A STUDY OF AEROSPACE EDUCATION WORKSHOPS

WHICH UTILIZE NASA MATERIALS AND

RESOURCE PERSONNEL

By

ROBERT DALE HELTON

Bachelor of Arts
Fort Hays Kansas State College Hays, Kansas 1956

Master of Science Miami University of Ohio Oxford, Ohio 1963

```
Submitted to the Faculty of the Graduate College
    of the Oklahoma State University
        in partial fulfillment of the requirements
            for the Degree of
            DOCTOR OF EDUCATION
                Ju1y, 1973
```


A STUDY OF AEROSPACE EDUCATION WORKSHOPS

WHICH UTILIZE NASA MATERIALS AND

RESOURCE PERSONNEL

Thesis Approved:

PREFACE

The concern of this study has been to determine who attends an aerospace workshop and what they might have gained professionally. As this is primarily a descriptive study, it gives a broad picture of aerospace workshops across the United States.

Dr. Kenneth Wiggins is acknowledged for his encouragement and suggestions as the study was done. Grateful acknowledgment is due also to the advisory committee: Dr. Herbert Bruneau, Dr. Robert Brown, Dr. D. L. Rutledge, and Dr. Alex Ross for their time and suggestions.

At NASA Headquarters in Washington, D. C., Dr. Fredrick Tuttle and Mr. Everett Collin of the Educational Programs Branch of Public Affairs provided the grounds for making the study possible. I am grateful for their consideration.

When it comes to doing the work, I am in debt to Eileen Edwards of the NASA Ames Research Center for all the computer programming. The finesse of putting the study into acceptable form to negotiate requirements was due to the efforts of Eloise Dreessen of the OSU Research Foundation.

My wife, Darlene, consoled and inspired me throughout the project.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
Background of the Study 1
Specific Statement of the Problem 4
Hypotheses 5
Need for the Study 5
Limitations of the Study. 6
Assumptions of the Study 6
Definition of Terms 7
Organization of the Study 8
II. REVIEW OF THE LITERATURE 9
The Origin of Workshops 9
Evolving Structure of Workshops 13
The Effect of Federal Involvement with Workshops 18
NASA's Participation in Workshops 19
Summary 22
III. DESIGN AND METHODOLOGY 24
Introduction 24
Description of the Subjects 24
Questionnaire Development 24
Questionnaire Administration 25
Analysis Procedures 26
IV. RESULTS OF THE STUDY 27
Introduction 27
Context Evaluation. 28
Description of the Participants 28
Sex. 28
Teaching Disciplines 31
Level of Teaching 31
Years of Service to Education 34
Degrees. 34
Role in the System 34
Size of School Districts Represented in the Workshop 38
Public Schools or Private Schools 38
Chapter Page
Adequate Materials in Their School 38
Prior Workshop Experience 41
Description of the Workshops 41
Major Topics of the Workshops 41
Sponsors of the Workshops 45
Workshop Experiences Outside the Classroom 45
Student Subsidy. 48
NASA Participation in the Workshops 48
Spacemobile Coverage 51
The Process Evaluation 51
Pace of Workshops 51
On Campus Housing 54
Subgroups 54
Product Evaluation 57
Effectiveness of NASA Participation in Workshops 57
Usefulness of NASA Materials 59
Applicability of NASA Activities 63
Participant Attitudes Toward Future
Aerospace Workshops 65
Professional Growth. 65
Analysis of Chi Square Tables 68
Summary of Findings 76
V. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 77
Summary 77
Conclusions 78
Recommendations 80
SELECTED BIBLIOGRAPHY 82
APPENDIX A - THE FIRST QUESTIONNAIRE. 84
APPENDIX B - RESULTS 90
APPENDIX C - THE FOLLOW-UP QUESTIONNAIRE. 99
APPENDIX D - RESULTS 105
APPENDIX E - LIST OF PARTICIPATING WORKSHOPS 121

LIST OF TABLES

Table Page
I. Cross Comparison by Age 29
II. Cross Comparison by Sexes 30
III. Area Most Closely Associated. 32
IV. Level of Education Versus Materials 33
V. Years of Service Versus Purpose of Attending a' Workshop (Second Questionnaire) 35
VI. Comparison of Degrees Held with Purpose for Taking the Workshop 36
VII. Comparison of Professional Role to District Size. 37
VIII. District Size Compared to Spacemobile Exposure, 39
IX. Public Institutions or Private (Second Questionnaire) 40
X. Materials in the School 42
XI. Prior Wörkshop Experience Compared to Available Materials in the School 43
XII. Topics of Workshops Compared to Their Duration. 44
XIII, Course Sponsor Compared to Course Entity. 46
XIV. Length of the Workshop Compared to Outside Activities 47
XV. Subsidy (Second Questionnaire) 49
XVI. NASA Participation Compared to Length of Workshop 50
XVII. Spacemobile Coverage Compared to Teaching Level 52
XVIII. Pace of the Workshop (Second Questionnaire) 53
Table Page
XIX. Housing Compared to Value of Acquaintance and Social Interaction. 55
XX. Comparison of Subgrouping to Professional Acquaintance, Social Interaction and Increase in Teaching Capability (Second Questionnaire). 56
XXI. Duration of Spacemobile Visits to Aerospace Workshops 58
XXII, Adaptability of NASA Information to the Classroom 60
XXIII. Applicability of Activities 64
XXIV. Attitudes Toward Future Workshops During and Six Months Following Workshop Participation 66
XXV. NASA Participation in Workshops Compared to Professional Growth 69
XXVI. Chi Square Relationships of Workshop Length Compared to Numbers of Techniques or Activities Included in the Classroom 72
XXVII. Chi Square Relationship of Duration of NASA at Aerospace Workshops Compared to New Teaching Techniques and Activities Included in Lesson Plans from Workshop Experiences 73
XXVIII. Chi Square Relationship of NASA Duration at Workshops to Teachers Becoming Resource Persons to their Faculties. 74
XXIX. Chi Square Relationships of Subgroup Participation in Workshops to the Number of New Techniques and Activities Incorporated in Teaching 75

CHAPTER I

INTRODUCTION

Abstract

Adult education or continuing education for adults has become a more important part of education in the past two decades. The need for periodic continuing education for professional people has become a necessity because of the fast changes in professional procedures due to technological advances. Although the terminology associated with adult education is sometimes confusing, this study shall refer to postgraduate work as done by teachers (6).

Background of the Study

The need of teachers to meet standards of certification and professional awareness in their field has created a revolution in American higher education (15, 27). The role of the educational specialist proficient in philosophy, techniques, materials, and application has evolved as a part of almost every teaching staff (19). In some locations continuing teacher education is compulsory in-service training from the day of appointment to the day of retirement, especially in large schools, such as in New York City, where competent teachers often remain 10 to 15 years in one school system. Schenberg (19) says:

However, a course of study is not worth the paper on which it is written unless teachers are prepared to teach it; unless necessary facilities, equipment, and supplies are provided; and unless new and revised textbooks are made
available for the students. For the most part, preparing teachers to teach any of the new courses is an in-service undertaking [p. 36].

Workshops are one type of group activity often used to involve teachers in continuing education development programs. The characteristics common in most workshops are that the consultant assists workshop members to cooperate among themselves to develop plans, skills, and competencies. The atmosphere of the workshop is conducive to the esprit de corps of the group making the workshop a good activity for preservice training and follow-up evaluation of the workshop theme throughout the year (1).

The basic concept of workshops was developed during the 1930 s by the Progressive Education Association. Initially, the workshop was to gather a number of teachers from a single discipline together and, with materials and resource persons available, they were to identify and discuss solutions for the problems they would have in common. A plan of operation including group meetings was made after the participants arrived. Though a workshop member was expected to work on committees, no individual assignments were made. The implementation of workshop results was ensured by maintaining communication within the group by occasional meetings and round robin letters (27).

Examples of the comments of teachers after being involved in a workshop are as follows:

The workshop set me on the right road, gave me objectives, and helped me formulate my plans for approach and motivation. It made me realize that every teacher needs to go back to college periodically and to keep informed of developments in his field.

This workshop has helped us to have a better understanding of the sequential program and to develop such a program from the third grade through junior college level [24, p. 22].

In October of 1957, the Space Age began jolting the interest of America in education, especially in sciences and mathematics. On October 1, 1958, the National Aeronautics and Space Administration (NASA) became an agency by congressional act, dedicated to "preservation of the role of the United States as a leader in aeronautical and space technology and in the application the reof to the conduct of peaceful activities within and outside the atmosphere [14, p. 3]." With public information being a part of the Space Act of 1958, an Educational Programs Division became a part of the NASA Public Affairs. In a report of NASA Services to college and university summer sessions, it states:

There are no existing agencies or organizations, either public or private, other than those for public affairs and education in NASA that have access to the knowledge, that have the personnel, and that have the positive mandate to perform the unique and essential educational service of providing "the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

The Educational Programs Division of NASA Headquarters can be of maximum service to education by concentrating its efforts on such activities as the following: overall planning, liaison with national and state educational agencies and organizations, the stimulation of educational research, the encouragement of publications, experimentation with workshops and conferences, the encouragement of the production of audio-visual materials, the stimulation of exhibits including the fabulous Spacemobile program, and the articulation of the field installations [14, p, 5].

By 1963, NASA was involved in supporting over 140 Aerospace education workshops throughout the United States each year (3). With publications and support to teacher training institutions developing further during the following years, NASA began to emphasize the need off better teaching activities for the classroom teacher (4). Evaluations have been made of the NASA Spacemobile during its
operations of presenting lectures at schools throughout the school years. However, the workshop programs on campuses each summer throughout the country have been evaluated only on the basis that NASA was usually asked to come back and be a part of the program the following year.

By 1970 , NASA was not only supporting aerospace workshops, but also acting as a sponsor of workshops at several of its centers. The questions of workshop content were answered basically by the NASA persons most experienced in workshop participation, but at this time, NASA Educational Programs foresaw the need to evaluate all existing participation in educational workshops in order to adequately plan its services to be available in the future.

This study concerns itself with a description of the workshop, the nature of the involvement of NASA in these workshops, and the evaluation of how workshop participants felt about the workshop experience when asked six months later.

Specific Statement of the Problem

The principal objective of this study was to discover how the workshop participants felt about summer aerospace workshop six months later. Research on the principal objective demanded the development of a questionnaire to be given to them during the workshop and also the development of a second questionnaire that was mailed to them six months after they had completed the workshop.

Specifically, the study attempted to ascertain significant differences, as mentioned in the hypotheses.

Hypotheses

Though many questions arise in this type of study, it is impossible to look for the answers to all of them. Following are four major null hypotheses which were tested with data of this study.

Hypothesis 1. There is no relationship between the length of the workshop and the number of techniques or activities the teacher includes in lesson plans as a result of the workshop experience.

Hypothesis 2. There is no relationship between the duration of the NASA representation at aerospace workshops and the number of techniques or activities included in lesson plans as a result of the workshop experience.

Hypothesis 3. There is no relationship between the duration of NASA representation at aerospace workshops and the extent to which the workshop participant is of assistance to their faculty by talks or as a resource person.

Hypothesis 4. There is no relationship between the group dynamics of having the workshop participants work in subgroups and the number of techniques or activities the teacher includes in their lesson plans as a result of the workshop experience.

Need for the Study

NASA has supported aerospace workshops across the United States for several years. Time, effort, and money are required to do this. Therefore, with the growing interest in aerospace education, a survey was needed to describe these various workshops, to describe the role of NASA at these workshops, and to evaluate how the workshop participants felt about them.

Limitations of the Study

There were several limitations involved in this study,

1. The population of the first questionnaire was teachers who attended aerospace workshops which were in session.
2. Since answering the first questionnaire was not on a voluntary basis, there may have been some covert reluctance on the ir part to participate in this study with full enthusiasm.
3. The second questionnaire was mailed to a random sample of 500 previous workshop participants. There was a 48 percent return from these.
4. The computer answer cards for the first questionnaire were printed with the question and choice of answer blocks on the card, and the answer choices were printed on a separate sheet of paper. This led to considerable confusion in going from the card to the answer sheet and back to the card.
5. For the first questionnaire, two computer cards were needed to contain all the questions. While passing these out to participants, some who gave out the exam did not pass them out in matched pairs. This meant that data from several workshops had to be discarded.

Assumptions of the Study

The following assumptions were made:

1. A questionnaire approach would be a valid way of describing the workshop, describing the nature of the involvement of NASA to these workshops, and the evaluation of how workshop participants felt about the workshop.
2. The questions that were asked would be suitable for the data interpretation.
3. The follow-up random sampling is a valid sample of the total population.

Definition of Terms

Aerospace Education. The realm of education that concerns an awareness of the implications of aviation and space flight on our present way of life.

NASA Public Affairs, A division of the National Aeronautics and Space Administration which is responsible for carrying out the congressional mandate that the public receive "the widest practicable and appropriate dissemination of information concerning its activities and the results thereof [p. 2]."

NASA Office of Educational Programs and Services. The branch of NASA Public Affairs concerning itself mainly with service to students, educators, and educational institutions.

Spacemobile. A mobile van of demonstration equipment and models accompanied by a space science lecturer which visits schools and campuses.

Workshop. Instruction through group participation for persons experienced in their professional field to upgrade their capabilities of handing problems common to the group.

Activities. Group participation to develop teaching skills or capabilities.

First Questionnaire. The questionnaire which was sent to workshop directors during the summer of 1970.

Second Questionnaire. Follow-up questionnaire; the questionnaire sent to 500 randomly selected former workshop participants six months after the workshop.

Organization of the Study

This study is composed of five chapters, Chapter I is the introductory chapter and contains sections which relate to the background of the study, the specific statement of the problem, the hypotheses to be tested, the need for the study, the limitations of the study, the assumptions of the study, and the definitions of terms mentioned in the study, Chapter II is entitled "Review of the Literature." In that chapter, pertinent literature is discussed under the topic headings of: "Origin of the Workshops," "Evolving Structure of Workshops," "The Effect of Federal Involvement with Workshops," "NASA;'s Participation with Workshops," and "Summary." Chapter III is concerned with methodology and design. That chapter includes a description of the subjects, questionnaire development, questionnaire administration, and analysis procedures. Chapter IV contains the findings of the study. Topic headings of that chapter include: "Context Evaluation," "Process Evaluation," "Product Evaluation," "Analysis of Chi Square Tables," and "Summary of the Findings." Chapter V bears the title of "Summary, Conclusions and Recommendations."

REVIEW OF THE LITERATURE

The Origin of Workshops

Abstract

The term "workshop" in education is an outgrowth of seminar type instruction starting in 1936 by the Progressive Education Association. The Progressive Education Association had held several summer conferences with staff members of 30 schools prior to 1936. These meetings were valuable in exchanging ideas concerning curriculum, but were not adequate to meet the aims and purposes of individual schools, so a more intensive plan of in-service study by teachers was found necessary (18).

In the summer of 1936, accordingly, the two commissions jointly conducted a six-weeks seminar at Ohio State University wherein teachers in science and mathematics from the 30 schools divided their time between the curriculum and evaluation. This direct access to research findings and consultation with specialists proved so helpful that it was decided to expand the idea the following summer, and in 1937, a "Workshop" was held at Sarah Lawrence College, Bronxville, New York, the leadership being furnished by three commissions of the Progressive Education Association--the Commission on the Relation of School and College, the Commission on the Secondary School Curriculum (including the Adolescent Study), and the Commission on Intercultural Education. In attendance were 126 teachers and other school workers from

educational institutions all over the United States. A requirement for admission was that the individual have some definite problem on which he was working by himself or as a member of a school group, and the method used was that of consultation, conference, and small group discussion. Commission reports then in process on "Science in General Education," "Creative English," and "Life and Growth," together with case study material on adolescent growth and development compiled by Dr. Caroline Zachry and her staff, and motion pictures selected for school use by the Commission on Human Relations under Dr. Alice Keliher, were made available for discussion and criticism by participants in the workshop. Evaluation materials were also provided and a laboratory for the evaluation work. The sum total of these resources produced what Dr. V. T. Thayer, Chairman of the Commission on the Secondary School Curriculum, characterized as "a new phase in the professional education of teachers," [18, p. 5.]

So pronounced was the success of the Sarah Lawrence Workshop of 1937 and so likely did it seem that a new way had been indicated for in-service education of teachers that resources were sought and obtained for a more ambitious program in 1938 (18).

Three workshops were set up with funds from the Rockefeller Foundation during the summer of 1938 at Sarah Lawrence College, Bronxville, New York; Colorado Women's College, Denver, Colorado; and Mills College, Oakland, California (18).

Key people to staff the three workshops were gathered together for a ten day "leadership conference" near Detroit, Michigan. The briefings of the workshop directors and staff members together gave them a better understanding of their tasks and somewhat closer coordination between
them. In order to meet the objectives of the workshop, the spirit and sincere effort to carry out certain fundamental principles that had
long been neglected from American education were emphasized:

1. Concern for the needs of individual human beings in direct relation to the demands of the community.
2. Insistence upon a rich experience of living as essential to all education, but particularly in the education of teachers.
3. A scientific approach to the understanding of human beings and society that makes full use of modern instruments of evaluation, but views these not as important in and for themselves, but primarily as help to achieving educational objectives that grow out of reasoned philosophy of life in which human welfare and human happiness are placed uppermost. [18, p. 14]

The participants selected to attend the workshops were chosen from areas which had been specified to have definite problems of their curriculums. In solving their own problems, the participants were separated into discussion groups, and as much time was afforded to counseling by the staff as possible, Evaluations of the summer workshops of 1938 emphasized the amount of inspiration which evolved from working in small groups and subgroups. Apparently, no credit hours were given to these workshops which tended to promote a greater amount of cooperativeness among participants and staff (18).

By 1941, the workshop type of study had been adopted to many disciplines for teacher training purposes. One of these was the Michigan Community Health Project, sponsored by the Kellogg Foundation (12). This series of workshops was organized to help teachers use their own community resources to improve the scope of their teaching. The workshops included the disciplines of health education, science education, social science, library science, language arts, and democratic citizenship. The workshops were more highly structured than those of the late

1930s

discussed previously in that lectures were given, field trips were taken, a laboratory school was used, and college credit hours were given (16).

In science education the group meetings were mostly in the areas of biological science, science curriculum problems, and community resources. At the end of the six-weeks workshop, evaluations were made of both the course and the participants. The staff judged the course to be quite effective in teacher training and, overall, gave the workshop participants above average grades (16).

The participants of the workshop concluded the evaluation with summations that:

1. they had made progress on their problems,
2. their subject matter background had been improved, and
3. they felt their teaching would be modified as a result of the workshop (16).

