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PREFACE

This dissertation is concefned with the investigation of the elec-
trolytic conductance of lithium bromide in acetone and in mixtures of
bromosuecinic acid and acetone. It is customary for the first chapter
of a dissertation to include a statement of the problem. Due to. the
nature of this study such a statement has been postponed until the sec-
ond chapter., The first chapter is a historical development of the
Fuoss—-Onsager-Skinner equation inasmuch as the problem 1s more meaning-
ful when it 'can be related to the theory.

I undertook tﬁis investigation for several reasons. In’télking
with Dr. Clarence M. Cunningham, who later became ﬁy adviser, about the
feasibility of the problem it became quite evident--and even more so
once the research was underway-—-that I would have an opportunity to
apply the quantitative techniques I had previously developed while work-—
ing with nonaqueous solvents. In addition, it was apparent the problem
necessitated my learning computer prograﬁming; I had no prior background
in this field and felt a need for it in my professional career. Final-
ly, it was my heope that I might contribute to the understanding of elec-
trolytic conductance in solutions of low dielectric constant.

Various data had been acquired for the system by Cunningham and co-
workers. The experimental work for this dissertation consisted of ob-
taining conductance data in acetone that was asvﬂearly dry as possible;

this appears to be an easy task, but it is not. Acetone's affinity for

iii



water and volatility at room temperatﬁre béth contribute to the diffi-
culties. The theoretical work consisted of utilizing the Fuoss—-Onsager-
Skinner equation to treat all.of the accumulated data.

Although an effort is presently belng made to employ the Interna-
tional System of Units, I thought this'investigation could be more
readily compared to previous work by using the 'electrostatic CGS" unit-
system along with certain other units--such as the angstrom, K——which
are not ST units. These units are given in Appendix A and defined in
terms of SI units; included in Appendix A is a list of numerical values
of selected physical constants and formula masses. It should also be
mentioned that common names for some compounds are used throughout the
dissertation; in particular, éJ£72—bromo—butanedioic acid is referred to
simply as bromosuccinic acid.

I am indebted to many individuals and several institutions. Among
the individuals are Dr. Cunningham and the other members of my graduate
committee-~Drs. R. D. Freeman, T. E, Moore and J. B. West——and Dr. O. C.
Dermer; I am particularly grateful to Dr. Cunningham for his advice and
assigtance with the mathématical anélysis. I thank Dr. E. J, Eisenbraun
for supplying the EXR-10l1 and apparatus for synthesizing the diazometh-
ane and Mr. Rex Morris and Dr. J; W. Burnham for their assistance and
advice concerning the bromosuccinic acid and dimethyl bromesuccinate.

My gratitude is also extended to Dr. T. G. Vernardakis for helpin% in
those situations in which two hands were insufficient, translating G¢r~
man for me, and caring for the conductance apparatus and dry bex in my
absence, to Mr, Wayne Adkins for his coffee, and to Mr. Floyd Abbott for
helping me put it :together. I especially give an affectionate thanks to

Ms, Christine Riley for her suggestions and assistance in preparing the
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final manuscript and for typing it and aiding with the figures. The
institutions to which I am indebted include Oklahoma State University
for providing an appropriate environment, Lake Superior State College
for allowing me the time to complete the work, and the National Science
Foundation for financial support in the form of a National Science
Foundation Faculty Fellowship and a National Science Foundation Terminal

traineeship.
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CHAPTER T
EVOLUTION QF THE FUOSS~ONSAGER-SKINNER' EQUATION

This chapter is divided into three sections which are arranged in
chronological order. Each succeeding section covers a shorter time
period and embraces a smaller breadth of electrolytic sélution theory.
" This approach is being utilized because of the vast amount of work
which has been done in electrolytic solution theory--much of which is
beyond the scope of this dissertation. The first section chlu&es
electrolytic solution theory in general; the second section consists
of that portion of electrolytic solution theory relating to conduct-
ance; the third section is restricted to electrolytic conductance
theory for systems in which the frequencies, applied voltages and

dielectric constants are low.

The Theory of Electrolytic Soclutions

Prior to the Twentieth Century

Toward the end of the eighteenth century Galvani (1) inadvertently
discovered the effect of an electric charge on the nerve and muscle of
a frog's leg. Shortly thereafter Volta (2) discovered the voltaic
pile, which, for the first time, made it possible to produce an elec-
tric current of great enough magnitude to cause measurable electro-

chemical effects. Volta divided conductors into two classes which



correspond to what are presently designated as metallic and electro-

1 Almost immediately the voltaic pile was used to

lytic conductors.
generate chemical reactions.

About 1805 Grotthuss proposed a theory of electrolytic conduyctance
which was accepted for severdl decades. Grotthuss postulated the
existence of charged atoms during and only during the passage of an
electric current through the conducting sclution. He believed that
the positive and negative poles of an electrolytic cell exert forces
similar to magnetic forces which are inversely proportional to the
square root of the distance; these forces were supposed to act in
opposite directions on the two components of the electrolytic 'solution,

one component being attracted and the other repelled. Grotthuss
postulated further that even during the passage of the current the lons
are not independent of one another, but rather the charge is passed
from atom to atom by means of a chain mechanism (3).

The first quantitative treatment in electrochemistry was per-
formed by Faraday (4) in 1833 and his conclusions are summarized in
Faraday's laws. Faraday accepted the Grotthuss thecry in general.

He showed, however, that the electrical force is not centered at.the
poles of the electrolytic cell, but extends throughecut the solution,
and thus proved the inverse square relation of Grotthuss to be
unsound (5). Both Faraday and Daniell assumed that electrolysis

consists of the passage of electricity by ions which are discharged at

l1n electrolytic conductors the electrical energy is carried by
charged particles of atomic or molecular dimensions and flows with a
transport of matter; in metallic conductors current flow involves
electrons only and there is no transport of matter.



the electrodes (3). In 1839 Daniell (6) proposed ionic structures
which are similar to those presently in use. Many erroneous notions
were published by electrochemists during this period. In an effort to
systematize the terminology for electrochemistry, Faraday cbnsulted
with Whewell who recommended many of the names still in use today (3)
(7) (8).

Grotthuss' theory was attacked by Clausius, who argued that if
ions depend on the application of an electric current for their exist-
ence then electrolytic solutions would net obey Ohm's law, but repeated
experiments had shown that Ohm's law was obeyed. Hittorf performed
some quantitative experiments which showed.that ions meve with differ-
ent speeds; in addition he stated that ions must exist separately for
most of the time during the passage of an eleétric current. These
ideas,wére in contrast to»GrotthusS'“conclusion that ions existed only
momentarily and that all ions migrated at the same speed. Kohlrausch
developed a method for measuring electrolytic conductances using
alternating current and obtained very precise data (3).

In 1887 Arrhenius (9) published his famcus dissociation theory in
which it was postulated that electrolytes in aqueous solutions are
dissociated into free ions regardless of whether or not an electric
current is passing through the solution. He assumed that electrolytes
are partially dissociated intoc ions and that the degree of dissocia-
tion, y, depends upon the concentration--increasing with diluticn. His
dissociation hypothesis furnished plausible interpretations for the
conductance data which had been obtained by Hittorf and Kohlrausch (10).

In addition it led to an explanation of the observations by Raoult and



van't Hoff (11) of anomalies in colligative properties of electrolytic
solutions (12).
Ostwald (13) assumed that the degree of dissociation is given by

Yy = A (1-1)

—

Ao
where A and A, are the equivalent conductances of the solution at the
specified concentration and at infinite dilution, respectively, and A

is defined by the expression

A = 1000 Lg (1-2)
—
Cn
in which n 1s the concentration expressed in equivalents per liter and
L. 1s the specific conductance. The specific conductance is the recip-

S

rocal of the specific resistance, p, which is defined by

p = X, (1-3)
J
where X is the electric field strength and j is the current density.
The current density is the total charge carried across one cm? in one s

and is given by the sum of the products of the number of ions per unit
volume, n, and their charge, g, and the velocity, v, with which they
move; that is,

j = ?_nj’_qivj’_’ (1_4)

where i, the summation index, refers to the ionic species in the solu-
tion. For the case of two parallel electrodes which have the same
shaped cross-sectional area and are placed so that any line drawn
perpéndicularly from the face of one electrode will intersect the face
of the other electrode,

X = (1-5)

v
%



and

’ (1"6)

where V 1s the electric potential difference between the electrodes, &

the distance between the electrodes, I the current and A the cross-

sectional area of the electrode. Therefore,

B O ONN

Since V/I is the resistance, R

p = R(A_) (1-8)
R’ .
) . (1-9)
(* |

'The specific resilstance represents the resistance of a one-cm cube of

and
L - ]1l=
D

= [

the conductor; the numerical value of the specific conductance is equal
to the length*in;cm of a one.Q conductor which has a one-cm? cross-
section.

If the law of‘mass action of Guldberg and Waage 1s used to obtain
the di;;oéiétion equilibrium constant, ED (which is a function of .
temperature), the folloWing expression can be obtained for a 1:1 elec-
trolyte, in which ¢ is the molar concentration:

Kp = ey (1-10)
—‘\{ N

-

Ostwald combined Equations (1-1) and (1-10) and obtained what is referred

to as Ostwald's dilution law which may be written as

l1=1 + _cA. - (1-11)
A A, Kph? -

A plot of 1/A versus clA should yield a straight line with a slope.of

1/Kph? and an intercept at 1/A, (14). This was found to be true for



many electrolytic solutions--the "weak" electrolytes, which are poor
electrical conductors, conform to the law and the "strong" electro-
lytes, which are good electrical conductors, do not. Arrhenius’
hypothesis attributes all of the changes of equivalent conductance with
concentration to the change in y and assumes that the mobility of the
ions is independent of concentration.

The Arrhenius theory leads to the conclusion that for dilute

'\SQlutions the equivalent conductance should be a linear function of the

S

concéﬁtrqtion. However, Kohlrausch had found experimentally that
strong electrolytes give conductance curves which are not linear
functions of the concentration for dilute solutions; he thought that
the curves were best represented as linear functions of the square.root .
of the concentratien. ‘Val:;s of Ao for strong electrolytes can be
obtained by plotting A versus (E; extrapolating the curve to zero
concentration and noting the intercept.? When this method is applied
to weak electrolytes, A, cannot be obtained because the plots, are
curved and very steep at thé\intercept. Kohlrausch's law of the inde-~
peﬁdent migration of lons may be applied té obtain values for. A, of
weak electrolytes. This law is freq&ently expressed as

he = AS +27, (1-12)
where AZ and A;'are the equivalent conductances of the cation and
anion, respectively, at infinite dilution (3).

At the close of the nineteenth century both thermodynamic investi-

gations and conductance measurements served to confirm the Arrhenius

2The curve obtained when the equivalent conductance is plotted
against the square root of the concentration is called a phoreogram
(15).



theory; ho&ever, there was much conflicting experimental evidence which
indicated that the\theory does not give a lucid explanation of electro-
lytic conducténce. Probably part of the controversy regarding the
Arrhenius theory was the result of some misunderstandings. There is
some question as to whether the opponents of the theory denied the
actual existence of ions or only the assumption thiat oppositely charged
ions were independent of each other. Classifying electrolytes as weak

and strong was found to be even more unsatisfactory and bewildering.as

the investigation of systems involving nonaqueous solvents began.

The Development of Electrolytic Conductance

Theory From 1900 to 19503

In 1903 Roeber .(17) read a paper at the general meeting of the
American Electrochemical Society on the theoretical properties of free
ions in solutions which he con¢luded with the following:

The trouble seems to me to be right at the fundamental
point of the model. If Arrhenius' model is to be used, the
first thing necessary is to find an exact method of measur-

. ing the degree of ionization, 1.e., the ratio of the ionized
molecules to the total number of dissolved molecules.
According to Arrhenius' model, we should have several methods
of measuring the degree of ionization, but in many cases the
results of the different methods don't agree together.

Hence the battle royal between Arrhenius, Jahn, Nernst and
Plank, on the question which method is the right ome. This
situation seems, in my opinion, to indicate an inherent
weakness in the fundamental conception of Arrhenius' model.
While we must admit this, it is only fair to say that even
for more concentrated solutions Arrhenius' model represents
an approximation of the truth, and has proven very useful in
many respects, but for concentrated solutions Arrhenius'.
model cannot be considered to. represent the facts to such a

3A review article entitled "Fifty Years of Electrochemical Theory"
which covers this period has been written by Hamer (16).



degree of completeness and truth as 1s found to be the case

for infinitely dilute solutions. ...Theories are tools we

have, and it would be foolish to depreciate the usefulness-:

of a tool because it is not perfect.

During the next few years many chémists began to accept the idea
that electrolytes must be classed either as being completely dissoeci=~;
ated into ions at all concentrations (strong electrolytes) or as being
incompletely dissoclated (weak electrolytes). This answered the ques-
tion of why strong electrolytes do not obey the Ostwald dilution law,
but not of why their equivalent conductances decrease with an increase
in theilr concentration. Various explanations were offered for the
observed variations in conductance. For example, Washburn (18) (19)
(20).(21) published several papers on the conductance of concentrated
solutions; he stated that an explanation for the variation of conduct-
ance with concentration of an ;queous salt solution should include such:
factors as the change in the quantity of the salt, the ionizing power
of the medium, the viscosity of the medium, the degree of hydration,
tﬁe possible formation of complex ions, a Grotthuss chain action and
a change ih the degree of ionization of the water. Walden (22)
believed that at infinite dilution the motion of ions should depend
only upon their nature and»the‘solveﬁt if separate ions move independ-
ently. He found that the product of the viscosity (the reciprocal of
the fluidity), n, of the solvent and the equivalent conductance at
infinite dilution is often constant, independent of the temperature;
that is,

A,n = constant. - (1-13)

This is referred to as Walden's rule and is derivable from Stokes'



law." Kraus and Bray (25) showed that this rule does not hold accu-
rately. They also concluded that all solutions of binary electrolytes
obey the same dilution law and that for a given electrolyte in differ-
ent solvents the trend of the conductance curve 1is determined by the
dielectric constant of the solvént. Various dilution law equations
were proposed by different investigators.

Before 1920 several people attempted to explain the variations of
conductance with electrolyte concentration invterms of electrostatic
effects. Of these, only Mi%ner 126) 27) had correctly visualized the
problem. He assumed that a salt is completely dissociated intoc ioms in
solution and accounted for the deviations from ideal solution behavior
in terms of interionic forces between the ions. Milner's treatment
involved an application of the.virial theorem and depended on the
numerical evaluation of the sum of a series which could not be formu-
lated in a compact mathematical equation; however, his method gave a
theoretical basis for the establishment of the fact that electrolytic
solution properties are the consequence of Coulomb forces between the
ions,

During this period exact methods for treating the thermodynamics

of solutions were developed. The work of Lewis (28) (29) proved to be

“Stokes (23) derived the equation
= 6wnrv, (1-14)

which gives the force, F, required to move a spherlcal body of radlus r
at a veloc1ty v through a continUous medium of v1scos1ty'n Deriva-
tions of Stokes' law and Walden's rule are given by Fucss and

Accascina (24) who state that the derivation of Walden's rule from
Stokes' law " is simple mathematlcally, but the result is subject to a
number of physical approximations which are hazardous,"
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most ‘satisfactory. He proposed an activity, a5, such that the laws of.
ideal solutions are obeyed 1if concentrations are replaced by activities.
The activity of a substance may be defined by the equation

G = G° + RTlogea,, _ (1;15)
where_é:is the chemical potential, G° the chemical potential for the
substartce in its standard state, E_the ideal gas constant and: T the
thermodynamic temperature. The activity coefficient, f£f, is related to
the activigy by the expression

a, = f x (concentration) (1-16)
-and has dimensions of reéiprocal concentration units. The standard
state is chosen so that j_approachés:unity as the concentration
approaches zero. For a substance which is ionized into Xi_cations and

v_ anions its mean ionic activity, a,, is given by the expression

G = G° + vRTlog.a,, (1-17)
where

Voeoy, o+ v 7 (1-18)
and

a+==(ai+a2' l/v? (1-19)

in which ay and a_ are the individual ionic activities (nonthermo-
dynamic quantities) for the cation and anion, respectively.

In 1923 Debye and Hiickel (30) (31) presented a theory of electro-
lytic solutions which is approached from the point of view of thermo-
dynamics. They simplified Milngr's treatment by replacing all of the
ions, except the reference ioniahlgi is at the origin, with & comwtin-

uous' space charge rather than trying to determine the electrostatic

potential energy as a sum over all pairs of ions; this eliminated the
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slow converging sums. The theory is based upon the following assump-
tions: (1) The ionic interaction between ions 1s completely deter-

mined by Coulomb forces--a given ion is surrounded by an "ionic-
atmosphere' in which there are on the average more ions of charge

opposite to the central ion than ions of the same charge as the central

ion. (2) The dielectric constant of the solution is equal to that of
the solvent. (3) Ions are spherical and unpolarizable charges with
spherically symmetric fieldé. (4) The energy of interionic attraction
is small in comparison to the thermal energy. (5) Strong electrolytés
are completely dissociated into ions at all concentrations.

The derivation consists of combining the Poisson equation of
electrostatic theory with the Boltzmann distribution function from
statistical mechanics and obtaining a differential equation--the
Poisson-Boltzmann equation--for the electrical potential, Y, as a

function of the distance, r, from the center of the reference ion:

1 d fr2dy \= - 47 Injqiexp(-qq¥4/kT), (1-20)
r? dr dr p 1

in which D is the dielectric constant, k is the Boltzmann constant

(equal to R/N, where N is Avogadro's number) and the summation index,

i, refers to the ionic species in the sclution. The fraction in the
exponent, EQ/EE, which is represented by the symbol g, is the ratio of
the electrostatic potential energy of one ion in the field of another
to the thermal energy. The derivation of the Débye and Hickel equation
is given in a number of monographs (32) (33) (34) (35) (36) (37) (38).

In oréer to obtain an éxplicit formula for y Debye and Hiickel per-
formed a series expansion of the Boltzmann equation, applied -Assump-
tion (4) above (gy<<kz) and terminated the series after the second

term—-the first term is zero because of electroneutrality. This



12

approximation gives therefore an expression for the charge density
which is linear in y. This is consistent with the principle of the
linear superposition of fields which states that the potential due to
two systems of charges in specified positions is the sum of the poten-
tials due to each system separately. According to Miller (39) and
Glintelberg (40) when a single ion 1s being charged the Gibbs free
energy is obtained by integrating Ydq from zero to a4 the charge. Sub-
stitution of the Debye-Hickel expression for ¥ and solving for the
logarithm of the rational activity coefficient, £, gives the following

equation for an ion of species i:

logefy = -(Z38)% s (1-21)
2DKT (1+«a)

where € 1is the charge of a proton, Z is the number of charges on the
ion (Z is positive for cations and negative for anions; thus the charge
on the ion, q, is given by the product Ze.), a is the distance of
closest approach (the sum of the radii of oppositely charged ions in
contact) and k, which has dimensions of reciprocal length (Efl is the

radius of the ion atmosphere.), is given by the expression
k = [nNely (1-22)
125DkT

>It should be noted that the rational activity coefficient given
in Equation {1-21) is a dimensionless quantity, whereas the activity
coefficient in Equation (1-16)/is not. The numerical value depends
on the concentration scale utilized, but Equation (1-21) is used in
this work only in concentration ranges in which the numerical differ-
ence between rational and molar activity coefficients is negligible;
therefore, the same symbol (f) has been used to denote both activity
coefficients, and the appropriate dimensions are inferred from the
context. The quantitative relationships among activity coefficients
are given by Barned and Owen (33).
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in which y is the ionic strength.® Equation (1-21) may be written in

the form
logyofy = -A'2i/i (1-24)
l+Ba/E
where
A' = e3 21N (1-25)
2.303(DkT)3/2V 1000
and

B = / 8mNe? . (1-26)
1000DKT

The parameters A' and B are constants (which can be evaluated) for a
given solvent at a given temperature. The mean jionic activity coeffi-
cient, EE’ is defined by the equation

£, = (fi*ff’)lfv, (1-27)
where Eiuand fz'are the individual ionic activity coefficients for the

cation and anion, respectively; it is given by the relation

logigfs = Z42_A"u , (1-28)
1+Ba/§

in which Z, is the number of electronic charges on the cation and Z- is
the negative of the number of charges on the anion. For very dilute
solutions--as u approaches zero—-Equation (1-24) reduces to

loggf; = - A'Z2/0 (1-29)

and Equation (1-28) reduces to

6Lewis and Randall (41) defined ionic strength by the equation

= Iey2l/2, (1-23)
1 .

where the summation index, i, refers to each ionic species in the
solution,
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logygfy = AY ZoZ AL (1-30)
Equations (1-29) and (1-30) are limiting forms of the Debye-Huckel
equation. These limiting forms are also obtained as a approaches
zero—-that is, for pocint charges.

The Debye-Huckel theory indicates that the activity coefficient
does have a physical significance and is more than just a correction
factor. Equations (1-24) and (1-28) also take into account the ionic
charge——the Arrhenius theory does not. The theory agrees with experi-~
mental results in only very dilute solutions. It is successful when
applied to solutions in which tﬁe ratio of the electrical to the
thermal energy of the ions is very small--that is, when the ions are
not ‘highly charged, when the dielectric constant of the medium is high
and when the ions are large. Huckel (42) realized the theory requires
the dielectric constant of the solution instead of that of the solvent.
He thought that the dielectric constant decreases linearly with the
solute concentration and modified Equation (1-24) to

logigfy = - A'zi/i - Py, (1-31)
1+Bavy

where P is an empirical constant which is determined experimentally.
The Debye-Huckel theory has been thoroughly scrutinized by many theo-
rists, some of whom gave a more extended equation; for example, some
modifications of the theory include the higher powers of y in the
series expansion (43) (44). All conclude that their treatments for
dilute solutions lead to the limiting Debye-Hickel equation. Some more
recent extensions of the Debye-Huckel limiting law, with applications

to both ionic solutions and plasmas, are given by Kelbg (45).

Guggenheim (46) (47) has given an accurate numerical sclution of the
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Poisson-Boltzmann equation,

Debye' and Hickel (31) also considered the more complicated problem
of conductance-—an irreversible process. They postulated that the de-
crease in equivalent conductance of strong electrolytes with increase
in concentration is primarily due to a decrease in the mobilities of
the ions. If a potential gradient is applied to an electrolytic solu-
tion, a given ion will tend to move with its own characteristic veloc-
ity. The ion atmosphere--which is of opposite sign--will tend to move
in the opposite direction and its action appear to involve the movement

of the solvent; this retarding effect is called the electrophoretic

effect. Also, a given ion tends to move its lon atmosphere with it
when a potential is applied to the system. A finite time is required
for the ion atmosphere to adjust to its new location. The lag causes
a dissymmetry in the potential field about the ion, the field being
greater behind the ion than in its immediate wvicinity. This effect--

the relaxation-time effect~-is independent of the viscosity of the

medium and dependent upon the limiting conductance of the ion. Debye
and Hickel neglected the thermal motion of the reference ion and in
accounting for the electrophoretic effect assumed a Stokes radius for
the moving ion.* They obtained a good first approximation and showed
that at low concentration the equivalent conductance should be a linear
function of the square root of conceﬁtration. Kohlrzusch had deduced
this, as mentioned previously, from his experimental data quite some
time before (3). For a given temperature the Debye-Hiickel conductance

equation can be written in the form

A= A~ AN, (1-32)
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where A" 1s a constant containing the radius of the ion, which means
that A" cannot be calculated theoretically.

In 1926 Onsager (48) (49) extended énd improved the conductance
theory of Debye and Hiickel in such a manner that many of the difficul-
ties and theoretical objections to the original treatment were over-
come. He showed how the electrophoretic effect -can be calculated
without the necessity of knowing the ionic radius; he directed atten-
tion to the fact that if a constant force is applied to an lon, the ion
does not move through the solution in a straight line; he allowed for
the mutual effect of the relaxation of both ionic atmospheres on each
other. Onsager took into account the Brownian movement of the ions and
applied statistical methods to obtain his final conductance equation.
The velocity of an ion as it moves through a solution under a potential
gradient is given as the algebraic sum of the velocity at infinite
dilution and the changes in velocity caused by the two opposing effects
mentioned in the preceding paragraph,

In the case of a binary electrolyte the lonic equivalent conduct-

ance of the ion i, Ai is given by the equation

A= - |zy|eFx (1 + AX (1-33)
6mnC(10-8) 1+'<a

where A% is the ionic equivalent conductance at infinite dilution, F is
the Faraday constant, C is the speed of light, a is the mean ionic
diameter, X is the external electric field strength and AX is the elec-
tric field strength--which opposes the external field--caused by the
relaxation effect. (The factor Q_x‘lO"8 converts esu into V so that F
is expressed in C eq_1 while all other quantities are expressed in

electrostatic CGS units.) For the relaxation effect on the conductance
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of very dilute solutions Onsager obtained the following limiting law:
AX  Z,Z-e2Qx. (1-34)
X~ T

3DKT (1+vQ)

in which Q is defined by the expression

Q = (=2z+2- \_2¥te \. (1-35)
Zy~Z- \Z425-20F

Substitution of Equation (1-12) into Equation (1-35) yields

Q= (-242.\ (. 747 1 . (1-36)
: Zy=2-) \Z4A7 —z 2t Zy=Z_ ) \Zpho/ho=2_2F/A,

The transference numbers of the catiom, tg, and the anion, t;, at

infinite dilution are given by

e} =A% (1-37)
Ae
and
te = A, (1-38)
Ao
respectively. Therefdre, Equation (1-35) may be written as
qQ = -Z47._ 7 (1-39)

(Zy-Z_) (Zypto-Z_t?)

Substitution of Equation (1-34) into Equation (1-33) yields
AL = |zgfeFe < [1 + z Z_e2 (1-41)
n DT (147
[_ 6mnC (L0~ 8) 1l+ka 3DKT (1+vQ)

’The transference number of an ionic species is the fraction of
the current transported by the particular species; it is alsc referred
to as the transport number. Inasmuch as the total current is the sum
of the current carried by each of the migrating ions, it follows that
the sum of the transference numbers must be unity. Thus for a binary
electrolyte

tt + t7 = 1. (1-40)
Consequently, for a symmetrical electrolyte (]Z |=]2-.1), @ = 1/2 and a
knowledge of the ionic equivalent conductances or transference numbers
is not required.
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The equivalent conductance for an electrolyte is the sum of the equiva-

lent conductances of the constituents; therefore,

A=t 4+ a7 = [Re - (Z4-Z )eFx ( , (1-42)
6mnC(10~°) \l+ka 3DkT(l+ i}

where Af'and A~ are the ionic equivalent conductances of the cation and

anion, respectively. Onsager made the further approximations.that in
very dilute solutions ka is small in comparison to unity--so that
(l+5§)2l——and that the product of the second terms of the bracketed
factors of Equations (1-41) and (1-42) may be neglected in comparison
to the other terms. With these approximations, Equation (1-42) may be

written as -

A= ho + 242-82Q0k Ao - (Zy-Z.)eFx. (1-43)
3DkT (1+VQ) 6mnC(10™8)

Substitution of Equation (1~22) into Equation (1-43) gives

A= ho + Z3Z3Q/TNA, i
. | 15/5(1+/Q) (DkT) /2
- (24-2-)e?FA vy (1~44)

30/5mC (10~%) (DkT) */ 4
The Onsager limiting law, expressed in Equations (1-43) and (1-44), may
be abbreviaped to the equation
A= he - SVA, (1-45)

in which S is the Onsager tangent and

S = aho + Bo, "' (1-46)
where
a = -242-e3Q/1N (1-47)
15v5(1+/Q) (DkT) 3/2
and
= (Z4-2-)e’F/N (1-48)

0/——hC(10"8)(DkT)1/2
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For a 1:1 electrolyte, ]Z+] = |z_| =1, so that Q = 1/2 and

b =c, =c; thus for a 1:1 electrolyte, Equations (1-45), (1-47) and

——

(1-48) may be written as

A= Ao - SV = Ao ~ (aho+Bo) Yoy, (1-49)
o = e3/oN (1-50)
15v/10(1+/2) (DkT) 3/2
and
15/5mnC(10-8) (DkT) 1/2
respectively.

