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CHAPTER I 

PRELIMINARY CONCEPTS 

This papeI! wiU be devoted tq the development of the concept of 

an q.nca,lytlc characteristic functional and some characterization 

p:rablems in p:r;obability, 

Anaiytic Functions on Banach Spaces 

In orde :r to develop the qoncept of an analytic chc;i.racteristic 

funetional it w~ll be nec;essary to outltne the development of analytic 

functions on Bi'l-nach spaces which appears in HiUe [ 11], Boc:hnak and 

Si~iak [2] and [3]. Bochnak [l] and Llgoeka and Siciak [15]. In the 

following I and Z will be Banach spaces over the scalar fielc;I. F 

( F Ls eithe:i;- the real or comple~ numbers). 

.OefinLHqn 1, 1 A func::Hon P: I ..... Z is called a polynomial of degree 

m if for all a, h e I and ~U Cl' e F 

where the 

P(a +ah) = 
m 

v I: P (a, h) a , 
v:;O v 

P are funqtions which are independent of a, 
v 

. i~ e~~Ci tly m Li p I- 0 . 
m 

The degree 

Unless oth, :i:w~se specified, all polynomials in the following 

de.Hnition~ wUl be C!Ls~umed to map I into Z, 
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Definition 1, 2 A polyqomh1,l P 151 said to be hom9geneous of degree 

n if 

P( QI x) n = QI · P(x) QI E 'J!', XE I. 

co 
De finiUon l. 3 "f h~ se rie I!! ~ p 

n=O n 
of homogeneous polynomials is 

CXI 

EC I provided ~ P (x) convel;'ges 
n=O n 

for all x e E. 

The p;receeding cl.e!inltlens con~ernln,&" polynomJ;als on a Banach 

space mak~ possible an app:roa.Qh to generalized analyHcity whic;:h is 

both l!iimllar to and l';;Op.eristent wtth an,a,lyHc;ity of funetionfi of ~omplex 

Defin.-ition l, 4 The fun~tion f: :t - Z is isaid to be Q-an;;i.lytic in the 

open set E ( I pr~vided that fol" eaGh x e E there exists a series 

of hornogeneo~s poiynomials, 
' ' 

such that 

co 

f (~ + h) = ~ P n (h) 
n=O 

for au h in i;j. n~~ghborhqoq. of 0 ' (f!ere neighborhood of 0 is 

. \ 
7ela.hve to th~ norm topology Ol'l. I, ) 

Defh:rlU<:m l, 5 th 
The ~uncH~m f dl!fined on I is said to possess a p 

q ... d-Uferential at a poi.tit x: 0 e I, wr~t~en f e Q.~ , if 
0 

( 1) For ea~h h e :t the f-1,1.nction g defined on F by 

g(O!) -= f(x + qh) hci.i;; a pth derivaHv~ at 0: and 
0 

2 



(2) The mapping 8 n f : I ,.... Z defined by 
x 

0 

on f(h) = 
x 

0 

f(x 0 + ah) I 
a=O 

is a homogeneous polynomial of degree n 

(n = 1, 2 1 • , , , p). 

Fo;r eaqh x 0 , h E I on f(h) 
XO 

is cal+ed the nth q.,.differenti,al of f at 

the point x 0 wtth increment h. It should be noted that if the domain 

of £ is the set of real numbers, then on f(h) = /n) (x ) hn. If 
x 0 

0 

f Ii! Q: for all x e UC I, the potaHon f e qP(U) is used and if 

f e Qp (U) for ;;i.11 positive i.ntegel"s p, the notation f e Q 00 (U) is 

used, 

For a proof of the foll<:>wing theorem see Hille [ 11]. 

Theorem 1, 1 ThE: func;Hon f: I- Z is Q .,.analytic in an open set 

E C i: CX) 

if and only if f e Q · CE) and for every x e E there is a 

ne·~ghborhood N of 0 e I f?U.Ch that 
x 

CX) 

f(~ + h) ;:; ~ 
n::;Q 

1 
ri ! VheN 

x 

For the c;<:1.se I = R, the se:i;ie s op. the right is the usual Taylor 

series expanE;J'lor:i of f(x + h) abo~t the point x. 

Definition 1, 6 A fu,nq tLon f : I ,.... Z is said to be analytic in E C I 
CX) 

H for each x i; E thel;'le exists a series 1 L: P , of continuous 
n=O n 

homogeneous polynomials such that 

3 



,. 
o;> 

f (x; + h) = ~ P n (h) 
n::O 

for all h in some neighborhood of 0. 

Definition 1, 7 A. function f: I.,,. Z is said to be locally bounded in 

the open set D C I if for eaGh a e D there is a sphere s 
a 

c onta Lning a and a Hn\te number 

XE S . 
a 

M a 
$\1,Ch that II f(x) II < M when a 

Theorem 1, 2 A funGtion whic;h is q -analyftic on a set D is analytic 

on D pre>vided it is locally bounded on D, 

4 

Theorem 1. 3 An analytic; function which vanishes in a sphere vanishes 

·~dentically in L~s domain of analyticity. 

Theorl.'.!ms 1. 2 and 1, 3 bath appear ~\J. Hille [11], 

In the :remainder of this paper the scalar field F is assumed to 

be the real numbeJ;'s. Henc;::e I is a :real Banach space. Bochnak and 

Si~iak [2] showed that for suc;h a spa<;e I there exists a complex 

Bana<;;h lilPC\(:e I with the following properties, 

(1) I = Ix l; with addiHon i:;ompanent wise and multi~ 

pli~ation by complex s~alar s deftned by 

(atih)(x,y) = (ax-by, bx+ay). 

(~) I can be trea,ted as a subspace of i by associating 

x e I wHh (x, 0) . 



(3) I may be treated a.s the dire~t tc;>poiogical product 

of I a.nd i I and every element (x, y) e I can 

be wriHen as x + i y. 

(4) For any semi norm [notm] g on I 

q-(x) = inf{~ It. I q(x.): x = ~ t.x., x. I! I, t. e c} 
. J J . JJ J J 

fo:t: x e I, is a serp.inorm [norm] on I. In addition 

q has the property that 

max { q(:x;), q(y)} ~ q (x + iy) ::_ q(x) + q(y) . 