The main characteristics of workshops where teachers develop solutions to their own teaching problems and the common workshop activity of relating the disciplined problems to community living are consistent with the interpretation of integrating democracy into the curriculum. A participant of one of the first organized workshops described the learning experience as follows:

The experience of entering into a rhythm of thinking, feeling, playing with a group of adults; the freedom of the individual in participating in groups as well as in planning of his programs; the emphasis which has been put upon the development of the whole child; [18, p. 30]

And she asserts that what affected her most seriously in the workshop were, "the realization of the meaning and practice of a democratic form of living." [18, p. 30]

According to Ryan and Tyler (18), a contributing factor to these sentiments is the fact that the participants of a workshop are of similar backgrounds working together on similar problems and probably have more sympathy for the professional opinions of each other than a mixed group might have.

The definition of a workshop 15 years later, according to Weaver (25), was as follows:

The increasing use of the workshop calls attention to its importance as an educational device for mature and experienced persons. A "workshop" may be defined as a group of people working together democratically toward the solution of problems of mutual concern [p, 1].

Evolving Structure of Workshops

The inclusion of workshops as a means to communicate ideas is indicated as beneficial, especially when working with groups. According to Barr and Appleton (2), training activities are included in the workshop, and a description of supervision techniques expressed in a workshop are as follows:

The workshop is a splendid example of the difficulties involved in more categorizing improvement techniques.

It appears to be primarily in a group technique. It has also many individualizing aspects and relies upon a variety of means such as talking, listening, reading, writing, and doing. It has been classified here as a group technique because of its emphasis upon cooperative and democratic methods of doing things. It has been classified as a doing technique because of its great emphasis upon learning by direct contact with the thing to be learned. Doing techniques in the field of teacher education are, however, of two sorts: (1) those involving participation in the total teaching act; and (2) those providing participation in various sorts of preparatory activities. The workshop provides opportunities to do in the latter sense [p. 21].

The Guide for Resource-Use Education Workshops by the American
Council of Education (25) in 1951 includes each phase of planning a
workshop. The program of the example had progressively become more structured than in prior references of years before. Among the contents of the guide are "Choice and Use of Techniques," which includes the areas of group discussion, panels, symposiums, 1ecture discussions, role playing, interviews, surveys, observations, field trips, teacher observation, demonstration, audio-visual aids, reading, recording and reporting, action projects, and development of teaching units. An extensive discussion of evaluation procedures is also a part of the guide as well as an extensive bibliography of references on workshops. This guide clearly defines the acceptance of the workshop as an educational device for the in-service training of teachers (25).

The Workshop Way of Learning by Earl C. Kelly (13), also written in 1951, gives specific examples to show the personal approach to conducting a workshop. This book also covers the complete gamut of workshop preparation from "Principles and Purposes" through "Evaluation," but included more consideration to the "Short Workshop" and "Conclusion" following evaluation.

The purposes for workshops, defined by Kelly (13), are listed below:

1. We want to put teachers in situations that will break down the barriers between them so that they can more readily communicate.
2. We want to give teachers an opportunity for personal growth through accepting and working toward a goal held in common with others.
3. We want to give teachers an opportunity to work on the problems that are of direct concern to them.
4. We want to place teachers in a position of responsibility for their own learning.
5. We want to give teachers experience in cooperative undertaking。
6. We want teachers to learn methods and techniques which they can use in their own classrooms.
7. We want teachers to have an opportunity, in collaboration with others, to produce materials that will be useful in their teaching.
8. We want teachers to be put in a situation where they will evaluate their own efforts.
9. We want to give the teachers an opportunity to improve their own morale [p, 11].

Item number six had, by the 1950s, appeared to be the prime function of workshops. But, the factor of morale boosting as discussed in item number nine, has always spearheaded the list of popular purposes of workshops by teachers.

Characteristics of the workshop could be listed rather briefly in 1940, but keep in mind that at that time, the workshop was a new innovation to education. The following is the list of Heaton's (10)

13 essential characteristics of the workshop:

1. The participant is given an opportunity to make an intensive study of an interest which has arisen out of his experience as a teacher.
2. The participant shares in planning a program of individual and group activities designed to meet his needs and those of his fellow workers.
3. The participant is provided with easy access to the services of various staff members, representing a variety of kinds of assistance.
4. Individuals with common problems should form tentative and flexible groups for work.
5. Participants should do the bulk of the work on their own problems.
6. The planning and process of the workshop is cooperative and participatory throughout.
7. The personal and social growth of individual participants should be fostered as well as the solution of their professional problems.
8. Evaluation is continuous and exercised on product and processes, not on persons.
9. The length of the session must be adequate.
10. The collection of resource materials of all kinds likely to be of value to participants should be as extensive as finances permit,
11. The instructional staff should represent a wide diversity of personnel.
12. The full-time staff may be based on the ratio of one member for each 12 to 15 participants. Some of the specialists may be on a part-time basis.
13. The physical facilities should permit varied experiences [pp. 7, 11].

The list of "essential characteristics" listed above are basica11y similar to Kelly's (13) "purposes of a workshop" listed earlier with the exception of items eight and nine.

Item eight covers the subject of evaluation of the workshop by its participants. 0 'Rourke (15) suggested that evaluation should be taken at least once during the workshop and at the conclusion.

Item nine discusses length of the workshop as being adequate at six weeks and that three weeks is an absolute minimum. This comment is interesting since a similar statement was made by participants of what was one of the first real workshops in 1938 (18).

Change in amount of organizational structure is very definite from the descriptions of a workshop as noted in how Heaton (10) and 0^{\prime} Rourke (15) differ in their expressions of what a workshop should be. An interesting inclusion in the description of workshops by 0 'Rourke also is a list of what a workshop is not.

1. It is not a series of lectures, nor a series of meetings, nor a symposium, nor a conference, nor an institute.
2. It is not a device for orienting new teachers, nor for giving in-service training to beginners, to understand recruits. It is of no use for inexperienced personnel.
3. It is not a research situation, though a good deal of research technique may be involved. Educational leaders need, incidentally, to make sharper distinction between research techniques and study skills than is commonly made. Much that is labeled research, particularly "library research," is nothing more than the exercise of well known study skills [pp. 9-10].

In August of 1962 , Karbol (12) conducted a study of 37 language arts teachers participating in a two week workshop in Detroit, Michigan, Karbol evaluated the participants, both during the workshop and later
during their school year; and the participants were evaluated by their co-workers, their principals, and the administration.

From the participants of the workshop and persons closely associated with them in the teaching community, the following is a part of conclusions made concerning the effect of workshop experience:

From the Barticipants:
Teachers of all levels of experience were able to find means to enrich their school environments. Contrary to popular belief concerning the adaptability of the more experienced teacher, it was found that the teacher with more than ten years of teaching experience was as sensitive and responsive to new ideas as were any of the teachers in the workshop.

From the co-workers:

There was some evidence that the stature of the Key Teachers was enhanced by their experiences and that upon reporting back to their fellow teachers they were sought after as resource people, committee members, demonstration teachers, and "strong shoulders."

From the Principals:
Greater reliance was placed on the help of the Key Teachers in interpreting school policy to other teachers in leading curriculum improvement committees, and in speaking on curriculum matters to parents.

Communication lines between the Key Teacher and the principal were made stronger.

Principals considered the greatest gain was had by those who actually participated in the workshop with some carry-over into the rest of the staff. It was generally thought that one workshop by itself could not be expected to create vast change in all sections of the school program.

The principals exhibited uniform pleasure in the dynamics displayed in this workshop and the opportunity it afforded them to use the talents of the Key Teachers to rethink selected phases of the school environment.

From the Administration:
The workshop was an excellent means for integrating the abilities of the various teachers for the betterment of the district. There was a decided force of enthusiastic teachers at work in each school.

And from the Implications of the Study:
Principals and other supervisory personnel are best aware of the limitations of time inhibiting their best intentions for promoting in-service education practices
which are necessary. Teachers, who are self-directive and self-evaluating, are the surest antidote for this condition. It has been seen that a workshop, under the proper conditions of worthwhile goals, a good director, and openminded teachers can accomplish a great deal toward fulfilling this need [pp. 123-30].

From the periodical literature on workshops during the past few years, it is interesting to note the increasing amount of structure listed in the organization of workshops. A general description of a functional workshop is given by Carrol (5) as follows:

Though "workshop" is a term used in a great variety of ways, it denotes one common thread of concern: to translate theory into practice. During recent years, the workshop has grown increasingly important as an in-service education arrangement to help teachers refine local educational objectives in the perspective of emerging national goals and translate those objectives into effective classroom programs.

Too many workshops, however, because they are unstructured, turn out to be little more than academic study groups. If a workshop is to be what it purports to be, namely a "workshop," it needs to be carefully structured in the act of "doing" rather than the act of "listening." In other words, a purposeful workshop is an activity, an activity having its beginning in the recognition of a problem and in the decision to allocate a solution, or at least informing resources, for that problem [p. 13].

Carrol (5) further lists the typical structured workshop as

follows:

Phase 1. Identification of a problem.
Phase 2. Gathering information.
Phase 3. Problem mounting.
Phase 4. Organizing information.
Phase 5. Follow-up.
Phase 6. Evaluation [p. 14].

The Effect of Federal Involvement With Workshops

When the National Defense Education Act (NDEA) was passed in 1958, the intent was that every American should have the opportunity to develop his skills and competencies in the fullest extent. The amended

Title III NDEA was to strengthen instruction in science, mathematics, modern foreign language, history, civics, geography, English, and reading in elementary and secondary schools (17).

The need to train teachers in new subject matter areas in order to do better jobs was implemented through NDEA programs. The demand for elementary teachers being upgraded was also a problem. Following is a description of the problem as stated by Hill (11) in 1962.

In the face of the need for another look at elementary teachers' science problems, we find already crowded campuses and college teaching staffs in a struggle to meet the demands of a fresh, young, science-oriented college enrollment. Merely to offer the elementary teachers an equal opportunity to enroll in the science subject-area courses side-steps the real issue. The science pressure in recent years has offered mute evidence that certified elementary school teachers are not inclined to form a legion enrolling in college-level physical science courses. Even if elementary school teachers were to be offered stipends for enrollments in summer institutes or in-service courses compared to those provided secondary school teachers by the National Science Foundation, the need for an appraisal of the true needs of our elementary school teachers will remain.

It is not impossible that the workshop, the in-service course, or the summer institute might offer avenues of solution. Some creative and courageously imaginative minds are needed. [p. 153].

NASA's Participation in Workshops

Further government interest in education was the NASA involvement with institutions as a part of upgrading teachers in the Space Age to make the teachers capable of handling the space science concepts that could be taught at their level and, secondly, to make the teacher aware of more recent examples of these concepts. Characteristically, the lag time had been approximately four years from discovery of knowledge to its being taught. The NASA educational purpose was to shorten this
time gap by direct communication to teacher groups (23).
The aerospace workshop, an outgrowth of aviation education workshops that have been conducted on campuses since the late 1940s, took on new emphasis. In workshops up to 1962, the Aviation Education Committee of the American Association of Colleges for Teacher Education recommended the following objectives:

1. An adequate reading and speaking vocabulary of aviation.
2. Knowledge of the importance of weather and climate to successful aviation.
3. General knowledge and understanding of the simple scientific principles of flight.
4. Understanding the place of aviation in peace and war.
5. Understanding the effects of air transportation on various levels of international relationships.
6. Introduction of the social, economic, and political implications of current and future aviation development; a realization of the growing interdependence of people through aviation.
7. Appreciation of the services rendered by airports and their associated personnel.
8. Knowledge of available aviation education resources in materials, personnel, and equipment for instructional purposes.
9. The know-how for organizing units of aviation education and providing resulting learning experience for children through student or directed teaching [7, p. 17].

The concepts of space science began to permeate the aviation education workshops and, by 1963, the name of aviation education had been supplanted by the term "aerospace education." The National Aeronautics and Space Administration created the Office of Technical Information and Educational Programs within its organization to support educational institutions in the following areas:

1. Assisting schools and colleges in structuring courses, seminars, and institutes in space science, and providing resource people, visual aids, and space-science demonstrations.
2. Developing and making available pamphlets, booklets, brochures, and instructional materials to assist educators in their timely space-education efforts.
3. Developing and distributing to educational groups films, slides, charts, and exhibits designed to promote better understanding of space science, related technology, and the many implications of space exploration.
4. Developing "Spacemobiles" to bring to school and college groups a mobile space-science unit, utilizing special equipment to demonstrate basic principles of rocketry, launching and orbiting of satellites, deepspace probes, and examples of significant space experiments achieved by spacecraft such as Tiros, the weather satellite; Echo, the communication satellite; and Pioneer, V, the sun satellite.
5. Cooperating with national, state, and local educational organizations, and with aerospace industries to engender programs in space education and participating in the programs of many educational organizations.
6. Cooperating with educational television and commercial TV stations and networks in production and presentation of space programs [8, p. 570].

James Webb (26), Administrator of the National Aeronautics and

Space Administration in 1962, made the following comments concerning
part of the contributions of NASA to education:
Our Office of Educational Programs and Services is working closely with many of the National Education Association affiliates, with the U. S. Office of Education, with the National Science Foundation and with other national organizations and groups having an interest in and responsibility for education.

We are utilizing NASA's scientific and technical sources of space information to develop materials for books, booklets, pamphlets and educational publications, in cooperation with practicing educators. We are making available to the public in useful form much of the exciting motion picture footage on our rocket launches, on the work of our scientific satellites, and on many other unusual and intriguing technological developments. We are working diligently to make as much as possible of this type of information available to classroom teachers and to adult groups across the nation and around the world.

We are assisting colleges and universities in organizing and conducting workshops and other programs designed to provide teachers all age and grade levels with better understanding of space science and technology and of the implications of our rush into space.

One of our most successful educational service undertakings has been the spacemobile program. The exhibits and lecturers aboard the spacemobile provide the school, college, or lay audience with accurate, up-to-date information on
space science and exploration. A typical demonstration is about 50 minutes long and answers 6 basic questions: What is a satellite? How does it get into orbit? What keeps it in orbit? What does it do? What good is it? What are NASA's plans for future research and space exploration? [26, p. 87].

The support of NASA to education, via providing assistance to teacher workshops, has been carried out primarily by Spacemobile lecturers. These lecturers are specialists in education, being we 11 prepared in teaching techniques as well as space science concepts. The unit of each lecturer contains a set of rocket and satellite models plus audio-visual materials to present lecturers to student audiences or teacher workshops. The most often used practice in workshops is the NASA resource person actively participating for three-to-five-days, presenting resource materials and space science concepts through activities to the workshop participants (20).

Summary

Ryan and Tyler (18) described the first workshop he1d in the United States by the Progressive Education Association in 1936. The first workshops defined the spirit and objectives of the workshop principle. The main characteristics of workshops were to help teachers develop solutions to their own problems. In the later workshops, according to Kelly (15), Heaton (16), and 0^{\prime} Rourke (17), a more specific structure developed and the workable length of workshops became shorter. Federal involvement in workshops was fostered by the National Defense Education Act of 1958. As monies were more readily available for teacher training, the intent was for each teacher to develop his professional talents to the fullest extent (20). Further government
interest in education was the support of NASA to aerospace workshops by providing resource persons to assist in upgrading the understanding of teachers of space science concepts (22).

CHAPTER III

DESIGN AND METHODOLQGY

Introduction

The purpose of this study is to describe the workshop, describe the participation of NASA in these workshops, and to evaluate how the workshop participants felt about their workshop experience six months later. This description and evaluation was done by having workshop participants answer a questionnaire.

Description of the Subjects

NASA participated in 110 aerospace workshops in 1970. Of these, 86 workshops responded to a questionnaire that was given to them, of which 79 were usable. The first subjects of the study were the 2,007 workshop participants from the 79 workshops mentioned above.

The second questionnaire was mailed to 500 previous workshop participants from the 79 workshops. This 500 was selected randomly. There was a 48 percent return from this group,

Questionnaire Development

The first questionnaire contained 39 questions which covered the areas of description of the workshop participant, description of the workshop, and description of the involvement of NASA with the workshop.

The original questionnaire grouped the questions into these three categories. However, a printing error caused a disorder in the questions; that is, the questions were no longer grouped in the three categories. The computer cards are found in Appendix A. The results of this ques tionnaire are found in Appendix B. The follow-up questionnaire is contained in Appendix C. The results of this questionnaire are found in Appendix D. Appendix E contains a list of participating workshops.

Questionnaire Administration

The first questionnaire was sent to 110 workshop directors across the United States. The printing of the computer cards for the questions was late so that the cards got to only 86 workshops in time to be presented to the participants.

The workshop directors administered the questionnaire. Each workshop participant needed a pair of matched computer cards to mark their responses. Some directors were not careful in passing out the cards to see that participants got the matched computer cards. This resulted in only 79 workshops returning usable data. There were 2,007 participants who answered the first questionnaire. However, not everyone answered every question due to some reluctance. There was less than 100 percent response to most questions.

In February, the follow-up questionnaire was mailed to 500 former workshop participants selected randomly from the 2,007 who had answered the summer questionnaire. Within six weeks, 245 questionnaires had been returned, totaling a 48.5 percent return.

Analysis Procedures

The first questionnaire was answered on computer cards, which were sent to the NASA Ames Research Center for cross comparisons. The follow-up questionnaire was answered on the qupstionnaire sheet. The information was then transferred to computer cards at Oklahoma State University. The cards were then sent on to Ames Research Center as the first cards had been done for cross comparison. This information gives the description of the workshop participants and the description of the workshop.

To evaluate the way the workshop participants felt about their workshop experience six months later, the Chi Square formula for determining significance and contingency coefficients was used. According to Siegel (27), the nonparametric statistical test was in order.

In brief, the first questionnaire was used to describe the workshop participants, the workshop, and to describe the role of NASA at the workshop. The second questionnaire also did the above, but was used further to evaluate how the workshop participants felt six months after workshop experiences.

CHAPTER IV

RESULTS OF THE STUDY

Introduction

As a descriptive study, the problems are to view three aspects of aerospace workshops. The first aspect, the context evaluation, is a description of the workshop, workshop participants, and NASA participation in the workshops.

Secondly, an effort is made to determine the amount of participant involvement in aerospace workshops or process evaluation. Generally, a workshop experience includes activities of several types, not only to promote an atmosphere of congeniality, but also to have the workshop participant involved in group-oriented activities to develop new teaching capabilities.

