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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

Introduction 

Whenever observations are taken in an ordered sequence it can 

happen that the complete data set <;:<;tn be divided into subsets in a well 

defined way. Each observation :may be regard,ed as coming from a 

parameterized fq.mily of dLstributions; those observations in a specified 

subset correspond to some parti<;;ular value of the parameter, the 

parameter value changing from subset to subset. 

One of the more widely known occ:;urrences of this situation is in 

industry where one is interested in the qµaUty of a prodµct from a 

continuous production proc;:ess. For a specific:; example, let us suppose 

that the 11 Sure strike Matc;:h Company 11 produces boxes of kitchen 

matches, and that the average content is advertised as fifty matches. 

It seems c;:lear enough that the company would like to know if a 

change oc::<;:urs in IIhe average contenlI of a box of matches. If this 

average increases the c;:ompany is glving away free matches, while if 

it decreases customers may well suspect the company of false adver­

tising and take their business elsewhere, It also seems clear that if a 

c;hange in the average content has occurred,, interest would center on 

the time point in the sequence at whic;h the change occurred. This 

knowledge may allow the company to recover the faulty product and 

correct the fault before di13tribution oc::curs. 
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Many other examples come to mind, ln biological studies, the 

onset of a disease at some point in time may resutt in a redu~ed growth 

rate; the application of a treatment may inhibit the response to some 

stLmulus; or repeated condit'ioning in a psychological experiment may 

cause a change in the proportion of c;orrect answers given by a subject. 

There is a qons·Lde:rable body qf literature on the various problems 

of estimation and inference associated with parameters changing over 

tLme, and the references given in the bibliography are by no means 

exhaustive. Most of the recent studies have been from the classical 

frequency theory viewpoint. The present study is set in a Bayesian 

framework. 

We shall now formulate the problem in mathematical terms and 

then review some of the recent papers on its va.rious aspec;ts, 

We assume that we have observations on a finite sequence of 

random variables x1, . , . , :x;T ~ and that for some m, 1 < m ~ T, 

x 1, ... , Xm are independently distr~buted with dens Hy f(x; e 1) while 

Xm+ 1, ... , XT are independently distributed f(x ; e2 ) . We assume of 

course that e 1 # e2 and that (X 1,, , , , Xm) is independent of 

(Xm+ 1, ... , XT), We refer to this point m Ln the sequence as the 

"shift point" or 11 switch point 11 , sinc;e the random variables up to the 

ili . ili m correspond to one parameter value whi.le those after the m 

correspond to an.other parameter value. The problem may be 

generalized to the case where el and ez a;re p-component vectors. 

The shift is then from one point p-space to another, rather than a 

shift along the real line. 

It is clear that if m = T then no shift has occurred. This 

enables us to identify two main problems of interest with suc;h a 
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sequence, The first ~s a detecticm problem, That is, has there been 

a para~eter change in the sequence of random variables? The sec;:ond 
""'"'"""'"'-,.,..,._,_,_ 

problem is an e st'imation problem, Assuming a shift has occurred, at 

what point in the sequence did it occur? Along with these are the 

problems of estimating current and previous parameter values, and 

perhaps testing hypotheses about them. The present study addresses 

itself only to the second of these two main problems. 

Review Of Some Related Literature 

In a series of papers Page (1, 2, 3) discusses the problem of 

detec;:ting a parameter change, and proposes a number of tests to this 

end, These are based primarlly on the cumulative i;ums 
r 

S = I: (X,, - 8), where a is the known initial mean. If there is no 
r i= 1 L 

change the mean path of the cumulative sums is a horizontal path; 

E(S ) = 0. r 

Quandt (4) dlscusse S a maxb:X),Uffi likelihood technique for 

estimatLng the switch point and the regression parameters in a two-

phase regression. This is a generalization of the one parameter case 

discussed earlier. We assume here that the observations Y.' 
! 

2 i = 1,.,,, m are distributed N(a 1 +13 1 Xi, er ) while the Yj, 

2 j = m+l,,,., T are distributed N(a 2 +132 Xj, er ) , Quandt's tec;hnique 

involves evaluating the likelihood, function at each of the possible switch 

points. Be also disc:\lsses in this article and a later paper (5) several 

tests of the hypothesis of no switch against the alternative of a single 

swHch, 

Sprent (6) outlines a hierarchy of possible hypotheses of interest 

related to two-phase regression, and suggests that the result of an 
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initial investigation should indicate the nex~ hypothesis to ~e considered, 

His tests, however, are based on the assumption that one knows 

between wh'ich two of the independent variables the switch occurs, The 

switch point is then the abscissa of the point at which the intersection 

of the two regression Hnes oc;;c;urs 1 namely y = (a 1 - a 2 )/(!32 - 13 1). 

Chernoff and Zacks (7) study Bayesian procedures for estimating 

the current mean (Le., the mean of XT) in an observed sequence 

X 1, ... , XT of normally distributed random variables which has been 

subjected to occasional changes in the mean, Their est'lmator requires 

many complex computations except when the assumption of at most one 

change in the mean ls made. A test is also given for the null hypothesis 

of no shift against the alternative of exactly one sMft, and its power 

for certain alternatives is compared to that of the test proposed by 

Page (2). This ·Ls general,ized in a later paper by Kander and Zacks 

(8) to the case where the distributions of the X. 's 
l 

belong to the one 

parameter exponential famUy :rather than the normal family in 

particular. The paper by Bhattacharyya and Johnson (9) derives 

certain optimal tests of the hypothesis just stated, their optimality 

criterion being the maximization of loc;:al average power, 

Brown and Our bin ( l 0) discuss methods for invesHgating whether 

a regression relationi;hip is cons~aq~ over time. Most of their tec;h-

niques are graphical in nature, along the lines suggested by Tukey (11)~ 

These indude plotting the residuals from a single regression fitted to 

the entire data set, as weH as plotting the cumulative sums of 

residuals, in line with the cu sum technique of Page ( 1) . A further 

technique they discuss is that of plotting the recursive residuals 

t = 3, ... , T, . where /\ 
Q:' t-1 and 

6 

!3t -1 are 
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the least squares estimates of the regress~on paramete:u based on the 

first t -1 observations. These quantities ~an easi~y be normed in 

suc:h a way that under they hypothes·Ls of no shift t4ey are independently 

distributed N(O, 0"2 ). Other useful plots are the cumulatlve sums of 

the recursive residuals and the cumuLati.ve sums of squares of recur-

sive residuals, each plotted against the time points t. 

Finally we come to some of the more recent papers on shifting 

sequenc;es of random variables. With regard to two-phase regression 

in particular, D. V. Hinkley has been a major contributor to. the recent 

literature, 

In a paper published ln 1969, Hinkley (12) d.escrlbes a method 

for finding a max;imum likelihood e stim!=J,te of the abse'Ls sa of the inter -

section point of the two regresi;ilon Hnes, '( = (a 1 - a 2 )/(132 - 13 1). 

This involves finding T - 3 ~ondiHpn.al likeli:P,ood functlon·s, each of 

which ha e to be maximized, and then m~ximi~ ing aver all T .... 3 

functions. This estimate is difficult to work with in that H: has no 

explicit definition,, He also proposes a likelihood ratio test for a null 

hypothesis of the form H : '( = '( . In his 1971 article, Hinkley (13) 
0 0 

parameterizes the problem a little differently. Be ass\,l.mes that Yi, 

i = 1,,,., m are independenHy distributed N(0 t 13 1 (Xi - '(), 0"2 ) while 

the Y. ~ j = m+l,,.,, T are independently distributed 
J 

N(0 + !32 (Xj-y), CT
2), with xm ~" ~ xmtl' " being the abscissa of 

the interseqtion point 0£ the two regression lines, He then centers 

. interest on estimation and inference procedures related to 0 and '(. 

Maximum likelihood estimation of e and '( is studied under the 

assumption that 132 is unknown and also under the assumption that 

13z = O. Likelihood ratio tests for H 0 : 131 = 132 and H0 : 132 = O are 
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. discussed, He also derives a confidence region for 'I and describes 

a technique for constructing a joint confidence region for e and 'I. 

Hinkley' s remaining papers are concerned with a change in the 

mean of an observed sequence of random variables. In a 1970 paper 

(14) he discusses maximum likelihood estimation of the shift point m 

in a normal sequence whose mean has been subjected to one change. 

He also derives the asymptotic distribution of the likelihood ratio test 

statistic for tests of hypotheses about m. Similar problems related 

to a binomial sequence are studied in a paper by Hinkley and Hinkley 

( 15) . 

A Bayesian approach to the problem of estimating the shift point 

in an observed sequence of random variables has been given by 

Broemeling (16). He derives posterior densi~ies for the shift point 

parameter in the case of a Bernoulli sequence, a sequence of 

exponentially distributed random variables, and a normal sequence 

wHh known variance. In another paper Broemeling (17) discusses 

Ba ye s~an procedures for fir st dete<;;ting the presence or absence of a 

parameter change, and then ma king inferences after this initial 

decision has been made, The detection problem is handled in terms of 

a "posterior odds, ratio" in favor of the null hypothesis, while inference 

procedures are as usual based on an appropdate posterior distribution. 

Organization Of The sis 

We shall now describe briefly the c::;ontent of this thesis. in rela-

tion to the literature we have just discussed. 

In Chapter II we derive a number of posterior distributions which 
~·r '°'l 

n;±tt:y,-be used for inference about a normal sequence with unknown 
/"'. .. );~,''" 

,·,t·"··· 



7 

variance. This is an extension of the paper by Broemeling (16). 

Chapters III and IV are related to two-phase regression, which 

may be considered as a generaLization of the shift'Lng normal sequence. 

