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CHAPTER I

INTRODUCTION AND LITERATURE REVIEW
Introduction

Whenever observations are taken in an ordered sequence it can
happen that the complete data set ¢can be divided into subsets in a well
defined way. Each observation may be regarded as coming from a
parameterized family of distributions; those observations in a specified
subset correspond to some partigular value of the parameter, the
parameter value changing from subset to subset.

One of the more widely known occurrences of this situation is in
industry where one is interested in the quality of a product from a
continuous production process. For a specific example, let us suppose
that the '""Surestrike Match Company' produces boxes of kitchen
matches, and fhat the average content 1s advertised as fifty matches.

It seems clear enough that the company would like to know if a
change occurs in the average content of a box of matches. If this
average increases the company is giving away free matches, while if
it decreases customers rﬁay well suspect the company of false adver-
tising and take their business elsewhere, It also seems ¢lear that if a
change in the average content has occurred, interest would center on
the time point in the sequence at which the change occurred. This
knowledge may allow the gompany to recover the faulty product and

correct the fault before distribution ogcurs,



Many other examples come to mind., In biological studies, the
onset of a disease at some point in time may result in a reduced growth
rate; the application of a treatment may inhibit the response to some
stimulus; or repeated conditioning in a psychological experiment may
cause a change in the proportion of correct answers given by a subject.

There is a gonsiderable body of literature on the various problems
of estimation and inference associated with parameters changing over
time, and the references given in the bibliography are by no means
exhaustive. Most of the recent studies have been from the classical
frequency theory viewpoint, The present study is set in a Bayesian
framework.

We shall now formulate the problem in mathematical terms and
then review some of the recent papers on its various aspects,

We assume that we have observations on a finite sequence of
random variables Xl' v ,XT , and that for some m, 1 < m < T,

X ) Xm are independently distributed with density f(x; 01) while

17"

Xm+1""’XT

course that 91 # 92 and that (Xl’ v ’X@) is independent of

are independently distributed f(x; 62) . We assume of

(X X

b1t T) ., We refer to this point m in the sequence as the

"shift point'" or ''switch point', since the random variables up to the
mth correspond to one parameter value while those after the mth
correspond to another parameter value. The problem may be
generalized to the case where 91 and 82 are p-component vectors.
The shift is then from one point p-space to another, rather than a
shift along the real line.

It is clear that if m = T then no shift has occurred. This

enables us to identify two main problems of interest with such a



sequence. The first is a detection problem, That is, has there been
a parameter change in the sequence of random variables? The second
problem Lsan estimation problem, Asgsuming a shift has occurred, at
what point in the sequence did it occur? Along with these are the
problems of estimating current and previous parameter values, and
perhaps testing hypotheses about them. The present study addresses

itself only to the second of these two main problems.

Review Of Some Related Literature

In a series of papers Page (1,2,3) discusses the problem of
detecting a parameter change, and proposes a number of tests to this

end, These are based primarily on the cumulative sums
r

Sr = Z (xi - 0), where 0 is the known initial mean. If there is no
i=1

change the mean path of the cumulative sums is a horizontal path;

E(Sr) =0,

Quandt (4) discusses a maximum likelihood technique for
estimating the switch point and the regression parameters in a two-
phase regression. This is a generalization of the one parameter case
discussed earlier. We assume here that the observations Yi’

2

i=1,.,.,m are distributed N(ozl+(31 Xi’ o) while the Yj’

j=m+l,,..,T are distributed N(a2 + (32 Xj . crz), Quandt's technique
involves evaluating the likelihood function at each of the possible switch
points. He also discusses in this article and a later paper (5) several
tests of the hypothesis of no switch against the alternative of a single
switch,

Sprent (6) outlines a hierarchy of possible hypotheses of interest

related to two-phase regression, and suggests that the result of an



initial investigation should indicate the next hypothesis to be considered,
His tests, however, are based on the assumption that one knows
between which two of the independent variables the switch occurs, The
switch point is then the abscissa of the point at which the intersection
of the two regression lines occurs, namely vy = (cz1 - az)/(ﬂz ~ ﬂl) .

Chernoff and Zacks (7) study Bayesian procedures for estimating
the current mean (i.e., the mean of XT) in an obgerved sequence
Xl’ caey X’I‘ of normally distributed random variables which has been
subjected to occasional changes in the mean, Their estimator requires
many complex ¢computations except when the assumption of at most one
change in the mean is made. A test ig also given for the null hypothesis
of no shift against the alternative of exactly one shift, and its power
for certain alternatives is compared to that of the test proposed by
Page (2). This is generalized in a later paper by Kander and Zacks
(8) to the gcase where the distributions of the Xi's belong to the one
parameter exponential family rather than the normal family in
particular, The paper by Bhattacharyya and Johnson (9) derives
certain optimal tests of the hypothesis just stated, their optimality
criterion being the maximization of lagal average power,

Brown and Durbin (10) discuss methods for investigating whether
a regression relationship is constant over time. Most of their tech-
niques are graphical in na‘trure, along the lines suggested by Tukey (11),
These i;lclude plottiﬁg the residuals from a single regression f’ltte& to
the entire data set, as well as plotting the cumulative sums of
residuals, in line with the cusum technique of Page (1). A further
technique they discuss is that of plotting the recursive residuals

A

- 2 - A A
w, = Yt: - (aft_1+ Btml Xt)’ t=3,..., T, where @, q and 'Bt-l are



the least squares estimates of the regression parameters based on the
first t-1 observations. These quantities can easily be normed in
such a way that under they hypothesis of no shift they are independently
distributed N(O0, 0'2) . Other useful plots are the cumulative sums of
the recursive residuals and the cumulative sums of squares of recur-
sive residuals, each plotted against the time points t.

Finally we come to some of the more recent papers on shifting
sequences of random variables. With regard to two-phase regression
in particular, D. V. Hinkley has been a major contributor to the recent
literature,

In a paper published in 1969, Hinkley (12) describes a method
for finding a maximum likelihood estimate of the abscissa of the inter-~
section point of the two regression lines, vy = (az1 - 0:2)/(52 - Bl) .

This involves finding T -3 conditional likelihood functions, each of
which has to be maximized, and then maximizing over all T -3
functions. This estimate is difficult to work with in that it has no
explicit definition, He also proposes a likelihood ratlo test for a null
hypothesis of the form Htvy= Yo In his 1971 article, Hinkley (13)
parameterizes the problem a little differently. He assumes that Yi s
i=1,...,m are independently distributed N(0 + ﬁl(X,L— Y) 0‘2) while
the Yj ; J=mtl,,..,,T are independently distributed

N(6 + 52 (Xj‘Y)» 0'2); with Xrn <y <X v being the abscissa of

m+1’
the intersegtion point of the two regression lines, He then centers
interest on estimation and inference procedures related to 6 and +v.
Maximum likelihood estimation of 8 and vy is studied under the

assumption that ﬁz is unknown and also under the assumption that

62 = 0. Likelihood ratio tests for HO ! [31 = (32 and Hb : ﬁz =0 are



discussed, He also derives a confidence region for y and describes
a technique for constructing a joint confidence region for 6 and y.

Hinkley's remaining papers are concerned with a change in the
mean of an observed sequence of random variables. In a 1970 paper
(14) he discusses maximum likelihood estimation of the shift point m
in a normal sequence whose mean has been subjected to one change.
He also derives the asymptotic distribution of the likelihood ratio test
statistic for tests of hypotheses about m. Similar problems related
to a binomial sequence are studied in a paper by Hinkley and Hinkley
(15).

A Bayesian approach to the problem of estimating the shift point
in an observed sequence of random variables has been given by
Broemeling (16). He derives posterior densities for the shift point
parameter in the case of a Bernoulli sequence, a sequence of
exponentially distributed randem variables, and a normal sequence
.\‘K/ith known variance. In another paper Broemeling (17) discusses
Bayesian procedures for first detegting the presence or a.bsepce of a
parameter change, and then making inferences after this initial
decision has been made, The detection problem is handled in terms of
a ''posterior odds ratio' in favor of the null hypothesis, while inference

procedures are as usual based on an appropriate posterior distribution.
Organization Of Thesis

We shall now describe briefly the content of this thesis in rela-
tion to the literature we have just discussed.
In Chapter II we derive a number of posterior distributions which

mify-be used for inference about a normal sequence with unknown
L
oy



variance. This is an extension of the paper by Broemeling (16).

Chapters III and IV are related to two-phase regression, which
may be considered as a generalization of the shifting normal sequence.
In particular, Chapter III addresses itself to the problem of estimating
the shift index m, while in Chapter IV we derive posterior distribu-
tions related to estimation of the abscissa of the point of intersection
of the two regression lines. These chapters present an alternative to
the analyses given by Quandt (4, 18), Sprent (6), Hinkley (12, 13) and
others.

A brief survey of Bayesian est‘imati’on and inference techniques is
presented in Chapter V, which includes examples and applications of
some of our earlier results.

Chapter VI summarizes the results of this report and discusses

some possibilities for future investigations.



CHAPTER II

POSTERIOR DISTRIBUTIONS RELATED TO

THE NORMAL SEQUENCE

In this chapter we shall derive some posterior distributions
related to the problem of estimating the time point at which a shift in
the mean occurs in a finite sequence of observations on normally
distributed random variables,

- More specifically, we assume that we have observed a sequence

Xi3+..,X , n>3, of independent random variables, and that for
1 n -7
some unknown m(m=1,,..,n-1) the distributions of the Xi‘s are
given by:
X X re i,i.d N(o 0’2‘) and
1: LR m a L, 1. * 0! > ’
X X are i.i.d. N(o,,0%)
mtl’ Tt e i,i.d. o),

with o2 > 0 and 4y # ¢

The case in which crz is assumed known has been studied by
Broemeling (16), We consider here only the case where crz is
unknown,

There are a number of subcases for the above problem which we
shall consider:

(i) dDO s d)l , both known

(ii) Only one of d)o or d)l known

(iii) Neither ¢g nor ¢, known,



A further consideration is whether or not the direction of the
shift is known, and this will be discussed in the following sections.

