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CHAPTER I 

INTRODUCTION 

Planting is one of the mgst crucial operations in crop production. 

A prerequisite in obtaining maximum yield and quality of product is the 

establishment of a uniform stand. For most crops there is a spacing 

which optimizes plant competition for nutrients, moisture and light 

and provides maximum yield and quality of product from a' given area of 

land (10, 19, 24) •. Obtaining desired plant stands from a minimum seed­

ing rate also contributes toward minimizing production costs. 

The device used to plant seeds must satisfy certain criteria if 

these planting goals are to be obtained. A planter must be able to 

meter seeds uniformly and place them in the seedbed with uniform 

spacings between seeds. Since only a limited time period is available 
\ 

for which)field conditions are optimum for seedling emergence, the 

planter must perform these functions at a rate which will allow rapid 

coverage of the crop production area. 

Numerous studies have been made on principles for metering seeds 

and placing them tn the seedbed accurately. However, little attention 

has been given to automatic control of seed metering. For accurate 

spacings' capability is needed to ,sense presence or absence of i ndi vi d­

ual seeds before being planted and to provide 11 back-up 11 seeds to plant 

where there would normally be a 11miss 11 • 

Pneumatic sensing and logic techniques can provide one method to 

1 



insure metering accuracy. Several fluidic sensing methods are avail­

able for sensing at high rates presence or absence of small objects. 

Pneumatic logic elements which have frequency response of several 

hundred Hertz are also available, and can be combined in circuits to 

obtain programming capability, Pneumatic output devices are available 

to interface between logic networks, and power circuits, and the com­

bination of these elements provide potential to use pneumatics for 

sensing, logic, and control in a metering device (17, 18), 

Fluidics is a term which identifies elements that do not contain 

any moving parts and utilize the dynamics of a fluid to perform their 

functions. Fluidic elements operate at low pressures and require 

continuous flow of fluid for operation. Other types of logic elements 

are generally identified as 11 moving-parts 11 elements and sometimes are 

grouped according to the type of internal movement of the element, 

These types of elements do not require continuous flow of fluid and 

can operate at high pressures. Moving parts elements are frequently 

used as the interface between fluidic logic circuits and power control 

circuits because of their high pressure capability .. 

2 

Fluid logic techniques have been developed which permit logic cir­

cuits to be synthesized from a description of desired circuit inputs 

and outputs. These techniques offer a means to develop logic circuits 

to provide compensation for errors in a seed metering device. The 

logic circuit synthesized from these techniques can be constructed 

with either fluidic or moving part elements. 

Scope of the Research 

The purpose of this research was to investigate the feasibility 

of using fluid logic synthesis techniques in conjunction with fluidic 



sensing and logic devices to sense presence or absence of seeds in a 

metering unit and to dispense seeds from a 11 back-up 11 source when seeds 

were missing, Primary interest has been focused on development of a 

functional circuit, and optimization of air pressures and consumption 

in the circuit has not been undertaken, Commercial components were 

then used to perform the desired function and are identified in 

Appendix A. 

Objectives of the Research 

l, Develop a metering unit utilizing principles of fluidics 

and fluid logic for dispensing acid-delinted cottonseed 

one at a time at a rate of at least 135 seeds per second. 

2. Investigate methods of placing individual acid-delinted 

cottonseed in a seed furrow, and develop a seed ejecting 

unit which accurately spaces seeds along the furrow, 

3 



CHAPTER II 

LITERATURE REVIEW 

Published information was surveyed to obtain information useful 

in fulfilling the objectives of this research. Important principles 

relating to seed metering, seed conveyance, spacing analysis techniques, 

logic synthesis techniques, and pneumatic sensing, logic and control 

devices are summarized below. A thorough summary of the classical 

logic synthesis technique is given since it is used in this research. 

Seed Metering 

Commercial row crop planters may be classified according to 

metering principles as cell, finger, and pneumatic types. The cell 

has been the predomi nar:it ·type and ha.s many variations. This type 

generally consists of a plate with cells which are filled by seeds as 

it rotates inside a seed hopper. The two most common variations of 

the cell type planters have vertical and horizontal plates. 

Akyurt and Taub (1) have tested accuracy of several vertical and 

horizonta.l plate planters for planting sugar ~eet seed, They stated 

that cell filling of hotizontal plate planters was more favorable than 

on vertical ones, whereas the planting precision of vertical plate 

planters was superior to horizontal ones. Increased planting precision 

was attributed to r-educed falling distance from plate to furrow in 

vertical plate planters. They found that cell depth was the most 

important factor in influencing number of empty cells, and that maximum 
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metering rate was approximately 25 cells per second. 

Roth and.Porterfield (51) studied some of the basic characteris-

tics of a horizontal plate seed.metering device. The following factors 

were given as possibly.affecting a horizontal plate metering device: 

1. Relative size of seed and cell 

2. Relative shape of seed and cell 

3.. Orientation of seed to cell .,,,,,· .. ,.~.-

4. Relative speed of seed and cell 

5. Distance cell travels while exposed to seed 

6. Time interval cell is exposed to seed 

7. Type of cutoff and knockout devices used 

8. Depth or seed above seed plate 

9. Genera 1 sh.ape of seed 

10. Variation in seed size and shape 

11. Surface characteristics of seed 

12. Density of seed 

They concluded that after a certain plate cell speed was reached, 

cell fill decreased with increasing speeds. Cell clearance affected 

the maximum speed for which cell meter1 ng percentage rema1 ned at 100, 

and an increase 1n·cell clearance made metering accuracy less sensi­

tive to speed changes. They also found that for a given time of cell 

exposure to the seed, a short exposure distance and slow cell speed 

resulted in increased cell fill. 

Wanjura and Hudspeth (53) have studied the metering and seed 

pattern characteristics of a horizontal edgedrop plate planter using 

acid delinted cottonseed. They found that metering percentage v~ried 

due to plates, plate speed and hoppers. They concluded that spacing 



between seeds was random and unsuitable for cultural systems where 

precise seed spacing is desired, 
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Other studies (3, 4) of cell type planters have shown similar 

results. Metering accuracy is variable and attributable to many 

factors. This has led to the development of other planting principles. 

Several plateless-finger type metering devices have been developed 

and one has been produced commercially (15, 34). In the commercial 

unit, a mechanical finger grasps seeds as it rotates through them and 

delivers them to a paddle rotor which ejects the seeds. The plateless 

planter was developed primarily for corn, and metering accuracy is less 

subject to seed size variations as compared to cell-plate type planters. 

Field tests including the plateless planter indicate that the stand 

distribution is about the same a.s for plate type planters (26), 

A more recent commercial development is the pneumatic planter 

shown in Figure l (27). It utilizes a large seed drum which contains 

several rows of cells conta.ining small orifices, A blower maintains 

a positive air pressure inside the drum, and seed are fed into the 

bottom of the seed drurp by a chute maintaining a constant seed level 

within the drum. Seeds close off the orif·fces as the drum rotates, 

and the differential pressure between inside and outside the drum 

causes seeds to be held in the cells until reaching the discharge 

point. A rubber roller closes the orifice at the top of the drum 

thus cutting the air pressure differential between ins·ide and outside 

of the drum. This permits the seed to fall into a manifold which 

delivers the seed to a tube where the seed is conveyed to the seed 

furrow pneumatically, 

Little in.formation has been published on functfon of the I H 
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Figure l . I. t ernational Harves er Cyc .o Pl a t er 



Cyclo planter, but Horne (26) has included Hin a. study of accuracy 

of seed placement of corn planters. He measured actual seed spacings 

in farmer's fields and compared these to the theoretical spacing for 

settings according to the operatorBs manual. Measurements were made 

from an initial seed called a. 11 zero-fo 11 seed, 

For a theoretical spacing of 19'.1 cm (7,5 in) Horne (26) found 

that only 0 to 1.4% of the seeds were located exactly on the mark 

where they were supposed to be located. Approximately one-third of 

the seeds were within 25A mm O fo) of the mark, about 60 percent 

within 50.8 mm (2 in), and about 90 percent within 76.2 mm (3 in), 

From 3 to 6 percent were recorded as double drops and 4 to 17 percent 

were recorded as misses... Horne (26) rated performance of dropping 

seed within 50.8 mm (2 in) of the predetermined mark as excellent 

performance. 
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In addition to commercial meterhig devices, many metering devices 

have been studied experimentally. Vacuum, step, centrifugal and 

fluidic metering type devices have been developed to increase accuracy 

in metering single seeds. These techniques offer unique alternatives 

as compared to the traditional cell type planters., 

Vacuum meter fog techniques have been •studfod by severa 1 

researchers (10, 11, 12), Wanjura and Hudspeth (56) designed and 

tested a vacuum me-tering techffi que for ac 1d-de1 inted cottonseed. A 

vacuum wheel, with mechanical assist in lifting, improved metering 

accuracy as compared to the conventional cell type planter. One of 

the primary disadvantages of the vacuum systems was that the air 

entering the system cannot be easily filtered and contamination could 

cause malfunctions, 
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A step planter based on the cell-plate principle was designed and 

tested by Jimenez and Buchele (28). The design included five metering 

plates in series which placed five seeds at once in a step fashion. 

This permitted slower velocity of seed cells in the hopper and longer 

exposure time for filling cells, but the unbalance of the stepping 

mechanism limited planting speeds to a maximum of 2.51 kilometers per 

hour (1.5 mph). Unless some counter balancing could be achieved, this 

slow speed would result in inadequate field capacity for a commercial 

unit. 

The importance of the force of gravity in filling horizontal seed 

cells has been emphasized by Khan and McColly (29). They developed 

and tested a high speed centrifugal seed planter. It utilized two 

rotating seed rings, and the entire unit and seeds were rotated. The 

outer ring contained one cell which would line up with a cell in the 

inner ring once each revolution. One seed would be ejected from the 

unit each revolution. Centrifugal force exerted on the seeds wa§ 

greater than the force which could be exerted by gravity. This 

improved cell fill when compared to a conventional cell-plate planter 

operating at high speeds. The maximum seeding rate tested was approx­

imately 26 seeds per second for the centrifugal and approximately 18 

seeds per second for the conventional plate planters. 

Rohrbaph and Holmes (47) have shown that an air jet eminating 

from an orifice at the center of the closed end of a cylindrical cavity 

causes a single spherical object to be drawn into and retained in the 

cavity. Rohrbach and Kim (49) have used this phenomenon to develop a 

pure fluidic seed metering device. Seed shape and surface character­

; sti cs may. be cri ti cal for opera ti on, an.d reported testing has been 
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only on round smooth objects. Seeding rates which have been reported 

are very low at 24 seeds per minute. 

The above fluidic seed metering device can apparently monitor its 

seeding output and make corrections for errors, but the performance of 

this feature has not been reported. In the other metering unit tested 

by Rohrbach and Kim (49), fluidics was used to control metering within 

certain limits over a period of time but no attempt was made to pro­

vide make-up seeds for individual misses. 

Zagotta et al. (57) have patented a fluidic grain planting control 

which alternately provides vacuum and positive pressure output. Seeds 

are attracted to radial pickup fingers by vacuum and discharged by 

positive pressure. 

Seed Conveyance 

Most planters use a tube to convey the seed from the metering 

unit to the seed furrow, and gravitational force causes the seed to 

drop through the tube. Other methods used in commercial planters 

include rotary valves and pneumatics. 

Several stud-ies have shown that the type and shape of tube can 

affect the accuracy in spacing of seeds in the seed furrow. Bainer 

(3) showed that smooth straight tubes increased spacing accuracy when 

compared to spiral ribbon tubes. Morton and Buchele (39) decreased 

spacing variations by shortening the seed tube. Akyurt and Taub (1) 

concluded that vertical cell type planters were more accurate in sowing 

precision than horizontal cell type planters because of the reduced 

height of fall. 

Autrey and Schroeder (2) have tested a trajectory seed tube which 
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permits the seed to drop in a parabolic arc. This was found to reduce 

dispersion of hill dropped seed. Wanjura and Hudspeth (55) found that 

a straight tube 19.5 mm (.75 in) in diameter and angled backward on a 

30 degree angle produced less lateral scatter and shorter skips than 

larger straight tubes when planting acid delinted cottonseed. 

Brandt and Fabian (9) discussed the operation of a rotary valve 

used in hill dropping seeds. Seeds accumulate until they are picked 

up by a pocket on the rotary valve and delivered to the seed ·furrow. 

This valve is vertical and was capable of ejecting seeds with zero 

velocity relative to the seed furrow. By giving seeds a velocity 

equal and opposite the direction .of travel, bo.uncing and scattering 

of seeds in the seed furrow was minimized. 

The pneumatic planter utilizes air to convey seeds through smooth 

plastic pipe from the metering drum to the seed furrow (27). Little 

information is available on the effect of pipe bends and configuration 

on the dispersion of seeds as they are delivered to the seed furrow or 

on possible seed damage during conveyance and impact with the soil. 

Kirk and McLeod (32) used a pneumatic apparatus to accelerate 

cottonseed for studying rupture from impact on a steel plate. The 

12.7 mm (.5 in) horizontal brass pipe used in the test resulted in a 

seed velocity which was 0.71 times the air velocity. Rupture was 

found to be 

. SR = 4.77 x l0~ 16 (V )4: 38 
s 

Tests were made at air velocities of 914.4 to 2438.4 meters per 

minute (3,000 to 8,000 fpm). 

( l ) 

Chand and Ghosh (14) have analytically described the dynami-cs of 

particles under pneumatic conveyance. They derived a general equation 
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for velocity of particles from physical properties of the system, and 

verified it through experiments. The following factors were considered: 

1. Gravity 

2. Friction between particles and wall 

3. Friction between particles 

4. Impact between particles and the wall 

5. Impact between particles 

6. Air velocity profile in tube 

7. Shape, size and density of p,articles 

Relationship between particle velocity and air velocity was shown to be 

linear for a straight horizontal pipe. 

In their experimental centt'ifugal planter, Khan and McColly (29) 

used the centrifugal force generated to eject seeds at high velocities. 

No field testing was reported, but it was suggested that the seed would 

be ejected at velocities high enough to embed it in the seed furrow and 

reduce scattering. 

Brown (12) designed and tested a seed delivery system providing 

zero seed velocity for·use with a ffinger-type planter. This design 

consisted of a paddle wheel which accepted seeds from a finger seed 

metering mechanism and delivered them to a rotor ejecting unit. A 

paddle wheel delivered seed to a rotor and maintained the accuracy of 

the metering unit. The rotor accelerated the seed to give it zero 

velocity relative to the seed furrow. This method improved uniformity 

of seed spacin~ as compared to a conventional finger-type planter 

operating at high speeds. 



Spacing Analysis Techniques 

Several techniques have been suggested and used to evaluate the 

regularity of spacings of seeds or seedlings. There is no agreement 

as to the best method, and all single indexes appear to have 

deficiencies. 

Brooks and Baker (11) have discussed several methods and present 

some indexes for describing spacing variability. A coefficient of 

variability was defined as the standard deviation of spacings divided 

by the mean spacing. The square of the coefficient of variability 

was defined as a normalized variance as follows: 

13 

(2) 

A coefficient of discrepancy was defined as follows: 

D = ~ _]_2 EEX. - (is + K)] 2 
NS 1.. p 

P . ·. . 
' ' 

(3) 

A dispersion.coefficient was defined as the standard deviation 

plus theaddition of one-third of the Chi-square criterion. The Chi­

square criterion was added to penalize the spacings for clusters of 

seeds, and the proper weighting factor was expected to be verified 

through'experience. 

Porterfield (44) has shown how the above indexes vary when theo­

retical spacings are different with sample length being constant. He 

derived a statistic termed relative variance which does not vary in 

range for a given sample length regardless of the change in theoretical 

spacings. Relative variance was defined as: 
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R = (i _ s2 observed) 100 
v 52 (4) 

max 

Expanded in terms of individual variables it becomes: 

L2 l: x2 RV = NS - NS 0 

L2 (Ns-1) 
( 100) 

(5) 

The relative variance varies between 0 and 100 with 0 being worst 

possible spacing and 100 being perfect spacing distribution. 

Rohrbach et al. (46) have developed a Monte Carlo Planter Model 

to evaluate field planting. This model incorporates independent 

random variables, one. of which is error in seed placement. A 

histogram of field plant spacings is constructed from which the 

standard deviation of the drop error is determined. Two methods were 

proposed for determining standard deviation of the drop error, with 

the suggestion that further study is needed on each. The sample sizes 

used in their study varied from 250 to 1000 observations, but size 

of sample required is a function of histogram shape. 

Logic Synthesis Techniques 

The ma.thematician George Boole, presented the first practical 

system of logic in algebraic form. His logic system has been developed 

into what is today called Boolean algebra, and permits 'logic problems 

to be solved in a manner similar to conventional algebra. Boolean 

algebra is a binary algebra and the two discrete values, 0 and 1, can 

represent off and on conditions of physical systems. The primary 

logic functions are AND (·), OR (+),and NOT (-). A summary of the 

postulates and theorems of Boolean algebra are given in Table 1. 



TABLE I 

SEVERAL BOOLEAN ALGEBRA POSTULATES AND THEOREMS 

T = o 
{X) = x 

1·1 = 1 

0· l = 0 

X·X = X 

1 + 1 = 1 

1 + x = 1 

x + x = 1 

NOT Function 

AND Function 

X·V~z = X·{V·Z) = {X·V)•Z 

OR Function 

x t x = x 

0 = 1 

(X) = x 

0·0 = 0 

1 ·0 = 0 

X·X = o 

0 + 0 = 0 

1 + 0 = 1 

0 + x = x 

X + V + Z = (X + V) + Z = X + {V + Z) 

x + xv = x 

x + xv = x + v 

xv + xv= x 

Combinations of Functions 

XVZ = X + V + Z 

XV + VZ + tXZ ~· XV + XZ 

X•(X + V) = X 

x • (X + v) = xv 

(X + V)·(X + Y) = X 

X + Y + Z = XVZ 

( x + v ) • ( v + z ) • (x + z ) , = ( x + v ) • (X + z ) 

xv + xz = ( x + z) • (x + v) 

(X + V)·(~ + Z) = (XZ +XV) 

15 



These and other theorems can be used to reduce the complexity of 

Boolean expressions for circuit design. 
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Other Boolean equation simplification methods include map and 

tabular methods (21, 22, 40). Karnaugh maps are diagrams on which the 

values of the various groups of the switching function may be easily 

displayed. The maps exhibit basic patterns which permit the simplest 

Boolean expression to be read directly. T~e Karnaugh map completely 

describes a Boolean equation, but practice is required to recognize the 

simplest expression which can be obtained. 

A tabular method can also be used to simplify Boolean Equations 

and is discussed by Fitch (21) and Foster and Parker (22). This method 

provides a means of obtaining minimum expressions by determining 

11 prime implicants 11 • A table using O's and l 1 s are used to combine 

terms by repeated use of the theorem XV+ XV= Xo 11 Prime implicants 11 

are the resulting irreducible terms. 

The concepts of Boolean algebra have been used by Fitch (21) and 

several co-workers to develop techniques to synthesize circuit equa­

tions in fluid logic problems. The classical synthesis technique 

developed is based on the Huffman-Moore model. This model permits 

information concerning the conditions of a system to be recorded and 

used in obtaining a circuit solution. The steps required in the 

classical synthesis technique are shown in the flow diagram of Figure 

2. 

The primitive flow table is constructed from a word statement of 

the problem and depicts the various states the network must satisfy 

for the specified inputs and outputs. The columns of the primitive 

flow table are formed by all possible combinations of the input 
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signals and the desired output signals. Stable states identify output 

signals corresponding to a given input signal of a sequence, and only 

one stable state is permitted per row of the primitive flow table. 

Stable states are circled for identification, and the possible transi­

tions from one stable state to another caused by changing input 

signals are indicated by uncircled numbers. Desired outputs are 

indicated for each stable state, so the primitive flow table describes 

operation of the circuit for given sequences of inputs. 

In constructing the primitive flow table, no effort is made to 

eliminate redundant statements or duplications. A reduced flow table 

is obtained by eliminating stable states which are equivalent. The 

requirements for establishing equivalency between two stable ·states 

are: 

l. They are in the same column 

2. They have the same output state 

3. The states in each column of both rows must be the same 

or equivalent. 

Table reduction and merging processes are done to minimize the number 

of rows in the final table so that the number of memory or secondary 

elements are minimized in the circuit. 

The merging process consists of combining rows of the reduced 

flow table, and more than one stable state can be assigned to each 

row. Output states are ignored in this process, and the general rules 

for merging two rows are: 

l. The state number in each column is the same in both rows, or 

2. A state number in one row coincides with an optional term or 

blank space in the same column, or 



3. Optional terms are contained in both rows within 

corresponding columns. 

Choices sometimes exist as to which rows should be merged, and Fitch 

(21) discusses methods for obtaining optimum merger for these 

cond it i ans. 
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An operational state table is constructed after a merged flow 

table is obtained and specifies the number of memory elements required 

for the circuit. The operational state table must exhibit an adjacency 

relationship between stable states and their associated unstable 

states. This requires that all sequences of operation described by the 

reduced flow table must be achieved by changing only one input or 

memory signal at a time. Transitions from changing inputs will be 

across rows, and those from changing memory signals will be down 

columns. If the merged table does not exhibit the adjacency relation­

ship, the methods given by Fitch (21) can be used to rearrange the 

rows and establish it. 

The Boolean equations describing signals needed to set and reset 

the memory elements can be obtained by preparing an excitation map, 

and equations for the outputs are obtained by preparing output maps. 

These maps are Karnaugh maps equivalent to the operational state table 

except that the map entries are the desired conditions of the memory 

elements or output signals. 

An excitation map is prepared by entering the desired condition 

of the memory element according to its stable state of the operations 

table. Unstable states in the operations table are assigned the con­

dition of the memories of the next desired stable state. The equations 

describing:the memory signals are obtained from the excitation map. 
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Output maps are constructed similar to excitation maps. The out­

put signal condition for each stable state is entered in the map in the 

same manner as the excitation maps, but unstable state conditions are 

decided by the following rules: 

1. Between two stable states having the same output condition, 

all unstable states involved in the transition must be 

assigned the same corresponding output state. 

2. The output state corresponding to an unstable state 

is optional when the output state is changed between 

two stable states. 

A circuit can be implemented when the memory and output equations 

are obtained. Elements are combined starting with the memory equations 

which are of the form: 

v = s + v (R) ( 6) 

This is interpreted as having an output Y when a signal, S, turns the 

memory on or sets the memory, or when Y is already on and there is not 

a reset signal, R. The set signal to be connected to a memory can be 

taken directly from the Boolean expression, but the reset signal is 

not directly usable from the Boolean expression. The theorem for 

obtaining a complement must be used to obtain the reset signal which 

is to be connected to the memory, i ~e. (R) = R. 

Other techniques have been developed in an attempt to reduce the 

complexity of the classical techniques (16, 38, 39). Maroney (37) 

has discussed the evolution of three Digital Control Network Synthesis 

techniques (DICONESYN I, II, AND III). These methods develop prepared­

path networks by total signal augmentation. The flow diagram in 

Figure 3, illustrates the process which must be followed using these 
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techniques which are less complex in some respects, but an understand­

ing of the classical technique helps insure their proper use. For 

this reason, only the classical technique has been described in detail. 

Pneumatic Sensing, Logic and Control Devices 

Fluidic Sensors 

Many unique fluidic sensing devices have recently been developed. 

They include not only detection of presence, position and dimensions 

of objects, but also such parameters as temperature, flow rate, 

acceleration, angular velocity, and direction. Some sensors require 

use with other logic elements for proper operation. 

Fluidic sensors are able to detect objects without touching them. 

These sensors operate on the following principles: 

1. Back pressure·· 

2. Converging cone 

3. Diverging cone 

4. Vortex 

5. Interruptible jet 

6. Accoustic beam 

Belsterling (7), and Bermel and Stasch (8) have discussed th~ charac­

teristics of each type. Back pressure and interruptible jet sensors 

have the desirable characteristics needed for sensing small objects 

at high speeds. 

The operation of a back pressure sensor is illustrated in Figure 

4. When no object is in the vicinity of the sensor, output pressure 

will be low, but when an object is close enough to restrict the flow 

of fluid from the exhaust orifice, the output pressure increases. 
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Rosenbaum and Cant (50) tested a back pressure sensor for a pneumatic 

tape reader and showed that it functioned satisfactorily even at 

frequencies of 300 HZ. Testing was done with 1.78 mm (0.07 in) 

diameter holes drilled on the periphery of a disc and spaced at .51 mm 

(.02 in) pitch. Back pressure sensors are commercially available, but 

it is simple to construct and is often built into the machine which 

uses it. 

Operation of an interruptible jet sensor is illustrated in Figure 

5. When no object is between the transmitting and receiving nozzles, 

an output signal will be generated at the receiver. An object passing 

between the transmi tte,r and receiver wi 11 interrupt the jet and no 

signal will be generated at the receiver. A variation of this is 

illustrated in Figure 6 and is sometimes termed an impacting jet 

sensor. A constant purge to prevent contamination is incorporated in 

the receiver, but the operation is the same as the interruptible jet 

sensor. The interruptible and impacting jet Sensors are available 

commercially and generally have a higher frequency response than 

back pressure sensors. 

Kim and Rohrbach (31) have shown that small objects being con­

veyed in a pipe can be sensed fluidically. The pressure drop as the 

particle passes a point can be predicted on the basis of Reynolds 

number and diameter ratio of the object and pipe. Standard fluidic 

devices ·can detect this pressure drop if the proper ratios of the 

three variables are selected. 

Fluidic Logic Elements 

Fluidic devices can be divided into the categories of analogue 
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and digital elements. Analogue devices modulate the output in propor­

tion to differences in control signals, whereas, digital devices 

switch the output signal when control signal reaches a given level. 

Digital devices give two discrete output signals (0 and 1) and are 

relatively immune from control signal variation. Digital devices 

were of primary interest in this research and are reviewed below. 

There are three primary types of digital devices - wall-attachment, 

turbulence amplifiers, and transverse impact modulators. Chang (13) 

and others (7, 22) have discussed the important characteristics of 

each type. The wall-attachment devices provide a variety of elements 

for different logic functions, but the other two are used as NOR 

gates which is a basic building block for other logic functions. Wall­

attachment devices can operate over a wider range of supply pressures 

than the other types and have fast frequency response. These charac­

teristics suggest that the wall-attachment devices are most suitable 

for the circuitry in this research. 

Wall-attachment devices utilize the Coanda effect in performing 

their logic functions. The Coanda effect is the phenomenon where a 

power jet issuing from a nozzle attaches to a wall in the vicinity of 

the nozzle. The attachment is caused by a low pressure region 

generated near the wall. If a control signal is injected into the 

low pressure region, the stream will detach from the wall. Switching 

time for digital wall-attachment devices is on the order of l milli­

second and frequency response of 200 HZ is easily obtained. These 

devices are capable of decision making, memory, signal shaping, and 

signal amplification. Logic networks can easily be constructed from 

this choice of components. 
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Decision making elements are monostable amplifiers which have a 

normal output state. They can be switched by a proper combination of 

control signals but return to the normal output state when this combin­

ation is not present. OR/NOR and AND/NANO elements are common 

decision making elements, and their operation is illustrated in Figures 

7 and 8. 

The OR/NOR element (Figure 7) normally has an output at the o2 

port, but when a control signal is present at control ports c1 or c2, 

the output switches to the o1 port. When the control signal is 

removed, the output returns to its normal o2 port. The AND/NANO 

element (Figure 8) operates in a similar manner except both control 

signals must be present simultaneously for switching to occur. The 

Boolean equations given in the illustrations describe the combination 

of control signals required for an output to occur at given ports. 

Memory elements are bistable devices with two stable output 

states. The output can rest in either state until a command to change 

states is received. This permits information to be stored for later 

use or remembered. The FLIP-FLOP is a basic fluidic memory element 

and is illustrated in Figure 9. When pressure is first applied to 

the supply port, the air flow may choose either output at random if 

no control signal is present. If output is at o1 as shown, a momentary 

control signal at c2 will cause the output to switch to o2. It will 

remain in this state until a signal is applied to the c1 control port 

which will cause the output to change back to o1. 

The Schmitt Trigger is an extremely pressure sensitive switch with 

an adjustable set-point, and possesses a narrow switching bandwidth. 

It can be used in~combination with back pressure sensors to provide a 



c, 

C2 

p p 

·~· 

c1 

C2 

02 o, 02 01 

o) O = C · C ,: 2 I 2 b) 01 = C1 + C2 

Figure 7. Schematic Drawing of OR-NOR 
Fluidic Element 
a) No control signals actuated 
b) Control signal at c1 and/or 

c2 

Ps 

02 01 

oJ02 =C1+c2 

Figure 8. Schematic Drawing of AND-NANO 
Fluidic Element 
a) One control signal absent 
b) Control signal at c1 and c2 

27 



28 

sensitive adjustable sensor. As illustrated in Figure 10, a constant 

pressure level (bias pressure) can be connected to control port c2 and 

the back pressure sensor connected to control port c1 . When pressure 

signal cl is greater than pressure signal c2' the output is at the 01 

port, and conversely, when pressure signal c2 is greater than pressure 

signal c1, the output is at the o2 port. The bias pressure can be 

adjusted to provide a switch which operates around the set-point with 

little regard as to whether the control signal is increasing or 

decreasing. 

The Digital Amplifier is a device used to increase the power out­

put of other digital components. As shown in Figure 11, either control 

signal c1 or c2 must be present at all times, but both should not be 

present simultaneously. A control signal at c1 provides an amplified 

output at o1, and a control signal at c2 provides amplified output at 

02. 

Moving Parts Elements 

Power circuits generally require flow and pressures higher than 

those generated in logic control networks (35). The conversion of low 

level outputs of the logic control network to useable level requires 

special interface valves. Interface valves contain moving parts and 

common valve types such as diaphragm, spool, and poppet valves are 

used. 

The diaphragm poppet valve is a common type of fluidic to pneu­

matic interface valve. Control pressures of several centimeters of 

water can actuate this valve, and since there is no sliding parts to 

cause fricitional wear, operating life expectancy is in excess of 100 
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million cycles. Frequency response of this type valve approaches 100 

HZ. 

30 

A diaphragm poppet valve is illustrated in Figure 12. A low 

pressure control signal closes the small bleed orifice and the result­

ing pressure increase in the intermediate chamber causes the poppet to 

switch in a snap action. Release of the control pressure opens the 

bleed orifice and allows the poppet to return to its original position. 
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CHAPTER III 

LOGIC CIRCUIT DESIGN AND TESTING 

Seed Metering Problem 

A general control network is illustrated in Figure 13. The logic 

network receives input signals as a result of the action of the power 

system, and correlates these signals to provide output signals for 

further action of the power circuit. The input signals are generated 

to identify initiation and completion of actions of the power circuit, 

and output signals actuate valves in the power system. 

The following functions were identified as the objectives of a 

digital logic circuit for seed metering: 

1. Sense presence or absence of a seed in a primary metering 

source. 

2. Eject a seed from a. primary source if seed is present in 

primary. 

3. Eject a seed from a secondary source if seed is absent 

from primary source. 

4. Meter seeds uniformly in proportion to forward travel. 

Performing these functions could increase the probability of 

planting a seed. If the probability of missing a seed in the primary 

source is p(P) and the probability of missing a seed in the secondary 

source is p(S), then the probability of both sources missing a seed 

simultaneously, p(PS), is: 
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(7) 

The probability of: planting a seed from either the primary or secondary 

is: 

p(P or S) = [l - p(PS)] (8) 

If both primary and secondary sources are assumed to miss seeds 10 per­

cent of the time, then by combining the two sources with logic 

c:ircuitry, the probability of planting a seed could be increased to 99 

percent ( 25). 

The pneumatic planting principles utilized in the International 

Harvester Cyclo planter (27) possesses several unique characteristics 

which make it compatible with the objectives of this study. The 

schematic drawing in Figure 14 shows how sensing and logic control 



might be used on the metering drum of the IH Cyclo planter. Deriva­

tion of the logic circuit here assumes use of the IH Cyclo planter as 

a means of presenting seeds for sensing. 

Input-Output Signals 

34 

Two input signals are required for the logic circuit to perform 

the functions described in the seed metering problem. One signal must 

be generated by an encoding device to control spacing in proportion to 

ground travel, and another must be generated to indicate presence or 

absence of seeds in the primary seed cells. 

Two output signals must be developed by the logic circuit to 

eject seeds; one for the primary and one for the secondary seed cells. 

The output signals are to be delayed so that the seed ejection point 

is outside the seed sensing area. This is to prevent a seed being. 

ejected from a primary seed cell, and then being sensed absent thus 

giving an output signal to eject a seed from the secondary cell also. 

The design of the spacing encoder can provide this delay as well as 

seed spacing in proportion to forward travel. 

For the circuit derivation, the spacing encoder was assumed to 

be divided into open and closed segments in proportion to the spacing 

of holes on the periphery of the seed drum. The beginning of the 

closed segment represents the start of the eject signal and the begin­

ning of the open segment stops the eject signal. Sensing presence or 

absence of seeds is assumed to occur in the open segment of the 

encoder. 

The relative position of the encoder, seed cells, sensors and 

seed ejectors is shown in Figure 15. From this figure, a determination 
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was made of the combination of signals produced from sensor A 

located on the encoder and sensor B located over the primary seed cell 

row of the drum. There are two possible sequences of signals generated 

by sensors A and B, one sequence when a seed is present in a primary 

seed cell and a different sequence if a seed is absent from a primary 

seed cell. Using the initial position of the seed drum and encoder 

relative to sensors A and B as shown in Figure 15 and the characteris­

tics of an interacting jet sensor, the following sequences of signals 

will be generated for sensors A and B: 

l. Seeds present in primary cells; 11, 01, 11, 01. ... 

2. Seeds missing from primary cells; 11, 10, 11, 01, 11, 10, 

11 ' 01 .... 

Derivation of Circuit Equations 

The Classical Logic Synthesis technique developed by Fitch (21) 

and summarized in Chapter II is used to derive the Boolean equations 

for a logic circuit to perform the functions of the seed metering 

problem. 

Primitive Flow Table 

The primitive flow table describing the two possible sequences of 

input signals for seed metering is shown in Table II. The flow table 

is developed by first considering the sequence when a seed is present 

in the primary seed cell. Stable state l is entered under the input 

column 11 representing the initial conditions of sensors A and B. As 

input signals change, new stable states must be identified. The 

second condition of input signals is 01 so a transition from stable 
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state l to stable state 2 is made by entering an unstable state 2 on 

the same row as stable state l and a stable state 2 on the next row, 

both under the 01 column. Since a seed was present in a primary cell, 

it is desired to eject the seed at this point. This is done by 

identifying z1 as the output signal to eject a seed from a primary 

seed cell and placing a l in the z1 column to indicate that the output 

is on for this combination of inputs in the sequence. A seed has now 

been sensed and ejected, and the next conditions of the sensors are 11 

so the transition can be back to the initial stable state and the 

sequence is complete. 

