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CHAPTER 1
INTRODUCTION
Basic Concepts of Contingency Table Analysis

The least restrigtive level of measurement of data is a nominal
scale. The nominal scale of measurement results when each response
names a class or category which identifies some characteristiec of the
unit observed. Since the nominal scale of measurement does not
specify any order or metric relationship, the relevant statistic is the
number of times a given class is named. Examples of categorizing
schemes employed are ''yes' or 'mo''; 'defect' or ''no defect'; and
"superior', ''good'", '"average', or 'poor', Data measured on a

nominal scale is generally referred to as categorical data since it

represents the tallying of frequency or c¢ell counts by the categories of
one or more classification variables,

Most statistical analyses of categorical data involve testing one
of the three hypotheses that the classification variables defined on a
population are mutually independent, that the population sampled has a
specified distribution or that the several populations sampled ha.!ve
identical distributions. The test statistics used to test these
hypotheses are variations of the Pearson chi-square statistic.

In applying the Pearson chi-square statistic to categorical data,

the data is partitioned by one or more criterion or classification



variables. A contingency table is used to summarize the categorical
data to facilitate the computation of estimates of parameters and
galculation of test statistie for testing hypotheses. The dirmnension of
a contingency table is the number of classification variablés by which
the data is categorized or partitioned. A two dimensional contingency
table is an array of natural numbers arranged into r rows and ¢
columns, with rc cells or categories for the numbers. If we let A
be a row classification and B be a column'classification with r and
¢ categories for each classification, respectively, then Table I
represents a contingency table where nij denotes the number of
responses naming class i within clasgification variable A and class

j within classification variable B for i=1,2,...,r, j=1,2,..,,c.

TABLE I

TWO-DIMENSIONAL CONTINGENCY TABLE

B

1 2 J c .
1 1y 01 ‘ ™y Bye
2 n n n,. n.

21 22 23 2¢

A ‘

! "1 %2 %4 “ic
¥ nrl t11"2. _ nrj Bre




The natural numbers nij represent the counts, or frequencies,
for the categorical data, which have been tabulated according to each
of the classificatlon variables, An m-dimensional contingency table
represents data classified by m classification variables and is often
referred to as an m-way contingency table.

A sample is a collection of objects or persons which may be a
subset of the population defined by the objectives of the investigation.
If inferences are desired to the population, it is necessary that the
sample be random. To illustrate the above, assume ths"population of

~all students enrolled at a specified university and that a r;ndom sample
of N students is obtained from the population, Suppose the sample is
to be glassif'led by the three classification variables of class, grade
point average, and major field of study, This partitioning and tabula-
tion of the sample is represented by a three-dimensional contingency
table.

A sample classified by one criterion (one-way contingency table)
usually involves the hypothesis that the population sampled has a
specified distribution. A test of this hypothesis is often referred to as
a goodness ~of-fit test.

To obtain a two-way Ggontingengy table a sample may be obtained
from a single population and partitioned by two classification variables
or a sample may be obtained from each of two populations and each
gsample partitioned by one classification variable. In the first case one
may test élther the hypothesis that the population as partitioned by the
two classification variables has a specified distribution or the

hypothesls that the clagsification variables are independent of each



other, while in the latter case the hypothesis tested is that the two

populations are identically distributed.
Multinomial Distribution

If probabilistic methods of analyses are to be applied to contin-
gency tables, i:hen the contingency tables must be assumed to have been
generated by some probability model defined on each population
sampled. The model that will be assumed is the multinomial distribu-
tion, which partitions the population. The objective is to obtain one or
more samples and théh to test hypotheses which involve the parameters
of the population(s) samples. The multinomial distribution contains a
parameter corre sponding to each partition of the population which is
the probability that a unit selected at random from the population will
be clasgsified into that partition. If one knows the value of each
parameter, then the distribution of the population is determined.

Suppose a sample from a population is partitioned by one class-
ification variable. Let n, denote the observed frequency and P;
denote the probhability of the ith category of the classification variable.
The multinvomia‘l distribution is the joint distribution of the observed

frequencies and is given by

r
fa.n,, . ..yn ) = —/—— I p =, (1.1)

T T
for each n, = L,2,.,,,N, Z n, =N and Z p. =1,



The product symbol is defined by

n. n n n

= 1 r r
l{I'lpi = pl p‘2 errpr and i{I n,! = ! '..o.onl! o,

If the population sampled is partitioned by two clas sification
% .
variables having r and c categories, respectively, then let nlj
denote the numher of units in the sample of size N which are classified

into the lth category of the first classification variable and the jth

category of the segond classification’ ;ra,riable._ We will let pij denote
the probability that a unit selected at random from the population will
be classified into the partition (i,j). The data may then be sum-
marized by a two-dimensional contingency table such as Table I.

The joint distribution of the observed frequencies n"Lj is the

multinomlal distribution given by

. - N! ij
f(nll, n123v'-,nrc) bt ‘r c ‘.{I .I;Il p.Lj N (1.2)
O I n,! =1 3=
i=1 j=1
r o c r c
for each n,.=0,1,...,N, X Z n,,= N and z Z p..=1,
g i=1 j=1 Y i=1 j=1

For a sample of size N we shall define the marginal totals n;

(denoted as the row total) and n'j (denoted as the column total) by



The marginal probability totals are defined by the following equations

r
P.= Z p... (1.4)

If we have r independent samples from r populations and the
populations are partitioned by one c¢lassification variable, then the
contingency table given in Table I could be a representation of the data,
where the rows represent the r independent samples and the columns
represent the c categaries of the classification variable. In this
case the marginal totals for the rows (samples) are assumed to be
fixed or determined before the samples were obtained. The form of
the distribution is the same as equation (1.3) except for the following

constraint on the parameters

CZ p.. =1, foreach i=1,2,..,,r.
j=1 M

A similar situation exists if we have c¢ independent samples from ¢
populations and the populations are partitioned by one classification
variable, where the columns represent the observations in the inde-
pendent samples and the rows represent the categories of the classifi-

cation variable. Again, the form of the distribution is given by the

equation (1.3) and we have the following constraint on the parameters

T
%2 p,.=1, foreach j=1,2,,.,,c.



The multinomial distribution for a sample partitioned by three
classifications may be extended from equation (l.5) by using three
product symbols and three subscripts, each subscript denoting a
category of a classification variable. A corresponding statement may
then be made for the distribution of an m-dimensional contingency
table.

The hypothesis of independence of two classification variables
defined on a population when stated in terms of a probability model for

a two~dimensional contingency table becomes
p'j for all i=1,2,...,r, and

i=21,2,...,c. (1. 5)

The alternative hypothesis, denoted by H is given by

1!

H,: p.Lj # P;. p_j for some pair (i,]). (1,6)

The Pearson chi-square test statistic is given by

roc (o -E.)
T=% 3 —3=—X (1.7)
i=1 j=1 ij

where Eij is the expected frequency for the (i,j) cell, i=1,2,.,.,r
and j=1,2,..,,c. The test statistic T is diﬁtributed asymptotically
as a chi-square random variable ([58], p 11853"“:.

There are two situations that may arise when the null hypothesis
is stated, namely: the null hypothesis specifies the parameters

‘(probabilities) P;, for i=1,2,...,r, and p'j for j=1,2,...,¢, ;

or these parameters are not spegified by the null hypothesis.



If the hypothesis HO specifies the all parameters P, and
p,j, then Eij = Npij = Np_.l’ p'j , farall i=1,2,...,r and
j=1,2,..,,¢, When rc-1 ofthe parameters are known in addition

to the gonstraint

M0

r
=
i=1 j=1

Py; = 1,
then all of the parameters are determined. ZFor the multinomial model,
the number of parameters specified by HO determines the degrees of
freedom associated with the test statistic. The test statistic (1.7) for
this case has rc-1 degrees of freedom.

If the null hypothesis H0 does not specify the parameters P;.

and pj , then the parameters are estimated from the sample. An

estimator for P;, is given by

4
Pi. * N for 1=1,2,...,r;

similarly, p'j may be estimated by

To denote that P; and p‘j are estimated from the sample, we use
the notation i)\i- and /ﬁ'j . The expected frequency E‘lj in the test

statistic (1,7) is eAstimated by

for all i and j. Since



estimating any r-1 of the parameters p;. determines the rth

parameter, Similarly,
c
2 p. =1

j=1 "

implies that if we estimate any c-1 of the parameters pj then the
cth parameter is determined. The degrees of freedom for the test

statistic (1,7) when the ﬁaramet/er“é" P;. and p_j are estimated from

the data are given by

re-1 - (r-1) - {(¢-1) = re-r -1 -c+1 = (r-1)(c-1). (1.8)
:
That is, one degree of freedom is subtragted from rc-1 for each
parameter estimated.
In the J%ypdth‘esi;vof identical distributions of a set of r popula-
tions sampled in which each is partitioned into ¢ categories by a
single clas sif';cation variable, the hypotheses in terms of the probability

model are given by

H = ... =p.. for j=1,2,...,c (1.9)

o' P13~ P2j rj
and

H, : at least one population has a different multinomial

1

distribution,

One further note about the parameters for the hypothesis of identical

distributions is that the parameter pij is the probability of an
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observation selected at random from the ith population being classified
into the jth ca;t‘egory of the classification variable. Again, the null
hypothesis may or may not specify the parameters, If the null
hypothesis spéclfies the parameters, then Elj = Npij for all i and
j+ The deg;ées of freedom for the test statistic (1.7) is given by
r(c-1), In this case the sample size n,. for each i is considered to

be specified and for each population

¢ ;
JEI Pij - b
hence for each population there are ¢-1 probabilities to be determined.
Thus, to determine the multinomial distribution (1.2), r(c-1)
probabilities must be known,
If the null hypothesis does not specify the parameters, then HO

implies there are c-1 parameters to be estimated., These are

estimated from the gsample by

A n, ‘

Pij = ——J—N for j=1,2,...,¢
and

A n]- n..

E; = ""I\T“L for all i and j .

Since c-1 parameters are estimated in this case, the number of
degrees of freedom is given by r(c-1) - (c-1) = (r-1)(c-1) for the
test statistic (1,7).

The distribution of the statistic T (1,7) may be poorly approxi-

mated by the chi—square distribution if the following conditions are
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found in a contingency table:

A
(1) if any E'Lj (or Eij ) is less than 1,

A
(2) if more than 20% of the E‘lj‘s or Eij's are less than 5.

The exception to these conditions arises when all (or most) of the Eij
are nearly the same size. "JIf r and c are not too small, then the
ELJ may be as small as one without endangering the validity of the

test ([10], p. 152),
Scope and Objectives

A common problem confronting researchers concerns devising
useful methods for a.na._iyzing ca,teg.ori,ca.l data. Researchers familiar
with the analysis of variance have well-developed techniques for
quantitative variables, but must switch to a completely different set
of varied techniques when they deal with qualitative data., Most of the
information in textbooks, where the analysis of categorical data is
discussed, covers the analysis of two-dimensional contingency tables
in detail assuming the analygis can be extended easily to multi-
dimensional tables. The analysis of higher order contingency tables
is important in research and there are many more hypotheses that can
be tested, which cannot be generalized from two-way tables.

This paper will endeavor to present the reader with a basic
understanding og the topic of the analysis of categorical data, Chapter
II presents a disgussion of hypothesis testing for three-way contingency

-tables. Chapter IIl will present techniques that are analogous to the

analysis of variance by defining a component of information for
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categorical data based on information theory applied to statistics.
Because the chi-square test and information statistics are based on
large sample statistics, it is intended to present methods of analysis
where difficulfies are encountered in small, zero or missing frequency
counts in Chapter IV, In Chapter V a method analogous to the
analysis of vai“lance technique is discussed by defining variation in
categorical data for hypothesis testing and to obtain a measure of
assaociation {dependency) between classification variables.

It is intended to present the material in such a rna\,"r\mer that a
student or researcher with limited mathematical traininé would have
little difficulty in understanding the paper,

Examples, definitions and theorems will be numbered serially
with the first digit being the number of the chapter, Equations will be
numbered in a similar manner when they may be needed for easy

future reference. The tables are numered consecutively throughout

the paper.



CHAPTER 1II

HYPOTHESES FOR MULTIDIMENSIONAL

CONTINGENCY TABLES
Notation

In this chapter we will be primarily concerned with the three-
dimensional contingency table. For the discussion of the three
classification variables we will use the labels of row, column and depth
classifications, The general case of the three-dimensional contingency
table will be denoted with the symbols r ><v c xd where r, ¢ and d
represent the number of categories in the row, column, and depth
clagsifications, respectively. Let nijk denote the observed frequency

th

in the category given by the ith row, j ' column &nd kth depth classi-

fications and let denote the probability of an observation

Pijk
occurring in cell (i,j, k).

If the observed.frequencies nijk are summed over all values
of i (from 1 to r), the result will be defined as the second-order

marginal totals of the jth column in the kth depth classification, This

marginal total is accordingly degignated n~jk , so that
(2.1)
Similarly, by summing nijk over j or over k gives the following

'
13
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second-order marginal totals:

Mo
=1
I
=1

ik

d
Z n, =n,
k=1 Mgk T Mg

If the observed frequencies nijk are summed over all values

of hoth i and j we obtain the first-order marginal totals of the kth

depth classification, This total is designated by

¢ r
*n = Z Z n. , (2.3)
VK e am1 UE
with ;. and n.j' defined in a similar manner. If the frequencies
n_.ij are summed over all values of i, j, and k, then the result

will be the total number of observations in the sample; i,e,,

r ‘¢ d
Z Z Z n., = n = N, (2. 4)
i=1 j=1 k=1 %

A similar notation is used for the parameters pijk’ where

r ¢ d _.
= Z Z p,.,.=1. (2,5)
i=1 j=1 k=1 Uk

A summary of the formulae for summing the parameters follows for

future reference where the parameters given are second-order and

first-order probabilities, respectively:
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(2,6)

T
=

Cc
Z P = P
izl j=

1 ijk
Further formulae may be obtained by permuting the role of the sub-
scripts in equations (2.6). ' The entire notation for a system involving
more than three classification variables may be extended with little

difficulty.

Basi¢ Hypotheses in Terms of Probability

Statements

The probability statements for the hypotheses will be presented
in terms of the sampling structures which give three -dimensional
contingency tables. The extension of the analysis of a two-way table
to a three-way contingency table poses entirely new conceptual
prob‘lems, On the other hand, there are no new problems involved in

e

making extensioné from tables of three dimensions to those ’of,four or
more dimensions ([4;],‘ p. 88), The possible combinations .o"f'the
hypothe seé of interest become numerous for three-way and higher
arder contingency tables.

