thus, 

if any influence of glucocorticoids on NMTase synthesis occurred, it 

would be expected to be apparent here, and no obvious effect was ob

served. 

Influence of Chronic Triamcinolone Therapy on the 

Excretion of NAm and NMNArn in NArn Challenged 

Hypophysectomized Rats 

The extent of the differences in NMNAm excretion by hypophysectom

ized and normal rats following NAm challenge has been found to be widely 

variable. Greengard et al. (34) observe,d levels of 9 o 2% and 6 o 0%; Lee 

(Figure 8) 1L7% and 2o5%, and the curre:nt study (Table III) 6.5% and 

2.5%.in normal and hypophysectomized rats~ respectivelyo The high level 



Table·X 

HEPATIC NMTASE ACTIVITY .AND NADCONTENT FOLLOWING 
MULTIPLE NAM CHALLENGE 

Animal 

Normal Hypophysectomized 

NMTase8 NAD NMTase8 · NAD 
nmdes/hr µmoles nmeles/hr µm<:>les 
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mg prc,tein . gm liver. mg protein gm liver 
Times 

Challenged 

ob 9.1 0.49 16.5 0.49 
+2.0 +0.06 +4.0 +0.09 

1b 10.1 1.90 17.2 2~24 
+2.0 +Q.49 +1. 7 +0.39 

2 14.3 1.78 

3 10.2 1.47 · 

4 10.8 1.22 · 14.3 1. 78 

a) Enzyme activity determined using Tris-HCl buffer, NAm-14c 
assay. 

b) 0 and 1 challenge data is taken from zero control and 12 hour 
values in time course data. 
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observed by Greengard in hypophysectmmized rats compared to the low level 

observed here in normal rats was bothersome, To be absolutely certain 

that· glucocortic0id therapy was effecting a change in the,excretion 

patterns of. hypophysectt!>1dzed rat 11, anoth•r experiment was .. ·.pe:rformed, 

The study was restricted te hypetphysectomizeq. aniffl4ls •. 

The more effective chr-,n:tc tr:tamc:tnslsne therapy was.substituted 

for the prevfously used hydrocc,rt:lsone therapy. The results of this 

experiment are reported in Table. X! (with standard d.evi.a.tfons). 

U one coneide:ra the tria.mc:l:nolcme treated rats as being n0rmal, 

the results are almost an exact match of those reported by Lee on both 

an absolute and relative basis. No n0rmal rats were used as controls in 

this experiment. Thus, the conclusion that tW results obtained from 

the triamcinolone treated animals are a reflection of what would have 

been recorded in a n0rmal control gr©up can only be inferred, The basis 

for such an inference is the fact that glucocorticoid therapy in the 

previous experiment (Table III) resulted in a complete reversal of the 

excretion patterns and that similar treatment of the normal animals re

sulted in no radical changes as compared to the normal c0ntrol, !n any 

event, the results in themselves were sufficient to convince one that 

the previously observed differences.were real and that the extent ef 

the differences.was probably influenced by environmental factors. 

The first attempt t0 perferm the above experiment was frustrated 

by the inadvertent eliminati<:>n ef the .challenge dose of NAm. By the 

time the oversight was realized, the animals had already been exposed 

to tracer levels of NAm-14c for varying periods. Rather than administer 

the challenge under such circumstances, the experiment was allowed to 

run its course and analyzed in the.usualmanner, Each animal had 



TABLE XI 

THE EFFECT OF CHRONIC TRIAMCINOLONE THERAPY ON THE EXCRETION 
OF NAM-14c AND NMNAM-14c BY HYPOPHYSECTOMIZED RATS 

FOLLOWING A NAM-14c CHALLENGEa 

% of Injected 14c % 
14 0f T0tal C 

Excreted Excreted 

as as as as 
Total NAm NMNAm NAm NMNAm 

Animal/ 
Treatment 

HypopHys.ectomffed 
500 mg NAm- C/Kg 44.3 l.13. 5 3.6 42.5 8.0 

+8,6 +3,7 +1.3 +8.3 +1. 7 

Hypophysectomized 
500 mg NAm-14c/Kg 75.l 41.8 12,7 56.6 16.9 
Triamcinolone +8.1 +4.5 +L3 +4.6 +1.6 
60 mg/Kg/day for 
5 days 

