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CHAPTER I 

INTRODUCTION 

Basio Concepts of Contingency Table Analysis 

The least restl'ictive level of measurement of data is a nominal 

scale. The nominat sqale of measurement results when each response 

nc;i.me~ a c;lass or c::ategory which identifies sQme c::harac;teristic of the 

unit observed. Since the nominal scale of measurement does not 

specify any o:t;'der or metric relationship, the relevant statistic ls the 

number of times a given class is named. Examples of c;ategorizing 

schemes e.mployed are 11 yes 11 or "no"; 11de!ect 11 or "no defect 11 ; and 

11 superior' 1 , 11 good 11 , 11average 11 , or 11 poor 11 • Data meas\l,red on a 

nominal scale is generally referred to as categorical data since it 

represents the tallying of frequency o:r c;:ell counts by the cq.tegories of 

one or more Glasslfication val:'iables, 

Most statistical analyses of categorical data involve testing one 

of the t:hree hypotheses that the classification variables defined on a 

population a:re mutually independer,i.t, that the population sampled has a 

specified distribution or that the several populations sampled have 

idenHcal distributions. The test statistics used to test these 

hypotheses are variations of the Pearson chl-square statistic. 

In applying .the Pearson chi-square statistic to categorical data, 

the data is partitio'ned, by one or more criterion or classification 

1 



variables. A contingency table is used to summarize the categorical 

data to facilitate the compuhq.tion of estimates of parameters and 

c;alcµlation of test statistie for t~sting hypotheses. The dimension of 

a contingency table is the number of classification variables by which 

the data is categorized or partitioned. A two dimensional contingency 

table is an array of natural m;i.rnbers arranged into r row$ and c; 

coLurn.ns, with re cells or categories for the numberi;;, If we let A 

be a row classification and B be; a column.'c1assificC1.tion with r and 

c categories for each classification, reepectively, then Table I 

rep11e sents a contingenc;y table where n .. 
lJ 

denotes the number of 

responses n.aming cLass i withLn classific;ation variable A and class 

2 

j within classification variable B for i = 1, 2, ... , r, j = 1, 2, ... , c. 

TA1;3LE I 

TWQ,.DIMENSIONAL CONTINGENCY TABLE 

B 

1 j c 

1 nl 1 nl 2 n .. I 
nlc 1· ' lJ I 

2 n.21 r+22 n2j n2c 

A 
n. l ni2 n .. n. 

·~ lJ lC 
i 

r n 
rl 

n 
r2 

n 
rj 

n 
re 
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The natural numbers nij represent the counts, or freqµencies, 

fo:r the categoric;al data, which have been tab\llated according to ea.ch 

of the classification variables, An m-dimensional contingency table 

rep\l:'esents data classified by m classification variables and ii; often 

referred to as an m-way contingency table, 

A sample is a c;oUectlon of objects or persons which may be a 

subset of the population defined by the objectives of the investigation. 

If inferences are desired to the population, it is necessary that the 

sc;i.mple be random. To illustrate the above, assume thE{population of 
·-, 

all students enrolled at a specified university and that a random sample 

of N students is abtq.ined from the population, Suppose the sample ls 

to be classified by the three c;lassificp.tion variables of class, grade 
~· 

point average, and ma.jar field of study~ This partitioning and tabula-

tion of the sample is represented by a three -dimensional contingency 

table. 

A sample classified by one criterion (one-way contingency table) 

usually involves the hypothesis that the population sampled has a 

specified dii;>tribution. A test of this hypothesis is often refe;rred to as 

a goodness~o£-fit test. 

To obtain a two-wq.y contingen~y table a sample may be obtained 

horn a single population and partitioned by two classification variables 

or a sample may be obtainetj. from each of two populations and each 

13ar:nple partttione<;l by one classification variable. In the first case one 

.may te13t either the hypothesis that the population as partitioned by the 

two E;:lassifi<;:ation variables has a specified distribution or the 

hypothesis that the classific;;i.tion variables are independent of each 
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pther, while in the latter case the hypothesis tested is that the two 

populations are identically distributed. 

Multinomial Distribution 

If probabilistic methods of analyses are to be applied to contin-

gency tables 1 then.th~ contingency tables must be assumed to have been 

generated by i;ome probability model defined on ea,c;:h popu,lation 

sampled. The model that will be ass1.:tmed is the multinomial distribu-

tion, whl<;;h partitions the populatLon. The objective is to obtain one or 

more sample i:i and then to test hypotheses which involve the parameters 

of the popula.tion(s) samples. The multinomial distribution contains a 

parameter c:;orre sponding to each partition of the population which is 

the probability that a unit selected at random from the population wlll 

be clas slfied into that partition. H one knows the value of each 

parameter, then the distrlbtitlon of the population is determined. 

Suppose a sample from a population is partitioned by one class -

iflc:;at'lon variable. Let n. denote the observed frequency and p 
1 i 

denote the probability of the ith category of the classification variable. 

The multinom~al distribution is the joint distribution of the observed 

freql,len<:kies and ~s given by 

n. :;: 1, 2,. , 1 •. N, 
·1 

r 

N! 
r 
II n. ! 

l i= 1 

2: n. = N 
i= 1 l 

r n. 
II 

l 
pi 

i= 1 

and 
r 

2: pi = 1 . 
i= l 

( 1. l) 



The prodµc;t symbol is defined by 

r n. n 1 
II p. i = P1 

. ·1 l i::: 

apd 
:r 
II n.: = 

l i= 1 . 

··• 
If the population sa. mpled is partitioned by two class iHc::ation 
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variables having ~ ;;i,nd c categories, respectively, then let· nij 

denote the numqer of units in the sample of size N which are classified 

ili .ili 
i,p.to the i category of the first classification variable and the J 

cate~ory of the seqond classific;ation variable .. We will let p.. denote . .. lJ 

the probability that a unit selected at random from the popi+lation will 

be classified h1.to the partHion (i, j). The data may then qe sum ..... 

qiarized by a two ~dimensional contingency table suc;h a$ Table I. 
i 

'rhe joint distributicm of the observed frequencies n .. 
lJ 

is the 

rnultinornlal distribution given by 

r c n .. N' ' . II II p,. lJ 
r c j = 1 LJ 

( 1. 2) 
i= 1 

II II n .. ! 
i= 1 j=l lJ 

r c r c 
for each n .. = 0, 11 ••• , N, ~ ~ p. .. = N and ~ ~ p .. = 

lJ i::;l j = 1 ' l.J i= 1 j= 1 lJ 

Fo:r a sample of si21e N we shall define the marginal totals ni· 

(denoted as the row tobal) and I1.j (denoted as the column total) by 

c 
n. ::: ~ n .. 

l• 
j=l lJ 

1 . 

( 1. 3) 
r 

n 
·j 

:;:: 

i~l nij 
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The marginal probability totals are defined by the following equations 

c 
p. = !: p .. 

l· . 1 lJ J=' ' 

r 

P,j = I: p .. (1. 4) 
i= 1 lJ 

If we have r indep~ndi;:nt samples from r populations and the 

popu.lq.tions are partitiqned by one c;:lassification variable, then the 

contlngen(;:y table given in l'able I could be a representation of the data, 

where the rows represen~ the r independent samples and the c:olumns 

:represent the c categQries of the classifi(;ation varial:>le. In this 

case the rnargina.1 totah for the rows (samples) are assumed to be 

fi:x;ed or determin~c;i befove the samples were obtained. The form of 

the dis~ribution is the sc;i.me as equation ( l, 3) except for the following 

1;:qnstraint on the parameters 

c; 
I: pij = l, for eac;h i = 1, 2, .. ,, r, 

j:1d 

.A stmUia.r situa,.Uon exists if we have c independent sample~ from c 

populations and the populations are partitioned by one classific;ation 

v:aJ:"iable 1 where the c;olumn.s i;epresent the observations in the inde -

penQ.ent i;;a,.mples and the J:"OWS represent the categories of the classifi-

cq.tion var·iable. Agq.in. the form of the distribution is given by the 

eq~tion ( 1. 3) and_ we have the following constraint on the parameters 

r 

i~l pij = 1, for each j = 1, 2,,.,, c . 
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T]:l.e multinomial distribution for a sample partitioned by three 

clasi;;ifieations may be extended from equation (1. 5) by using three 

product symbols and th:J;"ee subscripts, eac;:h suqscript P,enoting a 

category of a classification variable. A corresponding statement may 

then b!i! made for the dli;;tribution of an m-dimensional contingency 

table. 

The hypothesis of indepE:;!ndence of two classification variables 

de£ined on a population when stated in terms of a probability model for 

a two .... dimensional contingency table beeome s 

H 0 : p .. ::; p. p . for all i::; 1, 2, ... , r, and 
. 1J l • . J 

j::;l,2, ... ,c. ( 1, 5) 

The alternative hypothesis, denoted by H 1 , is given by 

H 1 : Pij # pi· P.j for some pair (i, j) . ( l, 6) 

The Pearson chi-square test statistic is given by 

(n .. 
2 

r c;: - E .. ) 
r ::; ~ ~ lJ lJ 

E .. i::; 1 j::; 1 lJ 
( 1. 7) 

where E .. 
1J 

Ls the expeqted frequency for the (i, j) cell, i = 1, 2,. , . , r 

and j = 1, 2, .. 1 , c . The test statistic U' _ is distributed asymptotically 

lls a chi-sg,uare random variable ( [58], p. 11 sf:. 
There are two situations that may arLse when the null hypothesis 

is stated, namely: the null hypot4esis specifies the parameters 

(probabUities) p 
i· 

for i:;:l,2, ... ,r, and P.j for j=l,2, ... ,c, 

or these p<1-ra.qieter i:i are not specified by the null hypothesis. 



If the hypothesis H 0 spec;ifie s the all parameters 

P.j, then E .. = Np .. = N p 1., P,J·, 
iJ lJ 

for p.ll i=l,2, ... ,r 

P1. 

apd 

and 

j = 1,2, .. , ,c, When rc;-1 of the parameters are known in addition 

to the c;onstraint 

r c 
~ ~ p .. = 1 ' 

l=l j::;l lJ 

8 

then aH of the parameters are determined. For the multinomial model, 

the numl?er of parameters specified by H 0 determines the degrees of 

freedom associated with the test statistic. The test statistic ( 1. 7) for 

this case has r c -1 degrees of freedom. 

If the null hypothesis does not specify the parameters p. 
l• 

and p . , then the pararpeters are estimated from the sample. An 
•J 

estimator for p is given by i I 

n. 
/\ l • 
P1. = N for i=l,2, ... ,r 

sim,ilarly, P,j may be estimated by 

n. 
:;: __:i_ 

N 
for j = 1,2,.,.,c. 

To denott;i that Pi, and P,j 

and /\. 

are estimated from the sample, we use 

the notq.tton P.j . The expected frequenc;y 

statistic; (1, 7) is estimated by 

/\ 
E .. ::; 

lJ 

for aH i and j . Since 

n. 
l• 

N 

n. 
_:J_ -
~N. - -

!·'-If 

n. n. 
l • . J 
N 

E .. 
lJ 

in the test 



r 

~ pi· = 1 ' 
L= 1 

estimating any r-1 of the parameters 

parameter, Sirnila::rly, 

c 
~ p . = 1 

j = 1 • J 

determines the 
th 

r 

implies that if we ~stimate any c-1 of the parameters p. 
·J 

then the 

th 
c parameter is determined. The degrees of freedom for the test 

statistic;: (l, 7) when the pa:rameters pi· and are e stimc;i.ted from 
... 

the data are given by 

9 

rc-1.,.. (r-1) (c-1) = rc-r - r - c+ 1 = (r-l)(c-1). ( 1. 8) 

'l'hq.t is, one degree of freedom is subtracted from r c-1 for each 

parameter estimated. 

In the "hypQ:the s ·itof identiGal distributLons of a set of r popula -

Hons samptedj in which each is partitioned into c categories by a 

single classtfication variable, the hypotheses in terms of the probability 

mod,el are given by 

and 

= prj for j=l,2, ... ,c 

H 1 : at least one population has a different multinomial 

dii;;tribution, 

( 1. 9) 

One further n<;>te about the parameterfl for the hypothesis of identical 

distdbutions is that the parameter p .. 
lj 

is the probabUHy of an 
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opservation selected at random from the ith population being classified 

into the /h category of the classification variable. Again, the null 

hypothe~is may or may n<;>t specify the parameters, If the null 

hypothesis spec;lfies the para.meters, then E .. = Np.. for all L and 
• " l~ lJ 

j , The degrees of freedom for the te 51t statistic ( 1. 7) is given by 

r(c .. l), Ia thii:i case the sample size n. 
1• 

be specified and for ep.c:h population 

c 
4: p .. = 1 ' 

j = 1 lJ 

for each i is considered to 

hence for eac;;h population thel;"e are c;: ~ l probabiLities to be determined. 

Thus 1 to determine the rnl,l.ltinomial distribution ( 1. 2), r(c -1) 

probabilitLes must be known, 

If the null hypothesis does not specify the parameters, then H 0 

implies there are c -1 par;;tmeters to be estimated. These are 

estimated from the !'1ample by 

/\ n . 
D = ......,:J_ ..,~.. N 

lJ 

/\ 
E .. = 

1,J 

ni n . • • J 
N. 

for jr:J,2, ... ,c 

for all i and j 

Sinee c ~ 1 parameters are estimated in this ease, the number of 

degrees of freedom is given by r(q-1) - (c-1) = (r-l)(c-1) for the 

test statistic (1,7). 

The dj,st:rib"l;ltion of the statistic T ( 1, 7) may be poorly approxi-

mated by the chi-square distribution if the following conditions are 



found in a contingency table: 

/\ 
(1) if any E .. (or E .. ) is les13 than 1, 

lJ lJ 

(Z) lf more than 20% of the E .. 's 
lJ 

/\ 
or E .. 's are less than 5. 

lJ 

11 

The exception to these conditions arises when all (or most) of the E .. 
. ~ 

are nearly the same s Lze. ····If r and c are not too small, then the 

Eij may be as small as one without endangering the validity of the 

te13t ( [10], p. 152), 

Scope and Objectiyes 

A common problem confronting researchers c;oncerni;; devising 

useful methods for an<;tlyzing categodcal data. Researcheri;i familiar 

with the analyl!lis of variance have well-developed techniques for 

quantitative va:dables, but must switch to a completely different set 

of varied techniques when they deal with qualHative data. Most of the 

information in textbooks, where the analysis of categorical data. is 

discussed, covers the analysis of two-dimensional contingency tables 

in deta~l as sumlng the analysis can be extended easily to multi­

dimenf:!ional tc;i.ble s. The analys·ls of higher order contingency tables 

is important in research and there are many more hypotheses that can 

be tested, which cannot be generalized from two-way tables. 

This paper will endeavor to pre sent the reader with a basic 

underi;;tanqing of the topic of the analysis of categorical data, Chapter 

II presenti;i a dLsGussion of hypothesis testing for three -way contingency 

tables. Chapter III will pre13ent techniques that are analogous to the 

analy13is af va;rianc:e by d,efining a component of information for 
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catego:ric;al data based on information tl:).eory applied to statistics. 

Because the <::hi~squ;:1.re test and information statisHcs are based on 

large sample statistic;s 1 it is intended to present methods of analysis 

where difficulties are encountel.'ed in small, zero or missing frequency 

counts in Chapter IV, lri Chapter V a method analogous to the 

analys~s of val,"iance technique is discussed by defining variation in 

categorical data for hypo the sis testing and to obtain a measure of 

association (dependency) between classification variables. 

It is intended to present the material in such a m~i;ner that a 

student or researc;:her with limited mathematical training would have 

litUe difficulty in understanding the paper, 

Examples, definitions and theorems will be q.umbered serially 

with the first digit being the number of the chapter, Equations will be 

numbered in a similar manner when they may be needed for easy 

future reference. 'rhe t"d~les are nµmerecl consecutively throughout 

the paper. 



CHAPTER II 

HYPOTHESES FOR MULTIDIMENSIONAL 

CONTINGENCY TABLES 

Notation 

In this chapter we will be primarily concerned with the three -

dimensional contingenc;y tal?le. For the discussion of the three 

classification variables we will use the labels of row, c;olumn and depth 

classifications, ThE;l general c;ase of the three -dimensional contingency 

taqle wHl be denoted with the symbols r x c x d where r, c and d 

represen~ the number of categories in the row, column, and depth 

classifications, respec;tively, Let nijk denote the observed frequency 

. th t . b. th . th . th 1 d kth d h 1 . rn e ca ego:ry g1ven y . e 1 row, J co umn 4c;in . ept c ass1,... 

f'ic;;atlons and let p. 'k denote the probability of an observation 
lJ 

occq.r;ring in cell (i, j, k). 