While the main emphasis in this paper is on the estimation of the
shift point m, posterior distributions will be derived for some of the
other unknown parameters.

In order to attagk the problem from a Bayesian viewpoint we shall
consider m to be a disc‘rete random variable with state space
In-l = {1,,..,n-1}. The parameters for our problem are now m,
o2, cbo , and cbl , and prior distributions will have to be assigned to
those that are unknown in each of the cases considered,

In the development given in this and later chapters we shall
assign independent prior distributions which may be considered
appropriate for situations where prior knowledge is vague, More

precisely, we shall agsign in every case for m and 0‘2 the prior

densities:
l1/(n-1), m=1,,,.,n-1
Tro('rn) =
0 elsewhere, and
1/0‘2, 0‘2> 0
TTO(O'Z)OC

0 elsewhere ,

The prior on 0'2’ is of course an improper density. It has been
widely used to indicate vague prior knowledge of the variance. Its
form is suggested by a number of approaches, and the reader is
referred to Lindley (19) and Jeffreys (20) for a discussion of these,

We now consider in turn the three cases mentioned above.
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¢y And ¢y Both Known

The likelihood function for m and 0'2 is

L(m,o2) = (210%) ™2 exp{(-1/2¢%) = (X, - ‘1’0)2 (2no?)(R-m)/2
i=1
R 4
exp (—1/202) z (X - ¢1)2
. {=m+1
m n
= (2-‘|-r0'2)"n/2 exp((-1/2 02)[ z (X, - ¢O)2+ Z (X.L-¢1)2]
i=1 t i=m+1

(2.1)

where 0 < 0'2 < o and m belongs to In-l' In accordance with

Bayes theorem the joint posterior distribution of m and o~ is

™, (m, crz) e L(m, 02) T (m) vo(crz)

m n
= (o%) /2D oy (-1/202)[2 (X,-9,)°+ = (xi_¢1>2]

i=1 i=z=m+1
(2.2)
where 0 < 0'2 < @ and m belongs to In 1°
Inference Aboul; m
This may be based on the marginal posterior density of m,
which is given by
Lo d] -
Trl(rn) ocf Tl'l(m,O'z)dO'Z
0
® 5 -(n/2+1) > [m 2 n 2
[ (2 exp{(-1/20 >Ez (X, -0g)%+ = <XL'¢1>J
0 i=1 i=m+1
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Letting w = l/o'2 , the integrand is seen to have the form of a

gamma density, and is easily evaluated to give

m n n/2
r (%) [2/(2 (X, - 60+ = I ¢1)2)] .

=1 i=m

We can thus write

m 5 n > -n/2

T, (m) | Z(X,-¢,)" + Z (X,-0d,)" , m=1,,,.,n-1.

1 . i 0 . i 1 !
i=1 i=m+1

(2.3)

The norming constant may be found by summing on m.

Inference About 0'2'

This may be based on the marginal posterior distribution of o'z,

which is given by

where

1

m 2 n
K(m) = [z (X, - ¢y)° + =
i=1 i=m+]1

2

If we now let w = 1/0'2 we can write the posterior density of w as

n-1 .
wn/2 -1 exp{-w K(m)/2}, 0<w<wo, (2.5)

m=1

Apart from the norming constant, this is the sum of n -1

gamma densities with parameters ozm =n/2 and Bm = 2/K(m). The
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posterior density of w = 1/cr2 is thus a mixture of gamma densities,
We may also make the equivalent statement that the posterior density
of crz is a mixture of inverted gamma densities.

An alternative distribution on which inference about crz can be
based is the conditional posterjor distribution, -rrl(o*'2 m). One could
center interest on this distribution evalnated at, say, a modal value of

the posterior density of m, In this case we have

1T1(O‘2 m) = ﬂl(oz,m)/wl(m)

2 ~(n/2+1

= (o) )exp{(-l/zaZ)K<m)}/[K<m)]'“/2

. (2.6)

It is now clear that, for each fixed m, this conditional density is
inverted gamma with parameters @ = n/2 and ﬁ'rn = 2/K(m).

Before proceeding to the next case we should perhaps remark on
the mixing density which occurs in the posterior distribution of

w = 1/0‘2, If we let

W1’1/2 -1

fm(w; n/2, K(m)) = exp{-w K{m)/2}

then we can write the posterior density of w (see (2.5)) as

n-1
‘ITl(W) @« zZ f (win/2, Km)). . (2.7)
m=1 ™

The norming constant K is now given by

©® n-1
k= 'z r(n/Z)[Z/K(m)]n/Z/r(n/Z)[a/K(m)]
0 m=1

8/2 ¢ (win/2, K(m))dw

ot

n-1
= r(/2) 2*% = [Km)
m=1

]-n/Z
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Referring to (2.7) and inserting the norming constant K we see
that the mth mixing constant for the posterior density of w is
K(m) -n/z/n%i [K(r’n)]"n/2 . By referring also to (2.3) we see that
this is precr'ix:-ely the posterior density of the shift point at its mth mass
point, Thus the gamma densities oggurring in the posterior density of
w = l/o-2 are mixed according to the posterior density of the shift

index m.
Only One Of ¢0 Or ¢1 Known

The theory for the case ¢O unknown and ¢l known parallels
that for the case ¢ known and ¢1 unknown, and for that reason we
shall study the latter case only in this section. The results for the
former case will be evident,

We now have an additional parameter, ¢1 , whose prior density
must be assigned. We shall derive the appropriate posterior densities
corresponding to two different vague prior distributions, Firstly we
shall assume that the diregtion of the shift i{s now known and assign the

improper prior density
no(q;l) e« gonstant, -o < q;l <o,

This shall be referred to as the ''unconstrained' prior density.
Next we shall assume that it is known that ¢g < ¢ and in this case

we shall assign the ''constrained'' prior density

no(q;l) « constant, ¢O < q;l < o .
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Unconstrained Prior, Inference About m

The joint posterior density of the three unknown parameters is

easily seen to be

m n
ro(m o, 60) © (020) P2 e lc1/26%)] T (X -6.)%+ B (X.-6,)%|)
1 1 . i 70 . i Tl
i=1 izm+1
(2, 8)
The marginal posterior density of m is given by
© .0 5 ~(n/2+1) m
7, (m) °°f (CTZ) exp (-1/202) (X, - )2
1 P B¢
0 Y- i=1
n
(X - ¢ )2} do, do’
. i 1 1
i=m+1
(o] (o] m n
2. -(n/2+1) 2 2 =n 2
ocf f (o) exp{(-1/20%)| B (X, - 4% = (XK1, )
L0 feom i=1 i=m-+1
— 2 2
n
+ (n—m)(t1>1 - Xm+1) jl d¢1d0‘
where X = Z X. / (n-m), Making use of the Tonelli theorem
mt1 i=m+1 '

(21) we can write

o] _ 2+1 m n _
m, (m) ec_(; (%) (-1/202)L§I(Xi- ¢0)2+1i+1(x1-x;+1)2]

® — 2
[f exp{(~(n-m)/20°)(¢, - X2 ) }d 4{} d o2

] @ 5 (nt1)/2
e (n-m) 2 [ e?) " 2 exp{(-1/20%) [K(m, o) o’
0

where

m 2 o =n 2
K(m, dg) = T (X, - 90"+ = (X, -X %,

i=1 i=m+1
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Making use of the inverted gamma integral as before we obtain for the
posterior density of m

¥

n-1)/2

T (m) « (n-m)" /% [K(m, ¢O)]'( , m=1,,..,n-1. (2.9)

A comparison with (2,3) shows that, for each m, ¢1 has been

replaced by its estimate and an additional multiplier has been

introduced.

Unconstrained Prior, Inference About o'2

This may be based on the marginal posterior distribution of 0'»2

H

which is given by

n~l ,o wln/2+1
mo?) & T o2y P72t
m=1 %
ex (-1/2cr2)[r§:1 X -6 )2+ = (X -0 )2] dd
P 2By 9g) T "% 1
i=1 i=m+1
n-1 -(n+1})/2
« (n—m)—l/z(cz) n+1) exp{(—l/ZO'Z)K[m, ¢O]},
m=1
0<o? <o, (2. 10)

Again it is clear that the posterior density of w = l/o'2 is a
mixture of gamma densities with parameters a = (n-1)/2 and

ﬁm = 2/K(m, ¢O) . As before it is a straightforward matter to show

that the mixing density is precisely the marginal posterior density of m,

Unconstrained Prior, Inference About ¢1

Inference about ¢1 can be based on the marginal posterior

density of ¢1 , which is given by
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T (d,)
1 m=1"10
m n
exp (—1/20‘2)1: > (X, - ¢0)2+ > (X, - ¢1)2J do? .
i=1 i=m+1

Making use of the inverted gamma integral we obtain

n-1rmm > n 2 |-n/2
m(6) = [Z(X.-qao) t 2 (X -é) ]
m=10Li=1 " i=m+1 *

n-1 _ -ln-1)+11/2
= = [K(m, 6)] 2 (14 (r(m, 6.)/ (n-1)) (b, -T2 )2
0 0 1 m+1

m=1
where T(m,q)o) = (n-1)(n-m) / K(m, ¢0), Thus we can write

n-1

m($;) = Z (n-m)
m=1

'I/Z[K ]-(n-l)/zg

(m, b)) opin-1, X2 1, m(m, ¢))

(2,11)

o

where

]

g (opin-lip ,7 ) = |:Trr3/zf‘(n/2):l Ef‘((n—l)/Z)((n-l)v)l/z]

is the t density with location parameter P o precision parameter
T and n-1 degrees of freedom (See (22)). We see from (2.11)
that the marginal posterior density of ¢1 is a mixture of t densities,

and it is easy to verify that the mixing density has the value

n-1
[[K(m,qao)]"“/z/h(m,w]“ﬂ = (K, 00)] " 2lr(i, 001"/
i=1

at its mth mass point, m=1,.,.,n-1.
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Constrained Prior, Inference About m

The joint posterior density of m, 0'2 and ¢, 1is now

m n
mi(m,e”, ) = (0% ep (-1/20‘%;)Lz (X;-g) %+ = (x1-¢1>2]

i=1 i=m+1
(2.12)
where m € In-l’ 0 <o'2 <o and ¢0 < 4)1 < o, The marginal of m
is thus
R ~-(n/2+1)
mw) e [ [ ©?)
0

%y
m n

exp (-1/20‘2)[2 (x.1-¢0)2'+ s (xi-:pl)z] do®ds, .
i=1 i=m+1

Integration with respect to 0'2 proceeds as before to give

©rm n -n/2
i=1 ! i=m+1

%

© —n 2 -n/2
- [ [K(m,%) + (n-m) (¢, -xmﬂ)} do,
q>O

where K(m, ¢O) and T(m, 4)0) aré as defined in an earlier section.