a) Experimental details are given :i.n the text. 
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received a dose of approximately 110 µgm NAm/Kg (5.4 µCi). All other 

treatment was identical to that reported in the above experiment, 
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The results of this experiment are presented in Table XII (with 

standard deviations). Thoughin:ttially surprising, they are almost 

totally pr~dictable on the basis of.prevbus, literature data, as h¥i al

ready been discussed (Excretion, Chapter U). 

The excretion of NMNAm in the hypophysectomized control rats was 

within 20% of that observed in the tri.amcinc,lone. treated,rats. NAm 

represented only a small portfon of the excreted d.ose and· the· difference 

between the two-treatment groups was aga:tn small (about 23%). 

It should be recalled that the NMNAm and NAm values were routinely 

obtained from chromatograms devel0ped in two different solvent systems. 

Because of the nature of the above results, the chromatographic peaks 

corresponding to NMNAm and NAm in the alternate chromatograms were 

quantitated and essentially the same results were obtained. 

A similar analysis of the chromatograms from the NAm challenge 

experiment yielded, as had been previously observed, markedly different 

answers in the NMNAm region of the two chromatographic systems. The 

only known metabolites which chromatograph with or near NMNAm in the 

alkaline butanol solvent system are NA and NAgly, Therefore, the 

difference in the dose recovered in the. two chromatography syst,ems is a 

rough measure of the presence of NA and its derivatives. Applying such 

a calculation to the data yielded a valu,e of 15,2 ± 6.7% and 5,9 + 3.6% 

of the injected dose excreted as NA or its derivatives in the control 

and triamcinolone treated groups respectively, The proiduction of NA 

and related metabolites from NAm-14c indicated the function of NAm 

deamidase. In this light, the above values can be taken as being 



TABLE XII 

TEE EFFECT OF CHRONIC TRIAMCINOLONE THERA!'YON. THE EXCRETION 
OF NAM._14c AND NMNAM-14 BY·HY!'OFHYSECTOMI:ZED RATS 

FOLLOW?NG A TRACER DOSE OP' NAM-14ca 

% of Injected 14c % of Total 14c 
Excreted Excreted 

as as as as 
Total NAm NMNAm NAni NMNAm 

Animal/ 
Treatment 

Hypophysectomized 
0.11 mg NAm-14c/Kg 33.4 0.5 18.4 1.,4 54.7 

+2.5 +0.2. +2.8 +0.4 ±~,1 

Hyp~physectomizid . 
.O.il mg NAm-1 C/Kg 34.4 0.61 22.6 1.8 65.8 
Triamcinolone +1.9 +0.1 +0.7 +0,1 +4.0 
(60 mg/Kg/day for 
5 days) 

a) Experimental details are given in the text. 
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indicative of the absolute minimum NAm deamidase activity·present in 

these animals. The relationsh.:tp between the above two · averages is, 

perhaps fortuitously, in agreement with the approximate three-fold in

crease in NAm deamidase activity previously reported to occur. in 

hype>physectomized rats (111,161), ·· 

In addition to NMNAm and NAm, the.urine chromatograms· obtained from 

the tracer dose excretion study q.ave other minor- components. In the. 

case of the hypophysectomized controls, two small peaks were observed on 

the strips. One of these, which chromatogra.phed in the region that 

would be expected for NAmNO, yielded an average of 2% of the injected 

dose. The other.unknown, which chromatographed in the region that weuld 

be predicted for the pyridones, gave an average of 5,1% of the injected 

dose, In the case of the triamcinolone treated rats, only one ancillary 

peak was detectable. This peak was chrematographically similar to the 

suspected pyridone peak observed in the control group chromatograms, and 

yielded an average value of 2.7% of the injected dose. Sunnnation of all 

components accounted for yields 26.0% and 25.9% of the dose injected for 

the control and treated groups respectively. 

