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PREFACE 

This research is concerned with the development of an infrared 

imaging device called the Evaporograph. The objective was to find out 

what means would be required to make the device have a resolution of .1 

degree Centigrade, and to try to find what engineering developments 

could be used to make the device more usable as an imaging tool. 
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is also expressed to the other committee members, Dr. William L. Hughes 9 

Dr. Jack Allisoni and Dr. E. E. Kohnkei for their invaluable assistance 

in preparation of the final manuscript. 

A note of thanks is given to Mr. Willard Hines for some assistance 

in machining some of the hardware needed in the experimental phase of 

this work, and for instruction in lathe operation. Thanks is also 

expressed to my wife, Rita, for typing some of the earlier portions of 

this manuscript, and to Miss Velda Davis and Mrs. Marilynn Bond for the 

excellent final copy of this dissertation. A final note of thanks is 

given to The Boeing Company and to Mr. Earl Norman, Chief of Engineering 

Staff, for their cooperation in allowing time off for the presentation 
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CHAPTER I 

INTRODUCTION 

A. Historical Background 

The evaporographic process is almost as old as the discovery of 

infrared radiation itself. In 18~0, J. F. W. Herschel (9) carried out 

an experiment in which he took a blackened piece of filter paper dipped 

in alcohol and exposed it to the solar spectrum. The evaporation of 

the alcohol was more rapid toward, the red end of the spectrum and 

beyond. Herschel also noticed that there were several bands where the 

alcohol evaporated more slowly and which corresponded to the absorption 

bands in the solar spectrum. Since evaporation took place over the 

entire surface of the paper the impression disappeared very rapidly. In 

order to overcome this problem, Herschel tried impregnating the blotter 

paper several times with alcohol and by adding dyes to the alcohol. He 

did not meet with much success with these processes and did little more 

with this phenomenon. 

In the mid 1920's, Czerny (3) reviewed the work of Herschel and 

concluded that to avoid the evaporation of alcohol at places where no 

radiation was present the receiver of the radiation should be placed in 

an atmosphere which was saturated with its vapor. He placed the support 

in a chamber which could be evaluated to very near the pressure of the 

alcohol. He found 1 however, that alcohol did not function very welli so 

he replaced it with a paraffin oil. In additioni he replaced the 

1 



blackened filter paper with a thin nitrocellulose membrane blackened 

with "bismuth black". The "bismuth blacks", however, were found unsat­

isfactory because their absorption was not independent of wavelength. 

2 

In 1934, Woltersdorff (17) published a paper indicating that a thin 

vacuum deposited layer of aluminum could absorb, depending upon its 

thickness, up to 50 per cent of the radiation incident upon it. Czerny 

(4) used these findings and adopted aluminum as the absorbing layer in 

his later work. The use of the aluminum absorbing layers allowed Czerny 

to obtain good absorption spectra in excess of 10 microns in wavelength. 

In addition to his experimental work, Czerny (4) made the first analysis 

of the potential sensitivity of the Evaporograph and derived the first 

equations explaining its operation. 

After Czerny published his first paper on the Evaporograph in 1929~ 

Willenberg (16) copied his apparatus. Unlike Czerny, Willenberg did not 

limit his work strictly to absorption spectra. Willenberg imaged hot 

objects such as light bulbs and for the first time used the Evaporograph 

as a thermographic tool. 

The Evaporograph was next explored by Swings (14) as a means of 

obtaining absorption spectra of stars. He did little more than review 

the work of Czerny and conclude that the membrane structure was too thin 

to be made large enough for the spectrographic work he desired to do. 

His particular application required that the membrane be six inches in 

diameter. 

During the early 1950's Baird Atomic, Inc. saw the potential use of 

the Evaporograph as a thermographic tool. While this work was done by 

a great many people over a period of years, McDaniel and Robinson (12) 

published the results of this research. The group at Baird Atomic 
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refined the device that Czerny had constructed and discovered a much 

better oil to use than Czerny had used. The membrane was made out of 

nitrocellulose, as was Czerny's, but the absorbing layer was composed of 

"gold black" after the method of Harris (8). The Baird Corporation also 

refined the theory of operation for the Evaporograph. Under laboratory 

conditions, Baird Atomic obtained a .5 degree centigrade. By using a 

rock salt window and mirror optics, Baird Atomic extended the bandwidth 

to' almost 20 microns. 

In the early 1960 1 s, Taquet ( 15) duplicated the work done at Baird 

Atomic with the exception that the absorbing layer used was a 50 angstrom 

thickness of gold vacuum deposited on the membrane in the same manner 

that Czerny's aluminum layer was deposited. She found that at the 

thickness of 50 angstro~s, gold would absorb almost 50 per cent of the 

radiation incident upon it. It is interesting to note that the work 

published by Baird Atomic made the comment that absorbing layers of the 

type used by Czerny and Taquet would not work for thermal imaging. 

Not much more was done with the Evaporograph after the early 1960 1 s 

since the scanning infrared camera was introduced and most of the work 

since has been in that area. 

B. Definition of the Problem 

With the advent of the scanning cameras, one might wonder what 

could be produced from further work on the evaporographic process. 

There are advantages to the process. Perhaps the most obvious is the 

relative costs involved with the two processes. Compared to the scan­

ning camera, the Evaporograph is a much cheaper means of imaging. The 

scanning cameras must have the detector at liquid nitrogen temperatures 



or below to work properly while the Evaporograph works at room temper­

ature. It also does not involve a scanning process, which cuts down on 

the resolution. While it does take much longer to produce an image than 

the scanning device,for a great many uses, this is not a problem. The 

most serious problem with the Evaporograph is its extremely thin mem­

brane on which the absorbing layer is applied. This layer is only about 

1000 angstroms thick and is very fragile. 

The particular use envisioned for the Evaporograph constructed 

here, is to image animal bodies in order to see if fat and lean animals 

could be graded on the hoof. Preliminary measurements made by McDougal 

(1J) indicate that this can be done with an infrared imaging technique. 

The research conducted here is aimed at improving the Evaporograph to 

the extent that measurements of this type might be made with this 

device. 

Since an animal is at a temperature of approximately JOO degrees 

kelvin, the device must be capable of very wideband operation. A 

blackbody at a temperature of JOO degrees kelvin has its peak output 

at 9.7 microns, but its energy band extends from 5 microns to past JO 

microns. The energy distribution for a JOO degree blackbody is shown 

in Figure 1. Hence, the Evaporograph will have to be constructed to 

have as wide a bandwidth as is obtainable. 

Since the membrane itself is so fragile, it will have to be 

strengthened so as to make the device more stable. 

The sensitivity of the device should be on the order of .1 degree 

centigrade if it is to do its job properly; hence, the absorbing layer 
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must be exposed to as much energy as is possible, as well as absorb as 

much as possible. 

The research on the Evaporograph here is then to attempt to obtain 

the goals stated above. 
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CHAPTER II 

DESCRIPTION OF THE APPARATUS 

Shown in Figure 2 is the basic experimental setup used in conduct­

ing this research. The basic evaporographic cell shown in the figure is 

the heart of the device and will be discussed first. The cell itself 

measures four inches in length excluding the end pieces which contain 

the infrared and optical windows. With the addition of the ends, the 

cell becomes 63/4 inches. The inside diameter of the cell is two inches 

and the barrel measures three inches in diameter. The cell measures 

four inches across the flanges& Since it was anticipated that the mem­

brane and windows might have to be changed from time to time, the cell 

was designed so that these parts could be easily1 changed. The seals at 

both ends, as well as the seals for the windows, are accomplished by 

means of O~Rings. The membrane holder itself screws in from the infra­

red imaging end and the membrane aperature is 1}4inches in diameter. 

At the viewing end of the cell is the oil heat'er and oil source. The 

heater is a simple tube heater, which was made by wrapping a glass cyl­

inder with nichrome wire of resistance of 1.12 ohms per foot until a 

resistance of JO ohms was .reached. A ceramic material was then poured 

around the wire to hold it in place and then allowed to hardeno Next, 

asbestos paper was wrapped around the heater in order to insulate it 

from the brass barrel. The oil holder is just a piece of blotter paper 

formed into a cylinder small enough1 to just slip into the heater. 

7 
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The cell used in this research was of somewhat different design 

than the cells that Baird Atomic (12) and Taquet (15) used. Their cells 

were three inches long and the barrel was 1~8 inches outside diameter. 

The inside diameter of the infrared imaging end was one inch and at the 

other end the diameter was t 5/8 inches. The device was constructed so 

that it fit together in the center with the membrane holder joining the 

two halves. The heating element on the cell fit around the outside of 

the barrel at the viewing end. The membrane holder was constructed out 

of a heat insulator so that the necessary temperature difference could 

be obtained. The two halves were connected to a manifold arrangement 

and then to the vacuum pump. Because of the manifold, the membrane was 

rather hard to change; therefore, it is evident that they did not antic­

ipate frequent changes of the membrane. The windows at each end of the 

cell were glued on in order to eliminate any seals. The membrane holder 

aperature in the cell was only J4 inch in diameter. This was done so 

that the windows would only have to be inclined at an angle of ten 

degrees in order to keep internal reflections from returning to the 

membrane. In the cell used in this research, the angle had to be 

fifteen degrees to accommodate the larger membrane. 

The infrared optical system used on the cell for this research is 

a simple one-inch diameter, four-inch focal length, germanium lens. 

This lens is designed to have a bandwidth of 6 to 16 microns with peak 

performance at 11 microns. The Baird Atomic device could alternately be 

fitted with either a 6-inch diameter, 12-inch focal length mirror system 

of the Newtonian design, or a germanium lens with an aperature of f 1.6. 

The system used by Taquet was a copy of the Newtonian system used by 

Baird Atomic. 



