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CHAPTER I
INTRODUCTION

The purpose of this paper is to use the tools of non-standard
analysis to develop some of the material found in many introductory
topology texts. Every attempt has been made to keep the exposition ele-
mentary. The student who is prepared for a nermal introductory topology
course should also have a sufficient background for this material. All
topological and non-standard concepts which are used are defined within
the paper. This should minimize any need for an outside reference, and
it should also eliminate any questions concerning notation or use of a

particular term which might be defined differently in various texts.

Chapter II introduces the concepts from non-standard analysis
which are used in the remainder of the paper. The non-standard real
numbers, which are introduced in Chapter III, brovide the reader with
some specific examples of the concepts discussed in the previous chapter.

These examples are also referenced when new material is later presented.

Chapter IV introduces topological spaces and initiates a study of
these spaces. As a part of this development, the concept of nearness is
rigorously defined. Neighborhoods and open sets are then characterized

using this definition of nearness.



In Chapter V, a non-standard characterization of closed sets is
given. This characterization is the same as that given by Abraham
Robinson [14]; however, it is derived somewhat differently. As part of
this derivation two new generalized definitions of nearness are made.

One of the important aspects of non-standard analysis is its appeal to
intuition. Throughout the remainder of the paper, these generalized
definitions are used to describe as intuitively as possible many standard
concepts. Particular topics that are developed include continuity,

connectedness, the separation axioms, compactness, and product spaces.

The term "non-standard analysis" was coined by Abraham Robinson in
1960. His objective on this date was to provide a logically consistent
system for calculus using infinitely small and infinitely large numbers.
The language of infinitesimals had been used earlier by Leibniz, who
stated that the same success could be obtained with infinite numbers as
with the finite. Needless to say, Leibniz failed to provide the basis
for the success he thought possible. It was not until Robinson decided

to use other models for the real numbers that this success was achieved.

This paper avoids Robinson's use of type theory in constructing a
non-standard model by using the framework presented by Moshe Machover
and Joram Hirschfeld [11]. This simplified framework allows presentation
of the material in a manner that conforms closely to the usual usage of
set theoretic terminology. As has been indicated earlier, one of the
interesting things this allows is a rigorous definition of the intuitive
concept of nearness. It is quite natural for one to seek & better

intuitive feeling for nearness in an arbitrary topological space. Many



mathematicians, either when explaining proofs to others or when seeking
proofs for themselves, often use the intuitive idea of a small ball or
sphere about a point when examining a neighborhood, regardless of the

actual topology involved. What non-standard analysis does in an arbi-
trary topological space is to allow one to use directly his intuition

for nearness by making the term precise, in the same way that the term
"infinitesimal" was first made precise in the space of real numbers by

Robinson.

A theorem that exemplifies how well this concept of nearness is
used in the non-standard characterization of topological concepts is
the following:

A function f from a topological space (X, J) to a topological
space (X', 3') is continuous at p € X iff £(q) is near

f(p) whenever q is near p.

Although the remainder of this paper will avoid type theory, it
is instructive to examine this theorem in terms of types. (Points are
called objects of type zero, sets of points are objects of type one,
and families of sets of points are objects of type two, etc.) Note
that the previous non-standard characterization of continuity involves
only objects of type zero, whereas the usual definition involves sets of
points, i.e. objects of type 1. As further evidence that non-standard
characterizations are often simpler, examine the following non-standard

characterization of compactnesss

A set K in a topological space (X, §) is compact iff every *point

of K is near some point of K.



This is also a statement involving only objects of type zero,
as contrasted to the usual definition which involves type two objects,

i.e. families of sets of points.,

Unfortunately, perhaps, the most difficult material will have to
be presented first. The concept of a non-standard model and the
associated terminology must either be given or referenced. The choice
has been to include in Chapter II that which is pertinent to the devel-
opment of the material in later chapters. The technique used will be
that of Machover and Hirschfeld. Although the proofs included here are
in more detail than those by Machover and Hirschfeld, the reader is
advised that many of their interesting points about non-standard models
have not been included, due to the limited purpose of this paper. For
the most part it is the terminology and the results of the theorems of
Chapter II which will be used later, The reader may well want to skim
this chapter and then pursue the remaining chapters in depth before
delving into the proofs of this background material. If this is done,

the remaining chapters should still be easily comprehensible.



CHAPTER II
NON~STANDARD MODELS

The language of infinitesimals was used even before the time of
Leibniz. Due to the lack of a rigorous foundation for such terminology,
this language was later abandoned by most mathematicians in favor of
Weierstrass's epsilon-delta notation. It may seem surprising that
terminology dormant since the nineteenth century has been revived and
given a rigorous foundation in 1960. The key to the breakthrough was
the newly developing field of mathematical, or symbolic, logic. The
notion of a "formal language" enabled Abraham Robinson to make precise

the earlier vague claims that had been made concerning infinitesimals.

The concept of a formal language is somewhat difficult to become
adjusted to, particularly since the same language will be used to
describe different universes of objects. In order to clarify some of

this, a couple of analogies will now be made.

The key to working with a non-standard model is to conceive of the
system that you are working with as embedded in a somewhat larger
system. The role of a non-standard model is analogous to that of an
extension field in algebra. To prove results about a system, one might
consider the original system as embedded in a larger framework, do most
of the work in this framework; and then try to reinterpret these results

in the original system.



The primary capability that one must have to use this powerful
proof technique is to be able to write precisely a formal sentence
expressing the idea under consideration. It will be seen shortly that
this sentence is true in the given system if and only if it is true in
the enlargement. Anyone who has ever programmed a computer is somewhat
aware of the problems encountered when one expresses ideas using a fixed
set of symbols according to specified rules. Mathematicians are not
normally so limited and use, in addition to their formal language, the
even more complex and less formally understood language of society.
Thus it is difficult to =xpress precisely and svmbholically 1] ideas
which can be stated in an informel language. In fact, not all proper-
ties of the real numbers are expressible formally. Rather than being a
weakness this is the very feature which makes non-standard models so
useful. Any property formally expressible will pe formally shared by
both the original system and the non-standard model. For example, both
the reals and the non-standard reals are fields. However, the original
system and the non-standard model may well differ on properties which
are not formally expressible. For example, the Archimedean property,
which is not formally expressible, holds for the standard real numbers

but does not hold for the non-standard real numbers.

The following example may be instructive when one later considers
interpreting a formal sentence in more than one system. Consider the
statement: Vx [x # 0 ~ @y (xy = 1)]. To determine the truth value of
this statement, one must assume a particular number system and the
operation of multiplication upon that system. Interpreted in the system

of integers it is false, while it is true in both the rational and the



real number systems. In which number systems is the following statement

true: vx (x s xz)?

It is now time to answer some of the questions that the previous
discussion has hopefully led you to formulate. First of all, how are

ideas expressed precisely and formally?

If you are working with a given system, such as a topological space
(X, 3), then a universe of diseourse will be assumed. Before indicating
a construction of this universe, note that the most important feature is
that it will be quite large enough to contain as objects all concepts
commonly studied in mathematics. In particular, this universe will
contain all points of the set X above, and it will be closed under

finite unions, finite cartesian products, and the power set operator.

All concepts that are commonly used are considered as sets in this
universe. For example, if X is the set of real numbers, then the con~
cept of addition (+4) is the object represented by a certain set of
ordered pairs whose first term is itself an ordered pair of real numbers
(e.ge ((3y 5), 8) € (+)). Customary abbreviations will be followed in
this paper. For example, ((3; 5), 8) € (+) will be abbreviated as

3+5=8.

Since the universe of discourse for the reals is closed under
finite cartesian products, it will contain all n-ary relations and in

particular all real functions of n-l1 real variables as objects.

The universe of discourse U is converted into a mathematical system

by specifying one binary relation and two binary operations over U.



The binary relation is €, the membership relation on U. The first
binary operation is pr, forming an ordered pair (i.e. a pr b = (a, b)).
The second is ap, applyiﬁg a function to its argument. In this paper

f ap x will be customarily abbreviated f(x) [e.g. cos ap T = cos(m)
and sin ap{+ap(m pr x)} = sin (7 + x)]. So that U will be closed under
ap as well as under pr, f ap x will be defined to be ¢ when f is not a

function or when f is a function otherwise undefined for x.

As indicated earlier, the existence of the universe of discourse U
is actually more important to this paper than its actual construction;
nonetheless, for the sake of completeness the construction is outlined

below.

If a topological space is to be considered or, as will be the case
later, if a collection of spaces is under consideration, then let ¥V be

the set of all points in these spaces.

2.1 Definition: The union set of A, UA = {a : a € b for some b € A}.

Note that the union set of A may be considered as an extension of
the usual set theoretic union. If A is merely a collection of sets,
then UA 1is just the usual union of all sets in A. The union set of A
is defined even if A is not a set or if A has some members which are not
sets. When A is not a set or when it is a set with no non-empty set as

a member, then UA = {.

2.2 Definition: A set S is transitive if a € b and b € S imply

a € S.



In order to extend V to a set U, which is transitive, let V, =7V

and Vk = UV for each natural number k. Then let

Ve = W
UO L] U{vk H k - 0’ 1’ 2, .‘O}.

2.3 Lemma: U, 1s a transitive set such that V C U,.

Proof: Clearly V c U, by the definition of Uy Now assume
a€b and b€ U,» Since b €U,, b€ V\j for some natural number j.

Note from the definition of V that V\j R {as a €b for some

J#1
b € Vj}. It then follows that a € Vy,,. Since Vy41c Uy @ € Upe

Hence U, is transitive. 0

The power set of A, {a : ac A}, will be denoted by P(A). If A

is not a set, then P(A) = @.

Now let U =7U, , UP(U,_,) for each natural number k. Finally

k
let the universe of discourse U be defined by U = U[Uk : k=20,1,

2’ '..}.
2.4 Lemmas Each Uy, k=0, 1, 2, ¢°° is transitive.

Proof: (by induction on k) First recall that Uy has already
been shown to be transitive. Secondly, assume that Uy is transitive,

that b €U and that a € b. By definition of Uk+1' it follows

k+1!
that either b€ U, or b€ P(Uk). If b€ Uy, then the transitive
property of Uy implies that a € Uge Ifon the other hand b € P(Uy),
then b < Ug. In this case, a € b implies that a € Up. In either
case a € Uy, which is a subset of Upe1® Therefore a € Uk+1’ which

means Uk+1 is transitive. ]
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2.5 Theorem: The universe of discourse U is transitive.

Proof: Assume that a € b and that b € U. From the definition
of U, it follows that b € Uy for some J. Since each U is tran-
sitive, a € b and b € Uy imply that a € Use Uy is a subset of U,

thus a € U and U is therefore transitive. 0

2.6 Lemma: If S is a transitive set and the set b is an element of S,

then b is a subset of S.

Proof: Let the set b be an element of the transitive set S. If
b = @, then clearly bc S. If b # @, then let a be an arbitrary
element of b, Since a €b, b €S, and S is transitive, it follows

that a € S. Hence b < S. O

2.7 Theorem: The universe of discourse U is closed under P, the powsr

set operator,

Proofs If a €U then a € Us for some j. If a is a set, then
the previous lemma and the transitivity of Uj imply that acC Uj.
Hence P(a) c P(Uj). If a is not a set, then P(a) = # and again

P(a) c p(Uy). Since P(Uy) < U P(a) © P(Uj) implies p(a) < Uj+1.

j+1?

i c
Thus P(a) € P(U Since P(UJ.+1) U‘_j and U

j+1)' +2 4R
that p(a) € U. Therefore U is closed under P. O

C U, it follows

2.8 ILemma:s If b € U, the universe of discourse, and a C b, then

a€vu.

Proof: If a<b then a € P(b). Since b €U and U is closed
under P, P(b) € U. Thus a € U since a € P(b), P(b) € U, and U is

transitive. O
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2.9 Theorem: The universe of discourse U is closed under U, the union

set operator.

Proof: Assume that a € U and that c¢ € U(a). Since a € U,
a € Uj for .some j. From the definition of U, it follows that ¢ € U(a)
implies that ¢ € b for some b € a. Since Uj _is transitive, b € a,
jo it follows that b €U, Then c €D, b E‘Uj, and U,
transitive imply that c € U j° Hence U(a) c Uj and therefore

and a €U

U(a) € P(Uj). Since P(Uj) cU and U, ,CU, it follows that

J+1 J+1
U(a) € U. Therefore-U is closed under the union set operator. O

2.10 Lemma: If ac<U and ac U, for some j, then a € U.

J

Proof: If ac U,, then aEP(UJ). Thus a € U since

j'

j41 S Us O

P(Uj) cvu and U

J+1

2.11 Corollary: Uk € U for each non-negative integer k.

Proofs U, © U, U © Uy and the previous lemma yield this

immediately. O
2.12 Lemmas If a is a finite subset of U, then a € U.

Proof: For a # @, let a= [cl, oy ***y ¢} be a subset of U
for some natural number n. Since acC U each c¢ 3 € U. Thus for each
J a k may be selected such that ¢ 3 € Uk" L=t m be the maximum value of
the k's as J varies from 1 to n. Since Ub €U €Uy seey, each
ey €U, For a=¢ let m=0. Ineither case ac L /and so by

the preceding lemma it may be concluded that a € U. O
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2.13 Theorem: The universe of discourse U is closed under finite unions

(i.e. usual set theoretic unions of sets).

Proof: If the sets 81y 85y *°*y 8, are elements of U, where
n > 0, then {al, a5y *°%y an} is a finite subset of U. Therefore the
preceding lemma guarantees that {al, 8oy **%y an} € U. As previously
indicated the union set Ufa;, a5, ***, an} = (a1 Uay U *** U an).
Since U is closed under U, (a; U a, <+ U an) € U. Thus U is closed

under finite unions. (|

For a, b € U, the ordered pair (a, b) is identified with the
set {{a}, {a, b}}. Thus for A, BE€ U, A xB = {{{a}, {a, b}} : a € 4,
b € B}. By considering (a) = a, the ordered n~tuple for n 2 2 can

be defined recursively as (al, 8yy se0y _an) = ((al, COPRREED an-l)’ an).

2.1L Theorem: The universe of discourse U is closed under finite

cartesian products.

Proof: (by induction on k) Assume that A, B € U. If either A or
B have no elements, then A x B = ¢ and trivially A xB € U. So
suppose both A and B contain some elements. Note then that a €A and
b € B imply that {a}, {a, b} € P(A UB). Thus {{a}, {a, b}}
€ PP(A UB). Therefore A xB E€PPP(AUB). Since U is closed under
P, PPP(AUB) €U. Hence AxBEPPPUAUB), PPP(AUB) €U,

and U transitive imply that A x B € U. For n 2 2, let

n n=1

D;Ak::(EVAK)x%.

The proof follows without difficulty. O
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The construction of the universe is now complete. For emphasis
note that if the construction of U is based upon a set X, then U con-
tains all families of subsets of X and so will contain all topologies
(which are certaln families of subsets of X) on X. The—next task is to
describe how to express formally a mathematical concept about the

objects in the universe of discourse.

The formal language £ will be very similar to the usual set

theoretic language with the restriction that it will be more precise
and systematic, and it will use some new symbuls to replace verbal

expressions (e.g. ap).

The language &£ is required to have at least one symbol to denote
each object in the universe of discourse. These symbols have a fixed
meaning and are called constants. The distinction being made between
an object in U and the symbol in &€ representing that object should not
be foreign since this is similar to the distinction made in some texts

between the number "two" and the numeral "2" representing that number.

All objects that have well-known symbols representing them, such as
"gn for the empty set, "<" for the less than relation, "4+" for addition,
etc., will have the same symbols used to name them in.Z . When symbols
from £ are used as variables, the range of the variables is all of U.
This is the expected thing, but it becomes extremely important to be
cognizant of this when more than one universe of discourse is being

considered.
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In addition to the symbols for the objects in U and other symbols
which are used as variables with range U, £ has the symbols "g", “pr%,
and "ap" to denote the binary relation and binary operations on U. Ff

also contains "=" to designate equality.

A properly combined expression involving a finite number of con-
stants, variables, and operational symbols "pr" and "ap" is called a
term of . Formulas obtained by properly combining "=" and "¢" with

two terms of &£ are called atomic formulas, i.e. these are the atoms

from which the world of mathematics will be described.,

KX also contains the logical connectives "y, "A", "™, "-", and
"»" which designate respectively ™not" or "it is not the case that",
"and", "or", "implies", and "if and only if" or "iff". In this paper
—1 will often be abbreviated in context, e.g. 1 € will be abbreviated as
¢. It is important that the symbols "y" and "d" which represent the
quantifiers "for all" and "there exists at least one"‘be interpreted

with respect to some universe of discourse. A variable will always

follow each of these quantifiers.

By combining the atomic formulas with connectives and quantifiers,
and iterating a finite number of times, all formulas of ;£ are obtained.
Soqe mathematical concepts are not expressible formally because it would
take an infinite iteration to express the concept. For example, the
Archimedean property (nonexistence of infinitesimals) of the standard
reals can be expressed using an infinite set of sentences. For each
r € R (reals), all but a finite number of the following sentences are

true:
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r>l,r+r>1l,r4+r4+2r>1, coe,

The principle cannot be expressed by a single sentence, however, and
this is precisely why the property can hold for the standard reals but

does not hold for the nonTStandard reals. Note that
Vrir€REIn[n E NAVmmENAM>n) = mr > 1]}

is not a sentence in 2 the language for the universe of discourse for
the reals. The reason for this is that mer need not make sense. For
more on this see Lightstone [7]. (Note that m > n is an abbreviation

for (m, n) € (>).)

Terms with variables do not denote objects in_the universe until a
constant or another term without variables is substituted for each
variable. Similarly some formulas do not have a truth value unless the
variables are ali "bound" either to a specific set of constants or by a
formula . To clarify some of the vagueness of this concept of bound

variables consider the following examples:

(1) any occurence of the variable x in the form "Y¥ x g" or
"g x g" is said (by Machover and Hirschfeld) to be bound.
(i1) a3x vy[y € x] has all variables bound (the formula is true).
(iii) vy[=(y € x)] does not have x bound (has no truth value).

(iv) vx ¥y[y € x] has all variables bound (formula is false).

Formulas in which all variables are bound, and hence which have a truth

value, are called sentences.
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So far a universe of discourse U has been constructed and a brief
description of the language ..Z , which can be used to express propo-
sitions about U, has been given. It is now time to see how the language
£ can be used to describe other universes of discourse (such as non-
standard ones) and what possible relationships might exist between

universes so described.

Suppose some people on a world in another universe use exactly the
same symbols that we use to name the objects (perhaps quite different
from the objects in our universe) in their universe. Then the same
language would be describing two universes. Naturally, objects in the
two universes which bear the same name are of special interest. It might
be interesting to see what "James W. Hall 322—38—&67h" is in another

universe. This is analogous to the situation about to be examined.