This expression may now be written as

-[(n-1)+1]
-n/2 r® =n .2 2 .
mi(m) e (K(m, o) [ 1+ (rm, 60)/(m-1)) (8, - K2 L) do, .
¢O :
The integral is seen to be, apart from the norming constant, the
upper tail of the t density with location parameter }_(:;H_l , precision

parameter T(m,¢0) and n-1 degrees of freedom. Inserting this

norming constant we may write
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() @ [0-m] 2 [K(m, 41 D2 (6y)]
n-1, Xm+1, 7(m, ¢0)

™

(2.13)
where Tk, a, b(x) is the cumulative distribution function of a ¢t
random variable with location a, precision b, and k degrees of
freedom. Now the general t distribution referred to above may be
transformed to a Student's t by a translation and change of scale.
Tuh“at is, if Y is sucha t random variable, then Z = b'l/z[Y -a] has
a Student's t distribution with k degrees of freedom. This enables
us to write the cumulative distribution funcgtion used in (2, 13) in terms
of the distribution function of a Student's t with n-1 degrees of

freedom, according to the formula

1/2

Tk, a,6) = ‘”k(b (4’0‘3))

where wk(x) is the distribution function of a Student's t random
variable with k degrees of freedom, We can then write for the

posterior denslity of m

-1/2 -(n-~1)/2 1/2 =n
Trl(m) « [n-m] / [K(m, 4)0)] ( ) lil*‘l’n_l("r(m, ¢0) (¢0'Xm+1))]
(2. 14)
where m=1,..,,n-1. One advantage of this formula is its extreme

computational ease.

Constrained Prior, Inference Aboutﬂ crz

The marginal posterior density of 02 is given by
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11’1(0' e Z
m=1 ¢O
m n
exp (-1/2o2)£z (X,-4,)°+ = (X.-L-¢1)Z} do,
i=1 izm+1
n-1 , -(n/2+1) 5
s T (¢7) exp{{-1/2¢ )K(m,¢o)}

©
2 = 2
[ expl(-ta-m)/z o) (8, - X2, )%} 46,
%
Inserting the norming constant for the normal density on the
right and integrating with respect to ¢1 we may write

-(n/2+1)

‘n'l(cr e Z (o) exp (-l/Zo'Z)K(m, ¢O) {217 cJ"Z/(n-m)Jl/2

[ -N((¢O - igﬂ)/(a/m))}

where N(x) 1is the cumulative distribution function of a standard

normal variate, Simplifying, we obtain

n-1
(crz)oc = (n—rn)"l/2

m-=1

5 -(n+l)/2
o

(%) exp{(-1/2 %) K(m, ¢,)

[-N((dao-igﬂ) (w/ n—m))] (2. 15)

1

for O<0‘2<oo,

Constrained Prior, Inference About 91

From (2.12) we see that the marginal posterior density of ¢1

is
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3
v

n
exp (—1/202)[2 (X_.L—¢O) + = (X‘.L—¢1)2J daz
s i=m

n-l™m 2 n 2 -n/2
« = [z (X,-6,)"+ = (X-¢1)] .

m=1 Li=] i=m+1
Proceeding exactly as in the unconstrained case we obtain

n-1 -n/2 -1/2 —n
“1(¢1)°°m2=1[K“m°¢o)] [r(m, 0 )] g (opsn-1, X 1, r(m, ),

¢O < ¢1 < o (2.16)

where K(m, ¢O) R T(m,¢o) and g(x; k,a, b) are as previously
defined. The posterior distribution in this ¢ase is thus a mixture of
truncated t distributions, In order to find the mixing density we need
to compute the norming constant K. Integrating (2.16) we get

n-1

K= = [Km, )™ ?[r(m, %”'1/2[ -wn_l(v(m. %)1/2‘%'2&1))] :

m=1

Referring again to (2. 16) we see that the value of the mixing density at

. th . R
its m mass point is

p = [K(m, ¢y)]" 172 /x (2.17)

m

T(m, ¢4)

for m=1,.,..,n-1. As before, \lfn 1(x) is the distribution function of

Student's t with n-1 degrees of freedom,
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Neither q>0 Nor q>1 Known

As in the previous case we shall study the present situation for
two vague prior densities. Firstly we shall assume that nothing is
known about the order relation between q>0 and q>1 and assign the

improper prior derisity
-rro(d>0, d)l) « constant, ~o < ¢,L <o, i=0,1, (2. 18)
Next we shall assume it is known that q>0 < q>1 and assign the prior
-rro(d>0,q>l) « constant, - <<1>0<<1>1 < (2.19)

The theory for the case in which the order relation on the q>,L's'
is reversed parallels that being presented here and will not be -
presented separately. As before we shall use the terms 'unconstrained"

prior and ''constrained' prior for (2.18) and (2.19) respectively.

Unconstrained Prior, Inference About m

The joint posterior density of m, 0'2, q>0 and q>1 is

5 -(n/241)

v (o, 72, 00, 61) @ (00

m n
exp (-1/262{_2 (X,-09)%+ = (X..—¢1>2]

i=1 i=m+1

where mEIn 0<crz<oo, and —co<¢i<co for i=0,1. The

.

marginal posterior density of m is given by
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f fm f -(n/2+1)

m n

i=1 i=m+1

Integrating first with respect to 0'2 we obtain

f[]:%’lxtd)o +.;

i=m+1

m n _ _ 2
ff [Z‘ )2+_>: (xi-xlm)2+m(¢0_xm)

X 2 _n/zd d

where
_ m _ n
x1m=<?xL>m and xr‘;+1=(z x>(nm)
i=1 i=m+1
Let
n = m,2 n 2
C(m) = Z)(XL-X1 )y + = (XL—X +1)
i=1 i=m+1
Then we may write
(n-2)+2)
= [C(m ]‘“/Zf f [ —5 (4 - LLJ(m))'T(m)(fg-g(m))] 2
(2.21)
where
—(n-Z)m 0 7]
‘ 5 i
o=l |, pm = ,  T(m) =
3 )_c:;“ 0 (n-2)(n-m)
i C(m) |
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The double integral above is, apart from the norming constant,

that of a bivariate t density and is easily evaluated to give

1/2

[n-r((n-Z)/Z)c:(m)]/[r(n/Z) (m(n-m))’ %] .

Substitution in (2,21) gives

-1/2[

m (m) @ [m(n-m)] C(m)]” , m=1,..,,n-1, (2.22)

A comparison of (2.3), (2,9), and (2.22) displays an interesting

pattern as more parameters are assumed unknown,

Unconstrained Prior, Inference About cr?'

The marginal posterior density of 0-2‘ is

(n/2+1)
TT c!‘:m— ‘[co '[co .

2, = 2, 2 2
exp¢(-1/2¢7)| = (Xi-¢o) + Z (Xi-¢1) d¢od¢1
i=1 i=m+1
n-1 , -(n/2+1) 5
e« X (¢7) exp{(-1/2¢7) C(m)

m=1

f f exp{(-1/2) (3 HL( )'Z_l(m,o’z)(i-&(m)) d¢od¢1

where ¢ and p{m) are as before and

~

m/cr2 0

0 (n —'rn)/ch
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Using the form of the bivariate normal density to evaluate the

double integral we obtain for the posterior density of crz

n-1
nl(crz) c 0z [nn(n—nn)]-l/2 (0'2)*n/2exp{(—l/Zo-Z)C(m)}, 0 <o-2 <o,
m=1 (2.23)

As in the previous case considered, the posterior density of
w = 1/<r2 is a mixture of gamma densities, the mixing density being

the posterior density of the shift point.