In 1927 Davies (50) presented a methdd, which he applied to strong
electrolytes, for calculating dissociation constants by taking into
account activity coefficients when using the mass action law; for a
1:1 electrolyte this law may be expressed by the equation

Ky = (c4fy) (c-£) = cffd, (1-52)
cufu cufu

where [ and c-~ are the actual molar concentrations of the cation and
anion, respectively, cy is half the sum of c4 and c_, ¢y is the molar

concentration of the undissociated salt and f,; is the activity coeffi-

cient of the undissociated salt. The degree of dissociation is given
by
Y = Ci; (1-53)
c

he assumed the degree of dissociation to be given also by

Y = » : (1_54>

A
Ag
in which A is the observed equivalent conductance and Ay is the calcu-

lated equivalent conductance given by Equation (1-49) with cj substi-

tuted for cp. Combining Equations (1-49), (1-53) and (1-54) gives
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Ay = Ac = he - SYcy, (1-55)
Ci

from which cj can be calculated; then ¢, is obtained by subtracting cy -
from ¢. If £, 1is taken to be unity--a reasonable approximation for un-

charged species in dilute solutions--Equation (1-52) may be written as

2
4 -% (1-56)
Cu fi
or
/2 2
logjg ci )= log) yKp - log;fy- (1-57)
Cu

From Equation (1-30),
logyof. = —2A'Ve . (1-58)

Substitution of Equation (1-58) into Equation (1-57) yields

10310<?ﬁ;>= loglOKD + ZA'/EI; (1-59)

Cu

thus, a plot of loglo(gi/gg) versus /E; gives loglOKD as the intercept,
from which Kp is obtained. |

The Onsager equation as written in Equations (1-43), (1-44), (1-45)
and (1-49) is not a conductance curve equation; it is the equation for
the tangent to the curve at infinite dilution--the Onsager limiting
law.® It is of the same form as the Debye-Hiickel conductance equation

given by Equation (1-32). The two constants, a and B., which describe

the relaxation effect and electrophoretic effect, respectively, are

8An anabatic phoreogram is one which approaches the Onsager
tangent from above as the concentration approaches zero and a catabatic
phoreogram is one which approaches the Onsager tangent from below as
the concentration approaches zero. A parabatic phoreogram lies right
on the Onsager tangent for a moderate range of concentration (15).
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completely determined by the valence type of the solute, the dielectric
constant of the solvent, the absolute temperature, the viscosity of the
solvent, the ionic equivalent conductance at infinite dilution, and
universal constants. Onsager and Fuoss (51) used matrix algebra methods
to obtain a general solution of the equation necessary to extend the
Onsager treatment to electrolytic solutions containing more than two
kinds of iens (a general equation éf continuity for mixtures of electro-
lytes) and found that for nonbinary salts the coefficient o is also a
function of the limiting conductance of the separate ions. It has been
confirmed experimentally to be a limiting equation for dilute aqueous
solutions of 1:1 electrolytes, 1:2 electrolytes and 2:2 electrolytes
(52) (53) €54) (55).

It is necessary to extend measurements to even lower concentrations
in nonaqueous solvents because in general these golvents have lower di-
electric constants and ionic attraction is more pronounced. It has been
confirmed for a number of nonaqueous solvents with a dielectric congtant
greater than 30 that the equivalent conductance is a linear function of
the square root of the concentration of the electrolyte; in some cases
the slope is in agreement with the Onsager limiting law. A number of
peculiarities occurs when the dielectric constant is less than 30; for
example, some solutions have both maxima and minima in their conduct-
ance curves., The phoreograms for most nonaqueous systems are catabatic.
In 1927 a general discussion on the theory of strong electrolytes was
held by the Faraday Society which included papers and discussien on
mobilities of ions and activity by .Bjerrum, Bronsted, Chapman, Debye,

Fajans, Ferguson and Vogel, Fowler, Harned, Hartley and Bell, Hartley
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and Raikes, MacInnes and Cowperthwaite, Onsager, Remy, Scatchard, and
Ulich (56).

Assumptions in the theory are no longer valid at higher concentra-
tions and several empirical equations have been proposed that give very
good agreement with experimental data (57). One such extension of the
Onsager equation for 1:1 electrolytes was prcposed by Shedlovsky (58).
He rearranged Equation (1-49) as follows:

he = A+Boven. (1-60)
1-ayc

To this expression he added another term:

ho = A+BoVCq - S'c s (1-61).
l-a/co

S' is the slope of the curve for a plot of (§+§3f§£>/(leg/gi) versus
Cp* Equation (1-61) may be rearranged to give
A= Ao - SVop +.8'cy(1-avay). : (1-62).

Because of the restricted application of the Onsager equation the
question arises as to whether or mot other means can be used to obtain
confirmatory evidence fer the interionic attraction theory. Two effects
which appear to confirm the theory are the Wien effect and the Debye-
Falkenhagen effect.

Wien (59) (60) showed that at high applied voltages the conduct-
ance of certain electrolytes rises more rapidly than would be expected
from Ohm's law--the rise in conductance being preportional to the field -
strength—~—-even when the heating effect of the current is considered.

At very high field strengths the conductance fises more slowly tending
toward a limit. The Wien effect is found toc be greatest at high con-~

centrations and for solutions containing highly charged ions; these gre
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the conditions under which the electrophoretic and time of relaxation
effects are expected to be greatest. In the case of weak electrolytes
it was found that the high fields caused an increased ionization,
referred to as the dissociation field effect or second Wien effect,
which has béen discussed by Onsager (61) and others. The Wien effect
may be interpreted in the following manner. The absolute mobilities of
ions are of the order of magnitude of 1073 ecms~! in a potential gradi-
ent of one V cm~!, The ionic velocity is about 102cm s~! when the
potential gradient is 105 V cm~!and under these conditions an ion
traverses the width of the ionic atmosphere in about 10710 s, This is
approximately the time required for the formation or decay of the ion
atmosphere, so that in very strong fields it is possible for ions to
migrate free of an ionic atmosphere (62).

In 1928 Debye and Falkenhagen (63) (64) extended the Onsager
theory to alternating current conductance and predicted from theoreti-
cal considerations that if measurements of electrolytic conductance
were made using very high frequency altérnating current greater
conductances would be obtained than if relatively low frequencies were
used. Sack (65) demonstrated this dispersion of conductivity experi-
mentally., The increase in conductance occurring with the Increase in
frequency of the alternating current is called the Debye-Falkenhagen
effect and may be interpreted as follows. If the conductance measure-
ments are made using low frequency alternating current a dissymmetry in
the ionic atmosphere, which corresponds to the momentary velocity of
the ion, will be produced at each instant, If the field alternates at

a rate which is comparable with the time required for the adjustment to
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occur the dissymetry will not have sufficient time to be established:
and the braking effect on the motion of the ion will be decreased,
Therefore, theoretically the time of relaxation effect will disappear
at very high frequencies. The observed changes of conductance with
frequency have been found to agree qualitatively with the theory of
Debye and falkenhagen (35).

In 1931 Onsager (66) (67) applied the principle of microscopic
reversibility and obtained.a general reciprocal relation which is
applicable to transport processes such as the conduction of heat and
electricity and diffusion.®

Before proceeding further it will both simplify and clarify mat-

térs to adopt two terms introduced by Fuoss. (15) and discontinue the

use of the terms strong electrqute and weak.electrolyte. Fuoss refers

to substances such as sodium chloride which exist only as lattices of
ions in the pure crystalline form as ionophores and substances such as
acetic acid which in certaiﬁ éolvents can give conducting solutions
although the pure substances are nonelectrolytic neutral molecules as
ionogens. The advantage of this classification is that it is based on
the chemical structure of the solute and is independent of the behavior
of that particular solute in any given selvent. In general the previ-
ous discussions of the DebyeQHuckel-Onsager theory Have involved
ionophores, whereas those discussions pertaining to substances which .
obey the Ostwald dilution law have involved ionogens.

Even though the Onsager equatien satisfactorily accounted for the

s

9Onsager was awarded the Nobel prize in 1969 for this. The
Onsager -reciprocity theorem is discussed by Yourgrau (68),
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limiting behavior of solutions of ionophores in solvents of high die-
lectric constant, it did not account for solutions which obeyed the
Ostwald dilution law or solvents such as ammonia in which the phoreo-
grams are similar to those of lonogens in solvents of high dielectric
constant,

Fuoss and Kraus (69) (70) (71) (72) undertook an extensive inves-
tigation of the preperties of electrolytic solutions. - They studied the
conductance of tetraisoamylammonium nitrate in water, dioxane, and
various dioxane-water mixtures and found that specific effects due to
the solvent, except viscosity, are not large; they also showed that at
sufficiently low concentrations the equivalent conductance increases
with dilution, even in solvents of very low dielectric constant. They
gave a method for solving the conductance equations for ionophores in
various solvents, including ammonia, and were able to give a complete
plcture of equivalent conductance over a wide range of dielectric con-=
stant by applying and extending the concept of lon association which
had been given by Bjerrum (73) (74).

In order to account for deviations from the limiting Debye-Hilckel
activity law Bjerrum‘aSSumed.the\ions are rigid unpolarizable spheres
in a medium of a fixed macroscopic dielectric constant, excluded ion-
solvent interac%ionS‘and proposed that the ions could associate to form
ion pairs. Such pairs would be stable to thermal bombardment by the
surrounding solvent molecules 1f the Coulomb potential energy of two

ions in contact,is 1arge relative toAEI.lo (A solvent of sufficiently

10A more detailed discussion of Bjerrum's theory of ionic associa-
tion is given by Harned and Owen (33); Fuoss (75) gives a rigorous dis-
cussion of another -approach to the same subject. ’
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low dielectric constant for this to occur is called a smenogenic sol-
vent; a solvent in which the dielectric constant is high enough to

prevent lon association is referred to as a smenocolytic solvent (15).)

He assumed that in the case of solutions of ionophores there is an
equilibrium between free ions and ion pairs, which for 1:1 electrolytes
may be expressed by the chemical equation

ct + A~ == [ctA7)]°, (1-63)
where the term in brackets is an ion pair and A~ and Qi are the free
anion and cation, respectively. According to Bjerrum's treatment the
equilibrium constant for the formation of an ion pair, EA‘(the recipro-

cal of the dissociation constant, KD, of the associated ion pair), is

given by
Ry = 47N [ 242-¢2)3Q(b). (1-64)
1000 \ DkT
Q(b) is defined by the integral
b
Q(b) = J exp (Y)Y ""dY, (1-65)
2

where b is defined by

b = -Z4Z_g? (1-66)
aDkT

and Y is defined by

Y = -Z4Z-¢2, ' (1-67)
dDKT

in which d is the distance between the ions and d is less than the

Bjerrum distance, gl, which is given.by the equation

q' = -24+Z_g?. (1-68)
2DkT

The integral Q(b) reduces to

Q(b) = l|exp(2)+E,(-2)-E,(-b)—exp(b) {I+1+2 . (1-69)
6 b ¥ b by
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where E,(x) is the integral expomential function,

E, (%) =.I exp(—u)u"ldu=~I‘—1ogex+x—x2 Feee, (1-70)
X 2+2!

Values of Qﬁh) have been calculated by Bjerrum (73) for the range

1 <b <15 and by Fuoss and Kraus (71) for the range 15 i-ﬁi 80.
Bjerrum assumed that two lons at a distance of d < g: are associlated.
For 1:1 electrolytes in water at 18 °C, g' equals 3,52 K; therefore,
1:1 electrolytes with a less than 3.5 X will form short-range ion pairs
and with a greater than 3.5 & will not--the Debye-Hiickel theory would
be valid for the latter. 3Bjerrum (56) pointed out:

The distinction between free and associated ions was not a
chemical one, but only a mathematical device making possible
an approximate calculation of the effect of interionic
forces under conditions where the approximation of Debye and
Huckel could not be used.
The ion pair concept is simply a handy model for representing higher
terms of electrostatic interaction.
For lonogens 1t is assumed that a reaction occurs first between

the solute and solvent to form a molecular complex which rearranges to

form an ion palr and can then dissociate to form fxee ions:

CA + solvent === CA.solvent, (1-71)
CArsolvent == [C(solvent)tA~]°, (1-72)
[C(solvent)TA™1° == C(solvent)t + T\ (1-73)

It 1s to be noted that in the case of ionophores--Equation (1-63)-—the
process 1s one of association of ions rather than dissociation of a
free molecule. Fuoss and Kraus proposed triple ion formation to ac-
count for the appearance of minima in conductance cutves:

[cta™]° + ¢t == [¢ta~ct]T, (1-74)

[CtAT]° + A™ === [A~CTA™]™; (1-75)
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the expressions on the right side represent ion triplets. They also
proposed quadrupole formation--association of ion pairs (76). Halpern
and Gross (77) (78) presented a theoretical treatment of electrolytic
solutlions and criticized the theoretical interpretation of ion associa-
tion given by Fuoss and Kraus (70) (71) (72); this criticism was re-
futed by Fuoss and Kraus (79). There is considerable evidence from
different kinds of experiments for the existence of ion associatioh
(80) (81) (82) (83) (84) (85), Fuoss and Accascina (24) have said of
two papers of Kraus (83) (84) on the subject that they "contain so much
information, based on over sixty years of research experience, that no
abstract (short of outright plagiarism) of them could be adequate."

The equation obtained by Fuoss and Kraus for the conductance of
1:1 electrolytes as-a function of concentration is

A=y @ - SHcp), (1-76)

where i-is the fraction of electrolyte existing as free ions. Equation
(1~1) gives the degree of dissociation when it is assumed that ionic
mobilities are independent of concentration. Inasmuch as Equation (1-1)
cannot be considered to be a true representation of the degree of dis-
soclation of an electroiyte, Bjerrum introduced the conductance coef-
ficient, g, which is a>éorrection factor that accounts for the
concentration dependence of ionic mobilities:

vg = (1-77)

:>'1>
o

The conductance coefficient is defined as the ratio of the observed
equivalent conductance to the value which the equivalent conductance
would have at the same ionic concentration in the absence of inter-

ionic forces. Mathematically Equation (1-76) is just the Arrhenius
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equation corrected for the effects of long range interionic forces;
however, physically the interpretation is obviously quite different.
The expression for the equilibrium constant, Kp, for the dissociation

of the ion-ion pair 1s given as .

.
Ky = cEY2f+, (1-78)
=Y

which is essentially a combination of Equations (1-10) and (1-52).
Equation (1-76) is obeyed exactly up to concentrations at which specif-
ic interactions of higher order than ion pairs become appreciable; it
was derived on the assumption that free ions and ion pairs are the only
species present. Onsager and Fuoss (49) (51) (86) have pointed out
that a more complete conductance equation should contain terms of order
higher than /E;: The solution of Equation (1-76) for Z_entails a
series of successive approximations. Fuoss (87) simplified the calcu-
lations by introducing a variable, z, defined as fellows:

2 = 8433/ 2/e;k = sus >/ /000ty (1-79)
It can be shown that (§2—§Vi§£) is equal to the product of éf and the

continued fraction, F(z);

-1/2.-1/2,-1/2

F(z) = 1-z{1-z[1-z(1-...) 1 } (1-80)
Thus Equation’ (1-76) may be rearranged and written
Yy = __A (1-81)

AQF(z)t
He calculated values of F(z) for values of z from z = 0.000 to z =
0.209 and they are tabulated in the paper. Substitution of Equation
(1-81) into Equation (1-78) and rearrangement yields the Fuoss—Kraus

equation:

F(z) = _1 (anfi +1. (1-82)
A Kphs \F(z) / Ao
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In order to obtain ﬁi and ED'from conductance data a free hand extra-
polation of a phoreogram is made to get a tentative value for the
limiting conductance. With this tentative value, z is calculated from
Equation (1-79), Eﬁg} from either Equation (1-80) or tables, qurom
Equation (1-81), and fi from the equation

log, of3 = 22,2 A'Wyc,. (1-83)
(Compare Equation (1-83) with the limiting forms -of the Debye-Huckel
equation as given by Equations (1-30) and (1-58).) Finally F(z)/A is

2
plotted against’ani/F(z) and for molar concentrations less than 3.2 x

10-7 x D (at 25 °C) a straight line is obtained which has an intercept
of AEI and'; slope of (Egﬁg)‘l; such a graph is referred to as a Fuoss
plot (88).

A number of functions and methods were proposed during this period
by Shedlovsky (89) and others; of these the Owen (90) method is best
for higher valence types. Fuoss (91) and Kraus (92) wrote review
articles on the subject in 1935 and 1938, respectively, and a compari-
son 0f extrapolation methods for conductance data was given by Fuoss
and Shediovsky (93) in 1949. Other review articles on related subjects
were written during this time by Debye (94), Kirkwood (95), Onsager
(96), Redlich (97), and Scatchard and Epstein (98)--articles referring
in particular to the role of ionic solvation were written by Robinson
and Stokes (99) (100) and Bockris .(101). |

An experimental problem of the theory was that a knowledge of the
'ionic equivalent conductance was necessary except for symmetrical
binary electrolytes. Because of the lack of transference number data

in nonaqueous solvents the ionic equivalent conductances were obtained
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by the method of Fowler (102) which appears to be a reasonable, though
essentially arbitrary, assumption. The method consists of measuring
the conducpénce of an electrolyte consisting of two large ions of high
symmetry, equal size and similar constitution; it is then assumed that
the transference number of each ion is one half and the ionic equiva-
lent conductance is therefore taken to be half of the equivalent
conductance. (See Equations' (1-37) and (1-38).) The ionic equivalent
conductances  of other ions in the solvent are calculated relative to
these two ions By making use of Equation (1-12). This has been done
with a number of solvents; of particular interest to this dissertation
is the work of Reynolds and Kraus (103) with acetone as the solvent,
Thus, at the midpoint -of the twentieth century the generally ac-.
cepted theory for electrolytic conductance was based on the idea that
the change in conductance with concentration was due to both the mobil~
ity and the fraction of free ions for both ionophores and ionogens.
The hypothesis of ion association had displaced the Arrhenius hypoth-

esis of dissociation for ionophores.

The Development Since 1950 of the 1965

Fuoss-Onsager—Skinner Equation

As stated at the beginning of this chapter, this section is limit-
ed to the development of the Fuoss-Onsager-Skinner conductance equation
which is applicable to a system involving 1:1 electrolytes in a smeno-
genic solvent at a low constant applied voltage and a constant low
frequency. Consequently, such phenomena as the Wien effect and  the

Debye-Falkenhagen effect are not involved nor discussed. Though
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diffusion is involved, 1its effects have not been studied in this work
and therefore are not included here. Review articles discussing the

general work on solutions of electrolytes are available; one good

source of such articles is Annual Rgviews of Physical Chemistry.

It was suggested that the deviations of Equation (1-49) from
experimental observations might be accounted for by terms of higher
order which had been neglected. Kraus and coworkers (104) (105) intro-
duced two of what appeared to be the more important of these terms:

A = Ao =~ SVcp + Hep + Geplogacp. (1-84)
The coefficients H and G are constants which had not been evaluated
successfully on a theoretical basis. They wrote this extended equation
of Ongager so that it expressed the devigtion from the simple Onsager

equation as a functlion of concentration::

As = Ag = Hey + Geploggey,s (1~-85)
where
Ad = A+B8oVeq, (1-86)
l—aﬁ;;

If G and H are zero, values of Ag calculated from Equation (1-86) using
-experimental data are the same as for A,. If the deviation is found to
be a linear function of cn, this corresponds to a value of zero for G
and a nonzero value for H:

AL - A = Hep; | (1-87)
H is an empirical constant equal tao the slope of the curve for a plot
of-éé versus cp. Equation (1-87) is of the same form as Equation (1-61)
which had been found to hold for a number of salts.

In 1955 Fuoss and Onsager (106) (107) presented a preliminary

statement of a theoretical conductance equation which is valid for non-
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zero concentrations. They summarized the derivation as follows:
We start with the general equation of continuity which

specifies the concentration of -ions of one species in the
vicinity of ions of the other species in a solution of elec-
trolyte which has reached a steady state under the influ-
ence of an external force (here, an electric field). The
equation is first solved, neglecting terms of higher order,
but using ions of finite size rather than point charges as
the model. This first-order solution is then returned to
the higher-order terms in the equation of continuity.
Solution of the resulting perturbation problem gives the
desired expression for the relaxation effect in the mobil-
ity to terms of order ¢ and clogec. On combining this re-
sult with the previous value of the electrophoresis
calculated to the same order, the final conductance
function is obtained.

Fuoss and Onsager (108) gave the details of their derivation in 1957
and obtained an equation,

A= Ay - scl/2 ¢ Eclogloc + J(a)c, (1-88)
which is similar in form to Equation (1-84); however, the coefficients,
E and !ﬁﬂz’ were obtained from the theoretical treatment. They were
able to reproduce experimental data up to. about 0.0l normal for aqueous
solutiong of 1:1 ionophores. Thus they showed that.anabatlc phor-
eograms can be accounted for theoretically merely by a refinement of
the earlier calculation--the replacement of point charges by charged .
spheres in the physical model.

Also in 1957 Fuoss (109) combined the new conductance equation
with the law of mass action and obtained a generalized conductance
equation which includes the case of association of free ions to ion
pairs. He rearranged Equation (l—78)_so that it was written as

y=1- KAcyzfi. | (1-89)
In this expression, E; is obtained from Equation (1-28) by replacing u

with the actual concentration of free ions, cy; Equation (1~28) can
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then be written as

loglofi = —i;gg%%. (1-90)

The denominator of Equation (1-90) results from the fact that for 1:1
electrolytes
k = B/c. (1-91)

This can be shown by substituting Equation (1-26) into Equation (1-22)

.and noting that y = c. Fuoss assumed that the conductance due to free

ions, Ay, is given by a form of the equation, which is valid at low

concentrations (xa # 0.2), for conductance of unassociated electro-

11

lytes. He replaced ¢ throughout by cy to give the actual concentra-

tion of free ions (in equivalents per liter) and wrote

i!

where A is the observed equivalent conductance. Substitution of Equa-

tion (1-92) into Equation (1-89) gives

A=1- KAc(L)yff (1-93)
N Ay
or
2
A= Ai - KACAYfi- (1-94)

Substitution of the conductapce equation for unassociated electrolytes
(Equation (1-88))--with ey in place of Ef~for &i_in Equation (1-94)
yields an equation for the conductance of associated electrolytes:

A= Ao - Sc1/2y1/2+ Ecylogygey + J{a)ey - KAcyfiA. (1-95)

Fuoss included a graphical treatment for the solution of the equations

l1pccascina, Kay and Kraus (110) have given an experimental demon-—
stration of-the importance of this limit.
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and gave an estimate of the viscosity correction which is also required
if one lonic species 1s bulky compared to the solvent molecules.

Fuoss (111) reviged the equations and rearranged the algebraic
form so as to be more convenilent for practical computation. Fuoss and
Kraus (112) applied the method successfully to several salts in
dioxane-water mixtures and showed that Eé can be represented by the
expression

K, = exp(b). (1-96)
Fuoss (113), using a model in which the solvent is a continuum, applied
& method devised by Boltzmann (114) to the equilibrium between ion
palrs and free ions which led directly to Equation (1~-89), in which the

value of K, is given by

Ky = Keexp(b), (1-97)
where
Ke = 4mNald, (1-98)
3000

Expression (1-96) is consistent with the results of Denison and Ramsaey
(115), who used a Born cycle to show thét EA ghould be a continuous
function of DT, and Gilkerson (116), whose model includes the effect of
interaction between solvent and solute and the free volume of the
solute. (Fuoss and Accascina (117) used Equation (1-97) to explain the
fact that tetraethylammonium picrate 1s more associated in l-butancl~
methanol mixtures than 1s tetramethylammonium picrate.) Puoss and co-
workers (118) gave a physical description of their model as it stood in
1958 and stated it is "only a first approximation, but, until its
limitations have been established, it seems pointless to consider more

complicated models."
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In 1959 Fuoss (119) collected the derivation and its revisions-~
References (106), (107), (108), (109), (111), (112), (113),. (120), and-
(121)=-in one paper. in which he included -a nonmathematical summary of
the derivation and described .methods of applying the equation to
experimental data. Fuosg and Accascina (24) gave a detalled outline of .
the complete theory. Sadek and Fuoss (122) discussed the relative
values of the terms as a function of concentration over a wide range
of dielectric constants. Kay (123) gave a method of solving the equa-
tions with a high speed computer. Lind, Zwolenik and Fuoss (124) used
experimental data for aqueaus potassium chloride solutions to show that
one form of the equation can be used to calibrate conductance cells
with an accuracy of 0,01 percent upbt0~concentrations of 0.01 N KCI,
Fuoss (125) showed another method for obtaining an ion size parameter
from the dependence of the Walden (22) product, Agn, on the dielectric.
constant. Petruceci (126) found that Walden's rule agrees well for some
nonaqueous systems. Stern and Amis (127) wrote a review on ionic sizes
and Young and Irish (128) have discussed the meaning of degree of
association as determined by different methods. Wirth (129) suggested
another function for estimating .dissociation of electrolytes which was’
simpler than that of Fuoss (87) or Shedlovsky (89). Davies (130)
published a monograph on ion association in 1962.

In 1962 Fuoss and Onsager began a revision of their treatment of
the conductance of symmetrical electrolytes. They undertook the
investigation for two reasons. First, they were dissatisfied with the
arbitrary insertion of the mass action hypothesis into the argument;

if :ion association occurs only as a result of Coulomb.forces ‘then one
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should be able to predict thé décréase in electrical conduéfance with
increasing concentration directly from the equation of continuity, the
equations of motion and the Polsson equations. Second, it had been
found that "a values" calculated from the linear coefficients of the
equation increased systematically for a given electrolyte as the die-
lectric constant of the solvent mixture decreased. The dependence is
either the result of mathematical approximations made in the derivation
of the equation from the_fundamentél differential equations or the
consequence of an inadequate model for the real systems. The deriva-
tion of Equation (1-88) contains two mathematical approximations—-all
terms which would ultimately lead to terms of order’_c_3/2 or greater
were deleted and in the equation of continuity the Boltzmann factor,
e§, was approximgted by the first three terms of its power series
(l+§f£2/2). The effect of the first approximation can be eliminated by
limiting application of Equation (1-88) to sufficiently low concentra-
tions~-that is, to concentrations in which the deviations between
observed and calculated conductances are random and thelr root-mean-
square value is within the estimated experimental error. The effect

pf the latter, however, is built into the final outcome at the begin-
ning of the computation and can never be removed. Fuoss and Onsager
concluded that a more realistic model is required--in particular, one
which includes short range ion-solvent interactions. In the first-
paper of a series they considered the potential of total force, in the-
second paper the relaxation field, in the third elecfrophoresis and in
the fourth the hydrodynamic and osmotic terms in the relaxation field
(131) (132) (133) (134). (The abstracts from the original papers are

given in Appendix B.) Fuoss (135) has discussed these factors further.
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Fuoss, Onsager and Skinner (136) combined the results of the four
papers in 1965 and obtained the following equation (in which the
Boltzmann factor has been retained explicitly) directly from the equa-
tion of continuity, the equations of motion and Poisson's equations:

A =4, - scl/? 4 E'cloger2 - BE'K(b)cexp(-2T)
+ [EJAGH(B) - E3G(b)]c - [(2b-3)/b2]A.73, (1-99)

where S and b are given by Equations (1-46) and (1-66), respectively,

E' = Elogjge = Efho - EJ, (1-~100)
T = (6Ejc)t/2, (1-101)
K(b) = _:L_Epaa) - exp(b)(lﬂ/b-)], (1-102)
3 b .
E{ = 822, ~ (1-103)
24c .
H(b) = 2N'(b) + (1-T{)7%, (1-104)
E! = BB (1-105)
2 16c372
and
G(b) = 1.9055 + 2/3b2 - 4£(b); (1-106)
E is given in Equation (1-88),
b
Ep(b) = J exp(u)u~ldu = exggb26+l!+2!+..> R (1-107)
T T7
oo b b b
B = 2q' = ab, (1-108)
N'(b) = 1.4681-1.2916T1 - [2+Q+ TJ Ka, (1~109)
Ti = exp(-b) (L+b+b2/2), | (1-110)

£(b) = ~1/3(1+Q) + (t2/3)logeT - T2exp(-21)K(b)
+ N"(b) (12/3) (1-111)
and ¥ and B, are given by Equations (1-22) and (1-51), respectively;
N"(b) = 2T - 1 + log,2 + loge(2+Q) + (1-T1)"1[T;(Q-1/2)

- Q/(2+Q) + (T1/2)loge(2+Q)/(14+Q)] - (1-112)
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and q¢' and Q are given by Equations (1-68) and (1-39), respectively, 12
They simplified Equation (1-99) by dropping the 1? term (which is of
order gﬁ/z) and changing the notation to a more convenlent form which

includes some computational approximations:

A= A - scl/2 4 E'cloge’r2 + Lec - AA,cfi, (1-113)
in which
L = EiAoH(b) - EéG(b), (1-114)
A = 6E'K(b) (1-115)
Ao
and
£, = exp(-1). (1-116)

Equation (1-113) reduces to Equation (1-88) for solutions of low con-
centrations in smenocolytic solvents with
J(a) = E'loge(6Ei) + L - AA,. (1-117)

The first term, K'(b), of the asymptotic expansion of K(b) is

K'(b) = 2e§2§b) (1-118)
b

and appears in the direct theoretical derivation of the assoclation
constant; K(b) is negative for b < 2.35 and K'(bz_has a minimum at

b = 3. Neglecting the term Eé (which is relatively small compared to

Ei) in Equation (1-100) reduces EL to E!Ao., which when substituted in

e a l

Equation (1-115) along with K'(b) for K(b) vyields

12The dimensionless variable, T, 1s the ratio of the Bjerrum
distance (q'), where ion pair probability functions usually have their
minima, to the Debye-Htickel distance («~1), where the maximum charge of
the ion atmosphere is located. It is a rational reduced variable for
the description of electrolytic solutions; two electrolytic solutions
which have the same value of t are in corresponding electrostatic
states, regardless of concentration, dielectric constant and tempera-
ture (137).
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A = 47Nadexp(b); (1-119)
3000

this is identical to the expression for Eé_given by Equationsl(l—97)
and (1-98). Consequently, Equation (1-113) gives the limiting form of
Equation (1-95) as y approaches unity if J(a) is given by Equation
(1-117) and A is identified with Ky. Of course, ESE) cannot be inter-
preted as a factor in an association constant when it is negative-~that
is when b is less than 2.35. Equation (1-113) fits data over a some-
what wider range toward lower dielectric constants than does Equation
(1-88); however, it also starts to show systematic deviations below a
dielectric constant of about 25. They proposed a stochastic extension
of Equation (1-99) to lower dielectric constants--where K(b) 1s greater
than unity--and formulated a genéral conductance equation:

A= hq = Scl/2y1/2 4 Elcylog, (t2y) + Ley - Kyev£2h,  (1-120)
in which L 1s given by

L =Ly + Ly(b) (1-121)
and S, E', 1, KA and fi are given by Equations (1-46), (1-100),  (1-101),

(1-97) and (1-116), respectively;

Ly = 3.202E{A, - 3.420Eé + aBe (1-122)
and
L2(b) = 2EiA°h(b) + 4§Eé,— 2E'log.b; (1-123)
h(b) = 2b%+2b-1 (1-124)
e

and Ei, Eé, a, Bos El and b are given by Equations (1-103), (1-105),

(1-50), (1-51), (1-100) and (1-66), respectively. For lower dielectric

constants the terms in Eé in Equations (1-122) and (1-123) become small

and h(b) = 2/b; the dominant part of L. is given by
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L= 2EiA,(l.60l—logeb), (1-125)
which goes through zero at b = 4.96 and is negative for larger values.
Substitution of the numerical values for the physical constants--and

noting that for 1:1 electrolytes u = ¢, Z, =1 and Z_ = ~1--in Equa-

tions (1-50), (1-51), (1-66), (1-97), (1-103), (1-105), (1-108) and

(1-116) yields Equations (1-126)-(1-133), respectively:

o = 8.205x10°, (1-126)
(DT)
Bo = _82.49 (1-127)
n(DT) 172
b = 1.671x10"3, (1-128)
aDT :
R, = (2.523x1021)a3exp (b)), (1-129)
I 10l2 -
E} 2.943x1012, (1-130)
(DT)
Eé = 4.333x107, (1-131)
n(DT)2
B = 1.671x10"3 (1-132)
DT
and
£2 = exp [-8.404x105¢1/2y1/ 27, (1-133)
= (DT)3/2 .