Additional comments need to be made in regard to the effect the
sampling procedure may have on the statements of the hypotheses. In
multi~classification of a sample it is usually the case that the sample
size is assumed fixed, but none of the marginal totals are fixed. In

the next section a discussion of the effect of fixing the marginal totals

on the hypotheses will be presented.
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The general form of the test statistic is given by

2
r ¢ d (n. -E.5)
T= = % *JkE ijk (2.7)
i=1 j=1 k=1 ijk
where E,, is the expected frequency of cell (i,j, k). We are

ijk

assuming for the test statistic (2. 7) that each population sampled has
the multinomial distribution, In usingvthe test statistic (2.7) for
testing the hypotheses to follow only the method of determining or
estimating E,ij varies with the form of the different hypotheses. If
the null hypothesis specifies all of the parameters then Eijk = N_pijk'
If the null hypothesis does not specify the parameters pijk but speci-
fies a relationship among them, then the expected frequencies muét be
estimated.  An estimate will be denoted by {E\ijk' In this section we
will be concerned with the form of null hypotheses which do not specify
all parameters.

To“extend the concept of independence of classification variables
for a two —dgl:r;.ensional contingency table to independence of classifica-
tlon variables for a three -dimensional contingency table, suppose we

obtain a random sample of size N from a population. If we partition

this sample by three classification variables, then the null hypothesis

for mutual independence is given by-

HO’ pLJk: pl. PJ, p.k for all 1:1“2”""1.‘\;

j=1,2,.,.,c; and k=1,2,..,,4d. (2.8)
The alternative hypothesis, denoted by H1 , is

: pljk # p,. P... P, for some i, j and k. (2,9)
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To determine the value of the test statistic (2.7) the estimate of the
*

parameters p, , p.j, , and P, are given by

A i
P;. N )
N n ..
p,j, = —J-—N ) (2.10)
n-
and ﬁ”kz N ., Trespectively.

The estimate of the expected frequency E,ij is given by
N N
B B (2.11)

based on the relationship given by the null hypothesis (2.8). There
are rcd-1-(r-1) -~ (c-1) = (d-1) = (r-1)(c~1)(d-1) degrees of
freedom for the test statistic (2,7). The degrees of freedom were
determined by subtracting from rcd -1 the total number of
parameters estimated.

If the test statistic for mutual independence gives a significant

result (H_ is rejected), then it should not be assumed that all three

0
classifications interact. It might be the case that just two of the
classifiqation interact and the third is completely independent. This
gives rLse to three testable hypotheses, since any of the three
classificrfﬁ‘ions could be the independent one,

To test whether the row clasgsification is independent of the

others, the null hypothesis for a three-way céon”i:ingency table is

H for all i, j and k. (2.12)

0" pi.jk = p'l" p-jk
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The alternative hypothesis is
le pijk# P;.. p'jk for some i, j and k.

Note that the null hypothesis (2. 12) implies

d d
. 2 D Py =P, 2 P P - 2.13
Py;. 2 Pijk = Pj.. o Pk = Pi.. P.j, ( )
and
c d
Pk~ jfl Pijk = Pj.. jfl Pk = Pi.. Pog - (2.14)

That is, the row and column classifications are independent (row x
column interaction is zero) and the row and depth classifications are
independent (row x depth classification i:nAteraction is zero) if HO
given by (2.12) is true. Equations (2.13) and (2.14) do not imply the
null hypothesis (2. 12) (see Kullback [39], p. 163).

Since HO given by (2.12) does not specify the values of the
parameters P;.. and prjk the test statistic given by (2.7) would
have (cd-1)(r-1) degrees of freedom, If the p_.L__'s and p_jk's are
estimatec} by ni”/N and n-jk/N-’ respectively, then (r-1) and
(ed-1) degrees of freedom are lost by the estimation process.

A

The following example will be used to illustrate the test statistic

(2.7) for the various hypotheses discussed thus far.

.Example 2.1. The data in Table II is the result of an experiment

invelving the repression of failure. A sample of N=106 boys were
given a series of 16 tests, The measure of repression was the

difference between the number of complete and incomplete tests that



19

were recalled by the individuals. The subjects were classified as to
social class and the type of discipline used by the parents. The

categories of discipline are psychological, mixed (psychological and
corporal) and corporal. The textual discussion of this study is found

in Miller ([48], Chapter 10).

TABLE II

REPRESSION OF FAILURE

Social Working Class Middle Class
Psychol. Mixed Corp. Psychol, Mixed Corp,
Recall Discipline Discipline
Positive 6 3 6 19 6 5
Zero 9 4 0 7 3 3
Negative 7 3 11 12 1 1

Some preliminary calculations are given below for use in

evaluating the test statistics used iln testing for mutual independenc¢e

and for the independence of one classification variable. The first-

order and second-order marginals are given by
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First-Order Marginals

Recall Social Class Discipline
n;, = 45 ng. = 49 n,q = 60
n,.. = 26 n,, = 57 n,., = 20
Ny, = 35 n.g = 26

Second -Order-Marginals

Recall x Social Class Recall x Discipline Social Class x Discipline
n;,. = 15 ’ ny = 25 | n = 22
Ny, = 30 Dy, = 9 np = 10
Ny, = 13 n g = 11 n 4 = 17
n,,, =13 P 16 N, = 38
ngy, = 21 N, 5 = 7 n .,y = 10
Ngp, = 14 ny.3 = 3 n g = 9
B3,p = 9
Ngy,.p = 4
n3.3 = 12

To test the hypothesis of mutual independenﬁc’j&e

H for all i, j and k

0° Pijk = Pi.. P.jr P

versus the alternative hypothesis

)

le not Hy ;
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the test statistic is given by formula (2.7) where E.ij is estimated
by (2.11) for all i, j and k. This follows from the assumption that
marginals were not fixed by the sampligg technique. Thus estirnateg
of the parameters P;.. s p.j. and pk are given by (2.10) for :
i=1,2,3 j=1,2 and k=1,2,3.

The value of the test statistic is T = 28.8560 and the calculated
value of T is compared with the chi-square distribution with 12
degrees of freedom. The critical level /c} , which is defined to be the
smallest significance level at which the null hypothesis would be
rejected for the observed value of T ([10], p. 81), is given by
2 = .005.

If we reject HO based on 2 = .005 being less than any of the
commonly used significance levels, then one might be interested in

whether the recall classification is independent of both social class and

discipline. The null hypothesis would then be given by

H,: p.... = p

0" p'i.Jk p-jk forall i=1,2; j=1,2,3; and

iee

k=1,2,3 .

where the alternative hypothesis is a simple negation of H0 . The test
A
statistic is (2.7) where E = Nﬁln/p\.jk for all i, j and k since

the marginals were not assumed to be given. Here the parameters are

estimated by

VN . .
pLB - N for 1"172-93 s
and
A Tk
‘P = —I%  for j=1,2, and k=1,2,3.
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The computed value of T is 20.044 which is compared to the chi-

square distribution with
rcd -1 - (r-1) - (cd-1) = (r-1)(cd-1) = 10

degrees of freedom. The critical level is @ ~ .025. In a similar
manner one could also test the hypotheses that social class is
independent of the recalll',.a,n,d discipline classifications or that the
discipline classification'is independent of thé"social class and recall
classifications.

In some three-way tables it is of interest to test the hypothesis
that given any depth classification, for example, the row and column

S
classifications are independent. This hypothesis is referred to as an

hypothesis of conditional independence. For the three-dimensional
case in which a random sample of size N is taken from a single

population the null and alternative hypotheses may be written as

H0: pijk = pi-kp-jk/p--k for all i, j and k;

and
H,: Pijk # p'hkp-jk/p--k for some i, j and k.

.

Since the above hypotheses involve Py and p'ji: it is relevant
3

}
to point out that if Pix = p_.L.fmip“k (i.e., there isno rxd inter-
.

action) or if p'jk = p,j_ P, (i.e., there is no cx d interaction)

then the hypothesis given by (2, 15) becomes
p,.ij = Pp.. p-jk (complete independence of rows) (2.16)

or
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pijk = p'j‘ Pi.k (complete independence of columns), “(2.17)

respectively, Both imply
P;. = P...P.. (2.18)

by summing (2.16) and (2,17) over the index k.
Consider the Example 2, 1 and suppose we test the hypothesis
(2.15). We will assume no marginals are fixed so the parameters

Py k> p'jk and pk are estimated by the quantities:

A Lk ~ -

ka_ N for i=1,2,3, J”132s3 ’

A 0

By = —HT for j=lL2, k=1,2,3;
n

respectively, The estimated expected frequency is

ﬁ N DB T 1
ijk PlacPryk /P & T

for all i, j and k, The computed value of the test statistic is
T = 46.89 and the degrees of freedom are given by the formula
(r-1)(¢c-1)d = 4. The critical 1ev£:él 2 is much less than .00l .

The formulation of hypotheses up to this point has assumed one
random sample of size N. Suppose we obtain d independent
samples from d populations of size Nk’ k=1,2,...,d where each

population is partitioned by two classification variables. We may
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represent the d r x ¢ contingency tables which result as an r xc xd
three-way contingency table with suitable hypothesis and restrictions,
For the restrictions in this case it is reasonable to assume that each
sample size is fixed; that is, n, = Nk for k=1,2,...,d is
determined before the samples are obtained. Thus, suppose we want
to test the hypothesis that the d samples were taken from populations
having identical distributions, The parameters pijk denote the
probability that an observation taken at random from population k will
be classified into the ith and jth category by the two classification
variables, respectively. There are rc parameters p_aij associated
with population k where

r
z =p,.,. =1 for k=1,2,.,.,d.

c
=
i=1 j=

| Pijk

The joint distribution of the observed frequencies nijk associated
with a sample of size N, from population k is the multinomial

k
distribution given by (1.2) for each value k=1,2,...,d with nij{'
and pij replaced by nijk and pijk’ respectively, to identify the
specific population k.

The hypotheses for identical distributions are given by

r c
HO: pijk: pij- for all i, j and k where 1?1 j?l p'ij=: 1 (2, 19)
and
H,: p_ijk¢ pij~ for some i, j and k,
We can estimate p.. by

1]
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n,.
Qlj. = —~  forall i and j. (2.20)

Under the null hypothesis (2.19) the estimated expected value is

E. =N D, =N —H foran i, and k 2.21
ij— kpij, - k N or a 1, J an H ( . )

for determining the value of the statistic (2.7).

Example 2.2. Let us consider the experimental terminology of

Example 2,1 and assume that the data in Table II gives the results of

taking a sample from each of the three populations defined by the three
forms of discipline parents use with their children. Assume, further

= = = &

1 60, N2 20, and N3 26 and that

each population is partitioned by the two classification variables:

that the sample sizes are N

recall and social class. We will test the hypothesis (2. ]b‘?) . Based on
the estimates given by equations (2,20) and (2.21) and thé marginal
totals computed in Example 2.1, the value of the test statistic is

T = 15.70 which is compared with the chi-square distribution with

(rc-1)d = 15 degrees of freedom. The ¢ritical level 2 .22,
Fixed Marginals

Sometimes when a random sample might produce disproportion-
ately low frequencies in some section of a contingency table, the
experimenter might decide to specify not only the sample S'ize- N, but
also marginal totals. For example in a three-dimensional contingency
table the marginal totals N for k=1,2,...,d might be fixed. In

addition to the above sampling constraint, many cther kinds can be
wa'
'
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envisaged. For instance, it is possible to fix ny as well as the

n-jk marginal totals, or to fix all or some of the first-order
marginals n, , n'j_ and By Since such restrictions are likely

ieo
to be rare in practice, they are not discussed here. In any event it
will nearly always turn out that the chi-square computation is the
same whether the marginals are fixed or not. In such cases it will be
only the power function and the form of the hypothesis that vary
([45], p.93). |

Lewis [45] would modify the null hypothesis (2.8) when the

.

marginals n are given to

-k

n

0° Pijk = Pi.. Pye TN

for all i, j and k.

The estimates of the Py from the sample would not have been any
different in the above case, but the important point is they were
determined before the sample had been taken.

For testing the hypothesis of mutual independence (2.8) in a
three -dimensional contingency table Kullback [39] would modify the
null hypothesis if the IR totals are fixed in advance. It might be
reasoned that there are in effect d distinct tables of size rXc. In
these circumstances p,ij denotes the probability that an observation

falls in the (i,j) cell of the kth two-way table. Moreover, if each

two-way table is considered separately, then

n.. n..
A = Lk not -——J—i\jk

Pijk = n

and Py = 1 for all k (not n.‘wk/N), Hence, the null hypothesis
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(2.8) would be modified to

p.j' for all i, j and k.

Complexities of Formulating Hypotheses

In the analysis of contingency tables obtained from a single
population we are usually interested in the relationship between one
classification and one or more of the other classifications. Suppose
we ¢onsgider the contingency table resulting from Example 2.1 for
illustrative purposes. One could consider th:e row classification as
representing the response of an experiment on these individuals, the
column classification as a distinguishable characteristic of the
sampled individuals, and the depth classification as types of treatment,

Then in many respects the hypothegis of interest are analogous to those

of independence and correlation in normal multivariate analysis. For

example:
1. Response is independent of treatment, or
I—IO: Pi.x = Pi..Px for all i and k.
This case corresponds to simple correlation, That
is, I—IO corresponds to the hypothesis that response
and treatment are uncorrelated.
2. Response is independent of treatment and social class,

or
0" p,ij = P, p'jk for all i, j and k.

This case corresponds to multiple correlation.
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3. Response is independent of treatment given the social

class, or

-
= i Tk poan i, j and k.

This hypothesis is the conditional independence given
the column classification and corresponds to partial

correlation ([37], p. 160).

Not all contingency tables can be interpreted in a straightforward
manner. In some cases all three classifications can be considered as
responses; then we may be interested in independence or association
among the responses. In other cases a classification may be viewed
either as a factor or a response. For convenience, we may group all
the concepts of association or dependence under the general term of
interaction.

The reader may have noted that up to this point no attempt has
been made to define interaction among the classification variables
defined on one or more populations. We have indicated only that if
classification variables are independent, then there is no interaction
between classification variables. With reference to Table II we may
also say that the interaction between response and treatment does not
interact with social class, meaning the degree of association (m;a.sure
of dependencgf) between response and treatment is the same for both
categories of the social class classification, In the following discus-

sion some elementary concepts of interaction will be presented.
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Interaction and Summary

The formulation of a meaningful hypothesis of no inte;'act‘lon
among the classification variables in a multi-way table is not as simple
as one might expef:t. There have been several attempts to arrive at a
logical and intuiti\t\ély acceptable definition of interaction that could be
derived from a wider framework of hypothesis formulation. The main

lines of thought for 'no interaction' hypothesis can be grouped into

the following classifications:

1. The original definition due to Bartlett [2] and its

extension.

