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CHAPTER I
INTRODUGTION

Recently Soni and Harrisberger [1] surveyed the art of mechanisms
science and indicated the existence of nearly 12,000 publications of
scholarly level. A detailed examination of these publications [2, 3]
shows that there is a considerable interest in kinematic synthesis and
analysis of spatial mechanisms.

The central problem in synthesis is to determine the dimensions of
linkages required to perform specified jobs. Such specifications may
include guiding a rigid body, coordinaéing motions of input and output
links, generating a curve in space, etc. The central problem in kinematic
analysis of spatial mechanisms is to caiculate the relative motion of the

moving links provided the kinematic parameters of a liﬁkage are known,
1.1, Synthesis of Space Mechanisms

The subject of synthesis of single loop mechanisms has‘been of great.
interest to research kinematicians in the U.S. in the past two decades.
A systematic approach to synthesize an RSSR mechanism, where driving and
driven members move on mutually perpendicular axes was formulated by
Novodvorskii [4]. Stepanoff [5] solved the generalized case of non-
perpendicular planes of driving and driven members. A complete solution
to this problem was given by N. I. Levitskii and K. K. Shakvazian [6],

who applied the least square technique for finite position synthesis up



to eight precision positions. Denavit and Hartenberg [ 7] derived loop
closure equations of RSSR and RCCC mechanisms and showed that equations
are linear up to a limited number of precision positions.

In general, synthesis problems involved coordinating motions of
input and output links of relatively few mechanisms like RSSR and RCCC.
It was, however, Wilson [8] who changed this trend. Using the analogy of
planar kinematic synthesis problems, Wilson introduced the rigid body
guidance problem in spatial synthesis and also showed that function-
generation problems can be converted to a rigid body guidance problem by
taking inversion about the input or output link. Wilson's contribution
also includes derivation of relationships to calculate center point and
spheric point curves. |

In 1965 Harrisberger [9], in his historic paper on the survey of
three-dimensional mechanisms, enumerated a large number of three-
dimensional mechanisms. for which synthesis procedures were as yet
unexploited. Harrisberger's contribution led Roth [10, 11, 12] and Chen
[13, 14] to investigate the loci of special lines and points associated
with spatial motion and to propose a general theory for computing the
number and locus of points in a rigid body in finite or infinitesimal
motion which have their several positions satisfying the constraints of
binary or combined link chains. Because of the nonlinearity of the
constraints, the methods [10-147, though quite suitable for spatial, four-
bar mechanisms, were unsuitable for mechanisms with a large number of
links. In these references, the problem solved was that of rigid bedy
guidance. Problems such as generating a curve in space, generating
surfaces, etc., still remained untouched.

Soni and Harrisberger [15] and Soni and Huang [16] introduced



transmission characteristics as optimality criterion for designing space
mechanisms. Using the analogy of planar kinematic synthesis, Soni and
Huang [17] extended the point position reduction to design spatial, four=-
bar mechanisms. Rao, Sandor, Kohli, and Soni [18] developed a general
closed~form synthesis procedure to synthesize function generators for a
maximum number of precision positions.

Sandor [197], Sandor and Bishopp [20] introduced methods of dual <é§$"
number quaternions and stretch rotation tensor to find loop closure
equations of spatial mechanisms. The methods proposed were general
enough to include generation of space curves, etc., but the complexity of
the equations for mechanisms with a large number of links limited their
use to four-link mechanism synthesis. Suh [21, 227 employed 4 x &
matrices for synthesis of space mechanisms where design equations are
expressed as constraint equations in order to obtain constrained motion.

Suh [23] also investigated the differential displacement synthesis of
spatial mechanisms. Kohli and Soni [24] employed matrix methods to syn~
thesize spherical four~link and six-link mechanisms for multiply separ-
ated positions of a rigid body in spherical motion. The simplicity of

Suh's method is undoubtedly appealing, but large numbers of synthesis

equations render such methods unsuitable for synthesis of spatial mecha-

—

nisms with more-than-four links. ...

Recently, Tsai and Roth ]:25“,__“26,~ 27]_usedhsgrgwatfigggle geometry to

——

synthesize open-loop kinematic chains for completely and incompletely .

.

specified positions of a rigid body. The proposed method is quite simple

,—//

and permits synthesis of mechanisms with helical pairs.
T T T R I g
The only contribution in spatial, two-loop, six-link mechanisms is

by Kohli and Soni [28] who gave synthesis procedures for mechanisms with



revolute, cylinder and helical pairs.
1.2, Analysis of Spatial Mechanisms

Kinematic analysis of space mechanisms was initiated by the signifi-
cant contribution of Dimentberg [30]. Dimentberg [30, 31] demonstrated
the use of dual numbers and screw calculus to obtain closed-form dis-
placement relationships of an RGGC and other four-, five-, six-, and
seven-link spatial mechanisms. Denavit [33] derived closed-form dis-
placement relationships for a spatial RCGC mechanism using dual Euler
angles. ' Yang [34] also derived such relationships for RGGGC mechanisms
using dual quaternions.

Vectors were first used by Chace [35] to derive closed-form dis-
placement relations of RCCC mechanisms. Wallace and Freudenstein [36]
also used vectors to obtain closed-form displacement relationships of
RRSRR and RRERR mechanisms.

Yang [37] proposed a general formulation using dual numbers to
conduct displacement analysis of RCRCR spatial, five-link mechanisms.
Soni and Pamidi [38] extended this application of (3 x 3) matrices with
dual elements to obtain closed-form displacement relations of RCCRR
mechanisms. The methods need further modification when a mechanism
contains a spherical pair.

Yuan [39] employed screw coordinates to obtain closed-form displace-
ment relations for RRCCR and other spatial mechanisms. The approach
does not seem to have any advantage over other methods.

Jenkins and Crossley [40], Sharma and Torfason [41], Dukkipati and
Soni [42] used the method of generated surfaces to conduct the analysis

of single-loop mechanisms containing a spheric pair. Hartenberg and



Denavit [43] contributed iterative techniques to conduct the displacement
analysis of spatial mechanisms using (4 x &) matrices. Uicker [44, 45]
explored in further detail the (4 x 4) matrix approach of Hartenberg and
Denavit. Soni and Harrisberger [46] contributed an iterative approach
for performing kinematic analysis using (3 x 3) matrices with dual ele-
ments. Kohli and Soni [47, 48] used finite screws to conduct displace-
ment analysis of single-loop and two-loop space mechanisms involving
revolute, prismatic, cylinder, helical and spheric pairs.

The survey of literature shows that:the art .of 'synthesis and
analysis of single-loop space mechanisms has attained a sufficient
maturity level, and synthesis and analysis of two-loop, six-link mecha=-
nisms is virtually unexplored.

A systematic approach was devised by Soni and Huang [49, 50] to
perform structural analysis and synthesis of multi-loop kinematic chains
with or without general constraints. The generalized approach was used
to enumerate all two-loop, spatial, six-link mechanisms with or without
general constraints. The result of this structural synthesis shows that
there are 14 types, 936 kinds, ;nd 545,277. two-loop, six-link spatial
kinematic chains. Dukkipati [51] investigated the existence criteria of
two-loop, overconstrained mechanisms and performed displacement analysis
of two types of mechanisms. We are unaware of any work on synthesis of

spatial mechanisms except that by Kohli and Soni [28].
1.3. Present Study

The objectives of the present study are to develop unified synthesis
and analysis procedures for spatial, two-loop, six-link mechanisms. The

five basic configurations, Stephenson-1l, Stephenson~-2, Stephenson-3,



Watt'!s-1 and Watt's-2 mechanisms are examined for finitely, infinitesi-
mally or multiply-separated position synthesis problems using screw
triangle geometry and successive sérew displacements. The maximum
number of positions for which a six-link mechanism may be synthesized
for different types of problems depends upon the type of pairs used and
their arrangements within the mechanism. Synthesis problems'included in
the present study are

1. Rigid Body Guidance

2, Function Generation

3. Guidance for Incompletely Specified Specification of Rigid Body

Kinematic analysis of spatial six-link Watt's and Stephenson type

mechanisms is conducted using successive screw displacements. Kinematic
analysis of a mechanism involves the following problems:

1. Derivation of closed-form displacement relationships

2. Derivation of closed-form velocity and acceleration relations

Specifically, the present study

1. develops a generalized approach to synthesize two-loop mecha-
nisms with kinematic pairs such as revolute pairs, prism pairs,
helical pairs, spherical pairs, and cylinder pairs.

2. 1incorporates completely and incompletely specified positions of
the rigid body for finitely, infinitesimally, or multiply-
separated problems of synthesis.

3. develops a generalized approach to obtain closed-form relation-
ships to calculate position, velocity, and acceleration in space

mechanisms for various values of input displacements.



Chapter II presents the development of generalized tools for
analysis of space mechaﬁisms. Chapter III presents examples of 5 sig—
link space mécﬂanisms. Chapter IV develops general procedufes for syn-
thesié of six-link mechanisms for a variety of motion programs. Chapter
V presents examples of synthesis of six-link mechanisms using the general-
ized procedures. Finaliy, Chapter VI presents findings and conclusions

of the present study.



CHAPTER II

SUCCESSIVE SCREW DISPLACEMENT METHOD OF

CLOSED-FORM DISPLACEMENT ANALYSIS

Kinematic analysis is the inverse problem to kinematic synthesis.

In kinematic analysis we are given a mechanism, and we are required to

e

compute the position of the components of the mechanism for various
positions of the input link. To obtain all the possible configurations
which a mechanism takes, closed-form displacement relatidnships must be
developed. Such relationships permit one to compute the positions of
various links and the rotations and translations of various pairs for
consecutive positions of the input link. In performing kinematic analysis,
we also compute the infinitesimal motion of mechanism links in terms of
the infinitesimal motion of the input link. This leads us to velocity

and acceleration analysis of mechanisms.

In general, there exist many positions of the mechanism for one
position of the input link. The number of configurations a mechanism .
takes depends upon the combination and types of pairs in the mechanism.
In general, this is reflected in a polynomial relating the output-input
displacements. But many times, due to the mathematical complexity of the
elimination processes, this polynomial contains extraneous solutions
which dobnot correspond to any physical assembly of the mechanism, and

consequently these roots must be neglected for obtaining the correct

number of loop closures.



In what follows, a closed-form method for displacement, velocity

and acceleration analysis of space mechanisms is developed.
2.1. Successive Screw Displacements

When two positions of a rigid body are given, there are an infinite
number of ways the body may be transferred from one position to another.
One of the simplest ways to accomplish this is through screw motion
(Chasel's theorem). Chasel's theorem states that a rigid body can be
moved from any one §pe¢ified position to any other by a movement con-
sisting of a rotation around a straight line accompanied by a translation
parallel to the straight line. This is called screw motion and is
unique in its representation. A displacement denotes the difference in
two positions of a rigid body. Therefore, displacements specified in
screw motion form are unique.

Displacements at pairs may be regarded as screw displacements. At

a cylinder pair (C), the displacement is a screw of variable pitch; at a
helical pair (H), a constant pitch; at a revolute pair (R), an infinite
pitch; at a spherical pair (S), displacement is a pure rotation about a
fixed point (i.e., the screw axis passes through the spherical point, and
there is no translation).
) We shall consider here a cylinder pair since it is the most general
screw, and all other screws associated with revolute, prism, helical and
spheric pairs may be derived from it. We shall considef the location of
iines or points and their derivatives when the body to which the line or
point is associated undergoes a series of successive screw displacements
about the joints.

Figure 1 shows a rigid body2_attached to a cylindrical pair B in a



10

Ol

il

X

Figure- 1. A Rigid Body Gomnnected to the Ground Via a
Gylinder Pair
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rectangular coordinate system O0XYZ. This joint can take screw dis-
placements, i.e., rotations about and translations along the axis of the
joint.

The following vectors are defined:

B is a unit vector defining the direction of the axis of the
joint.

P is a vector from the or1g1n to a point P on the axis.

C is a unlt vector defining the dlrectlon of a llne 1n S .

Q is a vector from the origin to a point Q on the line in § . .

In what follows, cosine and sine are denoted by letters C and S followed

by the angle.

Now if §: is displaced through screw motion at joint B con51st1ng of

/_,\

a rotation about B b 19 and translations S along axis B- thenzz_occu ies
o ld) P

the p051t10n2:j. The direction of line (Cj) 1njfj is given by

Tj=Cos[C-(E-B)B]+80(BXT) + T B) B (2.1)

and if the motion is infinitesimal, dE/dt, dzaldt2 are given by

d€ _ (gxE)dde (2.2)

&= (Bx )“E |
— d®BR (ZxZ) + (B xdC)dor (2.3)

5= s (BX0) + (Brag) & |

dB/dt = 0 since B is fixed to the pair axes.

The displaced position of point Q is given by

¥
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Qj=Cesl(a-P)- {(&-P>-BIB]+ P+ Bse
+ SO (B x (F-P)
+{(&-7)B}B

(2.4)

The veldcities and acceleration of Q are given by
dq _ BX(R-P)48B . 5 dsp (2.5)

(1_

at’ " 3t

d?

|

— = = 2
S = BX(Q—P)O_{:E%:B)_

dB X (AR _ dP ) + B *SB
R TR

S
-

where —
CkJD = =, 6*538
e

Hence,

pa
F —_ 2
A _ Bx[Bx(R-P 0B)+BdS
AKX X(}-P)] B
dt= at. E{t}L
— —_— = 2
Bx(]-P)]d8e
+LBx(Q-P)]<1ze
Figure 2 shows a rigid body attached to a binary line where both joints
can take screw displacements. Second joint is completely defined by a
point P and unit vector B. Note that one element of A is fixed while B

is a moving joint. We first give screw displacement at_ joint B and then
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X

Figure 2. A Rigid Body Connected to the Ground Via Two Cylinder Pairs

13

o



14

at A,2 occupies ' after displacement at B and Ej after displacement at
A. Let GA and GB be rotational motions and S, and S, be linear displace-

ments at joints A and B, then the first displaced position of C' of line

C in Z,is given by

0= Cop[C—(C B)BI+SO(BXE)+TBIB 4

Q= Con[(F-P)-{R-P)B{B|+B Sa+P
+ Seog[ Bx(@-P)]+{(X-P)-BIBE a9

and final displaced position Ej ian is given by.

C}: CQA\__Z{— (Z./A')A_]—_l-g_él/\ (KXE/) (2.10)
+ (A A
— — — - e =) =
Q= Coa[@-E) - {(R~B)-A}A]
+ SOALA X (RLD)] + A Sa
+ {(5‘{—5)-[\}@4—5 (2.11)
Rearranging Equation (2.10), we get
Cf=CoB[Conly +58aL>+ 5]
+ S6g[Con M+ S0AM M3
+ CLE;A\FE"f S;GQP\Fzz_ﬁ' k<35

(2.12)

where
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where

= (A xB)dea
AT

Al

Similarly

_ | /
A& _1cqle)-{cato) AlA]

Ak j / .
D —A S,
+ %%Mx(& o)A LA
- o/ —_
+[{(&B) A}A]+4E
(2.15)
& = d@ —
at - [Bxc 7}% B&%‘r
+ dga [ (3-0))+ d‘ft .16)
A _ d& APY+4B w(p-P
Zr 13 >+;‘l}t @, P)]cﬂ_g;iaj
- d*08 L & 4%
+[Bx(&‘ B ] L+ B s

+dB dsp A294[A %(g-5)]
at "k a2

+ A A& _do Td*a
H[AX(Z8 -d0 )T+ A

(2 17)
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where

= KOLQA
ESw

dEYdt, dE/dt'as showin in Equations (2.5) and (2.2) are obtained by per-

s

muting P with a and B with C.

We conclude then that displaced positions of lines or points and
their derivatives may be gbtained byvprqyiding successive screw dis-
placements. For finitely separated positions; we u;é figitg screws from

Equations (2.10) and (2.11); while for inf;nitesimally separated positions

we use infinitesimal screws described by infinitesimal screw displacements

2.2. Pair Geometry and Constraint Equations

Let two chains of rigid bodies be connected to two elements of a
pair. The displaced positions of pairs are usually obtained independently
from two sides. The geometry of the pair places certain constraints on
the motion of two chains connected to the two elements. In this section
we describe the constraints placed by pair geometry on the motion of
these two chains. Note that these constraints can be generalized to
conétraints on two screw chains. Screw 1 and Screw 2 referred to herein

will describe equivalent screw displacements of two screw chains.

2.2.1. Spheric Pair (Figure 3) .

AN
If screws S, and S, (where the hat denotes the screw) are connected

1 2
by a spheric pair, then the constraint that the spherical pair places on
N N
the screw displacements S1 and 52 (shown in Figure 3) may be expressed as

follows.
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1. After the displacement is carried out, the displaced position of
the spherical point (denoted by P) considered on Screw 1 and

Screw 2 must be the same.
_ /N — A
P? C $)) = pj,( 55 (2.18)

2. TFor infinitesimal motions the derivatives of the point P, com-

A A
puted from screw motions of S1 and SZ’ are equal.

E/C é\a> = 5/( fg_) (2.19)

In general, for nth order infinitesimal motion
— AN =N, £
P"( g\) - P (gz_) (2.20)

2.2.2. Revolute Pair (Figure 4)

Figure 4 shows two screws S, and 52 connected via a revolute joint.