In particular, Chapter III addresses itself to the problem of estimating 

the shift index m, while in Chapter IV we derive posterior distribu­

tions related to estimation of the abscissa of the point of intersection 

of the two regression lines. These chapters present an alternative to 

the analyses given by Quandt (4, 18), Sprent (6), Hinkley (12, 13) and 

others. 

A brief survey of Bayesian estimation and inference techniques· is 

presented in Chapter V, which includes examples and applications of 

some of our earlier resuLts. 

Chapter VI summar·Lzes the results of this report and discusses 

some possibilities for future investtgations. 



CHAPT;ER II 

POSTERIOR DISTRIBUTIONS RELATED TO 

THE NORMAL SEQUENCE 

In this chapter we shall c;ierive some pos~e:l;"ior dishributions 

related to the problem of est"Lmating the time point at which a shift in 

the mean occurs ~n a finite sequenQe of observations on normally 

distributed random var·lables, 

More specifically, we assume that we h~ve observed a sequence 

x 1, ... , Xn, n ?:.. 3, of independent random var"lables, and that for 

some unknown m (m = 1, •.. , n - 1) ~he dlf!tributions of the 

g·Lven by: 

and 

xm+l' ' .. 'xn are ~. ·i, d. 

2 
w'lth er > O and <Po f. cp 1 • 

X.'s 
l 

are 

The case in which cr2 is assumed known has been studied by 

Broemeling (16), We consider here only the c;ase where cr 2 is 

There are a number of subcases fol;' the iitbove problem which we 

shall consider: 

(i) <Po , <P 1 , both known 

(ii) Only one of <Po or cp 1 known 

(iii) Ne'lther <Po nor cp 1 known , 



9 

A further eon side ration is whether or not ~he direction of the 

shift is known, and this will be disqus sed· in the following seetions. 

While the main emphasis "in this paper is on the estimation of the 

shVt point m, posterior distributions will be derived for some of the 

other unknown parameters. 

In order to attac;:k the problem from a Bayesian viewpoint we shall 

consider m to be a dlscrete random variable with state space 

I ·1 = { l, ...• n -1} . The parameters fo~ our problem are now m, 
n-

cr2 
' <Po, and cp 1 , and pr~or distributions will have to be as signed to 

those that are unknown in each of the cases conslc;lered 1 

In th,e development glven in this and later chapters we shall 

assign independent prior distributions whi<;h may be considered 

appropriate for situations wher19 prior knowledge is vague, More 

precisely, we shai1 as sign in every 'case for m and 

dens Hies: 

= {
0

1/(n-l), m=l,,,.,n-1 

1To (m) 

elsewhere, and 

{ 0

1 /cr2 , 0' 2 > o 

elsewhere , 

2 
CT the prior 

2 The pric:n• on er ·is of course an improper density, It has been 

widely used to indicate vague prior know Ledge of the var·~ance. Its 

form is suggested by a number of approa~he s, and the reader is 

referred to Lindley (19) and Je£freyc;; (20) for a discussion of these, 

We now cop.sider in turn the three cases mentioned above. 
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<1>0 And <1> 1 Both Known 

The likelihood function for m and 0'2 is 

2 
L(m, O" ) 

• 

2 
where 0 < CT < ro and m belongs to In accorda.nc;e with 

2 
Bayes theorem the joint posterior d'lstribut'lon of m (;l.nd CT is 

2 2 2 
ir 1 (m, CT ) cc L(m, CT ) ir0 (m) ir0 (0' ) 

cc (0'2)-(n/2+1) exp{(-1/2(!"2)[.m.I; (Xi-~0)2+. ~ (X1-<l>1)2J} 
1=1 1=mtl 

(2. 2) 

2 
where 0 < er < oo and m belongs to I 1 , n-

Infe:ren~e About m 

This may be based on the marginal posterior density of m, 

which is glven by 
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Letting w ;;::: 1 /rr2 , the integrand i~ seen to have the form of a 

gamma density, and is easily eva~uat~d to give 

We qan thus write 

[
m 2 n 2]-n/2 

ir 1(m)cx: ~(X.-cp) +.~ (Xi-cp 1)· m=l,, .. ,n-1. 
i=l 1 O i=m+l 

(2. 3) 

The norming constant may be found by summing on rn. 

Inference About rr2 

This may be based on the marginal posterior distribution of 2 
O' ' 

which is given by 

2 n-1 2 
ir 1 ( cr ) iii: ~ ir 1 ( m, O' . ) 

m=l 

n-1 2 -(n/2+1) 2 2 
ex: ~ (er exp {(-1/20- )K(m)}, 0 <er <co \2,4) 

m=l 

where 

If we now let w = 1 /cr 2 we can write the posterior density of w as 

n-l n/2 -1 
ir 1(w) ex: ~ w exp{-wK;(m)/2}, O<w<oo, (2.5) 

m=l · 

Apart from the norming consfuan~~ this is the sum of n - 1 

gamma densities with parameters a = n,/2 and 13 = 2 /K(m) . The m m 
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poster'Lor density of w = l/CJ2 is thus a r:pixh:i.re of gamma densities, 

We may also make the equivalent shatement that the posterior density 

of CJ 2 is a mixture of inverted gamma densities. 

2 
An alternative Q.istribution on which inference about CJ can be 

based is the c;onditional poster~or dish:i;-ibution, ;rl (CJ 2 jm). One could 

center inte re sh on this distribution evaluated at, say, a modal value of 

the posherior density of m r In hhis case we have 

;r 1(CJ 2 jm) = ;r 1 (CJ 2 ,m),/7r 1(m) 

ex: (CJz)-(n/ 2 +l)exp{(-l/2CJ2 )K(m)}/[K(m)rn/ 2 . (2.6) 

It ls now clear that, for each ftxed m, this conditional density is 

inverted gamma with parameters a = n/ 2 and A = 2 / K ( m) . 'm t-'m 

Before proceeding to the next case we should perhaps remark on 

the mixing density which O(!;curs in hhe posterior distribution of 

w = 1 I CJ 2 , If we le t 

f (w; n/2, K(m)) = wn/ 2 - 1 exp { -w K(m) /2} m . 

then we can writ~ the posterior density of w (see (2. 5)) as 

n -1 
;r 1 (w) a: ~ f (w; n/2, K(m)) 

m=l m 

The norming constant K is now given by 

(2. 7) 

! co n-1 
/ K = L: r(n/2) [2/K(m)r 12 r(n/2) [2/K(m)r 12 fm(w; n/2, K(m))dw 

0 m=l 

= r(n/2) 2n12 
n-1 

L: [K(m)rn/2 . 
m=l 
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Referring to (2. 7) and inserting the norming c:onstant K we see 

that the mth mixing constant for the posterior dens'lty of w is 

K(m)-n1 2/ nil [K(m)rn/ 2 • By referring also to (2. 3) we see that 
.m=l 

this is precii;iely the posterior density of the shift point at its mth mass 

point. Thus the gamma densities oc:;;c;urring in the posterior density of 

2 w = 1 /r:r are mixed according ta the posterior density of the shift 

index m. 

Only One Of <Po Or cp 1 Known 

The theory for the cqtse cp0 unknown and cp 1 known parallels 

that for the case <Pa known and cpl unknown, and for that reason we 

shall study the latter case only in this sectLon. The results for the 

former case will be evic;lent, 

We now have an additional parameter, cp 1 , whose prior density 

must be assigned. We shall derive the appropriate posterior densities 

corresponding to two different vague prior ciistributions, Firstly we 

shall assume that the direc;tion of the shUt is now known and assign the 

improper prior density 

This shall be referl;"ed to as the 11 unconstrained" prior density. 

Next we shall assume that it is known that q,0 < cp 1 , and in this case 

we shall assign the "constrained" prior density 
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Unconstrained Prior, Inference About m 

The joint posterior ~etis·~ty of the th:ree unknown parameters is 

easily seen to be 

The marginal posterior density of m is given by 

-n 
where xm+l = ~ xi/(n-m), Making use of ~he Tonelli theorem 

i=m+l 
(2 1) we can write 

[/
co 2 - n 2 l 2 

_
00

exp{(-,(n-m)/2cr )(cp 1 -Xm+l).}dcp~dcr 

-1/2 !co 2 ~(n+l)/2 2 2 
er; (n-m) (er ) exp{(-l/2cr ) [K(m, cp0 )]}dcr 

a 

where 

m 2 n -n 2 
= Z::(X"-cpO) + 2: (X.-X +l) 

i= 1 1 i= mt 1 1 m 
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Making use of the inverted gamma integral as before we obtain for the 

posterior density of m 

(2. 9) 

A comparison with (2. 3) shows that, for each m, cp 1 has been 

replaced by its estimate and an additional multiplier has been 

introduced, 

2 Unconstrained Prior, Inferenc:e About er 

This may be based on the marginal posterior distribution of 

which ls given by 

2 n-1 /co 2 -(n/2+1) 
ir 1(cr) o:i ~ (er) 

m= 1 -co 

{ 2 [m 2 n 2J} exp (-l/2er) .~(Xi - cp0 ) +. ~ (Xi- <1> 1 ) dcp 1 
i= 1 i=m-li 1 

ex:: 
n-1 _112 2 -(n+l)/2 2 
~ (n-m) (er ) exp{(-1/2er ) K[m, cp0 ]}, 

m=l 

2 
er 

' 

2 
0 < er < co , (2. 10) 

Again it is clear that the postel;'ior dens~ty of w = 1 I er2 is a 

mixture of gamma densities with parameters a = (n-1)/2 and 
m 

[3m = 2/K(m, cp0 ). As be{ore it is a straightforward matter to show 

that the mixing density is precisely the marginaL posterior density of m. 