2. The formulation of Darrock [13] and Roy and
Kastenbaum [57)] based on symmetrical functions

of the cell probabilities.

3, Good's definition [22] based on maximum entropy
»
and Goodman's modification [25].

The testing of mutual independence of classification variables
may be regarded as testing for significance of 'no first-order inter-
action.'" For the simplest case for defining ''no second -order
interaction, ' Bartlett [2] defined for a 2x2x2 table "nbf’secondw

order interaction' as implying:

Py ;D Py, P
H, 111P221 _ 112 P222 (2. 22)
P121P211 P122P212

Note that (2.22) may also be written as either:
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Pinn Pz | PaniPazz 0 PuiiPaiz | Pi2i P2z
P121P112 P221P212 P112P211 P122P221

(2.23)

The hypothesis (2.22) and the alternative forms in (2.23) give the
equality of association between row and column classifications within
the two catego_ries of the depth classification, between column and
depth classifications within the two categories of the row classification,
and between row and depth classifications within the two categories of
the column classif'icati%ri‘s, regpectively. This definition becomes
difficult to interpret and involves solution of lengthy interative
equations when the number of the levels of the classificétion variables
are extended.

Roy and Kastenbaum [57] derived a set of constraints implying

no interaction for a three -way contingency table of the form:

i=1,2,,..,r-1,
where j=1,2,...,c-1, (2.24)
. k=1,2,...,d-1.

PredPijd  _ PrekPijk
PicaPrija Pick Prijk

The constraints (2.24) were based on the fact that the two hypotheses

= PPl fof all i and k
and

H,: p.. = p.:_ pojq for all i, j and k

do not usually imply the hypothesis

H: p,uij = P, p'-jk for all i, j and k ,
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Darroch's [13] formulation of no interaction led him to define

pijkz uajk bki cij for all i, j and k (2.25)
where
d r c
Z a,= Z b .= Z ¢, =1
k=1 K 4=1 Kb 5o T4
and
T c d
u z Z Z a,b .c..=1,
— ij ki Tij

i=1 j=1 k=1 Y

The formulation of the ''no interaction' hypothesis up to this
point have been extensions of Bartlett's definition. Good's [22] and
Goodman's [25] formulations of the no interaction hypotheses are
entirely general and physical interpretation of their meanings are
extremely difficult,

Ku and Kullback [37] have developed a method of determining
the cell probabilities in a multi-way contingency table. Hence, this is
equivalent to a goodness-of-fit test since knowing the probabilities in a
multinomial distribution determines the distribution.

Their procedure for determining the probabilities is based on a
definition of the no-interaction hypothesis (marginal totals must be
given) similar to formula (2.25) given by Darroch [13]. The process
is an interative technique estimating cell probabilities and the
coefficients in the constraints under a tenable hypothesis ([37], p. 168).

It is often the case that a researcher needs to summarize the
results of a higher order contingency table. It is important that one

is aware of the assumption being made when contingency tables are
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condensed and then analyzed, since the use of two -way tables to
summarize multi-way classification data is a rather common practice.

A summary of important facts involving no interaction are as

follows:

1. If there is no first-order interaction; i,e., independ-
ence of all classifications, then the information is
contained in the first-order marginals in the sense‘ that
given these marginals, the complete table can be

constructed to within sampling error.

2. If the first-order interaction is significant, but there
is no second-order interaction, then the set of second -
order marginals will be required to summarize the

data adequately ([38], p. 184).

A direct consequence of this interpretation is that the analysis
can be reduced to that of the set of marginal tables if there is no

interaction of the same order.
Conclusion

The role of the row, column, and depth classifications in the
various hypotheses can be permuted as the experimentgr may desire.

There are alternative ways of stating the hypothesis in many
cases and they are apt to be confusing, but most of them are carefully
followed through by Ku and Kullback [37], Kullback [39] and Lewis
[45] The objective in formulating hypotheses in this paper is to
obtain an exactly additive analysis. Lancaster [42] and Kullback [39}

obtain additive components in their analyses; while Lancaster
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partitions the total chi-square into additive components, Kullback uses
the information theory approach to obtain exact additive components.
The value of obtaining additive ¢components is to allow the experimenter

to test additional hypotheses.



CHAPTER III

ANALYSIS OF CATEGORICAL DATA USING

INFORMATION THEORY
Introduction

Information in a technically defined sense was first introduced
into statistics by R. A. Fisher in 1925 in his work on the theory of
estimations, According to Kullback [39], Fisher defined the informa -
tion contained in a random sample of size n taken from a population

with probability density function {f(x;0) as

o] loge f(x;0) 2

I =nk 56

Shannon and Wiener, independently, published in 1948 works
describing logarithmic measures of information for use in communica -
tion theory. These papers stimulated a tremendous amount of study
in engineering circles on the subject of information theory [39].

Information theory is a branch of the mathematical theory of
probability and mathematical statistics. As such, it ¢can be and is
applied in a wide variety of fields. The subject of this exposition is
of logarithmic measures of information and their application to the

testing of statistical hypotheses in contingency tables.

34
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In this chapter a consistent and simple approach based on the
principles of information theory is used in developing the various test
procedures for categorical data and the results are analyzed in the
form of a component of information table. |

Five examples are given illustrating the computation of the test
statistic aﬁd the construction of the component of information table for
testing each of several passible hypot’he)s\e.s, The procedures proposed
depend on the use of a minimum discrin;ir;;tion inft%}‘mation statistic
(m.d.i.s.) and its asymptotic distribution propertiés. The examples
will also be used to illustrate the conceptual simplicity of this approach
to the statistical analysis of contingency tables. The calculation of
the minimum discrimination information statistic, denoted by 2I,
involves the basic operations of addition and subtraction; when a
tabulation of n logen is available. However these calculations need

to be carried through using more significant digits than the Pearson

chi-square statistic.
Definitions

The minimum discrimination information statistic is based in
principle on a technical meaning of information. Information in a
technical sense is not radically different from the everyday meaning;
it is merely more precise. Information can be gained about a matter
in Which we are to some degree uncertain; thus information may be
defined as that which removes or reduces uncertainty. In statistics

. «

information is obtained by taking an observation or a sample from a

population which is used to estimate parameters or to test hypotheses.
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We shall, again, assume the multinomial model and will let the
subscripted letter x represent cell frequencies instead of the sub-
scripted letter n. This form is given to be consistent with the more
standard notation used in discussions of information theory.

The multinomial is given here for future reference in defining

the statistic of interest in this chapter:

f(Xl,XZ,X?’,.a. c

Definition 3.1: Let H be a population of m partitions with probability

density f(x) = P, for x = Xipeors ¥, then the mean information of

an observation selected at random from H is

1 = 1 1
I-Eflog, w=]= Z [log =] fx) = Z p log, —,
(Oga f(x)) 2z (Oga f(xi)> bey) = 2 Py loBa g
or
m
I=- .,Z p; logapi. {3.2)

i=1

When a=2, the form of the information in (3.2) is called the
Shannon-Wiener measure of information ([1], p. 8). When logarithms
to the base 10 are used, the mean information of an observation in
(3.2) is termed a '"Hartley" statistic and when the logarithms to the
base e are used (3.2) is called a ''nit" statistic. The base a is

determined to facilitate the determination of the distribution of I.
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In the absence of the proper knowledge of the system to determine a,
the base e will be used and the distribution of 2I will be approximated.
Therefore, unless otherwise indicated, the base e will be assumed
throughout,

An intuitive example of information may be explained by consider-
ing a game in which two persons are playing. Suppose a person is
thinking about a particular square on a gcheckerboard and the task of
the other person is to discover which of the 64 pogsible squares it is.

It can be shown that exactly six questions are necessary and sufficient
to locate the square, if the questions are asked in the same manner
with six answers of yes or no. For example, the first question might
be 'Is the square in the upper half of ithe board? " With the answer of
either yes or no, the questioner has now limited the location of the
unknown square to the 32 remaining squares. The second question
could be 'Is it in the left half of the remaining squares? ' and so on
for the other questions. Since the answers are of the yes or no form,
there are two responses for each question and altogether 26 = 64
different responses. For this set of responses Eall it H, a relation
of m = ZI is suggested; where m is the number of equally likely
responses from which a choice is made and I is the amount of
uncertainty or information. Now, if m = ZI, then I = 1og2 m ; thus
information involves the logarithm of the number of responses. The
responses are expressed in the form of probabilities for testing
hypothesis. If the m outcomes are equally likely; each with probability
p; = —é—l— for i=1,2,...,m then the information {answer to one
question) of a response expressed in terms of probabijlities is given hy

definition (3.1) using equation (3,2) we have
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8
B

- . ] 1 1
I=- ? Py logz Py = - ,2 m logz m
i=1 i=1
T 4 . 1
= "m °Bam T ogxm

Thus applying definition (3. 1) we note that if the population has m
equally likely partitions each with probability p; = —r%:_ for
i=1,2,...,m, then the mean information of an observation selected

at random is given by

_ - 1
I = 1ogam = 1oga P, .

Application of Information to Statistics

We shall now apply the definitions of information theory to the
analysis of contingency tables. The development of information used
in the rest of this chapter is patterned after the derivations of
Kullback [39], but is less mathematical. The more mathematical
treatment of information theory as given by Kullback is given in
Appendix A,

Suppose we have a contingency table with r categories resulting
from a sample taken from a population partitioned by a single classifi-
cation variable, Consider the two simple hypotheses H_, and H

0 1

which specify the value of each parameter as follows

r
HO: p; = pOi for i=1,2,,..,r where i?lpo‘lzl (3.3)
and
r
le P; = Py; for i=1,2,...,r where 1=1p1i:1

and pj; # Poi for at least one 1i.
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We note the two hypotheses HO and H1 each partitions the popula-
tion and specifies the probability of an observation ocecurring in each
cell. We would desire to be able to take observations from this
population and gain some information as to which, if either, hypothesis

is correct. By applying information theory we make the following

definition,

Definition 3.2: The mean information per observation from the

population hypothesized by H for discriminating in faﬁ‘or of H1

09

against H_ is

0

s P1j
= Z Py; log —— . (3,4)
i=1 Poi

If we let ON be the set of N observations obtained from a
population with a multinomial distribution {3.1) then the amount of

information obtained from the sample is given by the following defini-

tion.

Definition 3.3: The mean discrimination information for a random

sample of N independent observations for discrimination in favor of

H1 against HO ig

r Py
TH - = log ——
I(HIQHO,ON) N -1?1 Py; 108 By, . (3.5)

If the equation (3.5) is multiplied by 2 and the natural logé"--

rithm is used, then the distribution of ZI(HI: HO; ON) is approximated
i

by the chi-square distribution with r-1 degrees of freedom

([39], p., 113). We restate Definition 3.3 so that the mean discrimin-

ation information (3.5) is in the proper form for a statistic.
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Definition 3.4: The mean discrimination information statistic for a

random sample of size N for discrimination in favor of H1 against
H0 is
s P1j
ZI_(HI.HO,ON) = 2N i?l pli log —I')—O'L— . (3.6)

For a random sample which is partitioned by three classification
variables into rcd categories by a simple null hypothesis HO given
by

'HO: p'ljk = pOijk for i=1,2,...,r; j=1,2,...,¢c; and
k=1,2,...,d ;
against a simple alternative hypothesis H1 given by
Hl: p’quk = pIijk for i=1,2,..,,r; j=1,2,.,.,¢;

k=1,2,...,d; and plijk# pOijk for some cell

(i,j, k),
the equation (3.6) becomes

r ¢ d Py

ik
2I{H,:H,;0.,) = 2N =2 Z Z py..y log - . (3.7)
PN i=1 j=1 k=1 'HE 7 Poix |

The null hypothesis HO , usually specifies a relationship among the
parameters and in some cases specifies the value of each parameger.
Since the null hypothesis usually specifies a general relationship
among the parameters in the multinomial distribution and the alterna-

tive hypothesis is a negation of H the sample values may be used

O 9

to minimize the discrimination information statistic. Thus in the
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case where I—IO specifies the parameters pijk

we are ''speculating'' that the population is of the form

for all i, j and k

N! *111 _ *riz
x__ 0 P Priz Pred

rcd

rcd

where x represents the sampled data.
By applying Theorem 3 in Appendix A, we know the minimum of
the discrimination information statistic is obtained by using the best

unbiased sample estimates for the parameters in the statistic

Plijk
(3.7). We are really estimating the probabilities from the sample for
the distribution of the alternative hypothesis H1 . The objective is to
obtain the smallest posgsible value for the statistic (3.7) so that if it is
"sufficiently large' this would give us evidence that the sample does
not resemble the distribution under the null hypothesis.

It is supposed that the sample, properly obtained, ''resembles'
the population. Thus, the population parameters under the alternative

hypothesis are replaced by the best unbiased estimates based on the

sample. The minimum of the test statistic (3.7) for a random

sample, ON’ of size N would become in the :,above case
’&r
r ¢ d X X
2I(H:Hy;Opy)=2N £ = 3 —»1-%- 1ogW—iL——- {3.8)
i=1 j=1 k=1 Poijk

where xijk/N for all i, j and k are the best unbiased estimates of
the parameters pijk for the composite alternative hypothesis. The
statistic is distributed asymptotically as a chi-sguare random variable

with rcd -1 degrees of freedom.
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If the null hypothesis does not specify the values of the parameters,
but describes a relationship among them such as the hypothesis that the
three classification variables are independent, then a degree of
freedom is lost for each parameter estimated. To illustrate that the
par:a,meters not specified by the composite null hypothesis are
e stimated from the sample, a "hat'" is placed over the I; that is,

2

A N Xk
21 (HI:HO;ON) =2ZZZ xijk‘ log xL ijc X..kv

where the parameters P... > p-j° , and P, are estimated by

A " A ST N *ok
B.. =% P, =5~ and P =5

ies N s 5 N

?

respectively, for all i, j and k under the null hypothesis and the

Xz
parameters for all i, j, and k are estimated by /1:\> . ik

Pijk ijk = TN
under the alternative hypothesis. Degrees of freedom are lost only for

estimating those parameters not specified by the null hypothesis; thus

for the statistic (3.9) we have the following degrees of freedom
red-1 - (r=~1) - (e¢-1) - (d-1) = (r-1)}{c-1){d-1).