1
A revolute pair puts the following constraints on the screw displacements
A A
S1 and 32:
1. The displaced position of revolute axis A when considered on
A A
screw Slvmust be the same as that when considered on screw SZ'

/Z\_J/C/SD = A% (S,:_) (2.21)

2. The displaced position of a point on the revolute axis (P) when

VA
considered on screw S1 must be the same as that when considered
AN
on screw SZ'

§$<§’)’: 5f<é\1) (2.22)

3. For infinitesimal displacements, derivatives of axes and point
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from Screw 1 and Screw 2 are equated.

A—n(é\!) — A’h( g’;> (2.23)

and
A WAY — A
P (SO — ph(gl> (2.24)

2.2.3. Cylinder Pair (Figure 5)

For finite displacements, the conditions are
— A —_ A
AJ,(S,): AJ/<SJ_> (2.25)
%‘(é\,) = 5%@;) +AE G

where t is the translation at the cylinder pair.

For infinitesimally separated positions the conditions are

A= AN 227
~ =, n o x
PV\CS,> = PMCSJ-) +§{—_C—n§A_&)(z.28)

2.2.4, Prismatic Pair (Figure 6)

A prism pair does not allow any relative rotational motion between

two lines. Hence, the condition. that a prism pair puts on Screws 1 and 2
AN

is that screws S1 and 82 are parallel.

Let B, a unit vector, intersect at a constant angle the pair axes Ao

Then the condition for bodies to have common prismatic pair is
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Figure 5. Two Rigid Bodies Connected Via a Cylinder Pair

Figure 6. Two Rigid Bodies Connected Via a
Prismatic Pair
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@(é\l): /LT?,( fl) (2.29)
_g}(?l): E%é\l) (230)
5?( é\,) = EZ’CQ) + AT%{: (2.31)

For infinitesimal motion

KM@.); AHC@_) (2.32)
Eh Ca): Eh (§1> (2.33)

57‘:2 é\l>: 5&” <§\l> +@-t)h (2.34)

where t is the translation at prismatic pair.

2.2.5. Helical Pair (Figure 7)

N N

The constraint on the motion of screws S1 and 82 is expressed by

Z\'%(S/}) = A_Z/<é\l> (2.35)
@(Q) - [?(gl-)"'lzft (2.36)
t = ? (92."@,)

(2.37)

where t is the translation at the helical pair
" 92 and @1; are rotations of Screws 2 and 1

92 -Ql is the rotation at the helical pair
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§7 is the pitch of the helical pair.
2.3. Ternary Link in Space

A ternary link is a rigid body containing three elements of pairs.
The pair axes are defined by their screw axes which are, in general, non-
parallel, nonintersecting lines in space. The direction of links and
kinks.are so chosen that the ternary link forms a closed looﬁ. The
ternary link has 12 parameters (3 link lengths, 3 kink lengths, 3 twist
angles and 3 included angles, but only 6 of these are independent para-
meters).

Two link lengths, 2 twist angles, an included angle and included
kink length are chosen here as independent parameters. Note that Lloop
closure equations may be written traversing two sides of the ternary link.
Figure 8 shows a ternary link where one of the joints is connected to

i

link a, . Let two sides of ternary link meeting at this joint be a

k k-1
and ak+1"9t be the included angle between a1 and a1’ SCl be the
kink at this joint. Let the rotation of a, , relative to a, be G and

kink along pair axis be Sp’ then. rotation and translation parameters for

. (o]
side a ., are (180° + Q+ Gt) and (sc1 + sp).

2.4, Loop Closure Equations

The loop closure equations of a mechanism are derived using the
following:
1. The mechanism is separated at some convenient pair or pairs such

that the mechanism is divided into .open .loop kinematic chains. The open

loop chains are then unfolded such that all perpendicualrs to the pair

~

axes lie along a line. This is possible only if the kink links at the
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A Ternary Link in Space

Figure 8.
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pairs are reduced to zero, and the angle between the links is also zero.

Note that the link lengths and offset distances have directional
sense of the loop and form a continuous directed polygon in space. Twist
angles,G(i's, are angles between the adjacent pair axes measured in
positive screw sense about directed 1ink lengths, while rotation angles
at pairs are angles between the adjacent links measured in positive
screw sense about the directed offset distance common to the links.
Throughout this work, this convention is followed to bring uniformity.

Figure 9 shows a RCCC mechanism. A is a revolute pair; B, C, and D
are three cylinder pairs. Unit vectors parallel to the pair axes at
pairs A, B, C and D are denoted B& A, B, C, and D P'Q, .Q'R, R'T and T'P
are perpendiculars between pair axes at A and B, B and G, C and D, and D
and A. Note also that these are equal to link lengths ajs 8,5 a4 and a,
respectively. Note from Figure 9 that PP', QQ', RR! and TT' denote the
kink lengths at the pairs and are denoted by Sl’ SZ’ 83 and S4.

The mechanism is separated into two open loop chains by separating
two elements of the cylinder pair located at G. ABG, and DG_ become two

1 2

open loop chains, where C1 and 02 are two elements of the pair at C. Now

let the offset distances or kink lengths in the chains go to zero, i.es,
let Q and Q', P and P! coincide in the chain ABCl, and T and T', R and R!

coincide in chain DG Let the rotation angles at the pairs go to zero.

9
In such a position all links are along a straight line as showni in Figure
10, In Figure 10, the mechanism has been unfolded along the Y axis. Let
the rotation angles at pairs A, B, G, D be 91, 82, 93 and 84, and l_gt the
twist angles between the pair axes bec( s X, ’°§3’°QN Then in the un-

folded positions of chain S1 = 52 = S3 8‘ 9 6- @ = (0, and

the vectors pointing in the dlrectlon of the pair axes and vectors R(=R'),
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P(=P'), Q(=Q') and T(=T') are related to the twist angles and the link

lengths by the following:

A
:Bt: Cﬁo(lL—I—Q\MOHR

C = Co3(A\+K, ) T S (K +3) K
D= (A T— Sm(aty) B

Cy = Cot (oly +44) T = 6 (k3 +oty) B

Ri= 07 +o'{f+o??

2, The mechanism is next re-assembled by applying appropriate but
often unknown pair motions. These pair motions, in general, may be con~
sidered as screw motions at the pairs. Since mechanism link lengths
and offset distances have a directed sense, we note that e's are measured
in the opposite sense to the screw displacements for pairs left of the
fixed link, while screw displacements at pairs are in the positive sense
for the pairs to the right of the fixed link. This maintains a proper

notation throughout. The pair motions at the input pair are known while
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pair motion at other pairs are required to be computed to conduct dis~
placement analysis.
For example, for the chain shown in Figure 10, the final position

is obtained by screwing C, and R, about screw B (screw axis

of G, and R ! 1

1 1

direction - B, screw axis passing through Q, rotatione2 and translation

A

SZ) and then about A (screw axis direction - A, screw axis passing through

P, rotation angle @1 and constant slide Sl)° Note that screw axis direc~
tion has been reversed because Q's are measured in the opposite sense to
the screw displacements. The final position of the C pair may also be

located by screwing Eé‘and R2 about D (screw axis direction D, screw
axis passing through E, rotation 84 and translation S4).

3. The final position of the pair thus obtained from the successive
screw displacements in the kinematic chain is constrained by the pair |
constraints.

For example, using the constraint condition from Equations (2.25)

and (2.26) for the final positions of C,, C,, R

10 G5 Ry RZ’ we obtain
(El) final position from chain ABC1 = (Eé) final position from chain D02
(2.38)
(§1) final position from chain ABC1 = (ﬁé) final position from chain DC,
* () na15 (2.39)

4. The equations obtained in Step 3 are loop closure equations.
All unwanted variables are eliminated to obtain one equation in one un-
known which is usually in polynomial form.

5. The equations obtained in Step 4 are rearranged so that other

parameters may be computed in closed form. Note that since the mecha-
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nism loop has directional sense, the screws in the left side of the fixed
link are negative screw displacements, while those on the right side of
the fixed link are positive screw displacements.

>6. Once all the variables of screws at pairs have been computed
for a value of input screw, the displaced position of any link of the
mechanism may be computed by locating the displaced position of the pairs
and links.

7. TFor velocity and acceleration analysis, the velocity and ac=-
celerations of the pairs are’obtained from two sides in the jth position.
The infinitesimal pair constraints are then used to obtain velocity and
acceleration analysis equations. In general, these equations are linear
in unknown rotation velocities, translational or sliding velocities,
rotational acceleration and translational accelerations.

Four operatorsl§1,£§2,133, andA4 are defined. These will help make
analysis equations more compact. Asl gives the final position of a unit

vector G when it is rotated about axis B by angle 8B

(C>-§cn0\4 = A1 (C,8,0p)
where the right hand sidé is defined in Equation (2.1).

A 2 provides the final position of a unit vector C when it is stc~-

cessively rotated about B by QBand A by@A.

(C) fnal = A2 CC,B,A,08,04)
where the right hand side is defined in Equation (2.10).
AN 3 gives the final position of a vector to a point (a) when it is
A —
screwed by screw B (unit vector B, passing through P, rotation BB and

translation SB).
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(Q){m(: Ag(&a P, B, bg, Se)
where the right hand side is defined in Equation (2.4).
A 4 provides the final position of a vector (6) to a point Q when it
is successively screwed by screws Qn(Unit vector E, passing through F,

A - -
rotathn1QB, and translation SB) and A (unit vector A, passing through O,

rotationsé}A and translation SA).
@){cmé :A«Ll- (Q >P> O =P A >@B)9A)SB>&9
where the right hand side is defined in Equation (2.11).

In the next chapter examples of five spatial, two-loop mechanisms

using the method described here are presented.



CHAPTER III
APPLICATION TO MECHANISM ANALYSIS

In this chapter, the general method developed in Chapter II is used
to conduct displacement, velocity and acceleration analysis of five types

of two-loop, six~link mechanisms.
3.1. Analysis of RCSR-CSR Mechanism

Figure 11 shows a Stephenson-3. fixed pivot RCSR-CSR space mechanism.
A, D and G are three revolute pairs. One element of each of these pairs
is fixed to the ground. Moving pairs B and E are cylindrical pairs.
Spherical pairs are located at points C and F. The directional sense of
the loop is shown in Figure 11. Unit vectors parallel to the pair axes
at pairs A, B, D, E and G are denoted by Z; E, 5, E and G respectively.

The mechanism shown in Figure 11 has two independent directed loops

ABCD and ABEFG. In loop ABCD, a, is the link length between the pair

1

axes at A and B; a, is the perepndicular distance from the spherical point

2

Q on the pair axes at Bj a, is the perpendicular distance from the spheric

3

point Q on the pair axes at Dj a, is the link length between the pair axes

4

A and D. 51 is the offset distance at the revolute pair at A and is

constantj S, is the offset distance at the cylinder pair located at Bj; S

2 4

is the offset distance at the revolute pair at D and is constant. Note

that the directions of link lengths a;s a5, 83, @, and offset distances

S, and S4 are so chosen that a continuous, directed, space polygon is

S1’ 2

33
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formed. Twist angles are measured between adjacent pair axes in right
hand screw sense about directed link lengths. 1In loop ABCD,Q(1 is the
twist angle between the pair axes at B and A;(?%_between the pair axes at

A and D. Rotation 91 is the angle between links a, and a, measured in

positive screw about the directed offset distance Sl' Similarly, @2 is

the angle between links a, and ays measured in positive sense about the

1

directed offset S EL is the angle between ag and s measured about off-

93

set 84. In loop ABEFG, a5 is the link length between the pair axes at B

and Ej; ag is the perpendicular distance from the spheric point U to the

axis at Ej} a, is the perpendicular distance from the spheric point U on

7

the axis at pair G; a_, is the link length between the pair axes at A and

8

G. 85 and S_ are the offset distances at pairs at E and G. C(S andCXé

7

are the twist angles between the pair axes at B and E, and the axes at A

and G. 85 and 68 denote the rotation angles between links a_ and ag and

5

a, and ag measured in positive sense about offset distances 85 and SB'

Due to ternary links ADG and BCE, the rotation angles and offset distance
at the revolute pair at A and the cylinder pair at B in loop ABEFG are
different from those of ABCD. For loop ABEFG, the rotations at pair A
and B are @1 +901 and 92 +902 respectively and the offset distances are

S S S S . i -
.t ¢, and S, + , NOteeﬁﬁf Scl,@-c2 and:s02 are ternary link para

meters and

- o
8. =6, + 180

1 1

=9, + 180°
E>c2 t2

where@t and@t are the included angles of the ternary link with ag
2

1
and ag reversed. Similarly, SC and SC are kinks of the ternary link at
1 2
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The mechanism is separated into four open loop chains by dividing

it at two spherical pairs located at C and F. The open loop chains are

unfolded along a straight line such that all the links are collinear

pointing in one direction. At this position, the rotation angles be-

tween the links and also kinks at the pairs are zero.

Unfolded chains are shown in Figures 12 and 13. Following vectors

are defined from Figures 12 and 13.
Vectors parallel to the pair axes are:
-

A

A =

= CRA | L + SoncX| K

il

(3.1)

(3.2)

E = G A\ +AS) Tt G (o +945) B (3.3)

5= s@y) T— enfiy) B

—_ rerd \ e
G= s RXg { = S dg K
Vectors locating the pair axes in space are:

O

<l
(I

ml
{
Q
o~
~

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)



Figure 12. Unfolded Position of First-Loop of RSGR-GSR Mechanism
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0zl+ras+ag) 7 (3.9)
Q= (s +Ae—ay) ?; (3.10)
7= (@ +as+act+ag) L (3.11)

Uy = +as5 +0g+ a7 +ag)F G
R= u+autas+ag) £ 6w

Ry=(Q+as+Qgt+an+az)

We first analyze the loop ABGD. The final position of Qq may be
~ N
obtained by screwing it about B and then about A. These screws are

negative screws. Screw B consists of rotations(92 and translation Sz;
A . . » . . r]
screw A consists of rotat10n6§1 and translation S The final pesition

— A
of spheric pair Q may also be obtained by screwing Q2 about D. This

1.

screw consists of rotation@4 and translation 540 The final position of
Q obtained from two sides is then equated. Let subscript j denote this

displaced position.
Quy=colc R-3)-{(&-0)-AYA]
- SO [AX (/-0)1+0

+ {( Q‘/— S)- /Z{z A-AS (3.15)

g = 0.[(g-P>-{(@-P>B}E]-B5
+P- 50, [ B x(&-P1+{(Q-P)BIB

(3.16)
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and also,

Qo) = COu[@rR)-{(Z-R) DD
+ SO4[ D x(R,-R)]J+R+D Sy
+ {(Q-Q_‘ﬁ)f)}—li

Now equating the final position of spheric pair Q1 obtained from two

(3.17)

chains, that is,

@—4?: &z(f; (3.18)

we get

CO,N;+ 56 Ny +N3 '*B_J"Sl: C§q§+sgqis,19)
3

where

N = C—Ql[i*{li’K)fo]*S@((A—XfD-F@'K)K
N, = CO [ To— (T AYA]-SB (AXTHHIAA
Ny = COIL T3 (T ADA]-S8 (A X T+
+0- AS) +Cf57-\')ﬂ

I,= (Q-P)- {(Q-P)B B

I,= - B x (&P

L = {C&’\—‘P')-'B“}E+'P"—5
B,=Co[B-G A AL SO (AXBHBAA
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T = (8,-R)- {(&-R)DBiD
T = Dx(&-R)
R= { (Q,-RD 5 5+§+55‘+

Dotting Equation (3.19) with (ﬁi X Ej) and (ﬁé x B,) we get two

equations expressing 092 and SGZ as follows,

CO,= <[_\TQ_X E})f(ﬁ C_QL}—!—:]:Z SOy +(_JE“ .N—B)
( f<i2_74 E§2F>' FJ,

(3.20)

Co= (NyxBz). (TCOy+ T3 S8y +{15-N3)
— — — —
(NGX Bf) N, (3.21)

Squaring Equations (3.20) and (3.21) and using the identity
0292 + 8%92 =1, we get

Iy
2 Pn anllhoy =0
N=0

(3.223)

where
2.
Py = Aﬁ— B2 A Az-2B R+ + Az +DB3

Py =— L4 A AL -4 B B, +L4 AL Az +4BREs
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P, = L (AT +B2) +2 (AF+BY) 2 (AFBD)-2
P =4 (A AL+ BB+ U (A2A3 +BaBa)
Po= A2+ BZ+2 (A 1Azt BiBs) +AT+B=1

Ay = (szgj,)-ﬁ/< ND_XB_J-/)N‘, (3.220)
Ay= NaX By T [ (NoxB) N,
Az= (Nax E?)f}/( legg;). N,

By= (N %B) T /(N x BN

By= (WX B> T/ (N x BNy

By= (N, % g})'_fg/ (N xBi) N2

From Equation (3.22) we may obtain at most four real roots of §4;
for each real root of 94, @2 may be obtained using Equations (3.20) and

(3.21). S, may then be expressed using Equation (3.19) as
2

S2=COy (T} E’f,) + S84 (Ty B‘J,) +J3 E{;}
3By COLNy 'EJ;) =62 (Ny Eg) (3.23)

The position of the spherical pair is computed using Equation (3.15)

or Equation (3.17).
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Ncte that 'ﬁi, ?', E'1 and 6_1 are functions of known quantities and

are described below,

/= o[ (W8>~ {(-5) A} A]

-SQI[AX(WER)+0-FS)
+ {(RLa)AYA
U= oty [(T-F)-{(R-P)BIB
= S(62406) [ B X (U-PY]+P-BGug
{ (_szl“is)' Eg'z E;

'= o/[(FL3>-{ (FLB>A1A )-AS)
‘SGl[AXCT”o>]+{(T"' YAIAHD

S

T = C o+ 0e)[(T-F)- [(T-FIBIE
- S50 +60) [ B X (F-PY]+P
+ {(T-5) BYB-B (Sa+Sa)

£

Ej=Co[EEAIF] 56 (AXED
+(EAA

E'= C(br46ey [ E-E DIB]+E BB
- S(92.+9C2_) [EXE]
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This completes the displacement analysis of loop ABCD. Next the
loop ABEFG is analyzed. The final position of U is obtained by screwing

U

A — —
1successively by screw E (parallel to E, passing through T, rotation(95,

translation 85), screw g (parallel to E, passing throughﬁs, rotation

8, +-9c » translation S, + Scz), screw ﬁl(parallel to A, passing through
0, rotatﬂxlel, translation Sl). The final position of U may also be
obtained by screwing Eé successively by screw é?(parallel to E, passing
through ﬁ, rotation 87, translation S7) and screw 2 (parallel to K,
rotatixn1Qc1, translation Sc1). Note that screws for the left hand side

of the fixed link are negative screws. Equating the two final positions

of the second spheric pair, that is,
Y157 %

we obtain

Cos[(T,-T)- {(u, -7 E??tﬂ
—S@g[E},X(‘w T)]+{(’u; T)EA s

+T-E} S5
= (67 [~ W)~ (T~ W) GAG]
+ 397[6%“% oY
—/ ==
+ W+ G S+ {(TEWD GG

(3.24)
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T = C0¢ [ (A-8)-{(T,-B)-ALA]
+ S0 LA X(W-0D] + A &
+ {(W~-0)AIA

Equation (3.24) may be written as
T,'Cos +T/s65 + 5 - £/ Sc
= 7,06, + 567 +T5
where definitions of vectors I',, I',, I',, J'., J

s Tty I'q, 31y, J'y, and J°
Equation (3.24) and these are functions of known quantities.