TABLE II 

PRIMITIVE FLOW TABLE 
FOR SEED METERING 

Sensor Signals AB Outputs 
00 01 11 10 zl z2 

2 -+-·0J +- 3 0 0 

~ t ! © .... 1 1 0 

4+-0 0 0 

~ 
5+-© 0 0 

t 
G)-,..1 ~ 0 1 
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From the initial stable state, consider the case where a seed is 

missing from a primary seed cell. The next conditions of the sensors 

are 10, and the transition is made by entering an unstable state 3 on 

the first row and a stable state 3 on the third row. From stable state 

3 the next conditions of the sensors are 11, but since a sequence has 

not been completed a new stable state 4 is entered under the 11 column 

on the fourth row. The next conditions of the sensors are 01 and it 

is desired to eject a seed from a secondary seed cell. This is done 

by making a transition to a stable state 5 and entering a 1 in the z2 

output column which represents the ejection signal for a seed from a 

secondary seed cell. The next conditions of the sensors are 11 so the 

transition is made back to the initial stable state, and a sequence 

for a seed missing in a primary seed cell has been completed. 

Since output.signals are desired only to eject seeds for the two 

conditions described, O's are entered in all other output positions to 

specify that the outputs are off for those conditions. The primitive 

flow table now specifies both sequences of input signals, and complete­

ly describes the logic required for the seed metering problem. 

Testing the stable states for equivalencies according to the 

requirements given in Chapter II, it is found that no redundancies 

exist and the primitive flow table cannot be reduced. 

Merged Flow Table 

The reduced flow table can be merged to obtain a t~ble with only 

three rows as shown in Table Ill. This is accomplished by merging 

rows 1 and 2, and rows 3 and 4. No other mergers are possible if the 

rules for merging outlined in Chapter II are followed. The 



significance of the merged table is seen in the development of the 

Operations State Table which determines the number of memory elements 

for the circuit. 

Operational State Table 

TABLE II I 

MERGED FlOW·TABLE FOR 
SEED METERING 

Sensor Signals AB 
00 01 11 10 

0 CD 3 

s©G) 
G) l 
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The operational state table must exhibit an adjacency relationship 

between stable states and their associated unstable states. This 

requires changes from one row to another row to exhibit only one change 

in a memory element at a time. In Table IV the operations state table 

for seed metering shows how the adjacency relationship is satisfied by 

assigning memory elements so that only one memory signal is changed at 

a time. It should be noticed that an unstable state l was added in 

the fourth row of the table which did not exist in the merged table. 



This was necessary to achieve the transition from row three back to 

row one and change only one memory signal at a time. 

Memory 

yl 

00 

01 

11 

10 

TABLE IV 

OPERATIONS STATE TABLE 
FOR SEED METERING 

Elements Sensor Signals 

y2 00 01 11 

AB 
10 

0 0 3 ) 

(~ 
©0 
1) 
1 

Excitation and Output Maps 

Excitation maps may be developed for individual memory elements 

or combined in a single map. The method of presentation here uses 

individual maps which are more easily interpreted. The conditions of 

the memory elements in the operations table for the different stable 

states are shown in Table V. The excitation map for the memory 

elements is developed by repeating the operations table except the 

condition of the memory for the respective stable state is entered 
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instead of entering the state number. All unstable states receive 

the condition of their respective stable state as shown in Table VI. 

States which are of no significance to the problem are indicated by 

{-) and represent 11 don 1 t care 11 conditions which can be interpreted as 

either a 0 or 1. 

The desired output conditions for the respective stable states 

are shown in Table VII. These conditions are entered in a table in a 

manner similar to the excitation maps. The condition entered for 

unstable states must be determined according to the rules given in 

Chapter II. The output maps for z1 and z2 are shown in Table VIII. 
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Boolean equations which completely describe the logic which the 

circuit is to perform are obtained from the excitation and output maps. 

These equations are shown below each map in Tables VI and VIII. 

TABLE V 

CONDITIONS OF MEMORY ELEMENTS 

Stable State Memory Element 

yl y2 

1 0 0 

·2 0 0 

3 0 1 

4 0 1 

5 l 1 



Memory 
Elements 

v, y2 

00 

01 

11 

10 

yl 

Memory Y 1 

TABLE VI 

EXCITATION MAPS FOR 
SEED METERING-

Memory 

Memory Y 2 

Sensor Signals AB Elements Sensor Signals AB 
00 01 11 10 Y1 Y2 00 01 

0 

1 

l 

= v a 2 

Stable State 

1 

2 

3 

4 

5 

0 0 00 

0 0 01 

0 11 

0 10 

TABLE VII 

CONDITIONS OF OUTPUTS 

0 

l 

Y2 =b+Y2 

Output Signal 
z1 z2 

0 

1 

0 

0 

0 

0 

0 

0 

0 

1 

11 10 

0 1 

l 

0 

0 

cv1 + a) 

42 



Memory 
Elements 

yl y2 

00 

01 

11 

10 

Output z1 

TABLE VIII 

OUTPUT MAPS FOR 
SEED METERING 

Sensor Signals AB .·. 
Memory 
Elements 

00 01 

l 

0 

0 

11 

0 

0 

0 

0 

10 

0 

0 

yl y2 

00 

01 

11 

10 

Circuit Implementation 

Output z2 

Sensor Signals AB 
00 01 11 10 

0 

1 

0 

0 

0 

0 

0 

0 

The logic circuit is implemented by starting with the memory 

elements. Each memory element requires two signals - a set signal 
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and a reset signal. These two signals can be obtained from the Boolean 

equations for the circuit, but modification is needed to obtain the 

actual signals connected. 

The set signal to be connected can be obtained directly from the 

equations, but to obtain the reset signal, the complementing theorem 

must be used as explained in Chapter II. The modified Boolean expres­

sions required for connecting the circuit are shown in Table IX. 

Elements can be combined to generate the set and reset signals for the 

memory elements and the logic output signals required in the seed 

metering problem. 
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TABLE IX 

CIRCUIT DESIGN EQUATIONS 

Memory Elements 
Set Reset Outputs 

yl aY2 a + v2 z1 = av 2 

y2 b aY l z2 = aY1 

A circuit to implement the logic for the seed metering problem is 

shown in Figure 16. All elements used in this logic circuit are 

fluidic wall attachemnt digital deviceso The elements are all active 

elements because each individual element receives constant air supply 

from a common source and outputs from the individual elements are used 

only as control signals. Signals from sensors are amplified by using 

OR-NOR elements, and these amplified signals are used in the rest of 

the circuit. 

Different types of logic elements are used in this network, but it 

is possible to use only one type of element such as th.I;! OR-NOR element 

to perform all the logic functions. OR-NOR elements are used in this 

circuit to generate the AND logic function as well as OR function. 

FLIP-FLOP elements are used as memory elements, and one AND element is 

used for an AND logic function. Actual elements connected according to 

the diagram are shown in Figures 17 and 180, A manifold supplies the 
i 

same air pressure to all elements used in the circuit. 
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Figure 17 . Fluidic Elements Connected 
in Manifold Forming Logic 
Circuit for Seed Metering 

Fi gure 18. Tubing Connections of 
Individual Elements 
in Manifold 
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Circuit Testing 

To test the circuitry for serisfog and frequency response capabi 1 i-
, 

ties, a disc with 3.18 mm (1/8 in) diameter holes spaced 12.7 mm 

(1/2 in) on the circumference was used to simulate seed cells. Strain 

gage pressure transducers and associated signal conditioning enabled 

output signals to be traced on an oscilloscope and photographed. The 

output signals for three different oscilloscope sweep rates are shown 

in Figure 19. The compensating feature of the circuit was tested by 

closing nine successive holes and then leaving nine successive holes 

open. This simulated nine seeds, present fo the primary seed cells and 

then nine seeds absent in the pr1mary eel ls., 

This simulated testing revealed that the circuit was reliable up 

to a frequency response of appro;Jdmately WO Hertio Delay times in 

signal transmission caused malfunctiontng of the circuit before the 

objective of 135 Hertz was reached. This along with the fact that 

interface valves cannot respond this fast revealed that more than one 

circuit would be required. The testhig verffied that the network 

functioned satisfactorily at frequencies above 68 Hertz which would be 

the maximum if dual c1rcu1ts were used 1n metering seeds. 



Time Scale 

Z1 
0.1 sec/cm 

0.05 sec/cm 

0.02 sec/cm 

a) Simulating approximately 70 seeds per second 

Z1 
0.1 sec/cm 

z2 

zl 
0.05 sec/cm 

z2 

zl 
0.02 sec/cm 

z2 

b) Simulating approximately 88 seeds per second 

Figure 19. Output Signals from Seed Metering Logic Circuitry 
Simulating Nine Seeds Present in Primary Cells 
and Then Nine Absent from Primary Cells 
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CHAPTER IV 

EXPERIMENTAL APPARATUS AND PROCEDURES 

Planting Equipment 

An International Harvester 400 Cyclo planter was used in this 

research. The metering unit was equipped with a field improvement kit 

for leveling seeds within the drum. All furrow openers, wheels, and 

other miscellaneous equipment were removed and the seed metering unit 

mounted on a stand for use in the laboratory. 

The planter blower was powered at the manufacturers recommended 

speed by an electric motor. An electric motor with a variable speed 

transmission was used to drive the seed drum and obtain different 

seeding rates. A micrometer dial on the variable speed transmission 

permitted drum RPM settings for different seeding rates to be identi­

fied and repeated. 

The maximum drum RPM recommended by the manufacturer for the meter­

ing unit was 30 RPM. A 144 hole seed drum was desirable at this speed 

in order to accomplish the maximum seeding rate stated in the objective 

of this research. A 144 hole cottonseed drum was not available, but a 

144 hole sorghum seed drum was made available by the manufacturer. 

This drum was equipped with a special clear end which permitted obser­

vations of seed cells inside the drum. In addition to the 144 hole 

sorghum drum, a 96 hole cottonseed drum was used in this research. 

The seed drums contained six rows of seed cells, but only the 

An 
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center four rows were used for metering. The other two rows were taped 

closed and used for attaching coding markers used with logic circuitry. 

Rows were identified by numbering the rows starting with the row 

nearest the end with the gasket air seal. 

Metering Tests 

Description of Treatments 

Primary purpose of metering tests was to determine the capabili­

ties of the metering unit modified with logic circuitry. Metering 

tests were made before modification to establish a predicted metering 

percent for the modified unit. 

Metering tests were conducted in several separate series of tests. 

The treatments for each series of tests are described in Table X. Six 

replications were made for each treatment in each series. Samples 

were taken so that metering percent could be analyzed with a split plot 

statistical design with the partition of degrees of freedom shown in 

Table XI. This design enabled metering percent for each row to be 

determined very accurately and also gave information on the effect of 

drum speed and any interaction effect. 

B-Redlan Sorghum seed was used for tests with the 144 hole sorghum 

drum, and three sizes of Lankart 57 acid delinted cottonseed were used 

with the 96 hole cottonseed drum. The sorghum seed was cleaned in a 

seed sizer which contained round hole screens and a blower for removing 

light trash. The sorghum seed used in metering tests passed through a 

5.56 mm (14/64 in) screen but was caught over a 3.57 mm (9/64 in) 

screen. Cottonseed used in the tests was separated into three size 

groups as follows: 



No. of 
Cells in 

Test Seed 
Series Drum 

PS3 144 
PS4 144 
PSS 144 
PS6 144 
PCl 96 

PC2 96 

PC3 96 

PC4 96 

PCS 96 

PC6 96 

TABLE X 

DESCRIPTION OF METERING TESTS 

Seed 

B-Redlan Sorghum 
B-Redlan Sorghum 
B-Redlan Sorghum 
B-Redlan Sorghum 
Lankart 57 acid delinted cottonseed; 
Through 5.95 mm (15/;64 in), 
Over 5.56 mm (14/64 in) screen 
Lankart 57 acid delinted cottonseed; 
Over 5.95 mm (15/64 in) screen 
Lankart 57 acid delinted cottonseed; 
Ungraded 
Lankart 57 acid delinted cottonseed; 
Through 5.95 mm (15/64 in), 
Over 5.56 mm (14/64 in) screen 
Lankart 57 acid delinted cottonseed; 
Over 5.95 nun (15/64 in) screen 
Lankart 57 acid delinted cottonseed; 
Ungraded 

Metering Method 

Unmodified 
Modified with Logic Circuitry 
Modified with Logic Circuitry 
Modified with Logic Circuitry 
Unmodified 

Unmodified 

Unmodified 

Modified with Logic Circuitry 

Modified with Logic Circuitry 

Modified with Logic Circuitry 

01 



l. Ungraded 

2. Through 5.95 mm (15/64 in), over 5.56 mm (14/64 in) screen 

3. Over 5.95 mm (15/64 in) screen 

TABLE XI 

STATISTICAL DESIGN 

Source Degrees Freedom 

Replication 

Drum Speed 

Error (A) 

Row 

Row X Drum Speed 

Error (b) 

( b-1 ) 

( s-1) 

( b-1) ( s-1 ) 

( r-1) 

(r-1) (s-1) 

s ( b-1) ( r-1 ) 

where: b = Number of replications 
s = Number of ·RPM settings 
r = Number of rows of drum 

Three drum speeds were selected for testing and the theoretical 

seeding rates for each are shown in Table XII. The highest seeding 

rate per row for the 144 hole drum was selected to be one-half the 

maximum seeding rate stated in the objectives of this research. The 

forward speeds for 25 mm (0.984 in) seed spacings are also shown in 
I 

Table XII. The seeding rate per row and speeds for the unit modified 

with logic circuitry would be doubled, but the number of seed rows 
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TABLE XII 

DESCRIPTION OF SEEDING RATES FOR METERING TESTS* 

RPM Code Seed Drum RPM 144 Hole Seed Drum 96 Hole Seed Drum 
Theoretical Forward Speed Theoretical Seed Forward Speed 
Seeding Rates For 25 mm Seeding Rates For 25 nm 
(Seeds/Sec/Row) Spactngs (SeectsfSec/Row) · Spacings 

KM/HR Ml/HR .. KM/HR ... Ml/HR 

1 14 .17 34 3.06 1.90 22.7 2.04 1.27 

2 21 .25 51 4.59 2.85 34.0 3.06 1.90 

3 28.33 68 6. 12 3.80 45.3 4.08 2.53 

* Seeding rates and speeds are doubled when modified with logic circuitry. 

01 
w 
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would be reduced from 4 to 1. 

~ampl i ng Procedures 

The sampling unit shown in Figure 20 was constructed to sample 

f rom the ends of the seed conveyance tubing while the seed metering 

un i t i s i n a steady-state operating condition. A slide arrangement in 

the sampli ng unit allowed seeds to be sent in one of two paths. These 

paths were formed from plastic netting that permitted air to escape 

f reely as well as absorb some of· the · energy in stopping· the high velo­

ci ty seeds . One path was the sampling path and : led to plastic bags. 

The other path captured seeds when sampling· was disengaged. 

Figure 20 . Semi-automatic Sampling Unit Used in Seed 
Metering Tests 
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The slide mechanism was operated by a double acting air cylinder. 

Fluidic sensors, logic elements, and interface valves allowed the 

cylinder to be actuated by a marker on the seed drum. The semi­

automatic sampling circuit is shown in Figure 21. A manual over-ride 

of the circuit enabled manual counting of drum revolutions, but the 

marker on the drum controlled actuation when manual over-ride was 

released. 

The dial setting of the seed drum drive unit was set for each test 

while the motor of the unit was off, and eac~ setting was always made 

by approaching the setting from the same directfon. A steady-state 

operating condition for each dial setting was obtained before sampling 

in a 11 tests. 

Drum revolutions and beginning and ending of sampling was recorded 

on an oscillograph recordero A snap action switch mounted on the slide 

mechanism enabled beginning and ending of sampling to be recorded as an 

event. The drum revolution marker was recorded by using a pressure 

transducer to record the output of the flu1d1c sensor. These two 

tracers were used to determine speed of the drum. In some tests, the 

fluidic sensor indicating missed seeds on one row was monitored and 

also recorded on the osc11lograph. 

Logic Circuit for Metering_ 

Severa'] modifications were required to adapt the seed metering 

unit to use logic C'lrcuitry. The rubber rollers normally used in eject­

ing (Figure 22) seeds were replaced by pneumatic ejectors. These 

ejectors were mounted on a bracket which permitted adjustment of eject­

ing position in relation to sensors as shown in Figure 23. 



Sensor For 
Seed Drum 
Revolutions 

Manual Over- Riding Controls 

) 

Release To 
End 

Sampling 
)( 

Figure 2l. Schemati.c Diagram of Circuit for Semi­
automatic Sampling 
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Figure 22 . Rubber Roller Ejectors Wh i ch are Normally 
Used on Seed Meteri ng Un i t 

Fi gu re 23 . Pneumatic Ejectors and Sensors Used in Log i c 
Control l ed Seed Met eri ng 

57 
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The two extra rows of the seed drum were used for attaching coding 

markers for fluidic sensing. One row was used to form the spacing 

encoder. Twenty-five percent of the holes of the primary rows were 

randomly taped closed (Table XIII) to assure ejection of at least 25 

percent of the seeds from the secondary circuit . The other extra row 

was used for markers to indicate where holes were taped closed in the 

primary row . These markers are shown on the 96 hole drum in Figure 24. 

Figure 24 . Coding Markers Mounted on 96 Hole Cottonseed 
Drum 

The logic circuitry including the sensor for sensing markers 

indicating taped holes is shown in Figure 25 . Only one circu i t is shown 

but two independent circuits were used . The sensing and ejection for 

the two circuits positioned one-half the distance between two cell holes 



TABLE XIII 

TAPED SEED CELLS IN DRUMS 

144 Hole Drum 

l* 
10 
14 
'17 
19 
22 
23 
27 
30 
33 
37 
39 
45 
46 
51 
61 
69 
77 
81 
87 
88 
89 
90 
93 
97 

104 
107 
108 
117 
119 
132 
133 
136 
137 
139 
141 

* Clockwise from drum seam 

96 Ho~e Drum 

l* 
4 
8 

10 
14 
18 
21 
25 
30 
34 
42 
43 
44 
56 
57 
60 
62 
63 
66 
70 
79 
82 
91 
95 
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with respect to each other, and seeds were ejected from the two circuits 

alternately. 

This circuit differs in several respects to the one used in 

simulated testing and shown in Figure 16. Seed sensing was accomplished 

by using a Schmitt Trigger element instead of an interruptable jet sen­

sor. Irregular shaped seeds do not provide a perfect seal in the holes 

of the seed drum and air leaks around the seeds through the holes at a 

reduced rate. The adjustable bias pressure of the Schmitt Trigger 

permits a switching point to be selected which can distinguish between 

the reduced flow when a seed is present and that when a seed is absent 

from a cell. 

The z2 output signal was changed from a~ to aY2. Both of these 

are correct signals, but the aY2signal turns on slightly before the 

av1 signal as can be seen in the Karnaugh maps of Table VIII. This 

increased the length of the input signal to the interface valves and 

assisted high frequency operation. The input signal to the z2 inter­

face valve was amplified by a digital amplifier which also assisted in 

high frequency operation. 

Seed Conveyance Tests 

Description of Treatments 

The effect of the pneumatic conveyance system on seed distribution 

was studied on row number four of the planter. Three conveyance con-

figurations were the primary treatments. For each primary treatment, 

other treatments were two ejection methods, two air conveyance veloci-

ties, and three seeding rates. 

The primary treatments were identified as follows: 
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Configuration l; Manifold plus 20.93 mm {.824 in) inside diameter 

plastic tubing with one 90° bend. 
' 

Configuration 2; Manifold plus 20.93 mm (.824 in) inside diameter 

plastic tubing with two 90° bends. 

Configuration 3; Planter manifold only, 19.55 mm {.75 in) inside 

diameter. 

Pertinent dimensions of the configurations are shown in Figure 26. 

One size of Lankart 57 acid delinted cottonseed was used in all 

conveyance tests. The seed passed through a 5.95 11111 (15/64 in) screen 

but was retained by a 5.56 mm (14/64 in) screen. 

One ejection method was the standard rubber rollers used on the 

commercial Cyclo planter. The other ejection method was pneumatic 

ejection using interface valves controlled by fluidic sensing of coding 

markers. These two ejection units are shown 'in place over the seed 

drum in Figures 22 and 27. 

High and low air velocities were used for each combination of con­

figuration and ejection method. High and low air velocities were 

obtained by varying the intake opening of the blower. Maximum and 

minimum intake opening positions were used to obtain different air 

velocities. 

Sampling Procedures 

An International Harvester electronic seed monitoring unit was 

u'sed to sense seed distribution and seed velocity at its exit of the 

conveyance tubing. The sensors were made as a unit to mount directly 

to the tubing and operate on the photocell principle. A voltage signal 

was generated by each seed as it passed through the sensor. The voltage 
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Figure 26. Schematic Diagrams of Conveyance Configurations Tested 
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Figure 27 . Pneumatic Ejectors Used wi th Log ic Controll ed 
Seed Metering 
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signal was used as the input to an oscilloscope, and the oscilloscope 

traces were photographed to provide a perma.nent record. A single sensor 

was used in tests for seed distribution, and two sensors mounted 30 cm 

(.984 in) apart were used for seed velocity measurement. 

In seed distr·ibution tests five samples were taken for each com­

bination of treatments and these were replicated four times, Two 

replications were made at one osci 11 oscope sweep rate and two at a 

different rate" The rates were a comprom·i se between the number of 

seeds desired per sample and the interval between individual seeds. 

Air velocity profiles were determined for the different treatments 

at the exit point of the tube using a 1.59 mm (l/16 in) static pitot 

tube. Profiles were made in vertical and horizontal planes by taking 

eight measurements in four equal concentric areas and the center. 

Seed Spacing Tests 

Equipment 

A manifold was constructed to merge the seeds from the dual logic 

circuits on the seed drum into a sfog'le row. Seed spacings for the 

single merged row were observed by two methods,. Distribution of seeds 

exiting the manifold were obtained by photographs of electronic seed 

sensor signals, and seeds placed on a conveyor beH were photographed. 

The velocity of seeds exiting the manifold was slowed and matched 

to the velocity of the conveyor bel L A wheel covered with rubber 

weather stripping received seeds from the conveyance tube and placed 

them on the belt as shown in Figure 28. A section of tubing constructed 

of screen wire allowed air to escape between the manifold exit and the 

conveyor belt unit. The conveyor belt wc;,s driven by a variable speed 



a) Conveyor unit 

b) Seed receivi ng and del i very wheel used i n tests 

Fi gure 28 . Belt Conveyor Used fo r Seed Spac i ng Tests 
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motor so that ground speed could be simulated" 

Description of Treatments 

The treatments used in observations with the electronic sensor were 

three seeding rates and two air ve 1 oci ty 1eve1 s. Air velocity was con­

tro 11 ed by blower intake opening as in previous tests. Four replica­

tions of each combination of treatments were made. 

For photographing seeds on the conveyor belt, three seeding rates 

were used, but only the high air velocity was used. Speed of the 

conveyor belt was matched to the seeding rate so that a theoretical 

spacing on the belt was 25 mm (Oa984 in) for all seeding rates. 

Sized Lankart 57 acid delinted cottonseed was used for all treat­

ments. The seed passed through a 5.95 mm {15/64 in) screen but was 

re.tained by a 5.56 mm (14/64 'in) screena 

Sampling Procedures 

For distribution using the electronic sensor, five samples were 

taken for each combination of treatments and these were replicated four 

times. Oscilloscope photographs were obtained as described in previous 

tests. 

To photograph seeds on the conveyor belt, an electronic strobe 

light was used to stop the motion of the belt" The camera shutter was 

opened in a darkened room and a single flash of approximately three 

microsecond duration exposed the film and effectively stopped seed 

motion. 

Air velocity profiles at the manifold exH were obtained as 

described in previous tests. 



CHAPTER V 

PRESENTATION AND DISCUSSION OF RESULTS 

Seed Metering 

Measurements obtained for seed metering tests included the follow-

ing on all tests: 

1. Seed drum revolutions during sampling 

2. Sampling time 

3. Seed count for each row 

4. Seed weight for each row 

In tests that did not include logic circuitry metering, sensors were 

placed over one row to record the number of cells with no seeds. 

Original data for each series of tests are presented in Appendix B. 

Metering percent, seed drum RPM, and number of seeds per gram were 

calculated for each sample and an analysis of variance made on each. 

The Statistical Analysis System, (SAS), (50), computer program was used 

for the analysis of variance using the replicated split plot design 

described in Chapter IV. 

Metering percent for each row was of primary interest, and it was 

calculated from the original data as follows: 

Means and least significant differences (LSD) were obtained from the 

analysis of variance and are presented. in Tables XIV through XVII. 
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DrllD 
RPM 
Code 

l 

2 

2.5 

3 

Row Means 

TABLE XIV 

METERING PERCENT MEANS - SORGHUM SEEP 
144 HOLE QRUM 

PS3 Series (6 Replications) Predicted Value for 
Logic Circuit Metering 

Row of Seed Drum RPM Fluidic Circuit RPM 
Code Code 

l 2* 3* 4 Means l 2 · Means 

99.2 74.5 73.5 98.5 86.4 99.8 99.6 99.7 .. 

98.8 74.0 74.0 98.3 86.3 99.7 99.6 99.7 

---- ---- ---- ---- -·--- ---- ---- ----
98.7 73.8 74.0 98.4 86.2 99.7 99.6 99.7 

98.9 74. l 73.8 98.4 86.3 99.7 99.6 99.7 

LSD (.05 Significance Level) 
Row Means: 0.456 
RPM Code x Row Means: 0.456 
RPM Code Means: 0.430 

*25% of holes taped closed in Rows 2 and 3 

PS6 Series (6 Replications) 

Fluidic Circuit RPM 
Code 

l 2 Means 

98.5 97.5 98.0 

99.3 98.7 99.0 

96.8 94.2 95.5 

69.7 73.7 71. 7 

91. l 91.0 91.0 

LSD (.05 Significance Level) 
Circuit Means: 0.789 
RPM Code x Circuit Means: 0.789 
RPM Code: 3.193 

O'I 
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Drum 
RPM 
Code 

1 

2 

3 

Row Means 

I 

TAB.LE XV 

METERING PERCENT MEANS - ACID DELINTED COTTONSEED** 
96 HOLE DRUM 

PCl Series (6 Replications) Predicted Values for PC4 Series (6 Replications) 
Logic Circuit Metering 

Row of Seed Drum RPM Fluidic Circuit RPM Fluidic Circuit RPM 
Code Code Code 

1 2* 3* 4 Means 1 2 Means 1 2 Means 

104.0 75.3 74.2 102.3 89.0 101.3 100.6 101. 0 102.8 101.2 102.0 

103. 7 75.5 75.7 102.2 89.3 101.4 101.3 101.4 102.5 102.3 102.4 

103.3 75.7 75.8 102.2 89.3 101. 5 101.4 101. 5 101. 3 100.3 100.8 

103. 7 75.5 75.2 102.2 89.2 101.4 101. 1 101. 3 102.2 101. 3 101.8 

LSD (.05 Significance Level) LSD (.05 Significance Level) 
Row Means: 0.630 Circuit Means: 0.780 
RPM Code x Row Means: 0.630 RPM Code x Circuit Means: 0.982 
RPM Code Means: 0.562 RPM Code Means: 0.822 

*25% of holes taped closed in Rows 2 and 3 
**Through 5.95 l1lll (15/64 in), Over 5.56 mm (14/64 in) screen 

....... 
0 



Drum 
RPM 
Code 

1 

2 

3 

Row Means 

TABLE XVI 

METERING .PERCENT MEANS - ACID DELINTED COTTONSEED** 
. 96 HOLE DRUM 

PC2 Series (6 Replications) 

Row of Seed Drum 

1 2* 3* 4 

104.5 75.7 75.3 104.3 

103.0 76.5 75.8 103 .3 

103.3 75.7 76.0 102. 7 

103.6 75.9 75.7 103.4 

LSD (.05 Significance Level) 
Row Means: 0.508 
RPM Codex Row Means: 0.508 
RPM Code Means: 0.742 

*25% of holes in rows 2 and 3 taped 
**Over 5.95 11111 (15/65 in) screen 

Predicted Values for 
Logic Circuit Metering 

RPM Fluidic Circuit RPM 
Code Code 
Means 1 2 Means 

90.0 101 .8 101.4 101. 6 

89.7 102.3 101. 6 102.0 

89.4 J 01. 5 101. 7 101. 6 

89.7 101 .8 101. 6 101. 7 

PCS Series (6 Replications) 

Fluidic Circuit RPM 
Code 

1 2 Means 

102.7 102.0 102.3 

102. 7 102. 5 102.6 

100.3 99.2 99.8 

101. 9 101. 2 l 01. 6 

LSD (.05 Significance Level) 
Circuit Means: 0.745 
RPM Code x Circuit Means: 0.745 
RPM Code Means:. , 0.794 

"1 . __, 



Drum 
RPM 
Code 

1 

2 

3 

Row Means 

TABLE XVII 

METERING PERCE~T MEANS - ACID DELINTED COTTONSEED** 
96 HOLE DRUM 

PC3 Series (6 Replications) 

Row of Seed Drum 

1 2* 3* 4 

106.2 76.8 75.0 104.2 

105.5 76.5 76.2 103 .o 

104.0 76.0 76.0 102. 7 

105.2 76.4 75.7 103.3 

LSD (.05 Significance Level) 
Row Means: 0.644 
RPM Code x Row Means: 0.644 
RPM Code Means: . 0.509 

*25% of holes in rows 2 and 3 taped 
**Ungraded 

-

RPM 
Code 
Means 

90.5 

90.3 

89.7 

90.2 

Predicted Values for PC6 Series (6 Replications) 
Logic Circuit Metering 

Fluidic Circuit RPM Fluidic Circuit RPM 
Code Code 

1 2 Means 1 2 Means 

103.4 101. l 102.2 103.2 102.3 102.8 

102. 9 102.0 102.4 102.8 102.8 102. 8 

102. 0 101. 7 101. 8 101. 0 101.0 101.0 

102.7 101. 5 102 .1 102.3 102. 1 102.2 

LSD (.05 Significance Level) 
Circuit Means: 0.743 
RPM Codex Circuit Means: 0.743 
RPM Code Means: 0.892 

'-I 
N 
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The analysis of variance for drum RPM showed that at the 95 percent 

significance level, no differences in RPM were measured between repli­

cations in all te~ts. Means of the seed drum RPM, LSD'.s, and theoreti­

cal seeding rate per row, are given in Table XVIII for the different 

series of tests. 

The number of seeds per gram was used only as a check on actual 

seed count. Significant differences were measured due to row and RPM 

effect, but variances were small and the overall mean provided a way to 

check seed count. If a large discrepancy existed between the actual 

seed count and the calculated count, the sample was recounted. The 

overall means of seeds per gram for the different series of tests are 

also recorded in Table XVIII. 

Means of metering percent for tests before adding logic circuit 

modifications were used to predict metering percent for the unit modi­

fied by adding logic circuitry. The two center rows were used as the 

primary rows, and since 25 percent of these holes were taped closed, 

the maximum metering percent for them could be only 75 percent assuming 

one seed per cell. 

An indication of the ability of the metering unit to meter one 

seed per cell is obtained from the rows where missing seeds were 

sensed. The number of seeds sensed as missing plus the number of 

seeds metered in the sample should be equal to 100 percent for one seed 

per cell. If more than one seed per cell is being metered, this value 

will be greater than 100 percent. The means of metering percent 

including misses are shown in Table XIX for the rows measured. 

Sorghum seed appears to be metered very accurately at one seed per 

cell, whereas slightly more than one cottonseed is metered per cell. 



Test RPM 
Series Code 

PS3 l 
2 
3 

PS6 
l 
2 
2.5 
3 

PCl 
l 
2 
3 

PC2 
l 
2 
3 

PC3 
l 
2 
3 

PC4 
l 
2 
3 

PC5 
l 
2 
3 

PC6 
l 
2 
3 

TABLE XVIII 

MEANS FOR MEASURED SEED DRUM RPM 
AND NUMBER OF SEEDS PER GRAM OF 

SEED USED IN METERING TESTS 

Measured LSD Is RPM Theoretical 
RPM Means (.05 Seeding Rate 

Significance Seeds/Sec/Row 
Level 

14. 13* 0.056 33.9 
21.30 51. l 
28.28 67.9 

0.081 
14. 18 34.0 
21.37 51.3 
24.88 59.7 
28.33 68.0 

0.056 
14. 17 22.7 
21.32 34. l 
28.25 45.2 

0.030 
14.20 22.7 
21.38 34.2 
28.30 45.3 

0.030 
14.20 22.7 
21.38 34.2 
28.30 45.3 

0.087 
14.30 22.9 
21.40 34.2 
28.32 45.3 

0.070 
14.30 22.9 ;, 

21.38 34.2 
28.37 45.4 

0.038 
14.30 22.9 
21.40 34.2 
28.43 45.5 

*Means of 6 replications 
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Mean 
Number 
of Seeds 
Per Gram 

34.09 

34.38 

8.41 

7.63 

8.42 

8.39 

7.70 

8.50 



Test 
Series 

PS3 

PCl 

PC2 

PC3 

TABLE XIX 

METERING PERCENT MEANS* 

Row RPM 
Measured Setting 

3 
l 
2 
3 

4 
l 
2 
3 

4 
l 
2 
3 

4 
l 
2 
3 

*Adjusted for Misses 

75 

Metering 
Percent 

l 00.3 
l 00. 9 
100.9 

l 02 .3 
l 02 .2 
l 02 .3 

l 04. 3 
l 03. 5 
l 03. 0 

l 04. 5 
l 03. 2 
l 02 .8 
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Very few misses occur with either seed, but approximately three percent 

of the time more than one cottonseed is metered per cell. The shape of 

the respective seeds probably account for their differences. Sorghum 

has a more spherical and uniform shape allowing only one seed in a cell, 

whereas the shape of cottonseed apparently allows two seeds to be 

caught in a cell occasionally. 

Since more than one seed was sometimes being metered, the theory 

given by· equations 1· and 2 of Chapter III were used to derive equations 

to calculate predicted metering percentages for the four possible 

casesi The cases and the equations for calculating metering percent 

for each are given below: 

Case I: Metering percents of primary and secondary are less 

than the maximum for one seed per cell. 

MP = [l .0 - p(P) • p(S)]lOO (10) 

Case II: Metering percents of primary and secondary are 

greater than the maximum for one seed per cell. 