Let I be the mapping which assigns to each constant of &£ the
object in U which that constant names. Since there is a constant in &
for each object in U; I is an onto map. The system ¥ = (U; I; €
pr, ap). concisely represents a summary of the discussion so far. The
universe of discourse U indicates the range of the quantifiers. It
tells how the constants of &£ are to be interpreted, while €, pr, and
ap sp;cify how the relation and operations on U are to be interpreted.
Note that the other connectives (=, =, etc.) always have the same

meaning. The system ¥ is called an interpretation of i.

;
It will turn out that a non-standard model will also be an inter-

pretation of &£ (with certain restrictions of course). Another

interpretation of £, u* = (U%; I*; *c; pr¥, ap*), will now be
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compared to 9 = (U; I; €; pr, ap). Note the symbols in o* have a
meaning corresponding to their respective counterparts in 9. I* is a
mapping from &£ into (need not be onto) a universe of discourse U*
(perhaps distinct from U). Although *e is a binary relation on U*,
it is arbitrary and need not be the membershipwrelation.v Similarly pr*

and ap* are arbitrary binary operationé underkwhich U* is closed.

2,15 Definition: Two interpretations of X,

o* = (U*; 1% ¥e; pr'y ap’) and

o' = {U'; I'; "€; pr', ap')

are isomorphic if there is a 1-1 mapping ¥ of v* onto U' satisfying

the following conditions:

(1) for every constant "c" of X, ' ("em) = ¥(T¥("eM)).
(1) for every a and bin U*, a e b iff v(a) 'e ¥(b).
(iii) for every a and b in U¥, ¥(a pr* b) = ¥(a) pr' ¥(b).

(iv) for every a and b in U¥, ¥(a ap* b) = ¥(a) ap' ¥(b).

If ¥ is not onto, but satisfies the other properties, ¥ is then called

an isomorphic embedding of 9* into 9.

2,16 Definition: An interpretation 9* of £ is a model for S a set of

sentences of £ if every sentencg of S is true in 9*. (For emphasis
note that the interpretation is in 9. Hence the quantifiers relate to

objects in U¥, ¥ 4is the relation on U*, etc.)

X will be used to designate the set of all sentences of X which are

true in the original interpretation #. 9 is certainly a model for ¥
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and ¥ and all interpretations of &£ isomorphic to ¥ are called the

standard model. If ¥* is a model of ¥ but is not isomorphic to g,

then ¥* is called a non-standard model. Our interest will be narrowed

shortly to a particular type of non-standard model which will be used
throughout the remainder of the paper. Note that the walidity of the

definition of a standard model depends upon the next lemma.

2.17 Lemma: If 9* is a model for S and 9* and Y' are isomorphic,

then ' 1is also a model for S.
{

Proof: Since ¥ and 9"  are isomorphic the atomic sentences
are, by definition of the isomorphism, true in m* iff they are true
in 9'. Since sentences are finite combinations of atomic sentences,
connectives, and quantifiers, it follows by induction that a sentence

is true in m* iff it is true in 9*. D

The following theorem is an important key to understanding how and
why to use a non-standard model. It allows one to go freely from a

universe to its non-standard counterpart.

2.18 Theorems If U* 1is any model (standard or non-standard) of ¥

then a sentence of & is true in o* iff it is true in %.

Proof:; If a sentence S is true in ¢, then S € ¥ and is therefore
true in 9* which is a model for X. Conversely, if S is false in g
then—S € X and hence™ S is true in o} i.e. S is also false in

o 0
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As observed above, if two interpretations of a language are iso-
morphic then a given sentence in & is either true in both
interpretations or in neither. On the other hand, if different inter-
pretations of a language are given can one be isomorphically embedded
in the other? In the case that an interpfetation o™ 4s also a model
for X there is a quite natural way of embedding ¥ into #*. In the
following, "c" denotes a symbol in £ while ¢ and c* denote objects
in U and U* respectively, where 9 = (U; I3 €3 pr, ap) and g* = (U%;

1*; *€; pr*, ap*). It is supposed that

I:f —B S yis defined by I("c") = ¢ and
™: £ __into y U* is defined by I*("c") = c*.

It then seems quite natural, since the symbol "c'" identifies the

object ¢ under the interpretation Y and c* under 9r*, to identify c

and c*. Following our intuition, let ¥ : U ——iB2y U* pe defined

vy v(c) = c*

°

3
/////I‘;al
i\\\\\ by
I*
\St#
Notice that ¥ maps every object in U to some object in U¥. For if
c € U, there exists at least one symbol "c" in & such that
I("c") = c. Hence I¥("c") = c* and therefore c* is an element in U
such that w(c) = c*. Secondly, note that ¥ is a well-defined corres-

pondence, for if "ec" and "d" both denote the same object in U, then
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¢ =d. That is, ¢ =d 1is a sentence in & which is true in ¥ and

thus c* = d* is true in #®* which is also a model of X.

2,19 Theorem: The natural embedding ¥ of 9 into a model ¥* of X is

an isomorphic embedding. If I¥ is a mapping of £ onto U¥, then

o* is a standard model.

Proof: First of all it is clear from the definition of Y that
I*("c") = v(I("c")). Now if a # b 1is a sentence of £ true in ¥ then
the interpretétion a* # b* mst be true in ¥¥. That is, if a £ b
then ¥(a) # v¥(b). Thus Y is a 1-1 mapping. To conclude that f is an

isomorphic embedding it must further be shown thats

(i) a € b © y(a) *¢ y(b) i.e. a *eb*

il
H
]

ii) a=b prc - ¥(a) = ¥(b) pr* ¥(c) i.e. a* = b* pr* c*
(i1) P : P

¥(b) ap* v(c) i.e. a¥* = b* ap¥ c*,

i

(iii) a =b ap ¢ = y(a)

fi
]

Note that each of i, ii, and iii above contains a sentence of X
under the two interpretations, 9 and * respectively. Thus i, ii,
and iii are consequences of the fact that U* is a model of X and that
truth in one interpretation implies truth in the other. If; in addition,
I* is a mapping from &£ onto U*, then ¥ is a mapping from U onto
U¥*. This follows by first noting that if T* is onto then for each c¥*
in U* there exists a "c" in & such that I¥("c") = c¢*. Since I
is also onto, there is some ¢ in U such that I("c") = c. Then by
definition of ¥, y(c) = c*. Therefore ¥ is onto and so ¥* is a

standard model., O
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The previous two ﬁheorems make working with non-standard models
seem very natural. Rather than considering the non-standard model as
completely apart from the standard world, the standard world is con-
sidered as part of the larger non-standard world. Thus from now on *
will be considered as merely an extension of %Y. Thus any object ¢ in
9 will be identified with the associated c* in 9*. Objects of o*
that are in 9 are called gtandard objects while those that are‘in

u*\m (i.e. in #* but not in 91) are called non-standard objects.

There are non-standard objects in «* iff go™* is a non-standard model.

A1l models used later in connection with topological spaces, other
than the original standard model itself, will be assumed to be a specfic
type of non-standard model called an enlargement. AAdescription of an
enlargement requires a special type of relation which shal}’now be con-

sidered.

A relation R over U is a set of ordered pairs; the left domain of
R is the set of all first members of the ordered pairs in the set R.
In the following (a pr b) € R will be abbreviated by a R b. A binary
relation R is called concurrent if for any natural number n and any n
objects ayy 8y cc0y &) in the left domain of R there exists some b
such that a; Rb, ay R by °°*y a R b. Since U is infinite, nin  ig

an example of a concurrent relation over U.

Now every formula & of £ with two free (not bound) variables
defines a binary relation RQ over U where RQ is given by

Ry = {(a, b) : 8(a, b) is true in ¥},
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To verify the exdistence of enlargements, the compactness theorem
from symbolic logic will be assumed [3]. The compactness theorem
guarantees that if a language X’ has a set of sentences S such that

every finite subset of S has a model, then S also has model.

Since U is infinite, there is at least one formula &(x, y) such

that R, is concurrent (e.g. &(x, y) given by "x # y"). Now for

@
each formule § of & for which RQ is concurrent, a new constant "cQ "
(i.e. a constant not previously inX) is invented. With ¥ still
designating the sep of ali sentences of £ true in ¥, let Ké be the set
of all sentences of the form &(a, ci) where each "a" is a constant
of L. These sentences are not in &£ but are in an enlarged language £

obtained from /£ . Then let X' =X U[U{KQ ¢ R, 1is concurrent}]. Let

¢
S be a finite subset of sentences from K'. Examining S, note that a
sentence of S containing constants only from U is still true in the

interpretation .

For any fixed ¢ there are at most a finite number of sentences of
K, in S. Let Q(alg c§), cony 82, cQ) designate these sentences.
Since R is concurrent there is some b € U such that aq RQ by e°°,
an.RQ b. Let I \be a mapping from o/ to U such that I" agrees with
I for all constants of &£’ that are also in &. Then define I"(cy) = b.
Thus each of é(al, cé), coo, é(an, c@) is true in " = (U; I"; €;
pr, ap). Hence " 1is a model for S. By the arbitraripess of S, the

compactness theorem guarantees there is a model %' = (Uf; I': '€;

pr', ap') for the set X' of sentences of £%
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Now let o* = (U*; I*; *€; pr*, ap) be the same as Y' with the
exception that I*® is the restriction of I' to f. Then ¥* is an

interpretation of £ and a model of X. The interpretation ﬂ* is called

an enlargement of .

In the work which follows an arbitrary but fixed enlargement will
always be assumed. The major properties of an enlargement which are
used in the remainder of the paper are summarized in the following

theorem.

2.20 Theorem: If ¥* is an enlargement of ¥, then

(1) o*

is a non-standard model of X
(ii) For every formula &(x, y) ofL for which R is concurrent
there is an object c; in U* such that when &(a, b) is

true for some b € U, then &§(a, ci) is true in ¥,

Proof: As mentioned ea;lier, the construction of ¥* forces ¥

to be a model of X.

The second part also follows from the construction since the com-
pactness theorem guaranteed that ' was a model for X', That is, all
sentences of the form §(a, cﬁ) in X' are true in ¥'. Since c,

is an object in U', s is in U* = U'.

That 9* is a non-standard model may be verified from examining

any formula §(x, y) which yields a concurrent relation R such as

ﬁ,
$(x, y) given by x # y. Since there is an object in 9* corresponding

to c¢,, which is a constant in &7 but not in &, the natural embedding

Q,
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¥ which relates £, U, and U* cannot map any object in U to Cs in
U*. Thus ¥ is not onto, g is a non-standard object, and #* must

be a non-standard model. O

The construction is now complete. A very nice non-standard model,
i.e. an enlargement, has been constructed. The natural embedding has
provided an intuitive way of treating an enlargement 9* of Yas if U
were actually con?ained in U*. Further, once any property about ¥ is
formally stated this property holds when reinterpreted in u*. Now a
few theorems and remarks will be given so that the powerful proof

technique outlined above may be used with dexterity.

2.21 Remark: Since U is closed with respect to pr and ap, an
ordered pair of standard objects is standard, as is a standard function
applied to a standard object. Also if a € A where A is a standard
set, then a is also a standard element since U is a transitive set.
However, if a *¢ A where A is a standard set then a may well be non-
standard. In the next chapter it will be seen that this is the case

with infinitesimal real numbers.

For each concept which is definable for objects in % there is a
corresponding concept in ¥¥. For example, a *set S is an object in u*
that is either @ or is a collection of objects from U* such that at
least one of these *objects a *€ 5. Recall tha£ *€ may not be the
membership relation on U, but is merely a binary relation on U. None-
theless, a member a of S for which a *€ S is called a *member of S.
Our interest will be in those members of S which are indeed *members of

S. A definition concerning these *objects will be given shortly.
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Another *concept is that of a ¥(ordered pair), i.e. pr* applied to
two objects of U". A *relation in U* 1is a *set of ¥(ordered pairs).
When considering a *funcpion f it is necessary to "#* many of the
words such as saying £ *meps the *set A *into the ¥set B. The reason
for this is that the mapping is done by *(ordered pairs) and is per-

formed on ¥*sets.

2,22 Definition: The scope of a *set S, denoted'§; 1s the set of all

*members of S.

S is a well-defined collection of *objects, but it need not be a
standard set, and in fact it might not even be a ¥set since it might
not be a ¥object of u*. since every standard object is consldered as
a ¥object, every standard set will be contained in its scope. That is,
every standard element of S is in 8. The next chapter shows that

*elements of S need not be elements of S.

2.23 Theorem: If A is a finite standard set then A = A, i.e._the

only *nembers of A are its standard elements.

Proof: If A = ¢ the result follows from the definition of the
natural embedding, so let A € U be given by A = {al, By *t %y an}.
Then the sentence "Va(a € A+« a = ay Va=ay, VeeeVas= an)" is

true in ¥, and hence in 9®. The interpretation is

an}°

"
vafa € A& a = a; vVas=a, V ese V a

Therefore a ¢ A iff a = a1y 359 °°%5 3, 44 OT &0 That is & = A. O



26

Sentences, recall, have at most a finite number of connectives and
quantifiers. Thus the above argument is not applicable to infinite sets

since their elements could not be enumerated in a single sentence.

2.24 Theorem: The scope of the union (intersection) of a finite

collection of *sets is the union (intersection) of their scopes.

Proof: The following sentence defines the union of a finite
collection of sets of U: Vx VA; VA, °-- VAn[x EAVXEA Ve
VXEA ®xeh UA U U Ah]° The translation in *y is

* * oeo %* * g L4
vaAlvszowvAn[x €A VxTeAV Vx *e A exTe A UA,
U An]. Since x is a member of ﬁl u ﬁz U ese U /An iff x is a *member

A A N
of A1 or of A2 or of or of Ah’ A1UA2U'UA1—,=

'1 UAy U ++« UL . By replacing U by N and "or" by "and" a proof
N oo o0 F/”F .
that &, nk,n nR =6 nan N A, will result. O

2.25 Corollary: For *sets X, Ay B if X =AU B, where AN B = @,

then X=AUB anda 2NnB=4.

7N\ A
2.26 Corollarys AL\B = /A\ﬁv where A and B are *subsets of the ¥*set X.

2,27 Theorem: For each function f and set A, @ = f(i\\).

Proof: The following sentence defines f(A) in 9
vx[x € £(A) »7y(y € A A £(y) = x)].
. . . N
Reinterpreted in 9, this sentence says @ = f(h). 0

2.28 Theorem: For each function f and set A, f-l(A) = f—l(ﬁ).
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Proof: Given f and A this follows from the interpretation of the

sentence "vx[x € f"l(A) o gy(y e AA£(x) = y)]" in ¥, 0

2.29 Theorem* The function f maps the set A onto the set B iff f maps

A onto B.

Proof: The following sentence defines what it means for the

function f to map the set A onto the set B in U
vyly € B~ 3x(x € A A £(x) =y)]e
Reinterpreted in *j, this sentence says f maps 2 onto B, 0

In the context of the following discussion it may sometimes be
said that A is the set whose scope is A. The following theorem

justifies all such statements.

2.30 Theorem: The correspondence which assigns a scope to each *set is

a l-1 corréspondence.
Proof: The following sentence defines set equality in :
VA VB[A = B & ¥x(x € A « x € B)].
Translated in 9* it says ¥sets are equal iff their scopes are equal. O

The remaining material in this chapter also comes from Machover
and Hirschfeld [11]. There are two central concepts, that of "Nuc"
and "Fil". The t..heorems ;Jhich concern these concepts provide the
justification for some later manipulations. Thus one might want to

defer this material until the need for such justification arises.
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2.31 Definition: A collection of subsets F of X is called a filter

on X ifs

(1Y A,BEF=ANBEF

(1) A€F, AcBcX~BE€F.

Note that ¢ may be an element of F according to this definition.

Hence P(X) is a trivial filter on X. One of the important filters

io be considered in Chapter IV will be that of the neighborhood family

’

of a point.

2.32 Lemmas If Fa is a filter on X for each a in some index set A,

then N{F_: a € A} 1is also a filter on X.

2.33 Lemma: If G cP(X) and G' is the family of all finite inter-
sections of members of G, then G" = {A: Bc A for some B € G'} is a

filter on X.

G" 1is said to be generated by G. If the intersection of any
finite number of members of G has a subset belonging to G, then G is

said to be a base for G".

2.3, Definition: A non-trivial filter F on X is called an ultrafilter

if nc non-trivial filter on X properly contains F.

For proofs of the next two lemmas concerning ultrafilters see

Thron [19].

2.35 Lemma: Every non-trivial filter on X is contained in an ultra-

filter,
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2.36 Lemma: If F is an ultrafilter on X and A c X, then exactly one

of A and X\A 1is an element of F.

2.37 Definition: For G c P(X) the nucleus of G is given by
NucG = N{A : A € G}. If N = NucG for some G c P(X), then N is said

to be nuclear.

2,38 Theorem: If G c P(X) and F is the filter generated by G, then

NucF = NucG.

Proof: Since Gc G' « G" = F, the definition of Nuc implies
NucF ¢ NucG. To establish NucG < NucF, consider an arbitrary set
A € F. Since G generates F, there exist a finite number of sets
Bl’ B2, cee, Bn in G such that Bl n B2 N eee N QnC A. It then
follows that B, N8, N +«+ N8 c®. Now if a € NucG, then

a € /B\l n /B\z_ oo N @n Q. since A was arbitrary from F,

aGn[ﬁ:AeF}=NucF.

Therefore NucG < NucF. Hence NucF = NucG. O

2.39 Definition: If GcpP(X) and A *¢ G such that A c NucG, then

A is called an infinitesimal *member of G.

2.40 Theorem: Every filter has an infinitesimal *member.

Proof: Let G be -base for the filter F (such a base exists since F
is a base for itself) and define a formula 3(x, ¥) by "y e G Aycx".
Then consider the associated relation RQ on U. Since G is a base for

F, the left domain of RQ is F. Then since the intersection of a i‘ihite
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family Al, A2, ree, ‘A‘n of sets from F is some A ¢ F,

A=A nAzﬂ'"ﬂAn

1

must contain some set B from the base G. That is, there exists a B

such that Ay R, By **+y A R@ B. Hence RQ is concurrent, and so in

$
the enlargement %* there is some C s ¥¢ U* such that C 5 *¢ G* and
for each A € F, it is true that C, * A (i.e. ’c\Q c?). Thus
@Q c [n{R : A ¢ F}] which equals NucF. Since Gc F, it also follows
that Cy ¥¢ F. Therefore Cy is an infinitesimal *member of F. O

2.41 Definition: If Sc ¥ then FilS={A: AcX and ScB).

2.42 Theorem: FilS is a filter.

Proof: If A, B € FilS, then S<?® and Sc 8. Hence

schn?®. since Anf- m, S c m. Therefore A N B ¢ FilS.