The third portion of this study is to determine the product of aerospace workshops. The usefulness of NASA activities, materials, and participation in workshops is described, as well as participant attitudes and professional growth.

The context and process evaluations of this study are largely made from data of the first questionnaire given to participants during the duration of the workshop experience. The product of the workshop is determined largely from a follow-up questionnaire after the teachers had returned to their teaching position.

Context Evaluation

The context evaluation here describes workshop participants, workshop programs, and NASA involvement in the workshops. With each topic area, tables will show comparisons to give a better idea of the workshops.

Throughout the several tables, an indication of percentage is shown with the number of participants who chose the selection of an answer. The percentages usually do not add up to 100 percent since not all of the teachers of any category would make a selection of answers.

Description of the Participants

The age of participants is taken from question number one of the second questionnaire, Table I compares age to the primary positions of the participants in the school and the length of workshops attended by the various age ranges.

Sex

Similarities and differences in the purposes of men and women in attending are compared in Table II, where sex is compared to the level of education, how they learned of the workshop, and the primary purpose for attending the workshop. In comparing sex to the level of education to sex, it is apparent that the majority of elementary teachers are women, while the majority of other levels are men.

Of possible interest to future workshop directors, according to the comparison with question 19 , more men learn of workshops by published notice while more women learned of the workshops from their

TABLE I
CROSS COMPARISON BY AGE

	$\begin{aligned} & \text { Under } 26 \\ & \text { Num- Per- } \\ & \text { ber cent } \end{aligned}$	$\begin{aligned} & \frac{26-35}{\text { Num- Per- }} \\ & \text { ber cent } \end{aligned}$	$\frac{36-45}{\text { Num- Per }} \begin{aligned} & \text { ber cent } \end{aligned}$	$\begin{aligned} & \frac{46-55}{\text { Num- Per- }} \\ & \text { ber cent } \end{aligned}$	$\begin{aligned} & \text { Over } 55 \\ & \text { Num- Per- } \\ & \text { ber cent } \end{aligned}$
	Question Number 1. Age: (second questionnaire)				
	$61^{(24.9)}$	$53^{(21.6)}$	$61^{(24.9)}$	$47^{(19.2)}$	$2^{(8.2)}$
Question Number 3. Primary position in the school					
Teacher	$52^{(85.2}$	$48^{(90.6)}$	$5^{(85.2)}$	$43^{(91.5)}$	$17^{(85.0)}$
Administrator	None	$2^{(3.8)}$	$3^{(4.9)}$	$2^{(4.3)}$	$3^{(15.0)}$
Supervisor	None	None	$1^{(1.6)}$	$2^{(4.3)}$	$1^{(5.0)}$
		(1.9)			
Counselor	None	1	None	None	None
	(1.6)			(4.3)	
Librarian	1	None	None	2	None
	(8.2)	(3,8)	(3.3)	(2.1)	
Other	5	2	2	1	None
Question Number 17. Length of workshop attended					
	(8.2)	(1.9$)$	(1.6)	$3_{3}(6.4)$	(5.0)
1-3 days	5	1	1	3	1
	(8.2)	(3.8)	(11.5)	(19.1)	(15.0)
1 week	5	2	7	9	3
	(24.6)	(39.6)	(27.9)	(21.3)	(30.0)
2 weeks	15	21	17	10	6
	(23.0)	(37.7)	(37.7)	(23.4)	(45.0)
3 weeks	14	20	23	11	9
	(27.9)	(13.2)	(9.8)	(12.8)	(5.0)
4 weeks	17	7	6	6	1
	(6.6)	(3.8)	(8.2)	(12.8)	
6 weeks	4	2	5	6	None
8 weeks	None	None	$1^{(1.6)}$	None	None
Longer	None	None	None	None	None

TABLE II
CROSS COMPARISON BY SEXES

	Male	Female
	Number Percent	Number Percent
Question Number 1. Sex: (first questionnaire)		
	$739^{(36.9)}$	$1,254^{(62.6)}$
Question Number 13. Level of education mostly associated		
	(36.5)	(77.0)
Elementary	270	966
Junior High School	$203{ }^{(27.5)}$	$173^{(13.8)}$
	(29.6)	(7.1)
Senior High School	219	89
	(5.7)	(0.8$)$
College	42	10
Question Number 19. Learned of the workshop by		
	(41.9)	(33.3)
Public notice	310	418
	(23.8)	(21.7)
Instructor	176	272
	(16.0)	(24.7)
Associates	118	310
	(16.9)	(17.1)
Administrator	125	214
Question Number 29. Primary reason for taking the course		
	(16.6)	(16.0)
Undergraduate credit	123	201
	(9.2)	(13.6)
Recertification	71	170
	(21.2)	(17.6)
Graduate credit	157	221
	(41.8)	(39.8)
Proficiency	309	499
	(12.7)	(13.6)
Salary increase	94	170

associates. The majority of both men and women learned of the workshops by published notice.

Apparently, a few more men take workshops primarily for graduate credit whereas women attend to a greater extent for recertification. About the same number of men and women indicated similarly their primary purpose for attending the workshop was proficiency in the subject.

Teaching Disciplines

Teaching areas or disciplines are shown in Table III compared to how the teacher learned of the workshop and the NASA materials they feel should be emphasized.

Though published notice is the most usual manner through which participants learned of the workshop, participants with mathematical backgrounds were the highest percentage of this group. The greatest need in every teaching area, according to question 23 , concerns suitable activities for class room use.

Leve 1 of Teaching

The level of teaching from elementary to college is shown in
Table IV in comparison to the opinions of the workshop participants concerning which type of NASA material would be most valuable for classroom use. The greater percentage of aerospace workshop participants are in the field of science, and the least are in vocational areas and humanities. Interesting here is that the senior high teachers indicate that films and publications are nearly equal in value as teaching aids.

From comparison with the "area most closely associated," 61 percent are elementary. About one-third of the elementary teachers are

TABLE III

AREA MOST CLOSELY ASSOCIATED

TABLE IV
LEVEL OF EDUCATION VERSUS MATERIALS

	$\begin{aligned} & \begin{array}{c} \text { Elemen- } \\ \text { tary } \end{array} \\ & \text { Num-Per- } \\ & \text { ber cent } \end{aligned}$	$\frac{$ Junior High }{ Num- Per- }	$\frac{$ Senior High }{ Num- Per- ber cent }	$\begin{aligned} & \frac{\text { College }}{\text { Num- Per- }} \\ & \text { ber cent } \end{aligned}$
Question Number 13. Level of education most closely associated				
	(61.8)	(18.9)	(15.4)	(2.6)
	238	378	309	53
Question Number 8. NASA materials most valuable				
		(44.7)	(48.9)	(27.7)
Publications	536	169	151	20
	(55.0)	(53.2)	(49.5)	(62.3)
Films	681	201	153	33
Question Number 12. Area most closely associated				
	(34.4)	(49.5)	(38.8)	$(41,5)$
Science	426	187	120	22
	(12.1)	(18.3)	(12.6)	(9.4)
Math	150	69	39	5
Language	(42.1)	(11.6)	(10.7)	(11.3)
Arts	521	11	33	6
Industrial	(3.0)	(9.8)	(23.3)	(22.6)
and Vocational	37	37	72	12
	(22.3)	(13.2)	(10.0)	(15.1)
Social Studies	276	50	31	8
	(7.8)	(5.0)	$(6,8)$	(9.4)
Humanities	96	19	21	5

```
science-oriented as compared to nearly one-half of the junior high
participants.
```


Years of Service to Education

Teaching experience is shown in Table V in comparison to the primary reasons for the participants taking the workshop. It is noticeable that the teachers with one to five years teaching experience list graduate credit as the main purpose for attending a workshop while those with more teaching experience list proficiency in the subject as their major motivation for taking the course.

Degrees

The degrees held by the workshop participants are here compared to the purposes for taking the workshop. These data are from the first questionnaire. (See Table VI.)

Those with associate degrees had "undergraduate credit" as the greater reason for taking the course. All other persons indicated "proficiency in the subject" as their main purpose in taking the course. The associate degrees were concentrated in elementary education. Since elementary education held 61 percent of the workshop participants; it also held the most number of Bachelor, Master and Doctoral degrees.

Role in the System

The role of the educator in the school system in shown in Table VII compared to size of the school districts. Educators from the small school districts of one to five schools dominate the scene at workshops. The large school systems of over 20 are the largest group following

TABLE V
YEARS OF SERVICE VERSUS PURPOSE OF ATTENDING A WORKSHOP
(second questionnaire)

	Zero	1 to 5 years	$\begin{aligned} & 6 \text { to } 10 \\ & \text { years } \end{aligned}$	11 to 15 years	$\begin{aligned} & 16 \text { to } 20 \\ & \text { years. } \end{aligned}$	21 to 25 years	Over 25 years
Question Number 8. Years of service to education							
,	$2^{(9.0)}$	${ }_{87}^{(25.5)}$	${ }_{38}^{(15.5)}$	$37^{(15.1)}$	$2^{(9.8)}$	$10^{(4.1)}$	$24^{(9.8)}$
Question Number 13. Purpose for attending the workshop							
Undergraduate credit	$19^{(86.4)}$	$8^{(9.2)}$	$2^{(5.3)}$	$5^{(13.5)}$	$2^{(8.3)}$	$2^{(20.0)}$	$1^{(4.2)}$
Graduate credit	$2^{(9.1)}$	$45^{(51.7)}$	$17^{(44.7)}$	$8^{(21.6)}$	$5^{(20.8)}$	$2^{(20.0)}$	$6^{(25.0)}$
Recertification	$\text { None }{ }^{(12.6)}$	$11^{(12.6)}$	$1^{(2.6)}$	$2^{(5.4)}$	$4^{(16.7)}$	$1^{(10.0)}$	$2^{(8.3)}$
Salary	None	$14^{(16.1)}$	$4^{(10.5)}$	$8^{(21.6)}$	$1^{(4.2)}$	None	$1^{(4.2)}$
Proficiency	1 (4.5)	$30^{(34.5)}$	${ }_{19}(50.0)$	$20^{(54.1)}$	$14^{(58.3)}$	$7^{(70.0)}$	$13^{(54.2)}$
Other	None	$5^{(5.7)}$	$2^{(5.3)}$	$2^{(5.4)}$	None	None	$2^{(8.3)}$

TABLE VI
COMPARISON OF DEGREES HELD WITH PURPOSE FOR TAKING THE WORKSHOP

	Associate Num- Per- ber cent	$\frac{\text { Bachelor }}{\text { Num- Per- }}$ ber cent	$\frac{\text { Master }}{\text { Num- Per- }} \begin{aligned} & \text { ber cent } \end{aligned}$	$\frac{\text { Doctoral }}{\text { Num- Per- }}$ ber cent
Question Number 29. Purpose for taking the workshop				
Undergraduate credit	(58.4)	(12.1)	(1.3)	(13.6)
	118	146	6	
	(7.9)	(15.6)	(6.4)	(9.1)
Recertification	16	188	30	2
Graduate credit	$18^{(8.9)}$	$262^{(21.7)}$	${ }_{8}^{(18.8)}$	$2^{(9.1)}$
	(16.3)	(40.6)	(55.4)	(50.0)
Proficiency	33	489	260	11
	(3.0)	(13.1)	(20.3)	(4.5)
Salary	6	158	95	
Question Number 16. Highest degree or equivalent				
	(10.1)	(60.2)	(23.4)	(1.1)
	202	$1,205$	469	22
Question Number 13. Professional level				
Elementary	(82.7)	(64.3)	(49.9)	(40.9)
	167	775	234	9
	(5.0)	(20.5)	(22.6)	(13.6)
Junior High	10	247	106	3
	(6.4)	(13.9)	(24.5)	(13.6)
Senior High	13	167	115	3
	(1.0)	(1.4)	(5.1)	(31.8)
College	2	17	24	7

TABLE VII

COMPARISON OF PROFESSIONAL ROLE TO DISTRICT SIZE

those from the smallest districts.

Size of School Districts Represented in

the Workshop

Size of the school district compared to the number of persons exposed to NASA's Spacemobile prior to the workshop is shown in Table VIII. Here again, the small school districts from one to five schools are shown to dominate the workshop scene. The participants from the small school districts also indicate that a larger percentage of them have had prior exposure to the NASA Spacemobile in their schools,

Public Schools or Private Schools

Not considered in the first questionnaire was the question of private school personnel participating in workshops. Table IX distinguishes numbers of public and private school persons who represented the different levels of educators in aerospace workshops.

Most of the workshop participants are educators in public schools. Of those in private schools, nearly an equal number are represented from both elementary and junior high school. Some teachers in parochial schools listed both elementary and junior high as their teaching level, which accounts for the total for that category to exceed 100 percent. Of those who listed "other," two were in government overseas schools.

Adequate Materials in Theix School

The question usually comes up when discussing the equipment of schools whether the larger or smaller school district is better equipped on the average. The material or equipment here concerns aerospace

TABLE VIII
DISTRICT SIZE COMPARED TO SPACEMOBILE EXPOSURE

	$\frac{1 \text { to } 5}{\text { Num- Per- }} \begin{aligned} & \text { ber cent } \end{aligned}$	$\frac{6 \text { to } 10}{\text { Num- Per- }}$	$\frac{11 \text { to } 20}{\text { Num- Per- }}$	$\frac{\text { Over } 20}{\text { Num- Per }} \begin{aligned} & \text { ber cent } \end{aligned}$
Question Number 15. Number of schools in the district				
	$795^{(39.7)}$	${ }_{311^{(15.5)}}$	$224^{(11.2)}$	(23.0)
Question Number 24. Have you seen a Spacemobile in your school?				
Yes	(27.9)	(21.5)	(15.6)	(22.0)
	222	67	35	101
No	(69.4)	(75.6)	(83.0)	(75.4)
	552	235	186	347
Missed it	(2.0)	(1.6)	(1.3)	(2.2)
	16	5	3	10

TABLE IX

PUBLIC INSTITUTIONS OR PRIVATE

 (second questionnaire)| | $\begin{aligned} & \text { Public } \\ & \text { Num- Per- } \\ & \text { ber cent } \end{aligned}$ | $\begin{aligned} & \frac{\text { Private }}{\text { Num- Per- }} \\ & \text { ber cent } \end{aligned}$ | $\begin{aligned} & \text { Parochial } \\ & \text { Num- Per- } \\ & \text { ber cent } \end{aligned}$ | $\begin{aligned} & \frac{\text { Other }}{\text { Num- Per- }} \\ & \text { ber cent } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| Question Number 10. Public institutions or private (second questionnaire) | | | | |
| | $2^{(83.3)}$ | None | ${ }_{21}^{(8.6)}$ | $3^{(1.2)}$ |
| Question Number 4. Educational levels of workshop participants | | | | |
| Elementary | $119^{(58.3)}$ | None | $14^{(66.7)}$ | None |
| | (24.0) | | (57.1) | (33.3) |
| Junior High | 49 | None | 12 | 1 |
| Senior High | $52^{(25.5)}$ | None | None | None |
| | (2.9) | | | |
| Junior college | 6 | None | None | None |
| | (2.5) | | | (66.7) |
| College | 5 | None | None | 2 |

```
education and would not necessarily pertain to materials in the
classroom. (See Table X.)
It appears that perhaps the participants from small school districts consider their schools are better equipped than do those from larger districts. Overall, however, the majority of participants consider their schools do not have adequate aerospace materials.
```


Prior Workshop Experience

Table XI compares prior workshop attendance with the opinions of available aerospace materials in the school. Only about one in 10 of workshop participants had taken an aerospace workshop before. Of those participants.with prior workshop experience, though a majority considered their schools were poorly equipped, the percentage of their schools that were well equipped was nearly twice that of participants who had not attended a workshop before. Because of their small number, this may not be a real difference.

Description of the Workshops

Major Topics of the Workshops

The aerospace workshops, though they may have the same title, offer varying amounts of aeronautics and space science. Curriculum of the course depends largely on the contributors and, due to a shortage of space science educators, the space science realm has been slighted. Table XII shows topics of the workshops compared to length of workshops.

Both comparisons seem to indicate the longer the duration of the workshop, the more aeronautics is included in the course. Workshops

TABLE X
MATERIALS IN THE SCHOOL

	$\begin{aligned} & \text { Yes } \\ & \begin{array}{l} \text { Num- Per- } \\ \text { ber cent } \end{array} \end{aligned}$	$\frac{\text { No }}{\frac{\text { Num- Per- }}{\text { ber cent }}}$	$\frac{\text { Some }}{$ Num- Per- ber cent }
Question Number 39. Are adequate aerospace materials in the school?			
	$213^{(10.6)}$	$1,104^{(55.1)}$	$524^{(26.2)}$
Question Number 15. Number of schools in the district			
1 to 5	(44.1)	(40.4)	(40.6)
	94	446	213
6 to 10	(13.6)	(15.9)	(16.4)
	29	176	86
11 to 20	(10.8)	(10.2)	(13.2)
	23	113	69
	(20.7)	(25.8)	(22.1)
Over 20	44	285	116

TABLE XI

PRIOR WORKSHOP EXPERIENCE COMPARED TO AVAILABLE MATERIALS IN THE SCHOOL

TABLE XII

TOPICS OF WORKSHOPS COMPARED TO THEIR DURATION

Abstract

of shorter duration leave some mystery as to what might be covered in an aerospace workshop other than aeronautics or space science. In longer workshops, there appears to be some overlap of aeronautics and space science.

Sponsors of the Workshops

Generally, aerospace education has been conducted through the colleges of education, but not entirely. There have been a number of cases where an aerospace segment has been a part of another course offered by other departments or schools, Table XIII compares the workshop sponsor with course entity. Most aerospace workshops are sponsored by college departments though college departments of education sponsor the majority of them. Other sponsors included nine industrial arts departments and four science departments other than physics.

Workshop Experiences Outside the Classroom

Many workshops offer a number of outside experiences for the teacher and others offer only a few. Table XIV shows the extent of activity outside the classroom on field trips and aircraft flight experience.

Interesting here is that the one- to three-day workshops sponsor considerably more field trips proportionately than do one-week workshops. Otherwise, the longer the workshop, the more field trips are offered. Aircraft flight experience as a part of the workshop appears to be proportional to the length of the workshop.