Equation (1-133) is obtained by squaring both sides of Equation (1-116)
and replacing ¢ with cy in the expression for I_(Equation (1-101)).
Fuoss, Onsager and Skinner stated that

[Equation (1-120)] can be considered to be theoretically
established. The principal contribution of this series
of calculations is in fact to establish that retention
of the Boltzmann factor without approximation leads
directly to a term in cf% into the conductance equation,
which in turn heuristically justifies the use of [Equa-
tion (1-120)] as the more general function of which
[Equation (1-113)] is the limit. We shall refer to
[Equation (1-120)] as the 1965 equation in order to
distinguish it from earlier equations.
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The conductance equation is a two-parameter equation since L and Kp are
both functions of b--that is, for a given solvent at a given tempera-
ture,

F(c,A,Aq,b) = O. (1-134)
However, the three parameter equation, .

F(e,A,Aq,L,Ky) = O, .(1—135)
yields smaller standard deviations for the difference between calcu-
lated and observed values of 4.

It should be mentioned that other methods have bean proposed and
developed for analyzing the general problem of conductance. Pitts
(138) (139) (140), Falkenhagen, Leiat and Kelbg (141) (142) (143),
Robinson and Stokes (l44) (145) (146), and Kremp, Kraeft and Ebeling
(147) (148) (149), for example, have developed theories which give the
concentration dependence of electrolyte conductance. Murphy and Cohen
(150) (151) have modified the theory of Fuoss and Onsager and extended
it so as to include asymmetric binary electrolytes. Murphy (152) has
utilized recent advances in the theory of Brownian movement to derive
the Fuoss-Onsager theory from the Liouville eguation; he showed that
the Fuoss-Onsager theory is sufficiently accurate to give the correct
value of the conductance through the transcendental term, but it does
not take into account some terms which affect the conductance to first
order in the concentration. One theory of conductance 1In solution is
based on the application of cluster expansion methods to Kubo's (153)
general theory of transport processes; Friedman (154) (155) (156) (157)
(158) (159) (160) derived the general equations, applied the theory to

a simple model and then generalized the model. Recently Pikal (161)
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devel;ped a theory of mutual diffusion in a binary electrolyte using
the charged sphere-in-continuum model and retaining the full Boltzmann
exponential. From this procedure he obtained a term representing the
effect of lon-pair formation as a natural consequence of the electro-

static interactions.



CHAPTER II
THE PROBLEM

Studieés by Cunningham and Associates

o

Olson and Cunningham (162) found that the specific conductance of
0.01 molal lithium bromide in acetone 1s enhanced by thirty percent
when suffigient bromosugcinic acid has been added to make the solution
0.2 molal with respect to the acid. They further found that when di-
methyl bromosuccinéte,has been%added in lieu of bromosuccinic acid the
specific conductance is diminiéhed by six percent and that when lithium
perchlorate 1is substituféa“forblithium bromide the specific conductance:
decreases‘linéarly as?bromosuccinic acld is added. It was these obser-
vations which attraégéﬁlfhe attention of Cunningham and he and his co-
workers pursued his ‘concern by amassing a great deal of data pertineﬁt\
’ to the ;tudy of the electrolytic conductance of the lithium bromide-
bromosuccinic acid-acetone system.

Bjornson;(163) investigated the electrolytic conductance of sys-
tems compriéihg 1ithium halideg and some carboxylic acids in acetone in
order to deterﬁiﬁé:the effect of the addition of successive increments
of acid. He foundkthat for most of the systems examined such additions.
qf'acid were accompanied by an anomalous rise in specific conductance.
By means of a Fuo;s plot he obtained valueg of 2.13 x 10~ 4nd -196.0

Q"1 cm?eq-! for Kp and Ay, respectively, for lithium bromide in acetone..

i
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He suggested that in the case of the lithium bromide-bromosuccinic
acid—acetohe system the bromosuccinic acid is a stronger acid than
hydrogen bromide and that hydrogen bromide would form in acetone. He
proposed that the association of protons from bromosuccinic acid and
bromide ions from lithium bromide would combine in the form of undis-
soclated hydrogen bromide molecules--the removal of the ions would per-
mit more lithium bromide and bromosuccinic acid to dissoclate and thus
the total number of ions would be increased leading to a larger specif-
ic conductance. Balley (164) employed the same mathod to the hydrogen
bromide-acetone system and got values of 1 x 106 and 110-120 G~} em?
eq‘l for En_and Ao, respectively, for hydrogen bromide in acetone,
Muller (165) measured viscosities, densities and dielectric constants
of solutions composed of lithium bromide and some carboxylic acids in
acetone., Mahan (166) also made density measurements on solutions of

lithium bromide in acetone.

Related Studiles

A survey of the literature indicates extensive research has been
done on the electrolytic conductance of lithium bromide, the electro-
lytic conductance of acetone solutions and the electroiytic conductance
in mixed solvents; consequently, this section consists of only those
investigations pertaining to the electrolytic conductance of the
lithium bromide-acetone system and the lithium bromide-bromosuccinic
acid-acetone system.

A value for the equivalent conductance at infinite dilution for
iithium bromide in acetone was first calculated in 1905 by Dutoit and

Levrier (167) for 18 °C: 166 Q! cm? eq'l. The graphical method of
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Equation (1-11) was applied to their data in 1913 by Kraus and Bray
(25) who obtained values of 5.7 x'lO_L+ for Ky and 165 Q! cm? eq'1 for
&2. Deviations from the mass action law (nonlinearity in the graph)
become appreciable at concentrations of about 1073 molar. Both groups
pointed out that measurements in acetone are liable to be seriously
affected by several sources of error, including the presence of solvent
impurities and exposure to light. A conductance solvent correction of
21 percent was applied to their most dilute solution.

In 1910 Serkov (168) determined the conductance of several salts
(including lithium bromide) at 25 °C in water, methancl, ethanol,
acetone and binary mixtures of these solvents, reporting a value of
144 @1 cm? eq~! for Ao for lithium bromide in acetone. He found that,
contrary to the other mixtures, no parallelism exists between conduct~
ance and fluidity in mixtures of which one component is acetone and
concluded that when the surveyed ionophores are dissolved in acetone,
solvates are formed and that the complexity of the solvates increases
as A, for the ionophores decreases.

In 1939 Dippy, Jenkins and Page (169) found that the phoreogram
for lithium bromide in acetone at 25 °C contains an inflection point
and were unable to get A, by extrapolation. It would appear, however,
from inspection of their phoreogram that Ao 1s in the proximity of
Serkov's value rather than that of Kraus and Bray. They noted that
although different batches of acetone had different specific conduct-
ances the data points of the phoreogram lay uniformly on a smooth curve
and they considered it as evidence of the satisfactory nature of the

solvent correction employed.
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Reynolds and Kraus (103) procured conductance data for fourteen
different salts in acetone at 25 °C and used the Fuoss method to calcu-
late their equivalent conductances at infinite dilution. Among the
galts were tetra-n—-butylammonium triphenylborofluoride, tetra-
n-butylammonium picrate, lithium picrate and tetra-n-butylammonium
bromide for which they obtained values of 134.2 Q7! cm? eq™!, 152.4
7! em? eq7!, 158:} -l em? eq~! and 183.0 97! cm? eq~!, respectively,
for Ao. They then generated ionic equivalent conductances at infinite
dilution by the methodoof Fowler using tetra-n-butylammonium triphenyl-
borofluoride as the reference electrolyte. Application of Kohlrausch's.
law of the independent migfation of ions produces values of 72.8 Q!
cm? eq~!, 115.9 971 cm? eq! and 188.7 97! cm? eq”! for 1; for 1lithium
ion, AE,fOr bromide ion and A, for lithium bromide, respectively.

In 1953 Olson and Konepny (170) st&died the conductance of lithium
bromide in acetone-water mixtures aé 25\;C and 35 °C. They calculated
Kp and A, in the acetone-~rich solvents by the Fuoss method, Ao in the
water-rich solvents by extrapolation of the phoreogram and a, the sum
of the ionic radii, by Bjerrum's method. Their results for 25 °C are
summarized in Table I, (It should be noted that 0.45 weight percent
water corresponds to 0.25 molal water.) It is seen from Table I that
as the water content increases,‘EQ increases, Ai decreases but then
undergoes an increase and a increases from slightly less than the sum
of the crystal ionic radii to the sum of the fully hydrated radii.!

Extrapolation of their data for A, to zero water content would not be

1The crystal ionic radii of lithium ion and bromide ion are 0.68 )3
and 1.96 &, respectively (171).
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reliable because of the large concave upward negative slope; however,
it would appear to lead to a value in the vicinity of 220 9~ ! cm2 eq L.
Similar extrapolations of values for Ky and a yield 2.0 x 10~% and

2.2 K, respectively.

TABLE I

CONDUCTANCE DATA FOR LITHIUM BROMIDE
IN AQUEOUS ACETONE

-
Weight % H,0 Kp ' Ao (@ lem2eq™d) a (A)
0.45 2.56 x 107" 206.6 2.28
2.89 8.52 x 1074 159.2 2.50
5.35 1.76 x 1073 138.9 2.62
12.48 9.5 x 1073 102.6 3.33
23.67 8. x 10°2 77.9 6.17
57.8 64.5
84,0 86.2
100.0 118.5

Source: Olson and Konecny (170).

Two years later Nash and Monk (172) also measured conduq£ances at
25 °C using aqueous acetone (12.5 weight percent water) as the solvent.
For EQ they obtaiﬁed values of 1 x 1073 and 6 x 10~3 for lithium bro-
mide and hydrogen bromide, respectively, by the Davies method and 101.1
Q-1 cm? eq~! and 117.1 97! cm? eq~! for Ao for lithium bromide and
hydrogen bromide, respectively, by the Fuoss method.

Olson, Frashier and Spieth (173) noted that the a&dition of lithi-

um bromide to a solution of the dimethyl ester of 2-bromosuccinic acid
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in acetone causes racemization of the ester and that the specific rate
of racemization depends upon the concentrations of the lithium bromide
and of the ester. They used the results of Kraus and Bray to calculate
concentrations of the lithium bromide species in solution. Konecny
(174) re~examined the rate data using dissociation constants obtained
by extrapolation of the results of Olson and Konecny to zero water
content; this led to a different interpretation which gives no indica-
tion of a lithium bromide catalyzed path--the rates are proportional to
the concentration of bromide ions.

A summary of the values which have been obtained for A, and Kp for
lithium bromide in acetone is presented in Table II. There is an obvi-
ous discrepancy in these values. The inconsistencies may be in part a

consequence of the presence of water.

TABLE II

SUMMARY OF CONDUCTANCE DATA FOR
LITHIUM BROMIDE IN ACETONE

Investigators Ag-(Q lcm2eq™l) Kp Comment

Dutoit and Levrier 166 N 18 °C

(167)
Serkov (168) 144 25 °C
Kraus and Bray 165 5.7 x 107" 18 °C, Equation (1-11)
(25) with data from Dutoit and

‘ Levrier
Reynolds -and Kraus 188.7 25 °C, combined Fuoss and
(103) Fowler methods
Olson and Konecny 220 2.0 x lO"L+ 25 °C, estimated from
(170) Fuoss method in aqueous

acetone

Bjornson (163) 196.0 2.13 x 107" 25 °C, Fuoss method
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The Proposal

It is the purpose of this study to determine whether or mnot the
electrolytic conductance of the lithium bromide-bromoesuccinic acid-
acetone system can be described by the Fuoss-~Onsager-~Skinner equation
(FOS equation)--Equation (l—lZO?——by treating the system as lithium
bromide in a mixed solvent, and to establish values for A, and K, for
lithium bromide in anhydrous acetone with the same equation. The equa-
tion requires knowledge of the concentration and corresponding equiva-
lent conductance in conjunction with the dielectric constant and
viscosity of the solvent and the temperature; that is,

F(c,A,D,n,T) = 0. , (2-1)
The essential data are to be compiled from the data acquired from the
experimental portion of this study and those accumulated by Cunningham
and coworkers., The experimental portion consists of measuring the
electrical resistance.at 25 °C of solutions of varying amounts of lith-~
ium bromide in acetone, lithium bromide in bromosuccinic acid and
acetone, and lithium bromide in dimethyl bromosuccinate and acetone.

This is an extremely complicated system for such a study inasmuch
as it is a three component system consisting of an ionophore (lithium
bromide) and an ionogen (bromosuccinic acid) in a smenogenic;gplvent
(acetone). Further, the solveﬁt has a high affinity for water and a

high vapor pressure at 25 °C.



CHAPTER III

REAGENTS USED FOR THE PREPARATION

OF THE CONDUCTANCE SOLUTIONS

If electrolytic conductance data are to be meaningful knowledge of
the composition of the system is essential. This necessitates having
as nearly pure materials as possible and an estimate of their purity.

- This work demanded that the species under investigation--acetone,

bromosuccinic acid, dimefhyl bromosuccinate and lithium bromide--be as
nearly pure andﬁreproducible as possible. It also required potassium
chloride and water of high purity for thé.calibration of the conduct-

ance cell,
Acetone

Several batches of'very nearly anhydrous acetone were prepared by
the method of Howafd and .Pike (175). A two-dm3 Pyrex round bottém
flask with a 24/40 standard tapered outer joint was cleaned, rinsed
with acetone and dried at 120 °C. Approximately 200-250 g of 1/16-in
synthetic zeolite peliets (Linde Type 5A molecular sieve) was placed
in the flask and 1.5 dm3 of acetone (Fisher certified ACS) was added.
The flask was stoppered and stored in a dark cabinet for a minimum of

two days, during which time the contents were swirled and mixed .
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intermitt_ently.l It was then placed in a Glass-Col metalvcoVeféd heat-
ing mantle (cpntfolled by a Variac powerstat) and connected to a Pyrex
fractionating disﬁillation column which had been flushed with acetoné
and purged with nitrogen. The nitrogen had been passed through a 1.2-m
length of 32-mm Pyrex glass tubing which was filled with indicating
silica gel.

The distillation column was approximately one m long and 2-3 cm in
diameter; it was packed with glass helices and sealed iriside a silvered
vacuum jacket which had an outside diameter of about 10 cm. The col-
umn.was connected to a Pyrex distillation head by a 24/40 standard
tapered Pyrex glass joint; The side of the water cooled condenser in
the head had four vertical ribs so spaced that the ratio of the amount
of liquid dropping from between two adjacent ribs to the total amount
of liquid dropping from the condenser was 1:1, 1:5, 1:5 and 1:10. The:
condenser could be rotated in such a manner that these various frac-
.ti;ns of the condensed,liQuid dropped into the feceiving cup and thus
the reflux ratio could be regulated. The vent was connected to a

drying tube which was filled with indicating silica gel. A Pyrex'gl§ss”

laocetone which had been left in contact with molecular sieves for
several months was yellow. Apparently the sieves catalyze the .same
reaction that occurs when acetone is saturated with hydrogen chloride
and allowed to stand for several days. A proposed mechanism involves
addition of the enol form of acetone to the conjugate acid of acetone
followed by a normal.acid-catalyzed dehydration reaction to form
4-methyl-3-penten-2-one (mesityl oxide); the mesityl oxide reacts with
the acetone in a similar manner to produce 2,6-dimethyl-2,5-heptadien—
4-one (phorone) (176), The boiling points of acetone, mesityl oxide
and phorone are 56.2 °C, 130-1 °C and 197 °C, respectively (171). ‘
Distillation of the yellow acetone yielded a colorless distillate whose
properties were essentially the same as the other acetone used for
conductance measurements.



53

adapter was constructed so that a Pyrex flask with a 24/40 standard
tapered inner joint could be used for the receiver, This was done to
allow the acetone to be poured from the receiver without coming in
contacf with the lubricant. A minimum of lubricant (Dow Corning stop-
cock grease--silicone lubricant) was used on all joints.

The acetone was refluxed and then distilled with a reflux ratio of
1:1. After 250 cm® had distilled a new receiver was connected and one
dm3 of acetone collected in a one-dm3 Pyrex Eflenmeyer.flask—«this was
the acetone used. The flask, which had an inner 24/40 standard tapered
top, was stoppered immediately with an outer Pyrex 24/40 standard
tapered cap and stored in the dry box; it was opened only therein.

One batch of the acetone had a specific conductance of 3 x 10-°
0-1 cm~! and the others 2 x 1078 @~1 em~!., The one with the lowest
specific conductance was prepared from the acetone which had remained
in contact .with moleéular sieves for several months; the others were
not. The specific cdnductaﬁce of the distilled acetone increased upon
standing in the Pyrex glass flask. For this reason all solvents were
prepared from freshly distilled acetone.

Bjornson (163) dried acetone by adding anhydrous calcium sulfate
and allowing it to stand. The acetone was then distilled from the mix-
ture under vacuum at room temperature. The vapor was passed through
a column containing phosphorous pentoxide and condensed in a flask
immersed in a dry ice-acetone bath.

Bailey (164) prepared acetone in essentially the same manner as
was done for this work. He prepared one batch which had a specific
conductance of 1.08 x 1077 Q! cm~! and a density of 0.7839 g cm™3 and

1

another batch with a specific conductance of 6.9 x 1078 97! em~l and a
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density of 0.7838 g cm=3. Bailey saturated samples of the dried ace-
tone with cesium fluoride and obtained the specific conductance of each
sample, He compared these data with conductance data for Bjornson's
acetone which had been saturated with cesium fluoride. Thils procedure
was used by both because Mysels (177) had suggested that the conduct-
ance of saturated solutions of a salt such as cesium fluoride would be
a simple and sensitive method for determining traces of moisture in
acetone. Bailey's cesium fluoride-gcetone solutions had a lower spe-
cific conductance than those of Bjornson, indicating a lower moisture
content. Bailey compared his data with Mysels' data and found that
"the acetone appeared to be very nearly‘anhydrous."

Sears, Wilhoit and Dawson (178) obtained a value of 2 x 1078

2 Reynolds and Kraus

=1 em™! for the specific conductance of acetone.
(103) got an order of magnitude lowe;; their acetone was dried by
agitation over calcium chloride and then distilled twice from activated
alumina pellets. Dippy and Hughes (180) attempted to reproduce these
results by using the Same'ﬁethod but obtained values for the specific
conductance which were of the order of magnitude of 1078 9~1 em—1,
They obtainedvcbnsistenﬁ values for the equivalent conductance of po-
tassium iodide in independent batches of acetone whose specific con-
ductances ranged from 2.09 x 10~8 o-1 em=! to 2.36 x 1078 g~1 cm-l

and concluded that there is no serious objection to a moderate total

solvent correction.

2This is the reference cited for the literature value of the spe-
cific conductance of acetone in A Survey of Non-Aqueous Conductance
Data (179).
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The infrared spectrum of 1liquid reagent grade acetone shows a sharp
absorption band at a wave number of 3400 cm™l and a broader band at 3600
em™!, Lucchesi (181) found that this absorption increases with increas-
ing water concentration in acetone. This band 1s considered to be a re-
sult of intermolecular hydrogen bondirg between acetone and water,
Lucchesi purified acetone by the method of Shipsey and Werner (182) and
also by repeated fractional distillation of commercial acetone. As is
evident from Figure 1, which shows a reproduction of the spectra obtain-
ed by Lucchesi; he was unable to eliminate the band. He concluded that
the driest acetone he prepared had about 2.5 parts per thousand by vol-
ume which is approximately 0.1 molal water..

The infrared spectrum of the acetone used in this work was obtained
both before and after distillation, The first few spectra were obtained
with a Beckman model IR7 infrared spectrophotometer. However, it was
learned that that much resolution was not required, Throughout the
project the majority of the infrared spectra was procured with a Beckman
model IR8 infrared spectrophotometer, In all cases a sodium chloride
cell was utilized with air as the reference; the cell was filled in the
dry box with a syringe following the usual precautions concerning the
cleansing and storing of such a cell, Prior to distillation the acetone
had an absorption band at 3600 em~!, Figure 2, which was reproduced
from the spectra recorded by the spectrophotometer, shows clearly that
distillation did not simply reduce the band--it expunged it.

It is not claimed that the acetone is anhydrous; however, the
infrared spectrum and specific conductance imply that it is as nearly
anhydrous as is possible with present means and knowledge. It is hum-

bly alluded to by the author as "The World's Driest Acetone."
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Bromosucciniic Acid

Bromosuccinic acid was purchased from K & K Laboratories? Inc.,
Plainview, New York. Thevmanufactﬁrer asserted a purity of 99 percent.
A portion of the snow white powder was transferred to a clean dry
weighing bottle and placed in the drying oven at 110 °C for two hours.
The weighing bottle was stoppéréd and put in the dry bex to cool; it
was stored in the dry box and opened only therein. This bromosuccinic
acid was used without further treatment in the preparation of the.
conductance solutiens.

The melfing point was determined with a Thomas Hoover cagpillary
melting point appgratus. A capillary tube containing a sample of the
bromosuccinic acid was situated in the apparatus and the temperature
was raised rapidly. The compound melted smoothly in the range of
160-165 °C; the capillary was removed and the compound solidified in
the tube, A second sample in another capillary tube was put in the
apparatus and heated slowly. At -about lél °C it began to melt and then
part of it began to rise in the tube, but did not appear to melt any-
more. The white solid in the bottom began to rise at about 174 °C, but
did not melt. At ‘184 °C the capillary tube--still containing the white
golid--was displaced from the apparatus. The capillary containing the
first sample was placed in the apparatus while the oil was at a temper-
ature of approximately 180 °C; the contents liquified immediately. The

literature value for the melting point of bromosuccinic acid is 160-

161 °C (171). Dictionary of Organic Compounds (183) states, "Heat
above m.p. - fumaric acid." Conceivably when the bromosuccinic acid

was heated rapidly it just melted, but when it was heated slowly
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fumaric acid was formed by the elimination of hydrogen bromide. As the
gas was formed it pushed the solid up the capillary tube. The litera-
ture value for the melting point of fumaric acid is above 250 °C (171).
Kinneberg of the Biochemistry Department of Oklahoma State Uni-
versity procured the mass spectrum of a sample of the bromosuécinic
acid with a prototype of the ILKB-9000 combination gas chromatograph-

mass spectrometer.3

There was no peak corresponding to the parent
compound. Of the most abundant peaks, the :largest mass to charge ratio
corresponded to the parent compound minus water, the next largest to
the parent compound less water and carbon monoxide, the next to hydro-
gen bromide and the next to atomic bromine. There were also fragments
matching carbon monoxide and water. No impurities could be identified.
In particular, there were no peaks corresponding to fragments contain-
ing two bromine atoms, The mass spectrum for bromosuccinic acid was
not found in the literature, but that for succinic acid was (185). The
mass spectrum for the bromosuccinic acid was quite analogous to that
for succinic acid (for example, no ;arent peak).

A portion of the acid was put in a screw cap vial and sent to
Galbraith Laboratories, Inc., Knoxville, Tennessee, for hydrogen and
carbon analyses. They reported values of 2.50 percent hydrogen and
24,57 percent garbon;,this gives a molar ratio for hydrogen to carbon
of 1.21 to 1.00., If four carbon atoms are assumed to be present, the
analysis gives a ratio of five hydrogen atoms to four carbon atoms,

which is in agreement with the formula for bromosuccinic acid. The

calculated values are 2.56 percent hydrogen and 24.39 percent carbon,

3This instrument has been described by Waller (184).
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which-yiéld absolute errors of minuys 0.06 percent and plus 0.18 percent,
respectively, The absolute errors for both hydrogen and carbon are
well within the tolerance limits of #0.4 percent set by the Journal of

Organic Chemistry.

Dimethyl Bromosuccinate

Eisenbraun, Morris and Adolphen (186) prepared dimethyl succinate'
by the diazomethane method. Morris directed and aided the author in
the syntheslis of dimethyl bromosuccinate using the same method. Diazo-
methane was prepared using EXR-101 (E. I. du Pont de Nemours & Company,
Inc.), which is NN'-dinitroso-NN'-dimethyl terephthalamide with an

inert filler. The method was essentlally that of Moore and Reed (187).“

“Diazomethane .is toxic and explosive. Precaution must be used in
its preparation and handling. Several batches were prepared usging the -
apparatus and the following procedure of Eisenbraun and coworkers:. In
a 500 cm3 flask, a solution of 2.4 g of sodium hydroxide in 20 cm® of
water, 50 cm3 of carbitol (diethylene glycol mono ethyl ether) and 150
cm3 of ‘diethyl ether was cooled to O °C; then 7.1 g of EXR-101 was
added at one time. The solution was stirred magnetically and the reac-
tion mixture warmed slowly. The evolution of diazomethane became ap-
parent at 15-20 °C., In the 30-40 °C range the diazomethane and diethyl
ether distilled; the condensed distillate was bright yellow. (During
this reaction the receiver was cooled with dry 1ce; diethyl ether was
added from a dropping funnel whenever the amount of diethyl ether in
the reaction flask became small. The lower layer became white and yis-
cous during the latter part of the reaction and stirring bécame morg
difficult.) The reaction was assumed complete when the yellow celor of
the EXR-101 in the reaction flask and of the distilling diethyl ether
disappeared. An ether solution containing about two g of diazomethane
was obtained. The equation for the reaction is

CH; O 9 CHg
N=C E={ ~ + 2NaoH —>
ol o

Q
2CH,Ny + NaOB@goNa + 2H,0. (3-1)
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A 25.3 g sample of the same bromosuccinic acid as was used in‘fhe prep=- .
aration of the solvents was placed in 200 em3® of diethyl ether. Not
all of the bromosuccinic acid dissolved. The yellow solution of diazo-
methane in diethyl ether was added to the mixture, whereupon the com-
bined solution became colorless, gas (nitrogen) was evolved and the
excess bromosuccinie acid'dissolved.5 The total volume of the solution
was reduced by removing the diethyl ether with an aspirator and then
more diazomethane was added; this step was repeated until the bubbling
of the gas was very slow. The excess diethyl ether was removed by
means of an aspirator. The remaining oil had a very slight yellow
tinge and was clear; however, during the final part of the ether dis-
ltillation it became tan or brownish in color. The 0il was then distil-
led under vacuum in a range of 45-49 °C. (The literature value for the:
boiling point of dimethyl bromosuccinate .is 110 °C at 10 Torr (183).)
The temperature appeared to be varying as a consequence of fluctuations
in pressure. (A McLeod gauge was in the vacuum system and the follow-
ing was observed: 49 °C at 0.1 Torr and .45 °C at 0.08 Torr.) As the
distillation continued the pot became cloudier and ultimately most of
the contents solidified; the color of the solid was brown-tan. About e
13 g of the distillate~-less than half of the theoretical yield--was
obtained. This clear colorless oil was transferred to the screw capped
bottle in which it was kept. It was this dimethyl bromosuccinate which

was used in the preparation of the conductance solutions.