10 

In order to view the oil film on the membrane in the cell used for 

this research, a columnated beam was reflected onto a half silvered 

mirror inclined at an angle of 45 degrees. The beam was then reflected 

off of the membrane back through the mirror to the eye. Photography of 

the membrane was accomplished by using an Olympus Pen FT camera equipped 

with a 150 mm lens with a +3 diopter closeup lens on the front. Color 

photography was done with High Speed Ektachrome, type B, shot at an ASA 

rating of 320. The lens was set at f 4 and the speed used was one­

fourth second. Black and white work was done with Tri-X shot at normal 

ASA rating using the same speed and f stop as was used with the color 

film. The viewing system used by Baird Atomic and Taquet is similar in 

design to the one used here except that their camera lens system was 

internal and a Contax body was fitted to the system. Also in order to 

view the membrane with the eye, an additional mirror was added to the 

system. This mirror reflected 80 percent of the light coming back 

through the first mirror to the camera. The other 20 percent passed 

through the mirror to the eye. 

Upon using the Evaporograph to image objects, it was discovered 

that oil condensed on the inside surface of the optical window and 

impaired the view of the membrane. To alle.viate this problem, Baird 

Atomic and Taquet deposited a film of conducting material on the inside 

surface and passed a current through it to evaporate the oil from the 

glass. In the work done here, the problem was solved by pressing a 

nichrome wire circle against the backside of the glass. The circle is 

about 1 }2 inches in diameter and has a resistance of about six ohms. 

This seemed to alleviate the problem very well. 



In the next chapter and following chapters, more specific details 

will be given for the device and improvements suggested to make it 

function better. 
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CHAPTER III 

THEORETICAL CONSID~TIONS 

A. Evaluation of Sensitivity 

Since the objective of this research is to find ways by which the 

Evaporograph may be made as sensitive as .1 degree centigrade, it is 

necessary to be able to compute the sensitivity of the device. Czerny 

(3) and Baird Atomic (12) have already derived the basic thermodynamic 

equations for the evaporographic process, hence, the derivation will not 

be shown here. Also, only those equations needed for the computation of 

the sensitivity will be listed. 

In words, sensitivity for the Evaporograph is finding that tempera-

ture change in the scene which causes a minimum perceptible change in 

the thickness of the oil film. The equation for sensitivity, as given 

by McDaniel and Robinson (12), is: 

where 

6T 
I 

4(e1 + e2 ) Y1i' t:.T' + tiq4 + 6~ 

4E TA TOa1eTy1iA 

2.92 x 

R &d f) T (/2 
3 B 
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where: 

6T 

y 

2P (M /2 TT RTB' )% K 
a a a 

&d = 6d 1 

2n 

I 

6T 

is the sensitivity in degrees centigrade. 

is the emissivity of the front surface of the membrane. 

is the emissivity of the back surface of the membrane. 

-2 is the Stefan-Boltzman constant and equals 1.36 cal cm 

-4 -1 
deg sec 

TB' is the temperature of the absorbing layer and is taken 

at 300 degrees centigrade for this analysis. 

TB is the background temperature of the scene and is assumed 

to be 300 degrees centigrade for this analysis. 

6T 1 is the temperature rise on the membrane caused by the 

scene temperature and is measured in degrees centigrade. 

&q4 is a loss term associated with the latent heat of vaporiza-

tion of the oil. Its units are cal 
-2 -1 

cm sec 

is a loss term associated with the connection losses. Its 

units are also cal 
-2 -1 

cm sec 

E is the optical efficiency of the lens and is unitless. 

6d is the minimum detectable thickness of the oil film and is 

measured in cm. 
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R is the universal gas constant and in this case it equals 

-1 -1 
1.98 cal deg mole • 

53 is the density of the oil, which in this case is Dow­

Corning 200 fluid with 3 centistoke viscosity, and is 

-3 .9 gm cm 

TA r 0 is the product of the transmission of the atmosphere 

and the transmission of the optical system and is 

assumed to be .8. 

a1 is the absorption of the absorption layer on the membrane 

and for this analysis a value of .8 is assumed. 

eT is the emissivity of the scene and is assumed to be 1.0. 

A is a correction factor added to take into account that 

8t 

M 

the optical system only passes a certain bandwidth of 

the incident energy. Since the salt window used only 

possessed a bandwidth of about 20 microns, the correction 

factor would be .71 for a JOO degree blackbody. 

is the exposure time in seconds. 

-1 
is the molecular weight of the oil and is ~80 gram mole 

for the oil used. 

P is the vapor pressure of the oil at the temperature TB' 

and is 60 m for the oil used. 

L is the latent heat of vaporization of the oil and is 28 

-1 
cal gm • 

P is the partial pressure of the air on the back side of the 
a 

M 
a 

membrane and it has a value of 60 microns. 

is the molecular weight of air. 

is assumed. 

-1 
A value of 29 gm mole 



K 
a 

f 

&d 
I 

-1 
is the specific heat of air and has a value of .25 cal gm 

is the f-stop of the lens. 

is the minimum detectable optical path length and is taken 

to be 250 angstroms for this analysis. 

n is the index of refraction of the oil and is 1.394 for the 

oil used. 

Before numerical values are given for the pertinent equations, it 

is of value to note the individual terms in the sensitivity equation. 

The first term, 

ll::,T 
1 

(e1 + e 2 ) /l::,T 1 

E 'TA 'T 0 0:.1 A ' 

15 

is the expression for the sensitivity of an ideal thermal imaging device 

with no losses. The second term in the equation, 

is a loss term associated with the latent heat of vaporization of the 

oil. The third term, 

fl::,q 
7 

is a loss term associated with convection. Thus, in terms of these 

three expressions 
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As a first illustration of the sensitivity, an exposure time of 20 

seconds and a lens aperature of f:2 will be assumed. Under these condi-

tions, 8T1 = .0093 degrees centigrade, 8T2 = .3592 degrees centigrade, 

and &T3 = .0015 degrees centigrade. Totaling the three yields 

8T = .35 degrees centigrade. 8T is larger than the required .1 degree 

centigrade sensitivity under these conditions. Obviously, the sensi-

tivity may be increased by a factor of two by doubling the exposure 

time. It can also be halved once again by using an f:1.4 lens. Under 

these conditions, the sensitivity is 6T = .0925 degrees centigrade. The 

sensitivity required is obtainable under the conditions that the expo-

sure be 40 seconds and the lens have an aperature of f:1.4. 

It is interesting to note that with an f :2 lens and an exposure of 

20 seconds 6T1 + .tiT3 is only .0108 degrees centigrade which is well 

within the .1 degree centigrade required. Hence, it is the loss term 

associated with the latent heat of vaporization that causes any signifi-

cant loss of sensitivity. An observation of the equation for &q4 

quickly shows that there are four variables which can be adjusted. 

These are L'id, o3 , L, and 6t. The density, o3 , of most of the oils which 

seem best suited for the Evaporograph have a density of around 

.9 gm cm-3 ; hence, this term is not one which can be adjusted to any 

' 
degree. The exposure time, tit, can be increased but it is desirable to 

have this as low as possible; hence, this term also is not adjustable to 

any great degree. The latent heat, L, is a different story. For the 

oil used, which is the Dow-Corning 200 fluid with 3 centistoke viscosity, 

-1 
a latent heat of 28 cal gm is obtained. If an oil could be found with 

a significantly lower latent heat, then the sensitivity could be in-

creased without having to adjust the exposure time. Unfortunately, the 
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oil used in the Evaporograph must fulfill other requirements other than 

just the latent heat. It must also have a high molecular weight so that 

6T 1 is low, a vapor pressure less than about 200 microns so that 6q7 

does not become too large, and it must not corrode the cell or attack 

the membrane. Czerny (3) used paraffin oils. Baird-Atomic (12) ini-

tially found hexadecane to be quite good, but later found the tetra 

methyl siloxane polymers such as the Dow-Corning 200 fluids to be 

superior. Taquet (15) also used the Dow-Corning 200 fluid with 3 

centistoke viscosity as her oil. A great deal of effort was put into 

finding a new oil for this research. Most of the work was centered 

around finding another siloxane polymer that had a lower latent heat as 

well as the other desired characteristics. Work was centered in this 

area since these polymers can be generated from basic groups of radi-

cals. Unfortunately, all of the combinations which looked promising had 

almost the same latent heat as the 3 centistoke oil. Some effort was 

also put into trying to find a flouro-carbon oil which would have a sig-

nificantly lower latent heat. These efforts were also futile. It is 

not to be said that there are not oils which have lower latent heats, 

but only that this researcher was able to find none. 

Since no oil was found which had a significantly lower latent heat, 

the only other possible variable is the minimum detectable thickness of 

I 

the oil film, 6d. The only factor really controlling 6d is 6d which is 

the minimum detectable optical path difference. According to Baird­

' Atomic (12), 250 angstroms is a realistic number for 6d since the mem-

brane and oil film are not really uniform. Kubota (11), however, has 

stated that under ideal conditions optical path differences as small as 

8.7 angstroms could be detected. There is significant room for 



improvement in this area and in Section C of this chapter a means for 

overcoming part of the nonuniformities of the membrane will be 

discussed. 
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One other way to increase the sensitivity of the Evaporograph is to 

maximize the denominator of the sensitivity equation. Unfortunately, 

there is not much latitude in this area. Practically, the optical effi­

ciency, E, is limited by an f:1.4 lens so that little adjustment can be 

made with this factor. The emissivities are also at about their prac­

tical limits, hence little adjustment can be made with these factors. 

This leaves only ~1 and A which can be adjusted. The amount of energy 

reaching the membrane can be increased by choosing a window material 

which has a greater transmission. A window made from potassium bromide 

or coated germanium would increase the energy input by as much as 10 

percent. This would help somewhat but not significantly. The other 

factor is the absorption of the absorption layer on the membrane. A 

value of 80 percent was assumed for these calculations. This is the 

same number that Baird-Atomic (12) used in their calculations. It is, 

however, interesting to note that this number is the same number which 

Harris (8) gave in a comparison with carbon black. It is also interest­

ing that most quantitative data which appeared in the article by Baird­

Atomic also appeared in articles in their bibliography. The article by 

Baird-Atomic gave no data on actual absorption of layers used by them. 