Unconstrained Prior, Inference About (¢0, ¢1)

The joint posterior density of ¢0 and ¢1 is

n-1 o -(n/2+1)
g o) = 2 [ (0%
m=110

m n
exp (—1/20'2.)[.2 (Xi-¢o)2+ > (xi-¢1)2} do?

i=1 i=m+l1
n-1 _mz —n 2 -1’1/2
o« Zl[C(m)+m(¢o-Xl ) + (n'm) (¢1"Xm+1):] .
m=1L

Making use of the notation introduced earlier we may write

n-1 '((n_2)+2)
T (0gs0y) © B [c(m)]‘“/z[u —5 (¢ - a(m))! T () (g-g(m))} S
m=1 - (2.24)

It is now clear that we have a mixture of bivariate t densities.
Letting hm(¢; n-2, p(m), T(m)) denote the bivariate t density with
n-2 degrees of freedom, location parameter p(m), and precision

matrix T(m) we may write (2.24) as
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n-1 -2
m (60 = 3 [m-m)] 2 [Cm)] % h_(¢:n-2, p(m), T(m)),
m=1 . ~

e < ¢ <w,i=1,2. (2.25)

Some straightforward algebra shows that in this case also the
mixing density for the bivariate t distributions is the posterior density

of the shift point m,

Constrained Prior, Inference About m

The joint posterior density for this last case to be considered is

2 2-(n/2+1) 5> [m 2 n 2
Ty(m, o, ¢n,dp) = (o) exp(-1/207) Z(X.-9,)"+ Z (X, ~¢,)"
1 0"l . i 70 , i 71
=1 i=m+
(2.26)
where m ¢ In-l' 0 <cr2 <w, and -o <¢O < ¢1 < o, The marginal

posterior density of m is thus

) ¢OO

Using the general t density to integrate on <1>1 we obtain

m‘ J1j2[m 5 n Y -(n-1)/2
mm = [ Lfl(xi'%) L PRC It

H20,-X 2, 0] as, (2.27)

-

{: - 1l'rn_l('r'(rn: (1)0)
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where (x) 1is the distribution function of Student's t with n-1

n-1

degrees of freedom and T(m, 4)0) is defined by

i=1 i=m+1 '

m 2 o =n .2
T(m, ¢4) = (n-1)(n-m) [z (X, -00)" + _z (x,—xmﬂ)}

Using a well known identity it is possible to write (2.27) as

-n-2

[(m) @ m(n-m)]H /2 [cm)] 2 [ [ —wn_l(v(m, %)1/2(%'7{&1))]

™
’ gm(%: n-2,5'<1m, w(m))d ¢y (2.28)

where w(m) = m(n-2)/C(m) and gm(q)o;k, a, b) is the general t

density defined earlier, We can thus write (2.28) as

-n-2
r(m) = [min-m)] 2 [Cmm)] 2 E%[l -%_1(*(% %’1/2(%"_{&19]
(2.29)
where m=1,...,n-1 and E¢ is the expectation of the indicated
0

function of q)o taken with re spect to a general t density with n-2

degrees of freedom, location parameter X and precision w(m).

m
1 !

Using the transformation

we know that y is distributed as Student's t with n-2 degrees of
freedom, This enables us to express the expectation in (2,29) with
respect to a Student's t density. Straightforward computation shows

that this expectation then becomes

EY[ - tlrn_l(H(m, Y))]
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where

H(m,vy) = [(n 1}Yn-2)(n- m/ My +nF2)):ll/2[[m(n-2) C(m)]wl/zy

The expectation of the indicated function of y is now taken with
respect to a Student's t distribution with n-2 degrees of freedom.

We can now write the marginal ’posterior density of m as
- ~-(n-2)/2
m(m) & [m(n-m)] /2 [C(m)]"(*2)/ Ey[ -wn_l(H(m, y))J :
m=1,,..,n-1. (2.30)

It is clear that this formula presents considerable, though not
insurmountable, computational difficulty, and that a numerical integra-
tion technique of some kind would be needed to evaluate this density for

a given set of data.

Constrained Prior, Infe:ence About 0'2

The marginal posterior density of 0'2 for this case is

'n'l(tr 5 z f /‘ -»(n/2+1)

202 2 2 2
expi(-1/2¢ )[ z (X‘.L—cbo) + Z (X,L—cbl) d¢1 d¢0
i=1 i=m+1 °
n-1 n
2 -(n/2+1) 2 [ 2 = n 2:}
o (%) exp{(-1/20%) Z(X,-0)% = (X2 )
m=1 '[oo i=1 0" jema b mH
1/2
ZTTU‘Z / 1 - cI>O rn+1 d¢0

n-m /\/—
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m -1 -n/2 bn-X
= % [mn-m)]}/2?) ><p{(-1/zcr2>C(mmz4> ] N (2 —mtl
n=1 0 G//m
(2.31)

where N(x) is the distribution fung¢tion of a standard normal variate

and the expected value of the indicated function of ¢0 is taken with

m

. 2
1 and variance o /m.

respect to a normal density with mean X

Letting
- (o)

we may take the expectation with respect to a standard normal and

write
2 n-1 /
T (0%) « [m(n-m)] exp {(-1/2¢°)C(m)}
m=1
Xmoxh
E_|l-Ng /222 4 1 mi] (2.32)

where 0 < 0_2 < o and the expectation of the indicated function of z is

taken with respect to a standard normal variable.

Constrained Prior, Inference A}.')out (¢0y ¢1)

The joint posterior density of ¢0 and ¢1 is

n-1 re . -(n/2+1)
m(bg o) e T [ (o9
m=1 "0

2 2
exp{(-1/2¢") Z(X,L-cbo) +
i=1 i=zm+1
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where -o < bg < ¢ < . Evaluation of the integral and simplification
of the subsequent expression proceeds exactly as in the case of the
unconstrained prior density, keeping in mind tﬁé added restriction on
¢y and ¢y The joint posterior density of ¢0 and ¢1 may then be
written as

n-1

w1(¢0’ ¢1) o« m‘%l[m(n'm)

]-1/2[ ]-(n-Z)/Z

C(m) h_ ($50-2, p(m), T(m)),

_oo<¢0<¢1<co. (2.33)

Asg before, hm(¢;n~2, p(m), T(m)) is the bivariate t density
with n-2 degrees of freedom, location parameter

p(m) = (X{n, _an;_l)", and precision matrix

- n-2)m ]
C{m) 0
T(m) =
0 (n-2){n-m)
C{m)




CHAPTER III

POSTERIOR DISTRIBUTIONS RELATED TO
TWO-PHASE REGRESSION FOR THE

DISCRETE CASE

As a generalization of the normal sequence studied in Chapter II
we shall in this chapter derive certain posterior distributions related
to making inferences about a two-phase regression.

We assume that we have observations on a sequence Yl’ e e YT’
T > 5, of independent random variables which follow two separate
linear regression regimes. As before we shall introduce a discrete
random variable m for the unknown switch point, and we shall further
agsume that the state space of m is the set IT 27 {2,3,..., T-2}.
We thereby assume that we have at least two observations on each

regression, We thus have

Yi’ i=1, ..., m, independently distributed N(011+L31 Xi’ crz) s
and
2
Yj ; j=m+l, ,.,, T, independently distributed N(oz2+ﬁ2 Xj’ o),
where crz >0, X1 < ... < XT are non-stochastic regressor

variables, and m is the unknown switch point,
In such a situation, interest centers on estimating the switch
point m as well as any unknown regression parameters and the

possibly unknown variance o



We shall study four cases in this chapter:

(i) Error variance known, first regression known
(ii) Error variance known, neither regression knan
(iii) Error variance unknown, first regression known

(iv) Error variance unknown, neither regression known,

Qur interest shall center primarily on the shift point m,

31

but in

some cases posterior distributions for the regression parameters also

will be derived. In all cases we shall assume that prior knowledge is

such that independent, diffuse prior densities for the unknown para -

meters will be adequate.

Error Variance Known, First Regression Known

Without loss of generality we shall assume that 0‘2' =1,

and m are assumed a priori independent with prior densities

-rro(ozz, (32) « constant, -o < a, <w, -o < (32 <o,

and

]-/(T"3)n rn=2, vy T-2

0 elsewhere .
The likelihood function is

m
L{m, az,ﬁz) = (Z'n')-T/Zexp (-1/2)[?

i=1

T
+ =
m+1

[Yi- (a,* B, Xi]2:|

resulting in a joint posterior density of

[Yl. - (a]. + ﬁ]. Xl)]z

@y By
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m 2 T 3
T (m, a,,B,) « expi(-1/2) ,.E [Y,L—(oz1+ﬁ1Xi)] + = [Y,.-(a2+ﬁ2xi)]]
i=1 i=m+1
(3.1)
for m=2,...,T-2, -0 < oz2<co and - <ﬁ2<co .
Inference About m
The marginal posterior density of m is
[e2] [e2]
ﬁl(m)mf f n (m, ey, By)da, dB,, melp,. (3.2)
- -
In order to evaluate this integral we shall use the identity
T T 2
N -
= [Y-(a4p, X0 = = K-+ (e-p™' =2 o -u™) 3.3
B L 2 2 L . _ 1 L ~ A~ m ~ ~
i=m+1 i=m+1
where
*2
a = R
P2
- T Am g T
@gn Ym+1 B 52 m+1
rn —
O I e . :
m
‘32 = (X-XT )(Y.—YT ) z (X, XT )2
. i m+1 i mtl /., i m+]
i=m+1 i=m+]1
~ T -
(T -m) z X
i=m+1 !
p2 -1 = ,
m
T T >
> X > X,
Li=m+1 ' i=m+1 ' 4
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and

Substituting identity (3.3) in (3.1), the posterior density (3.2)

may be written

m 2 T A2
m (m) = exp (-1/2)[2 (Y. - (¢, +8, X))+ = [v.-Y™] ]

. i 1 1771 . i i

i=1 i=m+1

[ ei-172)0a-5™ 27} (2 -p™) de.

-0 Y-

The integral may now be easily evaluated using the bivariate

normal density to give as the posterior density of m,

T -1z
7 (m) = [(T—m)_ > (xi-xr;lrﬂ)ﬂ

for m=2,..,, T-2,

Inference About BZ

The marginal posterior density of BZ is given by

T-2 ®
11'1({32) « mZ:)2 [oo vl(m, @5 Bz)daz, ~g < BZ < w. (3.5)
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To evaluate this integral we shall use the identity

T 2 T - T T ]2
BRI SRR CTR S I NI [ AR SRV RN N ST R
i=m+1 izm+1

+ (T ¥t x ! 2 3,6
(T-m)iay - (Y17 P Xy - 3.0
Substituting (3.6) in (3.1) and integrating with respect to as,

(3,5) becomes

T-2 m
Trl(ﬁz) x X (T—m)_l/zexp (-1/2) Z

m=2 i

2
I[Yi- (alwlxi)]

T t— ——
exp(-1/2) = [(Yi-Yan)-sz(xi-xgﬂﬂz . (3.7)
i=m+l

Substituting

in (3.7) we may write the marginal posterior density of ﬁz as

T-2 Am Am
Wl(ﬁz) © % K(m)gm(ﬁziﬁz ] Var(ﬁz )), = < 52 < @, (3.8)
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T
var (B, = 1/ ® (-

and g(y; m,v) is the normal density with mean m and variance v.
We thus obtain a mixture of normal densities, the mixing density being

precisely the posterior density of the shift point m.