5The equation for the reaction is
HCO,CHBrCH,COoH + 2CH,N» —
CHaCOZCHBrCHz(:OZCHa + 2N2’T‘q (3—2)
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A portion of the dimethyl bromosuccinate 'was treated by means of
thin layer chromatography using benzene as the solvent and a symmetri-
gal single spot was obtained which indicates either a pure compound or
no separation with this particular solvent.

The mass spectrum of a portion of the dimethyl bromosuccinate was
produced by Kinneberg (Biochemistry Department, Oklahoma State Univer-
sity) with the same instrument as was used for determining the mass
spectrum of the bromosuccinic acid. In general, the-spechum resembled
a plcket fence--it had a very small peak corresponding to the parent
compoﬁnd, but none to a dibromo compound. The mass spectrum for
dimethyl bromosuccinate was not found in the literature, but that for
dimethyl succinate was (185)T It too looks like - a picket fence and has
a small peak corresponding to the parent compound.

The closed end of a melting point capillary tube was heated and
the open end dipped into a small amount of the ester; while the tip was
still immersed in the liquid the closed end was surrounded by dry ice,
After the sample was drawn into the tube it was quickly placed in the
centrifuge. The open end was then sealed with a flame and the sealed |
sample dispatched to Galbraith Laboratories, Inc., Knoxville, Tennessee,
for hydrogen and carbon analyses. They reported values of 4,19 percent
for hydrogen and 32.15 percent for carbon. These values give an abso-
lute error of plus 0.16 percent for hydrogen and plus 0.13 percent for
carbon when compared with the calculated values for dimethyl bromo-

succinate of 4.03 percent and 32.02 percent, respectively. The toler-

ance levels set by Journal of Organic Chemistry are +0.4 percent. The

experimental values yield a molar ratio for hydrogen to carbon of 1.55
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to 1,00. If one assumes six carbons are present, the analysis results
in a ratio of nine hydrogen atoms to six carbon atoms, which is in

agreement with the formula for dimethyl bromosuccinate.

Lithium Bromide

Reagent grade anhydrous lithium bromide powder (Matheson, Coleman
and Bell) was transferred directly from the commercial bottle to a
welghing bottle. The weighing bottle, with its ground glass stopper
lying on its side on top of 1t, was placed in a vacuum oven (Weber
electric vacuum oven) and a 250-cm?® beaker was inverted over it., Be-
tween the oven and vacuum pump (Welch Duo Seal model 1402) was a three-
Wayvstopcock which was connected to a cylinder of nitrogen. The oven
was evacuated and the lithium bromide was secured under vacuum for one
day at room temperature followed by one day at 100-120 °C. After the
-oven had been turned off, the vacuum was released by turning the stop-
cock so as to pass nitrogen into the oven. The oven was opemned at
80 °C and the weighing bottles were stoppered and quickly transferred
to a vacuum desiccator containing molecular sieves and indicating
silica gel. The desiccator was evacuated and stored in the dry box--

it was opened only in the dry box, as was the weighing bottle.
Potassium Chloride

Potassium chloride (Fisher certified ACS) was transferred directly
from the commercial bottle to a weighing bottle which was placed in a
drying oven at 110 °C for one day. The weighing bottle was then put in

a desiccator containing molecular sieves and indicating silica gel.
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The potassium chloride cooled to room temperature in the desiccator and

was stored there until used.
Water

De~ionized water from the laboratory supply was piped directly
into a Pyrex glass still (Corning model AG-la) and distilled into a
polyethylene vessel. This water was transferred to’'a polyethylene
bottle in which it was kept until used. The specific conductance of
the water was determined as described in Chapter IV and found to be

1x 1076 g1 em-1,

Desiccants

All molecular sieves used throughout the work were Linde Type 5A
1/16-in pellets, all indicating silica gel was Sargent silica gel
indicating 6~16 mesh and all nitrogen was Linde high purity dry lamp

grade.



CHAPTER IV
APPARATUS FOR THE CONDUCTANCE MEASUREMENTS

A Wheatstone bridge can be used to measure the resistance--and,
consequently, the conductance-~of a conducting system. A schematic dia-
gram of a Wheatstone bridge is shown in Figure 3, in which S is a source
of electric current and D is a current detector. Part of the current
passes through the unknown resistance, Rx’ and the adjustable knowm

resistance, R The remainder of the current passes through the known

Re.
resistances, R, and Ry, provided the bridge has been balanced by adjust-

ing R, so no current passes through D. It can be shown that under these

conditions

R, = Rr(_lig_)- | (4-1)
Ry,

It is an easy matter to measure the electrical resistance of a me-
tallic conductor with such an apparatus. Ihe process for the measure-
ment of the resistance of an electrolytic conductor--particularly a non-
aqueous electrolytic conductor--is much more complex. An electrolytic -
conductor must be placed in a container and it must be in contact with
electrodes (metallic conductors). This connotes a chemical reaction
oceurring at the interface of the electrolytic and metallic conductors,
resulting.in polarization of the electrode, which invalidates any meas-

‘urement of  the resistance. In order to minimize this effect alternating
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Figure 3. Schematic Diagram of a
Wheatstons Bridge

‘current 1s generally employed.! Unfortunately, the utilization of al-
ternating current introduces other complications into the resistance
measurements because the potential difference and ths current in each
arm of the bridge have to be considered. Both are time dependent and
may be out of phase with respect to each other. In order to balance the
bridge the following condition must be met in addition to that of Equa-
tion (4-1):

8, + 6

% = ea + eb, (4=2)

c
in which 6 is the phase angle by which the voltage leads the current,
Equation (4-2) in effect balances the reactance which ig due to induct-

ance and capacitance in the circuit (189).

11t has been shown that direct current conductance measurements are
capable of the same precision as alternating current measurements (188).
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Obviously the design of the conductance bridge and the conductance
cell is of great importance if errors due to reactance are to be elimi-
nated. Many modifications of Wheatstone bridges for measuring electro-
lytic conductance have been described and discussed in the literature.
Among them are those of Washburn and coworkers (190) (191), Taylor and
Acree (192) (193) (194), Morgan and Lammert (195), Jones and associates
(196) (197), Shedlovsky (198), Dike (199), Luder (200), Ives and col-
leagues (201) (202), and Wolff (203).2 similarly, a variety of conduct-
ance cells has been described in the literature; much of the published
work was done by the people just mentioned (52) (204) (205) (206) (207)f
Inasmuch as the temperature coefficient of conductances is about two
percent per degree Celsius it is critical to have the cell thermostated.
The general principles of thermostat design are discussed by Lewin (208).
Also, in the case of nonaqueous systems It is necessary to have a means
of preparing solutions in the absence of moisture. In view of the im-
portance of these factors, a detailed description of the conductance
bridge, conductance cell, controlled-temperature bath and dry box

follows.

Conductance Bridge

All electrical resistances were measured with an electrolytic con-
ductivity bridge (Leeds and Northrup model 4666). It is a standard im-
pedance bridge which has been designed for precision resistance measure-

ments of electrolytic solutions. Capacitors in the arms of the bridge

2Luder (200) pointed out that there were 48 papers on alternating
current bridge methods published in 1932 alone.
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compensate for capacitance of the conductance cell and provide phase
angle balance. This conductivity bridge has been described by Dike
(199); it was constructed using specifications set forth by Jones (196)
and 1s referred to as a Jones bridge. A schematic diagram of the bridge
circuit for making alternating current measurements is shown in Figure 4.
The rheostat arm consisted of five 10 000-Q knife switch operated re-
sistors and five decade resistors (1000, 100, 10, 1, 0.1 Q) for a total
of 60 011 Q; these composed R3 in Figure 4. The range could be extended
by connecting external resistors to binding posts provided on the bridge.
The rheostat arm included a slide wire (R2 in Figure 4) which permitted
the bridge to be balanced with a precision of 0.001 ©. The ratio arm
(Rl in Figure 4) consisted of two 1000-Q resistors which were matched

in temperature coefficient and phase angle. An adjustable capacitor
(QLbin Figure 4) with a range of 50 to lOOC pF was connected across the
rheostat arm and one with a range of 10 to 120 pF (C2 in Figure 4) was
connected in parallel with the resistance being determined. Capacitor
C2 functioned as a fine adjustment for Cl; it also rendered it possible
to bring about a balance when the effective capacitance of the arm with
the unknown resistance was less than the capacitance of Cl at its mini-
mum value. Additional capacitance could be obtained by connecting an
external capacitor across the rheostat arm at S1 and S2 in Figure 4. In
some measurements in this work a polystyrene decade capacitor (General
Radio Company type 1419-A) was used. The ground connection was a modi-
fied Wagner type (C3 and R5 in Figure 4). Capacitors Cl and C2 and the
ground conneéfion assembly were shielded. In addition, the front of the
instrument had a grounded metal shieid to reduce the effects of body

capacitance to a minimum.
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Source: Leeds and7Northru§ Direction Manual for the Model 4666 Electro-
lytic Conductivity Bridge

r

Figufe 4. Schematic Diagram of the Jones Bridge Circuit When Using
Alternating Current '
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The audio-frequency source was a General Radio Company type 1311-A
éudio oscillator and it was used with the frequency regulated at 1000 Hz
and the output at about five V. The output for the oscillator was con-
nected to an input transformer (Leeds and Northrup 019200). A double
lead from this transformer was attached to terminals on the bridge at
A.C. in Figure 4 and a single lead to the horizontal input of the
oscilloscope (Heathkit model 0-11), which constitutés part of the de— 
tecting device. The horizontal frequency selector and synchronization
selector of the oscilloscope were set for external input. The vertical
and horiéontal positions and horizontal gain were adjusted so as to get
a wide (horizontally) and centered display and the vertical input was
set at a factor of one. The remainder of the detector circuit consisted
of a high gain low noise tuned amplifier and null detector (General
Radio Company type 1232-A) and an output transformer (Leeds and Northrup
019201). The output of the null detector was joined to the vertical in-
put of the oscilloscope. The null detector was used with the linear
meter and the frequency set for the 200-2000 Hz range with the filter
tuning fixed at 10, The output transformer was connected to the input
of the null detector; the transformer was wired to the bridge at the
terminals DET and also grounded at GR in Figure 4. All external leads
were shielded. The bridge was grounded by fastgning the lead from GR to
a metal rod driven through the floor into the ground. The oscillator
and oscilloscope were powered by the 110 V-60 Hz line.

The bridge, null detector and exteEnal capacitor were on a firm
table which minimized vibrations. The oscilloscope was .on a wooden box,
which was about 45 cm high, placed on the table. The screen of the

oscilloscope tube was hooded so that the image could be seen better and
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when measurements were being obtained the switch to the lights in the
vicinity was opened. The two transformers were as far from the bridge
as the leads permitted and were about one m from each other. The oscile
lator and null detector were as far from their respective transformers
as allowed by the leads.

All connections and relative positions among the bridge and auxil-
iary components were made in accordance with the recommendations of the
manufacturer; these connnectibns and positions are crucial. The ar-
rangement of the apparatus, including the controlled temperature system,
is shown in Figure 5.

Before the necessary resistance measurements were made the ratio
arm and slide wire were checked against standard resistors and adjusted
according to the calibration procedure outlined by the manufacturer.

The ratio arm was fixed so that the ratio of the two resistances was
1.00000 to one; this means by Equation (4-1), that when the bridge is
balanced the resistance of the unknown 1s the same as that of the rheo-
stat arm, EL'

Many resistance measurements were made on a variety of metallic and
electrolytic conductors. This was done primarily for two reasons-—--to
iearn the best combinations to be used and to develop the necessary
technique for making the measurements. Among the items noted from these
preliminary measurements were the following: (1) For small resistances
the slope of the oscilloscope image was more sensitive to changes in
capécitance and the vertical spread to changes in resistance; the con-
verse was true for large resistances. This change in response occurred
gradually as‘the resistance was increased. (2) The effect of body ca-

pacitance became quite prominent in some measurements. To minimize
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these effects, the final balancing in a measurement was made with one
hand 6n the dial for the smallest resistance used and the other hand on
one of the capacitor dials—--no other portion of the body was above the
bridge. (3) High resistance measurements (greater than 60 011 Q) could -
be accomplishéd without the use of an external resistance in series with
the rheostat arm or in parallel with the unknown resistance. This was
done by using one or more of the 10 000-Q resistors in the bridge as a
shunt for the unknown resistance--that 1s, comnecting them across X1 and
X2 in Figure 4--and using the remainder in the bridge circuit. The most
accurate .result was obtained when the resistance of the shunt was near
that of th; resistance to be measured. The relative precision was bet~
ter than one part per thousand for those resistances that could be meas-
ured directly (less than 60 011 Q). In view of this, none of the bridge
resistors was used as a shunt; rather, an external decade resistor
(General Radio Company type 1432-Q) was used, It was set at a nominal
value of 60 OOd Q and connected across X1 and X2'in Figure 4; its re-
sistance was measured directly and the unknown resistance was then
hooked up in parallel with it across X1 and X2. The resistance box was
placed on the table by the bridge. It provided a shunt of the highest
rasistance that could be directly measured. Other measurements showed
that this gave better results for very large resistances than did the
use of an external resistor in series with the rheostat arm. Conse-
quently, in this work all resistances in excess of 6 x 10* Q were meas-
ured with the external shunt.

The resistance of a conductor was measured by connecting the con-
ductor across X1 and X2 either with or without a shunt and placing the

BR-GR switch in the BR position. (See Figure 4.) All of the components
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were turned on and set as described in this section. The gain on the
null detector and vertical gain on the oscilloscope were turned to a
minimum when these two instruments were turned on. The gain on the null
was increased and then resistances on the rheostat were adjusted (start-
ing with the largest) until the needle on the null meter went to a low
reading. The gain on the null was further increased along with the
vertical gain on the\oscilloséope-and again the rheostat was adjusted
until a minimum signal was .obtained. The minimum signal was. achieved

by alternately balancing the resiétance and capacitance in the .circuit.
Generally, if the resistance in the rheostat was too high the image on
the oscilloscope screen would slope in ;ne direction and if it was too
low in thé other. If the capacitance was either too high or too low the
image would -form an oval shape. This procedure was repeated-~the ad~-
justments becoming more refined--until a balanced circuit was indicated
by a horizontal straight line on the oscilloscope screen (and also by a
minimum reading on the null detector). Then the BR-GR switch was put’
in the GR position and slidewire R5 and capacitor C3 (Figure 4) were
adjusted ta bring the midpoint of the ratio arms to ground potential,
Balance was signaled by the current detector in the same way as .before.
The BR-GR switch was changed to the BR position again and the bridge re-
balanced. These steps were repeated until both phe bridge and the
ground connection were balanced. Under these conditions the resistance
being measured,.ﬁzj can be calculated. Equation (4-1) shows that in the
absence of a shunt EE is equal to the sum of all of the resistances in

the rheostat arm, R.. It can be shown that with a shunt,

Ry = ReRg , . (4-3)
Rg-Ry
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in which R

Rg is the resistance of the shunt (189).

Constant Temperature System

A Haake model NBS constant temperature circulator was used as the
constant temperature bath for the electrolytic conductance cell. It
had a nickel plated copper inner reservoir with a capacity of about 14
dm3 which was insulated from the outer vessel with glass wool. It had
two openings on top--the larger one (about 17 cm in diameter) had a
cover consisting of seven concentric rings and a 1lid, and the smaller
one (about 4 cm in diameter) just a 1lid. The circulation motor (a
squirrel cage induction motor with a cooling fan) was housed above the
top of the bath. The temperature control consisted of a solid state.
cbntrol box (Haake R22) with a contact thermometer as well as a cooling
coil which could be connected to an external refrigeration unit. The
brelay control box had a dial which governed the heating power between
zero and 2000 W by means of the thermoregulator. Another dial allowed
up to 80 percent of the heater wattage to be unregulated permanent heat.
The thermoregulator (a mercury contact thermometer) had a rotating mag-
net in a plastic housing mounted on its contact pin. Rotation of the
magnet in one direction moved the electrical contact up and in the
opposite direction moved it down, thus setting the thermoregulator for a
particular temperature.

The constant temperature bath was set on the table adjacent to the .
bridge (next to Xl and X2 in Figure 4) with the control box next to it.
Approximately eight dm3 of paraffin oil (Fisher, N. F., white, light,
domestic, Saybolt viscosity 125/135) and four dm3 of white mineral oil

(Purity brand, light) were placed in the reservoir. This oil was used
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because of its low dielectric constant--less than five. A 76-mm immer-
sion thermometer (-1 °C to 51 °C and graduated in 1/10-degree) with a
Parr thermometer magnifier attached to it was inserted in the bath to be
used as a control thermometer. A piece of asbestos board was placed
between the control thermometer and the pump housing to shield the ther-
mometer from the heat. A submergible pump (Little Giant 3.2 A-110 V)
was placed in a refrigeration bath (water) and its outlet was joined to
the inlet of the cooling coil in the oil bath by heavy wall rubber tub-
ing. Heavy wall rubber tubing was attached to the outlet of the cooling
coll and returned the water to the refrigeration bath. The refrigera-
tion bath, containing a thermometer, was maintained at 22 °C through the
regulation of the refrigerator compressor motor by a model 71 Cole
Parmer Thermistemp temperature controller (Yellow Springs Instrument
Company)., The thermister was put in the refrigeration bath and the
controller set at 22 °C. A thermometer was susbended above the bridge.
to measure the ambilent temperature, which was about 23 °C. ' The control
boxes, pumps and compressor were all powered by the 110 V-60 Hz line.
The refrigeration bath and compressor.were on the floor. The geometri-
cal arrangement of the entire controlled temperature system is shown in
Figure 5 along with the conductance bridge assembly.

With this arrangement and following the procedure recommended by
lthe manufacturer for adjusting the thermoregulator it Qas found that the
bath could be maintained at 25.00%0,01 *C when the heat wads supplied at

about 180 W.

Conductance Cell

The conductance cell employed was a dilution cell which was a modi-
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fication of a type of cell designed by Shedlovsky (52) who iﬁcorporated
the recommendations of Jones and Bollinger (207). The platinum leads to
the shiny platinum electrodes were sealed into the cell "behind" the
electrodes and the space between the leads outside the cell was filled
with thermostat oll rather than the electrolytic solution, thus render-
ing the stray currents negligible. Electrical contact between the plat-
inum leads and the copper leads to the bridge was made by placing
mercury in the glass tubes for the laads. The cell bulb was almost
spherical and the electrodes were vertical parallel circular plates sep~
arated by a mm or two with thelr centers aligned on an axis perpendicu-
lar to the plane of the plates, The diameter of each slectrode was
about four cm. The bulb had a glass tube leading from the top, the tube
having a stopcock made of Teflon so as to eliminate the need for stop=
cock greass. (Stopcock grease contamination was a major source of
trouble prior to replacing the ground glass stopcock with Teflon.,) From
the bottom of tha cell bulb was another sealed glass tubs which led to a
100-cm® bulb--the dilution bulb., The dilution bulb had an outer 24/40
standard tapered joint, the top of which was above the top of the cell
bulb and was fitted with an inner 24/40 standard tapered stopper., All
of the glass in the .conductance cell was one plece and was Pyrex. A
diagram of the cell is shown in Figure 6.

The cell was filled with a fresh hot solution of 95 percent ethanol
gaturated with sodium hydroxide. It was eﬁptied a moment later and the
pfocess was repeated. The cell was then filled and left standing for
15 minutes, after which it was emptied. De-ionized water from the tap

was then run through it for several hours, Fresh cleaning solutlon was
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put in the cell and left standing for two hours.>

The cell was emptied
and rinsed three times with de-ionized water; de-ionized water was then
run through it overnight. It was rinsed with distilled water three
times and stored filled with distilled water. This cleaning procedure
was done only once, During the performing of the experiments when the
cell was emptied it was always rinsed thoroughly and whenever it was
stored it was stored filled with distilled water.

In order to utilize the conductance cell it is necessary to have it
calibréted. It is seen from Equation (1-9) that the ratié (2/A) for the
conductance cell must be known in order to calculate the specific con-
ductance from the measured resistance. The ratio (L/A) is a fixed

quantity for a particular conductance cell and is referred to as the

cell constant, J; thus,

. | (bt

The cell constant may be determined by measuring the dimensions‘of
the electrodes and the distance between them or’By placing a solution of
known specific conductance in the cell and measuring its resistance,
Clearly, the former method is entirely unsatisfactory as it is impossi-
ble to make these measurements with sufficient accuracy; in addition,
the cell constant includes other environmental characteristicsvpeculiar
to the cell. The latter method has been done in two ways. One makes
use of a conductance equation to. calculate the equivalent conductanée of

the reference solution of known concentration. The specific conductance

3The cleaning solution was prepared by adding 375 cm3® of concen-

trated nitric acid to a solution of 10 g of potassium dichromate in 100
em3 of water.
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is then calculated from Equation (1-2), the resistance is measured in
the conductance cell, and the cell constant calculated from Equation
(4-4). This method has been used by Lind, Zwolenik and Fuoss (124) and
has the advantage of not requiring a solution of a specified concentra-
tion or even a particular temperature. It was not used in this work
because it was desired to have the calibration of the cell independent
of the theory under investigation. The other way requires a conductance
solution of a particular concentration and a designated temperature for
which its specific conductance is known; its resistance is measured and
the cell constant calculated from Equation (4-4). This is the method
employed in this work.

Kohlrausch (209) used aqueous potassium chloride solutions of vari-
ous concentrations as standard reference solutions. Parker and Parker
(210) obtained different values for the specific conductance of aqueous
potassium chloride solutions. Because of this discrepancy Jones and
Bradshaw (211) undertook an extensive and very precise investigation
of the specific conductance of aquédus potassium chloride solutiéns and
their values are consldered to be the most reliable available. Thelr
measurements were made in several cells and mercury was used as the
reference substance. They obtained specific conductance measurements
for three standard potassium chloride solutions at different concentra-
tions at 0 °C, 18 °C and 25 °C. The concentrations were 1, 0.1 and 0.0l

demal solutions.“ Jones and Bradshaw (211) defined a one hundredth

YParker and Parker (210) suggested the term demal; a one demal so-
lution is one containing one gram equivalent weight of salt per cubic
decimeter of solution and the letter D is used to denote demality. At
that time the liter was defined in such a manner that it was not identi-
cal to the cubic decimeter; with the present definition of a liter this
definition for demal is tantamount to the definition of normal,
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demal potassium chloride solution as one containing 0.745263 g of po-
tassium thloride per kg of solution; they found 1ts specific conduct-
ance, Lg(goqys to be 1.40877 x 1073 97! em™ at 25.000:0.001 °C.

A 0.01000 D KC1 solution was prepared by measuring 0.7452 g of
potassium chlorlde on a tared weighing paper with a single pan substitu-
tion balance (Mettler type B5H26). The potassium chloride was transfer-
red quantitatively to a screw capped polyethylene bottle which had been .
tared on a solution balance. Distilled water was added‘to the bottle on
the pan of the solution balance; weights, which had been calibrated by
measuring their mass on the single pan substitution balance used for the
potassium chloride, were added during this time to give an approximation
of the mass. The final water was added in very small increments. The
mass of the solution, obtained by difference, Qas 1000.14+0.02 g. The
standard solution was kept capped in this bottle.

The conductance cell was rinsed with and then filled with distilled
water which had been taken from the same batch used for the preparation
of the standard potassium chloride solution. The cell was placed in the
constant temperature bath at 25.00#0.01 °C and connected to the conduct-

ance bridge. The resistance of the water, RHzO’ was measured and found

to be (1.40%0.02) x 10% Q. The cell was disconnected, removed, rinsed
three times with distilled water, then three times with the standard
solution, filled with the standard solution, placed in the constant
temperature bath at 25.00+0.01 °C and connected to the conductance
bridge. The external capacitor, which was not used for the distilled
water determination, was connected to the bridge and it was found neces-
sary to increase the capacitance even more; this was accomplished by

connecting a one pF capacitor in parallel with the decade capacitor.
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Five measurements of the solution resistance were made, the cell was re-
moved, the contents mixed between the two bulbs, the cell replaéed and
five more resistance measurements made. The procedure described in the
preceding sentence was repeated with another portion of fhe standard so-
lution., The average value of the resistance for the two samples of the
standard solution, Rg i, was 12.3138+0.0050 Q.
An uncorrected cell constant, J', was calculated from Equation

(4=4):

J' = Lgge1)Rgo1p = 0-017347 cm?. (4-5)
The uncorrected cell constant was used to calculate the specific con-

ductance of the water, Ls(H 0):

3 -6 o=1 . -1
LS(HzO) = RH 0 = 1.24 x 10 9 cm . (4"'6)
2

(Jones and Bradshaw (211) used water with a specific conductance of
1.0 x 1076 97! cm™! more or less at 25 °C in the preparation of their
standard solutions.) The corrected cell constant, J, was obtained by
making use of the fact that specific conductances are additive:

J = (LS(KCl) + LS(HZO))Rsoln = 0.0173626 cm !, (4=7)

If the deviation in the measured resistaﬁce for the standard solu-
tion is taken into account a value of 0,017363%0,000007 cm™! is obtained
for the cell constant. This reflects the error due to the measurement
of the resistance including the temperature fluctuations. It does not
include an estimate of the error due to the preparation of the standard
solution; hence, it gives a measure of the precision expected for a
given solution of 0.01 D KC1 with the apparatus and procedure used.

One way of using a dilution cell is to start with a concentrated

solution and add solvent in increments, thus obtaining a more dilute
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solution with each portion added. Another means is to use a dilute so-
lution initially and add increments of solute and obtain a more concen-
trated solution each time. The latter method was chosen in this work
because it offers several advantages. It allows for a much broader
range of concentrations to be used without the necessity of emptying the
cell. Furthermore, if complete mixing has not occurred the relative
error is much smaller when the solution being replaced is more dilute

than it is when the replaced solution is more concentrated.