If the observed frequencies n. 'k are summed over all values 
LJ 

of i (ham 1 t0 r ), the result will be defined as the second-orqer 

marginal totals of the jth column in the kth depth classification. This 

marginal t:otal is ac;cordingly designated n 'k' so that 
'J 

Similarly, by summing 

r 

~ niJ. k :::: n ·J·. k '. 
i= 1 

(2. 1) 

n., k over j or over k gives the following 
lJ 
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se<::ond-order marginal totals: 

c 
2: n. 'k = n. k 11 L• j=l ~ 

d (2. 2) 

2: niJ' k = 
k=l 

n .. 
1J. 

If the observed frequencies n. 'k are summed over all values 
lJ 

of both i and j we obtain the first-order marginal totals of the kth 

depth Glassiqcation, This total is designated by 

with n. l.·. and n. 
'J. 

c r 
·~~n 

.. k = 2: 2: n. 'k I 

j= 1 i= 1 LJ ~ 

d~fined in a similar manner. 

(2. 3) 

If the frequencies 

n .. k aresummedoverallvaluesof i, J·, and k, thentheresult 
l.J 

will be the total number of opservations in the sample; i,e,, 

r c d 
!; 2: 2: n .. k = n = N . 
~= 1 j=l k=l l.J 

A simUijl.r notation is used for the parameters 

r c d 
2: 2: ~ pijk = 1 

i= l j=l k=l 

P ''k' where l.J 

(2. 4) 

(2. 5) 

A summary of the fori;m;ilae £or summing the parameters follows for 

future J,"eference where the parameters given are second-order and 

first-order p;robabllities, respe<1tively: 



r 

:E p .. k = P.J·k 
i= 1 iJ 

15 

(2, 6) 

Fu:rther fol;'muiae r.pay be obtained by permuting the role of the sub-

111e:ripts in equations (2. 6). The entire notation for a system involving 

more than three olassifiQation vari<;1.bleE;1 mqy be e:x;tended with little 

Basic;: Hypotheses in Terms of Probability 

Statements 

The probability stater:nentE!l for the hypotheses will 'Qe presented 

in terms of the sampHri.g struc;:h1res which give three-dimensional 

contingency tables. The extension of the analysis of a two-way table 

to a three .. wa.y contingency table poses entirely new conceptual 

problems, On the other hand, there are no new problems ·involved in .,. . 

making e~~en.sions from tables of three di.mens ions to those of 1£our or ... 
more Qimeq.i;iions ( [4;S], p, 88), Thei possible combinations of the 

hypotheses of interest become numerous for three-way anel higher 

orde:t' c;:ontingen.cy tabh~s· 

AddiUop.~l c:omments need to be made ·Ln regard to the effect the 

sampHng procedure may have on the statements of the hypotheses. In 

rn-ulH ... clij.s sification of a, ~ample it is usually the case that the sample 

size is ass~med fix~c:i. but none of the rna:r;ginal totals are fixed. In 

the p.ext sec;tion a dii;icuss·~on of the effect of fixing the marginal totals 

on the hypotheses will be prelilented. 
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'l'he general form of the te13t statistic ~s given by 

d 2 
r c (n .. k - E .. k) 

r = I; 4 I; 'LJ lJ 
. I E .. k 

i= 1 j=l k=l ·13 
(2. 7) 

where Eijk is the e:x;pec;;ted frequency of cell (L j, k). We are 

assuming for the test staUstic (2. 7) that ea.ch population sampled has 

the mulUnot;nial distribuHon, In µi;im.g the ~ei;t staHstlc (2. 7) for 

testing the hypotheses to follow only the method of determining or 

est\mating Eljk varies with the form of the different hypotheses, If 

the rruJ,l hypothesis speoifiei:i all of the parameters then Eijk = N pijk. 

If the null hypothesis does not specify the pe\i.rameters pijk but specJ­

fies a relationship among them, then the expected frequencies must be 
/\ 

estimated, . An estimate wUl be denoted by Eijk. In this section we 

wiU be croncerned with the form of null hypotheses which do not specify 

all parameters. 

To extend the concept of independence of classification variables 

', 
for a two-dimensional contingen~y table to independence of clas sifiea-

tion var\ables for a three -dimensional contingeq.cy table, suppose we 

obtain a random sample of size · N from a population. If we partition 

this sample by three classification variables, then the null hypothesis 

for mutual inQ.eae.ndence is giyen by· 

fo;r all i=l,2, .•. ,r: 
·\ 
·1.~ 

j = 1, 2, ! 1 • , c ; and k = 1, 2, . ! , , d . 

The ~lternative hypothesis, denoted by H 1 , is 

(2. 8) 

(2, 9) 
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To determine the value of the test statistic (2. 7) the eethnate of the 

parameters Pi.. , p,j. , e1rnd P .. k are given by 

(2. 10) 

and 

The estimate of the expected frequency 

I\ 

E .. k = lJ 

respectively. 

E .. k 
lJ 

is given by 

(2. 11) 

based Qn the relationship given by the null hypothesis (2. 8). There 

are red -1 - (J:'-1) - (c-1) ... (d-1) = (r-l)(c-l)(d-1) degrees of 

freedom for the test statistic (2. 7), The degrees of freedom were 

determined by subtracting from red - 1 the totc;i.l number of 

paramete;rs estimated. 

If the test s~atistic for mutual independence gives a significant 

result (H0 is rejected), then it i;;hou1d not be assumed that aU three 

classifications int~ract. Lt might be the case that just two of the 

clas sificatic:m interact and the th~rd is completely independent. This 
·1.'•r 

•'\.f '. 

gives rLse to three testable hypotheses, since any of the three 

cla1:1sificihons could be the independent one. 

To test whether the row classification is independent of the 

othel:'S, the null hypothesis for a three-way contingency table is 

H0 : Pijk = p1,. p·jk for all i, j and k. (2. 12) 
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The alternative hypothesis is 

H 1 : Pijk:f. pi•·p•jk for some i, j and k. 

Note that the null hypothesis (2. 12) implies 

d d 

pij. = ~ pijk = Pi,, ~ P.jk = pi·· P.j' • (2. 13) 
k=l k=l 

and 

c d 

pi·k = ~ pijk = p. ~ P•jk = P1 .. P .. k (2. 14) 
j= 1 

l ·. 
j=l 

That is, the row and column classifications are independent (row x 

column interaction is zero) and the row and depth classifications are 
: ·! 

independent (row x depth classification interaction is zero) if H 0 

given by (2. 12) is true, Equations (2. 13) and (2. 14) do not imply the 

null hypothesis (2. 12) (see Kullback (39], p. 163). 

Since H 0 given by (2. 12) does not spec Hy the values of the 

parameters Pi.. and P,jk the test statistic given by (2. 7) would 

have (cd-l)(r-1) degrees of freedom 1 If the Pi .. 's and p·jk's 

e stimat!ed, by n. /N r i,, 
and n·jk/N, respectively, then ( r ~ 1) and 

(cd-1) degrees of freedom are Lost by the estimation process. 
J 

are 

The following example will be u,sed to illustrate the test staHstic 

(2. 7) for the various hypotheses discussed thus far. 

ExampLe 2. 1. The data in Table II is the result of an experiment 

involving the repression of failure. A sample of N = 106 boys were 

given a series of 16 tests, The measure of repression was the 

difference between the number of complete and incomplete tests that 



were recalled by the individuals. The subjects were classified as to 

i;ocial class and the type of discipline used by the parents. The 

categories of dii;;;cipline are psychological, mixed (psychological and 

corporal) and corporal. The textual dii;;cussion of this study is found 

in Miller ( [48], Chapter 10). 

TABLE II 

REPRESSION OF FAILURE 

,working Class 

Psychol. Mixed Corp. 

Middle Class 

Pi;ychol, Mixed Corp. 
Piscipline 

Positive 6 3 

Zero 9 4 

Neg;ative 7 3 

6 

0 

11 

19 

7 

12 

Discipline 

6 

3 

1 

Some preliminary calculations are given below for use in 

5 

3 

1 

evalua,ting the test statistics used in testing for mutual independent;e 

""' and for the independence of one classification variable, The first-

order and second-order .marginals are given by 

19 
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First-Order Marginals 

Rec; all Social Class Discipline 

nl., ::: 45 n = 49 n ::: 60 . 1. .. l 

n2·· = 26 n .2. 
::: 57 n • . 2 = 20 

n = 35 n = 26 3 •. ..3 

Second~Order Margin;;i.ls 

Recall x Soc;ial Class Recall x Discipline Social Class x Discipline 

nll• = 15 nl-1 = 25 

l;l.12· = 30 nl·2 = 9 

n2 l· = 13 nl·3 = 11 

ll-22. = 13 n2· l = 16 

n3 l· = 21 n2·2 = 7 

n32· 
:;: 14 nz.3 = 3 

11-3.i = 9 

n3.2 = 4 

n~.3 = 12 

•'" :, 
To test the hypothesis of mutual independen'tje 

~ 

H · p - p p p for all i , J. and k . 0 . ij k - i. . . . j ' .. k 

v~rsus the alternative hypothesis 

n = 22 . 11 

n 
· 12 

::; 10 

n 
· 13 = 17 

n·21 = 38 

n.zz = 10 

n.23 = 9 
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the test statistic is given by formula (2. 7) where E .. k is estimated 
lJ 

by (2. 11) f<;>r all ·i 1 j and k. This follows from the assumption that 

marginals were not fixed by the sampli~g technique. Thus estimates 

of the parameters p p i" I •j • c;i.nd P .. k are given by (2. 10) for 

i = 1, 2, 3 j = 1, 2 and k = 11 2, 3 . 

The value of the test statishic is T = 28. 8560 and the calculated 

value of T is compared with the ch\ ~square distribution with 12 

degrees of freedom. The critical level ~ , which is defined to be the 

smallest significanc;e level at which the null hypothesis would be 

rejected for the observed value of T ( [10], p, 81), is given by 

'd ;;::: . 005 . 

If we reject H0 based on /\ a = . 005 being less than any of the 

commonly used significance Levels, then one might be interested in 

whether the recall classification is independent of both soc;ial class and 

discipline. The null hypothesis would then be given by 

for a 11 i = 1 , 2 ; j = 1 , 2 , 3 ; and 

k=l,2,3. 

where the alternative hypotheeis is a simple negation of H 0 . The test 

statistic is (2. 7) where 
/\ /\ /\ 
E .. k = Np. P.J"k for all i, j and k sinc;e lJ l •. 

the marginals were not af;isumed to be given, Here the parameters are 

estimated by 

n. 
l•. 

"""l'f"'" for i=l,2,3 

and 

n "k 
1 1\ . . ••1K '. 'P = ~ .jk N 

for j = 1 , 2 , and k = 1, 2, 3 . 
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The computed value of T is 20. 044 which is compared to the chi-

square distribution with 

red - 1 - (r-1) - (cd-1) = (r-l)(cd-1) = IO 

degrees of freedom. The critical level is ~ ::::::: . 025. In a similar 

manner one could a1$o test the hypotheses that social class is 

independent of the recal(and discipline clas i;iifications or that the 
' 

•' 
discipline classification\s ind,ependent of the social class and recall 

classifications. 

In some three-way tables it is of interest to test the hypothesis 

that given any depth classification, for example, the row and column 

'· . classific:ationi:; are independent. This hypothesis is referred to as an 

hypo the sis of conditional indep~ndence. For the three -dimensional 

case in which a random sample of size N is taken from a single 

population the null and alternative hypotheses may be written as 

HO: pijk = p. kP.·k/p k L • • J •. 
for all i, j and k; 

and 

H 1 p /: p p Ip for some i, J. and k . 
ijk i·k ·jk . ·k 

""•" Since the above hypotheses involve pi·k and p·jk' it is relevant 
'\ 

/ 

to point out that if pi·k = pi·~P .. k (i.e., there is no r x d inter-
!' 

P 'k = p . P. k ' (i. e,, there is no • J • J. • . action) or if cxd interaction) 

then the hypothesis given by (2, 15) becomes 

P . 'k = p. p "k (complete independen.ce of rows) 
lJ ' 1.. "J ' 

(2. 16) 

or 
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Pijk = P•j· Pi·k (complete independence of columns), , (2. 17) 

respecHvely, Both imply 

(2. 18) 

by summing (2, 16) and (2, 1 7) over the index k. 

Consider the Exa,mple 2, 1 and 5Uppose w«;i test the hypothesis 

(2. 15). We will assume no marginals are fixed so the parameters 

Pi·k, P.jk and ·f> •• k_ .. are estimc;tted by the quanHties: 

/\ n~k for j = 1, 2 ' k=l,2,3 P.jk = 

n 
··k /\ for k=l,2,3 P .. k = ~ ' 

respectively, The estimated expected frequency is 

/\ 
Eijk = 

n. kn 'k l• . '] 

n··k 

fo:i; all i, j and ~, The <romputed value of the test statistic is 

T = 46. 89 and the degrees of freedom are given by the formula 

(r ... l)(c-l)d = 4. The critical le~.;el ~ is much less than . 001. 

The formulation of hypotheses up to this point has assumed one 

ranqom sample of size N. Suppose we obtain d independent 

samples from d populations of size Nk, k = 1, 2, ... , d where each 

population is partitioned by two classification variables. We may 
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represent the d r x c contingency tables which result as an r x c x d 

three-way contingency table with suitable hypothesis and restrictions, 

For the restrictions in this case it is reasonable to assume that each 

sample size ls fixed; that is, n .. k = Nk for k = 1, 2, ... , d is 

dete:r;mined before the samples are obtained. Thus, suppose we want 

to test the hypothesis that the d samples were taken from populations 

having identical distributions. The parameters P .. k denote the 
lJ 

probability that an observation taken at random from population k will 

be classified into the i th and /h cateso:ry by the two cLas sification 

variables~ re spec::tively. There are re parameters P . 'k associated 
lJ 

with population k where 

r c 
~ ~p -p -1 iJ'k - ··k -

i= 1 j = 1 
for k = 1, 2, ... , d . 

The joint distrLbution of the observed frequencies n. 'k associated 
lJ 

with a sample of size Nk from population k is the multinomial 

distribution given by ( 1. 2) for each value k=l,2, ... ,d with n .. 
lJ,,,, 

and replaced by nijk and, pijk, respectively, to identify the 

specific population k. 

and 

The hypotheses for identical distributions are given by 

HO: pij k = pij · for all 
r c 

i, j and k where ~ ~ p .. = l (2, 19) 
i= l j = 1 lJ' 

H 1 : Pijk -f pij· for some i, j and k, 

We can estimate p .. 
lJ. 

by 
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n .. 
= _.!l.:_ 

N 
for all i and j . (2. 2 0) 

Under the null hypothesis (2, 19) the estimated expected value is 

(\ 

Eijk = 
/\ 

Nk p .. lJ. 

n .. 
= N _.!l.:_ 

k N 
for all i, j and k , 

for detl~rmining the value of the statistic (2. 7). 

(2. 21) 

Example 2. 2. Let us consider the experimental terminology of 

Example 2. 1 and assume that the datc;i. in Table II gives the results of 

taking a sa.mple from each of the three populations defined by the three 

forms of discipline parents use with their chUdren. Assume, further 

that the sample sizes are N = 26 
3 

and that 

each population is partitioned by the two classification variables: 

recall and social class. We will test the hypothesis (2. ~~). Based on 

the estimates given by equations (2. 20) and (2. 21) and the marginal 

totals computed in Example 2. 1 , the value of the test statistic is 

T = 15. 70 which is compared wtth the chi-squa:re distribution with 

(r c -1 )d = 15 degrees of freedom. The c;ritical level {i- ~ . 22. 

Fixed Marginals 

Sometimes when a random sample might produce disproportion-

ately low frequencies in some section of a contingency table, the 

experimenter might decide to specify not only the sample size N, but 

also marginal totals. For example in a three -dimensional contingenc;y 

table the marginal totals n··k for k = 1, 2, ... , d might be fixed. fo 

addition to the above sampling constraint, many other kinds can be 
'f 



envisaged. For instance, it is possible to fix n. as well as the 
l·. 

n 'k marginal totals, o:r to fix all or some of the first-order 
•J 

marginals n. , n . and n. ·k . 
l" 'J. 

Since such restrictions are likely 

to be rare in practice, they are not discussed here. In any event it 

will nearly always turn out that the chi-square computation is the 

26 

same whether the marginals are fixed or not. In such cases it will be 

only the power func::tion and the form of the hypothesis that vary 

( [45], p. 93). 

Lewis [ 45] would modify the null hypothesis (2. 8) when the 

• 
marginals nf·k are given to 

for all i , j and k . 

The estimates of the P .. k from the sample would not have been any 

different in the above case, but the important point is they were 

dete ;rmined before the sample had been taken. 

For testing the hypothesis of mutual independence (2o 8) in a 

three -dimensional contingem;y table Kullbac:k [39] would modify the 

null hypothesis if the n··k totals are fixed in advance. It might be 

reasoned that there are in effect d distinct tables of size r X c, In 

these c;ircumstances pijk denotes the probability that an observation 

th 
falls in the (i,j) cell of the k two-way table. Moreover, if each 

two-way table is c;onsidered separately, then 

/\ 
pijk = ( n. 'k) not .Y. 

and P .. k = 1 for all k (not n.,k IN), Hence, the null hypothesis 



(2. 8) would be modified to 

H 0 : Pijk - pi·i p·j· for all i, j and k. 