Inference About oy

The derivation of the marginal posterior density of a, proceeds

along the same lines as that of [32 and results in the density

T-2
A

m(a,) e I Km)g (a,:@,", var(d,"), (3. 9)

m=2
where now
T T _ 2
var (&) = = x,2 (T-m) X (X,—XT ) 1.
2 . i . i m+1
izm+1 i=m+1

Before proceeding to the next case we shall make an observation
on the normal distributions involved in (3.8) and (3,9). For each m,
the mean and variance of the mth density in the mixture are the least
squares estimate of the parameter and its variance respectively, based

on the last T -m data points in the sequence,
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Error Variance Known, Neither

Regression Known

Assuming as before that 0'2 = 1 the likelihood function is now

L(m, ), B, @, 8,) = (2m 1 /2
m 2 I 2
exp (-1/.2)[51 [Y_.L-(oz1+ ﬁlxi)] +i=r§+l[Yi-(a2+ B, X,.L)]]

Assigning independent, improper uniform prior densities to the
regression parameters and a discrete uniform prior to the switch

parameter m we obtain the joint posterior density

m
2
ﬂl(m’ alv ﬂ]_: az: r-,’z) « exp (‘1/2){:i?1 [Yi—(al-*- E’l XL)]
T
2
+ Z [Y.-(a,*p,X)]%). (3.10)
. i 2 2771
i=m+1
for m=2, ..., T-2, -co<ozi< w, i=1,2 and —w<[3_i< w, i=1,2,

Applying to the first m data points an identity analogous to (3. 3)

we may write

m A 2 T A 2
mo(m, g, e,y By) © expl(-1/2) = (Y.-¥ )+ = o(y.-¥™ U
1 1P 720 P2 . i i . i i
i=1 izm+1
m,' «-1 m
t(e-p) 2 (a-p )] (3.11)
where
1 m _ ,Am Am Am Am,'
3 (al’ r-,’ls azs ﬁz) s N - (a’l :E’l s & yr-,’z )



37

m N
m ZX
1 1
m m
X, ZzX
L
=71 -
m
T
T-m zZ X,
m+1 !
T T 5.
Z X, z X,
‘ B m+l ' m+l l_
EA
Of course &\Zm and ﬁzr'n are as defined in the previous case

1 AN
and {z\fn and ﬁfn are their counterparts for the first m data points.

The regression parameters may now be integrated out quite

easily using the four varjiate normal integral to obtain as the posterior

density of m

m _ 2 T _ o 27-1/2
T, (m) « | m(T-m) = (X,~X. ) z (X.-X 7,
1 . i 1 i i m+1
i=1 i=m+1
exp (-1/2)£z (¥, - Q,Lm'l‘) + = (Yi-Yim'U) :l (3. 12)
i=1 i=m+1
for m=2, ..., T=2.

A comparison of this result with (3,4) shows that the known first
regression has been replaced by its estimate for each m and the
weighting factor has been altered accordingly. This densit'}'; will be

computed for a particular set of data in Chapter V.
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Error Variance Unknown, First

Regression Known
The likelihood function for the present case is

-T/2 m
L(rn,crz,ozz, 52) = (ZTI'G‘Z) expi(-1/2 Uz)l: = [Yi— (oz1+(31 X.l)]2
i=1

T
+ 2 [¥-(a, B, X))
. , 1 22770
i=m+1
To the new unknown parameter 0_2 we shall assign the improper
prior density

Trl(crz) « 1/0_2% 0<0'2<co

while assigning to the remaining parameters the same prior densities

as before. Applying Bayes's theorem we obtain the joint posterior

density
2 2 -(T/2+1) 5 [m >
T m, o, ey, By) e (o) expq(-1/2¢ >L§1[Y1'("‘1+‘31X1”
T 21
t+  Z [Yi'(aerﬂZXi)]J (3.13)
i=m+1 J
for m=2, ..., T-2, 0<0'2<oo, -oo<a2<oo and —oo<ﬂ2<oo.

Integration on 0'2 can easily be performed using the inverted

gamma density to obtain as the joint posterior density of m, a, and
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for m=2,.,.,T-2, -« <ao,< o and -oo<[32<co. Using identity

2

(3.3) and the same notation as used in case one we can write

m 2. I sm, U2
™ (m, @y, By) m[z [Yi-(a1+[31Xi)] + z [Yi-YL ']
i=1 i=m+1
t(«a -,Vm)' Zr—r: (a _ttm)]—T/Z
(T -2)+2)
%( )-T/Z‘:l_{_K(_m)-l(gP~m)lzg(g_hm)] Z 515
where
m 2
Kim) = = [Yi—(a1+[31Xi)]2 + = [y -'Q,fn’U]

We may now integrate out «, and [32 using the bivariate t

2

integral to obtain as the posterior density of m

T _ >1-1/2
ﬂl(m) « [(T—'m)v = (Xi‘xn’f-i-l)z]

m T
Ez [Yi-(a1+[31Xi)]2+ z [v.- '?,m’ U)Z] (3. 16)

for m=2, ..., T-2,

Error Variance Unknown, Neither

Regression Known

The likelihood function for this the last case of this chapter is

-T/2 m
Lim, 0%, a B a,.p,)= (2707) exp(*1/2“Z)EZI[Yr(aﬁBlXi”z
T 2
+ = [Y,L—(oz2+[32Xi)]]
izm+1
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Assigning the same prior distributions as in the previous cases

we obtain the joint posterior density

2 2 -(T/2+1) | > [m >
Tl'l(m,O' ,a’l’ ﬁl’a’zs ﬁz) «© (0- ) expi(‘l/zo- )L?I[YL'(al+ﬁ1XL)]
T 2
+ = [Y.-(2,+B,X.)]
. i 2 2771
i=m+1
for m=2, ..., T-2, 0<0‘2<CD, —ooai<co, -oo<[3_i<co, i=1,2 .

Integration on 0'2 proceeds as in case three to give for the joint

posterior density of m and the regression parameters ’
m(m, e, B, e,,8,) “L?I[Yr(aﬁﬁl X.)] +i=r§+l[Yi- (2,+B, X,)] J :

Making use of the identities given in case two we can write, using

the notation of that section,

-(T-4)+4)
-T/2 -1 m,'<-1 m 2
Trl(m:alvplvazspz) e K(m) E-+K(m) (g"lt ) Zm(g'tt ):‘
where the value of K(m) is now given by
m A 2 T A 2
Km) = = (Y.-¥™ D)7 5 (v . g U,
=1 ! i=mt+1 * !

We may now integrate out the regression parameters using the
four variate t integral to obtain as the marginal posterior density of

m
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for m=2,...,7T-2,
In closing this chapter we point out the similarity between (3, 16)
and (3.17), and remind the reader that examples of (3, 12) and (3.17)

will be presented in Chapter V,



CHAPTER IV

POSTERIOR DISTRIBUTIONS RELATED TO
TWO-PHASE REGRESSION FOR THE

CONTINUOUS CASE

In the previous chapter our interest was centered on the index m
at which the switch from one regression regime to another occurred.
In some cases interest may center more on the abscissa of the point of
intersection of the two regression lines. An easy calculation shows
that this is given by vy = (oz2 - al)/(ﬁ1 - [32) .

As in chapter three there are many cases one might consider.
Those discussed in this paper are

(i) Error variance known, first regression known, m known

(ii) Error variance known, first regression known, m unknown

(iii) Error variance known, neither regression known, m known
(iv) Error variance known, neither regression known, m unknown

(v)-(viii) As above, but with the error variance unknown,

The approach taken will be to find the joint posterior density of
the unknown regression parameters under the assignment of diffuse
prior densities, and then to obtain from this the distribution of that
function of these parameters which gives the intersection. As

mentioned above, the function whose distribution we require is

oy az0Bys Bp) = (ag -a))/(By -By) -
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Before proceeding to study the cases in turn we remark that the
cases corresponding to ''second regression known'' are completely
analogous to our ''first regression known'', and for that reason are not

being studied separately here.
0'2' Known, First Regression Known, m Known
The likelihood function for this case is

m
Liay By) = 2m T/ 2exp <-1/2)L§1[Y1— () + By X1

T
i=m+1

)

5]

] 1{&.
-

As before we are assuming for convenience that 0‘2 =1,
Combining this likelihood function with the same diffuse prior densities
used in Chapter III w.e obtain, in accordance with Bayes's theorem

T

T (a,, By) = expd(-1/2) i:ril[Yi-(azwz X.)

I (4. 1)

for -o < a, < and -o < B, < = . Using identity (3.3) of Chapter

III we can write

my(ay, By) = exp{(-1/2)(a -p™)

where
B T ]
(T -m) > X,
| m+1 t
1 m_ ,Am Am -1 _
3 (azs ﬁz) ) | = (az 962 ), Zm =
T T 2
> X, Z X,
_rn+1 t m+1 L~
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Of course @Zm and /ﬂ\;n are the usual least squares estimates
of @, and [32 based on the last T-m data points of the sequence.

We now transform to

W, = By-By

The joint density of wq and w, is easily seen to be bivariate

normal with the mean vector relocated at

m _ ,Am Am !
voo= (@ -, By -8By

Finally we make the transformation to

Vi T W /W,

Y2 5 W,

and obtain as the joint density of Y1 and Y,

m (v vp) ® exp{(1/2) Alm, y)) B2 (m, v )} |y, |

cexp{(-1/2) A(m, y)) [y, - Blm, vy}

for -o < Y'L< o, i=1,2 where

T
A(mel) = . 2 (Xi-Yl) ’
1=m
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, _Am ,“m
Y = a, +[32 X.L .