(5) If P is a homog~n.eous polynomial on I, then the re 

exists a uni<:J,Ue polynomtal P on I such that 

P = P J I . P is c;: ontinUO\lS if C1.nd only if P is c:on ~ 

(6) lf ~ isEilr"le s of homogepeous polynomials 
Cl'.) 

~ P defined 
n=O n 

on I c;:onverges in an opem set H, then there exists an 

open set H C I sui;:;h that H C H and ~ p 
n=O n 

is 

qonv~:rgen.t in H, 

Let (Q, ~, µ) be a pl:'obability space and let I be a real 

5 

J?q.nach spac;;e with d\tai space * I , Let X be a weakly '3 measurable 

func:;tion mapp~ng Q into 1. Then X is called a random variable 

(r. v, ) . An important analyti(fal tool in the study of random variables 

is the Gha:rac;teristi<; funGticrnq.l, 

Definition l, 8 The c;harqi.~te:i;istic functional (c:, f.) of the r. v, X is 

given by. 
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"''( ~( * ix''·(x) ( iv'(X(w)) 
f (~ ) ;;::; E e = J,.. e ' ""' · µ ( dw) 

n 

The special c;ase wMc;h oc;;curf3 when I is the set of real numbers has 

been invesHgated extensively. For this ca,se, the theory of analytic 

c;. f. 's has been based upon the following definition. 

Definition 1, 9 Let f be the e. £, of a real valued r. v. The c. f. f 

is said to be ap. a,.~alytiG c;. f 1 1£ there exists a function g of the 

complex variable z which is regular in the drcle I z I < p (p > O) 

and a c;onsta.nt 6 > 0 such that g(t) = f(t) for ~6 < t < 6. 

That DefiniHon 1, 6 and Definition lr 9 are equivalent can be seen 

by consLdering the following well known theorem ccmcerning c. f. 's of 

real r. v. 's . 

Theorem 1,4 If f is c;i.Q. c;i.n.alytic c.£. of a ;real valued r.v., then the 

func:Uon g, of the c;omplex: variable z, defined by 

1 i zX(w) i zX 
g ( z ) ::: n e µ ( d(J;) ) = E ( e ) 

is analytic: in q. horizontal strip c;;ontaining the real axis and g 

coincides with £ on the :i;eal axis, 

A similar result holds for c, £. 's of r. v. 's taking values in an 

arbHra:ry Banach 1:1pa<;e, This rei:;ult along with other generaLizations 

will be p:roved later in this c;hapter. In order to discuss c, £. 's of 

r, v. 's taking values in the real Banach space l', it is necessary to 

make the following observations. 
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Since the o, f. f of an ! -valued r. v. X is bounded, it ii:; 

analyttc Pl!"OVided it is Q -analytl<; [Theorem 1. 2]. * * >'--For xe I, x''(X) 

is a real value~ r, v. whoi'!e c. £. ii:; given by 

* t *(t) z; E ei tx (X) = 
x 

* f(t:x; ) I t E R. 

Pefinition l, 10 The ri, th moment funetional of the r, v. X is defined 

by 

!:!::? :i:c * >~ n m (~ ) = E [x {X)] , 
n 

x EI , n = 0 1 l, ... , 

,,, 

Clearly, H m (x''' 
n 

existi;;, it is 

th >:~ 
equal to the n · rnometit of the r, v. x (X). 

* The ana..!ytiqLty of £ Ln a neighbc;n:hood of 0 e I determines 

>}; >:c * 
the an~lyticity of ~he c,f, 1 13 of the r.v. 1s x {X), x e I . 

>lit 
Thel'rem 1. 5 H f is Q ..,anatytic in a neighborhood of 0 e I , then 

>~ :i:r: * 
for any x E :£ the re<;l.l r, v, x (X) has an analytic; c. f, 

Proof' Since f is Q ~analytic in a neighborhood of 0, there exists 

ll Y* 11 < r r > 0 sµc:;h faat implies 

, .. co 
>~ 1 f{y '') n = ~ 5 f(y ) -;r 

n=O 
0 

<!(!) 

1 dn ::r:< 
::;: !: ni f{ l1:' y ) 

n,=O I da n 
l1:' = 0 

\)() d ll co 
in * 1 

>'¢ ( l1:' ) ~ = ~ "rT ~ f = --;;! mn (y ) 
n=O n. da 

n ' a=O n=O y 



Therefore the series 

f (t) = 
* y 

8 

co (it)n •!< 
2: ~ rpn(y ) 

n"'O n. 

•!< * converges in It I < 1 1 and when II y' II < r, y (X) has ;:1.n analytic c:f. 

Now let x;* EI,~, The-ree:K!Lsts k > 0 such that Jlkx>!~ll < r so 

* * * (kx · )(X) has aP. an~LyH~ c. f. B1.+t (k.x )(X) = kx (X) having analytic 

* <:;, f, implies x (X) ha,s an analytic i,::, f. Hence the theorem is proved. 

* 'rhe (i -ana~yti<;ity of f in a neighborhood of 0 e I can also 

be µsed to prove ;r~ sults analogol,l.$ to well known theorems concerning 

c, £. 1 s of re~d r, v, 1 s, Examples of su<:;h re su.lts appear in Theorem 

1, 6 and the succ;eedin& qoroUa.ry, The foUowing lemmas will be 

needed for the proof of Theorem 1, 6 . 

Lemm~. 11 1 If {X } is a sequenc;;e of complex r. v. 1 s, such that 
n 

co 
~ E IX I < CXJ • then 

n=O n 

Proof See Ba.lrp.cu.~ [ 9], 

II Y* II < r , then Lemma 1. 2 H £ ii;; Q~analyH~ ln 

< co 

for 
r 
2" . 



lly* II * * ~:roof S\lppose f ~s Q ,.a,nalytlc:; ·in < r . Let x e I such 

that llx*ll < z. Then llzx':~ll < r and 

* 
Cl) ,n 

* 
co 

i £(2 ;}(! ) ;: ~ nr m (2 x: ) :::! ~ 
Q.=0 n 

n=O 

>i'( 

mn(x ) 
--""n~'° ~ zn c:;onvergei;i for I z I < 2, 

n=O ' 
Hen,ee the sEP'i.ea 

has a e. £. vvMch ia analytic i,n I Im(~) I < 2. Therefore 

sinee 

Cl) 

n,;::;Q 

Elx*(x)jn 
n! < co 

'"' n th >!~ 
E; Ix ''(:x;) I ls th~ n absolute mom~nt of x (X). 

