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CHAPTER I 

INTRODUCTION 

Recently Soni and Harrisberger [1] surveyed, the art of mechanisms 

science and indicated the existence of nearly 12,000 publications of 

scholarly level. A detailed examination of these publications [2, 3] 

shows that there is a considerable interest in kinematic synthesis and 

analysis of spatial mechanisms. 

The central problem in synthesis is to determine the dimensions of 

linkages required to perform specified jobs. Such specifications may 

include guiding a rigid body, coordinating motions of input and output 

links, generating a curve in space, etc. The central problem in kinematic 

analysis of spatial mechanisms is to calculate the relative motion of the 

moving links provided the kinematic parameters of a linkage are knowno 

1.1. Synthesis of Space Mechanisms 

The subject of synthesis of single loop mechanisms has been of great 

interest to research kinematicians in the U.S. in the past two decades. 

A systematic approach to synthesize an RSSR mechanism, where driving and 

driven members move on mutually perpendicular axes was formulated by 

Novodvorskii [4]. Stepanoff [5] solved the generalized case of non­

perpendicular planes of driving and driven members. A complete solution 

to this problem was given by N. I. Levitskii and K. K. Shakvazian [6], 

who applied the least square technique for finite position synthesis up 

1 



to eight precision positions. Denavit and Hartenberg [7] derived loop 

closure equations of RSSR and RCCC mechanisms and showed that equations 

are linear up to a· limited .number :of precision positions. 

2 

In general, synthesis problems involved coordinating motions of 

input and output links of relatively few mechanisms like RSSR and RCCC. 

It was, however, Wilson [8] who changed this trend. Using the analogy of 

planar kinematic synthesis problems, Wilson introduced the rigid body 

guidance problem in spatial synthesis and also showed that function­

generation problems can be converted to a rigid body guidance problem by 

taking inversion about the input or output link. Wilson's contribution 

also includes derivation of relationships to calculate center point and 

spheric point curves. 

In 1965 Harrisberger [9], in his historic paper on the survey of 

three-dimensional mechanisms, enumerated a large number of three­

dimensional mechanisms, for which synthesis procedures were as yet 

unexploited. Harrisberger's contribution led Roth [10, 11, 12] and Chen 

[13, 14] to investigate the loci of special lines and points associated 

with spatial motion and to propose a general theory for computing the 

number and locus of points in a rigid body in finite or infinitesimal 

motion which have their several positions satisfying the constraints of 

binary or combined link chains. Because of the nonlinearity of the 

constraints, the methods [10-14], though quite suitable for spatial, four­

bar mechanisms, were unsuitable for mechanisms with a large number of 

links. In these references, the problem solved was that of rigid body 

guidance. Problems such as generating a curve in space, generating 

surfaces, etc., still remained untouched. 

Soni and Harrisberger [15] and Soni and Huang [16] introduced 
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transmission characteristics as ?Ptimality criterion for designing space 

mechanisms. Using the analogy of planar kinematic synthesis, Soni and 

Huang [17] extended the point position reduction to design spatial, four-

bar mechanisms. Rao, Sandor, Kohli, and Soni [18] developed a general 

closed-form synthesis procedure to synthesize function generators for a 

maximum number of precision positions. 

Sandor' [19], Sandor and Bishopp [20] introduced methods of dual ~ 

number quaternions and stretch rotation tensor to find loop closure 

equations of spatial mechanisms. The methods proposed were general 

enough to include generation of space curves, etc., but the complexity of 

the equations for mechanisms with a large number of links limited their 

use to four-link mechanism synthesis. Suh [21, 22] employed 4 x 4 

matrices for synthesis of space mechanisms where design equations are 

expressed as constraint equations in order to obtain constrained motion. 

Suh [23] also investigated the differential displacement synthesis of 

spatial mechanisms. Kohli and Soni [24] employed matrix methods to syn-

thesize spherical four-link and six-link mechanisms for multiply separ-

ated positions of a rigid body in spherical motion. --~~~-~-:!:_~pl_!Ei_~X_-~~-----

Suh 1 s method is undoubtedly appealing, but large numbers of synthesis 
"-------- ----- -

equations render such methods unsuitable for synthesis of spatial mecha-

nisms ~:c.e-tha.n....£0.ut:. • .li.nks_._ -~--
·--~__......., .. -

Recently, Tsai and Roth [~5, __ 26, 27] used screw t,::Jc!!,I1~-~': --~-:-~-~:-~.::_)'~to 

synthesize open-loop kinematic chains for completely and i~~__<:>_rnple!~l~ 
-------~-----

specified positions _oJ__ ~ i;.-ig;id boqy. Th~ _proposed Inethod is quite simple 
---------------·-··-~ . .-

and permits synthesis of mechanisms with helical pairs • 
.------··--...··--·••-·m~'""'"'-•••"'•~-~-~· •• •• ~-- • •e• -·•·-~--------

The only contribution in spatial, two-loop, six-link mechanisms is 

by Kohli and Soni [28] who gave synthesis procedures for mechanisms with 
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revolute, cylinder and helical pairs. 

1.2. Analysis of Spatial Mechanisms 

Kinematic analysis of space mechanisms was initiated by the signifi­

cant contribution of Dimentberg [30]. Dimentberg [30, 31] demonstrated 

the use of dual numbers and screw calculus to obtain closed-form dis­

placement relationships of an RCCC and other four-, five-, six-, and 

seven-link spatial mechanisms. Denayit [33] derived closed-form dis­

placement relationships for a spatial RCCC mechanism using dual Euler 

angles. ·Yang [34] also derived such relationships for RCCC mechanisms 

using dual quaternions. 

Vectors were first used by Chace [35] to derive closed-form dis­

placement relations of RCCC mechanisms. Wallace and Freudenstein [36] 

also used vectors to obtain closed-form displacement relationships of 

RRSRR and RRERR mechanisms. 

Yang [37] proposed a general formulation using dual numbers to 

conduct displacement analysis of RCRCR spatial, five-link mechanisms. 

Soni and Pamidi [38] extended this application of (3 x 3) matrices with 

dual elements to obtain closed-form displacement relations of RCCRR 

mechanisms. The methods need further modification when a mechanism 

contains a spherical pair. 

Yuan [39] employed screw coordinates to obtain closed-form displace­

ment relations for RRCCR and other spatial mechanisms. The approach 

does not seem to have any advantage over other methods. 

Jenkins and Crossley [40], Sharma and Torfason [41], Dukkipati and 

Soni [42] used the method of generated surfaces to conduct the analysis 

of single-loop mechanisms containing a spheric pair. Hartenberg and 



5 

Denavit [43] contributed iterative techniques to conduct the displacement 

analysis of spatial mechanisms using (4 x 4) matrices. Uicker [44, 45] 

explored in further detail the (4 x 4) matrix approach of Hartenberg and 

Denavit. Soni and Harrisberger [46] contributed an iterative approach 

for performing kinematic analysis using (3 x 3) matrices with dual ele­

ments. Kohli and Soni [47, 48] used finite screws to conduct displace­

ment analysis of single-loop and two-loop space mechanisms involving 

revolute, prismatic, cylinder, helical and spheric pairs. 

The survey of literature shows that .the art .of ·synthesis and 

analysis of single-loop space mechanisms has attained a sufficient 

maturity level, and synthesis and analysis of two-loop, six-link mecha­

nisms is virtually unexplored. 

A systematic approach was devised by Soni and Huang [49, 50] to 

perform structural analysis and synthesis of multi-loop kinematic chains 

with or without general constraints. The generalized approach was used 

to enumerate all two-loop, spatial, six-link mechanisms with or without 

general constraints. The result of this structural synthesis shows that 

there are 14 types, 936 kinds, and 545,277.two-loop, six-link spatial 

kinematic chains. Dukkipati [51] investigated the existence criteria of 

two-loop, overconstrained mechanisms and performed displacement analysis 

of two types of mechanisms. We are unaware of any work on synthesis of 

spatial mechanisms except that by Kohli and Soni [28]. 

1.3. Present Study 

The objectives of the present study are to develop unified synthesis 

and analysis procedures for spatial, two-loop, six-link mechanisms. The 

five basic configurations, Stephenson-1, Stephenson-2, Stephenson-3, 



6 

Watt's-1 and Watt's-2 mechanisms are examined for finitely, infinitesi­

mally or multiply-separated position synthesis problems using screw 

triangle geometry and successive screw displacements. The maximum 

number of positions for which a six-link mechanism may be synthesized 

for different types of problems depends upon the type of pairs used and 

their arrangements within the mechanism. Synthesis problems included in 

the present study are 

1. Rigid Body Guidance 

2. Function Generation 

3. Guidance for Incompletely Specified Specification of Rigid Body 

Kinematic analysis of spatial six-link Watt's and Stephenson type 

mechanisms is conducted using successive screw displacements. Kinematic 

analysis of a mechanism involves the following problems: 

1. Derivation of closed-form displacement relationships 

2. Derivation of closed-form velocity and acceleration relations 

Specifically, the present study 

1. develops a generalized approach to synthesize two-loop mecha­

nisms with kinematic pairs such as revolute pairs, prism pairs, 

helical pairs, spherical pairs, and cylinder pairs. 

2. incorporates completely and incompletely specified positions of 

the rigid body for finitely, infinitesimally, or multiply­

separated problems of synthesis. 

3. develops a generalized approach to obtain closed-form relation­

ships to calculate position, velocity, and acceleration in space 

mechanisms for various values of input displacements. 
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Ch~pter II presents the development of generalized tools for 

analysis of space mechanisms. Chapter III presents examples of 5 six­

link space mechanisms. Chapter IV develops general procedures for syn­

thesis of six-link mechanisms for a variety of motion programs. Chapter 

V presents examples of synthesis of six-link mechanisms using the general­

ized procedures. Finally, Chapter VI presents findings and conclusions 

of the present study. 



CHAPTER II 

SUCCESSIVE SCREW DISPLACEMENT METHOD OF 

CLOSED-FORM DISPLACEMENT ANALYSIS 

Kinematic analysis is the inverse problem to kinematic synthesis. 
-------·-~-----------·····---·-··-···· ... :::::::;:""_':.."'..:;'.";'"=;=": . ..,..,__.,....,. ... :--:· --·-.. ····-~-. :- ··.. -

In kinematic analysis we are given a mechanism, and we are required to 
. ---------------------·-····. .. ~ 

compu~e the posi~ion of the components of t~E): __ me~~!_!!,ism f9r yar_io1ls 

positior>:~ ~.~ --~.hE!:."!l!I?..~-1:..J:i:!lk• To obtain all the possible configurations 

which a mechanism takes, closed-form displacement relationships must be 

developed. Such relationships permit one to compute the positions of 

various links and the rotations and translations of various pairs for 

consecutive positions of the input link. In performing kinematic analysis, 

we also compute the infinitesimal motion of mechanism links in terms of 

the infinitesimal motion of the input link. This leads us to velocity 

and acceleration analysis of mechanisms. 

In general, there exist many positions of the mechanism for one 

position of the input link. The number of configurations a mechanistP. 

takes depends upon the combination and types of pairs in the mechanism. 

In.general, this is reflected in a polynomial relating the output-input 

displacements. But many times, due to the mathematical complexity of the 

elimination processes, this polynomial contains extraneous solutions 

which do not correspond to any physical assembly of the mechanism, and 

consequently these roots must be neglected for obtaining the correct 

number of loop closures. 

8 



In what follows, a closed-form method for displacement, velocity 

and acceleration analysis of space mechanisms is developed. 

2.1. Successive Screw Displacements 

9 

When two positions of a rigid body are given, there are an infinite 

number of ways the body may be transferred from one position to another. 

One of the simplest ways to accomplish this is through screw motion 

(Chasel's theorem). Chasel's theorem states that a rigid body can be 

moved from any one ~pecified position to any other by a movement ,con­

sisting of a rotation around a straight line accompanied by a translation 

parallel to the straight line. This is called screw motion and is 

unique in its representation. A displacement denotes the difference in 

two positions of a rigid body. Therefore, displacements specified in 

screw motion form are unique. 

Displacements at pairs may be regarded as screw displacements. At 

a cylinder pair (C), the displacement is a screw of variable pitch; at a 

helical pair (H), a constant pitch; at a revolute pair (R), an infinite 

pitch; at a spherical pair (S), displacement is a pure rotation about a 

fixed point (i.e., the screw axis passes through the spherical point, and 

there is no translation). 

We shall consider here a cylinder pair since it is the most general 

screw, and all other screws associated with revolute, prism, helical and 

spheric pairs may be derived from it. We shall consider the location of 

lines or points and their derivatives when the body to which the line or 

point is associated undergoes a series of successive screw displacements 

about the joints. 

Figure 1 shows a rigid body2:attached to a cylindrical pair B in a 



Figure· 1. A Rigid Body Connected to the Ground Via a 
Cylinder Pair 
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rectangular coordinate system OX.YZ. This joint can take screw dis-

placements, i.e., rotations about and translations along the axis of the 

joint. 

The following vectors are defined: 

B is a unit vector defining the direction of the axis of the 

joint. 

P is a vector from the origin to a point P on the axis. 
~------ ·-

C is a unit vector defining the direction of a line in 2:" • 
- - - - ./' 

Q is a vector from the origin to a point Q on the line in 2'.:_ • 

In what follows, cosine and sine are denoted by letters C and S followed 

by the angle. 

Now if ~ is displaced through screw motion at joint B consisting of 
_,,_-__ ·-- -- .- -----...::<;.:.-.,,,,..~·. _ . ..l 

~,..------., 

a rotation about B. 1D~~J3'and translations SB along axis B; then L occupies 

the positionZ::-.• The direction of line (C.) in"l:. is given by 
.. J J J 

Cj = C &s [. C:- (E · 13) BJ + ~ &s C Bx C:) + (c · B) B 

2- 2 
and if the motion is infinitesimal, dC/dt, d C/dt are given by 

de_ 
dt- c Bx c)cl&B 

clt 

dB/dt = 0 since B is fixed to the pair axes. 

The displaced position of point Q is given by 

(2.1) 

(2.2) 

(2o3) 



Qf=C9B[(Q-P)-{(0:-P)·B1B]+ P+ B SB 

+ S~B ( B >< (G:-P)) 

12 

+fC~-P)·B]B (2.4) 

The velocities and acceleration of Q are given by 

~ :=. Bx CG:-p)ol9B + 13 dS13 (2.5) 
d.t clt Oft 

where 

Hence, 

2- ~ )2 - 2-c:L <Q =- B X[B X(Q.-P)] gB +BdSB 
cl t 2. d"f. CU.2-

+ [BX (Q-P)] cl2-eB 
C{f2. (2. 7) 

Figure 2 shows a rigid body attached to a binary line where both joints 

can take screw displacements. Second joint is completely defined by a 

- -point P and unit vector B. Note that one element of A is fixed while B 

is a moving joint. We first give screw displacement at_ joint B and then 
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x 
Figure 2. A Rigid Body Connected to the Ground Via Two Cylinder Pairs 
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at A, L occupies Z:,' after displacement at B and 2:. after displacement at 
J 

A. Let$ A and $B be rotational motions and SA and SB be linear displace-

-
ments at joints A and B, then the first displaced position of c1 of line 

C in ;E. 1 is given by 

c I c ee1_c-(c.: B)B] + s: '9s (Bx c.) t(c·· B) B 

Q1 Ce5[(~-p)-[CQ"-P)·B]B] + B Ss+P 

+ SGs[BX(Q-P)]+[(Q°-P)·B]B 

and final displaced position C. inl:'. is given by 
J J 

Qf=- CGA[}Q~o) - { ( ~~o). A.] A] 

+ SQA [A X (Q,~o)] +A SA 

+ {CQ~O)·A}A+o 

Rearranging Equation (2.10), we get 

where 

Cf=- C$s [CQA L1 + S&A L2 + L3] 
+ SQB[C9A M1+SgAH2+M 3J 
+ CGA K1 + S ~A k.2 -t- 1'<:::3 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 



L1 == JI-(]\· A) A 
L2.. ==- C A x Ti ) 
L3 =- Ct;· A)A -
M1 =- T)_- lf.L A) A 
Pfl. ~ (AXT.:) 
M3 =- ('J;_. A) A 
Ji = c-(c. s) B 
:r.2 -=- (B x c ) 

Derivatives of C are written as 

~ == (08) B 

K.1 =- J3-~· A)A 

K;_ = (A x J3 ) 
Kj = tJ31 A)A 
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cl'-c:: =[Ad~ +dB cAOB+i3d2t>bl><c 
dJ:2 at 2- -oQ- OU- OW-J 

+ [A deA + B deB J x ~ 
~ OU- clt 

(2.14) 



where 

Similarly 

cl B - -) _J 

dl= (AXB ~ 

~ == l c Q, ~o ) - L ( Q. ~o). A 1 A] / 

+ d~ [_AX (~~o)J+A de~ 

+[i c ~1 o).J\}A]1+ ~ 
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(2.15) 

~= [ i3x(a::-P)]~ +Bd~B 
at dt OU-

+ ~[Axc~-o)J+A~2.1G) 

~ [e,x(~-~)t~ X(Q-P)] ~ 
+[BX(Q-P)] ci.2~B + B ct2~B 

Olt1. d..t,2-

+ clB d~B + d.-2~~[A x(~-o)] 
4:t Olk ctt2 . 

+ olGA[Ax(d~_dO)J+Ad.2-iA2. . 
d.t elk CG:- d:t (2.17) 
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where 

dP/dt, dB/dt as showin in Equations (2.5) and (2.2) are obtained by per-

muting P with Q and B with G. 

We conclude then that displaced positions of lines or points a~d 

their derivatives may be obtained by providing successive screw dis-

placements. For finitely separated positions, we use finite screws from 

Equations (2.10? and (2.11); while for infinitesimally separated positions 
. ------ ............. ____ _ 

we use infinitesimal screws described by infinit~simal.screw displacements 

at joints by Equations (2.13) th:r:ou~E_ (2.17). 

2.2. Pair Geometry and Constraint Equations 

Let two chains of rigid bodies be connected to two elements of a 

pair. The displaced positions of pairs are usually obtained independently 

from two sides. The geometry of the pair places certain constraints on 

the motion of two chains connected to the two elements. In this section 

we describe the constraints placed by pair geometry on the motion of 

these two chains. Note that these constraints can be generalized to 

constraints on two screw chains. Screw 1 and Screw 2 referred to herein 

will describe equivalent screw displacements of two screw chains. 

2.2.1. Spheric Pair {Figure 3) 

/\ /\ 
If screws s1 and s2 (where the hat denotes the screw) are connected 

by a spheric pair, then the constraint that the spherical pair places ?n 

/\ I\ 
the screw displacements s1 and s2 (shown in Figure 3) may be expressed as 

follows. 



Figure 3. llto Rigid Bodies Connected 
Via a Spherical Pair 

® 
A 

Figure 4. 'l't,o Rigid Bodies Connected Via a 
Revolute Pair 
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" 82. 



19 

1. After the displacement is carried out, the displaced position of 

the spherical point (denoted by P) considered on Screw 1 and 

Screw 2 must be the same. 

(2.18) 

2. For infinitesimal motions the derivatives of the point P, com-

/\ /\ 
puted from screw motions of s1 and s2 , are equal. 