Complexities of Formulating Hypotheses 

In the analysis of contingency tables obtained from a single 

population we are usually interested in the relationship between one 

classific;ation and one or more of the other classifications. Suppose 

we c;onsider the contingency table resulting. from Example 2. l for 

illustrative purposes. One could consider the row classification as 

representing the response of an experiment on these individuals, the 

column classification as a distinguishable cha:ra.cteri.stic of the 
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sampled individuals, and the depth classification as types of treatment, 

Then in many respects the hypothesis of interest are analogous to those 

of independenc;e and correlation in normal multivariate analysis. For 

example: 

1. Response is independent of treatment, or 

H 0 : Pi· k :::: P1 .. P .. k for all i and k . 

This c;ase corresponds to simple correlation, That 

is, H 0 corresponds to the hypothesis that X'esponse 

and treatment are uncorrelated. 

2. Response is independent of treatment and social class, 

or 

H 0 : Pijk = Pi .. p·jk for all i, j and k. 

This case ~orresponds to multiple correlation, 
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3. Response is independent of treatment given the social 

pij. p .jk 

p·j· 
for all i , j and k . 

This hypothesis is the conditional independence given 

the columQ. classification and corresponds to partial 

correlation ([37], p. 160). 

Not all contingency tables can be interpreted in a straightforward 

manner, In some cases all three classifications can be considered as 

responses; then we may be interested in independence or association 

among the responses. In other cases a cl.~.ssificaHon may be viewed 

either as a factor or a r~sponse. For convenience, we may group all 

the concepts of association or dependence under the general term of 

interaction. 

The reader may have noted that up to this point no attempt has 

been made to define interaction among the classification variables 

defined on c;me or more populations. We have indicated only that if 

classification variables are independent:, then there is no interaction 

between classification. vartables. With reforence to Table II we may 

also say that the i,nte:i;-action between response and treatment does not 

interact with social class, meaning the degree of association (measure 

of dependency) between response and treatment is the same for both 

categories of the social class classification, In the following discus -

sion some elementary conc;epts of interaction wiH be presented. 
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Interaction and Summary 

The formulation of a meaningful hypothesis of no interaction 

among the classification variables in a multi-way table is not as simple 

as one might expect. There have been several attempts to arrive at a 

logical and intuitively acceptable definition of interaction that could be 

detived from a wider framework of hypothesis formulation. The main 

lines of thought for "no lnteractlon 11 hypothesis can be grouped into 

the following clas sific;:attons: 

1. The original definition due to Bartlett [2] and its 

extension. 

2. The formulation of Darrock [13] and Roy and 

Kastenbaum [57] based on symmetrica,J functions 

of the cell p;robabilities. 

3, Good 1 s definition [22] based on maximum entropy .. 
and Goodman's modification [2.5]. 

The testing of mutual independence of classification variables 

rnay be regarded as tesiring for significance of 11 no first-order inter-

action, 11 For the simples~ case for defining "no second-order 
> 

interaction, 11 Bartlett [2] defined for a 2 x 2 x 2 table "no second -

order interaction" as implying: 

P111Pzz1 

P1z1P211 
= 

P112 Pzzz 

P122Pz12 

Note that (2. 22) may also be written as either: 

(2.22) 
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plllpl22 

P121 P11z 
= 

Pz 11 Pzzz 

PzzI Pz12 
or 

P111Pz12 

P11zP211 
= 

P121 P222 

P122 Pz21 
(2.23) 

The hypothesis (2. 22) and the alternative forms in (2. 23) give the 

equality of association between row and column classifications withln 

the two categories of the depth classification, between column and 

depth classifications within the two categories of the row classification, 

and between row and d~ . .pth classifications within the two categories of 

the column c:lassificatisl.~r{s, re$piec:Hvely. This definition becomes 

difficult to interpr~t and involves solu,Hon of lengthy interative 

equations when the number of the levels of the c:las~~ficaHon variables 

are extended. 

Roy and Kastenbaum [57) derived a set of conetra.ints implying 

no interaction for a three -way contingency table of the form: 

Prcd Pij4 

Pied Prjd 
= 

Prck Pijk 

Pick Prjk 

i=l,,2,, .. ,r-1, 

where j:::l,2, ... ,c~l 

k=l,2, ... ,d-1 

(2. 24) 

The coq.straints (2. 24;) were based on the fact that the two hypotheses 

H · p - p p for all ·.i and k ' 1 . '. k - .. k ~ 1, 1 ·" •• 

and 

do not usually imply the hypothes~s 

H: pijk:;: Pi,, p·jk for all i, j and k, 
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Oarroch'Si [13] formulation of no interaction led him to define 

for all i, j and k (2. 2 5) 

where 

d r c 
~ a.k = ~ bk. = ~ c .. = 1 

k;:: 1 J i= 1 l j=l lJ 

and 

r c d 
u ~ ~ :E a .. bk. c .. = l 

i= 1 j=l k=l lJ l LJ 

The formulation of the 11 no interaction" hypothesis up to this 

point have been extensions of Bartlett's definition. Good 1 s [22 J and 

Goodman's [Z5] formulations of the no interaction hypotheses are 

entirely general and physical interpretation of their meanings are 

ext:t1emely difficult, 

Ku and Kullba.ck [37] have developed a method of determining 

the cell probal:rilities in a multi-way contingenGy table. Hence, this is 

equivalent to a goodness -of ~fit test since knowing the probabilities in a 

m,ultinqmial distribution determines the distribution. 

Their p:roc;edure for determining the probabilities is based on a 

definition of the no-interac;:tion hypothesis (marginal totals must be 

given) similar to formula (2. 25) given by Darroch [13). The process 

is a.n interative technique estimating cell probabiHties and the 

coeffic·Lents in ~he i;tons~raints under a tenable hypothesis ( [37], p. 168). 

It is often the case that a researcher needs to summarize the 

re :;;iu1ti;; of a higher order contingency table. It is important that one 

is aware of the assumption being .made when c;ontingency tables are 
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condensed and then analyzed, since the use of two-way tables to 

summarize multi-way classification data is a rather common practice. 

A summary of important facts involving no interaction are as 

follows: 

1. If there is no first-order interaction; i.e., independ­

ence of all classifications, then the information is 

contained in the first-order marginals in the sense that 

given these marginals, the complete table can be 

constructed to within sampling error. 

2. If the first-order interaction is significant, but .there 

is no second-order interaction, then the set of second­

order marginals will be required to summarize the 

<;lat a adequately ( [38], p. 184). 

A direct consequence of ~his interpretation is that the analysis 

can be reduced to tha~ of the set of marginal tables if there is no 

interaction of the same order. 

Conclusion 

T:Q.e role of the row, c.olumn, and depth classifications in the 

various hypotheses can be permuted as the experimenter may desire. 

There are alternative ways of stating the hypothesis in many 

cases and they are apt to be confusing, but most of them are carefully 

followed through by Ku and Kullback [37], Kullback [39] and Lewis 

[45]. The objective in formulating hypotheses in this paper is to 

obtain an exactly additive analysis. Lancaster [42] and Kullback [39] 

obtain additive components in their analyses; while Lancaster 
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partition$ the total chi-square into additive components, Kullback uses 

the information theory approach to obtain exact additive component:;;. 

The value of obtaining additive GOmponents is to allow the experimenter 

to ~est additional hypotheses. 



CHAPTER III 

ANALYSIS OF CATEGORICAL DATA USING 

INFORMATION THEORY 

Introduction 

Information in a technically defined sense was first introduced 

into statistics by R. A. Fisher in 1925 in his work on the theory of 

estimations. According to Kullback [39]. Fisher defined the informa -

tion contained in a random sample of size n taken from a population 

with probabilHy density function f(x ;8) as 

_ [8logef(x;8)1 2 
I-nE .. 88 . j 

Shannon and Wiener, independently, published in 1948 works 

de scribing logarithmic measures of information for use in communica-

tion theory. These papers stimulated a tremendous amount of study 

in engineering circles on the subject of informahon theory [39]. 

Information theory is a branch of the mathematical theory of 

prol:;>ability and mathematical statistics. As such, it can be and is 

applied in a wide variety of fields. The subject of this exposition is 

of logarithmic measures of information and thei:r application to the 

testing of statistical hypotheses in contingency tables. 

34 
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In this chapter a consistent and simple approach based on the 

principles of information theory is used in developing the various test 

procedures for categoric;:al data and the results are analyzed in the 

form of a component of information table. 

Five examples are given illustrating the computation of the test 
\ 

statistic and the constr\lction of the component of information table for 

testing each of several possible hypotheses. The procedures proposed 
:~' ' ·,, 

depend on the use of a minimum di$crimination information statistic 
'.~ .. 

(m. d. i. s.) and ihs asymptotic distribution properties. The examples 

will also be used to illustrate the conceptual simplicity of this approach 

to the statistical analysis of contingen1=y tables. The calculation of 

the minimum discrir;ninc;ition information statistic, denoted by 2I, 

involves the basic operations of addition and subtraction; when a 

tal::iulation of n log n 
e is available. However these calculations need 

to be caITrled through 1,l.sir,i.g more significant digits than the Pearson 

ch~ -square staHst\c. 

Definitions 

The miri,imum c;l.iscrimination information statistic is based in 

principle on a technical meaning of information, Information in a 

technical sense is not radic;ally different from the everyday meaning; 

it is merely more prec;ise. Information can be gained about a matter 

in whtch we are to some degree uncertain; thus information may be 

defined as that which removes or re.d11c;es uncertainty. In statistics 
~ 

information is obtained by taking an observation or a sample from a 

population which is used to estimate parameters or to test hypotheses. 
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We shall, again, assume the multinomial model and will let the 

subscripted letter x represent cell frequencies instead of the sub-

1;1cripted letter n. This form ls given to be consistent with the more 

standard notation used in discussions of information theory. 

The multinomial is given here for future reference in defining 

the statistic of interest in this chapter: 

N! c x. 
f(x 1,x2 ,x3,.,. ,xc) II l. where p.> 0 (3. l) = pi c 

i= I 
1 

II x.! 
i= 1 

1 

r r 
for i=l,2, .•. ,c, ~ P1 = l and ~ x.::: N 

i= l i= l 
'l 

Def'lnition 3. l: Let H be a population of m partitions with probability 

density f(x) .:: pi for x = x 1,.,,, xn, then the mean information of 

an observation selected at random from H is 

m 1 
~ p. log -

i= I 1 a pi 

or 

m 
I - - ~ p. log p. 

. i a i 
t= I 

(3. 2) 

When a= 2, the form of the information in (3. 2) is called the 

Shannon-Wiener measure of information ( [ l], p. 8). When logarithms 

to the base 10 are used, the mean information of an observation in 

(3, 2) is termed a ''f.l;arUey" statistic and whc:q the logarithms to the 

base e are used. (3, 2) is called a "nit 11 statistic. The base a is 

determined to facilitate the determination of the distribution of I. 
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ln the absence of the proper knowledge of the system to determine a, 

the base e will be used and the distribution of 2I will be approximated. 

Therefore, up.less otherwise indicated, the base e will be assumed 

throughout, 

An intuitive example of information may be explained by con.sider -

ing a game ·Ln whiqh two persons are playing. Suppose a person is 

thinking about a particular squa:re on a qheckerboard and thei task of 

the other person is to discover whl.ch of the 64 possible squares it is. 

It can be show'(). that exaetly six qµesHons are necessary and suffident 

to locate the square, if the questions are asked in the same manner 

with six answers of yes or no. For example, the first question might 

be "Is the square in the upper half of ~the board? II With the answer of ,, 

either yes or no, the questione,r has now limited the location of the 

unknown square to the 32 remaining squares. The second question 

c:;oµld be "Is it in the left half of the remaining squares? 11 and so on 

for the other questi,ons. Since the answers are of the yes or no form, 
, 

there are two responses for eac;;h question and altogether 2° = 64 

different responses. "' ,,. 
For this set of responses call it H, a relation 

I of m = 2 is suggested; where m is the number of equally likely 

responses from which a choice is made and I is the amount of 

I uncertainty o::i; information. Now, if rn = Z , then I = log2 m; th-u.s 

information involves the logarithm of the number of responses. The 

responses are expr~ ssed in the form of prob;;tbilitie s for be: sting 

hypothesis. If ~he m oµtc;omes are equally likely, each with probability 

I 
pi = m for i = 1, 2, ... , rn then the Lnformation (answer to one 

que1>tion) of a responi:ie expressed in terms of probabtlil:ies is given by 

definition (3. 1) using equation (3. 2) we have 



m m 1 l I = - 2; Pi log2 Pi = - 2: log2 
i= 1 i= 1 m m 

m log2 
l 

log2 m. = -- -m m 

Thus applying definition (3. 1) we note that if the population has m 

equally likely rartitions each with probability 1 
p. = -

l m 
for 

i = 1, 2, ... , m, then the mean information of an observation selected 

at random is given by 

I ::: log m 
a 

1 ::: log -
a Pi 

Application of Information to Statistics 

We shall now apply the definitions of information theory to the 

analysis of contingency tables. The development of information used 

in the re i;;t of this chapter is patterned after the derivations of 

Kullback [39], b1;1.t is less mathematical. The more mathematical 

treatment of information theory as given by Kullback is given in 

Appendix A, 
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Suppose we have a conHngency table with r categories resulting 

from a sample taken from a population partitioned by a single clas sifi-

cation variable. Consider the two simple hypotheses H 0 and H 1 

which specify the value of each parameter as follows 

and 

for i=l,2,, .• ,r 
r 

where 2: p0 . = I 
i= 1 l 

r 

p. = p for i =I,, 2, ... , r where _2: pli = 1 
i n 

1= 1 

and P :/: p for at least one i . 'li Oi 

(3. 3) 
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We note the two hypotheses H 0 and H 1 each partitions the popula­

tion and ~pecifies the probability of an observation occurring in each 

cell. We would desire to be able to take observations from this 

population and gain some ip.formatlon as to which, if eikher, hypothesis 

is correct. By applying information theory we make the following 

de flnition. 

Definition 3. 2: The mean information per observation from the 
·;~: 

population hypothesized by H 0 , for discriminating in fafor of H 1 

against H 0 is 

(3. 4) 

If we let ON be the set of N observations obtained from a 

population with a multinomial distribution (3. l) then the amount of 

information obtained from ~he sc;i.mple is given by the following defini-

tion. 

Definition 3. 3: The mean discrimination information for a random 

sample of N i1;1.dependent observations for discrimination in favor of 

H 1 aga,inst H0 iE? 

r pli 
= N :4 pli log 

i= 1 Poi 
(3. 5) 

If the equat'lon (3. 5) is muLtiplled by 2 and the natural loga "-
.' 

rithm is used, then the distribution of ;r {H 1: H 0 ; ON) is approximated 

by the chi -square distribution with r -1 degrees of freedom 

([39], p, 113). We restateDefinition3.3 sothatthemeandiscrimin­

aHon informabion (3. 5) is in ~he proper form for a statistic;. 
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Definition 3. 4: The mean discrimination information statlsti.c for a 

random sample of size N for discrimination in favor of H 1 against 

r pli 
= ZN L: Pu log 

i= 1 Poi 
(3. 6) 

For a random sample which is partitioned by three classification 

variables into red c;ategorie s by a simple null hypothesis 

by 

H 
0 

H0 : Plj k = P Oij k for i = 1, 2, ... , r ; j = 1, 2, ... , c ; and 

k=l,2, ... ,d; 

against a simple alternative hypothesis H 1 given by 

H 1 pijk::; plijk for i=l,2,, . .,r; j=l,2, ... ,c; 

k=l,2, ... ,d; ;;ind p 1 .. k # p 0 . 'k for some cell 
lJ lJ 

(i,j,k), 

the equation (3, 6) becomes 

r c d Pn·k 
= 2N L: L: 2: p . . log ~ J 

i=l j=l k=l . llJk Poijk 

given 

(3. 7) 

The n1,1ll hypothesis H 0 , usually specifies a relationship among the 

parameters and in some case13 specifies the value of each parameter. 
f 

Since the null hypothesis usually specifies a general relationship 

among the parameters in the multinomial distribution and the alterna-

tive hypothesis is a negation of H 0 , the sample values may be used 

to minimize the discrimination information statistic. Thus !.n the 

• 



case where H 0 specifies the parameters pijk for all i, j and k 

we are "specl.,llating" that the population is of the form 

f(x) = 
NJ xlll 

I I I P111 
x 111' xl 12' · · · xrcd · 

where x represents the sampled data. 

x 
red 

Prcd 
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By applying Theorem ~ in Appendix A, we know the minimum of 

the discrimination informaHon statistic is obtained by using the best 

unbiased sample esti.mates for the parameters P1 ijk in the statistic 

(3. 7). We are really estimating the probabUitie s from the sample for 

the distribution of the alternative hypothesis H1 . The objective is to 

obtain the smallest possible value for the statistic (3. 7) so that if it is 

"sufficiently large" this would give us evidence that the sample does 

not resemble the distribution under the null hypothesis. 