Lemma l, 5 * ·~ Let y e I and Cl.efine 

.n 
l 

~' n. 
>:~ * 

x E I ' 

and 

~~ >I~ * 
'rh~l'). P n (x : y ) ie a homogeneous p13lynomial of degree n in x 

pr9vided the expe~tation ex·~sts. 

Proof Q!e R, Thl';'lnfor n;::;O,l,,., 

. n . ~:~ ;::; h~ E { e 1 y (X) [a,(X) + ah(X)) n} 

= t~ ;E ~ e·~y*(x) (nk·) O!k[h(X)]k[a(X)]n-k = 
n. k=O · 

9 
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= 

= 

and the P are independent of a , The:i;efore P is a. polynomial of n n 

d,egree n. To !)how thal! P n if) homo~eneous eonsider 

H~nee P 113 a homogeneoµs polynomial of degree n. n . 

Theorem. 1. 6 If f i~ Q .. analyH<:: in, a neighborhood of 0, then it is 

(~ 

Q ~ana!yttc on al~ of I . 

Proof Suppose !:hat f ii;; Q ·an;;ilytie in {x* e I>:~: II x* II < e;} • Let 

* ,~ * 11 'V' * II ,,,, !..2·. y , x e I in~c::h that ..,.. ,.,,_ ":\:'hen 

= .n ' } 1 ·[ '·~ ] n -, x (X) n, , (Lemmas 1, 1 and 1. 2) 

ro * * = ~ p (~ ; 'f ) 
n=;O n · 
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where by Lemma. 1. 3, the P 'Iii' i;i.:re kn0wn to be homogene'lus poly-. n 

* nomials of degree n. The:r:efore f is Q .. analytic on all of I sinc;:e 

* y was a.rbit;rary, 

Oorollarx 1 .• , 1 If f 
1 and f 2 are two c;:. f, 's whieh agree on a sphere 

* a1;1d are q .... ~u.'l.a,lytlc;: in a ne·ighbo:rhood of O e I , then f 1 = f 2 , 

Proof * Both e, £, 's a:l,"e Q -anaiyt~c on ~11 of I by the previous 

. * theorem, Hencei both are analytic on I , It ii;; easily seen that 

f 1 - f 2 is an.al yt·ic on I* , and vant she Iii in a sphere, The re fore 

f 1 = £4 by l'heorern 1, 3, 

The pre~eedlng result 111hows that <!l.n analytic c, f, i.s uniquely 

dete:r.-mlned by tts valu.~s in a ueighborhood of zero. 

* The next theorem is ~i.mUa:r to Theorem 1, 4. Let I ' denote 

* *· the c:;omplexlfiqatlcm of I • The elements of I " may be written in 

* * the forrn x 1 + ix2 where 

* I , the properties (5) and 

* * * .. x 1 , .x:2 e I If f is an analytic c, L on 
. ,.. 

(6) of t:bie CfOmplex;ificatlon I (see pg, 5) 

show that bhe;t'~ e:~d4it~ a :fu,nc;H<:;>n ~efinl'ld on 1* which is analyHc:; in 

* * an qpen sc:et ~ontahring I an~ a~p.,ee s with f on I , The following 

theorem showe that thE! integ;r:a.L defiqin,g f Gonverges in a "strip" 

* c;ontainb1g l , 

Theo:rem l. 7 ~£ f i~ a,1,1 al;\l.~lyHc c:;, L, th~:re e:x;ists a 5 > 0 ~uch 

that the func:Hon 
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-·~ 
Proof Slnee £ isi analyHe oa I<• 1 there exists 6 > 0 s11ch that 

* f (XI ) = for 

Consider 

''< /Ix; 11 < 0 

* * i x 1 (X) ~ :x;2 (X) 
< Ele I 

* .. x 2 (X) 
= Ele I 

co 
1 [ >:~ ]n < E ~ 7nf ~2 (X) 

n=O 

:;: 
1 >'~ n 

2; ~ E [:x;z' (X)] 
n;;;:O 

(Lemmas 1. 1 and 1. 2) 

cp 
1 >}t 

= :E 
~ mn(x2) < cp 

n::;Q 

beca\lse 

Ko~lar~ki [l3] q.nd MiLle:i; [18] gave theorems whic;;:h showed that 

the distribuhiOUS Qf the ir:i.ele;ipend.~nh ;l', V, IS X 1 I x 2 , x 3 Can be 

determined by ~he d·istl"Lb1.ltion of (X 1 + x 3 ~ x 2 + x 3 ) provided certain 

assui;nptlon$ a.rill saH~fLed, The result in [13] was given for r,v. 's 
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attaining v~lue$ in i;;tocha~tiq ~ocaUy c;onvex linear topological spac:es. 

The following theort;im obtaini;; the result for r. v. 's taking their values 

in a r~fl~xive Ban;;i.ch spai::e vrith the assumption that the c. £. 's of the 

X~ a:re never zero :repla~ed by a weaker assumption. 

Th~orem 1, 8 L~t I be a ;J;"efle:x:ive Banach space and Xk (k = 1, 2, 3) 

be independent ~ 1V9-lued r, v, 's whose c, f. 'i;; fk are analytic, Let 

Y k = Xk + X3 (k = 11 2), The distribution of (YI' Y 2 ) determines the 

di.1St:dbuttons qf the xk up to a chan.ge in loc;atj.on. 

Proof Letthc:;:joi.nt <frf, of (Y 1,Y2 ) be denoted by 

If Xk_ (k = I, 4, 3) 1=1,;r;e other independent I valued r, v! 's with 

a.nalyHQ c, f, 's fk, then the joLnt ~- f, of 

(Y I Y') . I' 2 

denoted by f' 1 ~at1$fiE;is 

Suppose that 

* '* = £(xl '~2) (I. I) 



Since fk and fk (Jc<: = 1, ~, 3) are qi.ll GontimJoulil arid take on the 

va.lµe on~ at the poi,nt 0 e I*, ~hljlre extsts 6 > 0 suc;:h that fo:r 

* * * x E E = {x: E I : II~' II < 6} 

For values of * X E E; let 

k = 1, 2, 3 . 