-I ") p (_~I .=. 
-1 /\.. 
p l~J.-) (2.19) 

th 
In general, for n order infinitesimal motion 

-n "' PY) ( /'.. ) P C ~1) = s2- (2.20) 

2.2.2. Revolute Pair (Figure 4) 

/\ /\. 
Figure 4 shows two screws s1 and s2 connected via a revolute joint. 

A revolute pair puts the following constraints on the screw displacements 

/\ 
s1 

A 
and s2 : 

1. The displaced 

" screw s1 must 

position of revolute axis A when considered on 

/\ 
be the same as that when considered on screw s2 • 

(2o21) 

2. The displaced position of a point on the revolute axis (P) when 
/\ 

considered on screw s1 must be the same as that when considered 

" on screw s2 • 

(2.22) 

3. For infinitesimal displacements, derivatives of axes and point 
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from Screw 1 and Screw 2 are equated. 

(2.23) 

and 

(2.24) 

2.2.3. Cylinder Pair (Figure 5) 

For finite displacements, the conditions are 

- A - ;....,._ 

AfC~1) =At Ui) (2.25) 

Pf (f;) . Df cf:)_)+ Aft (2.26) 

where t is the translation at the cylinder pair. 

For infinitesimally separated positions the conditions are 

(2.27) 

2.2.4. Prismatic Pair (Figure 6) 

A prism pair does not allow any relative rotational motion between 

two lines. Hence, the condition. that a prism pair puts on Screws 1 and 2 

" /\ is that screws s1 and s2 are parallel. 

Let B, a unit vector, intersect at a constant angle the pair axes Ao 

Then the condition for bodies to have common prismatic pair is 



Figure 5. Two Rigid Bodies Connected Via a Cylinder Pair 

Figure 6. Two Rigid Bodies Connected Via a 
Prismatic Pair 
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For infinitesimal motion 

Af( SJ)= k,C ti-) 

Blfi)= Bf(ti_) 

Pi($/)= Pt(~)+ Aft 

where t is the translation at prismatic pair. 

2.2.5. Helical Pair (Figure 7) 

/\ /\ 

22 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

The constraint on the motion of screws s 1 and s 2 is expressed by 

AfCf;) =At Cf2) 

Pt ct1) = Pt (tJ +Aft 
t = ~ ( G2. - {j 1) 

where t is the translation at the helical pair 

G2 and $1 are rotations of Screws 2 and 1 

Q 2 - ~ 1 is the rotation at the helical pair 

(2.35) 

(2.36) 

(2.37) 
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,,.. (}s,ce.) 

Figure 7. Two Rigid Bodies Connected Via a Helical Pair . 
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~ is the pitch of the helical pair. 

2.3. Ternary Link in Space 

A ternary link is a rigid body containing three elements of pairs. 

The pair axes are defined by their screw axes which are, in general., non-

parallel, nonintersecting lines in space. The direction of links and 

kinks .. are so chosen that the ternary link forms a closed loop. The 

ternary link has 12 parameters (3 link lengths, 3 kink lengths, 3 twist 

angles and 3 included angles, but only 6 of these are independent para-

meters). 

Two link lengths, 2 twist angles, an included angle and included 

kink length are chosen here as independent parameters. Note that loop 

closure equations may be written traversing two sides of the ternary link. 

Figure 8 shows a ternary link where one of the joints is connected to 

link ak. Let two sides of ternary link meeting at this joint be ak-l 

and ak.+1' et be the included angle between ak-1 and ak.+1' 

kink at this joint. Let the rotation of ak-l relative to 

S be the 
cl 

ak be Sand 

kink along· pair axis be S r 
p 

:then~ rotation and translation parameters for 

side ak.+l are (180° + S+ $ ) and (S + S ) • t c1 p 

2.4. Loop Closure Equations 

The loop closure equations of a mechanism are derived using the 

following: 

1. The mechanism is separated at some convenient pair or pairs such 

that the mechanism is divided·· into ,open .loop kinematic chains. The operi 

loop chains are then unfolded such that a 11 perpendi_cu1:1~:i:-~-- ~o _ tl:le P.!ir 

axes lie along a line. This is possible only if the kink links at the 
• •'-'-"-"'" • • • ' • ~" "•""••• ""'•-••c"" •v- '-< ~· 
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---$---

Figure s. A Ternary Link in Space 
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pairs are reduced to zero, and the angle between the links is also zero. 

Note that the link lengths and offset distances have directional 

sense of the loop and form a continuous directed polygon in space. Twist 

angles,o(. 1 s, are angles between the adjacent pair axes measured in 
1 

positive screw sense about directed link lengths, while rotation angles 

at pairs are angles between the adjacent links measured in positive 

screw sense about the directed offset distance common to the links. 

Throughout this work, this convention is followed to bring uniformity. 

Figure 9 shows a RCCC mechanism. A is a revolute pair; B, c, and D 

are three cylinder pairs. Unit vectors parallel to the pair axes at 
.... 

pairs A, B, C and D are denoted by A, B, C, and DJ P'Q, ;Q'R, R1 T artd T 1 P 

are perpendiculars between pair axes at A and B, B and C, C and D, and D 

and A. Note also that these are equal to link lengths a 1 , a 2 , a3 and a4 

respectively. Note from Figure 9 that PP 1 , QQ', RR' and TT' denote the 

kink lengths at the pairs and are denoted by sl, s2, s3 and s4. 

The mechanism is separated into two open loop chains by separating 

two elements of the cylinder pair located at C. ABC1 and nc2 become two 

open loop chains, where c1 and c2 are two elements of the pair at C. Now 

let the offset distances or kink lengths in the chains go to zero, i.e., 
' 

let Q and Q1 , P and P 1 coincide in the chain ABC 1 , and T and T 1 , Rand R' 

coincide in chain nc2 • Let the rotation angles at the pairs go to zero. 

In such a position all links are along a straight line as shown in Figure 

10. In Figure 10, the mechanism has been unfolded along the Y axis. Let 

the rotation angles at pairs A, B, C, D be $.1 , (} 2 , $ 3 and $ 4 , and let the 

twist angles between the pair axes beo(1,o(2, o(3 , o(4 • Then in the un­

folded positions of chain sl = s2 = s3 = s4 =8-1 =&2 = ~ = $4 = o, and 

the vectors pointing in the direction of the pair axes and vect;~si(:::R'1 ), 
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Figure 10. Unfolded Positions of the Chains Obtained From Race Mechanism 

I\.:) 

00 



29 

P(=P'), Q(=Q'r) and T(='Ir) are related to the twist angles and the link 

lengths by the following: 

A= T - ~ _....,.. 
B wo< 1 -L + ~o(1 !'<. 

-;--=, 
C1 = WC~1+o<2)c+~ (o(1+o<2) ~ 

5 = 6nCo<L/-)Z- ~(°"4)~ 
- ~ ' ~ C.2 = Ca.s ( ~ +~L+) c -~ (_o(.3 +o< L.~) ~ 

R, 

T 

-R = 1.. 

c Cl1 + °':l. +a.4) r 
(Cl1+a:i +a3+a..'+) r 

2. The mechanism is next re-assembled by applying appropriate but 

often unknown pair motions. These pair motions, in general, may be con-

sidered as screw motions at the pairs. Since mechanism link lengths 

and offset distances have a directed sense, we note that 91 s are measured 

in the opposite sense to the screw displacements for pairs left of the 

fixed link, while screw displacements at pairs are in the positive sense 

for the pairs to the right of the fixed link. This maintains a proper 

notation throughout. The pair motions at the input pair are known while 
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pair motion at other pairs are required to be computed to conduct dis-

placement analysis. 

For example, for the chain shown in Figure 10, the final position 

- "' of c1 and R1 is obtained by screwing c1 and R1 about screw B (screw axis 

direction - B, screw axis passing through Q, rotation92 and translation 
/\ 

s2) and then about A (screw axis direction - A, screw axis passing through 

P, rotation angle &1 and constant slide s1). Note that screw axis direc­

tion has been reversed because S1 s are measured in the opposite sense to 

the screw displacements. The final position of the C pair may also be 

/\ 
located by screwing c2 and R2 about D (screw axis direction n, screw 

axis passing through T, rotation fi4 and translation s4). 

3. The final position of the pair thus obtained from the successive 

screw displacements in the kinematic chain is constrained by the pair , 

constraints. 

For example, using the constraint condition from Equations (2.25) 

and (2.26) for the final positions of c1 , c2 , R1 , R2 , we obtain 

(c1) final position from chain ABC1 = (c2) final position from chain oc2 

(2.38) 

(R1) final position from chain ABC1 = (R2) final position from chain oc2 

(2.39) 

4. The equations obtained in Step 3 are loop closure equations. 

All unwanted variables are eliminated to obtain one equation in one un-

known which is usually in polynomial form. 

5. The equations obtained in Step 4 are rearranged so that other 

parameters may be computed in closed form. Note that since the mecha-
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nism loop has directional sense, the screws in the left side of the fixed 

link are negative screw displacements, while those on the right side of 

the fixed link are positive screw displacements. 

6. Once all the variables of screws at pairs have been computed 

for a value of input screw, the displaced position of any link of the 

mechanism may be computed by locating the displaced ·position of the pairs 

and links. 

7. For velocity and acceleration analysis, the velocity and ac­

celerations of the pairs are obtained from two sides in the jth position. 

The infinitesimal pair constraints are then used to obtain velocity and 

acceleration analysis equations. In general, these equations are linear 

in unknown rotation velocities, translational or sliding velocities, 

rotational acceleration and translational accelerations. 

Four operators ~l' .62, .03 , and D.4 are defined. These will help make 

analysis equations more compact. ~l gives the final position of a unit 

vector c when it is rotated about axis B by angle eB 

where the right hand side is defined in Equation (2.1). 

L::.. 2 provides the final position of a unit vector C when it is suc­

cessively rotated about B by ~and A byc9A. 

where the.right hand side is defined in Equation (2.10)o 

~ 3 gives the final position of a vector to a point (Q) when it is 

" -screwed by screw B (unit vector B, passing through P, rotation &B and 

translation SB). 
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where the right hand side is defined in Equation (2.4). 

~ 4 provides the final position of a vector (Q) to a point Q when it 

I\ -
is successively screwed by screws B (Unit vector B, passing through P, 

A 
rotation9B' and translation SB) and A (unit vector A, passing through O, 

rotations~A and translation SA). 

(CQ)ft-h°'~ =.A4 (Q) P) 0 ,BJ A ,$B/:tAJSB>S.t)) 

where the right hand side is defined in Equation (2.11). 

In the next chapter examples of five spatial, two-loop mechanisms 

using the method described here are presented. 



CHAPTER III 

APPLICATION TO MECHANISM ANALYSIS 

In this chapter, the general method developed in Chapter II is used 

to conduct displacement, velocity and acceleration analysis of five types 

of two-loop, six-link mechanisms. 

3.1. Analysis of RCSR-CSR Mechanism 

Figure 11 shows a Stephenson-3; fixed pivot RCSR-CSR space mechanism. 

A, D and G are three revolute pairs. One element of each of these pairs 

is fixed to the ground. Moving pairs B and E are cylindrical pairs. 

Spherical pairs are located at points C and F. The directional sense of 

the loop is shown in Figure 11. Unit vectors parallel to the pair axes 

at pairs A, B, D, E and G are denoted by A, B, D, E and G respectively. 

The mechanism shown in Figure 11 has two independent directed loops 

ABCD and ABEFGo In loop ABCD, a 1 is the link length between the pair 

axes at A and B; a 2 is the perepndicular distance from the spherical point 

Q on the pair axes at B; a3 is the perpendicular distance from the spheric 

point Q on the pair axes at D• 
' a4 is the link length between the pair axes 

A and D. s1 is the offset distance at the revolute pair at A and is 

constant; s2 is the offset distance at the cylinder pair located at B; s4 

is the offset distance at the revolute pair at D and is constant. Note 

that the directions of link lengths a 1 , a 2 , a3 , a4 and offset distances 

sl, s2 and s4 are so chosen that a continuous, directed, space polygon is 

33 
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Figure 11. Six-Link Spatial RSCR-CSR Mechanism 
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formed. Twist angles are measured between adjacent pair axes in right 

hand screw sense about directed link lengths. In loop ABCD,o(1 is the 

twist angle between the pair axes at Band A;o<4 between the pair axes at 

A and D. Rotation&1 is the angle between links a 1 and a4 measured in 

positive screw about the directed offset distance s1• Simila~ly, $2 is 

the angle between links a 1 and a 2 , measured in positive sense about the 

directed offset s2 ; $4 is the angle between a3 and a4 , measured about off­

set s4 • In loop ABEFG, aS is the link length between the pair axes at B 

and E; a 6 is the perpendicular distance from the spheric point U to the 

axis at E; a 7 is the perpendicular distance from the spheric point U on 

the axis at pair G; a 8 is the link length between the pair axes at A and 

G. SS and s7 are the offset distances at pairs at E and G. o<'S ando(8 

are the twist angles between the pair axes at B and E, and the axes at A 

and G. 6) S and $8 denote the rotation angles between links aS and a 6 and 

a 7 and a 8 measured in positive sense about offset distances SS and s8 • 

Due to ternary links ADG and BCE, the rotation angles and off set distance 

at the revolute pair at A and the cylinder pair at B in loop ABEFG are 

different from those of ABCD. For loop ABEFG, the rotations at pair A 

and B are$ +Ge and 6) 2 +Sc respectively and the offset distances are 
1 1 2 

s1 + S and s2 + S • Note & , S , 6: and S are ternary link para-
cl c2 cl cl c2 .. c2 

meters and 

9 c =et + 1800 
1 1 

where f} and$ are the included angles of the ternary link with as 
tl t2 

and a 8 reversed. Similarly, S and S are kinks of the ternary link at 
cl c2 
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A and B pairs. 

The mechanism is separated into four open loop chains by dividing 

it at two spherical pairs located at C and F. The open loop chains are 

unfolded along a straight line such that all the links are collinear 

pointing in one direction. At this position, the rotation angles be-

tween the links and also kinks at the pairs are zero. 

Unfolded chains are shown. in Figures 12 and 13. Following vectors 

are defined from Figures 12 and 13. 

Vectors parallel to the pair axes are: 

(3.1) 

(3.2) 

-D (3.4) 

(3.5) 

Vectors locating the pair axes in space are: 

u..\ = 0 (3.6) 

(3.7) 

(3. 8) 



z 

x 

D 

Figure 12. Unfolded Position of First-Loop of RSGR-GSR Mechanism 
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0 

Q,= (Q5 +o.~-a..i.) r 
w = (0...1 + Ct5" +Cl£,+Clg) r 
Ui.:: (Cl1 + 4-s- + ClG + °-7 + a.g) f 
R = (a_I + 0.4-+a.s-+a.G) r 
Q:L= (a..1+Qs-+ctG+a..4+a.3) 
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(3. 9) 

(3 .10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

We first analyze the loop ABCD. The final position of Q1 may be 

" /'-obtained by screwing it about B and then about A. These screws are 

/\ 
negative screws. Screw B consists of rotations $ 2 and translation s2 ; 

/\ 
screw A consists of rotation $.1 and translation s1 • The final position 

/\ 
of spheric pair Q may also be obtained by screwing Q2 about D. This 

screw consists of rotation$ 4 and translation s4 • The final position of 

Q obtained from two sides is then equated. Let subscript j denote this 

displaced position. 

where 

G.1j = rn1 [C q,~o)-f (Q,;-O)·A} A] 

S9r [A >< ( G( ( -O)] + O 

+ { ( G:(- o) ·A 1 A-A S1 1 (3.15) 

~ = CQ:t[C~1-P)-f (Q1-P)·13}BJ-8S2 

+P- SQ2 [B x(Q 1-P)J+{(Q1-P)·BJB 
(3.16) 
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and also, 

Q.2f = CQ4[(Q:i:-R)-t (Q_2--R)· iS} D] 

+ SQ4[Dx(Q~R)]+R+DS4-

+ { ( q2- R)·D] D (3.11) 

Now equating the final position of spheric pair Q obtained from two 
1 

chains, that is, 

we get 

where 

(3.18) 

N1 = C91 [Ti -(fi· A)A]-S81(AXI1)+(fj·A)A 

N 2 = CQ,[f 2-(I~ A)Aj-SG1 (AXi~+(I2A)A 

N3 = C..91[I3-~13·A)A]-SD1(AxL3)+ 

+ o - A S 1 + ~~· A) A 

I1 ==- (~I - P) - t ( 01 - P). B 1 B 

I2=- - B x(QcP) 

T3 = { (Q1-p).B]i3 +P-o 

Bf= c.G1 [ B-@· A) AJ - SG1 (AX B) +(.l3·A)A 



Ji= D x ( Oi.- R ) 

J3 =- { ( Q2-R) D ~ D +R +DS4 

Dotting Equation (3.19) with (N1 x Bj) and (N2 x Bj) we get two 

equations expressing c$2 and S62 as follows. 

Squaring Equations (3.20) and (3.21) and using the identity 

c2$2 + s2e2 = 1, we get 
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0. 22a:) 

where 

P 2 2 A 2 B 2 4::::..A-1+B 1-2A1A3-2B,B3+1+ 3+ 3 

P~ =-4A1A2.-4 B1 B2 +4A2A3+4B#3 
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P2 == '-/-(A{+B~) +2(A324-B32)-2CA~B?]-2 
P1 :=. 4 ( Al A 2 + BI B .2.) + 4 (A2A 3 + B;}. 8>3) 

Po-= A12 + B( + 2 (A1 A~f B1 B3) t A32 +B32:.1 

A1 = ( N2X BJ-} fi/c N:if-B·f). N1 o.zzhJ 

A2. =- (N2x Bf)· r2-/ c Ni.xBi). N1 

A3 =- (N2X Bf} 13 I ( N2X Bf)' N1 

B, = (N, XBt)·Ji I ( N1 x Bf)·N2 

Bi_= (N, x Bp· T)./ ( N, )( B>f} N2 

b3= (N 1 Y-- Bf)· r"2) ( 1"-11 x Bf)· N2 

From Equation (3.22) we may obtain at most four real roots of $4 ; 

for each real root of$ 4 , $ 2 may be obtained using Equations (3. 20) and 

(3.21). s2 may then be expressed using Equation (3.19) as 

52 = C9Lj- ( T1 • Bf) + S&4 (Ti.· Bf) +(!3· B~ 

-{fr~Ba)- ,_C92.(N 1• Bf) -- S&2(NiBf) (3.23) 

The position of the spherical pair is computed using Equation (3.15) 

or Equation (3.17). 
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Nnte that u1, T', Ej and Gj are functions of known quantities and 

are described below. 

u,1 = (9 I [ ( r;;z(!... 0) - {cu((_ i5). A 1 A] 

- se, [Ax ( it(Lo)J + o - A" s, 
+ {( i{(~c)·A]A 

u;1: c. C92+Gc,_)[('Q",-p)-f ( u,-P)·B1B 
- 5(&). + Bc.J.) [Bx (il1-P)] + P-B(Si+~ 

+ f ( il1-P)· B 1 B 
~ I . 
T::. cs,[ci=~o)-f (f~O)·A~A]-AS't 

-ss, [Ax( :;=~o)J +t c =;=~c)Af A+o 

-u -
T = C csl-+9ci)~f-p)-l(f-P)'B~B 

- s (Gi_ + &c~) l B x ( T-p) J + p 

+ { ( T- i5) · e; 1 B - B c si + s,.) 