Unconstrained Prior, Infe:i:-ence About p1 

Inference about cp 1 can be based on the marginal posterior 

density of cp 1 , which is given by 



n-1 Jai 2 -(n/2+1) 
2: (o- ) 

m=l 0 

{ 2 [ m 2 n zJ} 2 exp (-1/20-) .2: (Xi - cp0 ) +. 2: (Xi .. c!> 1) dO" . 
1=1 1=m+l 

Making use of the inverted gamma integral we obtain 

n-l[m 2 n zJ-n/2 
Trl(cpl)o: 2: 2:(X.-cp0) + 2: (X.-cpl) 

m=l i=l 1 i=m+l 1 

where T(m 1 cp 0 ) = (n -1 )(n-m) I K(m, cp0 ), Thus we can write 

where 

gm (<j>l; n-1, f'm• Tm) : [ T ~ /Z r(n/2)J/r ((n-1 )/2)((n-1)7Tl /~ 
-«n-1)+1) 

[1 + (Tm I ( n - 1 ) ) ( cp 1 - µm) ~ 2 

is the t density with location parameter µ , precision parameter 
m 

T , and n-1 degrees of freedom (See (22)). We see from (2. 11) 
m 

16 

that the marginal postedor density of cp 1 is a mixture of t densities, 

and it is easy to verify that the mixing density has the value 

t . t th . t a t s m mass po1n , m= 1, . , . , n-1 . 
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Constrained Prior, InferenGe About m 

2 
The joint posterior density of m, rr and <1> 1 is now 

2 
1T 1 ( m, CT ' cp 1 ) ex: 

where 
2 me I 1 , O<CT <1;D 

n-
and cp 0 < <I> 1 < co , The marginal of m 

is thus 

2 
Integration with respec;:t to CT proc;eeds as before to give 

1T 1 (m) 

where K(m, cp 0 ) and T{m, q, 0 ) are as defined in an earHe:r,- section. 

This expression may now be wr'Ltten as 

The integral is seen to be, apart from the norming constant, the 

upper tall of the t dens~ty with loc;ation parameter 
-n 
xm+ 1 • precision 

parameter T(m, cp0 ) and n-1 degrees of freedom. Inserting this 

norming constant we may write 
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(2. 13) 

where Tk b(x) is the cumulative distribution function of a t 
' a, 

random variable with location a 1 precision b, and k degrees of 

freedom. Now the general t distribution referred to above may be 

transformed to a Student's t by a translation and change of scale. 

That is, if Y is such a t random variable, then Z = b 1 /Z[Y - a] has 

a Student's t distribution with k degrees of freedom. This enables 

us to write the cumulative distribution function used in (2. 13) in terms 

of the distribution func;tion of a Student's t with n-1 degrees of 

freedom, according to the formula 

where ~k(x) is the distl;'ibution function of a Stud13nt's t random 

variable with k degrees of freedom, We can then wrlte for the 

posterior density of m 

rrl(m) a: [n-mrl/Z[K(m,cj>O)r(n-1)/2 ~ -~n-l(T(m,cj>O)l/2(cj>o-X:i+1~] 
(2. 14) 

where m= I, .. , , n-1 . One advantage of this formula is its extreme 

computational ease .. 

2 Constrained Prior, Inference About CT 

2 
The marginal posterior density of CT is given by 
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2 n-1 Joo 2 -(n/2+1) 
Trl (o- ) 0:: 2: (o- ) 

m= 1 <Po 

n-1 2 -(n/2+1) 2 
ai 2: (o-) exp{(-1/20- )K(m1 cp0 )} 

m=l 

f cxi 2 - n 2 
cp exp{(-(n-m)/2 o- ) (cp 1 -Xm+l)} dcp 1 . 

0 

Inserting the norming constant for the normal density qn the 

right and integrating with respect to qi 1 we mc:i.y write 

2 n-1 2 -(n/2+1) { 2 }~ 2 11;2 
Tr 1(o- ) o:: m:l (o- ) exp ( ... l/2o- )K(m, cp0 ) rTr o- /(n-m)j 

~ ·N(t<f>o · x;;,+ll/(~/ /n·m ~] 

where N(x) is the cumulative distribution function of a standard 

normal variate, Sb;nplifying, we obtain 

2 n-1 -1/2 2 -(n+l)/2 { 2 } 
1T 1 ( o- ) ex: ~ 

1 
( n - m) ( o- ) exp ( - 1 I 2 o- ) K ( m, cp 0 ) 

~ - N (( cj> 0 - X ~ + 1 ) ( o-/ / n -m )) J ( 2 , 1 $ ) 

2 
for 0 < o- < cxi • 

Constrained Prior, Inference About g, 1 

From (2. 12) we see that the marginal posterior density of cp 1 

is 



20 

Proceeding exactly as in the un<;onstrained case we obtain 

(2. 16) 

where K(m, cp0 ) ~ T(m, cp0 ) and g(x; k, a, b) are as previously 

defined. The posterior distribution. in this case is thus a mixture of 

truncated t distributions, In order to find the mixing density we need 

to compute the norming constant K, ~ntegratin$ (2. 16) we get 

Referdng again to (2. 16) we see that the vaLue of the mixing density at 

. th . . 
its rn mass poi,nt ls 

(2. 17) 

for m=l., .. , n-1. As before, W 1(x) is the distribution function of 
n~ 

Stµdent's t with n-1 degrees of freedom~ 



Neither cp0 Nor <1> 1 :Known 

·As in the previm,1s case we shall study the pre sent .situation for 

two vague prior densities. Firstly we shall assume that nothing is 

known about th.e order relation between cp0 and cp 1 and as sign the 

improper prior density 
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-co < cpi < co ' i = 0' 1 • (2. 18) 

Next we shall assume it ii:! known that <l>o < cp 1 and C1.ssign the prior 

-ai < <l>o < <1>1 < co (2. 19) 

The theory for the qase in whl<;h the order relation on the 

is reversed parallels that being presented here and will not be · 

presented separately. As before we shall use the terms ''unconstra'lned 11 

prior and "constrained" prior for (2. 18) and (2. 19) respectively. 

Unconstrained Prior, Inference About m 

The joint posterior density of 

where me I 1 , 
n-

2 
0 < er < co, and 

2 
m 

' CT ' 

-co < "'· < 00 '+'1 

marginal posterior densHy of m is given by 

is 

for i = 0, 1 . The 



where 

Let 

where 

! = 

Integrating first with respect to <T 2 we obtain 

= ( ·~ x.)fm 
i= 1 l. 

and = (. ~ xJ)(n-m). 
i=m+l 

C(m) 
m -m2 n -n 2 

= . ~ (Xi - XI ) + ~ (Xi - Xm+ 1) 
t= I i=m+ 1 

Then we may write 

(n -2 )m 

G: l. 
-m C(m) 
XI 

~(m) = 'J' (m) = 
-n 
xm+l 0 

0 

(n-2)(n~m) 

C(m) 

22 
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The dou,ble integral above is, apart from the norming consta,nt, 

that of a bivar·~ate t density and is easUy evalu,ated to give 

[rr · r((n-2)/2)C(m)] [r(n/2) (m(n-m)) ] , I 1/2 

Substitution in (2,21) gives 

[ ]-1/2[ ]"'(n .. 2)/2 rr 1(m) ex: m(n .. m) C(m) , 

A comparison of (2. 3), (2, 9), and (2. 22) displays an interesting 

pattern as more parameters are assumed Utlrknown. 

Unconstrained Prior, Inference About o-~ 
. .,, ,. 

The marginal poster'lor denslty of o- 2 is 

2 n-ljc:o Jco 2 -(n/2+1) 
1Tl (o- ) oc :E (o- ·) 

m= l -co -co 

{ 2 [m 2 n 2J} exp (-l/2q-) .:E (Xi-<Po) +. :E. (X.i·<P 1) d<P0 d<P 1 
i=l i=m+l 

n-1 2 -(n/?+l) { 2 } 
a:: ~ (cr) exp (~l/2cr )C(m) 

m=l 

where <P and µ(m) are as before and 
"' ,..., 



Using the form of the bivariate normal density to evaluate the 

double integral we obtain for the postertor density of cr 2 
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2 
O<cr <co, 

(2. 23) 

As in the previous case considered, the posterior density of 

w= 1 I cr 2 is a mixture of gamma densities, the mixing density being 

the posterior density of the shift point. 

Unconstrained Prior• Infe re nee About (cj>0, cp 1) 

The joint posterior density of <Po and cp 1 is 

Making use of the notation introduced earlier we may write 

It is now clear that we hav~ a mixture of bivariate t densities. 

Letting h (cj>; n-2, µ(m), T(m)) denote the bivariate t density with 
m"" ,.._, 

n-2 degrees of freedom, location parameter !:(m). and precision 

matrix T(m) we may write (2. 24) as 
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.. n .. z 
n-1 1/2 -Z-

'IT1(cp0, cJ> 1) a; ~ [m(n-m)J"" [C(m)] h (cj>; n-2, µ(m), T(m)), 
1 m ,...., "' m= 

- co < ,!,.. < co ' i ::: 1, 2. (2. 2 5 )_ 'l"l . 