* * >~ * Therefore when x: 1 , x;~ , :x; 1 + ~~ E E 
' ' ' 

14 

( 1. 2) 

( 1. 3) 

The £unc;tion~lfil gk fil.+e c;;ontlnuous, do not vani,~h in E and satisfy 

g (0) = l k and 

1 (1. 4) 

( 1. 5) 



Let 

whel,'e lqg ii;; tpe qontinuous bral!-ch of the logq..rithm which saHsfies 

and ~~ * h 1 (x ) 1 h2 (x ) are rEjlal, Therefore by (1. 5) 

* * * * fo;r ~l , x 2 , x 1 + x2 E ;E, Also the hk are c;ontinuous functionals 

saHsfyln.g 

* hl (~ ) and 

15 

* ThereforEjl h 1 (x ·) ::;:: 0, h 4 is a real va.lued functional and there exists 

~:it * * a l'eal Unea.r fµnqtional q(x ) li!U<!ih that q(x ) ;: h 2 {x ) for 

llx:* II < ~ , Sinqi;i I 1.111 :i;efle~ivi:'l there exists x 0 E I ~uch that 

>'< 
q (x' ) ;: * x · (x ) 

e 
* ~~ fol," all x E I . Then by ( 1. 4) 

* ix (x ) 
~( ~~ 

g 1 {~ ) ;: g2 (~ ) 
0 ;: e and 

for ail * x with II ....... ,~ II < _20 , ..... - Hence by (1. 2) 

k=l,2, 

and 

* -ix (x ) 
0 



* ix (x ) J~ 
= e o £3 (x'') 

''
""', * ,,· < ~ when ...... c. . Be~au~~ 

;:ind (k=l,2) 

are bo~h anaiytic;: <:;, £, 1 13 which ag:t;"ee on g. neighborhood of zero, 

Corollci.r.y 1, 1 impliel3 they agree on all of 
~:c: 

I . 

on all of * 
I ' H~n<i:~ the theorem ii;; proved. 

Similarly, 

16 



CHAPTER II 

D. VAN DANTZIG'S PROBLEM 

Certain c:lasses of analytic c. f. 's of real r. v. 's have been 

studied little more than analytiG c. f. 's of r. v, 's taking their values 

in arbitrary Banac:;h spaqes. Problems concerning one such clc;i.ss were 

posed by D. vanDantzlg and investigated by Lukacs [17] and 

OstrovskiL [20]. 

An analytic c, f. g is said to belong to the class D provided 

1 
f(t) =; g(it) , t e R, also defines a c. f. As late as 1960 only three 

nontrivial pai:t;"s of the class D were known. These were the pairs 

and [ -t2 /2 -t2 /2] e , e . 

The set D is much larger than one might have judged in 1960. Some 

c, f, 's belonging to D for which the corresponding density func;:tions 

are readily available, are fou,nd in the following example. 

Example 2. 1 Leh 
1 

p'.::_-z and fo'1," n = 1, 2, ... let A. be the 
p,n 

sequence of posUive zero points of J (t), the Bessel function of order 
p 

p. Then 

f (t) = ~ (1 -
P n= 1 /~) = 

p,n 

J (t) 
2Pr(p+l) P 

tp 
(2. 1) 

17 
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is a c, f, belonging to D. 1 If p > - 2, fp has a corresponding 

density given by 

Ix I < i ' . < I 1 ' 1 . 
B(p+ - -) 2 , 2 (2. 2) 

:c: 0 Ix I > i 

l l 
For ea.ch P·~ -z-. , gp.(t):;: f (it), t e R, defines a c.f, Two of the 

p 
original three examples a.re iqc;luded. These are 

and 

sin t 
t 

1 
co sh t 

t 
sfnh t 

LukaG s pointed out t4at c. f. 's belonging to D are both real 

valued and even functions, He a~s o obtain.ed results inc:Hcating that if 

x 1 an,d x2 are iqdependent r. v, 's whose c. £. 1 s belong to D, 

then the c;;, f 1 of the r, v. Y :::i x1 + x;2 is also an element of D, It 

ls interestir,i.g to note that the ¢onverse of this stq.ternent is not true. 

Fo:r example, c;onsider the independent r. v. 's X 1 and x2 , where 

X 1 has density 

a.nd x2 has density 

2x exp (x .,., e ) , x ER 

2 -2x ::; J;" exp ( .,.x - e · ) , x e R . 
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Then x1 and xz h<;i.ve c, f. 's given by 

f 1 (t) = 
r(l~it) 

t E R r;-
and 

f2 {t) 
r(iz,it) t E R . = r;-

Neither f 1 nor f2 Gan belong to D s~nGe they are not even functions. 

Howev~:r. the r, v, Y = x 1 t x2 has c. f. gLven by 

1 
. 'Trt 

cosh T 

which ia an element of the c+las s D, 

Ip, orcier to simplify notation, let H denote the set of pairs 

[f, g] of elementi;i of D satisfying 

f(t) ~(it) = 1 ' (2. 3) 

Let c;n (n = 0, 1, • ! • ) be a sequence of complex numbers such that 

z; 
n=O 

is convergent for sorne h f. 0. Let (X, Y) be a real random vector 

having analytic; c, f. <P, and define a complex r. v. by Z = X + 1 Y. 

Then the foHowing theorem can be formulaJed. 



Theorem 2. I E Zn = c if and only if 
n 

cp (t, it) = 
OJ 

L: 
n=O 

for values of t for which both sides ex:lst:. 

Proof For values o:f t for which the expe~tation exists 

and 

it z 
Ee 

it z Ee 

= E ei(t X + it Y) = 

L: 
n=O 

cp (t, it) 

Ez n 
~~- (it)n 

n! 
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(2. 4) 

(2. 5) 

and, the theorem is proved by the uniqueness of the coefficients of a 

convergent power series. It should be noted that the last step in (2. 5) 

is valid, bec:;ause of the analytit;;ity of cp and the use of the Lebesgue 

dominated c:;onvergence theorem. 

If addiHonally, X and Y are independent with c. £. 's f and g 

respectively, the following corollaries result. 