. E1==ce,[~~(E~A)A]-se,<A><E) 
+ (E~ A)A 

E1 = ((~i.t&,:i.) [_~-(E· BJB] +(£· B)B 

- s c~2. +~c.2.) [Bx E] 
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This completes the displacement analysis of loop ABCD. Next the 

loop ABEFG is analyzed. The final position of U is obtained by screwing 

- /\ - - " u1successively by screw E (parallel to E, passing through T, rotationo 5, 

/\ - -
translation s5), screw B (parallel to B, passing throughP, rotation 

e2 + 9 , translation s2 + s ) , 
c2 c2 

screw~ (parallel to A, passing through 

o, rotation & 1' translation sl). The final position of U may also be 

I\ -
obtained by screwing u2 successively by screw G (parallel to G, passing 

through W, rotation 87, translation s 7) and screw ~ (parallel to A, 
rotation& , translation S ). Note that screws for the left hand side 

cl cl 

of the fixed link are negative screws. Equating the two final positions 

of the second spheric pair, that is, 

we obtain 

CGs[C u/-T 1)-t ( 'Ci:(-T). Ef 1 Ef J 
-SG-s [ Ef x ( "IA(-T ')] + £ C vi- r'>-Et] Ef 

-I -
+T- Ef Ss-

CEl7 lriX: c;\/) - ~ C 'U ~ - W) · 6f1 Gf] 

+ ~G7 [ Gf x ( v~-w')] 
+ w / + G f ~?+ { (1.tiw) · ~f}l1j 

(3. 24) 



u{= CGc1 [Cru~o)-l(il2.-0)·A1AJ 
+ S(jc..1 [Ax (--u)..-o)] +A :;c..1 

+ {Cil2--6)·AiA 
Equation (3.24) may be written as 
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(3.25) 

- - - - -where definitions of vectors 1 1 1 , 1 1 2 , 1 1 3 , J 1 1 , J• 2 , and J• 3 follow from 

Equation (3.24) and these are functions of known quantities. 

Eliminating S~ and c&5 from Equation (3.25) by dotting Equation 

(3.25) by iv 1 x Ej and 11 2 x Ej , we get 

(3. 26) 

and similarly 

(~ 1xEj)· C1/ce7+T;SB1+f/-r~) 
( r( x El). r; o.21> 

or 

where definitions of c1 , c2 , c3 , D1 , D2, and n3 follow from Equations 



(3.26) and (3.27). Squaring Equations (3.26) and (3.27) and using the 

identity c2$5 + s2e5 = 1, we obtain 

4- . 
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~ ~~ t~V2G1 
C=O 

(3. 28) 

where Zi 's are known functions of c 1~ c2, c3 , n1 , n2 , and D~. z. 
l. 

may be obtained from Equation (3.22a) by replacing P. by z., A's by C's 
l. l. 

and B' s by D' s. 

There are at most four values of(j. 7 from Equation (3.28) and for each 

value of(} 7, 9 5 may be computed using Equations (3.26) and (3.27). s5 is 

expressed as 

Ss =[r/c~s-+r~sG-s- +If]· Ej 

[Ii 'C1t7 + r;se7 + 1_3'Jft (3.29) 

This completes the displacement analysis of RSCR-CSR mechanism. 

Loop ABCD has four loop closures and for each closure of loop 1, there 

are four closures for loop 2. Hence, for each position of the input link, 

there are sixteen positions of other links. 

The position of any point or line, on any link can be computed by 

screwing it in the unfolded position about the screws intercepted be-

tween that link and the fixed link. Note that after performing the 

displacem~pt analysis, screws at all the pairs are known. To perform 

velocity and acceleration analysis, positions of all the links and pairs 

are computed using known successive screw displacements. Let this posi-

tion be denoted by subscript j. Consider the loop AB.Q.D. The velocity 
J J 



of Q. may be found by providing infinitesimal screw displacement to Q 
J 
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" /\. about B. and A .• The velocity of Q. may also be found by screwing Q. by 
J J J J 

A 
infinitesimal screw about D. Equating the velocities obtained from these 

two methods, 

Q:j ~AX ( G_f-Oj) W1 + ~j: X (Qj-Pj) tN2 

+ Bt Si_ 

D x (Q.j-R) WLJ. (3.30) 

LetW~ be the input velocity which is known. Vector Equation (3.30) con­

tains three unknownsw2,vJ4 and s2 • These may be computed from three 

linear equations obtained from vector Equation (3.30). 

Other velocities in loop ABCD are, 

Pf= -AX(Pf-O)W1-BjS1-
Acceleration analysis of loop 1 is performed by differentiating 

Equation (3.30) to get, 

.. 
(Qf =A x.C&f) ~1 + ~f X(Qf-P~~ ~;i_. 

+ Bj )"., ( Q f- pi) W;i_ + BjS)._+ BJ 5:i_ 

--

+ Bj X(O-j-Pf)Wi 

Dx(~}-R)vJLf 

-5~~fvJ4 
' ' ... 

(3.31) 

whereW 2 andW4 are angular accelerations at pairs B and D, s2 is trans-
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lational acceleration at pair B. These appear as unknowns in vector 

Equation (3.31) and may be computed from the three linear equations ob-

tained from Equation (3.31). 

The procedure for performing velocity and acceleration analysis of 

the second loop is similar. The velocity of the second spheric pair 

denoted by U. is found by providing infinitesimal motions of chains 
J 

AB.E.U. and ADW.U .• 
J J J J J 

These two velocities are equated to obtain 

A x c 1Af -o) w1+Wi3f x (uf-Pf) 

+ E})( ( Vf-Tt) uJ5 

+ 8'f 52. t Ef Ss-
=- - ~t y._ ( Uj- Wf) w7 

(3.32) 

W:5' s5 and W., are computed using the three linear equations obtained from 

vector Equation (3.32). 

Differentiating Equation (3.32) to perform acceleration analysis, 

. . 

-'Uf == A'/-. (up w1 + Btf- (u.j-Pf~w2 

+ ~f X(.Uf-Pf)w2+EjS~+Ej,55 
+ Ef. X ( Uf-T f )Ws + EfJ<. (Uf-Tf )ws 

+ Ep<C itf-Tf) Ws +BJ Si+BiS~ 
. . 

+ BfX(Vf-P~)w2 

=-Gf x1A.pN7 -0rGJi..C"Xj--Wf)o.33J 
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A 1-( Tj,-0) ~I+ Bj X (Ti-PJ)lfi2 

+ Bj S2 + Ej Ss 

w5, s5 andr.-J 7 are computed using the three linear equations obtained from 

Vector Equation (3.33). 

Now the velocity and acceleration of any point or line on any 

coupler link can be computed since instantaneous screws at all the pairs 

are known. Table I presents a numerical example of displacement analysis 

of a RSCR-CSR mechanism. 

3.2. Analysis of RSCR-CCC Mechanism 

Figure 14 shows a Stephenson-3 fixed pivot type RSCR-CCC mechanism. 

This mechanism is obtained by replacing in Figure 11 the spherical pair 

at F by a cylinder pair and the revolute pair at G by a cylinder pair. 

The nomenclature of Figure 11 is retained here. Additional parameters 

necessary to specify the mechanism areo(6 , the twist angle between the 

axes at pairs E and F, measured in positive sense about link a6 ;~7 , the 

twist angle between the axes at pairs F and G, measured in positive sense 

about length a 7 ; s6 and s 7 variable offset distances at the cylinder 

pairs at F and G, measured in positive sense to close the directed loop. 

Since the loop ABCD of Figure 14 and Figure 11 are the same, the 

analysis of the two is the same. Note that the analysis of loop ABCD is 

performed independent of loop ABEFG. Loop ABEFG is analyzed by separating 

the two elements of the cylinder pair located at F, thus dividing the 



TABLE I 

ANALYSIS OF RSCR-CSR MECHANISM 

Parameters of the mechanism are: 

o< _ 30 ° o< _ LJ.r/ &?('I- c 15° o<s s: 2.6 •, o<, = so"/84 =-1'~ ~sc.i.=0· 1 
I - I .2. - , .I - 1· 3 c:t4' -

S,=0.1, S4=-0.JS9:::.0·tJ/_, 0..,=t·O.J Cli- f·S".:1~.3- 0 ~ __ -_
0·i 

a..5:.1·2.Ja_,=eJ·B_,a.7::.0·'S';O..B=tJ·t:f~ Bc1- -10.1 SG,- o If. 
One of the 16 solutions is shown below: 

e1 ()2 !h-1 Bs B1 s2- Ss-
I .Z O 68 · 11 I 21. 6.3f S". 642 51·1..3 -·Cft;z. . 24 1 

I 3 D 5""!J·Cf52 20·010 J5·S-f./.6 43·87 -·B81 . 2. 0 2 

140 4/ ·80 f /6·552 I 7 · 9 84 .35"·9'6' - · 7S3 · I 63 

ISO 30·893 12·302 I g · f 02- :;._ 7. 76 -·602 · I 3 I 

160 l0·?31 7 ·563 Jft·0Cf8' /Cf·/Cf - . '+4 f . f 03 

170 11·1'12 2·36'+ 19·477 9. 9 / - . 2. 64 . 071 

1 so - 0. 7 2.5 -o ·685" 2..'6 . .3 7 6 0. 2/ - . o95" . 02/f 

1 o/O -8. 852 -7. 056 41 ·Lf I 4 -{ 3 . 6lf . 096 . 0 2. J 

1-20 -3'8·83( -2. f · SSS" -SS"·S2-I -lf. 70 ·572 ·204 

230 -50·2.78 - ~s. Lf-9 * -47'08& -13·~3 · 7 J I . 206 

2.40 -63·196 -.2..B·L/-.32 -.36·q17 -.l./·S/ · go2 . 2.1 s 
2SO -tg/ ·196 - 2..~. 030 - I 2-· 'i/S6 -2.~. 39 · 8 I I . 2./f I Vl 

0 
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Figure 14. Six-Link, Spatial RCSR-CCC Mechanism 
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mechanism into two open loop chains ABEF1 and AGF2• The two chains are 

then unfolded along a straight line as described in Chapter II. The 

unfolded position of kinematic chains is shown in Figure 15. 

The following vectors for Figure 15, in addition to those defined by 

Equations (3.1) - (3.14), are defined. 

F1 C(f.) (o<,+o\s-+°"~)t+~~ (o<1+o{s-+o<." )k 

F "2- - LD1 ( o< 7 + o\ 8 ) ( - ~Vvv ( d. 7 + ol. ~ ) ~ 

The final position of the axis at F via successive screw displace-

ments of chain ABEF1 and also via chain AGF2 is located. Since F is a 

cylinder pair, we use the pair constraint Equations (2.25) and (2.26) of 

Chapter II. 

The final position of the direction of axes F1 and F2 obtained from 

two chains are 

where 

F/ =- 62 ( F1 ) - B > - A , 191.. + Qc.2) 91) 

t; 1 = A2 ( /;.) - Bj-A, e2..+ Gc..2..) 91) 

-1 
F2:::. 
-I 
G= 

~I ( S) A, 8c1) 

~ I ( G? A ' Gc..1) 



z 

x 

Figure 15. Unfolded Position of Second Loop of RSCR-GCG Mechanism 

y 

"'-, 

lJ1 
l..V 
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Note that F 1 1, E1 , F 1 2 and G' are functions of known screws. Equating 

the two final positions we get 

I 1 C()s- + I 2 S95" + I3 

Jj CQ.7 +Tl. SG7 + ~ (3.37) 

where definitions of 11 , 12, 13 , J 1, J 2 and J 3 follow from Equations 

(3.35) and (3.36) and are functions of known quantities. 

Vector Equation (3.37) provides three equations, but only two of 

them are independent. Eliminating B5 from Equation (3.37), we obtain 

where 

>< 1 = (r1 x f2)- C Ji-T5 + I3) 

'Yi -= :;;._ (Ii X Ii} "T2. 

~1=- (I:1XI2).(:Jj+T3-I3) 
Equation (3.38) provides a maximum of two solutions of 8 7• For 

each value ofG 7 obtained from Equation (3.38), () 5 is calculated from 

Equation (3.35). Since the rotations of screws at joints E and G are 

now known, the final position of F and G may be computed. Let this be 

.th iC:\. the J position. IJ 6 is calculated using 

I Ej. )( Ff I I F} >«:~i I 

l ( EfXfj) >< (FjXGf) I 

To calculate the variable kinks at joints E, F and G, the final 

position of point u2 is located by providing successive screw displace-
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ments to chains ABEU1 and AGU2 • Using the pair constraint Equation (2.25) 

or 

where 

and 

(3.41) 

64 (u(, P) o ;-B;A )Fh+ 9c2-) e,) 5.l. +sc...2..)s,) 

- 64 ( u 2.J w J o ) G=, A ) 97 ) &c. 1 ) o ) sc..1) 

s5 , s6 and s7 are computed using linear equations obtained from 

vector Equation (3.41). 

There are two solutions of loop ABEFG for each solution of loop ABCD. 

Hence, there are a maximum of eight solutions for each value of the input 

link. Since the screws at the joints are now known, the displaced posi-

tion of the mechanism may be found. Let this position be denoted by the 

subscript j. Velocity and acceleration analysis of loop ABEFG is per-

formed here. Equating the velocity of F. obtained from two sides, we 
J 

obtain 

tj- = [AW1 + Bj Wi. + Ef tNS-] x Fi 

- ( Gf x Fj) w7 
(3 .42) 
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from which we find 

Gf ·(Ax Fj.) w1 + Gf· ( BjxFf)w2 
Gf· ( Ejx F/) (3.43) 

w __ CAXFf-).fjw1+CB/XF/)·Ej-w2 
7- v u ~ (3.44) 

Ej· (G/ X Fj) 
A similar expression may be derived for computingtJ6 by equating the 

-velocity of E from two sides. To obtain the sliding velocities at pairs 

E, F and G, the pair constraint Equation (2.28) is used on vector U,, 
J 

thus, 

V..j, = Ax. ( -Uf-o)w 1 + Bf x(uj-Ppw2 

+ Ef 'l..(Uj-Tf)Ws + Bj-52 + Ej-Ss 

= - Gf '1( U.f-wpwrGfSr7S~3.4s) 
Equation (3.45) provides three linear equations to be solved in unknowns 

Expressions for computing angular acceleration at joints E and G 

are obtained by differentiating Equation (3.42). 

[Aw 1 + B! w2- + 'Bj- c'.o2 + ~~ w5+ E-j 05jx Fj 

+[A w1 + Bjw2. + Ef uJ5"] x Fj 
.,,, 

= -( Gj X Fj-) lA>7 - ( GJ X Fj-) W7 (3.46l 
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Angular accelerationsw 5 andw7 are computed using two independent equa­

tions from Equation (3.46). Similar analysis at E pair yields the 

expression forVJ6• 

An expression for calculating sliding velocities at E, F, and G is 

obtained by differentiating Equation (3.45), thus we find, 

. . 

A x Gtf vJ1 + BJ x ( Uf- Pt) w 2. 

+Bf x( 0cf-f>pv:;2-+ BjX( f1j-Pj)V:l2 

+ Ej x (CT.f-TJ) w5+ E-J-X( Vcj-Tpws 

+ Ej- x c Uj-Tp vJs-+ Bt S:i_ + B-J- s~ 

+ Ef SS- + Ej Ss 

- Gf X ( lIJ) w7 - Gj X (l.Af- WJ)w7 

Gj s7- Ff $6- Ft$6 (3.47) 

. . .~ 

Translational accelerations s5, s6 and s 7 are obtained from three linear 

equations obtained from Equation (3.47). Table II presents displacement 

analysis of an RSCR-CCC mechanism. 

3.3. Kinematic Analysis of RCSR-PSC 

Space Mechanism 

Figure 16 shows a Watt's-2 fixed pivot type RCSR-PSC mechanism. 

Revolute pairs are located at A and D, cylinder pairs at B and E, spher-

ical pairs at C and F, a prismatic pair at G. Note that loop ABCD of 

Figure 11 is the same as loop ABCD of Figure 16. Additional parameters 



TABLE II 

ANALYSIS OF RSCR-CCC MECHANISM 

Constant ~arameters of the mechanism are: 

ag:O.Cf ,&c.r= -/o 0, Sc..1 = -0· 2 2,, 8c.i.= IS"~ Sci= O· f 1~o<1=10°, ot1.r= -30°.,of.'5=-L/o 01 cXr, = if.S- 0 . 

d. 7 :::; 50~o(g::: SS~ SJ= O· f, _S4 =0) a,= I· 0) Cl.i = f ·8 1a.,!,=2 ·O ,aif :O·i .)a..>=O· '1JCl.6:: (. f_,4.7::::. f·.2. 
One of the 8 possible solutions is shown below: 

8t Bi. (}4 Bs B7 s2. Ss s" S7 ·-•:' 

1()0 77·3Lf8 48· 3 76 I I 4 · 8 S'S -1.37·'f3S' 0 . 2.2. 2.. 1·1S'6 -O·l'fl - ( · 6B'f 

f ( 0 6.3. 9 3 8 f./.6. 607 12.8· 770 - I 48 · Sii 0. 2.q i ( . 5Lf2. -o. 3.3 8 -2. 070 

120 SJ·3S.3 42.·006 f3S·C//0 - I S3 · L/- 78 o.2qs 2· 306 -o. qq 2 -2·7.3/ 

f 30 4.3 . 7''f 36. 2.l'I r4l·04.3 - JS6 ·S88 0·26 7 3 ·4.37 -o· 66 f -3· 70 f 

f 4-0 34 ·~'ii i...q · 66S f 1-fS· 1 so -1~8·(.S'~ 0·2J{, 5" /30 - 0. f/7 2. -S· I' 7 

1 so ~S· g6b 22·SSO f 48· 337 - I ~'1 · 761.f 0· / 48 7· 874 - f. f</3 -7·57'1 

(60 t 1·2.0'6 I~· O/S- fL.Jq.g2Lf - / S"''J. 2.0 6. 0 ·Of> 7 .f2.·89'+ - 1. 788 - 12 · OS6 

I 70 8'·,SO 7·/f// 1if-5"60 f./. dS3 ·.J2.7 -(). 0.2.2. L/ · 763 -2.. '/ .33 -JC/·C/81 

(so -..l · BS3 J....· 7 II fSC/·.3/6 -163-4$2- 0. 1)38 4.S-. '183 -S·Sllf -L/-2·3'+1 

{90 - 8.· Lr'!'+ -8·6.37 q 2. 9'1-2 - f 0 1. 770 -0-207 S·L/-77 -1.qs2 -3.g70 

2.00 -17·02.'l ~/6·/f7'1 6q· 2..C/S' -7CJ·'11o -0. 2C/6 O·OSq - ( . 41 2. f . '-/33 

2.10 -:J..S· ,3~ -2..4. 02.8 S'+ · 602. -i>7· 1()(, -0·377 - t . .3 73 -f· 12C/ 2.. 'f 2..6 

220 -3/f·.372. -3 I · 180 4S·8si. -60. f 32. -0· 44-4 -1.1n11 -O·'fl,6 3 · I 71 

230 -lf3 ·.3 L/2 -37·800 4-t · oo I -S-6 ·BL/-o -0· 4'fLf - f. 2.02 -o·8S2. 3·02./ 

2.1/-0 -S.2. · 71.f.S" -43·709 39·/f?j -S6· 12..0 - O· S2.3 -0· gi.3 -o.7sq. 2.· 7~2. 