The following examples are given to illustrate primarily the
computational procedure for the minimum discrimination information
statistic. The first example represents the case where a sample is
taken from a populaﬁon partitioned 'into two categories or cells by one
classification variable. In this example, we will assume the null

hypothesis specifies the probabilities of the two categories.
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Example 3. 1: Suppose that in a sequence of 55 independent

tosses of a coin we observe 37 heads and 18 tails, Let

Py = probability of a head and Py = probability of a tail on a single
toss of the coin. To test the null hypothesis that the coin'is unbiased,
formulated symbolically as HO: Py = P,y = 1/2, we compute the

minimum discrimination information statistic as follows

X,
_ i
21 = 2 in log Npi
= le logx1+ 2x2 logxz - 2N logN + 2N log2 (3.10)

since Pp = Py = 1/2 under the null hypothesis. Ffom the data one

may note that Xy = 37, X, = 18 and N = 55. Substitution of these

guantities into (3.10) gives

21 = 3(37 log37) + 2(18 log 18) - 2(55 log55) + 2(55 log2)

H

6.700 .

H

Since 2I is distributed, approximately, as a chi-square random

variable with one degree of freedom; the critical level 2~ .0l.

Comparing the statistic 2I with the statistic

2
(x, - E)

2
T - Z __’_"E_‘_' 3
i=1 i
where Ei = N/2 = 27,5, the calculated value of T is 6.55,

Comparing T with the chi-square distribution with one degree of

freedom @ = .0108. Thuf, the two statistics give similar results.
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The next two examples illustrate tests for independence and

identical distributions, respectively, in two-way contingency tables,

Example 3.2: In an investigation of the nature and consequences

of social stratification in a small mid-western community, it was
|

found that the members of the community divided thémselves into four
social classes ([58], p. 177). The research centered on the correlates
of this stratification among the youth of the community and one of the
predictions was that adolescents in the different social classes would
enroll in different curricula at the high school. A sample of 390 high
school students were classified by the social class to which their
family belongs and by the curriculum in which they are enrolled.

.We are assuming in this example that we have a random sample

from a single population partitioned by two classification variables,

The data is given in Table III.

TABLE III

FREQUENCY OF ENROLLMENT FROM FOUR SOCIAL
CLASSES IN THREE ALTERNATIVE HIGH
SCHOOL CURRICULUMS

Class
. I II I1I v Totals x,
Curriculum i
College Preparatory 23 40 16 2 81
General 11 75 107 14 207
Commercial 1 31 60 10 102
Totals x_j 35 146 183 26 390
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The null hypothesis is

Ho: P P;, p'j for all i and j;

ij -
that is, the curriculum a student pursues is independent of the social

class., The class of alternatives is given by

Hl: pij # Py, p'j for some i and j.

The null hypothesis of independence does not specify P;. for
i=1,2,3 nor p_j for j=1,2,3,4. The minimum discrimination

information statistic is given by

where the best unbiased estimates of P; and p‘j are given by
X, /N and X'j / N, respectively, for i=1,2,3 and j=1,2,3,4.

Thus, the minimum discrimination information statistic becomes

A r
21 =2 Z

M0
R
—_
o
m

1 N i Xy

r (o4
2NlogN+2 Z X x. logx, -2
i=1 j=1 M b

"M H

X, logxi_

1

C
-2 Z x,.logx., . (3.11)
j=1 J °J

Based on the information in .Table III, we find

2N logN = 2(390 log390) = 4653.59446 ;
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3 4

2 £ Z x,. logx,. = 3055,77464 ;
P 1 1
i=1 j=1
3

2 Z X, logx, = 383,14080 ;
i=1 '

and

4 o

2 Z x.logx .= 3780.38044 .
j=1 *J *J

The statistic Z/I\ given by (3.11) is approximated by the chi-square
distribution with (r-1l){(c-1) = 6 degrees of freedom. The critical
level of the statistic Z/I\ = 65.6 is much less than .001. The
statistic (1.7) has a calculated value of 69.2 and is distributed,
asymptotically, as chi-square with 6 degrees of freedom. The critical

level @ is also much less than .001.

Example 3.3: Suppose, now the data given in Table III gives the

results of taking a random sample from each of the four social cl.:'a;sses
discussed in Example 3.2 where each sociabl class is partitioned into
three categories by the curriculum classification. Assuming the
samples are mutually independent, the objective is to deter?n"me
whether or not the four populations of social classes are identically
distributed. Table III is presented below transposed so that the

notation developed on page 9 in Chapter I corresponds to the state -

ments of this example.
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TABLE IV

SOCIAL CLASS VERSUS CURRICULUMS

Curriculum
General
Class ' |3 Preparatory General Commercial Totals Ni
I 23 11 1 35
II 40 75 31 146
III 16 107 60 183
v 2 14 10 26
Totals x_j 81 207 102 390

In this example we would like to consider the hypotheses given by

HO: p1j = pZj = p3j = p4:j for all j=1,2,3

(the samples are from the same population)
and
. © 4 s L
Hl' pij # p"L'j er some i#1i'" and j=1,2,...,c¢c
(the samples are from different populations) .

An alternate form of these hypotheses may be stated for notational

convenience as
HO: pij = pj for all i and j (3.13)
and ‘

H,: Pij # P; for some i and j .
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The discrimination information statistic'for the samples is given

1Y
v

by the expression

Ps.
p.. log —¥

; ’ (3.14)
1 1] pj

4 3
2 TN, =

i=1 Lj
where N,L is the sample size and corresponds to a fixed value of X, .
The best unbiased estimates of pij for discriminating against H, to

0

minimize the discrimination information statistic in (3. 14) is given by

pij = xij /Ni . The minimum discrimination information statistic is
given by
4 3 X,
21 = 2 ? ? xij log __LN.p. . (3.15)
i=1 j=1 iYj

The null hypothesis (3.13) does not state the values of the parameters
pj , j=1,2,3, therefore we estimate the parameters from the sample

and they are given by

X .
AN i
pJ~ N for j=1,2,3

The minimum discrimination information statistic for testing

hypothesis (3.13) becomes

Nx_.L°
1 xij log ———-——-J—Nix =, (3.16)

1
v

>

1
™M
npMw

i=1 j

which is distributed asymptotically as a chi-square random variable
with (r-1)(c-1) degrees of freedom. Equation (3.16) may be

simplified for computation purposes to give
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3
X,. logxi. -2 Z x.j logx_j + 2N logN

3
b3
=1 Y J j=1

4
=2z
i=1 j

4
- Z N, logN, . (3. 17)
i=1 '

The computations are given by

4 3

T T x, logx, = 1527.687331,
i=1 j=1 Y H

3

Z x,logx , = 1931,570398 ,

=1 *J

J

4

Z N, logN, = 1890.090224 ,

i=l

and

N logN = 390 log390 = 2326.79722825 .

The calculated value is Z/I\ = 65.648 with 6 degrees of freedom. The
critical level @ is much less than .001.

The application of the minimum discrimination statistic will be
extended to a three-way contingency table where we will discuss and
present examples corresponding to the hypotheses discussed in
Chapter II. The main purpose in using the minimum discrimination
information statistic is to obtain an additive analysis similar to the
analysis of variance for quantitative data, We will be using what is
termed a component of information table to obtain a "completé"
analysis of a contingency table. Since each entry in the component of
information table represents the formulation of a tenable hypothesis,

we will in the following section define some symbols and discuss
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component of information tables for the hypotheses of independence,
conditional independence and identical distributions of populations. For
the component of information table of independence and conditional
independence we will assume we have one sample from a population

- partitioned by three classification variables (three-dimensional
contingency table). For the component of information table for
identical distribution we will assume we have two or more independent
samples from populations which are partitioned by two criterion

variables to obtain a three-dimensional contingency table.
Independence of Classification Variables

The hypothesis of independence of classification variables based
on a sample presented as a three-dimensional contingency table may

be partitioned into additive components by noting that the
Pyjk = Py PPy forall i, jandk, (3.18)
implies the conditions

p'jk for all i, j and k (3.19)

1t

pi.jk P ..

and

p'jk= p'j' P. .k for all j and k.
The converse of the above statement also follows; that is, if we have
conditions (3.19) and (3.20), then (3.18) holds, The three classifi-
cation variables are independent if and only if the row classification is
independent of both the column and the depth classifications and the

column and depth classifications are independent. We will let the
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symbols R x C x D denote the hypothesis represented by equation
(3.18), R x(CD) denote the hypothesis represented by equation (3.19)
and C x D denote the hypothesis represented by equation (3.20).
When one analyzes a contingency table, the designation of row, column
and depth classifications may be replaced by more descriptive terms
in the application. In Table V we will give the component of informa-
tion table for independence where the column denoted Component will
symbolize the hypotheses being tested, Information will give the
formulae for calculating the test statistics, and d.f. will give the
degrees of freedom associated with each test. Note, that it is always
the last component listed that has been partitioned into the additive
compfnents listed above it; thus the last row of a component of infor-
mation table is analogous to the '""Total" row of an analysis of variance
table. The minimum discrimination information statistic for each
component is additive and is distributed asymptotically as a chi-square
random variable with the degrees of freedom indicated.

Using the table below one is able to permute the role of the
classification variables to test other hypotheses, such as row and
column classifications independence and the depth classification is
independent of both the row and column classifications denoted by

R x C and D x (RC), respectively.
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TABLE V

COMPONENT OF INFORMATION FOR INDEPENDENCE

Component Information d.f
C d Nx_.k
C xD 2 £ Z x. log ——1— (c-1)(d-1)
j=1 k=1 *5 Fok
r ¢ d Nx..k
R x (CD) 22 £ Z x. log -—-—-——1}-3{-—— (r-1){cd-1)
i=1 j=1 k=1 Y %0 %k
\ Nzxrk
R x C XD 2% ZZx,., log : red -r-c-d+2
' ijk % xJ X,k o

Conditional Independence of Classification

Variables

For conditional independence we note that

p. o= —K K e 1)1, 5 and k (3.21)
K
i] P. 1

and

for all i and k,

if and only if

= p. . DP.. for all i, j and k.
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For the component of information of conditional independence we will
let the symbol (R|D) x (C|D) denote the hypothesis (3.21) that the
row and column classification are independent given the depth classifi-
cation, The equations given by (3.22) and (g. 23) will be denoted as
previously defined by R x D and R x CD, respectively, Again,
since the minimum discrimination information statistic is additive, a
component of information table for conditional independence may be

formed as given by Table VI.

TABLE VI

COMPONENT OF INFORMATION FOR
CONDITIONAL INDEPENDENCE

Component Information d.f.
T d NX.L_k

RxD 2 X Z x,, log (r-1)(d-1)
i=1 k=1 K S TR
r ¢ d X X

(RID)x (C|D) 2 = = = x. log ——‘l——};—— d(xr-1)(c-1)
i=1 j=1 k=1 Y *i.k %k
r c d Nx”k

R X (CD) 2 T = = x., log—H%_ (r-1)(cd-1)
_ _ ~ ijk X, X,
i=1 j=1 k=1 v i~ 7jk

i

Again the role of the clgssification variables may be permuted

with a corresponding 'interchange of marginal totals appearing in the



54

computation formulae. Suppose we want to test an hypothesis of
conditional independence given the column classification instead of the
depth classification, then the component of information table would be

as given in Table VII,

TABLE VII

COMPONENT OF INFORMATION FOR CONDITIONAL
INDEPENDENCE GIVEN THE COLUMN

CLASSIFICATION
Component » Information d. f.
T c Nx,.
R x C 2 = = x,, log —L— (r-1)(c-1)
A ij- X, X,
i=1 J—l Les ]
T c XX
(RIC)x (D|C) 2 = = = x.., log ; ~ c(r-1)(d-1)
i=1 j=1 k=1 Y Fije Tejk
*,
T c d Nx,,.k
R x (CD) 2 2 3 = x. log —x——i}l{—— (r-1)(cd-1)
i=1 j=1 k=1 Y i ik

This table is given because we will now consider an example
illustrating each of the components of information tables presented
thus far. The statistics in the information column need to be expanded
to perform the calculations using the properties of logarithms similar
to the‘ proceedures in equation (3.11) in order to perform the calcula-

tions.
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Example 3.4: A committee composed of a representative from

each of the four major manufacturers of tape recorders has employed
two consumer reporting agencies to test the product being marketed by
the four manufacturers for defects in both electronic and mechanical
components. Each testi‘ng agency, T1 and T‘2 , is assigned a fixed
proportion of the total production of units from each of the manufac-
M and M

turers M1 s M of which half of the units are sent

i 2’ 3! 4’
to the electronics division to be tested for electronic defects D1 and
the remaining half are sent to the mechanical division to be tested for
mechanical defects DZ . Each agency writes a report on each unit
tested. At the end of the testing period the committee selects a
random sample of size 124 reports from among those which report
the existence of a defect. The data partitioned according to manu-
facturer, testing agency and type of defect are given in Table VIII.

The major objectives are to test the null hypothesis that the
three classification variables are mutually independent (M xT x D)
and that the manufacturer is independent éf both the testing agency and
the type of defect (M x (TD)). The minimum discrimination informa -
tion statistic will be used to test these hypotheses. The following
marginal totals and calculation are necessary. The critical level of

each test will be in the fourth column of the following component of

information tables,



TESTING FOR MANUFACTURING DEFECTS

TABLE VIII

Manufacturer Defect Test 1 Test 2
1 24 11
1
2 8 13
1 7 2
2
2 13 8
1 7 7
3
2 2 7
1 5 3
4
2 2 5
First-Order Marginals
Manufacturer Test Defect
Xy, 56 X, ® 68 X .= 66
Xy, = 30 X5, = 56 X = 58
x3._ = 23
X = 15
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Second -Order Marginals

Manufacturer x Test Manufacturer x Defect Test x Defect
X9, =.32 X1 <= 35 x.11=43
Xy,, ® 24 | X1, = 21 X5 = 23
X531, = 20 Xy, = 9 X,5q = 25
X55, = 10 X5 .5 = 21 X, 55 = 33
*31. = 9 *3.1 = 14
Xgp, = 14 X3, = 9
Xq1. = 7 X4 8
X42. = 8 X420 = T

Calculations needed from the data are:

4 2 2 4 2
z ¥ Z x,., logx.., = 280.642, z X x.. logx.. =357.097,
i=1 j=1 k=1 B Bk i=1 j=1 U L
4 2 2 2
= z x,, logx, , = 359,061, = z x ., logx . = 429,705,
i=1 k=1 CRTTE j=1 k=1 R TTK
4 2
Z x, logx, = 440.193, 2 x, logx. = 512.347,
. ie- i.- R B g
i=1 j=1
2
B oy logx, = 512,023,

and

N logN = 124 log 124 = 597.715 .
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The component of information table for testing (M X T x D) is
given by Table IX which is based on the formulation given in Table V.,
Since the hypothesis of mutual independence would likely be rejected
(¢ = .01), the tests given by partitioning the test statistic into
additive components are performed. The hypothesis denoted by
(M x (TD)) sates that the manufacturer classification variable is
independent of the composite test-defect classification variable having
four categories which are the corhbinations of the two testing agencies
with the two types of defects. Since 2~ .05 , no clear-cut decision
to reject or not reject HO would be reached at the .05 significance
level, The null hypothesis that the testing agency is independent of the
type of defect (T x D), which ignores the manufacturer classification

variable, would most likely be rejected since @ =~ .015.