Secondly, if Bc A and B € FilS, then Bc % and scB imply
Sc ﬁ\. Hence A € FilS. It follows that FilS is a filter. O

oy
2.43 Theorem: If Ac B and Bc X, then FilB c FilA. For any

filters F and G, Fil (NucF) =F and Fc G iff NucG C NucF.

Proof: The first statement follows from the definition of Fil.
Now assume that A € F. The definition of Nuc implies that NucF C /A:.
Since Fil (NucF) = {A : A C X and NucF c R}, A € Fil (NucF). A was
an arbitrary element of F so it follows that F < Fil (NucF). To
establish the other inclusion let A '€ Fil (NucF). The definition of

Fil implies that NucF c £. Since F is a filter, there exists an
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infinitesimal *member C of F. Thus € < NucF which equals

N{f : A ¢ F}. Together NucFc i and € © NucF imply that € cA&.
Hence the sentence #x[x € F A x<C A] is true in o, Since F and A
are standard, this sentence is also true in . Therefore some element
B of F is a subset of A. Since F is a filter, BE€F, and B<C 4, it
follows that A € F. Hence the inclusion Fil (NucF) € F folléws.‘

Therefore Fil (NucF) = F.

Lastly, note that F € G implies NucG < NucF, by the definition
of Nuc. On the other hand, if NucG < NucF, then by the first part
of the theorem, Fil (NucF) c Fil (NucG). Therefore, by the previous

result, F cCG. O
2.4y Theorem: For any two filters F and G, Nuc (F N G) = NucF U NucG.

Proof: FN G dis a filter since F and G are. Now FN GCF and
F N Gc G. Therefore the previous’result implies NucF c Nuc (F N G)
and NucG < NMuc (F N G). Hence NucF U NucG < Nuc (FN G). On the
other hand, suppose =x * X but x ¢ NucF U NucG. Then there exists an
AEF anda B€G such that x * A and x *¢ B. Therefore
xR UB and, since RUB-= m, x Q(A/l:J\B, Now note that (A U B)
€ (FnG). So x¢ fus implies x ¢ Nuc (F N G). Therefore
Nuc (F N G) < NucF U NucG. Hence the equality Nuc (FNG) =

NucF {J NueG follows. 0

Although the union of filters may not be a filter, it is sometimes
useful to consider the filter which is generated by a union of filters.
The following result is used later in a proof concerning local

compactnesse.
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2.45 Theorem: Let G = U{Fi : 1 €I} where Fi is a filter for each
i € I, an indexing set. Then Nuc (G") = N{NucF, : i € I} where G"

is the filter generated by G.

Proof: Since G" is generated by G, it follows from Theorem 2.38
that NucG" = MucG. By definition NucG = N{A : A € G}. From the

definition of G it may be ascertained that
N :a€ec)=nfh:AeF, for some i € I}.

A s .
Then note that n{4 s A € F, for some i € I} = NN{R ¢« A€ F;}:1€1I}.

Finally, from the definition of Nuc it follows that
NN{A : A €F,} 16T} =n{ucF, : i€I}.

Thus, from all these equalities, NucG" = ﬂ[NucFi :1€1}. O



CHAPTER III
THE NON~STANDARD REALS

The previous chapter has outlined a procedure for producing an
enlargement for any given set X. There are also other procedures for
producing non-standard models. One of these is called the ultrapower
technique. This technique has the added feature that in the case of the
real numbers it not only guarantees a non-standard model, buﬁ it also
provides specific examples of elements that are non-standard real
numbers. Thus the major purpose of this chapter is to provide the
reader with some *points of a set which are not points of that set,

that is, to show that the scope of a set may properly contain that set.

Throughout the remainder of this chapter the natural numbers will
be denoted by N and the real numbers by R. 8 will designate an ultra-
filter containing the cofinite (Frechet) filter on N. That is, 3 is an

ultrafilter containing all subsets S of N where N\S is finite.

Now let R = {f ¢ f is a function from N into R}. Since RN may
be described equivalently as the set of all real sequences, sequential
notation shall be used to represent the elements of RN. For example,

: - N - :
if x € R° then x = (x19 Xgs X35 ecs) where Xy € R for each j € N.
The ultrafilter 38 will now be used to define an equivalence relation on

R. IfX, ¥ €R', define "s" by X=7 iff (n€N:x =y} e€ad

33
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In particular, X = 5’. if X and ; differ in only a finite number of

coordinates.,

3.1 Lemma: The relation = is an equivalence relation on RN.

Proof: For each X € RN, X=x since {n€N: x

n=Xn}=N€80

Hence E is reflexive. If X = Yy, then {n € N3 X, = Yn} € 3. Note
that {n € N Yo = xn] ={n€N: X, = yn]. Hence y =x, and so =
is symmetric. If X =y and y=w, then A={nenN: x =y} €3
and B={n €N : ¥, = wn] € 3, Since 3 is a filter, AN B € 3. Note
that ANBc {n € N ¢ X = wn] = C. This implies C € 8 since 3 is

a filter. Hence x = W, and so = is transitive. 0O

Let R¥ denote RN/E, _the collection of equivalence classes of
RN with respect to the equivalence relation m. (This explains the
reason for calling this technique the ultrapower technique. R® is
constructed by first forming the cartesian product RN and then
reducing it modulo an ultrafilter.) For simplicity, X = (xl, X9

X39 e*¢) will be used to denote the equivalence class to which X

belongs. R* will be called the non-standard reals.

There is a natural way of embedding the reals into R¥*. Let
¥ ¢: R~ R* be defined by ¥(r) equals the equivalence class in R*

to which the constant function T belongs. That is,
Y(_r) =T = (ry vy 1, cee)s

3.2 Definitions Bach T € R*¥ for which there is some r € R such

that T = y(r) will be called a standard element of R* or a standard
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real number. All other members of R¥ are called non-standard real

numbers.
R

For convenience, R will be considered as a subset of R¥ and each
standard real number r = ¥(r) may be denoted by r. Thus

0= (0, 0y O, °**) may be identified by O and T = (1, 1, 1, «s¢) by 1.

3.3 Example: X = (1, 2, 3, ***, n, *¢+) and ¥ = (1, 1/2, 1/3, ++.,
l/h, *++)} are non-standard real numbers. To see this, compare X to any
standard real number r (i.e. T = (r, r, r, *++)). The set

A={n€N: X, = r} isveither @ or contains exactly one natural number
as r € RAN or r € N. (Since = is an equivalence relation it is
permissible to let the equivalence class be represented by any of its
members, so in particular it was assumed that T was represented by

(ry vy ry *+¢).) Since A is finite, MA é 8, Thus A ¢ 3 and éo X
and r are distinct equivalence classes, Thus X is a non-standard real
number for it is noﬁ equal to any standard -real number. Similarly §
may be shown to be non-standard. In fact, any ‘E = (xl, Xp1 Xg9 sos)

is non-standard if fnenN: X, = r} is finite for each r € R. Thus

the reader now has an infinite supply of *points which are not points.

The major purpose of the chapter has been achigved provided the
reader is willing to accept that R*’ is a non-standard model for the
reals. Since a rigorous proof of this would entail another discussion
similar to that of the preceding chapter, a proof will not be provided.
Instead, an indication of how concepts of R can be reinterpreted in R*
will be given. TFor each concept concerning the real numbers there is a

corresponding concept for rR*, Generally speaking, this concept for R*
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is obtained by using the usual definitions associated with operations
on functions and perhaps reinterpreting properties of R through the
ultrafilter 8. The following definitions and lemmas illustrate these

remarks.

3., Definition: For X = (%91 %y X3 ++¢) and y = (¥11 ¥p Y3 o)

in R*, X <7y iff fn€N:x <y} E€as.

3.5 Definition: For X = (x1v Xp1 Xg9 «e+) in R,
Ix] = (|x1|g I, |x3l, eee).

2.6 Definition: If X €R¥ and r < I%1 for each standard real number
r, then X is said to be infinitely large.

Of course no standard real number is infinitely large, but there

are many infinitely large non-standard real numbers.

3.7 Example: x = (1, 2, 3, *¢*, n, +++) is infinitely large. To

verify this note that for each r € R there is some n € N such that
r<m for each m>n. Clearly |x|l =x If A= {J€N: ry < xj],
then M\A is finite. Hence A€ 3 and so r < |x| for each r € R.
Therefore X is infinitely large. Similarly it may be shown that w and

Z are infinitely large where

w=1(0,1/2, 2, 0, 1/3, 4, 0, 0, T, 8, =35, 16, 32, 6L, ==, 21, <o)

and ; = (01 "1t 1/21 1, O "‘2t 1/31 21 =39 3y ***y -n, n, "").

3.8 Definition: If x € R* and 0 <|X| < lrl for each non-zero real

number r, then X is called an infinitesimal.

3.9 Example: y = (1, 1/2, 1/3, *+*, 1/n, ++¢) is an infinitesimal.
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Note first of all that |yl =y. It is clear that O <y. Now for
each non-zero real number r there exists an n € N such that m>n
implies 1/m < |rl. Thus if A = {j € N : ¥y < Irjll, then MA is
finite. Hence A € 8 and so |§| < |rl for each non-zero r € R.
Therefore ; is an infinitesimal. Similarly it may be shown that 7 and

W are infinitesimals where

= (0, 0, 1/29 0, Oy 1/1+1 0; 0y Oy 1/89 0, 1/161 1/321 1/61+v R ) 1/2n,
ess) and w = (1/2, 0, 1/3, 0, 1/4, O, -1/9, 222, 1/8, 1/27, 1/16,
-1/81, <*-, 1/2n7 1/(‘3)n9 so0)s

wl

3,10 Definition: If r is a standard real number and r - x 1is zero

or any infinitesimal, then X is said to be near r.

1

3.11 Example:

(i) The set of points near zero is the set containing zero and all
infinitesimals.
(ii) If X is an infinitesimal then ¥ = X + r is near r for each
standard real number r. Thus the set S of points near r is

given by S = {X + r ¢ X is zero or an infinitesimall}.

3.12 Definition: For X = (xl, Xps Xg cse) and ¥y = (yl, Vo1 Y31 sos)
in R*, X+7-= (x1 + Y0 Xy + Vo1 Xy + Vg ees) and XY = (x1 Yis
x2 To1 x3 y31 '°°)°

3.13 Lemma: O is the additive identity for R* and 1 is the multi-

plicative identity. The additive inverse of X = (xl’ X1 Xqy eee) is

given by X = (-xl, ~X59 ~X33 see), If b -1 is defined by
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- -1
X = (al, 8y 831 *+¢) where

hoir x40

0 if x_ =0,
then % ~1 4is the miltiplicative inverse of X.

Van Osdol [20] proves these results while establishing that R*
is en ordered field. Considered as flelds, ¥ is an embedding of R (a

complete ordered field) into R* (an ordered field).

Two other important concepts of R which can be reinterpreted in R

are now given for future reference.

3.1, Definition: For each subset S CZR,‘ the associated *set s* in

R* 4is defined by S* = (X €R* : (n€ N : x, € s} € a}.

3,15 Example: x = (1, 2, 3, ***, n, ¢c+) is a ¥element of N¥. For
verification note that {n € N : X, € N} = N which belongs to 8. Thus
X is an example of an infinitely large (non-standard) natural number.

Another example of an infinitely large natural number is
W= (0, 1/2, 2, 0y 1/3, 4y O, O, T, 8, =35, 16, 32, bl ===, 27, *=°).

3.16 Definition: If f ¢ S—~ R 1is a function from S c R, then the

associated *function f* 3 S* = R* is defined by f*(X) =Y where

. f(xn) if x €8
n R
0 if x ¢S
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3.17 Example: Let f : N= R be defined by f(n) = 1/n. Then

£* : N* = R* will *map the infinite natural number x = (1, 2, 3, ***,
n, ***) onto the infinitesimal ¥y = (1, 1/2, 1/3, **+, 1/n, +++), The
function also *maps w = (0, 1/2, 2, 0, 1/3, 4, O, O, m, 8, =35, 16,
32, 6L, "+, 20, <o) onto the inrfinitesimal z = (0, 0, 1/2, 0, 0O,

1/k,y O, O, O, 1/8, 0, 1/16, 1/32, 1/6L, <=+, 1/2%, *=2),



CHAPTER IV
TOPOLOGICAL SPACES

The study of topology evolved as a generalization of the notions
associated with open subséts on the real line. In the work which
follows, it is often helpful to sketch an appropriate "ball" or "sphere"
about a fixed point in order to obtain an intuitive idea of what other
points are near the fixed point. The actual "picture" of the "ball" may
not appear like an open set in the reals, but the purpose for making it
is the same — to enlighten its maker. Once a clear conception of an
idea has been achieved, non-standard analysis will often allow the idea
to be expressed in intuitively worded language. Without further ado, it
will be assumed that for each set X under discussion, X is a standard set
identified with X* in some enlargement based upon the universe of
discourse constructed from X.

5,1 Definition: Let X be a non-empty set and let d be a family of sub-

1

sets of X satisfyings

(1) %X, deyo
(ii) The union of any family {Oa s & € A} of members of ¥ is
again a memberlof Jo
(iii) The finite intersection of ary family [Ok s k=1, 2, ecoy n}

of members of g is again a member of J.

L0
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g is then called a topology for X. The pair (X, J) is called a

topological space (space) and the members of J are called open sets.

Note that property (i) is included mainly for emphasis as it

follows from properties (ii) and (iii) by using @ as an indexing set.

The following examples may easily be verified to be topological

spaces. Spaces which are given names will be referred toc later by these

names.
4.2 Examples
(i) Let X = {a, b, ¢} and T = {{a}, {vy ¢}, X, ¢}, then
(X, 3) is a three-point topological space.
(i1) Discrete topological space
let X # ¢ be an arbitrary set and I =p(X); (X, 3) is
then qalled a discrete space. (P is the power set operator.)
(iii) Indiscrete topological space
Let X # ¢§ be an arbitrary set and I = {X, #}; (X, ) is
then called an indiscrete space.
(iv) GCofinite topclogical space
let X # @ be an arbitrary set and J be the family consisting
of @ and all subsets of X whose complements in X are finite;
(X, 3) 1is then called a cofinite space.
(v) Co=countable topological space

Let X # @ be an arbitrary set and J be the family consisting
of ¢ and all subsets of X whose complements in X are countable;

(X, 3) is then called a co~countable space.



A given set may have many topologies. For example, if X is the
set of real numbers, then X could have the discrete, indiscrete, co-
finite, and co-countable topologies (as well as the usual topology and
many others). Thus when considering a space, both the set and the

topology must be made clear.

The definitions which follow give the terminology which is used to

describe the relationship among different topologies on the same set.

4.3 Definition: Let X be a set and let F be the family of all topol~
ogles for X. Then F can be partially ordered by set inclusion, i.e.
the ordering is given by 3 < J' for J, J'* € F iff Jc3g'. If

J £3', then J is said to be weakeér or coarser than J' while 3J' 1is

said to be stronger or finer than J§. If neither 3 < 3' nor 3J' <3,

then § and J' are said to be non-comparable.

It is easily seen that the discrete topology for X is the finest
topology for X while the indiscrete topology is the coarsest topology

for X,

One activity that occurs repeatedly in point set topology is the
formation of new spaces from old ones. Perhaps the easiest way to do
this is given without proof .in the following theorem, while a warning

is given by the following example.

4.l Theorem: The intersection of an arbitrary non-empty family of

topologies for X is again a topclogy for X.
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L) Example: The union of a family of topologies for X need not be a
topology for X. Let X = {a, b, ¢}, then T = {{a}, {b, c}, X, @}
and 7' = {{b}, {a, c}, X, #} are topologies for X. Note that {b, c}
and f{a, c} are members of J UJ'. If JUJ' is a topology for X,
then the intersection of {b, ¢} and {a, c]’ mast be a member of

T UZ'. This is not, tﬁe case.

One more standard definition will be given before enough machinery

is present to begin with some non-standard treatment of topology.

L6 Definition: Let p be a point in the space (X, J). A subset N of

X is called a neighborhood (nbhd) of p iff there exists an open set O

such that p € 0 and O« N. The family of all nbhds of p is called
the nbhd system at p. This nbhd system will be denoted by Np throughout

this paper.

Note that Np # § since X is always a nbhd of p. In fact, even

more can be said about the structure of this family.

47 Theorems Np is a filter.

Each open set is a nbhd of each of its points, but a nbhd of a
point need not be open. All that is necessary is that it contain some
open set about the point. This is sufficient, however, to provide a

simple criterion for determining when a subset of a space is open.

4.8 Theorem: Let (X, J) be a space, and let O C X. O is open iff

O contains a nbhd of each of its points.
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This provides sufficient material to introduce the very important
non-standard term "monad" and to rigorously define the concept "near“.
When reading the following definition beware that p must be a standard

* L3
point and not merely a point.

4.9 Definition: The monad of the point p, p(p), in the space (X, J)

is equal to Nuc Np.

4.10 Lemma: u(p) =.n[ﬁ s N € Np}

The proof of this lemma consists of recalling the definition of
Nuc G where G < P(X). The lemma is given for emphasis since this will
be the characterization of w(p) wused most frequently in the work

which follows.

&.11 Examgles

(1) For the three-point space in Example 4.2.i, p(a) = f;} n Q.
Thus p(a) = {a}. (The scope of any finite set is that set.)
Similarly, p(b) = {b, ¢} and p(c) = {b, c}.

(ii) For each point p in a discrete space (X, J), uw(p) = {p}.

(iii) For each point p is an indiscrete space (X, 3J), 2= u(p)e
For X finite this means X = n(p). When X is infinite, Q may
well contain non-standard points and in this case X is a

proper ¥ subset of pip).

What the preceding lemma is saying is that p(p) consists
*
precisely of the points which are in every nbhd of p. Thus, intui-

tively speaking, the points of p(p) must be very close to p. This
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leads to the following definition of the concept of nearness. First
note that the topology involved completely determines the monad at each
point. No notational change will be made to denote this where the
topology on X is considered fixed in any given diécussion. It will not
be shown now, but it is interesting to point out that a converse to the
above statement also holds. Nameiy, if the monads of every paint in X

are given then a unique topology J is determined for X.

412 Definition: In the space (X, 3), a *point q is said to be near

the point p if q € p(p). If q is near p for some p € X, then q is

*
called a near-standard point. Otherwise, g is said to be remote.

L.13 Examples

(1) In the three-point space of Example 4.2.i, a is the only *point
near a. The points b and ¢ are both near each other.
(i1) For each point p in a discrete space, the only *point near
p is p itself. Thus each non-standard *ﬁoint of a discrete
space is remote.