(3.25)
3 follow from

Eliminating SG% and Ceg from Equation (3.25) by dotting Equaticn

= _ _ _
(3.25) by I L % Ej' and 1'2 X Ej , we get

-/ — —/ —/ =/ _ 7
(T XEp). (T ¢ + T, S67 + 5—12)
CZQS:; 4 ( jfz’x é?,) i?/
z 7 / (3.26)
and similarly

—_ | ==/ =/ —/
cor (TXEp) (T O+ 3,86 +T-1)
— T
(I X Ef)'fz_

(3.27)

or

COs

il

¢, C&y + G S8y + G5

S8s

where definitions of Cl’ C

D, (6 + D, 3887 +D3
C

s G3» Dl’ D2, and D3 follow from Equations



46

(3.26) and (3.27). Squaring Equations (3.26) and (3.27) and using the

2
identity G &5 + 3265 = 1, we obtain

(3.28)

4 :
Z Zy tant ’/297
(=0

where Zi's are known functions of/Cl, CZ’ 03, Dl’ DZ; and D A

3° i
may be obtained from Equation (3.22a) by replacing Pi by Zi’ A's by G's
and B's by D's.

There are at most four values ofé}7 from Equation (3.28) and for each
value of9-7, 95 may be computed using Equations (3.26) and (3.27). 85 is

expressed as
— -/ —/ ey
Ss Z[I,/CQS'—}—IQ_SQS + I3 ] E]’
—/ — —)— —
-[T o7+ s67+ % JE o

This completes the displacement analysis of RSCR-CSR mechanism.

Loop ABGD has four loop closures and for each closure of loop 1, there
are four closures for loop 2. Hence, for each position of the input link,
there are sixteen positions of other links.

The position of any point or line, on any link can be computed by
screwing it in the unfolded position about the screws intercepted be-
tween that link and the fixed link. Note that after performing thé
displacement analysis, screws at all the pairs are known. To perform
velocity and acceleration analysis, positions of all the links and pairs

are computed using known successive screw displacements. Let this posi-

tion be denoted by subscript j. Consider the loop ABijD. The velocity
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of 6. may be found by providing infinitesimal screw displacement to Q
A N — -
about Bj and Aj. The velocity of Qj may also be found by screwing Qj by
n
infinitesimal screw about D. Equating the velocities obtained from these

two methods,

—&JL AX (8- Of)wﬁB/x(&f Pf)w?-
B S

— “DX<Qf—R>VOL/‘ (3.30)
Letbbh be the input velocity which is known. Vector Equation (3.30) con-

tains three unknownsL,oz,u.)4 and S These may be computed from three

2.
linear equations obtained from vector Equation (3.30).

Other velocities in loop ABCD are,

E;jé —_ - <_2: ?( E;J;) UO,
b= ~ X (Pg=0wi=BsS,
Acceleration analysis of loop 1 is performed by differentiating

Equation (3.30) to get,
Q(f’ A)((&j)bm-\'BJ,X(QéL P w2
+BJ'XCQ$ pf)w7_+BfS+BJSz
= —Bx(aj,—ﬁ)w%
—5X§3;WH (3.31)

whereLb2 andLO4 are angular accelerations at pairs B and D, 32 is trans-
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lational acceleration at pair B. These appear as unknowns in vector
Equation (3.31) and may be computed from the three linear equations ob-
tained from Equation (3.31).

The procedure for performing velocity and acceleration analysis of
the second loop is similar. The velocity of the second spheric pair
denoted by 53 is found by providing infinitesimal motions of chains

ABjEjUj and AijUj' These two velocities are equated to obtain

——

-Uy= AX (W4 -3) W|+Wz_B-%><(ﬁf"5f)
+ EJ’ X (MJ,—TZ/) ws

+ BJ,S;_'I“ Eg, Sg‘

:—GJK K (MJ,—- W3'> W7

(3.32)

W 9 S5 and.u% are computed using the three linear equations obtained from
vector Equation (3.32),

Differentiating Equation (3.32) to perform acceleration analysis,
—u}— A ><<u}>w |+ BJ,X(UJ, Ppwz
+ BJ’ % ( MJ, P}) W2+ E}Qg"‘ Eg,gs

-+ E],X('L(? T}> Ws + Bét, S)_-!— deb
=-Gy X’T'X}‘\Ab Wy G X (T W) 3.3)
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where

= = (Amw'-i-fgj,(/oaﬁ ng,

- brunl —_— w— —‘ _._()»
- ?Z A*(TJ,—CD W)+ BJ,XCTJ |})‘f"2
tBiS E}'Ss
d%’ §5 andt$7 are computed using the three linear equations obtained from
Vector Equation (3.33).
Now the velocity and acceleration of any point or line on any
coupler link can be computed since instantaneous screws at all the pairs

are known. Table I presents a numerical example of displacement analysis

of a RSCR-CSR mechanism.
3.2, Analysis of RSCR~CCC Mechanism

Figure 14 shows a Stephenson-3 fixed pivot type RSCR-CCC mechanism.
This mechanism is obtained by replacing in Figurg 11 the spherical pair
at F by a cylinder pair and the revolute pair at G by a cylinder pair.
The ncmenclature of Figure 11 is retained here. Additional parameters
necessary to specify the mechanism arec{6, the twist angle between the
axes at pairs E and F, measured in positive sense about link a6;0<7, the
twist angle between the axes at pairs F and G, measured in positive sense
about length ass S6 and S7 variable offset distances at the cylinder
pairs at F and G, measured in positive sense to close the directed loop.

Since the loop ABCD of Figure 14 and Figure 11 are the same, the
analysis of the two is the same. Note that the analysis of loop ABCD is

performed independent of loop ABEFG. Loop ABEFG is analyzed by separating

the two elements of the cylinder pair located at F, thus dividing the



Parameters of the mechanism are:

C{,=g3oi,c£2_=
S/: 01> Stp=0, Sg=0-01,
CL5'==/'2.)CL6==O-SBCI7=:D-

TABLE I

ANALYSIS OF RSCR-GSR MECHANISM

One of the 16 solutions is shown below:
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Figure 14. Six-Link, Spatial RGSR-CCC Mechanism
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mechanism into two open loop chains ABEF1 and AGFZ. The two chains are
then unfolded along a straight line as described in Chapter II. The

unfolded position of kinematic chains is shown in Figure 15.

The following vectors for Figure 15, in addition to those defined by

Equations (3.1) - (3.14), are defined.
E| = Co (O<!+°(S +°(Q>>-‘Z+§V‘“ (°(|+°<§+°<é)k

Fy, = Co3 ( A5 —}-O(%‘)?— S (ely +0(8>T(

The final position of the axis at F via successive screw displace=-

ments of chain ABEF1 and also via chain AGF2 is located. Since F is a

cylinder pair, we use the pair constraint Equations (2.25) and (2.26) of

Chapter 1II.

The final position of the direction of axes Fl and Eé obtained from

two chains are

QF])»}LY\O\{ C@SD:; - (l:;/ =3 \—E-/:l (Fy E 1:-:'/
- S¢c (E % F "y (3.35)

(F) fionad = (67 ‘__Fz (Fz. G>CT J"‘(T:;_/G )G
+S<9‘7(G XF7_>

(3.36)

where

"'H

= Dy (F,-B,-A,062+60¢,,6)
E - Ay (E. . -B,-A,8:46,61)
Fo= B (Foy A5 6¢)
G= O (G5 A,6qQ)
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Figure 15. Unfolded Position of Second Loop of RSCR-GGC Mechanism
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s Ety, F'_  and G' are functions of known screws. Equating

Note that F! 2

1

the two final positions we get

T,C95+I,805+Ts
= 7,C67 + T, 567+ (3.37)

where definitions of El’ IZ’ Es, 31, J2 and J3 follow from Equations
(3.35) and (3.36) and are functions of known quantities.

Vector Equation (3.37) provides three equations, but only two of

them are independent. Eliminating E% from Equation (3.37), we obtain
X, ‘ta/v\_zl/2_97 + V) tom Vs 67+ 21= 0 (3.38)

where

X = (GX ) (T-T3+I3)

Y= 2 Cf) X fz)j_:z.
Zi= (X IT) (T + - Iz)

Equation (3.38) provides a maximum of two solutions of87. For
each value of §, obtained from Equation (3.38),95 is calculated from
Equation (3.35). Since the rotations of screws at joints E and G are
now known, the final position of F and G may be computed. Let this be
the i position. O s is calculated using
(EjX {_f}). (FiXGi)

| Ej Pl 1y &)
| CELXF X (FpxG) |
\ E—}'XF—?‘} | }f} Xé'oj,]

To calculate the variable kinks at joints E, F and G, the final

o0 Q¢ =

S B4=

position of point U2 is located by providing successive screw displace-
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ments to chains ABEU1 and AGUZ. Using the pair constraint Equation (2.25)

U + —) — '
(U)) tinal Lomchain AGUZF} % = (U‘Mtvmé fm(3.40)

ABEU,
[:'_‘}- S+ FSe+GiSy= LV G
where
LV = D4 B,5555 ,6:460,,8),5:+5,,8)
—AL}(_LI,_)W)5)C7,K)Q7) 6¢|50,5)
and

—_ - = —
WU = A (M\ ?T)E)GS-)O)

35, S6 and S7 are computed using linear equations obtained from
vector Equation (3.41).

There are two solutions of loop ABEFG for each solution of loop ABGCD.
Hence, there are a maximum of eight solutions for each value of the input
link. Since the screws at the joints are now known, the displaced posi-
tion of the mechanism may be found. Let this position be denoted by the
subscript j. Velocity and acceleration analysis of loop ABEFG is per-
formed here. Equating the velocity of Fj obtained from two sides, we

obtain

ns
—

Fy= LA +Bjwa+ E];u@s‘] X 4

= —(G_J;XEJ;)w7

(3.42)
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from which we find

__ Gg (AXEPWitGy (BjxFp)wa

Ws —
G}( E}X F?) (3.43)
ExFp). Ejwi+(BjxF) EfwWa
(A)']:—- CAX (,1) f l AL \? (3.44)

Ey (GE X FZ)
A similar expression may be derived for computing&.)6 by equating the
velocity of E from two sides. To obtain the sliding velocities at pairs

E, F and G, the pair constraint Equation (2.28) is used on vector Ej’

thus,
- U= AX (W -5)wr+ By (T =hp)we
+E—;ﬁ<(ﬁgﬁ"_‘:f)w5+ E?;Sl+ Eglés
- — C—T;/X( Jf—ﬁ?)w7—é}37—§§e(3.45)

Equation (3.45) provides three linear equations to be solved in unknowns

S5, Sg and S..

Expressions for computing angular acceleration at joints E and G

are obtained by differentiating Equation (3.42).
e = =, = N E O
i:/xljg‘-+— E%J_LX)Z.‘F ES;’LA32_4'EEJ,(A3§J'+IEJL éﬂ)<Fi}
+ AW +BjWa +EfWSTRFL
— -—<%ﬁ><€i> Wy — (GJ— XEJ) W7 Guue)
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Angular accelerationsl&5 andtfd7 are computed using two independent equa=-

tions from Equation (3.46). Similar analysis at E pair yields the

expression forb06-

An expression for calculating sliding velocities at E, F, and G is

obtained by differentiating Equation (3.45), thus we find,

A X MJ, W) —H?%X(UJ, Pa,)l/\)z
+ BJ, X ( u;# P?)U\)L‘F B x( u} P 5
+ E} X (UL}-TJ,) W5+ E4X( M} T}) W5
+ Ej,x ( CL}—-W':J;) W5+ ;BJ; S, + Ej, Y

+ Ej,ég n 'E}‘ $s

= - G % (W) w7 - G x (T — Wy

-G &= Fpde- Fids (o7

ae o e
Translational accelerations SS’ S6 and S7 are obtained from three linear

equations obtained from Equation (3.47). Table II presents displacement

analysis of an RSCR-CCC mechanism.

3.3. Kinematic Analysis of RCSR-PSC

Space Mechanism

Figure 16 shows a Watt'!'s-2 fixed pivot type RCSR-PSC mechanism.
Revolute pairs are located at A and D, cylinder pairs at B and E, spher-
ical pairs at G and F, a prismatic pair at G. Note that loop ABGCD of

Figure 11 is the same as loop ABCD of Figure 16. Additional parameters



TABLE IT

ANALYSIS OF RSCR-CCC MEGCHANISM

GConstant parameters of the mechanism are:

Ag=0-9,0c)= 10, Scj= ~0-22 ,0c2= (S5 Sc1=0-11,X=10°,0lty = 3055 = 406" g = 45~°
0(7 = 50/°<8 ’—‘55'? S =0-1 ,_S/./ =O0,a;=1:0,Q, < 1-8,&5_=2-0,QQ=O.RJQ‘;=0. 91Q6:/./)47_= 12

One of the 8 possible solutions is shown below:

61 62 4 G5 87 Sz Ss Se S7
- {oo0 77348 48- 376 |14-858 -13T 935 0-222 1-156 =-0-191 -7-689
110 63-938 4e-607 128-770 148 522 0-29] - {-542 -0-338 -2-070
120 53.353 42-006 13S5-9/10 ~-153-478 0-298 2-306 -0-492 -2-731
{30 43-769 36-219 f41-043 -156-588  0-267 3:437 -0-66{ -3- 701
{40 34-681  29-665 (145-1S0 =—-158-¢656 0-216 S-130 -0-8%72 ~S5' 167
150 25866 22-550 148-337 -159-764 0-1 48 7-874 -~4-193 -7-579
{60 | 7-208 /1S-0/S {49-824 -159-206 0-067 .12-894 -1-788 -12-056
170 8650 7-191 145-604 -1s3.327 —0-0220 2)-763 ~-2-933 -19-98/
180 -2-853 2-711 159-3)6 -163-452 0-038 45-983 -5-S/4 -42-34]
{90 -8 494 -8-637 92-942 -~{o{-770 -0-207 S-477 -~1-982 ~-3.870
200 -17-029 -16-474 69-295  -79-%10 -0-296 0- 054 ~f- 412 {433
210 -25-636 ~-24-028 S4-¢02L -67-106 -0-377 -1-373 -1-129 2-926
220 -34-372 -3)-180 45852 -60- 132 —0-444 -1.48% -0-966 3-171
230 -43-342 -37-800 4 -00f -S6-840 -0-494 -{-202 -0-852 3.02]
240 -S2-7485 -~43-709 39-183 -S6-120 -0-523 -0-823 ~0-7S4 2-752
260 -63-008 ~48-563 40-669 -S7-7S9 -0-51/ -0-473 -0-653 2451
260 <-75"476 -51-2]6 48 706 -63-459 -0-46¢ -0-236 -0-532 Z

44

8¢
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ure 16. Six-Lin
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to specify the mechanism are, a link length between pair axes at A and

6’

G; SS’ offset distance at pair Ej; S6’ offset distance at pair G. Note
that the link lengths and offset distances are so directed that they form
a closed directed loop. The twist angleo(5 between the axes at E and B
is measured in positive sense about link ags WhileC>(6 between the axes at

A and G is measured in positive sense about link ag. S 5 is the rotation

angle between links a_ and ag» measured in positive sense about S The

5 5°

rotation angle and offset distance between links a, and ag differ from

the rotation angle and offset distance between links a, and a, by a con=-

stant angle g and constant offset S Whereze- and S are parameters
<, Cy <, <,
of ternary links as described in Chapter II. Similarly, the rotation

angles and offset distance between links a, and a, differ by a constant

angleﬂkﬁ-and constant offset Scl to the rotation angle and offset be-
tween links ag and as where@(ﬁ.and Sc1 are the included angle and offset
of ternary link ABG at joint A,

Loop ABGD is analyzed as shown in Section 3.1. To conduct the
analysis of loop AGFED, the mechanism is divided into two open loop chains
by separating two elements of the spherical pair located at F. The

unfolded position of the two chains is shown in Figure 17. The following

vectors are then defined from Figure 17.