TABLE IX

COMPONENT OF INFORMATION FOR INDEPENDENCE
OF MANUFACTURER, TEST AND
DEFECT CLASSIFICATIONS

Component Information d.f. 2
T XD 6.100 1 ~ .015
[test X defect} '
M X (T D) v 16.918 9 = .05
[manufacturer x test, defect]
MxT xD 23.018 10 ~ .01

[manufacturer x test x defect]
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If we assume that the hypothesis (M X (T D)) would be rejected
then the test statistic of this test could be partitioned into comi::onents
either as in Table X or as in Table IX. The hypothesis denoted by
(M|D) x (T |D) “in Table X states that the manufacturer classification
is ind‘ependent'of‘the testing agency ‘clas S‘lf'icat'ion given an arbitrary
categéry with the defect classification. This hypothesis would not be
rejected at any of the more commonly used levels of significance since
{z\ X .25. However the hypothesis that the manufacturer (M x D),
which ignores the testing agency classification, would most likely be
rejected.

The analysis for conditional i"indepehdence based on the calcula-

tions on page 57 and the analysis in Table,VI yields Tahle X .

TABLE X

COMPONENT OF INFORMATION FOR CONDITIONAL
INDEPENDENCE GIVEN THE DEFECT

Component ' Information | d. f. ?
MxD 9.120 3 ~ . 029
(M|D) x (T|D) 7.798 6 ~ .25
M x (TD) 16.918 ° 9 ~ .05

Ih'Table XI it should be noted that the test denoted by (M x T)

would not lead to a rejection of the null hypothesis which is in
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a;greément"v;ritl;l th.e. coﬁclusiori reéche‘d for the hypothesis
(M|D) x (T|D) from Table X. That is, if we have concluded that the
manufacturer and testing agency classification variables are independ-
ent given an arbitrary category of the defect classification, then it
should follow that fhey are independent ignoring the defect classifica=~
tion.

» S'imilﬁrly, the calculated values on page 57 and the analysis in

Table VII yields Table XI,

TABLE XI

COMPONENT OF INFORMATION FOR CONDITIONAL
INDEPENDENCE GIVEN THE TEST

Component ‘Iﬁformation‘ d.f. 2
MXT . ' 4.544 3 > .25
(M|T) x (D|T) 12.374 - 6 ~ .055

~ .05

M x (T D) o 160918 0 9

Identical Distribution

Suppose we consider r independent random samples from r
populations which are partitioned by two classification variables. We
will consider in this three-dimensional contingency table the rows as

being the independent random samples and the column and depth
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classifications as the two criteria variables. The hypothesis of

identical distributions is tested to determine if the two dimensional
contingency tables generated by the samples are representative of
identically distributed population‘s.‘ Considering the hypothesis for

‘identical distributions in Chapter III we note that

'pijkz p-jk for all i, j and k (3.24)
if and only if
Pyj. = Puj, for all i and j, (3.25)
and
p:. p.. , .
ik . K forall i, j and k. (3. 26)
Pij. P;.

We will then use the above probability statements to obtain a compon-
ent of information table for identical distributions. We will use the
symbol (C,D)I to denote the hypothesis that the r populations
sampled are identically distributed Wh‘ich implies equation (3 24). The
equation given by (3.25) is implied by the hypothesis that the «r
populations partitioned only by the column classification are identically
distributed, This hypothesis will be denoted by C(I) and has the
effect o.f completely ignoring the presence of a depth classification.

The equation (3.26) may be restated as

Piig = :
Y P.J.

P.:y. Pi:.
- kT poran i, and k., (3.27)

which is the conditional hypothesis that the depth classifications are

identically distributed, given the column classification among the r
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independent samples. We will usve the symbol (D|C)I to denote the
hypothesis expressed by equation (3.26). Each of the equations (3. 24),
(3.25) and (3.26) represent tenable hypotheses and the hypothesis
(C,D)I may be partitioned into additive components as shown in Table
XII. ’fhe minimum discrimination information statistic given for each
component is distributed asvy‘mptoticav.lly as a chi-square random

variable with the indicated degrees of freedom.

TAB LE XII

COMPONENT OF INFORMATION FOR IDENTICAL
-DISTRIBUTIONS

_Component S Information . d. f.

- Nx..

' . T c v
(C)I , 22 = x_. log ——-——l—— (r-1)(c-1)

X, X_,.
1og?111—<——l- clr-1)(d-1)

r C
|c) 2 z Z T o

r c »
(C,D)I 2 = ZOZ x log ——uk (r-1){cd-1)

Let us now consider an example illustrating the analysis of

identical distributions of several populations.
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Example 3.5: Suppose independent random samples of items

were obtained from each of four manufacturers where each population
of items is partitioned by the two classification variables given in

Example 3.4. Assume the four samples of size Ni =X for

’

i=1,2,3,4, respectively, given the data shown in Table VIII. The
procedure of analysis given in Table XII applied to the calculations

given on page 57 yields Table XIII.

TABLE XIII

COMPONENT OF INFORMATION FOR IDENTICAL
DISTRIBUTION OF MANUFACTURERS

Component Information d.f, @
(D)I [defect] 4,544 3 .22
(T|D)I [test|defect] 12.374 6 ~ .05
(T,D)I [test, defect] 16.918 9 2 .05

The analysis again may be changed to some extent by permuting
the role of the test and defect classifications. However, the random
samples are from the manufacturers and we assumed the sample size
was determined before the sampling was performed. For the inter-
pretation in this example we cannot permute the role of the rows of the

contingency table with either of the classification variables.
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Summary

The analyses presented above may be extended to higher ordered
contingency tables; however, these procedures for analysis are not
complete in terms of all the various hypotheses that may be tested.
Kullback, Kupperman, and Ku ([41], p. 575), claim the above
procedures of analysis are simpler in statistical practice than the
techniques based on the chi-squaré statistic. However, there is no
theoretical reason to prefer the chi-square statistic over the minimum
discrimination information statistic except one oftaste and convenience
([41], p.576). The utility of the minimum discrimination information
stai:istic lies in its additivity and computat'ional properties. .The
partitioning of the total component of information into several additive
components is similar to the analysis of variance. Each component of
the information in the table provides a minimum discrimination
information statistic whose distribution is approximated by the chi-
‘square distribution with tﬁe appfopriate degrees of freedom ([40],

p. 218).



CHAPTER IV

SMALL, ZERO AND MISSING FREQUENCIES

IN CONTINGENCY TABLES
Intro&uction

The various tests for the analysis of contingency tables are
usually based on large sample theory. In particular the chi-square,
the likelihood ratio , and the minimum discrimination information
statistics are approximated by the chi-square distribution when the
sample size is large.

We will make several references to the likelihood ratio statistic,
denoted as -2 loge A in this chapter, The test procedure based on
the likelihood ratio statistic is defined and illustrated for two-way
contingency tables Ln Appendix B. Under the assumption of sampling
from a multinomial distribution, the likelihood ratio statistic is
identical to the minimum discrimination information statistic ([37],

p. 114). Thus in the developments of the test statistic presented in
this chapter the minimum discrimination information statistic will be
used to be consistent with previous discussions, even though one would
find that frequently the original development is in the terminology of
the likelihood ratio statistic.

In this chapter some general procedures for analyzing contin-

gency tables with small or zero frequency counts will be presented.

AR
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A procedure for estimating missing frequencies and some of the effects

of misclassification will be noted.
Zero or Small Frequencies

The Pearson chi-square statistic T illustrated in Chapter II
and the minimum discrimination information statistic Z/I\ for testing
hypotheses involving multi —w.a.y' contingency tables are large sample
tests. Even though most experiments are designed so that the
probability of an observed cell frequency being zero is quite small,
such an occurrence will be observed occa.sionally. Empirical evidence
suggests that the presence of zero frequencies tends to inflate the value
of either test statistic ([36], p. 398). When the test statistic is
increased the critical level is decreased. This smaller critical level

.
would cause the experimenter to reject the null hypothesis mo;‘e
frequently than he should.

The chi-square approximation to the distribution of the statistic
2/1\ is based on the assumption that all parameters involved in the
constraints of the null hypothesis are greater than zero. If we assume
that the alternative hypothesis also includes only alternatives for which
these parameters are greater than zero and that an observed frequency
of zero is the result of an insufficiently large sample size, then one
could infer that the evidence provided by the sample is that the
probability of observing a zero frequency in a cell is greater than the
probability of observing a nonzero frequency in that cell. Assuming
the multinomial model, Ku [36] proposes that one unit be subtracted

from the computed value of the minimum discrimination information

statistic for each zero cell count observed.
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When an observed frequency of zero occurs it is frequently the
case that other cells will have small frequencies (less than five)
which may also endanger the validity of the test as well. It is
generally agréed that the use of the Pearson chi-square test usually
requires that each cell have an expected cell frequency of at least five
([68], p. 217). However, it has been shown by Zehna ([69]), p. 553),
that the chi-square distribution still provides an 'adequate' approxi-
mation to the distribution of the likelihood ratio statistic (or equiv-
alently, the minimum discrimination information statistic) even fof
relatively small sample sizes in the presence of small cell frequencies.
Thus when small frequencies occur, the minimum discrimination
information statistic should be used instead of the classical chi-square
statistic.

To illustrate Ku's correction for zero frequencies, let us recall
Example 2.1 where a random sample was taken from a population
partitioned by three classification variables. The data is presented in
Table II and we note the cell with a zero count and the seven cells with
counts of less than five. It is desired to test the hypothesis that the
classification variables are mutually independent.

The preliminary calculations that are needed for the analysis

presented in Table V are

3 2 3

T = = x.. logx,., = 218.1852165,
i=1 j=1 k=1 WK ® ik

3 2

Z Zz

x,. logx.,. = 310.2271315,
i=1 j= 1)- 1)
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3 3
? z Xk logxi.k = 239.3664246 ,
i=1 k=1
2 3 '
Z Z x,.. logx ., = 320.2225579,
j=1 k=1 9K jk
3 2
Z x., logx, = 380.4475041, Z x . logx ., = 421,11531168 ,
1:1 Leo Leos j:l -J- .J
3 :
z x__klogx K C 390.286318 , N log N = 494.3245439 .
k=1 ' ,

It should be noted in the calculations above that 0 log0 is defined to
be 0.

In the component of information table for independence, Table V,
we noté the minimum discrimination information statistic for C XD
(social class x discipline)‘-involves_»ojnly‘ma'rginal-totals; however for
the R >< (CD) (iécall X social class,‘ discipline) and Rx C xD
(recall X socia‘l class X discipline) ‘hypothe ses, we have the frequency
for each cell involved 'in the éomputation of the test statistic. Thus,
the value of oﬁe would be subtracted from the statistics for the
components ‘R 'x (CD) and R x C.>< D to correct for the single
occurrence of a zero frequency. Table XIV shows the corrected value
of the test statistic for each of these components of information. The

2 &~ .005

critical level for mutual independence in Example 2.1 is
using the test statistic (2.7).

For r x.c contingency tables there are methods for correcting
statistical tests with small frequenéy counts. Suguira and Otake [62]

have made rnumerical comparisons of improved methods for testing the

hypothesis of independence in a contingency table with small frequencies
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TABLE XIV

COMPONENT OF INFORMATION FOR INDEPENDENCE
CORRECTED FOR A ZERO FREQUENCY

Component Information d. f. @
Social class x discipline 6.321 2 ~ . 046
Recall x (Social class, discipline) 22.574 10 ~ .015
Recall x social class x discipline 28, 895 12 ~ .005

by the exact method; that is, comparing of the test statistics with the
exact probability distribution in the tests of independence. The exact
probability distribution assumes the marginal totals are fixed [68] and

is expressed by

< 1
I —, (4.1)
1 j=1 "ij°

=

i

which is the probability of cell frequency xij given the row and
column marginals, (}‘{i. and x_j ). One of the techniques that is appli-
cable to the general r X c contingency table is the corrected minimum
discrimination information statistic. The correction proposed by
Suguira and Otake involves a constant K, so that the test statistic is
ZK/I\, where

) 1 r C
K=1-[6Nr-1)c-)]7" [N = x, - 1||N = x. -1]. (4.2)



70

The correction factor K for the minimum discrimination information
statistic is obtained by calculating the first and the second conditional
moments of the statistic ZK/I\ for given marginals in the exact
distribution (4.1) and equating them to those of the chi-square with
(r-1)(c-1) degrees of freedom up to terms of order 1/N; that is,
assuming the statistic —ZK/I\ is approximated by the chi-square
distribution with (r-1)(c-1) degrees of freedom. Gart [21] made
comparisons with the corrected minimum discrimination 'iqfor,mation
test and an exact test with given marginals for 2 x 2 and 2 x3
contingency tables with zero cell frequency, and concluded that one
may use the corrected minimum discrimination information statistic
w.ith zero frequency counts as well as small frequency counts.

The use of the correction proposed by Suguira and Otake will be
illustrated by altering Example 2.1. Assume we select a random
sample of 49 boys from the working social class and classify the
sample by the discipline and recall classifications discussed in
Example 2. 1. The data is then given in Table XV.

Using the data helow we will test the hypothesis of independence
given by (1.8). The value of K as given by the formula (4.2) for

N=49, r=3, and ¢ =3 1is

] -[6-49-2.2]'1[49<1—15-+ ot -1> 49(2}5+ 1i0+ & 1)]

. 93588 .

~
0

1t

The test statistic for independence is given by

3 3 NXT’

2KT=2K T X x.. log ——& = 13,134,
._ ij X, X..
i=1 j=1 i- 7
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» . /\
The critical level @ =~ .10 were the test statistic, -2K1I, has 4

degrees of freedom.