During the course of these studies, it.became apparent that the 

methodology used for the quantitation of isotopic materials on paper 

chromatograms was inadequate. It was found, for example, th~t counting 

of pure NMNAm-14c on Whatman No. 1 chromatography paper in the toluene

etham,1 cocktail yielded only 71% of the radioactivity actually present, 

It was also found that NAm-14c was recovered essentially quantitatively. 

A study of the problem using representative urine samples indicated·that 

with the exception of N.Am-14c the average radioisotope recovery from 

urine chromatograms counted in a toluene-ethanol cocktail was 



approximately 68% of that present, It was also found that in fluid 

urine samples, the average recovery of the isotope activity other than 

NAm was approximately 79%0 The values for the isotope recovery on the 

chromatograms and in the urine samples obtained from the tracer dese 

study were CC!lrrected on the basis of the abave findingso The result is 

an estimated total excretion mf approximately 42% and 44,1% ·Gf the in-

jected dose.in the control and treated groups respectively. The car-

rection of the total recovery of the label from the chromatograms yields 

40.6 and 4005% of the injected de,se respectively. That is, the estimated 

quantities of metabolites recovered in the 3 or 4 peaks detected on the 

urine chromatograms accounts for approximately 90% of the total dose 

excreted. 

Therefore, in at least the physiolo~ically dosed animals, any 

differences in NMNAm excretion can.be accounted for by a redistribution 

of the label into primarily two other metabolites. The major change is 

apparently in a shift from NMNAm into pyridones and NAmNO. If this is 

indeed the case, the NMNAm plus pyridone metabolism should be taken as 

representative ef the t(!)tal NMTase functfon. Presuming that the major 

unknown is indeed pyridone, little difference exists between the treated 

and control groups in the above study. 



CHAPTElR V 

CONCLUSION 

There were differences in the distribution of 14c among the metab

olites excreted by hypophysectomized rats and those receiving chronic 

glucocorticoid therapy following the administration of a near physio

logical dose of NAm-14c. However, at least a portion of this apparent 

change appeared to be in the further conversion of NMNAm to the 2 and/or 

4-pyridones and thus, is not a reflection of a change in NMTase function, 

Regardless of the identity of the minor components excreted, both the 

treated and untreated animals excreted predominantly NMNAm. The data 

suggest that NMTase is not a tightly controlled enzyme and that it is 

probably of no great significance in exerting any control on NAm or NAD 

metabolism. The observation of only small differences in the basal 

excretion patterns of these animals indicates that the marked differences 

observed in the NAm challenged animals were basically pharmacological 

artifacts. Since the original conception of this study was related to 

the possibility that NMTase might play a significant role in the control 

of NAm metabolism, no further effort was expended and the area was 

abanckmed. 

At the outset, it was proposed that NAD was an allosteric modifier 

of NMTase, If one considers this concept more clc>sely, the original 

data demand that NAD be an allosteric inhibitor of enzyme activity, 

Simultaneously, NAD must protect the enzyme against degradation in vivo. 

1 r:::" 
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Further, since the basal NAD content of both hypophysectomized and normal 

rat liver is identical, one is forced to argue that the rate of enzyme 

synthesis and/or degradation in normal rats is different from that in 

hypophysectomized rats, 

It was the.intent of the initial experiments to determine what 

influence, if any, NAD might have on NMTase activity, The· results of 

those experiments indicated N.AD was without influence cm the in vitro 

enzyme activity. However, since these studies were conducted only under 

substrate saturating conditions, they reflect only changes· inVmax' 