They gave only data already published by Harris. Also, the article by 

Baird-Atomic stated that absorption layers of the type used by Czerny 

(4) andTaquet (15) would not work. Hence, it seems that Baird-Atomic 

intentionally left out and clouded many of the actual results obtained 

in their research. This number of 80 percent is 9 therefore, subject to 
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question. A discussion will be given later as to why films of the type 

used by Czerny (4) and Taquet (15) are superior to those of the type 

used by Baird-Atomic. The only problem with these films is that they 

can only attain a 50 percent absorption. However, by using antireflec­

tion coatings on these layers, absorptions of BJ percent can be achieved 

over a substantial bandwidth. In later sections of this chapter, a new 

synthesis procedure, which will allow the attainment of any absorption, 

will be developed and demonstrated. 

The over-all objective of .1 degree centigrade can be achieved with 

the use of an f:1.4 lens, an absorption of 80 percent, and an exposure 

time of 40 seconds. In order to make much improvement upon the 40 sec­

ond exposure time, either new oils must be found possessing lower latent 

heats or the minimum detectable oil film thickness must be decreased. 

It has already been stated that a new oil could not be found. So at 

least presently, the minimum detectable oil film thickness seems the 

most realistic approach to increasing sensitivity. A possible means of 

accomplishing this lies embodied in the new dielectric coated absorbing 

layers. The exact reasons for this will be given in later chapters. 

The important thing is that the Evaporograph is capable of attaining a 

sensitivity equal to that required. 

B. The Infrared Absorbing Layer 

The heart of the Evaporograph is the absorbing layer. Theoreti­

cally, this layer should absorb 100 percent of the energy incident upon 

it. Practically, this i.s impossible. However, it is possible to attain 

absorptions of 80 to 85 percent. 

The layer used by Baird-Atomic ( 12) was a "gold black" layer formed 
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after the method of Harris (8). This layer had an absorption of 80 per~ 

cent out to at least 15 microns. There is, however, no theoretical 

treatment of the absorption mechanism for this type of film. There is 

only the experimental data proffered by Harris (8). 

The thin vacuum deposited layers used by Czerny (4) and Taquet (15) 

follow a theoretical base quite well. Woltersdorff (17) developed the 

theory and verified its results using aluminum films. Later Hadley and 

Dennison (6) also developed and expanded the theory to include angles 

other than normal incidence. At any rate, the theory· is well documented 

in the literature. Since this is such an important portion of the later 

developments of this thesis, a detailed derivation of the absorption 

will be given. 

Bi. Analysis of the Thin Metallic Film 

Assuming sinusoidal time variations, Maxwell's equations may be 

written as: 

f;J x E (3 .1) 

f;J x H j wi) + J (3. 2) 

f;J • D p (3.3) 

VJ . B 0 (3.4) 

where: 

E is the electric field vector in Volts/M. 

H is the magnetic field vector in Amp-Turn/M. 

D is the electric displacement in 2 Coulomp/M • 

B is the magnetic induction in 2 Weber/M • 
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w is the angular frequency in rad/sec. 

p is the charge density in coul/M3 • 

j is '-1. 

In addition to the four Maxwell equations, the three side constraints 

D = Ei 
0 

(3.5) 

B = µo'H (3.6) 

J = O' E (3.7) 

are introduced. Where: 

E is the permittivity medium is -12 
0 of the and 8.8552 x 10 fd/M. 

µo is the permeability of the medium and is -7 4TT x 10 Hen/M. 

cr is the resistivity of the medium and has units of dm • M. 

The factors µ0 and E0 are used here since it is assumed that the metal-

lie layer is non-magnetic and non-dielectric. Introducing the con-

straints of Equations (3.5) through (3.7) into the Maxwell equations 

and rearranging yields 

v x E = -jWµ H 
0 

v x H = (0 + jWE )E 
0 

'V • E = P/E 
0 

(3.8) 

(3.9) 

(3 .10) 

(3 .11) 

Utilizing Equation (3.9) and taking its divergence yields the result 

v • < v x ii) = ( cr + j w E ) v · i . 
0 



Now the divergence of a curl is by definition O; hence, there are no 

free charges in the assumed medium, and Equation (3.10) is reduced to 

'il • E = O. 

In the case of thin metallic films, the normal bulk resistivities 

no longer hold. In general, these resistivities can be as much as two 

orders to magnitude less than the bulk properties. Upon exploring 

Equation (3.9) the ratio, 

CJ 

"We--' 
0 
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becomes the factor a is more than two orders of magnitude greater than 

wE0 providing that W is less than 1.8 x 10-15 rod/sec. This corresponds 

to a wavelength on the order of 2 microns. Hence, for wavelengths 

greater than two microns, Equation (3.9) reduces to 

'il x H GE. (3 .13) 

Hence, the Maxwell equations reduce, in this case, to the Eddy current 

equations. 

Taking the curl of Equation (3.8) yields 

-jWµ 'il x H 
0 

(3.14) 

Substituting the results of Equation (3.13) into Equation (3.14) yields 

Now, by definition 

'il x 'il x E 

-jWµ GE. 
0 

(3 .15) 
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but 

hence 

.., ..,2-
'V x v x E = -v E • 

Finally then, Equation (3.15) becomes 

(3 .16) 

Similarly, Equation (3.1~) may be reduced to 

(3.17) 

Equations (3.16) and (3.17), when solved, give the E and H fields within 

the metallic film. 

In order to simplify the solution of the wave equations, it is 

convenient to let 

jW µcr • (3 .18) 

Hence, Equations (3.16) and (3.17) may be written in the form 

Assuming a wave in the medium propagating in the +z direction and 

having only an x component of E, Equation (3.19) reduces to 

(3.20) 

The solution to Equation (3.20) is 

Ex = c1 exp(KZ) + c2 exp(-KZ) , (3.21) 



where: 

c1 and c2 are constants to be determined. 

Taking the square root of Equation (3.18) yields 

K:::: 
/wµcr 

2 
(1 + j) • 

For any film that is resistive in nature, the relationship, 

holds. 

Where: 

1 
rd ' 

r is the resistance of the film in ohms/square. 

d is the thickness of the film. 

For the medium at hand 

w 

where: 

(3.22) 

(3. 23) 

c is the velocity of the wave in a vacuum and is approximately 

8 
3 x 10 M/sec. 

A is the wavelength of the wavefronts in meters. 

The relationship, 

1 
(3.25) c 

aids in reduction of the variables at hand, multiplying Equation (3.25) 

by, µ0 , yields the relation 

377 ohm/ sq. , (3. 26) 
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which is the impedance of free space. Now utilizing Equations (3.23), 

(3.2~), and (3.26) to simplify Equation (3.22) yields 

Fa 
K = ~ (1+j). /\rd (3.27) 

Defining the ratio 

R 

leads finally to the relationship 

K 
JTIR Act (1+j) (3.28) 

Finally, Equation (3.21) may be written as 

Ex [/TIR J [ /TIR ]" c 1 exp Aa ( 1 + j ) z + c 2 exp . - Aa ( 1 + j ) , •.. z • (3.29) 

Now utilizing the Equation (J.8), the H field can be found to be 

(3.30) 

Equations (3.29) and (3.30) are the field equations for inside the film. 

In order to apply Equations (3.29) and (3.30) to the actual situa-

tion, the actual geometry of the problem must be defined. Figure J 

shows the situation at hand in the Evaporograph cell assuming normal 

incidence of the wavefront. Also, the polarization assumed is per-

pendicular. However, since the wavefront is at normal incidence, the 

end result is the same for the parallel polarization. Hence, only the 

perpendicular case will be fully derived. There are three regions to 
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I II III 

Vacuum Metallic Film Oil Vapor 

n . .---. 

Figure 3. Geometry oI the Metallic Film in the Evaporograph 
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the situation portrayed in Figure 3. The Region I is air and for it 

the equations are: 

E E + ( .2TT z) E - ( .2TTz) . 
x1 ·- 1 exp - J--X- . + 

1 
exp rr. (3 .31) 

E + E 
H _1_ ( . 2TTz) 1 ( . 2TTZ) = exp ~J---;:.- + -- exp J--X- • y1 zo zo 

(3 .32) 

For Region II, the equations are of the form derived in Equations (3.29) 

and (3.30). These equations are: 

H 
y2 

E 
x2 

(3.33) 

(3 .31±) 

The Region III is the oil vapor and it has no reflected waves. Hence, 

its equations are: 

E 
x3 

H 
Y3 

(3.35) 

E + 
_,1._ ( .2TTZ) 
Z exp -J---;:.- . 

3 
(3.36) 

In the above equations, the unknowns are the coefficients E1+, E1-, 

E2+, E2 , and E3 +. In order to solve for these, the boundary conditions 

are used. At the boundary, Z = O, the conditions which apply are: 

E E 
x1 x2 

H H 
y1 y2 

(3.38) 

Expanding (3 .37) and (3.38) yields the results: 

E + + 
+ E E + E 

1 1 2 2 
(3.39) 
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(3.4o) 

At the boundary, Z = d, the pertinent conditions are: 

E E 
x2 x3 

(3 .41) 

H = H 
y2 Y3 

Expanding Equations (3.41) and (J.42) yields the results: 

+ .2TTd 
E3 exp(-rx-) 

/Fj_ (1-j) IE + exp(-Kd) - E2~ exp(Kd)J 
4 ~ 2 

zo + d 
~ E exp(-j~). (3.44) z3 3 

At this point, it is convenient to define the particular waves of 

interest. The incident wave 

The reflected wave is 

The transmitted wave is 

where: 

E, - a E + .exp(-j~) • 
1 x 1 I\ 

E 
r 

E = E + ( ,2TTZ) 
x3 ax 3 exp -J-X- ' 

ax is the unit vector in the +x direction. 