MP= [1.0 + p(ES) • (0.25) + p(EP)]· 100 (11) 

Case III: Metering percents for the primary is greater but 

that for the secondary is less than the maximum 

for one seed per cell. 

MP= [l.O + p{EP) + p{S) • (0.25)] • 100 

Case IV: Metering percent for the primary is less but 

that for the secondary is greater than the maximum 

for one seed per cell. 

( 12) 

MP = [ 1. 0 + p (ES) • p ( P)] · 1 00 ( 13) 

In Tables XIV through XVII, the predicted values for logic 

circuit metering can be compared to the measured values. The actual 
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values of metering percent are very close to the predicted values 

except on the 144 hole drum at the highest drum RPM tested. An inter­

mediate drum speed was added to this test to show where the metering 

percent began to drop. 

This reduction in metering percent can be explained by the 

response characteristics of the interface valves. The output of the 

interface valves lags the input by approximately seven milliseconds 

as shown in the test of Figure 29. At the maximum seeding rate, input 

signals to the interface valve are generated approximately 14.75 

milliseconds apart. This is almost the same as the turn on and turn 

off time of the valve, so malfunction of the valve would be expected. 

Two solutions to this problem exist. One solution would be to 

utilize three independent logic circuits instead of two and alternate 

outputs. The other solution is to use a valve with faster frequency 

response characteristics. Although some commercial valves are adver­

tised with three millisecond response, the ones tested for the seed 

ejection problem could not do this in sustained operation. 

A diaphragm pressure amplifier valve illustrated in Figure 30 was 

constructed to show that frequency response in the range of interest is 

possible in an interface valve. The test shown in Figure 29 shows 

that a response of approximately three milliseconds was obtained from 

this valve. The input signal is inverted for comparison purposes, but 

the output signal is present when the control signal is off in this 

valve. 

The capabilities of sensing and logic control are evident when 

considering the fact that at least 25 percent of the seeds in these 

tests have come from the secondary cells. Rapid sensing and logic 



Figure 29. Response Characteristics of Inter-
face Valves. Trace Sweep Rate 
was 10 Msec Per Qn on Grid Screen 
a) Conmercial Valve 
b) Laboratory Constructed Valve 

Control Signal 

Input 

Input 

Output 

Inverted Input 

Output 

Figure 30. Diaphragm Pressure Amplifier Valve 
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decisions are capable of being made entirely with pneumatic elements. 

Seed Conveyance Tests 

Seed distribution data were obtained from photographs of sensor 

signals on an oscilloscope. Examples of photographs are shown in 

Figure 31, Eighty millimeters as outlined by the oscilloscope grid 

screen was used as the sample length. Each seed was recorded as the 

distance from the sensed signal to the zero grid line. Distances 
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were estimated to the nearest 0.5 mm. For analysis, the distance from 

the zero grid line and the first seed was added to the distance between 

the last seed signal and the 80 mm grid line and this sum was considered 

as one space. Data for each ser·ies of seed conveyance tests are 

presented in Appendix C. 

Relative variance and measured seeding rates were calculated for 

each sample by use of a computer program, The means of five samples 

in each test were tabulated for comparison of treatments and given in 

Table XX. Measured seeding rates from the samples are recorded in 

Table XXI and can be compared to theoretical seeding rates. Only small 

differences are apparent for the configuration treatments. Little 

difference was measured between configuration 1 and 2. The additional 

bend in the conveyance tubing apparently does not add to spacing 

variations. Configuration three consisting of manifold only has 

slightly less variations in distribution than the other configurations. 

Several factors could cause these variations. The differences in 

velocity in the cross section of the tubing could contribute to varia­

tions. Air velocity profiles at the exit for each configuration are 

shown in Figure 32. These profiles show that large differences in air 
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Figure 31 . Examples of Photographs of Sensor 
Signals i n Conveyance Tests 
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TABLE XX 

RELATIVE VARIANCES OF SEED DISTRIBUTION AT EXIT 

Seed Repli- Configuration l Confi gurat·i on 2 Configuration 3 
Metering cation 
Rate Roll er Ejector Air Ejector Roller Ejector Air Ejector Roller Ejector Air Ejector Seeds/ 
Sec/Row Low Air High Air Low Air High Air Low Air High Air Low Air High Air Low Air High Air Low Air High Air 

Velocity Velocity Velocity Velocity Velocity Velocity Velocity Velocity Velocity Velocity Velocity Velocity 

22.7 1 98.22* 98.18 97 .81 98.37 97. 91 98.44 97.95 97.91 99.19 99. l 0 99.23 99.15 

2 98.24 97.97 98.32 98.25 98.32 98.64 98.13 97.90 99. l 5 99.30 99.15 99.38 

3 96.75 97.37 96.73 96.03 94.04 95.85 96.26 97 .16 98.20 98.54 98.61 98.59 
4 96. 17 96.29 95.03 95.54 97.62 96.28 94.72 96.35 98.11 98.36 98.33 98.70 

34.0 1 96.16 97.05 96. 51 95. 72 96.77 96.94 96.52 96.94 98.76 98.55 97.95 98.39 
2 97.54 95.70 95.83 96.98 96.94 96.22 96.22 96.24 98.56 98.93 98.36 99. l 0 
3 87.94 92.00 90.92 93.03 93.53 89.79 88.51 87.97 98.23 95.98 93.95 95.97 

4 90.29 86.74 93.24 90.15 90.40 94.05 88. 14 90.12 97.57 . 96. 76 96.79 93.66 

45.3 l 97.08 97.21 97.00 96.87 97. l 0 96.75 95.94 96.30 98.71 98.46 97.91 98.05 

2 97.95 97.63 95.66 97.03 96.85 96.43 96.42 96.66 98.86 98. 91 97.55 97.58 

3 83.38 90.40 90.99 88. 51 94.79 87.84 87 .19 91.62 95.89 96.84 93.84 92.52 

4 93.04 91 .17 90.07 89.77 91.94 91 .67 85.15 90.58 96.69 97.45 92.15 95.79 

*Means of five samples each 

00 _. 



TABLE XXI 

MEASURED SEEDING RATES FROM SAMPLES 

-
Seed Repli- Configuration 1 Configuration 2 
Metering cation 
Rate Ro 11 er Ejector Air Ejector Roller Ejector Air Ejector Seeds/ 
Sec/Row Low Air High Air Low Air High Air Low Air High Air Low Air High Air 

Velocity Velocity Velocity Velocity Velocity Velocity Velocity Velocity 

22.7 1 23* 23 24 23 25 23 23 24 
2 23 24 25 24 23 23 24 24 
3 23 23 26 24 24 24 24 25 

4 23· 25 24 25 25 23 23 24 
34.0 1 34 37 31 35 33 37 37 32 

2 33 37 35 36 33 36 38 35 
3 35 37 36 41 36 34 33 35 
4 37 31 37 33 34 39 34 33 

45.3 l 44 49 43 43 43 46 41 45 

2 47 45 42 43 45 43 42 40 

3 45 46 46 46 45 41 40 53 

4 47 49 50 55 49 44 40 43 

*Means of five samples each (seeds per second) 

Configuration 3 

Ro 11 er Ejector Air Ejector 

Low Air High Air Low Air High Air 
Velocity Velocity Velocity Velocity 

27 25 25 25 
26 25 25 25 
24 26 27 24 
25 24 25 25 
37 37 35 37 
37 37 37 36 
37 40 36 41 
35 36 39 35 
47 49 43 45 
47 50 45 46 
47 50 49 51 
47 47 46 51 

CP 
N 
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velocities exist in different zones of the tubing. 

Another factor is the irregularity in seed shape. As the seed was 

transmitted through the tubing, velocity variations and rubbing on side 

walls undoubtedly caused changes in seed orientation with respect to 

the transmission direction. Since the seed was irregularly shaped, the 

drag coefficient would change and affect the seed velocity. Differing 

seed velocities would affect the distribution at the exit of the tubing. 

Sized seed was used to minimize this effect. 

Cottonseed exit velocities and associated 95 percent confidence 

limits are shown in Table XXII for the different treatments. These 

velocities were calculated from the time interval for seeds to pass 

between two sensors spaced 30 cm apart and do not represent instantan­

eous velocities. Seed velocities were fairly constant for all samples, 

and most 95 percent confidence limits were within+ 5 percent of the 

mean. 

Seed velocities were higher for the pneumatic ejector than for 

the roller ejector, but can be exp·Jained by differences in air veloci­

ties in the tubing. This is attributed to the difference in the number 

of seed c1ells closed by seeds with the two ejection methods. With the 

roller ejector, all four rows had empty cells for approximately one 

half of the drum; whereas, with the pneumatic ejector, only one row 

had empty cells for approximately one half of the drum. This caused 

slightly different static pressures in the drum and different air vel­

ocities at the same blower opening for the two ejection methods. 

The 95 percent confidence intervals of seed velocities overlap for 

metering rate in all treatments, so the range of metering rates used in 

these tests did not affect seed veloc·ity. However, configuration 



TABLE XXII 

COTTONSEED EXIT-VELOCITIES* 

Seed 95% Configuration l Configuratior 2 
Metering Conf. 
Rate Limits Ro 11 er Ejector Air Ejector Roller Ejector Air Ejector 

Low Air High Air Low Air High Air Low Air High, Air Low Air High Air 
Velocity Velocity Velocity Velocity Velocity Velocity Velocity Velocity 

Lower 16.05 17.71 17.97 18.93 14.08 15 .0·3 12.58 15.80 
22.7 Mean 16.67 18.23 18.58 19. 74 14. 71 15. 71 14. l'l 16.85 

Upper 17 .33 18.79 19.24 20.62 15.40 16.47 16.03 18.05 
Lower 15. 91 17.36 17.96 19.38 13.73 13.83 14.07 14.36 

34.0 Mean 16.41 17.78 18.49 19.88 14.55 15. 02 14.90 15. 56 
Upper 16. 94 18.23 19.06 20.41 15.46 16.45 15.84 16.96 

Lower 15.70 18.22 18.34 18.07 13 .41 14. 71 14. l 0 14.99 

45.3 Mean 16.22 18.93 18.83 18.91 14.01 15. i4 14.78 15. 55 
Upper 16. 72 19.69 19.36 19.82 14.67 15. 59 15. 53 16. 15 

MEANS 16.43 18.31 18. 63 19. 51 14.42 15.29 14.60 15. 99 

Average Air 
37:9 Velocities 36.7 38.7 37.0 38.6 35.8 36.4 38.0 

Ratio Avg. Seed 
Vel. To Avg. Air 
Velocity .45 .47 .50 . 51 .40 .40 .40 .42 

*Meters per second 

Configuration 3 

Ro 11 er Ejector Air Ejector 

Low Air High Air Low Air High Air 
Velocity Velocity Velocity Velocity 

16.17 16.58 15.85 17 .21 
16.92 17.37 16.82 17.89 
17 .75 18.24 17.92 18.62 
15.86 17.14 16.23 16.24 
16.51 17.73 16.98 17 .05 
17.23 18.37 17 .81 17.93 
15.74 16.62 16.56 16.83 
16.20 17 .16 16.92 17.29 
16.69 17. 75 17.29 17. 77 
16.54 19.42 16. 91 17 .41 

70.9 74.5 70.9 73.2 

.23 .23 .24 .24 
-------· 

00 
(J1 
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affects seed velocity, with configuration 2 having lower velocity than 

configurations l and 3. The bend near the exit in configuration 2 

apparently causes seed veloc'ity to be reduced slightly. This effect is 

apparently almost constant for all seeds because otherwise seed distri­

bution would be affected. 

Average air velocities were determined in separate tests and not 

simultaneously with seed velocity tests. However, the air velocities 

are recorded for the different treatments in Table XXII and the approx­

imate ratio of average seed velocity to average air velocity determined. 

These ratios are almost constant for each configuration, but vary with 

configuration. This follows the work of Chand (14) that particle 

velocity varies linearly with air velocity for a particular conveyance 

shape. The low ratio of seed velocity to air velocity in configuration 

3 suggests that seeds may still be accelerating when leaving the mani­

fold when no tubing is attached. 

Little difference in relative variance wa.s measured between ejec­

tion methods. The roller ejector depends on gravity to cause seeds to 

drop into the manifold and enter the air stream in the conveyance tube. 

Due to the circular cell motion at the time of seed ejection, the seed 

follows an approximate parabolic path into the manifold. 

The pneumatic ejectors apply a for'ce in addition to gravity in 

ejecting the seeds,. This force is caused by the ejection air pressure 

acting over the area of the seed cell opening. Observations of seeds 

leaving the cells with a strobe light when no manifold was attached, 

showed that seeds follow an almost linear path when ejected pneumati­

cally. The direction of the path was not constant, and these differ.­

ences were thought to be caused by differences in seed shape and timing 
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of ejection air pulse. 

The ejection point for the pneumatic ejectors had to be located 

closer to the center of the manifold than the point where seed were 

ejected by the roller. Observations with a strobe light showed that 

when pneumatic ejectors were located at the same ejection point as the 

rollers, seed bounced out of the manifold over the approach edge. This 

occurred primarily at the low drum RPM setting and losses could be 

reduced some by a reduction in air pressure. Relocation of ejectors 

reduced loss of seeds from the manifold, (Table XXIII), but bouncing 

within the manifold probably still occurred. 

Seed Spacing Tests 

Original Data for seed distribution at manifold exit and for seeds 

placed on conveyor belt are given 1n Appendix D. Data for seed distri­

bution were determined from photographs of sensor signals on the oscill­

oscope and represent distances to signals from a zero grid line on the 

oscilloscope screen. Elg°htymm sample distance was used. 

Data for seeds placed on conveyor belt were obtained from photo­

graphs and represent distances in centimeters. The same fifty centi­

meters of sample distance as indicated. by a rule over the conveyor belt 

was used as the sample distance for all tests. The first value repre­

sents the zero point for beginning sample and the final value repre­

sents the final point for ending sample. Estimated centers of seeds 

were measured to the nearest 0.5 cm as indicated on the rule, and 

duplication of values indicate more than one seed on the belt at that 

point. Examples of seed distribution on the belt are shown in Figure 

33. 



(PS4) 

Drum RPM 

14.20 

21. 29 

TABLE XXIII 

METERING PERCENT MEANS - SORGHUM SEED 
144 HOLE DRUM 

1 

Air Ejector With 
Ejection Point Same As 

For Rollers 

Circuit 

2 

88.88* 84.63 

90.50 97.00 

LSD (.05 significance level) 
Circuit Means: 0.751 
RPM x Circuit Means: 0.751 
RPM Means: 0.974 

(PS5) 

Drum RPM 

14.18 

21.26 

*Means of 8 replications 

Air Ejector With 
Relocated Ejector Position 

l 

98.63 

99.63 

Circuit 

2 

96.13 

98.75 

LSD (.05 significance level) 
Circuit Means: Q;655 
RPM x Circuit Means: 0.655 
RPM Means: 0.383 

00 
00 



Figu re 33 . Examples of Seed Di stri buti on on Conveyor 
Belt for Three Seed i ng Rat es 
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Relative variances and measured seeding rates are shown in Table 

XXIV for seeds at exit of manifold used to integrate 4 seed drum rows 

into one row. Relative variances of the lowest seeding rate included 

in the test appear to be slightly higher than the other two seeding 

rates. This indicates that distribution is more uniform at the lower 

seeding rate. As seeding rate increases, any bouncing or disturbance 

in the manifold would .be expected to be more detrimental to spacings 

because of the smaller time interval between seeds. 

90 

The measured seeding rates determined from sensor signals are also 

shown in Table XXIV. The measured seeding rates compare closely with 

the theoretical seeding rate except at the highest seeding rate tested. 

The measured seeding rate was 10 to 15 percent below the expected rate. 

If two seeds pass through the sensor with no separation between 

them, they are sensed as one seed. Where two sensors were used in 

measurement of seed exit velocities for the merging manifold, this was 

observed to happen at high seeding rates. A single signal observed 

from the first sensor sometimes became two signals in the second 

sensor. Generally when this occurred, the first signal was longer than 

normal indicating two seeds may have been in contact coming from the 

manifold. At the high seeding rate this was believed to be the primary 

reason for the discrepancy between measured and theoretical values. 

Approximate air velocity profiles at the exit of the manifold are 

shown in Figure 34. Seed velocities at the exit of the manifold and 

the ratio of seed velocity to average air velocities are shown in 

Table:XXV. The profiles show small variations in velocity measurements 

in different areas. Some of these variations may be due to location 

of reading points as indicated by difference in centerline velocity of 



Theoretical 
Seeding 
Rate 

46 

68 

90 

TABLE XXIV 

RELATIVE VARIANCES AND SEEDING RATES AT 
MANIFOLD EXIT IN SPACING TESTS WITH 

LOGIC CIRCUIT METERING* 
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Replication Relative Measured Seeding 
Variances Rate in Seeds/Sec 

Low Air High Air Low Air High Air 
Velocity Velocity Velocity Velocity 

1 96.67 97.27 49 46 

2 97.09 95.04 48 42 

3 96.01 97.22 45 50 

4 96.78 96.46 40 48 

1 95.05 93.55 61 69 

2 93.34 95.60 59 64 

3 92.45 94.41 69 75 

4 96.07 93 .10 68 72 

1 94.80 90.24 78 75 

2 95.42 93.89 83 83 

3 95.60 95.06 71 78 

4 94.02 94.35 73 81 

*Cottonseed through 5.95 mm (15/64 in), over 5.56 mm (14/64 in) 
screen 
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Means 

Average 
Air Velocity 
M/Sec 

Ratio of 
Seed to 
Air Velocity 

TABLE XXV 

COTTONSEED EXIT VELOCITIES FROM MANIFOLD 
MERGING SEED FROM TWO INDEPENDENT 

CIRCUITS INTO ONE ROW 

Mean Cottonseed Exit Velocity 
and 95% m/sec 

Confidence Low High 
Limits Air Velocity Air Velocity 

Lower 12. 73 13.96 

Mean 13.39 14.37 

Upper 14.11 14.80 

Lower 13.34 13.56 

Mean 13. 97 14.08 

Upper 14.65 14. 65 

Lower 13 0 46 13.98 

Mean 13. 85 14.36 

Upper 14.25 14. 76 

13.74 14 .27 

88.68 92.03 

. 155 . 155 
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Figure 34. Average of Horizontal and Vertical 
Velocity Profiles at Exit of Seed 
Merging Manifold 

the two profiles. The outlet was not a perfect circle which made 

reference points difficult to establish, and small variations are more 

important because of the small diameter of the exit. 

The velocity distribution in the rest of the manifold was not 
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obtained and could be a factor in causing seeds to group. However, the 

primary factor in causing grouping was thought to be bouncing of seed 

caused by hi tti·ng side walls as they were merged and brought to the 

exit. Seeds could be observed to occasionally ricochete violently 

inside the manifold after ejection. 

Relative variances and mean seed spacings determined from photo­

graphs of seeds placed on the conveyor belt are shown in Table XXVI. 

The relative variances of seed spacings on the belt were approximately 

the same as those at the exit of the manifold. The additional path and 

seed wheel which matched seed velocity to the belt velocity could have 
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TABLE XXVI 

RELATIVE VARIANCES AND SPACING FOR SEEDS 
PLACED ON CONVEYOR BELT 

IN SPACING TESTS 

Replication Relative 
Variances 

l 95.88 

2 95.70 

3 96.69 

95.93 

2 96.78 

3 95.61 

l 96.45 

2 94.43 

3 94.62 

94 

Mean 
Spacing 

(CM) 

2.66 

2.45 

2.32 

2.34 

2.56 

2.51 

2.50 

2.84 

2.54 
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rearranged the distribution of seeds which. exited the ma.nifold, but the 

final seed distribution on the belt was apparantly no worse than that 

at the manifold exit. 

The theoretical spacing of seeds was 2.5 cm, and the observed 

mean spacing on the belt was very close to the theoretical spacing. 

Differences between observed and theoretical.spacings could be attri­

buted to skips, grouping of seeds, and variations in belt speed. 



CHAPTER VI 

SUMMARY, CONCLUSIONS, AND SUGGESTIONS 

FOR FURTHER STUDY 

.Summary 

Research undertaken was related to the application of logic 

techniques and fluidic sensing and control to planting seeds. The 

following objectives were established for this resea.rch: 

l._h Develop .. a.·meter.tn·g unit utilizing principles of fluidics 

and fluid logic for dispensing acid delinted cottonseed 

one at a time at a rate of at least 135 seeds per second. 

2. Investigata~methods of placing individual acid delinted 

cottonseed in a seed furrow, and develop a seed ejecting 

unit which accurately spaces seeds along the furrow. 

All research was done in the Agricultural Engineering Research 

Laboratory and was divided into four phases. The first phase consisted 

of deriving logic circuit, selecting the sensing and logic elements to 

implement the circuit, and testing the circuit to provide a "backup" 

seed source for seeds missing from the primary source. 

In the second phase, an International Harvester 400 Cycle planter 

was modified to eject seeds using two independent logic circuits and 

four pneumatic interface valves. Each circuit sensed presence or 

absence of seeds in a primary row on the IH Cycle seed metering drum, 

and if no seed was present, -a seed was ejected from a secondary row. 

96 
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The circuits were positioned to alternate outputs in order to achieve a 

high combined seeding rate. Capabilities of using pneumatic sensing 

and logic circuitry for control of seed metering were also studied in 

this phase of the research. 

Seed metering percent was used as the criterion for evaluating 

the function of the logic controlled unit. A predicted metering percent 

was determined from tests of the unmodified unit for three seed drum 

speeds and compared to the modified unit. Tests were made with sorghum 

and three sizes of cottonseed. 

The third phase of the research was an investigation of the 

pneumatic transport of acid delinted cotton seed from the metering 

unit to the exit point. Seeds were sensed at the exit of the convey­

ance tubing with an International Harvester Air Planter Monitor. 

Treatments included three conveyance configurations, two ejection 

methods and two air velocities. Relative variance was used to compare 

the measured seed distribution from the different treatments. 

The fourth and final phase of the research was an investigation 

of the distribution of cottonseed from the logic circuit where the 

primary and secondary rows of both circuits were merged into one row. 

Distribution of seeds placed on a conveyor belt by a wheel that matched 

seed velocity to belt velocity was also studied. Three seeding rates 

of cottonseed were used in the tests. 

Conclusions 

1. The Classical Synthesis Technique was useful in developing a logic 

circuit to meter seeds where provisibns were made for a 11 backup 11 

seed source to fill potentially vacant spaces. 



2. Fluidic sensors and logic elements were combined into a logic 

circuit capable of deciding and signaling from which source seed 

were to be ejected, and the circuit functioned satisfactorily at 

simulated seeding rates up to approximately 100 seeds per second. 

3. Moving parts interface valves were required to amplify logic 

signals sufficiently to eject seeds from the IH Cyclo seed meter­

ing drum, and maximum ejection rate for an individual valve with­

out malfunction was found to be 60 seeds per second. 
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4. In tests with Sorghum seed, metering percent of the IH Cyclo 

planter modified with logic circuitry was very close to predicted 

values except at the maximum seeding rate of 136 seeds per second. 

Where at least 25 percent of the seeds were missing from primary 

seed cells because of taped holes, the 11 backup 11 technique allowed 

metering percent to be maintained from 94 to 99 percent up to a 

rate of 120 seeds per second. At a seeding rate of 136 seeds per 

second, interface valves began to malfunction and seeding rate was 

approximately 72 percent. 

5. In tests with three sizes of acid delinted cottonseed, metering 

percent of the IH Cyclo planter modified with logic circuitry was 

very close to the predicted values for all seeding rates tested. 

Seeding rates tested were 46, 68, and 90 seeds per second. 

6. The IH Cyclo planter is an excellent metering unit and was capable 

of metering the seeds tested one at a time with very few misses. 

With cottonseed, from l to 5 percent more seeds were metered per 

cell than theoretically expected and this was attributed to seed 

shape. No important advantage was obtained by using the logic 

circuitry. However, the concepts and principles tested by taping 



99 

25 percent of the seed ce 11.s may be applicable for other seeds or 

other situations. 

7. The conveyance of seeds from the metering unit for placing them in 

a seed furrow.introduced spacing variations. Seeds were released 

from the cells with equal intervals of time from one to the next, 

but seeds exiting the manifold and two configurations of tubing 

did not exit with equal intervals of time between them. 

8. Exit velocities of cottonseed were found to exceed 13 meters per 

second for.three conveyance configurations. 

9. Little difference in seed distribution was measured for cottonseed 

exiting three conveyance configurations with two ejecting methods, 

two air velocities, and three seeding rates. 

10. Seed spacings measured at the exit of the manifold was slightly 

less variable than when conveyed through additional tubing. 

Suggestions for Further Study 

Further investigations are recommended for achieving uniform 

spacings in the seed furrow for high seeding rates. Individual seeds 

were uniformly metered, but some method is needed to maintain this 

uniformity and precisely control spacings of seeds delivered to the 

seed furrow. 

It is also recommended that investigations be made on locating 

sensors very near the seed furrow and use logic circuitry to control 

spacing .uniformity. The metering principles used in the IH Cyclo 

planter provide excellent metering characteristics and addition of 

sensing and logic control of metering apparently is not needed at that 

point. However, many of the logic circuit principles and techniques 
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used in this study should apply to controlling seed spacing. 

Information is needed on the effect of impact of seeds with soil 

in the seed furrow. High exit seed velocities were measured in this 

study, and any future studi·es should consider the effect of this on 

seed germination and emergence. 
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IDENTIFICATION OF EQUIPMENT USED IN THIS RESEARCH 
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APPENDIX A 

LOGIC CIRCUIT AND SAMPLING COMPONENTS 

Identification Company Part Number 

OR/NOR Corning 191453 

AND/NANO Corning 191455 

FLIP-FLOP Corning 191454 

SCHMITT TRIGGER Corning 191456 

DIGITAL AMPLIFIER Corning 191460 

MANIFOLD Corning 191722 

VARIABLE RESTRICTOR Clippard MNV-1 

INTERFACE VALVE Creative 146-1 
Automation 
Technique 

INTERFACE VALVE KAY Pneumatics KV28/043UP-HP 

CYLINDER Clippard 

PLANTING EQUIPMENT 

Identification camean~?'·, Part or Serial No. 
p, k,.;\o\ ' ,"':· ' . ... .. , . ..,, 

400 IH Cyclo Planter International Harvester 0970000U006232* 

Field Improvement Package International Harvester 8007449R91 

Cyclo Air Planter Monitor International Harvester 15386 HP 

144 Hole Sorghum Seed Drum International Harvester 58435C91 

96 Hole Cottonseed Drum International Harvester 94969R91 
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INSTRUMENTATION 

Identification Company Model No. 

Oscillograph Sanborn 321 

Oscilloscope (Dual beam) Tektronix 502A 

Pressure Transducer Statham PM822 

Pressure Transducer Statham PM872 

Strobotac Gen. Radio Co. l 531A 



APPENDIX B 

B-1 ORIGINAL DATA FOR PS3 SERIES METERING TESTS 

B-2 ORIGINAL DATA FOR PCl SERIES METERING TESTS 

B-3 ORIGINAL DATA FOR PC2 SERIES METERING TESTS 

B-4 ORIGINAL DATA FOR PC3 SERIES METERING TESTS 

B-5 ORIGINAL DATA FOR PS4 SERIES METERING TESTS 

B-6 ORIGINAL DATA FOR PSS SERIES METERING TESTS 

B-7 ORIGINAL DATA FOR PS6 SERIES METERING TESTS 

B-8 ORIGINAL DATA FOR PC4 SERIES METERING TESTS 

B-9 ORIGINAL DATA FOR PCS SERIES METERING TESTS 

B-10 ORIGINAL DATA FOR PC6 SERIES METERING TESTS 

11n 



APPENDIX B-1 

THEORETICAL SEED COUNT • 576 

REP RPM ORUM S AMPLPiG RECORDED S EEO REP RPM ORUM SAMPL! NG RECORDED S EEC 
'JG CODE ROW TI ME (SEC I MISSES COUNT NO CODE ROii TIME ISECI ~I SSE S COUNT 

1 16. 92 572 4 l l 16.96 573 
2 16.92 425 4 l 2 16 .96 428 
3 16 .92 8 429 4 1 3 16.% 6 422 
4 16.92 561 4 1 4 16.96 565 

l 2 l 11 .27 569 4 2 1 11. 2 8 570 
l 2 2 ll.27 424 4 2 2 11. 28 431 
l 2 3 11.21 20 421 4 2 3 ll .28 8 426 
l 2 4 11 .27 558 4 2 4 ll. 2 8 567 

3 l B.48 567 4 3 1 8 .48 571 
3 2 8.48 425 4 3 2 8.48 422 

1 3 3 8.48 9 429 4 3 3 B.48 19 423 
1 3 4 B.48 561 4 3 4 8.48 566 

2 l 1 16.94 573 5 l l 17.09 575 
2 l 2 16.94 433 5 1 2 17 .09 427 
2 l 3 16.94 12 420 5 l 3 l 7. 09 13 428 
2 .l 4 16.94 568 5 l 4 17.09 569 

2 2 l 11 .21 568 5 2 l n.2a 570 
2 2 2 11.21 422 5 2 2 11.28 430 
2 2 3 11.27 5 429 5 2 3 11.28 11 429 
2 2 4 11 .21 564 5 2 4 11. 28 573 

2 3 l B.48 572 5 3 l 8 .so 574 
2 3 2 8 .48 425 5 3 2 8.50 430 
2 3 3 B.48 8 422 5 3 3 a.so 5 435 
2 3 4 B.48 S69 5 3 4 a.so 568 

3 l l 16. 97 S73 6 l l 16.99 S73 
3 l 2 lb.97 431 6 l 2 16.99 434 
3 l ' 16 .97 6 425 b 1 3 16. 99 6 420 
3 1 4 16. 97 sn b l 4 16.99 570 

3 2 1 11 .2s S65 6 2 l 11. 2 8 S69 
3 2 2 11.25 427 6 2 2 ll.28 421 
3 2 3 11. 25 6 430 6 2 3 11.28 6 424 
3 2 4 11 .25 570 6 2 4 11. 2 8 570 

3 3 l B.48 571 b 3 l 8 .49 559 
3 3 2 a .4e 427 6 3 2 8.49 419 
3 3 3 B.48 7 425 6 3 3 B.49 5 427 
3 3 4 8.48 564 6 3 4 8.49 571 

__, 
__, 
__, 



APPENDIX B-2 

THEORETICAL SEED COUNT = 576 

REP "RPH ORUM SAMPLING R ECOF..DED SEED REP RPM ORUM SAMPLING RECORDED SEED 
NO CODE ROW Tl ME ( SECI MISS ES COUNT NO CODE ROW TIME I SEC I "l SSE S COUNT 

1 l l 25.35 598 4 1 1 25.45 599 
l 1 2 25.35 438 4 1 2 25 .45 433 
1 1 3 25.35 434 4 1 3 25.45 425 
1 1 4 25.35 0 583 4 1 4 25.45 1 58~ 

l 2 l 16.85 597 4 2 1 16.95 597 
l 2 2 16.85 427 4 2 2 16. 95 439 
l 2 3 16.85 440 4 2 3 16 .95 433 

2 4 16.85 l 583 4 2 4 16.95 1 585 

l 3 1 12. 76 593 '• 3 l 12.76 602 
l 3 2 12.76 433 4 3 2 12.76 435 
1 3 3 12.76 438 4 3 3 12.76 445 
l 3 4 12.76 1 588 4 3 4 12.76 0 58~ 

2 l 1 25.35 592 5 l l 25.35 598 
2 l 2 25. 35 441 5 l 2 25 .35 433 
2 l 3 25.35 428 5 l 3 25 .35 430 
2 1 4 25 •. 35 0 587 5 l 4 25.35 0 596 

2 2 l 16.85 598 5 2 l 16.90 601 
2 2 2 16.85 435 5 2 2 16.90 438 
2 2 3 16. 85 433 5 2 3 16.~0. 432 
2 2 4 16.85 0 595 5 2 4 16.90 () 597 

2 3 1 12.74 586 5 3 1 12.70 599 
2 3 2 12.74 434 5 3 2 12.10 437 
2 ~ 3 12. 74 439 5 3 3 12.10 430 
2 3 4 12. 74 1 594 5 3 4 12 .10 0 587 

3 l l 2~.45 595 6 l 1 25.40 610 
l 1 2 25.45 429 6 l 2 25 .40 434 
3 1 3 25.45 422 6 l 3 25.40 426 
3 l 4 25.45 l 588 6 l 4 25.40 0 5c;:7 

3 2 l 16.90 587 6 2 l 16.90 597 
3 2 2 16.90 436 6 2 2 16.90 433 
3 2 3 16.90 441 6 2 3 16 .~o 437 
3 2 4 16 .90 1 577 6 2 4 16.90 l 591 

3 3 l 12. 75 597 6 3 l 12,72 58~ 
3 3 2 12. 75 438 6 3 2 12.72 438 
3 3 3 12.75 431 6 3 3 12.72 436 
3 3 4 12.75 3 590 6 3 4 12 .12 0 589 

__, 
__, 
N 



APPENDIX B-3 

THEORETICAL S EEO COUNT = 576 

REP RPM DRUM SAMPLING RECORDED . SEED REP RPM DRUM SAMPLING RECORDED SEED 
NO CODE ROW TIME ISECI HISSES COUNT Nil CODE ROW TIME I SEC I HISSES COUNT 

1 1 1 25 .30 607 4 1 1 25.35 609 
1 1 2 25.30 432 4 1 2 25.JS 439 
1 1 3 25.30 431 4 t 3 25.35 438 
1 1 4 25.30 0 601 4 t 4 25.35 l 605 

1 2 1 16.eS 597 4 2 l 16 .es 5e6 
l 2 2 lf>.85 441 4 2 2 16. 85 439 
l 2 3 16. es 439 4 2 3 t6.85 432 
l 2 4 lb.SS 0 601 4 2 4 16.e5 0 593 

l 3 1 12. 72 602 4 3 l 12.74 591 
l 3 2 12. 72 436 4 3 2 12.74 433 
l 3 3 12.72 436 4 3 3 12.74 435 
l 3 4 12.n 2 592 4 3 4 12 .74 .o 593 

2 l t 25.30 601 5 l 1 25.35 604 
2 l 2 25. 30 443 5 l 2 25.35 433. 
2 1 3 25.30 432 5 1 3 25 .35 434 
2 1 4 25.30 0 599 5 l 4 25.35 0 59e 

2 2 l 16.85 593 5 2 1 16.85 59e 
2 2 2 16.85 1-41 5 2 2 16. 85 "'~~ 2 2 3 16. es 440 5 2 3 16 .es 442 
2 2 4 16.es t 600 5 2 ,. l6.e5 0 591 

2 3 l 12. 71 59e 5 3 l 12.72 593 
2 3 2 12.11 1-45 5 3 2 12.12 429 
2 3 3 12. 71 443 5 3 3 12.72 1-32 
2 3 4 12.11 1 585 5 3 4 12 .7 2 3 se9 

.3 l l 25.35 5e7 6 l l 25.35 606 
3 1 2 25. 35 434 6 l 2 25 .35 439 
3 l 3 25.35 435 6 l 3 25.35 433 
3 l 4 25.35 0 597 6 l 4 25.35 l 603 

3 2 l 16.eS 594 6 2 l 16.90 586 
3 2 2 16. es 445 6 2 2 16.90 436 
3 2 3 16. 85 434 6 2 3 16 .~o 436 
3 2 4 16 .es 0 597 6 2 4 16 .• 90 2 590 

3 3 1 12. 71 'e8 6 3 l 12.73 596 
3 3 2 12.71 438 6 3 2 12.73 437 
3 3 3 12. 71 435 6 3 3 12.73 1-36 
3 3 4 12. Tl 0 598 6 3 4 12. 73 2 ' 590 

__, 
__, 
w 



APPENDIX B-4 

THEORETICAL SEED COU~T = 576 

REP RPM ORUM SAM PL It-IG RECOR.OED SEED RFP RPM DRUM S 4MPL!NG REWRDED S EEO 
NO COOE ROW TIME ISECI '4ISSES COUNT NO C!JDE ROW TIME I SECI MISSES COUNT 

l l l 25 .40 616 4 l l 25.35 615 
l l 2 25.40 454 4 1 2 25. 35 449 
l 1 3 25,40 436 4 1 3 25.3 5 429 
1 1 4 25.40 2 603 4 1 4 2 5. 3 5 2 608 

l 2 1 16 ,85 607 4 2 l 16.~0 611 
1 2 2 16 .85 4"8 4 2 2 16. 90 433 
1 2 3 16.85 "48 4 2 3 16.90 442 
l 2 4 16.85 1 600 4 2 4 16.90 0 59? 