Integration on Y, ©now yields the posterior density of the inter-
section

1/2

ity = A7 2 (m, y ) exp ((1/2) Alm, v ) B2 (m, y )} E[|V]] (4.3)

where

It may be shown that if X is a random variable normally

distributed with mean p and variance o-2 then

-1/2

E[|X|] = pl2 d(u/o) -11+ (w/202) " “exp{-p2/20%} . (4.4)

Using (4.4) to obtain E[IVH in (4.3) we obtain

-1 1/2
exp[(l/Z)A(m,yl)B (m’Yl)]+ -rrA(rn,Yl)/Z (4.5)
for -o < Y1 < o,
0’2 Known, First Regression Known, m Unknown

Proceeding as in the previous ¢ase and introducing a disgrete
uniform prior density on m we obtain as the joint posterior density

of m, a, and [32

2

m
ﬂl(msaz:pz) < exp ('1/2)[2 [Y"(a1+ﬁ1 X)
i=1 ' : i=m+1

for m=2,,,., T-2, —oo<a2<oo and -oo<ﬁ2<co.
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Using identity (3.3) we can write (4, 6) as

wl(m, a5, [32) « g(m) exp ('1/2)(3 _&m)'zg(g 'E,m)
where
m 2 T 2
g(m) = exp (_1/2)[1§1[Yi_(a1+[31 Xi)]' +i=r§+l[Yi-(a2+ﬁz Xi)]

and the remaining notation agrees with that introduced earlier. We

again transform first to w, and w, as before and then to

1 2

Y] T oW /w,
Y2 T W2

and obtain the joint density

7 (m, v, y,) @ him) |y, | exp{(1/2) Alm, y)) B2 (m, y,)

exp(-1/2) Alm, y,)ly, - Blm, ;)

Integrating with respect to Yo and summing on m we obtain

the posterior distribution of the intersection

T-2
my)e = h(m) A Pm,y)) B(m.yl)l:z¢<B(m,yl)A1/2(m.y1))-1J

m=2

2 -1/2

exp[(1/2) A(m, y,) B"(m, y )] + [7A(m, vy )/2] (4.8)



where -o <y, < . Itis seen thatthe density in this case isa
mixture of densities of the type (4,5) with the mixing density being

given by equation (4.7).
crz Known, Neither Regression Known, m Known

In this case the joint posterior density of the four regression

parameters is easily seen to be

m
2
ﬂl(al’ Bl! a’z: Bz) < exp (-1/2)1:L§:1[Y1‘— (a1+ Bl XL)]

for —co<ozi<oo and -co<ﬁi<co, i=1
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Applying identity (3.3) and its counterpart for the first m data

points we may write

1

-1 ‘
T (e, Bpyay, By) @ B(m) expd-1/2)(a -p) Z_(a-p")  (4.9)
where .
- m 5 T 5
N\
E(m) = exp (-1/2{2 [v-€™ 5 + = [y -Y,m,U]J ’
, 5 : - ¥
i=1 i=m+1
- ‘ m_ ,Am Aam Am Am,’
g - (alaﬁll azy Bz) 3 E', = (al ,Bl ,az ’BZ ) ,
‘m,L_/\m Am Am’U_/\m Am
Qi = Q"+ pB X, Y. = aQ, +B, X,

and



m
m z X,
1 !
m m 2
=X, =X!
1 Yot
Z-l = .
m
T
(T-m) = X,
m+1 L
T T ,
= X, > X!
mt+l ' m+l !

(&, 8™ and

m Am
the regression parameters based on the first m and last

points respectively. We now transform to

1% %79
W, = a,
w3 = By -B,
¥y = Py

Substitution in (4, 9) vields quadratic expressions in w,

w

the normal density to obtain

o Ny Am "m 2
My (53, w3) ® B(m) exp{(-1/2) E [ty - &%) + (wy - B X,]
I =T
-C (m,wl,w3) _ZI(XL-XI )
i=

and

48

(@2 s BZ ) are the usual least squares estimates of

T-m data

g4 In the exponent and these may be integrated out using the form of

. 10)
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where

m - T T =T —T
Clm, w,, ws) fl(xi-xl Wwy+ wyX,) .-iz:ll(xl-xl WY. =Y.',
m —T
B(m,wl,w3) = ifl(w1+ Wy X'l) - T Yl‘ .

Finally we make the transformation to

Y, = -wy/wg
Yo = W

and obtain as the joint density of y, and Yy

Trl(yl,Yz) c lyzl exp (—1/2){:P(m,yl)y22 - 2Q{m, Yl)\(2+ R(m’Yl):l

(4.11)
where
P(m’Yl) = = (Xi—Yl) ‘ -[Z (X,-YIE' T
i=1 i=1 *
= (X -y )X -%T : ;(x XT}Z
T2 i7" VY1 i l) . i~ 1 ’
i=1 i=1
m
_ Hm, L 4
Q(mle) = L?l(XL_Yl)(YL - Yi) 2
T A o
R(m,y;) = Z (Y, -¥)".
i=1 b *
<[\,.L is the predicted Y at X,

when the regression parameters are
estimated by least squares over all data points,
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To integrate out Y, Wwe can complete the square in the exponent

and write

2
Trl(Yls YZ) «< (Yzl eXp (‘1/2)P(m'Yl)|:YZ - Q(m’Yl)/P(m,Y]‘{l ‘

+ Rim, y;) - Q%(m, y;)/Plm,y ) .

Provided that P(m, Yl) is positive it is now straightforward to
use the normal density form to integrate with respect to Yy - Of
course P(m, yl) is a function not only of m and Y1 but also of the
Xi's from the data. The author has been unable to show that P(m,yl)
is always positive, hut is yet to engounter a situation where this
condition is not satisfied,
| We shall thus assume that P(m, yl) is positive for all Y1 and

proceed to obtain

m(yy) @ exp{(-1/2) [Rim, y,) - Q%(m, y ]} P72 (m, v ) B{|W])

where

Applying formula (4.4) we can write the posterior density of the

intersection as

Tr]_(Yl) &« P—l/z

-1/2
e‘XpE'l/Z)QZ(m’Yl)/P(m’lei+l}TP(m’Y1)/Z] / )

o <y < w . (4.12)
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0'2 Known, Neither Regression

Known, m Unknown

The derivation of the posterior distribution of the intersection for
this case proceeds exactly as in case three, the additional step being
summation on the range of the shift index m, One obtains

T-2

vl(yl) e X
m=2

[Q(m, v/ P, yl):l [2 ¢<Q(m,y1)P-1/2(m,\(l)) fj

) -1/2
exp[(l/Z)Q (mgyl)/P(m,ylﬂ+ E’rp(m,yl)/% ,

2 )

-0 <'Yl<co. (4-13)

We remind the reader that for this case the condition discussed
in case three must be satisfied for each m oaover the range of the

summation.

crz Unknown, First Regression

Known, m Known
The likelihood function for the present case is

20 =
Xp(d/ZU)[Z[Yf%al+ﬁlXﬂ

i=1

2 2
o

Lo ,az,ﬁz) < (2 "T/Ze

) I

MH

+ [Yi—-(a2+[32 Xi)]ﬂ

i=m+1
. 2 . : .
We assign to o the usual improper prior density

Tro'z)ccl/O'Z, O<0'2<oo,

O(
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and retain improper uniform prior densgities for the regression para-

meters. The joint posterior density is then

2 2 -(T/2+1)

T (0%, ay, 8,) = (00) 2

m

exp<(-1/2 crz)[

T 2
+ =z [Y_.L-(a2+BZX,L)]} (4. 14)

i=m+1

for 0 < crz < @, =~ <‘ozZ < o, and -o < E”Z < w. Integrating first

. 2 .
with respect to ¢  we obtain

m 2 T 2 -T/2

Trl(azt 62) ®© ? [Yl" (a].+ 51 Xi)] + . Z [Yl"' (Q’2+ |32 XL)] .

i=1 i=m+1
(4. 15)
We now derive from (4. 15) the joint dengity of Wy and Wy
where A

W]. = dz - Cll
Wy = BBy

and obtain

where

t /\ 1
woe wpwy) oy s (@0 e B Ry
. m 2 T 2
Em) = Z[Y -(a1+plxi)] + = [Y,»—(a2+[32X,L)] ,
i=1 i=m+1

and



r’ m
m zX
1‘ 1
-1 - ,
m
=X ZX,‘J
b

The final transformation is made ta

vy = W /W,

i
&

Y2 2 '

This leads us to the joint density

-T/2
2
nl(Yl’YZ) ® 'Yz ' [G(rn,yl) + A(m:Yl) (YZ - B(m, Yl)):l (4.17)

where

T 2
Am,y) = B (X,-
1=m

2

i=m+1 !

T T
1= 1

T A
U 2 2
G(m,y;) = E(m)+ = [Y™ " -a -, X]" - Afm, y)) B (m, ) .

We are again faced with a problem similar to that discussed in
the third case considered in this chapter. Assuming that G(m,y;) is

positive for each y; Wecan write (4.17) as

53
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-T/2
T1(¥ryp) = G /(m,v1)|vzl

(T-1) A(m, v,) 2| ~l(T-1)+1]/2

and make use of the general t density (22) to integrate with respect
to vy, Although this has not heen proved in general it has been
checked for a number of data sets and was not violated in those cases
checked, We shall therefore assume that G(m, yl) is positive for

each Y1 and obtain for the marginal density of Y1

-1/2

T/Z(m,yl)[A(m,yl)/G(m.yl)] E{|W]|} (4.18)

'rrl(yl) « G~

where
[(T-1)A(m, v;)/Glm, y ]2 [W - B(m, v)] ~ Student's ¢t (T-1),

1/

Tedious but straightforward computation shows that if ¢t 2(X -u)

is distributed like Student's t with n degrees of freedom, then

-(n-1)/2
E[lx]] = 2 t"1/2<n1/2/(n-1))]3'1(n/2, 1/2)(1 + p? t/n)
+u<2 v, (e tl/z)—l) , (4.19)

where B(x,y) is the beta function and tlrn(x) is the cumulative
distribution function of a Student's t random variable with n degrees
of freedom. Applying this result to (4, 18) we may write the density

of the intersection as
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-(T-1)/2 A—l/Z(

1-1/2 -1
ZP(m,yl)/G(m,yl)‘l [(T—Z)B((T—l)/z,l/zﬂ

, (T-2)/2

{

(4.20)

for -00<Y1<oo.