(3.45) 

(J.46) 

(3.47) 

The respective waves are not actually the final desired results. 

Only the relative amounts of the reflected and transmitted waves are of 

interest. Hence, it is convenient to define the following 



where: 

Ref CE 2 
= --!: ) • 

E. 
1 

Abs· ~·· 1 - Ref - Tr , 

Ref is the relative reflected power ratio. 

Tr is the relative transmitted power ratio. 

Abs is the relative absorbed power ratio. 
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(3.48) 

(3.49) 

(3.50) 

Equations (3.48), (3.49), and (3.50) are the equations of interest. It 

is these equations which give the solution to the absorption of the 

metallic film. 

In the case at hand the ratio A/d, is on the order of 400 or 

greater for wavelengths greater than 2 microns. Using this fact, 

Equations (3.43) and (3.44) may be written 

(3 .51) 

(3.52) 

The relationship 

E + - E 
2 2 

~ (1-j) 

(3.53) 

is easily derived by using Equations (3.51) and (3.52). Equations 

(3.51) and (3.53) can now be substituted into Equations (3.39) and 

(3.4o) to obtain 
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E + + E = E + 
1 1 3 

(3.54) 

+ 
(R 

zo 
E + E - E = + -) 

1 1 z3 3 
(3.55) 

Equations (3.54) and (3,55) may now be solved for the ratios 

E 
R 

zo 
+ - - 1 z 

I'=-1-= -+ zo E 
R 1 + - + 1 

z3 

(3.56) 

E + 
_3_ = __ 2 __ _ 

E + 2o 
1 R + - + 1 

z3 

(3.57) 

where: 

r is the standard reflection coefficient. 

The desired results may now be found by squaring Equations (3.56) and 

(3.57) and using (3.51). The desired results are 

Tr (3.58) 

Ref = tR 
zo 

1J + - -z 

zo 
(3.59) 

(R +- + 1) 
z3 

z 
4(R 0 

1) + - -z 
Abs 

zo 
(3.60) 

R + 1)2 +-
z3 



Now by definition: 

where: 

E is the relative dielectric constant of Region III. 
r 

Utilizing Equation (3.61), Equation (3.62) may be written 

By definition the term, ~' is the index of refraction, n3 , of 
r3 

Region III, i.e., 

n = ~3. 3 r 

Utilizing Equation (J.67), Equation (3.63) may now be written 

Equation (3.65) is an important result which holds for any medium. 

Utilizing Equation (3.65), the ratio 
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(3 .61) 

(J.62) 

(J.63) 

(3 .61±) 



Hence, Equations (3.58), (3.59), and (J.60) may now be written as 

Tr = 

Ref 
= JR + n3 - :-l 2 

J.;R+n + :J 
3 

Abs = 

32 

(3.66) 

(3.67) 

(3.68) 

The maximum absorption may be found by taking the derivative of 

Equation (3.68) and setting it equal to zero. The derivative is 

d Abs 
dR 

(R + 
(3.69) 

Setting Equation (3.69) equal to zero and solving for, R + n3 , yields 

3 • (3.70) 

Substituting the results of Equation (3.70) into Equation (3.68) yields 

the result 

Abs I 
R + n3 

.5 

3 

Tnis means that a maximum absorption of 50 percent is obtainable from a 

metallic film. Note also that under the conditions that, A/d>>1, this 

absorption is independent of wavelength. In the next section, it will 

be shown that by using dielectric layers on the absorption layer, the 

absorption may be increased to 83 percent. 
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B2. Synthesis of Antireflection Layers for 

the Metallic Layer 

Before the synthesis of the antireflection layers is undertaken, 

one further relationship must be obtained. By definition, the reflec-

tion coefficient for the single film in air is 

r (3.71) 

where: 

ZL is the impedance seen at the front surface of the film. 

Equation Equation (3.56) with Equation (3.71) and using Equation (3.65) 

yields the result 

== (R + n3 ) . (3.72) 

Optically speaking, this means that the metallic film, as seen by 

the incident wave, acts like a semi-infinite medium with index of 

refraction (R + n3 ). This fact makes the synthesis procedure very 

simple. 

Young (18) has shown the exact correlation between dielectric 

layers upon a substrate and transmission line sections matching a resis-

tive load. In essence, the transmission line equations are directly 

applicable to an optical system. Synthesis techniques for matching a 

resistive load o.ver a prescribed bandwidth is well known and one of 

these techniques will be used for this work. Collin (2) has developed 

one of the better techniques for synthesizing a set of "quarter wave 

transformers" to match a resistive load for a prescribed set of condi-

tions. This technique will be used to design the optical matching net-

work for the absorbing layer. In terms of the transmission line, the 



model of the problem is shown in Figure 4. The particular notation in 

Figure 4 is: 

L. 
1 

z. 
1 

is 

is 

the length of 

the impedance 

the 
.th 

section. 1 

of the 
.th 

section. 1 

N. 
1 

is the index of refraction of the 
.th 
1. 

section. 

ZL is the load impedance. 

transmission line 

R + n is the index of refraction of the load. 

The problem in terms of impedances is to match the free space impedance, 

z0 , to the load impedance, ZL' over a prescribed bandwidth. Optically 

speaking, the procedure is to match a substrate with an index of re-

fraction, R + n, to free space with an index of 1.0. 

There are two basic methods of accomplishing a match of the type 

mentioned above. The first is to use a constant quarter wavelength for 

each transmission line segment and then solve for the characteristic 

impedance of the line. In the optical case, this means solving for the 

index of refraction of each quarter wavelength dielectric layer. The 

second method is to use lines with known characteristic impedance and 

solve for the line lengths. In the optical sense, this means that the 

indices of refraction are known and the thickness of the dielectric 

layers are unknown. The first method is considerably easier to employ 

and is the one used in this research. 

Young (18) has shown that the greatest bandwidth with the fewest 

sections can be obtained by having an equi-ripple passband character~ 

istic. This is the basic procedure used in this research. However, 

before the synthesis technique is given, a brief theoretical treatment 

of the method will ensue. 
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In referring to Figure 4, the various reflection coefficients are: 

r 
0 

r 
i 

r 
q 

zi+1 - zi 

z. + z. 
1.+1 1. 

p 
0 

:: p. 
1. 

ZL - Z ____ q:: p 

ZL + Zq q 

(3.73) 

To a first appro~imation the total reflection coefficient is the 

summation of the first-order reflected waves. That is, the total 

reflection is 

r -2j 8 -4ji 8 P + P e + P e + --- + 
0 1 2 

where: 

-ji8 th 
e is the i phase retardation term. 

Assuming that the transformer is symmetrical yields the result 

p 
0 

p 
q 

p p 
1 q-1 

etc. 

(3.74) 

(3.75) 
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Under these conditions, the reflection coefficient may be written in 

the form of a fourier cosine series as 

In order to obtain the equi-ripple response function, it is only neces-

sary to equate the Chebyshev polynomial to the reflection coefficient, 

r. That is 

where: 

T 
q 

Sm 

r -q s ( m9 s ) -n s -1 alS' s ) 
= Ae T q alS' 8m = Ae ms' q ( alS' alS' 6m , 

th 
is the n degree Chebyshev polynomial. 

represents the passband angle such that the response 

function will be confined to the range, Sm < 8 < TT - 8 
m 

A is a coefficient to be determined. 

(3.77) 

In order to find the coefficient, A, it is necessary to equate Equations 

(3.76) and (3.77). That is 

AT (alSS/alSBm) = 2[p a<s'qS + p ros(q-1) S + ---J. 
q . 0 1 (3.78) 

Now when e o, the result is 

z - zo r= L 
A T (sec Sm) . 

ZL + zo q 
(3.79) 

Hence: 

A (3.80) 
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Finally, for the equi~ripple passband characteristic, the reflection 

coefficient is 

T (W' 9/azi 9m) 9 z - z r iq L 0 
= e ZL + ZO 

q 
T (sec Sm) • 

q 
(3 .81) 

In the passband, the maximum value of the Chebyshev polynomial is one, 

thus 

p 
max 

( 3 .82) 

From Equation (3.82)i it is easy to see that if the passband is 

predetermined for a given polynomial then the ripple is also determined. 

Conversely, if a certain ripple level is chosen for any polynomial, then 

so also is the passband determined. 

For this particular research it was concluded that the three 

dielectric layers would probably be sufficient to accomplish a band-

width of 5 to 20 microns with an absorption of around 85 percent. 

Furthermore, an R value of 5 was chosen so that with the addition of 

the index of refraction of the oil a value of 6.394 would be obtained 

for the index of the substrate. Figure 5 shows the actual graph of the 

reflection coefficient for the three-layer system. The angle TI/2, 

corresponds to the center wavelength of 10 microns and 8m corresponds 

to the lower passband wavelength of 4 microns. Choosing the lower 

passband wavelength at the 4 micron point makes the angle, 8m, have the 

value of 36°. The angle, 8 , is found by setting the relationship, 
z 
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2 

Figure 5. Reflection Coefficient for Three Layer System 
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equal to zero and sohring for the roots. When this is done, the rela-

tionship that evolves is 

8 
z 

In this case, the angle, 8 , has a value of 45.6°. 
z 

(3.83) 

The required characteristic impedances are obtained by utilizing 

the relationship 3.77 along with the value of A obtained in Equation 

(3.80). This result for the three-layer case is: 

(3.84) 

When the right hand side of Equation (3.84) is equated term by term to 

the left hand side, the following results are obtained. 

z 

z2 
1 

z 
2 

z z 2 
L 0 

z2 

(Z Z )}6 
L 0 

1 

The third impedance ensues from the property of symmetry shown in 

Equation (3.75). This impedance is given by the relationship 

(3.85) 

(3.86) 

(3.87) 

Substituting the impedances in Equations (3.85), (3.86), and (3.87) in 

terms of the indices of refraction yields the results 

N4 
- 1 

N 
L 

2N3 (1-NL) 
+ __ 1 + ~~~~~ N2 

/NL NL Tan2 8z 1 

2N 
1 - -- -

/f\ 
0 , (3.88) 



N = ~' 2 
(3.89) 

NJ 
NL 

N 
1 

(3.90) 

Upon substituting the values chosen for NL and 8z into Equations 

(3.88), (3.89), and (3.90), the required indices are 

N = 2.53 
2 

In terms of physically obtainable materials, NJ can be germanium of 

index ~.O and N2 can be thallous chloride of hdex 2.6. N1 does not 

correspond exactly to any real material. Fujiwara (5), however, has 

developed a technique by which a desired index of refraction may be 

manufactured out of two materials. A detailed explanation of this pro~ 

cedure will be covered in the next chapter. 