Dry Box

The basic material for the dry box was a commercially built
(Manostat) dry box constructed of Plexigléss. Plexiglass is not a de-
éi}able building material for use with acetone solutions, but it was
available and did work--fortunately, acetoﬁe was never spilled in it.
The box was modified considerably to meet the needs of this work. 1In
its final form the main chamber was about one meter wide, 60 cm high and
60.cm from front to back. The front face slopedvback from bottom to top
and contained two 20-cm (diameter) holes fitted with long sleeved rubber
gloves for use inside the chamber. The centers of these holes were
about 50 ém from each other and 20 cm from the bottom. A Plexiglass
shelf was built in the back and a single pan substitution analytical
balance (Mettler type H-5) with a capacity of 160 g was placed on it. A
double 110 V electrical receptacle was mounted on the outside of the
back of the dry box. Holes were cut in the dry box so that only the two
polarized outlets were inside the box. The box also contained a sealed-
in copper wire which served to ground the balance pan in order to reduce

the static electricity. All comnections and seams were sealed with a
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caulking material (Silicone Seal). The left end of the box contained a
circular hole with a diameter of about 30 cm. Extending out horizontal-
ly from this hole was a Plexiglass cylinder of the same diameter as the
hole and about 35 cm long. This cylinder had a Plexiglass door on each
end and served as the entry compartment. The door between the entry
compartment and the chamber could be opened only from the chamber and
the other door could be opened only from outside the system. The out-
side door was held closed with clamps except when an item was being
transferred into or out of the system. The entry compartment contained
a plate supported on its bottom which provided a level area about 20 cm
wide and the length of the cylinder. A hole on the right side of the
chamber and another in the back of the entry compartment served as in-
lets for nitrogen. These had copper tubing connected to them from the
outside. ' (The Plexiglass was machine threaded.) Each tube had a valve
and beyond the valves the tubes were united by a "T" joint. The other
branch of the "T" joint led to the nitrogen source. The nitrogen was
supplied from a cylinder and the flow controlled by a nitrogen regulator
(Purox CGA-580); it passed through a battery of tubes and flasks con-
taining molecular sieves and indicating silica gel before entering the
"T." The valves were used to control the relative amounts of nitrogen
going through the chamber and entry compartment. On the left side of
the chamber and on the back side of the entry compartment were the ni-
trogen exit holes for the chamber and entry compartments, respectively;
these were machine fitted with copper tubing from the outside. Each
copper tube was joined to rubber tubing which in turn was attached to
the side arm of a 250-cm3 Pyrex filtering flask. Each filtering flask

had a fitted rubber stopper with a piece of glass tubing inserted in it.
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This glass tube was connected by rubber tubing to another glass tube
which was suspended in a 125-cm3 Pyrex Erlemmeyer flask., The Erlenmeyer
flask contained paraffin oil (Fisher, N.F., white, light, domestic,
Saybolt viscosity 125/135) and the glass tubing was immersed about one
cm in the oil, The filtering flask was simply a trap to prevent oil
from backing into the box. The oil in the Erlenmeyer flask, however,
served several purposes: (1) It prevented the system from being exposed
to the atmosphere. (2) It functioned qualitatively as a flow meter—-the
regulator was adjusted so that a small constant amount of nitrogen bub-
bled through the oil. (3) It kept a positive pressure (relative to the
atmosphere) in the dry box which could be adjusted by vertical movement
of the tubing in the oil.

Five metal pans which were about 20 c¢m long, 10 cm wide and six cm
deep were cleaned, dried, half filled with molecular sieves containing
indicating silica gel, and quickly transferred into the entry compart-
menkt. One was retained in the entry compartment and the other four were
put inside the chamber. These desiccants were kept there throughout the
work.

Originally, static electricity in the box was a major problem--one
which made 1t impossible to make a quantitative transfer of lithium
bromide on the balance. The Plexiglass appeared to amplify the effects
which are normally associated with a dry atmosphere. This problem was
solved by placing several "Nuclear" sealed radioactive sources (radium)
in the chamber—-two of the disks were put in the balance case.

Maintenance on the box was negligible. When the box was not in use
it was flushed with nitrogen every few days. Occasionally the desiccant

in the box was removed, regenerated by heating in an oven at 400 °C for
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several hours and returned to the box.

Each item was dried before being transferred into the box. The
outside door was opened only as long as was necessary for the item to be
placed in the entry compartment and never when the door into the chamber
was open nor when nitrogen Q;s not flowing through the chamber. An item
was left in the entry compartment for a minimum of 15 minutes with the
nitrogen flowing. Then the chamber door was openéd'and the item passed
into the chamber. Nitrogen was passed through the chamber during all
operations. The only restriction for transferring an item out of the
chamber was that the chamber door not be opened unless the outside door
had been closed for at least 15 minutes. Once an item had been put in
the entry compartment and the chamber door closed, the outside door
could be opened immediately and the item removed.

As a practical matter it was sometimes difficult to record masses
in a series of measurements being made with the balance in the dry box.

In some instances this problem was overcome by reading the masses into a

tape recorder and later transcribing them intoc the laboratory notebook.



CHAPTER V
TECHNIQUES EMPLOYED FOR PROCUREMENT OF DATA

It is manifest from Equation (2-1) that it is necessary to deter-
mine the concentration, resistance, dielectric constant, viscosity and
temperature of the system. These data were acquired for five different
solvent systems. A series of measurements, in which the normality of
lithium bromide was varied from about 10° eq dm~3 to 10-3 eq dm‘a, was
made on each solvent system. The solvents used were acetone, 0.02063
molal bromosuccinic acid in acetone, 0.05009 molal bromosuccinic acid
in acetone, 0.09958 molal bromosuccinic acid in acetone and 0,05047
molal dimethyl bromosuccinate in acetone and are designated as Solvent
I, Solvent II, Solvent III, Solvent 1V and Solvent V, respectively.

The mixed solvents--Solvents II, III, IV and V--were prepared in
the dry box by transferring a roughly calculated quantity of the acid
or ester from 1ts storage container to a tared 1lé-oz polyethylene bot-
tle.l? A syringe was used for the ester. The mass of the bottle plus

acid or ester was measured and the mass of the acid or ester found by

1A11 of the polyethylene bottles used for solvents and solutions
had plastic screw caps fitted with polyethylene cone liners and were
tested to ascertain that there was no solvent leakage. A felt tipped
pen was used to mark them with identifying symbols and 25-cm3 gradua-
tion lines. The bottles were washed with soap and water and rinsed
with de-ionized water, distilled water and acetone. They were dried by
passing dry nitrogen (using the same assembly as was used for flushing
the distillation column) through them.

86
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difference. About 500 cm? of acetone was added and the tared screw cap
put on the bottle. The‘contents were thoroughly mixed. The bottle was
removed from the dry box and its mass measured on the solution balance
which was used in the preparation of the standard potassium chloride
solution. The mass of the acetone was computed by difference. The
bottle was returned to the dry box and kept there until the particular
series of measurements was completed. The molality of the acid or
ester was calculated. After each solvent was made, its infrared spec-

trum was obtained and none showed an absorption band at 3600 em™?,

Concentration

For each solvent a solution of about 0.2 molal lithium bromide was
prepared in the dry box by transferring approximately two g of the salt
to a tared eight-oz polyethylene bottle. The mass of the bottle plus
salt was measured, about 125 em3 of the solvent added and the'mass re-
measured. The mass of the lithium bromide and of the solvent were de-
termined by difference. Both the molality of the lithium bromide and
the number of grams of lithium bromide per gram of solution were calcu-~
lated. This solution, which was thoroughly mixed, was designated as

the concentrated stock solution. A sample of the solution was with-

drawn from the bottle and its infrared spectrum obtained; there was no

absorption peak at 3600 cm™l.

Approximately five cm?3

of the concentrated stock solution was tra
quantitatively transferred to a four-o6z polyethylene bottle. The trans-

fer was made with a weighing buret (10-cm3) and the mass of the solu-

tion determined by the difference in mass of the weighing buret. The
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mass of the bottle plus solution was measured, about 100 cm3 of solvent
was added, the mass remeasured and the contents fully mixed. Again, the
molality of the lithium bromide and the number of grams of lithium bro-
‘mide per gram of solution were calculated. This solution was referred

to as the. intermediate stock solution. A dilute stock solution was

prepared in the same manner as the. intermediate stock solution from
about 'eight cm3 of the intermediate stock solution and 85-90 cm® of the
solvent. The intermédiate and dilute stock solutions were 10~ 2 molal
and 10”3 molal, respectively, in lithium bromide.

Prior to a series of measurements the conductance cell, with the
Teflon stopcock removed, was dried in an oven at 110 °C. Upon removal
from the oven a minimal amount of Apiezon T grease was put on the ground
glass stopper. The cell was put in the dry box. It was not opened
outside the dry box during the series ofvmeasurements and was never kept
open longer than necessary. About 60 cm3 of solvent was transferred
quantitatively from an eight-oz polyethylene bottle to the cell by pour-
ing it into the dilution bulb; this was the minimum amount required to
fill the cell bulb. The mass of the solvent added was found from the
difference in the mass of the solvent bottle. The cell was removed from
the dry box, the resistance of the solution was measured on the bridge
and the cell was returned to the dry box,

Dilute stock solution was added to the solution in the cell by
means of the weighing buret. An adapter, with an inner 24/40 standard
tapered joint and outer ground glass joint of the same size as the inner
ground glass joint on the buret, was placed in the 24/40 standard tap-
ered joint of the dilution bulb. The buret was secured in the adapter

and some of the stock solution was dripped into the solution in the
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dilution bulb without first coming in contact with any parts of the
cell, The weighing buret was then returned to its support and the mass
of the stock solution added obtained by difference. The contents of

the cell were mixed by careful tilting of the cell and manipulation of
the stopcock and stopper. The solution was passed back and forth sever-
al times making certain that it never reached the stopcock nor came in
contact with the stopper. Finally the cell bulb was filled slowly to
insure the absence of bubbles. The solution was run into the tube on
top of the bulb to a height of about one cm above the bulb and the stop-
cock was closed. The pressure was adjusted to atmospheric pressure by
alternately opening and closing the stopper and stopcock. After the
cell was removed from the dry box, the resistance of the solution was
measured and the cell was returned to the dry box.

The procedure just described was repeated several times with the
dilute stock solution and then with the intermediate stock solution.
About ten concentrations with a hundredfold range were obtained. A por-
tion of the final solution in the cell (the most concentratéd solution)
was removed and the infrared spectrum téken; no absorption band was
observed at 3600 cm~!.

The normality of the solute is required for the calculation of the
equivalent conductance and in the conductance equation. Inasmuch as
the conductance solutions were prepared by mass measurement it was nec-
essary to obtain their densities in order to determine the normal con-
centration of lithium bromide. In all cases the density of the solution
was assumed to be the same as the density of the solvent. This approx-
imation is easily justified for solutions as dilute as the ones used.

For example, Mahan (166) found the density of 1 x 103 molal lithium
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bromide in acetone, which is comparable to the most concentrated solu-
tions used in this work, to be greater than that of the acetone used in
the preparation of his solution by only 2 x 10~* g cm™3, The.density of
the acetone was taken from the literature for this work: 0.7845 g cm™3
(179). The densities of the acetone-bromosuccinic acid mixed solvents
were calculated from data obtained by Muller (165). He found that the

density of a solution, ¢, of cp, molal bromosuccinic acid in acetone is

given by the expression
§ = 6o(1 + 0.129¢), (5-1)

in which §, is the density of acetone. Equation (5-1) vyields densities
of 0.7866 g cm™3, 0.7896 g cm™ 3 and 0.7946 g cm~3 for Solvents II, III-
and IV, respectively. The density of the acetone~dimethyl bromosuc-—
cinate mixed solvent was estimated by assuming the density of mixtures
of the two compounds to be linear functions of their mole fractions.
Beilstein (212) lists the density of dimethyl bromosuccinate as 1.5094
g em™3 at 15 °C. If éhe density isctaken as 1.5 g em~3 for dimethyl
bromosuccinate, a value of 0.7866 g cm~3 is obtained for Solvent V.
This appears to be a somewhat arbitrary way for determining the density,
but it -should yield a value close to the correct value. Since only one
solvent system of acetone and dimeﬁhyl bromosucg}nate Qas used and since
it 1s the changes in concentration which are critical in evaluating the
parameters of the conductance equation, the density of the solvent,
which is a constant, does not have an appreciasble effect on the final
outcome, |

With these data it is possible to calculate the normality of the

lithium bromide for each solution prepared. A computer program was

written to calculate the molality and normality of each solution in a



91

series. The input required for the program was the number of grams of
solvent originally in the cell, the formula mass of the sclute, the
density of the solvent (in g cm~3), the number of grams of solute per
gram of solution for each of the three stock solutions, the number of
measurements made in the series and the number of grams of stock solu-
tion added in each increment along with the identity of the stock solu-

tion. The computer program is given in Appendix C.
Resistance

Kohlrausch's method (the adaptation of the Wheatstone bridge for
the determination of electrolytic conductance) was used for measuring
the resistance of all of the solvents and solutions. The conductance
cell (shown in Figure 6) containing the electrolytic solution had to be
manipulated carefully in order to get it into the constant temperature
bath without allowing bubbles to pass from the dilution bulb into the
cell bulb. If bubbles did pass into the cell bulb the liquid lewvel
dropped so that the geometry of the solution with respect to the elec-
trodes was changed; in this event the cell was put in the dry box for
readjustment of the solution and then returned to the constant tempera-
ture bath. The cell was supported in the bath by an extension clamp
with asbestos sleeves. The extension clamp was attached by a clamp
holder to a vertical support which was part of the bath. The clamp was
held so that the level of the bath oil was just below the top of the
ground glass joint on the dilution bulb.

Electrical contact between the cell and the bridge was made with
copper wire (B & S gauge no. 12). An end of one wire was fastened to

the terminal at X2 on the bridge (Figure 4) and the other end immersed
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in the mercury in the cell electrodeklead tube on the side toward the
dilution bulb. The other wire was connected in a similar fashion from
X1 to the other lead tube of the cell. The length of the wire between
each lead tube and the bridge terminal was about 25 cm. The wires were
separated from each other by about ten cm in order to reduce the capaci-
tance efféct between them. Time was allowed for the attainment of
thermal equilibrium; then a minimum of three resistance measurements was
made at five minute intervals and the average value calculated. The
external resistor was not used with Solvents I1II, IIT and IV or any of
the lithium bromide solutions, but was required for the determination of
the specific conductance of Solvents I and V. The external capacitor
was not required for the solvents or dilute lithium bromide solutions,
but was for all of the more concentrated lithium bromide solutions.

Upon completion of the measurements the gain on the null detector and
the vertical gain on the oscilloscope were set at a minimum and the cell
disconnected from the bridge. The cell was removed from the bath and
the oil wiped from it with a cloth towel. The cell was then returned

to the dry box.,

Dielectric Constant

The dielectric constant of a medium is the ratio of the capacitance
of a capacitor filled with the medium to the capacitance of the empty
capacitor., The dielectric constant of a vacuum is defined to be unity
and that of air at one atmosphere is given in the literature as 1.00059
(189). A number of methods has been developed for experimentally de-
termining the dielectric constant of a medium. Most of the methods

yield inaccurate results for liquids which are appreciably conducting.
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(Debye's (213) Polar Molecules is a classic discussion of the theories

of dielectries.)

Muller (165) used a capacitance measuring assembly (General Radio
Company type 716~C capacitance bridge with a type 716-P4 guard circuit)
and a dielectric cell, similar to the one described by Sadek and Fuoss
(214), in a vain endeavor to measure the dielectric constant of solu-
tions of bromosuccinic acid in acetone., He did aucceed, however, in
determining the dielectric constant at 25 °C of acetone and solutions of
suceinic acid (0.01, 0,05 and 0.1 molal) in acetone and found them to
be esgentially the same. Each of the three solutions had & dielectric
constant which was greater than that of the acetone by 0.2, He sug=-
gested that the nonsuccess with bromosuccinic acid solutions was due to
a high loss factor, The literature values for the dissocilation con-
stants of succinic acid and bromosuccinic acid arae 6,89 x 1073 and
2,78 x 1093, respectively, for aqueous solutions at 25 °C (171) (212).
Brown (215) attempted and failed to measure the dielectric constant of
l-butanol with a similar apparatus and attributed his inability to ob-
tain results to the high conductance of l-butancl. The literature liets
the dielectric constant and specific conductance of l-bﬁtanol at 25 *°C
as 17.1 and 9.12 x 107° 97! cm™!, respectively (179).

Since this was the only dielectric constant equipment avallable and
in view of Muller's (165) results, it was decided to use the literature -
value for the dielectric constant of acetone as the dielectric constant
for each of the solvents utilized in this work. This value is 20.7

179).
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Viscosity

Viscosity is the force required to produce a unit rate of shear
between two layers in a fluid which are separated by a unit distance.
Poiseuille (216) discovered that the viscosity of water is increased by
the addition of some salts and decreased by others. Arrhenius (217)
found the viscosity of dilute solutions to be a linear function of the
concentration of the solute. However, accurate measuréments of viscos-
ity made by Grineisen (218) (219) demonstrated that the viscosity of an
electrolytic solution is not a linear function of concentration for di-
lute solutions and that the deviation from linearity increases with
concentration. This deviation--the Griineisen effect--does not occur in
solutions of nonelectrolytes. Jones and coworkers (220) (221) showed
experimentally that the relative viscosity, Nrels of an electrolytic so-
lution is a linear function of the square root of the concentration of
the electrolyte and can be delineated by the equation

Npe1 = 1 + Myvc + Mye, (5-2)
in which.gl andlgg are adjustable parameters.® This semiempirical equa-
tion is termed the Jones-Dole equation. The coefficientngl,(which is a
positive quantity) represents the contribution to the viscosity from the

ion-ion interaction and has been identified as the slope, Mz, of the

2The relative viscosity of a solution is defined by the equation

- t
el = 4 (5-3)
n
in which n'is the viscosity of the solution and .n is the viscosity of
the pure solvent at the same temperature. It is a measure of the
change in viscosity of a fluid (solvent) due to the addition of some
substance (solute).
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theoretical limiting law of Falkenhagen (222) (223) (224) (225) which
takes the form

Nrep = L1 + M3VE; (5-4)
where Eﬁ can be calculated from properties of the system. The coeffi- |
cient‘yg (which may be positive or negative) has been interpreted in
terms of ion-solvent interaction; it is highly specific and is an ap-
proximately additive property of the ions (130). Equation (5-2) can be

rearranged to give

T]rel -~ 1= Ml + Mz/g. (5—5)
/o

The experimental values of M; and M, are then determined by fitting a

linear curve to a plot of (nrel - l)/{Elversus {g; the slope corresponds

to My and the intercept to My. It should be pointed out that other vis-
cosity equations have been developed, but were not utilized in this
work (37).

The value used for the viscosity of acetone was obtained from the
literature: 3.02 x 1073 P (179). The viscositiés of the acetone-
bromosuccinic acid mixed solvents were derived from data acquired by
Muller (165) who made viscosity measurements with a special type of
viscometer (which has been described by Tuan and Fuoss (226)) on solu-
tions of varying amounts of bromosuccinic acid in acetone. He plotted
the left side of Equation (5-5) against the square root of the concen-
tration and obtained values of 0,0150 and 0.4137 for M; and M, respec-
tively. These values of El_and_gg were substituted into Equation (5-2)
and subsequently the viscosities were calculated from Equations (5-2)

and (5-3): the outcome was 3.05 x 1073 P, 3.08 x 107%P and 3.13 x 10”3 P

for Solvents II, III and IV, respectively. Perusal of viscosity data
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available for nonelectrolytic solutions indicates that the viscosity of
a solution of an ester in acetone at the concentration of the acetone-
dimethyl bromosuccinate mixed solvent would not be appreciably different
from the viscoéity of the pure acetone. In view of this, coupled with
the facts that the viscosity of acetone is known to just three signifi-
cant figures and that only one solvent system of acetone and dimethyl
bromosuccinate was used, the viscosity of Solvent V was considered to be

identical to that of acetone: 3.02 x 1073 P,

Temperature

All resistance measurements were made in the constant temperature
bath which was maintained at 25.00+#0.01 °C. Before any measurements
were made on a solution it was left in the bath for a minimum of 15
minutes to allow thermal equilibrium to be established. The ambient

temperature was about 23 °C.



CHAPTER VI
THE RESULTS
Compilation of Data

Each set of measurements with a particﬁlar solvent. system is refer-
red to as a series and designated by a Roman numeral;—ﬁhe same Roman
numeral as used for the identification of the solvent. Within each se-
ries the measured concentration and corresponding data are referred to
as a point and each point in a series is represented by the Roman numer-
al for the series followed by an Arabic numeral. The Arabic numeral "1"
is used for the pure solvent, the numeral "2" for the most dilute lithi-
um bromide solution with that solvent, "3" for the next most dilute, etc.
For example, 'Point IV2'" denotes the most dilute solution of 1lithium
bromide in 0.09958 molal bromosuccinic acid in acetone.

The results which are given in this section include only those par-
ticulars which are experimentally measured or evaluated from a defini-
tion and do not require any theory of conductance for their calculation,
Such items are the cell constant, dielectric constant, temperature, vis-
cosity, density, resistance, concentration (calculated with the computer

program given in Appendix C), specific conductance (calculated from

Equation (4-4)) and equivalent conductance (calculated from Equafion
(1-2)). These are summarized for each series in Tables III through VII.

In these tables both the uncorrected and corrected specific conductances
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TABLE III

SERIES I: LITHIUM BROMIDE IN ACETONE

Point Cq X 10° cq # 10° ) R LS x 108 LS x 108 A2
o onen) Goae—) @ G ey ()
: dm° (solution) (uncorrected) (corrected)
I1 951 300 . 01825
I2 1.609 1.262 7300.5%3.1 2.378 2.360 187.0
I3 3.378 2.650 3618.35+0.17 4.799 4,780 180.4
14 6.578 5.160 1971.76+0.14 8.806 8.788 170.3
I5 11.02 8.644 1264.443+0.040 13.73 13.71 158.6
I6 17.08 13.40 884.,037+0.032 19.64 19.62 146.4
7 24,94 19.56 658.359+0.009 26.37 26536 134.7
I8 39.29 30.83 470.482+0.004 36.90 36.89 119.6
19 68.62 53.84 317.354+0.001 54.71 54,69 101.6
I10 118.5 92.96 220.425+0.002 78.77 78.75 84.72

Cell constant: 0.017363 cm™1
Temperature: 25.00 *C
Viscosity: 3.02 x 10~3 P

Density: 0.7845 g cm™>

Dielectric constants; 20.7

Specific conductance of acetone: 1.825 x 1078 Q7! cm™!
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TABLE IV

SERIES II: LITHIUM BROMIDE IN 0.02063 MOLAL BROMOSUCCINIC ACID IN ACETONE

Point cp x 10° cp x 10° R Lg x 108 Lg x 108 | A2
@Zl (é(s)ci‘lrzsig' (eq3 (solutci:). ) | ) @ em~1) @1 cm1) (;:Zmeq>
dm3 (solution) | (uncorrected) (corrected)

IT1 22 546+3 .7701
II2 .9544 .7508 8993.1+1.6 1.931 1.161 154.6
I13 1.867 . ' 1.469 5639.610.2 3.079 2.309 157.2
I14 4.740 3.729 2660.46+0.08 6.526 5.756 154.4
115 7.344 5.777 1830.70+0.08 9.484 8.714 150.8
I16 10.97 8.633 1295.89+0.05 13.40 12.63 146.3
I17 14.32 11.26 1032.55+0.05 16.82 16.04 142,5
I18 28.68 22.56 584.5b10.02 29.71 28.94 128.3
119 43.39 34.13 421.058+0.008 41.24 40,47 118.6
1110 70.58 55.52 290.862+0.002 59.69 58.92 106.1
I111 123.3 ' 96.95 194.720+0.006 89.17 88.40 91.18
Cell constant; 0.017363 cm~1 Denéity: 0.7866 g cm—3

. Temperature; 25.00 °C Dielectric constant: 20.7

Viscosity: 3.05 x 1073 P Specific conductance of acetone: 2.177 x 1078 g1 cm'l'
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TABLE V

SERIES III: LITHIUM BROMIDE IN 0.05009 MOLAL BROMOSUCCINIC ACID IN ACETONE

Point cp x 10° c, x 10° R

6
LS x 10

L, x 108 A
Crimed) (bY@ @ wen (@)
dm® (solution) - (uncorrected) (corrected) i
ITI1 12 328.7+1.7 1.408
ITI2 .7629 .6024 7693.4+0.6 2.257 0.849 140.9
III3 - 1.537 | 1.214 : 5603.6£0.2 3.099 1.690 139.3
III4 4,247 | 3.354 2884.32+0.13 6.020 4.612 137.5
ITI5 6.896 5.445 . 1974.38%0.04 8.794 7.386 135.7
ITI6 10.44 8.243 1401.7li0.01 12.39 10.98 133.2
IIT7 13.78 | 10788 1108.97+0.04 15.66 - 14.25 131.0
iIIS 28.60 22.59 | 601.42+0,.02 28.87 27.46 121.6
ITI9 45.65 36.64 ‘ 408,088+0.007 42.55 41.14 114.1
| ITI10 75.09 59.29 274.549+0.006 63.24 61.83 104.3
III11 127.0 1100.2 183.970+0.007 94,38 92.97 92.79
Cell constént: 0.017363 em—! ‘ Density: 0.7896 g cm—3

Temperature: 25.00 °C
Viscosity: 3.08 x 10™3 P

Dielectric constant: 20.7 ,
Specific conductance of acetone: 1.691 x 1078 Q7! cm

-1
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TABLE VI

SERIES IV: LITHIUM BROMIDE IN 0.09958 MOLAL BROMOSUCCINIC ACID IN ACETONE

Point cp x 105 cp x 10° Lg x 108 Lg x 108 A

R
(i) (nfeteay @ e @ (20

dm® (solution) (uncorrected) (corrected)
vl , 6703.2+0.2 2.590
Iv2 8724 .6932 4953.5+0.1 3.505 0.915 132.0
vy 1.678 ' 1.333 3976.3+0.2 4.367 1.777 133.3
V4 3.352 2.663 2856.9+0,1 6.078 3.488 131.0
IV5 6.330 5.030 1896.22+0, 27 9.157 6,567 130.5
IV6 10.22 8;122- 1330.00+0.06 13.05 10.46 128.8
Iv7 13.80 10.97 1048.32+0.04 16.56 13.97 127.4
IVv8 29.80 23.68 560.480+0.026 30.98 28.39 119.9
Iv9 47.23 37.53 384.762+0.010 45.13 42 .54 113.3
IVi0 77.07 61.24 257.689+0,001 67.38 64,79 105.8
il 133.1 105.8 167.755+0.004 103.5 100.9 95.38
Cell éonstént: 0.017363 cm—? Density: 0.7946 g cm™3
Temperature: 25.00 °C Dielectric constant: 20.7
Viscosity: 3.13 x 1073 P Specific conductance of acetone: 2.064 x 1078 Q71 cem™!
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TABLE VII

SERIES V: LITHIUM BROMIDE IN 0.05047 MOLAL DIMETHYL BROMOSUCCINATE IN ACETONE

Point cp x 10° cn x 108 R L x 108 Ly x 108 A
& céiiiilii)) (e tenlste ® e e (2D
dm3 (solution) ' (uncorrected) (corrected) 4
Vi : 90 860 L1911
A 1.245 .9796 9267+3 1.874 1.682 171.8
V3 2,088 1.642 5768.8+4.4 3.010 2,819 171.7
V4 3.271 2.573 3787.9+1.0 4.584 4,393 170.7
V5 5.282 4,155 2440.3+0.4 7.115 6.924 166.6
Vo6 8.326 6.549 1631.6+0.1 10.64 10.45 159.6
*V7 11.7- 9.2-- - 1196.61+0.04 14.5- 14,3- 156.-
V8 49, 6- 39.0- 396.78%0.01 43.8- 43.6- 111.7
V9 84.4- 66.4— 273.10%£0.02 - 63.6~- 63.4- 95,5~
Cell constant: 0.017363 cm™! Density: 0.7866 g cm—3
Temperature: 25.00 °C Dielectric constant: 20.7
Viscosity: 3.02 x 10-3 P Specific conductance of acetone: 2,83 x 1072 q71 cnp™l

*At this point the stopcock slipped and doubt was introduced in the fourth digit; this error was present
in the next two points but the relative uncertainty was not as great due to the much higher concentra-
tion.

20T
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are listed and the equivalent conductances are calculated utilizing the
corrected specific conductances.l The tables also include the average
of the absolute values of the deviations for the measured resistances.
A plot of the uncorrected specific conductance of lithium bromide
versus the normality of lithium bromide is exhigited for Series I-V in
Figure 7. The corrected specific conductance of lithium bromide as a
function of the lithium bromide normality for Series I through IV is
shown in Figures 8 and 9vand for Series I and V in Figure 10. The spe-
cific conductance of the system minus the specific conductance of the
acetone is shown in Figure 11 as a function of the normalify of the
bromosuccinic acid for soiutioné which are 1073, 10~%, 107> and zero
normal with respect to lithium bromide; this is tantamount to correcting

for the cpnductance of the acetone. Figure 12 gives the specific con-
ductance Lf the system minus the specific conductapce of the acetone and
iithium bromide as a function of the normality of the bromosuccinic acid-
for solutions which have normalities with respect to lithium bromide of
1073, 10™%, 1075 and zero; this is equivalent to subtracting the specif-
ic conductance obtained in Series I from the specific conductance of the

solution., Figure 13 shows the corrected specific conductance of bromo-

succinic acid in acetone as a function of its concentration.