2..SO _,3.008 -48 · S63 40. (,.69 -57· 7SC/ -0. S'2../ -O·'l-73 -0·6~.3 i -4rt 
2.60 -7S·t/-76 -Sl·2./6 4g. 706 - 6.3 · ifS'I - O· if6' -0·2...3' -o ·S.3 2 .1.. • I 1/-[/. 

I.JI 
00 
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F 

Figure 16. Six-Link Spatial RCSR-PSC Mechanism 
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to specify the mechanism are, a 6 , link length between pair axes at A and 

G; SS' offset distance at pair E; s6 , offset distance at pair G. Note 

that the link lengths and offset distances are so directed that they form 

a closed directed loop. The twist angleo(S between the axes at E and B 

is measured in positive sense about link as' whileo(6 between the axes at 

A and G is measured in positive sense about link a 6 • $ S is the rotation 

angle between links as and a 8, measured in positive sense about SS. The 

rotation angle and off set distance between links a 1 and as differ from 

the rotation angle and offset distance between links a 1 and a 2 by a con-

Stant angle 8 and 
c2 

constant off set s where e and s are parameters 
c2 c2 c2 

of ternary links as described in Chapter II. Similarly, the rotation 

angles and offset distance between links a4 and a 1 differ by a constant 

angle fJ. and constant 
cl 

tween links a 6 and a 1, 

offset S 
cl 

where r1 
cl 

to the rotation angle and off set be-

and S are the included angle and off set 
cl 

of ternary link ABG at joint A. 

Loop ABCD is analyzed as shown in Section 3.1. To conduct the 

analysis of loop AGFED, the mechanism is div.ided into two open loop chains 

by separating two elements of the spherical pair located at F. The 

unfolded position of the two chains is shown in Figure 17. The following 

vectors are then defined from Figure 17. 

B 

Gt.= C-0-Jo\b I'+ ~o(G i? 
"ll1 ==- 0 



z 

x :r 
~ 

Figure 17. Unfolded Position of Second Loop of RSCR-PSC Mechanism 

y 

°' I-" 



l;\J ==-

0 

p 

~ 

°'-7 f 
(°'-b + Q7) r 
ca..1 + Ol6+°'-7) r 

T -==- Ca..1+as+Q..{,+°'-1)r 
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iI2. =- (a1 +as+a..~+°'-7+0g)f 
(3.48) 

Spheric pair at U is located using successive screw displacements of 

chains ABEU2 and AGU1 • Equating the two positions of the spheric pair, 

we obtain 

where 

C. Os-[('\_,(_~ -T1) - f ( 'Ui- T1). Ef ]Ef] 
+ SGs[EjX(-u~-T)J+EjS5 
+ T 1 + i ~ -v.:-T)· Ej}Ef 

==- -Gf S6 + <1-<..1 

(3 .49) 

~ == 64 ( 1Ai) ~ O> B_; A) 82.+&c.2) 91;.S'l.+~~).si) 

T 1 = 64 (T_) P; o) B; A; 622 +9c..2) &,)~i.+&.vSl) 

E/ = .6. 2 (E ) B _) A ) e)...+ e.c~) 9-1) 

G:f-:= A1 (Gt, -A) G1+Gc.1) 

1A.1 ==- 6. 3 ( LA..1 J o) - A , G1 + 9c.., ) ~c.,) 
I (3.so) 

Equation (3.49) may be written as 
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- - -where definitions of 11 , 12 and 13 follow from Equation (3.49) and are 

functions of known quantities. Eliminating SS and s6 from Equation (3.Sl), 

we get 

where 

X1 = ( EJ XG/) · CY31-r/) 

'(1 = ~ ( Ej X G.if) · ri_ 
~, = (EjxGj.). cr{+r() (3.S2) 

Equation (3. S2) provides at the most two values for{) s• For each value 

of 6;)S' SS and s6 are computed using 

S's-=- (~j-X n.{ II 1C(}5+-f~S85 +'E;)] 
I CG/ x 7.:). Ej I 

-Sb=o CEJY·f), { fi~~s+I:ses+.i;)] 
. I ( E/ x f)' Gj I 

The velocity analysis of loop AGUED is conducted by equating the 

velocity of the spheric pair at jth position from successive instantaneous 

screws .. from· two sides. 

BJ>< ( 1Xj-Pf) w1;+E-JX ( 1Xj-Tf)ws­
+ Ej_S~ 

Gj S6 (3.s3> 
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. . 
G-5' SS and s6 are computed using three linear equations obtained from 

vector Equation (3.S3). Differentiating Equation (3.S3) 

BJ x.(uf-Pf) w2.+ Bf x(Uj-Pf)w2 

+ Bj-X( 'tA.,J-PjJW2+ Ef x ( Vf-Tpws-
+ Ej-x(~f~Tj-)ws-+ EfX(1Af-Tf)~5 
+Ef s's- +Ej~s==-- GjS6-Gj-S6 

(3 .S4) 

Accelerations s6 , ~S and SS are calculated using Equation (3.S4). 

This completes the displacement, velocity and acceleration analyses 

of the mechanism. Finite and infinitesimal screw displacements at joints 

are thus known and position, velocity and acceleration of any point in 

the mechanism can be computed. Table III presents an example of analysis 

of a RSCR-PSC mechanism. 

3.4. Kinematic Analysis of 

HCCC-RSC Mechanism 

Figure 18 shows a Stephenson type HCCC-RSC mechanism. Input to the 

mechanism is provided via the helical pair located at A. B, C, D and G 

are cylinder pairs while E and F are revolute and spherical pairs 

respectively. The mechanism shown in Figure 18 has two independent 

directed loops ABCD and AEFGD. In loop ABCD, a1 is the link length be-

tween the pair axes at pairs A and B; a 2 is the link length between the 

pairs at B and C; a3 is the link length between the pairs at C and D; a4 

is the link length between the pairs at A and D. The offset distances at 

pairs A, B, C and D are denoted by s1 , s2, s3 and s4 • Note that the link 



TABLE III 

EXAMPLE ANALYSIS OF RSCR-PSC MECHANISM 

~he constant parameters of the mechanism are: 

Bc.z..:.15~ Sc.-4:.0·I, Sr=()·{, S~=O ,CX,=.:l.0°/~~ -.:z.s:olsi= -30°/ 

o<,c::.IS~ o_, = (). {,, <l.:z.. = t:>·8, a.~ =0·8, a1.1- .:.O · 5", ctS" =a. 4, Q.' ="·8, · 
a7 ::: 0.3" a.8 ::0.4 

One of the'8 solutions is shown below: 

91 9i 81+ {}5 Ss s~ Sa. 
130 6.3. '2q '8·3'' I/ 7 · 3S1 1·2.B7 -0·2.07 -1·002.. 

f 1/-0 48· 018 8· JJ2. 86·306 1·1s7 -0·2.Cf8 -0·87'1 
ISO 3S· 372. 5· 88'1. 65"· oq7 0. 'l'l-6 -O·Jl'I -0· 70f 

160 2'1· o6S 2.· 7S3 48·572- 0. 705" -o ·32..3 -o-sog 
170 I 'I. 0 7q -1·3.36 36. 2.~8 ". '1-7 3 -0·.33'1 -0·307 

180 -o.q2<> -0·86'1 2.7·5/q 0. /.32. -o. 31 'I -O· oBq 
1'/0 -'1· OJ/ . -6·4qS ~ 7 ·..39 3 -O·OIC/ -O·t/-.36 o ·I 14 
2.00 - IC/ • 2.1 2 - 10 · 304 . 3J . 71/-1 -0· I B.2. -0· S78 0 ·.J 18 
2..f 0 -30. 05.2. -13 .,'18 45. :J.I) '+ -o . .3JS" -0·7.38 O·S/Jf 

22.0 -41 · 7SI -16·612.. ~(·172. -O·'l-8'1 -O·iS7 o.&qs-
2.JO -Sl/-·8'f6 -18·7/D 8.3· 1q7 -0·6f6 - Q. C/8 2.. O· 8'1-7 
14-0 - 71 · '2.S4 -/f:f·716 I 20• 70J -0· '176 - 0 ·'103 o.qJB 

C\ 
V1 
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Figure 18. 
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lengths and offset distances are directed segments and form a closed 

directed polygon in space. o('1,o\2,o<3 ando(4 are the twist angles 

measured between the pair axes at A and B, B and c, C and D, D and A, in 

positive sense about links a 1 , a 2 , a3 and a4 • 

Angle 81 is measured at the axis of pair A, between links a 1 and a4 

in positive sense about offset s1 • Similarly, angles {72 , 193 , and e.4 are 

measured at the axes of pairs B, C and D, between links a 1 and a 2 , a 2 

and a3 , and a3 and a4 about offset distances s2 , s3 and s4 • Note that 

rotations$ 1 are related to offset distance by the pitch of the screw at 

the helical pair. In loop AEFGD, aS,o(S are the link length and twist 

angle between the pair axes at E and F;o<6 and a 6 are the twist angle and 

link length between the pair axes at D and G while a 7 and a 8 are perpen-

dicular distances from the spherical pair at F to the pair axes at G and 

E. The constant offset distance at the revolute pair at A, between links 

a4 and aS is s1 + S , where S is constant off set of ternary link ABE 
c1 c1 

at A pair. The offset distances at E and G pairs are SS and s6 and are 

measured between links as arid a 8, and a 6 and a 7 respectively. The offset 

distance at D, measured between a4 and a 6 is s4 + Scz where Scz is the 

offset of ternary link CDG at D pair. 

Similarly, the rotation angle between links a4 and as is$ + 8 , 
1 c 1 

where$ is the included angle of ternary link ABE at pair A; the rota­
c1 

tion angle between links a4 and a 6 is&-4 +& , where(). is the included 
cz cz 

angle of ternary link CDG at pair D;$S measures the angle between links 

as and a 8 whileSJ 6 measures the angle hetween links a 6 and a 7• Note that 

all rotation angles are measured in positive screw sense about cormnon 

offset distances which are directed segments in space. Loop ABCD is 

analyzed by separating the two elements of the cylinder pair located at 
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c, thus dividing loop ABCD into two open loop chains. Similarly, loop 

AEFGD is divided into two open loop chains by separating two elements of 

the spherical pair at F. The four chains thus obtained are unfolded 

along the Y axis as shown in Figures 19 and 20. 

The following vectors are defined in Figures 19 and 20. 

CX1 = o 
- ~ p =- o._2-f 
0 =(CL1 +a.;)f 
R -= (ct1 + ai +att) T 
Q2. =- (a..1 +a2. +Cl3 +Cl.4-) r 
iij =-(a..1 + Q2-Cl,5-Clg) r 
T =- (0...1 + Cl;i.. -ct_5) r 
- ~ 

W = (a..1 + ct:L +ai++°'-6) f 
'"U.2- =- (0<..1 +a2. + U\..lf +~,+Cl7) r 

~ 

A 
B 
C1 

D == 

-l 
(.- 7" ~ 
'-{)..Jo( I t + ~o<1 R 
Ur$(=~<, +~0 r + ~ co<1+o(J ~ 
cmo<4- r- ~ o< 4 }? 

C2 = ~(~+o(y.)7- ~(o{3+o<y.)~ 
- ~ ~ 
E = ~ o<'. s ~ + ~ o\5 k: 

0 =- errs c~4+°"-6) 7- ~ co<4+4J~ 

/\ I\ 
Screwing c1 and Q1 about B and A, we obtain the final position of 

the axis at joint C. The final position may also be obtained by screwing 
/\ 

c2 and Q2 about D. Using the pair constraint Equation (2.25) for the 

cylinder pair, 
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Figure 19. Unfolded Position of First Loop of HGGG-RSG Mechanism 
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Figure 20. Unfolded Position of Second Loop of HCCG-RSG Mechanism 
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where 
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c (/i_[ c 91 Li - se, L2- +L3 J +ce, ~ -se1 k2·H<3 

+ SGi[-C.91 Hi+ se,P12-~1 

=- IP1 Ct9t.t +IP2 Si94 +I.~ o.55) 

[I=- fi"-(Jj·A)A 

L2- -=- A x Ji 
G ~ (T1·A)A 

M1 -=- ~-(Ti A) A 
H.2- = Ax 7.i.. 
H3 =- (T;_ · A) A 
Jj =- Ci -(Cj· B)B 

J;. B x Ci 
J3 =- (Cl' B) B 
K1 = J3-(T3 · A)A 
K2 -= (Ax 13) 
K3 -=- (53· A)A 
fP1 -=- c)._-CC.2· D) D 
r P2 -== D -x c2 

I ~ -= (c;_· b) D 
Eliminating 92 from Equation (3.55), we obtain 

where 



X~ = (N1XN2)· (IP3-\~3-IP1) 

"-(~ == 2 ( N1 >< 1'-J'.2.,) . r. P:l. 
2=~=- Q'f1 xN;). (I&+IP1-N3) 

'NJ = C{)1 L1 - S 91 L2 + L3 

N2. =- c.e1 M1- se, H2.. + M3 

N.3 =- C.91 k:1 - S 91 k2 + K3 
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There are a maximum of two values of 6\4 from Equation (3.56); for 

each value of 94 , one value of ~2 may be computed using Equation (3.55). 

Similarly if we separate the mechanism at B pair, one value off)3 is 

obtained from the displacement relationship for each value of B 1 and9 4 • 

The kink length. at the helical pair when the input has rotated 

through &1 is, 

- -Using pair constraint Equation (2.26) for point Q1 and Q2 in chains ABQ1 

and DQ2 we obtain 

where 

(3.57) 

Bf-=- .6.1 ( B..?-A) 91) 

Cf -==- L\ I ( 4., D, &Li-) 

~t = ~4(cQi) P,)o)-BJ-A)g.:t.1911010) 

Q: =- ~'"2-l6f2)R) b 1el+.)O) 
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Unknowns s2, s3 and s4 are computed from the three linear equations 

obtained from Equation (3.57). 

The position of the spheric pair U is obtained by screwing u1 about 

/\ /\ - /'. /\ 
E and A and also by screwing u2 about G and D. Using the pair constraint 

Equation (2.18) for spheric pair, we get 

where 

C9s- [ ( il/-1 1)-f ( 1-l1~T 1} Ej5 Ej] 

- S6Js[Ef x("Cli~l)]- Ej Ss­
+ { ( iC(-1'1). Ej-]f/ 

=- cfiG [ c v:- w) - { c 1-1.;-wJ ·Grf \ti;] 
+seG LGj: x ('IA: w)] +?;j: S{, 

+ [ c -v:;-w). &f 1 "&J (3.58) 

f)-,J/ 
lA.. 6..3 ( 1,{,I) o.)-A) &1+&1;51-t) 
-I " c-/ ) T = ~3 I) o;-A) ff1t&:1 J.S1i 

Ej /- 61 ( E.)-A ~I t-liG1) 
1.A.2 =- 6 3 (\:Cl.) R_, D _)9-4-+ec..2 ) 5;4-+ Sli) 

~ 1 =- 6. ~ ( W) R j DJ &t++9c..:z..).S4+&:~ 
G/-= 6.1 C <;) D; 9-4 ·t-9-c.2.) 

Sit.=. $ he.l..:c..al + Sc., 

ll , S and&- , S are parameters of ternary links at pairs A and D. 
't,1 _C1 C2 C2 
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Equation (3.58) may be rewritten as 

_ / -I - I 
N, C-vJes+Ni~~$s-+N3 

- I -I - -
Jj &J9-(, + T:LS~ &6 + T3+Gj Sb 

(3.59) 

where N' 1 , N' 2 , N' 3 , J' 1 , J' 2 and Jr 3 are appropriately defined. Equa-

tion (3.59) is of the same form as Equation (3.19) and hence may be 

reduced to the form 

(3.60) 

where Pi's are functions of N' 1 , N' 2 , N' 3 , J' 1 , Jr 2 and J' 3 and are known. 

There are a maximum of four values of$5 from Equation (3.60) for each 

value of 95. e6 and s6 are then computed using 

This 

any input link position, the position of all other link pairs may be 

computed. Let this position be denoted by subscript j. Using the pair 

constraint Equation (2.26) for velocity at pair c, we get 



from which 

-
Wt+= - (A~ C:t_). P;;_j w 1 

I ( DXCj)·Bt 
~ is computed by equating the velocity of B from two sides 

w:b - (Ax Bf)· D wi 

(Cj XBf)· D 
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(3. 61) 

(3.62) 

(3.63) 

(3.64) 

Using the pair constraint Equation (2.26) for point Q. on the cylinder 
J 

pair axis at c, we get 

Aw1 x CQ/-3) + Bjw2x(Qj- Pj-) 

+ A~ W\ + B>f Si ~ _ . 
::::. - ( 5 w 4- x (&."j-R) -C/S3-bjSf/· 65 ) 

. . . 
Velpcities s2 , s3 and s4 are computed from the set of three linear 

equations obtained from vector Equation (3.65). 

The velocity analysis of loop AEUGD is performed by equating the 

velocity of spheric pair U from chains AEU1 and GDU2• We get 
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A LN1 x ( V..j =:O) + Ef W5 X ( Vf-Tf) 
-1-A~vJI . 

=. -[D WL+ x ( 'flf-f<j) + I5 S4 +Gf $6 
- - - (3.66) + Gj W6 x ( v;-w/)] 

Lls' cJ,.)6 and s6 are obtained using the three linear equations obtained from 

vector Equation (3.66). Expressions for computing accelerations at joints 

are obtained by differentiating velocity expressions. Thus we get 

(A w 1 + 81 w2... + 13.pJi:i..)x cf ...:. 
+ c AW1 + BfW2..) x Cf 

= -c D x Cp WLf. - (p x c.p w'-l 
(3.67) 

- A vv 1 X r?j = ( i];i,03 + Cj-<~3 + ~ Wi.f-Bj 
. t(C/W3 +DWLJ-)XB{ er f (3.68) 

A W1 X. Q,f -t- Bj W2 x ( <Xf -Pj)+ Bi ~). 
+ BJ x (Qf-Pf) UJL + BJ S:;_-AW10f 

I I 

+ B-jw2-X(Q-j-Pf) 

= - CD wit x Cl'.Qf-9 + c,.s3 (3 .69) . ' 
+ D w L+ x ((if - Rr) + C/ s~ 

+ 5 s~] 
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Aw 1x(ilj 6j)+E/w5X(1A/-Tf-?. 
+ Ej W5 X ( Uj-Tj) + EJW5X(Ll.j-Tj) 

=-[ ?t-04-X ( 'IA.f-RP + D W4 ~ut.-Rf) 
+ Gj Wb X ( Uf-W/) + Gj. lAJr:,X (LAJ-Wj.) 