Thus, it can only be stated that NADhad no influence on the Vmax value 

of the hepatic NMTase reaction, Subsequently, a study was initiated to 

determine the influence of NAD on NMTase activity at subsaturating levels 

of substrate. Using the fluorometric assay, it.was determined that the 

apparent Km's for NAm and SAM in the sodium acetate buffer system were 

about 2,5 x 10-4 Mand 1,4 x 10-4 M, respectively. These values are in 

good agreement with those reported by Salvador and Burton (215) in 

Tris-HCl buffer at pH 8.0, As before, the addition of significant quan-

tities of NAD to the assays made any accurate estimate of enzyme activity 
i,.i 

impossible, An apparent solution te this problem suggests itself. If 

the assays were terminated with heat or perchloric acid followed by 

neutralization, the resultant supernates could be incubated with N, 

crassa NAD glycohydrolase, This should eliminate the NAD and the com-

petitive fluorescence contributed by it, By the time this most obvious 

potential solution to the problem presented itself, this study had been 

terminated and the idea was never tested, Such a study was not likely 

to prove fruitful. ·If one considers the time course of NMNAm excretion 

in normal and hypophysectomized rats, it is seen that a decrease in 
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excretion rate is unique to the latter. Thus, the concept:of· NAD having 

any significant effects on N.MTase activity at subsaturating substrate 

concentrations becomes rather tenuous, 

It is more feasible that small changes in other enzyme activities 

contribute to the redistribution of the label under. challenge· conditions. 

In addition, the possibility exists that NMN.Am might, as a·result of 

reduced renal function, accumulate in the circulation of the·hypophy

sectomized rat to a greater e:xtent than in normals, In this light, the 

interpretation of the early tests of renal function becomes·s0mewhat 

questionable. The experiment:! muld have been more convincing if· they 

had been done on a time ceiurse basis with attention being given to the 

levels of circulating NMNAm with time, A similar study of circulating 

metabolite levels in the original excretion studies might also have 

been quite revealing, 

The administration of glucocorticoids has been demonstrated to 

reverse the changes in NMNAm, NAm, and the total dose excretion observed 

in hypophysectomized rats following NAm challenge, Drawing a parallel 

with the findings of Greengard et aL (11), it has been predicted that 

the differences observed in metabolite excretion and in hepatic NAD 

levels in hypophysectomized rats following NAro. challenge are due princi

pally to a decrease in renal function in these animals. 

An effort was made to reproduce the previously observed· elevation 

of NMTase activity in NAm challenged rats; no support for such a marked 

increase in enzyme activity could be obtained, 

During the course of this study, the 2-butanone fluorescence pro

cedure was found to be much more reproducible than t.he alkali pr0cedure. 

Thus, when the fluorescence analysis was subsequently used, SAM free 
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control assays were used. In the original study, no SAM free·controls 

were used (23). Instead, the NAD present in the assays.was. corrected 

for by the use of an alkaline fluorescence procedure which yielded little 

or no fluorescence with NMNAm, It is possible, that under the influence 

of NAm challenge, some fluoreecence producing compound other than NAD 

which contributed to the 2-butanone fluorescence analysis.but not to the 

alkaline fluorescence analy~is was being accumulated in the· liver. If 

this were the case, the lack of SAM free controls in the analysis would 

fail to correct for this fluorescence and the result·wouid·be·a time 

dependent overest:t.mate of the NM!A$S activity, The m0st obvious candi

date for making such a contribution is, all too obviously, NMNAm itself. 

It is conceivable that N'MNAm accumulates in the.livers of the NAm 

challenged animals, Such an accumulation would not influence an isotope 

incorporation assay and would go unaccounted using the original metho

dology (23), Unfortunately, this thought c0mes at the time of this 

writing and time does not permit a check of this possibility, That such 

an obvious possibility should escape one for so long a time is indeed 

humbling, 

There are obviously many questions left unanswered by this study, 

However, the pursuit of the answers to these questions seemed fruitless. 

In so far as they could be expecte4 to yield no insight into the under

standing of N.Am or NAD metabolism~ their solution would be purely academ

ic, Indeed, the time and resources required for their clarification 

would most probably be best invested elsewhere, 
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