(ii1) 1In an indiscrete space, every point is near every other point.
In addition, when the space is infinite Ehere may be non-
standard points near any given point (i.e. there may be
non-standard near-standard *points).

(iv) When the usual topology for the reals is given, it can then be
noted that all infinitely large real numbers are remote *points
while all infinitesimals are non-standard *points which are

near-standard. In particular, x = (1, 2, 3, ***, n, *+*) is
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remote while ¥y = (1, 1/2, 1/3, *¢+, 1/n, ++¢) is near-

standard.

It may now be said rigorously, as well as intuitively, that the
points of u(p) must be near p. It would certainly be expected that
the point p is near itself. Since the point p is in every nbhd of p
and thus a *point in every one of its nbhds, it does indeed follow that
p € p(p). Thus p is near itself and so each standard point is near-
standard. Caution -~ it does not make sense to say p is near p for
non-standard p, and similarly nearness is not a symmetric relationship
for *points. In fact, q may be near the point p while p(q) is not
even defined. This is true when g is a *point but not a point in the
space (X, 3). Ifp an q are standard then it is possible for p and gq
to be near each other. A characterization of a To-space will later

involve an examination of when this is possible.

L.l Example: If a is near b, then b need not be near a. Let

A
X =f{a, b} and T = {@, {a}, X}. Note that p(a) =X N (a\} and
A
u(b) = X. Hence p(a) = {a} and K(b) = X. Thus a is near b, but b

is not near a.

Nearness is a transitive relationship, i.e. if r is near g and q is
near p, then r is near p. Before examining the proof of this in the
next theorem, note that r near q implies q is standard and g near p

implies p is standard while r may be non-standard.

4.15 Theorem: If p and q are points in the space (X, 3) with q near

p, then u(q) < p(p).
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Proof: If p and q are standard points in the space (X, J) with
q near p, then q € p(p), i.e. q is a *point of every nbhd of p. Since
q is a standard point, q is a point of every nbhd of p.‘ Let N € Np
contain the open set O about p. Since O is also a nbhd of p, q € O.
Hence N contains an open set O about q and N is thus a nbhd of q.
Therefore if N € Np, then N € Ngq. It follows that Np < Nq. Whence

A A
NN : N € Nq} < N{N : N € Np}, i.e. u(q) < ulp). O

Bourbaki [1] gives an intuitive description of open sets. This
description says that an open set is a set which is a neighborhood of
each of its points; hence an open set contains all points sufficiently
close to an arbitrary point in the set. The following development
produces a non-standard characterization of open sets which almost uses

these same words.

4,16 Lemma: A set N containing the point p in the space (X, J) is a

A
nbhd of p iff N contains every *boint near p (i.e. u(p) < N).

Proof: By definition, Fil pu(p) = {Ns NC X and u(p) c:ﬁ}.
Since p(p) = NucNp, Fil p(p) = Fil (NucNp). Theorem 2.43 guarantees
that Fil (NucNp) = Np. From these equalities it follows that
Np={N:NcX and p(p) c:ﬁ}. That is, N € Np iff p(p) C:ﬁ.

Hence N is a nbhd of p iff N contains every *point near p. O

4,17 Theorem: A subset O of the space (X, J) is open iff p €0

A
implies O contains all *points near p (i.e. p(p) € O for each p € 0).
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Proof: By Theorem 4.8, O is open iff it contains a nbhd of each
of its points. Thus by the previous lemma, O is open iff p € 0

implies O contains every *point near pe. O

If (X, 3) is a topological space where the cardinality of J is
great, it may be difficult to comprehend which subsets of X are open.
In this case, it would be desirable to characterize J by some simpler
subfamily of J. As'an example, the singletons might be considered to
characterize the topology for a discrete space since any open set can be
expressed as a union of singletons. As is indicated in the following
definition, this subfamily of singletons is in some sense a base upon

which the entire topology rests.

4,18 Definition: A subfamily B of a topology J of X is a base for &

iff every member of J is the union of members of B. J is said to be

generated by B.
It now becomes advantageous, although the previous definition con-
siders finding a base for a known topology, to consider what

chgracteristics a family of subsets of X must have to generate some

topology.

L4.19 Theorem: A family F of subsets of X is a base for a topology I

for X iff

(i) X = U{B: B € F}.
(i) If p € ANB where A, B €F, then there existsa C €F

such that p€C and Cc ANB.



49

This theorem is a useful tool since not every family of subsets
of X is a base for a topology. Thig fact is obvious from the theorem
if X cannot be obtained as a union of members of the family; however,

the following example shows that (i) may hold while (ii) fails.

;.20 Example: B = {{a, b}, {b, c}; X; #} is not a base for a topology

for X = {a, b, c}. For if it were, then both {a, b} and {b, c}
would be in the topology so generated. Thus {b} = {a, b} N {b, ¢}
would be in this topology. This cannot be since {b} 1is not express—

ible as a union of members of B.

When the concept of a base was being introduced, it was mentioned
that the base might characterize the open sets in a simpler way. This

is exemplified by examining a base for the usual space of real numbers.

4.21 Example: Let R be the set of real numbers. For each r € R and
for every v>0 let S(r, V) = {x: x€R and |r - x|l <V}. Then
B={S(r, V): r € R, v> 0} satisfies the criteria of the previous
theorem and is thus a base for a topology for R. This topology E is

called the usual topology for R and the space will be denoted by

(Ry E).

Similar to the way a base simplifies the characterization of open
sets a nbhd base might simplify the investigation of the nbhd system
about a point in the space. Since the monad of a point is determined
by the nbhd system, it might then be advantageous to examine p(p) in

terms of the nbhd base.
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L.22 Definition: A subfamily Mp of Np where p is a point in the space

(X, J) 1is a nbhd base for Np iff every nbhd of p contains a member of

Mp.

L.23 Lemma: If p € (X, ), then u(p) = ﬂ{ﬁ : M € Mp} where Mp a

nbhd base for Np.

Proof: Since Mp € Np, it follows that n{ﬁ : N € Np} c:n{ﬁ :
M € Mp}. By Lemma 4.10, u(p) = ﬂ{ﬁ : N € Np}. Hence n(p) C:ﬂ{ﬁ s
M€ Mp}. To verify the other set inclusion, assume that g ¢ p(p).
Since q € ﬂ{ﬁ ¢ N € Np}, there must exist some N € Np such that
q ¢ ﬁ. Mp is a nbhd base so N contains some M € Mp. It follows that
q ¢ # and thus q ¢ Nt s v e Mp}. This verifies that Nl : m e Mp}

N i
uw(p). Therefore u(p) = N{M ¢ M € Mp}. O

L .2l Example: Note that the family of sets S(r, V) where v > O is

a nbhd base at r € (R, E), the usual space of real numbers.

It is now time to justify the different uses—of the term "near"
made earlier in this paper. One definition of nearness was given for
the non-standard real numbers and another definition was given for an
arbitrary topological space. When the topology for the reals is the
usual topology E, then these definitions are equivalent. To see this,
let us first examine the points>near zefo in the space (R, E). If g
is near O, then q € u(0). ‘Féom the preceding example and lemma it
follows that q *€ s(0, v) for each v > 0. By the definition of
s(0, v), q ¥€ s(0, V) dimplies that g} < V. Since this is true for

each Vv > 0, q is either zero or an infinitesimal, i.e. g is near zero
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in the terminology of Chapter III. Thus if q is near zero in terms of
the definition interpreted for the space (R, E), then q is near zero
in terms of the definition given earlier in Chapter III specifically
for the non-standard Reals. By reversing the last few steps of this
_argument, one may verify that nearness of q to zero in R* of Chapter
III implies q is near zero in (R, E). Similarly, for each p in (R, E)

it follows that u(p) = {q : p = q is zero or an infinitesimall.

The present task will be to continue giving some of the basic

definitions in order to form a framework for later discussions.

L.25 Definition: A family S of subsets of X is a subbase for § of the

space (X, J) iff the family of all finite intersections of members

of S forms a base for §. & is then said to be subgenerated by S.

As was the case when a base was defined, the definition of a sub-
base is made with regard to an existing topology. It was earlier
pointed out that not every family of subsets generates a topology, but
it may now be seen that any given family of subsets is contained in
some topology. Obviously S < P(X), the discrete topology for X.
However, there may exist a coarser topology containing S. In fact, S

subgenerates such a topology.

4,26 Theorem: For any family S of subsets of X, S subgenerates a

topology & which is the coarsest topology containing S.

.27 Example:

(i) The family of open rays, sets of the form
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{x:x€R and x>p} or {x: x€R and x <p} where
p is a real number, constitute a subbase for (R, E).

(i1) The family s = {#, {a, b}, {b, c}, X} subgenerates the
topology I = {@, {b}, {a, b}, {b, c}, X} where X = {a,

b, c}.

It was mentioned earlier that there are meny possible topologies
on somé sets. Not only was a relationship among the topologies
examined, but it was also suggestéd that new topologies couldAbe formed
by intersections of known topologies. Other ways of forming new topol-
ogies from known ones will be discussed when the terms "relative
topology" and "product topology" are defined. The simpiest of these
will now be examined while product sp;ces will be postponed until a

later chapter.

1,28 Theorems If A is subset in the space (X, J), then the family

3y = {ANO: 0€3} is a topology for A.

4.29 Definition: The topology 3, = fAnoO: 0€3} associated with

the set A in the space (X, ) is called the relative topology of A

with respect to J and (A, :rA) is called a subspace of (X, J). 4
property of (X, ) which is also a property of each subspace of

(X, 3) is an hereditary property.

l.30 Example:

(1) Consider A = [3, 5) in the space (R, E). Note that

(3, &), (3, 4), and (4, 5) are open sets in the relative
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topology of A while T[4, 5) is not. Further notice that
[3, 4) 4is open in (A, EA) but not in (R, E).

(i1) Consider (R, E) and (J, EJ) where J denotes the set of
integers. It is easy to verify that EJ is the discrete

topology for J.

It was mentioned that the monads of the points of X determine a
unique topology for X. This result of Machover and Hirschfeld is
interesting and will be examined now, but the reader is advised that no

future use will be made of the result in this paper.

A
4,31 Theorem: Let A(p) be an arbitrary subset of X for each p € X

and let J = {0cX s A(p) C:G for each p € 0}. Then J is a topology

for X.

Proof: First note that @, X are in J., Now suppose that
{oa‘z a € A} is a family of members of . If p € Lo,, then p €0,
for some a € A. Since O_ € T, r(p) C:Sa. Thus A(p) c:ﬁBa,' and so
the union of the members is also in J. (Note that 0, < U0, implied
eé'chB;.) Similarly, if {0, : k=1, 2, ..., n} is a finite family
of members of ¥, let p € nok. Then P € 0k for each k, and so
A(p) C'Sk for each k. Hence A(p) c-nGk which equals 6Bk. Thus J

contains nOk. Therefore J is topology for X. O

4,32 Corollary: The topology J determined by the family of AMp)'s is

the strongest topology such that A(p) ¢ u(p) for each p € X.
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Proof: Let p €X and N € Np in the space (X, 3) formed by
the family of A(p)'s. Then there is some O € I such that p € O
and O0c N. Thus A(p) c 6 and so A(p) c {\I\. Since this is true for
each N € Np, A(p) c:n{ﬁ : N € Np}. Hence A(p) € pu(p) for each p in

(x, I).

Now suppose J' is a topology for X strictly stronger than J,
the topvology determined by the family of A(p)'s. Tha’f, is, there exists
some O in 3J' +that is not in J. Thus for some p € 0, A(p) ¢ 6\. How-
ever in (X, '), u(p) c 8 Therefore A(p) ¢ u(p). Hence T is the

strongest topology for X such that A(p) c u(p). O

No claim of set equality was made in the previous corollary. In
general, equality may not hold, as may be inferred from the conditions

in the following theorem.
4.33 Theorem: A(p) = p(p) iff the following conditions holds

(1) A(p) 4is nuclear for each p € X.
(i1) p € A(p) for each p € X.
(ii1) If A € Fil A(p) then there is some B € Fil A(p) such that

q € B implies A € Fil A(q).

Proof: (=) Since p(p) = Nuc Np, A(p) is nuclear whenever
Mp) = p(p). Further, if u(p) = A(p) then p € A(p) since p is

always in p(p). Now suppose A € Fil A(p) which equals

{Acx: ap) cﬁ.\}.
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A
Since wu(p) = A(p), it follows that u(p) c A. Hence A € Np and
A
thus contains some open set B about p. Since B is open, u(r) c B for
each r € B. BcA and pu(r) = A(r) imply that A(r) c® for each

r € B. Therefore A € Fil A(r) for each r € B.

(¢=) Due to the previous corollary, A(p) will equal u(p). if it
can be established that u(p) C'A(E). Since A(p) is assumed nuclear,
Theorem 2.38 guarantees that A(p) = NucF for some filter F < P(X).
If it can be estabiished that Fil A(p) < Np, then it will follow that
u(p) « A(p). To see this note that Fil A(p) c Np impiies, by Theorem
2.43, that Nuc Np c Nuc(Fil A(p)). Thus u(p) < Nuc(Fil A(p)). Now
examine Nuc(Fil X(p)). Recall that A(p) = NﬁqF. By Theorem 2.43,
NucF
A(p)
p(p) < A(p).

i

Nuc(Fil NucF). Substitute twice for NucF to obtain

f

Nuc(Fil A(p)). From the preceding inclusion, it follows that

To establish Fil A(p) ¢ Np, let A € Fil A(p) and define
C={q: A €Fil A(q)}. By the choice of A and the definition of C,
p€C. If q€C, then A(q) CZQ. Thus by the assumption that
q € A(q), it follows that q¥* A and so q € A since q is standard.
This shows that C < A. Now A will be a nbhd of p, i.e. A € Np, if
it can be shown that C is an open set about p. By definition of the
topology formed by the family of A(p)s, C is open if A(q) c:8~ for
each q € C. So suppose q € C. Then A € Fil A(q) and by assumption
there must exist a B € Fil A(q) such that r € B implies A € Fil |

A(r). Note that A € Fil A(r) means that r € C and thus B c C.
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A
B € Fil a{q) dimplies a(q) < £ and thus BcC implies A(q) c C.

Hence C is open and A must be a nbhd of p. Thus Fil A(p) c Np and

the theorem follows.

Le 2& Examgle:
(1) Let X = {a, b, ¢}, A(a) = {a}, A(b) = {b, c}, and

(i1)

A(c) = {b, c}. Then the topology 3 = {0c X s A(p) CZS for
each p € 0} is given by T = {@, {a}, {b, c}, X}. Note
that this is the space given in Example L.ll.i. It may be
observed that A(p) = u(p) for each p € X. Also note that
the conditions of Theorem A.33‘are satisfied.

Let X = {a, b, ¢}, A(a) = {b}, M(b) = {by e}, Mc) = {c}.
Then the topology J which is formed is given by I = {{,
{c}, {b, ¢}, X}. The monads of the points are : u(a) = {a,
b, ¢}y u(b) = {b, ¢}, and u(c) = {c}. Clearly Ar(p) < n(p)
for each p € X; however, A(a) is a proper subset of u(a).

The condition of Theorem k.33 that fails is that a ¢ A(a).



CHAPTER V

GENERALIZATIONS OF NEARNESS

This chapter will continue the development of some of the basic
properties of a general topological space. Recall that q is near p iff
q € u(p), that is, the monad of a point p is the set of "points near

p. An attempt to generalize this concept of nearness will now be made.

5.1 Definition: In the space (X, 8), the *set A is near the point p

A
iff some *point of A is near p (i.e. if A N p(p) # @).

That the concept of nearness actually has been generalized may be

verified by examining the following theorem.

5.2 Theorem: If p is a point in the space (X, 3) and q is a *point of
X then the ¥*set whose scope is {q} is near p iff q is near p. 1In
particular, if p and q are points in X then the set {q} is near p iff

q is near p.

Proof: By definition the *set A is near p iff some *point of A is
near p. Hence if Q = {q}, then A is near p iff q is near p. Now if
q is a point in X then {q} is a finite standard set. Hence fg} = {q}.
It therefore follows that the peint q is near the point p iff the set

{q} is near p. a

57
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2.3 Example: If {q} is near p, then p need not be near q and {p}
need not be near q. Recall Example L.14. The point a was near b so

{a} is near b. However, b is not near a and so {b} is not near a.

This example points out that although nearness is an intuitive
concept it must be used carefully with regard to the topology in
question. It is also important to emphasize that the terminology must
be used carefully. While the term "near" has been defined and must be
used prudently, the term "close" has not been (and will not be) given
a rigorous definition and will be used more loosely in a descriptive

context.

The concept of nearness will now be related to the standard
concepts of accumulation points and closed sets. An accumulation point
of a set is sometimes loosely described as a point that the set is
close to. Accumulation points of a set will now be defined and the
accuracy of this description will be examined using non-standard

techniques.

5. Definition: A point p is called an accumulation point (acc pt)

of ACX in the space (X, 3) if every nbhd N of p has a non-void
intersection with A\{p}. The set of all acc pts of A, accA, will

be called the derived set of A.

This definition indicates that A must be very close to its acc pts;
nonetheless, it is possitle for p_¢ A to be an acc pt of A and for

p € A not to be an acc pt of A.
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2.2 Example:

(i) Let A = (0, 1) in the space (R, E). Note that accA
= [0, 1], but neither O nor 1 is an element of A.
(ii) Let A = {0} in the space (R, E). Note that accA = .
Thus O € A but is not an acc pt of A.
(iii) Let X be the set of real numbers and let J consist of X,
and all left rays where a left ray is a set of the form

{x : x <r}] for r a real number. From now on this topology

will be referred to as the left-ray topology on the Reals.

If A= {0} then accA = {x: x> 0},

The following theorem relies heavily on the concepts developed
in the chapter on non-standard models. In particular, the proof of
this non-standard chargct;rization of acc pts uses properties of an
enlargement and certain facts about set theoretic operations with the

scopes of sets.

5.6 Theorem: A point p is an acc pt of the set A in the space (X, J)

iff some ¥point of A other than p is near p (i.e. iff pu(p)N

(Np)) # #)-

Proof: (-3) Since p is an acc pt of A, each nbhd of p contains
a point of A other than p. Now the intersection of a finite number of
nbhds of p is again a nbhd of p.- Hence the relation defined by the
formula x € Np Ay € AAYy # PAY € x 1is concurrent. Since o* is
an enlargement, it follows that there exists some q *€¢ A such that

v A
q#p and whenever N € Np, q *€ N. Hence q € u(p) N (& {p})
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A
which means u(p) N (A\{p}) # @¥. Therefore some *point of A other

than p is near p.