TABLE XIII

COURSE SPONSOR COMPARED TO COURSE ENTITY

	Local Schoo1 Board Num- Per- ber cent	$\begin{aligned} & \text { College } \\ & \text { Depart- } \\ & \text { ment of } \\ & \text { Educa- } \\ & \frac{\text { tion }}{\text { Num- Per- }} \\ & \text { ber cent } \end{aligned}$	College Department of Physics Num- Perber cent	College Depart- ment of Aero- nautics Num- Per- ber cent	$\frac{\text { Other }}{\text { Num- Per- }} \begin{aligned} & \text { ber cent } \end{aligned}$
Question Number 14. Who offered the course?					
	$15^{(6.1)}$	$157^{(64.1)}$	$2^{(8.2)}$	$2^{(9.0)}$	$15^{(6.1)}$
Question Number 18. Was the workshop a complete course or segment of another?					
(5.7)					
	(100)	(92.4)	(100)	(100)	(100)
Course	15	145	20	22	15

TABLE XIV
LENGTH OF THE WORKSHOP COMPARED TO OUTSIDE ACTIVITIES

	$\frac{\begin{array}{c} 1 \text { to } 3 \\ \text { days } \end{array}}{\begin{array}{l} \text { Num- Per- } \\ \text { ber cent } \end{array}}$	$\begin{aligned} & \frac{1 \text { week }}{\text { Num- Per- }} \\ & \text { ber cent } \end{aligned}$	$\begin{aligned} & \frac{2 \text { weeks }}{\text { Num- Perr }} \\ & \text { ber cent } \end{aligned}$	$\begin{aligned} & 3 \text { weeks } \\ & \text { Num- Per- } \\ & \text { ber cent } \end{aligned}$
Question Number 18. Length of the workshop				
	$222^{(11.1)}$	$186^{(9.3)}$	$599^{(29.9)}$	$934{ }^{(46.6)}$
Question Number 6. Are field trips a part of the course?				
Yes	$150^{(67.6)}$	$89^{(47.8)}$	$482^{(80.5)}$	$820^{(87.8)}$
No	$60^{(27.0)}$	$90^{(48.4)}$	$113^{(18.9)}$	$70^{(7.5)}$
Question Number 5. Is an aircraft flight part of the course experience?				
Yes	$13^{(5.9)}$	$25^{(13.4)}$	$278^{(46.4)}$	$602^{(64.5)}$
	(56.3)	(84.9)	(53.6)	(31.7)
No	125	158	321	296

Student Subsidy

A number of scholarships are given to aerospace workshop participants by aircraft companies, state aeronautics commissions, colleges, and others. Table $X V$ compares subsidy to professional level and length of the workshop.

Subsidy for aerospace workshop attendance was received by less than one-half of the participants. More people indicated they received 100 percent subsidy than did any lesser portion, The greater number of subsidies were to workshop participants attending workshops two- and three-weeks in length.

NASA Participation in the Workshops

As this study is considering the participation of NASA in aerospace workshops, the remaining portion of the context evaluation will deal primarily with that participation. In Table XVI, comparisons are made concerning the length of NASA participation in the workshops with the length of the workshop.

Nearly half of the participation of NASA in workshops, according to participants, was two- or three-days in duration. Though half of the most brief NASA visits were to workshops three weeks or more in length, generally longer duration of NASA visits were in the longer workshops. An interesting figure to notice in Table XVI is how a number of workshop participants indicated NASA visited four or five days in workshops only one to three days in length.

TABLE XV

SUBSIDY
(second questionnaire)

	$\begin{aligned} & \frac{\text { Zero }}{\text { Num- Per- }} \\ & \text { ber cent } \end{aligned}$	25PercentNum- Per- ber cent	50 Percent Num-Per- ber cent	75 Percent Num- Per- ber cent	100 Percent Num-Per- ber cent
Question Number 16. To what extent were you subsidized?					
	$148^{(60.4)}$	$8^{(3.3)}$	$11^{(4.5)}$	$3^{(12.7)}$	$3^{(14.7)}$
Question Number 4. Professional lovel					
Elementary	$93^{(62,8)}$	$5^{(62.5)}$	$3^{(27.3)}$	$14^{(45.2)}$	$17^{(47.2)}$
	(22.3)	(50.0)	(45.5)	(32.3)	(25.0)
Junior High	33	4	5	10	9
	(15.5)	(25.5)	(36.4)	(38.7)	(33.3)
Senior High	23	2	4	12	12
Junior	$4^{(2.7)}$		(9.1)	(3.2)	(2,8)
College	4	None	1.	1	1
	(4.7)			(3.2)	(5.6)
College	7	None	None	1	2
Question Number 17. Length of the workshop					
	(4.1)	(12.5)		(3.2)	$(8,3)$
1 to 3 days	6	1	None	1	3
	(13.5)	(12.5)		(3,2)	(11.1)
1 week	20	1	None	1	4
	(31.8)	(25.0)	(45.5)	(12.9)	(25.0)
2 weeks	47	2	5	4	9
	(20.9)	(12.5)	(36.4)	(58.1)	(52.8)
3 weeks	31	1	4	18	19
	(19.6)		(18.2)	(12.9)	(2.8)
4 weeks	29	None	2	4	1
	(8.1)	(25.0)		(9.7)	
6 weeks	12	2	None	3	None
8 weeks	None	$1^{(12.5)}$	None	None	None
Longer	None	None	None	None	None

TABLE XVI

NASA PARTICIPATION COMPARED TO LENGTH OF WORKSHOP

	$\begin{aligned} & 1 \text { day } \\ & \text { or less } \\ & \text { Num- Per- } \\ & \text { ber cent } \end{aligned}$	$\begin{gathered} 2 \text { or } 3 \\ \text { days } \\ \hline \text { Num- Per- } \\ \text { ber cent } \end{gathered}$	$\begin{gathered} 4 \text { or } 5 \\ \frac{\text { days }}{\text { Num- Per- }} \\ \text { ber cent } \end{gathered}$	More than $\frac{\text { a week }}{\text { Num- Per- }}$ ber cent
Question Number 21. Time NASA contributed to the workshop				
	(9.4)	(45.2)	(26.3)	(15.3)
	188	906	527	306
Question Number 18, Length of the workshop				
	(5.9)	(20.9)	(3.2)	(0.7)
1 to 3 days	11	189	17	2
	(4.3)	(5.7)	(21.1)	(2.0)
1 week	8	52	111	6
	(33.5)	(3.0)	(21.6)	(46.4)
2 weeks	63	272	114	142
3 weeks	(50.0)	(41.7)	$(52,9)$	(50.3)
or more	94	378	279	154

Spacemobile Coverage

The Spacemobile program of NASA has been visiting schools throughout every state each year since 1961. Since that time, the space science lecturers accompanying the units have presented educational programs to over 15 million students.

Each year hundreds of schools request the Spacemobile program, stating that they have never had NASA present a program in their school. Table XVII compares Spacemobile coverage with the teaching level.

Of those workshop participants who had seen a Spacemobile program in their school, nearly half were in elementary schools. In reference to Table VIII again, the most Spacemobile visits to schools were made in small school districts.

The Process Evaluation

Process in this study refers to the involvement in the workshop program and the teaching techniques or other circumstances which promote interaction between workshop participants.

Pace of Workshops

The pace of workshop schedules is sometimes questioned. Table XVIII, from the second questionnaire, compares pace of the schedule with the length of the workshop and the opportunity of the participants to become well enough acquainted with fellow participants to discuss professional problems.

Most of the workshop participants consider the pace of the program appropriate. Criticisms in the pace of the workshops were surprisingly

TABLE XVII
SPACEMOBILE COVERAGE COMPARED TO TEACHING LEVEL

	$\frac{\text { Yes }}{\text { Num- Per- }} \begin{aligned} & \text { ber cent } \end{aligned}$	$\frac{\mathrm{No}}{\text { Num- Per- }} \begin{aligned} & \text { ber cent } \end{aligned}$	Missed it Num- Perber cent
Question Number 24. Had you seen a Spacemobile before?			
	$473^{(23.6)}$	$1,472^{(73.5)}$	$3^{(1.9)}$
Question Number 13. Level of education of your work			
Elementary	$219^{(46.3)}$	$987^{(67.1)}$	$26^{(66.7)}$
Junior High	$129^{(27.3)}$	$238^{(16.2)}$	$6^{(15.4)}$
	(22.0)	(13.6)	(10.3)
Senior High	104	200	4
College	$23^{(4.9)}$	${ }_{29}(2.0)$	None

TABLE XVIII

PACE OF THE WORKSHOPS (second questionnaire)

Too fast		
Num- Por- ber cent	Too slow Num- Per- ber cent	Erratic Num- Per- ber cent

Question Number 19. The considered pace of the workshop was

	$2^{(9.0)}$	$6^{(2.4)}$	$20^{(8.2)}$	$193^{(78.8)}$
Question Number 17. Length of the workshop				
		(83.3)		(5.2)
1 to 3 days	None	5	None	10
	(18.2)	(16.7)	(10.0)	(9,8)
1 weok	4	1 .	2	19
	(9.1)		(30.0)	(30.6)
2 weeks	2	None	6	59
	(45.5)		(45.0	(29.5)
3 weeks	10	None	9	57
	(13.6)		(15.0	(15.5)
4 weeks	3	None	3	30
	(13.6)			(6.2)
6 weeks	3	None	None	12
				(0.5)
8 weeks	None	None	None	1
Longer	None	None	None	None

	Question Number 22. Well acquainted for discussion			
Yes	$16^{(72.7)}$	None	$8^{(40.0)}$	$110^{(57.0)}$
Limited	$4^{(18.2)}$	$4^{(66.7)}$	$10^{(50.0)}$	$69^{(35.8)}$
No	$2^{(9.1)}$	$2^{(33.3)}$	$2^{(10.0)}$	$16^{(8.3)}$

Question Number 23. Social interaction compared to other courses

	(50.0)	(50.0)	(30.0)	(51.8)
More valuable	11	3	6	100
	(22.7)	(16.7)	(40.0)	(17.1)
Little more	5	(16.7)	8	33
	(22.7)	(16.7)	(20.0)	(25.4)
Same	5	1	4	49
	(4.5)			(3.6)
Less valuable	1	None	None	7
		(16.7)	(5.0)	(1.0)
Much less	None	1	1	2

too slow in very short workshops and too fast in the two- and threeweeks workshops.

It appears that participants had a better chance to get acquainted in workshops where the pace was considered too fast than where it was too slow. Social interaction appears to be much the same in workshops where the pace was too slow or appropriate. However, where the pace of the workshop program was erratic, the social interaction appeared to be less valuable.

On Campus Housing

The advantages of housing workshop participants together are often a point concerning the value of a workshop. Table XIX compares participant housing to the value of acquaintances and social interaction of the participant.

Approximately one-fourth of the workshop participants were housed on campus and, of these, a much greater percent indicated they considered the social interaction involved in the course as more valuable than experienced in other courses.

Subgroups

Many workshops divide the participants up into subgroups to work on problem areas. In Table XX are comparisons between the size of the subgroups and the amount of professional acquaintance, extent of social interaction, and the amount of new material the teachers were able to incorporate in their teaching the following year.

In looking at the percentages of those groups of workshop participants who indicated they became well enough acquainted to discuss

TABLE XIX
HOUSING COMPARED TO VALUE OF ACQUAINTANCE AND SOCIAL INTERACTION

TABLE XX

```
COMPARISON OF SUBGROUPING TO PROFESSIONAL
    ACQUAINTANCE, SOCIAL INTERACTION AND
        INCREASE IN TEACHING CAPABILITY
                (second questionnaire)
```

	$\frac{\text { Yes- }-10}{\text { Nim- Per: }} \begin{aligned} & \text { ber cent } \end{aligned}$	$\begin{aligned} & \text { Yes--15 } \\ & \text { Nuri- Per- } \\ & \text { ber cent } \end{aligned}$	Yes-20 Num-Per= ber cent	$\begin{aligned} & \text { No } \\ & \text { Num- Per- } \\ & \text { ber cent } \end{aligned}$
Question Number 21. Did you work in subgroups?				
	$75^{(30.6)}$	${ }_{17}^{(6.9)}$	$4^{(17.1)}$	(42.9)
Question Number 22. Did you become professionally acquainted?				
Yes	(74.7)	(52.9)	(45.2)	(44.8)
	56	9	19	47
Limited	(22.7)	(29.4)	(45.2)	(44.8)
	17	5	19	47
No	(4.0)	(17.6)	(11.9)	(10.5)
	3	3	5	11

Question Number 23. Value of social interaction

	(61.3)	(64.7)	(50.0)	(38.1)
More valuable	46	11	21	40
	(24.0)	(11.8)	(21.4)	(17.1)
Little more	18	2	9	18
	(12.0)	(17.6)	(21.4)	(36.2)
Same	9	3	9	38
	(1.3)		(7.1)	(3.8)
Little less	1	None	3	4
				(3.8)
Much less	None	None	None	4

	Question Number 37. New techniques and activities incorporated in teaching			
	(13.3)	(17.6)	(14.3)	(17.1)
None	10	3	6	18
	(49.3)	(41.2)	(33.3)	(50.5)
1 to 5	37	7 .	14	53
	(25.3)	(23.5)	(28.6)	(21,9)
6 to 15	19	4	12	23
	(4.0)		(4.8)	(1.0)
16 to 25	3	None	2	1
	(2.7)	(11.8)	(9.5)	(1.0)
Over 25	2	2	4	1

professional problems, there seems to be an increase in acquaintance in direct proportion to the smaller size of subgroups. Social interaction also appears to be related to the size of the subgroups the workshop participants work in. The adoption of new teaching techniques and activities from workshop experiences to the classroom seems to be less closely related to the workshop participants having worked in subgroups.

Product Evaluation

The product evaluation is taken almost entirely from questions of the second questionnaire which had been sent to the educators approximately six months after the aerospace workshop. Knowing the product of an aerospace workshop experience could be measured in many ways; it is intended here to present some idea as to the effectiveness of NASA, the professional growth of the educator due to the workshop experience, community awareness increased by the workshop experience, and the preferences of the educators in future workshops.

Effectiveness of NASA Participation in Workshops

The duration of the Spacemobile visits of NASA vary according to type and length of the workshop, If the workshop is a lecture series type and only a few days long, the visit would probably only be a short one. Longer NASA visits are usually to workshops involving the teachers in activities being two or more weeks in length.

Table XXI concerns the length of NASA visits to workshops. It also concerns preferred duration by the participants and the opinion of the participants of the NASA presentations.

TABLE XXI

DURATION OF SPACEMOBILE VISITS TO AEROSPACE WORKSHOPS

Workshop participants of workshops where the duration of visiting of NASA was one day or less indicated they would have wanted a longer exposure to NASA than did participants where NASA did visit longer. The rating of NASA presentations remained about the same, 90 percent appropriate, in each category of duration time NASA spent at workshops. The quantity of NASA information adaptable to the classroom appears to be similar for different durations of NASA visits to workshops, except where the duration is over a week. Where the duration of NASA visits are longest, a considerable higher percentage of the participants list "most" of the NASA information is adaptable to the classroom.

Usefulness of NASA Materials

The usefulness of NASA materials to teachers is a question which is usually answered entirely by opinion, The differences in answers have necessarily been taken with the consideration of their source, as do those of this report.

Table XXII compares the workshop participants' opinions after they have had the opportunity to apply their workshop experience to the classroom. The consideration of the educators of the amount of NASA information they believe adaptable to the learning experiences of students is the factor with which others are compared in this table.

Basically, the workshop participants considered over 60 percent of the NASA material as adaptable. Where participants considered more of the NASA information as adaptable to the classroom, they indicated a greater value to publications as value as teaching aids.

Workshop participants who indicated "most" of the information was adaptable to classroom use also listed a greater percentage of them

TABLE XXII

ADAPTABILITY OF NASA INFORMATION TO THE CLASSROOM

	$\frac{\text { None }}{$ Num- Per- ber cent }	$\frac{1 / 4}{\text { Num- Per- }} \begin{aligned} & \text { ber cent } \end{aligned}$	$\frac{1 / 2}{\text { Num- Per- }}$	$\frac{3 / 4}{\text { Num- Per- }}$	$\frac{\text { Most }}{\text { Num- Per- }} \begin{aligned} & \text { ber cent } \end{aligned}$
Question Number 57. How much NASA information is adaptable to the classroom?					
	$24^{(9.8)}$	$61^{(24.9)}$	$9^{(24.1)}$	$23^{(9.4)}$	$68^{(27.8)}$
Question Number 4. Level of educational position					
	(45.8)	${ }_{38}(62.3)$	${ }^{(57.6)}$	${ }^{(65,2)}$	(58.8)
Elementary	11	38	34	15	40
	(12.5)	(21.3)	(33.9)	(30.4)	(29.4)
Junior High	3	13	20	7	20
	(24.0)	(21.3)	(20.3)	(13.0)	(26.5)
Senior High	6	13	12	3	18
Junior	(8.3)	(1.6)		(4.3)	(4.4)
college	2	1	None	1 .	3
	(8.3)	(1.6)	(3.4)	(4.3)	(4.4)
College	2	1	2	1	3

Question Number 61. Which NASA materials are of most value?

		$6^{(25.0)}$	$15^{(24.6)}$	$20^{(33.9)}$	$8^{(34.8)}$
Publications	$6^{(35.3)}$				
Films	$17^{(70.8)}$	$4^{(72.1)}$	$4^{(62.7)}$	$4^{(65.2)}$	$4^{(69.1)}$

TABLE XXII (continued)

TABLE XXII (continued)

	$\frac{\text { None }}{\text { Num- Per- }} \begin{aligned} & \text { ber cent } \end{aligned}$	$\begin{aligned} & \frac{1 / 4}{\text { Num- Per- }} \\ & \text { ber cent } \end{aligned}$	$\frac{1 / 2}{\begin{array}{l} \text { Num- Per- } \\ \text { ber cent } \end{array}}$	$\frac{3 / 4}{\begin{array}{l} \text { Num- Per- } \\ \text { ber cent } \end{array}}$	$\frac{\text { Most }}{\text { Num- Per- }} \begin{aligned} & \text { ber cent } \end{aligned}$
Question Number 37. How many new techniques have you included in class this year?					
None	(20.8)	(6.6)	$3^{(22.0)}$	(26.1)	(13.2)
	(58.3)	(65.6)	(39.0)	(21.7)	(44.1)
1 to 5	14	40	23	5	30
	(12.5)	(21.3)	(30.5)	(34.8)	(23.5)
6 to 15	3	13	18	8	16
		(1.6)	(3.4)	(4.3)	(5.9)
16 to 25	None		2	1	4
	(4.2)	(1.6)	(1.7)	(8.7)	(5.9)
Over 25	1	1	1	2	4
Question Number 51. Requested NASA materials since the workshop					
		6 (9.8)	$5^{(8.5)}$	(8.7)	(7.4)
Films	None	6	5	2	5
Publications	(8.3)	(26.2)	(28.8)	(34.8)	(33.8)
	2	16	17	8	23
	(12.5)	(13.1)	(22.0)	(30.4)	(29.4)
Both	3	8	13	7	20
	(75.0)	(49.2)	(45.8)	(26.1)	(35.3)
Neither	18	30	27	6	24

were informational and motivational. As participants valued the NASA information from "none" to "most" in adaptability for classroom use, those 1isting "most" considered "activities" should be emphasized more in future workshops and films less. Those who indicated "none" considered films should be emphasized more than activities.