—>

~

=7
- CQYS<7<| ]:t'— f;CA~/O<\_F5

P

T = Cpgoh +ols T= Sim X +AS ¢
G = (e L + Sonclg B
: ;Et‘ = O
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Figure 17. Unfolded Position of Second Loop of RSQR-PSC Mechanism
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—|
\

(OL|+Q5‘+OL6+Q7);

U, = (q+as+ac+az+ag)
(3.48)

Spheric pair at U is located using successive screw displacements of

chains ABEU2 and AGUl. Equating the two positions of the spheric pair,

we obtain
COs[(,-T" - [(ReT)ELSEY)
+ SOs[E X (W-TH] + E,Ss
=/ == EE
T { S_MQ—_T)'E—}/} E]’ (3.49)
= —'CEQ; E;é, -+ (LL|

where

—/ —_— = = -
W, = Ay (Uyy P,0,B, A, 0ut+bs, 81, 52+5,,9)

:l;/:' AL{-(_I_:) 5)5) —B-)Z(_) G2+ 8¢y 5 81550+ 5)
Eoi =D (E,B,A,0.+0¢, %)
GJQ‘; Ay (G,-A, 88

ﬁ:&r,::; Zﬁ&?g (‘;i1:|) 253" 2:})69,4'6;C4_)53C122 .

Equation (3.49) may be written as

— —/ -/ = —
I./CQS +1, SGes+ I + E}Ssz—égise (3.51)
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where definitions of Tl’ I2 and fé follow from Equation (3.49) and are

functions of known quantities. Eliminating 85 and S6 from Equation (3.51),

we get

Mﬂm&h%ﬁ%ﬁm@%g+a=0

X = (EjxGy) (T3-I)
o =/
Y= 2 (E];x&j,)- T
Z = (E}XGJ)'(T;‘*’ ft/) (3.52)

Equation (3.52) provides at the most two values for@EY For each value

<ﬁf@5, 35 and 3, are computed using

6

o (GpxD{ T cos + 7,505 + T
| (Gj X Z’)‘Efl

e (_I%;Xf), { Tcos +f7_/595+f3/)}
| CEf % £)- G

The velocity analysis of loop AGUED is conducted by equating the
. ) . th . S
velocity of the spheric pair at j position from successive instantaneous

serews from two sides.
By X (Wf=PL) wat B X (WY -TL)WS

+ E&‘SS-
:—G}% (3.53)
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A éS and é6 are computed using three linear equations obtained from

vector Equation (3.53). Differentiating Equation (3.53)
Bf' x(u}‘—%ﬁ) Wo—+ Bé‘gx(ﬁ}'— Pg)wa
+ Eg;x(ﬁdf@') Wy + E—?‘}x (ﬁf-?j;)wg
+ B X (W-Tp)wst Egx (Wg-T1)ws
+E; S +_E;‘S5:— éSé-—éSg
dL > ¢ JL JL (3.54)

Accelerations §6’ @% and § are calculated using Equation (3.54).

5

This completes the displacement, velocity and acceleration analyses
of the mechanism. Finite and infinitesimal screw displacements at joints
are thus known and position, velocity and acceleration of any point in
the mechanism can be computed. Table III presents an example of analysis

of a RSCR-PSC mechanism.

3.4. Kinematic Analysis of

HCCC-RSG Mechani sm

Figure 18 shows a Stephenson type HCCC-RSC mechanism. Input to the
mechanism is provided via the helical pair located at A. B, C, D and G
are cylinder pairs while E and F are revolute and spherical pairs
respectively. The mechanism shown in Figure 18 has two independent

directed loops ABGD and AEFGD. 1In loop ABGD, a, is the link length be-

1

tween the pair axes at pairs A and B; a, is the link length between the

2

pairs at B and Cj ag is the link length between the pairs at C and D; a,

is the link length between the pairs at A and D. The offset distances at

pairs A, B, G and D are denoted by S 5, and S,. Note that the link

1’ SZ’ 3 4



TABLE IIT

EXAMPLE ANALYSIS OF RSGCR-PSC MECHANISM

The constant parameters of the mechanism are:

O, = 155 Sca=015 $=01; S4=0,9=20", x4 =255 = -30°,
o=ISS =06, A2=0-8,85=0-8 ,Q4=0-5, A5=0-4 ,A¢=0F,
Q7= 0-3,Ag=0-4 |

One of the 8 solutions is shown below:

(=7 62 O Gs Ss Se S2
130 63- 629 8-368 117 -351 1-287 -0-207 =1-001
{40 48- 078 8-132 86-306 1-157 -0-298 -0-874
150 35-372 5-889 65097 0-946 -0-319 -0-701
160 24065 2-753 48 -S72 0-70S -0-323 =-0-50&
(o]

{70 14-079 —1-336  36-268 - 473 =-0.-339 -o0-307
180 -0-926 -0-869 27-5/19 0-/32 -0-3/9 -—0-089
190 =-9-0/1 —6-495 27-393 -0-0/9 -0-436 114

0
200 =—19-212 =-1{0-304 33-741 -0-182 -0-S78 0-318
2{0 =30-052 -—13-698 45.204 =-0-335 -~-0-738 O0-S5|4%
220 —-41-751 =-16-612 6(-172 -0-489 =-0-887 0.695
230 -54-896 =-18-T10 83-197 -0-656 -0-982 o- 847
240 -71-254 -18-716 |20-703 -0-876 -0-903 0-938

69
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lengths and offset distances are directed segments and form a closed
directed polygon in space. o(l,cxz,c(3 andc><4 are the twist angles
measured between the pair axes at A and B, B and G, G and D, D and A, in

a, and a, .

positive sense about links a;, a 3 4

2’

Anghaé%.is measured at the axis of pair A, between links a, and a,

in positive sense about offset S, . Similarly, angles ,, 93’ and G4 are

1

measured at the axes of pairs B, C and D, between links a, and a,, a

1 2

and ags and aqg and a, about offset distances SZ’ 83 and 84. Note that

rotatbnn;@l are related to offset distance by the pitch of the screw at
the helical pair. In loop AEFGD, a5,c(5 are the link length and twist
angle between the pair axes at E and F;GK6 and a, are the twist angle and

link length between the pair axes at D and G while a, and ag are perpen-

dicular distances from the spherical pair at F to the pair axes at G and
E. The constant offset distance at the revolute pair at A, between links

a, and a. is S, + S , where S 1is constant offset of ternary link ABE
4 5 1 4 cq
at A pair. The offset distances at E and G pairs are 85 and S6 and are

measured between links ag and ags and ag and ay respectively. The offset

distance at D, measured between a, and a, is S, + S where S is the
4 6 4 <y ¢y
offset of ternary link CDG at D pair.

Similarly, the rotation angle between links a, and a. is 61 + BL ,

4

1
where@c is the included angle of ternary link ABE at pair A; the rota-
1
tion angle between links a, and a, is®, +8 , where@ 1is the included
4 6 4 cy c,

angle of ternary link GDG at pair D;@Einmasures the angle between links
ag and ag while€§6 measures the angle hetween links ag and aq. Note that
all rotation angles are measured in positive screw sense about common

offset distances which are directed segments in space. Loop ABGD is

analyzed by separating the two elements of the cylinder pair located at
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¢, thus dividing loop ABCD into two open loop chains. Similarly, loop

AEFGD is divided into two open loop chains by separating two elements of

the spherical pair at F. The four chains thus obtained are unfolded
along the Y axis as shown in Figures 19 and 20.

The following vectors are defined in Figures 19 and 20.

Q=
p= O”—j’
5 -@.,4—&2)31,

= @+ a+an§

é_ = (B4+0, +a3+A) 1 %
o =(cu+ a,-as-ag) £
T =@u+a,-as) £7
W = (a,+a,_+a4+a6)j,
U, = @Ll +a, + Ay +ag+ay) j'
A=1T
B = oty T+ St
G = g (X +o) T fans (Aitoh) K
D= Wiyl - Sy
Co = o8 (olg4oliy) T= at (kg +ol) K
E = (s AS L + Gmds K
G =

= Cog (Authp) Tom S (LR

—_ -— A
Screwing C1 and Q1 about B and A, we obtain the final position of

the axis at joint C. The final position may also be obtained by screwing

- - N
02 and Q2 about D. Using the pair constraint Equation (2.25) for the

cylinder pair,
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Figure 19. Unfolded Position of First Loop of HGCG-RSC Mechanism
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Figure 20. Unfolded Position of Second Loop of HGGG-RSG Mechanism
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(0.[C0/0-S010, +5 ] +CoK; -$8/RatRz
+S62[- O ™)+ S8 - My ]

where

P Oy +IP, S0y +Ih

(3.55)

= T-GAA
L= AXT

53 =G A)A
F\_;fl = %iil"'(:{i /K_) 25_
Fs{z_ - ;§;>< ff:a

My = (J2-A A
7 =0-@e
L = BxG

% = (G388

K = Z—@AA
Ky = <:Z::K'j§ )___

Kz = (T3 A)A

TP = ¢,-& DD
IP = Dx&

(& DD
Eliminating @2 from Equation (3.55), we obtain

where

Xz Lo b8+ bamllBy + B3 = 0

(3.56)
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Xz = (N} XN,). (I ~N3-IR)
Ny = 2(N)XNz). IR
Za = (N xNL). (TR+IF-N3)
Nj = CO -39 L5 +L___3
Krj_: C—Q]_Y\’TI'— SG| F’Tg_—l‘p\;
Ny = COHK —SHK: +KK3
There are a maximum of two values ofE%}from Equation (3.56); for
each value of Eh, one value of QE may be computed using Equation (3.55).
Similarly if we separate the mechanism at B pair, one value of 83
obtained from the displacement relationship for each value of@1 and94.

The kink length: at the helical pair when the input has rotated

through 91 is,
Sh= Shetieal = S| +56

Using pair constraint Equation (2.26) for point 61 and 62 in chains ABQ1

and DQ2 we obtain

~A(S+¢6) - BJ,S:A-QI
=Dy + CJ,S3 -l-@z (3.57)
where
Bi= L (B,-A,6)
C} |CZ-;_>5 64)
&\ Aun (&, P,0,-B,-A,8,,8,0,0)
Q = A”)_Ca_lj ,94)0)
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Unknowns 5 and S, are computed from the three linear equations

22 53 4

obtained from Equation (3.57).

The position of the spheric pair U is obtained by screwing El abaut

N N - A A
E and A and also by screwing U2 about G and D. Using the pair constraint

Equation (2.18) for spheric pair, we get

Cos [ (-FH- [ TH-EE]
- $95[Epx(W-T)] - By S
L) =ty =)=,
‘\'{(M;‘T}'E?}E],/ L
= €96 [( W= W) - { (Hy-) 2]
A LGF}' X ( T W/)] +Z—;}' S
- {( '772_/—\7\/-/) _—J/} a—} (3.58)

where

™~

|l

W = Az (W, T5A, 6+6¢,Sit)

T = D3(FlaA,64+6¢ 5

5o Sr(EA e
Uy = D3 (U, R, D ,6u+0¢, 5 Syt S¢a)
Dy (W, R, D) byt Sutses)
f: Ay (C&E5D,04 +6)

Sit= Sheleead + Sq

Q s Sc and S-c ’ Sc are parameters of ternary links at pairs A and D.
2 2

2]
e



74

Equation (3.58) may be rewritten as
—/ - . —/
Nj 085 + N3 Son 65+ N3
—l -/, oy -
= & -
I B+ T, S B6+T2+GL S
where E'l’ ﬁ'z, E'S’ 3'1, 3'2 and 3'3 are appropriately defined. Equa-

tion (3.59) is of the same form as Equation (3.19) and hence may be

reduced to the form

- ‘
Z, PLta I, 85 =0 (3.60)
=0

where Pi's are functions of N?

N'3, Jt Jt. and J'. and are known.

12 Ny 10 9" 3

There are a maximum of four values of 65 from Equation (3.60) for each

value of'95. 696 and S, are then computed using

6

(oo O¢ = N 195 +7/ $ 05 +N5-T,)- Crlxc—,%)
(T xGg) T

b= (N/CO5+ Ny So5 +N3-T50-(F155)
Qo xc%) T |

Se = (N/ CO5 +N,8 Qg—H\LL F<o6
— /866 - T / {,Sm

This completes the displacement analy51s of the mecha

any input link position, the position of all other link pairs may be
computed. Let this position be denoted by subscript j. Using the pair

constraint Equation (2.26) for velocity at pair G, we get
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( Awy+ gfjwz> X Z} =—(D X 5%) Wy (3.61)

from which

__ (A XC}lD )
Wy = 1
> (:E%? X Cég)

(3.62)

Wl = — 0)‘-_)_(6—{’_)]5_5" W (3.63)
/ CDXC})-BJ;

AN is computed by equating the velocity of B from two sides

(A% B4)-D
CEJ‘ XB‘?) D (3.64)

Using the pair constraint Equation (2.26) for point Qj on the cylinder

L, = —

pair axis at G, we get

A W) X (673;_5) + E‘}wzxcé—l;—%ﬁ)
+ A?w\ + B&L Sy
—_ I) LA)L+ ><<35Q3L F2‘> (%;”S§T1>

Velocities SZ’ §3 and 34 are computed from the set of three linear

equations obtained from vector Equation (3.65).

5 (3.65)

[\

The velocity analysis of loop AEUGD is performed by equating the

velocity of spheric pair U from chains AEU1 and GDUZ' We get
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'Afw,x(ﬁ}—5>+ig;u~>5x<ﬁ7&¢—f;’)
+ AQwW,
= —[quuw R{)+D Sq+6],5
+C-(3,N6 X("/‘f Wz)]

L5? We and S6 are obtained using the three linear equations obtained from

(3 66)

vector Equation (3.66). Expressions for computing accelerations at joints

are obtained by differentiating velocity expressions. Thus we get

(A v, +§Z,'V02_+—B—3;062_>X &
-+ CZ:UH-I—BJJ/%_)XGOL
= -(Bx &) wy - (BxE) Wy

(3.67)

— AW X BJ, CC],UO3+ C?W‘B‘FDW@(B}
+(C(f W3 +DWL}>XB} (3.68)

AL X &}' -f—"B'}' W, X (Q}'—P}'HB; S

+ B}XCQJ, Pf)wg_*i' B}SJ_ AW, O},
+ B?WJ_X(Q} P2)

=-[ 5wy x <&J;_%i>+§;‘é3 (3.69)

+ D Wiy X C&J, ;}) +C1 S

+ D Sq]
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A X ( M} O}_)-H:}WSX(’M} Tj)
+ E}VO5 x(u} T}) + E}wSX(H}—'@)

=—[5v'04>< (ﬁf-@) + By Wy —RY)
-{—G}M)é,)((%f‘l/\/f)‘}‘@}wéx UJ W)
+ GJ, INJA x(u} w})+DS4+GJ,Sé
+ Gfdl Sé] (3.70)

The angular accelerationsb:)4 and(ﬁ& are computed from Equation (3.67);

L63 from Equation (3.68); SZ’ S4, 53 from Equation (3.69); and S6,bd6 and

d% from Equation (3.70). Table IV presents an example of displacement

analysis of HCCC-RSC mechanism.
3.5. Kinematic Analysis of RCGGG-CGC Mechanism

Figure 21 shows a Stephenson~-3 fixed pivot type RCCCC-CC mechanism.
A revolute pair is located at joint G while A, B, G, D, E and F are
cylinder pairs. The twist angle and link length between the axes at

pairs at A and B areo(1 and a,s between pairs at B and C,a(z and a,3

between pairs at C and D’O(3 and ass between pairs at D and A,a(4 and a,s
5; between pairs at E and F,9(6 and ags

73 between pairs at G and A, and a

between pairs at B and E,o<5 and a

between pairs at F and G,<x7 and a 8

Offset distance at pair at A, due to links a, and a, is S,, due to links

1 4 12

a, and a,, is S, + S where S is constant offset of ternary link ADG
1 8 1 4 ¢y

at pair A. Rotation angle at pair A, between links ay and a, is(91,

while due to links ay and ag it isG-1 +6C where @ 1s included angle
c

1
of ternary link ADG at pair A. Similarly, S, ,&Q, and S, +5 ,Q +8
2 2 2 ¢y 2 c



The constant parameters of the mechanism are:

[]]
240
250
260
270
280
290
300
316
320

330

340
350

DOV 00 QOO IO OO o

Sy

‘212
-2)6
.220
<224
-228
-236
- 240
-244
.243
-2852
<254

A= 3.0,

One of the solutions is shown below:

_4.
-18-
-3/ -
_1/.3.
-53.