It ii:? supposed that the sample, properly obtained, 11 resembles 11 

the population. Thus, the population parameters under the alternative 

hypothesis are replaced by the best -unbiased estimates based on the 

sample. The minimum of the test stat~stic (3. 7) for a random 

sample, ON, of size N would becorne in the ·j,bove case 
f"' 

{3. 8) 

where x. "k IN for all i, .i and k are the b,=;::;;t unbiased estimates of 
1,J -

The the parai;neters pLjk for the composite alter.native hypothesis, 

statistic is distributed asymptotically as a chi-:;;quare random variable 

with red - 1 degrees of freedom. 
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If the null hypothesis does not specify the values of the parameters, 

but d,escribes a relationship among them such as the hypothesis that the 

three classific;ation variables are independent, then a degree of 

freedom is lost for each parametel;' estimated. To illustrate that the 

' parameters not specified by the composite null hypothesis are 

estimated from the sample, a 11 hat 11 is placed over the I; that is, 

2 EE E x .. k log 
lJ 

2 
N x .. k 

l] 

x. x . x k l ~. • J. . . 

where the parameters pi·. , p·j· , and P .. k are eshimated by 

x. 
l•. 

=~ 

x. 
= ___,_.;,J_:_ 

N 
and 

(3. 9) 

respectively, for all i, j and k under the null hypothesis and the 

parameters pijk for all 
/\ X"k 

i, j, and k are estimated by pijk = T 
under the alternative hypothesis. Degrees of freedom are lost only for 

estimating those parameters not specified by the null hypothesis; thus 

for the statistic; (3, 9) we have the following degrees· of freedom 

r cd - l - ( r -1 ) ,.. ( c -1 ) - ( d -1 ) = ( r - l ) ( c - l )( d -1 ) . 

The following examples are given to illustrate primarily the 

computci.Honal procedure for the minimum discrimination information 

statistic, The first example ;represents the case where a sample is 

taken from a population partitioned into two categories or cells by one 

classificc;i.tion variable. In this example, we will assume the null 

hypothesis specifies the probabilities of the two categories, 
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Example 3. 1: Suppose that in a sequence of 5 5 independent 

tosses of a coin we observe 37 heads and 18 tails, Let 

p 1 = probability of a head and p2 = probability of a tail on a single 

toss of ~he coin. To test the null hypothesis that the coin, is unbiased, 

formulated symbolically as H 0 : p 1 = p2 = 1 /2, we compute the 

minimum discrimination information istati.stic as follows 

x. 
l 21 = 2 2: x. log -N. 

1 p. 
1 

= 2x 1 logx 1 + 2x2 logx2 - 2N logN + 2N log 2 (3. 10) 

since p 1 = p 2 = 1 /2 under the null hypothesis. From the data one 

may note that x 1 = 37, x 2 = 18 and N = 55. Substitution of these 

quantities into (3. IO) gives 

21 = 3(37 log 37) + 2(18 log 18) - 2(55 log 55) + 2(55 log 2) 

=6.700. 

Since 21 is distributed, approximately, as a chi-square random 

/\ variable with one degree of freedom; the critical level a ~ . 0 l . 

Comparing the statistic 21 with the statistic 

2 
T = 2: 

i= 1 

2 
(x.-;E.) 

1 l 

E. 
l 

where E. = N /2 = 27. 5, the calct;llated value of T is 6. 55, 
1 

Comparing T with the chi-square distribution with one degree of 

freedom /\ a :::::: . 0108. Thuf, the two statistics give similar results. 



44 

The next two examples illustrate tests for independence and 

identical distributions, respectively, in two-way contingency tables, 

Example 3. 2: In an in,ve stigation of the nature and consequences 

of social stratification in a small mid-western com.munity, it was 
I 

found that the members of the community divided themselves into four 

social classes ( [58], p, 177). The re search centered on the correlates 

of this stratification among the youth of the community and one of the 

predictions was that adolescents in th~ different social classes would 

enroll in different curricula at the high school. A sample of 390 high 

school students were classified by the social class to which their 

family belongs and by the curriculum in which they are enrolled. 

We are assuming in this example that we have a random sample 

from a single population partitioned by two classification variables. 

The data is given in Table III. 

TABLE III 

FREQUENCY OF ENROLLMENT FROM FOUR SOCIAL 
CLASSES IN THREE ALTERNATIVE HIGH 

SCHOOL CURRICULUMS 

~ c I II III IV Totals x, 
l" 

College Preparatory 23 40 16 2 81 

General 11 75 107 14 207 

Commercial 1 31 60 10 102 

Totals x , 35 146 
•J 

183 26 390 



The null hypothesis is 

H · p - p p for all i and J. ·, 0 . ij - 1. ·j 

that is, the curriculum a student pursues is independent of the soc'Lal 

class. The class of alternatives is given by 

The null hypothesis of independence does not specify p1• for 

i=l,2,3 nor for j=l,2,3,4 The minimum discrimination 

information statistic is given by 

r c x .. 
1 

21 = 2 ~ ~ x .. log N 
i = 1 j = l lJ pi. p. j 

where hhe best unbiased estimates of p. 
l• 

and are given by 

x. /N and x./N, respectively, for i=l,2,3 and J·=l,2,3,4 
l• 'J 

Thus, the minimum discrimination information statistic becomes 

/\ r c x .. 
1 21 = 2 ~ ~ x .. log 

i= 1 j= 1 lJ x. x 
N 1· _i 

N N 

r c r 
= 2 N log N + 2 L; 2; x .. log x .. - 2 ~ Xo log x. 

lJ lJ 1' l• i=l j=l i=l 

c 
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- 2 ~ x . log x . 
j=l 'J •J 

(3. 11) 

Based on the information in Table III, we find 

2N logN = 2 (390 log390) = 4653. 59446 

• 



and 

I\ 

3 4 
2 I: I: xiJ' logxiJ' = 3055. 77464 

i= 1 j = 1 

3 
2 I: 

i= l 

4 

x. 
l• 

logx. 
l• 

= 383. 14080 

2 I: x. logx . = 3780. 38044 . 
•J 'J j=l 

The statistic 2 I given by (3. 11) is approximated by the chi-square 

distribution with (r -1 )(c -1) = 6 degrees of freedom. The critical 

/\ 
level of the statistic 2 I = 65. 6 is much less than . 001. The 

statistic (1. 7) has a calculated value of 69. 2 and is distributed, 
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asymptotically, as chi -.square with 6 degrees of freedom. The c;:ritical 

level ~ is also much less than . 001. 

Example 3. 3: Suppose, now the data given in Table III gives the 

results of taking a random sample from each of the four social cl~sses .. 
disC\l.SSeq i,n Example 3. 2 where each social class is partitioned into 

three categories by the curriculum classification. Assuming the 
,, 

samples are mutually independent, the objective is to determine 

whether or not the four populations of social classes are identically 

distributed. Table III is presented below transposed so that the 

notation developed on page 9 in Chapter I corresponds to the state -

ments of this example. 



I 

II 

III 

IV 

Totals x . 
•J 

TABLE IV 

SOCIAL CLASS VERSUS CURRICULUMS 

General 
;l?:i;-eparatory 

23 

40 

16 

2 

81 

General Commercial 

11 l 

75 31 

107 60 

14 10 

207 102 

Totals N. 
'L 

35 

146 

183 

26 

390 
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In this example we would like to consider the hypotheses given by 

Ho: P1j = P2j = P3j = P4j for all j= 1,2,3 

(the samples are from the same population) 

and 

H 1 : pijf:. pi'j for some i/.i' and j=l,2, ... ,c 

(the samples are from different populations) . 

An alternate form of these hypotheses may be stated for notational 

convenience as 

HO: pij = p. 
J 

for all i and j (3.13) 

and 

Hl: pij f p. for some i and j 
J 
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The discrimination information statistic;;\for the samples is given 

by the expression 

4 3 pij 
2 I: N. ~ p 1.J. log , 

i=l l j=l pj 
(3.14) 

where N. is the sample size and corresponds to a fixed value of x .. 
l l• 

The best unbiased estimates of pij for discriminating against H0 to 

minimize the discrimination information statistic in (3. 14) is given by 

/\p .. = x .. IN .. The minimum discrimination information statistic is 
lJ lJ l 

given by 

4 3 x .. 
21 = 2 I: ~ x .. log lJ. 

1J N. p. ' 
i= 1 j = 1 l J 

(3. 15) 

The null hypothesis (3. 13) does not state the values of the parameters 

p., j = 1, 2, 3 , therefore we estimate the parameters from the sample 
J 

and they are given by 

x. 
~- = _iN· for j = 1, 2, 3 . 

J 

The minimum discrimination information statistic for testing 

hypothesis (3. 13) becomes 

/\ 4 3 Nx .. 
2 I = L: L: x .. log 1) 

lJ N.x ' i= 1 j=l 1 ·j 
(3. 16) 

which is distributed asymptotically as a chi-square random variable 

with (r~l)(c-1) degrees of freedom. Equation (3. 16) may be 

simplified for computation purposes to give 



49 

/\ 4 3 3 
2 I = 2 2: 2: x .. log x .. - 2 2: x . log x . + 2 N log N 

lJ lJ 'J 'J i=l j=l j=l 

4 

- .2: Ni log Ni. 
i= 1 

(3' 17) 

The computations a:re given by 

4 3 
2: 2: x .. logx .. = 1527.687331 

lJ lJ • 
i= 1 j= 1 

3 
2: x. logx. = 1931.570398, 

j=l •J 'J 

4 
2: N. log N. = 1890. 090224 ' 

i= 1 
l l 

and 

N log N = 390 log 390 = 2326. 79722825 . 

/\ 
The calculated value is 2 I = 65. 648 with 6 degrees of freedom. The 

critical level~ ismuchlessthan .001. 

The application of the minimum discrimination statistic will be 

extended to a three-way contingem:y table where we will discuss and 

present examples corresponding to the hypotheses discussed in 

Chapter II. The main purpose in using the minimum discrimination 

information statistic is to obtain an additive analysis similar to the 

analysis of variance for quantitative data, We will be using what is 

termed a component, of information table to obtain a 11complete 11 

analysis of a contingency table. Since each entry in the component of 

information table represents the formulation of a tenable hypothesis, 

we will in the following section define some symbols and diseuss 
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component of information tables for the hypotheses of independence, 

conditional independence and identical distributions of populations. For 

the component of information table of independence and conditional 

independence we will assume we have one sample from a population 

partitioned by three classification variables (three-dimensional 

contingency table). For the component of information table for 

identical distribution we will assume we have two or more independent 

samples from populations which are partitioned by two criterion 

variables to obtain a three-dimensional contingency table. 

Independenc:;e of Classification Variables 

The hypothesis of independence of classification variables based 

on a sample presented as a three -dimensional contingency table may 

be partitioned into additive components by noting that the 

. Pijk::: P1 .. P.j· P .. k for all i, j and k, (3. 18) 

implies the conditions 

pijk = pi·. p·jk for all i, j and k (3. 19) 

and 

P.jk = P.j• P .. k for all j and k. 

The converse of the above statement also follows; that is, if we have 

conditions (3. 19) and (3. 20), then (3. 18) holds, The three classifi­

cation variables are independent if and only if the row classification is 

independent of both the column and the depth classificat·~ons and the 

column and depth classifications are independent. We will let the 
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symbols Rx C x D denote the hypothesis represented by equation 

(3. 18), Rx (CD) denote the hypothesis represented by equation (3. 19) 

and, C x D denote the hypothesis represented by equation (3. 20). 

When one analyzes a contingency table, the designation of row, column 

and depth classifications may be replaced by more descriptive terms 

in the application. In Table V we will give the component of informa-

tion table for independence where the column denoted Component will 

symbolize the hypotheses being tested, Information will give the 

formulae for calculating the test statistics, and .£..:.1. will give the 

degrees of freedom associated with each test. Note, that it is always 

the last component listed that has been partitioned into the additive 

components listed above it; thus the last row of a component of infor -
I\ 

mation table is analogous to the "Total" row of an analysis of variance 

table. The minimum discrimination information statistic for each 

component is additive and is distributed asymptotically as a chi-square 

random variable with the degrees of freedom indicated. 

Using the table below one is able to permute the role of the 

classification variables to test other hypotheses, such as row and 

column classifications independence and the depth classification is 

independent of both the row and column classifications denoted by 

Rx C and D x (RC), respectively. 
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TABLE V 

COMPONENT OF INFORMATION FOR INDEPENDENCE 

Component 

CxD 

R x (CD) 

RxCxD 

Information 

c d Nx,jk 
z ~ ~ x·jk log 

j=l k=l x. x 
··k ·J. 

r -~ d Nx .. k 
z ~ ~ :E x. 'k log 

l] 

i= 1 j=l k=l lJ x. x.k l•. • J 

2 
N x .. k '1J 2 t; ~ ~ x .. k log 

lJ x. x . x k 
l" 'J' .. 

d.f. 

(c-l)(d-1) 

(r-l)(c d-1) 

red - r - c - d + 2 
ff 

Conditional Independence of ClassificaUon 

Variables 

For conditional independence we note that 

and 

if and only if 

= P1.k p ·jk 

P .. k 
for all i, j and k 

P - p p for all i and k, i·k - i.. . ·k 

(3. 21) 



53 

For the component of information of conditional independence we will 

let the symbol (R / D) X (C / D) denote the hypo the sis (3. 21) that the 

row and column classHicaHon are independent given the depth classifi­
~ 

cation. The equations given by (3. 22) and (3. 23) will be denoted as 

previously defined by R x D and R x CD, respectively. Again, 

since the m·~nimum discdmination information statistic is additive, a 

component of information table for conditional independence may be 

formed as given by Table VI. 

Component 

RxD 

TABLE VI 

COMPONENT OF INFORMATION FOR 
CONDITIONAL INDEPENDENCE 

Information 

r d Nx. k 
2 L: L: x .. k log 

1• 

i:;:l k= 1 l• x. x ..k l'' 

r c d 

d. f. 

(r-l)(d-1) 

xijkx .. k 
(RID) x (CID) 2 L: L: L: x. 'k log d(r-l)(c-1) 

lJ x. k x 'k i= 1 j=l k=l 1· • J 

r c d Nx'°k 
R x (CD) 2 L: L: L: x. 'k log l] 

(r~l)(c d-1) 
i= 1 j=l k=l lJ x. x 'k 1 •. • J 

Again,. the :role of the clq.ssification variables may be permuted 
. - "'' . \,. ', , 

,. 

with a corresponding interchange of marginal totals appearing in the 
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computation formulae. Suppose we want to test an hypothesis of 

conditional independence given the column classification instead of the 

depth classification, then the component of ·information table would be 

as g'lven in Table VII, 

TABLE VII 

COMPONENT OF INFORMATION FOR CONDITIONAL 
INDEPENDENCE GIVEN THE COLUMN 

CLASSIFICATION 

Component Information d.f. 

r c Nx .. 
RxC 2 ~ ~ x .. log l] • (r-l)(c-1) 

lJ. x. x. 
i= l j=l l•• •J. 

r c d x .. kx. 
(RIC) x (DIC) 2 ~ ~ ~ x .. k log . i1 T c(r-l)(d-1) 

k= 1 lJ x .. x 'k i= l j=l lJ. 'J 
... , 

r c d Nx .. k 
Rx (CD) 2 ~ ~ ~ x .. k log lJ (r-l)(cd-1) 

i= 1 j=l k= 1 lJ x. x "k 1" 'J 

This table is given because we will now consider an example 

illustrating each of the components of information tables presented 

thus far. The statistics in the information column need to be expanded 

to perform the calculations using the properties of logarithms similar 

to the proceedures in equation (3. 11) in order to perform the calcula-

tions. 
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Example 3. 4: A committee composed of a representative from 

each of the four major manufacturers of tape recorders has employed 

two consumer reporting agencies to test the product being marketed by 

the four manufacturers for defects in both electronic and mechanical 

components. Each testing agency, T 1 and T 2 , is assigned a fixed 

proportion of the total production of units from each of the manufac • 

turers' M 1 , M2 , M3 , and M4 , of which half of the units are sent 

to the electronics division to be tested for electronic defects n 1 and 

the remaining half are sent to the mechanical di vis ion to be tested for 

mechanical defects n 2 . Each agency writes a report on each unit 

tested. At the end of the testing period the committee selects a 

random. sample of size 124 reports from among those which report 

the existence of a defect. The data partitioned according to manu-

facturer, testing agency and type of defect are given in Table VIII. 