Interestingly enough, a considerable number of the participants who considered none of the NASA information useful in the classroom found techniques and experiences of the workshop useful in the classroom. The highest percentage of new innovations in the classroom were indicated by participants who had considered " $1 / 4$ " and " $1 / 2$ " of the NASA information as useful.

Of those workshop participants who indicated a greater percentage of the NASA information and material as adaptable to the classroom, a larger percentage had requested materials from NASA. Publication requests appear to have been greater than film requests.

Applicability of NASA Activities

Activities or the learning situations which require the physical participation of the students in the learning situation are presented as a part of NASA workshop presentations. The effectiveness of these activities associated with space science concepts in the classroom is sometimes in question. Table XXIII compares the opinions of the former workshop participants of their NASA workshop activities with teaching techniques they have incorporated in their teaching.

Noticeable is that most of the workshop participants considered the activities conducted by NASA in the workshops as adaptable for use in the classroom, and nearly half of them have used from one to fi,ve

TABLE XXIII

APPLICABILITY OF ACTIVITIES

	$\frac{\text { Yes }}{\text { Num- Per- }} \begin{aligned} & \text { ber cent } \end{aligned}$	$\frac{\text { No }}{\text { Num- Per- }} \begin{aligned} & \text { ber cent } \end{aligned}$
Question Number 56. Suitability of NASA activities for the classroom		
	${ }_{185}^{(75.5)}$	$(15,5)$
Question Number 37. New activities and techniques used in the classroom		
	(14.1)	(21.1)
None	26	8
	(48.1)	(57.9)
1-5	89	22
	(25.9)	(15.8)
6-15	48	6
16-25	$8^{(4.3)}$	None
	(4.3)	(2.6)
Over 25	8	1
Question Number 30. Did you have an opportunity to participate in workshop activities?		
	(8.1)	(23.7)
No	15	9
	(58.4)	(\$5.3)
Some	108	21
	(32.4)	(21.1)
Most	60	8

activities in the classroom as a result of the workshop experience. Participation in workshop activities appears to make a difference in the percentage of teachers who consider "most" of the NASA activities as suitable for the classroom.

Participant Attitudes Toward Future

Aerospace Workshops

The enthusiasm for past courses often dims as the workshop participant returns to the classroom. Table XXIV compares the opinions of the educators of future workshops while they were in the workshop to those same opinions six months later.

When a random sampling of the original group of workshop participants were polled, the second questionnaire indicated nearly the same percentage of participants would take an advanced course. The participants" consideration of the percentage of fellow teachers that take a similar course fell from nearly 90 percent to about 70 percent.

The opinions of former workshop participants of preferred length of a workshop were primarily two weeks, followed by three weeks and by four weeks. There appeared to be an interest in the shorter workshops on the first questionnaire, but this'was apparently lost as the teachers returned to their class rooms. "Early summer" was the choice of most suitable time for a workshop by considerable margin over the second choice of midsummer.

Professional Growth

Professional growth or the increased capability to perform in a profession is often difficult to measure other than by the transcript.

TABLE XXIV

Would you take a more advanced course?
Question 9.
33.
(76.3)

Yes
1,529
(75:9)
186
$440^{(22.0)}$
(24.4)

No
50

Would teachers take such a course in your district? Question		
Yes	$10)^{(89.7)}$	32.
No	$1,797^{(69.8)}$	

How long should such a program be?
Question 11 . 27.
(29.5)

0 to 15 hours
591

16 to 30 hours 798
31 to 45 hours $\quad 577^{(28.8)}$

TABLE XXIV (continued)

Table XXV compares the duration of NASA participation to answers of several questions pertaining to professional growth.

Though the percentages of new innovations were much the same for each category of duration that NASA visited workshops, the percentage of those indicating "none" appeared to decline in percentage in proportion to longer NASA participation. The percentages of educators who indicated an increased capability to help students in class appeared to increase in proportion to the length of the visit of NASA to the workshop. Percentages of educators who indicated an increased capability to assist students with extracurricular activities also increased with the length of the visit of NASA to the workshops.

The percentages of those workshop participants who became resource persons to their faculties increased in proportion to the length of the visit to the workshop by NASA. Teacher-community participation appears to be an area that is very little affected, even by longer duration in the workshop. Although the workshop participants' awareness of aerospace developments is sharpened due to attending even the shortest aerospace workshop, there appears to be a relationship between increased awareness and the length of NASA visits to the workshops.

Analysis of Chi Square Tables

The chi square formula for determining the significance and contingency coefficients of the relationships in hypothesis of this study is from Nonparametric Statistics for the Behavioral Sciences.

Concerning the possible relationship between the length of the workshop and the number of new techniques or activities included in the lesson plans of teachers, the following tables were constructed

TABLE XXV
NASA PARTICIPATION IN WORKSHOPS COMPARED TO PROFESSIONAL GROWTH

	1 day or less Num- Per- ber cent	$\frac{$2 or 3 days }{ Num- Per- ber cent }	$\frac{4 \text { or } 5}{\text { days }}$	A week or more Num- Perber cent
Question Number 53. Time NASA contributed to workshops				
	(15.1)	$101^{(41.2)}$	$61^{(24.9)}$	$42^{(17.1)}$
Question Number 37. New teaching techniques from workshop experience				
None	$10^{(27.0)}$	${ }_{19}^{(18.8)}$	${ }_{5}(8.2)$	$3^{(7.1)}$
	(54.1)	(44.6)	(54.1)	(45.2)
1 to 5	20	45	33	19
	(8.1)	(23.8)	(29.5)	(26.2)
6 to 15	3	24	18	11
		(4.0)	(4.9)	(2.4)
16 to 25	None	4	3	1
	(5.4)	(3.0)	(1.6)	(7.1)
Over 25	2	3	1	3
Question Number 38. Increased capability of helping students wifth class projects				
Yes	${ }_{25}(67.6)$	${ }_{74}{ }^{(73.3)}$	${ }_{51}(83.6)$	(88.1)
Same	(21.6)	(15.8)	(11.5)	
	8	16	(11.5)	None
	$2^{(5.4)}$	${ }_{5}(5.0)$	(3.3)	(2.4)
No	2	5	2	1

TABLE XXV (continued)

	1 day or less Num- Per- ber cent	$\begin{gathered} 2 \text { or } 3 \\ \text { days } \\ \hline \text { Num- Per- } \\ \text { ber cent } \end{gathered}$	$\begin{gathered} \begin{array}{c} 4 \text { or } 5 \\ \text { days } \end{array} \\ \text { Num- Per- } \\ \text { ber cent } \end{gathered}$	$\begin{aligned} & \begin{array}{l} \text { A week } \\ \text { or more } \end{array} \\ & \hline \text { Num- Per- } \\ & \text { ber cent } \end{aligned}$
Question Number 39. Increases capability of assisting with extracurricular activities?				
	(40.5)	(49.5)	${ }_{31}^{(50.8)}$	(61.9)
Yes	15	50	31	26
	(18.9)	(25.7)	(26.2)	$(16,7)$
Same	7	26	16	7
	(32.4)	(16.8)	(19.7)	(11.9)
No	12	17	12	5

Question Number 34. Have you been a resource person to the faculty?

Talks	$5^{(13.5)}$	$6^{(5.9)}$	$1^{(1.6)}$	$2^{(4.8)}$
Resources	$4^{(10.8)}$	$28^{(27.7)}$	$18^{(29.5)}$	$18^{(42.9)}$
Both	$1^{(2.7)}$	$13^{(12.9)}$	$7^{(11.5)}$	$7^{(16.7)}$
No	$26^{(70.3)}$	$7^{(55.4)}$	$7^{(55.7)}$	$7^{(35.7)}$

Question Number 35. Have you participated in community activities?

	(10.8)	(5.9)	(4.9)	$(11,9)$
Yes	4	6	3	5
	(83.8)	(90.1)	(90.2)	(83.3)
No	31	91	55	35

Question Number 36. Greater awareness of aerospace developments

	$3^{(89.2)}$	$9^{(94.1)}$	$5^{(93.4)}$	$5^{(100.0)}$
Yes	$3^{(8.1)}$	$6^{(5.9)}$	$3^{(4.9)}$	None

in connection with Hypothesis 1. (See Table XXVI.)
The null hypothesis of Hypothesis 1 , which says there is no relationship between the length of the workshop and the number of techniques or activities the teacher includes in lesson plans as a result of workshop experience, is rejected. In consideration of Hypothesis 2, a possible relationship between NASA duration at workshops and numbers of techniques the teachers applied in the classroom, Table XXVII was constructed.

The null hypothesis of Hypothesis 2, which says there is no relationship between the duration of the NASA representation at aerospace workshops and the number of techniques or activities included in lesson plans as a result of the workshop experience, is accepted. In the statistical analysis of the possible relationship between the duration of time NASA visited a workshop and the availability the workshop participant made of themselves to their own faculties as resource persons, the basic data were first assembled into Table XXVIII.

The null hypothesis of Hypothesis 3, which states there is no relationship between duration of NASA's representation at aerospace workshops and the extent to which the workshop participant is of assistance to their faculty by talks or as a resource person, is rejected.

In comparing the workshop participants' experience of having worked in subgroups while taking the workshop to the number of new teaching techniques and activities incorporated in the lesson plans of the teachers, the results are shown in Table XXIX. The null hypothesis of Hypothesis 4, which says there is no relationship between the group dynamics of having the workshop participants work in subgroups and the number of techniques or activities the teacher includes in their lesson

TABLE XXVI

CHI SQUARE RELATIONSHIPS OF WORKSHOP LENGTH COMPARED TO NUMBERS OF TECHNIQUES OR ACTIVITIES INCLUDED IN THE CLASSROOM

Length of Workshop	Number of new techniques or activities*				
	None	1to 5	6 to 15	16 to 25	Over 25
	Num- Perber cent				
	(9,1)	(54.5)	(18.2)	(9.1)	(9.1)
1 to 3 days	1	6	2	1	1
	(7.4)	(70.4)	(18.5)	(3.7)	
1 week	2	19	5	1	None
	(17.4)	(42.0)	(26.1)	(1.4)	
2 weeks	12	29	18	1	None
	(11.5)	(51.3)	(26.9)		(3.8)
3 weeks	9	40	21	None	3
	(18.9)	(32.4)	(24.3)	(8.1)	(8.1)
4 weeks	7	12	9	3	3
	(23.5)	(41.2)	(5.9)	(11.8)	(5.9)
6 weeks	4	7	1	2	1
	$\begin{aligned} & (100.0) \\ & 1 \end{aligned}$	None	None	None	None
Longer	None	None	None	None	None
				16 or over	Totals
$\begin{aligned} & 1 \text { day to } \\ & 1 \text { week } \end{aligned}$					
Observed (expected)	${ }^{3}(6.16)$	${ }^{25}(19.34)$	${ }^{7}(9.59)$	${ }^{3}(2.91)$	38
2 to 3 weeks					
Observed (expected)	${ }^{21}(21.73)$	${ }^{69}(68.21)$	$\begin{array}{r} 39 \\ (33.80) \end{array}$	${ }^{5}(10.26)$	134
4 weeks or					
Observed (expected)	${ }^{12}(8.11)$	$19(25.45)$	${ }^{10}(12.61)$	$9(3.83)$	50
Totals	36	113	56	17	222
Chi square					16.877
Degrees of freedom					6.0
Critical chi square at 0.05					12.59
Contingency coefficient					0.264
Probability				Less than	0.01

*In order to use the chi square formula more effectively, the table was condensed providing numbers greater than one in each cell.