(¢-) Suppose p ¢ accA. Then there must exist a nbhd N of p such
that N N (A\{p}) = @. Since the scope of an intersection of two sets
A P
is the intersection their scopes, N N (A\{p} = @. Similarly
A AN ‘ A
NN (A\{p}) = ¢ and finally N n (Q\fp]) = @#. Hence

A
u(p) n (A\{p}) = @§. Therefore if some ¥point of A other than p is

near p, then p is an acc pt of A. D
5.7 Corollary: The standard set A is near the point p in the space

(X, 3) iff p € A or p € accA.

A
Proof: By definition, A is near p iff A N u(p) # @. Also,
A A
AN pu(p) #@ iff either p € A or pu(p) N (A\{p}) # #. This last

condition is equivalent to saying p € A or p € accA. O

The following example emphasizes that points must not be used in

place of 'points in Definition 5.1.

5.8 Examples The set A in the space (X, J) méy be near the point g
without any point of A being near q. Let the space be (R, E),
A=(0,1), and g =1. Then (O, 1) is near 1, but no point of

i

(0, 1) is near 1.

That the sufficiency part of Theorem 5.2 may not be generalized to
infinite sets is clear from the previous example; nonetheless, the
theorem may be generalized to finite sets. One way to do this is to

prove the result directly using the fact that a finite standard set
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contains only standard *points. This result is also immediate from

the following lemma.

5.9 Lemma: If A, Bc X, then A UB is near the point p in (X, J)

iff either A is near p or B is near p.

N
Proof: AU B is near p iff u(p) N (AU B) £ @ This is
A A
true iff either u(p) NA# @ or ufp) N B # @, that is, iff A is

near p or B is near p. O

5.10 Corollarys If A is a finite set in (X, 3) which is near p then

some point of A is near p.

5.11 Example: Lemma 5.9 may not be. extended to the union of an

infinite family of sets. Let (R, E) be the space with I = (1/n, 2)
for each natural number n. Note that (0, 2) = UL, and that (0, 2)

is near O. However, In is not near O for any n.

The proof of the following theorem is so similar to the proof of

Lemma 5.9 that only the result will be given here.

5,12 Theorem: The point p is an acc pt of A U B in the space (X, TJ)

iff p € accA or p € accBo

Machover and Hirschfeld state that results are often easier to
invent using non-~standard analysis since the language is more intuitive
and natural. As but one example of this, note the clarity of the idea

presented by the next lemma in this paper.
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.13 Lemma: If, in the space (X, J), the ¥set A is near the point
?

p and p is near the point g, then A is near q.

Proof: If A is near p, then u(p) N \ £ @. Since p is near q,
p(p) c u(q) by Theorem 4.15. Hence u(q) N A £ @, and therefore A

is near q. O

5.1, Example: The converse of Lemma 5,13 does not hold. In the space

(Ry E), let A=(0, 1), p=0, and q = 1. Note that A is near
p and A is near g, but p is not near q. Further, let (X, J) be the
left-ray topology on the reals with A = (1, 2), p=0, and q = 3.

Then A is near q and p is near g, but A is not near p.

5.15 Example: Lemma 5.13 cannot be extended to a theorem about acc pts.

It is possible for p € accA and p to be near q with g being an acc pt
of A. Consider the three point space of Example 4.2.1 with p = c,

A = {a’ b}’ and q = be

A closed set is a standard concept which is sometimes thought of
as a set which contains all points that it is close to. That this

thought process is essentially correct will be shown now.

5.16 Definition : A set C in the space (X, J) is said to be closed

if accA C A,

5.17 Examples

(1) The sets {0} and [0, 1] are closed in (R, E) while
[0, 1) and (0, 1) are not closed. Note that [0, 1) is

neither closed nor open in (R, E).
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(ii) If A is any set in the discrete space (X, J), then
accA = ¢. Thus every set in this space is closed.
(i1i) If A is any non-void set iﬁ the indiscrete space (X, I),
then accA = X unless A is a singleton. For singleton sets

A, accA = X\A. Thus the only closed sets in this space are

#, X.

5,18 Theorems A set C in the space (X, J) is closed iff C contains

all points which it is near to.

Proof: (-») Suppose that C is ¢losed and that C is near the point
pe Then p €C or p € accC by Corollary 5.7. Since C is closed,
accC € C. So in either case p € C. Therefore C contains all points

that it is near to.

(=) Assume that C near p implies p € C. Now suppose C is not
closed. This means that there is some p € accC1 such that p ¢ C. By
Corollary 5.7, p € acﬁC implies C is near pl Thus the agsumption
indicates p € C. From this contradiction iﬁs follows that C must be

closed. (]

The concept of an acc pt is one of the most useful in topology,
not just because it is intimately related to the concept of nearness
and thus the the topology of the space, but also because it leads to
another characterization of open sets. In fact, many books use the

following important result to define closed sets.

5,19 Theorem: A set C in the space (X, J) is open iff X\C is closed.
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Proof: (&) If C is a closed subset of X and p € C, then it
A
follows from Theorem 5.18 that pu(p) N C = ¢f Thus for each p € X\C,

A N .
p(p) c:X\e = X\C. Hence, by Theorem 4.17, X\C is open.

'—)) Similarly, if X\C is open then u(p) C:f(é for each
) A
p € X\C. That is, if p § C then u(p) N C = @. Hence C is closed by

Theorem 5.18. O

It is worthwhile to note, as shown by Example 5.17, that a set need
not be either closed or open. A set can be both closed and open as X
and @ always are. Such sets are often called clopen and will be

discussed later under the topic of connectedness.

Many textbooks in topology combine Theorem 5.19 and the definition

of a topology in order to obtain the following lemma.

5.20 Lemma: In the space (X, J),

(1) X and ¢ are closed.
(i1) The intersection of any family [Ca ¢ a € A} of closed
subsets of X is again closed.
(iii) The finite union of any family [Ck t k=1, 2, *os, n} of

closed subsets of X is again closed.

Although the intersection of a finite family of open sets is open,
the intersection of an arbitrary family of open sets need not be open.
Similarly, the union of an arbitrary family of closed sets need not be

closed.
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5.21 Example: In (R, E), the set {0} is not open but it is the

intersection of the family of open sets of the form (-~1/n, i/n)
where n is a natural number. In this same space, the set (0, 2] is
not closed but it is the union of the family of closed sets of the form

[(1/n, 2] where n is a natural number.

It is a common mistake to coneclude that the derived set of A is

closed. That accA need not be closed is shown by the following example.

5,22 Example: Let (X, ) be the left-ray topology on the reals. If
A = {0}, then accA = {x : x>0}, Let B = accA then O € accB but

O ¢ B. Hence B = accA is not closed.

By definition, a set is closed if it contains its derived set. The
concept that will now be considered is that of forcing a set to contain

its acc pts.

5,23 Definition: Let (X, 3) be a space with A € X. The closure of

A is the set A = A U accA. To distinguish the closure of A in the
v ' -7 '
spaces (X, J) and (X, 3') the names J-closure (A”) and J ~closure

i

_a-'
(A”) may be incorporated.

5,2/, Example: Let (X, 3) be (R, E) while (X, ') is the reals

with the left-ray topology. If A is chosen to be {0}, then

)
. {0} while D - {x : x » 0}.

This example emphasizes the importance of being cognizant of the

topology in question before X is formed.
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5.25 Theorem: Let A c X in the space (X, J). Then

X =f{p€X: Ais near pl.

Proof: The proof of this theorem follows immediately from the

definition of A and Corollary 5.7. O

It is obvious that A C:I} however, it is almost true that 1 C A.
This is shown by an upcoming lemma. The immediate task is to show that

the sets for which A € A are a very special and familiar type of set.

5,26 Theorem: A = A in the space (X, J) iff A is closed.

Proof: (—) Assume A = A. If A is near p, then p € & by the
previous theorem. Hence p € A and so A contains all points that it

is near to. A is closed by Theorem 5.18.

(&) Conversely, if A is closed then A contains all points which
it is near to. Hence A C A. Since A is always a subset of i,

A-"—-A-o D

Note the similarity between Theorem 5.25 and the next theorem.
The following result, which is;given without proof, is often a very
useful characterization of A to use when constructing standard proofs.
Perhaps the reason for this is the fact that it expresses the intuitive
concept of nearness associated with A more clearly than the definition
which was given., However, this idea was even more precisely spelled

out in the non-~standard terminology of Theorem 5.25.
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5,27 Theorem: Let A be a set in the space (X, ). Then p € & iff

NNAg#G¢@ for each N € Np.

5.28 Lemma: If A is a subset of the closed set C in the space (X, 3),

then A C C.

Proof: Suppose C is closed and p € K. Then A is near p and so
A
b(P) NA 4@ Now acc, so np)NE 4@ end thus C is near p.

Hence p € C since C is closed. Therefore Acoc. O

This leads to the following alternative for forming A. In some

texts this criterion is used to define A.

5.29 Theorem: Let A c X din the space (X, 3). Then A is closed and

A =N{C : Cis closed and A ©C}.

5,30 Theorem: Let (X, J) be a space with A, B c X. Then the

following statements involving closures are trues

(i) a=¢ and -}szn
(ii) %
(iii) 1If

(iv) AUB =4

U
(v) EsNBcAnNBE.
Proof:

(1) X and ¢ are open so § and X are closed. Thus by Theorem 5.26
a=¢aI1d_i=Xe
(ii) Theorem 5.29 guarantees X is closed so A equals its closure

by Theorem 5.26.
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(iii) If AcB then AcB and thus Lemma 5.28 assures A c B
since B is closed.
(iv) By Theorem 5.25, p € A UB iff A U B is near p. Now
A UB is near p iff A or B is near p as shown by Lemma 5.9.
This is true iff p € A or p € B.
(v) Similarly if p €A N B, then AN B is near p. It is
easily shown that both A and B must be near p. Thus p

p€ins. 0

5,31 Examples A N B need not be contained in A N B. Let the space

be (Ry E) and A = (0, 1) while B = (1, 2). Then EZNTB = {1},

]

whiie ANB=4¢.

5,32 Example: Theorem 5.30.iv does not necessarily hold for arbitrary

unions. For yerification recall Example 5.11,

Using intuition and the previous definitions of nearness as guides,

the concept of nearness will once again be generalized.

5.33 Definition: In the space (X, J), the ¥set A is near the set B

iff A is near some point of B.

To verify that this definition is a generalization of the concept

[

of nearness, examine the following theorem.

5,34 Theorem : The ¥set A in (X, 3) is near {p} where p € X iff

A is near p.
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5.35 Theorem: Let A, B, and C be subsets of X in the space (X, 3)

while p and g are points. Then the following statements are true:

(i) {p} 4is near {q} iff p is near q.
(i1) If AcC and A is near p, then C is near p.
(iii) If Ac C and A is near B, then C is near B.
(iv) If Cc A and A is not near p, then C is not near p.
(v) If Cc A and A is not near B, then C is not near B.
(vi) If CcA and B is not near A, then B is not near C.
(vii) A is near B UC iff A is either near B or near C.

(viii) B U C 4is near A iff either B or C is near A.
Proofs

(1) By the previous theorem, {p} is near {q} iff {p} is

near qo Now {p} is near q iff p is near q by Theorem 5.2.

(i1) If A cC, then AcC. A near p implies p(p) N A £ @.
Hence p(p) N 3 # @, and so C is near p.

(iii) If' A is near B, then A is near some point of B. Since
AcC, part (ii) implies C is also neér this point., Thus C
is near B.

(iv), (v), (vi), (vii), (viii) The proofs of these statements are

similar to the proofs of the previous harts. 0

To illustrate how well this definition coincides with our intuition

about closeness the next result will be presented.

5.36 Theorem: The set A is near the set B in the space (x, 3) iff

ANB#4.




70

Proof: A is near B iff A is near p for some point p in B. Now

A is near p iff p € A. Hence A is near B iff AN B £ ¢. ]

If one concentrated upon the words rather than the meaning of
Lemma 5.13, it might mistakenly be expected that this result would
generalize along with the concept of nearness. It is not difficult to
qpnstruct examples, such as the following, which show that this is not

the case.

5.37 Example: The *set A can be near the set B which is near the point

p without A being near p. To see this, let A = (0, 1), B = (0, 2),
and p =2 in the space (R, E). Similarly, if C = (2, 3) with A

and B as before, then A is near B and B is near C, but A is not near C.

5.38 Example: A may be near B without B being near A. Let A = {a}

and B = {b} in Example 4.l4i. Since a is near b, A is near B; how-

ever, b is not near a, so B is not near A.

The concept that shall now be developed is in some sense a dual
concept of that of an acc pt. These interior points, once defined, will
determine when a set is open in a manner dual to the way acc pts deter-

mine when a set is closed.

5.39 Definition: A point p is an interior point (int pt) of the set A

in the space (X, 3) iff A € Np. The set of all int pts of A, A,

will be called the interior of A.

5.40 Examples

(i) Let A =[0, 1) in the space (R, E). Note that A° = (0, 1).
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(ii) Let N be the set of natural numbers in (R, E). Then
NO = ¢-
(iii) Let (X, 3) be the space of integers with the cofinite

topology and let A = 1\ {0}. Then A° = A,

It is obvious from the definition of A° that A° € A and that
for each p € A° there must be an open set containing p and contained
in A. This will be recorded for future use in an upcoming theorem,
but first examine what this means in non-standard terms. What is
suggested is that points close to an int pt of A are also in A. Doing
what is suggested often results in a theorem in non-standard analysis;

this is the case here.

5.,1 Theorem: Let A X in the space (X, ). Then A° = {p € X : q

A
near p implies q *¢ A} (i.e. A° = {p € X : n(p) < A}).

Proof: (=) If p € AO, then A € Np. Hence u(p) = nﬁ\l\s N € Np}

A
is a subset of A.

(&) It u(p) c ﬁ,, then Lemma L4.16 guarantees that A € Np. Hence

pEAo. O

o]

5,,2 Theorems A = A~ in the space (X, J) iff A is open.

Proof: (-3) If A = A° then u(p) 2 for each p € A and thus

A is open by the non-standard characterization of open sets.

(=) If A is open, then pu{p) c? for each p € A. Hence p € A°
by the previous theorem. Therefore A C A°. since A° is always a

subset of A, A = A°. O
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The previous theorem and Theorem 5.26 illustrate the concept of
duality between acc pts and int pts. The following theorems not only
serve to illustrate the duality between these concepts but also' show
that interiors and closures of sets determine each other, much as

open and closed sets determine each other.

5.43 Lemmas If O is an open subset of A in the space (X, J), then

0 c:Ao.

Proof: If p€ 0, OCA, and O is open, then A € Np. Hence

0

p e’ and 0cA® 0

5.4l Theorem: Let A c X in the space (X, J). Then A° is open and

A° = Uf0 : O is open and O c A}.

As a matter of convenience, A' will be used to represent X\A
in the next two theorems. For example (XRA)O will be denoted by

A0

5.45 Theorems Let (X, J) be a space with A ¢ X. Then the following

statements are true:

(1) A°=a""",
(11) A°' = aA'".
(ii1) X = 4A'°".

This theorem may be used as a tool to establish the next theorem,

which is the dual of Theorem 5.30.
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5,46 Theorem: Let (X, J) be a space with A € X. Then the following

statements are true:

(1) =@ and x° = x.
(1i) A°° = a°.

(iii) If A< B, then A° ¢ B°,
(iv) (A nB)° =2a°ns°

(v) 2°UB’c(auB)°,

5,47 Example: (A U B)° need not be contained in A° U B°. Let

A=[0,1) and B =[1, 2] in the space (R, E). Then

A°uB® = (0, 1) U(1, 2) while (A UB)° = (0, 2).

5.48 Example: Theorem 5.46.iv does not necessarily hold for arbitrary
(=1/n, 1/n) in

{0} while

intersections. For each natural number n let In

(Ry E). Then Ig = I~ for each n., Hence A 1°

n=1 "n
([ 1.)° = ({o})° = ¢.

i

The next concept that will be examined is that of points which

both a set and its complement are close to.

5.49 Definition: A point p is a boundary point (bdry pt) of the set A

in the space (X, T) iff every nbhd of p has a non=void intersection
with both A and X\A. The boundary of A, b(A), is the set of all

bdry pts of A,

5.50 Theorem: The point p is a bdry pt of A in the space (X, J) iff

both A and X\A are near p.
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Proof: By definition, p € b(A) 1ff NNAF @ and NN X\A # ¢
for each N € Np. This is equivalent to saying that p € A and
p € X\A. Hence by the non-standard characterization of closures,

p € b(A) iff both A and X\A are near p. O

5,51 Theorem: The point p € b(A) iff p £ A° and p ¢ (x\A)°.

Proof: By the previous theorem it follows that p € b(A) iff

wW(p) NA 4P and u(p) N 4§ Hence peb(h) 122 u(p) ¢ A
and p(p) ¢ A. Therefore p € b(A) iff p £ (X\A)° and p £4° D

The intimate relationships among the concepts of closure, interior,

and boundary are reiterated in a corollary to the previous theorems.

5.52 Corollary: If A is a set in the space (X, J), then the following

statements are true:

(1) b(a) = MA° = Z N WA = b(X\4).
(i1) X\b(A) = A° U (x\a)°.
(ii1) X = A U b(A).

2©

(iv) = A\b(A).

Since the open sets of (X, J) are the members of the topology
and thus determine all topological properties, it is very ﬁorthwhile to
have various criteria available to deteimine whether a given set is
open or not. Several such criteria have already been given. 1In
particular, a set was shown to be open iff its complement was closed.
Two additional criteria shall now be formulated by examining (iii) and

(iv) above.
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5.53 Corollary: The set A in (X, J) is closed iff b(A) A and A

is open iff A N b(4) = &. O

Two remaining topics which relate to closures and interiors will
now be definedlput will not be examined in detail. The first topic is
a generalization of a property of the set of rational numbers in the
space (R, E). The rational numbers, as Arnold Steffensen [18] has
described it, are evenly distributed throughout the set of real numbers
in the sense that the rationals are close to every real number. In |

other words, if Q is the set of raticnals in (R, E), then @ = R.

5.5l Definitions A subset D in the space (X, ) is called dense

iff D = X.

5.55 Examples

(i) As presviously mentioned Q is dense in (R, E).
(ii) If A is any non-void set in an indiscrete space, then A is
dense.
(iii) If (X, 3) is an infinite space with the cofinite topology

and A is an infinite subset of X, then A is a dense set.

The fellowing non--standard characterization of dense sets verifies

that the intuitive description by Steffensen was indeed accurate.

5,56 Lemmas D is a dense subset of (X, §) iff D is near every point

in the space.

Proof:s By defimition, D is dense iff B»m X. Since D contains
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precisely the points which D is near, D is dense iff D is near each

point of X. (]

A standard version of this lemma which also indicates this notion
of “"evenly distributed™ is given in the following theorem. This

theorem is a particularly useful criterion in real analysis.