The major objectives are to test the null hypothesis that the 

three classification variables are mutually independent (M X T x D) 

and that the manufacturer is independent of both the testing agency and 

the type of defect (M x (TD)). The minimum discrimination informa-

tion statistic will be used to test these hypotheses. The following 

marginal totals and calculation are necessary. The critical level of 

each test will be in the fourth column of the following component of 

information tables, 



TABLE VIII 

TESTING FOR MANUFACTURING DEFECTS 

Manufacturer Defect Test 1 

1 

2 

3 

4 

1 24 

2 8 

1 7 

2 13 

1 7 

2 2 

1 5 

2 2 

First-Order Marginals 

Manufacturer 

xl·· = 56 

x2·· = 30 

X3 .. = 23 

X4 •. = 15 

Test 

x = . l · 

x·2· = 

68 

56 

Defect 

x = 66 .. 1 

x.,z = 58 

56 

Test 2 

11 

13 

2 

8 

7 

7 

3 

5 
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Second-Order Marginals 

Manufacturer x Test Manufacturer x Defect Test x Defect 

xl l· = 32 xl · l = 35 x.11 = 43 

xl2· = 24 xl•2 = 21 x· 12 = 23 

x21· = 20 X2-1 = 9 x.21 = 25 

x22· = 10 x2.2 = 21 x·22 = 33 

x3 l· = 9 x3· l = 14 

X32. = 14 X3·2 = 9 

x41· = 7 x4· l = 8 

x42· = 8 x4·2 = 7 

Calculations needed from the data are: 

4 2 2 4 2 
2: ~ 2: x .. klogx .. k= 280.642, 

i=l j=l k=l lJ lJ 
2: 2: X"° logx .. = 357. 097 , 

lJ. lJ. 
i= 1 j = 1 

4 2 2 2 
2: 2: x. k logx. k = 359. 061 , 

i=l k=l l• t· 
2: 2: x "k logx 'k = 429, 705 , 

j=l k=l 'J 'J 

4 2 
2: x. logx. = 440.193, 

i=l 1·· l•· 
2: x. logx. =512.347, 

j=l 'J• 'J' 

2 
2: x··k logx··k = 512. 023, 

k=l 

and 

NlogN = 124log124 = 597. 715. 
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The component of information table for testing (M x T x D) is 

given by Table IX which is based on the formulation given in Table V. 

Since the hypothesis of mutual independence would likely be rejected 

(d ~ . 01), the tests given by partitioning the test statistic into 

additive components are performed. The hypothesis denoted by 

(M X (TD)) sates that the manufacturer classification variable is 

independent of the composite test-defect classification variable having 

four categories which are the combinations of the two testing agencies 

with the two types of defects. Since G' :::::::; . 05 , no clear -cut decision 

to reject or not reject H 0 would be reached at the . 05 significance 

level 1 The null hypothesis that the testing agency is independent of the 

type of defect (T x D), which ignores the manufacturer classification 

variable, would most likely be rejected since f\ 
a :::::::; . 015. 

TABLE IX 

COMPONENT OF INFORMATION FOR INDEPENDENCE 
OF MANUFACTURER, TEST AND 

DEFECT CLASSIFICATIONS 

Component Information d.f. G 

TXD 6. 100 1 :::::::; . 0 i 5 
[test X defect] 

M x (TD) 16.918 9 ,.,_, . 05 rv 

[manufacturer x test, defect] 

MxTxD 23.018 10 rv . 0 l ,_...., 

[manufacturer x test x defect] 
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If we assume that the hypothesis (M X (TD)) would be rejected 

then the test statistic of this test could be partitioned into components 

elther as in Table X or as in Table IX. The hypothesis denoted by 

(MjD) x (T jD) in Table X states that the manufacturer classification 

is independent of the testing agency classification given an arbitrary 

category with the defect classification. This hypothesis would not be 

rejected at any of the .more co.mmonly used levels of significance since 

{i ~ . 25. However the hypothesis that the manufacturer (M X D), 

which ignores the testing agency classification, would most likely be 

rejected. 

The analysis for conditional independence based on the calcula-

tions on page 57 and the analysis in Table VI yields Table X. 

TABLE X 

COMPONENT OF INFORMATION FOR CONDITIONAL 
INDEPENDENCE GIVEN THE DEFECT 

Component Information d.f. 
/\ a 

MXD 9. 120 3 ,..._, . 029 ,..., 

(MjD) x (TiD) 7.798 6 ,....,, . 25 ,.._, 

M x (TD) 16.918 9 
,..._, . 05 ,..._, 

In Table XI it should be noted that the test denoted by (M x T) 

would not lead to a rejection of the null hypothesis which is in 
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agreement with the conclusion reached for the hypothesis 

(MID) X ('I' JD) from Table X. That is, if we have concluded that the 

manufacturer and testing agency classification variables are independ-

ent given an arbitrary category of the defect classification, then it 

should follow that they are independent ignoring the defect classifica-

ti on. 

Similarly, the calculated values an page 57 and the analysis in 

Table VII yields Table XI. 

TABLE XI 

COMPONENT OF INFORMATION FOR CONDITIONAL 
INDEPENDENCE GIVEN THE TEST 

Component Information d.f. /\ 
Q' 

M X T 4. 544 3 > . 25 

(MjT) x (D!T) 12.374 6 ....., . 055 ....., 

M x (TD) 16.918 9 ~ . 05 

Identical Distribution 

Suppose we consider r independent random samples from r 

populations which are partitioned by two classification variables. We 

will consi<ler in this three -dimensional contingency table the rows as 

being the independent random samples and the column and depth 



classifications as the two criteria variables. The hypothesis of 

identical distribuUons is tested to determine if the two dimensional 

contingency tables gene rated by the samples are representative of 

identically distributed populations.· Considering the hypothesis for 

·identical distributions in Chapter III we note that 
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pijk = p·jk for all 11 j and k (3. 24) 

if and only·if 

pij· = p·j· for all i and j, (3. 25) 

and 

p·jk 
::: 

P.j. 
for all i , j and k . (3. 26) 

We will then use the above probability statements to obtain a compon-

ent of information table for identical distributions. We will use the 

symbol (C, D)I to derwte the hypothesis that the r populations 

sampled are identically distributed which implies equation (3. 24). The 

equation given by (3.25) is implied by the hypothesis that the r 

populations partitioned only by the column classification are identically 

distributed. This hypothesis will be denoted by C( I) and has the 

effect of completely ignoring the presence of a depth classification. 

The equation (3. 26) may be restated .as· 

P.jk Pij. 

P.j ~ 
for all i , j and k , (3. 2 7) 

. . . 

which is the conditional hypothesis that the depth classifications are 

identically distributed, given the column classification among the r 
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independent samples. We will use the symbol (D / C)I to denote the 

hypothesis expressed by equation (3. 26). Each of the equations (3. 24), 

(3. 25) and (3. 26) represent tenable hypotheses and the hypothesis 

(C, D)l may be partitioned into additive components as shown in Table 

XII. 'T'he minimum discrimination information statistic given for each 

component is distributed asymptotically as a chi-square random 

variable with the indicated degrees of freedom. 

TABLE XII 

COMPONENT OF INFORMATION FOR IDENTICAL 
·DIST RIB UT IONS 

Component Information d. f. 

r c Nx .. 
(C )I 2 L; L; x .. fog lJ. (r-l)(c-1) 

i= 1. j=l 
lJ. x. x . j. 1 •• 

r c d x .. kx. 
(DI c )I 2 L; L; L:: x. .. k log lJ T c(r"-l)(d-1) 

k= 1 lJ x .. x "k i= 1 j=l lJ. . J 

r c d Nx .. k 
(C,D)I 2 L; L; L; x. 'k log 

.·. l} 
(r-l)(cd-1) 

i= 1 j=l k=l lJ x. x . j k l'. 

Let us now consider an example illustrating the analysis of 

identical distributions of several populations. 
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Example 3. 5: Suppose independent random samples of items 

were obtained from each of four .manufacturers where each population 

of items is partitioned by the two classificatlon variables given in 

Example 3. 4. Assume the four samples of size N. = x. 
1 1·" 

for 

i = 1, 2, 3, 4, respectively, given the data shown in Table VIII. The 

procedure of analysis given in Table XII applied to the calculations 

given on page 57 yields Table XIII, 

TABLE XIII 

COMPONENT OF INFORMATION FOR IDENTICAL 
DISTRIBUTION OF MANUFACTURERS 

Component Information d. f. 
/\ 
Of 

(D )I [defect] 4.544 3 '22 

(TjD)I [testjdefect] 12.374 6 '05 

(T, D )I [test, defect] 16.918 9 ""-' . 05 ,.., 

-----------·--·--· -----·--~-... ... , 

The analysis again may be changed to some extent by permuting 

the role of the test and defect classifications, However, the random 

samples are from the manufacturers and we assumed the sample size 

was determined before the sampling was performed. For t:he inl:er ·-

pretation in this example we cannot permute the rol.e of the rows of the 

contingency table with either of the classification variables, 
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Summary 

The analyses presented above may be extended to higher ordered 

contingency tables; however, these procedures for analysis are not 

complete in terms o~ all the various hypotheses that may be tested. 

Kullback, Kupperman, and Ku ([41), po 575), claim the above 

procedures of analysis are simpler in statistical practice than the 

techniques based on the chi .,.square statistico However, there is no 

theoretical reason to prefer the chi-square statistic over the minimum 

discrimination information statistic except one of taste ancf convenience 

( [ 41], p. 576). The utility of the minimum discrimination information 

statistic lies in its additivity and computational properties. The 

partitioning of the total component of information into several additive 

components is similar to the analysis of variance. Each component of 

the information in the table provides a minimum discrimination 

information statistic whose distribution is approximated by the chi -

square distribution with the appropriate degrees of freedom ( [40], 

p. 218') . 



CHAPTER IV 

SMALL, ZERO AND MISSING FREQUENCIES 

IN CONTINGENCY TABLES 

Introduction 

The various tests !or the analysis of contingency tables are 

usually based on large sample theory. In particular the chi-square, 

the likelihood raflo ' an,d the minimum discrimination information 

statistics are approximated by the chi -square distribution when the 

sample si;ze is large. 

We will make several references to the likelihood ratio statistic, 

denoted as ... 2 log A. in this chapter, The test procedure based on e 

the likelihood ratio· statistic is defined and illustrated for two-way 

cont·lngency tables in Appendix B. Under the assumption of sampling 

from a multinomial distr'lbution, the likelihood ratio statistic is 

identical to the minimum discrimination information statistic ( [3 7], 

p. 114). Thus in the developments of the test statistic presented in 

this chapter the minimum discrimination information statistic will be 

used to be consistent with previous discussions, even though one would 

find that frequently the original development is in the terminology of 

the likelihood ratio statistic. 

In this chapter some general procedures for analyzing contin-

gency tables with small or zero frequency counts will be presented. 
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A procedure for estimating missing frequencies and some of the effects 

of misclassification will be noted. 

Zero or Small Frequencies 

The Pearson chi -square statistic T illustrated in Chapter II 

and the minimum discrimination information statistic 
/\ . 

2 I for test mg 

hypotheses involving multi-way contingency tables are large sample 

tests. Even though most experiments are designed so that the 

probability of an observed cell frequency being zero is quite small, 

• 
such an occurrence will be observed occasionally. Empirical evidence 

suggests that the presence of zero frequencies tends to inflate the value 

of either test statistic ( [36], p. 398). When the test statistic is 

increased the critical level is decreased. This smaller critical level 

would cause the experimenter ~o reject the null hypothesis more 

frequently than he should. 

The chi-square approximation to the distribution of the statistic 

/\ 
2 I is based on the assumption that all parameters involved in the 

constraints of the null hypothesis are greater than zero. If we assume 

that the alternative hypothesis also includes only alternatives for which 

these parameters are greater than zero and that an observed frequency 

of zero is the result of an insufficiently large sample size, then one 

could infer that the evidence provided by the sample is that the 

probability of observing a zero frequency in a cell is greater than the 

probability of observing a nonzero frequency in that cell. Assuming 

the multinomial model, Ku [36] proposes that one unit be subtracted 

from the computed value of the minimum disc rimina.tion information 

statistic for each zero cell count observed. 
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When an observed frequency of zero occurs it is frequently the 

case that other cells will have small frequencies {less than five) 

which may also endanger the validity of the test as well. It is 

generally agreed that the use of the Pearson chi-square test usually 

requires that each cell have an expected cell frequency of at least five 

( [68], p. 217). However, it has been shown by Zehna ( [69], p. 553), 

that the chi-square distribution still provides an "adequate 11 approxi-

mation to the distribution of the likelihood ratio statistic (or equiv-

alently, the minimum discrimination information statistic) even for 

relatively small sa,.mple sizes in the presence of small cell frequencies. 

Thus when small frequencies occur, the minimum discrimination 

information statistic should be used instead of the classical chi-square 

statistic. 

To illustrate Ku's correction for zero frequencies, let us recall 

Example 2. 1 where a :random sample was tak~~ from a population 

partitioned by three classification variables. The data is presented in 

Table II a,.nd we note the cell with a zero count and the seven cells with 

counts of less than five. It is desired to test the hypothesis that the 

classification variables are mutually independent. 

The preliminary calculations that are needed for the analysis 

presented in Table V are 

3 2 3 
~ ~ ~ x .. k log x. "k = 218. 1852165 

' i= 1 j:;: 1 k= l lJ lJ 

3 2 
~ ~ x .. logx .. = 310.2271315 

' i= 1 j=l l.J. lJ . 



3 3 
~ ~ x .. k logx. k = 239. 3664246 , 

i=l k=l l• l• 

2 3 
~ ~ x .. k logx,.k = 320. 2225579 , 

j=l k=l J J 

3 
~ x. logx. = 380.4475041, 

. 1 l.. l .. 
t= 

3 
~ x .. k logx .. k = 390. 286318 , 

k=l 

2 
~ x . log x . = 421. 11531168 , 

j=l 'J' •J' 

N log N = 494. 3245439 . 
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It should be noted in the calculations above that 0 log 0 is defined to 

be 0. 

In the component of information table for independence, Table V, 

we note the minimum discrimination information statistic for C X D 

(social class x discipline) involves only marginal totals; however for 

the Rx (CD) (recall x social class, discipline) and Rx C x D 

(recall x social class x discipline) hypotheses, we have the frequency 

for each cell involved in the computation of the test statistic. Thus, 

the value of one would be subtracted from the statistics for the 

components R x (CD) and R x C x D to correct for the single 

occurrence of a zero frequency. Table XIV shows the corrected value 

of the test statistic for each of these components of information. The 

critical level for mutual independence in Example 2. 1 is ~ ~ . 005 

using the test statistic (2. 7). 

For r x c contingency tables there are methods for correcting 

statistical tests with small frequency counts. Suguira and 6take [62] 

have made numerical comparisons of improved methods for testing the 

hypothesis of independence in a contingency table with small frequencies 



TABLE XIV 

COMPONENT OF INFORMATION FOR INDEPENDENCE 
CORRECTED FOR A ZERO FREQUENCY 

Component Infor ma Hon d.f. ii 

Social class x qiscipline 6.321 2 "' . 046 ,..,_, 

Recall x (Social class, discipline) 22.574 10 ~ . 015 

Recall x social class x discipline 28.895 12 ,..,_, . 005 ,..,_, 
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by the exact method; that is, comparing of the test statistics with the 

exact probability distribution in the tests of independence. The exact 

probability distribution assumes the marginal totals are fixed [68] and 

'is expressed by 

P(x .. J x. , x . ) = 
LJ L • 'J 

r 
I1 x. ! 

i= 1 l• 

x 

c 
I1 X I 

'J' • 
j=l 

.. 
r c 
I1 I1 

i= 1 j =I 

1 
x .. ! , 

LJ 
(4. 1) 

which is the probability of cell frequency xij given the row and 

column marginals, (x. and x . ) . One of the techniques that is appli-
. l • . J 

cable to the general r x c contingency table is the corrected minimum 

discrimination information statistic. The correction proposed by 

. " Suguira and Otake involves a constant K, so that the test statistic is 

2K1r', where 

K = 1 - [6N(r-l)(c-l)r 1 (N ~ 
i= 1 

-1 
x. 

l · 
1) (N . ~ x. ~ l 1) 

J=l J 
(4. 2) 



70 

The correction factor K for the minimum discrimination information 

statistic is obtained by calculating the first and the second conditional 

/\ 
moments of the statistic 2K I for given marginals in the exact 

distribution (4. 1) and equating them to those of the chi-square with 

(r.:.l){c-1) degrees of freedom up to terms of order l/N; that is, 

/\ 
assuming the statistic -2K I is approximated by the chi-square 

distribution wHh (r-l){c-1) degrees of freedom. Gart [21) made 

comparisons with the corrected minimum discrimination information 

test and an exact test with given marginals for 2 x 2 and 2 x 3 

contingency tables with zero cell frequency, and concluded that one 

may use the corrected minimum discrimination information statistic 

with zer:o frequency counts as well as small frequency counts. 

/\ 
The use of the correction proposed by Suguira and Otake will be 

illustrated by altering Example 2. 1 . Assume we select a random 

sample of 49 boys from the working social class and classify the 

sample by the discipline and recall classifications discussed in 

Example 2. 1. The data is then given in Table XV. 