CHI SQUARE RELATIONSHIP OF DURATION OF NASA AT AEROSPACE WORKSHOPS COMPARED TO NEW TEACHING TECHNIQUES AND ACTIVITIES INCLUDED IN LESSON PLANS FROM WORKSHOP EXPERIENCES

```NASA Duration at Workshops```	New techniques included in lesson plans				
	None_- Num- Per- ber cent	$\begin{aligned} & \frac{1 \text { to } 5}{\text { Num- Per- }} \\ & \text { ber cent } \end{aligned}$	$\begin{aligned} & \frac{6 \text { to } 15}{\text { Num- Per- }} \\ & \text { ber cent } \end{aligned}$	$\frac{16 \text { to } 25}{\text { Num- Per- }} \begin{aligned} & \text { ber cent } \end{aligned}$	Over 25 Num- Per- ber cent
$1 \text { day or }$	$10^{(27.0)}$	$20^{(54.1)}$	$3^{(8.1)}$	None	$2^{(5.4)}$
$\begin{aligned} & 2 \text { or } 3 \\ & \text { days } \end{aligned}$	$19^{(18.8)}$	$45^{(44.6)}$	$24^{(23.8)}$	$4^{(4.0)}$	$3^{(3.0)}$
$\begin{aligned} & 4 \text { or } 5 \\ & \text { days } \end{aligned}$	$5^{(8.2)}$	$3^{(54.1)}$	$18^{(29.5)}$	$3^{(4.9)}$	$1^{(1.6)}$
A week or more	$3^{(7.1)}$	$19^{(45.2)}$	$11^{(26.2)}$	$1^{(2.4)}$	$3^{(7.1)}$
				16 ar more	Totals*
1 day or					
less   Observed   (expected)	${ }^{10}(5.7)$	${ }^{20}(18.04)$	${ }^{3}(8.63)$	${ }^{2}(2.62)$	35
2 to 3 days Observed (expected)	$19(15.48)$	${ }^{45}(48.96)$	${ }^{24}(23.44)$	${ }^{7}(7.11)$	95
4 to 5 days Observed (expected)	${ }^{5}(9.78)$	${ }^{33}(30.93)$	${ }^{18}(14.80)$	${ }^{4}(4,49)$	60
Week or longer Observed (expected)	${ }^{3}(6.03)$	${ }^{19}(19.07)$	${ }^{11}(9.13)$	${ }^{4}(2.77)$	37
Totals	37	117	56	17	227
Chi Square					14.076
Degrees of f	freedom				9
Critical chi	i square at				16.92
Contingency	coefficient				0.240
Probability				Greater than	n . 10

[^0]TABLE XXVIII
CHI SQUARE RELATIONSHIP OF NASA DURATION AT WORKSHOPS TO TEACHERS BECOMING RESOURCE PERSONS TO THEIR FACULTIES

|  |  | NASA duration at workshops* |
| :--- | :---: | :---: | :---: | :---: | :---: |

*To determine the possible chi square relationship of Table XXVIII, the first three rows, or positive responses, were combined to produce the table.

TABLE XXIX

CHI SQUARE RELATIONSHIPS OF SUBGROUP PARTICIPATION IN WORKSHOPS TO THE NUMBER OF NEW TECHNIQUES AND ACTIVITIES INCORPORATED IN TEACHING


[^1] comparison against the no column.
plans as a result of the workshop experience, is accepted.

Summary of Findings

The analysis of the follow-up questionnaire shows that there was a significant relationship at 0.01 level of confidence between the length of the workshop and the number of activities the teacher included in lesson plans. The null hypothesis of no significant difference between these relationships was rejected.

There is no significant relationship at the 0,05 level of confidence between the duration of the NASA representation at aerospace workshops and the number of activities teachers include in their lesson plans. The nu 11 hypothesis of no significant difference between the above relationships was accepted.

There is a significant relationship at the 0,02 level of confidence between the duration of the representation of NASA at aerospace workshops and the extent to which workshop participants are of assistance to their faculties by talks or as resource persons. The null hypothesis of no significant difference between these two was rejected,

Lastly, there is no significant relationship at 0.05 level of confidence between the group dynamics of having the workshop participants work in subgroups and the number of techniques or activities the teacher includes in their lesson plans as a result of the workshop. The null hypothesis that states the above is accepted.

## CHAPTER V

SUMMMARY, CONCLUSIONS, AND RECOMMENDATIONS

## Summary

In accordance with the purpose of the study, a questionnaire was developed. This questionnaire was then given to 2,007 aerospace workshop participants. The responses to this questionnaire were used in describing the workshop participants, the workshop itself, and NASA's role at these workshops.

A second questionnaire was then developed. This was mailed to a random sampling of 500 former workshop participants in February, 1971. The responses on this questionnaire were used to detect significant differences between relationship of length of the workshop to the number of activities teachers included in their lesson plans, the length of NASA's duration at the workshop and the number of activities teachers included in their lesson plans, the duration of NASA's representation to aerospace workshop and the extent to which workshop participants were of assistance to their faculty, and the group dynamics of having the workshop participants work in subgroups and the number of techniques they included in their lesson plans.

The instrument used in this study was developed by the investigator. The subjects for this study were participants in aerospace workshops in the summer of 1970.

Basically, the design of the study was for all aerospace workshop participants to answer the first questionnaire. The following February, a random sample of 500 former workshop participants would answer a second questionnaire.

The hypotheses listed in this study are:

1. There is no relationship between the length of the workshop and the number of techniques or activities the teacher includes in lesson plans as a result of the workshop experience.
2. There is no relationship between the duration of the NASA representation at aerospace workshops and the number of techniques or activities included in lesson plans as a result of the workshop experience.
3. There is no relationship between the duration of NASA representation at aerospace workshops and the extent to which the workshop participants are of assistance to their faculties by talks or as resource persons.
4. There is no relationship between the group dynamics of having the workshop participants work in subgroups and the number of techniques or activities the teacher includes in their lesson plans as a result of the workshop experience.

## Conclusions

From the data of Table XXVI, the chi square was computed to determine the relationship between workshop length and the number of techniques or activities the teachers had included in lesson plans as a result of the aerospace workshop experience. An obtained chi square of 16.877 was found. In comparing this to the critical chi square at the
0.05 level, which was 12.95 , resulted in the conclusion that this value was significant. Thus, the contingency coefficient of 0.246 was considered to reflect a significant relationship.

In Table XXVII are data that were used in figuring the chi square to determine the relationship between the duration of NASA visits to aerospace workshops with the number of new teaching activities and techniques teachers incorporate into their classes due to their workshop experience. A chi square of 14.076 was calculated and compared to the critical chi square of 16.92 and was not seen to be significant at the 0.5 level. The contingency coefficient of 0.240 was calculated but as stated, was not a significant coefficient at the 0.05 level.

Though there does not appear to be a relationship between NASA duration and new techniques in the classroom at the 0.05 leve 1 , the data of Table XXVII and the correlation coefficient so indicated a positive relationship, though not as significant as the length of the workshops. The data of Table XXVIII were used to calculate the chi square in order to determine the relationship between the duration of NASA participation in workshops and the effectiveness of the teacher as an aerospace resource person to his faculty. A calculated chi square of 10.64 was determined and compared to the critical chi square of 7.82, thus determining there was a significant relationship.

The contingency coefficient was figured to be . 204 and, in looking over the data in the first portion of Table XXVIII, it appears that there is a significant positive relationship at 0.05 between the duration of NASA at workshops and the envolvement of the teacher as a resource person to his faculty,

From the data of Table XXIX, the chi square was calculated to
determine if a significant relationship existed between the number of new techniques or activities a teacher includes in lesson plans due to having attended an aerospace workshop and that the teacher had participated in the workshop activities in a subgroup. The chi square was calculated to 7.122 and when compared to the critical chi square of 7.82 , it was concluded there was no significant difference between the two at the 0.05 leve1. The contingency coefficient was 0.176 .

In looking at the data of Table XXIX, however, the relationship, though it appears to be minor, is positive. The proportions of people having worked in subgroups increase from roughly a one to one ratio for subgroups and nonsubgroup people in the category of one to five, but increases to over six to one in favor of those having worked in subgroups in the category which includes over 16 new techniques in their teaching, thus defining a trend.

## Re commendations

There are several recommendations concerning further study that have stemmed from this investigation. The following recommendations are intended to strengthen, as we 11 as broaden, the scope of this study should further investigation of this type be contemplated.

Recommendations for strengthening a similar study would be as follows:

1. There should be more uniform administration procedures for the instruments. As the number of people involved in preparation and administration of the first questionnaire grew out of hand, the effectiveness of the project declined.
2. The questionnaire should be simple and easy to follow for quickness and a greater surety of answers. The first questionnaire of this study, due to printer assistance, became a quagmire losing time and data from over 20 workshops.

Recommendations for broadening the study are as follows:

1. The instrument of this study involved content belonging exclusively to aerospace workshops. In order to broaden a future study that might have associated objectives, workshops concerning other areas of study should be considered.
2. As the effectiveness of group dynamics was not dramatically displayed in this study, future studies might be designed to further interpret the values of group dynamics in workshops.

There are two recommendations, based on results of this study, that might be incorporated into aerospace workshops. They are as follows:

1. If the purpose of the workshop is to make the teacher a more effective resource person in the school system, then a longer duration of the NASA Educational Programs team is beneficial.
2. Should the purpose of the aerospace workshop be to induce the teacher to integrate more aerospace subject matter into lesson plans, then longer workshops are more effective.

Although there have been studies of workshops, no other studies of aerospace workshops were found. Therefore, this study became exploratory rather than a definitive piece of research.
(1) Ayers, Albert L. Administering the Peoples' Schools. New York: McGraw-Hi11, 1957.
(2) Barr, A.S., and Appleton, D. "Supervision: Democratic Leadership in the Improvement of Learning." Century, 1947.
(3) Bernardo, James V. "The Space Age: Its Impact on Education." School Science and Mathematics. IX (January, 1963), 5-19.
(4) $\qquad$ . "Space-Instant Future." The Science Teachers. XXXVI (January, 1969), 40-41.
(5) Carrol, Marilyn. "A Word About Workshops." Clearning House. LXI (September, 1966), 13-14.
(6) Dickerman, Watson. "What Is This 'Continuing Education'?" Adult Education. XV, No. 1 (Autumn, 1964).
(7) Dolezal, Wilma M. "Aerospace Comes of Age." The Texas Outlook. XLVI (July, 1962), 16-17.
(8) Evans, Evan, "NASA's Educational Services Program." Education. LXXXI (May, 1961), 570.
(9) Fones, Ernest A. "A Specialist in Workshops, Institutes and In-Service Programs." The Reading Teacher. XX (March, 1967), 515-19.
(10) Heaton, Kenneth L., et al. Professional Education for Experi-: enced Teachers: The Program of the Summer Workshop. Chicago: University of Chicago Press, 1940.
(11) Hill, William A. "Summer Workshop Lets Teacher Participants Learn by Doing." Illinois Educator. LI (December, 1962), 153.
(12) Karba1, H, T. "The Effectiveness of a Workshop as a Means of In-Service Education of Teachers." Detroit: Wayne State University, 1963 '[unpublished Ed.D. dissertation].
(13) Kelly, Earl C. The Workshop Way of Learning. New York: Harper and Brothers, 1951.
(14) "NASA Services to College and University Summer Sessions. National Aeronautics and Space Administration, April, 1965." Washington, D. C.: Government Printing Office. [Booklet.]
(15) $0^{\prime}$ Rourke, Mary A., and Burton, William H. Workshop for Teachers. New York: Appleton-Century Crofts, 1957.
(16) Otto, Henry J., et a1. Community Workshops for Teachers in the Michigan Community Health Project. Ann Arbor, Michigan: University of Michigan Press, 1942.
(17) Piltz, Albert. "National Defense Education Act." Readings in Science Education. New York: Macmillan, 1967.
(18) Ryan, W. Carson, and Tyler, Ralph W, Summer Workshops in Secondary Education. New York: Progressive Education Association, 1939.
(19) Schenberg, Samue1. "In-Service Training with the Schools." The Science Teacher.
(20) Schwartz, Robert S., and Gertz, E1len. "Send for the Spacemobile." Educational Screen and Audio-Visual Guide, G46. Apri1, 1967, 22-23.
(21) Siegel, Sidney. Nonparametric Statistics for the Behavioral Sciences. New York: McGraw-Hill, 1956.
(22) Smith, Rex M. "Evaluation of the National Aeronautics and Space Administration Spacemobile Program and Related Educational Services." [Unpublished report to NASA by the Council of State Science Supervisors in cooperation with the West Virginia Department of Education.]
(23) Story, M. L. "Aerospace Education: The Changing Face of Knowledge." High School Journal. XLV (October, 1961), 36-39.
(24) Waltman, Ellen. "Summer Workshops are Eyeopeners." The Texas Outlook. May, 1966.
(25) Weaver, Richard L. ed., et al. "Guide for Resource Use Education Workshops." Washington, D. C.: American Council of Education, 1951.
(26) Webb, James E. "Education and the National Space Program." Higher Education. XXVIII, No. 9 (July, 1962).
(27) Wiles, Kemba11, Supervision for Better Schools. New York: Prentice Hall, 1950.

APPENDIX A

THE FIRST QUESTIONNAIRE