Corollary a. 1 
f 

where both sides exist. 

if and only if 

f(t) g(it) = 
Cl) 

L: 
n=O 

G 
n (it )n 

n! 

Corollary 2.2 EZn = 0 (n = 1,2, ... ) if and only if 

£(t) g(it) = 1 . 



Note that Corollary 2, 2 eould have been stated in the following way. 

The pair [f, g] is an elei:nent of H, if and only if E Zn= 0 for 

n > 1 1 ..,_, 

Example 2: 2 Let (X, Y) be a rq.ndom v~ctor with joint density 
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2 2 
h(x 1 y) which depends only on x + y It is known that ('luch a random 

vector has a c, f, 

where G is the distribution func;Hon of a nonnegative r. v. He nee 

and it follows from Theorem 2. 1 that if f is analytic, then 

E(X + i Y)n = 0 for n :;: 1, 2, , . . , 

The previous r~suits are easily generalized to higher dimensions 

in the following way, Let c (n 1, . , , , nk), (n. = 0, 1, ... ; 1 < j < k) 
J - -

be an infinite mult~ple i:;equence of complex numbers such th<;\.t 

cp 

~ 

n.=O 
J 

1 ~j :5. k 

c(n 1, ... ,nk) 
I . . . I 

nl.,.,,,nk. 

n 
(i t ) 1 

1 

converges fqr some {tp ... , tk) # (0, ... 1 0). Let 

(X 1, . , . 1 Xk' Y 1, . , , , Y k) be a real random veetor having analytic c. f. 

i:p. Deftne the complex random veetor Z = (Z 1,, .. , Zk) by 



Z, = X. + iY. (1 5. j 5. k). Then the gene;l;'alization of Theorem 2, 1 
J J J 

is the !oVow·ing, 

Theorem 2. 2 
n 

17' z l .,..,.., 1 . '' 

CXJ 

~ 

n.=O 
J. 

1 <j~k 

i,f and only if 

c(n 1, •. ,,nk) 

n.' I.·,• n' ·1 
l' ' k' 

for values of (t 1,.,,, tk) for whiqh both sides exist. 
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Proof Let :X = (X1,, 1 ., Xk) and Y = (Yi•.,,, Yk), Then for values 

of t = (t 1, , , , , tk) for whlc;h the expectation exists 

and 

it Z I 
Ee 

it Z I 
Ee 

= ei(fiX'+itY') = 

k q.z. 
=Elle J J 

j;;;; l 

= E ~ '"n ' . ; , n ' 
l' k' n.=O 

. J 
l<j<k - ..,..., 

CXJ 

n n 
EZ l,:,. Z k 

1 k = ~ 
n.=O 

J 
l~_j~k 

. nl nk 
( t ) (·1' tk) l 1 ... 

and the theorem it:? proved by the un~queness of the coefficients of a 

convergent power se:rie113, 
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IfJ additionally, X and Y are independent vectors with c. f, 's 

f and g respectively, then the following c;orolla;ries result. 

Corollary 2. 3 
n 

E z ·· 1 I •• 

1 

\",() 

~ 

n,=O 
J 

1 ~j ~k 

if and only if 

for values of (t 1, .. , 1 tk) for which both sides e:x;ist. 

Corollc;i.ry Z, 4 
k 

n 
E Z 1 · • · 1 

n 
z k:;: 0 

k where and 

;\n extension of the preceeding results to incb,1de c, f, 's of 

r. v. 1s taking values in a,.n arbitrary real Banach spac;e I is the next 

logical step. E~~end~ng the Gonc;ept of the class D presents no 

problem. A o. f, g of an, I valued r. v. is said to be an element 

of the class D provided * 1 * * f(x ) = * , x e I also defines a 
g(i x ) 

c.f. ofan I valued r.v, The following examples show that the class 

~~ 

P has nontriv~al members. 

Example 2, 3 Let x e I andsl:.lpposethe r.v. X assumes the 
Q 

values x 
0 

c, f. g(x~:<) 

and -x each with p;robability 
0 

= c:;os [x*(x )] 1 x* e I* Also 
0 

1 
~~ 

g( ix ) 

1 
= 

one half. Then X has 

since 

~::: * 
x E I 



Example 2,4 Let X be an I valued r.v. and E llxl! 2 <co. 

Define 

* * * >:~ (x 1 y ) E I X I , The r. v, X is said to be distributed normally 

with mean 0 and c:;ovarian<;e operator '±' if 

Notice that 

1 

* g(ix ) 
e 

* = E eix (X) 

1 
1 . :::c: * 
2 '±' (x , x ) 

1 * * ~ 2 '±' (x , x ) 
= e 

= e * * X E ! . 

Therefore g is an element of D if X is distrib\lted normally with 

mean 0 and covarianc;e operator '±', 
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The foll0wing; results are analogous to Corollaries 2. 1 and 2. 2. 

Let X and Y be independent I valued r.v.'s havinganalytic c.f.'s 

f and g. Let 
al cn(x*) 

that 2; 
n! 

n=O 

G be a seque1;1oe of linear functionals on 
n 

converges for II :x* II < o, o > 0. Let 

such 

Z=X+iY. 

Theorem 2, 3 * c; (x ) 
n 

for each if and only if 

:::c: >!< 
f(x ) g(i x ) = 2; 

n=O 

* :::c: 
for eac;h x e :r . 

Proof Corollal."y 2, I impli,e s that 

:::~ n 
c;: (x ) i 

n 
n! 



for each * * x E I 

f 

if and only if 

>!<(t) g >!c(i t) 
x x 

* co c (x 
2: 

n (i t)n. = n! 
n=O 

where f >:c and g * are the c;:.f, 's of the real r,v 1 's 

>:~ x x 

==~ 
x (X) 

x (Y) respectively. Since the series on the right converges for 

and 

if follows that 

* f * ( 1) = f(x ) 
x 

and 

* = c (x ) , 
n 

if and only if 

* >:~ 
f(x ) g(ix ) :: 2: 

n=O 

>:< 
c (x ) 

n 
n! 

g *(i) = g(i )/:() 
x 

.n 
1 ' 

* >!< Vx e I 
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and 

t :: 1 

Corollc=iry 2. 5 
I 

* * fo:r eac;;h x e I , n > 1 if and only 

==:~ >!<: 

if f(x ) g(i x ) = 1 , 

Hence Corollary 2. 5 c;ha:i;acterizes the set of corresponding 

* pairs of elements of D in the sarne way that Corollary 2. 2 charac-

terizes the $et H. 