~64-

-7%.
-£3.
—72.
-{oo0-

"103'

-116-

G2

706

577

158
900

773

168
069
sok
472
9so
07
309

TABLE IV

EXAMPLE ANALYSIS OF HCGGC-RSG MECHANISM

-86 -
_87.
-Qo -
-94
-qg
-654
-10 8-
~114-
-119-
-124-
‘816
-134-

~-103

~129

On
423
Q1

720

4so
827

776
Y ¥4
397
679

717

' Gs
32.717
18- 880

7-192°

-3-400
-13-336
-22-7885
-3,-819
~40-449
-48- 672
-56- 483
-63- 894
-70-933

@6
-81 - 456
~80-526
-80-969
-81-769
-92-57/
- 83-245
-83-752
—~84 - 12
-84-426
-84-783
-85-344
~-86-297

QOO0 OB O o0 OO

Se

-219
-081
- 284
414
- 486
571
499
- 454
- 385
- 298
<189
-069

S2

‘376
$032
347
-T2
-882

109

- 309

1484

-0
o
0
o
o
{.
1
1
7
/
1
1

- 633
. 756
- 849
-9/ 3

0(;=20', _0(2_-_- 30°; 0(3 = 40’) ‘7('4' 30°/ .(S= 2'0./ dé‘ fS-g 0C'=.'/0., &Q‘ 193&"’0',
S, =04, £=0.023 Sy =072 ;S5=—0-2 ,=12,0,=25, Q3 =2-8,Q4=1-2,45=/8
Ay= 2-§ ,ag = 3.5

Ss
-0- 848
-0 qg:
-1- 134
-1-388
-1-462
~1- 635
-7.872
—1- 956
-2-/53
-~2-306
-2-437
-R-539

Sy
2-178
2137
2-117
2011
2-114

2118

2-/20
2-116
2-103
2-077
2-037
1-979

8L



Figure 21, 4 RCCce-ce Spatia

L, Six-Link Mechanispy
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denote the offset distances and rotations between links a;s a, and a;, ag

where S02 and sz are parameters of ternary links BGE at B pair. Other
offsets and rotation angles are 85,495 at pair E between links a5 and acs
S6,é}6 at pair F between links ag and a3 S7, 6% at pair G, between links
ay and ags S3 and 83 at pair C between links a, and azs S4 and @4 at D
pair between links ay and a,- Note that the link lengths and offset dis-
tances have directed sense, and the rotation angles and twist angles are
measured in positive screw sense as described in ‘Chapter II.

is a

Since the pair at G is a revolute pair, the offset distance S7

constant. The mechanism is divided into four open loop chains by separ-
ating the two elements of each of the cylinder pairs located at C and F.
The open loop chains are unfolded along a straight line and are shown in
Figure 22 and Figure 23. The following vectors are defined from Figures

22 and 23.

A=7T
B = CotoX| L + G| K
C) = Coa(Aj+et) € + Sim (ol +03) K
Cos (A +4s) T Sian (o) +ois) R
Cig (oA |+ ATHAL) TH S (i +R5HR
CsAg T— SmAg K
(o A L — Sonchy R
Cot (Aa+ody) T = Smololz +o4p)R
o3 (g4 g) T Sin (o7 +%8) K
O
CLs
@s+ag) ;

_ﬂ
oo O
o 1

[

|

o) 41 =) V'
I

i
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Figure 22. Unfolded Position of First Loop of Spatial RGGGG-GG Mechanism
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Figure 23. Unfolded Position of Second Loop of Spatial RCCCC-GCG Mechanisﬁ_

Z8



83

= (+as+ae) §
= (o +as+ag +ag) £
, = (cu+as+ag+ 0\7 +ag) ?
(o5 + 0 -2 £
= (o +As5 +ag+auy) 9,
= (o + ax +ay +ag~+0tc:,)3/,

i

D | Zl 0\

,5;>| ol

Leté}l, rotations at A, be known, and we shall compute rotations and
translations at all the joints for this value(ﬁfgl. The angular rela-
tionships in the loop ABCD in Figure 21 are the same as the angular
relationships of the loop ABCD in Figure 16. Hence Qﬁ) 65 and éé are
computed using Equations (3.56) and (3.55). The angular displacement
relationships of loop ABEFG are similar to those described in Section 3.2
for analysis ABEFG of mechanism shown in Figure 14, Hence, 8-5, 96 andQ7
are computed using Equations (3.37), (3.38) and (3.39). The angualr
displacements at all the joints are thus known. To calculate the trans-
lations at the pairs, we utilize equations obtained by using constraint
Equation (2.26) on 61 and aé for successive screw displacements of chains
ABQ1 and DQ2 and on El and ﬁé for successive screw displacements of chains

ABEU1 and AGU2. We obtain

A3+ B}sﬁcg}st&r

(3.71)

AS + BJ,SQ_ + C}% F L.}Sb +F}Sé

+GJ,S7 7/(,, u/ B?,ch_ A Sc (3.72)

where
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Bi= A1(B,-A,60
2o (T, - BB 62,80

ALCE—)"E)—Z)%‘*‘@CL)QO
- A‘).( E) G—WA—\) 97) QC’O

= & (G,A,8)

/ - _— =
&2_:'_ A}(Q;_)R)DJQLL)O)
—/ .
&1 = AL{-CQ\)P,O;‘B)"A)QZJQI)O/O>
—/ —_— S

2 = AUy sWo O)a)z‘-ﬁgb&,ﬁb)

— /1 - = = = T a.
744 = Zﬁ§l4-< qu()'W_) £>)'—{ElY-ESJGEDGlfékiQQ)
_/ — 1) = =
ul_AE’)(%l)O)“A)QUD/O)
whereQ ’ g s S and S are parameters of ternary links. Since G is
<, ¢ cy ¢y
a revolute pair, S7 = Constant. Translations Sl’ SZ’ 33, 34, 35 and S6

are computed from six linear equations obtained from two vector Equations

(3.71) and (3.72). Velocity and acceleration analysis of the mechanism

is conducted by equating the velocity and accelerations at cylinder pairs

located at C and F. Table V shows an example of displacement analysis of

an RCCC-RSC mechanism. Tables VI and VII show examples of velocities and

acceleration analysis of RCCC-RSC mechanism:: shown in Table V.



TABLE V

KINEMATIC ANALYSIS OF RGGG-RSG MEGHANISM

The constant parameters of the mechanism are:

G{|=2.0., d‘1=3001 a(l./_ =30’) xg = 20. ,0e= Igo, S¢y=01, Sca=0-%, &/:0,5/:0-&5"
w =0, =12, a,=25,2=28, Ay=1-8,(=3.0,27=2-8,28=3-5,5 =07

One of the solutions is given below:

7 (7] Oy Os %e Seé Sa S3 Sy
250 -18-58 -87-91 52-54 =-62-93 -{-{6 1-52 <-1-73 2:39
260 —31-16 -9¢0-72 35-97 -53-77 -0-92 [-72 -1-86 &-50
270 4533 Q44§ 22-89 4844 -0-74 2-12 -R-R0 2-58
280 —53-77 -98-83 11-53 =-44-86 -o0-61 2-11 ~2°{1 2:65
290 -64-17 -103-65 [-29 -42-29 -0-52 2-29 -*° 3% 2.70
300 -74-07 -fof-78 -§ 20 -40-35 -0.-45 2-44 -2-36 .73
3/0 ~-83-51 -114-06 -17°14 —-38-88 ~-0-42 2-51 -2-47 2.74
326 -92.47 ~{{9-40 -R5-62 -37-80 -0-40 2-67 -R56 .73
336 -100-95 -124-68 -33-69 -37-07 ~0-41 Q74 -2-62 .70
340 -108-91 -{29-82 ~-41-38 -36-73 -0-42 R2-77 ~R-46 264
350 ~-116-31 ~—{34-73 -48-69 -36-83 -o0-H4 k.77 -2-65 2a-5¢
360 -123-14 -139-36 -55-62 ~—37-40 —0- 46 274 -~R-61 .44

jo -129-37 -143-65 -62-15 ~-38-52 -0.-49 2-48 -R-52 2.3/

20 ~-135-02 —I147-59 -68-29 -40-22 -o0.5¢ 2-59 -240 a-16

30 —140-10 15118 -74.03 -42-54 -p-53 2-48 -2-25%5 .99

bo ~144-67 -1S4-42 -79.35 -4552 _p-55 R-36 -2:08 {-8{

S0 —148 77 ~157-35 -84.26 -49-20 -0-57 2-a3 -1-87 [-62°

66 ~152-4§ ~—160-°0 -gg.73 =53-64 -0-59 .11 ~—1-70 [-43

76 -fcs-77 -162:39 -92-73 -58-98 -0-62 199 -~/-51 [.24

86 ~158 78 ~-164:857 -96-15 -65-49 -0-66 1-88 -1-32 (.08

96 -{67-38 ~—166-56 -98-64 -73-93 -0-70 2-23 -1.65 0.83
{00 -164-06 168-39 -99-27 -6€-16 -0-88 1-70 -0-97 0-65

68



260
70
280
290
300
310
3220
330
340
350
360

10

20

30

40.

50
66
70
80
90
100

_o.

-0

w2
13

._0_
41

11

10

.{0
09
-09
08
.08
- 07

.07
-06

- 08
-08
- 04
.03
-03

-03
‘03

.03
-02.

TABLE VI

VELOGITY ANALYSIS OF RGGC-RSG MEGHANISM

w3
-0-07
-0- 06
-0-06
-0-06
-0:-05

-0-05

-0-04
-0-03

Wy

- 02
. 03
- O4
-05
-05
.08
‘05
- 05
‘08
<085
- 05
.04
-04
.oh
- 03

-03

-03
-03
<02
‘D2
- 02
-02

ws

-0- 09
-0-08
-0-07
~-0.07
-0-07
-0:-07
-0-:07
-0-07
-0-07
-0-07
-0-06
-0-06
-0-06
~0-06
-0-05
-0-.05
-0-05
-0.05
-0-04
-0-04
-0-04
-0-03

We

-05

- 05
‘0§
-08

‘08

-04
04
04

o4

ol
.04
o4

-04

. 04

0%

-OH
.05
05
o5
.05
- 06
.06

COQOTCTOC OO0 o0oO0DDQOSCBOOD

S2

-34
.32
.29
.27
.as
.13
.2
19
17
15
13
12
.10
.09
.08
.07
- 06
- 05
- 085
.04
- 04

*37.

S
0-81
0-80
0-77
0-75
0-72
068
0-64
0-59
0- 54
0-49
0-43
0- 38
032
0-27
0 23
o-19
0-18
0-12 -0

0-03 -0

BQQOBQQQQQQ()QBQOD

.29
-3)
32
33
33
.33
32
-30

22
.19
.16
.2
.09
. 0%
.01
.0/
007 -0
0.07 -o-
0-05 -0-
.05

o3
o3

04

Se
-0-09

-0-13
=017

-0-2.1
-0-24
-0- 26
-0.28
-0-29
—-0-30
-0-29
-0-28
-0-27
-0-25
-0-23
-~0-20
-0-18
~0-16
-0-15
~-0-13
—0-1{2
-0 It
~0-f0

98
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250
260
Q70
280
290
300
3/0
320
330
340
350
360
10
20
30
40
50
6o
70
80
90
{100

AGGELERATION ANALYSIS OF RGGG-GCSR MEGHANISM

W2
-0-{2
-0-12
-0-11
-0-10
-0-10
-0-09
-0-09
-6-08
-0-08
-0-07
-0-07
-0-06
-0-06
-0-05
-0-05
-0-04
-0-04
-0-03
_0 .03
-0-03
-0-03
—-0-02

W3
0-32
-0-40
-0-27
oo .23
-0-21
-06:20
-0-19
-0-17
-0-1{6
-0- (5
-0 14
-0-13
-0'13
-0-12
-0-11
-0-1{f
-0-1/
-0-1/
-0.11
-0-13
-0-]7
-0-39

TABLE VII .

Wy
.0.03
-0- 04
-0- 04
-0-05
-0.05
-0-05
-0-05
-0 0S5
-0- 05
-0-05
-0.05
-0- 04
-0-04
-0 0/.‘

0- 03
-0-03
-0-a3
-0-02

-0.-02

—-0.-02
-0-02
~-0:02

we
- 02
. 05
.07
.08
.09
.09
.09
.07
.09
.08
.08
-07
.07
.06
.05
.05
.04
.M

403
‘03
- 03

OCAQTVUOOVTUVULOOVO0OVSTQAO0ODTODO O

)
=

S
0-23
0-23
0-23
.22

}

CO00O0OIO0OVDIOSOTSODVOTO

<21
.20
{9
- {8
17
16
15
|4
-1 3
]2
1]
- /0
/0
.07
.07
.08
08

122

2
0-50
o-5(
0-51
050
0-50
0-49
0-48
o047
0-45
0-43
041
0- 39
0-36
0-34
03l
0-29
027

0-25

0-23
0-2/
0-20
o019

5¢

-25
27"

‘28

29
-30
- 30
* 30
"30

’ 27

28
.17
-aSs
-23
22

*20

18
.[7
1S
14
-13
o 2
]
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CHAPTER IV

DEVELOPMENT OF TOOLS FOR SYNTHESIS OF

SPATIAL, TWO-LOOP MECHANISMS

The central problem in dimensional synthesis is to find the dimen-
sions of a mechanism which will provide a completely or incompletely
specified motion to one or more links of the mechanism. The motion of
links may be specified in terms of finitely separated, infinitesimally
separated, or multiply separated positions. 1In what follows, the pro-
cedures for dimensional synthesis of spatial, two-loop, six-link mecha-
nisms are developed. The general procedure developed here, however, is
applicable to the dimensional synthesis of any spatial, spherical or

planar mechanisms.

4.1, Location of Lines in the

Rigid Body in Motion

The synthesis procedures described herein require one to be able to
express positions of lines and points in the rigid body in any jth posi-
_ .th .th .
tion when the body moves from the ii . to the j position.

Let the tigid bady displacement be denoted by a screw, that 'is, a.
line LL', where a rotational displacement@ij about line LL! and trans-
. . . .th .th

lation t , along line LL' will move the body from the i to the j
ij :
position. The line LL' in an xyz coordinate system is completely speci-

fied by a unit vector §ij parallel to LL', and Eij’ a vector from the

88
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origin to an arbitrary point on the line.

Let there be a line MM!', in the ith position of the rigid body,
denoted by a unit vector Ki parallel to line MM' and F; a vector from the
.. . . . ,th . .th

origin to a point P on the line MM' in the i~ position. Then the j

position of the line can be obtained by screwing it by screw of the rigid
. . .th .th . ..

body associated with the i~ and j positions of the rigid body. The

screws are denoted by A\ on the unit vectors parallel to the screws. The

direction Kj of line MM! in the jth position is obtained by rotating Ki

about Sij by an angle@ij as follows

A= (1= os0ig) (Ai Sy Scp+ A Cosby
+ SimBif C ST xAY) R
Ej’ the vector from the origin to point P in the jth position is obtained

= AN
by screwing Pi by screw Sij' Hence,

Pi=1[( Pi-Rip) Syl Sy (4- sy +Ry
+ Syptip + 38 (P-RY
+ S bBif [@'% X (Pi-Rip]  wo

Note that Sij (a unit vector with two independent components), Rij (an
arbitrary point on LL', with two independent components), Qij and tij are
six independent parameters associated with finite displacement of the

C o .th .th L .
rigid body from the i: to the j position. It is also to be observed
that Aj and Pj are expressed linearly in terms of Ai and Pi if the screw
displacement parameters are known.

: .
Let the displacement of the rigid body at the i h position be infini=-
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tesimal, and let T be the independent parameter of motion. Then deriva-
tives of axis Ai and vector Pi with respect to (_may be evaluated by

differentiating Equation (4.1) and Equation (4.2) and lettingtgij_; 0,

to get (ag@U = 1
S/‘pg{{_ -
ALz xAD o6 4.3)
d_T AT
and

Second order derivatives are obtained by differentiating Equations (4.3)

and (4.4) as follows

2 . — \
d A“ [dﬁb X Ad] ?i_t@iw(smm) O_ﬁ%

+ (T QL_EQ AL

I
= [%é_axm}r S r(Bx AL DG
) AT
+ (SUx AL A6 (4.5)
AT+

and also

AL P _ A20¢ 4 dSiw (BB dsi
s, — T (PR g_—i—_gL_ZX(PL RO
+ Si xo\ethc A RL) + i e
at akt 1 AT+
AT AT
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where dEi/dC is given by Equation (4.4). In general, the nth derivative
of line PP' may be expressed as

AL _ A (T A48

—

A" AT L ax (4.7)

OLMP—C [y, X(P R')OlQ' = /.
—_— = L {— L) AG L Ciddi((a.8)
ATh aLt”‘ AT AT
It is observed that six independent motion parameters are required
to specify each infinitesimally separated position of the moving link.
For example, for the 2nd infinitesimally separated position, the inde=-
pendent parameters are
2 7 >3
28 4%t , AT | 4R
drz OLC:’- g’

Note that derivatives of points and lines in infinitesimally separated
. .th _. . Lo , ..
position at 1 finitely separated position in the rigid body are
linearly expressed in terms of position coordinates of such points and
, . . , .th ‘e
lines in tne rigid body in the i position.
. . .th .th . .
Let the rigid body move from the i~ to the j finitely separated
.th
position and then undergo a series of infinitesSimal motlons at the j |
position. Then from the above discussion, it follows that derivatives of
] . .th . . . T
a line in the j positon may be expressed linearly in terms of its
- . .th . . . .
position in the i postion, screws associated with displacement from the
.th .th .o . , .
i to the j position and higher order displacements of the rigid body

. .th .o
in the j position.