02 Unknown, First Regression

Known, m Unknown

2

The joint posterior density of m, o, a, and [32 is now

2 2 -(T/2+1) o [m 2
'rrl(m,d s az,ﬁz) < (o) expi(~-1/2¢c )Lfl[Y_i-(a1+ﬁ1X1?]
T 2
+ ,_z [Yi~(a2+(32X.L)]:l
i=m+1
(4,21)

for m=2,,,.?T-2, O<crz<co, ~o < g, < @, and - <[32< ® .,

2
Derivation of the posterior density of the intersection proceeds
exactly as in the previcus case with the additional step of summation

over the range of the shift index m, We thus obtain a mixture of

densities of the type shown in (4.20), namely
T-2

mlyy) e =
m=2

ZEA(m,w/G(m,yl]'l/Z [<T~2)B((T-1>/2. 1/2)]"1

o-(T-1)/2 -1/2

(m,yl)A (m,yl)
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) 1-(T-2)/2
(4.

22)
1/2 )
+ B(m,yl)[z ﬂfT_l(B(m, 'Yl)((T"'l)A(m: 'Yl)/G(m’ Yl)) )' {lf

for -co<-Y1<co.

0-2 Unknown, Neither Regression

Known, m Known

The joint posterior density of the variance and the regression

parameters is

, 2 ~(T/2+1) , [m )
Trl(o- ’ al! ﬂll az: ﬂz) < (o ) exp ('1/20' )[ifl[Yl"(al + ﬂl X'L)]

I 2
+ = [Y,.L-' (a, + pz xi)]:l'

i=m+1

for 0<o‘2<co. -0 << @ and —co<[3i<co, i=1,2.

Integrating first on 0'Z we obtain

Trl(aly [31: azs [32) o Z [YL- (a1+ 61 XL)] +.. Z [Yi.— (az+ [32 Xi)] ‘
i=1 » i=m+1
m 2 T 2
- N
« [ = (Yi—Q,m’ L) + T O(Y.-Y U)
i=1 ' i=m+1 * '
m,' -1 m -T/2
t(a-p ) Z " {e-p) . (4.23)
~ ~ m ~ ~

The notation corresponds to that used in case three, and is
explained immediately below equation (4.9). We next make the trans-

formation to
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Wl = 011-0!2
W2= 012
w3 = Pp-B
Wy = B

as in case three, integrate out w, and Wy using the general t

density shown in De Groot (22), and then obtain the joint distribution of

Y1 T /W
and
Y2 7 W3
We obtain
2 -(T-2)/2
"1(\(1’\(2) & lel P(m:\(l)\(z - ZQ(m.Yl)Y2+ R(m,\(l) (4.24)
where
i=1 i=1
2/ T 2
= T =T
[2 (X, -y )X - X )] = (x;-X])
i=1 i=1
m A A
Qm, ;) = .,ZI(X'lFYl)(Yim’L— Yy)
i=
T A2
R(m,yl) = Z(Y,-Y.)
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Equation (4.24) can be written

2-1-(T-2)/2
where
2
G(m:Yl) = R-(val) -G (maYl)/P(msYl) .
We are again faced with the problem of the sign of G(m,yl) . If

G(m, y,) is positive we can write

-(T-2)/2

Trl(Yl:YZ) < G (val)lel

5 ]-(T-2)/2

and integration with respect to Yo proceeds easily using the general
t density referred to earlier. Although we have been unable to prove
that G(m’Yl) is a positive function of m and y; we shall assume
that this condition is satisfied and proceed. One then obtains for the

posterior density of Yq

-1/2 T-3)/2

(v e (m,y,) G C

e P
{ (m, y,) /G(m,\(l)]'”2 [ET-4)B((T—3)/Z, 1/2)]*1
-(T-4)/2
[ m Yl /( (ms Yl)G(m,Yl))]
1/2 , 1/2

for -m <Y1<°°-
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0'2 Unknown, Neither Regression

Known, m Unknown

The joint posterior density of the unknown parameters in this the

final case is

o > -(T/2+1) 5 [m
m (m,0%, @), B, @y B,) @ (00) exp{(~1/20%) =

2

I 2
+ .. = [Y,.L~(a2+ B, Xi)] .
i=m+1

(4,27)

The posterior density of the intersection is a mixture of densities

of the same type as (4.26), Its derivation proceeds as in the previous
case with the additional step being summation on the shift index m.

The density is

T -2

-1
ﬁl(yl)oc z P
m=2

-1/2 -1
{P(m,yl)/G(m,ylﬂ ET-4)B((T—3)/2,1/2)]

1+Q (m,yl)/(P(m,yl)G(m,yl)) +Q(m, y;)/P(m, y;)

/2 -(T-3)/2

[2*T_3((T~3)”2Q(m,yl)/<P(m,y1)G(m,\,l))”z) ﬂ (4,28)

for -ao < Y]. < o ,
An illustration of densities (4,22) and (4.28) will be presented

in the following chapter.



CHAPTER V

INFERENCE PROCEDURES AND

SOME EXAMPLES

In Chapters II, III and IV we determined the posterior distribu-
tions, under a variety of assumptions, for an unknown parameter, say
6. The parameter 6 was a scalar in most cases, although sometimes
© was a vector as we saw in Chapter II with the posterior distribution
of (¢O, ¢1) , equation (2, 25),

We shall in this chapter describe some ways in which posterior
distributions are used to make inference, and illustrate some of these
techniques on posterior distributions selected from Chapters II, III and
IvV.

All of the computations necessary to present the examples in this
chapter were done with programs written by the author and run on the
IBM - 360, Mod 65 computer at the Oklahoma State University

Computer Center,
Plot Of The Posterior Density

In cases where the dimension of the parameter vector is at most
two, a plot of the posterior density (in the univariate case) or contours

of constant posterior density (in the bivariate case) can be useful,
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Example 5.1

Hinkley (13) used some data from an article by Pool and
Borchgrevink (23) to illustrate the techniques which he suggested. In
order to compare our techniques with his, we shall use the same set of
data, which is given in Table I below, The independent variable X
represents the logarithm of warfarin goncentration and the dependent

variable Y is blood factor VII production. 'n'k(m) and 'rru(m) are

explained after the table,

TABLE I

DATA AND RESULTING POSTERIOR DENSITIES

Y

m ,Xm m 'rrk(rn) -rru(‘rn)
1 2.00000 0.370483 — —
2 2,52288 0. 537970 0. 000057 0.002121
3 3.00000 0. 607684 0. 005115 0.011831
4 3.52288 0.723323 0.031579 0. 034446
5 4.00000 0,761856 0.297597 0.281910
6 4.52288 0.892063 0.276329 0.266278
7 5. 00000 0.956707 0.351680 0.365501
8 5, 52288 0. 940349 0,037518 0.055949
9 6.00000 0. 898609 0.000117 0.001142
10 6.52288 0.953850 0. 000006 0.000376
11 7.00000 0.990834 0. 000002 0.000322
12 7.52288 0.890291 0. 000000 0. 000049
13 8.00000 0.990779 0. 000000 0. 000075
14 8.52288 1..050865 — —
15 9.00000 — —_

0.982785
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A plot of the data given in Table I suggests that two-phase
regression may be an appropriate analysis.

We have compuéed the posterior density of the shift index m for
two cases, namely var.ia:nce known (equation (3.12)) and variance
unknown (equation (3.17)). Both cases assume that neither regression
is known. Our results for equation (3. 12) are denoted in Table I above
by -rrk(rn) , while those for equation (3.17) are denoted by -rru(m). In
computing Trk(m) we have taken as the 'known'' variance the estimate
obtained by Hinkley (13), namely 92 =.00166.

The posterior density 'rru(m) is plotted in Figure 1 below,

+—t t t m

2 3 4 5 6 7 8 9 10 11 12 13

Figure 1. Plot of Posterior Density 'rru(m)

The density 'rrk(rn) is not plotted since it very nearly ¢oincides

with 7 (m).
u



63

There is strong evidence, using either posterior density, that
the switch in regimes ogeurs at m=5, m=6, or m=7. We
remark in passing that Hinkley's 99% confidence interval on the inter-
section of the regression lines is (3,641, 5,441), which contains X5 ,

X and X,.

6! 7
Point Estimates For Parameters

As a point estimate of a parameter 6 one may use the mean,
median or mode of the posterior distribution. Xach estimate can be
"Justified" in at least one way, depending in some cases on the
particular loss fungtion assigned, The se estimates are discussed in
many modern inference texts and the reader is referred to Ferguson
(24) for a survey of this subject. We shall present here the numerical
values of the three point estimates for our data of Example 5, 1:

'rrk(‘m) 'rru(m)
Mode of Posterior Distribution : 7.00000 7.00000
Median of Posterior Distribution: 6.00000 6.00000

Mean of Posterior Distribution : 6.05077 6.04998

The variance of the posterior distribution is sometimes given
along with measures of central tendency to help describe the distribu-

tion, For our example,

0.97123

1t

Var k(rn)

and

1.09669 .

Var u(rn)
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Regions Of Highest Posterjor Density

Let w(0;y) denote the posterior density function for a
parameter ©0., A region R in the parameter space of 0 is called a

Highest Posterior Density (H.P.D.) region of content (1 -a) if
(i) Pr(6e R;y) =1-a, and

(ii) For 91 ¢ R and 92 { R, Tr(el; y) > Tr(ez; y) .