3 l 12.74 601 4 3 l 12.71 608 
l 3 2 12.74 438 4 3 2 12.71 435 
l 3 3 12 .74 435 4 3 3 12. 71 4"1 
1 3 4 12.74 0 596 4 3 4 12.11 1 594 

2 1 1 25 -~ 5 615 5 l l 2 5.3 0 502 
2 1 2 25.35 437 5 l 2 25.30 434 
2 . .1 3 25.35 430 5 l 3 25.30 439 
2 1 " 25.35 1 596 5 1 4 25. 30 l 591 

2 2 l 16.85 607 5 2 1 16 .85 597 
2 2 2 16 .85 'o37 5 2 2 16. 85 lt43 
2 2 3 16. 85 'o43 5 2 3 16.85 lt39 
2 2 4 16.85 0 595 5 2 " 16.85 3 590 

2 3 l 12. 71 600 5 3 1 12. 70 595 
2 3 2 12. 71 437 5 3 2 12.70 431 
2 3 3 12. 71 441 5 3 3 12.70 439 

3 4 12. 71 1 591 5 3 4 12. 70 l 584 

3 l l 25.30 612 6 l 1 25. 3 5 604 
3 l 2 25.30 442 6 l 2 25. 35 437 
3 l 3 25.30 432 b l 3 25 .3 5 429 
3 l 4 25.30 0 602 6 l 4 25. 3 5 2 595 

3 2 1 16.85 615 6 2 1 16 .0 5 613 
3 2 2 16 .85 444 6 ·2 2 16. 85 439 
3 2 3 16.85 433 ~ 2 3 16.85 427 
3 2 4 16.85 0 591 6 2 4 16.85 J 59~ 

3 3 1 12.74 597 . 6 3 1 12.71 594 
3 3 2 12.74 438 6 3 2 12. 71 444 
3 3 3 12.74 436 6 3 3 12. 71 429 
3 3 4 12. 74 3 598 6 3 4 12 .11 l 586 

__, 
__, 
-i:::. 



APPENDIX B-5 APPENDIX B-6 

THEORETICAL SEED COUNT F,JR SUM OF THEORETICAL SEED COUNT FOR SUM OF 
PRIMARY AND SECONDARY = 576 PRl~A~Y AND SECONDARY= 576 

REP RPM LOGIC SAMPLING S EEO COUNT SEEC COUNT REP RPM LOGIC SAMPLING Se'ED COLINT SEED COUNT 
NO CODE CI RC UI T TI 'If ! ~EC i PRJ MARY S ECO"IDARY l\FJ CU Do CP.CU!f Tl~E (SE; I PR!.,ARY SECONDARY 

1 1 l lb.85 339 178 1 l 1 16. 95 428 l't3 
1 1 2 16. 85 338 144 1 1 2 16.95 413 142 

1 2 l 11.30 398 159 1 2 1 11. 25 431 141 
l 2 2 11. 30 382 13 8 1 2 2 11.25 435 139 

2 ! 1 16.90 337 179 2 l l 16. 95 431 140 
2 1 2 16. 90 335 157 2 l 2 16.95 420 140 

2 2 1 ll.25 405 153 2 2 1 li.30 434 148 
2 2 2 11. 2 5 366 1'>4 2 2 2 11.30 431 140 

3 l l 16. 95 344 179 3 l l 17.00 426 jt,J 
3 1 2 16. 95 344 1"3 3 1 2 17.00 422 138 

2 l 11.25 405 153 3 2 l 11.25 430 142 
3 2 2 11. 25 Hl 137 3. 2 2 11.25 440 137 

4 1 l 16.90 346 158 4 l 1 16.95 420 143 
4 1 2 16. 90 352 137 4 l 2 16.95 408 140 

4 2 1 11.25 390 l 7:l 4 2 l ll.25 430 142 
4 2 2 11. 25 374 140 4 2 2 ll. 25 427 l 43 

5 l 1 lo.90 355 156 5 l l lo.95 429 141 
5 l 2 16. 90 344 142 5 1 2 16, 95 414 135 

5 2 l 11. 25 401 157 5 2 l ll.25 433 144 
5 2 2 11. 25 391 145 5 2 2 ll. 25 422 142 

6 l l 16.95 340 163 6 1 l 17.00 427 142 
6 l 2 16.95 350 142 6 1 2 11. 00 415 139 

6 2 1 11. 30 403 157 6 2 1 ll .3() 433 142 
6 2 2 11.30 378 139 6 2 2 11. 30· 423 l'tO 

7 l l Jo.90 339 161 7 t l 16 ,9() 421 143 
7 l 2 16.90 349 132 7 1 2 16. 90 413 143 

7 2 1 11. 20 407 157 7 2 l 11.30 430 !43 
7 2 2 11.20 381 143 7 2 2 11.30 427 1?8 

8 1 l 16. 90 357 152 8 1 1 16 ,9() 432 139 
8 l 2 Je.90 337 151 8 l 2 16.90 412 !39 

_, 
8 2 .l 11. 25 402 153 9 2 l 11.25 430 145 _, 
8 2 2 11. 25 . 3 81 137 8 2 2 ll.25 430 ) 36 U1 



AP PENO IX B-7 

TH:ORETICAL SEED COUNT FOR SUM OF 
PRIMARY ANO SECONOAPY = 576 

REP -RPM LOGIC SAMPLING SEED COUNT SEED COUNT REP RPM LOGIC SAMPLING SEED CDJNT SEED COU"H 
NO CODE CIRCUIT TIME (SECI PRIM4RY S ECO'I DARY Nil ~ODE CIR: UIT TI ME (SE: I PR! t.1ARY SECCNOARY 

1 1 l 16.95 414 156 4 1 l 16.95 419 147 
1 1 2 16. 95 <t18 136 • 4 1 2 16.95 410 152 

2 1 11.15 416 153 4 2 l 11 •20 412 162 
2 2 11.15 414 150 4 2 2 11.20 415 155 

1 2 .5 1 9.63 413 135 4 2.5 1 9.65 406 147 
1 2. 5 2 9• 63 414 105 4 2.5 2 9. 65 404 141 

1 3 1 8.44 294 45 4 3 l 8.47 325 84 
1 3 2 8.44 312 47 4 3 2 0. 47 367 67 

2 1 1 11.00 413 156 5 l l 16.95 422 145 
2 1 2 17.00 420 138 5 1 2 16. 95 418 149 

2 2 1 11. 25 412 158 5 2 1 11.25 402 169 
2 2 2 11.25 42() 145 5 2 2 11.25 424 15? 

2 2.5 l 9.61 '412 153 5 2 .5 l 9.64 404 156 
2 2.s 2 9o6l 417 129 5 2.5 2 9.64 416 !33 

2 3 1 8.49 330 71 5 3 l 8.49 332 67 
2 3 2 8.49 381 60 5 3 2 8.49 370 69 

3 1 l 16. 90 427 141 6 1 1 16.95 419 146 
3 1 2 16.90 421 145 6 1 2 16.95 418 147 

3 2 l 11. 20 408 164 6 2 . 1 11.25 416 160 
3 2 2 11. 20 428 135 6 2 2 11.25 413 155 

3' 2.5 1 9. 66 t,01 160 6 2 .5 1 9.66 409 158 
3 2.5 2 9.66 411 126 6 2. 5 2 9.66 t,09 147 

3 3 1 8 • .r,a 357 83 6 3 l 8.46 340 78 
3 3 2 8.48 370 63 6 3 2 8.46 381 62 

C"l 



APPENDIX B-8 

THEORETICAL SEED COUNT FOR SUM OF 
PRIMARY A'ID SECONDARY = 576 

REP RPM LOGIC SAMPLING SEED COUNT SEED COUNT REP RPM LOGIC SAMPLING S EEO CJJ NT $EED CDU"IT 
NO CODE CIRCUIT TIME ISECI PRIMARY S ECO'! DARY 'IJ :oDE CI~:UJT TI"-E ISE:I PRIMARY $~COND4PY 

l 1 25.20 446 148 4 1 l 25.25 43'1 ! ~ i:= 

1 2 25. 20 428 l't9 4 l 2 25. 25 430 l 52 

l 2 1 16.80 437 153 4 2 ! 16.80 444 155 
l 2 2 16.80 412 183 4 2 2 16,80 406 ~ 83 

3 1 12. 71 439 150 4 3 l 12.60 430 139 
3 2 12. 71 404 167 4 3 2 12. 66 419 ! 6) 

2 l 1 25.15 438 154 5 l 1 25.20 437 155 
2 l 2 25. 15. 426 153 5 l 2 25. 20 435 !52 

2 2 l 16.80 438 150 5 2 l 16 • .ao 433 1~0 

2 2 2 16.80 409 175 5 2 2 16. 80 405 l 8! 

2 3 1 12. 7l 432 153 5 ::, l 12.82 431 149 
2 3 2 12.71 413 157 5 3 2 12. 82 420 165 

3 1 1 25. 20 43·5 158 6 l l 25.20 432 156 
3 1 2 2 5.20 428 159 6 l 2 25.20 426 157 

3 2 1 16.80 442 153 6 2 l 16.eO 437 154 
3 2 2 16.80 415 180 6 2 2 ! 6. 80 414 182 

3 3 1 12. 67 431 151 6 3 l 12.67 437 !~5 

3 3 2 12.67 420 164 6 3 2 12.!>7 410 !67 

-.....J 



REP RPM LOGIC SAMPLING S.EED COUNT 
NO CODE C.IRCU IT TIME ISECI PRIMARY 

1 1 1 25. 20 428 
1 l 2 25.20 432 

1 2 1 16. 80 442 
1 2 2 16.80 405 

3. 1 12. 70 435 
3 2 12.70 415 

2 1 l 25. 25 430 
2 l 2 25.25 434 

2 2 1 16. 80 442 
2 2 2 16.80 421 

~ 3 l 12. 70 ·433 
2 3 2 12.10 420 

3 l l 25.25 442 
3 l 2 25. 25 425 

3 2 l 16~ 80 443 
3 2 2 16. BO 416 

3 3 l 12.70 421 
3 3 2 12. 70 414 

APPENDIX B-9 

THEORETICAL SEFD COUNT FOR. SUM OF 
PRIMARY AND SFCONDAR.Y = 576 

SEED COUNT tc.=P RPM 
SECO~OARY NO : ODE 

161 4 1 
160 4 l 

152 4 2 
185 4 2 

151 4 3 
158 4 3 

158 5 1 
156 5 l 

149 5 2 
177 5 2 

142 5 3 
155 5 3 

155 6 1 
159 6 l 

150 6 2 
165 6 2 

151 6 ~ 
163· 6 3 

LOGIC SAMPLING 
CIRCUIT TIME ISECI 

l 25. 20 
2 25.20 

1 16.85 
2 16.85 

1 12. 65 
2 12.65 

l 25.25 
2 25.25 

1 16. 87 
2 16 .87 

1 12. 69 
2 12.69 

l 25. 25 
2 25.25 

! 16. 85 
2 16.85 

! 12. 69 
2 12.69 

SEED CJUNT 
PRIMARY 

440 
424 

436 
H8 

434 
424 

447 
440 

443 
423 

lt28 
426 

441 
421 

437 
426 

435 
408 

SEE[) :aU"IT 
S ECOl\:DARY 

147 
157 

153 
17?. 

l.49 
140 

1 50 
159 

149 
165 

147 
152 

145 
H:3 

! ~1 
169 

!43 
156 

__, 
__, 
CX> 



APPENDIX B-10 

THEORETICAL SEED COUNT FOR SUM JF 
PRIMARY AND SECONDARY = 576 

REP RPM LOGIC SAMPLING S EEO CQUNT S EEO CDU'lT qE~ RPM LO~IC SAMPL! N~ SEED COUNT Seer COUNT 
NO CODE C JRCUIT TIME C SEC I PR! MARY SECONDARY NO CODE C l~CUIT TIME CSECI PR !MARY SE:ONJARY 

l l 25. 25 435 161 4 1 l 25. 25 442 l 58 
l 2 25.25 436 154 4 l 2 25.25 427 148 

l 2 l l 6. 85 445 154 4 2 l 16. 80 436 150 
l 2 2 16. 85 433 162 4 2 2 16.80 430 165 

3 l 12. 67 -'t38 146 4 3 l 12. 65 42! l 54 
3 2 12. 6 7 . 427 153 4 3 2 12.65 427 144 

2 l l 25. 25 443 156 5 l l 25. 2 5 445 156 
2 l 2 25. 25 433 155 5 l 2 25.25 441 157 

2 2 l 16 .as 437 155 5 2 l l 6. Sil 442 145 
2 2 2 16. 85 429 162 5 2 2 16.80 4Z2 173 

2 3 l 12.61> 430. 155 5 3 l 12. 66 438 144 
2 3 2 12. 66 431 152 5 3 2 12.66 433 155 

3 l 1 2 5.20 430 154 6 l l 2 5. 2 5 44! 1 5-1 
3 l 2 25. 20 432 148 6 1 2 25. 25 41t4 161 

3 2 l 16.80. 434 153 6 2 l J 6. 80 448 ! 53 
3 2 2 16. 80 432 161 6 2 2 16.80 425 162 

3 3 l 12.65 427 155 6 3 l 12.67 438 142 
3 3 2 12. 65 429 152 6 3 2 12.67 4:!13 157 

--' 

l.D 



APPENDIX C 

C-1 ORIGINAL DATA FOR CONFIGURATION l 
SEED CONVEYANCE TESTS 

C-2 ORIGINAL DATA FOR CONFIGURATION 2 
SEED,CONVEYANCE TESTS 

C-3 ORIGINAL DATA FOR CONFIGURATION 3 
SEED CONVEYANCE TESTS 
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APPENDIX C-1 

ROLLER EJECTOR - LOW AIR VELOCITY SETTING 

RPM CODE l 2 3 

SA~PLE l 2 3 4 5 l 2 3 4 5 l 2 3 4 5 

~EP l 
o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o. 0 o. 0 o. 0 o.u 
3.5 2. 0 l. 0 lo. 0 1. 0 1.0 o.5 1.5 2.5 0.5 3.0 4.0 1.0 4.5 1.0 
4.0 1.0 3.5 11.0 7.0 3.5 9. 0 4. 0 9.0 2. 5 4.5 1 o.o 7.5 6.5 3.0 

10.0 12.5 14.5 18.0 13.0 6.5 10.0 .9.5 .10.s 6 •. 5 1.2. 5 13. 0 12. 0 19. 5 12.0 
12.0 19. 5 17. 0 l 9. G 15. 5 15. 0 12.5 15.0 19.0 12.5 1". 0 19.0 22.0 20.s 15.0 
16.0 21.0 18.5 25.5 20 .o 23.5 20.0 23. 0 22. 0 26. 0 20. 0 23. 0 22.5 21.0 21.0 
19. 5 2 7. 0 2<l.O 27.5 27.0 26 .5 24.0 31.0 29.0 30.5 23 .o 25.5 31.5 32. 5 25. 5 
23.5 32.0 31. 5 31. 0 32. 5 34. 5 28. 5 35. 5 39. 0 32.0 27.0 30.5 33.5 42.5 28.0 
30.0 3 6 .o 34.5 37.5 33.0 45.0 36. 5 36.5 40.0 46.0 35.0 32. 0 35.o 44.0 35.5 
33. 0 36. 5 39.5 '+lo 0 38.5 50.5 45.0 50.0 44.5 50 .o 39 .5 37.0 36.5 48.5 36.5 
37.0 43.0 41.5 47. 0 42. 0 51. 0 53. 0 57.0 53. 5 55.5 43. 0 40.0 41.0 58.0 '+l .5 
46.5 50.0 45.5 52.0 45.5 55 .5 60.0 63.5 73.5 56.5 so. 5 43. 5 so. 5> 59.5 45.5 
47.0 51. 0 53. 5 56. 0 48. 5 61.0 63.0 64.5 75.0 59.5 53.5 47.5 53.5 63.5 50.5 
51.0 58.5 55.5 61.0 52.0 74.0 70. 5 n. 5 76. 0 62. 5 55. 0 48.5 60.0 68 .o 53.0 
54. 5 62.0 59.5 66.0 59.0 00.0 n.o 80 .o 78.5 00.0 59.5 54.5 62. 0 00.0 58. 0 
58.0 61'. 0 62.5 67. 5 66.5 80. () so.o 00.0 64 .o 62.0 66.0 67.5 
59 .5 73.5 68.0 77 .o 68.5 66. 0 67.5 66.5 68.0 
67.5 1a.5 71. 5 78. 5 70.0 11.0 74.0 67.5 74. 0 
74.0 ao.o 76.5 so. 0 73. 0 72.5 76.5 78.5 75.0 
75.0 00.0 79.0 00.0 77. 5 so. 0 76.0 
77.5 ao.o 78.0 so.o 
80 .o 00.0 

REP 2 
o.o o.o o.o o.o ·o.o o.o o.o o.o o.o o.o o.o o. 0 o. 0 o. 0 o.o 
1.0 o.o 4. 5 2. 5 1. 5 8.5 3.5 5.0 4.0 4.5 o.o 2.5 4.0 5.5 5.0 
4.5 1.5 12.5 6,0 5.0 17.0 9. 0 10.5 14. 0 9. 0 2. 5 3.5 5.0 6.0 9 .o 
6. 5 5.5 17.0 io.cr 5.5 21.5 20.0 19 .o 16,0 10.0 10. 5 4,0 13. 5 14.5 1s.o 

11.5 9.Q 22.0 13. 5 11. 0 23. 5 24. 5 20 •. 5 33.0 17.5 13 .5 10.0 19.5 20 .o 16.0 
13.0 12.0 27.0 19 .o 11,5 21.0 25. 5 30. 0 35. 0 25.0 15. 0 l 7. 0 20. 0 22.0 ~2.5 
17. 5 23. 5 29. 0 23.5 19.0 28.0 34.0 37.5 39.0 33.0 19. 5 lB.5 31.5 28.0 30.5 
24.5 26.5 34. 5 26. 5 30.0 36. 5 41. 0 39.5 49.0 42.5 27.5 19.5 34.0 28.5 31 .5 
28.5 32.0 40.5 30.5 33.5 43.5 46.5 47.5 54.0 54.0 31. 5 24. 5 36. 0 35. 0 37.5 
32.0 36. 0 44. 5 37. 0 37.0 47.5 54.5 48.0 60.5 61.0 35.0 30.0 37.5 35,5 40.5 
37.0 41.0 47.5 38.5 38.0 52.5 61. 0 59. 0 63. 5 65. 0 40.0 32.0 44.5 39 .o 42 .o 
40. 5 43.0 52.0 39.5 43.5 54.il 62 .o 64.0 68.5 70.5 50.5 37. 5 50.5 48.0 49.1) 
47.0 47.0 61. 0 46.0 46. 5 6'+. 0 11. 0 65. 5 77. 5 72.0 53.0 42.0 52.5 50.5 50.5 
49 .5 56.5 63.5 '+8.5 54.5 71.5 73.0 75. 5 so. 0 79. 0 55. 5 '+6. 5 57.5 52. 0 52.5 
51. 0 57. 5 64.0 52.5 57.5 79.5 00.0 00.0 00.0 62.5 48.0 61.0 60.0 56. 5 
57.5 62.5 64.5 57. 5 65. 5 00. o 69.0 56 .5 6'+.0 63.5 60.0 
58.5 68.5 73.5 59.5 71.0 72,0' 58. 0 64. 5 66. 5 65.5 
63. 5 73. 0 11.0 64. 5 72.0 73.5 65.0 70.5 67,0 69.0 
68 .5 76.5 00.0 70. 0 00. o 76. 0 70.5 12.0 75.5 73 .5 
7'+.0 ao.o 00.0 70.5 ao.o 00.0 78.0 76. 5 77.5 76.5 
79.5 79. 0 00.0 00.0 78.5 so.o __. 
so .o so.o 00.0 N __. 



R Pt< CODE 1 

SA~PLE l 2 3 4 

REP 3 
o.o o.o o.o o.o 
3.5 lo. 5 l.a 7.5 

15.0 21.5 13. 5 1 0. o 
19 .5 28.0 25.0 21.5 
29. 0 34.0 30. 0 30.5 
31.5 51.0 33. 0 42. 5 
40.0 53.5 47.5 5 2.0 
45. 5 66.0 55.0 5 5. 5 
62.5 68.5 65.0 66.5 
71.5 7 s.o 12.a 70.5 
12. 5 8 c. 0 80. 0 80. 0 
80 .o so.o 

REP 4 
a.a o.o o.o o.o 
1.0 ra.5 11. 0 4. 0 

11.5 11.0 15.5 10.0 
21. 0 30.5 36.0 ·23.0 
26.0 39.0 37. 5 28. 0 
30.0 43.5 43.5 35.0 
44.0 46.0 49.5 lt3.5 
50 .o 60,5 65.5 58.5 
59.5 66.5 77.5 64.0 
68.5 77.0 60. 0 65.0 
79,5 eo.o 80.0 
so.o so.a 

APPENDIX C-1 (Continued) 

ROLLER EJECTOR - LOW AIR VELOCITY SETTING 

2 

5 1 2 3 4 5 l 

o. 0 o. 0 o. 0 o. 0 o. a a. o a.a 
o.o 12.0 11.5 9.5 4.5 27.5 26. 5 
0. o 22,0 34.0 14 .5 19.a 35.5 31. 5 

23.5 50. 5 47. 5 25. a 33. 5 36. 5 51. 0 
24.5 51.5 50.5 52.0 56.5 62.5 55.0 
32. 0 52. 5 10.0 53.0 67.0 72 .5 69.a 
40.5 so.a so. 0 65. 0 69. 0 so. a 71. 0 
53.5 00.0 70.5 00.0 
62. 5 00. o 
65.0 
00. o 

o.o a.a o.o o.o o.o o.o o. 0 
4. 5 30.0 22.0 21.0 14.5 7.5 4.0 

13.0 46. 5 37. 0 21. 5 34.5 12. 5 18. 0 
22.0 62.5 52.0 44.5 41.5 31.5 39. 5 
34. 5 63.5 53. 0 4S.O 55.5 48.0 41.5 
50.5 so.o 61. 5 62. 5 68. 5 59. 5 43. 5 
52.0 75.0 11.0 69.5 69.5 69.5 
54. 5 15. 5 so. 0 76. 0 so. 0 70.5 
65.0 00.0 so.a eo.o 
68. 5 
75. 5 
so.a 

3 

2 3 

o.o a.o 
33. 5 3. 0 
35.5 9.0 
36.5 39.0 
55.5 53. 5 
00.0 57.0 

63.5 
69.0 
79.5 
80. 0 
00.0 

o. 0 o. a 
2.5 3.5 
4.0 24.0 

25.0 36.5 
32.0 37.5 
33.0 52.5 
46.5 61.5 
53,5 75.0 
66. 5 79.0 
72.5 so.a 
so.o 

4 

a.a 
11. a 
31.5 
41.5 
42.5 
51.0 
67.0 
79.5 
00.0 
00.0 

o.o 
o.a 

12.0 
23.5 
33,5 
45.5 
53.0 
60.0 
69.5 
00.0 

o.o 
8.5 
9.5 

18.0 
19.0 
34.5 
49.5 
55.0 
74.0 
77.0 
00.0 

a.a 
1.0 

12.0 
17.o 
4S.O 
50.0 
65. 5 
00.0 

...... 
N 
N 



APPENDIX C-1 (Continued) 

ROLLER EJECTOR .,. HIGH AIR VELOCITY S~TT!NG 

PPM CODE 1 2 3 

SAMPLE l 2 3 4 5 l 2 3 4 5 1 2 3 4 5 

PEP 1 
o. 0 a.a o.o o.o o.o o.o o.o o.o o.o 0 .o 0 .o o.o o.o o.o o,o 
4,5 1.0 7.0 5. 5 5. 0 9.0 3. 0 3.0 6.0 2.0 1.5 o.s e.o 1.0 1,5 

10.0 s.o e,o 1.0 9,5 14.-5 e.o 4, 5 12. 5 11. 0 11. 0 6,0 10.0 4,5 6,0 
16. 0 l 0,5 11.0 14.0 13.0 22 ,() 21.0 s.o 19.0 12.0 le.s 12.5 12.0 15.0 14. 0 
19.0 12.0 18.0 19. 0 19. 0 22. 5 29. 5 9,5 20. 5 19.0 19.0 13.0 19 .o 16.5 14.5 
24,5 16.5 27.0 20 .a 24.5 23.5 33,0 12.s 31.5 25. 5 21.0 15. 5 23. 5 22.0 21.5 
27. 5 24.5 29.0 22.-0 25.0 35,5 34.0 17.0 32.0 33.0 21.5 20.5 24.0 27.0 250 5 
30 .o 2e.o 32.5 30. 0 29. 0 38. 0 45, 5 29. 0 37.0 39.0 23.0 25.5 35.5 2e.o 21.0 
37,5 33.0 34.5 34.5 35.0 41.5 4e.o 33,5 54,a· 42. 5 34.5 2e.o. 3e. 0 33.0 30.5 
38. 5 37. 5 36. 5 35. 5 39. 0 4e,5 52.0 3S.O 54.5 45.5 35. 5 29.0 40•0 34.5 31,5 
43.5 43.5 46.0 43.0 44.0 54. 0 54. 5 39. 5 59. 0 50. 0 39. 5 42.0 46.0 39.0 37 .o 
45.5 47,5 50.0 45.5 47.0 62.5 5S.O 4S .a 65.0 5S.O 42.0 44. 5 50. 5 41.5 37. 5 
50.5 52,0 57. 5. 49.0 53,0 67. 5 67. 5 49.0 72.5 60.5 45 .5 46.0 52.5 54.0 43.0 
52.5 5 s.o 60.0 55" .o 57,5 79.0 79. 5 51. 0 77, 5 67. 5 49, 0 51.5 56.0 - 55.0 44.0 
57. 5 se.5 65,5 58.5 59.5 so.a eo.o 56.5 so.o n.o 53 .o 54.5 63.5 ss.o 49, 5 
67.0 6i.o 66,0 . 63. 5 63. 0 so. 0 60.0 76.5 59,0. 59.5 67.0 60.0 52 ,5 
71,5 68.0 71,0 66.5 t.e.o 6600 eo.o 61. 0 60. 5 6S. 0 67.5 54.5 
72. 0 71.5 11. 0 &e. 0 74.0 75,5 63.5 6S.O 73.0 69.5 62.0 
ea.a 77.5 79.0 75,0 76.0 so. 0 70. 0 70.0 1r..o 72 .5 63.0 

so.o ea.a 79.0 ea.a eo.o 73.0 75. 0 79.0 1e.s 12. 0 
so. 0 so.o 78.0 eo_.o so.a 73.0 

so.a so.a 
so.a ea.a 

REP 2 
o.o a.a o. 0 o. 0 o. () a.a o.o o.o o.o ·o.o o.o o.o - 0 .o 0 .o o.o 
o •. o 0.5 4,0 1.5 0,5 1.0 4.0 a. s lo 5 9, 0 3,0 3.0 1.0 3.5 3.5 
2. 0 4,5 9,0 6•0 6.5 9,0 s.5 1.0 3,5 9,5 s.o e.s .4, 5 5.5 17. 5 
ft.5 10.5 11.0 15. 5 1.0 11. 0 12. 5 9, 0 9. 5 15.0 13. 5 10.0 a.a 11.5 20.0 

l0.5 13.0 16.5 17.5 9.0 20.0 21.s 15.5 11.0 21.0 22.0 16. 0 9. 5 t3.5 28.0 
11. 5 21.0 21. 0 1 s. 0 1 s. 0 30.0 22.0 20.0 2r..o 21.5 23.5 17.5 13.5 17,5 31.0 
21.5 21.s 25.-5 19.0 25.0 34.0 31. 0 27.0 24. 5 36. 0 24. 0 zo.o 19.0 19.5 38 .a 
22. 5 2 s. 5 29.0 22.0 29,5 ft2 .5 31.5 30 .5 2s.o 36,5 33.0 22.0 27.0 23.5 4!.0 
29. 5 39,0 32.0 25. 5 33. 0 46.0 32.0 43.0 38.5 42.5 35 .5 26.0 30,5 27 .o 50 .5 
35,5 40.5 ftl.5 a1.o 36.0 51.0 34. 5 51.0 46. 5 46. 0 37.5 31.0 31.5 34.0 53.5 
43, a 44.0 42. 0 ?S,O 41.0 52.0 r.s.o 52 .o so.a 48 .o 38 .5 36.0 39.0 3S.O 57.0 
44.S 5 o.s 45.0 32.0 42. 0 55. 5 46. 0 65. 5 56,0 64.0 46.0 42.5 44.5 42.5 66.0 
47,5 55.5 51.5 34,0 49.5 5e.o 57.0 10.0 6S. 0 65.0 49. 0 48. 5 45. 5 46.5 1'0.5 
52.5 56.0 54.5 39. 0 54. 5 67. 5 5e.o ea.a 74.0 67.0 55 .5 50.0 50.5 54.0 12.0 
53,5 62.5 59.5 44,0 56.5 73. 0 70. 5 ea. o ea. o 10. 5 57. 5 56. 0 55,5 55.5 eo.o 
6l.O n.o 63.0 50.5 63.0 79.5 71.0 eo.o 72,5 64.0 60, 0 56.5 57.0 
62~5 72._0 67.0 57. 5 68, 5 80, 0 79.5 eo .o 65 .5 6\,0 67.5 66 .o 
67.5 73.0 73 .5 65.5 69.5 so.a 75. 0 63,5 71.5 69.5 
75.S 79. 0 74.0 67,0 74.0 76.0 73,5 74,5 70.5 
77.5 eo.o 7<J. 0 72. 5 7e. 0 76.5 74.5 so.a 71.5 
so.o so.a 76,0 eo.o so. 0 79.5 77,5 

__, 
7S.O so.a so.a N 
so.a w 



RPM CODF. l 

SAMPLE l 2 ' 4 

REP 3 
o.o o.o o.o o.o 
o.o 5.0 s.o 9 .o 
1. 5 18. 0 13.5 2 B. 0 

24.5 23.5 16.5 35.5 
31.0 34.5 19.0 44.0 
37. 5 39. 5 2 5. 0 50. a 
52.0 46.5 32.5 61. 5 
53 .o 59.0 40.a 76.5 
62.0 64.5 48. 0 so. 0 
71.5 77.0 57.a 
74.5 sa. a n. o 
ea.o 75. 0 

so.a 

REP 4 
o. 0 o. a a. o a.a 

12.5 3.0 2.5 7.0 
13.5 4.5 14.5 9.0 
22. 0 16.5 17. 5 21. 5 
28 .5 23.0 26.5 29.5 
46.5 35,5 33.5 43.5 
56. 5 41, 5 39.0 44. 5 
72.0 43.5 54.0 53.0 
74. 0 46. 5 61. 5 66.5 
ea.a 61.0 73.0 77. 5 

65.5 76.5 78 .o 
74.0 BO. 0 eo.o 
75.0 
so.a 

APPENDIX C-1 (Continued) 

ROLLER EJECTOR - HIGH AlR·V~LOCITY SETTING; 

2 

5 l 2 3 4 5 l 2 

o. 0 o.o o.o o. 0 o. 0 o.o o.o o.o 
6.5 6.0 2. 5 25. 0 5. 5 1.0 14.0 11.0 

11. 0 7.5 6.5 29 .5 17.0 10 .5 28. 5 24.0 
21. 5 24. 0 23. 5 44.0 31,5. 14.0 36.5 26.0 
25.0 43.0 41.0 47.0 so. 0 43.0 .. 6. 0 40.0 
38. 0 60. 0 56.0 77.0 57.5 45.a 49 .o. 42.0 
42.5 63. 5 aa. o 78. 5 11. a 48. a 51. 5 11.a 
48.5 sa.o aa.o sa.o 67.a 62.0 75. a 
59, 5 eo.o so .o 76.0 
73.0 so.a 
74.iJ 
Ba. 0 

a.o o.a o.a :i.o a.o 0 .o o.o a.a 
2. 0 6. 0 o;i. a 5.a 25.5 8.5 3.5 18.0 

14.0 22.a 17.a 10.0 42.5 14. 0 22. 5 21. 0 
2 a. o 2s.o 26.0 33.5 4 ... 5 25 .o 46 .5 2CJ.5 
32. 0 45. 5 50. 0 43.a 63. 5 36. 5 4 7. 5 32•0 
37,5 59 .5 53.5 44.0 so.o eo. o 52. 0 51. 5 
47. 5 so. 0 75.5 11.0 54 .5 61.0 
.51.0 so. 0 ao.o so. 0 70.5 
55.a n.o 
61. 5 Sl).0 
12.0 
78. 0 
ao. o 