Some straightforward algebra shows that in this case also the 

mixing density for the bivariate t distributions is the posterior density 

of the shift point m, 

Constrained Prior, Inference About m 

The joint posterior density for this last case to be considered is 

2 . 2 - ( n I 2 + 1 ) { 2 ~m 2 n 2J} 
TI"l(m,o- ,cj>O,cj>l)c:c(o-) exp (-1/20-) .!:(Xi .. cj>O) + ~ (Xi-cj>l) 

· = 1 l=m+ 1 

(2. 26) 

2 
where me In-l' 0 <a- <co, and -co < cp 0 < cp 1 < co, The marginal 

posterior density of m is th1,ls 

Using the general t density to integrate on cp 1 we obtain 

! co _ 112 [m 2 n ~ n 2]-(n-1)/2 
'IT 1(m) oc (n-m) .~ (X1 -cp0 ) +. ~ (X1-Xm+l) 

-co t= I i::;mt 1 



where ~ 1 (x) is the distribution funetion of Student's t with n-1 
n-

degrees of freedom and T(m, cj>0 ) is defined by 

Using a well known identity it is possible to write (2. 27) as 

-n-2 

irl(m) ex: [m(n-m)]l/2 [C(m)]---Z-[ooro [1 -i!rn-l(T(m, <l>o)l/2(<1>0-X~+1))] 

26 

, gm(c1>0 ; n-Z,.xf1, w(m~d cl>o (2. 28) 

whe+e w(m) = m(n-2)/C(m) and gm(cj>0 ; k, a, b) is the general t 

density defined earlier, We ean thus write (2. 28) as 

-n-Z 

ir I (m) m [m(n -m)r l /Z [C (m)) -Z E <l>o ~ - V n- l (T(ttl, <i>ol l /Z ($0 - x;+ I~ 
(2. 29) 

where m = 1, • , . , n-1 and Eel> is the expectation of the indicated 
. 0 

fun~tion of cl>o taken with respect to a general t density with n -2 

degrees of freedom, location pa:r:ameter 
-m 
Xl I and precision w(m), 

Using the transformation 

we know that y is clistrlbuted as Student's t with n-2 degrees of 

freedom, This enables us to express the e~pectation in (2, 29) with 

respect to a Student's t density. Straightforward computation shows 

that this expectation then becomes 



where 

H(m, y) = [<n-1 )(n-Z)(n-m/(c(m)(/+ n-zVJ I /Z ~m(n-Z) C(m) r 1 /Z y 

+ rxf1-x~+i ~ 
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The expectation of the indicated func;:Hon of y is now taken with 

re i;;pect to a Student's t distribution with n -2 degrees of freedom. 

We can now write the marginal posterior density of m as 

m=l,, .. ,n-1. (2.30) 

It is clear that this formula pre sen ts considerable, though not 

insurmountable, computational difficulty, and that a numerical integra-

tion technique of some kind would be needed to evaluate this density for 

a given set of data. 

Constrained Prior, Inference About o- 2 

2 
The marginal posterior density of o- for this case is 

n-1 oojoo 
( 2) " J (""2)-{n/2+1) irlcr a:~ v 

m= I -oo <Po 

{ 2 [m 2 n 2J} exp (-1/20-) .L: (Xi-cpO) +. L: (Xi.- cpl) dcp 1 dcp0 
i=l i=m+l 

n-1 2 -(n/2+1)/co { 2 [m 2 n _ n ~~ 
a: L: (er) exp (-l/2cr) L:(Xi-cpO) +. L: (XCXm+l) 

m=< 1 -a:i 1= 1 i=m+l 

( 2) 1 I 2 r ( <P - x n )il 
. ~~:;, L-N :;~ J d~o 
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[ ( -n )~ m-l 1 2 2 -n/2 2 cl>o-X +l 
a:: L: [m(n-m)] I (o-) exp{(-1/20- )C(m)}Ecp 1 -N m 

n=l 0 a-/ /n-m 

(2 .. 3 1) 

where N(x) is the distdbut·Lon funct·Lon of a standard normal variate 

and the expected value of the indicated function of cp0 is taken with 

respect to a normal dens;ity with mean x:n and variance o- 2 /m. 

Letting 

we may take the expeetati9n with :respect to a standard normal and 

write 

2 n-l 1/2 2 
rr 1(o-) a:: L: [m(n-m)r exp{(-1/Zo- )C(m)} 

m=l 

(2.32) 

where 2 
0 < o- < oo and the expectation of the indicated function of z is 

taken with respect to a standard normal variable . 

• 
Constrained Prior, Inference About (cp0, cpl) 

The joint posterior density of cp 0 and ¢ 1 is 

{ 2 [m 2 n zJ} 2 exp (-1/Zo-) .L: (Xi-cpO) ·+. L: (Xi-cpl) do-
1=1 · 1=m+l 
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where -m < <Po < <1> 1 < oo. Evaluation of the integral and sLmp!ification 

of the subsequent e:x;pre Ejston proceeds exactly as in the case of the 

unconstra·~ned prior density, keeping in mind the a<;lded l'estriction on 

<Po and <1> 1 , The joint posterior density of <Po and <1> 1 may then be 

written as 

n 1 · 
1T (<!>0 .<!>1) o:: i: [m(n-m)r 112 [C(m)r<n-Z)/Zh {cj>;n-2, µ(m), T(m)), 

1 m=l m ,.._, ,.._, 

-co < <l>o < <I> 1 < m • (2. 3 3) 

As before, h (cj>; n ... 2, µ(m), T(m)) is the bivariate t density m....., ......, 

with n-2 degrees of freedom, location parameter 

J:t(m) : ( X :U• x;,t 1) I I anq precrision matdX 

T(m) = 

(n-2)m 
C(m)' 

0 

0 

(n~2)(n~m) 
. C{m) 



CBAPTER III 

POSTERIOR DISTRIS UT IONS RELATED TO 

TWO .. PHASE REGRESSION FOR THE 

DISCRETE CASE 

As a generalization of the normal sequence studied in Chapter II 

we shall in this chapter derive certain posterior distributions related 

to making inferenc;es about a two-phase regression. 

We assume that we have observations on a sequence Y 1, , , , , YT' 

T > 5, of independent random variables which follow two separate 

linear regression regimes. As b~fore we shall introduce a discrete 

random variable m for the unknown switch point, and we shall further 

assume that the state space of m is the set IT~ 2 = {2, 3,.,., T-2}. 

We thereby assume that we have at least two observations on each 

regression, We thus have 

and 

2 
Yi, i= 1, ... , m, independently distributed N(a 1+131 x1, a- ) , 

2 
Yj, j = m+l, , .. , T, independently distributed N(a 2+132 Xj' a- ) , 

where a-~ > 0 
' 

X 1 < ... < XT are non ~stochastic regre s sor 

variables, and m is the unknown switch point, 

In sueh a situation, interest centers on estimating the switch 

point m as weil as any unknown regression parameters and the 

possibly unknown variance 2 
a- • 
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We shall study four cases in this chapter: 

(i) Error variance known, first regression known 

(ii) Error variance known, neither regression known 

(Ui) Error variance unknown, first regression known 

(iv) Error variance unknown, neither regression known. 

Our interest shall center primarily on the shift point m, but in 

some cases posterior distributions for the regression parameters also 

will be derived. In a,ll cases we shall assume that prior knowledge is 

such that independent, diffuse prior densities for the unknown para -

meters will be adequate. 

Error Variance Known, First Regression Known 

Without loss of generality we shall assume that <r 2 = 1 . a 2 , 132 

and m are assumed a priori independent with prior densities 

and 

= {

0

1/(T-3), m=2, 

elsewhere . 

The likelihood function is 

. , . , T-2 

T /2 { [ m 2 L{m, q 2 , 132 ) = (2rr)- exp (-1/2) i~l [Y1 - (a 1 +13 1 Xi)] 

+ . i [Yi - (a 2 + 132 Xi ]2J} 
1=m+l 

resulting in a joint posterior density of 
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J [m 2 T ~} expl(-1/2) .~ [Yi-(a1+13 1 Xi)] + ·. ~ [Yi-(a 2 +132 Xi)] 
l i=l i=m+l 

(3. 1) 

for m = 2, . , . , T -2 , -co < a 2 < co and -co < 132 < co , 

Inference About m 

The marginal posne rior density of m is 

m e IT _2 . (3. 2) 

In order to evaluate this integral we shall use the identity 

T [ ]2 T [ /\ m]2 m 1 -1 m 
. ~ Yi- (a 2+132 Xi) = ~ Y. - Y. + (a-µ ) ~ (a - µ ) (3. 3) 
i=m+l i=m+l 1 L ,....., ,....., m"" ,....., 

where 

/\ m 
a2 

m 
!: = -

/\ m 
!32 T . IT -T -T -T 2 

~ (X.-X +l){Y.-Y +l) Z: (X. - X +l) 
,i=m+l L m + rn i=m+l 1 m 

T 
(T -m) ~ X. 

i=m+l 1 

~ -1 = m 
T T 

X.2 ~ X. ~ 

i=m+l 
1 

i=m+l 1 
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= (. ~ Xi \ j T - m \ , 
1=m+l Y" ') = ( . , ~ Yi)\ A(T -m) , 

1=m+l V \ 
and 

Substituting identity (3. 3) in (3. 1) , the posterior density (3. 2) 

may be written 

{ [ m 2 T I\ 2J} ,,. 1(m) ex: exp (-1/2) ~ [Y. - (a 1 + [3 1 X.)] + ~ [Y. -Y,m] 
. 1 1 1 . +l 1 1 i= i=m 

/ CO/CO I 1 
exp{(-1/2)(~ _J;:,m) ~~ (~ _l:m)} da. 