Now that the indices of refraction have been determined, the last 

step in the solution is to find the maximum power lost due to the 

ripple. This is computed from Equation (3.82) and the relation 

Maximum Normalized Reflected Power p2 
max 

(3.91) 

Utilizing Equations (3.82) and (3.91), a value of J.6 percent is ob~ 

tained for the lost reflected power. This is an acceptable value, hence 

no adjustments will have to be made to the bandwidth requirement in 

order to lessen the ripple losses. 



In order to check the validity of the synthesis procedure developed 

here, the matrix-analysis technique developed by Heavens (7) was em­

ployed. The procedure is quite straightforward and is shown quite 

clearly by Heavens. Hence, the monotonous copying of the work will not 

be shown. The results of the analysis are shown in Figure 6. The 

actual reflection loss in the system is actually on the order of 5.8 

percent. The maximum absorption of the system is 81±.J percent. This 

is much better than the value of 50 percent that is obtainable from the 

single film. There are other advantages to the dielectric layers on 

the absorbing layer other than the increased absorption. However, a 

discussion of these will be left to Chapter V. 

This section concludes the theoretical phase of the work done in 

this research. Chapter IV will give a description of the experimental 

procedures which were used in conducting this research. 



100 

90 

= 0 
•.-i 

t 80 
(J) 

.-I 
'H 
(J) 

0::: 70 
~ 

= 0 
•.-i 

gj 60 
•.-i 
E 
UJ 

= e 50 
E-< 
~ 

= .~ 40 
-j.) 

>l. ... 
0 

Jl JO 
< 
-j.) 

= 20 (J) 
(.) ... 
(J) 

P. 

10 

5 6 7 8 

Figure 6. 

9 10 11 12 

Absorption 

Transmission 

13 14 

Reflection ---
15 16 17 18 

Absorption Data for ~ilm With Three Dielectric Layers 

19 A (microns) 

; >J:­
\~ .. 



CHAPTER IV 

EXPERIMENTAL CONSIDERATIONS 

A. Construction of the Membrane 

One of the more important structures in the Evaporograph is the 

membrane. While this structure is used only to support the absorbing 

layer, it also serves as the portion of the apparatus on which the oil 

film is condensed. The basic property of the membrane must be that of 

mechanical strength for the support of the absorbing layer as well as 

for withstanding any transients introduced by the vacuum system in pump­

ing the cell to the prescribed pressure. Unfortunately, while the basic 

requirement is strength, it must also pass all wavelengths of the infra­

red spectrum completely. This poses a rather interesting materials 

problem. In order to accomplish the latter requirement, a dielectric 

material must be used. To insure that the material not interfere with 

the transmission of the infrared energy to the absorbing layer, it must 

be less than .1 micron in thickness. 

In order to satisfy the requirement of obtaining uniform films of 

0.1 micron or less in thickness, a water flotation method has proved to 

be the easiest and most consistent. In this method the membrane mate­

rial is dissolved in a suitable solvent and then a drop is placed upon 

water and allowed to spread to its full limits. The solvent is allowed 

to evaporate and then the membrane material is collected upon a round 

washer-like structure five inches in diameter with a hole J }it inches in 



diameter. The membrane is collected by placing the washer down on top 

of the film on the water, clearing the excess material from around the 

washer, and then bringing the washer out of the water at an angle of 

about 20 degrees. This is the best procedure to follow to keep the 

surface tension of the water from having an effect on the membrane. 

After the membrane has been collected, it is placed in a dust free 

container so that any water still clinging to it may evaporate. When 

the membrane is dry, it can be placed on the membrane holder simply by 

pushing the holder through the hole in the washer. Since the hole in 

the washer is a good bit larger than the two-inch diameter of the mem­

brane holder, orre can select the best portion of the membrane to put on 

the holder. Reasonably uniform membranes can be made in this manner. 

The actual hardware required to make the membrane is very simple. 

Other than the washer already mentioned, the only other apparatus re­

quired is the pan in which the membrane is formed. Since the membrane 

is formed on the surface of the water, a very shallow pan may be used. 

The only dimensional requirements being that the pan be wide enough and 

long enough to let the film spread to its maximum limits. Experimenta­

tion has indicated that a pan with a depth of one :i.nch, a width of ten 

inches, and a length of fifteen inches is suitable for making the mem­

brane. A pan of these dimensions can be obtained from the cookware sec­

tion of most any variety store. 

At this point a word or so must be said about the water used to 

make the membrane. While good results have been obtained with plain tap 

water, membranes made with distilled water are less apt to have dust 

particles stuck to the surface. Hence, while not absolutely necessary 

to make good membranes, distilled water makes it an easier job. 
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Many different materials have been used over the years by many dif­

ferent researchers to make membranes. The Baird Atomic Corporation (12) 

tried several different solution. They tried amylacetate, polyvinyl 

formal in dioxane, polystyrene or benzene solution of resogloz, and 

nitrocellulose in acetone. The first and the last of these solutions 

were tried in this research. The. amylacetate films were not strong 

enough to be of much use. The ni trocell.ulose dissolved .in acetone did 

not spread out over the surface of the water because the acetone evapo­

rated too fast. Using chilled water to slow down the evaporation of the 

acetone did not seem to help in this problem. Due to failures with 

these materials, other solutions were sought. 

It was thought that a good film might be produced by using butarate 

dopes used in model airplane construction. Several of these materials 

were tried as well as a material called "Microfilm B'·', which is a solu­

tion for making thin skins for model airplanes. The films made from 

these solutions were stronger than the amylacetate films but were not 

strong enough to be of much use· in the thickness required. 

Czerny (J) and Taquet (15) had used collodion, which is notro­

cellulose dissolved in an alcohol solvent, for making membranes. Iso­

amylacetate was mixed with the collodium in order to have a solvent that 

would evaporate slowly enough to allow the film to spread to its fullest 

extent. 

In the researched cond,ucted at Oklahoma State University, initially 

the only collodion that was available was a small amount in which the 

solvent had evaporated. Iso-amylacetate was added to this solidified 

mass until a consistency somewhat like mineral oil was attained. Mem­

branes made from this solution were of reasonable quality and of 
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sufficient mechanical strength to suffice. They were, however, somewhat 

brittle, and membranes on the order of .OJ microns formed with stria­

tions in them. In an effort to overcome the striation problem, wetting 

agents were added to the water after the membrane had dried but before 

it was raised from the surface of the water. The wetting agents did 

break the surface tension between the film and the water as expected. 

However, the collodion was soluble to some degree in all of the wetting 

agents so that membranes produced in this manner were too weak to be 

plated.· 

After the wetting agents failed to solve the striation problem, it 

was concluded that it might be possible to add a material to the collo­

dion which would make it more pliable and hence have less tendency to 

form striations. Upon researching this concept, it was found that the 

Mallinckrodt Chemical Works produced a collodion in which camphor was 

added as a plasticizer. This material is commercially available under 

the name "Collodion Flexable 11 • This material is essentially nitro­

cellulose dissolved in ethanol with a small amount of camphor added. 

After several trials, a procedure was developed which seems to produce 

very good membranes. The first step in making the membrane is to pour 

50 millimeters of the collodion into a beaker or other suitable con­

tainer. When this has been accomplished a filter paper is placed on top 

of the beaker to keep out dust. The solution is then allowed to set 

until all of the alcohol has evaporated. This takes about 12 hours at 

room temperature. When the alcohol has completely evaporated, 50 milli~ 

meters of iso-amylacetate. The solution is then ready to make membranes. 

Membranes made with this solution were better than the ones made with 



the collodion without the plasticizer added. However 1 the striations 

were still present in membranes less than about .OJ microns in 

thickness. 
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Attempts were also made at fabricating membranes out of nylon. It 

was thought that the nylon would allow the construction of membranes on 

the order of .01 microns which would still be sufficiently strong. 

Brown (1) had given a method of producing a solution of nylon dissolved 

in isobutyl alcohol. The procedure was to take nylon shavings and add 

the isobutyl alcohol then heat the solution until sufficient nylon had 

dissolved to make membranes. Unfortunately, Brown did not give which 

particular type of nylon was used in this process, but none would dis­

solve in the alcohol mentioned. Attempts were made at dissolving the 

nylon in hydrochloric acid and then mixing the alcohol, but when this 

solution was placed on the water it would either drop to the bottom of 

the pan or not spread at all depending upon the type of nylon used. 

Since no nylon could be found that would dissolve in the alcohol, 

superior films might be made. Until this is accomplished, however, the 

collodion films seem to be the best. 

B. Plating the Membrane 

Three different types of depositions for the absorbing layer has 

been discussed to some extent previously. The first of these was the 

"gold black" developed by Harris (8) and used by Baird Atomic ( 12). The 

second is the vacuum deposition used by Czerny (4) and Taquet (15). The 

third is the deposition of the dielectric antireflection coatings sug­

gested in the last chapter. These three methods will be discussed in 

turn and the specific advantages discussed. 