CHAPTER III 

CHARACTERIZATIONS USING CONDITIONAL 

EXPECTATIONS 

Shanl;>hag [23] characterized the exponential and geometric 

distributions in terms of conditional expectations, This result was 

generaHzed by Hamdan [10] to include a characterization of the 

uniform and WeiQuH distributions. A more general result was given 

by Kotlar ski in [l4], which contained theorems allowing the character-

ization qf several distri.butioni;; including the Cauchy distribution. In 

thi.s cha{Jter the c;onc;ept of conditional expectation is used to cha:rac;ter-

ize probability measu:ves on a.rbUrary measurable spaces. 

Let (0, ~) be a rneasurab1e spa9e and P, P two probability 
0 

measures on (0, o) such that P is absolutely continuous with respect 

to P , that is 
Q 

Let 00 be any 

(i) A E 13 0 

(ii) A E i3 0 

(iiO There 

p (A) = 0 => P(A) = 0 ' A E .t5 . 
0 

(~. 1) 

subcoUection of i3 satisfying 

,......,:> c 
i3 0 ' 

where Ac 0 -A, A E ::; 

=> 0 < l?(A) < 1 and 0 < p (A) < 1 ' 0 

exists a sequence A E i3 0 such that 
n 
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Le~ h; 0 -+ R, be o measurable, P ·integrable and denote 
0 

m = 
0 

Ep [h] = f h d P . 
o n ° 

Theorem3.l lf P=P, then 
0 

EP[hjA] = Ep [hjA], v A en . 
0 ·o 

Proof Obvious. 

The,2rer:i 3. 2 Fo:r each A e ts 0 such that 

condihon (3, 2) implies P(A) "' 

Proof Since for ap.y A e o 0 

P (A). 
0 

m 
0 

;::! I P(A) aQ.d EP [hjA] = 
0 

then (3. 2) can be wdtten ai:1 

l h dP 
'A 0 

P(A) p· (A) 
9 

Let {A } be the seqµenoe in ('iii). Then 
n 

CXl 

z P (A 0 ) < 
n= I o n -T"" 

co 1 
~ _,....... 

2n 
n=l 

< co 

( h dP 
)A o 

p (A) 
(j 

a,nd by the Borel ~Cantelli lem.ma P (lim A ) = 1. Hence there 
o - n 
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(3' 2) 

(3 .. 3) 

(3. 4) 



exists a set N E o such that lim A = 0 - N and P (N) = 0. ----, n o 

Likewise, P(N) = 0 bec;ause of (3. 1). Since 

1 h d:P 
A 

n = 

1 n dP 
A o 

n Vn, p (A ) 
o n 

then 

f h dP = 1 n n 
h dP 

0 

Now suppose that A e t3 such that (3. 3) is satisfied. Then 
0 

A U Ac= n and as a ;result of (3. 5) 

r h dP + r . h dP = J h dP + r h dP . JA )Ac A o )Ac o 

Usin,g (3, 4) and (3. 6) yields 

P(A) f 1 - P(A) 1 1 J 
po (A) A h dP o + l - 'j? o (A) 'Ac h dP o = A h dP o + Ac h dP o 

or 

[ P (A) l ( I 1 - P (A) ~ f 
Po(A) -ljJAhdPo+ Ll-Po(A) -~ AchdPo= 0, 

Therefore 

or 
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(3. 5) 

(3' 6) 
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Hence 

and because of (3. 3) P(A) = P (A). 
0 

This concltides the proof. 

Remark: It should be noted that H t) 0 is a coUection with the property 

that the values whic;h a probabHity measurf;l as signs to those elements 

of o satisfying (3, 3) uniq"\.lely determine the probability measure on 
0 

all of (S , then P = P . The following examples display the selection 
0 

of su~h an {) . 
0 

Example 3. 1 Let ~ = (0, co) and i3 be the usual er-field of Borel 

irnbsets, Let P be the probability measure associated with the 
0 

exponential distribution whose density function is given by 

f(x) = 0 x < 0 

1 ~:x: I a = ~ e 
a x > 0 ' 

where a is a positive c:onstant. Suppose P is a probability measure 

defined on 0 such that P < < P . Denne h : .~ _.. R by h(x) = x. 
0 

For each x > 0 let A = {x: x > x } . Define 
0 x 0 ' 

0 

collection of all such sets and their c;omplements. 

and 

x +a 
0 ' 

t5 to be the 
0 

Since for x > 0 
0 



x e 
0 

-x /a 
0 

-x /a 
l - e 0 

for each A e l3 0 Ep [h j A] f. Ep [h]. Hence using Theorem 3, 1, 
0 0 
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Theorem .3 1 2 and the fact that the values a probability measure assigns 

to de ments of l) uniquely determine the measure on l), P = P 
0 0 

if and only if for all x > 0 0 . 

and 

x +a 
0 

-x /a 
0 x e 

0 

-x /a 
1 - e 0 

Example 3. 2 Let n = (0, l] x (O, l] and u be the usual o--field of 

Borel subsets, Let h: r2 .,... R be defined by h(x, y) = x + y . Let 

P be the proba,btlity measure associated with the uniform distribution 
0 

on n anq let P be a probabUHy measure on o such that P << P 0 • 

For eac;:h (x ,y )E f:-2, (x ,y) f. (1,1), define the set 
0 0 0 0 

A = { (x, y) : 0 < x < x , 0 < y < y L Let [5 be the collection 
x ' y -,. 0 - 0 0 

0 0 

of all su.ch sets and thei:r compler.nents, Since for (X , y ) E f:2 
0 0 

and 

x + y 
0 0 

2 

1 2 2 
1 - 2 (xoy o + Y oxo) 

1 - x y 
0 0 

. ' 
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fq:r A e t'J 0 Ep [h J A] I Ep [h]. Hence by Theorem 3. 1 , 
0 0 