Using the data J;;>elow we will test the hypothesis of independence 

given by ( 1. 8) . The value of K as given by the formula (4. 2) for 

N = 49, r = 3 , and c = 3 is 

K = 1 - [6 · 49 · 2 · 2 )- l [49 ( 115 + 

;: . 93588 . 

The test statistic for independence is given by 

/\ 3 3 Nx'i.'j 
-2K I = 2K ~ ~ x .. log 

i= 1 j=l lJ x. x 
1· 'J 

= 13. 134 
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The critical level /\ ""' 10 a "" . were the test statistic, 
/\ 

-2K I, has 4 

degrees of freedom. 

TABLE XV 

ZERO FREQUENCY DATA 

Discipline 
Recall 

Psycho. Mixed Corp. Marginals xi. 

Positive 6 3 6 15 

Zero 9 4 0 13 

Negative 7 3 11 21 

Marginals x . 22 10 17 
'J 

Missing Frequencies 

Missing frequencies in the analysis of contingency tables can 

result from a number of situations in a study or experiment. In a 

paper by Watson [66] procedures are presented for estimating missing 

cell frequencies associated with a sample of unknown size taken from 

a population partit·ioned by two classification variables. The procedure 

is based on the maximum likelihood estimates generated from the 

frequencies which are available under the null hypothesis of independ-

ence. The maximum likelihood estimates in such a two-way 

contingency table are fol.lnd from the likelihood function subject to the 
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c r 
constraints L: p. = 1 

i= 1 ·~· 
and L: p . = 1 . 

j= 1 'J 
It is assumed the observed 

cell frequencies represent a sample from a multinomial population 

with parameters pij. Under the hypothesis of independence the 

parameters may be written as 

p .. = 
lJ 

for i=l,2, ... ,r; j=l,2, ... ,c; (i,j) :f (u,v) 

where (u, v) is the missing cell and the total of the available 

frequencies is denoted by N'. This procedure is similar to the 

development of the maximum likelihood estimates given in Appendix B, 

except for the constraints on the parameters. The null hypothesis 

that the two classification variables are independent implies H 0 is 

given by 

for all (i,j) :f. (u,v) 

and the alternative hypothesis is given by 

The formula for estimating the missing frequency in cell (u, v) 

of a two dimensional contingency table is given by 

x x 
U• 'V 

x = 
UV N' - x - x 

U· •V 

(4. 3) 

where x and x are the row and column marginal totals and N 1 

U· 'V 

is the total of the recorded frequencies. With the frequency count 
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missing in cell (u, v), the marginal totals x 
U• 

and x are obtained ·v 

by omitting the unknown cell. The formulae needed to estimate the 

unspecified parameters are given as follows 

x +x 
/\ U• UV 
Pu. = N' + x UV 

x +x 
/\ ·v UV 
P.v -

N' + x UV 

/\ 
x. 

l· 
Pi. = N' +x i=l,2, ... ,r 

UV 

x 
/\ 
P.j = 

N' +x 
UV 

j=l,2, ... ,c 

/\ 
N'/\ /\ 

E .. = 
Pi. P.j 
/\ /\ lJ 1 - PU• P.v 

The test statistic is 

2 
x .. 

T = :2::' + -N' 
E .. 

lJ 

(4. 4) 

(i,j) # (u,v) 

(4. 5) 

where :2:: 1 is taken over all cells except the mis sing cell. The degrees 

of freedom associated with this/ test is given by (r-l)(c-1) - 1 ( [66], 

p. 49); that is, one degree of freedom is lost in estimating the missing 

frequency. 

The application of formulae (4. 3), (4. 4) and (4. 5) will be 

illustrated for the data in Table XV where we will assume the sample 

size is unknown and the zero cell frequency which appears is actually 
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a missing cell frequency. The mis sing frequency ocq\lrs in cell (2, 3), 

so x 2 . = 9 + 4 = 13, x. 3 = 17 and N' = 49. The calculations 

needed for determining the test statistic for the hypothesis of independ-

ence are 

(13)(17) 
'"" 12 

49 - 13 - 17 

/\ X2• t X23 25 
P2. = = 6T N' + x23 

probability estimates involving 

X.3 t X23 
the mis sing cell 

/\ 29 
P.3 = = 6T N' + x23 

/\ xl· 15 /\ x. l 22 
P1. = 

N' t Xz3 
= IT P.1 = = 6T N' + x23 

/\ X3. 21 /\ x.2 10 
P3. = = 6T P.2 = = IT N' + x23 N' + x23 

Using the above estimates of the parameters we calculate 

/\ 
E .. = 

LJ 

N /\ /\ 
P.i p,j 

/\ /\ 
1 - P2. P.3 

for i= 1, 2, 3; j = l, 2, 3; and (i,j) f (2. 3). The test statistic 

2 x .. 
T = ~I + -N' = . 5713 

E .. 
LJ 

with (r-l)(c-1) - 1 = 3 degrees of freedom. The critical level for 

this test is {i ~ . 90. 
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When there are several missing frequencies the correct analysis 

varies with their disposition. The above analysis can be extended 

using the formula (4. 3) and the ordinary method of computing the chi-

square statistic. The formula for estimating a mis sing frequency 

given by (4. 3) is applied to each of the missing cells in succession. 

Once a missing frequency has been estimated, this estimate may be 

used where applicable in estimating the frequency of other cells. The 

iteration process is continued until the estimates obtained for each 

missing cell in the last two iterations differ by less than a pre­

determined amount. The statistic would be calculated using the 

formula (4. 5) and the number of degrees of freedom would be 

determined by the expression (r -1 )(c -1) less llhe number of cells 

with missin.,g frequencies. 

To illustrate the above discussion suppose (s, t) and (u, v) are 

the mis sing cells in a r x c contingency table. For a null hypothesis 

of independence, we will assume the observed cell frequencies total 

N 1 and represent a sample from a multinomial population with prob-

abilities 

p .. :: 
lJ 

for all (i,j) :f (s,t) and (i,j) :f (u,v). 

To estimate the missing cell frequencies we will denote the kth 

iterates of the cell frequencies (s, t) and (u, v) by x (k) and 
st 

x (k), respectively, There are two cases to consider, namely 
UV 

( 1) the two m:t~sing cells are not in the same row or 
., 

column; Le., s :f u and t # v. 



and 

(2) the two missing cells have a row or column in 

common; L e. , s = u br t = v , 

The estimates in case ( 1) for the cell frequencies are 

N' - x - x 
S· ·t 

x x 
U• 'V 

x = 
UV N' - x - x 

U· •V 

and for the parameters are 

/\ 
x x 

st 
x + x;uv S• /\ U• 

Ps. = Pu. = N'+ x + :x; N' + x t + x st UV S UV 

6 x.t + xst /\ 
x +x ·v UV 

P.t = N' +x P.v = +x N'+ x + x . 
st UV st UV 

and 

x. 
6 l• i=l,2,,,.,r Pi. - N' + x t + x 

S UV ( i. j) # (s, t) 

or 

/\ 
x 

( i' j ) # (u, v) . 
P.j = 

N' + x t + x 
j=l,2, ... ,c 

S UV 
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The estimates in case (2) are more involved and we will illustrate 

the process by assuming the missing frequencies occur in the same row, 

with a similar technique if the missing frequencies are in the sarpe 

column. Let the missing cells be denoted by (s, t) and (s, v) and 

we will estimate the frequenc;y of cell (s, t) first. The first iterates 



of the cell frequencies are given by 

x (1) = 
st N' - x - x s· ·t 

where 

are the initial marginals and total number of observations recorded 

and 

x (1) = 
SV 

x ( 1) x 
S• "V 

N' - x (l) - x 
S• "V 

where x ( l) = 
s· 

The second iterates are found by the formt;1.lae 

where 

x (2) = 
st 

(2) ( 1) 
x x 

S• ., ·t 
NI - x (2) - x ( 1) 

s· ·t 

x 
S• 

+ (1) 
xst · 

(3) ( 1) x x 
S· •V 
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x (2 ) = x ( 1) + x ; 
S· S• SV 

x(l)=x +x(l) 
·t · t st 

and x (2 ) = 
SV N'-x (3 )_x(l) 

S• •v 

where 

x (3)= x (2)+x (2) 
S• S· st 

x ( 1) = 
·v 

x + x (1) 
•v SV 

The kth iterates of cell frequencies are 

where 

x (k) 
st = 

x (2k-2) x (k-1) 
S· •t 

N' _ x (2k~2) _ x (k-1) 
S• .t 

x (Zk-2) = x (2k-1) + x (k-1) (k-1) (k-2)+ (k-1) 
x.t = x.t xst s· S• SV 



and 

where 

(2k- l) x 
S· 

(2k-l) (k-1) x x 
S· 'V x (k) = 

SV NI - x (2k-l) - x (k-1) 

= (2k) + (k) 
xs. xst 

S• •V 

(k-1) 
x 

•V 
= x (k-2) + x (k-1) 

'V SV 
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This process can be terminated when the difference between successive 

iterates is less than a desired quantity. The estimated probabilities at 

the end of the kth iterate are 

DP = 
i· 

/\ 
Ps. 

/\ 

P.t 

/\ 
P.v 

x. 
l• 

= 

= 

= 

x + x (k) + x (k) 
S• st SV 

NI + x (k) + x (k) 
st sv 

x + x (k) 
•t st 

N' + x (k) + x (k) 
st SV 

x +x 
(k) 

·v SV 

NI+ x (k) + x (k) 
st SV 

i=l,2,.,.,r 
NI+ x (k) + x (1') 

st SV 

x. 

NI+ x (k) + x Ck) 
st 1 st 

II 

j=l,2, ... ,c 

(i,j) :f (s,t) 

or 

(i,j):f.(u,v) 

where u = s . 



For either of the two cases the estimate of the expected values 

are given by 

A 
E .. = 

lJ 

N I A A 
P . p. 

l· • 

for all (i,j) such that (i,j) :f (s,t) and (i,j) :f (u,v) and the test 
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statistic is given again by formula (4. 5) with (r -1 )(c -1) - 2 degrees 
i 

of freedom. 

An investigation of the effects of misclassification on the 

properties of the chi-square test reveals that misclassification 

reduces the power of the test ( [50), p. 99). The power of a test is 

defined as the probability of rejecting the null hypothesis when a 

specified one of the alternatives included in the alternative hypothesis 

is true. 

Conclusion 

It appears from a review of the literature and studies on the 

analysis of contingency tables that the minimum discrimination infor-

matlon statistic is more reliable than the Pearson chi-square statistic 

for small cell frequencies. The likelihood ratio statistic is identical 

to the minimum discrimination information statistic for the multi-

nomial distribution. 

The corrected .minimum discrimination information statistic may 

be used when small and I or zero frequency counts are pre sent in two -

dimensional contingency tables. The minimum discrimination 

information statistic with corrections for zero cell frequencies is also 
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an appropriate atatistic for small {requency counts occurring in 

contingency tables. 

For a method of analyzing contingency tables with missing cells 

in a section or a diagonal of a contingency table, Goodman [24] has a 

specialized and detailed discussion involving applications in biology. 

Estimation of missing cells or testing hypothesis of quasi-independence 

and interaction are discussed. 

Some final comments about the Pearson chi-square test applied 

to contingency tables with small frequencies are: if any Eij is less 

that one, or if more than 20% of the Eij are less than five, then the 

approximation by the chi-square distribution may be poor. !£all (or 

most) of the E .. 
lJ 

are nearly the same size, and if r and c are not 

too small, then Conover [10] indicates that the E .. 
lJ 

as one without endangering the validity 0£ the test. 

may be as small 

!£ some of the E.j l 
are too small, several cells may be 

combined to eliminate the E .. 
lJ 

which are too small. Just which cells 

should be combined is a matter of judgement. Generally, categories 

are combined only if they are similar in some respects, so that the 

hypothesis retain the·ir meaning. 



CHAPTER V 

ANALYSIS OF VARIANCE FOR 

CATEGORICAL DATA 

Introduction 
• 

A one -way classification of data originates from an experiment 

involving one independent variable and a response (dependent) variable. 

In this chapter we will be concerned with the analysis when the 

response variable is measured on a categorical or nominal scale. 

Recall the parametric one -way classification design model where 

a random sample of size n. 
J 

is taken from treatment population j for 

j = 1, 2, ... , t; the populations are independent; each is normally 

distributed; and they have a common variance. Let y .. = value of 
lJ 

the ith observation from population j. The objective is to test the 

null hypothesis 

H 0 : Treatment populations have equal means, 

The one -way analysis of variance table is given by Table XVI. 

0 1 



TABLE XVI 

ONE-WAY AOV TABLE 

Source 

Total 

Between Treatments 

Within Treatments 

The test statistic is 

F = BMS 
WMS 

d.f. SS 

n - 1 
nt t 

- 2 
L: L: ( yiJ' - y. . ) = T SS 

i= 1 j = 1 

t - 1 
t - - 2 
L: n, ( y .. - y ) = B SS 

j=l J J ,. 

n - t 

n. 
t J - 2 

L: L: (yij - y . ) = 
i= 1 j=l . J 

wss 

BSS WSS 
= t::-r+ n-t 

Reject H0 at the level a if F 1 > F 1 t 1 t ca c - a. - , n -

The above illustrates a well developed technique for handling 
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quantitative data, namely partitionir:i.g the sums of squares to explain 

the variation in the data. This type of analysis supplies a measure of 

association between the response variable and the treatment (independ -

ent) variable which is used to estimate the proportion of the total 

variation in the response variable which is attributed to the predictor 

variable. This measure of association is given by 

BSS 
TSS 

( 5. 1) 
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Objectives 

The main objective is to define a measure of variation for 

categorical data and to partition the total variation into an explainable 

component and an unexplainable component to test the hypotheses that 

the data came from identical populations. In terms of our multinomial 

model we need to investigate whether the c populations have the same 

multinomial probability structures. 

The second purpose is to determine the degree of association 

between the independent variable and response variable. There are 

several procedures to calculate a number to represent a measure of 

association; however, none can be given a "proportion of the explained 

variation" interpretation for categorical data since the concept of 

partitioning variation has not been applied. 
,I 

j>..· 

With these two objectives in mind, attention will be focused on 

the application of a general method of the one -way analysis of variance 

to categoricaL data or the equivalent two-way contingency table. The 

concept of variation for categorical data will be defined and the 

partitioning of the variation into additive components ta give corre s -

potidi~f.procedures for categorical data as the analysis of variance for 
"' 

quantitative data as de scribed in the introduction for the parametric 

technique. 

Assessing Variation in Categorical Data 

Variation is very often thought of as a measure of deviation of a 

set of individual observations about their mean. For categorical data 

the mean is an undefined concept. The following procedure provides 
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·a method for defining total variation for categorical data, then 

::~. 

partitioning this variation into between group and within group sources 

of variation. Fi:i;-st let us define variation within a sample of .size n 

from a multinomial population in which the measurement scale is 

nominal. Let the n :responses be in which each X. 
l 

names one of r possible categories or classes. Define d; . 
. lJ 

i and j such that 

d .. = 1 if x. and X. name different categories 
lJ l J 

= 0 if X. and x. name the same category . 
l. J 

for all 

(5. 2) 

Then the variation for the categorical responses X 1, X2, ... , Xn is 

defiin..ecf a·s 

1 
n n 2 1 

n n 

2n 2: 2: d .. = 2n 2: 2: d .. 
i= 1 j=l lJ i= 1 j:;: 1 lJ 

1 r r 
= zn 2: 2: n. n. (5. 3) 

i= 1 j=l 
l J 

i#j 

where n. is the number of observations identifying category i for 
l 

i=l,2, .... ,r a.nd 

implies that 

n = 
r 
2: n .. 

l i= 1 
Sin Ge 

r 2 r r 
2: n. + 2: 2: n n. 

l ·1' J i=l i=l j.::l 
it!j 

r r 
2: 2: 

2 r 
n. n. = n - 2: 

2 
n. ' l i=l j=l 

i#j 
l J i= 1 

(5. 4) 

(5. 5) 
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the form11la for total variation may be written as 

TSS 
n 

= 2 
l r 2 

2 !: n. 
n i= 1 1 

(5. 6) 

upon substitution of (5. 5) into (5. 3). 

Two lemmas are stated without proof ( [46), p. 535) which exhibit 

properties one would reasonably expect of a measure of variation for 

categorical data. 

Lemma 5. 1: The variation of n categorical re spouses is minimized 
Al 

if and only if they all belong to the same category. 

Lemma 5. 2: The variation of n responses, where n = r S + L, 

0 < L < r, is maximized for any vector (n 1, n2 , ... , nr) of category 

counts such that L counts equal S + 1 , and r - L counts equal S, 

i.e., the variation of n responses is maximized when the responses 

are distributed among the available categories as "evenly as possible." 

Lemma 5. 1 corresponds to the usual concept of the absence of 

variation when all of the responses are identical and Lemma 5. 2 has 

no explicit counterpart for quantitative data. 