B1. The "Gold Black" Method 

This is the method developed by Harris and used by Baird Atomic 

(12). In this method, a gas is introduced into the vacuum system until 

the pressure is in the millimeter range; the gold is then evaporated 

very slowly in this atmosphere until the desired thickness is obtained. 

The texture of this deposition is very similar to that obtained by 

taking a candle and smoking a glass sheet. 

Harris (8) used an apparatus in which the filament was placed a 

distance of seven centimeters from the target. Also, a shutter was 

placed a distance of 1.3 centimeters from the filament so that the 

nitrocellulose target might be shielded from as much heat from the fil­

ament as possible. In addition to the shutter, a place of brass was 

placed one millimeter behind the nitrocellulose target so that the heat 

could be dissipated from the nitrocellulose target. The gas explored by 

Harris was nitrogen. 

The exact procedure used by Harris is as follows: A 5 centimeter 

length of 20 mil gold wire was placed in the 11 V11 of a 30 mil tungsten 

filament. A high vacuum was introduced and then the gold was heated 

until it melted and formed a droplet in the 11 V11 of the filament. The 

current was then raised until the "splitting" of impurities ceased. The 

current was then reduced and the gold kept just molten. At this point, 

the nitrogen was introduced and the pressure adjusted to the desired 

level. When this was accomplished, the current was raised to the de­

sired level and the gold evaporated. The shutter was then opened for 

the desired length of time to get the thickness required. In this 

manner, a film of 350 angstroms thickness reportedly yielded 80 percent 

absorption from 3 to 15 microns. Through experimentation, Harris found 
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that the most optimum pressure to use was 1 millimeter of mercury. He 

-10 also found that a rate of deposition of less than J x 10 gram per 

second gave the best films. 

The method employed by Baird Atomic (12) was a variation of the 

method of Harris. The distance from the filament to the membrane had 

to be further to obtain a uniform thickness over the membrane. Hence, 

hydrogen was used at a pressure of 5 to 10 millimeters of mercury. 

Baird Atomic (12) does not state the exact pressure, or the distance 

used from filament to target although the distance was probably on the 

order of 25 centimeters. The Baird Atomic paper also does not state 

what results were obtained. 

A variation of the method used by Harris was also attempted in the 

research conducted at Oklahoma State University. No shutter was used 

and a heat shield was employed at 2 centimeters above the filament. The 

backing plate was a 25-centimeter square of aluminum J millimeters in 

thickness. This plate was placed approximately one millimeter in back 

of the membrane. The distance to the membrane was 25 centimeters. 

Nitrogen was first used as the gas, but at a pressure of .one millimeter 

of mercury the mean free path is only· .01 centimete:ir. For this reason, 

it took massive amounts of gold in order to get any deposition on the 

membrane at all. With the nitrogen atmosphere, 10 centimeters of 20 mil 

wire produced membranes of only a few percent absorption. It was con-

eluded that a much lighter gas might help the problem of the mean free 

path. Since hydrogen is potentially dangerous, helium was obtained and 

used. The pressure used was still one millimeter and the distance from 

filament to the membrane was maintained at 25 centimeters. With the 

helium, 10 centimeters of 20 mil gold wire gave films with only 10 
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per cent absorption; moreover, the films produced by this method had the 

consistency of lampblack and would not adhere to the membrane very well. 

When these membranes were placed into the Evaporograph, any oil that 

managed to get on the back side of the membrane easily washed off these 

backs. For these reasons, this type of black was abandoned in lieu of 

the vacuum deposited films. 

B2. Vacuum Deposited Films 

This is the method used by Czerny (4) and Taquet (15). In prin-

ciple it is considerably easier to do than the method that Baird Atomic 

used. In the vacuum deposition method, the pressure in the bell jar is 

maintained at 10-5 millimeters of mercury or less. The distance to the 

membrane is around JO centimeters. Taquet (15) used 28.5, but JO was 

used for the best results obtained in the research at Oklahoma State 

University. Since the mean free path is great compared to the distance 

to the membrane, the formula for thickness of the film is 

t 
w cos e 
.. 2 
4TT r p 

where t is the thickness of the film, w is the weight of the metal, r is 

the radial distance from the membrane. to the filament, p is the density 

of the metal, and e is the angle between the perpendicular line through 

the filament and the radial vector to the membrane. This formula 

assumes a helical filament. The angular dependence, is important here 

because the membrane can be placed at an angle of 45 degrees and re-

ceive much less heat than is obtaineq with the membrane directly over 

the filament. This formula is very useful ·in that a known weight of 
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metal can theoretically be used to obtain a desired thickness of the 

metallic film. The only drawback in this method is that the metal must 

be flashed onto the membrane with a large current pulse. Currents in 

excess of 100 amperes were not uncommon in the depositions at Oklahoma 

State University. Because of this large current pulse, a large heat 

pulse is formed. This heat pulse is very detrimental to the membrane 

and it is difficult to flash the metal on the membrane unless one uses 

some method to control this heat pulse. 

Czerny (4) used aluminum as the metal in his experiments. While 

aluminum is relatively easy to flash onto the membrane, it forms oxides 

very rapidly and loses its absorptive properties with age. 

Taquet (15) found that gold formed much longer-lasting films. She 

also ran curves of absorption versus thickness of the gold deposits. 

This data is very useful in determining how much gold to use for the 

deposition. In her system, the membrane formed an angle of 45 degrees 

with the filament; and the distance was 28.5 centimeters. The gold was 

placed on the filament and system pumped down to 10-5 millimeters of 

mercury or less. The current in the filament was raised until the gold 

melted and all impurities were expelled. The filament was then given a 

large pulse of current to evaporate the gold. For some reason Taquet 

gave no description of the actual hardware used to deposit her films. 

However, whatever method used, she reportedly obtained a maximum of 47 

percent absorption with a 50 angstrom thickness of gold. 

For the research conducted at Oklahoma State University, a VEECO 

400 system was used. Although a large bell jar was available, it was 

awkward to use. Hence, an attempt was made at using a small bell jar 

8 inches in diameter and 12 inches in height. Because the bell jar had 
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a rounded top, a distance of only 20 centimeters from the filament to 

the membrane could be obtained. Furthermore 1 the angle between filament 

and membrane was limited to 25 degrees. The filament used was helix 

constructed from 60 mil stranded tungsten wire. Initially 8 mil gold 

wire was used as the evaporant. In the small bell jar, the membrane 

readily burned when attempts were made to flash gold upon it. Hence 9 

slower deposition rates were tried. The gold evaporated easily in this 

manner. However, when transmission measurements were made with a 

Beckman IR-7 spectremeterj it was found that the films were almost 

transparent in the region from 5 to 15 microns. From these measurements 

it was concluded that the gold had to be flashed on the membrane in 

order to achieve the desired absorptive characteristics. 

When the reduced rates of evaporation failed 9 a compromise solution 

was attempted. The concept was to increase the current sharply in order 

to flash gold onto the membrane and then reduce it before the membrane 

burned. Not all of the gold was evaporated in this procedure; however, 

films which absorbed about 7 percent of the radiation over the bandwidth 

from 5 to 16 microns were formed. An attempt was made at making several 

depositions in this manner on the same membrane. However 1 when this was 

done the absorption actually decreased. One of the 7 percent absorbing 

membranes were placed into the Evaporograph cell and pictures of hot 

objects taken. These will be shown and discussed in the next chapter" 

From the results obtained by using the small bell jar, it became 

obvious that the large bell jar would have to be used. 

The large bell jar made it possible to obtain distances of JO cen­

timeters and an angle of 45 degrees. When attempts at flashing the gold 

were made, the membrane again burned. Again 9 as gold was flashed, the 



current was turned down before all of the gold had evaporated. In this 

manner an absorption of about 15 percent could be obtained. When the 

membranes which absorbed 15 percent were placed in the cell, there was 

no apparent improvement in the sensitivity of the instrument over the 

membranes with 7 percent absorption. However, the images did seem to 

form somewhat faster. These results will also be shown in the next 

chapter. 

Since the gold could only be deposited to obtain an absorption of 

about 15 percent, it was decided that other metals might be easier to 

deposit. Nickel was tried but it took so much heat to melt it that the 

membrane crinkled under this heat. It was next decided that chromium 

might be easier since it sublimeso Unfortunately, chromium does not wet 

the tungsten filament. However, there are two methods that can be used 

to induce chromium to adhere to the filament. The more difficult method 

is to place the filament in an atmosphere of hydrogen or helium, with a 

piece of chromium placed inside the helical, filament. When current is 

applied, the chromium sublimes and as it does some of it adheres to the 

filament. In this method there is, of course, little control over the 

amount of chromium deposited upon the filament. The second method is to 

electroplate chromium onto the filament. This proved to be the better 

method, in that the weight of chromium on the filament could be accu­

rately determined from the current and length of time of electrolysis. 

The electrolyte solution used to plate the filament was made by adding 

160 milliliters of water to 40 milliliters of chromium trioxide. The 

power source was a 6-volt battery charger. It was found that a current 

of one ampere would deposit the required amount of chromium on the fil­

ament in about ten minuteso When the chromium was flashed upon the 
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membrane, it crinkled under the heat just as in the case of the nickel. 

For this reason the chromium was also abandoned. 

The next metal attempted was lead. Since lead evaporates at a very 

low temperature, it was thought that it would deposit completely without 

damaging the membrane. This was the case. However, examination of the 

lead films on the spectrometer showed that the films had poor absorptive 

properties. Hencei lead was also abandoned. 