+ Gj WI, x S:. -U1. -Wp + D $'4 +GJ-Sb 
+ G:j Sb J (3. 10> 

. . 
The angular accelerationsw4 and~ are computed from Equation (3.67); 

W3 from Equation (3.68); '82, s4, s3 from Equation (3.69); and 8'6' w6 and 

~from Equation (3.70). Table IV presents an example of displacement 

analysis of HCCC-RSC mechanism. 

3.5. Kinematic Analysis of RCCCC-CC Mechanism 

Figure 21 shows a Stephenson-3 fixed pivot type RCCCC-CC mechanism. 

A revolute pair is located at joint G while A, B, C, D, E and F are 

cylinder pairs. The twist angle and link length between the axes at 

pairs at A and B areo(1 and a 1 ; between pairs at B and G,o\2 and a 2 ; 

between pairs at c and D, o(3 and a3; between pairs at D and A,0( 4 and a4; 

between pairs at B and E, o(5 and as; between pairs at E and F,c;i\6 and a6; 

between pairs at F and G, o(.7 and a7; between pairs at G and A, o(8 and a8. 

Offset distance at pair at A, due to links a1 and a4 is s1, due to links 

al and a8' is sl + s where s is constant off set of 
cl cl 

at pair A. Rotation angle at pair A, between links al 

while due to links a 1 and a 8 it 

of ternary link ADG at pair A. 

is$- 1 +$ where S. 
cl cl 

Similarly, S2,S,.2 and 

ternary link ADG 

and a4 is $ 1, 

is included angle 



TABLE IV 

EXAMPLE ANALYSIS OF HCCG-RSG MECHANISM 

The co~stant para.meters of the mechanism are: 

_,, • . o J /l•_p • • ·o • . 
""1: 20 , o<.2. = 3o, C71" = "'1'6, ""/./. • 3o , "l's= 2.o, o<,. fS" 7 ~c, =lo J 8c... .. tS1': .SC.,.cO·f 

.SC.2. == 0.4, f=o-024 S11 = 0-12 , ss_= -o.z, er..,: 1-2,-a..~ .. = :i.·s, Q.~ = 2.·B, c111-=t·2;,t:ts"='·B 

c:t6 = 3,0, a.7 = z.g, a..e"" 3.s 
One of.the solutions is shown below: 

81 St fh. 1)4 iJs 96 Sb Sa. Ss Sq 
2-'l·O 0. 2.12.. -11- · 7 ot. -BG· .1/2.3 32·717 -81 · #S6 -o· 2.19 -0·31 & -O· 11#-8 .Z.· I 78 

2.50 0. 2.J 6 -18··577 -87 ·Cf I I 18· 880 -80 •52.6 0 ·.08/ 0. 0.32. -O·'llS' .z. ·137 

2.60 0·22.0 -3/·tsB -qo · 72..0 1·1'1.2.. -IO·'fl.C/ 0. 2.'i'I 0 ·3'+7 -f·f.J'I- 2.· II 7 

:i..70 0. 2..2./.f -1/-3 · 'foo - Cf I/.· J.i.S"O -3. 'loo - 'ill. 76'1 0·'1111- 0·712. - I· 384 2. · I I I 

2.BD 0·2..l.8 -S3· 773 -'18·8.2. 7 - I J. 3.36 -g:z. ·Sl/ 0. ""g" 0. 882. - I· l/-62.. 2.· I 11.f 

2..C/O 0·2.32. _,JI. I '8 -f03·,~'+ -2. 2.· 78.S- - 8.3 . .2.1/-S"' () ·SI I f · fO'f - f· 6.JS"' J.. I I 8 · 

300 0·~' -7if.·t:J6Cf -108·77' -31 · g,,,. -113·7$2.. 0 . '+'l'I f . .30 'I -1 · 812. ~·I 2.0 

3/0 0. 2.J./.0 -83·. So'+ -ffl/-·061 - 40 ·1/-lf'I -84 · 12..I 0. "~" 1· IJ.8'1 -1· 986 2·1/l. 

32.0 0·2'1-1./. -cr2 · 'nz -I f'l·3'17 -'18· 672. -'iJI/· 42.€. 0. 38S" 1·~3 -a..·/S3 ~- 103 

3.30 0·2.48 -. f oo· qs'o -f 2.4-· '7'1 -S~·483 -114· 7 gg 0·.2.9$" I· 7S' -2.· 306 .2· 077 
31/.0 (). 2S2. - f08· qo7 -12q.g16 -63. 8'!4 -8S"·.J~ O ·I B'I 1 · 8Lf-'I -2.·~7 .t· 037 

3S"O 0 · 2S'+ -116·30'/ -fJ'# · 7L7 -70. '133 -B6 · i<17 0. 06'7 .I· 't13 -2.. ·SJ 'I I· 'f7't 

.....i 
00 
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E 

F 

Figure 21. A RCCCC-cc Spatial, Six-Link Mechanism 
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denote the offset distances and rotations between links a 1 , a 2 and a 1, as 

where S and (j are parameters of ternary links BCE at B pair. Other 
C2 Cz 

offsets and rotation angles are SS, $Sat pair E between links as and a 6 ; 

s6,&6 at pair F between links a 6 and a 7 ; s 7, ().7 at pair G, between links 

a 7 and a 8 ; s3 and $3 at pair C between links a 2 and a 3 ; s4 and ~4 at D 

pair between links a3 and a4 • Note that the link lengths and offset dis-

tances have directed sense, and the rotation angles and twist angles are 

measured in positive screw sense as desctibed"in Ch~pter II. 

Since the pair at G is a revolute pair, the offset distance s 7 is a 

constant. The mechanism is divided into four open loop chains by separ-

ating the two elements of each of the cylinder pairs located at C and F. 

The open loop chains are unfolded along a straight line and are shown in 

Figure 22 and Figure 23. The following vectors are defined from Figures 

22 and 23. 

A= 
B =- c.~o<1 r + ~c(I ~ 
C1 :::: Cos (o<1+0 h) Z + ~ (o<i +o<L) I<' 
~ C.o-5 (o\ 1+oZs-)1?+ ~ lo\1 +oZsJ i? 

B 

Go-$ (o< 1-t oZs-+oZ.b) c+ s~ lo<1 +o<s-fol.b)lt 

~oZig 7- ~o\g i? 
WP o\4C- ~o(4? 
~ (o<3+~L+) C- ~l0(?; +oZLt)°R 

UJ.S (dq+o\g) 7!- ~(o<7+o{&) v 
0 
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x 

Figure 22. Unfolded Position of First Loop of Spatial RCCCC .. CC Mechanism 
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CX> ...... 



z 

x 

Figure 23. Unfolded Position of Second Loop of Spatial RCCCC-CC Mechanism 
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00 
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0 -=- (a..,+ as+ ab) r 
IN = (0...1 +Cls-+a..b +°'-&) r 
1Ai.. ==- (a...1 + c:ts-+a..(,+ 0\. 7 +ctg) r 
Q1 - (_avs + °'-b - ct0 r 
R (a.1+a.s+a.~+QLt)f 
Q2 =- (0...1 + ~2> + Cl.lf +Ci\.,~-+ Q~) r 
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Let 91, rotations at A, be known, and we shall compute rotations and 

translations at all the joints for this value of €)1 • The angular rela­

tionships in the loop ABCD in Figure 21 are the same as the angular 

relationships of the loop ABCD in Figure 16. HenceS.4 , $3 and &2 are 

computed using Equations (3.56) and (3.55). The angular displacement· 

relationships of loop ABEFG are similar to those described in Section 3.2 

for analysis ABEFG of mechanism shown in Figure 14. Hence, $-5, 96 and$ 7 

are computed using Equations (3.37), (3.38) and (3.39). The angualr 

displacements at all the joints are thus known. To calculate the trans-

lations at the pairs, we utilize equations obtained by using constraint 

Equation (2.26) on Q1 and Q2 for successive screw displacements of chains 

ABQ1 and DQ2 and on u1 and u2 for successive screw displacements of chains 

ABEU1 and AGU2• We obtain 

where 

A S1 + B JS;,_+ ~f'~-+; D S1.t 
= G1 - Q2 

A S1 +Bf s~ + c1~~ +- E~Ss-+Fj-Sb 

+Gj-5.1 = ~-'U:- 'D-j-S<-,_ -.4Sc1 

(3. 71) 

(3.72) 
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Bf= ~ 1 ( B, - A_) 91) 

Ci_ -==- 6.2-( Eu - B )-A) &i1 91) 

Ef .6..2-.( E )- B )-A) ~+9c.2-) G1) 

Fj - A1 ( !=) Ct,A) e7) 9c1) 

&f - A1 C GJ A, ec..1) 

Q.: = 6.3 ( Q 2 J R JD) 614)0) 

a ( = 6. y..(cQ"l) P;O )-B__,-A) 92')91)01 o) 

u_f_ =- 6. 4 ( "Vli..., w, o )G.) A') &1) &c.Do,cj 

(.).__(I= ~ L+ ( rt:t, ) T) p) -E )-B ;Fk.)()2.+&lj_01~ 

'U.~ = ~ ~ ( 1X...( ~ 0, - A , c91 ) o ) o) 
where ft , G- , S and S are parameters of ternary links. Since G is 

c2 cl c2 cl 
a revolute pair, s7 =Constant. Translations s1, s2 , s3 , s4 , s5 and s6 

are computed from six linear equations obtained from two vector Equations 

(3.71) and (3.72). Velocity and acceleration analysis of the mechanism 

is conducted by equating the velocity and accelerations at cylinder pairs 

located at C and F. Table V shows an example of displacement analysis of 

an RCCC-RSC mechanism. Tables VI and VII show examples of velocities and 

acceleration analysis of RCCC-RSC mechanism, shown in Table V. 



TABLE V 

KINEMATIC ANALYSIS OF RCCC-RSC MECHANISM 

The constant parameters of the mechanism are: 
• c(. " ~ • 0 . cl1 ::2.0 , .l. =- 30 , a('+ .:= 36 , o(s = 2.0 / o(' = IS' J Sc.1 = 0· {, Sca.arO· 4, Be, :.0 ,s, =O·~ 

w, =- o. f, a.1 -= 1-2, a.1 = :i..-s / t:t.s = ~-a, °"'+= t·fl, ct,.,;} .o, ct7 = :.t .g, «S?= 3.~,,Sr=0·7 
·one of the solutions is given below: 

91 92. 84 fJ.s- IJ6 s, Sa. S3 Sl.f 
2S"() _, '·58 -87·'11 Si· St/- -62.· 'Y3 - f · I 6 1·52. -f·73 .z.. 3'1 

2.~0 -~/· I l. -qo· 7 2. 35· Cf 7 -s~ · 77 -0. 'f 2. I· 7 2.. -1 ·86 ~-so 

:z.70 -I.fr· 3.3 -qtf· 4-~ 2.2.. ·BC/ -I.fl ·44 -0·711 .2. • 1 2.. - ..;:( ·..t(J :J..·S8 

280 -53. 77 -t:tl·83 If· S3 -#4·8' - 0·6{ 2.· 11 -.1. 11 .:I.. t.s 

2.C/O -6'1-· 17 -1(}3. 65" 1·2.'I -/fl.· 2.q -O·S2. 2.. 2. 'I -2.·~'1 :l.. 70 

300 -74·07 -fo8·78 -8· z.o -#D·JS- -O·'f"S :Z..·4-4 -:z. 36 :l..·73 

3/0 -83·Sf -fll/-·06 - I 7 ·/If -3&· ga -0· 42. 2..·57 -:J..·47 :J. • 7Lf 

32.0 -q:z.. 47 -I f 'I· l.fO -:(..S"· ,2. -~7-80 -0· f./.(J ~ .. '7 -:l·S6 .t·7..3 

330 -fOO·'tS" - f 2..#. ,g -33·'" -3 7. 07 -o. *' :I.. 71.f -:t· 62. ~- 70 

31.J.O -108·'11 -f.1.'1·82. -'+I· 38 -36· 73 -0·#2 ~-77 -~. ~6 :i.. .,If 

3.S-0 -f16·31 -fJLf· 73 -t/-8. ''I -3l.·8.3 -0. '-+4 .t· 77 -.:i. 65 :1..·S' 

360 -f2.3·14 -/3'1·3' -SS-· 62.. -37·'1-0 - O· 'ft. ~. 74- --2·'' :I.·# 

ID - f l.'f· 37 -1q.3.1,5 _ ,2.· I 5 -38·S2. -{)·4'1 ~.,e -.,'{ ·52.. :J..· 31 

.ll) -f3S· 02. ·-147·5'1 -68· 2." -40·2.2. -0· Sf .,.'{. 5'1 -.,'{·4-D .:l.. (6 

30 -140· fO - I St· f 8 -7'1-. 0.3 -42.· SL/. -0·53 II... 1/.8 -~·aS I . q 'I 

Lfo -:-144·67 - f S""I-· l/-2.. -7'1· 3>" -45· Si. -()·5S" ~-36 -:Z.·08 1· Bf 
so -/ 4-8~ 77 - I S7 · 3S- -84· 2.l. -4'1 · 2.0 -()· 57 .1.. • .:t.3 -t·8'f I· 62.-

60 -/52..·4T -160· oo -88· 73 -53·''+ -o ·S'if ~·, f -1 ·70 f . 1/-3 

70 -f~f'·77 - f ,2. ·3'f -q2.· 73 -58· qg - O· '2. I· 'f 'I -/·SI I· 2..q. 

80 - f!>8· 78' - /€.'I- ·Sl -Cf'· IS -65· Lf'I -0· 66 I· 88 -f ·J2. f ·OS" 

'I 0 -f 67"38 ~"6 ·S& -Cf8. 64 -73. ,3 -0·70 ..l ·.:U - f ·6S o-B3 

(00 - H.'+· 06 1,g.3'f -Cf'I • 2. 7 -8f · 16 -o-88 1·10 -o.cn 0 ·6S' 00 
IJ1 



TABLE VI 

VELOCITY ANALYSIS OF RGGG-RSG ~CHANISM 

~ Wi. c..>3 Wlf w5 ""6 S.z. ~ 9'+ s" 
iso -0· f .3 -O· 07 -0·02. -o· oq -0 ·OS 0·37. 0·8f 0 . .l." -o · ocp 
~60 -0· 12 -0·06 -0·03 -0· 08 -0· OS 0·34 0·80 0 ·3/ -0·/ 3 
:J..70 -O· 11 -O· 06 -0· 01./ -0·07 -0· OS' 0·32 0·77 0 . .32. -O· 17· 
.:J.80 -o · 1 1 -0·06 -0·05 -0· 07 -O·OS' O· 2Cf O· 75' t> · .33 -0·2.I 

~qo - 0. { 0 -0·05 -0·05 -0·07 -0 ·OS' 0. 2.7 (). 72. 0·33 -0· 2.'+ 
300 -0· { 0 -()·05 ·-o·OS" -0·07 -0· Di+ ().;JS o.68 0·!>3 -O· 26 
310 -0·0'1 -0·0'-1 -0·05 - 0 ·() 7 -0·04 O·l.3 0·6'+ 0·32. -o · 2.B 
32.0 - 0 · O'/ -0·03 -0-05 -0·07 -O·Ol/- 0- 2.I O·S''I 0. !>() -0·2.'1 

330 -O·Oi -0·03 -0·0~ -0·07 -0·04 0. I 'I O·S'I O·:i.8 -0·30 
31.JO -o- oe -0· 0.2. -O·OS -0 ·O 7 -o· of./. O· 17 0·4'1 O·~ -0· 2-Cf 
35"0 -D· 07 -0· 01 -O·OS -0·06 -0·04 O· IS- 0-1/-3 0. :l.l. -0·2.8 
360 -0·07 0·00 -o.o4 -0·06 -O·tJlf O· 13 0-38 0 · I 'I -O·:J.7 

10 -0·06 0-0f -o· Of./. -O·Ob -0 ·04 0. 12. O• !>2. ()·16 -O·:l.S 
20 -0·05 0·02 -o· o4 -0-06 -o. olf O· f 0 0·2..7 0. I 2. -o ·.:2.3 
30 -0· DS 0-03 -0· 03 -0·05 -0·0'+ o. oq 0·2.3 O·O'f -O· .:io 
40 -0· Of./ 0·03 -0·03 -0·05 -0 ·64- O· og O· l'I 0-04 -0·18 
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CHAPTER IV 

DEVELOPMENT OF TOOLS FOR SYNTHESIS OF 

SPATIAL, TWO-LOOP MECHANISMS 

The central problem in dimensional synthesis is to find the dimen-

sions of a mechanism which will provide a completely or incompletely 

specified motion to one or more links of the mechanism. The motion of 

links may be specified in terms of finitely separated, infinitesimally 

separated, or multiply separated positions. In what follows, the pro-

cedures for dimensional synthesis of spatial, two-loop, six-link mecha-

nisms are developed. The general procedure developed here, however, is 

applicable to the dimensional synthesis of any spatial, spherical or 

planar mechanisms. 

4.1. Location of Lines in the 

Rigid Body in Motion 

The synthesis procedures described herein require one to be able to 

express positions of lines and points in the rigid body in any jth posi-

th th 
tion when the body moves from the i:: . to the j position. 

Let the tigid body .displacement be denoted by; a screw, that· is, .a. 

line LL', where a rotational displacement$ .. about line LL' and trans-
1J 

lation t along line LL' will move the body from the ith to the jth 
ij 

position. The line LL' in an xyz coordinate system is completely speci-

fied by a unit vector S .. parallel to LL', and R .. , a vector from the 
1J 1J 
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origin to an arb~trary point on the line. 

Let there be a line MM', in .the ith position of the rigid body, . 

denoted by a unit vector A. parallel to line MM' and P. a vector from the 
i i 

origin to a point P on the line MM' in the ith position. Then the jth 

position of the line can be obtained by screwing it by screw of the rigid 

body associated with the ith and jth positions of the rigid body. The 

screws are denoted by/\. on the unit vectors parallel to the screws. The 

direction A. of line MM' in the jth position is obtained by rotating A, 
J i 

about S .. by an angle(:) .. as follows 
iJ iJ 

Ai=- C 1- ea:s 9<-f) ( A-t .·Slf) S~f +Ai CtTS {ft/ 

+ ~9lf ( Stf XAl) .<4 •1> 

Pj' the vector from the origin to point P . h ,th . . . b . d in t e J position is o taine 
/,). 

by screwing P. by screw S ..• Hence, 
i iJ 

Pf=-[( Pl- R{.f)· SLf] Slf C 1- ~9~f) + Ri..J­

+ SLf llf- + Co:S ~if ( PL - R<f 
+ Sw.., 9Lj, [ $~ X (Pl - R-Lf)] : (4.2> 

Note th't S,. (a unit vector with two independent components), R., (an 
iJ iJ 

arbitrary point on LL', with two independent components), Q. . . and t .. are 
iJ iJ 

six ind~pendent parameters associated with finite displacement of the 

rigid body from the i~h to the jth position. It is also to be observed 

that A. and P. are expressed linearly in terms of A, and P. if the screw 
. J J i i 

displacement parameters are known. 