```
f10<n1S
ABCDE
9. Eox [: []
2. Do you currently teach a unit concerning aerospace? \
3. Have you attended an zerospace course before? D \Gamma.
4. The majority of time in your course is consumed on the topic of: l, D
5. Is an aircraft flight a part of your course experience? D O
6. is a field trip part of your course? []
7. Were the NASA representatives available to work with you for a sufficient length of time? D D
8. Which NASA materiats are of most value as teaching aids? 000
9. Would you take a more advanced course in aerospace education? \ \
10. Doyou teet that teachers would attend a similar program if conducted in your district . D 0
during the school year?
1. How long should such a program be?
12. In which area are you most closely associatec?? 0 0 0 0 0
ABCDEF
\\] 13. In which level of education do you work?
][] 14. Years of service in education?
\square\square\ 15. How many schools, of the type where you teach, are in your school district?
0][] : 16. What is your highest college degree or its equivalent?
| [[17. How much college credit or its equivalent are you given for participation in this course?
][] 18. What is the length of your course?
][] 19. How did you learn about the course?
] [] 20. Not considering the course director, which contributed most to your understanding
N aerospace and its implications for teaching?
] [] 21. How much time did NASA contribute to your course program?
] [] 22. Indicate the percentage of time spent on classroom activities.
\[0 23. Which area should NASA emphasize more to teachers?
```

24．Have you ever scen a Spacemobite demonstration in a school？
［1］
25．Do you anticipate teaching a course where the primary emphasis will be on the students understanding the basic corceots of aeronautics？
26．Do you anticipate teaching a course where the crmary empiasis will be on the siudents understanding the basic concepts of aerospace？
27．Can you include topics from this cou：se in your teathing？
28．What is your role in the school？
29．Are you taking this course primarily for：
30．As a course experience．which of the following NASA Ceniers，if ang tid you tour？
31．As a course experience，which of the following NASA Cen：ers，if any，did you tour？
32．Which NASA subject area has been the mos！informative for future reference ：n classes？
33．How much of the NASA information and acibities can you arapt fer ！earnino experiences？
34．How would you evaluate the NASA materials used in the couese？
35．Do you belicve an understanding of basic acrospace concopts could be eassly included in the subject you tesch？

10 0
000
000
00000
00000
ロロ0000
000000
000000
0日 0
0000
000

ABCDEF
000
36．Should the duration of NASA＇s participation in this course be：
［0．－37．How would you rate the content of NASA presertations？
－1］38．Have the activities conducted by the NASA lectures been suitable for your use
OD in schoo！this next year？
39．Are adequate supplementary materials available in your school concerning aerospace education？

## Answer Sheet

1. ${ }^{\text {a }}$	a. Male	12. a, Science ${ }^{\text {b, Mathematics }}$	
	b. Female		
2.	a. Yes		c. Language Arts
	b. No		d, Social Studies
3.	a. Yes		e. Industrial and Vocational
	b. No		f. Humanities
4.	a. Aeronautics	13. a	a, Elementary
	b. Space Science		b, Junior High School
5.	a. Yes		c. Senior High School
	b. No		d. College
6.	a. Yes	14. a	a. 0 to student teacher
	b. No		b. 1 to 5
7.	a. Yes		c, 6 to 10
	b. No		d. Over 10
8.	a. Publications	15. a	a. 1 to 5
	b. Films		b, 6 to 10
9.	a. Yes		c. 11 to 20
	b. No		d. Over 20
10.	a. Yes	16. a	a, Associate
	b. No		b. Bachelor
11.	a. 0 to 15 hours		c. Master
	b. 16 to 30 hours		d. Doctoral
	c. 31 to 45 hours		

17. a. 1
b. 2
c. 3
d. More then 3
18. a. 1 to 3 days
b. 1 week
c. 2 weeks
d. 3 weeks or more
19. a, Published notice
b. Announcement by
instructor or advisor
c. Teacher associates
who have previous ly
taken course
d. Announcement by
administrators
20. a. Aerospace industries
b. The military
c. NASA
d. Other government
agencies
21. a. One day or less
b. Two or three days
c. Four or five days
d. More than a week
22. a. None
b. Less than 25 percent
c. Less than 50 percent
d. More than 50 percent
23. a. Available materials
b, Appropriate classroom
activities
c. Available resource people
24. a. Yes
b. No
c. It visited school but my
class missed it
25. a. Yes
b. No
c. I would be interested
26. a. Yes
b. No
c. I would be interested
27. a. Yes
b. No
c. Only with supervi,sory
consent
28. a. Teacher
b. Administrator
c. Supervisor
d, Administrator/Teacher
e. None of the above
29. a. Undergraduate credit
b. Recertification credit
c. A graduate degree
d. Proficiency in subject
e. Salary increment credit
30. a. KSC
b. GSFC
c. MSC
d. LERC
e. FRC
f. More than one of the
above
31. a. ARC
b. LARC
c. MSFC
d. Wallops
e. JPL
f. More than one of the above
32. a. Manned space flight
b. Aeronautics
c. Future space exploration
d. Application programs
e. Scientific programs
f. Benefits to mankind
33. a. $1 / 4$
b. $1 / 2$
c. $3 / 4$
d. Most
34. a. Too technical for many students
b. Very good for student information
c. Good for motivating student
d, Not specific enough
35. a. Yes
b. No
c. Not necessarily
36. a. Longer
b. Shorter
c. Just as it is

37, a. Too simple
b. Too difficult
c, Appropriate
38, a. Yes
b. No
c. None were conducted
39. a. Yes
b , No
c. Some

APPENDIX B

RESULTS

## First Questionnaire

1. Sex

a. Male	739	$36.9 \%$
b. Female	1,254	$62.6 \%$

2. Do you currently teach a unit concerning aerospace?
a. Yes
581
29.0\%
b. No

1,425
$71.1 \%$
3. Have you attended an aerospace course before?
a. Yes $191 \quad 9.5 \%$
b. No

1,793
$89.5 \%$
4. The majority of time in your course is consumed on the topic of:
a. Aeronautics $638 \quad 63.9 \%$
b. Space Science $\quad 1,094 \quad 54.6 \%$
5. Is an aircraft flight a part of your course experience?
a. Yes 934 46.6\%
b. No 927
$46.3 \%$
6. Is a field trip part of your course experience?
a. Yes
1,564
$78.1 \%$
b. No

350
$17.5 \%$
7. Were the NASA representatives available to work with you for
a sufficient length of time?
a. Yes $\quad 1,501 \quad 74.9 \%$
b. No 432
$21.6 \%$
8. Which NASA materials are of most value as teaching aids?
a. Publications 879
$43.9 \%$
b. Films

1,078
$53.8 \%$
9. Would you take a more advanced course in aerospace education?
a. Yes
1,529
$76.3 \%$
b. No
440
$22.0 \%$
10. Do you feel that teachers would attend a similar program if conducted in your district during the school year?
a. Yes
1,797
$89.7 \%$
b. No
175
8.7\%
11. How long should such a pragram be?
a. 0 to 15 hours $\quad 591 \quad 29.5 \%$
b. 16 to 30 hours 798
$39.8 \%$
c. 31 to 45 hours 577 $28,8 \%$
12. In which area are you most closely associated:
$\begin{array}{lll}\text { a. Science } & 753 \quad 37.6 \%\end{array}$
b. Mathematics 264
$13.2 \%$
c. Language Arts 606
$30.3 \%$
$\begin{array}{lll}\text { d. Social Studies } & 368 \quad 18.4 \%\end{array}$
$\begin{array}{lll}\text { e. Industrial and Vocational } & 170 & 8.5 \%\end{array}$
f. Humanities $\quad 142 \quad 7.1 \%$
13. In which level of education do you work?
a. Elementary
1,238
$61,8 \%$
$\begin{array}{lll}\text { b. Junior High Schoo1 } & 378 & 18.9 \%\end{array}$
$\begin{array}{lll}\text { c. Senior High Schoo1 } & 309 & 15.4 \%\end{array}$
d. College $53 \quad 2.6 \%$
14. Years of service to education:

| a. 0 to student teacher | 240 | $12.0 \%$ |
| :--- | :--- | :--- | :--- |
| b. 1 to 5 | 730 | $15,5 \%$ |
| c. 6 to 10 | 361 | $18.0 \%$ |
| d. Over 10 | 613 | $30.6 \%$ |

15. How many schools, of the type where you teach, are in your school district?
a. 1 to 5
795
$39.7 \%$
b. 6 to 10

311 15.5\%
c. 11 to 20

224
11.2\%
d. Over 20460 23.0\%
16. What is your highest college degree or its equivalent?
a. Associate's 202
$10.1 \%$
b. Bachelor's 1,205
60.2\%
c. Master's 469
23.4\%
d. Doctoral

22
1.1\%
17. How much college credit or its equivalent are you given for participation in this course?
a. 1 252
$12.6 \%$
b. 2

235
$11.7 \%$
c. 3

938
46.8\%
d. More than 3415
$20.7 \%$
18. What is the length of your course?
a. 1 to 3 days 222 11.1\%
b. 1 week 186
9.3\%
c. 2 weeks 599
29.9\%
d. 3 weeks or more 934
$46.6 \%$
19. How did you learn about the course?
a. Published notice $\quad 731 \quad 36.5 \%$
b. Announcement by instructor or advisor 449 22.4\%
c. Teacher assaciates who have previously taken the course 429
$21.4 \%$
d. Announcement by administrators 339
$16.9 \%$
20. Not considering the course director, which contribute most to your understanding of aerospaçe and its implications for teaching?
$\begin{array}{lll}\text { a. Aerospace industries } & 161 & 8.0 \%\end{array}$
b. The military $194 \quad 9.7 \%$
c. NASA $\quad 1,528 \quad 76.3 \%$
$\begin{array}{lll}\text { d. Other government agencies } & 28 \quad 1.4 \%\end{array}$
21. How much time did NASA contribute your course program?
a. One day or less $\quad 188 \quad 9.4 \%$
$\begin{array}{lll}\text { b. Two or three days } & 906 & 45.2 \%\end{array}$
c. Four or five days $\quad 527 \quad 26.3 \%$
$\begin{array}{lll}\text { d. More than a week } & 306 & 15.3 \%\end{array}$
22. Indicate the percentage of time spent on classroom activities.
a. None $\quad 113 \quad 5.6 \%$
b. Less than $25 \%$ 23. 479
c. Less than $50 \% \quad 473 \quad 23.6 \%$
d. More than $50 \% \quad 845 \quad 42.2 \%$
23. Which area should NASA emphasize more to teachers?
a. Available materials $21.1 \%$
b. Appropriate classroom activities 1,067 53,3\%
c. Available resource people $22.4 \%$
24. Have you ever seen a Spacemobile demonstration in a school?
a. Yes
473
$23.6 \%$
b. No
1,472
$73.5 \%$
c. It visited my school but my class
missed it
39
$1.9 \%$
25. Do you anticipate teaching a course where the primary emphasis will be on the student's understanding of the basic concepts of aeronautics?
a. Yes
664
$32.2 \%$
b. No
884
44. 1\%
c. I would be interested
450
$22.5 \%$
26. Do you anticipate teaching a course where the primary emphasis will be on the students understanding the basic concepts of aerospace?
a. Yes
836
41.7\%
b. No
638
$31.9 \%$
c. I would be interested 490 $24.5 \%$
27. Can you include topics from this course in your teaching?
a. Yes $1,827 \quad 91.2 \%$
b. No $\quad 80 \quad 4.0 \%$
c. Only with supervisory consent $26 \quad 1.3 \%$
28. What is your role in the school?
a. Teacher $\quad 1,669$ 83.3\%
b. Administrator $\quad 55$ 2.7\%
c. Supervisor $\quad 18 \quad 0.9 \%$
d. Administrator/Teacher $\quad 69$ 3.4\%
e. None of the above $152 \quad 7.6 \%$
29. Are you taking this course primarily for:
a. Undergraduate credit ..... 325 ..... $16.2 \%$
b. Recertification credit ..... 242 ..... $12,1 \%$
c. A graduate degree ..... 380 ..... $19.0 \%$
d. Proficiency in the subject ..... 813 ..... 40.6\%
e. Salary increment credit ..... 267 ..... $13.3 \%$
30. As a course experience, which of the following NASA Centers, ..... if
any, did you tour?
a. KSC ..... 262 ..... $13.1 \%$
b. GSFC ..... 133 ..... $6.6 \%$
c. MSC ..... 88 ..... 4.4\%
d. LERC ..... 45 ..... $2.2 \%$
e. FRC ..... 9 ..... $0.4 \%$
f. More than one of the above ..... 88 ..... 4.4\%
31. As a course experience, which of the following NASA Centers,if any, did you tour?
a . ARC ..... 143 ..... $7.1 \%$
b. LARC ..... 19 ..... $0.9 \%$
c. MS FC ..... 91 ..... 4. $5 \%$
d. Wallops ..... 23 ..... $1.1 \%$
e. JPL ..... 94 ..... 4.7\%
f. More than one of the above ..... 81 ..... 4.0\%
32. Which NASA subject ared has been the most informative for futurereference in classes?
a. Manned Space Flight ..... 619 ..... $30.9 \%$
b, Aeronautics ..... 184 ..... 9.2\%
c. Future Space Exploration ..... 392 ..... 19.6\%
d. Application Programs ..... 230 ..... $11.5 \%$
e. Scientific Programs ..... 161 ..... 8.0\%
f. Benefits to Mankind ..... 518 ..... $25.9 \%$
33. How much of the NASA information and activities can you adaptfor learning experiences?
a. $1 / 4$ ..... 466 ..... 23.3\%
b. $1 / 2$ ..... 504 ..... $25.2 \%$
c. $3 / 4$ ..... 201 ..... 10.0\%
d. Most ..... 735 ..... $36.7 \%$
34. How would you evaluate the NASA materials used in the course?
a. Too technical for many students ..... 220 ..... $11.0 \%$
b. Very gaod for student information ..... 792 ..... $39.5 \%$
c. Good for motivating students ..... 931 ..... $46.5 \%$
d. Not specific enough ..... 39 ..... $1.9 \%$35. Do you believe an understanding of basic aerospace conceptscould be easily included in the subject you teach?
a. Yes ..... 1,582 ..... $79.0 \%$
b. No ..... 154 ..... $7.7 \%$
c. Not necessarily ..... 1869.3\%
36. Should the duration of NASA's participation in this course be?
a. Longer ..... 987 ..... 49.3\%
b. Shorter ..... 65 ..... $3.2 \%$
c. Just as it is ..... 838 ..... 41.8\%
37. How would you rate the content of NASA presentations?
a. Too simple ..... 52 ..... 2.6\%
b. Too difficult ..... 108 ..... 5.4\%
c, Appropriate 1,730 ..... 86.4\%
38. Have the activities conducted by NASA lecturers been suitablefor your use in school this year?
a. Yes 1,607 ..... 80.2\%
b. No ..... 153 ..... 7.6\%
c. None were conducted ..... 78 ..... $3.9 \%$
39. Are adequate supplementary materials available in your school concerning aerospace education?
a. Yes ..... 213 ..... 10.6\%
b. No ..... 1,104 ..... 55.1\%
c. Some ..... 524 ..... $26.2 \%$

## APPENDIX C

## THE FOLLOW-UP QUESTIONNAIRE

## Aerospace Morkshops

the Vaited States
pleawe circle oppropilete chaices


Plemse circle the aperopilate choicet
14. Which orpanization offered the

(b) College Departiment of Educatioo
(c) College Department of Mynce
(d) College Department of heroceustic
(e) Ochar. please specity
13. When 10 the moot auicable tim for
orknhop to be given?
(a) Early eufer
(a) Early tumat
(c) Luty wime
(d) During the school youx
(e) Othar, plasoe apecify $\qquad$
 11 (sized?
(s) 2 ero
(b) 5252
(c) 502
(a) 1002
17. Bow imz was the acroapace mockehop gea (i) $1-3$ datencer amert
(a) $1-3$ dayn
(b) 12 week
(d) 3 verks
(a) 4 weekk
(1) 6 wekk
(i) 8 weeke
(t) Longer
18. Was the vorkethop a segsent of another course or a courgee by iteelif
(a) A negwot of
. Bou did you consider the peee of the
vorkshop schedule?
(a) too faze
(a) 500 fast
(c) Erratic, fast and alou
(d) Appropriale
20. Vere you houced with ochar workehop parrictipenti while enkias che carcopece
woriketiop? workethop?
(a) Yes
(b) 10
21. In the earoapace morkhop, did you ork in amell subzroupy
(a) Yea, approximetely 10 peraone
(b) Yeas, approximately is perione

22. Did you become vall ennuzh a equainted
 (b) To a 1 telted axtent
23. tou would you value the socifl interaction vith frilion studente in the vorkithop as
coapared to chat of ocher "rezularly-echedulded" college courses:
(a) Conadderably more valuble
(a) Conilderably more valua
(b) SM1therem more valuble
(c) Abour the eace
(c) Abour the samen
(e) Conesiderably leati valuable
24. Do you feel another meating of all jour feliow aerotpace work khop
participante next year to compen trectipante next year to compare
teacticen would be of valual (a) Yoi
(b)
(cnde

 part or
(a) Yes
(b) Ko
26. Wae e Onited seateo Airforce air Mift a (a) Yei (a) Yes
(b) Mo
27. For beat resulte, whet ghould be the
lengeh of a vorkatiop coursee?
(a) Tous veal

Three weeke
(d) Tour veeke
(e) six week
() Kight veake
(E) 0 other
.

Pleene eircle the approprinte chotera
28. Ou what topic were moot of the vorkehop?
(d) Aerronutica
(b) Space Sclenct
(b) Space Science
() Benefite frae opace recearch
(d) Ocher
29. What percentage of the thee in the
 (a) 02
(b) Leae than $25 x$
() Leane than 502
(d) More than 502
30. Did you have opportunity to participaet In or develop aetivitilen recomended for
claiaroce ufe while taking the yorkshop?
(a) No
(b) Part of thea
(c) Part of then
(c) Most all of the
31. When 1e the most suitable $t$ ion for a
vorkahop to be siven
(o) Early
(ovemer
(b) Early Noer
(b) Midsuaber
(c) Late aurier
(d) Dutring ther achool yee
(e) Dther plence
2. Do you feel that teacharis would attend . cranlear ccurrace if conducted in your achool district durlias the echool yeurt (b) Meq
33. Would you take a more advenced courree in aeroypace
(a) yea
(b)

3h. Since your narospace workshop exporlence. have you been of azisictance to your faculty
comcaning thio topple by glviag taike or. (c) I've siven talki to my faculty (b) Yes, 1 Iven been a rescurce peryon
(c) yes, both (c) Yes, bot
(d) No
3. Since your aeroapnce vorkehop exper lence, have you participated 1 l
comenily eetivitiea concerniag this comianity ectivitiee conceralag thit
topic by siving prencontations to F.TA A.; civtice groupa, etc. (b) kO
36. Slinee your carospece workehop oxperience have jou been more avare oxper ience have you boen more auare end apece techbology then beforet (b) Yet
(b) Mo
37. How meny new rechniquee or activitices for teeching conceptes have jou included In your leston plana this rear ace
renule of your workehop experiencen? (a) Hone
(c) $6-15$
(d) $16-25$
(e) over $25 \quad$ (pleage coment)
3. Heve you felt more cepable of helpitat - Rave yonte gith projecter so a reault of your workahop experience? (a) Yes
(b) About the neme at before (b) Mbout
39. pieve you felt more capable of anatiatiog student groupo in ext
curricular activitien ouch as aclence clube eloce your morkahop
oxpertence? exper tence?
(a) Te
(e)
(a) Yed
(b) About che aeme as befora
(c) Mo
40. have you bace able to bring ant resvurce people to the clataroco io the tree of aerospace?
cosment
(5) No (phate comitent) $\longrightarrow$
please circle the appropriate chotece
41. Se: your clean taken a fiele trip
 (a)
(b)
Ho
42. Do you feel thet model builaing wat an
 (c) Yen, expectilly oot the above
(d) Mot expecteily
(d)
(ब) 50
43. What has the attitude of yor adainiatro. tort beea thin rear concorning soroapaca (a) Poititive
(b) Uniconcerne
4. Ead you chughe aeroapece unit to yoar (e) (b) 8.0
45. Meve you initiated sn aeronpece unit in your classes thit geart (b) Yes
46. Had gou thughe an aeroupece course price to atrend fag the vorkathop?
(e) Yes (e) Ye:
(b) No
47. Rave you initiated as aeroapece course 1o your echool thice rearl (b) YaO
48. Do you have ang TM ratins?
(a)
(beq
49. Are you a piliot Are You P piliot
(a) Yeatstudent pliot
(b) Tea-Private pile (b) Tea-Privatoppl1ot
(c) Yea-Cumerctal pilos
(d)
(c) Yee-counercten pillot
(d) Mo, but plen to bo
(e) So
50. Have you gained exporience in fiy log aloce the servoipace vorkehop (a) Ten, at a pliot
(b) Yes: as a pastenger
(c) $x_{0}$
31. Here you requarted mash merarinla ainee (a) yersonpace Yorkahop?
$\cdots$ (b) yes.-.-pubilicar 100 a (c) Yes-.-pubilicat 10nis
(d) Bo
(d)
32. Reve you ever seen a Spacembile
 (b) Yos
(b) Mo
(c) Ro, 1t vieitad my sehool but I
misied 12 .
33. Bou meh time did musi lecturere
 corkahop?
(b) One day or less
(b) Too or three dnye
(c) Pour or five day
(d) Mon

S4. What ehould the duration of RASA's participatiod in an aeroapace vorkhlop be?
(a) Longer
(a) Longer
(c) Jyater it it wat
55. In general how vaile yder rete the coritent of MSA'Q presentations for gour
use? costent of MEA
use?
(o) Too simple
(b) Too difficul (b) Too difficult
56. have the activitign conductad by when heve the activitigi conducted by misA
lectureri ta the workshop bees iuitable
for your for Your uee in echool thit year?
for Yeo
(b) Yo
(D)
57. Rou much of the MSA Inforration do you
tvients' learning experience?
Adistional comenter
(b) $1 / 4$
(e) $3 / 4$

S8. Wore tio tiisi representatives avilable ia
yith you a tufficicmt length of tire?
(a) yet, for lecture demonetrations only
(b) Yea, for suitable clastruan activitiea only (c) Yist, for soth of the sbove
(d) No
ss. Which service should RhSA Edicational Progrean offices suphasize more to classrode teachara? (e) Avallasinity of NesA publicatioas
(b) Availability of NMSA f1ms
(b) Availability of MusA films
(c) Aveilability of the Spacerobile progete (c) Avilibiilty of the spacemobile progras (e) Aercospoce claservoa ectivitiee
6. Which mish subyect area has been che toos informative for reference 10 classea?
(a) Yanned Space filighi
(b) Aerorsutics
(c) Furure Space Explotation
(d) Application Prograns
(e) Scientific Programa
(f) Benefita to Nenkind
61. Which mash gaterials ara of tost value at
teaching ida? (Modele not included.) teaching :ide?
(e) Publication
(b) Yiata
62. ©veralit tion would you evaluate the msa
mater ials uked in the coursel
(e) Too tectimical for mose of atudane
 (c) Gooid for mot ivating studenta
(d) Hot apecific enough

Plate sceple the cornare before miling

APPENDIX D

RESULTS

## Second Questionnaire

1. Age
a. 25 or under ..... 61 ..... $24.9 \%$
b. 26 to 35 ..... 53 ..... $21.6 \%$
c. 36 to 45 ..... 6124, 9\%
d. 46 to 55 ..... 47 ..... 19.2\%
e. Over 55 ..... 20 ..... 8. $2 \%$
2. Sex
a. Female ..... 160 ..... $65.3 \%$
b. Male ..... 80 ..... $32.7 \%$
3. Primary position in the school system:
a. Teacher ..... 214 ..... 87. 3\%
b. Administrator ..... 10 ..... 4.1\%
c. Supervisor of teachers ..... $1.6 \%$
d. Counselor ..... 1 ..... $0.4 \%$
e. Librarian ..... 3 ..... 1. $2 \%$
f. Other ..... 10 ..... 4. 1\%
4. Educational level of your position: (Check a combination,
if necessary)
a. Elementary ..... 138 ..... 56.3\%
b. Junior High School ..... 64 ..... $26.1 \%$
c. Senior High School ..... 54 ..... $22,0 \%$
d. Junior College ..... 7 ..... $2.9 \%$
e. College ..... 11$4.5 \%$

## 5. (Elementary teachers only) Which description best fits your

 teaching situation?a. One teacher teaching nearly all subjects $\quad 96 \quad 39.2 \%$
b. Special education $\quad 3 \quad 1.2 \%$
c. Art specialist
$0,8 \%$
d. Music specialist 3

1. $2 \%$
e. Science specialist 20