5,57 Theorems A subset D of the space (X, J) is dense iff each non-

void open set contains a point of D.

Proof: (-3) Suppose O is a non-void open set such that O N D = g.
A A A A
If p €0, then u(p)<c 0. Now OND=@, so u(p) ND=¢@. There-

fore D is not near p and so D cannot be dense.

(e~) If D is not dense, then D £ X. So for some point p, D is
2~
not near p. Hence p(p) € X\D. This means that X\D must be a nbhd of

D and therefore X\D must contain an open set about p missing D. D

The last topic to be defined is that of a set which may be thought

of as not covering moch of the space.
i

5.58 Definition: The set N in the space (X, J) is nowhere dense iff

5,59 Example: If (X, ) is an infinite space with the cofinite

topology, then all finite subsets of X are nowhere dense.
These last two concepts are related by the following theorem.

5,60 Theorem: N is a nowhere dense subset of (X, 3) iff X\N is a

dense set.
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Proof: N is nowhere dense when N = @. By Theorem 5.41, this
~TN
is true iff pu(p) N (X\N) # § for each p € X. This is true iff
X\N is near each p € X. Hence N is nowhere dense iff X\N is

dense., - O



CHAPTER VI
CONTINUQOUS FUNCTIONS AND HOMEOMORPHISMS

In this chapter, the concept of continuity which is so important
in analysis and the concept of a homeomorphism which is so important in
topology will be examined, Functions, which are purely set theoretic,
will be examined when there are topologies on both the domain and range
spaces. Topologies determine nearness of points and hence, as will be

noted shortly, the continuity of functions.

A continuous function often is described loosely as one which
preserves closeness of points. That is, if p and q are close then their
images, f(p) and f(q), also should be close when f is continuous.
Non—standafd topology, in fact, characterizes continuity in almost these
exact terms. The approach will be to define continuity in the standard
fasnion, to present the intuitively worded non-standard characterization,

and then to develop some theorems with non-standard proofs.

6.1 Definition: A function f from the space (X, §) to the space

(x', 3'), den.‘ed by f3 X = X' or f: (X, 3) — (x', 3'), is

continuous at the point p in X iff for each nbhd N of f(p) there

exists a nbhd M of p such that f(M) cN. If ACX and f is con-
tinuous at each point pf A, then f is said to be continuous on A. If
: i on

A =X, then f is called a continuous function from (X, J) to
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(X', 3'). If f is not continuous at p or on A then f is called

respectively discontinuous at p or discontinuous on A. A property

preserved under a continuous map is called a continuous image property.

6.2 Example:

(1) Every function from a discrete space to an arbitrary space
is continuous.
(i1) Every function from_an arbitrary space to an indiscrete space
is continuous.
(iii) Regardless of the topologies involved, every constant function
is continuous.

(iv) The identity function from (X, 3) to (X, J) is continuous.

Throughout the remainder of this paper neighborhoods of points,
monads of peints, and nearness of points must be observed more carefully
than before. From now on there often will be at least two topological
spaces under consideration simultaneously. To avoid unduly complicated
notation, the usual notation will be continued without explicit mention

of the topology involved since this will be clear from the context.

The next example emphasizes the importance of the topology in
determining the continuity of a function. As is shown below, a function
may be continuous with respect to some topologies and discontinuous

with respect to others.

6.3 Example: Let X = {a, by c}, J be the indiscrete topology, J' be

the discrete topology, and f be the identity function on X. Then
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f: (X, 3) -» (X, ) is continuous while f: (X, 3) — (X, J*) is

discontihuous.

The following theorem gives the non-standard characterization of
continuity. Its occurence has been heralded in the previous pages;
however, a word of warning will be sounded. The *points which are near

p may be non-~-standard as well as standard in this characterization.

6.4 Theorem: A function f from the space (X, &) into the space

(X', 3') 1is continuous iff g near p implies f(q) is near f(p).

Proof: (=3) Assume that f is a continuous function and that q is
near p. Let N be an arbitrary nbhd of f(p). Since f is continuous
at each point of X and in particular at p, there exists M € Np such
that f(M) c N. Now q € ff since q is near p, and so f(q) € ﬁ. N
was arbitrary so f(q) € f for each nbhd of f(p). Hence

f(q) € w(£f(p)) and £(q) is therefore near f(p).

(¢~) Assume that q near p implies f(q) is near f(p), but f is
not continuous. Since f is not continuous, there is a nbhd N of f(p)
such that M = fwl(N) is not a nbhd of p. Hence by the non-standard
A
characterization of nbhds, p(p) ¢ M. Let q € M(p)\ﬁ. Since q is near
A
py f(q) is near f(p) by assumption. Hence £(q) € N and therefore

A
q € M. From this contradiction it follows that f must be continucus. O

6.5 Corollary: The function f which maps (X, 8) onto (X', 3') is

continuous iff A is a *subset of X near p € X implies f(A) is near
f(p). Sinilarly, f is continuous iff the *subset A of X near BC X

implies f(A) is near f£(B).
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Proof: Assume that f is a continuous function from X onto X'
and that A is a *subset of X near p € X. Then some *point q of A is
near p. By the previous theorem, f(q) must be near f(p). This
implies that f(A) is near f(p). Conversely, assume that if A is any
*subset of X near p € X then f(A) is near f(p)f Then, in partic-
ular, when A = {q}, {q} near p implies f({q}) = £(q) is near £(p).
That is, if q is near p then f(q) is near f(p). Therefore f is con-

tinuous by the previous theorem.

Similarly, assume that f is continuous and that the *set A is near
B. Then A must be near some point p € B. By the preceding proof,
f(A) must be near f(p). Hence f(A) is near f(B). Conversely,
assume the ¥set A near B < X implies f(A) is near f(B). Then, in
particular, this is true when B = {p}o It follows from the preceding

proof that f is continuous. O

Thus together Theorem 6., and Corollary 6.5 say that a function is

continuous iff it preserves nearness.

The next theorem is a frequently used result in analysis which is
given to indicate the ease with which some non-~standard proofs of -

theorems may be written.

6,6 Theorem: If f is a continuous function from (X, 3) onto (X', 3')
and g is a continuous function from (X', J') to (X'', 3'*'), then

the composition function g ¢ f is also a continuous function.

Proof: If f is a continuous function from (X, J) onto (X', J°)

and q is near p, then f(q) is near f(p). Since g is a continuous
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function from (X', J') to (X'', 3'') and f(q) is near f(p), it
follows that (g o f) (q) = g(£(q)) is near g(£(p)) = (g o £) (p).

Thus g o f is a continuous function from (X, ) to (X'', 3''). O

Earlier several different criteria were given to determine when a
set is open. The next theorem similarly gives several standard

criteria for determining when a function is continuous.
6.7 Theorem: If f is a function from (X, §) to (X', 3°), then the

following statements are equivalent:

(i) f is a continuous function.
(ii) If O € 7' then £ -(0) € 7.
(iii) If B is a basic open set in (X', g'), then f-l(B) is
open in (X, ).
(iv) If S is a subbasic open set in (X', 3'), then f'l(s) is
open in (X, J).
(v) If C is closed in (X', 3'), then f“l(C) is closed in
X, 3).
(vi) If AcX, then f(&) c T(A&).

(vii) If B X', then f"'l(B) c f"l(’).

Proofs (i) —> (ii) Assume that f is continuous and that O € J'.
Let p be an arbitrary point of f_l(O). If q is near p then f(q) is
near f(p) by Theorem 6.4. Since O is open about f(p), the non-
standard characterization of open sets guarantees that f(q) € 8=
Since q is a *point whose image is a *point of O, it must be true that
q ¥e f-l(O). Hence ful(O) is open for it contains all *points near

the arbitrary point p. By standard techniques, it is not difficult to
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show that each part of this theorem implies the next part until (vi)
implies (vii). It can then be shown that (vii) implies (i) in order to

complete the proof. 0

6.8 Example: Set equality need not hold in either (vi) or (vii) of

the previous theorem. For (vi) let fs (X, 3) = (R, E) be defined by
£(x) = 1/x where (X,VK) is the usual subspace of positive real
numbers. Also let A = {x : x> 1}, Then . {x: x21},

£(a) = {y : 0 <y <1}, f(KJ) ={y: 0<y<1}, and ?TKTE =

{y : 0<y g1}, For (vii) let X = {a, b, ¢}, T be the discrete

topology and ' the i1d screte topology for X. Let f be the identity

' -yt
function from (X, 3) te (X', 3') and B = {a, b}. Then B =X

g
and so f‘l(ﬁﬂ') = X while f‘l(B) = B.

In the very special case of (R, E), the usual space of real
numbers, different definitions of continuity are often given. Not all
of these are equivalent in an arbitrary space, however. As an example,

continuity defined in terms of sequences will now be examined.

6.9 Definition: A sequence (x5 X5y *°*, X3 ese) in (X, 3) is

said to converge to the point p € X iff each nbhd of p contains all

but a finite number of the terms of the sequence. This will be denoted

by lim x_ = p.

In particular, a sequence (xl, Xyy **%y X ¢+¢) in (R, E)
converges to the point p iff each nbhd S(py, V) of p contains all but
a finite number of the terms of the sequence. Thus by the definition

of S(p, v) the sequence converges iff for each real number ¢ > O
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there exists an m ¢ N such that n>m implies |x -p| <9,
Although we try to impress upon freshman calculus students that it is
not permissible to place infinity into an expression, what this
definition is intuitively saying is that terms infinitely far out in

the sequence are infinitesimally close to the limit.

Before showing that in some sense the student is correct to sub-
stitute infinity into the expression, consider the following example.
For clarity, the sequences (which are functions from N to R) will be

examined using functional notation,

6,10 Example: Using the standard definition of convergence, it is easy

to verify that the sequence defined by f(n) = 1/n converges to zero
in (R, E). ’Now proceed as in Example 3.17 and evaluate this function
at the infinite natural number given by X = (1, 2, 3, *+¢, n, se¢).
*(X) = (1, 1/2, 1/3, +++, 1/n, *++) wuhich is an infinitesimal. That
is, the sequence f is infinitely close to the limit zero when evaluated

at X.

6.11 Theorem: The sequence f converges to p in (R, E) iff f(x) is

near p for each infinite natural number x,

Proof: (-3) Assume that the sequence f converges to p and that
v > 0. Then there exists an m, € N such that for each natural number

n>m lf(n) - pl < V. If X is an infinite natural number, then

V’
certainly X > my. Hence I£¥(X) - p| < v. The standard natural

number m_ depends on the standard real number V, but regardless of

v
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the m, in question, the infinite x will be greater than mg . Hence

lf*(E) - p| <v for every non-zero real number V. Thus f*(x) is

near pe.

(&) Conversely, assume that for each infinite natural number X
that f*(x) is near p. That is, |f*(%) - pl < v for each non-zero

v € R. Hence given y, the following sentence is true for R*:
am yn[(n €N An>m) - |£(n) - pl < v].

Reinterpreted for R, the sentence says that the sequence f converges to

P O

Although, a sequence (in an arbitrary space) which converges to p
may be described loosely as becoming very close to p, it need not be

the case that any standard point in the sequence is near p.

6.12 Example: The sequence defined by f(n) = l/h converges to O in

(R, E); however, f(n) ¢ u(0) for any n € N. Hence no point in the

sequence is near O.

6.13 Example: A sequence may converge to more than one point. ILet

(X, 3) Dbe the real numbers with the cofinite topology, and consider
the sequence defined by f(n) =n. If p € X then for any M € Np,
X\M is finite. Hence M contains all but a finite number of the terms
of the sequence. Therefqre this sequence converges to p for each

p € X.

6.1 Proposition: If (X, J) is a space with the co~countable topology,

then 1lim X =P iff for some natural number m, X =P for n>m.
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Proof: Clearly if X, =D for n>m for some m, then each nbhd
of p contains all but a finite number of the terms of the sequence.
Conversely, if 1im X, =Py then each nbhd of p contains all but a
finite number of the terms of the sequence. Let N =0 U{p} where
0= X\{xl, Xpy ***y Xy *°*}. N is an open nbhd of p and the only term
of the sequence that N can contain is p. Since N contains all bu£ a
finite number of the terms of the sequence, X, must be p for n>nm

for some m. 0O

6,15 Definition: Let f: (X, ) = (X', 3'). The function f is called

sequentially continuous at p € X iff for each sequence (xl, Xny **%y

X *s+) in X which converges to p, the sequence (f(xl), f(xz), cee,
f(xn), «e+) in X' converges to f(p). If f is sequentially con-

tinuous at each point of X, then f is called seguentially continuous.

6.16 Example: Let f: (R, E) — (R, E) be defined by f(x) = 2x.

Suppose (syy S,y ***y 5., ***) converges to s. Let m be an arbitrary
infinite natural number. Then lsa - sl 1is either zero or some
infinitesimal y. Thus IZSE - 2sl = 2,35 -~ s| is zero or some infin~
itesimal 2y. Hence (2515 285y ***y 25, ***) = (£(sq)y £(s5)y ***y
f(sn), e+s) converges to f(2s). Therefore f is sequentially contin-
uous. The following theorem and example compare continuity and

sequential continuity.

6,17 Theorem: If f: (X, J) = (X', 3') is continuous then f is

sequentially continuous.
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6,18 Example: A sequentially continuous function need not be contin-

uous. Let X ={x€eR:1sxs 3] be given the co-countable topology
J, and let X' ={x e€R : 1 g xg 2] be given the relative topology
7' as a subspace of (R, E). Define f: (X, J) = (X‘, 7') by

x if xeX'

f(x) =

1 if x ¢ X'.
If (Xl’ Xyy *°%y X9 ee2) converges to p in (X, J), then by Prop-
osition 6.14 x =p for n>m for some m. Hence (£(x)y £(x5),
see, f(xn), »*+) has f(x)) = f(p) for n > m. Thus this sequence
converges to f(p) in (X', 3') and so f is sequentially continuous.
However, f is not continuous. To see this let M = (1, 2) be a subset
of X'. Note that M is open in (X', J'), but f"l(M) =M is not

open in (X, T) since X\M is not countable.

Two other types of functions which might appear to be closely
related to continuous functions will be defined. The definitions are
given so that an outside reference will not be needed, but there is
actually no general relationship among the three types of functions.
Since this would necessitate six examples to verify their independence,

the examples will be omitted.

6,19 Definition: A function f from the space (X, J) to the space

(X'y ') is called an open function if f£(0) € g' for each O € J.

If the image of every closed set in (X, ) is closed in (X', J'),

then f is called a closed function.
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6,20 Theorem: The function f: (X, g) - (X', 3') is open iff

u(p) Cﬁ implies u(f(p)) c {(1;) for each N < X.

Proof: (-3) Assume that f is an open function and suppose that
p(p) c ﬁ. By the non-standard characterization of nbhds, N is a nbhd of
p. Hence there exists an open set Oc N about p. Since f is an open
function, f£(0) is open. Thus y(£f(p)) < f/(B). Since i@ c@,

it follows that p(f(p)) c iﬂ.

AL 7N
(&) Assume that p(p) € N implies u(f(p)) < £(N), and suppose
that O is open. If q € f(0), then g = f(p) for some p € O. Since
A N\
O is open, u(p) € O. Thus by assumption u(f(p)) < £(0). That is,

7N . .
p(q) € £(0). Hence f£(0) € 3', and so f is an open function. a

The following lemma is a result given by Machover and Hirschfeld

and is useful in establishing the next theorem.

6.21 Lemma: If ,(f(p)) < f(p(p)) then u(p) €N implies

w(2(p)) < E).

A
Proof: Assume that ,(f(p)) € f(u(p)) end suppose pu(p) c N. 1If

q € p(£f(p)), then q e f(p(p)). Since u(p) < f, £(u(p)) < £()

O\ A
which equals T(N). Thus q € f(N) and the desired inclusion

follows. O

By observing both continuous functions and open functions, it may
be noted that an open function takes open sets to open sets while the
inverse of a continuous function brings open sets back to open sets.

Upon the basis of this comparison, it might be expected that a function



would be open if q is near p whenever f(q) is near f(p). This
expectation cuuld arise since a continuous function maps points near p
to points near f(p). This result follows from the previous theorem

and lemma in this paper.

6.22 Theorem: ILet f be a function from (X, J) onto (X', 3'). If

q is near p whenever f(q) is near f(p) then f is an open function.

Proof: Assume that q is near p whenever f(q) is near f(p).
Since f is onto, if x ¢ u(f(p)) then x = f(q) for some ¥point q of
X, and so by assumption q ¢ p(p)s If q € u(p) then f£(q) € f(u(p)),
i.e. x € f(u(p)). Hence u(f(p)) c f(u(p)). Therefore by the previous

| A , N
lemma, p(p) c A implies u(f(p)) c f(A). Thus the previous theorem

guarantees that f is an open function. ' a

.23 Example: The. converse of the previous theorem does not, hoid. Let
f: (R, E) ~ (X, J) be the characteristic function for the rationals
where X = {0, 1} and 3 is the indiscrete topology on X. The function
f is openj however, f(2) =1 is near O = f(7), while 2 is not near

.

To emphasize the importance of f being onto in the previous

theorem, the next example is presented.

6,24 Example: If q is near p whenever f(q) is near f(p) then it

does not necessarily follow that f is open. Let (R, J) be the reals
with the indiscrete topology and define f: (R, 3) — (R, E) by
Xx=0

£0) - 1 x#0
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Since f(R) = {0, 1} which is not an element of E, f is not open.
However, f(q) near f(p) certainly implies q is near p. For
regardless of the point p in question, q is near p in the indiscrete
space (R, J). \

The topic that shall now be investigated is that of identifying
the similarity of topological properties of a space and its image under
a mapping. Thus what needs closer consideration is the identification
of the concept of nearness by the function. If f: (X, ) = (X, 3')
is the identity map from a discrete space to-an indiscrete space, then
f is continuous. Further, if q is near p then f(q) is near £(p);
however, f(q) may be near f(p) without q being near p. Thus the
continuity of f insures that f preserves nearness of points. To
guarantee that f—l also preserves nearness, it would be necessary for

1

7" to also be continuous.

There is a Greek word "homoiomorph" which means of similar form or
structure. From this comes the terminology which is used in the next

definition to identify spaces of similar structure.

6.25 Definition: If f: (X, 3) = (X', J') is a one~to-one continuous

function from X onto X' such that f—l is also continuous, then f

is called a homeomorphism and the spaces are said to be homeomorphic.
A property of a space preserved under a homeomorphism is called a

topological property.

Topology is sometimes described as the study of topological

properties. To one unfamiliar with the deve.opment required to define
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a topological property, this description must surely sound circular.
Nonetheless, within the context of this paper, this description is an
accurate one., Topology is the study of the abstract equivalence of
spaces due to the nearness of points. The spaces may be different when
examined under other structures, for example under an algebraic struc-

ture; however, from a topological viewpoint they are indistinguishable.