- co -co 

The integral may now be easily evaluated using the bivariate 

normal density to give as the posterior qensity of m, 

~ T -T 2]-1/2 
(T -m) ~ (X. - X + 1) . +l i m i=m 

. { [ m 2 T 11 2]} exp (-1/2) .~[Yi- (a 1 + [31 Xi)) +. ~ [Yi- Y~) 
i=l i=m+l 

(3. 4) 

for m = 2, .. , , T -2 , 

Inference About [32 

The marginal posterior density of [32 is given by 

T-2 co 

'IT1(f32) ex: ~ J 'ITl(m, a2, l3z)da2' -oo < 132 <co. (3. 5) 
m=2 -co 



To evaluate this integral we shall use the identity 

Substituting (3. 6) in (3. 1) and integrating with respech to a 2 , 

(3, 5) becomes 

~I (~2) oo :~: (T-m)-1 /2 exp {(-1 /2) i~I [Yi - (a I+ ~I Xi))2} 
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exp {(-1 /2) i=l+ J(Yi - Y ~+!) - ~2 (Xi - x~+ 1~ 2}. (3. 7) 

Substituting 

T Am 2 
+ ~ (Y. - Y. ) 

i=m+l 1 1 

in (3. 7) we may write the marginal posterior density of 132 as 

where 

~ T -T 2]-1/2 
K (m) = T -m). ~ (Xi - Xm+ 1) 

1=m+l 

{ [ m 2 T /\ 2J} exp (-1/2) .~ [Y1 - (a 1 +13 1 Xi)] +. ~·[Yi-Yim] • 
1=1 1=m+l 
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= i I ~ (xi_ x~+ 1 )
2 

f i=m+l 

and g(y; m, v) is the normal densLty with mean m and variance v. 

We thus obtain a mixture of normal densities, the mixing density being 

precisely the posterior densi!ly of the shift point m. 

Inferenc;e About a 2 

The derivation of the marginal posterior density of a 2 proceeds 

along the same lines as that of ~2 and results in the density 

(3. 9) 

where now 

( T )/~ T 2] .l'\m 2 - T 
var (a 2 ) = . L: Xi (T-m). L: (Xi-Xm+l) . 

i=m+l i=m+l 

Before proceeding to the next case we shall make an obsel,'vation 

on the normal distributions involved in (3. 8) and (3. 9). For each m, 

the mean and variance of the m th dens Hy in the mixture are the least 

squares estimate of the pa:i,-ameter and its varianc::;e respectively, based 

on the last T - m data points in the sequence. 
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Error Variance Known, Neither 

Regression Known 

Assuming as before that 
2 

(J" = 1 the likelihood function is now 

-T /2 
L(m, a 1' f31, a2, f32) = (2 7r) 

exp{(-1/2)[~ [Y.-(a 1 +[3 1 X.)]2 + ~ [Y.-(a 2 +[32 X.)]2J}· 
. 1 1 1 . tl l 1 1= 1=m 

As signing indep~ndent, improper uniform prior densities to the 

regression parameters and a discrete uniform prior to the switch 

parameter m we obtain the joint posterior density 

u 1 (m, a 1, p1, "z• p2 I oc exp{(-112{i~I [Yi - (a 1 + p1 xilJ2 

+ . ~ [Yi- (a2 + [32 Xi)J2J}· 
i=m+l 

(3. 10) 

for m = 2, ... , T -2, -ro < a. < ro , 
l 

i = 1, 2 and -ro < P.. < ro, i= 1,2. 
1-'l 

Applying to the first m data points an identity analogous to (3. 3) 

we may write 

exp{(-1/2)[~ (Y,-~.m,L)2+ ~ (Y.-~.m,U)2 
l=l 1 1 i=m+l 1 1 

+ (~ -i:m1' z;;;(~ -i:m~} (3.11) 

where 

Qi = ( Qi 1' f31 ' Qi 2' f32) 1 
' 

m /\ m /\m /\ m Am 1 

~ = ( Qi 1 , f31 ' Qi 2 ' f32 ) 

Y/\.m, L = 0m + ~mX 
1 '-' 1 1-'l i ' 

L\.m U Am "'-m 
Yi ' = a 2 + f32 x1 • 



Of course 

m 

m 
~x. 
1 l 

m 
~x 
1 i 

m 
~x.2 
1 l 

CD 
\ 

T -m 

T 
~ x. 

m+l 1 

T 
~ x. 

m+l l 

T 
X.2 ~ 

m+l l 

/\ m '/\m 
a 2 and ~2 a:re as defined in the prevLous case 
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and and ~~ are ~heir counterparts for the first m data points. 

The regression parameters may now be integrated out quite 

easLly using the four variate normal integral to obtain as the posterior 

density of m 

{ ~m . 2 T /\ 2J} exp(-1/2) I:(Y.-~.m,L) + I: (Y.-Y.m'U) 
. 1 l l . +l l 1 · = i=m 

(3. 12) 

for m = 2 1 ••• , T ::.2 . 

A comparison of this result with (3, 4) shows that the known first 

regression has been replac;:ed by its estimate for each m and. the 

weighting factor has been altered ac;:cordingly. This densit·y will be 

computed for a particular set of data in Chapter V. 
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Error Variance Unknown, First 

Regression Known 

The likelihood function for the present case is 

2 To the new unknown parameter er we shall assign the improper 

prior density 

2 O<cr <co 

while assigning to the remaining parameters the same prior densities 

as before. Applying Bayes' s theorem we obtain the joint posterior 

density 

2 - (T I 2 + 1 ) J 2 [ m 2 
(er) expl(-l/2cr) i::1[Yi-(a 1 +13 1 Xi)] 

+ i [Y.-(a 2 +132 x.)J2j1j (3.13) 
. + 1 l l F:::m 

for .m;::: 2, . , . , T -2 , 2 
0 < (J" < co ' -co < O!z < co and -co < l3z < co • 

Integration on cr 2 can easily be performed using the inverted 

gamma density to obtain as the joint posterior density of m, a 2 and 

z T. zJ-T/2 
Y.-(a 1+13 1 x.) + .:2:: [Y.-(a 2 +132 x.)] 

1 l . 1 l 
Fm+l (3.14) 
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for m=2, .,., T-2, -cxi < a 2 < cp and -cxi < 132 < cxi. Using identity 

(3. 3) and the same notation ai;; used in c~se one we can write 

where 

K(m) 

We may now ·integrate out a 2 and 132 using the bivariate t 

integral to obtain as the posterior deneity of m 

(3. 16) 

for m=2, ... , T-2. 

Error Varianc;e Unknown, Neithe:i;-

Regression l<nown 

The likelihood function for this the last case of this chapter is 



40 

Assigning the same prior distributions as in the previous cases 

we obtain the joint posterior density 

2 
0 < CT < co, -co a. < co, -ro < P.. < co , i = I, 2 . 

l ~l 
for m = 2, .. , , T -2 , 

Integration on 2 
CT proceeds as in case three to give for the joint 

posterior density of m and the regress·~on parameters 

Making use of the identities given in c;ase two we c<;1.n write, using 

the notation of that section, 

where the value of K(m) is now given by 

K(m) 
m /\ L2 T " u2 

= ~ (Y.-Y.m' ) + ~ (Y.-Y.m' ) 
i= 1 1 1 i= m+ 1 + 1 

We may now integrate out the regression parameters using the 

four va;riate t integral to obtain as the marginal posterior density of 

m 
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[
m /\ 2 T /\ 2]-(T-4)/2 
I: (Y.-Y.m,L) + I: (Y.-Y.m,U) 

L L 1 1 i=l l=m+l 
(3. 17) 

for m = 2, , . , , T -2 . 

In closing this chapter we point out the similarity between (3, 16) 

and (3. 17), and remind the reader that examples of (3, 12) and (3.17) 

will be preseneed in Chapter V. 



C!-IAPTER IV 

POSTERIOR DISTRIBU'l'JONS RELATED TO 

TWO "PHASE REGRESSION FOR THE 

CONTINUOUS CASE 

In the previous chapter our intere at was centered on the index m 

at which the switch from one regre13sion regime to another occurred. 

In some cases interest may center more on the absciesa of the point of 

intersection of the two regression lines. An easy calculaf!lon shows 

that this is given by '{ = (a 2 - a 1)/(131 -132 ) • 

As in chapter three there are many cases one might consider. 

Those discussed in this paper are 

(i) Error variance known, first regression known, m known 

(ii) Error varianqe known, first regression known, m unknown 

(iii) Error variance known, neHher regression known, m known 

(iv) Error variance known, neither regression known, m unknown 

(v)-(viii) As above, but with the error variance unknown. 

The approach taken will be to find the joint posterior density of 

the unknown regression parameters under the assignment of diffuse 

prior densities, and then to obtain from this the distribution of that 

function of these parameters which g~ves the intersection. As 

mentioned above, the function whose distribution we require is 
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Before proceeding to study the cases in turn we remark that the 

cases corresponding to "second regress·ion kp.own" are completely 

analogous to our "first regression known", and for that reason are not 

being studied separately here. 

2 
er · Known, First Regression Known, m Known 

The likelihood function for this case is 

+ 
T zl l 
~ [Y.-(a 2 +(32 X.)] I,. . + 1 1 1 , I i=m _!) 

As before we are as sur;ning for convenience that 2 
er = 1 . 

Combining this likelihood function with the same diffuse prior densities 

used in Chapter III we obtain, in accordance with Bayes' s theorem 

TT 1(a 2 ,(32 ) ex: exp{(-1/2). ~ [Yi-(a2 +(32 Xi)]2} 
1=m+l 

(4. 1) 

for -a:i < a 2 < co and -ro < 132 < a:i , Using identity (3. 3) of Chapter 

III we can write 

where 

m (/\m ~m) !::. = a 2 1 t"'z 
I 

-1 
~ 

m 
= 

(T-m) 

T 
~ X. 

m+l 1 

T 
~ X. 

m+l 1 

(4. 2) 

T z I 

~ X. J 
m+l 

1 
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Of course Am 6m . a 2 and ~2 are the usual ieast squares estimates 

of a 2 and ~2 based on the last T-m data points of the sequence. 