8.2\%
f. Mathematics specialist 11
2. 5\%
g. Language 5
3. $0 \%$
h. Physical education specialist
i. Other
4. (Secondary teachers only) Subject area that you teach:
a. Science $\quad 46$ 18,8\%
b. Social Science $\quad 14 \quad 5.7 \%$
c. Humanities $\quad 4 \quad 1.6 \%$
d. Language Arts $\quad 5 \quad 2.0 \%$
e. Vocational training $\quad 7 \quad 2.9 \%$
f. Physical Education $\quad 4$ 1.6\%
$\begin{array}{lll}\text { g. Mathematics } & 17 & 6.9 \%\end{array}$
h. Other
5. Your highest college degree or its equivalent:
a. Associate
5
2.0\%
b. Bachelors

149
$60.8 \%$
c. Masters 85
$34.7 \%$
d. Doctorate 2
$.8 \%$
8. Years of service to education:
a. 0 to student teacher ..... 22 ..... 9.0\%
b. 1 to 5 ..... 87 ..... $35.5 \%$
c. 6 to 10 ..... 38 ..... 15.5\%
d. 11 to 15 ..... 37 ..... 15.1\%
e. 16 to 20 ..... 24 ..... 9.8\%
f. 21 to 25 ..... 10 ..... 4.1\%
g. Over 25 ..... 24 ..... 9.8\%
9. How many schools of the type where you teach are in your schooldistrict?
a. 1 to 5 ..... 109 ..... 44. $5 \%$
b. 6 to 10 ..... 43
$17.6 \%$
c. 11 to 20 ..... 29 ..... $11.8 \%$
d. Over 20 ..... 47 ..... $19.2 \%$
10. Do you teach in:
a. Public school ..... 204 ..... 83.3\%
b. Private school ..... 0 ..... 0.0\%
c. Parochial school ..... 21 ..... 8.6\%
d, Other 3 ..... 1,2\%
11. Had you attended an aerospace workshop prior to last summer?
a. Yes ..... 30 ..... $12.2 \%$
b. No ..... 21487.3\%
12. How did you become aware of last summer's aerospace workshop?
a. Published notice $96 \quad 39.2 \%$
b. Announcement by instructor or supervisor 50 20.4\%
c. Associates who have previously taken the course ..... 71 ..... 29.0\%
d. Announcement by administrators ..... 35 ..... 14.3\%
e. Other ..... 8 ..... $3.3 \%$
13. Why did you attend last summer's aerospace workshop?
a. Undergraduate credit ..... 40 ..... 16.3\%
b. Graduate credit ..... 85 ..... $34.7 \%$
c. Recertification credit ..... 21 ..... 8.6\%
d. Salary increment credit ..... 28 ..... $11.4 \%$
e. Proficiency in the subject ..... 105 ..... 42.9\%
f. Other ..... 11 ..... 4.5\%
14. Which organization offered the workshop?
a. Local or County School Board ..... 15 ..... 6.1\%
b. College Department of Education ..... 157 ..... 64.1\%
c. College Department of Physics ..... 20 ..... 8.2\%
d. College Department of Aeronautics ..... 22 ..... 9.0\%
e. Other, please specify ..... 15$6.1 \%$
15. When is the most suitable time for a workshop to be given?
a. Early summer ..... 109 ..... 44.5\%
b. Midsummer ..... 73 ..... 29.8\%
c. Late summer ..... 6325.7\%
d. During the school year ..... 7 ..... 2.9\%
e. Other, please specify ..... 1 ..... 0.4\%
16. To what extent were your expenses of last summer's aerospace workshop subsidized?
a. Zero
148
60.4\%
b. 25 percent
8
3.3\%
c. 50 percent 11 4. $5 \%$
d. 75 percent 31 $12.7 \%$
e. 100 percent 36 $14.7 \%$
17. How long was the aerospace workshop you attended last summer?
a. 1 to 3 days ..... 11 ..... 4.5\%
b. 1 week ..... 27 ..... $11.0 \%$
c. 2 weeks ..... 69 ..... $28.2 \%$
d. 3 weeks ..... 78 ..... $31.8 \%$
e, 4 weeks ..... 3715.1\%
f. 6 weeks ..... 17 ..... 6.9\%
g. 8 weeks 1 ..... $0.4 \%$
h. Longer
18. Was the workshop a segment of another course or a course byitself?
a. A segment of ..... 9 ..... $3.7 \%$
b. A course by itse1f ..... 232 ..... $94.7 \%$
19. How did you consider the pace of the workshop schedule?
a. Too fast ..... 22 ..... 9.0\%
b. Too slow ..... 6 ..... 2.4\%
c. Erratic, fast and slow ..... 20 ..... 8.2\%
d. Appropriate ..... 193 ..... $78.8 \%$
20. Were you housed with other workshop participants while taking the aerospace workshop?
a. Yes
60
24.5\%
b. No
181
$73.9 \%$
21. In the aerospace workshop, did you work in small subgroups?
a. Yes, approximately 10 persons $\quad 75 \quad 30.6 \%$
b. Yes, approximately 15 persons 17 6.9\%
c. Yes, approximately 20 persons 42
17.1\%
d. No

105
42.9\%
22. Did you become well enough acquainted with most of the other participants to openly discuss your professional problems?
a. Yes
137
55.9\%
b. To a limited extent

88
$35.9 \%$
c. No

22
9.0\%
23. How would you value the social interaction with fellow students in the workshop as compared to that of other "regularly scheduled" college courses?
a. Considerably more valuable 124
50,6\%
b. Slightly more valuable 47
$19.2 \%$
c, About the same
59
24.1\%
d. Slightly less valuable 8 3.3\%
e. Considerably less valuable

4
1.6\%
24. Do you feel another meeting of all your fellow aerospace work-shop participants next year to compare teaching practices wouldbe of value?
a. Yes ..... 134 ..... 54.7\%
b. Undetermined ..... 8133,1\%
c. No ..... 29$11.8 \%$
25. Was a flight in a small airplane a part of your workshopexperience?
a. Yes ..... 135 ..... 55.1\%
b. No ..... 107 ..... $43.7 \%$
26. Was a United States Airforce airlift a part of your aerospace experience?
a. Yes ..... 87 ..... $35.5 \%$
b. No ..... 154 ..... 62.9\%
27. For best results, what should be the length of a workshopcourse?
a. One week ..... 11 ..... 4.5\%
b. Two weeks ..... 86 ..... 35.1\%
c. Three weeks ..... 69 ..... $28,2 \%$
d. Four weeks ..... 52 ..... $21.2 \%$
e. Six weeks ..... 25 ..... $10.2 \%$
f. Eight weeks ..... 4 ..... 1.6\%
g. Other 1 ..... $0.4 \%$
28. On what topic were most of the activities conducted in the workshop?
a. Aeronautics 122
49.8\%
b. Space Science
109
44.5\%
c. Benefits from space research
34
13.9\%
d. Other
14
5.7\%
29. What percentage of the time in the aerospace workshop was spent on activities suitable for your own classroom use?
a. Zero ..... 7
2,9\%
b. Less than 25 percent ..... 60 ..... $24.5 \%$
c. Less than 50 percent ..... 7229.4\%
d. More than 50 percent ..... 96$39.2 \%$
30. Did you have an opportunity to participate in or develop activities recommended for classroom use while taking the workshop?
a, No ..... 27 ..... 11.0\%
b. Part of them ..... 141 ..... 57.6\%
c. Most of them ..... 71 ..... $29.0 \%$
31. When is the most suitable time for a workshop to be given?
a. Early summer ..... 101 ..... 41.2\%
b. Midsummer ..... 76 ..... 31.0\%
c. Late summer ..... 57 ..... 23.3\%
d. During the school year ..... 8 ..... 3.3\%
e. Other, please specify ..... 1 ..... 0.4\%
32. Do you feel that teachers would attend a similar course ..... ifconducted in your school district during the school?
a. Yes ..... 171 ..... 69.8\%
b. No ..... 51 ..... 24.4\%
33. Would you take a more advanced course in aerospace education?
a. Yes ..... 186 ..... 75.9\%
b. No ..... 50$24.4 \%$
34. Since your aerospace workshop experience, have you been ofassistance to your faculty concerning this topic by givingtalks or acting as a resource person?
a. I've given talks to my faculty ..... 14 ..... 5.7\%
b. Yes, I've been a resource person ..... 69 ..... 28.2\%
c. Yes, both ..... 28 ..... 11.4\%
d. No13153.5\%
35. Since your aerospace workshop experience, have you participated
in community activities concerning this topic by giving
presentations to PTA, civic groups, et cetera?
a. Yes (Please comment) ..... 17 ..... 6.9\%
b. No ..... 214 ..... 87.3\%
36. Since your aerospace; workshop experience, have you been more aware of current developments in aviation and space technology than before?
a. Yes ..... 22792.7\%
b. No135,3\%
37. How many new techniques or activities for teaching concepts haveyou included in your lesson plans this year as a result of yourworkshop experiences?
a. None ..... 37 ..... 15.1\%
b. 1 to 5 ..... 115 ..... $46.9 \%$
c. 6 to 15 ..... 57 ..... $23.3 \%$
d. 16 to 25 ..... 8 ..... $3.3 \%$
e. Over 25 (please comment) ..... 9 ..... $3.7 \%$
38. Have you felt more capable of helping students with projects ..... as
a result of your workshop experiences?
a. Yes ..... 187 ..... $76.3 \%$
b. About the same as before ..... 31 ..... $12.7 \%$
c. No ..... 10 ..... 4. 1\%10
39. Have you felt more capable of assisting student groups in extra- curricular activities, such as science clubs since your workshop experience?
a. Yes ..... 121 ..... $49.4 \%$
b. About the same as before ..... 55 ..... $22.4 \%$
c. No ..... 47$19.2 \%$
40. Have you been able to bring new resource people to the classroom
in the area of aerospace?
a. Yes (please comment)49$20.0 \%$
b. No (please comment) ..... 161 ..... $65.7 \%$
41. Has your class taken a field trip or outside activity of aero-space interest this year?
43 ..... $17.6 \%$
a, Yes168$68.6 \%$
42. Do you feel that model building was an important activity in the workshop?
a. Yes, especially model rockets
118 48.2\%
b. Yes, especially model airplanes ..... 2 ..... 0.8\%
c. Yes, both of the above ..... 5321. $6 \%$
d. Not especially ..... 3915.9\%
e. No ..... 22 ..... 9.0\%
43. What has the attitude of your administration been this year concerning aerospace education?
a. Positive ..... 129 ..... $52.7 \%$
b. Unconcerned ..... 88 ..... $35.9 \%$
c. Negative ..... 0 ..... $0.0 \%$
44. Had you taught aerospace unit to your class before this year?
a. Yes ..... 74 ..... $30.2 \%$
b. No ..... 153$62.4 \%$
45. Have you initiated an aerospace unit in your classes this year?
a. Yes ..... 115 ..... $46.9 \%$
b. No ..... 97 ..... $39.6 \%$
46. Had you taught an aerospace course prior to attending theworkshop?
a. Yes ..... 42
17.1\%
b. No ..... 193 ..... $78.8 \%$
47. Have you initiated an aerospace course in your school this year?
a. Yes ..... 29 ..... $11.8 \%$
b. No ..... 18776,3\%
48. Do you have an FAA ground instructor's rating?
a. Yes
8
$3.3 \%$
b. No
230 93.9\%
49. Are you a pilot?
a. Yes, student pilot 4 1.6\%
$\begin{array}{lll}\text { b. Yes, private pilot } & 12 & 4.9 \%\end{array}$
c. Yes, commercial pilot 6 2.4\%
d. No, but plan to be $\quad 17 \quad 6.9 \%$
e. No 203 82.9\%
50. Have you gained experience in flying since the aerospace workshop?
a. Yes, as a pilot
12
4.9\%
b. Yes, as a passenger

47
19.2\%
c. No

180
73.5\%
51. Have you requested NASA materials since the aerospace workshop?
a. Yes, films 18 7.3\%
b. Yes, publications
$69 \quad 28.2 \%$
d. Yes, both of the above 50
20.4\%
e. No

112
45.7\%
52. Have you ever seen a Spacemobile demonstration in a school?
a. Yes
104
42.4\%
b. No

134
54.7\%
c. No, it visited my school, but I missed it $20.8 \%$
53. How much time did NASA lecturers contribute to last summer'saerospace workshop?
a. One day or less ..... 37 ..... 15.1\%
b. Two or three days ..... 101 ..... 41.2\%
c. Four or five days ..... 61 ..... 24.9\%
d. More than a week ..... 42 ..... $17.1 \%$
54. What should the duration of NASA's participation in an aerospaceworkshop be?
a. Longer ..... 120 ..... 49.0\%
b. Shorter. ..... 5 ..... 2.0\%
c. Just as it was ..... 11346.1\%
55. In general, how would you rate the content of NASA's presentationfor your use?
a. Too simple ..... 6 ..... 2.4\%
b. Too difficult ..... 9 ..... $3.7 \%$
c. Appropriate ..... 223 ..... 91.0\%
56. Have the activities conducted by NASA lecturers in the workshopbeen suitable for your use in school this year?
a. Yes ..... 185 ..... $75.5 \%$b. No38$15.5 \%$
57. How much of the NASA information do you think you would be ..... able
to adopt for your students' learning experience?
a. Almost none ..... 24 ..... 9.8\%b. $1 / 4$6124.9\%
c. $1 / 2$ ..... 59 ..... 24.1\%
d. $3 / 4$ ..... 239.4\%
e. Most ..... 68 ..... 27.8\%
58. Were the NASA representatives available in last summer's aero-space workshop to work with you a sufficient length of time?
a. Yes, for lecture demonstrations only ..... 80 ..... $32.7 \%$
b. Yes, for suitable classroom activities only ..... 7 ..... 2.9\%
c. Yes, for both of the above ..... 112 ..... 45.7\%
d. No46$18.8 \%$
59. Which service should NASA Education Programs Office emphasizemore to classroom teachers?
a. Availability of NASA publications ..... 40 ..... 16.3\%
b. Availability of NASA films ..... 68 ..... 27.8\%
c. Availability of the Spacemobile program ..... 101 ..... 41.2\%
d. Availability of scientists as resourcepeople 5422.0\%
e. Aerospace classroom activities ..... 117 ..... 47.8\%
f. Other 5 ..... 2.0\%
60. Which NASA subject area has been the most informative forreference in classes?
a. Manned Space Flight ..... 124 ..... 50.6\%
b. Aeronautics ..... 28 ..... 11.4\%
c. Future Space Exploration ..... 40 ..... $16.3 \%$
d, Application programs ..... 24 ..... 9.8\%
e. Scientific programs ..... 13 ..... 5.3\%
f. Benefits to Mankind ..... 88 ..... 35.9\%
61. Which NASA materials are of most value as teaching aids? (Models not included.)
a. Publications ..... 75 ..... 30.6\%
b. Films ..... 164 ..... 66.9\%
62. Overall, how would you evaluate the NASA materials used in thecourse?
a. Too technical for most of my students ..... 36 ..... $14.7 \%$
b. Very good for student information ..... 121 ..... 49.4\%
c. Good for motivating students ..... 106 ..... 43.3\%
d. Not specific enough ..... 5 ..... 2.0\%

APPENDIX E

LIST OF PARTICIPATING WORKSHOPS

## Workshop Respondents to the Questionnaire

Abington School District, 1841 Susquehanna Street, Abington, Pennsylvania 19001
Adams State College, Educational Building, Room 103, Alamosa, Colorado 81101
Ashland College, Kettering Center, Ashland, Ohio 44805
Bemidji State College, Room 217 Spettgast Hall, Bemidji, Minnesota 56602
Berry College, Department of Education and Psychology, Mount Berry, Georgia 30149 (two different workshops)
Birmingham Southern College, Room 11 Ramsay Hall, Birmingham Southern College, Birmingham, Alabama 35204
Boone County Schools, Scott High School, 404 Riverside Drive, Madison, West Virginia 25130
California State Polytechnic College, School of Applied Arts Building, San Luis Obispo, California 93401
California State Polytechnic College, 3801 West Temple Avenue, Pomona, California 91766
California State College, Long Beach, California State College, 6101 East Seventh Street, Long Beach, California 90801
California State College, Hayward, Biology Department, 25800 Hillary Street, Hayward, California 94542
Catawba County Schools, Fred T. Ford Junior High School, 1001 East 25th Street, Newton, North Carolina 28658
Central Michigan University, Brooks Hall, Mount Pleasant, Michigan 48858
Chabot Science Center, Director, 4917 Mountain Boulevard, Oakland, California 94619
Chestnut Hill College, Administration Building, Germantown and Northwestern Roads, Philadelphia, Pennsylvania 19118
Colorado State University, 343 Ross Hall, Greeley, Colorado 80631
C. W, Post College, Room 258, Life Science Building 120, Brookville, New York
Eastchester Public Schools, Aerospace Discovery Workshop, Eastchester Junior High School, 550 White Plains Road, Eastchester, New York 10707
Eastern Washington State College, Cheney, North 7222 Excell Drive, Spokane, Washington 99208
Fayette County Public Schools, Board of Education, 400 Lafayette Parkway, Lexington, Kentucky 40503
Fayette County Schools, Title III Office, 242 Third Street, California, Pennsylvania 15419
Florida Institute of Technology, Country Club Road, Melbourme, Florida 32901
Fresno State College, 1002 East Yale Street, Fresno, California 97304 Georgia Southern College, Department of Industrial Education, Landrum Center, Statesboro, Georgia 30458
Hershey County Schools, Hershey Senior High School, Room 19, Homestead Road, Hershey, Pennsylvania 17033
Idaho State University, 1321 South Pacific, Boise, Idaho 83705
Illinois State University, Normal, Illinois 61761
Indiana State University, Room 103 Holmstedt Hall, Indiana State University, Terre Haute, Indiana 47809
Indiana University, Science Education Department, 337 Education Building, Bloomington, Indiana 47405
J. F. Kennedy Space Center (On-Center Pilot Program), PA EPB, KSC, Florida 32899
Kansas State University, Room 206B, Holton Hall, Manhattan, Kansas 66502
MacGregor Resources and In-Service Center, Science Laboratory Building, 4801 La Branch, Houston, Texas 77004
Mankato State College, Mankato, Minnesota 56001
Memphis State University, Department of Elementary Education, Room 417, Education Building, Memphis, Tennessee 38111
Miami University, 6219 Market Street, Youngstown, Ohio 44512
Michigan State University, 363 Erickson Hall, East Lansing, Michigan 48823
Mount St. Mary's College, 12001 Chalon Road, Los Angeles, California 90049
Moorhead State College, Science Building, Moorhead State College, Moorhead, Minnesota 56560
Newark. State College, Townsend Hall, Morris Avenue, Union, New Jersey 07083
New Mexico State University, 316-317 Odonne1, Las Cruces, New Mexico 88001
Northern Illinois University, DeKalb, Illinois 60115
Northern Michigan University, West Science Building, Marquette, Michigan 49855
Oklahoma Aeronautics Commission, Whitehurst Ha11, Room 315, Oklahoma State University, Stillwater, Oklahoma 74074

Palomar College, Room CH-4, Highway 78, San Marcos, California 92069
Parksley High Schoo1, 101 Jones Avenue, Parks ley, Virginia 23421
Pennsylvania State University, 142 Chanbers Building, Pennsylvania State University, University Park, Pennsylvania 16802

Peru State College, Fine Arts Building, Room 212, Fifth and Hoyt Streets, Peru, Nebraska 68421

Plaza Junior High School, 3080 South Lynnhaven Road, Virginia Beach, Virginia 23452

Plymouth State College of the University of New Hampshire, Russe 11 House, Plymouth, New Hampshire 03264

Puget Sound Area Schools, Pacific Science Center, 200 Second Avenue North, Seattle, Washington 98109

Robert Smalls High School, 1001 Ribaut Road, Beaufort, South Carolina 29902

Sacramento State College, School of Education, 6000 Jay:Street, Sacramento, Galifornia 95819

Saint Francis College, Science Building, 2701 Spring, Fort Wayne, Indiana 47708

San Jacinto College, Technical Building, 8060 Spencer Highway, Pasadena, Texas 77505

Southern Illinois University, Wam Building, Carbondale, I11inois 62901
Stanislaus State College, c/o San Joaquin County Instructional Media Center, 1465 Lindberg Street, Stockton, California 95206

Temple University, Room 264--Ritter Hall, Montgomery Avenue, Philadelphia, Pennsylvania 19122

Union College, Barbourville, Kentucky 40906

University of Alabama, Room 204--Graves Ha11, Tuscaloosa, Alabama 35486

University of British Columbia, Vancouver, Faculty of Education, Education Building, Science Education Department, Room 1209

Vancouver, British Columbia, Canada
University of Florida, Department of Education, Room 175, Norman Ha11, Gainesville, Florida 32601

University of Georgia, Department of Science Education, Baldwin Hall,
Room 103, Athens, Georgia 30601
University of Hawaii, 1776 University Avenue, Honolulu, Hawaii 96822
University of Minnesota, AFROTC Building, Duluth Campus, Duluth, Minnesota 55812

University of Nebraska, College of Education, 31 E, Lincöln, Nebraska 68501

University of Nevada, Las Vegas, 1487 South Eighth Street, Las Vegas, Nevada 89109

University of Nevada, Reno, Teaching and Resource Center, Reno, Nevada 89104

University of Puerto Rico, Industrial Arts Department, Rio Piedras, Puerto Rico 00931

University of Redlands, Administration Building, Redlands, California 90723

University of South Alabama, Classroom Building, Room 440, Mobile, Alabama 36608

University of South Florida, Department of Physics and Education,
PHY110, Tampa, Florida 33620
University of West Virginia, 1210 Thirteenth Street, Parkersburg,West Virginia 26102
Valdosta State University, Education Department, Box 176, North Campus,Valdosta, Georgia 31601
Wayne State College, Carhart Science Ha11, Room 134, Wayne, Nebraska ..... 68787
Western State College, School of Education Building, Room K-109, Gunnison, Colorado 81230
Westmoreland County Public Schools, Courthouse Annex, Greensburg,Pennsylvania 15601Wisconsin State University, Campus Lab School, Stevens Point,Wisconsin 54481
Wisconsin State University, Barstow Hall, Superior, Wisconsin 54881

VITA
Robert Dale Helton

Candidate for the Degree of
Doctor of Education

## Thesis: A STUDY OF AEROSPACE EDUCATION WORKSHOPS WHICH UTILIZE 'NASA MATERIALS AND RESOURCE PERSONNEL

## Major Field: Higher Education

Biographical:
Personal Data: Born in Salina, Kansas, January 8, 1932, the son of Mr. and Mrs. W. A. Helton. Married; wife, Darlene, is a teacher and daughter, Rebecca, is 14.

Education: Graduated from Greenburg High School, Greenburg, Kansas, in May, 1950; received a Bachelor of Arts degree from Fort Hays Kansas State College in May, 1956; received the Master of Science degree from Miami University of Ohio in August, 1963; completed requirements for the Doctoral degree at Oklahoma State University in July, 1973.

Professional Experience: Taught all the sciences at Meade High School, Meade, Kansas, for one year, 1956-1957. Taught all the sciences and aeronautics for five years at Hill City High School, Hill City, Kansas, 1957-1962. Member of the Kansas Commission for Aerospace Education, 1958-1962. Graduate assistant teaching in the Aeronautics Department as Ground Instructor for pilots at Miami University of Ohio, 1962-1963. Spacemobile lecturer and later Programs Coordinator for the Educational Programs Branch of the National Aeronautics and Space Administration with the Manned Spacecraft Center, Houston, Texas, 1963-1968. Represented NASA to work at the University of Paris in assisting the French develop a public relations program to visit schools, 1966. Graduate assistant in Education at Oklahoma State University assisting in NASAUniversity related programs, 1968 to present (assigned to NASA, Langley Research Center, Hampton, Virginia).


[^0]:    *To determine if a relationship should exist, columns at the right side of the table were combined.

[^1]:    *This table was condensed to include all yes columns together in