3 

3 

o.o 
6.5 

12.5 
20.5 
24. 5 
28.5 
55.a 
58. 5 
59 .5 
7S.O 
sa.o 

a.a 
13.5 
17. 5 
18.5 
37.5 
45.o 
56.0 
'l'a.5 
'l'4. 5 
15 .5 
so.a 

4 

o.o 
14.5 
20.5 
26.5 
37. 0 
43.0 
52.5 
62.5 
68.5 
so.a 

o.o 
3.5 

12.5 
22.5 
21' .5 
48.0 
49 .o 
51.5 
67.Q 
so .o 

5 

o.o 
9,5 

17.5 
33. 5 
37.0 
57,0 
ea.a 

a.a 
11.0 
20.5 
30.0 
31.0 
45.5 
51.0 
74.5 
77.0 
so.a 

N 
+:> 



APPENDIX C-J (Continued) 

AIR EJECTOR - LOW A!R VELOCITY SETTING 

RPM CODE l 2 ~ 

SAMPLE 1 2 3 4 5 1 2 3 4 5 l 2 3 4 5 

REP l 
o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o. 0 o.o o. 0 u.o 
o.o o.o ·o. 5 3. 0 o. 5 4. 5 4.5 2.5 1.0 1.5 1.5 6.0 3.0 1.5 7.5 
B.5 2.5 1.0 5. 0 1.5 12. 0 a. 5 5. 5 14.5 9,0 lo. 5 12.5 7.0 4.5 9 .5 

lo.a 1.0 6.5 lo. 5 2.5 ll>o5 16.5 18.5 23.5 11. 5 · 15. 5 13. 5 11. 5 5.0 12.5 
13.0 u. 5 20. 5 14.0 9,0 31.0 2 5, 0 23.5 21.0 12.5 20.5 18.0 22.0 13.5 16.5 
20.0 l 7 .5 21.5 lS.5 16.5 34.5 31. 0 25. 5 38. 5 17, 5 25. 0 23.0 23.5 22.0 24.5 
21. 0 19.0 22.5 20.5 l 7. 5 39.5 34.5 43.0 41. 5 21.0 35 .5 24. 5 25. 5 23.5 27, 5 
27 .5 25.5 23.5 26. 5 22. 0 51. 5 41. 0 4S.5 46.0 36.0 41. 5 29.5 27.0 31.5 40.5 
31.5 26.5 30,5 30.0 28.0 56.5 44.0 49.5 50. 5 40.0 44. 5 34.0 39. 5 32.5 41.0 
35. 5 32. 5 3~. 0 35. 5 31. 0 5 s. 5 58.0 57.0 59.0 41.0 55 .o 45.0 40.5 36.0 42.0 
41.5 33.0 42.0 39.5 34,5 59.5 64.5 61. 5 59. 5 47. 5 56. 0 45.5 51. 0 38.0 <t6 .5 
42.5 37.0 48.5 4S.O 41.5 75,5 75,5 62,5 6B.O 55.0 56.5 49, 5 53. 0 40.0 52. () 
47.0 40. 5 49. 0 51. 5 45. 0 80.0 76.0 69.5 78.5 63.5 67.5 51.5 57 .5 45.5 53.0 
52.5 41. 5 52 .5 58.0 53,5 ao.o 72. 0 eo. o 72. 5 n. o 55.5 62.5 50.0 54,0 
54, 5 51.5 56.0 61.0 56,J 80 .o 73.0 73 .o 61.5 69.0 51.0 56. 5 
58.5 5 2. 5 64.5 68. 5 56. 5 so. 0 ao.o 79 .o .64.5 70.5 60.5 66.5 
66.0 55.0 65.5 72 .o 61.0 so. 0 71, 5 12. 5 65. 0 73.5 
69, 0 61t.o 72.5 75. 0 64.Q 77.0 80.0 67.0 75,0 
71.5 65,0 74,0 00.0 66, 0 so.a 72 .5 79 .Q 
7B.5 71.5 BO.a 72.5 73.0 so.o 
00.0 73. 5 75. 0 73.5 

71t.5 00.0 77 .o 
79.5 00.0 
ao.o 

REP 2 
o.o o.o o.o o.o o.o o.o o. 0 o. 0 o. 0 o. 0 o. 0 o. 0 o.o o.o 0 .o 
o. 5 2. 5 1.5 o.o 2.0 1.5 9.0 o.5 l.O o.o 2.5 4.0 4.0 1.5 o. 0 
1.5 4.0 2. 5 5, 0 6. 0 4,5 10.0 la.o 5,5 15.5 9.5 9,5 5 .o 5.5 9.0 
9.0 13 .o 5.0 7 .o 14.5 9,5 12. 5. 19. 5 15. 5 19. 0 2 o. 5 12. 5 18.0 7.5 10.0 

14. 0 l 5. 5 u. 0 14.0 16.0 11.0 21.5 20. 5 19. 5 27.5 23. 0 15.0 19. 5 9.5 12. 5 
15. 0 22. 0 13.5 18.0 20.5 22.5 24.5 27.5 22.5 28. 5 29.5 30.5 22.0 13. 5 23.0 
17.0 2 7.0 17. 5 24. 0 25. 0 21. 0 27. 0 2 0. 5 29.5 32.5 35.5 32.0 23.0 21.5 25.0 
25.5 31.0 18.0 27.5 29,0 37.5 31t. 5 39.5 33. 5 51. 5 38. 5 33. 5 25. 0 22.5 32.5 
33. 0 3 0. o 28.5 30.0 31. 5 41.5 43.0 46.5 45.5 53.5 41.0 43.0 . 35. 0 35.0 33.5 
34.5 41.0 32. 5 38. 0 33.0 42. 5 49.0 49.0 47.5 66.5 43,5 48.0 35 .5. 37.0 34,5 
41. 5 45. 5 34.5 40.5 34.0 4B.5 50,0 56. 5 52.0 69.5 45.o 49.5 43.5 38.5 41. 0 
43.5 52. 5 37. 0 43.0 44. 0 56.5 59.5 58,5 55.0 74.0 58.5 50.5 46 .o 42.5 49 .s 
47.5 56.0 42.5 46.5 50.0 57,5 68. 5 65, 0 58. 5 74. 5 61. 5 57. 0 48.0 43.0 52.5 
55. 0 62.0 45.0 49,5 54.5 68.0 73.5 72.5 67.0 ao.o 63.5 58.0 53.0 44.0 55. 0 
57.5 66.5 53. 5 55.0 55. 5 73. 0 00.0 73.5 70. 0 74.0 61.5 62.5 55.0 68.0 
60,0 70.0 54,5 60.0 56.5 77.0 80.0 79. 5 78.0 66. 5 63.5 58.5 69.0 
62. 0 71. 5 5S.5 64.5 62.0 80.0 so.a 80.0 80 .o 68.5 67.0 59.0 70.0 
66 .o 77.5 62.5 68.0 67. 0 69.5 79.5 66.0 00.0 
66,5 ao.o 66.0 12.0 10.0 BO. O BO. 0 75.0 
74. 5 80.0 70. 0 74. 5 74. 5 Bo.a ......... 
78 .o 76,0 ao.o ao.o 
79.0 78.0 80,0 N 

so. 0 BO, 0 CJ1 



RPM CODE l 

SAMPLE l 2 3 4 

REP 3 
o.o o. 0 o. 0 o.o 
5.5 5.5 1. 0 2.5 

13.5 14.5 9.5 7.5 
.17.5 18. 5 10. 5 15. 0 
21.5 31.0 26.5 23.5 
29. 0 41.5 35.0 25.5 
30.5 48.5 45.5 3 7. 5 
47.5 54.0 52.5 41.5 
57. 5 55.0 59. 0 44.5 
60.0 11.0 62.5 53.0 
67.5 80.0 69.5 69.0 
70.5 so.o 71. 5 
78.0 so.a 
so.a 

REP 4 
O.Q o. 0 o. 0 o.a 
5 .o 4.0 2. o 4. 5 

19.0 14.5 4.5 30.0 
23.0 23. 5 12. 5 32. 0 
24.0 26.·5 22.5 50.0 
37. 5 43. 5 33. 0 54.5 
44.5 4 7. 5 34. 0 60.0 
49.0 5 7.5 44.0 67 .o 
70. 0 10. 5 s a. o 78.0 
12.0 78.5 62.0 00. o 
73 .5 80.0 74.5 
75. 5 79. 5 
80.o 80.0 

APPENDIX C-1 (Continued) 

AIR EJECTOR - LOW AIR VELJCITY SETTING 

2 

5 l 2 3 4 5 1 

o. u (). 0 o.o o.o o.o 0 .o 0 .o 
6. 0 4. 0 4. 0 7. 0 1 o. 5 22.5 7.5 

12.0 22.s 37.5 13.0 11. 0 33.0 33. 5 
24. 0 41.0 40.5 24.0 19.5 63.5 34.5 
25.0 48. 0 63. 5 29. 0 38. 0 13. 0 53. 5 
40.0 11 • • 5 80 .o 51.0 39.0 00.0 54. 5 
41. 5 78.5 . 73. 0 65.5 77.5 
55.0 so.o 00.0 12.0 80.0 
67.0 BO .Q. 77.5 
74.5 ao.o 
so.o 
so. 0 

o.o a.o a.o o.a o.o a .o o.o 
3. 5 2. 5 2 s. o o. 0 2.0 5.0 11.0 

13.5 7.5 30.0 20.0 18.0 18. 0 24.0 
19. 5 22.0 45.5 41.5 29.0 31.0 35.5 
29.5 25. 0 47. 0 64. 5 56. 0 42. 0 45. 0 
36.5 41.5 67.5 80.0 68.5 52.0 48. 5 
46 •. 0 60.0 ao. o 73.5 67.0 5S.5 
47.5 77. 5 78. 0 76. 5 60. 0 
60.5 eo.o ao.o 80 .o ao.o 
79. 0 
80.0 

3 

2 3 

o.o o.o 
12.5 2.0 
37.0 29.5 
39.5 36.5 
51.5 40.5 
62. 5 49.5 
73.5 65 .5. 
76.0 78. 5 
80.0 80.0 

o.o o.o 
1.0 6.0 
l. 5 16. 5 

11.0 22.s 
45.5 27.5 
52.5 60.0 
57.5 64.5 
61.5 70.0 
69.5 77,5 
80.0 78.5 

80. 0 

4 

o.o 
o.5 

13. 5 
18. 5. 
45 .5 
49.5 
59.5 
11.0 
73.0 
74.0 
80.0 

o.o 
l.O 

l 0. 5 
27.5 
28.5 
29.5 
45.5 
55.0 
58.5 
64.5 
so. 0 

5 

o.o 
15.5 
16.0 
30.5 
39.0 
41. 5 
66.5 
68.5 
74. 5 
ao.o 

o.o 
1.0 

16.5 
18.0 
44.0 
50.0 
76.5 
so.o 
ao.o 

__, 
N 
O"I 



APPENDIX C-1 (Continued) 

AIR EJECTOR - HIGH AIR VELOCITY SETTING 

RPM CODE 1 2 3 

SA14PLE l 2 3 4 5 l 2 3 4 5 1 2 3 4 

REP l 
O,Q o.o o.o o.o 0 .o o.o o. 0 o. 0 o. 0 o. 0 o. 0 o.o o.o o.o o.o 
2.5 2.5 4.0 1.5 6,5 l .5 9,0 0.5 . 1.0 o.o 2.5 1.5 o.s 2. 5 4. 5 
5.0 6.5 1. 5 1. 0 14. 5 4. 5 10. 0 18. 0 s. 5 15.5 3.5 s.o l .5 ll .O 5,5 

12.5 7.0 ll .5 a.o 19.0 9,5 12. 5 20.0 15.0 18. 5 6.5 14. 0 9.0 11. 5 16. 5 
15.5 12. 0 16.5 13.5 27. 0 11.0 22.0 20.5 19.5 27.5 8 .o 26.0 10. 0 20,5 17. 5 
20 .o 14.5 21.5 18. 0 30 • .5 23. 0 24. 5 27. 5 22.5 28. 0 10.5 33,5 16.0 25.0 24 .o 
25,0 15.5 24.0 27.5 36.Clc 2 7. 5 21.0 28.0 30. 0 32.5 14.5 34. 5 29. 5 34,0 35.0 
30.0 l 9. 5 26. 0 29. 5 39. 0 3 7. 5 34,.S 39.5 33,5 51.0 25.0 36.0 32.5 35.0 48,5 
31.0 21.5 35,0 33.0 43. 5 41.5 43. 0 47.0 45. 5 53. 5 2 a. 5 43,5 35.0 36.0 50 ,5 
39.0 2 5. 5 41.5 36.5 44,5 43,0 49.0 49.0 47.5 66,5 38.5 47,5 37,5 44.0 55. 0 
41.0 31. 0 42. 5 41.5 50. 5 48. 5 50. 0 56.5 52.0 69,5 40.0 50,0 41.0 46.5 56,0 
43.Q .32 .5 47.5 45 .o 57. 5 56.5 59. 5 57. 5 55. 0 74. 0 41. 0 52.5 54.0 51.0 58.0 
47. 0 3 a. 5 50. 5 48,0 58. 0 57.5 68.5 65.0 58,5 74.5 43.0 61.5 55,5 54.0 59, 0 
~2.5 41.0 56.5 52. 5 61.5 68. 0 73. 0 72. 5 67.0 80,o 52. 5 64. 5 58.0 59 ,5 61 .5 
54.0 50.0 60,0 59 .o 66.0 73,5 80.0 73, 5 70. 0 55. 5 68. 5 65.0 64.0 65.o 
58. a 51. 0 71. 0 62. 5 73. 0 77.0 so.a 79,5 57.0 73.0 70,5 67.0 68,5 
66.5 55,5 75.5 •64.0 73. 5 BO, 0 so. 0 so. a 64. 5 75. 0 71.5 12.0 80,0 
67.5 63.0 so.a 72.0 77,5 68. 0 so. 0 75. 5 7S. 5 so. 0 
71. 5 6 a. o so.o 72. 5 so. 0 73 .o ao.o so.o 7 8 .5 
76.0 11.0 78.0 78. 0 
so. 0 76.5 80.o ao.o 

7S.O 
SC>.O 

PEP 2 
o.o o.o o.o o.o o.o o. o o.o o.o o.o o.o o.o o. 0 o. 0 o.o o.o 
1.5 o.o 3. 0 2. 5 5. 5 4.0 4. 5 2.0 5.o 0 .5 o.o o.o 2.0 1.5 2.5 
3.5 2.0 10.0 5.0 6.0 1. 0 9. 0 9. 5 l·T, 5 5. 0 9.0 2.0 11.0 10 .o 6.5 

11. 5 6.0 12.0 5.5 12.5 8.5 9.5 18.0 19.5 9,5 13. 5 a. 5 12.0 15. 0 "!. 3. 0 
11.0 11. 5 20. 5 6, 5 1 7. 5 19. 0 14.0 22.0 20.5 14. 5 14.0 11.5 16.0 15.5 14.0 
22.5 1 7,5 22.0 14.5 21.5 24.0 21. 5 25. 0 31. 5 16. 0 20. 5 13.0 21.5 16.0 18.0 
24.5 2 o. 0 26.0 15.0 22.0 37.5 27.5 36,5 36,0 22.0 22.5 15.0 25.0 22.5 20. 0 
26.0 21.5 26. 5 20. 0 29.0 38. 5 31. 0 37. 0 37.0 26.0 26.5 19.5 32.5 31.5 25.5 
32.5 23.5 32.5 24.5 35.0 41),Q 37,5 45.0 43,0 3S. 5 35.0 20. 5 35. 5 3 6, 0 ~o.o 
36.0 3 o. 5 33.5 3 o. 0 40.0 53.5 45.0 47.0 ~-2 .5 41.0 36.5 36.0 41.5 44,0 39,5 
41.0 31.5 36.0 31. 5 44.0 59, 5 51. 0 55. 5 58. 5 41. 5 39,5 40.5 43.5 46,5 44.5 
45,5 3S.O 44.0 39,5 46.0 6 0 .<> 60.0 56.0 63.0 4S. 5 41. 5 42. 5 57.0 55.5 ltS. 5 
47,5 39. 0 46~0 46.0 51. 5 61. (,) 64. 5 64.0 67.5 55.5 51. 5 46.5 59.5 57.5 50.0 
55.0 46.0 52.0 47.5 56.5 63.0 69. 0 70. 0 10. 0 61. 0 61. 5 51. 0 66.5 60.5 52 .5 
57.0 51. 5 56.0 50.5 5 a. o 69.5 72.0 so.o 7S.5 64,0 62. 5 62.0 6S. 0 71.0 60,5 
61.5 53,0 62.0 57. 5 64. 0 73, 0 78. 0 80.0 67.0 65 ,5 69.5 73,5 72 .5 63,0 
64.5 56.0 67.0 6 2.0 72,5 ao.o ao.o so.o 6S.5 77.0 76.0 75.0 64,0 
70. 5 61.5 10.0 66.5 73.5 74.5 79.5 77.0 so.o 67. 0 
74.0 6 2.5 73.5 6 s. 5 74,5 so. 0 so.o ao.o 78.0 
ao.o 70.0 eo.o 71.5 77.5 78.5 

75. 0 7S. 0 80, 0 so.o --' 
B!J ,Q 80.0 N 

"-.! 



APM CODE l 

SAMPLE l 2 3 4 

REP 3 
o.o o.o o.o o. 0 
5.0 6.5 o.o 0.5 

15. 0 l 7. 5 6.5 s.o 
21. 0 27.5 12.0 23. 5 
36.0 33.5 2! .s 36.0 
41.0 35. 0 32. 5 57. 5 
46.0 43.0 44.5 62. 0 
4S.5 45.5 45.5 66.0 
65.5 62. 0 63. 0 11. 5 
74.5 66'. 5 67.0 79.0 
so. 0 7S. 5 11.0 so.o 

so.o eo. o 

PEP 4 
o.o o.o o.o o.o 
o. 5 l.O 5.5 1.5 
3 .5 17.0 6.0 14. 0 

15.5 2 3 .5 15.5. 25.5 
27.5 26. 0 2s. 0 2 s. 5 
29.5 29.0 31.0 29.0 
41.5 32. 5 51.5 52.5 
55.0 45. 5 64. 5 5S. 0 
59.5 54.0 73.5 63 .a 
65. 0 61.0 79.0 74.0 
76.S 73.0 so.a 79.5 
7S,O so.o so .o 
so.a 

APPENDIX C-1 (Continued) 

AIR EJECTOR - HIGH AIR VELOCITY SETTING 

2 

5 l 2 3 4 5 l 2 

o. 0 o. 0 o. 0 o.o o. 0 o.o o.o o.o 
3.0 10.0 14. 0 £. 0 20. 0 1. 0 o. 5 26. 0 
s.o 19.0 lS.5 36.5 22.5 11.0 3.0 21.0 

22. 5 3S. 5 21. 5 44;5 36.0 17 .o 7.5 37.0 
27.G 46.0 43.0 64.0 41.5 19.0 13. 0 44. 5 
33. 0 5S,5 60.0 6s.·o 54.0 36.5 21.5 57,5 
47. 5 12. 0 10. 5 so. 0 63. 0 66. 0 30. 0 so.o 
53.5 74.0 so.o 79.0 7S.5 40. 0 
66, 0 so~o eo.o so.o 65. 5 
69.5 80. 0 70. 0 
75.0 so.o 
so. 0 

0 .o o.o o.o o. 0 o.o o. 0 o.o o. 0 
6.5 11.s o.o 6.0 7.0 l2.5 4.5 7.5 

12. 0 24. 5 22. 0 7.5 30. 5 31.5 10.0 12.0 
lS.5 25.5 24.5 46.5 54.5 3S.O 10. 5 . 13. 0 
32. 5 40. 5 46.0 50.0 57.0 67.5 lS.5 13.5 
45.0 5S. 5 47. 5 76. 5 so.o 74.0 31. 5 2 o. a 
52.~ 75.0 6S.5 so.o so.o 36. 0 33.5 
64. 5 so. 0 so.o 61. 0 69.0 
69.0 75. 0 10.0 
12. 0 77.0 13.5 
so. 0 7S. 5 so.o 

so.o 

3 4 

o.o 0 .o 
11. 5 6.0 
19.5 16.5 
34.0 25.0 
39.5 4 7. 0 
43.0 53.0 
47.5 57.0 
11. 0 so.o 
73.5 
so.o 

o. 0 o. 0 
10.5 o.o 
15.0 26.0 
29. 0 2 9. 5 
47.0 41.0 
53.5 65.0 
5S. 0 65. 5 
12.5 72.5 
75. 0 79.0 
11.a so.o 
so.o 

o.o 
3.a 
s. 5 

15.0 
40.0 
46.0 
60.5 
69.5 
17.5 
80,0 
so. 0 

o.o 
5. 5 
1.0 

23.0 
31.o 
33.0 
46.5 
52.0 
61.5 
so.o 

N 
00 



APPENDIX C-2 

ROLLER EJECTOR - LOW AIR VELOCITY SETTING 

RPM CODE l 2 3 

SAMPLE l 2 3 4 5 l 2 3 4 5 l 2 3 4 5 

REP l 
o. 0 o.o o. 0 o. 0 o. 0 o.o o. 0 o.o o.o o.o o.o o.o o.o o.o o.o 
o.o 0.5 3.0 o.o 4.0 3.0 6,0 5. 0 4. 5 o. 0 o. 5 4.0 1.0 5,5 t .o 
o. 5 2. 0 8.5 s.o 7. 0 6,5 9,0 10. 5 6.0 3.0 2.5 4.5 12.5 8,5 5. 0 

11.0 11.5 11.0 11.0 10. 5 19. 0 12. 0 20. 5 10. 5 10.5 9,5 7.5 11.0 15.5 10.0 
13.0 13.0 17,0 12 .o 12.0 20.0 21.5 22.0 22.5 14. 5 10. 5 lo. 5 21. 5 2 5. 5 1o.5 
15. 0 13.5 19. 0 20. 5 18. 5 30. 0 28.5 33.0 29.5 l7 .s 11. 5 11.0 28.0 26.5 14.0 
18.5 24.0 19, 5 21.0 21.s 32. 0 33. 0. 37,5 34, a 25. 0 17. a 19. 5 29.0 35 .5 19 .a 
26.5 26.0 29. 5 25.0 26.0 43.5 36.5 40.0 34.5 32.0 29. 5 21. a 40,5 36.5 26.0 
32.0 31. 5 34,0 2 0. 5 30. 5 5 a. 5 42. 5 47.0 39.5 34.0 37,5 31.5 41.5 43,5 28.0 
38.5 34.5 3 7.5 30.0 34. 5 55,5 56.0 49. 5 so. 5 46. a 41. 0 41.0 47 .5 48.0 29.5 
41. 0 39. 5 43.a 36.0 36.5 56.0 '57.0 59. 5 58. 5 55. 5 41. 5 45.5 55.5 53. 0 35.0 
49.0 45.5 47.0 37. 0 42. 5 61. 5 60. a 63. 0 72, 5 62.5 47. 5 46 .5 64.0 58 .o 45.0 
49.5 48.0 50.5 41. 5 47,5 64.0 70.5 11.0 74.0 63. 0 so.o 48. 5 64. 5 62,5 53. 0 
54.0 54.0 56.0 44.0 5 o. 5 72.0 71.5 so.o so.o 69,0 53.0 52.0 67.5 67.0 55. 0 
59.0 59.0 60.0 48.5 55. 0 so. 0 75. 0 70.5 58.0 54.0 68.5 69.5 62.0 
59,5 60. 0 65.0 55.0 58.5 00.0 74.a 61.0 63.0 11. 5 10. 5 63.5 
64.a 67. a 69. a 59. 0 59.0 80 .o 63,5 6S.5 so.a 74.5 67.5 
1a.o 69,5 11. 5 61.5 68. a 68.5 6 9. 0 aa~o 76.5 
12.0 72, 0 12.0 70,5 12 .a 73.a 10. 5 79,5 
74.0 74,0 80,0 13,a 74.0 ao.o 76 .5 so.a 
78.a 79.0 79.5 76.0 so.a aa.o 
80. 0 8a. 0 ea.a aa.o 

REP 2 
a.o a.a a.o o.o o. 0 o. 0 o. 0 a. o o.o o. 0 o.o o.a o.o o.o o.o 
2.0 0,5 l•O o.a l.o 3.5 4,5 la.a s.o 4.0 3. 5 5. 5 5. 5 s.a 3.0 
6,5 s.o a. o 2. 0 a. o 5. a 1.0 18.0 11.0 9 .o 4,0 s.o 10.0 1.0 5,5 

13.5 7.0 13, 5 s.o 13.0 s. 5 lo. 0 24. 0 22. 0 10. 0 s.o 11. 5 13,0 7,5 s.o 
! 5. 5 12.0 19. 0 la. s 15.5 11.0 21.0 33.5 22.s 30.0 12.0 16. 0 17. 0 11.0 16. 5 
22.s 13. 0 n.s 13,0 17. 5 20. 0 34.0 36.0 33,5 36.5 13 .5 19.0 24.5 lS ,5 18.5 
24.0 16.a 21.0 17 .5 22.5 2a.o 40. 5 37. 5 39. 5 3S. 0 21. 5 23.0 25.5 19.0 32.0 
32. 5 23.5 29. 5 20.s 28.0 31.0 45. 5 44.0 51. 5 48.0 29 .o 26.0 31.0 24. 5 33.0 
34.5 28,5 33. 5 20. o 32. o 42. 5 52. 5 47, 5 59.a 49.Q 36.0 2 9 ,5 37.5 31.5 37.5 
36.0 35 .a 40.0 29.5 35.5 45.'> 59.0 56,0 63.a 52. 5 37. 5 34. 0 39. 5 32.5 45,5 
43. 0 41.5 43.0 40.0 39. 0 49. 5 68.0 61. 5 65.0 59 .5 39 .s 38.0 44.a 33.0 46.5 
45.5 45.a 47.0 42. 0 49. 5 58. 0 1a. o 75.5 73. 5 67.0 44.0 4S.O 4S.O 44.0 61.0 
51.0 51.0 54.5 45.0 51.0 63.5 75.5 79. 5 76. 5 69.0 45. 5 54• 5 57. 5 45. 5 64.5 
52. 5 5 s. 0 6a. 0 4 7. 5 54, a 6 7. 5 so.o ao.o 80.Q 73.0 47.5 59,·5 5a.o 53.0 73.0 
58.5 59•0 63.0 53.5 57.0 79. 0 -,7, 5 55. 5 63.a 60.0 54.0 74.5 
60. 0 63.5 64.a 59,5 66 .a so.a 78.5 64.5 65.a 65.5 62. 5 76. 5 
69.a 11,a 69.5 64.0 67.5 eo.o 65 .a 73 .5. 71.5 65.5 78.5 
10.a 73.0 11.0 73 .o ., 2. 5 68.5 74. 5 12. 0 12. 5 ea. o 
75.a 76.0 11. 5 77.5 79.5 72 .o 75. 5 74.5 ao.o 
78 .o 79.a 8a.a ao.o 80.Q 11.0 80.0 ao.o 
80,0 ao.o 79. 5 N 

80 .o l.O 



RPM COOE l 

SAMPLE l z 3 4 

REP 3 
o.o o. 0 o.o o.o 

10.0 4.0 8.o 1.5 
13.5 13 .5 9.0 4.5 
21. 0 15.5 18. 0 20. 5 
22 .5 27.5 40.0 22. i; 
35.0 42.5 47.0 27.5 
45.5 45. 5 57. 0 37.0 
50 .5 55.0 58.5 49.5 
59. 5 57. 5 68.0 54.5 
64.5 10.0 77.5 62.0 
so.o so.o eo.o 70.5 

80. 0 78.0 
ao. o 

l!EP 4 
0 .o o.o o.o o.o 
1.0 3.5 1.0 1.0 
1.0 u •• 0 13. 5· 1. 0 

15.0 25.a 21.a 17.5 
23. 0 27, 5 29. 5 24.5 
34.5 33.5 39.0 26.0 
38.5 49,0 46 .5 42.5 
46.0 52. 5 51. 0 49. 5 
54,5 61.5 1>2. 5 54.0 
63.0 68. 0 73.5 65.0 
ea.a 78.0 eo.o 73.0 

eo.a eo.o 

APPENDIX c~2 (Continued) 

ROLLER EJEtTO~ - LOW AIR V~LOC!TY SETTING 

2 

5 l 2 3 4 5 l 

o.o o.o 0 .o o.o o.o o.o O•O 
17. 0 4. 5 10. 0 8. 0 0.5 3.0 3.0 
18.0 . 1.0 17. 5 33.5 10. 0 15. 0 18.0 
35. 0 10.0 34.5 42 .5 34.0 21.0 38 .o 
40. 0 21. 5 51. 5 52. 0 48. 5 40.0 42. 0 
44.5 <t7.5 80.0 72.5 56.0 51.0 42. 5 
45. 5 51.5 so.o 80.0 57.0 69.0 
58.0 n.o 76. 0 76. 0 
59.0 76.5 80.0 so.a 
70. 5 so. 0 
eo.o 

o.o o.o o. 0 o. 0 o. 0 o. 0 o. 0 
2.5 14.5 21.0 7.5 6.0 20.0 o.5 
3. 5 16. 0 29.0 33.5 31. 0 42.5 13 .5 

15.5 21.5 47. 5 52. 5 54. 0 56. 5 11. a 
18.0 35.5 65.5 56.Q 59.5 59 .o 28 .o 
27. 5 52. 5 66. 0 57. 0 ao.o n.o 29.5 
43.5 55.0 eo.o 60.5 ao.o 54. 0 
51.0 73.5 ao.o 66.0 
i.0.11 aa. o 67. 5 
63.0 1a. 0 
12.5 78.0 
BO. Q eo.o 
ao.o 

3 

2 3 

o.o o.o 
9.5 2.0 

27. 5 5. 5 
32.5 19.0 
43.0 34.0 
54. 5 47.5 
60.0 61.5 
69.0 67.0 
78.0 ao. o 
eo.o 

o.o o.o 
19.5 1.0 
22.0 15.5 
39.0 36.0 
47.5 37.0 
59.0 60.0 
67. 0 61. 5 
ao.o eo.o 

4 

o.o 
21.5 
22.5 
2<il. 5 
39.0 
60.5 
74.0 
79.5 
so.a 

o.o 
5.o 
6.0 
6.5 

18.0 
28•5 
32.0 
45.0 
5a.o 
10.0 
79.a 
80.0 

o.o 
o.5 
l.O 

20.5 
34.0 
so.a 
59.5 
75 .o 
80.0 

o.o 
14. 5 
17.0 
25.0 
35. 0 
49.5 
61. 5 
67.5 
80.J 

__, 
w 
0 



APPENDIX c..,.2 (Continued) 

ROLLl"R EJECTOR - HIGH AIR VELOCITY SETTING 

RPM CODE 1 2 3 

SAMPLE l 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

REP l 
o. a o. 0 o.o o.o o.o o.o 0. 0 0 .o 0. 0 0 .o 0 .o 0 .o o. 0 o. 0 o.o 
3.0 o.o lo 5 3.5 a. 5 a. 5 3. 5 6.0 4.0 3.0 o.o 2.0 5.0 0.5 4.5 

12.5 2.0 6 .·o 5 .o 6.5 11.0 7.5 13.Q 1. a 1.0 3.0 6. 5 12. 0 2.5 lo. 5 
14. 0 a. 5 9.0 a. o 7. 5 12.0 18. 5 21.5 11.0 8 .5 9 .o 23.0 13.0 5.5 14.5 
15 .o 9 .o 12.5 14.5 13. 5 15. 0 19. 0 22.0 20. 0 12.5 12.0 23.5 19.0 7.0 24.0 
18.5 14.0 20.0 18.5 18.5 22.0 19.5 25.5 23.5 27.5 11.0 25. 5 22. 5 lo. 0 26.5 
21. 0 20. 5 23. 5 21. 5 25. 0 28. 5 26.5 33.0 31.0 30 .5 20.5 37.5 31.5 17.5 32.5 
25.5 23.5 29. 5 26.5 32.0 39.0 33. O· 40.5 32. 5 31. 0 25.0 42.0 34.5 20.0 33.5 
31. 0 26. 0 35.5 30.0 34.5 41.5 37 .5 45.5 46.0 34.0 29. 5 42.5 36.5 21.0 36. 5 
32.5 33.5 39. 5 32. 5 39, 0 45. 0 49. 5 55. 5 52. 0 40.0 30.0 44.5 44.5 27 .o 38.0 
37.0 . 36.0 42 .5 38.0 42.0 47.0 52. 0 62.0 61,5 45.0 39.5 46. 5 45. 0 32. 0 44.5 
41. 0 3 a. 5 45.5 41.5 50. 5 51.5 55.5 63.5 67.0 60 .o 40 .5 52.0 46.0 41.0 52. 5 
45.5 41.5 57. 5 46. 5 54.0 56. 5 57. 5 72. 5 74.0 63.0 46.5 5 a. 5 52.0 43.0 55 .o 
51 .o 50.5 59.5 50.5 56.0 51' .5 60.5 74.5 77.5 69. 5 53. 5 66. 0 52. 5 50. 0 60.0 
58. 5 5 2. 5 65. 0 57. 5 62. 0 65.0 63.5 ao.o ao.o 74.5 55.0 67.5 56.0 54.5 66.0 
62 .o 56,5 69,0 63.0 69.5 12. 0 64. 5 so. 0 55.5 72.0 56.5 58.5 68.5 
64. 5 6 7. 5 71•0 66.5 75.a 72.5 76.0 00. o 59. 5 72.5 57. 0 60. 5 69.5 
67.5 69. 5 78.0 71. 5 79.0 79.5 78.0 63.0 77 .5 11.0 68 .o 71.5 
70.5 73.5 78.5 76.0 80 .o ao.o 80. 0 64. 5 eo.o 75. 0 71.5 so.a 
11. a 79. 0 so.a ea.a 71.5 75.5 79.5 
78.Q aa.o 72 .5 ea .a BO .O. 
eo.o ao. a 

REP 2 
o. a o. a a.o a. a cr. o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 
4.5 7.0 2.0 3.a 2. 0 2. 5 11. 5 1. 5 o. a a. a 4.5 a. 5 4.5 3 .5 1 .5 
a.5 ll.5 6.a 6.5 5.5 6.a 14.a 9•5 6.a 6.5 a.a 5.a e. 5 4.5 3.5 