Theorem 3. 2 and th,e fact that the values a probability measure as signs 

to elements of l5 0 uniquely deterrnine the measu:re on all of o it 

follows that 

and 

P = P if and only if for all (x , y ) e r2 
0 0 0 

x + y 
0 0 

2 

1 2 2 
1 - -2 (x y + y x ) 

0 0 0 0 

1 - x y 
0 0 

Similar results which do no~ require the integrabUity of the 

function h can be obtained by c;ha1;1ging the requirements imposed on 

the set t5 0 , Suppo!>e that (Q, t5) is a measurable space on which 

two probabUity measures P and P are defined. Let h: n _.,. R 
0 

be o measurable. Let l5 0 be any subcoHection of 0 which satisfLes 

the condition 

Let A e t5 be a fixed set such that 
Q 0 

P(A ) < 1 
0 

a,nd P (A ) < 1 
0 0 

and denote 

K = 
P(A ) 

0 (3. 7) P (A.) 
0 0 



Theorem 3.3 If P = P then 
0 ' 

Ep[h/A] = Ep [hjA}, 
0 

Proof Obvious. 

Theor~m 3. 4 For each A E 0 such that A n A = 0 and 
0 0 

Ep [J;ijA] :/: Ep [h/A) 
0 0 

the condition 

Ep[hjB] = Ep [h/B] for B=A, A, AUA 
0 0 

0 

implies P(A) = KP (A), where K is given by (3. 7). 
0 
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(3. 8) 

{3. 9) 

Let A E 13 suc;h that A n A = 0 and (3. 8) is satisfied. 
0 0 

Condition (3. 9) can b~ written 

Then 

or 

1 hdP 
B 

P(B) = 

1 hdP 
B o 

p (B.) 
0 

f h dP + f h d:P 
A A 

0 

B=A,A,AUA. 
0 0 

f h dP + f h dP 
A o A o 

0 = P (A) + P (A ) 
0 0 0 



P(A) 
P (A) 

0 

Therefore 

( hdP 
JA o 

0 

P(A) + P(A ) 
0 
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f h dP + ( h dP 
A o )A o 

0 
:: 

P (A)+ P (A ) 
0 0 0 

P(A)Ep [h!A]+P(A0 )~p (h!A] P (A) Ep [hjA]+ P (A )Ep [hjA .] 
0 0 0 0 

0 0 0 0 

P(A) + P(A ) 
0 

:: 
P (A) + P (A ) 

0 0 0 

or 

P(A ) ) 
., P (Ao) = o , 

0 0 

From condition (3. 8) it follows that 

P{A) P(A ) 
0 

p' (A) :: p· (A ) 
0 0 0 

I 

or using (3. 7) yieLds 

P(A) = KP (A) 
0 

whic;h concludes the proof. 

The previOl,is theorei;ns c;an be used for charac;terizations 

provided it can be shown that K = 1 and o has the property that 
0 

the values qf a probabi.lity measure on elements of n 0 uniquely 

determine the measure on aLl of l3 . The following lemmas can, be 

useful in applying Theorem 3, 4 to charal!;terh;e a probability measure. 
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Lemma 3. 1 If the sequence {An} is a sequenc::e of sets suc::h that 

lim A = n - A , A n A 0 = 0 and P(A ) = KP (A ) for each n, 
n-co n o n n o n 

then K = 1. 

Proof Since A n A = 0 for n > 1 and P(A ) = K P (A ) for 
n o - n o n 

all n. it follows that P(A U A ) = K P (A U A ) . Define n o o n o 

B = A U A , n = 1, 2, .. , . Then lim B = n. Hence 
n n o · n-co n 

P(B ) = K P (B ) and taking the limit of both sldes as n --. co yields 
n o n 

K = 1. 

Lemma 3. 2 If A e [5 
0 

such thc:tt A (I A = 0 
0 

and 

Ep [hiAJ = Ep [hjA0 ), then Ep [hiA U A) = 
0 0 0 

Proof Suppose A e o , 
0 

A n Ao= 0 and Ep [h IAJ 

Then 

f hdP 
A o 

p (A) 
0 

= 

which implies 

J. h dP + ( h dP 
A o )A o 

0 

P (A) + P (A ) 
0 0 0 

Therefore 

f hdP 
AUA 0 

0 

which concludes the proof. 

= 

0 

p (A ) 
0 0 

= 

( h dP 
)A o 

0 

P (A ) 
0 0 

f h dP 
A 

0 

p (A ) 
0 0 



35 

The following example shows how Theorem 3, 3 and Theorem 

3, 4 can be used to c;;h<tracterize probability measures. 

Example 3. 3 Suppose n :i: (1, co) and [5 is the usual CT-field of Borel 

sets. Let P 0 be tl;le probabihty measure associated with the density 

function 

f(x) = 0 x < I -

1 > 1 = 2' x , 
x 

Define the c:oLlection u 0 by 

i} 0 :i:: {(a,b]: 1 s:_a<b<c:o}. 

Let P be a proba()ility measure op. () such that for all A e u 0 , 

P(A) > 0, Define h: f2 - R by h(x) = x, Note that for 

1 <a< b <co and A = (a, b] 

Let 6 > 1 , A ::;; (1. o] and 
0 

K = 

b 
log -

a 
1 1 
a - b 

P(A ) 
0 

P (A ) 
0 0 

. Define the collection 

05 = {(o, b]: 6 < b < co} . 

Then for A :::: (6, b] e [5 
0 

Ep [hjA] :f. Ep [hjA 0 ]. 

0 0 
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That (3, l 0) holds can be seep. by observing that if this is not the case 

Lemma 3. 2 implies 

or 

E [hjA U A ) 
p 0 

0 

log b 
l 

1 - -b 

= log 6 
1 

1 - 6 

However, (3, 11) cannot hold since the functiqn 

g(x) = log x 

1 - .!._ 
x 

is striGtly increa$ing on ( 1, oo) as is shown by 

g'(x) = x: ~ 1 - l~gx for l<x<co, 
(x - 1) · 

Note that Lf for all (a, b) e u . . 0 

Ep [h I (Q., b)) = Ep [h I (a, b)] , 
0 

then 

Ep[hjAO) :: Ep [hjAO) 
0 

Ep[hjA) = Ep [hjA) VAeo 
0 

an,d 

Ep[h/AUA0 ) = EP [hjAUA), 
0 

(3 I 11) 

0 



Then by Theorem 3, 4 

P(A) = K P (A) , 
0 

if for 1 < a < b < co 

b 
log -

a 
1 1 
a b 

Applying Lemma 3. 1 yields K = 1 and (3. 12) implies 

P(6, b) = P (6, b], 
0 . 

b > 6. 