TABLE XV

ZERO FREQUENCY DATA

Discipline
Recall Psycho. Mixed Corp. Marginals X,
Positive 6 3 6 15
Zero 9 4 0 13
Negative 7 3 11 21
Marginals x_j 2-? -]j; ;

Missging Frequencies

Missing frequencies in the analysis of contingency tables can
result from a number of situations in a study or experiment. In a
paper by Watson [66] procedures are presented for estimating missing
cell frequencies associated with a sample of unknown size taken from
a population partitioned by two classification variables. The procedure
is based on the maximum likelihood estimates generated from the
frequencies which are available under the null hypothesis of independ -
ence. The maximum likelihood estimates in such a two-way

contingency table are found from the likelihood function subject to the
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constraints 1%1 P, = 1 and .c_Z:Jl p.. = 1. Itis assumed the observed
cell frequencies represent a si.rnple from a multinomial population
with parameters p'ij . Under the hypothesis of independence the
parameters may be written as

Pi. Pj : : .

p.. = l'pu. b for i=1,2,...,r; j=1,2,...,¢c; (i,]) # (v, v)
where (u,v) is the missing cell and the total of the available
frequencies is denoted by N'. This procedure is similar to the
development of the maximum likelihood estimates given in Appendix B,
except for the constraints on the parameters. The null hypothesis
that the two classification variables are independent implies H_ is

0
given by

H_ : p = ——E-.—:Jp— for all (l,J) # (u,v)

and the alternative hypothesis is given by

le not HO .

The formula for estimating the missing frequency in cell (u,v)

of a two dimensional contingency table is given by

- where X, and x,, are the row and column marginal totals and N

is the total of the recorded frequencies. With the frequency count
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missing in cell (u,v), the marginal totals X, and x,, are obtained
by omitting the unicr;own cell. The formulae needed to estimate the

unspecified parameters are given as follows

X +x
A _ u-. uv
Py. = N'¥x
Suv
(4. 4)
x +x
A " "V uv
p'V T O N'+ x
uv
X,
N i. _
P;. N' + x » i=1,2, T
uv
A X .
. = - ) .——-1, 300 ey . .'9‘ 1
p.J -————J-—N, +xuv j 2 c (i,j) # (u,v)
ASEAY
N N! p'l P..
[P L I
Eij A A
1- Py. Py
The test statistic is
2
x,.
T =2 ——-N (4. 5)
Elj

where X' 1is taken over all cells except the missing cell. The degrees
of freedom associated with th‘i;” test is given by (r-1)(c-1)-1 ([66],
p. 49); that is, one degree of freedom is lost in estimating the missing
frequency.

The application of formulae (4.3), (4.4) and (4.5) will be
illustrated for the data in Table XV where we will assume the sample

size is unknown and the zero cell frequency which appears is actually
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a missing cell frequency. The missing frequency ocgyrs in cell (2, 3),
so x, = 9+4 = 13, X,q = 17 and N' = 49. The calculations

needed for determining the test statistic for the hypothesis of independ -

ence are
- (13)(17) ~
X3 49 -13 -17 ~ 12
A ) x2'+x23 25
P2. = N L o6l
probability estimates involving
the missing cell
6 i x_3+x23 ) 29
‘3 N' + X, 4 61
. *1. _ 15 A - *.1 22
= e = o e =
1. N t %54 1 1 N! + x5, 61
S T 1| S S )
3 N! +x23 }61 ‘2 N! + %54 61

for i=1,2,3; 3j=1,2,3; and (i,j) # (2.3). The test statistic

2
X,.
T =X —— -N' = .5713

1

with (r-1)(c-1) -1 = 3 degrees of freedom. The critical level for

this test is 2 =~ .90.
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When there are several missing frequencies the correct analysis
varies with their disposition. The above analysis can be extended
using the formula (4.3) and the ordinary method of computing the chi-
square statistic. The formula for estimating a missing frequency
given by (4.3) is applied to each of the missing cells in succession.
Once a missing frequency has been estimated, this estimate may be
used where applicable in estimating the frequency of other cells. The
iteration process is continued until the estimates obtained for each
missing cell in the last two iterations differ by less than a pre-
determined amount. The statistic would be calculated using the
formula (4.5) and the number of degrees of freedom would be
determined by the expression (r-1)(c-1) less the number of cells
with mis sin“g frequencies.

To illustrate the above discussion suppose (s,t) and (u,v) are
the missing cells ina r x ¢ contingency table. For a null hypothesis
of .'lndependence, we will assume the observed cell frequencies total
N' and represent a s‘é.mple from a multinomial population with prob-
abilities

pP., P,:

.o = : J for all (i,j) # (s, t) and (i,j) # (u, v).
Py TP PP (i,9) # (s,4) and (i,5) # (,v)

To estimate the missing cell frequencies we will denote the kth
(k)

St and

iterates of the cell frequencies (s,t) and (u,v) by x

xuék) , respectively, There are two cases to consider, namely

“ o
(1) the two missing cells are not in the same row or

column; i.e., s#u and t#v.
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(2) the two missing cells have a row or column in

common; i.e., s=u or t=v,

The estimates in case (1) for the cell frequencies are

% - s °t
st N'-x -x ’
S -t
and
X X
< - u- " v
uv N'-x -x ’
u. -V
and for the parameters are
I - -xsj *st . A _ . * *uv
ps- N'+x  +x ? pu-~ N'+x  +x ’
st uv st uv
noo x't+ *st . N oy * *uv .
Py Ni+x  +x ’ Py © Nx_, +x ’
st uv st uv
and
N\ *i
p. = [ i=1,2,.,.,r
i. N'+x  +x ..
st uv (19.]) # (S, t)
or
» X . .
N ' . _ (i,3) # (u, v)
p.j— N T e T x i=1,2,...,¢c
st uv

The estimates in case (2) are more involved and we will illustrate
the process by assuming the missing frequencies occur in the same row,
with a similar technique if the missing frequencies are in the same
column. Let the missing cells be denoted by (s,t) and (s,v) and

we will estimate the frequency of cell (s,t) first. The first iterates



of the cell frequencies are given by

x(l)_ s. °t
st N'-x_ -x

where X, X and N'
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and
, x (1) x
xsv('l) = S.(l) v where xs_(l) = X + xsél) .
N!' - x -x
S. v
The second iterates are found by the formulae
(2) (1)
L2 Ts et
st N e @M
5 -t
where
(3) (1)
b4 x
x(z)zx(1)+x ; x(l')_x +x(1) and x(2)~ 2 Y
- s sV -t t st sv N (3) (1)
-x -x
S: v
where
B @, @, Mo,
5. 5. st v v sV
The kth iterates of cell frequencies are
(2k-2) _ (k-1)
X (k) = xs. _x.t
st N' - x (2k-2) _x(k~1)
S-. -t
where
% (2k-2) _ % (2k-1) box (k-1) - (k-1) _ x (k-2)+ < (k-1) ,
5 5 sV -t -t st
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and
(2k-1) (k-1)
< ® s Xy
8V N' - x (2k-1) _ % (k-1)
5. v
where
xs.(2]:<—1) - xSf2k)+xs'(:]:<) : x'V(k—l) _ X.Jk—2)+xs\£k_l) .

This process can be terminated when the difference between successive

iterates is less than a desired quantity. The estimated probabilities at

the end of the kth iterate are

px Ky (K

/B = S' - St SV
s N'+ x (k) + x (k)
st sv
(k)
/F\) _ X’t+ xst
't N'+x (k) + x (k)
st sV
(k)
/B = * * xSV
v N+ x (k)+ (k)
st sV
A *i |
pi. = N'+ = (k = (k) Lz]j’z" , T
> (i,j) # (s, t)
or
* . .
P - T L2 (i) # (u,v)
] N'+ x + x ‘&
st y st

where u=s.
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For either of the two cases the estimate of the expected values

are given by

>
Z

"

ij -

for all (i,j) such that (i,j) # (s,t) and (i,j) # (u,v) and the 'te;t
statistié is given again by formula (4. 5) &vith (r-1)(c-1) - 2 degrees
of freedom. '

An investigation of the effects of misclassification on the
properties of the chi-square test reveals that misclassification
reduces the power of the test ([50], p. 99). The power of a test is
defined as the probability of rejecting the null hypothesis when a

specified one of the alternatives included in the alternative hypothesis

is true,
Conclusion

It appears from a review of the literature and studies on the
analysis of contingency tables that the minimum discrimination infor-
mation statistic is more reliable than the Pearson chi-square statistic
for small cell frequencies, The likelihood ratio statistic is identical
to the minimum discrimination information statistic for the multi-
nomial distribution.

The corrected minimum discrimination information statistic may
be used when small and/or zero frequency counts are present in two-
dimensional contingency tables. The minimum discrimination

information statistic with corrections for zero cell frequencies is also
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an appropriate statistic for small frequency counts occurring in
contingency tables.

For a method of analyzing contingency tables with missing cells
in a section or a diagonal of a contingency table, Goodman [24] has a
specialized and detailed discussion involving applications in biology.
Estimation of missing cells or testing hypothesis of quasi-independence
and interaction are discussed,

Some final comments about the Pearson chi-square test applied
to contingency tables with small frequencies are: if any E’Lj is lgss
that one, or if more than 20% of the ‘Eij are less than five, then the
approximation by the chi-square distribution may be poor. If all (or
most) of the Eij are nearly the same size, and if r and ¢ are not
too small, then Conover [10] indicates that the E'i.j may be as small
as one without endangering the validity of the test.

If some of the E‘ij are too small, several cells may be
combined to eliminate the E‘lj which are too small. Just which cells
should be combined is a matter of judgement. Generally, categories
are combined only Lf they are similar in some respects, so that the

hypothesis retain their meaning.



CHAPTER V

ANALYSIS OF VARIANCE FOR

CATEGORICAL DATA
Introduction

A one-way classification of data originates from an experiment
involving one independent variable and a response (dependent) variable.
In this chapter we will be concerned with the analysis when the
response variable:is measured on a categorical or nominal scale.

Recall the Pa;ametric one -way classification design model where
a random sample 6-f size nj is taken from treatment population j for
j=1,2,...,t; the populations are independent; each is normally
distributed; and they have a common variance. Let Y'ij = value of

th

the i observation from population j. The objective is to test the

null hypothesis

H0 : Treatment populations have equal means,

le Not HO .

The one -way analysis of variance table is given by Table XVI.
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ONE-WAY AOV TABLE
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Source d.f. SS
ot _
Total n-1 Z Z (y,.-y., ) = TSS
= ij ..
i=1 j=1
t - -2
Between Treatments t-1 Z n,(y,.,-vy, ) = BSS
| j=1 4
n,
. J t - 2
Within Treatments n-t Z Z (y..~-y.) = WSS
i=1 j=1 H K

The test statistic is

BMS _ BSS , WSS
WMS = t-1 T n-t

F =

Reject H0 at the level o if 'Fcalc> Fl-a.t-—l,n—t'

The above illustrates a well developed technique for handling

quantitative data, namely partitioning the sums of squares to explain

the variation in the data. This type of analysis supplies a measure of

association between the response variable and the treatment (independ-

ent) variable which is used to estimate the proportion of the total

variation in the response variable which is attributed to the predictor

variable. This measure of association is given by

(5.1)
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Objectives

The main objective is to define a measure of variation for
categorical data and to partition the total variation into an explainable
component and an unexplainable component to test the hypotheses that
the data came from identical populations. In terms of our multinomial
model we need to investigate whether the ¢ populations have the same
multinomial probability structures.

The second purpose is to determine the degree of association
between the independent variable and response variable. There are
several procedures to calculate a number to represent a measure of
association; however, none can b; given a ''proportion of the explained
variation' interpretation for categorical data since the concept of
partitioning variation has n?t been applied.

With these two objectiizes in mind, attention will be focused on
the application of a general method of the one-way analysis of variance

to categorical data or the equivalent two-way contingency table. The

b

concept of variation for categorical data will be defined and the
partitioning of the variation into additive components ta give corres-
ponding,procedures for categorical data as the analysis of variance for

quantitative data as described in the introduction for the parametric

e

[

technique.

Assessing Variation in Categorical Data

Variation is very often thought of as a measure of deviation of a
set of individual observations about their mean. ZFor categorical data

the mean is an undefined concept. The following procedure provides
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-a method for defining total variation for categorical data, then
partitioning this variation into between group and within group sources
of variation. First let us define variation within a sample of size n
from a multinomial population in which the measurement scale is
nominal. Let the n responses be Xl’ XZ" v Xn in which each Xi
names one of r possible categories or classes. Define d'lj for all

i and j such that

d,.=1 if X, and X. name different categories
1 1 J
(5.2)
= 0 if Xi and Xj name the same category .
Then the variation for the categorical responses Xl’ XZ’ e Xn is
“defined as
n n n n
+ = za’- - 3 3z a4,
moi=1 5=1 Y izl j=1 Y
y ¢t
= 55 Z X n.n, (5.3)
" i1 3=1 Y

where n, is the number of observations identifying category i for

r
i=1,2,...,r and n= Z n; . Since
i=1
r r r
nzz(n+n+ +n)Z=va.2+Z) Z nn (5.4)
1 2 r i i e e i
i=1 i=1 j=1
i#j
implies that
r r r
2 X n,n, :nz- 2 nv,z, (5.5)
i=1 j=1 *J i=1 !
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the formula for total variation may be written as

r
TSS=-£21-—-—— Z n, (5. 6)

upon substitutien of (5.5) into (5.3).
Two lemmas are stated without proof ([46], p. 535) which exhibit
properties one would reasonably expect of a measure of variation for

categorical data.

Lemma 5.1: The variation of n categorical responses is minimized

Y
if and only if they all belong to the same category.
Lemma 5.2: The variation of n responses, where n=rS+ L,
0 <L <r, is maximized for any vector (nl, PR nr) of category

counts such that L counts equal S+1, and r-L counts equal S,
i. e., the variation of n responses is maximized when the responses

are distributed among the available categories as ''evenly as possible."

Lemma 5.1 corresponds to the usual concept of the absence of
variation when all of the responses are identical and Lemma 5.2 has
no explicit counterpart for quantitative data.