12.5 14.5 la. 0 11. 0 
"· 5 

8. 5 19. 0 21.5 10.5 10.0 12.5 5 .5 2a.a 13.a 1.0 
15.a l S .5 13.0 16.0 11.a 22.5 21. 5 26. 5 24. 5 14. 5 15. 5 11.5 23.0 16.5 15. () 
22. 5 19. 5 19.0 19.0 17.0 23.0 3a.5 34.5 28.5 18.0 20 .5 20.0 27.0 20.5 11. 0 
24.5 23.5 26.0 2 2. 5 23.0 32. 5 32. 5 40. a 35.5 26.0 21. 5 23.5 28. 5 22.5 lS.O 
32.0 ~ 2 .5 30.5 25 .5 27.0 33.5 35.a 43.5 39.0 27. 5 27. 0 28. 0 33.5 25. a 3a.5 
37.5 33.5 39. 5 2 7. 5 29.5 39.5 36.5 48.0 44.5 28 .5 28 .o 33.5 39. 5 30.5 32.5 
43.5 4a.a 43. a 39.0 35.5 47. 0 49. 5 66. a 57.5 36.0 35.a 36. 5 4S.5 35.5 37.5 
49.5 52.0 45.0 41.5 3 7.5 49.0 50.5 66.5 59. 5 39. 5 36. 5 42.5 54. a 37.5 43.a 
56.5 56. 0 52. 5 44. 0 40. 5 53.0 56.0 12.a 64. l) 40.0 57. 5 47.5 57.0 53.5 43.5 
61.a 6a.5 5S.a 46.a 45.0 60.0 59. 5 74. 0 75. 5 46. a 60.a 53.0 6a.5 54.5 51.a 

-6a. a 66.5 6 a. o 52.0 4S.5 69.5 70.5 77.a 79.0 46.5 62.5 56.0 66.0 58.0 54. 0 
70.0 10.0 64.0 53.5 50. 5 72. 5 77. 5 80. 0 aa.o 60.5 63 .o 57 .5 71.0 60.5 69.0 
75.5 75.a 72.0 5S.5 54.0 77.a 80.0 67.0 6S.5 59. 5 n. 5 66.a 73.5 
so.a 79. 0 74.a 61. 0 59.0 ao.o 11.0 75.5 66.5 so.a 69.0 76.0 
so .o ao.a 75. 0 66.5 61. 0 7S.5 77.5 71.0 11.0 79.Q 

so.o 72.5 67.0 ao.o 80. 0 12. 5 so. 0 ea.o 
ea. o 79. 5 11. 5 77.5 

so.a 74. a so.a 
79.0 
ea. o ---W 



RPM CODE 1 

SAMPLE 1 2 3 4 

REP 3" 
a. o o.o o.o o. 0 

11.5 o.o 2.5 o.o 
13.0 15.5 6.5 6 .o 
18. 0 2 o. 5 15. 5 21. 0 
22.5 23.0 11>.o 2b.5 
39.5 3 2.s 29.0 36.5 
48.0 47.0 37. 5 42. 5 
59.5 55.5 40.0 50 .o 
65. 0 5 9. 5 54.0 67.5 
11.5 76.5 10.0 72.0 
80.0 77 .5 71.5 80,0 

80. (I 11.0 
80.0 

REP 4 
o.o o.o o.o o.o 

11. 5 o.o 3. 5 5. 5 
29 .o 1.0 14. 0 . 11. 5 
33.5 23.5 33.0 18.5 
41.5 33.5 38. 5 30. 0 
52.0 35.5 41.5 38.5 
57. 5 47. 0 47.5 45.5 
65.0 55.5 64.0 52. 5 
72.5 63. 5 65.5 69.5 
00.0 70. 5 12.0 11. 5 

11.0 80,0 eo.o 
80.0 

APPENDIX C-2 (Continued) 

ROLLER EJECTOR - HIG~ AIR VELOCITY SETTING 

2 

5 l 2 3 4 5 1 

o. 0 0.1) o.o o.o o.o o.o 0 .o 
1. 0 29. 0 2. 5 22.5 11. 5 8.5 10.5 

14.5 64.0 7.5 40.0 22. 5 10.5 21. 0 
20. 5 75.5 37. 5 55.5 34.5 39 .5 29 .o 
34. 0 76.5 55. 0 58.0 47.5 46. 0 52. 5 
37.5 8a.o 72 .5 73.0 70.5 so. 5 53.5 
48. 0 74.0 80.0 80.0 76.5 65.5 
57.0 80. 0 78. 0 79. 0 
64,5 80.0 80 .o 
70. 5 
80.0 

o.o a.a o.o o.o o.o o.o o.o 
4. 5 9.5 7.5 20.0 7.5 4.5 23. 5 
8.0 10.5 11. 5 29. 0 18. 0 19. 5 38. 0 

25.0 23.0 18.5 32.5 32.0 21. 5 43.5 
35. 0 34. 0 34. 5 51.0 53.0 22.5 54.5 
42.0 58.5 45. 5 58. 0 73. 0 51. 0 55. 5 
49.5 63.0 63.5 74.5 eo.o 68.5 68.0 
51, 0 80. 0 72, 5 79.5 ao.o eo.o 
6·8.5 80.0 80.0 
·73. 5 
80.o 

3 

2 3 

o.o o.o 
3.5 1.0 
5. 5 15. 5 

22.0 18.0 
25.0 20.5 
27. Q 57. 0 
53.0 60,5 
54.0 65,Q 
70.5 80.0 
76.5 
80.0 

o. 0 a. o 
5.5 12.5 

14.5 23.5 
31.5 36.0 
44.0 42.0 
66,0 45. 5 
68.0 56.5 
80,0 75.5 

BO. 0 

4 

o.o 
7.5 

32. 0 
34.5 
41.5 
57.0 
60 ,5 
so.a 

o. 0 
16.5 
32.0 
36.5 
40.5 
<t5.0 
62.0 
71.5 
ao.o 

o.o 
18.0 
31.0 
56.0 
57 .5 
80.0 

o.o 
0.5 
l .5 
3.0 

11.0 
18. 5 
44.0 
45.5 
52.5 
55.5 
80.0 

w 
N 



APPENDIX C'.:'2 (Continueci) 

AIR EJECTOR - UIW AIR VELJCITY SETTING 

RPM CODE 1 2 3 

SAMPLE 1 2 3 4 5 1 2 3 4 5 l 2 3 4 5 

Rel' 1 
O. D o.o o.o o.o o.o o.o o.o D .D o.o o.o o.o o.o Q. 0 o.o o.o 
2.0 0,5 o.o 3. 5 3.5 2. 0 lo 0 l. 5 6.0 1.5 4.0 2.5 7.0 2.5 s.o 
4.0 1.5 6.0 4.0 1.0 2.5 3. 5 7.0 11. 0 12. 0 10. 5 6.0 10. 0 3~5 s.s 

12.0 4.5 11. 0 s. o 13. 5 10~0 6.5 19.0 20.5 14.5 lS.5 14.5 10.5 12. 5 11. 0 
lit .5 9.0 15.o 14.5 17. 5 17. 0 9. 0 23.5 22. 5 22. 0 21. 0 11.5 17.5 14.5 lB.O 
19.5 18.5 23.5 21.0 22.0 22.0 20.0 25.5 31.0 27. 5 25. 0 23. 5 22. 0 21.s 21.5 
29.5 20.0 24. 5 22. 5 31.0 24.5 25.5 28.0 31.5 37.5 26. 5 26.5 25.5 24.5 37.0 
30.0 29.0 31.0 30.0 37.5 36. Q 26.·5 35.0 47. Q 44.0 34.5 29.0 27.0 36.0 3S.o 
34.0 31. 5 36.5 36.5 40.5 37.0 1t2.o 38.0 56.0 46.0 35.5 30.0 31. ll 37.0 40.0 
36.5 36.0 39. 0 38. 0 46.5 52. 0 50. 5 45.5 57.0 50.0 44.5 31.0 43.5 39.5 45.0 
43•5 39.5 41.5 46.0 47.5 52.5 52. 5 49; 0 59. 5 55. 0 49.5 36.5 44.0 45.0 51.5 
45. a 42.5 44.0 49.0 54. u 57.5 59.0 54.0 72.5 68.5 50 .5 51.5 48.0 50.5 60. 5 
46.5 ·52.0 48.0 52. 5 se. o 63. 5 61. 5 ss. 5 76.0 71.0 54.5 52.5 so.a 54.5 61.5 
53.5 62.0 52 .o 57.0 60.5 69.5 63.0 60.o 71. 0 75. 5 62. 0 54. 0 57. 0 62. 0 6S.5 
61.0 65. 5 60. 0 59. 0 62. 0 75.5 6S.5 64.0 so.o so .o 64.0 65.o 6t.5 61t.O 70.0 
66.5 66.5 61.5 66.0 70.5 00.0 77. D 69. 0 ao.o 67.5 69.5 73.5 71.5 so.a 
70. 5 n.o 65.5 66.5 71.5 78.0 76~0 69.0 75.0 74.5 74.0 
73.0 73;5 74. 0 71. 0 73. 0 so. 0 78.0 so.o ao.o 76.0 75.5 
so.o 77.5 79.Q 79.5 7S.5 so. 0 1s.5 so.o 

79.5 SO.D so.a so.o 79.5 
00.0 so.o 

REP 2 
o.o o.o o.o o.o o.o o.o o.o o.o o.o o.-o o.o o. 0 o. 0 o.o o.o 
2.0 o. 5 1. 0 o. 5 ·2. 0 1.5 4.5 10.0 1.0 5 .o 9 .o 3.5 6.5 9.0 

"· 5 12.5 2.0 s.5 5.0 3.5 12. 5 u. 0 11. 5 7.0 6. 0 12. 0 13.5 13 •. 0 12.0 s.s 
15. 5 6.0 15.5 s.5 1.0 17.5 21.0 21.5 12. 5 14. 5 13. 0 20. 5 16.5 13.5 11.0 
17.0 11, 5 20. 0 9. 5 10. 5 18. 5 23.o 33.0 20.5 20.5 15.0 21.5 17.5 17.5 u.s 
19 .s 13.0 21.s 17.5 ·16.0 26.5 27.0 37. 5 23. 0 26. 0 25. 0 29.0 21.s 22.0 l't.5 
22. 5 21. 0 2s.o 24.5 17. 0 lt2.() 29.5 39.5 26.5 31.0 27.0 34.0 30. 5 .23.0 34. 0 
26.0 27.5 32. 5 25. 5 26.0 46. 5 30. 5 41. 5 27.5 32.0 2s.o 35 .5 37.0 25.5 36.5 
29.5 34.5 35.o 27.5 30.0 54.5 40.5 53;5 30. 5 33. 5 28. 5 37. 5 3S. 5 31.5 39.5 
31. 5 36.0 3S. 0 35. 5 34. 0 57. 0 4't.O 64;5 4S.o 35.0 't2.0 44.5 41. 5 35.0 42.5 
3S .5 37.0 'tO.O 39.0 34.·5 60. 5 51. 0 65. 0 't9. 0 3S. 5 so.a 53.0 46.5 50.0 48.5 
41.5 41.0 51.5 44,0 39.0 61'.5 59.5 66.5 50.0 't5.0 56.0 55. 5 54. Ci 59.5 59.il 
45.5 44.0 56.0 46. 0 46.0 6S.5 62.5 69.5 57.5 4S.5 63.5 60.5, 55.0 63.0 60.5 
4S.5 50.5 60.0 52.s 50.0 73.0 12.0 75. 5 66. 5 53. 0 65. 5 65.5 59,0 10.0 62.0 
so. 0 54.5 67.5 55.0 52.0 ,76.5 77,5 80 .o 67.5 56.0 66.5 73,5 60. 0 72. 5 67.5 
52,0 57,5 73.0 57. 5 56. 5 so. 0 00.0 72.0 62.5 70.5 79 .o 10.0 77,5 6S.5 
61.0 60.0 77,5 65.5 63.5 77. 0 63.0 76.5 so.a 74.0 78.0 69.0 
62. a 66. a 00.0 73. 5 64. 0 ao.o 65.0 SD .o 75,o so.o 72.5 
66 .5 69.0 00.0 75.a 10 •. 5 66. 5 80.0 so.a 80.0 78 .o 
68.5 72.5 80.0 74,0 69.0 so.a 
72.5 so.o 80. 0 76. 5 so .o 
79 .5 77,5 __, 
so.o 00.0 w 

w 



RPM. CODE l 

SAMPLE l 2 3 4 

REP 3 
o.o o.o 0 .o o.o 
5. 0 1. 5 o. 0 5. 0 
9.5 19 ,5 u.o 19.5 

lo. 0 2 8.5 19. 5 27.5 
21.5 36.0 27.5 41. 5 
38.5 40.0 43.0 48.5 
45,5 54.0 43.5 52.0 
48.5 5 8. 5 54,5 60,0 
64.5 60.0 60 ,5 75.5 
10. 0 7 2. 5 69,5 80. 0 
so.a ao.o 73.0 

77.5 
78. 0 
so.a 

REP 4 
o.o o.o o.o a.a 
3.0 lO. 0 7, 0. 3. 5 
4.0 23.0 l 5. 0 16.0 

15. 5 36. 0 17. 5 19.0 
22.0 46.0 22.0 43.0 
29.0 49.5 31.0 46.5 
41. 0 53.5 48. 5 &3.0 
43.5 65.5 50.5 70. 5 
57.5 66.5 ·55 .5 73 .o 
62.0 73.0 62. 5 80, 0 
80 .o 80 .o 67,5 

80 .o 
ao.o 

APPENDIX C-2 (Continued) 

AIR EJECTJ~ - LOW AIR VELOCITY SETTING 

2 

5 l 2 3 4 5 l 

o.o o.o o.o o.o o.o o.o o.o 
4. 5 22.0 17.0 15.5 21.5 14.0 o.o 
9.0 29. 5 l 8. 5 43. 5 35. 0 18. 0 23. 0 

2 o. 5 36.5 3 8 .o 47.0 44.0 54.0 33.0 
30. 0 50, 5 49.0 48. 5 63.0 11.0 52. 5 
32.5 66.0 50. 5 74.0 so. 0 80, 0 60. 0 
37. 0 so.o 78.5 17.0 80 .o 62.0 
41. 5 80. 0 80. 0 77.0 
58.5 BO. 0 
63,5 
73. 5 
80.0 

o.o a.o o.o o.o o.o o.o o.o 
4. 5 5.0 9.5 l4.5 10,5 25. 5 l7 .o 
6. 0 31.0 42. 5 31. 5 18. 5 48. 0 57. 0 

12.5 42.5 44.0 39 .o 25,5 52.0 58.5 
15. 0 52. 0 49. 5 54.0 28.o 60.0 64.0 
30.0 79,5 5 8. 5 . 60. 0 55, 5 E:4. 5 66. 5 
37.5 80 •. 0 so.a 74.5 63.0 so.o 80 .o 
54. 5 BO. 0 80.0 
55.5 
67. 5 
80,o 

3 

2 3 

o. 0 o.o 
6.0 17.5 
7.5 26.5 

36.0 37.0 
39.5 49,5 
45,5 52.5 
59.0 67,0 
60.0 eo.o 
76. 0 
80.0 

o. 0 o. 0 
20.5 3.0 
22.0 16.0 
22.5 35. 0 
42.0 37.0 
5 8. 5 53. 5 
59.5 63.0 
73 .• 5 '64.0 
78. 0 80. 0 
80,0 

4 

o. 0 
3.0 
4 .o 

28.0 
36.5 
73.0 
80.0 

o. 0 
8.5 

l 7 .o 
27. 0 
28.5 
36.0 
48.5 
80.0 

o.o 
4,5 

34.5 
40.5 
42.0 
43.Q 
79.0 
eo.o 

o;o 
7.5 

15,0 
39.0 
42.0 
50.5 
53. 5 
eo.o 

w 
.i:::. 



APPENDIX C-2 (Continued) 

A IR EJECTOR - HIGH UR VFLJC ITV SETTING 

RPM CODE 1 2 3 

SAMPLE l 2 3 4 5 1 2 3 4 5 l 2 3 4 5 

REP l 
o.o a.a a.a a.o a.a a.o a.a a.a o.o o.a 3.0 o.o o.o o.a o.o 
0.5 9,5 3,0, 4.a a.o 6. 5 4, 5 o.5 o. 0 a.o 1.5 o.o a.5 lo5 4,a 
3,5 10.5 5 ,5 u .o 4.0 12.5 18.5 6.0 4, 5 16.5 2. 5 8, 5 19. 0 4,0 7,5 

u.o n.a 6. 5 11. 5 5, 0 19.5 20,5 8.5 10.5 19 ,() 4,5 9,5 28.0 4.5 14.5 
11.5 16.0 11.0 14.0 11.0 26.5 23. 5 13.5 14,0 19.5 6.a 14. () 33,a 16.5 16.5 
19.a 22.5 18.5 u.o 14.5 31 oO 26.0 22.a 25.5 26.a 6. 5 15.a 34, 5 21.5 17,5 
22.0 24.5 22. 0 20. 5 160 5 H.5 33.5 27.0 27.5 34.5 20.5 18.5 41.5 23.5 23.0 -
26.5 29.5 26.0 24.0 25.5 37,5 40, 0 34, 0 32. 5 48. 0 26. 0 19.5 53.0 24.5 ~l,.5 
29. 5 32. 5 3a,5 32.0 27.0 52.5 47 .5 46.0 37,a 50.a 30 ,5 25.0 57.5 27.5 39, 5 
33,0 35,0 32.0 34. 5 29. 5 57. 5 51. 0 47.0 46.0 57.5 31 .a 31.a 58,0 32.a 41.0 
39.0 lt5.5 37.5 36.0 38.5 60.0 57, 5 53, 0 52.5 61. 5 41. 5 34.5 59.0 37. 0 44,() 
44, 0 46.5 43.0 41.5 43,0 72,5 64,0 55•5 56,0 63.0 lt5 ,5 38.0 67,0 39.0 45. 0 
51.0 52.5 44.0 50. 5 46. 0 80.0 70. 5 60.-5 67,5 72,0 51. 0 46,5 68.0 45,5 47,5 
55 .o 54,5 50.5 54,5 't7.5 74,Q 67.5 68.0 eo.o 53, 0 50, 5 72, 5 46. 0 50,0 
56,5 60.5 52. () 55, 0 52,() eo.o 69.0 eo.o 57,5 61.5 76.0 51.5 •2.5 
59 .a 67,a 59.0 62,0 57.5 77.0 60.5 65,Q so.o 55 .s 71,5 
63.0 10.a 65. 0 69.5 59,5 80~0 65. 5 65,5 59,5 72, 0 
68.5 73,5 65. 5 70, 5 62.5 74.0 66 .o 61,5 72.5 
74,5 76.0 73.0 73.0 73.0 75. 0 6S,5 65.5 79.0 
78. 0 79.5 73,5 .74,5 75.0 79.0 73.5 67.0 ao.o 
so.o ao.o 78.0 so. 0 so. 0 80.o 80.o 79 .o 
80,0 so.a 79.5 

so.a 

A.EP ? 
o.o o.o o. 0 o. 0 o. 0 o.o o.o o.o o.o o.o o.o o.o 0 .o 0 .o 0 .o 
5.5 5,0 o.o 1.0 loO o.o e.o 1. 5 2. 5 9, 5 3. 0 o.o 3,5 1.0 7,5 
1. o 9,5 4,5 1.5 1.5 6,5 14.5 9.0 9.0 10.5 13.0 2.5 9,5 5,0 9, 5 

11.5 13.0 5,5 9,5 60 0 7. 0 17. 0 14.5 11.5 16.0 15.5 3,0 16.0 13.5 10.5 
15.5 17,5 n.o 12.0 10.0 10.5 19.0 16.0 16. 5 20. 0 21. 0 16. 5 17. 5 20. 5 13,5 
16. 5 20.0 13. 5 14. 5 20. 5 24.5 30.0 23.5 25,o 37.0 23.5 21.5 25.0 27,5 16.5 
20 .5 28.0 15.5 15.0 23. 5 29, 0 35. 5 27. 5 27. 5 40.5 32.0 25.5 33.5 32.0 33 .o 
27,5 29.0 2s.o 22.5 21.0 30.0 48.0 34,5 33.0 lt6. 5 41. 5 30. 5 34, 0 35.5 36.5 
29. 5 36.IJ 31. 0 25. 0 32.5 32.5 49.0 lt3.0 36.5 47,5 43.0 36.5 39.0 41.5 lt2,0 
35,5 36.5 35 .5 31.5 42.5 39,0 59.5 43. 5 39, 5 58. 5 44,5 37.0 47.0 42.5 lt4.5 
3S. 5 41.0 37.0 32.5 43.5 42,5 62,0 52.5 ltS,O 65.5 59.0 ltlo 5 52. 5 45.0 lt7,0 
lt5,0 46.5 37,5 36. 5 45. 5 46. 5 76.0 60. 0 4S.5 70.5 67.0 43.0 53.5 50,5 55.0 
47,5 50.5 45.0 4!+o5 50.5 50,0 76,5 69,0 57. 5 73.0 68. 0 55, 0 59. 5 54,5 60.5 
50. 0 53.5 so. 0 48, 5 56.5 61.5 so.o 73 ,5 64.0 75,5 68 .5 56.0 61.0 56, 5 66,0 
53 .o 57,5 52,0 51t. 0 60.0 65, 5 76. 0 71. 5 76.0 72, 0 64.0 11.0 62.5 74,5 
58,0 65.0 54.0 59.5 64.5 80.0 BO,O 72.5 80.0 71t. 5 70.0 76. 0 66,5 75.0 
61.5 66,0 56,0 62. 0 65. 5 7'l ,5 BO .o 71t.5 77,5 69.0 75.5 
70,0 7 2.5 60,'5 6S.5 76. 0 BO, 0 ao.o 7c;,5 eo.o eo.o 
74, 5 78. 0 65,0 70.5 77,5 eo.o 
7S.5 so.o 12.0 79, 5 so.o __, 
so.o 7'l .5 so.o w so. 0 ao.o U'I 



RPM CODE 1 

S4MPLE l 2 3 4 

PEP 3 
o.o o.o o.o o.o 
3.0 1.5 4. 5 a. 5 

17 .5 15.5 9.0 10.5 
28.5 26.0 26.5 16.0 
30.0 36.0 28. 0 21. 5 
37 .0 46.5 40.0 33.0 
40.<l 51. 0 4"-,5 41.0 
57.5 56.5 52.5 52. 5 
60.5 59.5 61.5 . 60.5 
67.5 65. 5 11. 5 68. 5 
68.5 11.0 79;0 ao.o 
eo.o 78.0 so.a 

ea.a 

REP 4 
0 .o a .o o.o .a. o 
a. s 4.5 7.5 1.5 

13.5 19. 5 le. s · 1. 5 
19.5 22 .5 25.0 12.5 
22. 0 33. 5 29.0 2 s. s 
29.0 37.0 37.0 29. 5 
33.0 4 7.5 42 .5 37.0 
53.5 53. 0 55. 5 45. 5 
55 .o 5(>. 5 62.0 62.0 
58.5 76.0 75. 0 71.5 
11.0 eo.o 79.0 so. 0 
ea .o so.a 
eo.o 

APPENDIX C-2 (Continued) 

AIR EJECTOR - HIGH Al~ V~LOCITY S~TTING 

2 

5 l 2 3 4 5 l 

o.o o.o o.o o.o o.o o.o o.o 
12. 0 2.5 13.0 17.5 13.5 2.5 9.5 
20. 5 a. o 14. 5 34.5 2a.o 4. a 14. 0 
21.0 26.5 37.0 48.0 40.0 a. 5 16. 5 
4o. a 49.0 50.5 60.5 45;5 41.5 47.5 
47.5 50.5 51. 5 BO. 0 57. 5 55. 0 so. a 
56,5 61 .a 80•0 60.5 60.0 55. 5 
63. 5 BO. 0 so.a 71.5 65.0 
64.5 ea.a 79. 5 
68. a ea.a 
78. 5 
eo.o 

o.o. o. 0 o. 0 o. a o. 0 a. o o. 0 
s.o 25.5 13.5 13.5 6.5 2.5 15.0 

le. o 33. 0 21.5 22,5 13.0 s.o 23 .s 
20 .o 42. 5 35. 0 24. 5 19. 0 16. a 31. 5 
34. 0 62.0 65.o lt5. 5 33 .o 53 .o 32.5 
51. 0 66. 5 75. 0 69. 0 52. 0 5S.5 40.0 
56.0 eo.o so.a ao.o 62.5 so.a 42. 5 
64. 5 eo.o 78.0 
71. 0 79.5 
79.5 BO, 0 
eo. o 

3 

2 3 

a. o o. 0 
3.5 24.0 
6.5 27.5 
1. 5 30. 5 

12.0 59,5 
29. a 63.5 
44.5 64.5 
52.5 75 .5 
61. 5 ea. a 
72.0 
eo.o 

o. 0 o.o 
1.0 3.0 

31.0 5.0 
65.5 21.5 
70.5 40.0 
so.a 43.0 

70. 5 
73.5 

·16 .o 
eo. o 

4 

o.o 
6,0 

10.0 
16.5 
20.5 
36.0 
46.0 
50.5 
66.5 
74,5 
so.a 

o.o 
13.5 
21.5 
31.5 
45.5 
49.0 
56.5 
71.0 
75.0 
ea.a 

5 

o.o 
o. 5 
4.0 

26.5 
29. 5 
40.5 
43.5 
46.5 
62. 5 
67.5 
80 .o 

o.o 
1. 0 
7.5 

19.0 
33.0 
1t2.o 
59,5 
eo.o 

w 
O'l 



APPENDIX C-3 

ROLLER EJECTOR - LOW AIR VELOCITY SETT! NG 

RPM COOE l 2 

SAl4PLE l 2 3 4 5 l 2 3 4 5 l 2 3 4 

~EP l 
o.o o.o o.o o.o o.o o.o o.o o.o o.o o. 0 o.o o. 0 o. 0 o. 0 o.o 
o.o 1.0 2. 0 l. 5 l. 0 5.0 ~.o 4.0 2.0 4.0 3.0 4.0 0.5 4.5 2.0 
3-.0 5.0 6·.5 4.5 2. 5 lo. 5 f·5 10. 5 5. 5 6. 0 a. o 9.5 5.5 6.5 6 .5 
8. o 8.0 10.5 7.5 8.5 14.5 l .o 13.5 6.0 8.5 12.0 15. 5 lo. 0 12.0 10. 0 

10. 5 13.0 13. 5 0. o 15.0 l 7. 5 ~~:; 18.5 13.0 12.5 16.5 18.0 13 .o 14.0 13.5 
14.5 l 7.5 16.5 14.0 18.0 22. 5 28. 5 20. 0 19. 0 23. 0 23.0 21.0 16.5 15.5 
20. 5 2 o. 5 22. 0 17.0 21.5 28.5 3i. .5 34.0 26.5 24.5 32.0 27.5 21.5 26.0 16. 5 
23. 5 26.5 21.0 21.0 26. 0 37. 5 3'7. 0 38.0 28.5 34.5 33 .5 31.0 25.5 29.0 22.5 
26.5 2 8.5 28.5 25 .o 30.5 42.0 4[ .. o 47.0 35.5 35.0 36. 5 33. 5 29. 0 36. 0 28.0 
33.5 33. 5 34. 5 29.5 34. 5 46.5 49.5 47.5 40.0 42.0 39 .5 40.0 34.0 41.0 30.5 
37.0 39.5 38.0 35. 0 38. 5 55. 5 5~. 5 53. 0 45. 5 46.5 42.0 44.5 38.5 41 .5 34.0 
40.5 43,5 39.0 40.0 42.5 59.0 62.5 63.0 50.0 54.0 46.5 49. 5 46. 5 46.5 40.0 
43.0 44.5 44.1} 42.0 48. 0 64.0 65.5 67.0 58.0 58. 5 48 .5 52 .o 48.0 52.5 47.5 
49 .o 50o5 47.0 47.0 51. 5 69.0 73. 0 11.a 64.0 6l. 5 56.5 58. 5 54.0 61 .5 50 .5 
53. 5 56.0 51.0 52.5 53.0 69.5 79.0 76.5 71.5 70.0 60 .o 61.5 58. 5 65. 5 56. 5 
56.0 59.~ 55. 5 57. 0 54. 0 75. 0 00. a 80. o 77.5 78.5 62 ;o 67.0 59 .5 70 .o 57.0 
61.5 61.5 59.0 60.0 60.5 BO. 0 78. 5 00. o 66.0·69.5 64. 0 73.0 63.5 
65. 0 67. 0 63.0 62.0 63.0 00.0 00.0 69 .5 75.0 70.0 76.0 66.0 
67.5 10.0 66.0 63.0 66.5 74.5 78.0 73.5 00.0 70.5 
73.0 70.5 68 .5 69.0 69.0 00.0 00. o 78. 0 75.o 
75.5 11.0 72. 0 12. 5 70. 0 79.5 77.0 
00.0 80.0 75.0. 75.5 73.0 ao.o 00.0 

eo.o 79.5 78.5 79.0 
BO. 0 00. o 00. o 

REP 2 
o.o 0 .o o.o o.o o.o o. 0 b. 0 o. 0 o. 0 o. 0 o. 0 o.o o.o o.o o.o 
o. 5 o.s 4.5 o.o 0.5 4.0 5.0 2.5 5.0 o.o o. 5 3.0 4.5 loO 2.5 
2.5 3.0 6. 0 4. 5 6. 5 9. 5 12.0 6.5 11. 5 4.0 2.0 11.5 6.0 4.5 10.5 
4.5 5 .o 10.5 8.5 13.5 15.5 22. 5 12. 5 16. 5 11. 5 5.5 13•0 8.5 9.0 14.5 
6. 5 0. o 16.5 ll. 0 15. 5 19.5 23.o 17.0 23.5 l3 .o ll.O 17.5 15. 5 13. 0 11. 0 
9.5 13.0 20.0 17. 0 11. 5 2 5. 0 27. 5 24.0 2 B. 5 14.0 14.0 21.5 18.0 11.0 20.5 

15.o 16 .5 23.5 2 2.0 21.0 31.5 35.0 25.0 37.0 22. 0 20. 0 25. 5 20. 5 22.0 27.5 
18.0 23.0 26. 5 22. 5 28. 5 36.5 39.0 34.5 <tO .5 27 .5 21. 5 31.5 21.0 25.5 31.5 
20 .o 24.0 27.5 29.0 32. 0 42.0 44. 5 38. 5 42. 5 31.5 26.0 34;5 28 .5 27.0 32 .o 
22.5 29. 0 32.5 3 5 .o 35.0 45.5 53.0 45.0 50.5 39.5 30. 5 40. 0 36. 0 31,5 39.0 
20.0 34. 5 35. 0 39. 0 38. 0 53.0 51_?.5 .49.5 55.5 47.5 35.0 42,5 40.5 34.5 44.0 
33.0 37. 5 39.5 42.5 44.5 55.0 63. 0 59. 0 63. 0 50. 0 39. 5 48.5 lt3.5 40.5 49.0 
37. 5 41. 5 44.5 46.5 48.5 57.0 67.0 63.5 66.5 57.0 45. 5 52.5 47.5 45.0 51. 5 
40.5 46.0 49. 5 49.0 51. 5 65. 5 73. 5 66.0 11. 5 63.0 48.5 54.0 52.5 52.5 55.0 
45.5 50.5 52.5 57.0 55.5 &7.0 00.0 74.0 78. 5 64.5 52. 0 62. 5 55. 0 55.0 61. 5 
49. 5 55. 0 56. 0 59.5 61.0 76.5 75.5 ao.o n.o 56 .o 66.0 61.5 58.o 64.0 
53 .5 60.0 61.0 62.0 64. 0 BO. 0 BO. 0 75.5 60.0 67.5 64.5 60.5 10.0 
5B. 5 62.5 65,0 67.0 67.0 BO.O 65.0 74. 5 69.0 67.5 12.0 
61.0 66. 5 68. 5 71. 0 73. 0 70.0 11.ii 69.5 11.0 7B.O 
66 ,5 74.5 72.5 76.0 76. 0 74. 0 Bo.o 78.5 11.0 7B .5 
71.0 76. 0 so.o 78.5 79.0 78.0 80.0 80.0 80. 0 
74.0 78.0 80. o 00.0 eo.o 80 .o 
76.5 eo.o w 
ao. a ....... 