We now transform to 

The joint dens Hy of w 1 and w 2 is easily seen to be bivariate 

normal with the mean vector relocated at 

m 
v ....., 

1',ffi 6m I 

= ( Q:' 2 - Q:' 1 I ~2 - ~2 ) 

Finally we make the transformation to 

and obtain as the joint density of 'Yi and 'Y 2 

for -co < '\1. < co, i = 1, 2 where 
I 1 
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Y/\.m, U = ,;;; m + ~ m X 
l ""2 1"2 i 

Integration on 'Yz now yields the posterior density of the inter,. 

sec;:tion 

where 

It may be shown that if X is a random variable notmally 

distributed with mean µ and variance cr 2 then 

2 -1/2 2 . 2 E[IXIJ = µ[2cp(µ/cr)- l] + (Ti/2cr) exp{-µ /2cr} 

Using (4.4) to obtain E[lvlJ in (4.3) we obtain 

for -oo < -y 1 < oo. 

2 
er· Known, Fir~t Regression Known, m Unknown 

(4, 4) 

(4. 5) 

Proceeding as ln the previous case and introducing a disc;rete 

uniform prior density on m we obtain as the joint posterior density 

of m, a 2 and 132 

tr I (m, az, ~z) ~ exp{(-1 /Z{~l [Yi - (al +~I Xi)]z + i=l+/y i- (az+~z Xi)]~} 
(4. 6) 

for m = 2, , •. , T -2 , -ro < a 2 < co and -ro < 132 < ro . 



Using identity (3. 3) we can wrUe (4, 6) as 

where 

and the remaining notation agrees with that introduced earlier. We 

again transform first to w 1 and w2 as before and then to 

and obtain the joint den51lty 

where 

~ 1 (m, y 1, Yz) ~ h(m) I Yz I exp {(l /2) A(m, y 1) B2(m, y 1 )} 

exp{(.J/Z)A(m,y 1 )(y2 • B(m,y 1))2} 
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h(m) = expJ(-l/2)[~[Y.-(al+f31X.)]2+ ~.T [~.m,U_(a1+f31X.)]2 l i=l 1 1 i=m+l 1 l 

+ ~.. [Y. - ~.m' U fJ} . (4, 7) 
i=mtl 1 1 

Integrating with respect to 'iz and summing on m we obtq.in 

the posterior distribution of the intersection 



where -co < -y 1 < co . It is seen that the density in this case is a 

mixture of densities of the type (4 1 5) with the mixing density being 

given by equation (4. 7). 

o- 2 Known, Neither Regression Known, m Known 

In this case the joint posterior density of the four regression 

parameters is easily seen to be 

n I ( a I • ~I ' a 2' ~2 ) m exp{ ( -1/ Z t~l [ y i - ( a I + ~I Xi) ]2 

+ . i [Yi - (a 2 + 132 Xi)J2J} 
i=m+l 

for -co< a 1 <co and -co< 131 <co, i = 11 2. 
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Applying identity (3. 3) and its counterpart fo+ the first m data 

points we may write 

(4. 9) 

where 

E("m) 

I 

a = (a I' 131' a 2' 132) 
m /\ffi ~m /\ID ;;:;,.m 1 

!::, = { a I ' 131 ' a 2 ' 132 ) 

!Jm L /\m 1-.\m 
.):'. i ' = a I + 131 Xi ' 

and 



L:-1 = 
m 

m 

m 
L: x. 
1 1 

m 
L: x. 
1 1 

m 
L: x2 

i 1 

(T-m) 

T 
L: x. 

1 m+l 

T 
L: X. 

m+l 1 

T 
L: x 2 

m+l i 
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('@{11". ~r) and (0 ;i, ~;1) are the usual least squares estimates of 

the regression parameters based on the fl:rst m and last T-m data 

points respectively. We now transform to 

wl = a 1 - a2 

w2 = a2 

W3 = '31 - !32 

w4 = !32 

Substitution in (4, 9) yields quadratic expressions in w 2 and 

w 4 in the exponent and these may be integrated out using the form of 

the normal density to obtain 

(4. 10) 
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where 

Finally we make the transformahion to 

'{l = -w /w · 1 3 

and obtain as the joint d,ensity of '{ 1 and 'tz 

~1(Y1•Y2l ~ IYzl exp{(-l/2)~(m,yl)yi- 2Q(m,y1lYz+ R(m,yl~} 
(4. 11) 

where 

R(m, '{ l) 

~i is the predil;!!ted Y at Xi when the regression parameter::; are 

estimated by least squq,res over all data points, 
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To integrate out "¥ 2 we can complete the square in the .exponent 

and WTite 

~l (yl' Y2) ~ I Y2 f exp{(-! /2) P(m, Y l i[Y2 - Q(m, Y l )/P(m, Y l ~ 2 

+ R(m,y 1) - o2 (m,y 1)/P(m,y 1)} 

Provided that P(m, 'Y 1) is positive it is now straightforward to 

use the normal density form to integrate with respect to -y 2 . Of 

course P(m, -y 1) is a function not only of m and 'Yi bµt also of the 

x1' s from the data. The author has been unable to show ~hat P(m1 'Y 1) 

is always positive, but is yet to en<;:ounter a situq.tLo'Q. where this 

condition is not satisfied, 

We shall thus assume that P(m,-y 1) ls positive for all 'Yi and 

proceed to obtain 

where 

Applying formula (4. 4) we c;:an wr~te the posterlor dens Uy of the 

inter sec;tion as 

-1/2 {" J[ ( -1/2 ~ ~ 1Tl (-y 1) a: p (m, 'Y1) f (m, 'Yr )/P(m, 'Y1 ~ 2 cp Q(m, 'Y1) p . (m, 'Y1 )) - J 

expt-l/2)Q2 (m,y 1 )/P(m,y 1~ + bP(m,y 1 )/~ -l/ 2}, 

~co < 'Y 1 < a:i • (4. 12) 



51 

2 
er Known, Neither Regression 

Known, m Unknown 

The derivation of the posterior distribution of the Lntersection for 

this case proceeds exactly as in c;ase three, the additional step being 

summation on the range of the shift index m, One obtains 

T ... 2 I 
1T1h'1) ex: L: p~l 2(m,-yl) 

m=2 

{ ~(rn, y l )/P(rn, y l ~ [z <i>(Q(m, y l) p-1 /2(m, y l )) • ~ 
exp~! /2) 0 2 (m, y 1)/P(m, y 1 ~ + tP(m, y 1 )/~ .J/Z} 

-co < '{ 1 < CX'.l • (4. 13) 

We remind the reader that ~or this case the c;ondition discussed 

iq case three must be sat~sfied for each m over the range of the 

summation. 

2 
er Unknown, First Regression 

Known, m Known 

The likelihood function for the pre sent case is 

2 
We assign to er the usual improper prior density 

2 2 2 
1T0 (er) ex:: l/er, O<er <co, 



and retain i:r:pproper uniform prior densities for the :regres13ion para-

meters. The joint posterior 0.ens4ty is then 

2 2 -(T/2+1) { 2 [m 2 
Tr 1 (cr ,a2 ,132 )q: (er) exp(-1/2cr) 1~1 [Yi ... (a 1 +13 1 X)J 

+ . ~ .. (Yi - (a2 + !32 Xl)]zl} (4. 14) 
L.:;mfl J 

2 for 0 < CT < co , .,.co < a 2 < co, and -i;o < 132 < co. In.tegrat'lng fir st 

with respect to o- 2 we obtain 

(4, 15) 

We now derive from (4. 15) the jolp.t density of w 1 and w2 , 

where 

and obtain 

where 

E(m) 

and 
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m 
m ~x. 

1 l 

-1 I: .. .::; 
m 

m m 
I: x1 I: x.'?. 
1 1 l 

';['he final transformation is made to 

This leads us to the joint density 

where 

and 

We are again faced w~th a problem similar to that discussed in 

the third case considered in this ehapter, As surning that G(m, '\' 1 ) is 

positive for eaGh 'Yi we can write (4. 17) as 



and make use of the general t density (22) to integrate with respect 

to 'Yz. Although this has not; been proved in general it has been 

checked for a number of data sets and was not violated in those cases 

checked. We shalL therefore assume that G(m, 'I 1) is positive for 

i;iach 'I 1 and obtain for the marginal di;insity of 'I 1 

where 
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Tedious but straightforward computation shows that Lf t 1 /Z (X - u) 

is distributed like Student's t with n degrees of fret:ldom, then 

( l /2 ) + µ 2 v n (µ t ) - 1 , 

where B(x, y) is the beta funotlon and v (x) is the cumulative 
n 

(4.19) 

distribution function of a Student's t random variable with n degrees 

of freedom. Applying this result to (4, 18) we may write the density 

of the interse~Hon as 
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rrl('(l) cc G-(T-1)/2(m,'(l)A-l/2(m,'(1) 

( 

{ 2 r(m, y 1)/G(m, y 1 ~ -l / 2 [(T-2) B((T-1)/2, l/~J-l 
I, 2 l-(T-2)/2 (4.20) 
L +A(m, y 1 )B (m, y 1)/G(m, y 1)J 

+ B(m, y 1) ~VT-! (B(m, y 1) ((T-1) A(m, y 1 )/G(m, y l )) 112)- ~} 
for -co < y 1 < co . 

2 
CJ Unknown, First Regression 

Known, m Unknown 

The joint posterior density of m, 2 
(j ' 

a 2 and 13 2 is now 

2 2 -(T/2+1) { 2rm .2 
TTl (m, (j 'av 132) cc (CJ ) exp ( .. 1 /2 (j )L~1 [Yi - (a 1+131 Xi)] 

+. ~ [Yi-(q2tj32Xi)]21}. 
1=m+ 1 J 

(4.21) 

for m = 2, , , . 1 T -2 , 
2 

O < CJ < co , -co < a 2 < co , and -co < 132 < co . 