Let the displacement of the rigid body at the ith position be infini-
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tesimal, and let"( be the independent parameter of motion. Then deriva­

tives of axis A. and vector P. with respect to -C may be evaluated by 
1 1 

differentiating Equation (4.1) and Equation (4.2) and letting f:) . . _,. O, 
1J 

to get 

--
and 

ros g. - i . 'J --

(4.3) 

(4.4) 

Second order derivatives are obtained by differentiating Equations (4.3) 

and (4.4) as follows 

and also 
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where dP./dt: is given by Equation (4.4). 
l. 

th 
In general, the n derivative 

of line PP' may be expressed as 

(4.7) 

It is observed that six independent motion parameters are required 

to specify each infinitesimally separated position of the moving link. 

For example, for the 2nd infinitesimally separated position, the inde-

pendent parameters are 

Note that derivatives of points and lines in infinitesimally separated 

position at ith finitely separated position in the rigid body are 

linearly expressed in terms of position coordinates of such points and 

lines in tne rigid body in the ith position. 

Let the rigid body move from the ith to the jth finitely separated 

position and then undergo a series of infinitesimal motions at the jt~ 

position. Then from the above discussion, it follows that derivatives of 
.- .. ·' 

a line in the jth positon may be expryssed linearly in terms of its 

position in the ith postion, screws associated with displacement from the 

ith to the jth position and higher order displacements of the rigid body 

l.·n the J.th "t" posi ion. 

Let a rigid bodyL="1 be attached to another body2:"2 by a pair which 



92 

permits screw motion. Let the screw displacement of rigid bodyL_1 be 

I\ 
when the bodies 2:"1 and 2:"2 

. th th denoted bys .. move from the i to the j 
iJ 

/\ 
position. Let the screw displacement at pair be denoted by H .. , that is 

iJ 

a unit vector H .. parallel to screw axis, a vector T .. , locating a point 
iJ iJ 

on the screw axis, cp . ., rota.tion about the screw axis, h .. , translation 
iJ iJ 

1 th . Th b d ""'"° b d f •t .th · · a ong e screw axis. e o y£- 2 may e move rom i s 1 position to 

.th A A 
the J position by first screwing it by screw H .. and then about S .. • 

iJ iJ 

L MM ' b 1 . . b d """ Th h . th . . f 1 . MM' . b et ea inein oy£- 2 • enteJ positioll:.o ine iso-

tained by screwing MM' in the ith position about~ .. and~ .. in suc-
iJ iJ 

cession. Thus, 

" Hij 

line MM' in the jth position is expressed in terms of 

" screws S .. 
lJ' 

d d . f h 1 . . h . th . . an coor inates o t e ine in t e i position. The 

d h ld f . h . th . . f . . . same proce ure o s or expressing t e J position o a point in terms 

f . . th . . I h . th d . th . . . f . . . 11 o its i position. n case t e i an J positions are in initesima y 

I\ " separated, S .. and H .. become instantaneous screws. Higher order infini-
iJ iJ 

tesimal motion is expressed as a differential of first order infinites-

imal motion. 

4.2. Chain of Rigid Bodies and 

Pair Constraints 

Let two rigid bodies!' 1 and L"2 be connected by a kinematic pair. 

A A 
Let s 1 and s2 be screws associated with the motion of bodies Z 1 and ~2 ; 

then as described in Section 2.2., the geometry of the pair places 

certain constraints on the motion of bodies!: 1 andz: 2 , or alternatively 

" " on s 1 and s 2 • It is known from Halphen's theorem that successive screw 

/\. 
displacements are equivalent to one single screw. Therefore, screws s 1 

" and s2 may represent the resultant motion of two chains, while bodies~! 

and~ 2 represent two chains of rigid bodies. The pair constraint equa-
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tions described in Chapter II shall be used in the next section to 

perform the dimensional synthesis of spatial mechanisms. 

4.3. Synthesis of Dyads 

Figure 24 shows a binary link, connecting the rigid body to the 

fixed frame of reference. A and B are two cylindrical pairs as shown in 

Figure 24. 
th 

Let the rigid body move from the i h .th •.. to t e J pos1tion. 

Let the screw displacement associated with the finitely separated posi-

tion of the rigid body be denoted by a unit vector S. ,, parallel to the 
iJ 

screw axis; vector U .. from origin to a point U on the screw axis; u .. , 
iJ iJ 

translations along the screw axis; and$.,, rotations about the screw 
iJ 

axis. Let A. and B. be unit vectors parallel to cylinder pair axes A 
i i 

d. B . h . th ' . l Q d P 1 . h an in t e i position; et vectors . an . ocate points on t e 
i i 

axes of the cylinder pair at A and B. Let the cylinder pair at A ex-

perience a translation q .. and a rotation~·.; and cylinder pair B 
. iJ iJ 

experience a 

from its i th 

translation r .. and rotation Y . . 
iJ iJ 

.th .. to J position. 

when the rigid oody moves 

Now consider the cylinder pair at Bon rigid bodyL: then its jth 
. ' 

position is given by 

LB<.-@{.· S~f) S~J (Qs 9<--f+CBL· Slj)f<-j 

+(Si-f.X B<.) ~8-lf (4. 9) 

(Pi)z: ==-[( P~- U{,j,)-[ ( Pt_-ULf)·SLf]Sl~~@ij­

+ s~x ( PL-VLf) sw..G~j + UtJ+Si..fUif 

+ t ( P{.- Uif)· Slf] Scf (4.10> 



A 

Figure 24. A Rigid Body Connected 
to Ground Via a C-C 
Dyad 
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The jth position of cylinder joint B may also be obtained by considering 

the joint B on the link connected to joint A and screwing it by the 

screw displacement of joint A. Then 

(Bf) Ll.nk AB= [Bl.:..(Bi:AJAL] UTS<flif+(Bi·AvAt. 

+ (AL>< Bi.) S~4Ji.f 
(4.11) 

(Pf)LLnKAB = U Pt-Q.°,)- [CPl-61<)-At]AQ~!} 
+ At x GPl-~t)~~l.}+At.CV 
+ [ (P£-Ql.). Al J Al+~ i.. (4.12> 

Pair constraint equation, which for cylinder pair from Chapter II gives 

(Pf )2. =-(Pf) L~nY< AB+ (Bj) h<j <4.13> 

(Bf)2. ::: (Bj.) LL~k AB (4.14) 

Using Equation (4.14) for the jth position of the axis at B, we iind 

[Bi.-( Bi.· SLf) Si.f ]C.osGi.f +(S<.jXBi) S~S<.f 
+ i BL· SY) S:,t.t 

;:::. [BL -(B(. · At.) Al] Cos ~ i.j. 
+(Al x Bt.) 5~~L}+(Bc:·A0Al4 • 15 > 

Eliminating ,A .. , we may express $ .. as 
'1'1J 1] 

j 

Al· (SUXBL_) t(J..NV GLf. == - -4- (4.16) 

2- (A<. x 5<-j). (SljxBi) 
Similarly eliIJtinating&. ,, we may express~ .. as 

. 1] 1] 
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t(}JV\, ~ij= AL. ( s~ x B-t.J (4.11> 

2- (BL xAO~txSi.f) 
Using Equation (4.13) for P. obtained from Equations (4.10) and (4.11) 

J 

[Pl- Ulj)- L ( Pl- Ucf)-SLf~ S~f] 0J:sl}<-f + U<-j 

+ SLf X( P{_-Ulj,) S~Si.j, +[c P{_-Ut.j)·S<_f]s~+StjU~ 
== [C Pl-Q£)-{( Pt.-~D·ALJAi.] CtP~i.j,+Ql 

+ AL x ( Pl-Ql) ~~++ { C Pi-QO ·At.] Ai 

+ At ctLf _ _ 
+[ [Bi.- (Bi.. Si[)- SL~ CroS<..f + S<.jx B.i.S~~Lf 

+ (B<.· SLf) ~]hif (4.18) 

Vector Equation (4.18) provides three scalar equations. 

and u .. from Equation (4.18) 
1J 

Eliminating q .. 
1J 

9LL_j = 8.L- lB~·At)Ai. (Q{- P<..) 
2. 1 - (Bl· A-i.)2 

Bt-C&._st.e~. (U~j-Pl) 
1- (Bi_.Si.-}f (4.19) 

Similarly, other translations are 
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(4.21) 

The rotation angles f: . at the pair B are obtained by screwing the screw 
1J 

axis of the rigid body by the screw at pair B and then by the screw at 

pair A in succession. This gives 

(4.22) 

Note that the screw axes at pairs A and B and the screw axis of body 

form a screw triangle geometry. The relatio~s (4.16) - (4.21) are given 
! 

using screw triangle geometry in [25]. This forms an alternate derivation 

of the screw triangle relationships. A method for dimensional synthesis 

of dyads containing revolute, cylinder, prismatic and helical pairs 

using thes'e relations is given in [25] and hence is not discussion of • 

present work. ;Expressions similar to Equations (4.16) - (4.21) may be 

derived for infinitesimally separated positions of a rigid body using 
' 

infinitesimal pair constraint conditions. 
! 

However, when one or both of A and B pairs are spherical pairs, the 

screw axis at pairs is not completely defined. 

Let B be a spheric pair and A be a revolute, a cylinder, a prism or 

a helical pair. Let the coordinates of the spheric point in the first 

position be (R , R , R ). Then finding the displaced position of B from 
x y z 
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the screw displacement of the rigid body; and from the screw displacement 

of pair A and using the pair constraint Equation (2.18), we obtain 

(dropping the subscript i for initial position) 

[cR,-up. Sf J Sf ( t- Gr.,(}j) +M 8f< Rj- U1) 

+ S~gf ( Sj, X (R 1-Uj)) + Clj+SjUj 

[c R,-Q,). AJA c 1- UT.S4JJJ+Q, + Aa,,f 

+ ™ cflfC°R,-Q1) 
+ 5Wv ~f A ><(Rj-Q1) (4.23) 

where j denotes the parameter associated with displacement from the 

initial position to the jth position; qj =~ ~ for the helical pair where 

f is the pitch of the screw; qj is 

variable for the cylinder pair and 

the prismatic pair. 

zero for the revolute pair; qj is the 

the prismatic pair;$-. is zero for 
J 

Consider a dimensional synthesis problem when a rigid body~ is to 

be guided through specified positions via a C-S link. Then unit vector 

S., ve,,tor U :, , rotations l'\. and translations u. are known quantities,· J . ... j_. ~J J 

~ and qj are unknown variables in Equation (4.23) and may be eliminated. 

In addition to these variables, Equation (4.23) contains seven unknown 

mechanism parameters, R , R , R , Q , Q , A and A (Q is as~igned an . x y z x y x y z 

arbitrary value, since Q locates an arbitrary point on the pair axis at 

A, A is a dependent variable on A and A by the relation A = z x y z 
(l _A 2 _A 2)1/2). 

x y 

Let the pair located at A be a revolute pair and synthesis problem 

is to coordina~e moti&hs of the input link with positions of the rigid 
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body. Then in addition to the screws of the rigid body, the rotations at 

the revolute pair at A are known and the translations qj at the revolute 

pair are zero. Since vector Equation (4.23) provides three equations and 

contains seven unknown mechanism parameters, the revolute-sphere binary 

link may be synthesized for three positions of the rigid body coordinated 

with motions of the input link. For this there are a single infinity of 

solutions. 

For infinitesimal displacements a similar procedure is followed; 

that is, the infinitesimal position of the spheric pair is found from 

both sides and is equated. Then for the first infinitesimally separated 

position using pair constraint Equation (2.19), 

Let 9 be independent parameter describing the motion. Then 

where q is translation at pair A 

dq/d$ is O, for revolute pair 

dq/d = ~ (d~/d9) for helical pair 

d~/d9 is zero for prismatic pair. 

Let A be a revolute pair and synthesis problem is to guide the rigid 

body through infinitesimally separa_ted positions, then Equation (4.25) 

reduces to 

(4.26) 
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(4.27) 

If the synthesis problem is to guide a rigid body through infinitesimally 

separated position coordinated with infinitesimal motion of input crank, 

then, 

A cA<{J x ( R1-Q) =- S x (U-R1) 
dG (4.28) 

provides three equation for each infinitesimally separated position and 

note that d~/d& is known for such a problem. 

A synthesis equation for the nth infinitesimally separated position 

may be obtained by differentiating Equation (4.24) as 

dh-I {CA~ x(R1-Gl )] +A c(q, _ sx4Q (u- ~] 
G\:cn-1 etc d.:c °'-t: (4. 29) 

:::: 0 
Taking Sas independent parameter of motion 

where dQ/d&= A dq/d$ 

(4.31) 

for rigid body guidance problem. Derivatives of s and u are known 

quantities. 
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If A is a spheric pair and B is a helical, cylinder, revolute or 

prismatic pair, then it is convenient to take inversion about the moving 

body; that is, motion of the fixed body relative to the moving body is 

the inverse of the motion of the moving body relative to the fixed body. 

Thus, in the inverse case, the moving body becomes the.· fixed frame. , 

and the .fixed frarri.e .of the original problem becomes the moving body 

Thus the problem of synthesis of an S-X dyad, where X denotes a helical, 

cylinder, revolute or prismatic pair reduces to synthesis of X-S dyad 

which was discussed above. 

Let both A and B be spherical pairs. Let spherical points denoting 

fl and B be vectors Q and R, then the j th position of the moving spheric 

point is 

and 

Rj =Le R1-up· s.f1 Sf c1-~&p+sp.J..f 
+ ~&jC5j X(R1-Uf))+4s9j(R°i-Uf) 

+ Uf (4.32) 

is the synthesis equation to be used. R and Q are column vectors in 

Equation (4.33). For infinitesimally separated position synthesh, 

derivatives of R are found from the rigid body motion and differentials 

of Equation (4.33) are used for synthesis. 

4.4. Synthesis of Triads 

Figure 25 shows a rigid body connected to the fixed frame of 
I 



Figure 25. A Rigid Body Connected to the 
Ground Via a Triad 
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reference via a triad. Joints P1, P2 and P3 shown in Figure 25 are a 

combination of revolute, cylinder, helical, prismatic and spheric pairs. 

- -Let the screw at pair p1 be denoted by A (unit vector), Q (location 

vector), q (tr~nslation), 4'Crotati,on); at pair p2 by B, R, r, o(; ~t 
pair p3 by c, T, t, and (: Let the finitely separated screw of the rigid 

body be denoted by S, U, u and CJ• Then the following equation must hold. 

/':-. 1' A A 
ABC=S (4.34) 

" " " However, if we define AB= H using Halphen's theorem, then 

A I\ " HC=S (4.35) 

,..... "- /'... ,..._ ,..._ " 
Consequently, A B = H and H C = S break up into two screw triangles or 

screw triangle chains [26]. Reference [26] also deals with corresponding 

infinitesimal treatment. If we choose not to introduce the unknown screw 

H, then alternatively the chain may be divided at P3 or P2 and the dis­

placed positions of the pair axis and/or point from two sides may be 

located. Then using the pair constraint conditions described in Section 

2.1 provide the synthesis equations for a synthesis problem. 

Next consider four cases of rigid body guidance problem via the : · 

triad. 

4.4.1. C-C-R Triad 

Consider the C-C-R triad shown in Figure 26. The rigid body moving 

through specified finitely and infinitesimally separated positions is 

attached to the fixed frame via a triad consisting of cylinder-cylinder 

and revolute pair. The ~isplaced position of the revolute pair via 

successive screw displacement at two C pairs is, 



i 

Figure 26. A Rigid Body Connected 
to .. the- Grourid Via a 
C-C-R Triad 
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Cf= W1R[.c.~(c!A)A]+SiM-<{.}j.(Axcj 
+ (__t (A) A <4.36) 

where 

[ 1= ~f[c-(t·B)B] + SkY(Bxc.) 

+ (C. 1 B) B (4.37) 

and 

Tj= W~ [cT~ G,) -f (T~~)A JA J 
+ ~-qi[AX (T~Q)]+Q.+A°v 
+ t (T(.Q)·A]A 

(4.38) 

where 

T 1 0nY-[CT-R)-lCf-R).BJB] 

+ ~f[BX(T-R)]+R+Bh 
+ L (T-R)· B) B (4.39) 

The displaced position of the revolute pair from specified rigid body 

motion is 

Cf= cm Q [ c- Cc· s) s] + ~ecs x c)+(t. s).S 
(4.40) 

and 
T . =- Ur:s & [ ( T - U )- l ( T- U) · S J S ] + U+ .S 1..-l 

( + ~&[ $)( (T-U)J+t(T-U}S]S 
(4.41) 
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Using the pair constraint Equation (2.21) for the revolute pair we get 

c.~ l\) [ c I_ ( c ! A) A ] + s~cp (A x c) +(t·~A 
=- ~6) [ c-(t· s)sJ+s~e-(s x c) +Cc·s)s 

(4.42) 

Qn~ [( T~Q)- { ( T-q) ·AJA J+~c('.l[A X(T~~ 

+ L(T~~)·A5A+G< +A~ 
c..o-sQ [Cf-u)- [ Cf-u). s]s]+O+su 
+ ~G[S X(T-U)]+ [ (T-U ).sf s (4.43) 

Equations (4.42) and (4.43) are the synthesis equations to be used for 

rigid body guidance problem via C-C-R triad, '(, ~, q and r may be 

eliminated from five equations obtained from Equations (4.42) and (4.43) 

to get one equation for each precision position. Synthesis equations for 

this problem may also be obtained by separating the triad at pair p2 , 

then finding the displaced position of the cylinder pair at p2 from two 

sides and using the constraint Equation (2.25) of the cylinder pair. 

Similar procedure is employed for derivations of equations for 

infinitesimal position synthesis. Derivative pair constraint equations 

are used on infinitesimal displacements of points and/or lines obtained 

from two sides. For C-C-R triad, for first infinitesimally. separated 

position, we get 

(4.44) 

and 
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(4.45) 

where"'C is the independent parameter of motion. Equat~ons for higher 

order infinitesimal displacements synthesis are obtained by differenti-

ating Equations (4.44) and (4.45). 

4.4.2. C-C-S Triad 

Figure 27 shows a rigid body2: attached to fixed frame of reference 

via C-C-S triad. Finding the displaced position of spherical pair by 

successive screw displacements at C-C pairs and also from specified 

rigid body motion and then using the pair constraint equations, obtain 

Equation (4.43) for finitely separated positions, and Equation (4.45) 

for infinitesimally separated positions as the synthesis equations. 

4.4.3. C-S-C Triad 

Figure 28 shows a rigid body2::_attached to fixed frame of reference 

via C-S-C triad. The displaced position of spherical pair at p2 is 

found from successive screw displacements of rigid body and pair p3 and 

also from screw displacements of pair p1• Then using the pair constraint 

Equation (2.18), we get for finitely separated position of rigid body, 

co-s ~ [( R-Q)-r ( R-Q)·A 1 .AJ+ ~~ AxcR-G<) 

+ l(R-Q)·A~A+Aq,+6< 
= Co-sG [CR:_ 0 )- f ( R'.'... u). s }S]+u+~u 

+ ~e( s >< ( R.~ u))+ r ( R.:. u).s1 s l (4.46) 
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Figure 27. A Rigid Body Connected to the Ground Via 
a C-C-S Triad 

Figure 28. A Rigid Body Connected to the Ground Via a 
C-S-C Triad 
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where 

R.1- Urso1-[(R-T)- L u~:-T).c::jc:J 
+ ~~o\ c x ( R -T) + T + c. t 
+ {C.R-T)·C:~c 
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(4.47) 

for infinitesimally separated positions, 

4.4.4. C-S-S Triad 

Figure 29 shows a rigid body attached to C-S-S triad. Locate the 

displaced position of p2 by screwing initial p2 by screw of pair p1 and 

position of p3 by screwing it by screw of specified rigid body motion. 