To motivate the definition of variation further, note that if we
have n quantitative measurements the sum of squares of deviation
from the mean can be expressed solely as a function of the squares of
the pairwise difference for all (;) pairs, If Xl’ XZ.’ ey Xn denoctes

the measurements and if

X.
i

il
I
n e

n
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then
n n n n
= Z B (X -%)° = 5= = = (X7-2X% X 1+X,)°
i=1 j=1. ] i=1 j=1 ' J
1 [ n 2 n n n
=—2-E-nz><~zzx.zx.+nzx]
L oi=1 ! i=1 tj=1 3 =1 )
I n n
- =71£nzxi2_2n2"2+nzx,2]
=1 i=1 *
_ n
- z—ln 2n = X2 - 2n° ?{2]
Loi=1 ¢
n . n
= 3 x%.0%% - T (x -%)2, (5.7)
i=1 ! i=1 !

For quantitative data dij is interpreted as the deviation between Xi

and Xj while for categorical data the concept of a deviation is mean-
» |

) ingfuk only in terms of the presence or absence of a 'difference."

Thus, for categorical data, if dij = X‘1 - Xj for all i and j, then

n n n n
= z(x,.-x,)‘Z:Z—lnz = 4’
i=1 j=1 * J i=1 j=1 Y
1 n n
= 5= T B d.
"=l j=1 Y

1l
H
w0
%)
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Partitioning Total Variation

In Independent Samples

The general approach to categorical data which is proposed is to
compute the total variation in the data and then partition this variation
into specific components. The distributions of the various components
are derived under the multinomial model and the analysis then proceeds
in a direction dependent on this model ([46], p. 536).

,Suppose‘a random sample of size n.j has been taken from
‘population j for j=1,2,.,.,c; each population (sample) has been

partitioned into r categories; and the c¢ populations are independent.

o
Let
n‘lj = number of observations from sample j belonging
to category 1i;
< th
n, = Z n,, bethe i row total;
i- LT i)
j=1
and
r c r c
n = X X n,= Z n = X n_ is the total number
i=1 j=1 Y =1 " =1 7

of observations taken.
The objective ts then to test the null hypothesis:
HO: pij = Pp;s for all i and j

(the ¢ populations are identically distributed)

le pij # p; for some i and j.
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Note that a total of n, ~responses have been identified as
belonging to category i for i=1,2,...,r. Thus, using equation
(5.6), the total variation in the response variable or 'total sum of
squares' is given by

n.,2 . (5.9)

i

MR

< S
TSS—Z-Zn,
i=1

The variation in the response variable within the jth group (or

sample) is then

(o] n 1 (o] r
WSS = £ WSS, = = -—5 X — X n,., . (5.10)
= 2 2 J:l nlj i=

Finally the between sample variation or 'between sum of

squares' is defined as the difference TSS - WSS. That is

C r r
BSS = = » [—L = n?jJ~—L % n.2
2 1 n. o ._ _

TSS - WSS .

In the standard analysis of variance, BSS and WSS are
independent and hence BSS and TSS are not. The following theorem
states that just the opposite is true for the components of variation

defined for categorical data. This indicates that we are at a point of
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departure from the standard ANOVA theory. For the proof of the

following theorem consult ([46], p. 537).

Theorem 5.1: Asymptotically with large n.j , TSS and BSS are

independent under HO: p‘i.j = p; for all i and j.

The previously proposed method of partitioning categorical

variation is referred to as a categorical analysis of variance, or

CATANOVA. The test statistic is

(n-1)(r-1) BSS
TSS

(5.11)

p. . C is asymptotically approximated as a

for testing HO: p. i

l.j=

chi-square random variable with (r-1l)(c-1) degrees of freedom

([46], p. 540).
Measure of Association

We now turn to the problem posed in the introduction on measures
of association for categorical data, The three components of variation
defined enable us to define a measure of association between the
grouping and the response variables which may be given a ''proportion
of the variation explained' interpretation. The measure of association

is

c r r
Z—l—Zn,.z -iZ)n,LZ
2 _ \j=1 *j i=1 Y nogep b
R” =
)
n-— 2 n,
n . i
i=1
BSS

= ) (5.12)
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This measure of association has the property that

2 2o Db
R™ =0 if = —— for i=1,2, s, j=1,2, y C
n ., n
*)
i.e., if there is no association. R2 =1 if for each j, j=1,2,...,¢c,
there exist an i such that n,. = n'j , L.e., if there is perfect predict-

ability., Otherwise 0 < R2 <1. R? then is the proportion of total

variation in the response‘variable which is accounted for by the know -
ledge of the grouping variable. Multiplying all entries in the

contingency table by a positive constant leaves R2 invariant.
Examples

- Example 5.1: Suppose now the data given in Table XVII gives

the results of taking a random sample from each of the four soclal
classes discussed in Example 3.2 where each social class is partitioned
into three categories by the curriculum clagsification. Assuming the
samples are mutually independent, the objective is to determine
whether or not the four populations of social classes are identically

distributed.

We will use the CATANOVA to test the hypothesis (5.8). Using
the data in Example 5.1 and the equation (5.9) yields the total varia-

tion given by

r
_ n 1 2 1 2 Z A
TSS = 2 - - 1?1 7S = 195 - rggy (8174 2077+ 102%)
= 195 - 20294 _ 105 26 685 = 118.315 .

" 2(390)



TABLE XVII

EDUCATION ASPIRATIONS BY SOCIO-ECONOMIC LEVEL

Class
Curriculum I IT I v Totals n,,
College Preparatory 23 40 16 2 81
General 11 75" 107 14 207
Commercial 1 31 60 10 102
Totals n'j ;; E_é— -;-8-; ;g ;‘;(;

The ''within sum of squares' is determined by using equation

(5.10) and the calculation is given by

C
wss = 2.4 L 5,2
2 2 .7 n, ij
j=1 7]
~0390 1| 1 .2 2 .2 1 2 2 2
_——_2—-—2—£35(23 1194 1%) 4 e (4074 7574 317)
1 2 2 2 12 22
+ gy (1674 1077+ 60%) + 5 (27 + 14 +10)}

1t

195 - % [18. 600 + 56.068 + 83.634 + 11.538]

195 - 84,920 = 110.080.

The between sample variation is found by subtraction and it is

given by

BSS = TSS - WSS = 118.315 - 110.080 = 8.235.
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A summary of the above computations is given below in Table

XVIII.
TABLE XVIII
CATANOVA FOR EDUCATIONAIL ASPIRATIONS
Source SS RZ C
Between Classes 3 8.235 .070 54,46
Within Classes 8 110.08
Total 11 118,315
2 _ BSS
R™ = Tss ~ 070
c (n‘”ffrs‘g)BSS = (n-1)(r-1)R® = (389)(2)(. 070)
= 54, 46 .

Comparing C with chi-square distribution with (r-1l){c~1) = &
degrees of freedom, the observed critical level £ <.001. The
Pearson chi-square statistic for testing the hypothesis (5.8) is 69.2.
The critical level for this value of the Pearson chi-square statistic
with 6 degrees of freedom is much less than .001.

This example serves to illustrate a fact well known to researchers

who work with large sets of data. Weakly related variables can
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often exhibit very statistically significant dependencies.
In this study of independent samples from four social classes,
R2 ~ .070 implies that approximately 7% of the variation of educa-

tional aspiration is explained by the knowledge of the respondents social

class.

Example 5. 2: Suppose we have independent samples from three

secondary schools in a lower socioeconomic metropolitan school
district in which the number of yearly truancy reports for each sample

is cited in Table XIX.

TABLE XIX

NUMBER OF TRUANCY REPORTS BY SCHOOL

Number of Truancy Schools Totals n
Reports By Individuals A B C. i-
None 400 300 100 800
1-3 100 50 25 175
4 -6 50 25 25 100
More than 6 50 25 50 125

Totals n.j Zc;(_)- 4—65 5‘(")'(')‘ 1—”;“(-)3

Using CATANOVA to test

HO: plj = p for all i and j versus le plj # Py for some i and j,



the total variation is given by the following calculation

3
Tss = 2. L 5,2
2 2n . ie
i=1
_ 1 2 2 2 2
= 600 - 700 [800% + 175“° + 1oo‘ + 125°]
_ 216250
= 600 - 5300 600 - 90. 104
= 509,896 .

The '"within sum of squares' is given by

3
= n2
=1 4

TRV

. n 1
WSS'z'zj

1
1 ™o

_ 11 2 2, .2, .2
= 600 - 3 [_—-—600 (400° + 100°+ 50 + 50°)

1 2 2 2 2
+ o5 (3007 + 507+ 257+ 25%)

L
200

.
(100% + 25% + 25% + SOZ)J

+
= 600 - 298.521 = 301.479.

Apgain, the between sample variation is found by subtraction and is

given by

BSS = TSS - WSS = 509.896 -301.479 = 208.417 .

2 BSS _ 208.417 _
TSs ~ 509898 ~ - 009

C = (n-1)(r-1)R% = (1199)(3)(.509) = 1830.873 .
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Comparing C with the chi-square distribution with 6 degrees of
freedom the critical level is @ <.001. R2 = .509 implies that
approximately 50% of the variation of the number of truancy reports

is explained by the knowledge of the respondent's school. A summary

of the above computations is given below in Table XX.

TABLE XX

CATANOVA FOR TRUANCY REPORTS

Source df SS RZ C
Between Schools 2 208.417 . 509 1830, 873
Within Schools 9 301,479

Total 11 509, 896

The Pearson chi-square statistic for testing the hypothesis
HO: pij = p; for all 1 and j (tha:t« the three samples are drawn from
the same population) is 72.45. Hence, the Pearson chi-square

statistic with 6 degrees of freedom has a critical level Q< .001.
Final Observation and Prospects

Empirical sampling experiments were run to see how well the
approximate asymptotic null hypothesis theory holds for some specific

cases. The purpose of these studies was to analyze how accurately
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the mean and variance of the empirically generated test statistic
matched its asymptotically approximated values for small and
moderately large n.j and for different r X ¢ contingency tables and
cell probability structures. The experiments under the multinomial
model indicate for various r, ¢, probabilities, and small sample
sizes the CATANOVA statistic is referenced quite well under H0 by
the chi-square distribution with (r-1){c-1) degrees of freedom
([46], p. 540).

In comparisons of the CATANOVA and the Pearson chi-square
test statistic for independence in a two-dimensional contingency table,
the tests are highly correlated with rank correlation coefficient applied
to the mean of the test statistics. When there are two response
categories (r=2), regardless of the number of experimental groups
(nhumber of populations sampled), the CATANOVA and Pearson chi-
square are identical ([46], p. 542).

Although the CATANOVA and chi-square test statistics have an
identical reference distribution under the null hypothesis, the question
arises as to their comparative behavior under various specific alterna-
tive hypothesis, General analytic results for the r x ¢ table are not
yet available, however in power studies with 3 X 2 contingency tables
with various probabilities the power of CATANOVA exceeds the power
of the chi-square in some cases and conversely in others ([46], p. 543},
The 3 x 2 tables (three response categories for two experimental
groups) were chosen because this is the simplest case for which the

CATANOVA differs from the chi-square statistic.



97

Further research and the extension of the CATANOVA statistic
is being extended and studied for higher dimensional contingency

tables by Light and Margolin [46].



CHAPTER VI
SUMMARY AND PROSPECTS

The two main themes of this paper have been to present methods
of analysis of categorical data that are analogous to the analysis of
variance of quantiitative data and to present topics to help the experi-
menter in the analysis of contingency tables with small, zero and
missing frequencies.

Chapter I provides an introduction into the basic concepts and
definitions of the probabilistic model for analyzing categorical data for
one and two dimensional contingency tables. Chapter II develops some
of the concepts of formulating hypotheses in terms of the probability
model in three -dimensional contingency tables. Examples are
presented to illustrate the application of hypothesis testing using the
Pearson chi-square statistic to determine the critical level.

The third chapter illustrates the use of information theory
applied to categorical data. The minimum discrimination information
statistic is presented and used to test hypotheses in a component of
information table. Component of information tables for hypotheses of
mutual independence, conditional independence and identical distribu-
tion of samples are presented. The component of information table is
analogous to the analysis of variance table for quantitative data. The
main advantage in using the procedure associated with the component

of information table is that the table presents an additive analysis of
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the complete contingency table, rather than just a special segment of
the analysis. There is no theoretical reason why the widely applied
chi-square statistic should be preferred over the minimum discrimina-
tion information statistic. The minimum discrimination information
statistic can be computed with fewer algebraic operations, when a
tabulation of n logn is available. An n logn table is found in
references [39] and [40]. The disadvantages of the minimum discrim-

ination information statistic are that more significant.digits must be

i
o
P

carried through in the ca.lculéftions and the ch‘l—squaré%statlstic is a
simpler mathematical function of the observations.

Chapter IV is a potpourri of results involving problem areas in
the analysis of contingency tables. The purpose of this chapter is to
present some of the elementary methods of handling the analysis when
zero frequencies occur and for estimating missing frequencies under
the hypothesis of independence. For small frequency counts it is
recommended that the minimum discrimination information statistic
be used for the test statistic.

In Chapter V an analysis of variance for categorical data is
presented and a measure of association between the response and
predictor variable is'presented by estimating the per cent of variation
of the response variable attributed to the predictor variable. The
source of this chapter is a paper presented by Light and Margolin {46].
They are in the process of extending the procedure to multi-
dimensional contingency tables.

We have presented a mathematical expository outlihé» and
development of information theory in Appendix A. This introductory

summary of results are used to explain the procedures to obtain a
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minimum for the discrimination information statistic in the analysis of
contingency tables with the probability model. Appendix B contains a
development of the likelihood ratio procedures for testing hypothesis
under the multinomial distribution model. Methods of determining the
maximum likelihood estimates are presented for estimating the
parametérs used in the likelihood ratio statistic. The maximum likeli-
hood estimates are the best unbiased estimates for the parameters
under the assumed multinomial model.

In conclusion, a few ideas of further studies and research are
suggested. One could pursue the study of information theory to
populations of other assumed models for example, data originating
from Poisson processes or from normal populations. There is a need
for research involving power studies dealing with zero of small
frequencies in contingency table of higher dimension. Most of the
power studies in the literature deal with ’1'2 X2 or 2 xc contingency

+

tables.
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APPENDIX A

INFORMATION THEQCRY
Definitions

Consider the probability space (22, G, p.i) i=1,2 where Q is
the sample space, G 1is a o-algebra of subsets of @, and by o
i=1,2 are probability measures defined on (.