Let a rigid body}:1 be attached to another bodyzf:2 by a pair which
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permits screw motion. Let the screw displacement of rigid bodyZil be

A : ' .th .th
denoted by Sij when the bodlesffl and§:2 move from the i to the j
position. Let the screw displacement at pair be denoted by Hij’ that is
a unit vector ﬁij parallel to screw axis, a vector Tij’ locating a point
on the screw axis,CPij, rotation about the screw axis, hij’ translation
along the screw axis. The bodyz:2 may be moved from its ith position to

th N\ N
the j position by first screwing it by screw Hij and then about Sij'
Let MM! be a line in body2:2. Then the jth position of line MM' is ob-
th N\ N
tained by screwing MM' in the i~ position about Hij and Sij in suc-
t

cession. Thus, line MM!' in the j h position is expressed in terms of
' ATEEA th
screws Sij Hij and coordinates of the line in the i position. The

b
same procedure holds for expressing the jth position of a point in terms

th th th

of its i~ position. 1In case the i and j positions are infinitesimally

A N
separated, Sij and Hij become instantaneous screws. Higher order infini-

tesimal motion is expressed as a differential of first order infinites-

imal motion.

4.2. Chain of Rigid Bodies and

Pair Constraints

Let two rigid bodiesZ1 and 22 be connected by a kinematic pair.
N\ ~

Let S1 and 32 be screws associated with the motion of bodiesZ1 and }:2;

then as described in Section 2.2., the geometry of the pair places

certain constraints on the motion of bodiesz:1 andz:z, or alternatively

A A
on S, and SZ' It is known from Halphen's theorem that successive screw

1
N\
displacements are equivalent to one single screw. Therefore, screws S1
A
and 32 may represent the resultant motion of two chains, while bodiesjf1

andz__2 represent two chains of rigid bodies. The pair constraint equa-
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tions described in Chapter II shall be used in the next section to

perform the dimensional synthesis of spatial mechanisms.
4,3, Synthesis of Dyads

Figure 24 shows a binary link, connecting the rigid body to the
fixed frame of reference. A and B are two cylindrical pairs as shown in’
. I .th .th .
Figure 24. Let the rigid body move from the i to the j position.
Let the screw displacement associated with the finitely separated posi-
tion of the rigid body be denoted by a unit vector gij’ parallel to the
screw axisj vector Uij from origin to a point U on the screw axis; uij’
translations along the screw axisj; and eij’ rotations about the screw
axis. Let Zi and Ei be unit vectors parallel to cylinder pair axes A
th = =
and B in the i position; let vectors Qi and Pi locate points on the
axes of the cylinder pair at A and B. Let the cylinder pair at A ex-
perience a translation qij and a rotation 4ij; and cylinder pair B
experience a translation rij and rotation Y;j when the rigid pody moves
, .th .th .
from its i to j position.
, . , . . .th
Now consider the cylinder pair at B on rigid body}  then its j
’ 3

position is given by

(B—;{Q)Z = [ Bi-[Bi S S_%] Cos 04 +(B eSSy
+ (S x B $nb .9

PPz =[(Pe- Uiy —{ (Pe-Uip) Sy Sigfinty
+ 'S_%x (Pi-Uig) SinBif + Ui+ Sigui
+ § (Pi-Uip- S35y (4.10)



A Sy
~

Figure 24. A Rigid Body Connected
to Ground Via a C-C
Dyad

94
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The jth position of cylinder joint B may also be obtained by considering
the joint B on the link connected to joint A and screwing it by the

screw displacement of joint A. Then

@p Link AB = [ Bi—(BeADAL] Cos @LJ;{EL- ADAL
| + Aix B) Sindif

(4.11)
(Pf)Link A8 = [ ( Pi-80- {(Pi-a0 AilAosy
+ ALK (P Simdii+ALY,
+ {(ﬂ—a‘g).m}ﬂu- AL (412
Pair constraint equation, which for cylinder pair from Chapter II gives
PPz = PpLikas + By @
(_B“},)Z = (Eg,) Link AB (4.14)

Using Equation (4.14) for the jth position of the axis at B, we 1ind

[EL— (Bi-Sig) S_LJ;] Cos8iL +(§LJ',XEO Sin 644
+ (B S Sy
= [Bi-@LAD A G i
+ (ALK B Sim @it (BADAE

Eliminatlngq?ij, we mdy express eij as
i

Al (5yxBi)
(A XSLi)- (S8

Similarly eliminatingf}ij, we may expressé?ij as

(4.16)

tmeﬁf:—
2
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¥ AL (S XBL
o Pl — —— DD (4.17)
‘5_‘1’ (Bt xAO-UC;\LxSLJ;)
Using Equation (4.13) for E& obtained from Equations (4.10) and (4.11)
[(Pe= Ty~ { (PL-U- Sigf Sef] GO+ Uif
+ g’bj, X (Pi- U4 SinBi it {( ﬁL'—UL'}).QJ;} §L?+§}u?;
= [(Pi-GO- {(F-QO-A)A] Cos@if+ R
+ ALK (Pe—8&0) Sim Pigt {(Pi-80) AR
+ AL G4 )
+[{§L— (B¢ §L‘7’> §{_£CO’3 Qtf-f- Si,j,x BLSMcPLj,
+ (B 'S-Lg;) %]77.% (4.18)
Vector Equation (4.18) provides three scalar equations. Eliminating qij

and uij from Equation (4.18)

Suij _  Bi—(BeADAL (Fi= P
"i} T - (BLAD”
Be—(Bi- S Sy (Tij~P)
{— (EL'S-L})L (4.19)

Similarly, other translations are

i _ g‘%_(g;éwa)aa (Pi- D¢f)
= —,. =, N2
2 1—( SLO»L' B¢)
S (S AOAL (Gi-Uy)
{— (géj,' A (4.20)

4.
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aii_ P -BeSPRY Gy —a;)
—ij: —(A(A&'/;)z‘ ( +
- QAL.BL)?_ (4.21)

The rotation angles Y;j at the pair B are obtained by screwing the screw
axis of the rigid body by the screw at pair B and then by the screw at

pair A in succession. This gives

‘{':0\/\/\, @__ _/—A_\-t . (é—tg,x-gt)
2 (ByxBO(BIXAY (4.22)

Note that the :screw axes at pairs A and B and the screw axis of body
form a screw triangle geometry. The relatio?s (4.16) = (4.21) are given
using screw triangle geometry in [25]. This forms an alternate derivation
of the screw triangle relationships. A method for dimensional synthesis
of dyads containing revolute, cylinder, prismatic and helical pairs
using these relations is given in [25] and hence is not discussion of
present work. :Expressions similar to Equations (4.16) -~ (4.21) may be
derived for infinitesimally separated positions of a rigid body using
infinitesimal péir constraint conditions.

However, when one or both of A and B pairs are spherical pairs, the
screw axis at pairs is not completely defined.

Let B be a spheric pair and A be a revolute, a cylinder, a prism or
a helical pair. Let the coordinates of the spheric point in thg first

position be (Rx’ Ry’ Rz). Then finding the displaced position of B from



98

the screw displacement of the rigid body; and from the screw displacement
of pair A and using the pair constraint Equation (2.18), we obtain

(dropﬁing the subscript i for initial position)
(Ri=T) 57154 (1- 8 )+Cos 85 (R~ L)
+ scme}'(sjf X (R)-Uy)) +Uo¢‘+3}'uf'

=[(R-Q)-A)A(1- sdp+Q) + A%

+ Cos 94 (R =&

+ Sim 94 AX(R-Q)) (-2
where j denotés the parameter associated with displacement from the
initial position to the jth position; qj:=? q% for the helical pair where
?is the pitch of the screw; qj is zero for the revolute pair; qj is the
variable for the cylinder pair and the prismatic pairj Gj is zero for
the prismatic pair.

Consider a dimensional synthesis problem when a rigid body2_ is to

be guided through specified positions via a G-5 link. Then unit vector

Sj’ vector ﬁ},) rotations@j and translations uj are known quantitiess
d% and qj are unknown variables in Equation (4.23) and may be eliminated.
In addition to these variables, Equation (4.23) contains seven unknown

i R,R, R A i i
mechanism parameters, A Qx, Qy, AX and v (Qz is assigned an
arbitrary value, since 6 locates an arbitrary point on the pair axis at
A, Az is a dependent variable on AX and Ay by the relation Az =

2 1
(1 -A -AZ)/Z).

X y
et the pair located at A be a revolute pair and synthesis problem

is to coordinate motid¢ns of the input link with positions of the rigid
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body. Then in addition to the screws of the rigid body, the rotations at
the revolute pair at A are known and the translations qj at the revolute
pair are zero. Since vector Equation (4.23) provides three equations and
contains seven unknown mechanism parameters, the revolute-sphere binary
link may be synthesized for three positions of the rigid body coordinated
with motions of the input link. For this there are a single infinity of
solutions.

For infinitesimal displacements a similar procedure is followed;
that is, the infinitesimal position of the spheric pair is found from
both sides and is equated. Then for the first infinifesimally separated

position using pair constraint Equation (2.19),

—

FAD (R~ + A 4 = -3L (TR,
AT AT

Let O be independent parameter describing the motion. Then

A dd y (Ri-BN+AdY = - 5x(T-R)
A0 A0 (4,25)
where q is translation at pair A;
dq/d@ is 0, for revolute pair
dq/d =€ (d€/d8) for helical pair
dd/d6 is zero for prismatic pair.
Let A be a revolute pair and synthesis problem is to guide the rigid

body through infinitesimally separated positions, then Equation (4.25)

reduces to

(4.26)

A {é‘x(U-‘rz)g_—_o
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(ﬁ\—&-\){gxco—ﬁ‘)zzo (4.27)

If the synthesis problem is to guide a rigid body through infinitesimally
separated position coordinated with infinitesimal motion of input crank,
then,
Addy (R-&)=Fx(T-Ry)
d0 (4.28)
provides three equation for each infinitesimally separated position and
note that d4¢/d8 is known for such a problem.

. , th , .. . . .y
A synthesis equation for the n ~ infinitesimally separated position

may be obtained by differentiating Equation (4.24) as

d;\m{[Ad@ (R~ Q)]-f—AdOT, 5><d9 (T- ‘@

29)
el O

Taking E}as independent parameter of motion
™ (RS «(m-@]+Ad%-5x(T-R
A —~ - U-R
AN —a—l—QxcR\ 60% aﬂé Sx( ‘3}4.30)
A =0

where dQ/d6 = A dq/d§

Ny - —_—
R A {—Ex(o-R)

(4.31)

for rigid body guidance problem. Derivatives of s and U are known

quantities.
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If A is a spheric pair and B is a helical, cylinder, revolute or
prismatic pair, then it is convenient to take inversion about the moving
bodys; that is, motion of the fixed body relative to the moving body is
the inverse of the motion of the moving body relative to the fixed body.
Thus, in the inverse case, the moving body . becomes the fixed frame ,.
and the fixed frame .of the original problem becomes the moving body .
Thus the problem of synthesis of an S-X dyad, where X denotes a helical,
cylinder, revolute or prismatic pair reduces to synthesis of X-S dyad
which was discussed above.

Let both A and B be spherical pairs. Let spherical points denoting

A and B . be vectors a and E, then the jth position of the moving spheric

Ry = (R0 5] Spti-csspr Gy
+ Simb (T X (RI=Tp) + s O (Ri-Up)
-+ D—;', (4.32)

(ij”Q—)T( [_2_?_ C-;D - CQ—!—&_)T( F-Z_,—é—()“.%)

is the synthesis equation to be used. R and Q are column vectors in
Equation (4.33). For infinitesimally separated position synthesis,
derivatives of R are found from the rigid body motion and differentials

of Equation (4.33) are used for synthesis.
4.4. Synthesis of Triads

Figure 25 shows a rigid body connected to the fixed frame of
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R

Figure 25. A Rigid Body Connected to the
Ground Via a Triad
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reference via a triad. Joints P P2 and P3 shown in Figure 25 are a

1’
combination of revolute, cylinder, helical, prismatic and spheric pairs.

Let the screw at pair be denoted by A (unit vector), Q (location
pair p,

vector), (translation), (rotation); at pair by E, E, r, X ; at
q (tr: i Py

pair Py by E, f, t, and Y: Let the finitely separated screw of the rigid

body be denoted by §, ﬁ, u and Q. Then the following equation must hold.

AEAS A

ﬁ B C S (4.34)

ANON
However, if we define A B = H using Halphen's theorem, then

A A ~
HC=S (4435)
~NA A ~A A
Consequently, A B =H and H C = S break up into two screw triangles or

screw triangle chains [26]. Reference [26] also deals with corresponding
infinitesimal treatment. If we choose not to introduce the unknown screw

or P, and thevdis-

H, then alternatively the chain may be divided at P3 9

placed positions of the pair axis and/or point from two sides may be
located. Then using the pair constraint conditions described in Section
2.1 provide the synthesis equations for a synthesis problem.

Next consider four cases of rigid body guidance problem via the

triad.
4.,4.1. GC-C-R Triad

Consider the C-C-R triad shown in Figure 26. The rigid body moving
through specified finitely and infinitesimally separated positions is
attached to the fixed frame via a triad consisting of cylinder-cylinder
and revolute péir. The displaced position of the revolute pair via

successive screw displacement at two G pairs is,
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Figure 26. A Rigid Body Connected
: to the Ground Via a
- -C=C-R Triad
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C}= QL T-E R AL+ Sin Y CAX )
4 @/A) A (4.36)

where

C'= (Y [C-CBB] + StV (BxZ)
+ (BB (4.37) |
and :
= (s @ [ (TR - {(TLRYA EA]
+ S d[AX (TED]TA+AY
+ {(T’—&)-?\ZZ
(4.38)

where
T= @V [(T-R)-{(T-R)-BJB]
+ StV [BX(T-R)]+R+Br
+~{<f¥§)§}§ (4.39)
The displaced position of the revolute pair from specified rigid body

(= 9[- (€3 3]+ 5mB(SxT)+(EDS

(4.40)

™ s o 8 [(T-O)-{ (- O> 55 ]+ U
4 ARSI S s
+ S8 TX (T—U>]+{<T-U)'5?5

(4.41)
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Using the pair constraint Equation (2.21) for the revolute pair we get
o[ T (T!AVA ] +Simd (AX TH+TAA
= (0 [ T-€ DT+ (SXT) +CZ"§§>
CosQ [ (FLA) - { (T-Q) A} A 5 DA XGTRY
+ ((FLE)AJA+E +Ag
Cos§ [ (T-0)— { (F-0)-5]5 ]+ T+3u
+ %@[?x(ﬁ@)]+{(?—0)-§}§ i)

Equations (4.42) and (4.43) are the synthesis equations to be used for
rigid body guidance problem via C-C-R triad,Y”,&, q and r may be
eliminated from five equations obtained from Equations (4.42) and (4.43)
to get one equation for each precision posftion. Synthesis equations for
this problem may also be obtained by separating the triad at pair Py
then finding the displaced position of the cylinder pair at Py from two
sides and using the constraint Equation (2.25) of the cylinder pair.
Similar procedure is employed for derivations of equations for
infinitesimal position synthesis. Derivative pair constraint equations
are used on infinitesimal displacements of points and/or lines obtained
from two sides. For G-C-R triad, for first infinitesimally separated

position, we get

[A -5{9 d'f[ ]XC—: <§Xa>0—\—9 (4atih)

and



107

AX(T-8)AE L Adq | 5x(T-R)dr+s
M+ aﬂ_ac+e><<T R)ng%

— Ty (T-)A0 4+ Tdu (4.45)
SK(T-WEz+s%

where C is the independent parameter of motion. Equatjons for higher
order infinitesimal displacements synthesis are obtained by differenti-

ating Equations (4.44) and (4.45).
4.4.2. C-C-S Triad

Figure 27 shows a rigid bodyzz attached to fixed frame of reference
via C-C-5 triad. Finding the displaced position of spherical pair by
successive screw displacements at C-C pairs and also from specified
rigid body motion and then using the pair constraint equations, obtain
Equation (4.43) for finitely separated positions, and Equation (4.45)

for infinitesimally separated positions as the synthesis equations.