To motivate the definition of variation further, note that if we 

have n quantitative measurements the sum of squares of deviation 

from the mean can be expressed solely as a function of the squares of 

the pairwise difference for all (~) pairs, If xl, x2, ... 'xn denotes 

the measurements and if 

n X. 
x = !: _:_~ 

i= 1 
n 



then 

I n n . 2 
Zn I:: I:: (X. - X.) 

. - . l J i=l J-l· 

.· 

1 n n 2 2 
= -2n I:: I::. (X. - 2 x. x. + xj) 

i= I j =I . 1 1 J 

ll n 2 n n n J = 2 n I:: X. - 2 I:: X. I:: X. + n I:: X. 
n i= 1 1 i= 1 1 j = 1 J · j = 1 . J 

= 2~ In ~ x.2 - zn2 x2 + n ~ x.2] l i= i 1 i= i 1 

I ~ n 2 z ..,.z] = -2 Zn I:: X. - Zn X n . . 1 1 
l= 

n 2 _;z' = I:: X. - n X ·. = 
i ;::;l l .. 

n 
I:: (X. - X)2 

i= 1 l 
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(5. 7) 

For quantitative data d.. is interpreted as the deviation between X. 
~ l 

and Xj while for categorical data the concept of a deviation is mean-

. J ingfu1' only in terms of the presence or absence of a "difference." 

Thus, for categorical data, if d .. = X. - X. for all i and J. , then 
lJ l J 

1 n n 2 1 n n z 
2n I:: I:: (X. - X. ) = I:: I:: d .. 

i= 1 j = 1 l J 2n 
i= 1 j= I lJ 

l n n 
= I:: I:: d .. 

Zn 
i= 1 j=l lJ 

= TSS. 
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Partitioning Total Variation 

In Independent Samples 

The general approach to categorical data which is proposed is to 

compute the total variation in the data and then partition this variation 

into specific components. The distributions of the various components 

are derived under the multinomial model and the analysis then proceeds 

in a direction dependent on this model. ( [46], p. 536). 

Suppose a random sample of size n . has been taken from 
"J 

population j for j = 11 2 1 ••• 1 c; each population (sample) has been 

partitioned into r categories; and the c populations are independent . 

Let 

and 

nij = number of observations from sample j belonging 

to category i; 

c 
n. = ::?.:; n .. 

l· 
j=l lJ 

be the '1th t t 1 row o a ; 

r G r G 

n = ::?.:; ::?.:; n .. = ::?.:; n. = ::?.:; n 
i= 1 j= 1 lJ i= 1 

1• j=l ·j 
is the total number 

of observations taken. 

The objective iS then to test the null hypothesis: 

H 0 : pij = pi, for all i and j 

(the c populations are identically distributed) 

H 1 : p .. :f p. for some i and J .• 
lJ 1 

.. A\ 



Note that a total of ni· responses have been identified as 

belonging to category i for i = 1, 2, ... , r. Thus, using equation 

(5. 6), the total variation in the response variable or 11 total sum of 

squares 11 is given by 

r 
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TSS n I 
= 2 - 2n 

z; 2 
n. 

1• 
(5. 9) 

i= l 

The variation in the response variable within the jth group (or 

sample) is then 

wss. 
J 

n . 1 r 2 
= ........:.l2. -~ z; n .. 

n.j i=l lJ 
for j=l,2, ... ,c. 

Adding over all samples, the 11 within sum of squares 11 is 

c 
wss = z; wss. = 

j=l J 

n 
2 

l c 
T z; 

j=l 

1 
n. 

'J 

r 2 
z; n .. 

i= 1 lJ 

Finally the between sample variation or "between sum of 

squares 11 is defined as the difference TSS - WSS. That is 

= TSS - WSS 

In the standard analysis of variance, BSS and WSS are 

(5. 10) 

independent and hence BSS and TSS are not. The following theorem 

states that just the opposite is true for the components of variation 

defined for categorical data. This indicates that we are at a point of 



departure from the standard ANOVA theory. For the proof of the 

following theorem consult ( [ 46], p. 53 7 ). 

Theorem 5. 1: Asymptotically with large n . • 
'J 

TSS and BSS are 

independent under H0 : p .. = p. for all i and J .• 
lJ l 

The previously proposed method of partitioning categorical 

variation is referred to as a categorical analysis of variance, or 

CATANOVA. The test statistic is 
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c = (n-l)(r-1) BSS 
TSS (5. 11) 

for testing H0 : pij = pi . C is asymptotically approximated as a 

chi-square random variable with (r -1 )(c -1) degrees of freedom 

([46). ~· 540). 
·~. 

Measure of Association 

We now turn to the problem posed in the introduction on measures 

of association for categorical data, The three components of variation 

defined enable us to define a measure of association between the 

grouping and the response variables which may be given a 11 proportion 

of the variation explained 11 interpretation. The measure of association 

is 

t~l I r z) I r 
2 

~ n .. ~ n. 
Rz 

n· i= I lJ n i= 1 l· ·J = 
1 r 

2 
n - - ~ n. n 

i= 1 l• 

BSS (5. 12) = TSS 



This measure of association has the property that 

., n .. 
R" = 0 ·if ;_!l = n. 

'J 

n. 
'l• 

n for i = 1, 2, ... , r, j = 1, 2,, .. , c , 
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i, e., if there is no association. R 2 = 1 if for each j, j = 1, 2,,.,, c, 

· there exist an i such that n .. = n . , Le. , if there is perfect predict-
. lJ • J 

ability. Otherwise 0 < R.2 < l. R 2 then is the proportion of total 

variation in the response•variable which is accounted for by the know-

ledge of the grouping variable. Multiplying all entries in the 

contingency table by a positive constant leaves R2 invariant. 

Examples 

· Example 5, 1: Suppose now the data given in Table XVII gives 

the results of taking a random sample from each of the four social 

classes discussed in Example 3. 2 where each social class is partitioned 

into three categories by the curriculum cla~sification. Assuming the 

samples are mutually independent, the objective is to determine 

whether or not the four populations of social classes are identically 

distributed. 

We will use the CATANOVA to test the hypothesis (5. 8). Using 

the data in Example 5. 1 and the equation (5. 9) yields the total varia-

tion given by 

TSS 2 
n. 

l· 

I 2 2 10 ~2) = 195 - 2(390) (81 + 207 + ... 

60294 = 195 - 2(390) = 195 - 76. 685 = 118. 315. 



TABLE XVII 

EDUCATION ASPIRATIONS BY SOCIO-ECONOMIC LEVEL 

Class 
Curriculum 

I II III IV Totals n. 
'L• 

College Preparatory 23 40 16 2 81 

General 11 7.5 107 14 207 

Commercial 1 31 60 10 102 

Totals n . 35 146 183 26 390 
·J 

The 11within sum of squares 11 is determined by using equation 

(5. 10) and the calculation is given by 

wss 
n 1 c 1 

= 2--2 ~ 
j=l n.j 

2 
~ n .. 

lJ 

= 195 - ~ [18. 600 + 56. 068 + 83. 634 + 11. 538] 

= 195 - 84. 920 = 110. 080. 

The between sample variation is found by subtraction and it is 

given by 

BSS = TSS -WSS = 118.315 - 110.080 - 8.235. 
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A summary of the above computations is given below in Table 

XVIII. 

TABLE XVIII 

CATANOVA FOR EDUCATIONAL ASPIRATIONS 

Source 

Between Classes 3 

Within Classes 8 

Total 11 

c = (n-l)(r-1) BSS 
TSS 

= 54. 46 . 

SS c 

8.235 . 070 54.46 

110. 08 

118.315 

BSS 
= TSS ~ • 070 

2 = (n-l)(r-l)R - (389)(2)(. 070) 

Comparing C with chi-square distribution with (r -1 )(c - l) "" 6 

degrees of freedom, the observed critical level {i <. 001. The 
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Pearson chi-square statistic for testing the hypothesis (5. 8) is 69. 2. 

The critical level for this value of the Pearson chi--square statistic 

with 6 degrees of freedom is much less than . 001. 

This example serves to illustrate a fact well known to researchers 

who work with large sets of dat~. Weakly related variables can 
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often exhibit very statistically significant dependencies. 

In this study of independent samples from four social classes, 

2 
R ~ . 070 implies that approximately 7% of the variation of educa-

tional aspiration is explained by the knowledge of the respondents social 

class. 

Example 5. 2: Suppose we have independent samples from three 

secondary schools in a lower socioeconomic metropolitan school 

district in which the number of yearly truancy reports for each sample 

is cited in Table XIX. 

TABLE XIX 

NUMBER OF TRUANCY .REPORTS BY SCHOOL 

Number of Truancy 
Schools 

Totals n. 
Reports By Individuals A B c l· 

None 400 300 100 800 

1 - 3 100 50 25 17 5 

4 - 6 50 25 25 100 

More than 6 50 25 50 125 

Totals n. 600 400 200 1200 
'J 

Using CATANOVA to test 

H 0 : pij = pi for all i and j versus H 1 : p .. I- p. for some 
lJ · L 

and J, 



the total variation is given by the following calculation 

TSS n 1 3 
= 2 - 2n !: 

i= 1 

2 
n. 

l • 

l 2 2 2 2 = 600 - 2400 [800 + 175 + 100 + 125] 
1 ·• 

= 600 - 216250 ::: 600 - 90. 104 2400 

= 509. 896 . 

The 11within sum of squares 11 is given by 

wss n 1 4 1 3 2 
= -2 - -2 !: - !: n. · 

j = 1 n · j i = 1 lJ 

= 600 - _!._ [-1- (400 2 + 1002 + 50 2 + 50 2 ) 2 600 

+ - 1- (300 2 + 50 2 + 25 2 + 25 2 ) 400 

+ - 1- (1 0 0 2 + 2 5 2 + 2 5 2 + 5 0 2 )lj 200 

= 600 - 298. 521 = 301.479. 

Again, the between sample variation is found by subtraction and is 

given by 

BSS = TSS - WSS = 509. 896 - 301. 479 - 208. 417 . 

BSS 
TSS 

208.417 
- 509.896 . 609 

C = (n-l)(r-l)R2 = (1199)(3)(.509) - 1830.873. 
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Comparing C with the chi-square distr'ibution with 6 degrees of 

freedom the critical level is /\ 2 a <. 001. R ~ . 509 implies that 

approximately 50% of the variation of the number of truancy reports 

is explained by the knowledge of the respondent's school. A summary 

of the above computations is given below in Table XX. 

TABLE XX 

CATANOVA FOR TRUANCY REPORTS 

Source 

Between Schools 

Within Schools 

Total 

df 

2 

9 

11 

SS 

208.417 

"301.479 

509.896 

. 509 

c 

1830.873 

The Pearson chi-square statistic for testing the hypothesis 
\ ·~ .· \ 

H · p = p for all i and J0 (that the three samples are drawn from 0 . ij i 

the same population) is 72. 45. Hence, the Pearson chi-square 

statistic with 6 degrees of freedom has a critical level 

Final Observation and Prospects 

/\ 
a<.001. 

Empirical sampling experiments were run to see how well the 

approximate asymptotic null hypothesis theory holds for some specific 

cases. The purpose of these studies was to analyze how accurately 
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the mean and variance of the empirically generated test statistic 

matched its asymptotically approximated values for small and 

moderately large n . and for different 
'J 

r x c contingency tables and 

cell probability structures. The experiments under the multinomial 

model indicate for various r, c, probabilities, and small sample 

sizes the CATANOVA statistic is referenced quite well under H 0 by 

the chi-square distribution with (r-l)(c-1) degrees of freedom 

([46], p. 540). 

In comparisons of the CATANOVA and the Pearson chi-square 

test statistic for independence in a two-dimensional contingency table, 

the tests are highly correlated with rank correlation coefficient applied 

to the mean of the test statistics. When there are two response 

categories (r = 2), regardless of the number of experimental groups 

(number of populations sampled), the CATANOVA and Pearson chi-

square are identical ( [ 46], p. 542) . 

Although the CATANOVA "and chi-square test statistics have an 

identical reference distribution under the null hypothesis, the question 

arises as to their comparative behavior under various specific alterna-

tive hypothesis. General analytic results for the r x c table are not 

yet available, however in power studies with 3 X 2 contingency tables 

with various probabilities the power of CATANOVA exceeds the power 

of the chi-square in some cases and conversely in others ( [ 46], p. 543 ). 

The 3 x 2 tables (three response categories for two experimental 

groups) were chosen because this is the simplest case for which the 

CATANOVA differs from the chi-square statistic. 
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Further research and the extension of the CATANOVA statistic 

is being extended 'and studied for higher dimensional contingency 

tables by Light and> Margolin [ 46] . 



CHAPTER VI 

SUMMARY AND PROSPECTS 

The two main themes of this paper have been to present methods 

of analysis of categorical data that are analogous to the analysis of 

variance of quantitative data and to present topics to help the experi­

menter in the analysis of contingency tables with small, zero and 

missing frequencies. 

Chapter I provides an introduction into the basic concepts and 

definitions of the probabilistic model for analyzing categorical data for 

one and two dimensional contingency tables. Chapter II develops some 

of the concepts of formulating hypotheses in terms of the probability 

model in three -dimensional contingency tables. Examples are 

presented to illustrate the application of hypothesis testing using the 

Pearson chi-square statistic to determine the critical level, 

The third chapter illustrates the use of information theory 

applied to categorical data. The minimum discrimination information 

statistic is presented and used to test hypotheses in a component of 

information table. Component of information tables for hypotheses of 

mutual independence, conditional independence and identical distribu­

tion of samples are presented. The component of information table is 

analogous to the analysis of variance table for quantitative data. The 

main advantage in using the procedure associated with the component 

of information table is that the table pre sen ts an additive analysis of 

98 



99 

the complete contingency table, rather than just a special segment of 

the analysis. There is no theoretical reason why the widely applied 

chi-square statistic should be preferred over the minimum discrimina-

tion information statistic. The minimum discrimination information 

statistic can be computed with fewer algebraic operations, when a 

tabulation of n log n is available. An n log n table is found in 

references [39] and [40]. The disadvantages of the minimum disc rim-

ination information statistic are that more significant digits must be 
.. 

carried through in the calculations and the chi-square statistic is a 

simpler mathematical function of the observations. 

Chapter IV is a potpourri of results involving problem areas in 

the analysis of contingency tables. The purpose of this chapter is to 

present some of the elementary methods of handling the analysis when 

zero frequencies occur and for estimating missing frequencies under 

the hypothesis of independence. For small frequency counts it is 
,, 

recommended that the minimum discrimination information statistic 

be used for the test statistic. 

In Chapter V an analysis of variance for categorical data is 

presented and a mecl:sure of association between the response and 

predictor variable is presented by estimating the per cent of variation 

of the response variable attributed to the predictor variable. The 

source of this chapter is a paper presented by Light and Margolin [46], 

They are in the process of extending the procedure to multi-

dimensional contingency tables. 

We have presented a mathematical expository outline and 

development of information theory in Appendix A. This introductory 

summary of results are used to explain the procedures to obtain a 
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minimum for the discrimination information statistic in the analysis of 

contingency tables with the probability model. Appendix B contains a 

development of the likelihood ratio procedures for testing hypothesis 

under the multinomial distribution model. Methods of determiaing the 

maximum likelihood estimates are presented for estimating the 

parameters used in the likelihood ratio statistic. The maximum likeli-

hood estimates are the best unbiased estimates for the parameters 

under the assumed multinomial model. 

In conclusion, a few ideas of further studies and research are 

suggested. One could pursue the study of information theory to 

populations of other assumed models for example, data originating 

from Poisson processes or from normal populations. There is a need 

for research involving power studies dealing with zero of small 

frequencies in contingency table of higher dimension. Most of the 

l 
power studies in the literature deal with 2 x 2 or 2 x c contingency 

•. 
tables. 
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APPENDIX A 

INFORMATION THEORY 

Definitions 

Consider the probability space (n, a.µ.) 
l 

i=l,2 where n is 

the sample space, a is a er -algebra of subsets of n, and µi, 

i = 1, 2 are probability measures defined on a. 

We assume the probability measures µ 1 and µ 2 are absolutely 

continuous with respect to one another, denoted µ 1 ::; µ 2 . Recall that 

µ 1 is absolutely continuous with r,espect to µ2 , µ 1 < < µ 2 , if 

µ 1 (E) = 0 for all E e Cl whenever µ2 (E) = 0. If A. is a probability 

measure such that A. ::; µ 1 , A. ::; µ 2 • then by the Radon-Nikodym 

theorem there exist functions f 1(x) and f2 (x), called generalized 

probability densities, unique up to sets of probability zero in A., 

0 < f. (x) < m [>..], i = 1, 2, such that 
l 

i = 1, 2 ' for all E E a. 