Del'ivation of the posterior density of the intersection proceeds 

exactly as in the previous case with the additional step of summation 

over the range of the shift index m 1 We thus obtain a mixture of 

densities of the type shown in (4. 20), namely 

T -2 I I ...,., G-(T-1) 2( )A-1 2(· ) TTl ("{ 1) cc kJ m, '( 1 m, Y1 
m=2 
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r, 2 l·(t.,z)n 
~ + A(m, 'i 1) B (m, 'i 1) I G(m, "'{ l )j 

(4. 22 > 

+ B(m, y I {2 *-:r-l ( B(m, y 1 )((T-1 I A(m, y 1 )/G(m, y I )) 1 /Z)- ~} 

for -co < "'{ 1 < co . 

cr2 Unknown, Neithlllr Regresi;lon 

Known, m Known 

The joint posterior density of the varianc:e and the regression 

parameters is 

for 0 < 0" 2 < co . .co < a. < co ap.d -co < A. < co , i = 1, 2 . 
L ~l 

Integrating first on <rz we obtain 

(4. 23) 

The notation corresponds to that used ln case three, and is 

e;xplalned immediately below equation (4. 9). We ne;xt make the trans -

formatLon ho 
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wl = Q!l - Q! 2 

W2 = Ql2 

w3 = !31 - !32 

w4 = !32 

as in ~ase three, integrate out w2 and w 4 using the general t 

density shown in De Groot (22), and then obtain the j oin!l dlstr·ibution of 

and 

We obtain 

where 

P(m, 'Ii) 

T /\ 2 
= l: (Y. ~ Y.) 

1= I l i 
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Eq\lation (4. 24) c:;;an be written 

where 

We are again faced with the problem of the sign of G(m,'Y 1), If 

G(m, "Yi) is posit~ve we can write 

and integrat"lon with respec:t to 'Yz proc;:e~ds eai;Uy using the general 

t density referred to earlier, Although we hav~ been unable to prove 

that G(m, 'Yi) is a poeitive function, 0£ m anQ. 'Y 1 we shall assume 

that this coadition is i;;atisfied and proceed. One thE)n obtains for the 

posterior density of 'Y 1 

(4, 26) 

for .-co <'Yi< co. 
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2 
er Unknown, Neither Regression 

Known., m Unknown. 

The joint posterior density of the unknown parameters in this the 

final case is 

2 2.-(T/2+1) { 2[m 2 
,,. 1(m,cr , a 1, [3 1, a 2 , [32 ) ex: (cr ) exp (-l/2cr ) i!}Y1- (a 1 + [3 1 Xi)] 

+ . ~ [Y. ~ (a2 + f32 X)Jil}. 
L=.mtl ~ J 

(4,27) 

The posterior density of the intetsec:t·Lon is a mi:,ctu.re of densities 

of the same type as (4. 26), Its derivation proceeds as in the previous 

qase with the adqit·Lona,l step being summation on the shift incl.ex m. 

The density ·Ls 

{2E'(m,y 1)/G(m,y 1l 1/Z [T-4)B((T-3)/2, l/2)] ·l 

~ + Qz(m, y I)/ (P(m, y I) G(m, y I ))J(T-4)/2 + [Q(m, y I )/P(m, YJ ~ 

~ VT-3 ((T-3)1 /2Q(m, Y1 )/(P(m, Y1) G(m, YJ))l/2)- ~} (4, 28) 

for -oo < 'Yi < oo ~ 

An illustration of densities (4, 22) ;:i.nd (4. 28) will be presented 

in the following chapter. 



CHAPTER V 

INFERENCE PROCEDURES AND 

SOME EXAMPLES 

In Chapters II, III and IV we determined the postel;'ior distribu .. 

Hons, under a variety of assumptions, for an unknown parameter, say 

e. The parameter a was a scalar in most cases, although sometimes 

e was a vec::tor as we saw in Chapter II with the posterior distribution 

of (<!>0, <1> 1), equation (Z~ 25). 

We shall in this chapter describe some ways in which posterior 

dietributions are used to make inference, and illustrate some of these 

techniques on postedor distributions selected from Chapters II, III and 

IV. 

All of the computations neces1:1ary to present the examples in this 

chapter we re done with programs wriHen by the author ar:i.d run on the 

IBM ~ 360, Mod 65 c;omputer at the Oldahoma State Un;lversity 

Computer Center, 

Plot 0£ The Posterior Density 

In cases where the qirpension of the parameter vector is at most 

two, a plot of the posterior density (in the univariate case) or contours 

of constant posterior density (ln the b·Lvariate case) <;:an be useful. 
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Exam I? le 5. 1 

Hinkley ( 13) used some data from an article by Pool and 

Borchgrevink (23) to illustrate the techniques which he suggested. In 

order to compare our tec;hniques with his 1 we shall use the same set of 

data, which is given in Table I below, The independent variable X 

represents the logarithm of warfarin c;oneent+ation and the dependent 

variable Y i,s blood factor VII production. rrk(m) and rru(m) are 

explained after the table, 

TABLE I 

DATA AND RESULTING POSTERIOR DENSITIES 

m x y rrk(m) TT (m) . m m u 

1 2.00000 0.370483 

2 2,52288 0. 537970 0,000057 0.002121 

3 3.00000 0.607684 0,005115 0. 011831 

4 3.52288 0.723323 0.031579 0.034446 

5 4.00000 0,761856 0.297597 0.281910 

6 4.52288 0.892063 0.276329 0.266278 

7 5,00000 0.956707 0,351680 0.365501 

8 5,52288 0. 940549 0,037518 0.055949 

9 6.00000 0.898609 0.000117 0,001142 

10 6.52288 0.953850 0.000006 0.000376 

11 7.00000 0.990834 0.000002 0.000322 

12 7,52288 0.890291 0.000000 0.000049 

13 8.00000 0.990779 0.000000 0,000075 

14 8,52288 1. 050865 

15 9.00000 0.982785 
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A plot of the data given in Table ~ suggel!!ts that two-phase 

regression may be an approp11late analyeis. 

We have computed the poi;terior density of the shUt index m for 

two cases, narp.ely varianc;e known (equation (3. 12)) and variance 

unkn0wn (equatlon (3. 17)). Both cases ass\,lme that neither regression 

is known. Our resulte for equatlon. (3. 12) are denoted in Table I above 

by 1Tk(m), while those for eql,lation (3. 17) are denoted by 1Tu(m). In 

computing 1Tk(m) we have taken as the "known" variance the estimate 

/\2 obtained by Hinkley (13), namely er :::: • 00166. 

The posterior density 'IT (m) ls pl9tted in Fig\lre 1 below, 
u 

'IT (m) 
u 

. 3 
• 

. 2 

' 1 

2 3 4 5 

Figure 1. 

• 

6 7 8 9 10 11 

Plot of Foste rior Density 'IT (m) 
u 

12 
m 

13 

The density 'lTk(m) is not plotted s inc;;e it very neallly c;ioincides 

with 'IT (m) . 
u 
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There is strong evidence, using either posterior density, that 

the switch in regime$ o~curs at m = 5, m = 6, or m = 7. We 

remark in passing that Hinkley's 99% confidence interval on the inter­

sec;tion of the regression lines is (3, 641, 5. 441), which contains x5 , 

x6 , and x7 . 

Point Estimates For Parameters 

As a point estimate of a parameter a one may use the mean, 

median or mode of the posterior distribution. Each estimate can be 

"justified'' in at least one way, depend~ng ln sorne cases on the 

particular lass fun~Hon as signed, These e stlmates are disc\ls sed in 

many modern inference texts and the reader is referred to Ferguson 

(24) for a survey of this subject. We shall present here the numerical 

values of the three point estimates for our data of Example 5, 1: 

Mode of Posterior Distribution 

Median of Posterior Distribution: 

Mean of Posherior Distribution 

6.00000 

6.05077 

;r (m) 
u 

7.00000 

6.00000 

6.04998 

The variance of the posterior distribution is sometLmes given 

along with measures of central tend.ency to help describe the distribu-

tion, For our example, 

and 

Var k(m) = 0. 97123 

Var (m) = 1. 09669 . 
u 
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]:legions Of Highest Poster~o:r Penisity 

Let 1T(0; y) denote the posterior density function for a 

paramete:r e. A region R in the parameter space of e is called a 

H-igheE!t Posteriol" Density (H. P, D,) region of content (1 - a) if 

( i) pr ( e E R ; y) = 1 - a ' and 

It is immediately clear thci.t if a is a dlscr~te random var table 

then an H. P. D. region wUL not exist for all values of ~ . In fact, if 

0 has, say, n distinct mass points 0,£ positive density, then a. P, D. 

regions exist f9r at most n distinct values of a , .Ifo;r a more complete 

discussion of H. P, D. regions the reader 'Ls referred to a paper by Box 

and Tiao (2$). 

For the data of Example 5. 1, the set 

is an H.P. D, region for m, based on irk(m) 1 of c;ontent O. 925606, 

while Hs content based on ir (m) is O. 913689. 
u 

H.P. D. regions for symmetrical, unimodal distributions are 

easily obtained by numeriGal integration. A further iLlustration will be 

given later in this chapter in E::x:ample 5, 2, 

Hypothesis Testing 

Suppose we have observed data y from an experiment and w"Lsh 

to judge whether or not the data support some specified hypothesis, say 

H: 0 E s0 , about a parameter 0 on which the assumed distribution of 
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the observation vector depends, Of couri:;e we must have s0 a subset 

of S, the entire par9-rne~E;lr spac;e of 8. We shall discuss briefly 

three possible approac;he s to this problem. 

First Approach 

If one wishes to accept or reject H at some predetermined 

significance level, say a , then 

(1) Construct a (1 - a)· 100% H. P 1 D. region R for 0 . 

(ii) Reject H if and only if S0 n R is empty, 

This implies that the posterior probability of H ls at most a 

when H is rejected. 