Czerny had used aluminum as his film, but he found that the absorp­

tion of these films deteriorated with age. However, since aluminum does 

evaporate at about 100 degrees less temperature than the gold, it was 

thought that the degradation of performance with age would be acceptable 

if greater absorption could be obtained. This, however, was not the 

case. Like the gold, absorptions of only about 15 percent were obtained 

before the membranes burned. Films of aluminum were placed into the 

Evaporograph and images taken. These results will be given in the next 

chapter. 

From the attempts at depositing the various metals upon the mem~ 

brane, it is apparent that Taquet (15) must have had some specialized 

type of deposition equipment in order to be able to flash gold films 

with absorptions of 50 percent upon the membrane material. 

An observation of the actual deposition process, gives some insight 

into the method that Taquet must have used to accomplish her ends. The 

current is raised slowly until the metal melts and wets the tungsten 

filament. After the metal has wetted the filament, the current is 

abruptly raised so that the metal is flashed. Because the filament must 

supply the necessary heat to the evaporating metal, it actually does not 

glow at its brightest until all of the metal has been deposited. If in 
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the time period before the heat radiated is at its peak, but after all 

of the metal has been deposited, a shutter is closed then the membrane 

could be kept from being burned. Since this time interval is only on 

the order of one-half second, a very precise shutter mechanism would be 

required to perform this function. It would allow one to vary the time 

in which the shutter was open. The deposition system used at Oklahoma 

State University in this research was not equipped with one of these 

devices, and one could not be constructed with the materials available. 

It is almost a certainty, however, that Taquet had such a device. 

BJ. The Dielectric Coated Absorbing Layers 

Because the vacuum deposited absorbing layers can have at most a 

50 percent absorption and are difficult to plate on the membrane mate­

rial, the dielectric coated absorbing layer offers many advantages. In 

fact, the nitrocellulose.membrane can be eliminated all together. 

Unfortunately, the actual deposition of these films could not be accom­

plished with the equipment available. However, a description of a 

deposition process which might be used will be given. 

The first thing that must be done in order to deposit the dielec­

tric layers is to choose a suitable backing ·on which to plate the 

dielectric layers. This backing must be easily dissolved after all of 

the depositions have taken place and the solvent used must not attack 

the dielectric layers. This material could easily be nitrocellulose 

since it dissolves in most organic solvents. Because the nitrocellulose 

serves only as a backing on which the layers are deposited, it can be 

made somewhat thicker than the membranes. Thickness as much as 2000 
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angstroms would not be hard to handle, and would be more resistant to 

heat than the thinner membrane. 

The actual deposition sequence, which would be the easier to per-

form, would be to plate the material with the refractive index of 1.62 

first. Since this material must be manufactured from two different 

materials, this layer is the most difficult to produce. However, 

Fujiwara (5) has developed a technique which should work very well. The 

materials which can be used are Zinc sulfide and Cerium dioxide. These 

two materials are placed in separate boats with the cerium dioxide in a 

tungsten boat and the zone sulfide in a molybdenum boat. There is, of 

course, a different current source for each boat. The currents are 

adjusted separately to achieve the proper rates so that the desired 

index of refraction is obtained when the layer has built up to the 

proper thickness of 2.51 microns. 

The second layer which is composed of thallows chloride is much 

easier to deposit. This material sublimes at about 150 degrees centi-

-~ grade at pressures less than 10 torr. A quartz crucible must be used 

as the source but this is no problem. The rate of deposition is just 

controlled until the desired thickness of .95 micron is attained. 

Germanium is used for the third layer, and should be sputtered on 

for best results. The rate must again be controlled until a thickness 

of .625 microns is achieved. 

After the germanium has been deposited, the structure should be 

removed and placed in the holder which will be placed in the Evaporo-

graph. The system is then placed in an acetone bath until the nitro-

cellulose backing has dissolved. The structure is then to be placed in 

the vacuum chamber once again and the gold flashed directly upon the 
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germanium. The structure has now attained a thickness of 3.09 microns 

and should be very much stronger than the nitrocellulose membranes with 

gold, since the structure is now some thirty times thicker than the 

nitrocellulose membranes. 

Actually, since the dielectric layers are not subject to the heat 

transients that the membranes were, chromium, nickel, or other metals 

could be used for the absorbing layer. However, if these were to be 

used, the thickness versus absorption curves would have to be deter­

mined for the metal in question. As far as that goes, the absorption 

versus thickness for gold would have to ,be determined because this prop­

erty is dependent upon the substrate used. 

The above procedure is not one that has actually been used since 

the equipment available was not capable of such a task. It is not 

intended that the above procedure be construed to be the only possible 

procedure for the deposition of dielectric layers. It is only suggested 

that this procedure is one which could possibly be used to achieve the 

desired ends. 

C. Operating Procedure 

The operating procedure for the Evaporograph had to be worked out 

by trial and error since none of the other researchers in the field gave 

a clear outline of the procedure which was used to image objects with 

the Evaporograph. There are, however, two basic procedures by which 

images are obtained by means of the Evaporograph. The first of these is 

the method first used by Czerny (J). In this method, oil is allowed to 

condense on the membrane before the image is focused upon it. As the 

oil evaporates from the exposed area, the image is formed. This method 
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is the least sensitive of the two and was discarded almost from the 

first in the research conducted at Oklahoma State University. The sec­

ond method was developed by the Baird Atomic Corporation (12). In this 

method the image is focused on the membrane and then the oil is allowed 

to condense upon it. The image is formed on the membrane as the oil 

condenses at different rates depending upon the temperature of the point 

in question. This is the method used in the research conducted at 

Oklahoma State University. 

The actual operational process is as follows: The first step is to 

make sure that the vacuum valve in the main line to the Evaporograph is 

closed. If it is not, experience has shown that the membrane will 

almost certainly be broken by the transient induced when the pump is 

turned on. With the valve closed, the vacuum pump can be started. 

Next, the power is applied to the lamp illuminating the membrane, the 

heater to the back window, and the vacuum gauges. While observing the 

membrane, the vacuum valve is slowly opened. The valve must be opened 

slowly because the two halves of the cell are not quite of the same 

volume and since the membrane is so fragile, any undue pressure differ­

erences would readily cause it to puncture. Initially, the valve should 

be opened no more than three turns. When the membrane has returned to 

normal, as observed through the half silvered mirror, the valve can be 

opened another turn. This procedure is repeated until the valve is com­

pletely opened. When a pressure of 100 microns of mercury is attained, 

the power is applied to the oil heater. The voltage is adjusted so that 

a voltage of two volts is attained across the heater coils. At this 

point, the lens is focused. Since no optical image is observed until 

the image is formed on the membrane, the lens must be focused by 
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measurement according to the formula 

1/0 + 1/I 1/Fl. 

Where: 

0 is the object distance, 

I is the image distance, 

Fl is the focal length of the lens. 

With experience the lens can be focused quite easily in this manner. As 

the oil heats, it begins to condense on the membrane. As it does the 

image appears on the membrane, first as shades of blue, then, as the oil 

becomes thicker, as shades of red just before the oil begins to run down 

the membrane. The image is erased from the membrane by turning on a 

100 watt bulb and placing it just in front of the lens. It takes from 

a few seconds up to about a minute for the membrane to be erased depend-

·ing upon the thickness of the oil film. After the membrane has been 

erased, the bulb can be turned off then removed from in front of the 

lens so that another image may be formed. For the steam iron used as a 

target in these experiments, it took only a few seconds for the image to 

appear. However, the time that it takes to form an image can be con-

trolled to some degree by adjusting the voltage to the oil heater. The 

time to observe the iron could be controlled from about a minute by 

1 
setting the voltage to /2 volt to about 10 seconds at 2 volts. 

The above is essentially the procedure used in obtaining an image. 

In order to photograph the image, one must have special equipment. The 

basic apparatus and films used have already been discussed in the first 

chapter. The procedure to photograph the image is quite simple with the 

equipment used. The setting for the camera was obtained simply by 
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lens setting determined, the procedure is just to focus and shoot. 
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Since the film used to take the color images was used at ASA 320 instead 

of its normal rating, it required special handling. All of the photo­

graphic processes used in this research had to be done by hand. 

The above paragraphs outline the procedure used in obtaining and 

photographing the image. The next chapter contains the results and 

conclusions. 



CHAPTER V 

SYNOPSIS AND ANALYSIS OF RESULTS 

A. Analysis of Results 

Although the experimental results of the research conducted at 

Cklahoma State University could not be carried to the extent desired due 

to the lack of equipment, enough data was taken to give an objective 

evaluation of the evaporographic process. As was stated in Chapter IV, 

there were three types of absorption layers used to image objects with 

Evaporograph. The first was a gold absorption layer of about 7 percent 

absorption; the second was a gold layer of about 15 percent absorption; 

and the third was an aluminum layer of about 15 percent absorption. The 

object chosen to be imaged on a comparative basis was a steam iron. The 

surface temperature of the iron was set at a temperature of 240 degrees 

Fahrenheit, as measured at the tip, so that a peak point wavelength of 

7.5 microns would be obtained. 

The first image of the iron, which is shown in Figure 7, was taken 

with a gold absorption layer having about 7 percent absorption. This 

particular photograph was taken after the image had formed for about 

20 seconds. The oil film is, thus, relatively thick after an exposure 

of this long since it only takes about 60 seconds for the oil to begin 

to run down the membrane. The temperature gradients across the iron 

are quite marked for an image exposed this long. The photograph shows 

very vividly that the tip of the iron is much warmer than· the rest 

of the surface. Also, the steam holes show up as much warmer than 
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Figure 7. Seven Percent Gold Film 
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the rest of the iron. The circle visible in the center of the photo­

graph is a reflection off of the germanium lens. It will be remembered 

that the membrane plus absoring layer is transparent to the visible to 

some degree. The problem of this reflection only showed up with the 

very thin absorption layers so it is not a problem which has to be 

solved by using special filters to filter out the visible. 