Synthesis equations are obtained by using the constant length conditions 

between two spheric pairs as follows. 

R{=· ~~ [( R-~)-f ( R-Q}A} A ]+Q+li'f, 

+ S~c\) {A X(R-~)f +[ C R-Q)·A]A 

Ti= UJs{)[(T-0)- [Ci=-u)·s1sJ+u+su 
4- s~e ts>< (f- u)}+ f (T-u). ~]s 

(4.49) 

Constant length condition is expressed as 

(Rj,-Tff ( Rj,-"f}) == ( R-T)T( R-T) 
(4.50) 



Figure 29. A Rigid Body Connected to the Ground Via a 
C-S-S Triad 
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where R. and T. are column vectors. 
J J 

4.4.5. Constraints Due to Space Ternary Links 

Consider a ternary link floating in space. It has three joints p1 , 

p2 , and p3 to which three screw chains s1, s2 , s3 are connected. Con-' 

straints that a ternary link places on the total motion of the mechanism 

may be mathematically expressed as 

P1 ( H) 
Pi. ( H) 
P3 ( h') 

--
A 

P1 ( S,) 
A 

P1 ( ~i.) 
~ 

P3 ( S3) 

A A ~ ~ 
where H is screw associated with ternary link; s1 , s2 , s3 are resultant 

screws of the chains s1 , s2 and s3 • 

With the above discussion as background, general synthesis proce-

dure may be laid down as follows: 

1. Separate the mechanism in two or more chains at certain critical 

pairs in the initial position. 

2. Obtain the displaced position (finite or infinitesimal) of these 

pairs from two sides in terms of initial position coordinates of 

the mechanism. 

3. Impose constraint condit~ons described in Section 4.2., on two 

positions of these critical pairs. 

4. Eliminate unwanted variables from the equations obtained in Step 

3. 

Note that cylinder, revolute, helical and prismatic pairs are 

specified using a unit vector parallel to the pair axis, a vector 
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Figure 30. Screw Constraints on a Ternary Link in Space 
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locating an arbitrary point on the axis. Since the point along the axis 

is arbitrary, it may be taken as the point where pair axis intersects X-Y 

plane (Z component is assumed zero). Spherical pairs are specified by 

three coordinates of the spheric point in its initial position. In 

synthesis equations, these parameters of the mechanism are unknown and 

are computed using synthesis equations which also contain specified 

motion parameters. 



CHAPTER V 

SYNTHESIS OF TWO-LOOP, SPATIAL, 

SIX-LINK MECHANISMS 

In this chapter, the mathematical tools developed in Chapter IV are 

applied to spatial mechanism synthesis problems. The screw triangle 

geometry method is also extended to the synthesis of six-link, spatial 

mechanisms. 

5.1. Synthesis of Watt's RSSR-RSR Mechanism 

Figure 31 shows a Watt's RSSR-RSR mechanism. Revolute pairs are 

located at joints 1, 4, 5 and 6; and spherical pairs are located at 

joints 2, 3 and 7. The mechanism in its initial position is specified 

by specification of pairs in the initial position. Revolute pairs are 

specified by a unit vector parallel to the pair axis and a vector locating 

any arbitrary point on the axis. Let A, B, E and F be unit vectors 

parallel to the pair axes at joints 1, 4, 5 and 6; and let vectors P, T, 

U, and V locate arbitrary points on these pair axes. Similarly, spherical 

pairs are specified by vectors locating the spheric points in their 

initial position. Let Q, R, and W be the vectors locating spherical 

pairs at 2, 3 and 7 in their initial position. 

Let the rigid body to be guided through specified finitely or infini-

tesimally separated positions be attached to the coupler link joining the 

revolute pairs at joints 5 and 6. ' Finite screws associated with specified 

114. 
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B 
Figure 31. A Watt's Type Six-Link RSSR-RSR Mechanism for Spatial 

Rigid Body Guidance 
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rigid body displacements are S. (unit vector), X. (location vector), 
J J 

translations x., and rotation&-., where it is to be understood that this 
J J 

screw takes the rigid body from its initial to its jth position. 

The dimensional synthesis problem is to find the mechanism parameters, 

A, B, E, F, P, T, U, V, Q, Rand W, where this mechanism will guide the 

rigid body through specified positions. Note that since displacements of 

the rigid body are specified, Sj, Xj, xj, 9j' j = 1, ••• , n are speci­

fied quantities. 

Let c(j, ~ j, lj, and bj be the rotations at revolute pairs at 1, 4, 

6 and 5, when the mechanism moves from its first to its jth position. 

The mechanism is separated at three spherical pairs and then providing 

known screw displacements of specified rigid motion and unknown screw 

displacements at revolute pairs, the jth position of three spherical 

pairs is located as follows. 

A,...._ r... -
SJ;G.~ AcQ (5 ... 1) 

BR Ar-.-
P--j = SER= (5.2) 

- A I'--- A -INj = .S FIN= B v-..J 
(5.3) 

where the symbol (/') denotes the screw and notation ~X signifies that 

" - A. I\ vector X is screwed by screw z. Then screwing Q by A and also by E and 

/\ 
S in succession and equating the two final positions, we obtain 

Qt= 0D Gf[ ca_:... xp-{ (G(:... xp·Scf]Sf]+ Xf 
+ { U( 'If» sif Sf+ s;,,,.,ej s1 x ((( XJ-)+Sj.x. 

CoJo<j[CQ-P)- [ (Q-P}A]A ]+P 
+ SW--oct.[A ><(~-P)]+ [CQ-P)·A]A 

(T (5.4) 



where, 

G/ WS'f[(Q-U)-{(Q.-U)·t:-H'.~J+U 

+~""'-Sf [Ex (G(-U)]+ { (Q:'-U)·EJE 
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(5.5) 

- " /\ /\ 
Similarly, screwing R by B and also, by E and S in succession and equqting 

h 1 . f -R . h .th . . f" d t e ocations o in t e J position, we in : 

where 

Rf= Cm&j-[( R~xp-[cR~xp-s1-JSJ:l+SjX 
+ ~&f (~j x ( R"- Xj)) + [ ( R/ "l-JSj]~+1j. 

=-Co1j1f[CR-T)-{ ( R-T)·B}BJ +T 

+ ~~~-[Bx(R-T)]+ l(R-T}B]B r (f (5.6) 

R.1= Wncff[(R-U)-t(R.-U)·~}b]+U 

+ ~Sf.[~ x ( R-u)J+{l.R-Ci)·E l£ 
(5.7) 

Similar procedure is applied to locate the jth position of the spheric 
_ A /\ A 

point at 7, that is, W is screwed by B and also by F and S in succession 

to get, 
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Wf = (,ujgf [l w !. xp-f c w:_xp. 51-Js1-J 
+S'~e1[ Sf><(vv~xf)]+ [ cw:.x1J·s1]s1 

+xj. + Sf~ 
~~f[(w-T)-[C:w-T)·B]B] +T 

+ ~f3if Bx cw--r)j+ [cw-T)·B]J3 
(5.8) 

-1 
IN Cinlf[ Cw- ll)-[ ( w-v}r= 1 F] + v 

+ ~ Y°j-[F X ( W- \I)]+ f ( W-V)· Fjr= 
(5.9) 

Vector Equations (5.4), (5.6) and (5.8) provide 9 scalar equations 

for each specified position of the rigid body; but for each position, 

four unknown rotations at the revolute pairs, namelyo(, P,., Y'_ •. and~., 
J IJ J J 

are introduced into these equations. These unknowns may be eliminated 

from Equations (5.4), (5.6) and (5.8). Since A, B, E and Fare unit 

vectors, they have only two independent unknown components; vectors 

P, T, U and V locate arbitrary points along the axis of revolute pairs, 

3rd components of such vectors may then be assigned arbitrary value. 

Vectors Q, R and W locating spheric points contribute three unknowns 

each. Hence, there are a total of 25 unknown mechanism parameters in 

Equations (5.4), (5.6) and (5.8). The maximum of six positions of rigid 

body may be specified for guidance via a RSSR-RSR six-link mechanism. 

To obtain design equations for infinitesimally separated positions, 

the mechanism is again divided at three spherical pairs and derivatives 
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of R, Q, and W frorp. two sides are equated to get, 

Takinge as independent parameter of motion and then eliminating dr:;;</d~, 
.,.... . ..... ' 

dWdS, 1 ,d(/d& and dJ/~()., the following five equations are obtained: 
r . . 

( 5 .14) 

(5.15) 



~:\f$ x ( Q"-><)1 +A·Sd-J:e 

~· {E x(Q-v)] 
__ _.. •.. _. ........... ~ ... -,.. .... - ,, .. , 

e;.fsx(R-xJ]+s: s ~ 
B. t Ex ( R- U) 1 
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(5.16) 

i= isx c.w-x)} +~s~ 
. ~. t Bx ( W-T)] 

(5.17) 
/ . .'. 

Synthesis equations for higher order infinitesimal synthesis may be 

obtained by differentiating Equations (5.13) to (5.17). Where derivatives 

di.n/d&n = 0 and dJ11/d&n = o, since A and Bare direction vectors of fixed 

n n n n 
axes, d E/d&, d F/d& and other derivatives may be obtained using the 

method outlined in Chapter IV. This completes the design procedure for 

the design of a RSSR-RSR Watt's type mechanism for rigid body guidance 

through finitely or infinitesimally separated positions. 

5.2. Extension of Screw Triangle Geometry to 

Synthesis of Spatial, Two-Loop, 

Six-Link Mechanisms 

In this ___ .s~k...ti.Qn, the concept of screw triangle is extended to 

synthesis of spatial, six-link, two-loop mechanisms. In Section 4.3., 

under the discussion on synthesis of C-C dyads, it was shown that three 

/\ " /\ /\ screws denoted by A, B, and S form a spatial triangle, where A is the 

" screw displacement at cylinder pair fixed to the ground, B is the screw 
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/\ 
displacement at the moving cylinder pair, and S is the screw displacement 

of the rigid body attached to the .c.~c dyad. The relations for finitely 

separated position of the rigid body are given by Equations (4.16) to 

(4. 22). 
f\ /\ 

In fact, these relations are applicable to any three screws A, B 
(\ 

and s, since three general screws form a screw triangle in space. Then 

A /' /\ 
let this screw triangle be designated by~(A B S). Let 8, t and X 

followed by the subscript of the screw denote the rotation about the 

screw axis, the translation along the screw axis, and the location vector 

locating a_ point on the screw axis. Note that pair axes and screw axes 

associated with screw displacements at cylindrical, revolute, helical 

and prismatic joints are coincident. Prismatic, revolute, cylinder and 

helical pairs require specification of 4 unknowns each (2 for specif i-

cation of direction of axis, 2 for locating a point on the axis). 

The following three steps provide synthesis equations for a mecha-

nism for a particular synthesis problem. 

1. The geometry of the mechanism imposes constraints on the screws 

associated with displacements of coupler links and screws associated with 

displacements at pairs. These constraints occur because some of the 

screws are common to more than one screw triangle. These constraint 

conditions are, therefore, expressed as relations expressing equivalence 

of rotations and translations of the common screw from two screw geometry 

relations. 

2. Geometry of the pair places constraints on the screws associated 

with screw displacements at pairs, for example, for a pair A 

(5.18) 

where ~ is finite constant for helical pairs 



f is zero for revolute pairs 

~ =o(), f).A = O, tA -=/= 0 for prism pairs 

q is variable for cylinder pairs. 
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The translations and rotations at the pair are expressed in terms of 

screw triangle relations and then constrained by Equation (5.18). 

3. If motion of one or more links, or displacements at pairs, are 

specified, then such values are known in the screw triangle geometry 

relations. 

In the following, the screw displacements at pairs are denoted by 

the symbol (/\.) on the unit vector parallel to the pair axis. 

5.2.1. Stephenson-3 Fixed Pivot Type Mechanism 

Figure 32 shows a Stephenson-3 fixed pivot type mechanism. A, B, c, 

D, E, F and G are unit vectors parallei to the pair axes A, B, c, D, E, 

F and G respectively. Let the screw associated with the coupler link 

/\. A 
BCE be H. and associated with EF by I. when the mechanism moves from the 

J J 

first to the jth position. Then the following constraint conditions are 

obtained from the ~1eometry of the mechanism. 

" A. 
/'... 

Aj ~f Hf (5.19) 

/'.. " /'.. . 
Cf Df Hf (5.20) 

" /'. " 1-l~Ej r· (5. 21) t 
/\.. /\.. A 

G}Ff Ij (5.22) 

Conditions in Equations (5.19) - (5.22) are expressed as 



w 
x 

mX---xk 
<( 
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[GHjl /::,. cAf.Bf.HJ) = [eHJJ D.( HiEJ.Ip <5 • 24 ' 

,; [ tHf] 6 ( /;-j-Bj-Hp = [t Hj-] f). (CJ D Ki) . (5.25) 

[tH;i-] ~ C t1'~f Hf)= (tHf] D (HfEjf;:) (5.26) 

'1 [&rj] c, c Hf ft.Ip =[erf] c.cG;.Ffl.j) (5.27) 

v [ t rf 1 c, c Ai Ej- f p = Chj J 6. c G Fj. If) (5.28) 

In addition to the conditions expressed by Equations (5.23) - (5.28) due 

to mechanism geometry, additional constraint due to pair geometry may be 

placed using Equation (5.18). 

" If screws I. are specified, then 
J 

If the mechanism is to be used for function generation, e.g., co-

ordination of motion of links AB and FG, then screws at joint A and G 

are specified and constraints due to motion are 

[ &Afl 6.( Aj, Bi H' i) = [ eAf] s ~cl t-te.c1 

[ tAf] /:::,. ( /\i Bf Hp= [tA~] S\e>ei.\.bl~ 
[ GGj J 6 ( &j. Fi- Ij.) = [ 96{] s pee.<.\ te.o1 

[tc:,f l 6 c &1 Ftff) = [b'1fJ s pe.i;..b~ 

(5.31) 

(5.32) 

(5.33) 

(5.34) 
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Consider the problem of multiple coordination where motion of links AB, 

CD and FG is coordinated then in addition to constraints expressed by 

Equations (5.31) - (5.34), the following constraints are obtained due 

to specification of motion: 

[ 9Df 16. ( D} c~A j) = [6Df1 5pe.u:~eol 

[tojl6 cf)j.Cj?:ip =[tof1,speAb<u{ 

(5.35) 

(5.36) 

Table VIII presents the summary of the number of precision positions, 

unknowns, and equations to be used for RCCC-CCC Stephenson-2 mechanism 

for various types of synthesis problems. Note that when the rigid body 

displacements are incompletely specified, corresponding incompletely 

specified screws must be used. A screw triangle circuit for Stephenson-2 

mechanism is shown in Figure 33. 

Now consider the case of multiple coordinations of links where 

motion of links AB, CD and FG are coordinated. Assume that screw dis­
/\ 

placement at A, D and Gare known. Equating H., obtained from two sides, 
J 

~ /\ /'... A. /\. 

A} B-j- == 1-1 J- = Dr c! (5.37) 

Manipulation of Equation (5.37) provides 

(5.38) 

/\ /'- /\.. A /\ -1/\ 
Since A and Dare known, screw K. may be computed using K. =A. D .• 

J J J J 

The unknown axes at B and C are calculated using the following rela-

tions from screw triangle geometry. 

B· ( l<j,XC) 

(5.39) 



TABLE VIII 

SYNTHESIS OF RCCC-CGC STEPHENSON MECHANISM FOR VARIETY OF MOTION PROGRAMS 

No. of Equations No. of Unknowns No. of 

Equations For p, Precision For p, Precision Precision 

Type of Problem Specifications Unknowns To Be Used Positions Positions Positions 

-- ----- * 
1. Rigid Body lj' X1 , 01 , t 1 f;, ~' .f, Q, E, (3,23) - (3.30) q(p-1) 28 + 4(p-1) 5 

Guidance j j j F, G, H, XA, and,.,.,, 8 free para-
eoup ler EF X X X X (tAj) A(ABH )=O ' meters 

_B' _c' _D' E 

XF' XG' ~ 

2. Function A, G, XA' XB' $A , ], :Q, ]2, E-2. F, (3.23) - (3,28) 13(p-1) 20 + 8(p-1) 5 
Generation j HL 1;. X , X , (3.31) - r3,34) r. .,, J B e i.. ,. x,. 
AB - GF 1:1G , tG X X X X ("1;8j) A(ABH)=O 

j j _D' E' F' -llJ 

XI 
:1 

3, Input+ Rigid A, If,XA, 9r.p eA.' ~. g, Q, E..z. F·, (3.23) ;.,.~3.32) ll(p-1) 24 + 8(p-1) 9 
Body [A-EF] j G, H, ~· Xe, (h.,)A(ABH)=O 

.-,l:.Lt ~;XE, ~· XG J 

4. Incompletely n parameters of in- ~' ~. £, D..z. E, (3.23) - . .J~.30) 9(p-1) 28 + (4+n)(p-1) 
Specified completely specified F, G, XA' X, (iA,)Ll(ABH)=O 
Rigid Body screw for ea<;h pre- ,_ X_ - B_ J 
Position cision position Xe' --o' XE' XF 
~~~r~ ~ 

* Note e-e dyad. FG places the constraint on number of precision positions. 

'"""" N 

"' 



A 
I 

Figure 33. Screw Triangle Circutt Formed by 

Constraints. of the Stephenson-3 Fi~ed Type Mechanism · 
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+ 
(5.40) 

Since Equation (5.39) contains four unknowns (2 unknowns contributed by 

Band C unit vectors), a maximum of 4 values of.$k may be specified 

which in turn limits the specification of four displacements screws at A 

and D. From Equation (5.40), the unknowns Xe and XB are computed. The 

rotations and translations at pair B are computed using the relations 

B· (Rj,X C.) 

(C>ZB) · ( B X.Kf) 

(5.41) 

(5.42) 

Screws associated with coupler links are given by Equation (5.19) and 

may be computed using the method shown in Chapter IV. Similarly, from 

Equations (5.21) and (5.22), 

~1 A. A f'.-1 " 
G-~ Hf Ff Ef =-

L. - f (5.43) 

" f-... " Since G. and H. are known screws, L. becomes a known screws. Then from 
J J J -
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I'/'.. ,..,_ __ _ 

screw triangle relations of F, E and L, F, E, XF .and XE are computed as 

shown above. An example of synthesis of RCCC-CCC mechanism for multiple 

coordination is shown in Table IX. 

5.2.2. Synthesis of Watt's Six-Link, Two-Loop, 

Spatial Mechanisms 

Figure 34 shows a Watt 1 s-2 fixed type mechanism. A and D are fixed 

pivots; B, C, E, F and G are moving pivots of the mechanism. Let the 

screws associated with coupler links BCE, EF and FG be denoted by II., L. 
(' J J 

and I. when the mechanism moves from the initial to the jth position. 
J 

Following constraints are obtained from the geometry of the mechanism. 