Second Approach 

Compute the posterior odds ratio 

or alternatively just ~he posterior prob&bility of s0 , namely 

-·~ 1 r; = S rr 1 (8; y) d8 . 

0 

is normed int he sense that Clearly large 

values of either or 
>:<: 

r 1 lend credence to H, This procedure 

seems to be innappropria.te if rr 1 (8; y) is continuous and s 0 is a 

single point of S. A possible alternative in such a situation is given in 

the third approach. 



Third Approach 

This is based on the ratio of ordin.atelil of the poste:r;ior density, 

The ratio is defined by 

He re again 0 ~ r 2 ~ 1 and value a of r 2 near one lend 

credence to H, This appr0ach appears to overcome the difficulty 

posed by r 1 and 

H: e = e0 • 

* r 1 when H is a slrnple hypothesis of the form 

For the data of our Example 5, 1, we compute and 
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based on 1Tu(m), for a teat of the hypothesis H: me s0 , where 

s0 = {5 1 6, 7}. Here the parameter space is S = {~ •. ,., 13}. We 

have 
rl = 10.586 

* 0.914 rl = 

r2 ::; l. 000 

Other Techniques 

There is a variety of other ~i::ehnique s available for applying the 

posterior density function to parHcular statisti<;al problems, 

Where e is a vec:tor, marginal posterior diatributfons of certain 

parameters may be of interest. In fact, the net result in most sections 

of this report is a rnarg·Lnal posterior distrU:>ution of some kind. 

AnotheJ' tool used in certa~n applications ls !!he predictive density, used 

to make inferences about data which ie to be observed at some future 

time. Corresponding to H.P. D. region:;; one may define "prediction 

regions", or regions of "highest predi<::t\ve densil!y". 
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For a more complete survey of uses and applications of the 

posterior probability density function, the reader is referreQ. to texts 

by Zellner (26), Lindley (19), La Valle (27) and De Groot (22), 

An Ad Hoc Technique 

All of the distributions derived in Chapter IV are not based on 

any prior constraints on the point of intersection of the two population 

regression lines. 

In many cases it may be known that the intersect·~on, namely 

'I = (a 1 - a 2 )/(~2 - ~ 1 ), is constrained such that x < '\/ < x +1, m-' - m 

where m is the shift index. If tMs is too restrictive, then 

X 1 ~ 'I ~ XT would not seem unreasonable for most practical 

purposes. That is, we require that the regression lines intersect at 

some point over the observed range of the independent variable X. 

When this latter assumption can be made, thls author suggests 

truncating the appropriate distribution over the interval [X 1, XT] 

rather than working with it over the entire real line. 

We shall now illustrate this technique on some of the distributions 

derived in Chapter IV, using the data of Example 5. 1. Hinkley (13) 

gave confidence intervals for the cases "second regression known" 

(with slope equal to zero) and "neither regreS1sion known". We shall 

follow his lead in Examples 5, 2 and 5, 3 respectively. 

Example 5. 2 (Second Regression Known) 

We assume here that ~ = 0 and thq.t 
2 

value of is the average of the last nine 

0:'2 = 0. 961674. This 

Y.'s 
1 

in the sequence, 

since the median of ou.r density 1T (m) 
u 

was six and the mean was near 



, , 

68 

si:x:. It also agrees to four decimal places with the e $timate from 

Hinkley's paper, In Figure 2 below we show a plot of the posterLor 

density (4. 22) for the case "second regression known". The density 

has been truncated on the interval [X 1, XT]. Since the ordinates of 

the density are relatively small outside of the intervC;Ll [3, 6), the 

density is shown only over that interval. 

1 

3 4 5 6 

Figure 2. Posterior Density (4. 22): Second Regression Known 

From this density we ca~c;ulatecl the mode as well a$ H. P. D. 

regions of content O. 90, 0. 95 and 0. 99. For comparative purposes 

we now present the results from our posterior deni;ity as well as those 

from Hinkley' s paper! 
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M. L. E. /Mode 90% Interval 95% Interval 99% Interval 

Hinkley 

Density (4. 22) 

4.88 

4.89 

(4. 55, 5, 29) 

(4.54,5.31) 

Example 5. 3 (Neither Regression Known) 

(4. 45, 5. 39) (4. 25, 5, 66) 

(4,46,5.43) (4.28,5,79) 

For the same dat;;i. set as we have used Ln the previous examples 

we plot in Figure 3 below the posterior density (4. 28) truncated on 

[X 1, XT] . Again it is plotted only over the interval [3, 6] . 

2 
ilj ( l() 

1 

3 4 5 6 

Figure 3. Posterior Density (4. 28) : Neither Regression Known 

A comparison of our H.P. D. regions from density (4. 28) with 

the confidence intervals given by Hinkley is again presented: 
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M. L. E. /Mode 90% Interva.l 95% Interval 99% Interval 

Hinkley 4.65 

Density (4. 28) 4.60 

(4. 16, 5, 10) 

(4, 04, 5. 17) 

(4,09,5.20) (3,64,5,44) 

(3.85,5.33) (3.32,5,78) 

Some General Comments 

The author feels that the H, P. D, regions obtained from densities 

(4. 22) and (4, 28) compare quite favorably with the confidence intervals 

given by Hinkley, In making such a comparison, one must keep in mind 

that Hinkley 1 s confidence intervals are b~sed on the re strlction that 

X < 'Y < x. + 1 , whereas the H.P. D, regions der!ved from our m ~ m 

posterior distributLon are subjec;t to nq such restrictions, 

A further consideration is that the confLdence intervals derived 

by Hinkley are based on the asymptotic chi-square distributions of the 

likelihood ratio statistics, with the result that the approximation for 

small to moderate sample sizes is somewhat questionable. On the 

other hand, the posterior distributions given in this report are exact, 

allowing computation of H, P. D, regions to any de.sired degree of 

accurac:;y. We must caution, though, that we have not established 

whether or not the posterior distributions derived in Chapter IV are 

unimodal. A bimodal distribution may lead to an H.P. D. region which 

is not a single interval. Hinkley ( 13) also points out that the confidenGe 

interval algorithm suggested by him does not necessarily lead to a 

single interval. 

With regard to computational c;onsiderations, the procedures 

given here present little problem. The discrete distributions given in 

Chapter HI for the shift point obviously present no difficulty, while 
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computation of the distributions of the intersection given in Chapter IV 

require only referral to the standard normal distribution function 

(variance known) and Student's t distribution function (variance 

unknown). 

We close this chapter with a comment on the inqompleteness of 

the present study. A complete analysis of a two~phase :regression 

situation would of course include estimates not only of the shift point 

and intersection, b\lt also of the l'egressi,.on parameters and the error 

variance. We have directed our attention almost exclusively to the 

switch point and the intersection, 



CHAPTER VI 

SUMMARY AND POSSIBLE EXTENSIONS 

Summary Of The Study 

This research was undertaken with the intention of making some 

contribution to the general problem of estimating the time point at 

which a pa;rameter change occurs in an ob~rnrved sequence of random 

variables. No attempt has been made to study the related problem of 

detecting whether or not a parameter shift has occurred in the 

sequence, 

A Bayesian approach was employed for each of the cases studied, 

and vague type prior densities were assigned resulting in posterior 

distributions appropriate to situations where prior knowledge is 

imprecise 1 We remark here that even if prior knowledge does not fit 

this description, it may still be informative to look at an analysis 

under the assignment of diffuse prior densities. 

In Chapter II we directed attention to the special case of a normal 

sequence with unknown varianee, and derived posterior densities 

corresponding to a variety of assumptions on the parameters of the 

problem. 

Chapters III and IV focused on the more general setting known 

as two~phase regression. In particular, in Chapter III we derived 

posterior densities for the shift index itself, while in Chapter IV we 
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studied the problem of e$timating the abscissa of the point of inter-

section of the two regression lines, 

In Chapter V we surveyed some of the possible uses to which the 

posterior distributions may be put, and gave examples based on a set 

of data used by Hinkley ( 13) to illustrq.te his solu,tion to the same 

general problem. 

Some Possible Extensions 

Little attempt has been made in this study to investigate the 

properties of the posterior distributions derived in Chapters II, III and 

IV. One of the re as ans for this is the apparent algebraic complexity of 

the form of the distributions. This point Ls well illui;;trated by 

equation (4. 28), for example. A considerable amount of numerical 

work remains to be done with regard to :means, modes and variances 

of the distributions, 

Again, we have not directed any attention to the problem of 

estimating ~he error variance in the two-phase regression setting. Its 

posterior distribution could, hopefully, be computed, and the 

estimators resulting from 1t could be compared to those given qy 

Hinkley ( 13 ). The same ·is true for the regression parameters of the 

two regressions under s~udy. 

Another obvious and natural extension would be to the multi-

variate case, where at eaeh t·Lme point one obtains a vector of 

observations rather than a single observation. In this case, of course, 

the cpi' s of Chapter II would be replaced by a vector of means, while 

2 () would be replaced by a variance -covariance or dispersion matrix. 
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Finally we point out that the study by Hinkley ( 13) assumes that 

'{, the abscissa of the intersection point of the two regression lines, is 

constrained by Xm ::_ '{ < Xm+l, where m ·is the (usually unknown) 

switch point of the sequence. The author has investigated this situation 

in the Bayesian f:i,-amework for the first c;aee, namely where m, 

and the first regression are all known, The resulting posterior 

2 
(J' 

distribution for '{ is simply our distrlbuion (4. 5) truncated on the 

interval [X , X + 1). One could proceed to study some of the more 
.m .m 

complex cases under this added re stricHon to i:;ee how the resulting 

posterior distributions compare to those arrived a~ in this dissertation. 
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