RPM CODE l 

SAMPLE l 2 3 4 

~EP 3 
o.o o.o o.o o.o 
2.0 7.0 2. 0 5. 5 
7 ,5 13.0 12.0 

"· 5 15. 5 25. 0 19. 5 20.0 
21.0 27. 0 21. 0 34. 0 
32.5 3 o.5 35,0 3B.O 
45 •. 0 39. 0 3B. 5 46,5' 
49.0 4'l.5 52. 5 51. 0 
5'l ,5 5 6 .5 61.0 60.0 
6B.5 63.5 62. 5 11. 0 
75,5 .69.0 74.0 79. 5 
eo.o 80,0 eo,o eo.o 

REP 4 
o.o o.o o. 0 o. 0 
7,5 0.5 4.5 3,5 

12. 5 3.0 11. 5 9.0 
25.0 1-S .o 19. O· 1 'l. 0 
30.5 19,0 34.5 30.5 
35. 5 3 o. 5 38.5 3 9, 0 
46.5 38.5 44.0 42. 5 
55,0 47,0 54,5 50.0 
64.0 54, 0 5'lo 5 61. 0 
70 .o 63.0 75.0 n.o 
79,5 74.0 77. (). Bo.o 
so.o eo.o eo. o 

BO.O 

APPENDIX.C.,..3 (Continued) 

ROLLER EJECTOR - LOW AIR VE LOCI TY SETT! NG 

2 

5 l 2 3 4 5 l 

o.o o.o o.o o.o o.o o.o o.o 
6.0 6.5 1.0 l .5 3.0 2.5 11. 5 

lB.5 14. 5 15. 5 23, 5 20. 0 17. 5 22. 5 
31.5 3 0 ,5 35,5 32.5 35.5 31. 5 36,0 
40. 5 43.5 46.0 4B;o 52. 5 45,5 44.0 
4B.5 54,5 66.5 57.0 66. 5 56, 0 59, 5 
57.0 68.0 79.0 12.0 75,5 72 .o 66. 5 
63. 5 BO, 0 BO, 0 BO,O 80.0 eo.o 72 .5 
74,5 76.5 
BO, 0 BO ,.O 

o. 0 o. 0 o. 0 o.o o.o o.o o.o 
1.5 2. 0 3. 5 12 •. 0 10. 0 9, 0 B, 5 
B.5 24.5 21.0 27~ 5 21.0 16.0 21.0 

19. 5 34. 0 31. 5 39. 5 35. 0 30,0 30 .o 
29.!; 48.0 45. 5 55, 5 51.0 45.0 46. 0 
33,5 65.5 61.0 12,0 61,5 60.0 62.0 
43. 5 73.0 so. 0 80. 0 80.0 11.0 71. 5 
55.0 eo.o eo,o eo. o eo.o 
60. 5 
69,5 
79.0 
eo. o 

3 

2 3 

o. 0 o. 0 
5.0 B.o 

1 B. o 23,5 
32.5 32.5 
3i!.5 35.5 
46.5 43. 0 
5'l.5 66. 0 
74.0 75.0 
77,5 BO, b 
Bo.o BO.O 

o.o 0.9 
1.5 11.5 
1.0 23.5 

lB.5 31t,O 
36. 5 44,5 
37.5 53.0 
43,5 61,5 
49. 5 62. 5 
65,5 10.0 
75,5 eo.q 
eo.o 

4 

o. 0 
5,5 

1 B .5 
23.0 
41.0 
51.5 
61.0 
67,0 
BO, 0 

o.o 
9,5 

lB.5 
30 .o 
37.5 
48.0 
59.0 
71, 5 
eo.o 

5 

o.o 
17 .5 
22.0 
42. 0 
50 .o 
5B.5 
62. 5 
71.5 
BO.O 

o.o 
9,J 

15. 5 
32.5 
35.0 
45, 5 
H.O 
70.5 
75,5 
eo.o 

w 
CX> 



APPENDIXC-3 (Continued) 

ROLLER EJECTOR - HIGH AIR VELOCITY SETTING 

RPM CODE l 2 3 

SA~PLE l 2 3 4 5 l 2 3 4 5 l 2 3 4 

HP l 
o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o. 0 o. 0 o.o o.o 
1. 5 o. 5 2. 0 l. 5 2. 5 3.5 a.o 2.5 1.5 8.5 2.5 2.5 4.5 1.5 2. 5 
4.0 3,5 4.5 3.5 5. 5 a. 5 11. 5 5. 5 12. 5 12. 0 4.5 4.0 6.5 4.0 3 .o 
s. 5 a.o 10.0 1.0 12.0 15 .5 18.0 12.0 16.0 17. 5 10. 5 lo. 5 1. 5 S.5 9.0 

12.0 10.0 15. 5 12. 5 16. 0 17.0 23.0 11.0 20.5 23.0 11 .5 lS.5 15.5 12.5 13.5 
11.0 16.5 19.0 18.0 19.0 24.5 30. 0 21. 5 30. 0 26. 5 16.0 22.0 18.0 17.5 15.0 
21. 5 le. 5 22.0 20.5· 22.5 30.0 36.0 22.5 35.0 35.5 19. 5 24.0 22. 5 22.0 19.0 
25.0 24. 5 26. 0 25. 0 28. 0 34. 0 40. 0 26. 5 40. 5 38.0 24.5 25 .5 29 .o 27.5 24.5 
30.5 2 8.5 30.0 28.5 32. 5 40.5 4S.O 32.0 46.5 45.0 25. 0 27. 5 31. 0 32.5 3 o. 5 
32. 5 31. 5 34.5 34. 0 34. 5 49.0 51.5 37.5 47.5 50.5 29 .o 34.5 34.5 39.5. 33.0 
36.0 35.5 3<;. 0 38.5 35. 0 51. Q 60. 5 44.5 57. 0 56.5 32. 0 35. 5 39.5 44.5 37.0 
40.0 42.5 42.5 40.5 38.5 51 .5 1>6.0 54.0 60.0 62. 0 34.0 42. 5 43. 5 49. 0 44.5 
45. 5 45.0 46. 0 46. 0 44.0 58.0 68.0 58. 0 67.0 67.5 41.5 43.5 47.5 58.5 45.5 
50.5 49.5 53.0 48.0 47.5 62. 0 74. 0 62. 0 75. 5 76. 5 47. 0 52.5 53. 0 60.0 49 .5 
53. 5 54.0 59. 5 53.0 50.0 66.0 00.0 68.Q 1'8.5 79.5 48.0 53.5 56.5 62.0 53.0 
58.0 59.0 64.5 56. 5 55.5 73. 5 12. 5 ao. o 00.0 53 .o 50.0 58.5 66.0 55.0 
63.0 62.0 67.0 57.5 62. 5 75, 5 77. 0 60.5 64.0 63.0 12.0 62.o 
68. 0 66.5 72.5 61.0 65.0 79.5 0·0.u 61.5 67.0 66.5 76.5 63. 5 
11.0 70.5 75.5 68. 5 68~0 80. 0 68.5 69.5 70.5 80 .o n.5 
13.5 74.5 79.5 12.0 10.0 70. 5 73.5 n. 5 72.0 
78.0 79.0 80.·0 75. 0 11.0 76.0 78.0 78.0 79.5 
80 .o 80 .o 79.0 00.0 11. Q ao.o 79.5 so.o 

so.o 00.0 so. 0 so. 0 

REP 2 
o.o o.o o. 0 o. () o. 0 o. 0 o.o o.o o.o o.o o.o o.o o.o 0 .o o.o 
1.0 l.o 5.0 o.5 o.o 1. 5 1.0 1. 5 2. 0 o. 5 o. 0 1.5 l.o 3.5 o.o 
5. 5 5.0 7.0 4.0 6.5 4.0 9.0 s.o 9.0 7 .o 5 .5 9.0 4. 5 6.0 4.0 

10.5 10.5 11.0 10. 5 9. 5 12. 5 l 5. 0 12.5 13.5 13.0 S.5 9.5 a.o 12.5 7.0 
14.0 13.0 16.0 14.0 13.5 20.5 23.0 20.5 17. 0 20.5 13. 5 15. 0 15. 0 14.5 13.0 
17.5 19. 0 21. 5 1 7. 5 l 7. 5 26.0 26.0 24.0 23.0 24 .o 16. 5 18.0 15.5 18.5 15.5 
22.0 21.5 26.5 21. 5 21. 5 30. 5 32. 0 30. 5 30. 0 29.0 22. 5 22.0 18.0 22.5 21.5 
26.0 21. 5 2S.5 27.5 27.0 35 .s 41.5 36.0 36.0 34.5 25. 0 2s. 5 21. 5 24.0 25.o 
26.5 31. 0 32. 5 30. 0 29. 5 41.5 42.0 40.5 41.5 43.0 30 .o 29.5 26 .5 26.5 29 .5 
29.5 36.0 3S.O 3 5.0 34.5 46.5 50. 5 45. 5 46. 0 4S. 5 34. 0 34.5 33.0 31 .o 31.0 
34. Q 39. 0 42.5 3S.O 38.0 52 .5 56.5 54.0 53.5 53.5 35.5 39.5 34.0 32. 5 32. 0 
39.5 43.0 45. 5 45. 0 42. 5 60.0 60. 5 57. 5 59.0 5S.5 43.0 45.0 35 .5 39 .o 37.0 
44.0 4 7.0 49.5 47.5 46.0 62.5 66.5 64.0 62.0 63. 0 47.0 50. 0 40.0 4·6. 5 41.0 
47. 0 53.5 54. 0 51. 0 50.0 68.0 71.5 65.0 n .o 67.5 50 .5 52.5 43.5 53.0 44.5 
53.0 54,5 59.5 54. 0 57.0 69. 5 11. 5 13. 5 75.5 76.0 57. 0 55.5 48.5 56.0 50.5 
56.0 62.0 61.5 59.0 59.0 74.0 so.o 00.0 79.5 79.0 59. 5 61. 0 50. 0 62.5 56.0 
59.0 63. 5 66. 5 64. 0 62. 5 79.5 00.0 80 .o 61.5 63.5 55.5 66.5 56.5 
63.0 69.0 72.0 61. 5 67,0 so.o 65.5 71.5 59.5 69.5 60.5 
67. 5· 73.0 n.o 12.0 70.0 69. 5 74.5 65.0 73.5 64. 5 
70.5 76. 0 7S. 0 7S. 5 76. 5 75 .s 77 .5 6S.5 77.5 71.5 
76.0 so.o so.o ao.o 7S.O 77. 5 so. 0 75. 5 00.0 B.O 
00. o 00.0 80.0 77.5 7S. 5 

__, 
00.0 ao.o ao.o w 

l.D 



RPM CODE l 

SAMPLE l 2 3 4 

REP 3 
o.o o.o o. 0 .o. 0 
l.O 5.5 6.5 l.o 
1. 5 16. 0 14. 5 10. 0 

20.0 24.5 21. 0 15. 5 
22.0 32 .o 31.5 26.5 
26. 0 3 8. 5 33. 5 34. 0 
31.0 49;5 39. 5 44.0 
43.0 61.0 48. 5 48.0 
52.0 66,5 56. 0 55. 0 
60.0 72,5 63.0 66.5 
65. 0 so. 0 70.0 73.0 
69.5 80. 0 7S. 0 79.5 
ao.o so.o so.o 

REP 4 
o. 0 o.o o. 0 o.o 
l .5 9 .o 5.0 3.5 
7.5 13 .5 16.0 '13.5 

11.0 23.0 25. 0 2 5, 0 
23.5 35.5 33.0 31.5 
32. 5 44.5 43.0 39.5 
44.0 53.5 53.0 45. 0 
55.0 56.5 57.0 57.5 
60.5 65.0 66.0 64.5 
66 .o ea.a 76.0 73. 0 
n.o 80 .o 79.0 
eo.o eo. o 

APPENDIX C-3 (Continued) 

ROLLER EJECTOR - HIGH AIR VELOCITY SETTING 

2 

5 l 2 3 4 5 l 2 

o.o o. 0 o.o o.o o. 0 o.o o.o o.o 
7.5 14. 0 10. 5 l. 5 l. 0 5. 5 5. 0 4.5 

18. 5 19. 5 13.5 20.0 13 .5 11.5 11. 5 12.0 
22. 0 39. 0 31. 0 41.5 22.5 22.0 24. 5 30.0 
31.0 54.0 54.0 45.5 30.5 &3. 5 33.0 37. 5 
38. 5 63.0 64.5 59.5 41.5 51.5 45 .o 4S.O 
52.5 80. 0 67. 5 77. 5 59. 5 69. 0 54. 0 57.0 
57.0 eo.o 72.0 eo.o 69.5 eo.o 6S. 5 74.0 
64. 0 so.o eo.o 73 .o 77 .5 
74.0 eo. o eo. o 
eo.o 

o.o o.o o.o o.o o.o o.o o.o o.o 

"· 5 
1 o. 5 6. 5 2. 0 2.0 1.5 9.0 4.5 

11.0 26.5 20.0 24.5 11.0 17. 5 lS.O 12. 0 
21.0 35.0 45.5 26.5 33.0 34.Q 25.0 22.0 
30.5 58.5 60. 5 37. 0 so. 0 46. 5 38.0 36.0 
40.5 63.5 73.0 60.Q 62.5 62.0 49.0 49.0 
45. (} 75. 5 so. 0 75.o 77. 0 67.5 65 ,"o 59.5 
52.5 so.a 80.0 so. 0 eo.o 73.0. 68.5 
62. 5 so .o 7S. 5 
6S. 0 80.0 
77.0 
so. 0 

3 

3 4 

o.o 0 .o 
o. 0 o.5 
6.0 24.0 

15.5 21.0 
24. 0 41.5 
35.0 53.0 
47.5 57.0 
56.5 68,0 
63.0 75 .o 
eo.o so.o 

o.o o. 0 
5 .o 1.5 

15. 0 8. o 
20 .o 15 .o 
35.0 28.0 
45.0 30.0 
5s.s 46.5 
67.0 57.5 
79.5 12.0 
so.o eo.o 

5 

o.o 
2.5 
9. 0 

14 .5 
34.5 
39.5 
48.5 
55. 5 
65.5 
so.o 

o. 0 
13 .o 
25.0 
29 .o 
39,5 
50.0 
65.0 
6S.O 
80.0 

..,,. 
0 



APPENDIX C-3 (Continued) 

AIR EJECTOR - LOW AIR llELOC!TY SETTING 

RPM CODE 

SAMPLE l 2 3 4 5 1 2 3 4 5 1 2 3 4 

REP l 
o.o o.o o.o o.o o. 0 o. 0 o. 0 o.o o.o o.o o.o o.o o.o 0 .o o.o 
4.0 1.0 5.0 2.5 0.5 2. 5 5. 0 6. 5 2. 0 2. 5 o. 0 2.0 l.o 3.0 0.5 
7. 0 5. 5 7.5 1.0 3.5 7.5 a.5 7.5 5.5 B .O 5.5 6.0 2.0 5. 0 10. 0 

11.0 10.0 10. 5 9.5 7. 5 9. 5 20. 5 11. 5 10. 5. 14.0 13.5 11.0 4.5 9.0 12.0 
16.5 14.5 13.0 15.5 13.5 21.0 23.0 18.0 17. 5 18. 0 17. 5 20. 0 9. 5 12.0 12.5 
20. 0 16.5 20.0 21. 5 17. 0 24.5 32.5 24.0 27.0 26.5 20 .o 22.5 10.5 21.0 22.0 
25.0 17.5 26.5 24. 0 22. 0 28. 0 34. 0 21. 0 3 o. 0 30. 5 26. 0 24.5 16.5 2 2 .5 26.5 
30•5 20.5 33.0 30.5 24.5 35 .5 39.G 34.5 33.0 37. 5 29. 5 32. 5 23. 0 25. 0 32.5 
31.5 27. 5 34. 5 32. 5 25. 5 3B. 0 45.5 45.0 41.0 41.5 32.0 38.0 30.5 36.0 36.5 
36.0 31.5 39.0 37.0 30.0 45.o 50.0 49.5 50. 0 47. 5 35. 0 41.0 36.5 40.0 38 .o 
44.5 35. 0 41.5 41.5 35.5 55.0 54.0 54.5 51.5 52.5 41. 0 49.0 43.5 42.0 40.0 
50.0 38.5 46.5 44.5 39. 5 60. 5 60. 0 64.0 H.5 66.5 42 .5 53.5 47.5 45 .o 47._5 
54.0 44.0 52.5 48.5 42.0 63.0 65.0 66.0 63. 5 68. 0 55. 5 55.0 53. 5 51.5 55.5 
57. 5 4 B. o 54. 5 53.5 46.S 65.5 74.0 75.o 69.5 7CJ.O 59 .o 61.5 58.0 54.5 56. 5 
61 .5 51.0 60. 0 58.0 50. 5 71. 0 76. 5 78. 0 BO. 0 74.5 63. 5 63. 5 61.0 64.5 58.Q 
65.5 54.5 64.0 6 2. 5 52.5 Bo.o ao.o ao.o BO.O 67. 5 ·10. 5 71. 0 6B. 0 63. 0 
69.0 60.-0 67. 5 67. 0 57. 5 ao.o 72. 5 12.0 72.5 7 2.0 67.5 
73.0 63.5 70.0 71.0 62. 5 80. 0 74.0 7B.O 76 .5 7 0.5 
11. 5 67.0 77.0 74.0 67.0 79.5 79.0 eo. o 75. 0 
Bo.o 75. 0 80. 0 77. 0 70. 5 80.0 BO .o Bo.o 

79.0 80.o ·Bo.o 74.0 
80.0 79.5 
Bo.o 00.0 

REP 2 
o.o o.o o.o 0 .o o.o o.o o.o o.o o. 0 o. 0 o.o o. 0 o. 0 o.o o·. o 
5. 0 5.5 ?.O 1. 0 3.0 2.0 2.0 5.0 2.5 1.0 l.o 1.5 0.5 3.0 o. 0 
7.5 1.0 4.5 1.0 6. 0 4. 5 7. 5 B. o 6.5 9.5 4.0 10.5 7.5 9.0 8.5 

11.5 lo. 0 11.0 9.5 9.0 12.0 15.0 12.0 16.0 14.5 10. 5 12. 5 11. 0 12.5 9.0 
14. 5 14. 0 16. 0 14. 5 14. 0 19. 5 20.0 14.0 ?1.5 20.5 17 .o 22.5 13.5 19.0 l o.o 
18 .o 19. 5 19.0 lB.5 lB.O 23.0 26. 0 19. 0 24. 0 23. 5 21. 0 25. 0 16.5 21.0 19.5 
n.o 23.0 22.0 22.0 22.0 28 .s 32 .o 27.0 30.0 29.0 24.0 26.5 22.0 29.0 22. 5 
24.5 2 5. 5 29. 5 26. 0 26.0 33.0 34.5 31. 5 34.0 34.0 26. 0 28.5 25.5 33.5 26.5 
29.0 2B.O 30.5 30.5 29 .5 35.0 43. 5 40.0 43. 0 42. 5 30. 5 37.5 30. 0 37.0 31.0 
31. 5 33.5 32.5 35.0 32.0 38.0 47.5 42.Q 46.0 47.0 32.5 43.5 33.0 46.0 35.5 
36. 5 3B.5 35.5 40. 0 36. 0 46. 0 55. 0 44.5 52.5 53 .5 37 .5 45.0 37 .5 5 2.0 37.0 
38.0 41.0 37 .5 43.0 43.1) 52.0 59.5 52.0 62.5 56.0 43.5 48. 0 42.5 53.0 42.0 
40. 0 45.0 44. 0 49. 0 44. 0 56.5 61. 5 56.5 64.1) 64 .o 49 .o 5 2. 5 51.0 55.5 't4. 5 
43.5 48.5 47.5 52.5 47.0 59.0 6't. 5 63. 0 70. 0 66.0 50. 5 59.0 51.5 61.0 52 .5 
49.0 56.5 50.0 56.5 52.0 6 7 .5 7 2 .o 65.5 73.5 77.0 59. 5 60. 5 53.0 64.0 60.0 
53.0 57.Q 54. 0 61.0 57. 0 71. 5 so. 0 79.0 80.0 79.5 62.0 64.0 60.5 66.5 61.5 
57.0 61.0 59.0 66.0 61.0 76.5 80.0 so. 0 68. 0 72.0 62.5 72.5 62.5 
60. 0 66.0 59.·5 71.0 62.5 80.0 69.0 73. 5 70.0 76.5 so.o 
64.5 71.0 6f,. 5 73. 0 6B.O 75. 5 75.0 11.0 80 .o 
70.0 74.5 12.0 76.0 70.0 80.0 78. 0 BO.o 
73. 0 76.5 15.0 BO. 0 75.0 80.o 80.0 
79.0 so.a eo.o 7B.5 ~ 
Bo.o so.o __, 



RPM CODE 1 

SAMPLE 1 2 3 4 

REP 3 
o.o o.o o.o o.o 
8.5 6,0 7.5 5,5 

10.0 15.o 15. 5 10. 5 
20.0 22.0 21.0 20.0 
24. 0 32. 0 37.0 31.0 
37.0 45.0 44.0 33. 0 
47,5 52.5 50.5 34.5 
53. 0 58. 0 60. 5 39.5 
58.5 65.0 67.5 41.5 
68. 0 73.5 76.0 52.5 
79.0 80,0 80.0 60. 0 
80.0 80.0 69.0 

74.0 
76. 5 
78.0 
80 .o 

REP 4 
o. 0 o.o o.o o.o 
5.0 4,5 7.5 o.o 
5,5 12.0 16.0 4.0 

13. 0 20. 5 29.0 11. 0 
22.0 29.0 35,0 19.·5 
31. 5 3 7. 5 46.5 27.0 
38.0 44. 5 54. 0 32. 5 
49.0 54,5 61.0 47.0 
55. 5 66,5 68.0 52. 0 
60 .o 72.5 76,5 60. 5 
75 .o 77.0 80.0 63.S 
79, 0 so. 0 68, 0 
so.o 78.0 

so .o 

APPENDIX G-3 (Con tj nued) 

AIR EJECTOR - LOW AIR VELOCITY SETTING 

2 

5 1 2 3 4 5 1 

o.o o. 0 o. 0 o. 0 o. 0 o. 0 o.o 
1;5 14.0 2.0 5.0 9,0 10.0 3. 5 
9, 0 21t. 0 19. 0 16.5 18.0 14. 5 12 .o 

19.5 lt2,5 35. 0 37, 0 3~. 0 45. 0 43, 0 
30,0 47.0 47,0 38.5 56.0 53 .o 45.5 
35. 5 61.5 57. 0 64.5 62. 0 60.0 50.0 
42.5 80,0 71,5 75,5 73.0 68.0 59.0 
51.0 80.0 80.0 ec>.o 80.0 69 .5 
60. 0 73. 0 
67.5 so. 0 
78. 0 
80.0 

o.o o,o o.o o.o 0 ,(J 0 .o o.o 
l. 5 6. 0 5. 0 o. 0 a. s 15.0 6.5 

10.0 18.0 22.5 14.0 18. 0 25.0 12.0 
13.0 29.0 34.0 29.0 34.5 42.0 26 .o 
28.0 39. 5 44,5 41t. 5 lt2. 5 60. 0 34.0 
38.o 41.5 63.0 60.0 44,5 66.0 42. 5 
44,5 55. 0 75.0 68.5 66.5 80.0 52. 5 
52.0 67. 5 so. 0 so. 0 12. 5 64. 0 
62.0 so.o ao.o 72.0 
76. 0 80.0 
80,(} 

2 3 

o.o o.o 
15.0 10. 0 
21.0 11.0 
22.5 15.5 
36.0 38.5 
43.5 39.0 
54. 5 51. 0 
74.0 61.0 
18. 5 65,Q 
so.o 78. 5 

eo.o 

o.o o.o 
17.5 13.5 
22. 5 32. 0 
34,0 47.0 
43.0 61.5 
54.0 69,0 
65,0 75.0 
67.0 79,5 
so.o 80.0 

4 

o.o 
5.5 

25.5 
39.0 
44.0 
65.0 
68. 0 
70.5 
8 0 .o 

o.o 
4,5 

1 o. 5 
13.5 
19.0 
42.5 
43,5 
62.0 
75.5 
so.o 

o.o 
1. 0 
9,5 

17 .5 
33,0 
51 oO 
59.5 
70.5 
so.~ 

o.o 
5,5 

42 .o 
43.0 
56,5 
58. 0 
60.0 
7S.O 
so.o 

~ 
N 



APPENDIX C-3 (Continued) 

AIR EJECTOR - HIGH AIR VELOCITY SETTING 

RPM CODE l 2 3 

SAMPLE 1 2 3 4 5 1 2 3 4 5 1 2 3 4 

PEP l 
o.o {) .o o.o o.o o.o o.o o.o o.o o.o o. 0 o. 0 o. 0 o. 0 o. 0 o.o 
2.0 2.0 o. 0 1. 0 o. 5 o.o 4.5 7.0 3.5 1.0 J.O 4.0 5.5 o.o •!. .o 
5 .o 6 .5 5.0 1.0 3.0 7. 5 11. 0 9.0 6. o 11.0 5.5 8.o 1.0 4 .5 3 .5 

11.0 12. 5 9.5 9.5 6.5 1 o.o 17 .5 16.0 18.5 19. 5 10. 5 10. 5 1. 5 9. 5 10. 5 
13.0 16. 5 12. 5 13. 0 1 o. 0 18.0 23.0 21. 5 23.5 23.0 16. 5 20.5 13.o 19.5 13.5 
20 .o 20.5 16.0 19.0 15.5 23.0 28. 0 25, 5 32. 5 27. 0 23. 0 22.0 16. 0 20.0 16 .o 
21· 0 24.0 21.0 23.5 20.0 28.5 34.0 30 .o 35.5 35.o 26. 5 24.0 18.0 22.0 21. 0 
23. 0 29. 0 24.5 27. 0 26. 0 33.0 43.0 36. 0 41. 0 36.0 '28. 5 26.5 25 .s 25.0 27.5 
28.5 ·33.5 26.5 32.5 28.5 35.5 44.5 43. 0 ~o. 5 45. 5 34. 0 32.0 30.0 28.0 30.5 
30.0 3 9. 0 33. 0 34.0 32.5 36.0 53.5 49.5 51.0 52.5 37.0 42.5 3 2.0 35 .• 5 33. 0 
35.0 41.0 35.5 41. 0 37. 0 46. 5 56. 5 55.0 55.0 55 .5 45.0 43.5 36.5 44.0 40.0 
37.0 44.0 40.0 44.5 39.5 49.5 66.0 58.0 63.0 61.0 50. 0 49.0 43.0 49. 5 44.5 
43.0 45. 0 45. 5 46. 5 44.0 52.5 67.5 62 .o ~3 .o/ 66 .o 52.5 54.5 50.0 5't.O 50.0 
46.5 47,5 49.5 51.0 49.0 55.5 74. 0 68.0 72. 5 73. 0 59.0 55.5 52.5 s7.s 56 .s 
50.5 54. 5 53.0 Sit. 5 52 .• 5 5 8. s 78._:i·72.0 11.a 11.0 60.5 61.0 54.0 58.5 59.5 
56.5 58. 5 56. 5 60. 0 56. 5 66. 0 80.0 80.0 eo.o 78.5 65.0' 64.5 63.5 6~ .o 66.0 
58.5 59.5 65.5 64.5 60.0 12. 5 80. 0 70. 0 70. 0 64.0 70.0 69.5 
64. c 60.5 67.0 69.5 64.5 76 .s 71.5 76.0 64.5 aa.o 11.0 
68.5 65.5 72. 5 71. 5 66. 0 so. 0 75 .5 60.0 11.0 so.o 
12.0 69.5 74.5 76.5 1s.o 7S.O 12.0 
75.5 73,0 78. o. 79.5 79. 5 so .o 76.0 
so .o 79.0 so.a so.o so. 0 78.0 

80.0 ea. o 

REP 2 
o. 0 o. 0 o.o o.o o.o o.o o.o o.o o.o 0 .o 0 .o o.o o.o o.o o.o 
5.0 0.5 2.5 1. 5 3. 0 6. 0 1. 5 2. 0 3.5 2.0 3.5 4.5 4.5 i,.5 0.5 
8.5 4.5 6.0 6.5 6.5 7.5 6.5 7.5 .9.0 1. 5 9. 0 5. 0 9. 5 1. 5 6.0 

13. 5 a. 5 9. 5 10. 5 13. 0 11.5 15.0 15.0 1D .5 15 .o 13 .s 9.5 13.0 9.0 7.0 
lS .o 12.5 13.5 14. 5 13. 5 19.5 20. 0 21.0 11. 0 20. 5 15. 0 11. 5 19.5 13.0 8 .5 
21.5 17.0 17.5 19.0 19.0 22.0 25.0 25.5 p.o 26. 0 24. 0 24. 5 25.0 20. 0 15. 5 
25.0 21. 5 22.0 23. 0 22. 5 21. 0 29. 5 30. 5 30.0 30.0 25.5 2e.o 26 .o 22 .s 17.5 
29 .o 24.0 24.0 28.0 26.0 34.0 31. 5 37. 5 33, 5 35. 5 28.0 33.0 29.5 24.5 20,5 
35. 5 3 a. 5 29.5 32.5 30.5 39,5 35.5 40.0 40,0 44.0 31. 0 37.0 35. 5 33.0 2'l. 0 
37.5 36.5 33. 5 35. 5 35. 5 45. 0 44. s 47.5 4S.O 48.0 37.S 40.S 37.0 37.s 33.5 
43.0 38.0 36.S 40.0 39.5 so.a 45.5 54.0 so. 5 s2.5 40. a 42. 0 42.S 45.0 ·34,s 
47. 0 lt3. 0 40. s 43.0 4S.O S6.5 sz.s sa.o 57.S S9 .o so .o 43.S 46.0 46.0 43.0 
49 .o 49.S ltS. 5 47. s 49, 5 62. 0 59. 5 6S. 0 60· 5 11.0 s2. 0 47,5 49.0 so.o lt6 ,5 
53.0 50.S 49.5 53.0 SS.5 66.0 63.S 12.s 68.0 75.0 53. 0 50. 0 52. 5 52.0 51.ll 
58.5 Slt.O Sit, 5 57. 5 57. 0 70,0 68,0 78,0 7 ... 5 60,0 59 .o 59.S S5.s 6 2 .o 58.0 
62.5 5S.s S7. 5 60.5 59. ~ 11.0 72.5 so. 0 80.0 68. 0 66.5 S9.5 65.0 59.5 
67. 0 61t. 5 61.5 65.S 64.5 80.0 78.5 n.o 68.0 66.5 69.5 66.0 
70.0 67.5 66.0 69. 5 70.5 ao.o 73 .o 71.5 72.5 n.o 70.0 
ao.o 72.0 64'? .5 71t.5 73.0 74. a 80.0 73. 5 76.0 11 .• 0 
80.0 76. 5 73. s 78~ 5 76.0 ao.o 74. s SQ.O 79.0 

80.0 11.0 80.0 79. 5 80.0 60 .• 0 80.0 __, 
80.0 78.0 60.o ...i:::. 

so.o w 



RPM COOE 1 

SAMPLE l 2 3 4 

~EP 3 
o.o o.o o.o o.o 

14.5 o.o o. 0 7, 0 
15.5 1.0 6.0 16.5 
22.5 16.5 15.0 22.5 
34.0 25,o 25. 0 30. 0 
36.0 33,5 32.0 40.0 
42. 5 41.5 39.5 51.0 
50.0 53.0 4S.O 56•0 
5S.O 59,5 57,5 63.5 
66,5 69,5 64.5 72.5 
78.0 7S.5 7f, 5 so.o 
so.o so.o 80.0 

REP 4 
o.o o.o. o. 0 o. 0 
4 .5 s.o 1.5 7,5 

15. 0 14. 0 10.0 11.5 
19.5 26.0 19.0 18. 5 
30.0 35,5 29.0 26.5 
3S. 5 42.0 36. 0 3S. 5 
47,5 4S.O 41. 5 45.0 
55.0 57,5 50.5 54.0 
60.0 64.0 60.0 62. 0 
69.0 12.0 69.0 75.0 
76. 0 so.o 74.0 79.0 
so.o so. 0 eo. o 

APPENDIX. c~3 ( C9n-ti nued) 

AIR EJECTOR - HIGH AIR VELOCITY SETTING 

2 

s l 2 3 4 5 l 

o,o o.o o.o o.o ' o.o o.o o.o 
3. 5 3.0 1.o 5.0 9.0 11.5 14,5 

14.0 14.0 17, 5 19. 0 20.0 16. 5 26.0 
22.0 32.5 30.0 37.5 52.5 23 •. 0 3S. 0 
33. 5 50.5 43.5 53. 5 59.0 3S.o 44.0 
39.5 63. 5 54. 5 69. 5 10. 0 41. 0 64, 0 
46.5 73,5 5s·,5 74,5 ao.o 4S.o 69.0 
57.·o so. 0 72. 5 so. 0 80. 0 69.5 69,5 
63.0 so.o 74.0 so. 0 
69.0 so .o 
so.o 

o. 0 o.o o.o ci.o o~o o.o 0 .o 
7,Q 10.0 24. 0 28. 5 7. 0 15. 5 6. 0 

.9.5 14.0 30.0 31.5 z6.5 19.5 10.5 
14.0 !2o0 47.0 54.0 42. 5 34.5 20.0 
2a.o 51.0 57. 5 69.0 57, 0 50. 0 29. 0 
32.0 59.0 63.5 10,5 7<t.O 5S.O 43.5 
39,5 11.0 76. 5 so.o so. 0 75.0 47.5 
49.0 ao.o so.o so.o 57. 0 
50.0 .. 65 .o 

·59.0 12.0 
69.0 so.o 
73,5 
so.o 
so.o 

3 

2 3 

o. 0 0• 0 
1.5 o.o 

12.0 2.0 
22. 0 17. 5 
31.0 20.0 
39.0 2s •. o 
47.5 49.5 
54.0 52.5 
66.0 67.0 
70.5 68,5 
so.o 78.5 

eo. 0 

o.o o;o 
0.5 6.·o 

u.o l0.5 
21.0 31.5 
36.5 36.0 
51.5 55.0 
60,0 62·.o 
72.0 75. 5 
11.0 so.o 
so.o 

4 

o. 0 o.Ci 
1.0 22.0 

10 .5 25.5 
19,5 35.0 
23.5 3S.5 
4S.O 61.0 
50.0 66,0 
63.5 70.5 
7S. 0 . so. 0 
so.o 

0 .o o.o 
0 .5 4.0 
9.0 .2s. 5 

10.5 37.5 
20.5 39.0 
32.5 47, 0 
49.5 52.0 
65.0 63.0 
67.5 so.o 
79.0 so.o 
so.o 

_, 
.j:::o 
.j:::o 
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AP.P..EN1HX D.-:- l 

LOW AIR VfLOCITY SETTING 

RPM CODE l 2 3 

SAMPlE l 2 3 4 5 l 2 3 4 5 l 2 3 4 5 

REP l 
o. 0 o. 0 o.o o.o o.o o.o o.o o.o o.o 0 .o 0 .o o.o o.o o.o o.o 
1.5 o.5 0.5 o.o o. 5 6. 0 12. 5 9. 0 4.5 3.0 9.0 5.0 o.5 4.0 l.o 
2.5 3.0 2.5 4.5 2.s 10.0 16.5 13.5 5. 5 13.0 16. 0 7. 5 6.0 14.0 9.1) 
9. 5 11.5 4. 0 5. 0 13. 5 15.5 35.o 22.5 a.5 29.0 30.5 22.5 22.5 26.5 11.0 

10 .5 21.0 8.0 12.0 14.5 17. 5 36. 5 24. 0 17.o 36. 0 47. 5 32.0 29.0 30.0 16.5 
12.5 28.0 11.5 14.5 20.0 23 .5 66.0 36.0 24.5 37. 5 52.5 40.5 34.5 32.5 !T.5 
20.5 42. 5 17. 5 19. 0 20. 5 28. 5 79.5 40.0 21.0 52.0 54.5 . 45.5 44.0 38 .o 21.5 
21.0 43.5 24.5. 20.0 29.0 32.cl 80.o 49. 5 28. 0 57. 5 58. 5 50.0 49.5 40.5 31,5 
33. 5 47.0 27.5 . 28.5 37.5 4&.5 52.0 38.0 62.5 61.0 5z.o 57.0 49.5 33. 5 
36.0 52.5 33.0, 40.0 39. 5 60. 0 67.5 42. 5 10.0 65.5 53.5 59.5 58.0 37.0 
40.5 61.5 33.5 45.5 43.5 76.5 72.5 55. 0 eo.o 69. 5 79. 0 62. 5 60; 0 38.0 
42.5 62.5 38. 5 47.0 45.5 ao.o. 80.o 62.0 12.0 00.0 64.0 64.0 "45.0 
46.5 64.0 39.5 47.5 50. 0 66. 0 80.o 66.0 66.0 63.0 
48.5 68.0 42.0 50.5 55.5 70.5 73. 5 80.o 64.0 
49.0 69, 5 47. 0 55. 0 57. 5 73.0 80.o 80.0 69.0 
56 .o 71.5 54.0 61.5 62.0 80. 0 77.0 
62.0 77.5 58.5 62.5 63.0 80.o 
63.0 78. 5 59. 5 12.0 64.0 
73.5 79.5 62.5 75.0 65.0 
77.5 Bil. 0 67.5 77.0 70.5 
eo.o 69.5· 79.5 73. 0 

ao.o. eo.o 79.5 
·ao.D 

REP 2 
o.o o. 0 o. 0 o. 0 . o. 0 o. 0 o.o o.o o.o o.o o.o o.o o.o o.o o.o 
4.5 4.5 o.o 4.0 4.5. 2. 5 a.o l.o 16. 5 6.5 3,5 2.0 8.o 2.0 9.5 