6,26 Examples

(1) Each space is homeomorphic to itself since the identity map
is a homeomorphism from (X, 3) to (X, J).

(ii) The usual space of real numbers (R, E) is homeomorphic to
the subspace (A, EA) where A = (0, 1). A homeomorphism
from this subspace to (R, E) is given by f£(x) = %%5%57.

As part (ii) of the previous example shows, neither length nor

distance is a topological property.

6.27 Theorem:s Let f: (X, ) => (X', 3'). Then saying f is a homeo-

morphism is equivalent to stating that f is a 1-1 function from X onto

X' and q is near p iff f(q) is near f(p).

Proof: The function f is continuous iff g near p implies f(q)
is near f(p). Likewise the function £ is continuous iff f(q)

near f(p) implies q is near p. The theorem follows. O

6.28 Theorem: A function f: (X, J) —) (X', 3') is a homeomorphism iff

f is a continuous, one~to-one, open function from X onto X'.
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Proof: (—) If f is a homeomorphism then f(q) near £(p)
implies q is near p. Thus by the non-standard characterization of an
open function, f is open. The remaining conditions follow from the

definition of a homeomorphism.

(=) If £ is open and O € J, then the conditions imply that
(f—l)-l(o) = £(0) € &'. Hence #1 is contimous and so.f is a homeo-

morphism. O

One example due to Kuratowski will be given to show that, although
spaces may be homeomorphic, care must still be exercised in choosing a

function that actually performs the identification between the spaces.

6.29 Example: The function f from the space given below onto itself is

- one~to-one and continuous, but it is not a homeomorphism. Consider the
following subspaces of (R, E), (X, 3) and (X', 3') where X consists
.of all intervals of the form (3n, 3n+l) and all points 3n + 2 for

n a non-negative integer. X' = (X\{2}) U {1}. Define

: ' x if x # 2
h: (X, 3) = (X', 3', by h(x) =
1ifx =2
and
x/2 if x<1

(X7, 3') (K 8) by a(x) ={(x/2) -1 if3<x<h

%

X =3 if x =2 5.

Note that h, g are one-to-one, continuous, and onto, Hence so is the
composition f = g o h. However f is not a homeomorphism of (X, J)

onto (X, 3) since {2} is open but £({2}) = {1/2} is not open.



CHAPTER VII
CONNECTED SPACES

The major theme of this chapter will be the concept of comnected-
ness. Following the usual procedure, the concept opposite
connectedness will first be defined. Once separated sets have been

defined, both of these concepts will be examined in non-standard terms.

From an intuitive viewpoint, sets are connected if they camnnot be
severed into distinct pieces. This is, of course, a very loose
description since it is not clear what is meant by sever, by distinct,
or by a piece. Nonetheless, this description does indicate that the
emphasis here seems to be more upon non-closeness rather than upon

closeness.

This aside has been given not merely to give a preliminary feel
for the definitions which follow, but also to provide a point of
reference. When the non-standard characterization for these concepts
is given, it then can be noted once again how incisively the non-

standard terminology portrays the ideas represented by these names.

7.1 Definition: Let (X, J) be a space with A, B X. Then A and B

are separated from each other iff A N B = g=ANB. Aand B separate

X or form a gseparation of (X, I) iff A and B are non-void separated

sets whose union is X.
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2.2 Example:

(i) 1In the space (R, E), (0, 1) and (1, 2) are separated but
do not form a separation of (R, E). Likewise, (0, 1) and
[2, 3) are separated but do not form a separation of (R, E).
The sets (0, 1) and [1, 2) are not separated in (R, E).
(i1) 1If (X, J) 1is a discrete space of more than one point, then
A and X\A separate X when @ # A # X.
(iii) Let (X, J) be the three point space in Example L.2.i. Then

{a} and {b, ¢} separate X.

7.3 Theorem: A and B are separated iff neither A nor B is near the

other.

Proof: A and B are separated iff AN B=¢ = AN B. Thus by
Theorem 5.36, A and B are separated iff neither A nor B is near the

other. O

7.4 Theorem: Let (X, J) be a space, and let A, B, and C be subsets

of X. Then the following statements are true:

(1) ¢ and A are separated.
(i1) If Cc A and A and B are separated, then B and C are
separated.
(iii) If A and B are separated and A and C are separated, then

A and B UJ C are separated.
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Proof:

(1) A is not near ¢ and @ is not near A so A and @ are separated.

(ii) If A and B are separated then B is not near A. Since C c A,
Theorem 5.35 guarantees that B is not near C. Also A is not
near B. Hence C camnot be near B. Thus B and C are
separated.

(1ii) If A is separated from both B and C, then A is not near
either set. Thus A cannot be near their union. Likewise
neither B nor C is near A so their union cannot be near A.

Thus A and B U C are separated. | 0

The next theorem gives sufficient conditions that are sometimes
useful in standard proofs to establish when two sets are separated in

a space.

7.5 Theorem: Let (X, ¥) be a space with A and B subsets of X. If
there exist disjoint open sets M and N such that AcM and Bc N,

then A and B are separated.

Proof: Let a be an arbitrary element in A. Since M is an open
. A . . A A
set containing A, p(a) © M. Now MN N =¢ implies MN N = @. Hence
uw(a) N ﬁ = ¢, and so N is not near a. Therefore N is not near A. Thus
B is not near A since B < N. Similarly A is not near B. This means

that A and B are separated. |

7.6 Example: The converse of the previous theorem is not valid. Let
X = {a, b, ¢} with 7 = {¢@, {c}, {a, c}, {b, ¢}, X}, If A = {a} and

B = {b}, then A and B are separated. However the smallest open sets
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containing A and B are respectively {a, ¢} and {b, ¢} which have

{c} as their intersection.

7.7 Definition: The space (X, 3) 1is connected iff there does not
exist a separation of (X, J). Stated positively, (X, J) is connected
iff B= @ whenever X =AUB, A# @, and A and B are separated.
(X, 8) 1is called disconnected if it is not connected. A subset Y of X

is connected if (Y, 3&) is a connected space.

7.8 Theorem: The space (X, J) is connected iff A £ § # B and

AUB=X implies either A is near B or B is near A.

Proof: (—9) Assume (X, 3) is connected. Then the non-void sets
A and B cannot separate X. Since A and B are not separated Theorem 7.3

guarantees either A is near B or B is near A.

() If A#@#B and AU B =X implies either A is near B or
B is near A, then A and B are not separated. Hence there does not exist

a separation of (X, J). Therefore (X, ) 1is connected. O

.9 Example:

(1) Discrete spaces of more than one point are disconnected.

(i1) 1Indiscrete spaces are connected.

7.10 Definition: A subset of the space (X, ¥) that is both open and

closed is called clopen.

This terminology will be used in the next theorem which gives

several equivalent standard criteria for determining connectedness.
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7.11 Theorem: The following statements are equivalent in the space

(x, 3):

(1) (X, 3) is connected.
(i1) The only clopen subsets of (X, 3) are ¢ and X.
(iii) If (X', 3') is a discrete space with X' = {1, 0}, then
there does not exist a continuous function from (X, J) onto
(x'y ).
(iv) X cannot be represented as the union of two non-void disjoint

open sets.

Proof: (i) — (ii). Suppose that A # X is a non-void clopen
subset of the connected space (X, 3). Then X\A is also a clopen
subset of X which is not equal to X or ¢, but it is disjoint from A.
Hence by Theorem 7.5, A and X\A separate (X, ). This would mean

(X, 3) 1is disconnected, hence the conclusion follows.

(ii) ~» (iii). Suppose that f: (X, J) = (X', J') is continuous
and onto. Then f‘l({O}) is unequal to ¢ or X and it is clopen. Since

this contradicts (ii), the conclusion follows.

(iii) = (iv). Suppose X could be represented by the union of the
non-void open sets A and X\A. Then the characteristic function of A,
f: (X, 3) = (X', 3'), which is defined by

1 x€A

f(X) =
0 x €x\A
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is a continuous function from (X, J) onto (X', J'). Since this

contradicts (iii), the conclusion follows.

(iv) = (i). Suppose that (X, J) is disconnected, then there
exist non-void sets A and B which separate X. Hence neither A nor B
is near the other. It is then clear that A N B = @. It also follows
that A and B must both contain all points they are near to. Thus A
and B are closed. Since they must be complements of each other, both
A and B are open. This contradicts (iv); hence the conclusion

follows. | a

The next theorem and example relate connectedness to some
properties defined in earlier chapters. This will be the style through-
out the remaining portion of this paper. Once a concept has been
defined and examined with regard to non-standard criteria, it will then

be tested to see what properties it possesses.

7.12 Theorem: Connectedness is both a continuous image properﬁy and a

topological property.

Proof: Assume that f is a continuous function from the connected
space (X, J) onto the space (X', 3'). Suppose that (X', 3') is
disconnected. Then there exist subsets A and B of X' which form a
separation of (X', 3'). Thus neither A nor B is near the other, and
so by Corollary 6.5 neither f—l(A) nor f_l(B) is near the other.
After examining f"l(A) and f”l(B) carefully, it follows that they
are not only separated but also separate X. This means that (X, J)

is disconnected which contradicts the hypothesis. Hence (X', 3')
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must be connected. Therefore connectedness is preserved under a

continuous map and so certainly under a homeomorphism. 0O

7.13 Example: Connectedness is not an hereditary property. Consider
the subspace of (R, E) given by (4, EA) where A =B U C,
B=[0,1), and C = (2, 3). Since A is the union of two non-void

disjoint relatively open subsets, A is separated by B and C.

7.14 Lemma: If C is a comnected subset of A U B in the space (X, J)

where A and B are separated, then either CC A or C < B.

Proof: Assume C is a connected subset of A UB where A and B
are separated. Since neither A nor B is near the other, it follows
that neither AN C nor BN C is near the other. Thus ANC and
BN C are separate@ subsets of the connected set C. Hence one of

ANC and BNC is empty, and so either C< A or C C B. O

The following example and theorem show that the union of a
collection of comnected sets need not be connected, but by restricting

the sets in the collection a cormected set may always be obtained.

7.15 Example: A = (0, 1) and B = (2, 3] are both connected subsets

of (R, E), but A UB is disconnected.

7.16 Theorem: Let F be a family of connected subsets of (X, J) such

that no two members of F are disjoint. Then ufc: Cce F} is also

connected.

Proof: Let S = U{C : C € F} and suppose that A and B separate

S. Now by Lemma 7.14, each C € F 1is either a subset of A or of B.
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Without loss of generality assume C < A. Then for any other
Ct €F, CNC'#¢ implies C' is also a subset of A. Hence
SCACS and B = @. Therefore A and B cannot have separated S after

all, and so S is connected. D

7.17 Theorem: If C is a connected subset of (X, J) such that

CcAc E, then A is also connected.

Proof: Suppose that B and D separate_a A. If CcACcC E, then
CcBUDcC. Since neither B nor D is empty, they each contain some
point of C. Thus C is near both B and D by Theorem 5.36. However, by
Lemma 7.14, CC B or C < D. Thus either C and D or C and B are
separated. Hence either C is not near D or C is not near B. From this

contradiction it follows that A ig connected. )

7.18 Corollary: The closure of a comnected subset of (X, ) is also

connected.

Although a space may be disconnected, there will always exist
connected subsets since the singletons will be connected. Therefore it
is always possible to express the space as a union of connected sets;
however, it may well be possible to express the space as the union of
connected sets with more elements. The concept that will now be

examined is that of maximal connected sets.

7.19 Definition: A component of a space (X, 3) is a connected subset

A of X such that A< Bc X with B connected implies B = A.

7.20 Theorem: TEach componfent of a space is closed.
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Proofs If A is a component of (X, J), then A is connected.
Thus by Corollary 7.18, A is connected. By the maximality of A, A=

A
Hence A is closed. O

By considering the union of the family of connected subsets con-
taining p € X, the proof of the next theorem follows in the standard

fashion.

7.21 Theorem: The components of (X, J) partition X.

In some sense, it would seem that the number of components of a
space could be used tc gauge how. connected or disconnected the space is.

This is partially verified by the following theorem.

7.22 Theorem: A space (X, J) is connected 1ff (X, J) has only one

component .

Proof: (—)) Assume that (X, 3) is connected and that A is an
arbitrary component in the space. Since A < X and A 1s maxtpaki:

A = X+ Thus X is the unique component of (X, J). .-

(¢~) Conversely, assume that A is the only component of X. Since
the components of the space partition X, X is the union of the com-

ponents. Hence X = A, and so X is connected. 0



CHAPTER VIII
THE SEPARATION AXIOMS

As remarked earlier, topology is sometimes defined as the study of
topological properties; i.e. those properties pregerved by homeomor~
phisms. Theorem 6.4 and Corollary 6.5 have shown that a continuous
function is one which preserves nearness. Thus it would seem that a
function would have a better chance of being continuous when the domain
space has few points near other points and when the range space has
many points near other points. In terms of open sets, a function is
more likely to be continuous when the domain space has many open sets
and the range space has relatively few open sets. As an example of
this, recall that each function from a discrete space to an arbitrary
space is continuous and .each function from an arbitrary space to an

indiscrete space is also continuous.

From the preceding discussion, it may seem that many properties of
a space are related to the cardinality of its topology. In this chapter,
a collection of concepts known collectively as the separation axioms
will be examined. Roughly, the separation axioms gauge the availability
of open sets for use in separating points, separating points from closed
sets, and separating closed sets. The reader is advised that not all
texts use the same names or definitions for these axioms. The
terminology here will agree with that of Kelley [4] but will disagree
with that of Steen [17].

102
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8.1 Definition: A space (X, J) is. a T, —space (Kolomogorov space)

if whenever p, q € X, P # q, there exists V € T such that either
PEV and qfV orelse q€V and p ¢ V.

Intuitively speaking, what has been said is that no two distinct
points of a To—space are close to each other. In non-standard terms,

this is stated rigorously in the following theorem.

8.2 Theorem: (X, 3) is T  iff no two distinct points of X are near

each other.

Proof: (—)) Assume that (X, J) is T, and that p and q are
distinct points in the space. Then suppose without loss of generality
that N is a neighborhood of p such that q ¢ N.. Since q is standard,
qaé¢ ﬁ and hence q ¢ u(p). That is, q is nat near p and hence p and q

cannot be near each other.

(&) Assume that p and q are arbitrary distinct points in (X, J)
and that p and q are not near each other. Then without loss of gener-
ality, q is not near p. Hence q ¢ u(p) = ﬂ{ﬁ + N is a nbhd of pl.
Thus there exists a nbhd N of p suéh that q ﬂ ﬁ. Since q is standard,

q ¢ N. Thus (X, 3) is T.. O

Examples related to the separation axioms will be given after all
levels of separation have been defined. If these definitions are new
to you, it might be advisable to examine the examples immediately after

reading these definitions.

8.3 Definition: A space (X, §) is a T,~-space (Frechet space) if
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whenever p, q € X, p ¥ q, there exist V, W € J such that p e V,

qfV and q€W, pgW

Thus a T,-space is one in which each of two distinct points in the
space has an open nbhd missing the other point. Hence the following

theorem could be used to intuitively describe the space.
8.4 Theorem: (X, J) is T, iff no point of X is near another point.

Proof: (-?) Let p be any point in the T -space (X, J). Then for
any other q € X, there exists a neighborhood N about q such that
p ¢ N. Since p is a standard point, p § f. Hence p ¢ u(q) and p

is not near q.

(e=) Let p, q be arbitrary elements in X. Assuming no point is
near another, p ¢ u(Q)- Hence there exists an open neighborhood V
about q such that p *¢ V. Since p is standard, p ¢ V. Similarly
there exists a neighborhood V about p missing q. Hence (X, 8) is a

T, -space. O

8.5 Theorem: Every T, -space is a T -space.

Proof: Assume that p and q are arbitrary distinct points of the
Tl-space (X, ). Then neither p nor q can be near the other. Hence

certainly they are not near each other. Thus the space is Tb. (|

The next theorem is sometimes a useful criterion for determining

when a space is T;. Its proof recalls some earlier non-standard ideas.

8.6 Theorem: A space (X, 3)\ is T, 1iff every singleton subset of X

is closed.
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Proof: (-3) Assume that p € X in the T,-space (X, J). If
q is any other point of X, then p is not near q. Hence [p} cannot be
near q. Thus {p} contains all points of X that it is near to, and so

{p} is closed.

(e) Conversely, assume that {p} is closed for each p ¢ X. Then
{p} is not near any other point q of X. Hence p is not near q. Thus
q

(¥, 7) is T,. 0

Example 5.22_shqwed that accA did not have to be a closed set.
The next theorem claims, however, that all T,-spaces do have accA closed
for each subset-A. The standard proof of this theorem will be omitted.
The policy of this paper is to omit some proofs when a standard proof
seems more direct and concise than a contrived non-standard proof. In
the case of the following theorem (as well as Theorem 5.29) another
point needs to be made. No non-standard proof of this theorem was
discovered. Perhaps a lengthy indirect proof using non-standard
techniques does exist, but it seems quite unlikely that a concise non-
standard proof does exist. The reason for this lies in the definition
of the concept of nearness. Nearness is a very intuitive idea, a very
useful concept in non-standard analysis, and a fundamental notion of
topology. It is not as fundamental, though, as the notion of a neigh-
borhood upon which its definition relies. One standard proof of the
following theorem uses the definition of a T, ~space and certain nbhds to
produce a straightforward proof. Several obvious attempts to prove this

theorem using non-standard terminology, and hence nearness, failed.
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The reason for this seems to be that nearness is not a basic enough
notion to get at the heart of this relatively straightforward idea.
Since nearness to *points is meaningless, it is impossible using the
congept of nearness to relate, through accA, any nearness of A to a
*soint p which is an ace pt of accA. The reader certainly is invited
to attempt a proof of the following theorem -in order to clarify some

of the nebulous comments made above.
8.7 Theorem: If A< X in the T, ~space (X, 3) then accA is closed.

The following theorem also i1s given to show that, although non-
standard analysis is a valuable tool, it is not the answer to all
problems. The proof of this theorem relies upon the concept of
finiteness and the fundamental concept of a neighborhood; these are
standard ideas. Therefore, the role of non-standard analysis should

be to supplemeni , but not to replace, standard analysis.

8.8 Theorem: Given A € X din the T, —space (X, 3)y p € aceA iff

every open nbhd of p contains an infinite number of points of A.

8.9 Definition: A space (X, ) 1is a T, -space (Hausdorff space) if

whenever p, g € X and p # qy, there exist disjoint open sets V and

W such that p € V and q € W.