µi (E) = J £1 (x) d A.(x) 
E 

The function f. (x) is called the Radon-
1 

Nikodym derivative, and we note the following equations 

or 

d µ. = f.(x) d A.(x) 
l 1 

f. (x) 
1 

dµ. 
l 

=~ 
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i = 1, 2 . 
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If H 1 and H 2 are statistical hypotheses and the set X is 

from the statistical pop\llation with probability measures µ 1 

then it follows from Bayes' Theorem that 

P(Hi J x) = ( 1 ) 

'.\ -..~ 

where P(Hi), i = 1, 2, is the prior probability of H 1 and P(Hi J x) 

is the conditional probability of Hi given X = x. Note, since f. (x), 
l 

i = 1, 2 is the Radon-Nikodym derivative, fi(x) is the c;onditional 

probability density at X =x under the hypothesis Hi. From equation 

( 1) for i = 1, 2 we can obtain the following equation 

Solving the latter equation for 

we obtain the formula 

= 
P(H 1) f 1 (x) 

P(H2 ) f 2 (x) 

f 1 (x) P(H 1 Ix) P(H2 ) 
= 

f2 (x) P(H2 i x) P(H2 ) 

Now, we take the natural logarithm of (2) and get 

f 1 (x) 
log --,--.,... 

f2 (x) 
= log 

' (2) , 

(3) 
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The right hand side of the equation (3) is a measure of the difference 

between the logarithm of the odds in favor of H 1 after the observa­

tion of X = x and logarithm of odds before the observation, This 

difference can be positive or negative and is considered to be the 

information resulting from the observation 
£ 1 (x) 

logarithm of the likelihood ratio, log f2 (x) 

X = x. We define the 

as the information in 

X = x for discrimination in favor of H 1 against H 2 . 

Definition l: The information in an observation X = x for discrimin-

" ation in favtir of H 1 against H 2 is 

f 1 (x) 

log f2 (x) , 

Definition 2: The mean information for discrimination in favor of H 1 

against Hz given x E E E a' for l-11' is 

I(l: 2;E) = 
1 l f 1 (x) 

_µ_l.....,.(=E..,....) E log £2 (x) d µI (x) 

for µ 1(E) > 0 

= 

with d µ 1 (x) = f 1 (x) d A.(x). If E is the sample space n, then 

equation (4) becomes 

I( 1: 2) J f 1 (x) 
= £1 (x) log d A.(x) £2 (X) 

since µ 1(n) = 1. 

( 4) 

(5) 
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Theorem 1: I(l:2) is additive for independent random events; that is 

for X and Y independent random variables under both H 1 and H2 , 

I( 1: 2; El' E 2 ) = I( 1: 2; El) + I( 1: 2; E 2 ) 

where E 1 , E 2 · E a are events associated with the observations · X and 

Y, respectively. 

The following theorem is important and is needed to establish 

the form of the minimum of I( 1: 2) used in the application of canting-

ency table analysis, For a proof and discussion of this theorem refer 

to Kullback ( [39 L pp. 36 -39 ). First we need a definition. 

Definition 3: A set M of probability measures on a is called 

dominated if there exists a measure A. on a, A. not necessarily a 

member of M, such that every member of the set M is absolutely 

continuous with respect to A. . 

Theorem 2: If f 1 (x) and a given f2 (x) are probability densities of 

a dominated set of probability measures, Y = T(x) is a measurable 

statistic such that 

e = J T(x) £1 (x) d A.(x) 

exists, and 

exists i.n some interval; then 

)·~ 

1(1:2) > et - logm2 (t) = I(l 1 :2), (6) 
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d e = dtlogmz(t) 

with equality in (6) if and only if 

The underlying principle in using the minimum discrimination 

information in statistics is that f2 (x) will be associated with the set 

of populations of the null hypothesis and f 1(x) will range over the set 

of the alternative hypothesis. The sample values will be used to 

determine the resemblance between the sample, as a possible member 

of the set of populations of the alternative hypothesis, and the closest 

population of the set of populations of the null hypothesis by an estimate 

of the minimum discrimination information. The null hypothesis will 

be rejected if the estimated minimum discrimination is significantly 

large. 

When the maximum likelihood estimates of the parameters for 

* I\ I\ f 2 (x) areused,wedenote !(1:2) as !(1:2) (also 2!) and 

/\ 
2 I (1: 2) is distributed as the likelihood ratio statistic -2 log A. 

([39], pp. 94-97). 
/\ 

Thus 2 I is the minimum discrimination. informa-

tion statistic used to test the null hypothesis H2 against the alterna­

tive hypothesis H 1 . 

Applications to Multinomial Populations 

We shall now undertake the application of the principles and 

results developed in the preceding sections to the analysis of samples 

from a multinomial distribution for testing statistical hypotheses. 
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Since the multinomial distribution is discrete, the hypotheses we will 

be concerned with are those involving contingency tables. 

If we assume the multinomial density of the form 

N! 
c x. 

f. (x) = II Pij 
J 

'l c j=l II x. 
j=l J 

c 
where I: P.·. = l, and x represents the observation classified by 

j = 1 lJ 
the c categories of a si.ngle classification variable, then the measure 

A. is the counting measure and the integral is replaced by the summa -

tion symbol. We note 

where E is the set {x = (x 1,x2 , ... ,xc): ::E x 1 = N}. Equation (5) 

becomes 

I( 1 : 2) (7) 

which is the mean discrimination information per observation. 

The following theorem is an important consequence of Theorem 2 

and will be stated without proof. For the proof of the theorem see the 

discussion in ([39], pp. 111-112). 

Theorem 3: The least informative distribution on the population 

partitioned by one classification into c cells with given expected 

values, for discrimination against the multinomial distribution f 2 (x), 

>'' 
is the distribution f {' (x) such that 



Ef* (x) (x.) = 8. 
1 J J 

j=l,2, ... ,c 

and 

is a minimum is given by the distribution 

* f 1 (x) 
~ t.x. /( . t )N j-1 J J c j 

= e - £2 (x) . ~ Pz. e 
J = 1 J 

N! 
c x. 

= II p lj 
J 

c j=l 
II x.! 

j=l J 

where 

* t/( p lj = Pzj e J Pz 1 e + ... + Pzc e c tl t ) j=l,2, ... ,c 

the t.'s are real parameters, and 
J 
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(8) 

(9) 

(I 0) 

An important point to note in Theorem 3 is that the least infer-

' * mative distribution f 1 (x) is a multinomial distribution. 
li 
The minimum discrimination information of a sample E with 

N observations is 

I(1:2;E) ~t 1 e 1 +t2 e 2 + 

= I(l*, 2; E) ( 11) 
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by applying the result of Theorem 2 . * Simplifying I( 1 : 2; E) , we note 

equation (10) can be differentiated and solved for t. for 
'·J 

j=l,2, ... ,c where: 

= 
tl tc 

Pz 1 e + ... + Pzc e 

Solving for t. we have 
J 

e. 
t. = log 
J N Plj 

* a.nd I(l : 2; E) becomes 

:::~ 

I(l :2;E) 

+ .~ 9. log (Pzl 
J = 1 J 

tl 
e + ... + Pzc e'c) 

e ~· e 
1 2 c 

= 9 l log N . + e2 log N + ... + 8 log N . ( 12) 
P21 P22 c Pzc 

Suppose we want to test the simple null hypothesis H2 that the 

sample is from the population specified by 



c 
for j=l,2, ... ,c and L: p 2 . = 1 

j = 1 J 

against the alternative hypothesis H 1 that the sample is from any 

other possible multinomial population. From the distribution in (9) 

we take the parameters to be the same as the best unbaised samiple 
• 

estimates, that is, 

X, 
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N _L = x 
N j 

j=l,2, ... ,c. ( 13) 

Using equation ( 12) we substitute equations ( 13) for the parameters 

e . , j = 1 , 2 , . .'. , c and we get 
J 

'"·'I' C X, 

2 I = L: x. log N 
j = 1 J P2j 

(14) 

Equation ( 14) is of the form used as the test statistic in Chapter III for 

a one dimensional contingency table. 



APPENDIX B 

LIKELIHOOD RATIO STATISTIC 

We have made frequent reference of the likelihood ratio statistic 

throughout this paper, In the study of the analysis of contingency 

tables in probabilistic terms, we have assumed the multinomial model. 

Our objective is to develop the likelihood ratio statistic and compare it 

with the minimum discrimination information statistic for two-

dimensional contingency tables under the null hypothesis of independ-

ence. We shall suppose that we have a sample of N observations 

from a multinomial population partitioned by two classification 

variables. Let x.. be the number of observations occurring in cell 
l,J 

(i,j), where i=l,2, ... ,r and j=l,2, ... ,c. 

The likelihood function for a sample of size N is defined to be 

r c x .. 
L(p .. ) 

lJ 
= II 

i= 1 
II pij 

lJ 

j=l 

where x.. is the frequency in cell (i, J0

). 

lJ 

( l) 

Under the null hypothesis that the classifications are independent, 

H0 : Pij = pi· P.j for all i and j, 

we will develop the likelihood ratio statistic to test this hypothesis 

against the alternative hypothesis which simply negates the null 

hypothesis. 

l l h 



The likelihood function under the null hypothesis becomes 

Now, since 

as follows 

L(pi· P.j) = 

= 

r 

~ Pi. = 1 
i= 1 

r c x .. r c x .. 
II II pij 

lJ = II II (pi· p . ) 
i= 1 j=l i= 1 j=l •J 

r x. c x 
·j 

II 
l• 

II Pi. P.j 
i= 1 j=l 

c 
and ~ p . = I , we can write 

j =I ·J 

= 1 -
r -1 

~ Pi. • 
i= 1 

c 
= 1 - ~ p . 

j = 1 'J 

lJ 

Substitutions of (3) and (3 ') into (2) give 

(1 -
r -1 r· r-1 x. c x. 

L(p. p .) II II 
l· 

II 'J = p. Pi. P.j l• 'J i= 1 1• i= 1 j = 1 

and 

x. ( c-1 r c -1 r ·c x. 
L(pi· P.j) = II p. l· 1 - ~ P.j II P.j 

'J 

i= 1 l• . 1 j=l J= 

and 
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(2) 

(3) 

(3 I) 

( 4) 

(4') 
i' 

respectively. If we take the natural logarithm of equations (4) and (4'), 

we then get 

log L(p. p . ) 
1 • • J ( 

r -1 ) 
= x log 1 - ~ p. + 

r• i=l l• 

c 
+ ~ x . log p . 

j=l •J ·J 

r -1 
~ x. log p. 

i=l 1· 1' 

(5) 



log L(p. p . ) 
l.· : •J 

r 
= E 

i= 1 
x. 

l· 

c-1 

log p. + x log (1 -
i· ·c 

+ E x . log p . , 
j=l 'J ·J 

c -1 
E 

j= 1 
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(5 I) 

respectively. The maximum likelihood estimates are the values of the 

parameters Pi: , i = 1, 2, ... , r and P.j, j = 1, 2, ... , c, which 

maximizes L(p. , p· . ) . Thus, to find values of p 1•• and p . which 
l• 'J . 'J 

maximizes (5) and (5 1), as well as (4) and (4 1), we differentiate 

with respect to each of the parameters P. for i=l,2, ... ,r-1, and 
l• 

for j = 1, 2, ... , c ..,1 and equate each expression to zero giving 

' ... 

a log L(p. p . ) 
l• 'J 

ap. 
l' 

i=l,2, ... ,r-1, 

a log L(p. p . ) 
l· ·1 

ap. 
"J 

j=l,2, ... ,c-1, 

= 

= 

x (-1) 
r· 

r -1 
1 - E p· 

i· 
i= 1 

c -1 
1 - E p,. 

j=l J 

+ 
x. 

l• 

Pi. 

x. 

= 0 for 

+ _:i = 0 for 
P.j 

Solving the equations (6) and. (6 1 ) for all p1. and p . , we obtain 
•J 

/\ 
x. (1 

l" 

~i. ;:: 

and 

r-1 ) /\ 
- E p. 

1• 
i= 1 

x r. 
for i=l,2, ... ,r-1 

(6) 

(6 I) 

(7) 



x .. ·(1 - c ~1 ~. ·) 
J j= 1 J 

x 
•C 
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for j=l,2, ... ,c-1. (7 I) 

If we substitute the equations (3) and (3') into (7) and (7'), respec-

tively, then we obtain 

for i = 1, 2, ... , r -1 

and 

x /\p 
. j ·c 
x for j=l,2, ... ,c-1. 

•C 

Summing (8) with respect to i and (8 1 ) with respect to j we get 

r 
/\ 

~ x. Pr. N /\ r 
/\ i= 1 l • Pr. 

1 = ~ p. = = 
l• x x 

i= 1 r. r· 

and 

c 
~ 

(\ 
N /\ x ·j P.c c 

/\ j=l P.c 
1 = ~ P.j = = 

j=l 
x x ·c ·c 

Now, solving (9) and (9') for and p we obtain ·c 

and 

/\ 
p r· 

x r. 
= l'r 

x /\ ·c 
P.c = N 

(8) 

(8 I) 

(9) 

(9 I) 

( 1 O) 

( 1 QI) 
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If we substitute (10) and (10') into (8) and (8 1), respectively, then 

/\ 
P1. =. 

x. 
·1 .• 

N 
for i=l,2, ... ,r ( 11) 

and 

x • I 

/\ __ __:i_ f . 12 . P.j N or J = , , , . ,.', c ( 11 ') 

"" 
The maximum likelihood estimators are given by (11) and (t;ll.: 1). Thus, 

the likelihood function (2) evaluated at ~. 
l • 

/\ and p. 
·J 

becomes 

x. x. 
l• 'J r c x. x. 

L( /\ 8 ) II 
l• 

II ·1 
Pi. P.j = x. x 

i= 1 N 
l· j=l 

N 
·j 

r x. c x. 
II l· 

II 'J x. x 
i= 1 

l• j = 1 'J 
= 

N2N 

By a similar procedure for determining the maximum likelih<;>od 

estimates of p. 
l• 

estimates of 

and the equation 

.~,. ' 

and p . , we can find the maximum likelihood 
'J . 

using the likelihood function 

L(p .. ) = 
lJ 

Pre = 1 -

r c 
II II 

i= 1 j = 1 

x .. 
lJ p .. 

lJ 

r-1 c -1 
~ ~ pij 

i= 1 j=l 

(12) 

( 13) 



The likelihood function becomes upon substitution of equation ( 13) 

( 
r-1 c-1 )xrc r-1 c-1 x .. 

L(p .. ) 
LJ 

= 1 - ~ 
i= 1 

~ p .. 
j = 1 LJ 

LJ ~ ~ p.. • 
i= 1 j = 1 lJ 

The natural logarithm of ( 14) is 

log L(pij) =x log(l-rc 

r-1 c-1 
~ ~ 

i= 1 j = l P··) + lJ 

r-1 c-1 
~· ~ x .. log p .. 

1= 1 j = 1 'LJ . lJ 

and the partial derivatives of this equation with respect to each 

parameter pij gives 

a log L(p .. ) 
lJ 

a P·· lJ 

x (-1) x .. 
~~~re~~~~ + --2:.L = 0 

:r -1 c -1 pij 
1 - ~ ~ p .. 

i=l j=l lJ 

i = 1., 2, ... , r -1 and j = 1, 2, ... , c -1 

Solving the above equations for 

r -1 
~ 

p.. we get 
lJ 

~ ~ .. 

for 

x .. (I -
6 lJ i= 1 
pij = 

c-1 ) 

j = 1 lJ 
= 

/\ x .. p 
J.J re 

x re 

and summing with respect to i and j we have 

r c 
1 = ~ ~ p .. = 

i= 1 j = l lJ 

N'i} 
re 

x re 

x re 

/\ Substituting p re 

x 
re 

= r:r from (16) into (15) we get 

121 

( 14) 

( 15) 

( 16) 



/\ 
pij 

x .. 
= _.!]_ N 
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for all i and j ( 1 7) 

Equation (17) gives the maximum likelihood estimates and equaticm (2) 

be co.mes 

/\ 
L( pij) = 

r 
n 

i= 1 

c x .. 
lJ 

IT :x:iJ' 
j=l 

The likeliho0d ratio. statistic denoted by A. is given by 
·.~. . 

r x. c x 
·j 

/\ /\ IT 
1 

IT x x. 
·j L(p. p .) 

1 i= I 
1 

j=l 
A. = 1 • •] = /\ NN r c x .. L(p .. ) 

IT IT lJ 
lJ x .. 

i= I j = 1 lJ 

The natural logarithrn .0f . A. gives 

r c 

i= 1 
E x. 

1· 
log x. + E x . 1 o g x . - N 1 o g N 

1• ·J •J j=l 
log A. = 

r c 
- E E x .. log x ... 

i = 1 j = 1 . lJ lJ 

If we multiply ( 19) by ~2 we get 

,r c r 
-2 log A. = 2 . E ·E x .. logx .. - 2 E x. logx. 

i= 1 j=l lJ lJ i= 1 
1· 1• 

c 
- 2 E x . log x . + 2 N l.og N . 

j=l "J •J 

( 18) 

( 19) 

(20) 
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We note equation (20) is identical to the minimum discrimination 

information statistic,for testing the hypothesis of independence. The 

statistic -2 log>.. is asymptoticall.Y distributed chi-squa:re with 

(r-l)(c-1) degrees of freedom ([62], p. 113). 
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