4,4,3, C-S-C Triad

Figure 28 shows a rigid body~, attached to fixed frame of reference
via C-5-C triad. The displaced position of spherical pair at Py is
found from successive screw displacements of rigid body and pair P3 and
also from screw displacements of pair Pye Then using the pair constraint

Equation (2.18), we:gét for finitely separated position of rigid body,
Cos@[(R-A)-[(R-B)AJA]+ Sm& AX(R-R)
+ ((R-@)-A]A+Aq+Q
= Cos@[(R-T)- [(R-0)- 515 ]+0+5u
+ Sin8(SR(RETN+{(RE T3S

(4.46)
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{

Figure 27. A Rigid Body Connected to the Ground Via
a C-C-S Triad

R

Figure 28. A Rigid Body Connected to the Ground Via a
C-S~-C Triad :
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where

—_ (4.47)

for infinitesimally separated positions,

A X (R- Q)M +A_EL_
CXCR T)GH Z dt
Z iU)fe S
+ S X(KR 2+

(4.48)

4,4,4, C=8-S Triad

Figure 29 shows a rigid body attached to C-5-S triad. Locate the
displaced position of Py by screwing initial Py by screw of pair Pq and
position of P3 by screwing it by screw of specified rigid body motion.
Synthesis equations are obtained by using the constant length conditions

Ri= (-~ {C R-R)-AA1+T+A,
+ Sind [AX(R-D)+{(R-R)-A]A

= wo[(T-0)- (0I5 T+ Su
+ S8 {TX(T-D+{ (T-0). 3T

- (4.49)

Constant length condition 1s expressed as

(Ry-T) (Rp-Tp= (R-M(R-T)

(4.50)
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Figure 29. A Rigid Body Gonnected to the Ground Via a
C-S-S Triad S
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where §3 and Ej are column vectors.

4.4.5, Constraints Due to Space Ternary Links

Consider a ternary link floating in space. It has three joints Pyo
Py> and Pg to which three screw chains Sl’ 52’ S3 are connected. Con=
straints that a ternary link places on the total motion of the mechanism

may be mathematically expressed as

PLCAY =P (§)
P (H) =Py (S))
P_;Cl'/'\\) = PB<§%>

A N A

where H is screw associated with ternary link; Sl’ SZ’ 83 are resultant

S, and S,.

screws of the chains Sl’ 9 3

With the above discussion as background, general synthesis proce-
dure may be laid down as follows:

1. Separate the mechanism in two or more chains at certain critical
pairs in the initial position.

2. Obtain the displaced position (finite or infinitesimal) of these
pairs from two sides in terms of initial position coordinates of
the mechanism.

3. TImpose constraint conditions described in Section 4.2., on two
positions of these critical pairs.

4. Eliminate unwanted variables from the equations obtained in Step
3.

Note that cylinder, revolute, helical and prismatic pairs are

specified using a unit vector parallel to the pair axis, a vector
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Figure 30. Screw Constraints on a Ternary Link in Space
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locating an arbitrary point on the axis. Since the point along the axis
is arbitrary, it may be taken as the point wﬁere pair axis intersects X-Y
plane (Z component is assumed zero). Spherical pairs are specified by
three coordinates of the spheric point in its initial position. 1In
synthesis equations, these parameters of the mechanism are unknown and
are compuﬁed using synthesis equations which also contain specified.

motion parameters.



CHAPTER V

SYNTHESIS OF TWO-LOOP, SPATIAL,

SIX-LINK MECHANISMS

In this chapter, the mathematical tools developed in Chapter IV are
applied to spatial mechanism synthesis problems. The screw triangle
geometry method is also extended to the synthesis of six-link, spatial

mechanisms.
5.1. Synthesis of Watt's RSSR~RSR Mechanism

Figure 31 shows a Watt's RSSR-RSR mechanism. Revolute_péirs are
located at joints 1, 4, 5 and 6; and spherical pairs are located at
joints 2, 3 and 7. The mechanism in its initial position is specified
by specification of pairs in the initial position. Revolute pairs are
specified by a unit vector parallel to the pair axis andla vector locating
any arbitrary point on the axis. Let K, E, E and F be unit vectors
parallel to the pair axes at joints 1, 4, 5 and 6; and let vectors F; f,
E, and V locate arbitrary points on these pair axes. Similarly, spherical
pairs are specified by vectors locating the spheric points in their
iniﬁial position. Let a, E, and W be the vectors locating spherical
pairs at 2, 3 and 7 in their initial position.

Let the rigid body to be guided through specified finitely or infini-
tesimally separated positions be attached to the coupler link joining the

revolute pairs at joints 5 and 6. Finite screws associated with specified

114 .
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Figure 31, A Watt's Type Six-Link RSSR-RSR Mechanism for Spatial
Rigid Body Guidance
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rigid body displacements are 53 (unit vector}, Ej (location vector),
translations Xj’ and rotation.ej, where it is to be understood that this
screw takes the rigid body from its initial to its jth position.

The dimensional synthesis problem is to find the mechanism parameters,
K, E, E, F, E, f, ﬁ, V, 6, R and ﬁ; where this mechanism will guide the
rigid body through specified positions. Note that since displacements of
the rigid body are specified, §j, ij’ Xj’ Qj, j=1, « « o, n are speci=
fied quantities.

Leto<3, Pj’ Y}, and §j be the rotations at revolute pairs at 1, 4,
6 and 5, when the mechanism moves from its first to its jth position.
The mechanism islseparated at three spherical pairs and then providing
known screw displacements of specified rigid motion and unknown screw
displacements at revolute pairs, the jth position of fhree spherical

pairs is located as follows.

&—} $Ea=AQ (5.1)
— A\ AN — N\ =
FZJ,Z SER= BR (5.2)
—, A Al/-\]_

}—- SFW=B (5.3)

where the symbol (/) denotes the screw and notation'%i signifies that
- - A
vector X is screwed by screw Z. Then screwing Q by ﬁ\and also by E and

N\
S in succession and equating the two final positions, we obtain

3= CmQ}[CG{/— - { (&’—‘%p%jf}ﬂ X
+ (807 GGty G

= Gl [ (G-P)- {(A-PYAJAT+P
+ Sin i { EX(E-PO}+ {(-PIAIA

(5.4)
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q= s §[(q-D- {(F-DEJE]+T
+ Sim§1 [ Ex (B-0+ {(B-D) EIE
(5.5)

- /N N A
Similarly, screwing R by B and also, by E and S in succession and equating

the locations of R in the jth position, we find:
Ry = 6y [(R=% - {(RE%- 4} S71+ G
+ Swe}];(fg} X Ui/—?';')) + {C R- ?)3;};@
= S PLCR-T)- {(R-T) BIBI+T
+ Snp i (BX (R-T1+ {(R-TIBIE

B/ = mcfg;[c'é‘-o‘>—{<ﬁz-o>r§}§]+6
+ G SLEX (R-DIH{EDEIE

(5.7)

t
Similar procedure is applied to locate the j h position of the spheric

- A A
point at 7, that is, W is screwed by B and also by F and S in succession

to get, -
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Wi = ool LON =T - { CRi%g) §15)
FS0n6) { SER=XD I+ { (wh %) 571y
+Y?' + Six
= Capi[(w-T)~ {(W-T)BIB]+T
+ Sin BL] BX (W-T+ {((W-T)BIB
(5.8)
No= o[ (A7) -{(W-WFIF]I+V
+ S V[ F X Q-0+ { CW-D-FIF

(5.9)

Vector Equations (5.4), (5.6) and (5.8) provide 9 scalar equations
for each specified position of the rigid body; but for each position,
four unknown rotations at the revolute pairs, namelyc(s,'3j, Y}vand é&,
are introduced into these equations. These unknowns may be eliminated
from Equations (5.4), (5.6) and (5.8). Since K; E, E and F are unit
vectors, they have only two independent unknown components; vectors
E, E, U and V locate arbitrary points along the axis of revolute pairs,
3rd components of such vectoré may then be assigned arbitrary value.
Vectors 6, R and W locating spheric points céntribute three unknowns
each. Hence, there are a total of 25 unknown mechanism parameters in
Equations (5.4), (5.6) and (5.8). The maximum of six position$ of rigid
body may be specified for guidance via a RSSR-RSR six-link mechanism.

To obtain design equations for infinitesimally separated pos;tions,

the mechanism is again divided at three spherical pairs and derivatives



\ N /u:) f\f (af 2

of i,l 6, and W from two sides are equated to get,

AT
d Y g
; -X)al L E -V)ad 4 Taxn
SXLQ )> o HEX(AVIge + Sy
(7= R X (G-P) dd o
_.,/\X €1 e A e
X (B-R) A8 L EX(R-WdJd L Zdx
Sx( ) 2 +E C ¢ +S2k
- — =2 o_T 0_(_@ (5.11)
Bx(R-T)2E
SX(W=-X)A8 | Ex(wW-v)dY¥ L Tdx
SX( dt—{-l—_—X(W V) at T Tt
— Bx(wW-T) 4P (5.12)

Taking 9 as 1ndependent parameter of motlon and then e11m1nat1ng d>{y/d 8,

dB/dS d{/d@ and d(Y/dQA, the follow1ng five equations are obtained:

AXE) 1 26 (5.13)
f\\ _ B - L g
‘(EXB)-{SX(R—XX—!—(\:XB).S o |
(5.14)

e D). S T X (W=D HEXFD S Ax _

(5.15)
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{

(5.17)

Synthesis equations for higher order infinitesimal synthesis may be

obtained by differentiating Equations (5.13) to (5.17). Where derivatives

dKn/d en = 0 and dgn/den = 0, since Z and E are direction vectors of fixed
n n .n n . . . .

axes, d E/df, d F/d§ and other derivatives may be obtained using the

method outlined in Chapter IV. This completes the design procedure for

the design of a RSSR-RSR Watt'!s type mechanism for rigid body guidance

through finitely or infinitesimally separated positions.

5.2. Extension of Screw Triangle Geometry to
Synthesis of Spatial, Two-Loop,

- ’ Six-Link Mechanisms

In this section, the concept of screw triangle is extended to
synthesis of spatial, six~-link, two-loop mechanisms. In Section 4,3.,
under the discussion on synthesis of C-C dyads, it was shown that three

AN AN . . A
screws denoted by A, B, and 5 form a spatial triangle, where A is the

Ty
screw displacement at cylinder pair fixed to the ground, B is the screw
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displacement at the moving cylinder pair, and g\is the screw displacement
of the rigid body attached to the C=-GC dyad. The relations for finitely
separated position of the rigid body are given by Equations (4.16) to
(4.22)., 1In fact, these relations are applicable to any three screws g, @
A
and S, since three general screws form a screw triangle in space. Then
let this screw triangle be designated byAS(ﬁ“ﬁ‘Q). Let 8, t and X
followed by the subscript of the screw denote the rotation about the
screw axis, the translation along the screw axis, and the location vector
locating a point on the screw axis., Note that pair axes and screw axes
associated with screw displacements at cylindrical, revolute, helical
and prismatic joints are coincident. Prismatic, revolute, cylinder and
helical pairs require specification of 4 unknowns each (2 for specifi-
cation of direction of axis, 2 for locating a point on the axis).

The following three steps provide synthesis equations for a mecha-
nism for a particular synthesis problem.

1. The geometry of the mechanism imposes constraints on the screws
associated with displacements of coupler links and screws associated with
displacements at pairs. These constraints occur because some of the
screws are common to more than one screw triangle. These constraint
conditions are, therefore, expressed as relations expressing equivalence
of rotations and translations of the common screw from two screw geometry
relations.

2. Geometry of the pair places constraints on the screws associated

with screw displacements at pairs, for example, for a pair A
tA = ? GA (5.18)

where ? is finite constant for helical pairs
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? is zero for revolute pairs
€ =00, SA =0, t, # 0 for prism pairs
Q is variable for cylinder pairs.

The translations and rotations at the pair are expressed in terms of
screw triangle relations and then constrained by Equation (5.18).

3. If motion of one or more links, or displacements at pairs, are
specified, then such values are known in the screw triangle geometry
relations.

In the following, the screw displacements at pairs are denoted by

the symbol (/) on the unit vector parallel to the pair axis.

5.2.1. Stephenson-3 Fixed Pivot Type Mechanism

Figure 32 shows a Stephenson-3 fixed pivot type mechanism. Z; E, E,
5, E, F and G are unit véctors parallel to the pair axes A, B, G, D, E,
F and G respectively. Let the screw associated with the coupler link
BCE be ﬁ} and associated with EF by ?} when the mechanism moves from the
first to the jth position. Then the following constraint conditions are

obtained from the éeometry of the mechanism.
N OOA ~
Aj, [5;; = H }, (5.19)
Cj, ])} (5.20)
}-—\?E} = I? (5.21)
GJ, F]’ (5.22)

Conditions in Equations (5.19) - (5.22) are expressed as

EEAING ] B, =[0ri] ACEDy A
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[QH}‘] A (A\}/B\f lﬁl}) = [QH}] A ( ‘:—\\Z’é\} f}) (5.24)
N [tH}]A(A\J/@}Q},} — [tHj'-] ACé} 6\@}) (5.25)
[.JCH;}J JANN ¢ A\ﬂ,@? l/‘f\j) —'—'(tHj»] A (i—ll}é}f?) (5.26)
M NG Q}é}fﬁ =£QI*']A(@f€ﬁ@3 (s.2m
o lerd a (B EL DY =Tbri] a (6 FLID G

4

In addition to the conditions expressed by Equations (5.23) - (5.28) due
to mechanism geometry, additional constraint due to pair geometry may be

placed using Equation (5.18).

N
If screws Ij are specified, then

[GIJ;]SF&HQA = IQI?]A(Q?!%,I/}) (5.29)
['th,—]s‘xu‘;(_ep\ = [tlj,__] N ¢ Q?é\} f&"> (5.30)

If the mechanism is to be used for function generation, e.g., co-

ordination of motion of links AB and FG, then screws at joint A and G

EGA}] A(A\j, g} l—/i\j,)z[GAj,]spea |<ed (5.31)
[tA}] 4 ( A\}' é\f‘qj’): [tAJ’] S\Dea“&d (5.32)
(961 o (G F Ep=[06¢1spjied |

ey ] & (& FTy) = (o] speaied

(5.34)
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Consider the problem of multiple coordination where motion of links AB,
CD and FG is coordinated then in addition to constraints expressed by
Equations (5.31) - (5.34), the following constraints are obtained due

{GDJJ AN( ﬁj, C'}J',‘\‘j) = [GD{J Specified  (5.35)
[to1 & (B; & Ap =lEog)spesied

(5.36)

Table VIII presents the summary of the number of precision positions,
unknowns, and eqﬁations to be used for RCCC-GCCC Stephenson-2 mechanism .. .
for various types of synthesis problems. Note that when the rigid body
displacements are incompletely specified, corresponding incompletely
specified screws must be useds A screw triangle circuit for Stephenson-2
mechanism is shown in Figure 33,

Now consider the case of multiple coordinations of links where
motion of links AB, CD and FG are coordinated. Assume that screw dis=-

placement at A, D and G are known. Equating H,, obtained from two sides,
//\\j, @j, = ‘q}: S} é\} (5.37)

Manipulation of Equati.on (5.37) provid>es
g} C(? = A\; 6},—— K} (5.38)

. N A~ AN WA
Since A and D are known, screw KJ may be computed using KJ = Aj Dj.
The unknown axes at B and G are calculated using the following rela-

tions from screw triangle geometry.
A,
¢ gx}zj).(ﬁj,x@

ton Ok{ .
2

(5.39)



TABLE VIII1

SYNTHESIS OF RCCC-CCC STEPHENSON MEGHANISM FOR VARIETY OF MOTION PROGRAMS

No. of Equatioms No. of Unknowns No. of
Equations For p, Precision For p, Precision - Precision
Type of Problem Specifications . Unknowns To Be Used Positions Positions Positions
PR T 3 Y 3 A~ N = *
1. Rigid Body Ij, X 91 s t A, B, G, D, E,[(3.23) - (3.30) q(p-1) 28 + 4(p-1) 5
Guidance j j F, G, H, XA, and . B e - 8 free para-
Coupler EF .3 .%.% ({Aj)AMABH)=0 > meters
8’ ¢’ p’ “E ‘
Xpr Xgr Xy
2. Function 3, G, XA, iB, 8, » B, C, D, E, F, |(3.23) - (3.28) 13(p-1) 20 + 8(p-1) 5.
Generation j H} 1 XB, Xc, (3.31) -A£§.34)
AB - GF O » to XX %. 5 |da) a@si)=o
j j _D, E, F’ XHJ j
ij
3. Input + Rigid|a, Ij,X,, 05,68, » |B, C, D, E, F, |[(3.23) = (3.32) 11(p-1) 24 + 8(p-1) 9
Body [A-EF ] 7&1’ &P Aj G, H, X35 X, (4:AJ,)A(£1’3‘H)=0
i *p» Xg» Xp» Xgf
4. Incompletely [n parameters of in- E, E, E, 54 E, [(3.23) - (3.30) 9(p-1) 28 + (44n)(p-1)
Specified completely specified|F, G, Xy XB’ ta ) AGRBH)=0
Rigid Body screw for each pre~ X, % .%. % J .
Position cision position °c’ Xp E’ °F]
Coupler EF X-G

* .
Note C-C dyad. FG places the constraint on number of precision positions.

9¢1
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try Bp-(FEODC (R Rey)
== -5 o) ¢
g — (54 Z)B (Xp— XR})

1—(l<1, B)* (5.40)

Since Equation (5.39) contains four unknowns (2 unknowns contributed by
B and G unit yectors), a maximum of 4 values onlcnmy be specified

which in turn limits the specification of four displacements screws at A
and D. From Equation (5.40), the unknowns 26 and ib are computed. The

rotations and translations at pair B are computed using the relations

2 (TxB) - (BXKL)

(5.41)
try_ B-@RPNL (x,.-%
T ey (RYe)
_ e ~(B-DC . (X—-XB)
-(B "
(5.42)

Screws associated with coupler links are given by Equation (5.19) and
may be computed using the method shown in Chapter IV. Similarly, from

Equations (5.21) and (5.22),

G} HJ' [:51’ E;’ N L} (5.43)

N ~ ~
Since Gj and Hj are known screws, Lj becomes a known screws. Then from
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AREA ~

screw triangle relations of F, E and L, fﬁ E, XF and iﬁ are computed as

shown above. An example of synthesis of RCCC-CCC mechanism for multiple

coordination is shown in Table IX.