10. 0 5. 0 b.O 6•0 6.5 13.5 10.5 10.0 19.5 28.5 19 .o 5.o 9,5 10.0 14.0 
11~5 10.5 14. 0 7. 5 18.0 1'8. 0 16. 5 13.0 22.5 34.5 21 .o 18.5 20.0 17.5 19.0 
13.0 11.0 15.o 10.5 18.5 27.5 23.5 llt.5 27.0 

""· 0 
30. 5 ~1. 5 32. 0 18.0 23.0 

16.0 19 .• 0 17. 0 11.0 30. 5 30.·o 29.0 15.5 39.0 55.5 56 .5 36.5 34.0 20.5 28.5 
19 .o 22.5 .19,0 31.0 35. 0 55.0 31.0 17. 5 ltl. 0 59. 5 63.5 38.o 38.0 30.5 ao.o 
22.0 31.0 23;0 32 .·5 40.0 61.0 36.5 24.5 62.o 65.o 69.5 .~42. 0 41. 0 38.0 37,5 
22. 5 34.5 28. 5 38. 5 lt5. 0 69.5 54.0 50.0 67.0 69.5 n .o !t5o0 so.a 42.5 43,5 
24.5 38.0 34.5 40.5 47.0 ao.o 59,o 55. 0 73, 0 74. 5 78. 5 53.0 51.0 56.0 49,5 
2'7. 0 '<5.0 .. z.-o '<4.5 47.5 10.0 62.0 80.0 80.0 ao.o b6o5 53,0 66.0 52.5 
32.0 47~5 42.5 50.0 52. 5 so. 0 73.0 71.0 61.5 70.0 55,5 
40.5 51.5 49.-5 50.5 56.5 80.G 73.0 67. 5 74.0 71.5 
46.0 56.5 59 •. 5 .5.2. 0 60.5 75.0 11.0 79.5 74.5 
51.5 63.·5 (,2.·o :5e.s 61.5 11.0 77.0 80.o ao.o 
52.5 67;0 12.0 60.0 6'4.0 80.0 T9o0 
57.0 75 •. 0 13. 5 66.0 64. 5 ~o.o ao.o 
59 .o 78.-0 7.9.0 7'2.0 10.0 ao.o 
61.0 ao • .o 1l0.0 12.5 77.5. 
65.0 80.-0 :?7. 5 so. 0 
68.5 78•5 
74.5 ao.o 
76,0 

.i:::. ao.o 
O'I ao.o 



APPENDIX o~J (C9ntinued) 

LOW AIR VELOCITV SETTit;G 

RPM CODE 1 2 3 

S ~MPL E 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

REP 3 
o.o o.o o.o o.o O.() o.o o. 0 o. 0 o. 0 o. 0 o. 0 0.(1 o.o o.o o.o 
l.O 1.0 18.0 o.o 1.5 lt.5 1.5 o,o 6.0 7.5 8, 5 11.0 1.5 5.5 o.o 
1. 5 3, 0 20. 0 10. 5 3.0 6.0 15.5 2.0 22.0 8,5 26.0 20.0 5.0 9 .o 5.0 
5.5 15.5 25 •. 0 12.5 10.5 10.0 24. 5 9. 5 29. a· 15. 5 32. 0 21.5 6.5. 26.0 12.5 
6. 5 2 o.o 35.0 19. 5 12.0 23.5 29.0 15.5 32.5 21.0 46 .5 29.5 13.(l 42.0 17.0 
8 •. o 21.0 37,5 24.0 21. 5 27.0 31. 0 21. 0 42.0 35 •. 5 53.o 31.0 15.o 53.0 20.0· 

13~5 23.0 38.5 30.0 24.0 30.0 33.0 36.0 57.5 37.5 56.0 31t.O 22.5 67,0 35.il 
lS.5 38.o· 41. 5 32. 5 21. 0 69.5 3895 39.0· 61t.O ltO .o 62.0 3S.5 39.5 72.0 45;5 
22.5 45.5 48.5 39.0 28.0 76. 5 45. 5 41. p . n. o 43. 0 65. 5 43.5 5.9.0 74.0 50.5 
2S.5 ltS,O 49.5 lt6.0 33.() 80.0 57.5 44.0 74. 5 45.0 n. 5 56.0 61.0 so.o ·67.0 
36.5 54.0 50, 0 51. 5 35. 0 5e. 5 52.5 77,5 56."5 77.5 59.0 69.5 80 .o 69.0 
39.5 61.0 52.0 53.0 lt9.0 62.0 74. 5· 80.o 64.5 so. 0 60.5 73.5 n.o 
43, 5 62. 5 57,0 61.0 51.il 6S.O 76.5 10.0 67.0 78.0 so.<i 
4S.O 63.5 6S. 5 64.5 57. 5 73. 0 80.o SO.O· 74.0 79 .5 
50.0 70.5 69.5 66.5 58.0 90.0 79.0 90.0 
53. 0. 71. O· 11.0 67.0 60.0 so.o 
55.0 78.0 80.0 76.0. 67.5 
69.5 80.0 so.o 77.5 . 7095 
74. 0 79.5 74.5 
11.0 80.0 75. 5 
80.0 so.o 
so.o 

REP 4 
o.o o.o o.o o.o o. Cl o.o o. 0 o.o o. 0 o.o o.o o.o o.o .o.o o.o 
5.5 o.o 4.5 5.5 4.0 4.5 1. 0 16.5 1. 5 1. 0 . 6. 5 4. 0 15.5 10.5 8.5 
6.0 6.0 19.5 9. 5 12.il 17.5 3.5 19.5 9,0 11.0 15.0 lS.O 16.5 16.0 15. 5 
6,5 10.0 .21.0 15.5 20. 5 20.0 6. 5 29.0 17.0 31.0 19,5 20.5 20.5 i9.0 21.0 
s.o 19.0 28 .o n.o 24.5 28.5 19.5 34.5 lS.5 47.5 25. 5 23.0 25. 5 .35,0 26.5 

13.0 22. 0 29.0 11. 5 30. 5 37.5 25.5 44.5 30.5 51.0 29 .o 35.0 30.5 ·37,0 32.5 
21.5 29.0 31.0 21. 0 33,0 39.0 29. 5 50.5 36. 5 51. 5 32.0 37.5 35;0 39.0 42.5 
2.1.0 3S.O 34.0 21.0 43.0 56.5 40.5 64.5. 40.0 59.0 40 •. 5 4.4.0 39.5 .41.5 48.0 
29.0 4~.o 47, 5 31. 0 45.0 6Q.o 5S.O 74.0 46.0 60.0 46.0 55.0 43.0 43,5 49•0 
3S.O 44.5 52.0 44.0 49.0 61to0 64. 5 80.0 49. 0 64. 5 56. 0 62.5 47.o lt5.0 52.0 
43. 5 51. 0 64.0 47.5 56.il 69.0 75.0 80.0 57.0 66,0 57. 5 66.0 59.0 •t7.5 53.0 
44.0 53.0 69.5 4S. 5 57. 5 77. 0 so. 0 61. 5 76;5 5.9 .5 70.5 63 .o 51.5 69.0 
4S.O 62.5 71.5 52.5 61.5 80.0 67.5 eo.o 79. 0 so.o 73, 5 73.5 so.o 
49.5 69.0. 75.5 -62. 5 68. 5 7S.5 80 •. o eo.o eo.o 
52.5 70.5 76.0 69.0 69. 5 so. 0 
56,5 so.o 7S.O 11t.O 73.0 
57, 5 79.0 so.o 76.0 
64.0 so.o eo.o 
74.0 so.o 
so.o 

__, 
.J:>. ...... 



APPENDIX D-1 (Continued) 

HIGH AIR. VELOC(TY SETTING 

R?M CODE l 2 3 

SAMPLE l 2 3 4 5 l 2 3 4 5 l 2 3 4 5 

REP l 
o.o o.o o.o o. 0 o. 0 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 
o.o l.O 5.0 2.5 3. 5 o. 0 32. 5 7. 0 13. 5 o. 0 2.0 12. 0 6.0 21.5 1.5 
4.5 4.5 6.5 5.5 4.5 6.5 37.5 12.0 1s.o 1.0 5.5 15.0 12. 0 30.0 4.0 
9.5 19.0 20. 5 16. 0 1. 5 10. 5 41. 5 20. 0 24.5 10.5 14.5 lS.5 15 .5 32.0 6.5 

15.5 24.0 24.5 17.0 10.5 24. 5 45. 0 31.5 29.5 23.5 11. 0 24. 5 1 7. 0 34.0 9.5 
20. 0 2 5.0 29.0 20. 0 lS.O 30.5 51. 5 33.5 33.0 2S .o 40. 5 30.5 19.0 37. 5 12. 5 
27 .o 27.5 33. 5 24. 5 21. 5 3"9. 5 57; 0 43. 0 45. 0 39.5 42. 5 44o0 25.5 44.0 13 .5 
28.5 33.0 37.0 32.5 3lo5 44.5 59.0 4S.5 4S.5 42.0 44.5 49.5 31. 5 46.5 20.0 
32.5 34. 5 41. 0 3S. 0 32. 0 55.5 75.5 53.5 52.0 43.5 56. 5 56.5 40.0 53 .5 . 2S .o 
40.5 37.5 43.0 42.5 33.0 58.0 76. 5 80. o 65. 0 45. 5 61. 5 63.5 42.5 so.o 34.0 
42.5 41. 0 4S.5 46.5 36.0 65.5 78.5 so.o n.o 57. 0 11. 5 69. 5 63. 0 36.0 
45.5 47. 0 56. 5 49.5 44. 0 67.0 79. 0 78.0 67.0 so.o 73 .o 66.5 38 .5 
4S .o 53.5 5S.O 57.0 46.0 so.o so. 0 80. o 75. 0 so. 0 74.0 76.0 50.5 
50. 0 6 o. 5 62.0 62.5 53.0 so.o so.a 7s.o so.o 52. 0 
61.0 63.0 65.0 64.0 59.0 79.5 63.0 
62.0 65. 5 67.5 65.5 60.5 so. 0 73.0 
67.0 66.0 76. 0 66. 5 61.. ·5 so.o 
70.0 79.0 so.o 6S.O 66. 0 
75 .o ao.o so.o 10.0 69.5 
so.o 80. 0 79. 0 

so.o so.a 
so.o 

REP 2 
o.o o. 0 o.o o.o o.o o.o o.o o.o o.o 0 .o o.o o.o o.o o.o o. 0 
1.5 4.5 0.5 2.0 11. 0 11. 5 lo 5 4. 0 15.o 12.5 7.5 0.5 1.0 o.o o.o 
s.5 5.5 3.5 3.0 15.5 17.5 5.5 14.0 22.0 21. 5 14. 5 6. 5 5. 0 6. 0 20.5 

14.0 6. 5 4. 0 5. 5 16. 5 21.5 24.Q 19.5 32.0 28.5 17 .o 10.0 11.5 s.o 25.0 
23 .5 ll.5 25.0 9.5 lS.5 32. 0 39,5 21. 0 38. 5 34. 5 20. 5 15.0 19.5 15 .o 26.5 
2 5, 0 14.0 30.5 16.0 20,5 41.0 42 .o 27.5 48.0 35,5 25.0 23. 0 26.5 20.0 2s.o 
28.5 17.5 31. 5 2 2. 5 24, 5 46.0 43.0 31 o 5 53,0 3S.O 26.0 30 .5 32 .5 23.0 31.0 
31.0 21.5 36.0 34.0 21.0 55.0 52.0 36. 5 56. 0 46. 5 39. 0 4lo0 3S.O 24.0 46.0 
34, 5 31.5 39.0 40.5 30.5 65,0 64.0 43.5 69.0 49.5 64.5 42.0 40.0 29. 5 48.0 
43.5 46. 5 40.0 43. 0 34. 0 10. 5 66, 0 54.0 70. 5 53. 5 66 ,5 64.0 43.5 33,5 50.5 
46.5 53,5 46.5 47.0 3S.O so.a so.o 57.5 80.0 65, 5 67.5 66.5 5_8. 0 42.0 52.5 
51. 5 54. 0 51. 5 49,Q 40.0 66,0 78 .o 74.0 69.5 67.0 59.0 54. 0 
56 .o 56.,0 53. 5 52. 5 47.5 67. 5 80.0 so. 0 74.5 6So0 64.5 61 .5 
60.5 57,5 55.0 b9.5 49.0 77.5 79.0 69. 0 71. 0 64.5 
61.5 73.0 56. 5 70. 0 53. 5 80.0 so.o 74.5 75.5 so.o 
63.0 so .o 60.5 71.0 65. i) so.o 79.5 
7S. 5 69.0 12.0 77.0 80.0 
so.o 72. 5 74. 0 78, 5 

78.0 7-5 .5 so.a 
78.5 so.a 
80. o 

.J::> 
co 



APPENDIX .. D-1 (Continued) 

HIGH AIR VELOCITY SETTING 

~PM caoe ·l 2 3 

SAMPLE 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

REP 3 
o. 0 o.o o.o o.o o.o o.o o.o· o.o o.o o.o o.o o.o o.o o.o o.o 
3.5 1.0 0.5 1. 5 1.0 1. 0 2. 0 5. 0 1.0 o.o 6.5 1.0 3.0 3.5 5.5 

- 6.0 3.5 1.5 4.5 4.0 11.0 4.0 12.5 2.5 4.5 20. 5 9. 5 10. 0 6. 5 6.0 
12. 5 5. 5 3.0 16. 5 6. 5 25.5 12.5 29.5 e.o 20.5 23.0 13.5 20.0 15.0 17~0 
13.0 10.5 9.0 18.0 9. 5 30.0 23.0 37.0 9. 5 27. 0 37. 5 22.5 21.0 17.5 1'1.5 
14.0 11. 5 12.5 20.0 20.0 31.5 24.5 50.0 12.5 30 .• 5 46. 0 29.0 30.0 26.5 25.0 
24.0 11.0 22.0 22.5 25. 0 46. 5 28. 0 52~5 18.0. 36.5 49.0 33.o 34.0 33.0 21.0 
26.0 22.5 31.5 24.0 25.5 48.0 37. 5 56.0 21.0 55.0 72. 0 37. 5 47. 5 45.5 2 8. 5 
28. 0 2 8. 5 33.5 34.5 21.0 59.5 46.s 59.5 24.5 69 .o 74.0 38.5 50.0 58.0 53. 5 
30.0 32.0 34.5 35. 5 36.0 75. 5 43. 0 65.5 29. 0 71.0 75.5 48.0 58 .• 5 64.0 61.5 
~1.0 36.5 37.5 38.5 37.5 77,5 49.0 72.0 57.5 76.0 79. 5 52.5 62. 0 65.5 63.5 
40.5 'tO. 5 38.0 39. 5 40. 5 79.0 59.5 75.0 60.5 80.0 8Q .o 58.0 64.5 74.0 74.5 
42 .5 43.0 46.0 42.5 46.0 80.o 67. 5 ·90. o 65. 5 60.5 73.0 80.0 76.5 
47.0 52.0 53.0 48.0 49.0 12.0 67.5 62.0 11.0 80. o eo.o 
51. 5 58.0 55. 5 52. 5 51. 5 79. 5 75.5 66•0 80 .o 
56.5 60.5 65.5 59.o 55.5. 80.o 80~0 74.0 
60. 5 63. 5 66.5 59.5 64.0 ·--·;. 80.0 
6.5.5 69.5 67.5 67.0 61'.'o. ·.Ii 
68.0 70.5 69.5 69.0 11.0 
73. 5 72.5 80.o 71.5 12.0 
eo.o 76.0 79.5 78. 5 

78.0 80.o 79.0 
eo.o 80. o 

REP 4 
o.o o.o o.o o.o ·o.o o. 0 o. 0 o. 0 o.o o. 0 o.o o.o o.o o.o o.o 
2.5 9.5 1.0 2.0 0.1] 1.0 0.5 o.o 0.5 l. 5 o. 0 l. 5 5. 5 11.0 0.5 
4.0 15.0 5. Q 6.0 4. 5 10.5 l.O 19.0. ·2 .5 5.5 5.0 4.0 9.5 16.5 . 1.0 
9 .o 18.0 10,0 B.5 10.5 15. 0 1. 5 21. 0 21.0 23. 5 8. o 5.5 14.5 30.5 16.5 

14· 5 20.5 11.5 15.0 11.5 23.0 l8.0 22.5 29. 5 25.5 10.5 17. 5 11.0 32.5 21.0 
21. 5 24.5 14. 5 15. 5 18. 0 31. 0 21. 0 36.o 33.0 3895 14.0 19.5 19 .o 35 .o 23.0 
24.0 21.0 19.0 18.5 26,0 51l.O 24.0 39.0 61. 0 44. 5 17. 0 22.0 21.0 44.0 41.5 
24. 5 29.0 21. 5 19.5 27.5 51.5 30.5 46.5 78.5 50.0 27 .5 31.5 24.5 49.5 46.0 
32.0 30.5 22.5 25. 0 30. 0 55. 0 40. 0 50.5 80.0 53.5 30.0 45.o 34.5 50.5 49.5 
34.0 34.0 25.5 34.5 30.5 58.5 46.0 58.o 57. 5 32. 5 48.0 47. 5 64.0 68.5 
37.0 3 7. 0 ~9. 0 38. 0 40.0 59.5 54.0 60.0 58 .5 33.5 49.5 49 .• 0 68.0 74.0 
39.5 49.5 40.5 47.5 42. 5 67.0 61. 5 67. 0 75. 0 38. 0 53,5 61.0 76•5 75 .5 
43.0 50.0 't3· 5 51.0 47.5 11.0 67.0 75.5 80.0 39. 0 58.5 70,5, 80,0 78.5 
45.0 51,0 58. o 54. 0 52. 0 76.0 68.5 80.Q 47.0 60.0 77.5 80.0 
56.0 53.0 60.5 57.0 53.0 80.0 78. 0 66. 0 80.0 79,0 
57. 5 58. 0 66.5 75.0 54.5 80.0 80.0 80.0 80.0 
58,5 10.0 68.1) 76~0 55.0 
61.5 74.0 69.0 77.0 60-.5 
68. 5 78.5 75.5 90,0 64,0 
69.5 8(h-0 77.5 72. 5 
12.0 80.o 75.5 
73. 0 80-,o __, 
80.0 

~ 
IO 



APPENDIX D-2 

SAMPLE l . 2 3 4 5 

REP 1 
~PM CODE l 

1o.0 1 o. u 10.J 1 J .o 10.0 
10.5 12.5 10.0 11.0 11. 5 
14.0 14.5 11.5 12.0 19. 5 
16 .. 5 18.5 14.'i 14.0 20.5 
16.5 21.0 24.0 25 .. 5 22.0 
10.0 22 .5 27 .o 27.5 25.o 
~o. s .!4.0 29.5 29.5 25.0 
21.5 2,5. 5 31.0 30.0 21.0 
2S .o 26.5 32.5 33.0 29.5 
25.5 28.0 35.0 34.0 31.5 
21. 5 28.5 42.5 37.0 32.0 
29.5 30.0 43.5 38.5 34.5 
31.0 '34 .. 0 43. 5 40. 5 36.0 
37.0 34.5 44.0 50. 0 39.0 
40.0 36 .5 46 .5 52.5 40.5 
42. 0 36 .. 5 57. 0 5 7. 0 43.0 
47. 5 '+5. 5 51 .. 0 58. 5 44.0 
49.5 50.0 59 .o 60.0 46.0 
52.0 54. 0. 60. 0 50.5 
54.5 . 59 .o 60.0 s2.s 
55.5 60.0 55 .5 
60.0 57.5 

59.0 
&O.O (J'1 

0 



APPENDIX D-2 (Continued) 

SAMPLE t z 3 4 5 5 

REP 1 
RPM CODE 2 

10.0 10.0 10 .o 10.0 10.0 10.0 
10. 0 11. 0 12.0 10.5 11.0 13.~ 
11.0 13.0 17.5 14.0 12.0 13.5 
14.5 17 .o ia.o 15.0 14.u 14 .. 5 
18.5 25.0 23.0 26.0 14.5 17.0 
21.0 26.5 24.5 27.5 15.5 18.5 
23.0 28.5 25 •5 28.0 lo .5 26 .o 
23.5 ~o.o 27 .. 5 29.0 17.5 28.5 
24.0 31.0 29 .o 30. 5 18.0 30. 5 
26.5 32.5 30.0 32.5 19.5 31.0 
26.5 38.0 30.5 33.0 23.0 31. 5 
28.0 38 .5 31.5 34.0 31.0 34.5 
3 o. 5 38.5 33.0 43.5 32.5 37.0 
32.5 40.0 34.5 45.0 35. 5 38a 0 
33.0 40.5 35.0 47.0 40 .o 38.5 
35.5 41.0 35. 5 48. 5 43.5 39.5 
40.0 44.0 47.0 50.5 46.0 45. 5 
43.0 48.0 49.0 52.5 46.5 46.5 
46.0 49.5 50.5 56.0 49.0 48.0 
51.0 52.5 St. 5 58.5 52.0 49. 5 
54.5 56.5 53 .. 5 60.0 53 .5 51.5 
55.5 57.5 60.0 54.0 53. 0 
59.5 60.0 60.0 54.0 
60. 0 60.0 54.5 

56. 0 
59. 5 

- ........ 
U1 

60 ,a __, 



APPENDIX D-2 (Continued) 

SA Ml?t.E 1 2 3 4 5 

~ED 1 
RPM CODE 3 

10.0 . 10.0 10.0 10.0 10. () 
11. 0 10~5 11 .. 5 1 o. 5 11. 5 
11. 5 15.0 15.0 12.0 15.0 
14.5 16.0 21.0 12.5 15.5 
23.0 1 9. 5 2 5. 0 14.0 17.0 
24.5 21.0 2 7. 5 15.5 18.5 
24.5 22.0 29.5 17.0 21 .o 
25.0 23.0 31.0 17. 0 27.0 
26.0 29.5 32.5 17.5 31.0 
27.5 31. 5 33.5 18 .o 32 .J 
29.0 38.0 36. 0 19.5 33.5 
34.0 38 .5 37 .5 20.5 35.0 
34.5 42.5 JB.5 21.5 36.0 
35.5 43.0 39.5 23.5 37.0 
40.5 47 .0 40 .o 24.5 39 .5 
43.0 49.0 47.0 28.0 46.v 
44.0 53.0 50.0 35. 0 48. 5 
48.0 53.5 55 .5 41.0 50.0 
49.0 59.5 57. 5 42.5 53. 0 
52.0 60.0 58.5 46.0 56.0 
60.0 58.5 47.5 6v.O 

60.0 50.0 
60.0 51. 5 

59.0 
60.0 
60.0 --' 

CJ'l 
N 



APPENDIX D-2 (Continued) 

SAMPLE 1 2 3 4 5 6 7 8 q 

REP 2 
~PM -COD'= 1 

10,0 10.0 10. 0 1 o. 0. 10.0 10.0 l o.o lo.o · 1::>.o 
10.0 10.0 13 .o 15. 5 10.5 13. 5 10.0 17. 0 12. 0 
13.5 10.0 15.5 17.5 12.5 14.5 11.0 25.0 15.0 
14.5 13.5 23.0 17. 5 13.5 15. 5 12.0 28.0 23.0 
16.0 15.0 23.0 18 .o 16.5 22.5 13.5 31.0 24. 0 
22.0 16.0 23.0 18. 5 18. 5 24.0 14 .5 32.5 25.0 
26.5 18.0 23.5 23.0 21. 0 29. 0 16.5 33.5 26.0 
28.0 18.5 25.0 26.0 21.5 31.0 19.0 35.0 21.0 
29. 5 19.0 25. 5 27.0 22.0 31.5 19.5 36. 0 30.0 
31.5 21.5 27.0 29.5 23.5 33.5 20.5 37. 0 37. 0 
33.5 24-.0 29.0 36.0 24.0 34.5 34.0 38.5 38.0 
36•0 25.0 30.5 38. 5 24. 5 36.0 36. 0 40.5 4-0. 0 
40.0 25.5 38.0 47.0 27.0 37.0 40.0 41. 5 41. 0 
42.5 30. 0 38.5 48 .• 0 30.0 37.0 42.0 43.0 44.0 
45 • .0 32.5 42.5 50. 0 34.5 37. 5 42.0 48.0 45.5 
50.0 35.0 43.5 51.0 35.5 40.0 45.5 49.0 46.0 
51. 5 3 6. 5 45.5 52.0 37.0 49.5 46.5 56.0 46.5 
56.0 38.5 46.5 56.0 43. 5 53. 0 48. 0 57.0 47.0 
60. 0 48.5 47.5 57.0 46.5 55.0 51.0 57.0 40.5 

52. 5 48.0 60. 0 47.0 56.0 52.0 58.5 50.5 
56.5 50 .o 60.0 47.5 58.0 54.5 60. 0 60. 0 
60.0 53.0 49.0 59.5 57.0 
60.0 57.5 51. 5 60. 0 60.0 

59 .5 53.0 60.0 
60.0 53. 5 

58. 0 --' 

60.0 U1 
w 



APPENDIX D-2 (Continued) 

<;AMPLE l 2 ~ 4 5 6 1 8 .J 

REP 2 
RPM CGDE 2 

10..0 10.0 10 .o 10.0 10.0 10.0 10.0 10.0 
14. 0 10.0 10. 0 11. 0 14.0 18.5 10 .o 12.0 
18.0 16.5 11. 0 i~.o 15.5 19. 0 1o.5 12. 5 
23.5 18.0 14.0 17.5 20.5 20.0 11.0 18.5 
2'6. 5 21.0 15. 0 19.5 24.0 21.5 12.0 20.0 
27 .Cl 22.5 18.0 21.0 25.0 26.0 13. 5 20. 5 
2 8. 5 23.5 24 ... o 23.0 25.5 27 .o 15. '5 21. 5 
30.0 25.5 31.0 21.0 27.5 32., Q. 20. 5 25.0 
30.5 28 .o 33.5 29 .5 29.0 35.0 21.0 30.0 
32. 0 31. 0 36.5 31. 5 3 7. 5 36.0 22.5 31.0 
33.0 33.5 40.0 32. 0 39.5 39.5 2 9. 5 37.5 
35.0- 36.0 40.0 34.0 41 .o 41.0 34.5 39.5 
39.0 38.5 42.0 37.0 45.5 42.5 36.0 41.5 
40 .5. 39 .o 42.0 41.0 47.5 45. 5 37.0 43. 5 
42.5 42.0 44.5 41 .5 49.0 47.0 38.0 45.0 
46. 5 43. ~ 46.5 46.0 49.0 52. 5 43.0 57.0 
52.0 45.0 51.0 49.5 52.5 53. 5 41.0 58. o 
56.5 46.5 51 .o 5 (J .5 54.0 55.5 48.5 59. 5 
58.0 47.5 5240 51.0 56.5 60.-0 49.5 60.0 
6G.O 53 .o 57 .5 52.5 60.0 60.0 50.0 

56.0 58.5 54.0 53.0 
57.5 60.0 56. 0 59.C 
58.0 58.0 60.0 
58.0 . 60. 0 
to.o __, 

01 

60.0 .j:::. 



APPENDIX D-2 (Continued) 

S AMPlE 1 2 3 4· 5 6 7 8 

REP 2 
RPM CODE 3 

10.0 10 .o 10 .o 10.0 10.0 10.0 10.0 10. 0 
12.5 11. 5 12.0 11 .o 19.5 12.0 12.0 11.0 
14.0 13.G 14. 5 13. 5 21.0 13. 0 14.5 11. 5 
15.5 16 .o 15.5 14.5 23.0 14. 5 19.0 17.5 
19.0 32. 0 16.5 16.0 30.0 17.0 21.0 23 .5 
23.0 32.5 16.5 17.0 38.0 32.5 22.5 24. 0 
25.5 33.5 28.5 19.0 42.5 33.0 25.0 24.0 
26. 0 ;5. 5 29.0 21. 5 44.0 35.5 27.5 25.5 
27.5 36.0 36.0 22.5 45.0 35.5 30.0 33. 5 
31. 0 42.5 43 .. 5 25.0 47.0 ?7.0 32.5 35. (} 
32.5 43. 0 . 46. 5. 21. 5 47. 0 31.0 37. 0 36.5 
34.0 47 .5 47.5 32.0 49.0 39. () 40. 5 37.0 
3 a. o 51 • (} 48.5 34.5 49.5 43.5 42.0 39.5 
39.0 53.5 51.5 35.5' 49.5 43.5 43.0 40. 0 
40.0 5~.o 52 .o 42.5 50.0 47.5 45.5 44.0 
44.5 56. 5 52. 5 44.5 51. 5 so.a 49.5 53.5 
48.0 57.0 55.5 4 7.0 59.0 5 8. 5 54.0 54.5 
51. 5 60.(). 59.5 48.0 60.0 59.5 58.0 56.5 
56.5 60.0 55. 5 60. c 60. O· 59. 0-
59.0 56.5 59.0 
60. 0 58.5 . 60 .. o 

59. 0-
60.0 

--' 
tn 
tn 



APPENDIX D-2 (Continued) 

SAMPLE 1 2 3 4 5 

REP 3 
RPM CODE 1 

10.0 10.0 10 .o 10.0 15 .a 
17.0 10.0 13. 5 1.0. 5 15.0 
1.9 .o 11.0 15.0 10 .5 15.5 
19.0 11 .5 19.5 i 2. 5 18 .5 
19. 5 15. 5 22.0 13.0 20.0 
20.0 19.0 24.0 13.5 22.5 
20. 0 21.5 25.0 15.5 25-. 0 
21.0 26.5 25.5 17. 5 26.5 
25.5 27 .5 27 .o 18.5 29.0 
26. 5 30.5 29.0 22.0 32.0 
2.6 .o 37.5 31.0 23.5 37.Q 
34.5 38.0 31. 5 24.0 38 .o 
37.0 40.0 32. 0 26.5 40.0 
37.5 41 .o 34.0 29 .o 43.0 
38. 5 43.5 35.5 30.5 47 .5 
40,. 5 47.5 40. 0 31.5 48. 5 
41 .o 51 .o 42.5 33.5 58.0 
42.0 52 .. 5 45.5 36.5 58 .5 
46.0 55.0 47.0 37.5 59.5 
49. 5 57.5 47.5 39 .o 61.0 
51.0 60.0 56.0 46.5 63 .o 
54.0 60. 0 57.0 48.0 64.5 
58.5 60.0 49.5 65.0 
60.0 54.5 

55.5 
60.0 

__. 
U1 
O"I 



APPENDIX D-2 (Continued) 

SAM Pl E l ... 3 4 5 6 7 £. 

REP 3 
RPM CODE 2 

10.0 10.0 10. 0 to. o 1 o.o 10.0 10.0 
10 .5 11. 5 ·11. 0 10.0 10.0 1o.0 12.0 
14. 5 13.5 25.0 15 .o 14.0 17.5 14.5 
18.5 13.5 26.5 16.5 15.0 19~5 15.5 
19.0 15.0 29.0 18.5 19. 5 21.0 18. 5 
29.5 16.0 30.5 19.0 21.0 22 .o 19.0 
31.5 17.0 31.0 26. 0 21. 5 22. 5 19. 0 
33 .5 19 .5 31.0 28.0 23.0 24.5 22. 0 
39.5 27.5 31.0 30.0 25.5 27.5 23.5 
43.5 30. (} 41.5 32. 5 26. 5 31.5 26. 5 
46.0 37 .o 43.5 33.5 28.0 32. 5 36.0 
48. 0 39.5 45.0 35.5 31.0 34.5 37.5 
50.0 41.0 46.5 36.0 34. 5 35. 5 39.0 
54.5 43.5 47.5 37.0 37.5 41.0- 40.5 
5.6. 5 44.5 49. 5 39.5 38.5 43.0 42.0 
58.0 45.5 54.5 42.0 41.5 45. 0 44. 5 
59.5 46.0 54.5 44.0 41.5 46 .5 46.0 
60.0 47.0 56.0 47.0 41. 5 48.5 46.5 

51 .o 57.0 48.5 45.0 51.5 47. 0 
57.0 57.0 52 .5 47.0 52.5 5G.5 
60.0 58.0 60.0 48.5 58. 0 55.5 

59 .5 60 .o 57.0 59.0 57.0 
60.0 59.5 60.0 60.0 

60.0 60. 0 __, 
<J1 
'-J 



APPENDIX D-2 (Continued) 

SAMPLE 1 2 3 4 5 6 7 8 

REP 3 
RPM CODE 3 

10.0 lo·.o 10.0 10.0 10. 0 10. 0 10. 0 10.0 
13.0 16.5 13. 5· 11. 5 14.0 12.5 10.5 13.0 
13. 5 18.5 21.5 12.0 15.5 13.5 14.5 19 .5 
15.0 20.0 23.0 14. 0 17.5 14. 0 21.5 21. 0 
17.0 21.5 25.0 15.5 18 .5 17.5 25.0 . 23.0 
1:8. 5 22. 5 33. 0 20.5 19.5 19.0 25.5 25.0 
19.0 23 .o- 34.0 27.5 20.5 25.5 26. 5 27. 0 
20. Q 24.0 35 .o 28.0 22 .o 32.0 29.0 28.0 
21.5 26.5 39.5 28.5 28.5 32. 5 32.0 34.5 

·23.5 28 .5 40.0 34 .. 0 36.0 33 .o 37.5 35.0 
23. 5 33.0 41. 0 36.5 38.0 3<;.5 3 7.5 36.5 
24.0 40.0 57.0 37.0 42.5 44.0 38.0 . 36.5 
24.0 40.5 57.5 37.5 44.0 45 .5 39.0 39.0 
25. 0 42. 0 60. 0 38. 5 46.0 46.5 46.0 41.5 
25.0 42.5 43.0 48. "() 48.0 47.5 41. 5 
2.6. 5 43.5 50.5 4&.5 48.5 49.5 42.5 
28. 5 43. 5 53.0 49.5 49.5 50. 5 43. () 
29.0 44.0 55.5 50.5 50.0 51. 5 50. 5 
30. 5 49.0 58.0 58.0 51.5 53.5 52.5 
32.5 50.0 59. 5 59.0 52. 0 60. 0 54.5 
46.0 51.5 60.0 59. 5 56.0 60.0 55.0 
48.0 52. 5 60.0 60.0 59.0 57 .o 
52.0 54.S 60.0 6(}. 0 57.5 
52.5 56.5 59.0 
58.·5 57. 5 60.0 __, 
60.0 60.0 60. 0 01 

00 
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