Treatment of DPata With Fuoss-Onsager-Skinner

Equation

Fuoss, Onsager and Skinner (136) outlined a means of programming

1The uncorrected specific conductance is the specific conductance
of the solution; the corrected specific conductance is the difference
between the specific conductance of the solution and the specific con-
ductance of the solvent,
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the FOS equation--Equation (1-120)--in order to obtain the three param-
eters, A,, L and K , from the data. The outline follows:

A preliminary value of A, is obtained by graphical extrapola-
tion, and estimates (which need not be at all accurate) of L

and Ky are made. As zeroth approximation, y is set equal to

the conductance ratio A/A, in the square root term [of Equa-

tion (1-120)], giving as a first approximation

v, = MRS (en/no) /2], (6-1)
Since the linear and logarithmic terms usually just about can~

cel each other, [Equation (6-1)] is already a fair approxi-

mation. (If the estimated A, is too small, the denominator

of [Equation (6-1)] can become negative, and then [Equation

(6~2)], which calls for the square root of cyy, would set

the computer off on an infinite loop. To avoid this trap,

an IF instruction terminates the computation, should Yy come

out negative,) Then as next approximation

= A/[Ao—Scl/2Y11/2+Ecylloglo(6Eicyl)+LcY1]. (6-2)
This process is iterated until the condition
v v, | < 0.00005 (6-3)

is satisfied. Then, if the converged value of y is less than
unity, the data are treated by the conventional least-squares
program to obtain A,, L, and X From both L and K., values
of b are obtalned by solving quations (1-25) and (1-129)].
To avoid possible loops (and wasted machine time), the solu-
tion of (b) for b is terminated if b becomes less than 1
(which WBEIH.correspond to absurdly large a values). The
function exp(b)/b3 has a minimum at b = 3; to avoid present-
ing the machine with the dilemma of a double-valued function
and the probable attempt to divide by zero, the calculation
of b from EA_IS stopped if b becomes less than 3.05. The
value at the minimum of exp(b)/b3 is exp(3)/27 = 0.75. If
the correspondlng experimental value from Kp is less than
0.75, the machine is instructed not to attempt a solution.
Finally, the calculation is terminated if b exceeds 25

(which would correspond to absurdly small a values). For the
range of dielectric constants where both L and Kj can be
determined with relatively good precision, the wvalues of a
from Ly and from K, agree within about 10%; for high dielec-
tric constants, the value from K becomes unreliable, while
for low dielectric constants, the value from Lo becomes un-
certain, as might be expected. If [Equation (6-2)] converges
to a value greater than unity, y is set equal to 1, and the
solution of the three-parameter equation is continued. Then
the data are automatically processed by the two-parameter
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equation
A= Ao—Sc1/2+Ecloglo(6Eic)+Lc. (6-4)

Also, if K, from the three-parameter equation [Equation

(1-120)] is less than 10, the data are analyzed by means of

[Equation (6-4)].

A computer program for the solution of the FOS equation, using the
above outline as a foundation, was written in Fortran IV through the
joint efforts of Cunningham and the author. The program was constructed
so as to be quite flexible. For example, with slight modification it
could perform the calculations consecutively for more than one series or
solve the two parameter equation rather than the three parameter equa-
tion. Also the trial values first assigned to b and K, could be varied.
The program was compiled and executed on the IBM System 360/50 (Operat-
ing System--H Level) computer. The listing of the computer program is
given in Appendix D.

The initial input consists of the identification of and number of
points in the series, the cell constant, and the temperature, viscosity,
dielectric constant and specific conductance of the solvent. This is
followed by the measured concentration and resistance of the solution
for each point in the series, If a shunt is used in a measurement, its
resistance is also included and the resistance of the solution is calcu-
lated from Equation (4-3).

Numerical values of o, B, Ei and Eé are computed from Equations
(1-126), (1-127), (1-130) and (1-131), respectively. The specific con-
ductance for each point is calculated from Equation (4~4); if the cor-
rected specific conductance is desired the specific conductance of the

solvent is subtracted from this. The equivalent conductance for each

point is obtained from Equation (1-2) and a preliminary value of A, is
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gotten by applying a linear least squares to the phoreogram for’Points
II-V and determining the intercept. This estimate of ﬁ& is used to

calculate the Onsager tangent from Equation (1-46) and E' from Equation
(1-100). The ratio of A to the preliminary value of )\, serves as a
zeroth approximation forll;for each point; this is tantamount to Equa-
tion (1-77) with g equal to unity. The sum of the first two terms of
the FOS equation using the first estimate of A, and the zeroth approxi-
mation of y is calculated for each point. If any point yields a nonpos-
itive value for the sum, the computation is terminated and a message
printed stating the reason. If all sums are positive, they are substi-
tuted for the denominator in Equation (6-1) to acquire a first approxi-
mation of y for each point. (This is equivalent to solving Equation
(1-76) for the y outside the parentheses with A/A, substituted for the
y inside the parentheses.) An estimate of L is obtained from Equation
(1-121) by assuming a value of ten for b. The first four terms of the
FOS equation are used in the denominator of Equation (6-2) to obtain a
second approximation of y for each point from the corresponding first
approximatioﬁ. More refined approximations are procured by iterating
Equation (6~2) until either lYn-Yn-ll < 0.00005 or 50 iterations have
been made. If 50 iterations are performed the execution of the program
is terminated and a statement is printed telling which points do not

converge. A trial value of 3000 is assigned to KA' The product cy is

calculated for each point and its standard deviation, EEI’ estimated as
0.002cy. The standard deviation of the equivalent conductance, T for
each point is taken to be 0.0024.

The appropriate values of arguments are passed from the main pro-

gram to the subroutine subprogram for treatment of the data by the
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method of least squares to evaluate A,, L and K,. The subroutine is
based on the discussion by Wentworth (227) of least squares computations
for curve fitting. The condition equations take the form of Equation
(1-135); that is,

Fi[(CY)isAi,Ao sL,KA.] = o’h (6~5)

in which the subscript, i, refers to the ith pair of measurements.
These equations are obtained from Equation (1-120) with f, obtained from
Equation (1-116) and T given by Equation (1-101):

= - - 1/2 ' 2
Fi Ao Ai S(cy)i + E (cy)iloge(ri) + L(cy)i

- Ryley) A exp(=21,). (6-6)

The following partial derivatives are evaluated for each point:

iy = Efﬁ;__.= —O.SS(cy)Tl/2 + E'log (t2) + E' + L
(cY)i 3 (cy) i e i
i
- KAAiexp(—ZTi) + KT Ajexp(-214), (6-7)
FA =.iEi = -KA(cy)iexp(—ZTi) -1, (6-8)
- aFi = — 1/2 ! 2 -
F(A°) _t =1 OL(CY)i + El(cy)iloge(ri), (6-9)
P, = oF . (ey), (6-10)
i 8Ly
and
oF;
F = 1 = - =2 -
(Kp) g (<) (ev) hjexp(=27;). (6-11)
i

The weight of an observation, W;

, is defined as a quantity inversely

proportional to the variance, g%; that is
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(6-12)

where 0% is the variance of unit weight. The quantity Li is defined by

the equation,

2 F2
F(cy)i Ai
L, = + ’
i W

i W
(ey); A4

For each point, L, is calculated from the equation,

1
= 2.
= Cenpen )} (ren )

this equation is the result of combining Equations (6-12)

2

and assigning unity to og. The sum of the squares of the weighted

residuals is calculated. The normal equations are

AKA

F F F F : F F
(Ae) . (o), (Ao) . (Kp), (Ae). L,
) 7 olAA°+Z S F I W
i . i L, i L.
i i i
) Faao,F1
= -————}—-—’
i L,
1
F F F F F
z <KA)1 <A°)1A . (KA)i (KA)iA Z (KA)i
i L qu i L uL + L
i i i
F F
_ z (KA)i i
I L,
1
and
) FLiF(A@). FLiF(KA)i ) FLiFLi
£ T AN, + T AL + & — 0K,
1 1 1
X FL.Fi
_ 1
i L

(6-13)

(6-14)

and (6-13)

(6-15)

(6-16)

(6-17)
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The coefficients of AA,, AL and AKA form the elements of the normal
matrix. The inverse matrix is obtained and the change in each para-

meter is computed from its elements, h

i.:
= hy 2 (A° i 1 + hy Z._Eﬁéi___'+ hl32__2___, (6-18)
. L, L.
l i i
F F F F_F
/ = AO). i (KA)' L, i
AL = thZ i + hZZZ i + hZBZ i (6-19)
i L, i L i L
1 i
and
F._F F F F. F
L,°1 Kp), 1 L, i
By =yl BT+ byl RS T 4 hgg) i (6-20)
i Li i Li i :

The least squares estimate of each parameter is then found by subtract-
ing this change from the previous estimate. The standard deviations of
the parameters (OA , 0. and o, ) are also calculated along with the

Ao L KA
external estimate of the variance, g2 . This estimate is the ratio of

_ext
the sum of the squares of the weighted residuals to the number of de-
grees of freedom; the number of degrees of freedom is the number of
pairs of observaﬁions minus the number of parameters (three) being de-
termined. If the change in the sum of the squares of the weighted
residuals is greater than 0.1 percent the entire subroutine is repeated.
If not, the new argument values are transferred to the main program.

The Onsager tangent is recalculated from Equation (1-46) with the

new approximation for A,. Equation (1-128) is solved for a,

= 1,671x1073, (6-21)
bDT

and substituted in Equation (1-129), which is rearranged and written as

eb _Ka DT 3, (6-22)
b 2.523x10%41 \ 16.71x10""
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The logarithm of both sides is taken and the equation is set up for

iteration:

b_ = log.|Xa DT 3| - 3log_(b__.). (6-23)
n el:2.523.x1021 <16.71x10‘9 e n-1

The iteration is carried out 1f 3.05 < b < 25 until ]bn—bn_l| < 0.001,

which gives the value of b calculated from the experimental Eé_and Equa~
tion (1-129). This value of b is used to compute a from Equation (6-21)
and L from Equation (1-121). A new estimate of L is obtained by taking
thglaverage of the wvalue of L which was last transferred into the sub-
program and the value returned from the subprogram. This new estimate
of L is used to gain a new approximation for y for each point by itera-
tion of Equation (6-2) until Ig_Yn—ll < 0.00005. 1If the difference
between this new value for I_aﬁd the previous value for y for any point
is greater than 0.0005, E' is re-evaluated from Equation (1-100) using

the most recent approximation for A,. The product (cy)i is computed for

each point along with its standard deviation, which is still taken to be

0.002(cy)y. The data are again treated by the least squares subprogram

and the computations of the beginning of this paragraph repeated. This
procedure is repeated until the change in y for each point due to the
least squares treatment is less than 0.0005. The point with the maximum
standard deviation is found and the ratio of its standard deviation to
the average standard deviation is calculated. If the ratio is not less
than two, the point is rejected with identification and the least
squares treatment reapplied to the remaining points. If no points are
rejected, values of L are calculated from Equation (1-121) by assigning
integral values of one to 25 to b and using the least squares value of

Ag-
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The output includes the identification of the series, the cell con-
stant, and the. temperature, viscosity, dielectric constant and specific
conductance of the solvent. The molar concentration, square root of the
molar concentration, resistance, specific conductance and equivalent

conductance of each point are tabulated. Values for o, B, Ei and Eé

are given, as well as the first estimate for A, and the estimate of L
with the initial value assigned to b. For each point the zeroth and
first approximation of y are printed along with the refined approxima-

tion obtained from iteration of Equation (6-2). Each time the subpro-

gram i1s called, values for each point for fi, F(Ac)i’ FLi, F(KA)i’

F F Ly, F2/L, .y (cY)i, © o the S term, E term, L
(ey)y? "ap0 2 1700 Yi» 1S¥/4» eydy” "ny” &0 = ? = > =
term, K, term and the calculated equivalent conductance are listed.

(The S term, E term, L term and K, terms are given by the second through
fifth terms, respectively, of the right side of Equation (1-120) and the
calculated equivalent conductance is given by the sum of_ﬁi and Eif)
Also on each..call of the subprogram the elémeﬁts of both the normal and
inverse matrices, A, fﬂi’jﬁ’.ng’ cKA, oL Zﬁi/ﬁi’ EEEE’ Text” b (cal-
culated from the experimental K, égg—ﬁquation (1-129)), a (calculated
from b and Equation (6-21)) and L (calculated from b and Equation
(1-121)) are given. Finally, the ratio of the maximum staﬁdard devia-
tion to the average deviation is printed followed by a listing of inte-
gral values of b from one to 25 and the corresponding value of L calcu-
lated from Equation (1-121). |

The parameters of the FOS equation are given in Table VIII for each
series. The series is identified in the first column. The second,

third and fourth columns list A,, L and Kp, respectively, and their

standard deviations, as calculated from the program. The next column
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gives b as calculated from K, and Equation (6-23). Values of a, expres-

sed in &, obtained from Equation (6-21) are entered in the last column,

TABLE VIII

CALCULATED CONSTANTS OF FOS EQUATION FOR
LITHIUM BROMIDE FOR EACH SERIES

Series Ao L KA b a

I 198,14%0.90 -16 905+8357 3320x145 11.53 2.35
IT 162,20£1.62 =19 781+15 040 9821254 9.83 2.75
III 143,47+0.50 ~10 443x4876 500+84 | 8.84 3.06
v 135,74+0.,70 -10 036%6340 195+111 7.34 3.69
\ 180.09+2.54 -56 56739 330 1433+609 10.37 2,61

Tables IX~XIII give the numerical values of the terms in the theo-
retical equation for Series I-V, respectively. Each row shows the val-
ues calculated for a given point; the point 1s designated in the first
column., The second column gives the values for vy. The values of the §
term, E term, L term and Ky term of Equation (1-120) are tabulated in
the next four columns, respectively. The seventh column contains the
equivalent conductance calculated from Equation (1-120). (It should be
noted that the calculated value of A is obtained by addition of the E
term and L term to A, and subtraction of the S term and Eé_term.) The
last column gives 87, which is the calculated equivalent conductance

minus the experimental equivalent conductance. (The experimental equiv-

alent conductances are given in Tables III-VII.)
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FUNCTIONS CALCULATED FROM FOS EQUATION
FOR SERIES I

120

Point Y S Term E Term L Term K, Term A SA
I2 0.957 2.37 -0.18 -0.20 7.06 188.33 1.32
I3 0.930 3.39 -0.33 -0.42 13.54 180.47 0.08
I4 0.886 4,62 ~0.55 -0.77 22,99 169.22 -1.08
I5 0.833 5.80 -0.79 -1.22 32.75 157.59 -1.06
I6 0.777 6.97 -1,06 -1.76 42,43 145.92 -0.51
17 0.723 8.12 -1.35 -2.39 51.49 134,79 0.05
I8 0.653 9.69 -1.77 -3.40 62.52 120.77 1.08
I9 0.569 11.95 -2.43 -5.17 76.24 102.35 0.75
I10 0.491 14.58 -3.23 -7,71 88.56 84,07 ~0.66

TABLE X
FUNCTIONS CALCULATED FROM FOS EQUATION
FOR SERIES II

Point Y S Term E Term L Term KA Term A SA
II2 0.964 1.66 -0.09 ~-0.14 1.05 159.25 4.65
II3 0.986 2.35 -0.16 -0.29 2.09 157.30 0.14
I14 0.981 3.74 -0.36 -0.72 4.99 152.38 -1.98
I15 0.967 4,62 ~-0.51 ~-1.11 7.27 148.69 -2.15
II6 0.948 5.60 -0.69 ~1.62 10.05 144.24  -2,06
I17 0.932 6.34 -0.84 -2.08 12.30 140.65 -1.85
118 0.865 8.64 -1.37 -3.86 19.29 129.04 0.78
119 0.820 10.35 -1.79 ~-5.54 24,40 120.11 1.55
IT10 0.766 12.76 -2.43 -8.41 31.00 107.60 1.47
IT11 0.706 16.19 ~3.37 -13.55 38.97 90.13

-1.05




TABLE XI

FUNCTIONS CALCULATED FROM FOS EQUATION

FOR SERIES III

121

Point Y S Term E Term L Term KA Term A SA
ITI2 0.993 1.42 -0.07 -0.06 0.40 141,51 0.59
III3 0.986 2.02 ~-0.12 -0.13 0.79 140.42 1.17
ITI14 0.986 3.35 -0.28 -0.35 2.06 137.43 -~0.07
III5 0.981 4,26 -0.42 -0.56 3.19 135.04 -~0.61
ITI6 0.973 5.22 -0.59 -0.84 4.57 132,25 -0.94
ITI7 0.965 5.97 -0.73 -1.10 5.76 129.92 ~1.05
I118 0.923 8.41 -1.24 -2.18 9.87 121.76  0.20
ITI9 0.892 10.45 -1.71 -3.36 13.45 114.51 0.36
ITI10 0.849 13.07 -2.35 -5.26 17.80 104.98 0.69
III11 0.805 16.54 -3.23 -8,42 22.87 92.41 -~0.38
TABLE XII
FUNCTIONS CALCULATED FROM FOS EQUATION
FOR SERIES IV
Point Y S Term E Term L Term KA Term A SA
Iv2 0.984 1.47 -0.07 -0.07 0.17 133.97 1.95
IV3 0.999 2,05 -0.12 -0.13 0.32 133.11 -0.17
IV4 0.989 2,88 -0.22 -0.26 0.61 131.76  0.80
IV5 0.997 3.98 -0.37 -0.50 1.13 129.76 -0.79
IVé6 0.996 5.06 -0.55 -0.81 1.74 127.59 -1.26
Iv7 0.994 5.87 -0.70 -1.09 2.26 125.82 -1.55
Ivs 0.969 8.51 -1.25 -2.30 4,12 119.56 -0.33
V9 0.945 10.59 -1.72 -3.56 5.65 114,22 0.88
IV10 0.926 13.38 -2.40 -5.69 7.73 106.55 0.752
IVll 0.905 17.39 -3.37 -9.61 10.40 94.97 -0.41
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TABLE XIII

FUNCTIONS CALCULATED FROM FOS EQUATION
FOR SERIES V

Point Y " S Term E Term L Term K, Term A SA
V2 0.968 2.01 ~0.13 -0.54 2,21 175.20 3.42
V3 0,973 2.61 -0.20 -0.90 3.67 172.70 1.04
V4 0.975 3.27 -0.30 ~1.42 5.62 169.48 -1.25
V5 0.962 4,12 -0.44 -2.26 8.55 164.72 -1.93
V6 0.934 5.10 -0.62 =3.46 12,20 158.70 -0.87
v7 0.924 6.01 ~-0.81 -4.81 16.14 152,31 -3.34
V8 0.742 11,10 -2,08 -16.38 34.46 116.07 4.35
V9 0.696 14.03 -2.92 -26,18 43.54 93.41 -2.05

A graph of y as a function of lithium bromide molarity is shown in
Figure 14 for Solvents I-IV; the concentration is plotted on a logarith-
mic scale in order that the entire range may be included. Figures 15-17
display Aﬂ’.Eé_ and a, respectively, for lithium bromide as a function
of bromosuccinic acid molality in acetone; the parameter, a, is expres-
sed in R. The phoreogfams for lithium bromide calculated from the FOS
equation for Series I-IV are delineated in Figure 18. Figures 19-23
exhibit the experimental and calculated phoreograms for lithium bromide
in Solvents I-V, respectively, and Figure 24 shows the calculated phor-

grams for Series I and V.
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CHAPTER VII
DISCUSSION AND CONCLUSIONS
Lithium Bromide in Acetone

It can be perceived from Table III fhat the solvent correction for
the specific conductance of lithium bromide in Series I was negligible
throughout ranging from 0,025 percent for Point I10 to 0.76 percent for

‘Point I2. (It was mentioned‘in Chapter II that Dutoit and Levrier (167)
applied a solvent correction of 21 percent to their most dilute solution
of lithium bromide in acetone. They made a correction of 5.8 percent
for a 1,138 x 10_5 molar lithium bromide solution; this concentration is
essentlally the same as that of Point I2,) Consequently, the uncorrect-
ed specific conductance and corrected speclfic conductance coalesce even
for Points I2-I4 as 1s evident from Figures 7 and 8.

The relative standard deviations of the calculated parameters (the
standard deviation of the parameter divided by the value of the parame-
ter) can be calculated from data in the first row of Table VIII; they
are 0.0045, 0.49 and 0,044 for A,, L and Kp, respectively. The standard
deviation for L is especially large; however, this great uncertainty in
L is not uncommon for smenogenic solvents. Fuoss, Onsager and Skinner
(136) pointed out that '"no useful information can be obtained from the
ion-pair term at high dielectric constants nor from the linear term at
low." They tabulated the results of analysis of data from previous

work. For example, using data of Lind and Fuoss (228) (229) for

134
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dioxane~water mixtures they computed values with a dielectric constant
of 12,74 of -433t108 and 1702+32 for L and K,, respectively, for
potassium chloride and with a dielectric constant of 15.29 they obtained
values of 44185 and 313£14 for L and K,, respectively, for cesium io-
dide. With data from Berns and Fuoss (230) they calculated values of
16451018 and 3.6+9.6 for L and K,, respectively, for tetramethylammoni-
um tetraphenylboride in an acetonitrile-carbon tetrachloride mixture
with a dielectric constant of 36,01,

Table IX shows that y decreases as the concentration increases,
which is as expected and illustrated in Figure 14. All of the terms
listed in the table diminish the equivalent conductance from A, and the
magnitude of the reduction for each term increases with augmentation of
the concentration. The KA term makes the largest contribution to the
decrease throughout the entire concentration range and the E term the
smallest. At the lower concentrations the E term and L term are of the
same magnitude, but at the higher concentrations the L term is about
double the E term. The S term is greater than the L term at all concen-
trations. The values given for §A seem to be reasonable and the calcu-
lated and experimental values for A are in good agreement as 1is
reflected in the phoreogram in Figure 19.

In order to compare the results of this research with other work
the data of previous investigators of the electrolytic conductance of
lithium bromide in acetone were compiled and run through the program.

It should be noted in Table II that only Dutoit and Levrier (167) and
Bjornson (163) collected experimental data suitable for analysis by the
FOS equation and only the data of Bjornson were at 25 °C. The original

data of Dutoit and Levrier are included in the paper by Kraus and Bray
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(25) and of Bjornson in his thesis. In the case of Dutoit and Levrier
the composition of the solutions was expressed in dilution (gfl) and the
equivalent conductance in Siemens' units which must be multiplied by the
factor 1.069 in order to convert to Q1 cm? eq”l. Table XIV gives the
calculated parameters of the FOS equation yielded from the computer pro-
gram and Bjornson's data and the converted data of Dutoit and Levrier.
The values obtained for the constants for Series I (which are given in
Table VIII) are also included for comparison. As in Table VIII, Table
XIV lists Ao, L_and_Eé'along with their standard deviations, b as cal-

culated from Kp and Equation (6-23), and a (in R) as computed from Equa-

tion (6-21).
TABLE XIV
CONSTANTS OF FOS EQUATION FOR LITHIUM BROMIDE
CALCULATED FROM DATA OF DUTOQIT AND
LEVRIER, BJORNSON, AND JONES
Data Source Ao L KA b a
Dutoit and 165.15+1.61 -665%+705 1745%75 10.65 2.54

Levrier (18 °C)
Bjornson (25 *C) 196.92+4.17 7420x43 880 4755+£782 12.01 2.25

Jones (25 °C) 198.14x0.90 -16 905+8357 3320145 11.53 2.35
(Series I)

It is evident from Table XIV that both the standard deviation and
relative standard deviation for A, are considerably smaller for Series I

than for either Dutoit and Levrier or Bjornson. The value obtained for
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A¢ from the data of Dutoit and Levrier is in excellent agreement with
the value they got from the same data (166 @~ ! cm? eq”!) and with the
value obtained from the same data by Kraus and Bray (165 @71 em? eq™1)
using the graphical method of Equation (1-11)., The value for A, from
Bjornson's data is also in excellent agreement with the value realized
by him from the same data using the Fuoss method (196.0 0! em2 eq”l).

The relative standard deviation of L is smaller for Series I than
for either of the other two sets of data, but the data of Dutoit and
Levrier yield the smallest absolute value for the standard deviation of
L. The value obtained for L with Bjornson's data gives a positive con-
tribution from the L term in the FOS equation whereas the .other two
entries in the third column of Table XIV produce a negative contribu-
tion., If, however, L is calculated from Equation (1-121) with the value
procured for b from the experimental Eé_and Equation (1-129), a negative
value for L is obtained for all three entries.

The relative standard deviation of Ka from the data of Dutoit and
Levrier is essentially the sasme as from Series I and several times
smaller than from Bjornson's data. Kraus and Bray obtained a value of
5.7 x 1074 for Kp using the graphical method of Equation (1-11) and the
data of Dutoit and Levrier. This yields a value of 1.75 x 103 for Kps
which is in perfect agreement with the value givén in Table XIV for
these data. Bjornson calculated a value of 2.13 x 107" for'EDf—equiva—
lent to 4.69 x 103 for KA——by the Fuoss method. This, too, is in ex-
cellent agreement with the value listed in Table XIV for his data.,

Other results of the Fuoss-Onsager—Skinner theoretical treatment of
the data of Dutoit and Levrier and the data of Bjornson are included in

Tables XV and XVI, respectively. The first and second columns give the
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TABLE XV

EXPERIMENTAL AND THEORETICAL CALCULATIONS FOR
LITHIUM BROMIDE IN ACETONE FROM DATA OF
DUTOIT AND LEVRIER

c x 10° A (experimental) Y A (calculated) SA
.3258 158.6 0.967 163.2 4.6
1.138 161.2 0.990 159.9 -1.3
4,149 152.9 0.951 151.4 -1.5
14.11 136.2 0.866 133.2 -3.0
46.79 107.2 0.708 106.3 -0.9
168.5 73.4 0.516 75.3 1.9
620.7 46.5 0.366 46.5 0.0
1961 ‘ 29.6 0.275 29.5 ~0.1

TABLE XVI

EXPERIMENTAL AND THEORETICAL CALCULATIONS FOR
LITHIUM BROMIDE IN ACETONE FROM DATA OF

BJORNSON

c x 10° A (experimental) Y A (calculated) SA

3.474 - 169.7 0.879 170.6 1.0
6.660 156.4 0.816 156.2 -0.2
9.664 147.5 0.773 145.7 -1.7
12.54 140.7 0.740 137.6 -3.1
16.51 128.9 0.680 132.1 3.2
32.37 108.9 0.581 110.5 : 1.6
47.77 97.68 0.525 97.41 -0.3
62.54 89.84 0.486 89,04 -0.8
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experimental concentration (c) and equivalent conductance (27! cm? eq™1),
respectively; the calculated values for y and A are listed in the third
and fourth columns, respectively, and the last column gives §A--the cal-
culated equivalent conductance minus the experimental equivalent con-
ductance. It should be noted that the same trend is observed for y in
these tables as for y in Series I; the values of y for Series I are
given in Table IX and displayed graphically in Figure 14.

It appears that by and large the FOS equation does satisfactorily
describe the electrolytic conductance of the lithium bromide-—acetone
system. However, some doubt may be introduced by scrutinizing the last
column of Table IX which shows that the change in sign for SA for Series
I may not be random. In particular, the most dilute solution had a
positive value for §A and its magnitude was greater than for any others
in the series. In the range 5-10 x 107° molar lithium bromide, SA was
negative; it became positive as the concentration was increased further,
but was negative for the most concentrated solution. This is shown in
the phoreogram in Figure 19 and in itself would not be significant. The
last column of Table XV shows that the same pattern exists, however, for
8A for the data of Dutoit and Levrier. In fact, Kraus and Bray rejected
the point corresponding to the first row. As seen in Table XVI,
Bjornson's data show a similar trend. In all cases the experimental
phoreogram has a greater curvature and inflection than the calculated
phoreogram. The calculated phoreogram is high for the very dilute
solution, low for the more concentrated solutions and has a less nega-
*tive slope at the point of inflection. This same pattern is observed
for Series II-V as shown in Tables X-XIII and Figures 20-23; of course,

it is realized that these systems contain another component, but
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nonetheless the pattern is there. ' These results suggest that phenomena
may be occurring which are not accounted for by the Fuoss-Onsager-
Skinner theory. For example, adsorption of ions at the electrodes would
introduce a larger error for the very dilute solutions.

In view of the extreme precautions (described in detail in Chapters
ITT, IV and V) taken in the experimental portion of this work and the
other factors mentioned in this section, it should be apparent that the
best values available for A, and EA for lithium bromide in acetone at
25 °C are 198.1+0.9 9! cm? eq”! and (3.3%0.1) x 10%, respectively. It
appears that this research has also yielded the best value forlg_fbr

lithium bromide in acetone at 25 °®C--namely, 2,35 A.