It LS immediately clear that if 0 is a discrete random variable
then an H. P.D. region will not exist for all values of . In fact, if
® has, say, n distinct mass points of positive density, then H, P, D.
regions exlst for at most n distinct values of @, For a more complete
discussion of. H. P,D. regions the reader is referred to a paper by Box
and Tiao (25).

For the data of Example 5.1, the set
R = {5, 6, 7}

is an H, P.D, region for m, based on -rrk(m)_, of content 0, 925606,
while its content based on -rru(m) is 0.913689.

H. P.D. regions for symmetrical, unimodal distributions are
easily obtained by numerical integration. A further illustration will be

given later in this chapter in Example 5,2 .
. Hypothesis Testing

Suppose we have observed data y from an experiment and wish
to judge whether or not the data support some specified hypothesis, say

H:0 e SO’ about a parameter 6 on which the assumed distribution of
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the observation vegtor depends, Of course we must have S, a subset

0
of S, the entire parameter space of 6. We shall discuss briefly

three possible approaches to this problem.

First Approach

If one wishes to accept or reject H at some predetermined

significance level, say a , then
(i) Constructa (l-a)-100% H.P.D. region R for 6.
(i) Reject H if and only if S, M R is empty,

This implies that the posterior probability of H is at most «

when H is rejected.

Second Approach

Compute the posterior odds ratio

r:f
LIRS

T, (85y)d® /f m,(85y)de
S-S
0 / 0

or alternatively just the posterior probability of SO , namely

b

ry =f _Trl(e;y)de.
SO

she o
b >

r1 is normed inthe sense that 0 < ry

values of either r

<1, Clearly large
] °r r;‘t lend credence to H. This procedure
seems to be innappropriate if TT1(9; y) is ¢ontinuous and SO is a

single point of S. A possible alternative in such a situation is given in

the third approach.
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Third Approach

This is based on the ratio of ordinates of the posterior density.

The ratio is defined by

T, = Sup -n'l(e;y)/Sup -n'l(e;y) .
OESO e S

Here again 0 < r, <1 and values of r, near one lend

2 2

credence to H, This approach appears to overcome the difficulty

sk

1 when H is a simple hypothesis of the form

posed by T and r

H:9=90,

For the data of our Example 5,1, we compute Ty, ri‘ , and

Ty based on -rru(rn) , for a test of the hypothesis H: m e SO , wWhere

S, = {5,6,7}. Here the parameter space is S= {2, ..., 13}. We
have
r, = 10. 586
o 14
r]. - ng
r, = 1.000

Other Techniques

There is a variety of other techniques available for applying the
posterior density function to particular statistical problems,

Where 0 1is a vector, marginal posterior distributions of certain
parameters may be of interest. In fact, the net result in most sections
of this report is a marginal posterior distribution of some kind.
Another tool used in certain applications is the predictive density, used
to make inferences about data which is to be observed at some future
time. Corresponding to H. P.D. regions one may define ''prediction

regions', or regions of "highest predictive density''.
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For a more complete survey of uses and applications of the
posterior probability density function, the reader is referred to texts

by Zellner (26), Lindley (19), LaValle (27) and De Groot (22),
An Ad Hoc Technique

All of the distributions derived in Chapter IV are not based on
any prior constraints on the point of intersection of the two population
regression lines.

In many cases it may be known that the intersection, namely
y = (oz1 - o:z)/((ii2 -ﬁl), is constrained such that Xm <y < Xm+1 ,
where m 1is the shift index. If this is too restrictive, then
X1 < v £ X would not seem unreasonable for most practical
purposes. That is, we require that the regression lines intersect at
some point over the observed range of the independent variable X.

When this latter assumption can be made, this author suggests
truncating the appropriate distribution over the interval [Xl’ XT]
rather than working with it over the entire real line.

We shall now illustrate this technique on some of the distributions
derived in Chapter IV, using the data of Example 5.1. Hinkley (13)
gave confidence intervals for the cases ''second regression known'
(with slope equal to zero) and ''neither regression known''. We shall

follow his lead in Examples 5,2 and 5.3 respectively,

Example 5.2 (Second Regression Known)

We assume here that (.32 =0 and that o, =0.961674. This

2

value of a, is the average of the last nine Y,.L's in the sequence,

since the median of our density w (m) was six and the mean was near
u
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six, It also agrees to four decimal places with the estimate from
Hinkley's paper, In Figure 2 below we show a plot of the posterior
density (4.22) for the case ''second regression known''. The density
has been truncated on the interval [Xl,XT]. Since the ordinates of
the density are relatively small outside of the interval [3,6], the

density is shown only over that interval.

2 4 T(¥)

] ) |
3 4 5 | 6

Figure 2. Posterior Density (4. 22): Second Regression Known

From this density we calculated the mode as well as H. P.D.
regions of content 0,90, 0.95 and 0.99. For comparative purposes
we now present the results from our posterior density as well as those

from Hinkley's paper:
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M.L.E./Mode 90% Interval 95% Interval 99% Interval

Hinkley 4,88 (4.55,5,29) (4.45,5,39) (4.25,5,66)

Density (4.22) 4.89 (4.54,5,31) (4,46,5.43) (4.28,5,79)

Example 5,3 (Neither Regression Known)

For the same data set as we have used in the previous examples
we plot in Figure 3 below the posterior density (4.28) truncated on

[Xl, XT] . Again it is plotted only over the interval [3,6].

5 Am(n)

Figure 3, Posterior Density (4.28): Neither Regression Known

A comparison of our H.P.D. regions from density (4. 28) with

the confidence intervals given by Hinkley is again presented:
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M.L.E./Mode 90% Interval 95% Interval 99% Interval

Hinkley 4.65 (4.16,5,10) (4,09,5,20) (3.64,5,44)

Density (4.28)  4.60 (4.04,5.17) (3.85,5.33) (3.32,5.78)

Some General Comments

The author feels that the H, P.D, regions obtained from densities
(4.22) and (4, 28) compare quite favorably with the confidence intervals
given by Hinkley, In making such a comparison, one must keep in mind
that Hinkley's confidence intervals are based on the restriction that

Xm <y <X whereas the H, P. D, regions derived from our

m+1’
posterior distribution are subject to no such restrictions,

A further consideration is that the confidence intervals derived
by Hinkley are based on the asymptotic chi-square distributions of the
likelihood ratio statistics, with the result that the approximation for
small to moderate sample sizes is somewhat questionable, On the
other hand, the posterior distributions given in this report are exact,
allowing computation of H, P. D, regions to any desired degree of
accuracy. We must caution, though, that we have not established
whether or not the posterior distributions derived in Chapter IV are
unimodal. A bimodal distribution may lead to an H.P.D. region which
is not a single interval. Hinkley (13) also points out that the confidence
interval algorithm suggested by him does not necessarily lead to a
single interval,

With regard to computational considerations, the procedures
given here present little problem. The discrete distributions given in

Chapter III for the shift point obviously present no difficulty, while
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computation of the distributions of the intersection given in Chapter IV
require only referral to the standard normal distribution function
(variance known) and Student's t distribution function (varilance
unknown),

We close this cha.pter with a comment on the incompleteness of
the present study. A complete analysis of a two-phase regression
situation would of course include estimates not only of the shift point
and intersection, but also of the regression parameters and the error
variance. We have directed our attention almost exclusively to the

switch point and the intersection,



CHAPTER VI
SUMMARY AND POSSIBLE EXTENSIONS
Summary Of The Study

This research was undertaken with the intention of making some
contribution to the general problem of estimating the time point at
which a parameter change occurs in an observed sequence of random
variables. No attempt has been made to study the related problem of
detecting whether or not a parameter shift has occurred in the
sequence,

A Bayesian approach was employed for each of the cases studied,
and vague type prior densities were assigned resulting in posterior
distributions appropriate to situations where prior knowledge is
imprecise, We remark here that even if prior knowledge does not fit
this description, it may still be informative to look at an analysis
under the assignment of diffuse prior densities,

In Chapter II we directed attention to the special case of a normal
sequence with unknown variance, and derived posterior densities
corresponding to a variety of assumptions on the parameters of the
problem.

Chapters III and IV focused on the more general setting known
as two-phase regression. In particular, in Chapter III we derived

posterior densities for the shift index itself, while in Chapter IV we
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studied the problem of estimating the abscissa of the point of inter-
section of the two regression lines,

- In Chapter V we surveyed some of the possible uses to which the
posterior distributions may be put, and gave examples based on a set
of data used by Hinkley (13) to illustrate his solution to the same

general problem.
Some Possible Extensions

Little attempt has been made in this study to investigate the
properties of the posterior distributions derived in Chapters 1I, III and
IV, One of the reasons for this is the apparent algebraic complexity of
the form of the distributions. This point is well illustrated by
equation (4. 28), for example, A considerable amount of numerical
work remains to be done with regard to means, modes and variances
of the distributions,

Again, we have not directed any attention to the problem of
estimating the error variance in the two-phase regression setting. Its
posterior distribution could, hopefully, be computed, and the
estimators resulting from it could be compared to those given by
Hinkley (13). The same is true for the regression parameters of the
two regressions under study.

Another obvious and natural extension would be to the multi-
variate case, where at each time point one obtains a vector of
observations rather than a single observation. In this case, of course,
the ¢i's of Chapter II woulci be replaced by a vector of means, while

2

g~ would be replaced by a variance-covariance or dispersion matrix.
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Finally we point out that the study by Hinkley (13) assumes that
vy, the abscissa of the intersection point of the two regression lines, is

constrained by Xm <y <X where m is the (usually unknown)

m+1l’
switch point of the sequence. The author has investigated this situation
2

in the Bayesgian framework for the first case, namely where m, o
and the first regression are all known, The resulting posterior
distribution for v is simply our distribuion (4.5) truncated on the

interval [Xm,X One could proceed to study some of the more

rn+1)'

complex cases under this added restriction to see how the resulting

posterior distributions compare to those arrived at in this dissertation.
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