(5.44) 

(5.45) 

(5.46) 

(5.47) 

(5.48) 

Conditions in Equations (5.44) - (5.48) are expressed as 

[Gri 1J6( 11 &; H') =-Le Hi1 6' c D tA"> (5.49) 

[tHjl 6. (AB 14)-: [tHf]D. ( D t 1!\) <5 .50) 

[GHj] 6CAEO=[&Hf16cfo:BA) (5.51) 

[ A A ") [t · 1 A " H') tHf]6(HEL = Hf 6(AB (5.52) 

[eL{J 6 ( H'~C)=-LGLf16 Cr? t) 0 . 53 > 



pp 

2 

3 

4 

5 

TABLE IX 

SYNTHESIS OF STEPHENSON'S SIX-LINK MECHANISMS FOR 
MULTIPLE FUNCTION GENERATION 

Rotations Rotations Rotations Translations 

At Pair A At Paid D At Pair G At Pair D 

-20° -15.4244 . 162.623 -0.3816 

-40° -33.880 135.527 -2.9096 

40° 29.92219 -179.229 6.9520 

60° 81.5526 -30.949 -1.2713 

One of the many solutions is given below. 

* are known vectors. 

A* = 0.73~2i + 0.6112j + 0.3006k 

E = -0.5032j - 0.7324j + 0.5889k 

B = -0.1965i - 0.2832j + 0.9387k 

F = 0.9167i - 0.0010j + 0.3996k 

c = -0.3284i - 0.4966j + 0.8034k 

G* = 0.6002i + 0.5001j + 0.6242k 

D* = 0.5442i + 0.1228j + 0.8299k 

xA~·c = 1.2876i + 1.1457j 

XE = 1.5492i - 1.9298j 

XB = 3.6428i + 2.6418j 

XF = -4.1121i - 1.2833j 

XC = -1.8276i + 4.2632j 

XG* = 1.6439i + 1.7451j 

X0* = 1.7864i + 1.6280j 
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Translations 

At Pair G 

3.608 

-9.488 

-2.235 

-12.004 
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E 
F x 1' x 

B 
x 

XG 
xC 

Figure 34. Watt 1 s-2 Fixed Pivot Type Mechanism 
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Cty6CH~C)=[~L~]DC T'FL) <5• 54> 

[er=+l6 c L' ~-P) =-[Grfl6 cD'G'f) (5.55) 

l-1:rj]6 ( C i?l)=[trj-l.6 ( D&f)<5.56) 

[ t.Dj.l 6. ( 6' c H) =:. [ l:Dj.]6 c D (; i) (5.57) 

[GDf] /:::, ( D t. H')-= [t91>f.]L>cDG"I) <5• 58> 

If screws L. are specified screws, then 
J 

[ 8Lj16 (:£ ~t) =: Sp~~u;{ VC\tV1e.. (5.59) 

[i:Lj] 6. (ff C) = spec"-r-ed vo.J1Ae...<5.60J 

Let A be a revolute pair. Then the pair constraint condition is 

(5.61) 

Table X gives a brief summary of the number of unknowns, the number of 

equations for each precision position for various types of synthesis 

problems. Figure 35 shows a screw triangle circuit for this type of 

Watt's mechanism. 

Now consider the synthesis problem where a rigid body to be guided 

is attached to link EF in Figure 35 and input rotations which are to be 

coordinated with rigid body motion are provided at the revolute pair at 

" " A. (i.e., Screws L. of coupler link EF and screws A. of input link AB 
J J 

are known.) Combining Equation (5.44) and Equation (5.46) and eliminating 

" screw H. 
J 

(5.62) 



Type of Problem 

1. Rigid Body 
Guidance 
Coupler EF 

2. . Incompletely 
Specified 
Positions of 
Rigid Body 

3. Input at A 
and Rigid 
Body EF 

4. Input + 
Incompletely 
Specified 
Positions of 
Rig_id Body 

TABLE X 

SYNTHESIS OF WATT'S MECHANISM FOR VARIETY OF MOTION PROGRAMS 

No. of Equations No. of Unknowns 

Equations For p, Precision For p, Precision 

Specifications Unknowns To Be Used Positions Positions 

I:.,eL, xL, tL 
- - - - -
A. ~. g, n ..... E, 5. 49) - (5.61) 13 (p-1) 28 + 8(p-1) 

J j j j F, G, XA, ~· - - -
~C' ~D' ~E' ~· 
XG' I., H,, 
- .1 J 

XI ' ~ 
j j 

Incompletely In Addition 5.49) - (5.61) 13(p-1) 28 + (14-n)(p-1) 
Specified Screws to Above Un-
in Terms of n knowns, (6-n) 
Parameters for Parameters 
Each PP• for Each PP• 

A,f>A 'ij, XL' 
- - - - - (5.49) - (5.61) 14(p-1) ~' .f, D....z. E,_F, 24 + 8(p-1) 

j j :• l)• x.f, x.Q, (i;I A _)specific = 
f)- ' tL XE, XF, XG, I . , J ,..,..,... 

Lj j 
- - - J (()A) J(ABH) 
H,,XI,XH 

J j j 

A,(jA.' and Ih Addition (5.49) - (5.61) 14(p-1) 24 + (14-n)(p-1) 

J to Above Un- (f)A) j specified 
Incompletely knowns, (6-n) = (fJ A) jA(ABH) 
Specified Screws Unknown 
in Terms of n Parameters of 
Parameters for Screws for 
Each Precision Each Precision . 
Position Position 

No. of 

Precision 

Positions 

6 
3 free para-

meters 

5 

I-' 
VJ 
VJ 



A 

H 
D 

Figure 35. Screw Triangle Circuit Formed by Constraints 
of the Watt's-2 Fixed Type Mechanism 
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~-1 A A 
Since A and L. are known screws, screw N. may be computed using the 

J J 
/\ 

method described in Chapter IV. From screw triangle formed by screws B., 
J 

" " C. and N., the following relations are obtained. 
J J 

l~ ~ ~ =:: _ _..;;;B;..._· ....:....( N__,~I"-· x_E_)==_ 
(Bx Nf} ( 1'-lj XE) 

j.=1···4 

NJ-(Nj:E)E. UE-X1'-lp 
1- C.Nj:E)2 

+ N{-LN[·B)B 
1-0'J}· B)2-

j,=-- 1 . .. 4 

(5.63) 

(5.64) 

The unknowns B and E (4 unknowns) are computed from Equation (5.63) 

written four times. Once B and C are known, XE and XB (4 unknowns) are 

computed from 4 linear equations obtained by writing Equation (5.64) 

four times. Rotations and translations at B pair are computed next using 

relations 

(5.65) 

1-(B·E)2 
(5.66) 
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Thus, screws at B are completely known and screws of coupler link BEC 

are calculated using 

A A. A 
AB== H (5.67) 

,....._ ('- "-
From screw triangle formed by screws D., C. and H., the following rela-

J J J 

tions are obtai~ed, 

tH' :.!;!J :=. -
~ 

+ 

_ [5. CHf>< c) 
(DX Hf).(Hj XC) 

i= I_, - - - - 4 

(5.68) 

(5.69) 

C and D (4 unknowns) are calculated using four equations obtained from 

Equation (5.68). Once C and Dare unknown, Xe and XD (4 unknowns) are 

computed 4 linear equations obtained from Equation (5.69). Rotation and 

translations are computed using 

t:~~== D· ~Hi~c) . 
2 (C. x D) · C DX H JJ 

I5-(5·Hj:)Hf. (XH'-Xp) 
1- (D· Hj.)2- } 

5-(5.c)C:-. C><c.-xD) 
~ - (D· c. )'2-

(5.70) 

(5. 71) 
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Thus, screws at pair D are completely known. From Equations (5.47) 

/\ 
and (5.48) eliminating screws I., we find 

J 

(5. 72) 

/\. ('.. 1'. 

Since screws D. and L. are known, screws P. are computed using product 
J J J 

A F'. and ~., we have rule. From screw triangle formed by screws G.' J . J J 

(5.73) 

th' :ff 
2 

+ 

(5.74) 

G and F (4 unknowns) are computed using Equation (5.73). Once G and F 

are known, XF and XG are computed from linear Equation (5.74). This 

completes the synthesis of RCCC-CCC Watt's-2 fixed type mechanism for 

input and rigid motion coordination for five precision positions. 

An example of such a synthesis problem is presented in Table XI 

and Figure 35 shows a screw triangle circuit of the mechanism. Tables 

XII, XIII, and XIV present constraints of other six-link mechanisms 

shown in Figures 36, 38, and 40 due to its geometry and corresponding 

screw triangle circuits are shown in Figures 37, 39, and 41. 



TABLE XI 

EXAMPLE SYNTHESIS OF WATT'S RCCC-CCC MECHANISM FOR 
COORDINATED MOTIONS OF INPUT-LINK 

AND RIGID BODY 

Pres.cribed Input Lirik and: Rigid Body Precision Positions· 

A= 0.5i _ 0.5j + 0.7071k 

Precision Position 2 

L = 0.7714i - 0.4948j + 0.4002k 

XL= -0.9420j + 2.6504k 

C\ = 20.0 e = 101.3192 
~A L ' 

Precision Position 3 

L = 0.8651i - 0.3565j + 0.3528k 

XL= -.4147j + 1.9545k 

e = 400 
A 

Precision Position 4 

e = 122.3592 
L 

L = 0.9248i - 0.2271j + 0.3052k 

XL = 0.0712j + 1.6860k 

()A = 60° GL = 139.0513 

Precision Position 5 

L = 0.9605i - 0.1059j + 0.2575k 

XL= 0.4639j + 1.7449k 

GA = 80° $ L = 156. 7363 

One of the solutions is presented below. 
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tL = 8. 2293 

tL = 9.0261 

tL = 9.4950 

tL = 9.6834 
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TABLE XI (Continued) 

1\-1 I' I' 
A L = K. 

J 

pp K K. XK XK Gk tk x y 
y z 

2 0.63106 -0.64226 -2.57312 4.23306 100.0990 7. 83855 

3 0.62906 -0.63539 -3.19300 4. 83986 105.69330 8.26299 

4 0.62687 -0.61513 -3.43288 5.65049 110.85740 8.30442 

-B = -0.8621i +0.1128j + 1.4940k 

-E = 0.6287i - 0.6333j + 0.4513k 

XB = -4.2853i + 1.2863j 

XE = -2.8618i + 1.2872j + 1.8756k 

pp GB tB 

2 -1.7905 0.9707 

3 -0.4074 1.9882 

4 3.3247 2. 9689 

5 8.8783 3.9543 

/\ I'- /\ 
H=AB 

pp H H XH XH Gk tH x y y z 

2 0.57021 0.50025 -1.9256 2.5380 20.12442 -0.1734 

3 0.50767 0.50179 -2.3110 1.9834 40.01239 -0.0843 

4 0.46133 0.48061 -2.5947 1.2293 60.00 0.1926 

5 0.43109 0.44176 -2.8363 0.3032 80.18425 0.5801 

-c = ~0.2861i + 0.8210j + 0.4941k 

n = o.76821 + o.3296J + o~5488k 

XC = 0.6212i + 0.5421j 



pp N 
x 

2 o.66396 

3 o. 71181 

4 0.76252 

5 0.80925 

x = 1.4569i + 0.8365j 
D 

N 
y 

pp 

2 

3 

4 

5 

-0.58602 

-0.51917 

-0.4444 

-0.37042 

-

eD 
17.4500 

33 .1872 

48.3693 

63.9220 

to 

-0.9404 

-1.6757 

-2.0997 

-2.1965 

/\. -1 I'- I' 
D. L. = N. 

J J J 

XN 
y 

-1. 77878 

-1.34189 

-0.51892 

0.42377 

3.81051 

3.67684 

3.58475 

3.49244 

F = 0.5618i + 0.7371j + 0.3756k 

-G = 0.1163i + 0.3341j + -.9353k 

XF = -3.2568i + 1.9564j 

XG = 0.2811i + 0.7684j 
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96.68796 6.78250 

99.31876 6.48781 

102.29490 6.22593 

104.99460 6.05623 



TABLE XII 

CONSTRAINTS ON THE SCREWS OF WATT 1 S-3 FIXED PIVOT TYPE MECHANISM 

Equations Obtained F~om Constraint Conditions 

[eH}j .6. CA' BA)= [19Hj] L:::. c DC H> 
[tHf] 6 (ABH)~ [tHf]~ c 6 cH) 

[eD11 D. (£cR)=- reDf] 6 c 6 E £') 
[tDf] 6 (DcH) == [tDf] 6 C6~f) 

[eril 6 (DEI) ~ [6If] b (GFI) 
[tr}l 6 cS£f) =- [tri-J 6 (&Fr) 

[6E}J .6 (f:6HJ:== [GE}l £::.(ff:[) 

[tEJ-] L:::. (ED A) =ltEf] 6 ( E Ff) 
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TABLE XIII 

CONSTRAINTS ON THE SCREWS OF STEPHENSON-2 FIXED PIVOT TYPE-1 MECHANISM 

Constraint Condition From the Geometry of the Mechanism 
I\ A . /\ 

Af Bf== Lj 
/\. A A. 

Lj- Cf~ Hf 
/'. /'. /': . 
Ef D-j--==- Hf 
A I"- /'.. Ef Ff,= Lj-
1\ A /\ 

Lf Gf-= If 
Equations Obtained From Constraint Conditions 

[8Lf]L(ABC) =[&LfJ6(CcH') 

[ 8L{J 6 (ABL) -=-[GLj16 ( LG I) 
ltLf].6 (ABL')=[tLf]6(CGr) 

[tLO c,.(A B L)={l:Lf]D (l'tH) 

[ GHf J 6 c L c H)-=- [ GH}l 6 ( ~ 61~) 

[l:H[J D( l'CH)=[tHfl6CE DA) 

[er;i:-J 6(E'Ff) ~ [Btf]6(CG£) 

[ h ~ 6 ( E Fi) == [t Ij-l 6 ( t G I) 
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TABLE XIV 

CONSTRAINTS ON THE SCREWS OF STEPHENSON-2 FIXED PIVOT TYPE-2 MECHANISM 

Constraints Due to Mechanism Geometry 
to- A A 

Aj BJ= Hf 
"-·"- A. 

D(Gf= H( 
" ~· r"'· Df I.;{'= r /:\ /'.. I'. 
A. E . == Lf 
/\f 1 A 

Lf Ff=- If 

Equations Obtained From the Constraint Conditions 

[eHjl6(AB'A)=[&Hfl.c. (r) CH) 
[tH~] 6(A BH)=-[tHfl 6 ( 6 c H) 

[fhj] L:::. c &GI)= [Grj-16( L' Ff) 
f_trf] L ( r5Gr)=[trf]6(['Ff) 

[ eLf] 6 (A' f C)= [~Ln 6( c Ff) 
[tL;f.] 6(,AEC) = [iLj..lL:::.LCff) 

· [GAj] 6(~~H') = [&Aj-]L:::.(A'EC) 

[ tAf1 6 CA~H) =- [tA~l 6 cAEt) 
L&Dj] 6(D'CH)=[l9Df]6(6'Gf) 

[CD-fl 6( DCA)= [tDjk:o.( 6'&£> 
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CHAPTER VI 

CONCLUSIONS 

In this dissertation, a unified approach is developed for analysis 

and synthesis of spatial mechanisms and its use is demonstrated in 

analysis and synthesis of spati-a,1, two-loop, six-link mechanisms. 

Throughout this work, rigid body spatial motion is expressed in terms of 

screws. This ·brings a uniformity and provides a visual insight into 

the mechanism motion. 

The successive screw displacement method for analysis, developed 

here is believed to be more general, simple and useful than other methods 

of analysis. It seems it is directly extendable to mechanisms which 

contain slotted sphere, planar pairs in addition to revolute, cylinder, 

helical, sp~erical and prismatic pairs. The expressions obtained for 

·velocity and acceleration analysis are, in .. general, linear and compact. 

An attempt has been made to demonstrate the relationship between 

screw triangle geometry method of synthesis [26] and pair constraint 

method developed in the present study. The pair constraint method is 

much more general and reduces to screw triangle geometry in special cases. 

It is, thus, possible now using the methods developed here to 

analyze single and multi-loop mechanisms which contain prismatic, 

revolute, helical, cylinder and spheric pairs. Since planar and spher­

ical mechanisms are but special cases of space mechanisms, the method is 

equally applicable to synthesis of these mechanisms. In planar motion, 
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a screw reduces to a pole while, in spherical motion, to a pole axis. 

Apart from development of general procedures for analysis and syn­

thesis of spatial mechanisms, the present study contributes immensely to 

the state-of-the-art of kinematic synthesis and analysis of spatial six­

link mechanisms. The following are the main contributions. 

1. For the first time, procedures are available for synthesis of 

spatial, two-loop, six-link mechanisms involving revolute, cylinder, 

helical, prismatic, and spheric pairs. The design equations are obtained 

in simple vector form and are solved for two types of problems. The 

design equations for synthesis of spherical mechanisms may be selected 

from this larger set of equations. We have also provided the screw 

triangle geoemtry constraints of five types of six-link mechanisms. 

These are constraints placed by the mechanism on the screws at joints and 

screws of the coupler links. Note that these constraints do not depend 

upon pair combinations but only on mechanism configuration. Additional 

constraints due to pair geometry and job specifications are also described. 

Thus, a designer must be able to select synthesis equations for his 

combination of pairs and job specification, without in depth knowledge of 

theory of screws. 

2. A unified treatment of analysis is presented for the mechanisms 

involving spherical pairs, in addition to prismatic, cylinder, revolute 

and helical pairs. The method is used to conduct displacement, velocity 

and acceleration analysis of five types of six-link mechanisms. A 

designer may obtain ~losed form displacement, velocity and accelerations 

relationships using the method described in this work. It is seen that 

the whole procedure is well suited for computer pr,ogrammi.ng. The 

expressions for velocity and accelerations are in general linear and 
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compact and thus, displacement analysis of more complicated mechanisms 

may be conducted by integrating these velocity equations. 

3. The existence criteria of overconstrained, spatial, six-link 

mechanisms may be obtained by inducing passive couplings at joints, using 

the displacement relations described in this work. The synthesis and 

analysis of such overconstrained mechanisms is performed in the same way 

as the parent mechanism and is expected to present no further difficulty. 

The present work is a basic study of motion of open-loop kinematic 

chains, constraints on motion of kinematic chains due to pair geometry, 

and constraints on motion of various links due to mechanism geometry. 

The pair combinations considered are revolute, prismatic, helical, 

spherical and cylinder. The method is directly. extendable to other pairs 

such as slotted sphere, planar, etc. Since a wrench is resultant 

loading of a rigid body and is similar in expression to screw for rigid 

body displacement, it seems logical to conclude that a similar method 

could be developed for dynamic analysis and synthesis of spatial mecha­

nisms. The procedures for analysis and synthesis of open-loop chains 

are described in this work and may be used for design and analysis of 

manipulators. Further work on manipulators requires procedures for 

computing influences of obstacles on the terminal body of the open-loop 

screw chain. This is expected to be rewarding future study. 
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