The second image of the iron, shown in Figure 8, was taken with a 

gold film of about 15 percent absorption. The photograph was taken just 

after the image began to appear upon the membrane. This was only about 

three seconds after imaging was begun. Note that this image is not as 

well defined as the one taken with the 7 percent absorption layer. This 

is because the oil is not as thick and the image has not had time to 

form completely. It will be noticed that the upper left hand corner of 

the picture is a different color than the lower right hand corner. This 

is because the membrane is not uniform and this difference in thickness 

shows up as the difference in color. That the membrane is not uniform 

is one of the major contributors to losses in sensitivity of the device. 

The solution to the problem of the non-uniform membrane will be given 

in the other half of this chapter, and hence, will not be discussed 

further here. The brown colored spots around the outside rim of this 

photograph is caused by oil buildup around the rim. The actual cause of 

the problem is that the two halves of the Evaporograph cell are not 

pumping down at the same rate and there is a strain on the membrane. 

This effect will disappear after the pressure on both sides of the mem­

brane equalizes. This does show what happens to the membrane when pump 

down conditions before equilibrium have been fully attained. If one 

observes the photograph very closely, he can see the strain lines 
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around the periphery of the membrane. Unfortunately, since the membrane 

is so thin, it does not take much of a pressure differential to punc­

ture it. From observing this photograph, one can readily observe that 

great care must be exercised in pumping the cell down. 

The third photograph, which is shown in Figure 9, is of an image 

formed by an aluminum absorption layer with 15 percent absorption. The 

photograph was taken after the image had formed for about 45 seconds. 

If one looks closely, he can see droplets of oil beginning to form in 

the upper left hand corner of the picture. In a few more seconds, the 

oil would begin to drip down the membrane. This particular picture, 

however, was chosen to show one of the largest factors which limit the 

sensitivity of the Evaporograph, rather than the oil droplets. Upon 

observation of the picture, one quite readily focuses his attention to 

the narrow band across the center of the membrane. This narrow band is 

caused by the variation in thickness of the membrane. Admittedly, this 

particular case is much more severe than most of those encountered but 

it does show the problem very vividly. When this particular memb~ane 

was made, there were no indications of imperfections. This might seem 

odd, but since the actual thickness of the membrane is only about 500 

angstroms, the, interference color observed from the membrane was black. 

It is impossible to see any variations in thickness across the membrane 

under these conditions with the naked eye. Fortunately, there is a 

solution to the problem of non-uniform membranes. This solution will be 

given in the next section to this chapter. 

The next topic which should be touched upon is sensitivity of the 

device in imaging the pictures shown in Figures 7, 8, and 9. It has 

already been mentioned that the tip of the iron was measured at about 
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Figure 9. Fifteen Percent Aluminum Film 
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240 degrees. The tip and the steam ports are obviously the hotter por­

tions of the iron. An attempt was made at using the thermometer to 

measure various points across the surface of the iron, and as closely as 

could be measured the maximum temperature differential across the iron 

was about 25 degrees Fahrenheit. No numbers can be given to show 

exactly how small a temperature variation that the Evaporograph is indi­

cating since there was no equipment available which could measure small 

temperature differentials. It was not really the intention to show how 

sensitive the device was under the conditions shown in the photograph. 

The pictures were chosen more to show the type of image one can expect 

from the Evaporograph and the problem associated with the membrane. 

B. Recommendations and Conclusions 

In Chapter II it was shown that the Evaporographic technique of 

infrared imaging could achieve a sensitivity of .1 degree centigrade 

with a 40-second exposure time. In those calculations it was assumed 

that the Evaporograph taking the image had an f :1.4 lens which passed 

90 percent of the incident energy and an absorbing layer which absorbed 

80 percent of the incident energy. It has also been shown that there 

are only two ways to improve the sensitivity and lessen the exposure 

time. 

The first solution was to find an oil with a much smaller latent 

heat of vaporization. However, since no oil could be found which had a 

significantly lower latent heat than the oil in present use, more 

research is needed in this area. 

The second way to improve the sensitivity was to be able to detect 

a smaller change in oil thickness. Baird-Atomic (12) had shown that 
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realistically only a 250 angstrom change could be detected, while 

Kubota (11) indicated that a difference as small as 10 angstroms could 

be detected. The factors which: limit t:,.d:c' :to 1250 angstroms were 

variations of thickness in the oil film and variations of thickness in 

the membranes. The variations in thickness of the oil film are related 

to some degree to the imperfections in the membrane since any anomalies 

no matter how small on the surface of the membrane will make the oil 

film uneven. The membrane itself is, then, the primary cause of vari= 

ations in thickness. This was shown very vividly in the picture of the 

flat iron taken with the aluminum absorbing layer. These variations are 

not readily observable with the eye since the membrane is less than 500 

angstroms in thickness. Since the membrane is made by flotation of a 

solution on water, it is very difficult to control the thickness. The 

best solution to this problem is obviously to do away with the membrane. 

Fortunately, this can be accomplished by using the absorbing layer 

directly on the dielectric anti-reflection coating and letting the oil 

condense directly upon the absorbing layer. Since the absorbing layer 

is very uniform in thickness, there should be a significant increase in 

sensitivity. 

The other main problem with the evaporographic process was that the 

thin nitrocellulose membrane was very susceptible to breakage. This 

problem would also be solved to a great degree by utilizing the dielec~ 

tric anti~reflection layers since the structure is some 60 times thicker 

than the membrane. 

As the dielectric absorption layers added to the Evaporograph 

should improve the performance of the device to a great degree, there is 

another improvement which this researcher feels is necessary. This i9, 
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a redesign of the basic Evaporograph cell. It will be remembered that 

the Baird-Atomic (12) cell was composed of twl halves which fit together 

with the membrane holder separating them. A manifold then joined the 

two halves, thus making entrance to the cell very difficult. This cell 

did have the advantage that the oil heater was external to the cell. 

The cell used in the research at Oklahoma State University and shown in 

Figure 2 had the advantage of easy access; but since it was constructed 

from one piece of brass, the oil heater had to be provided inside the 

cell. This is not desirable because it makes two more vacuum seals 

which must be used. The obvious solution of the problem is to use a 

cell similar in construction to that shown in Figure 10. An observation 

of the cell shows that it encompasses the advantages of easy accessi­

bility to the interior of the cell and the advantage of an external oil 

heater. This is possible by constructing the cell out of two materials. 

The left half of the cell can be made from brass and the right half from 

plexi=glass or similar material. This allows the temperature differ­

ential necessary for operation since plexi-glass has a much lower 

thermal conductivity than the brass. 

Another advantage of the construction is that there i-s only one 11 0 11 

ring seal holding in the vacuum. All other seals in the cell are perma­

nent. Both windows are put in permanently with epoxy since they should 

not have to be replaced. The plexi-glass to brass seals can also be 

made with epoxy with little difficulty. 

It will be noticed that the use to have both windows inclined is 

eliminated by using the dielectric coating since there is very little 

reflection of the infrared energy from the right hand side of the 

dielectric layers and there is no transmission of the visible through 
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the absorption structure. For this reason the infrared window does not 

have to be inclined at an angle. On the other hand there is some infra­

red transmission through the absorption structure, hence the visible 

window is inclined at an angle of 15 degrees so that no reflections can 

get back to the absorbing layer. 

It was mentioned earlie~that the right hand side of the cell was 

constructed out of plexi~glass. The manifold structure as well as the 

visible window holder are also constructed out of this material. Since 

the emissivity of the infrared half of the cell should be at least .8 or 

higher, it is necessary to vacuum deposit a metallic layer on the inside 

of the side of the cell. The visible window holder should also have a 

vacuum deposited metallic layer to keep out stray light rays. The mani-

fold structure needs no special treatment since it does not enter into 

the imaging process. 

So far nothing has been said about the dimensions of the suggested 

cell. The drawing in Figure 10 is drawn to full scale and is thus shown 

actual size. The overall structure is about 35/8 inches long less the 

lens holder and is 2'i'1oinches in diameter not including the manifold 

structure. The absorption structure is only .8 inches in diameter in 

this cell. as contrasted with 1 }4: inches in the cell shown in Figure 2. 

The absorption structure was made smaller in this case only because the 

f:1.4: lens can be obtained in a 1~inch diameter with little difficulty. 

Although the addition of the dielectric anti-reflection coating and 

the use of the suggested Evaporograph cell should improve the sensi-

tivity of the device substantially, there are several areas of research 

which need to be explored further with the hope that the evaporographic 

method might be made still more sensitive. The first and primary area 
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of research should be the search for a new oil which has a lower latent 

heat of vaporization. The second objective should be to explore the use 

of dielectric reflection layers further in an attempt to find better 

synthesis techniques. It will be included that the procedure used in 

Chapter III used quarter wavelength layers and solved for the indices of 

refraction. This is a good method in that it is simple. The problem 

is that if a lower cutoff frequency of less than half the center fre­

quency is desired one has to contend with a singularity at half the 

center frequency. It might be possible to devise a synthesis procedure 

which uses layers of known index of refraction and solves for the thick­

ness of each layer than the quarter wave procedure. If, however, the 

singularity at the half frequency point could be alleviated, the addi­

tion of more layers would be worthwhile. 

In addition to the study of better synthesis techniques, much re­

search needs to be done on the absorption layer. As was discussed in 

Chapter IV, the absorption layer, which is metallic, is vacuum deposited 

upon the substrate. Unfortunately, the resistive characteristics of the 

film vary with the type of substrate upon which it is deposited (7). 

For example: A 50 angstrom film of gold deposited upon the nitrocellu­

lose has an impedance of 189 ohms per square. A 50 angstrom film of 

gold upon the germanium dielectric layer will have a different imped­

ance. Hence, there is a great need for research in the area of 

absorbing layers both in finding metals which can be used for absorp­

tion layers and the effects of substrate on the resistive properties of 

the absorption layers. 
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