Lithium Bromide-Bromosuccinic

Acid-Acetone System

The specific conductance of bromosuccinic acid in acetone at the
concentrations used in this research is about two orders of magnitude
greater than that of acetone and approaches the same order of magnitude
as that of the very dilute solutions of lithium bromide in acetone. A
plot of the corrected specific conductance of bromosuccinic acid in
acetone as a function of its concentration is shown in Figure 13 and is
also represented by curves in Figures 11 and 12. These graphs are in
agreement with the results of Bjornson (163) who found the specific
conductance of 0.02 molal bromosuccinic acid in acetone to be about
8 x 1077 @1 co™! and of 0.2 molal bromosuccinic acid in acetone to be
about 4 x 107° 97! cw™!. The solvent correction for the specific con-

ductance of 1ithium bromide in the bromosuccinic acid-acetone mixed
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solvent is no longer negligible throughout the entire concentration
ranges, Inspection of Tables IV-VI shows that, as expected, the correc-~
tions became more significant with decreasing concentration of lithium
bromide and increasing concentratlon of bromosuccinic acid. They ex~
tended from 0.86 percent, 1.5 percent and 2.5 percent for Points IIll,
III1ll and IV1l, respectively, to 40 percent, 62 percent and 74 percent
for Points II2, III2 and IV2, respectively. The consequence of these
corrections is emphasized by comparing Figures 7 and 8 which display the
uncorrected and corrected specific conductance of lithium bromide for
Series I-IV for very dilutea solutions,

It can be observed in Figure 8 that in the dilute lithium bromide
solutions the increase in specific conductance with increasing concen-
tration of lithium bromide was diminished with augmentation of bromo-
gsuccinic acid. Figure 9 indicates this held true up to a concentration
of about 2-3 x 10™* molar lithium bromide whereas at concentrations
greater than about 5 x 10™* molar lithium bromide the specific conduct-
ance is enhanced by the addition of bromosuccinic acid. It can be
deduced from the figure that the specific conductance of 10'3 molar
lithium bromide was higher by 10 percent, 13 percent and 18 percent for
solutions with bromosuccinic acid moclalities of 0.02, 0.05 and 0.1,
respectively. On the basis of the divergence of the curves at this
concentration it is reasonable to assume that if the concentration of
lithium bromide is increased the enhancement of the specific conductance
from the addition of the bromosuccinic acid should be increased. This
is consistent with the results of Bjornson, who measured the specific

conductance of solutions containing 0.0l molal lithium bromide in ace-
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tone and varying amounts of bromosuccinic acid.! He found the specific
conductance of the solution to be 3.0 x 1074 7! em™! in the absence of
bromosuccinic acid; for 0.02 molal, 0,05 molal, 0.1l molal and 0.2 molal
bromosuccinic acid in the solution the specific conductances were

3.4 x 107% @71 em 1, 4.0 x 107% =1 em™Y, 4.4 x 107% @71 cm™! and

4.6 x 1074 Q71 em™!, respectively, which were increases of 13 percent,
33 percent, 47 percent and 53 percent, respectively. In Chapter II it
is stated that Olson and Cunningham (162) found that the addition of
bromosuccinic acid to 0.01 molal lithium bromide in acetone increased
the specific conductance by 30 percent when the solution was 0.2 molal
with respect to the acid.

It is to be noted from Table VIII that as in Series I the standard
deviation of A, i1s small, that of L is large and that of Eé is inter-
mediate for Series II-IV. These large standard deviations can be ra-
tionalized in the same manner as in the preceding section. Table VIII
shows that the equi&alent conductance at infinite dilution decreases
with increasing bromosuccinic acid concentration; Figure 15 indicates
that the decrease is systematic. The table also infers a systematic de-
crease in KA as the bromosuccinic acid concentration is increased; this
decrease .is displayed in Figure 16, The value c¢f a increases with in-
creasing concentration of bromosuccinic acid and is shown in Figure 17.

Tables IX-XII show that y decreases with increasing concentration
of lithium bromide for each series, but that the decrease gets smaller

as ‘the bromosuccinic acid concentration gets larger. The effect of

1In acetone solutions the molarity and normality of lithium bromide
are approximately 80 percent of the molality.
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lithium bromide and bromosuccinic acld concentration on y is demon-
strated in Figure 14, All of the terms listed in Tables X-XII diminish
the equivalent conductance from A, for Series II-IV, just as they do for
Series I, and the magnitude of the reduction for each term gets larger
with increasing lithium bromide concentration, just as it does for
Series I. Examination of the E terms and L terms shows that their con-
tributions to the equivalent conductance are comparable to Series I;
that is, the E terms make the smallest contribution to the decrease
throughout the entire concentration ranges and at the lower concentra-
tions the E terms and L terms are of the same magnitude, but at the
higher concentrations the L terms are two to three times the E terms.
For Series II and III the.Eé terms make the largest contribution to the
reduction in equivalent conductance at higher concentrations, but, un-
like Series I, at lower concentrations the S terms are the largest con-
tributors, The S term makes the largest contribution to the decrease in
equivalent conductance at all concentrations in Series IV. The same
trends are noted in SA for Series II~IV as in Series I, but are even
more pronounced; this has already been pointed out in the preceding sec-
tion. There is general agreement between the experimental and calcu-
lated equivalent conductances, but the agreement is not as good as in
Series I. This can be seen by comparing the experimental and calculated
phoreograms shown in Figures 19-22, The calculated phoreograms for
Series I-IV are shown in Figure 18, 1In each series the first derivative
is negative throughout and there is a point of inflection with the
second derivative being negative at low concentrations and positive at

high concentrations.



144

As stated in Chapter II, one of the two purposes of this research
was to determine whether or not the electrolytic conductance of the
lithium bromide-bromosuccinic acid-acetone system can be described by
the FOS equation by treating the system as lithium bromide in a mixed
solvent. In other words, if one took into account the changes in die-
lectric constant, viscosity and specific conductance of the mixed sol-
vent due to variations of composition, would a constant value be
obtained for Ag? Obviously, it is not--the FOS equation does not de-
scribe the system.

If the system behaves ideally with no interaction among the compo-
nents the specific conductances should be additive. Figure 12 shows
the specific conductance of the solution corrected for the specific
conductance of the acetone and lithium bromide-~that is, the specific
conductance of the solution minus the specific conductance obtained in
Series I--for various fixed amounts of lithium bromide as a function of
bromosuccinic acid concentration, Inasmuch as this is equal to the -
equivalent conductance of bromosuccinic acid, if there is no interac-
tion among the conducting species all four curves should coincide with
the curve for no lithium bromide. Clearly, some type of interaction
must occur.

Bjornson worked at sufficiently high concentration (0.0l molal
lithium bromide) that he observed only the increase in specific conduct-
ance due to addition of bromosuccinic acid to a lithium bromide-~acetone
solution., Lithium bromide is an ionophore and in acetone exists as
lithium ions and bromide ions (conductors) in equilibrium with associ-
ated lithium bromide ion pairs (nonconductors), while bromosuccinic acid

is an ionogen which exists in acetone as bromosuccinic acid molecules
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(nonconductors) in equilibrium with hydrogen ilons and bromosuccinate
ions (conductors). In order to explain the anomalous increase in spe-
cific conductance Bjornson proposed that when bromosuccinic acid is
added to the lithium bromide-acetone solution, bromide ion from the
lithium bromide combines with hydrogen ion from the bromosucciniec acid
and forms molecular hydrogen bromide (a nonconductor). This would re-
sult in a decrease in ions; however, as bromide ions and bromosuccinate
ions were removed less lithium bromide would be assoclated and more
bromosuccinic acid would be dissociated. The final result after estab-
lishment of equilibrium among lithium ions, bromide ions, hydrogen ionms,
bromosuccinate ions, bromosuccinic acid molecules, hydrogen bromide
molecules and lithium bromide ion pairs would be a net increase in con-
ducting specles and therefore an increase in specific conductance.

Bjornson also measured the specific conductance of a solution of
0.01 molal lithium bromide in acetone with various amounts of dimethyl
bromosuccinate added and found a slight linear decrease in specific con-
ductance with augmentation of dimethyl bromosuccinate. Olson and Cun-
ningham, as stated in Chapter II, obtained like results and also found
that the specific conductance decreases linearly as bromosuccinic acid
is added to 0.0l molal lithium perchlorate in acetone. These resuits
lent support to Bjornson's postulate in that when the acidic hydrogens
of bromosuccinic acid were replaced with methyl groups or the bromide
ions of lithium bromide were replaced with perchlorate ions an increase
in specific conductance was not observed.

Series V consisted of adding lithium bromide to a fixed amount of
dimethyl bromosuccinate in acetone. Table VII shows that the solvent

correction is greater than for Series I, but less than for Series II-IV,
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The specific conductance of lithium bromide in dimethyl bromosuccinate-
acetone was slightly less than in acetone, although, as seen in Figure
10, when they are plotted together on the same axes over the entire
concentration range they are essentially the same. This is in contrast
to Series II-IV as can be seen in Figure 9. Table VIII shows that both
Ag and KA are less than for Series I but greater than for Series II-IV.
Table XIII, which gives the functions calculated from the FOS equation
for Series V, indicates that the trends in each column are the same as
for Series I (Table IX). The experimental and calculated phoreograms
for Series V are exhibited in Figure 23. Figure 24, which compares the
calculated phoreograms for Series I and V, shows that at a lithium bro-
mide concentration of approximately 10~3 molar the equivalent conduct-
ance of lithium bromide is not increased by the addition of dimethyl
bromosuccinate as it is by the addition of bromosuccinic acid (Figure
18). The results of Series V are in agreement with those of Bjornson
and those of Olson and Cunningham.

Bjornson's ‘postulate seems to be a plausible explanation for the
increase in specific conductance of lithium bromide in acetone, pro-
vided that in acetone the dissociation constant of bromosuccinic acid
is greater than that of hydrogen bromide. (It is mentioned in Chapter
IT that Bailey (164) obtained a value of 1 x 107€ for EQ for hydrogen
bromide in acetone.) However, in view of the fact that at lower con-
centrations of lithium bromide there is an actual decrease in specific
conductance upon the addition of bromosuccinic acid to the system,
Bjornson's proposed expianation is invaliid.

It is evident from this study that there is no simple ekplanation
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for the observed specific conductance in the lithium bromide=~
bromosuccinic acid-acetone system. If Table VIII is compared with
Table I, which has tabulations of the effect of addition of water to
the lithium bromide-acetone system (from Olson and Konecny (170)) it is
noted that there 1s a‘close parallel. There are decreases in A; and K,
(Kp and Kp being reciprocals of one another) and an increase in a in
both instances, Indeed, the decrease in Ay shown in Table VIII and
Figure 15 could be partially rationalized by the inérease in a noted in
Table VIII and displayed in Figure 17. The value obtained for a in
Series I 1s in good agreement with that obtained from Olson and Konecny.
If the increase in a is a result of increased solvation of the ions,
then one might expect the mobility of the ions to be decreased and con-
sequently the equivalent conductance at infiniate dilution to be re-
duced. Also, an increase in viscosity should decrease the mobility;
however, the increase in viscosity due to the addition of bromosuccinic
acid is negligible. Finally, it should be noted that Walden's rule--
Equation (1-13)~-does not apply; the product, Acn, decreases with in-

creasing concentration of bromosuccinic acid.
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APPENDIX A

FUNDAMENTAL AND DEFINED UNITS, PHYSICAL

CONSTANTS, AND FORMULA MASSES

TABLE XVil

NAMES, SYMBOLS AND DEFINITIONS
OF BASIC SI UNITS

length: meter; m; the length equal to 1 650 763,73 (exactly) wave-
lengths in a vacuum of the radiation corresponding to the transition
between the energy levels 2p;, and 5d5 of the pure nuclide 86Kr.

mass: kilogram; kg; the mass of the International Prototype Kilogram
which is in the custody of the Bureau International des Poids et Meas-
ures at Sévres, France.

time: second; s; the duration of 9 192 631 770 periods of the radiation
corresponding to the transition between the two hyperfine levels (F=4,
Mp=0 and F=3, Mp=0) of the fundamental state (2S5 1/2) of the atom of
cesium 133.

electric current: ampere: A; that constant current which, if maintained
in two parallel rectilinear conductors, of infinite length and of neg-
ligible circular cross-section, at a distance apart of one meter in a
vacuum, would produce a force between the conductors equal to 2 x 107
newton per meter of length.

thermodynamic temperature: kelvin, K; the unit of thermodynamic tem—
perature which is the fraction 1/273.16 exactly of the thermodynamic
temperature at the triple point of water.

amount of substance: mole; mol; the amount of substance of a system
which contains as many elementary units as there are carbon atoms in
0.012 kg (exactly) of the pure nuclide 12¢,

Source: Information Bulletin No. 32, I.U.P.A.C., August (1968).
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TABLE XVIII
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NAMES, SYMBOLS AND DEFINITIONS

OF DERIVED SI UNITS

Physical Quantity Name Symbol Definition
electric capaciltance farad F A2 st kg"1 m~2 (A s V°1)
electric charge coulomb c As
electric potential difference volt v kg m2 s=3 A™! (J A”L 571)
electric resistance ohm Q kg m2 s—3 A™2Z (V A"1)
energy joule J kg m? s—2
force newton N kg m s72
frequency hertz Hz s—1
power watt W kg m2 s”3 (J Sfl)

Source: Information Bulletin No. 32, I.U.P.A.C., August (1968).



TABLE XIX
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NAMES, SYMBOLS AND DEFINITIONS OF OTHER UNITS

Physical Quantity Name Symbol Definition
amount of
substance equivalent eq mol 271
concentration demal D eq(solute) dm~3(solution)
concentration molal m mol (solute) kg~ ! (solvent)
concentration molar M mol (solute) dm~3(solution)
concentration normal N eq(solute) dm™3(solution)
customary
temperature (t) Celsius degree °C t/°C = T/K - 273.15
dynamic
viscosity poise P 1071 kg m™1 ™1
electric
charge electrostatic unit esu 3.33560 x 10710 ¢
energy erg erg 1077 J
force dyne dyn 1075 N

o —
length angstrom A 10710
length inch in 2.54 x 1072 m
pressure torr Torr (101 325)/760 N m™2
volume liter '3 1073 m3
volume ounce oz 2.95737 x 1075 m3
Source: Information Bulletin No. 32, I.U.P.A.C., August (1968).



TABLE XX
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NUMERICAL VALUES OF FUNDAMENTAL CONSTANTS

Quantity Symbol Value

Avogadro constant N (6.02252£0,00028) x 1023 mol=?
Boltzmann constant k (1.38054£0.00009) x 10~23 J k-1
charge of proton € (1.60210+0.00007) x 10=19 ¢
Faraday constant F (9.64870+0.00016) x 104 C mol™!
gas constant R (8.31433£0.00044) J K™1 mol™!
speed of light in vacuum C (2.997925£0.000003) x 108 m s~1

e 2,71828

m 3.14159

T 0.577216

Source: Information Bulletin No. 32, I.U.P.A.C., August (1968).

TABLE XXI

FORMULA MASSES OF COMPOUNDS

Compound Formula Weight (g mol %)
acetone 58.08
bromosuccinic acid 197.0
dimethyl bromosuccinate 225.0
lithium bromide 86.85
potassium chloride 74.56

Source: Handbook of Chemistry and Physics (Weast, R. C., ed.), 5lst

edition, The Chemical Rubber., Cleveland, Ohio, 1970.



APPENDIX B

ABSTRACTS FROM THE FIRST FOUR PAPERS BY. FUOSS
AND ONSAGER ON THE CONDUCTANCE OF

SYMMETRICAL ELECTROLYTES
I. Potential of Total Force (131)

By means of a multiplicative expansion of the distribu-
tion functions which describe local ionic concentrations,
the 1932 Onsager-Fuoss equation of continuity can be inte-
grated with explicit retention of the Boltzmann factor,
instead of approximating the latter by a truncated power
series. The result is expressed in terms of the potential
R of total force acting on a glven ilon: the present ap-
proximation to Vu includes the external field, the forces
due to neighboring ilons and to the asymmetry of the ionic
atmospheres, and the virtual forces due to local concentra-
tion gradients. The differential equations which will lead
to the forces from the velocity field also have been derived.

IT. The Relaxation Field (132)

The Poisson equation for the asymmetry potentials of a
symmetrical electrolyte in the conductance process has been
integrated by the use of the corresponding Green's function
in order to obtaim the purely electrostatic terms of the
relaxation field. The Boltzmann factor in the distribution
function was retained explicitly as an exponential through-
out the calculation, instead of approximating it as a trun-
cated series as has been customary in previous derivations.
The consequence of this refinement in mathematical methods
is the appearance in the relaxation field of a term which
will lead to a decrease in conductance with increasing
concentration or decreasing dielectric constant. The de-
crease is proportional to the product of concentration and
the square of the mean activity coefficient. It depends on
dielectric constant through a function which has as its
asymptotic limit QP/L? (gégg/aDkT), which is the form of the
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theoretical associlation constant for contact pairs. This re-
sult means that the ad hoc hypothesis of ion pairing control-
led by a mass action equilibrium is no longer needed to obtain
a satisfactory conductance function; the former mass action
term is derivable from the Poisson equation. It was missed in
earlier theoretical work by too drastic approximation of the
Boltzmann factor.

ITII. Electrophoresis (133)

The electrophoretic velocity in a dilute solution of a
symmetrical electrolyte has been computed, with the following
improvements over earlier treatments of the problem: (1) the
volume force is calculated as the gradient of the potential of
the total force acting on an ion instead of being approximated
merely by the force due to the external field; (2) the
Boltzmann factor is retained explicitly, instead of being
approximated by a truncated series; and (3) the Oseen equa-
tions of motion (rather than the Stokes) are used. The
result gives the Onsager 1926 limiting value (-e;«xX/6wn) as
the leading term; to next approximation, this is opposed by a
term proportional to concentration, which depends on hég?/aDkT
in a non-exponential fashion. For example, for b=1.5 (D=100),
F(b)=2.31 and for b=15 (D=10), F(b)=-0.77. The coefficient
goes through zero near b=5.

IV. Hydrodynamic and Osmotic Terms
in the Relaxation Field (134)

Using (1) the differential equation which defines that
part of the total potential which has hydrodynamic origin,
(2) the corresponding Poisson equation, and (3) the appro-
priate boundary conditions, the term AXy in the relaxation
field is calculated up to terms of order cl/2 in concentra-
tion in the conductance function A(c). The Boltzmann factor
e5 is kept explicit as exp(-Be”I/r) throughout the computa-
tion; the principal approximations made are to drop terms of
order ,3nvc3/2. The leading term contains the negative
exponential integrals Ep(2ka) and E,(ka) and thus contributes
cloge terms to A(c); these are idemtical with our previous
result. The next term, linear in c, has a coefficient
[Epig)/Z—(29)‘1exp(§)0rl/32)], §=§?/§QEI, which contains most
of the function K(b) which appeared in the electrostatic part
[AX] of the relaxation field. The kinetic term in A(c) is
also computed to the same degree of approximation; combined
with [AX], it gives the complete function K(b), multiplied
by a small coefficient.

°
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APPENDIX C

COMPUTER PROGRAM LISTING FOR CONCENTRATION

CALCULATIONS
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(I R s R R Ty T R e Py
Cre bk dp xkknnhdbnkks bk soknx® PROGRAM TITLE X ackaeskkabrkeskrtnbkbrekhengs
c CALCULAT ION OF CONCENTRATIONS FOR USE WITH DILUTION CELLS
(R L I R P e TR S 32 I Y
Crexabxivphrhehepexxkx b gxzsx  [NPUT [NSTRUCTIONS #eskxrkkdxkkoxrkabxkkhhprhkeks
THE FIRST DATA CARD REQUIRES A FORMAT (3F10.0y 3E15.4y [5).
THE FIRST FIELD (F10.0) GIVES THE NUMBER Of GRAMS OF SOLVENT ORIGINALLY
IN THE CELL.
THE SECOND FIELD (FlOed) GIVES THE FORMULA WEIGHT OF THE SOLUTE.
THE THIRD FIELD (F10.0) GIVES THE DENSITY (G/ML) OF THE SOLVENT.
THE FOURTH FIELD (E15.4) GIVES THE NUMBER OF GRAMS OF SOLUTE PER GRAM QF
CONCENTRATED STOCK SOLUTICN (SOLUTICN NOo. 1)
THE FIFTH FIELD (E15.4) 3IVES THE NUMBER OF GRAMS OF SOLUTE PER GRAM OF
INTERMEDIATE STOCK SOLUTION (SOLUTION NO. 2).
THE SIXTH FIELD (E15.4) GIVES THE NUMBER OF GRAMS OF SOLUTE PER GRAM OF
DILUTE STOCK SOLUTION ( SOLUTION NO. 31,
. THE SEVENTH FIELD (IS5) GIVES THE NUMBER CF DATA POINTS,
THE REMAIMNING DATA CARDS REQUIRE A FORMAT (F10.0, IS). EACH CARD REFERS TO
« ONE ME ASURED CONCENTRATION. THESE  CARDS SHOULD BE ARRANGED IN ORDER OF
INCREASING CONCENT RAT [ON.
THE FIRST FIELD (F10.0) GIVES THE NUMBER OF GRAMS OF STOCK SOLUTION
ADDED. .
THE SECOND FIELD (I5) GIVES THE NUMBER OF THE STOCK. SOLUTION ADDED
(*1* FOR THE MOST CONCENTRATED, '2* FOR THE INTERMEDIATE, AND *3' FOR
THE DILUTE),
STATEMENT NUM3BER 1000uU IS CALLED THE COMMENT FORMAT--IT lS THE LAST FORHAT
LISTED AND IS SEPARATED FROM THE OTHER FORMAT STATEMENTS. ANY COMMENTS
CCNCERNING THE DATA MAY BE INSERTED HERE AND THEY WILL BE PRINTED AT THE
BEGINNING OF THE QUTPUT. THIS STATEMENT SHOULD BE WRITTEN AS FOLLOWS.
10000 FIRMAT (10X, °COMMENT IN HERE.' /////)
CRER SR RRERRAERRREAA RS RRRRERRRRF AR R R BR KRR KRR RN RN R R AR AR AR R KRR K&
CEEERERRARRRRAREERERR KR KRR ERRE R, QUTPUT SERkEREEXXRKRAERRRXAR AR RRRRERR KRR K
C THE OUTPUT CONSISTS OF THE POINT NUMBER AND CORRESPOND[NG LITHIUM BROMIDE
C NORMALITY AND MOLALITY.
Rl Ry R P P ey
Crekxkrxokiknkkkbkkrnkxnnnnrt FXPLICIT STATEMENT ¥tk kabikrharrrrkrhahihRny
REAL LIBRy LIBRAD, MGLAL, NORMAL
CHEXRXE AR RREEERARERRRA IR ERRKKERKKRBX KK AR EE R KRR AR R AR ERREA KR KRR R KRR R R A KRR KRR R KK
CRERer bk hkkrrk ke rkxushxnank FCRMAT STATEMENTS #&xss kX xikxbbkbxkbbrrhhrnhies
1 FORMAT (3F10.0,4 3ElS5e4, IS5)
3 FORMAT (F10.0y I5)
8 FORMAT (I13, 1PE21.3, El19.3 /)
GOFCRMAT (10Xs *POINT®!, 10X, *NORMALITY®*, 10X, *MOLALITY®*/// 12X, '1
1%y 12Xy t===w=====? 10Xy V=—-wema=- /)

10 FCRMAT (*1')
Cttttt#tttttttttttttttttttttttt#tttttt##tt#tttttttttt#tttttt##tttttt#tttt#tl#ttt
Crrkxkgsarnkhhkrnknhhanhhnxkxk OMMENT FORMAT **sbxkxnkkhhhhkhrhhhhhnkerhbnhrex
10000 FORMAT (10X, *FAP* /////)

CREXERERE ERR AR ALK KL RRR XK R R R R KA RE R RAB K RXE IR R EE AR RN EREARKE AR KRR T RR KK &
CEEEXRERERRRRERDRAKERRRXRRRKARRRE PROGRAM HEXKEEERAXAREEEERARAXIAERRRRKERERKKEE
LIBR = Q.
WRITE (6,10)
WRITE (6,10000)
WRITE (6,9)

OO0 AOOADO000AOON0O0A0O0N0ON
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~o

READ (541) SOLVNT, GFWy DENSTY, SOLNl, SCLN2, SOLN3, KOUNT
DO 2 I=1,KOUNT

J=1+1

READ (5,3) ADDSOL, NUMBER

GO TO (4456}, NUMBER

LIBRAD = SOLN1 = ADDSOL
GO 70 7

LIBRAD = SOLNZ * ADDSOL
GC TO0 7

LIBRAD = SOLN3 * ADDSCL .
LIBR = LIBR + LIBRAD

SGLVNT = SOLVNT + ADDSCL - LIBRAD
FORWT = LIBR / GFw _

MOLAL = FORWT / SOLVNT #* 1300.

NCRMAL = FNRWT * CENSTY/SOLVNT * 1000.
WRITE (648) Jy NORMAL, MOLAL

WRITE (6410)

sToP

END

CHRERLERBRRRRARR A TR R MR R RRE R RR KRR AR R AR KRR R AR R KRR R G AR R AR R R R KRR KRR K K&
CHEX LR RE AR AR SRS R AR kR k DATA CARDS 42Xk XXX RAXRAKXREARRRARRE AR R RN K
CHERTESRRBIRRRADKARRRRR AR KKK RRERK R AR R RRN KRR RRE R AR KR TR R R R R R AR R A RR R KRR R RER
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APPENDIX D

COMPUTER PROGRAM LISTING FOR SOLUTION OF

FUOSS-ONSAGER-SKINNER EQUATION

0000000031111111111222222222233333333334444446444455555555556666666666TTTTTT77178
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CHREE R AR XERREERAEAX R AR KR RXERR R AR RREE LR KA KRR R R R KRR R REEEE KRR RE R kR e R KX ¥
(22222222 2222222222 2222222 2 22 2 vPROGRAM TITLE EREE L AR ERERERER K AR RERURERERERR ¥
C SOLUTION OF FUOSS-ONSAGER-'SKINNER EQUATION
CERR Rk kR REE R R KA R R EX R AR SR SEX DR SR SR RE RN EC KRR R RER AR RE TR R AR R R R X R Eh kR SRR E AR ER R
o 2222 L2222 222222 22222 2222 d 2] INPUT INSTRUCTIONS FERRR KR RE R SR A A RRR R RRRRRE &K
THE FIRST RECORD REJUIRES A FIRMAT IlZX,lSA#le-16A4/6X.16A4)g WHICH IS THE
IDENTIFICATION FOR THE SERIES,
THE SECOND DATA CARD REQUIRES A FORMAT (15,4F10.0,E10.3).

THE FIRST FIELD (I5) GIVES THE NUMBER OF POINTS IN THE SERIES.

THE SECOND FIELD (F10.0) GIVES THE CELL CONSTANT.

THE THIRD FIFLD (F10.0) GIVES THE ABSOLUTE TEMPERATURE.

THE FOURTH FIELD (F10.0) GIVES THE VISCOSITY.

THE FIFTH FIELD (F10.,0) GIVES THE DIELECTRIC CONSTANT,

THE SIXTH FIELD (E10.3) GIVES THE SPECIFIC CONDUCTANCE QF THE SOLVENT.
THE REMAINING DATA CARDS FOR THE SERIES REQUIRE (E1243y10XsE12.5910X4E1245)
FORMATS. FEACH CARD REFERS TO A PAIR 0OF MEASUREMENTS—-CONCENTRAT ION AND
CORRESPONDING RESISTANCF. THESE CARDS SHOULD BE ARRANGED IN ORDER OF
INCREASING CONCENTRATION. '

THE FIRST FIELD (E12.35 SIVES THE SOLUTE CONCENTRATION (MOLES/LITER}.

THE SECOND FIELD (E12.5) GIVES THE MEASURED RESISTANCE (0AMS).

THE THIRD FIELD (E1245) GIVES THE RESISTANCE (OHMS) OF THE SHUNT,
THESE CARDS COMPLETE THE SET FOR ONE SERIESe [IF MORE THAN ONE SERIES IS RUNe
THE ABOVE SEQUENCE OF CARDS IS REPEATED FOR EACH SERIES AND PLACED OME AFTER
ANOTHER.

IN ADDITION, THE FOLLOWING SHOULD BE CHECKED.

THE TEST VALUE ON CARD 0145 GIVES THE NUMBER OF SERIES BEING DETERMINED.

THE TRIAL VALUE FOR 8 IS GIVEN 8Y CARD 0201.