We assume the probability measures My and W, are absolutely
continuous with respect to one another, denoted AR Recall that
My is absolutely continuous with respect to Mys by << My, if
p,l(E) = 0 forall Ee¢e (@G whenever |.L2(E) =0. If X\ is a probability

measure such that A = Mo A= then by the Radon-Nikodym

2 9
theorem there exist functions fl(x) and fz(x) , called generalized
probability densities, unique up to sets of probability zero in X\,

0 < f,L(x) < o [0\], i=1,2, such that
0 (®) = [ 1060 ar)
E

1=1,2, forall E e G. The function fi(x) is called the Radon-

Nikodym derivative, and we note the following equations

dp, = fi(x) d \(x)

or



If H1 and H2 are statistical hypotheses and the set X is
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v

»

from the statistical population with probability measures My and i.lz )

then it follows from Bayes' Theorem that

P(Hi)fi(x)

P(H, | x) =

(1)

where P(Hi) , i=1,2, 1is the prior probability of Hi and P(Hi] X)

‘is the conditional probability of Hi given X=x. Note, since fi(x),

i=1,2 is the Radon-Nikodym derivative, fi(x) is the conditional

probability density at X =x under the hypothesis Hi" From equation

(1) for i=1,2 we can obtain the following equation

P(Hllx) P(H,)f, (x)

P(H, | %) P(H,) f, (x)

Solving the latter equation for

£,(x)
£, (x)
we obtain the formula
£, (x) _ P(H, | x) P(H,)
£ () P(H, | x) P(H,)

Now, we take the natural logarithm of (2) and get

%) P(H )

f.(x) PH i)
- log “—"""‘““—P(Hz)“.

log —EITCT = log
2 P(H

x)

(3)
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The right hand side of the equation (3) is a measure of the difference
between the logarithm of the odds in favor of H1 after the observa-
tion of X =x and logarithm of odds before the observation, This
difference can be positive or negative and is considered to be the
vinformat_ion resulting from the observa;i?n) X=x. We define the

X

logarithm of the likelihood ratio, log T 2° the information in
2

X=x for discrimination in favor of I—'{l against HZ'

Definition 1: The information in an observation X=x for discrimin-

o . "“'\\
ation in favor of H

1 against H2 is
£,(x)
log ¥ Ty
S )

Definition 2: The mean information for discrimination in favor of H1

against H iven xe¢ E e g, for , is
g 2 g , M1

£ (x)
1 1
I(].: Z;E) }-Ll(E) f log —EE‘(;)— dpl(x)

f £ f169 dNx) f (E) > 0
) log Ax or >
E fZ(X) 1

with dpl(x) = fl(x)d)\(x). If E is the sample space £, then

equation (4) becomes
f 1(X)
f.(x) log fZ(X) d \(x) (5)

since pl(Q) =1,
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Theorem 1: I(1:2) is additive for independent random events; that is

for X and Y independent random variables under both H1 and HZ’

I{1:2; E.,E

1’ 2) = I(l:Z;E1)+I(1:Z;E

2)
where kEl ;Ez-e G are events associated with the observations X and

Y, respectively.

The following theorem is important and is needed to establish
the form of the minimum of I(1:2) wused in the application of conting-
ency table analysis. For a proof and discussion of this theorem refer

to Kullback ([39], Pp. 36-39). First we need a definition.

Definition 3: A set M of probability measures on (G is called
dominated if there exists a measure X on (, A notnecessarily a
member of M, such that every member of the set M is absolutely

continuous with respect to X\ .

Theorem 2: If fl(x) and a given fZ(x) are probability densities of
a dominated set of probability measures, Y = T(x) is a measurable

statistic such that

8 = fT(x) fl(x) d \(x)

exists, and
m,(t) = ffz(x) et T g nix)

exists in some interval; then

I(1:2) > ot —logmz(t) = I(1 :2), (6)
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N _d
0 = It 1ogm2(t)
with equality in (6) if and only if
fl(x) = f2 (x) = e fZ(x)/mZ(t) .

The underlying principle in using the minimum discrimination
information in statistics is that f2 (x) will be associated with the set
of populations of the null hypothesis and fl(x) will range over the set
of the alternative hypothesis. The sample values will be used to
determine the resemblance between the sample, as a possible member
of the set of populations of the alternative hypothesis, and the closest
population of the set of populations of the null hypothesis by an estimate
of the minimum discrimination information. The null hypothesis will
be rejected if the estimated minimum discrimination is significantly
large.

When the maximum likelihood estimates of thbe parameters for

'
3%

N N
f2 (x) are used, we denote I(1:2) as I(1:2) (also 21I) and

A
2I(1:2) 1is distributed as the likelihood ratio statistic -2 logh

sle

A
([39], pp. 94-97). Thus 21 is the minimum discrimination informa -
tion statistic used to test the null hypothesis H, against the alterna-

tive hypothesis H1 .

Applications to Multinomial Populations

We shall now undertake the application of the principles and
results developed in the preceding sections to the analysis of samples

from a multinomial distribution for testing statistical hypotheses.
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Since the multinomial distribution is discrete, the hypotheses we will
be concerned with are those involving contingency tables.

If we assume the multinomial density of the form

, c X
o1 b
x, J
j=1
c
where Z pij =1, and x represents the observation classified by
j=1

the c categories of a single classification variable, then the measure
A is the counting measure and the integral is replaced by the summa-

tion symbol. We note

i E "1
where E is the set {x = (xl,xz,...,xc): in: N} . Equation (5)
becomes
. fl(x)
1(1:2) = fl(x) log —';z;)- (7)

which is the mean discrimination information per observation.
The following theorem is an important consequence of Theorem 2
and will be stated without proof. For the proof of the theorem see the

discussion in ([39], pp. 111-112).

Theorem 3: The least informative distribution on the population
partitioned by one classification into ¢ cells with given expected

values, for discrimination against the multinomial distribution fz(x) R

is the distribution ff(x) such that
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Epx(x) (x) =0, j=1,2,...,¢

fl‘ j
and
S5 f;_k(x)
T £ (x) log ——f;(—x)— (8)

is a minimum is given by the distribution

c
sk JflthJ c tj N
f1 (x) = e fz(x ? ij e
j=1
c X
N! j
=1 J
o x,! J
j=1
where
t t t
E : 1
_ j c . _
p1j ~p2je Pyp © +..,.+p2Ce i=lL,2,...,¢c
the t.'s are real parameters, and
t t t
- |9 2 c
GJ— 5t log Py © +p22e t...tp, e (10)

An important point to note in Theorem 3 1is that the least infor-

¥ B
mative distribution f1 (x) 1is a multinomial distribution.
“‘
The minimum discrimination information of a sample E with

‘N observations is
1:1 tc

I(1:2; E) > t191+ t292+ Lot tCGC— N log P, € ... % P,. ©

= 1(1%,2; E)
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1

{

by applying the result of Theorem 2. Simplifying I(l*: 2;E), we note
equation (10) can be differentiated and solved for ,tj for

j=1,2,...,c where:

D@
n
L&
2
e
[©]
124
o
oo
—
o
+
o
[\S]
[\N)
o

Solving for tJ. we have

- ’ i o1 c
tj log ~ + log Py e +...+pzce

and I('l*: 2; E) becomeé

£ el | 92 ec
I(17:2;E) = 0, log——L— + 0, log —2— <
1 NPy 2 NP2

(12)

Suppose we want to test the simple null hypothesis I—I2 that the

sample is from the population specified by
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c
HZ:p.=p2j for j=1,2,...,c and fpz.zl

against the alternative hypothesis I—I1 that the sample is from any

other possible multinomial population. From the distribution in (9)

we take the parameters to be the same as the best unbaised san’ﬁple
L}

estimates, that is,

AN /) R T .
Gj = N(plj) = N S %o i=l,2,...,c. (13)

Using equation (12) we substitute equations (13) for the parameters

0., j=1,2,..:.,c and we get
C
21 = T x, log————-'J—-— . (14)

Equation (14) is of the form used as the test statistic in Chapter III for

a one dimensional contingency table.



APPENDIX B
LIKELIHOOD RATIO STATISTIC

We have made frequent reference of the likelihood ratio statistic
throughout this paper. In the study of the analysis of contingency
tables in probabilistic terms, we have assumed the multinomial model.
Our objective is to develop the likelihood ratio statistic and compare it
with the minimum discrimination information statistic for two-
dimensional contingency tables under the null hypothesis of independ-
ence., We shall suppose that we have a sample of N observations
from a multinomial population partitioned by two classification
variables. Let xij be the number of observations occurring in cell
(i,j), where i=1,2,...,r and j=1,2,...,c.

The likelihood function for a sample of size N is defined to be

r ¢ X,
Lip;) = T 1 p.Y (1)
i=1 j=1
where xij is the frequency-in cell (i,j).

Under the null hypothesis that the classifications are independent,

. p.j for all i and j,

we will develop the likelihood ratio statistic to test this hypothesis
against the alternative hypothesis which simply negates the null

hypothesis.
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The likelihood function under the null hypothesis becomes

r ¢ ox r c X,
Lip;, p;) = T W p,~ = T T (p p,) "7
i=1 j=1 Y i=1 j=1 ]
r x, - c X,
= o p ~ Ip.7 (2)
i=1 j=1
P c
Now, since 2 p, =1 and X p. =1, we can write p and p,
i=1 j=1 " r c
as follows
r-1
pr. =1 - ? pl' H (3)
i=1
c
P.=1-Zp (3
c j=1
Substitutions of (3) and (3') into (2) give
r-l X r-1 x., ¢ X .
Lip, p..) = |l- I p, mp =~ O op." (4)
. i=1 i=1 j=1
and
r X, c-1 e c-1 X .
L{p,,p.;) = I p, "|1- T p,_ I op.7, (4)
S j=1 j=1 ’

respectively. If we take the natural logarithm of equations (4) and (4'),

we then get

r-1 r-1
log L(pi- p'j) = X logil - ifl P, + 1?1 X, log P..
c
+ 2 X-j logpj (5)

j=1
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r c-1
log L(pi. p.j) = 1?1 x. log P,, + X, log|l - jzzl p°j
c-1
+ Z x,logp., (5')
j=1 *J *J

respectively., The maximum likelihood estimates are the values of the
parameters P;. i=1,2,...,r and p'j , j=1,2,...,c, which
maximizes L(pi_ s p'j) . Thus, to find values of p;. and p_j which
maximizes (5) and (5'), as well as (4) and (4'), we differentiate
with respect to each of the parameters P, . for i=1,2,...,r-1, and

p.J. for j=1,2,...,c-1 and equate each expression to zero giving

i
%

9 log L(p., p..) x (-1) X,
=l - L + —~ =0 for
api_ r-1 P;.
1- Z P;.
i=1
i=1,2,...,r-1, (6)
9 log L(p. p..) x  (-1) X,
S T < + —L =0 for
op,. c-1 p..
] 1- = p ]
j=1
i=1,2,...,c-1, (6")

Solving the equations (6) and (6') for all P;. and p.j , we obtain

= : for i=1,2,...,r-1 (7)

and
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P. = J for j=1,2,...,c-1. (71)

If we substitute the equations (3) and (3') into (7) and (7'), respec-

tively, then we obtain

and

%P,
P.= —L ¢ for j=1,2,...,c-1. (8")
.J x.c

Stumming (8) with respectto i and (8') with respect to j we get

r
AN
r _.121 *i. Pr. N/ﬁ
1 = = no_ _i= - r. (9)
. pi- bd X
i=1 r. r-
and
N A
c >_: X-j P.c N/S
_ N _ =l - °c |
1= Z p. = = . (9")
. j X, X
j=1 c C

Now, solving (9) and (9') for P... and p.. Wwe obtain

b'd
A _ r.
Pr - N (10)
and
/\‘ x'c
_ 1
p'C - N (10 )
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If we substitute (10) and (10') into (8) and (8'), respectively, then

A

P, = ——Iil— for i=1,2,...,r (11)
and

A X, :

B = —ﬁ]— for j=1,2,...,¢c. (11')

dh
The rhaximum likelihood estimators are given by (11) and (I1'). Thus,

the likelihood function (2) evaluated at /ﬁl and /E;-j becomes

X X
i j

A /\ r Xi- C X'J

L(p. p.) = I I

SRR R TS B PR S
N )=t N Y

r X'1 c X'.

II xi 1 | xJ J

- i=1 211\;1 (12)
N

By a similar procedure for determining the maximum likelihood
estimates of P, and p.j , we can find the maximum likelihood

estimates of pij using the likelihood function

r c Xij
L(p..) = I I p,
Moo=l =1 Y
and the equation
r-1 c-1
p..=1- % = p (13)
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The likelihood function becomes upon substitution of equation (13)

X
r-1 c-1 rc r-lc-1 x,,
Lp..) =|1- = = p.. z Zp.Y, (14)
i=1 j=1 Y i=1 j=1 Y

The natural logarithm of (14) is

r-1 c-1 r-1 c-1
log Li{p..) = x log|l - X Z p..i+ = 2 x.. logp..
g L(p;;) rc 108 2 j:1p.LJ 25 B Py

and the partial derivatives of this equation with respect to each

parameter pij gives

BlogL(piJ.) } xrc(—l) xij i
= + = 0 for
ap_.lj » r-1c-1 pij
1- = = P,
i=1 j=1 Y

i=1,2,...,r-1 and j=1,2,...,c-1.

Solving the above equations for pij we get

r-1 c-1 A
x, 1- 2 = P, < /ﬁ
AN ) i=]1 j=1 Y - ij Frc (15)
ij x
rc rc
and summing with respect to i and j we have
r ¢ N/ﬁ
1= % Zp,.=——;——£c—' . (16)
Ci=1 j=1 Y rc
x

lr\f from (16) into (15) we get

Substituting ’;}rc =
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X
N ij : .
pij = N for all i and j. - (17)

Equation (17) gives the maximum likelihood estimates and equation (2)

becomes
r c X
I 1 xij Y
AY i=1l j=1 =
J NN

: r o x, c x~j
N I x. II .
L(p. P..) ot S
L(/\ NN r c¢ .. !
pl._] o o x, 5
i=1 j=1 Y
The natural logarithmovf. A gives ’
r c
logh = Z x, logx, + Z x,logx.-NlogN
=1 b i- oy J ‘j
: J
r c ,
- 2 x,.logx... (19)
=1 g1 BT

If we multiply (19) by -2 we get

-2 logk = 2
i

! x,, logx,

"M R
n M0
MR

X.. logx,Lj -2

1 j=1 Y i

c
-2 2 x,logx .+ 2N logN. (20)
j:1 .J .J .
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We note equation (20) is identical to the minimum discrimination
information statistic for testing the hypothesis of independence. The
statistic -2 log\ is asymptotically distributed chi-square with

(r-1)(c-1) degrees of freedom ([62], p. 113).
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