5.2.2. Synthesis of Watt's Six-Link, Two-Loop,

Spatial Mechanisms

Figure 34 shows a Watt's-2 fixed type mechanism. A and D are fixed
pivots; B, C, E, F and G are moving pivots of the mechanism. Let the
screws associated with coupler links BCE, EF and FG be denoted by ﬁ}, ﬁ;
and £; when the mechanismbmoves from the initial to the jth position.

Following constraints are obtained from the geometry of the mechanism.
ASAN AN
A? Bj, = H re (5.44)
N A
Bj* Cj«: H (5.45)

Q?, L}: /Lt?, (5.46)
A VA

Diap= 1z (5.47)
A ~

/,\i y
2 ;,‘-'- L—;' (5.48)

condiions in Equstions (5.46) = (5.48) are expressed
[BracABA)=brla S8R cw
(thi] a(ABE) =[tra(BER) o
(61 & (AED) =[6nflaCABA
[tHi] a (A ED =t a (ABA) G

A A /\)

[8'_1,] a (RED=1BL]a (FFL

.

(5.51)

(5.53)
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TABLE IX

SYNTHESIS OF STEPHENSON'S SIX-LINK MECHANISMS FOR
MULTIPLE FUNCTION GENERATION

Rotations Rotations Rotations Translations Translations
PP At Pair A At Paid D At Pair G At Pair D At Pair G
2 -20° -15.4244  162.623 -0.3816 3.608
3 -40° -33.880 135.527 -2.9096 -9.488
4 40° 29.92219  -179.229 6.9520 -2.235
5 60° 81.5526  =30.949 -1.2713 -12.,004

One of the many solutions is given below.

A* = 0.7322i + 0.6112j + 0.3006k

E = -0.5032j - 0.7324j + 0.5889k
B = -0.1965i - 0,2832j + 0.9387k
F = 0.9167i - 0.0010j + 0.3996k
C = -0.32841i - 0.4966j + 0.8034k

G*¥ = 0.6002i + 0.5001j + 0.6242k

D* = 0.5442i + 0.1228j + 0.8299k

X, = 1.28761 + 1.1457]
Xp = 1.5492i - 1.9298j
iﬁ = 3.6428i + 2.6418j
Xp = -4.1121i - 1.2833j
Xg = -1.8276i + 4.2632]
Xg* = 164391 + 1.7451]
Eb*'= 1.7864i + 1.6280]

* are known vectors.
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Figure 34. Watt's-2 Fixed Pivot Type Mechanism
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Ltr] 8 (BE D)6
)

(5.57)

N

If screws Lj are specified screws, then

[BLila (T ED) = specified Vatue .0
[tLjla (FEL)= spedfled value

Let A be a revolute pair. Then the pair constraint condition is

[tAé,—J A (A\ o) |—/-\|) =0 (5.61)

Table X gives a brief summary of the number of unknowns,.the number of
equations for each precision position for various types of synthesié
problems. Figure 35 shows a screw triangle circuit for this type of
Watt's mechanism.

Now consider the synthesis problem where a rigid body to be guided
is attached to link EF in Figure 35 and input rotations which are to be
coordinated with rigid body motion are provided at the revolute pair at
A, (i.e., Screws E} of coupler link EF and screws g} of input link AB
are known.) Coﬁbining Equation (5.44)‘and Equation (5.46) and eliminating

~

screw H,
J FaS VA N

| WY

(5.62)



TABLE X

SYNTHESIS OF WATT'S MECHANISM FOR VARIETY OF MOTION PROGRAMS

No. of Equations

No. of Unknowns No. of
Equations For p, Precision For p, Precision Precision
Type of Problem Specifications Unknowns To Be Used Positions Positions Positions
1. Rigid Body |L.,8. , X ,t A, B, C, Dy E, [5.49) - (5.61) 13(p-1) 28 + 8(p-1) 6
: 3L, L, L
Guidance i b F, G, XA, , 3 free para-
Coupler EF v T 3T 3 eters
P Xgs Xps Xpo Xp "
X Ty My
X;
I,
j 3
2. Incompletely | Incompletely In Addition 5.49) - (5.61) 13(p-1) 28 + (14-n)(p-1)
Specified Specified Screws to Above Un-
Positions of | in Terms of n knowns, (6-n)
Rigid Body Parameters for Parameters
Each pp. for Each pp.
3. Inmput at A 2,0, Zj, '}EL , B, C, D, E,_F, {(5.49) - (5.61) 14(p-1) 24 + 8(p-1) 5
and Rigid ] 3 Gy Xps Xos Xps By Doiocific =
Body EF 01,0t X, X, X, 1 o
: i j R A S (GA)A(ABH)
H.,, X X ]
LA S
3
4. Input + K,QA , and In Addition (5.49) - (5.61) 14(p-1) 24 + (14-n)(p-1)
Incowp%etely j to Above Un- (GA)j specified
Specified Incompletely knowns, (6-n) | _ N
vs N = (6, ) . AABH)
Positions of | Specified Screws Unknown Aj
Rigid Body in Terms of n Parameters of

Parameters for
Each Precision

Position

Screws for
Each Precision
Position

€eT
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Figure 35,

Screw Triangle Circuit Formed by Constraints
of the Watt's-2 Fixed Type Mechanism
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A= A A
Since A L and Lj are known screws, screw Nj may be computed using the
A
method described in Chapter IV. From screw triangle formed by screws Bj’

~ A
Cj and Nj’ the following relations are obtained.

j;:_ ‘g.(ﬂixﬁ)__
(B XN£)- (NfXE)
},—_ 4.4 (5.63)

tng . Ni- <N$E>E (X —Xn4
L= 1—(NJ,E) = NJ)

A CN]Z:EE%_ (Ke= %)
1-(N1- B)
?;::1. L}

(5.64)

The unknowns B and E (4 unknowns) are computed from Equation (5.63)
written four times. Once B and C are known, iﬁ and §£ (4 unknowns) are
computed from 4 linear equations obtained by writing Equation (5.64)

four times. Rotations and translations at B pair are computed next using

relations

j@”‘@—? B (N{XE)
E % B (BXND

(5.65)

(5.66)
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Thus, screws at B are completely known and screws of coupler link BEC

are calculated using

N A ~
A B=H (5.67)
~ ~ AN

From screw triangle formed by screws Dj’ Cj and Hj’ the following rela-

tions are obtained,

tomOH{ = B (H4X3)
> (D % \——l—"j)-(qj, XC) (5.68)

C and D (4 unknowns) are calculated using four equations obtained from
Equation (5.68). Once C and D are unknown, 2& and ib (4 unknowns) are

computed 4 linear equations obtained from Equation (5.69). Rotation and

translations are computed using

JCOW\QD'__, BC‘:T}XZ> (5.70)
=7 ©xB) (BxHP

_ B"(D_'E) a. C;Ec—>_<l>>
V- (5-&)* (5.71)
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Thus, screws at pair D are completely known. From Equations (5.47)

and (5.48) eliminating screws Ij’ we find

é\j,f%, = [S; l/—\} = i/);{, (5.72)

AS ~ ’~
Since screws Dj and Lj are known, screws Pj are computed using product

A
rule. From screw triangle formed by screws Gj’ ﬁ} and f}, we have

tam 0pj _ _ G (PEXF)
2 (G %P (PixE)

_ (5.73)
?_—_, R 4
Ehi _ PR (- %))
2 \=PrFY» _
P~ &G | (Xe-%py)
T (- G)* t
j;=|. 4

(5.74)

G and F (4 unknowns) are computed using Equation (5.73). Once G and F
are known, if and ié are computed from linear Equation (5.74). This
completes the synthesis of RCCC-CCC Watt's~2 fixed type mechanism for
input and rigid motion coordination for five precision positions.

An example of such a synthesis problem is presented in Table XI
and Figure 35 shows a screw triangle circuit of the mechanism. Tables
XII, XI1I, and XIV present constraints of other six-link mechanisms

shown in Figures 36, 38, and 40 due to its geometry and corresponding

"~ screw triangle circuits are shown in Figures 37, 39, and 41.
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TABLE X1

EXAMPLE SYNTHESIS OF WATT'S RCCC-CCC MECHANISM FOR
COORDINATED MOTIONS OF INPUT-LINK
AND RIGID BODY

Prescribed Input Link and‘Rigid Body Precision Positions’
A =0.51 _ 0.5j + 0.7071k

Precision Position 2

L = 0.7714i - 0.4948§ + 0.4002k

X, = -0.9420j + 2.6504k
6, = 20.0 8, =107.3792 . £, = 8.2293
Precision Position 3
L = 0.8651i - 0.3565j + 0.3528k
EL = =.4147§ + 1.9545k
0 froamd =
eA = 40 GL = 122,3592 £, = 9.0261
Precision Position &4
L = 0.9248i ~ 0.22713 + 0.3052k
X, = 0.0712j + 1.6860k
0 —
6, = 60 SL = 139.0513 £, = 9.4950
Precision Position 5
L = 0.9605i - 0.1059j + 0.2575k
ZL = 0.4639j + 1.7449k
(o] ‘ — =
6, = 80 O, = 156.7363 , t; = 9.6834

One of the solutions is presented below.



PP

2

3
4

PP

v B~ W

0.63106
0.62906
0.62687

H
X

0.57021
0.50767
0.46133
0.43109

PP

(S B I

TABLE XI (Continued)

K.

y
-0.64226
-0.63539
-0.61513

&=
i

=]
il

¢
i

<
Il

Oy
-1.7905
-0.4074

3.3247
8.8783

H
y

0.50025
0.50179
0.48061
0.44176

ol al
il i

>

A=1 N
A 1 L =

X
K

y

-2.57312
-3.19300
-3.43288

ta

0.9707
1.9882
2.9689
3.9543
AN NIV
H=ADB

Xy

y
~1.9256

-2.3110
-2.5947
~2.8363

A
K,
J

XK
Z

4.23306
4.83986
5.65049

-0.8621i +0.1128j + 1.4940k
0.62871i ~ 0.6333j + 0.4513k
-4.28531 + 1.2863 ]

-2.86181 + 1.2872j + 1.8756k

xH
z

2.5380
1.9834
1.2293
0.3032

-0.28611 + 0.8210j + 0.4941k
. 0.7682% + 0.3296 + 0:5488K

0.62121 + 0.5421j

Bk

100.0990
105.69330
110.85740

Oy

20412442
40.01239
60.00

80.18425
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x
7.83855
8.26299
8.30442

“x

~0.,1734
-0.0843
0.1926
0.5801
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v B~ N

N
X

0.66396

0.71181

0.76252
0.80925

iﬁ = 1.4569i + 0.8365]

PP

v B~ N

N
y

-0.58602
-0.51917
-0.4444

-0.37042

=]
I

@l
]

P
I

P
il

Op

17.4500
33.1872
48.3693
63.9220

-1.77878
-1.34189
-0.51892
0.42377

-3.25681 + 1.9564]

0.2811i + 0.7684j

tp

-0.9404
-1.6757
-2.0997
-2.1965

3.81051
3.67684
3.58475
3.49244

= 0.56181 + 0.7371j + 0.3756k

0.11631 + 0.3341j + -.9353k

Ox

96.68796
99.31876
102.29490
104.99460
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N

6.78250
6.48781
6.22593
6.05623
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TABLE XII

CONSTRAINTS ON THE SCREWS OF WATT'S-3 FIXED PIVOT TYPE MECHANISM

Mechanism Constraints on Screws

A Bi=+
/\} /\} /\}
by Ci=Hy
Dief = 1If
G?Fj; =14

(o) & (BéM=T160y] & (BED)
[tod A (B ER) =evfl & (BED)
6] & (BET) = (6814] & (EFT)
[t a(BED = [t57] A (68D
[6e(] o (EB0)=1[6e)] A(EFL)
ltes] A (BB =lte;] & (EED)
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TABLE XITI

CONSTRAINTS ON THE SCREWS OF STEPHENSON-2 FIXED PIVOT TYPE-1 MECHANISM

Constraint Condition From the Geometry of the Mechanism

M B} '—%

L} Cf = l“(?,
E?f’ Dr H?
E} Fr f;v
L}« Gj, = I?

Equations Obtained From Constraint Conditions
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TABLE XIV

CONSTRAINTS ON THE SCREWS OF STEPHENSON-2 FIXED PIVOT TYPE-2 MECHANISM

Constraints Due to Mechanism Geometry
A ~ .
AfBE=1¢
5¢y=1¢
5;65= 14
Nans ,f
L_J;Ffr— 11

Equations Obtained From the Constraint Conditions

[try]) o (86D=[trfla (LFD)
(6] ACRED)=[6L]aCCFE)
[tL] a(RED) = ThfafD
(681 o aB) = [OA1£(RED)
[ tA7] & ABA) = [tag] o (AED)
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Figure 37. Screw Triangle Circuit for Watt'!s-3 Fixed
Pivot Mechanism
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. Figure 38, Stephenson-2 Fixed Pivot Type-1 Mechanism



147

\J s

Figure 39. Screw Triangle Circuit for Stephenson-2 Fixed Pivot
Type-1 Mechanism
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X
My

Figure 40. Stephenson-2 Fixed Pivot Type-2 Mechanism
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o>

L,

TAY
]
Figure 41, Screw Triangle Circuit for Stephenson-2 Fixed

Type~2 Mechanism




CHAPTER VI
CONCLUSIONS

In this dissertation, a unified approach is developed for analysis
and synthesis of spatial mechanisms and its use is demonstrated in
analysis and synthesis of spatial, two-loop, six-link mechanisms.
Throughout this work, rigid body spatial motion is expressed in terms of
SCrews. This'brings'a uniformity and provides a visual insight into
the mechanism motion.

The successive screw displacement method for analysis, developed
here is believed to be more geﬁeral, simple and useful than other methods
of analysis. It seems it is directly extendable to mechanisms which
contain slotted sphere, planar pairs in addition to revolute, cylinder,
helical, spherical and prismatic pairs. The expressions obtainéd for
"velocity and acceleration analysis are, in_general, linear and compact.

An attempt has been made to demonstrate the relationship between
screw triangle geometry method of synthesis [26] and pair constraint
method developed in the present study. The pair constraint method is
much more general and reduces to screw triangle geometry in special cases.

It is, thus, possible noﬁ using the methods developed here to
analyze single and multi-loop mechanisms which contain prismatic,
revolute, helical, cylinder and spheric pairs. Since planar and spher-
ical mechanisms are but special cases of space mechanisms, the method is

equally applicable to synthesis of these mechanisms. In planar motion,

150



151

a screw reduces to a pole while, in spherical motion, to a pole axiso

Apart from development of general procedures for analysis and syn-
thesis of spatial mechanisms, the present study contributes immensely to
the staté-of-the-art of kinematic synthesis and analysis of spatial six-
link mechanisms. The following are the main contributions.

1. For the first time, procedures are available for synthesis of
spatial, two~100p, six-link mechanisms involving revolute, cylinder,
helical, prismatic, and spheric pairs. The design equations are obtained
in simple vector form and are solved for two types of problems. The
design equations for synthesis of spherical mechanisms may be selected
from this larger set of equations. We have also provided the screw
triangle geoemtry constraints of five types of six-link mechanisms.

These are constraints placed by the mechanism on the screws at joints and
screws of the coupler links. Note that these constraints do not depend
upon pair combinations but only on mechanism configuration. Additional
constraints due to pair geometry and job specifications are also described.
Thus, a designer must be able to select synthesis equations for his
combination of péirs and job specification, without in depth knowledge.of
theory of screws.

2, A unified treatment of analysis is presented for the mechanisms
involving spherical pairs, in addition to prismatic, cylinder, revolute
and helical pairs. The method is used to conduct displacement, velocity
and acceleration analysis of five types of six-link mechanismse. A
designer may obtain closed form displacement, velocity and accelerations
relationships using the method described in this work. It is seen that
the whole procedure is well suited for computer programming. The

expressions for velocity and accelerations are in general linear and
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compact and thus, displacement analysis of more complicated mechanisms
may be conducted by integrating these velocity equations.

3. The existence criteria of overconstrained, spatial, six=-link
mechanisms may be obtained by inducing passive couplings at joints, using
the displacement relations described in this work. The synthesis and
analysis of such overconstrained mechanisms is performed in the same way
as the parent mechanism and is expected to present no further difficulty.

The present work is a basic study of motion of open-loop kinematic
chains, constraints on motion of kinematic chains due to pair geometry,
and constraints on motion of various links due to mechanism geometry.

The pair combinations considered are revolute, prismatic, helical,
spherical and cylinder. The method is directly. extendable to other pairs
such as slotted sphere, planar, etc. Since a wrench is resultant
loading of a rigid body and is similar in expression to screw for rigid
body displacement, it seems logical to conclude that a similar method
could be developed for dynamic analysis and synthesis of spatial mecha-
nisms. The procedures for analysis and synthesis of open-loop chains

are described in this work and may be used for design and analysis of
manipulators. Further work on manipulators requires procedures for
computing influences of obstacles on the terminal body of the open-loop

screw chain. This is expected to be rewarding future study.
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