THE TRIAL VALUE FOR K IS GIVEN BY CARD 0225.
Ctt‘#tt#ﬁttttttt‘tttttttttﬁtt##ttttt‘t‘tttttttt#ttt“#tt#tttt#tttttttt#ttt#tt#t‘
CREEEERRAAEAEARR R RE AR RE KR ER K R RE KK aJdTPUT EEEEEREE A REER R AR R R R AR SR KR R KR K
C THE QUTPUT CONSISTS OF SERIES IDENTIFICATION, TEMPERATURE, CELL CONSTANT,
VISCOSITY, DIELECTRIC CONSTANT, SOLVENT SPECIFIC CONDUCTANCE, El, €2, ALPHA
AND BETA. THIS IS FOLLOWED BY THE CONCENTRATION, SQUARE ROOT OF THE
CONCENTRATION, RESISTANCE, SPECIFIC CONDUCTANCE (CORRECTED) AND EQUIVALENT
CONDUCTANCE FOR EACH POINT. THE FIRST ESTIMATE OF THE EQUIVALENT CONDUCTANCE
AT INFINITE DILUTION, THE ZEROTH AND FIRST APPROXIMATION OF GAMMA FOR EACH
POINT, THE INITIAL VALUE OF B ANO THE ESTIMATE OF L OBTAINEO FROM IT AND THE
REFINED APPROXIMAT IONS OF GAMYA FOR EACH POINT ARE GIVEN. EACH TIME THE
LEAST SQUARES SUBROUTINE IS CALLED, THE ELEMENTS OF THE NORMAL AND INVERSE
MATRICES ARE LISTED ALONG WITH VALUES FOR LAMBDA 2ERO, K, AND L AND THEIR
STANDARD DEVIATIONS PLUS VALUES FOR By A AND THE VALUE OF L CALCULATED FROM
THE VALUE UBTAINED FOR B. ALSO, ON EACH PASS OF THE SUBRQUTINE VALUES OF THE
FOLLOW ING ARE TABULATED FOR EACH POINT,.

MOLAR CONCENTRAT ION

GAMMA ’

PRODUCT OF CONCENTRATION AND GAMMA (C*GAMMA)

EXPERIMENTAL EQUIVALENT CONDUCTANCE

CALCULATED EQUIVALENT CCNOUCTANCE

DELTA LAMBDA

CONDITION EQUATION (FO)

PARTIAL DERIVATIVE OF CONDITION EQUATION WITH RESPECT TQO LAMBDA ZERO

(F1)
PARTIAL DERIVATIVE OF CONDITION EQUATION WITH RESPECT TO K (F2)

OMNOOAN OO MO0 0O0On

OO0 A0 n0
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CARD
55
56
57
58
59
60
61
62
63
64

66
67
68
69
70
71
72

T4
75
76
77
78
79
80
81
82
83
84
as
86
87
-1:]
89
90
9l
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
121
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STANDARD DEVIATION OF (C®¥GAMMA)
STANDARD DEVIATION OF LA4SDA
FINALLY, THE RATIO OF THE MAXIMUM DEVIATION TJ THE AVERAGE DEVIATION IS
PRINTED, FOLLOWED BY INTEGRAL VALUES OF B FROM 1 TO 25 AND THE CORRESPONDING
C VALUES OF L CALCULATED FROM THEM.
CEESRBA XX RBRE LR RS XXX SRR SRR IR R RS K KRR R R RS AR AR R S AR UL AR R R KRR R AR AR R ARG R Rk Rk
CHes st srhxsanssasnes st dndss  DIMENSION STATEMENT #5225 IRk5xRBXRXERRRRAERAES
DIMENS ION CONCEN{201},EQUCON{20}yRESIST(20),RIDTINL20),F1000(4T7),
1SPECON(20)y GAMMALI20), GAMMAZ2(20)s DENOM(20)y SHUNT(20},F(7,20),
2VAR(20)+x(20),Y(20) CONST(3) ,SIGY(20)sSIGX(20),YCALX(20),S51G(3),
3GAMMA3 (20)
CEERSER R XXRR XX NRAR XS RE R R AR X REEERE R B E B R X R R RR KRR R AR R R R R AR R KRR KR KRR R R R R KRR kKR R
[ 12 E2 S22 2322222222222 22 2 2 23 FORMAT STATEMENTS LR R RS 122223322 222 22 2 2 S 2 LY
1 FORMAT (15, 4Fl0.0, El0.3)
20FORMAT (10X, 'THE FOLLGWING DATA WERE OBTAINED AT®, F7.2, * KELVIN
1 IN A CELL WITH A CELL CONSTANT JF', FO9eb,s * /LM.* // 10X, *THE VI
2SCOSITY OF THE SOLVENT ISt, 1PEL10O.3, * POISE (GM/ (CM*SEC)) &%y //1
30X, °*THE DIELECTRIC CONSTANT OF THE SOLVENT IS'y OPFb42y *o* /)
4 FURMAT(E1243,10X,E1245,10XyE12.5)
5 FORMAT (113, 1X, 1P2S13.3, E13.5, E19.4, E26.3/)
60FORMAT(//10Xy *THE FIRST ESTIMATE FOR THE EQUIVALENT CONDUCTANCE AT
I INFINITE DILUTION IS*, 1PE1O43y * MHO*CM*CM/EQUIV,.' / 10X, °*THIS
21S OBTAINED BY APPLYING A LINEAR LEAST SQUARES TO THE FIRST FOUR C
30ONCENTRATIONS AND EQUIVALENT CONDUCTANCES ABOVES' ////7/7 10X, A
4 ZERQOTH APPROXIMATION OF GAMMA IS GIVEN AS THE EQUIVALENT CONDUCTA
SNCE DIVIDED BY THE FIRST ESTIMATE FOR THE EQUIVALENT®* / 10X, *COND
6UCT ANCE AT INFINITE DILUTION. A FIRST APPROXIMATION 1S OBTAINED 8
7Y DIVIDING THE EQUIVALENT CCNOUCTANCE BY THE SJM OF' / 10X, *THE F
8IRST TWO TERMS OF THE FUOSS-ONSAGER EQUATION USING THE FIRST ESTIM
9ATE FOR THE EQUIVALENT CONDUCTANCE AND THE ZEROTH* / 10X, 'APPROXI
IMATION OF GAMMA.Y /// 20X, *NUMBER®*, 10X, *GAMMA-ZERO', 12X, *GAMM
2A~0ONE?' /) |
T FGRMAT{1H1)
12 FORMAT (124, 11X, F9e¢5, 11X, "INFINITE?)
13 FORMAT (124, 11X, F9.5, 11Xy F9.5)
15Q0FCRMAT (///// 10X, *THE PROGRAM HAS BEEN TERMINATED BECAUSE AT LEA
1ST ONE VALUE OF GAMMA-ONE IS NEGATIVE DR INFINITE.' 7 '1')
160FORMAT (///10X, 'AN ESTIMATE OF L IS OBTAINED FROM ASSUMING AN INI
1TIAL VALUE OF B =", F6.2y *a THE ESTIMATE IS ', 1PElQa3, '.¢
2 /710X, *A REFINED APPROXIMAT ION OF
4GAMMA IS UBTAINED BY DIVIDING THE EQUIVALENT CONDUCTANCE BY THE SU
5M OF THE FIRST FOUR TERMS QF* / 10X, *THE FUOSS~ONSAGER EQUATION J
6SING THE PREVIJUS ESTIMATE OF GAMMA, THIS PROCESS IS ITERATED UNT
TIL SUCCESSIVE ESTIMATES' / 10X, *DIFFER BY LESS THAN 0.00005.% ///
820Xy 'NUMBER', 10X, 'GAMMA*, 16X, *SUBSCRIPT FOR GAMMA' /)
20 FORMAT (124, 11X, F7.5, 16X, YGREATER THAN 50°¢)
22 FORMAT (124, 11X, F7.5, 120)
240FORMAT (///// 10X, *THE PRUGRAM HAS BEEN TERMINATED BECAUSE AT LEA
1ST ONE VALUE OF GAMMA DOES NOT CONVERGE TG WITHIN 0.,00005 IN S0 IT
2ERATIONS . / *11)
290FORMAT (/10Xs*THE SPECIFIC CCNDUCTANCE OF THE SOLVENT IS*y1PE10.3,
1' MHO/CM. ') . ’
310FDRMAT (/10X,*THE SPECIFIC CONOUCTANCE OF THE SOLVENT IS ASSUMED T
10 BE NEGLIGIBLE.')
320FORMAT  (/10X, 'ALPHA =', 1PE10.3, 20X, *B8ETA =', E10.3 ////
1/ 10X, *NUMBER?', 5X, *CONCENTRATION®*, 5x, ¢SQUARE ROOT OFt, 5X, 'R
2ESISTANCE®, 5X, *SPECIFIC CONDUCTANCE?, 5X, ®*EQUIVALENT CONDUCTANC
3E* / 21Xy *{MOLES/LITER)*, 5X, 'CONCENTRATION', 8X, Y(OHMS)', 13X
4y "(MHO/CM)', 13X, ® (MHO®CM®CM/EQUIVIY /7))
100 FORMATI 12X, 15A4/6X,16A4/6X,16A4)
101 FORMAT (5X,* CONCEN ELCT GAMMA GAMMA*®CONC LAMB EXP LAMB CAL DE

c PARTIAL DERIVATIVE OF CONDITION EQUATION WITH RESPECT TO L (F3)

C PAPTIAL DERIIVATIVE OF ZONDITICON EQUATION WITH RESPECT TO (C*GAMMA) (FX)
C PART[AL DER IVATIVE OF CONDITION EQUATION WITH RESPECT TO LAMBDA (FY)
o EQUATION (6-13) (L)

C SQUARE OF CONDITION EQUATION DIVIDED BY EQUATION {6-13) (FO*FO/L)

C S TERM

c E TERM

[+ L TEERM

[ K TERM

c

C

c

[

1LTA /)

102 FORMATIS5XsEL12449)FTe49E12.44,2F10.3,F7.3)

103 FORMAT (//5X,¢ LAMBDA ZERO CONSTANT K CONSTANT L SUM OF SQ
1R*)

104 FORMAT(9X4F1143y1P3E13.4)
105 FORMAT(S5X*STD=9,F114353E13.4)
106 FORMATI/LOX;"ELPRIME=*,F10,4)
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CARD .

132 107 FORMAT {/10X, *E2PR IME="*,F 10,3}

133 108 FCRMAT(//5X,* CONSTANT B CONSTANT A CAL CONS L *)

134 201 FORMAT{5Xs/" POINT X{',E12,54%), Y{*4E12.5,¢) HAS A DEVIATION OF°,
13 1FE. 2, TIMES THE STANDARD DEVIATION AND 1S REJESCTED' /)

136 202 FCGRMAT(S5X,*THE PARAMETERS INCLUDING THIS POINT ARE:Y,5E15.5)

137 203 FORMAT{5X,* THE DEVIATIONS OF THE PARAMETERS ARE:',5F15.3)

138 204 FORMAT (11X4*THE EXTERNAL STANDARD DEVIATION .IS*4F943)

139 205 FORMAT(//TX4*DEV EXT=Y,F6,2) :

140 206 FORMAT(//TXys9HDEV MAX =,F6.2¢14H TIMES AVE DEV////)

14] CEESEEERRIRXREERXERBRBX SRR RS AEERRREEERBEABAXRERR R RARA KK R SR RRRARRERRRESE RN SRR RAG &
142 CHEESss 0t sna e ansisnsessteessass  PROGRAM ttt-t-tq-ottttttttto&t--tt-t--tt-t

143 NROW=3

144 NCOL=NRCH+1

145 DO 47 MC=145 CHECK 1
146 JONES=J

147 READ(5,100) (F1000(1),1=1447)

148 WRITE(6,F1000)

149 K ICKER=0

150 SUMX1=0.

151 SUMX2=0.

152 SUMY=0.

153 SUMX1Y=0.

154 READ (5,1) NUMBER, CELCON, TKELVN, VISCOS, DIELCT, SOLVSC
155 ALPHA = ,820457E+06 / (DIELCT * TKELVN)*=%1,5

156 BETA = B82.4866/ VISCCS / SWRT(DIELCT * TKELVN)
. 157 EIPRIM = 2.94255E+12/(DIELCT *= TKELVN)*#%3

158 E2PRIM = ,433244E+08/VISCOS / (DIELCT * TKELVN)*%2

159 WRITE (642) TKELVN, CELCON, VISCOS, DIELCT

160 WRITE(6,106)ELPRIM

161 WRITE(64,1Q7)E2PRIM

162 [F (SOLVSC.EQ.0.) GO TO 28

163 WRITE {6429) SOLVSC

164 GO TO 30

165 28 WRITE (6,31)

166 30 WRITE (6932) ALPHA, BETA

167 DO 3 NUMBR = 1, NUMBER

168 READ (5¢4) CONCEN(NUMBR)y RESIST(NUMBR)y, SHUNT(NUMBR}

169 OIF (SHUNT{NUMBR )uNE+0Oe) RESIST(NUMBR)=SHUNT(NUMBR)*RESIST(NUMBR)/
170 1 { SHUNT (NUMBR)-RES IST (NUMBR) )

171 ROOTCNINUMBR) = SQRT(CONCEN(ANUMBRI)

172 SPECON(NUMBR) = CELCON / RESIST(NUMBR) =~ SOLVSC

173 EQUCONINUMBR) = 1000. * SPECON(NUMBR) / CONCEN(NUMBR)

174 IF (NUMBR.GT.4) GO TO 3

175 SUMX1 = SUMX1 + ROOTCN(NUMBR)

176 SUMX2 = SUMXZ + CONCEN(NUM3R)

177 SUMY = SUMY + EQUCON(NUMBR)

178 SUMX1Y = SUMX1Y + ROOTCN{NJMBR) * EQUCON(NUMBR)

179 3O4RITE (645) NUMBR, CCNCEN(NUMBR), ROOTCN(NUMBR)y RESISTINUMBR ),
180 1SPECONINUMBR) , EQUCON(INUMBR)

181 EZEROL= (SUMX1Y #SUMX1~SUMY ¥SUMX2)/ (SUMX1¥SUMX]1-4,*SUMX2)
182 * ONSAG]l = ALPHA * EZEROL + BETA

183 WRITE(64F1000)

184 WRITE (646) EZEROL

185 DO B8 NMBR = 1, NUMBER

186 GAMMAL(NMBR) = EQUCON(NMBR) / EZERO1

187 DENCM(NMBR) = EZERCL - ONSAGL * ROOTCN(NMBR) * SQRT(GAMMAL(NMBR)}
188 IF (DENOMINMBR)) 9, 10, 11

189 10 KICKER = 1 .

190 WRITE (6412) NMBR, GAMMAL (NMBR)

191 GO TO 8

192 9 KICKER = 1 :

193 11 GAYMA2(NMBR) = EQUCON(NMBR) / DENOM(NMBR}

194 WRITE*(6913) NMBR, GAMMALl(NMBR), GAMMA2(NMBR) .

195 8 CCNTINUE -

196 IF (KICKER.NE.1) GO TQ 14

197 WRITE (6415)

198 CALL EXIT

199 14 CONTINUE

200 £ = 2,30259*% (E1PRIM * EZEROL - E2PRIM)

201 B=10. CHECK 2
‘202 GUE SSL=2,*E1PRIMEZERDL*{1,601-ALOG(B))

203 142, %E2PRIM*ALOG(B)I-3,42%E2PAIM+ALPHA®BETA+2, *E IPRIM*EZEROL* (2, %843
204 2+42.%B-1.) /B**3+44%E2PRIM/3./8 .

205 WRITE (6,16) By GUESSL

206 00 17 NMB = 1, NUMBER

207 DO 18 ITRATE=1,50
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CARD

208 OGAMMAL(NMB)=EQUCON{NMB}/(EZEROL=INSAGL*IDOTCNINMB) *SQRT(GAMMA2 (NMB
209 1) )+ E*CONCEN(NMB ) $GAMMA2 (NMB)*ALOGLO( 6 *ELPR IM*CONCEN{NMB ) *GAMMA 2(N
210 2MB) )+ GUE SSL*CONCEN(NNMB)*GAMMA2 (NMB) )

211 ITRGAM = ITRATE + 1

212 IF (ABS({GAMMAL (NMB)~GAMMA2 (NMB}).LT..00005) GO TO 19

213 GAMMA 2( NMB) =GAMMAL (NMB)

214 18 CONTINUE

215 WRITE (6,20) NMB , GAMMAL (NMB)

216 KICKER = ]

217 GO 10 21

218 19 WRITE (6,22) NMB, GAMMAL(N¥B), ITRGAM

219 GAMMAZ ( NMB) =G AMMAL (NMB)

220 21 CONTINUE

221 17 CCNTINUE

222 S=ONSAGL:

223 CONST(1)=EZEROD]L

224 © CCNST (3 )=GUESSL

225 CONST(2)=3000, CHECK 3
226 IF (KICKER.NE.1) GO TO 23

227 WRITE (6424)

228 CALL EXIT

229 23 CONTINUE

230 DC 34 I=1,NUMBER

231 X(1)=CONCEN(T1)*GAMMA2(I)

232 Y{I)=EQUCONI(T)

233 SIGX(I)=X(1)%,002

234 SIGY(I)=Y(1)*.,002

235 34 CONTINUE

236 CALL SQUARE (NROW ¢NUMBER yX yEQUCONy CONST ¢Sy E4 ELPRIM, SIGX,SIGY,YCALX,
237 1SIGySUM,DEV,SIGSQ VAR ,SIGEXToNCOL sF s ALPHA) °

238 EZEROL = CONST(1}

239 ONSAGl = ALPHA * EZERC1 + BETA

240 EXPB=CONST(21/2.5227E+21*%{DIELCT*TKELVN/16, TOG9E~6)**3
241 39 CCONTINUE

242 CALB=ALOG(EXPB)+3,%ALCG(B)

243 IF{B.GT .25,) GO TO 40

244 IF(B.LT43.35) GO TO 40

245 IF(ABS(CALB~-B).LT.,001) GO TO 40

246 B=CAL B

247 GC TO 39

248 40 CONTINUE

249 CALCUL=2 *ELPRIM®EZEROL*(1,601-ALOG(8B))

250 142, %E2PRIMFALOG(B) =3 .42%E2PRIM+ALPHA®BET A+2 ,*ELPRIM®EZEROL *(2,.#3%B
251 . 242.%B-1.)/B%%3+44%E2PRIM/3. /B

252 A=16+7099E~4/DIELCT/TKELVN/ B

253 WRITE( 6,F1000)

254 WRITE(6,101)

255 OC 38 I=1,NUMBER

256 WRITEL G L02)CONCENIT ) s GANMAZ( L) o X (I) oY (I}, YCALX(I)4F(4,1)
257 38 CCNTINUE

258 WRITE(6,103) .

259 WRITE(6,104)(CONST(I) 4I=1,NROW) 4SUM

260 WRITE(6+4105)(SIGII)y I=1,NROW),SIGSQ

261 WRITE(6,4108)

262 WRITE(6,104)B4A,CALCUL

263 WRITE(6,205)8 IGEXT

264 . CONST(3)=(CONSTI3)+GUESSL)/2,

265 GUESSL=CONST( 3)

266 LAP = 0

267 D0 36 NMB=l ,NUMBER

268 DO 500 ITSR=1,50

269 G AMMA3 (NMB ) =EQUCON(NMB)/ (EZERO1-ONSAGL1*ROQTCN(NMB ) *5QR T(GAMMA 2( NMB
273 LI ME*CONCEN(NMS ) *GAMMA2 (NMB)*ALOGLO (6 +*ELPRIMECONCEN(NMB ) ®GAMMA2(N
271 2MB) Y+ GUESSL*CONCEN(NMB) *GAMNMA2 (NMB) }

272 IF(ABS{GAMMA3(NMB )~GAMMAZ{NMB)).LT. 0, 00005} GO TO 500

273 GAMMA2 { NMB } =G AMMA3 (NMB)

274 500 CONTINUE

275 ITRGAM=1

276 TF{ABS (GAMMAYL (HMB) -GAMMA2(NMB) ) +LT.40005) [TRGAM=0

277 IF( ITRGAMJNE, Q) LAP=1

278 GAMMAL (NMB)}=GAMMA2(NMB)

279 WRITE (6,422) NMB, GAMMAL(NMB), ITRGAM

280 35 CONTINUE

281 IF(LAPLEQ.Q) GO TO 37

232 E = 2.30259% (E1PR1M * EZERQL - E2PRIM)

233 S=ALPHA®EZERD 1+BETA

284 GC To 23

285 37 CONTINUE
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CARD

286 JONES=JONES+1

287 IF{JONES.EQ.1} GO TO 23

288 VMA x=VAR( 1}

289 D0 39 I=1,NUMBER

290 TEST=VMAX-VAR(I)

291 IF (TEST.GT.0.) GO TO 89

292 VMAXaVAR(T)

293 JAM=1

294 B9 CONTINUE

295 DEVaVAR(JAM)/ SIGEXT

296 PRINT 206,4DEV

297 IF{DEV.LT.2.) GO TO 71

293 WRITE(6 4201 IX (JAM) Y (JAM ), DEV
299 WRETE(64202) (CONST(I) y1=1 4yNROW)
300 WRITE(6,203){(SIG(T)yI=1yNRINW}
301 WRITE(6 4204)SIGEXT

3J2 NUMBER=NUMBER~1

303 D0 110 I=JAM,NUMBER

304 CONCEN(I) =CONCEN(I1+1)

305 EQUCON(T)=EQUCON(I+1)

306 GAMMA2( 1)=GAMMA2( 1+1)

307 ROOTCN( 1) =R0VOTCN(I+1)

308 110 CONTINUE

309 GO TO 23

310 71 CONTINUE

311 WRITE(6,F1000}

312 41 FORMAT(8X*B*,10X,*L'/)

313 43 FORMAT (5XsF5.0,1PE15.4)

314 WRITE (6441)

315 DO 42 1=1,25

316 B=I

37 CALCUL=2,*E1PRIM*EZEROL*(1. 601-ALOG(B))
318 142, %E2PRIMKALCG(R)—3 42%E2PRIM+ALPHA®BETA+2 . *E1PRIM*EZEROL*( 2, %B*B
319 242.%8~1.) /B** 3+ 44%E2PR[M/3. /B
320 WRITE(6,43)8, CALCUL

321 42 CONTINUE

322 47 CONTINUE

323 WRITE (6.,7)

324 STOP

325 END

T L L L T T T Y R R e T e
327 CEIXRXXXEEXEAREEREFRRRRRRRRF  SUIROUTINE SUBPROGRAM e stk stk hackhsgrdsnsnsk
328 CHERRERER AR R R AR AR KRR SRR TR R R R A A R SRR AR R R R R R SRR R R kR Rk &
329 (HREAXDEAEEREEXRERERDE IR RRRRKEA  SUBPROGRAM TITLE *8Ksuxsxssdisshkshbhaeksanurins
330 ¢ SQUARE

EE I T T T T e T R Ty Y
332 Cakkkkrkerkzepensenpiienkins VAR[ABLES TRANSFERRED ##rssussssbkssskrshessbanss
333 SUBRCUTINE SQUARE (NRCW ¢NNyX+Y,CONST, S, E,EIPRIM,SIGX,SIGY,YCALX,SIG

334 1ySUM,DEV,SIGSQyVAR,SIGEXTyNCOLFsALPHA)

I35 R R AR REA R R R R RS AR R AR R AR KRR AR R RRR R TR R RN R E R KRR R AR R ER R R R R &
336 Corukndrksureprpasinhsksnsks  DUUBLE PRECISTION STATEMENT *5sxxsssskhskssstskihsgshn
337 DOUBLE PRECISION GyHPIVOTL 4PIVOT2,4DSQRT

338 CREREEERERRRRRKRE RN R KRR R AR IR AR R R KRR RR KRR R R R R AR R R AR KRS KRR R AR R R KR AR R R R KRR &
339 CREAEEEERRAXREARRRREREReRxnktx D[ MENSION STATEMENT S RXESE2REXEtRXEERRREXRERERER

340 DIMENSION Y(20) ,X(20) 4CONST(3),SIGY(20) ,SIGX(20) ,YCALX(20),S1G(3),
341 LVAR(20) oF (T 920) 1 FX(20)4FY(20)4FXY(20)9GU3y4)sH{346),SX(20) ,ETERM(2
362 10) ) XLTERMI2Q) ¢XYKTRM{20) yTAUSQ(20),TAU(20)

E R L L T L L T P TP PP T T T P PR P T e P
344 CErrrrktsknpnnpbeksbisnntsinsx  FORMAT STATEMENTS S5 issfssssssatssssisnstss &

345 4 FORMAT (6X44E20.7)

346 6 FORMAT (1H1)

347 7 FCRMAT(//76X,* LAMBDA ZERD® 410X ,*S TERM*,10X,*E TERM', 10X, *L. TERM®,

348 110Xy 4K TERM®,6Xy*CAL LAMBDA® 311X,*SIG X' 911X ,°SIG Y*/)

349 9 FCORMAT  (//19H NORMAL YMATRIX//)

359 12 FORMAT (//20H INVERSE MATRIX//)

351 13 FORMAT(1X,8E16.T)

3152 16 FORMAT(///8X,y Fl® 16X F2%,14Xe?F3% 14X, "FO'9 12Xy *FO*FO/L® 911X,y 'FX 16-1
353 10 ¢l4Xy"FY®"915Xy'L"/)

254 CHEERXEFRINXEFARSAREABEXRRFERRF XX RERBREER AR X R RER R AL R X RERA LR RX XA R R Ak RRER ARk Rk
355 CH*SERX MR AR RA R AR RERRK A TR R KK SUBPRIGRAM R R RS SRS RS2 R 222 R 222222 L 20 % )
358 NZRC=NROW+2

357 SUM=0.

358 15 CONTINUE
359 SUMP=SUM
360 SUM=0.0

361 PCI NT S=NN
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00 20 I=1, NN )
TAUSQ(I) = 6.*EIPRIM*X(I]

TAU(T} = SQRT(TAUSQ(I))

F{lyI)=1,0 —~ALPHA®SQRT(X(T}) +ELPRIMEX{I}*ALOG(TAUSQ(I))
FU2eI)==X (T)IRY{T)I*EXP(~2.%TAU(T))
F{3.11=Xx(1)
OF(4oI)=CONST{L1)=Y(I)~S*SQRT(X{I))I+EXX(I}*ALOGLO(TAUSQ(I)) +
LCONST(3)xX(I}+CONST (2)%F (2,1}
FX(I)a=,S*S/SQRTIX(I)I+E*ALOGLO(TAUSQIL})+E/2.30259+CONST(3)
L+CONST (21 %F (2, 1}/ XCT)#CONST(2) *TAUCL) *Y( L) #EXP(~2.*TAU(I))
FY(T)=CONST(2)*F(2,1)/Y(1)-1,
FXY(I)=(FXOT).SIGX(T ) }=*24(FY(I}*SIGY(I))%*2
FINZROy I)=F(NCOL, ID)%F(NCOL, I1)/FXY(])
SLM=SUM+F (NZRO,1)

VAR (1)=SQRT(F(NCOL+1,I)}
YCALX(I)=Y(1)+F(NCOL, 1)

SX(I)==S*SQRT(X(I))
ETERMIT)=E*xX(1)*ALOGLO(TAUSQ(I))
XYKTRM(I)=CONST(2)%F (2,1}
XLTERM(I)=CONST (3 )%X (1)}

CONTINUE

DO 32 K=1,NROW

00 31 L=1,NCOL

G(KyL)=0.0

00 30 I=1,NN
GIKyLI=GIKyLI+F (K, I)VXF (L, I}/FXY (]}
H{KyL)=G(KsL)

CONT INUE

CCNTINUE

CONTINUE

D0 45 1=1,NROW

PIVOT]l = 1.0/H(I,1)

H(I,I) = PIVOTIL

00 40 J=1,NCOL

IF(J+EQ.I) GO TO 40

H{lsd) = PIVOT1%#H(1,J)

CCNTINUE

DO 43 K=1,NROW

IF(K<EQsI) GO TO 43

PIVOT2 = H(K,I) '

HIKel) = ~PIVOT2%PIVOTL

DO 41 L=1,NCOL

IF(LeEQel} GO TO 41

H(KsL} = HIK,L}=PIVOT2%H(I,L)

CONTINUE

CUNTINUE

CONTINUE

CON=NROW

SIGSQ=SUM/ (POINTS-CON}

SIGEXT=SQRT(SIGSQ}

D0 33 I=1,NROW

CONST(I)=CONST(I)-H(],NCCL}
SIG(I}=DSQRT(H(I,1))#*SIGEXT

CGNTINUE . '

IF (ABS({SUMP-SUM)I*]1,E3).GE.SUMIGO TO 15
WRITE(6,46)

WRITE (6,16)

DO 78 I=1,NN
WRITE(6913)(F(LoT)yL=YyNIRC)¢FX(T) FY(I)  ,FXY(I)
CONTINUE

WRITE (649)

B0 79 K=1,NROW

WRITEL 644} (G(K,sL) 4L=1,NCOL)

CONTINUE

WRITE (6412)

00 80 K=1,NRONW

WRITE(&y4)(HIK,L)L=1yNCOL)

CONTINUE

WRITE(647)
WRITE(6y13)(CONST(L)ySXITI+ETERM(I) ¢ XLTERMIT) ¢ XYKTRM(T }YCALX(]),
1SIGX (L) +SIGY(I)4I=14NN)

RETURN

END
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