Sinc;e 6 is arbLtrary (3, 12) implies 

P(a 1 b] = P (a, b], 
0 

for l<a<b<co, 

Therefore P = P Lf and only ·if (3, 12) holds. 
0 
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(3. 12) 

The conc;lusion of Theorem 3. 4 rern.ains valid if the requirement 

A (I A = 0 is replace~ by some additional assumptions, The 
0 

following corollaries display the results, 

Corollary 3. 1 For each A e iJ 0 such l!hat 

(i) A C A 
0 

(ii) A - A e u and 
0 0 

(iii) Ep (hiA "A0 ) -:/. Ep [hiA0 ) 

0 0 

the condition 
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Ep [h I B] ;:: Ep [h I :a], B=A, A, A-A, 
0 . 0 

0 

impHes P(A) = K P(A) . 

Proof Theorem 3. 4 implies that P(A - A ) = K P (A "" A ) . Hence 
0 0 0 

P(A) = P(A ) + P(A - A ) 
0 0 

= K P (A ) + K P (A .,, A ) 
0 0 0 0 

= K P 0 (A) , 

Corollari 3. 2 For eq.qh A e o such that 
0 

(i) A C A 
0 

(ii} A - A e [5 and 
0 0 

(iii) Ep [hJA 0 -A] f: EF [hiAJ 
0 0 

the c01;1dition 

Ep[hiBJ = Ep [hiBJ. B=A A A-A 
' 0 I 0 ' 

implies 

Proof 

Henqe 

0 

P(A) = K P (A) . 
0 

Theorem, 3, 4 implies that 

P(A) 
P (A) 

0 

:: 

P(A) 
P (A) 

0 

= 
P(A - A) 

0 

P (A - A) 
0 0 

P(A) + P(A ~ A) 
0 

P (A) + P (A - A) 
0 0 0 

P(A ) 
0 

= p (A ) 
0 0 
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or 

P(A) = K P (A) . 
0 

Corollq.ry 3. 3 Fqr ee;ich A e o 0 such that 

(i) A (] A , A - A , A - A e l) 
0 . 0 0 0 

(ii) Ep [hJf\ (] A 0 ] :f. Ep [hJA0 -A] and 
0 0 

(iii) Ep [hJA - A 0 ] -:/:. Ep [hJA) 
0 Q ' 

the c and it ion 

EP[hJB] = EP [hJ~L B=A, A-A, AnA ,A -A, 
0 0 0 0 

0 

implies 

P(A) = KP (A) , 
0 

Proof By Corollary 3. 2 

P(A n A ) = K p (A n A ) . 
q 0 Q 

By Theorem 3. 4 

P(A - A ) = K P (A - A ) . 
Q 0 0 

Therefore 

P(A) ::: P(A (]A ) + P(A - A ) 
Q 0 

::: K P (A(] A)+ K P (A - A ) 
0 0 0 

= K P (A) . 
0 



CHAPTER IV 

SUMMA;R Y AND CONCLUSIONS 

This paper is devoted to a development of the concept of an 

analytic characteristic function,q.l and some chare;icterization problems 

in probability, The concept of analytic functionals defined on abstract 

spaces has as its foundation the work done by Frechet [6] in developing 

the generalized or q.bstract polynorniaJ. The work of Bochnak [ 1], 

B oc;hnak and Sic iak [2], L igoca and Sic iak [ 15] and Hille [ 11] provide 

the basis for considel;.'ing the effects of the property of analyticity on 

characteristic fuq.~tionals of abstract yalued rc;1.ndom variables, 

In Chapter I it is shown that well known properties of analytic 

charac;;teristic functions of real valued !'andom variables are possessed 

by q.nalytic c;haracteristlc functionals of q.bstract random variables. If 

X is a random variable tq.king values in the real Banach space I and 

having analytic characteristic functional f, then the following results 

are given. The values of f in a neighborhood of the origin uniquely 

determine f, The function f is analytic in an open su!:>set of the 

>!:: 
cornplexification of I 

integral representation. 

{:< 
which contains all of l' 

:::~ * 

and f has the 

=f 
i(x 1 + ix2 )(X(w)) 

e · · µ(dw) 
n 
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in the "strip" !Ix; II < 6 for some 6 > 0. Also included ls a 

chci.racterization problem showing that the distribution of the independ-

ent I valued random variables xl' x2 I x3 having analytic 

characteristic functionals are determined up to a shift by the distribu-

tion of (X l + X3 , X2 + X3 ) . 

In Chapter II the problem of D. van Dantzig concerning the set 

D = {f: f is an analytic c, f, and fdt) is a c, f.} is considered. 

Many examples of elements of D are generated and the following 

characterization of D is given, The pair of c;;ha:i;acteristic functions 

[f, g] is a c;;orresponding pair of elements of D if and only if for 

ind~pendent random variables X and Y having characteristic 

function13 f and g, E(X + iY)n = 0 for n = 1,2, ... This result 

is also generalized to include abstract vc:tlued random variables, 

In Chapter III four theorems are given to allow characterization 

of probability mea13ures definec1 on ab13tract measurable spaces by 

using the conditional expectations of a real valued function defined on 

the sample space, Examples given illustrate the use of these theorems 

to characterize the exponential cl istribution and the two dimensional 

uniform distribution, Theorems 3, 3 and 3. 4 <;1.re used to characterize 

distributions of random variables which do not possess expected values, 

The wealth of information about analytic c:haracteristic 

functionals of real random variables provides many unanswered 

questions related to Chapter I. It should be possible to extend many 

of the theorems in Lukac;s [16] a,nd Ramachandrap. [22] to character-

i13tic,:; fun<.;tionals of abst:i;a~t vah,1.ed random variables. A possibility of 

sharpening the results of Chapter III depends upon constructing proofs 
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of Theorem 3. 2 and Theorem 3, 4 with less restrictions placed on the 

set o 0 
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