Thus a T_-space is one in which there exist distinct neighborhoods
for each pair of distinct points. Therefore the separation is more
restrictive than saying that two points cannot be close. The separation

will not even allow distinct points to be close to the same point.
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In non-standard terms, the monads of different points are disjoint, as

is shown in the following theorem.

8.10 Theorem: A space (X, ¥) is Hausdorff iff no %point is near two

distinct points of X.

Proof: (—9) If (X, §) is T,, then for any p, q, p #q in
X there exist neighborhoods V and W of p and q respectively such that
. s . T A A
VNW=@ This implies that VA W = 8, and hence VN W= @. Thus

w(p) N u(Q) = ¢, i.e. no *point, can be near both p and q.

(&) If no *point is near two distinct points of X, then
p(p) N u(q) = @ for distinct p and q in X. While it would be true
that €1 # = ¢ implies VN W =@ for standard V and W, it is not
permissible to conclude immediately from u(p) N pu(q) = ¢ that
neighborhoods V and W exist such that VN W = @. Therefore, exer-
cising greater caution, note that since the nbhd systems Np and Ng
are filters, there exist infinitesimal *nbhds V and W of p and q
respectively. That is, V *G-Np and W *e Ng such that ‘? C NucNp
which equals p(p) and f < NucNg which equals p(g). Thus the

following sentence is true in *:
Ax Ay[x € Np Ay € Ng A #z[z € x A 2z € y]].

Since Np and Nq are standard objects, the interpretation in §f must
also be true. Therefore p and q have disjoint nbhds. Hence (X, J)

is T,. O
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8.11 Theorem: (X, 3) is Hausdorff iff for each p € X, nfM:Me Np

and M is closed} = {p].

Proof: (-9) Assume that (X, 8) is T, and that p € X. If
q % p is another point of X, then there exist disjoint open sets V and
Wsuch that p €V and -q € W. Then p €V and Vc X\W imply that
X\W is a closed nbhd of p missing q. Hence q ¢ niM:Me Np and M

is closed} for gq % pe Therefore this intersection must be {p}.

(&) Assume for each p € X that {p} =nN{M: M€ Np and M is
closed}. If p € X and q is distinct from p, then there exists a
closed nbhd M of p such that gq ¢ M. Hence M is not near q and so no
*point of M is near q. Now if r is an arbitrary *point near p then
r € p(p) which is contained in ﬁ. Therefore r is not near g, and so

(X, 3) 1is T, by the non-standard characterization of T?-spaces. 0O

8.12 Theorem: Every T, -space is also a T,~space and a T,~space.

Proof: Assume that p and q are arbitrary distinct points in the
T -space (X, §). Both p and q are points (and so are *points) which
are near themselves and hence in the T, -space neither can be near the

other. Thus (X, ¥) is T, and hence must be T,. O

As was shown in Example 6.133 sequences may converge to more than
one point in an arbitrary space. It is well known that this is not
true in (R, E). The property of (R, E) that prevents this is the

T -space property.

8.13 Theorem: In a Hausdorff space limits of convergent sequences are

unique.
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Ts-spaces are very nice spaces since they. behave similarly to
(R, E) in so many respects. Another example of this is given by the

following proposition.

8.1, Proposition: If f and g are continuous functions into a Hausdorff

space, then {x : £(x) # g(x)} is open.

Proof: Assume that f and g are continuous functions from (X, 3J)
into the T ~space (X', 3'). Let V= {x : f(x) # g(x)} and suppose
q is near p € V. Since f and g are continuous, f(q) and g(q) are
near f(p) and g(p) respectively. If £(q) = g(q), then that
*point would be near both f(p) and g(p) in a T,-space. By
assumption f(p) # g(p), therefore it cannot be that the same *point
is near two distinct points. Hence f£(q) # g(q), and so q *e V.

A
That is, p(p) € V. Therefore V is open. Im|

8.15 Definition: A space (X, J) is an R-space (regular space) if

whenever p € X and F is a closed subset of X such that p f’F, then
there exist disjoint open sets V and W such that pe¢ V and FCW.

A space (X, J) is a T,-space if it is a regular T, -space.

Thus a space is regular if every closed set and every point not

contained in the closed set can be separated by disjoint open sets.

8,16 Theorem: A space (X, ¥) is regular iff for .each p € X and for

each open nbhd V of p, there exists an open nbhd W of p such that

PEW and WcC V.

8.17 Corollary: The space (X, 3) 1is regular iff the closed nbhds of

p form a nbhd base for each p € X.
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8.18 Theorem: A space (X, J) is an R-space iff for each point p and
each *point q not near p there exist disjoint open sets V and W such

that p € V and q *€ W.

Proof: (-—) Assume that p is a point and that q is a *point in
the R-space (X, J) such that q is not near p. Let Mp denote the
family of closed nbhds of p. Since Mp is a nbhd base for Np,

A
u(p) =N{M : M € Mp} by Lemma L.23. Since q ¢ p(p), there must exist
A
a closed nbhd M of p such that g ¢ M. Let V=M and let W= X\M.
Then q ¢ W and p € V since p is an int pt of M. Further,

VN W= g

(€~) Suppose that the space (X, §) is not regular. Then there
exists a point p of X such that the family Mp of closed nbhds of p
does not form a nbhd base for Np.. Thus there must be some nbhd N of
p such that no M € Mp 1is a subset of N. Therefore if M € Mp, there
is some q € M such that q ¢ N. Now the intersection of a finite
number of closed nbhds of p is again a closed nbhd of p. Hence the
relation defined by the formula x € Mp Ay € X Ay # N is concurrent.
It follows that there is some *point q such that q *¢ N but q ¥e M
whenever M ¢ Mp. Thus q € n{ﬁ : M € Mp} which equals Nuc Mp, but
q ¢ Nuc Np which equals p(p). Thus q is a *point which is not near p.
Now let V be any open set about p. Since Ve Mp, g ¥¢ ¥ and cannot
be a *point of (X\V)°. Hence there cannot exist an open set W con-
taining q and disjoint from V. The statement follows by contra-

position. ]
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8.19 Theorem: Every Ta-space is a T,—space.

Proof: Assume that p and q are distinct points in the T,-space
(Xy 3). sSince (X, 3) is T,, it is by definition T,. Hence {p}
is a closed set. Therefore, by regularity, there exist disjoint open

sets containing p and q. Thus (X, ) is Hausdorff. 0

8.20 Definition: A space (X, ) dis an N—space (a normal space) if

for disjoint closed sets F and G, there exist disjoint open sets V and
W h that FcV d GC W. A space is a T,-space iff it is a
suc a an sp P

normal T,-space.

8,21 Theorem: A space (X, J) is normal iff for each closed set F and

open set V containing F, there exists an open set W such that Fc W

and WcV.

8,22 Theorem: A space (X, J) is normal iff for every two *points p

and q such that p ¢ F and q *¢ G for some disjoint closed sets

F and G, there exist disjoint open sets V and W such that p *¢V and

q ¥e w.

Proof: (—)) Assume that p and q are *points in the N-space (X, )
and that there are closed sets F and G such that p *¢ F and q *¢ G.
Since F and G are disjoint closed sets, there exist by the normality
of (X, 3) disjoint open sets V and W such that FCV and G c W.

Hence p "€ V and q *e W.

(&) Assume that (X, ¥) is not an N-space. Then there must

exist disjoint closed sets F and G that cannot be separated by open
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sets. Thus if V is an open set containing F, the open set .X\V

cannot contain G. Therefore V N G # . Now the intersection of a
finite number of open sets containing F is also an open set containing
F. Thus the closure of the intersection of a finite number of such sets
must contain a point of G. Hence the intersection of their closures
will contain a point of G. Therefore the relation defined by the
following formula is concurrent: x € I AFC X AYE XAye€ G. It
follows that there must be some “point q such that q ¥€ ¢ and such

that q *e V for each open set V containing F.

Now let S be the family of all open sets A such that q *e A. If
A€S then ANF # @ Otherwise X\A =V would be an open set con-

taining F while g *¢ V. This is a contradiction.

Now the intersection of a finite number of open sets with q as a
*element is also an open set with q as a ¥element. Hence the relation -

defined by the following formula is concurrent:
X€SAYEFAYE X,

It follows that there must exist some *point p such that »p *¢ F and
) *¢ X whenever A € S. Therefore there camnot exist disjoint open
sets V and W such that p ¥ V and q *€ W. Otherwise, if V is an

open set with q as a *element, then V has p as a *element and so

p *¢ (X\V)°. 0

8.23 Theorem: Every T, ~—space is a T,-space.
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Proof: Assume that p is not an element of the closed set F in

the T, -space (X, ). Since (X, J) must be a T,-~space, {p} is a

closed set disjoint from F. Therefore ncrmality assures disjoint open

sets V and W such that p € V and F S W. Hence (X, J) is a

Ta—space.

The following examples are included for completeness so that a

‘novice will have readily available examples of spaces which satisfy

some of the separation axioms but not others.

8.2/ Example:
(1) The indiscrete space (X, J) where X is not a singleton is
not a T,~space.

(ii) The space (X, J) where X = {a, b, ¢} and 7 = {g, {a),
{o, ¢}, X} isnot T , but neither is it an indiscrete
space.

(iii) The space (X, J) where X = {a, b} end T = {¢, {a}, X}
is T, but not T,. The left-ray topo}ogy on the Reals
also has this property.

(iv) The cofinite space (X, J) where X is infinite is T, but
not T,.

(v) The space (X, J) where X is the set of real numbers and J

is the topology subgenerated by the family I of intervals
(a, b) and the set Q of rational numbers is T, but is not
T, That (X, 3) is not T, may be seen by examining the

point zero and the closed set X\Q.



(vi)

(vii)

(viii)

(ix)

(x)
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The space (X, ) of part (ii) is regular and normal but it
is not T, and hence not T, T, Tqy or T,.

The space (X, J) of part (iii) is normal but not regular.
Let X be the upper-half plane together with the x-axis, i.e.
X={(x,y) :x€R, y€R, and y 20}. A basis for a
topology J for X is B where B consists of all open spheres
in X (sets of form {(x, y) + y > 0, (x - xo)2 + (y - y°)2 < r}
where x, € R and y,, T > 0) together with sets of the
form s U{(x, 0)} where S is an open sphere tangent to the
real axis at the point (x, 0). (X, 3) is regular but not
normal. To see that (X, J) is not normal, examine Q the
set of rationals and I the set of irrationals on the x-axis,
R.. It may be seen that every subset of R contains all points
that it is near to. Thus both Q and I must be closed. Since
there do not exist disjoint open sets about Q and I, the
result follows.

Every discrete space is T; and hence satisfies all the
separation axioms defined in this paper.

The space (R, E) is not discrete, but it does satisfy all

of the separation axioms defined in this paper.

As mentioned at the beginning of this chapter, the separation

axioms gauge, in some sense, the availability of open sets in the

space.

Thus it should not be too surprising to find that each of the

separation axioms is a topological property. As the proofs are very

similar, only the following theorem will be proven in this paper.
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8.25 Theorem: The homeomorphic image of a Hausdorff space is a

Hausdorff space.

Proof: Assume that (X, 3) is T, and that f: (X, §) — (X', 3')
is a homeomorphism from X onto X'. Let p' and q' be distinct
points of (X', 3'). Suppose r' is a *point near both p' and q'.
Since f is a homeomorphism, r = f'l(r')' is near both p = f-l(p')
and q = f"l(q'). This is a contradiction since (X, J) is T,.

Therefore (X', 3') is T.. O

8,26 Example: The identity function from the discrete space (X, J)
to the indiscrete space (X, J') 1is continuous. If X contains more
than one point, then (X, J) satisfies all of the separation axioms
while (X; 3') satisfies none of them. Hence, none of the separation

axioms is a continuous image property.

All of the separation axioms defined in this paper, with the
-exception of normality, are hereditary properties. One proof will be

given here to illustrate the proof of this claim.

8,27 Theorem: Every subspace of a Ta—space is also a Ta—space.

Proof: Assume that (A, JA) is a subspace of the T,-space (x,.3),
that p € A, and that q is a *point of A not near p. Since (X, J)
is T,y there exist disjoint open sets V, Win (X, §) such that
peV and q*€W. Now p€VNA and g ‘€ WNA. Since these sets

are disjoint and open in (A, 3A), the subspace is also T,. O



CHAPTER IX
COMPACT SPACES

As mentioned gt the beginning of Chapter IV, many of the concepts
of topology have evolved as generalizations of concepts associated with
the particular topological space (R, E). The main concern of this
chapter wiil be the concept of compactness. Compactness in an arbitrary
space is another case where the conclusion of an important theorem
(in particular the Heine-Borel Theorem) of real analysis becomes a
définition in topology. In (R, E) there are several different equiv-
alent criteria for determining the compactness of a set, not all of

which generalize or are equivalent in an arbitrary space.

If a compact set is intuitively thought of as a set in which the
points are packed fairly close together, then the following standard
definition and non-standard characterization are portrayed justly.
Much of the importance of compactness is derived from the well‘behaved

way in which continuous functions act upon compact sets.

9.1 Definition: A family C of subsets of X is called a covering of

(X, 3) iff X=UfA: A€}, If ' is a subfamily of C which also
covers X, then €' is a subcovering of (X, ). In this case Cis

said to be reducible to the subcovering C'. By an abuse of language,
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a family of open sets which covers X is called an gpen covering of
(X, 3). If the covering C has only a finite number of members, then

C is called a finite covering.

9,2 Definition: A space (X, 3)‘ is compact -iff every open covering of

(X, &) 4is reducible to a finite subcovering. A is a compact subset of

X iff (A, 3A) is a compact subspace.

For emphasis note that the quantifier in the preceding definition
is "every". If just any open covering reducible to a finite subcovering
would make the space compact, then each space would be compact. This

may be seen by taking the subfamily {X} of the family 3J.

Machover and Hirschfeld call the next theorem by Robinson one of
the most important and useful theorems of non-standard analysis. Their
proof will be given below, but to fully appreciate their description of
the theorem one would need to pursue deeper results than this paper will

present.

9.3 Theorem: A subset K of the space (X, ) is compact iff every

*point of K is near some standard point of K.

Proof: (--)) Assume that K is a compact subset of (X; J) and
that g *G K. Suppose, however, that q is not near any point of K.
Then for each p € K there exists some open nbhd ¥ of p such that
q *¢ M. Now the family {MP : p € K} clearly is an open cover of the
compact set K, and so there exists a finite subcovering {Mpl, Mpa,
cee, Mpn]' of K. Thus the following sentence is true in % and hence in

o*: yx[x €K — xe M1 VxeM2 V.o VxeMn], Thus the
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interpretation.in"ﬂ* will not allow q to be a *point of K; for else
q would be a *clement of MPJ for some J=1, 2, ¢++, n., This is a
contradiction since the original assumption was that gq *e K; hence

the supposition that g was not near any point of K must be incorrect.

(&) Assume that K is not compact. Then let C be an open covering
of K which is not reducible to a finite subcovering. Thus for each
finite subfamily {0,, Oy ***, On] of * there exists a p € K such
that p § 0y for J= 1, 2, ***, n. Hence the following formula
defines a concurrent relations x € C Ay €K Ay ¢ X. Therefore there
exists a ¥point q such that q *e K but g is not a ¥element of any
0 € C. Now C covers K, so for each p € K there is some O € C such
that p € 0. This means that O is an open set about p such that gq ¢ 8;
therefore q is not near p. Thus if K is not compact there is a *point

g of K which is not near any point p € K. O
. Jes

(i) The sets {0} and [2, 3] are compact subsets of (R, E),
but (R, E) is not compact. This follows since the open
covering consisting of the intervals (n, n + 2) when n is
an integer it is not reducible to-a finite subcovering.

(i1) Every indiscrete space is compact.
(iii) Finite discrete spaces are compact while infinite discrete
spaces are not compact.

(iv) Every cofinite space is compact.

9.5 Example: Compact sets need not be closed in an arbitrary topo-

logical space. Recall the left-ray topology on the reals. In this
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space, {0} is compact but it is not closed.

It is well known, however, that compact subsets of (Ry E) - are
closed.” The next theorem presents the topological property of (R, E)

that makes this true.
2.6 Theorem: Every compact subset of a Hausdorff space is closed.

Proof: Assume that K is a compact subset of the Tg-space (X, 3).
Suppose that K is near the point p. Then some *point r of K must be
near p. Since K is compar?, this *pointvr must be near some point g of
K. Now the space is T,, so r cannot be near two distinct points.
Hence p = q which is an element of K. K must therefore be closed since

it contains all points that it is near to. 0

9.7 Example: The closure of a compact set need not be compact. Con-
sider the set A = (-o00, O] in the space of Reals with the left-ray
topology. A is compact since any basic open set containing the point
O also covers A. However, X is the whple space which is not compact.
This may be seen by deliberating upon the open covering consisting of

all rays of the form (~o00, r) where r is a real number.

9.8 Example: The subset [0, 1) of the compact subset [0, 1] of
(R, E) is not compact. Hence compactness is not an hereditary

property.

The next corollary gives sufficient restrictions upon subsets of
compact sets to force them to also be compact. Thus this property of

(R, E) does generalize to arbitrary spaces.
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9.9 Theorem: The intersection of a compact set and a closed set is

compact.

Proof: Assume that K is compact and that C is closed in (X, ).
Let r * KNC. Since r is a *poinﬁ in the compact set K, r must be
near p for some p € K. Now C is closed,.so C must also contain p.
It follows that K N C is compact sincé there exdists a p €K NC

such that r is near p. O

9.10 Corollary: Every closed subset of a compact set is compact.

The next few theorems serve to illustrate the nice behavior of

compact sets when acted upon by continuous functions.

. 9.11 Theorem: Compactness is both a continuous image and a topological

property.

Proof: Assume that f is a continuous function from (X, J) to
(X', 3') and that K is a compact subset of X wi?h image K' wunder f.
Suppose that r' is a *element of K's Then r' = f(r) for some
r *¢ K. Since K is compact, r is near p for some p € K. Thus, in K',
r' = f(r) is near p' = f(p) since f is continuous. The existence of
the point p' € K' which r' is near to-implies that K' is compact.
Thus compactness is preserved by a continuous function and so certainly

it is preserved by a homeomorphism. D

9.12 Corollary: The continuous image of a compact set K from (X, J) to

the Hausdorff space (X', J') is closed.
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Proof: By the previous theorem, f(K) is compact. Then by

Theorem 9.6, f(K) is closed since (X', ') is Tg. O

The following theorem can be very useful when one is working with

functions into Tg~spaces.

9.13 Theorems A one-to-one continuous function from a compact space

onto a T -space is a homeomorphism.

Proof: Assume that f: (X, 3) =3 (X', ') is a continuous function
from a compact space onto a T,-space. To establish that f is a homeo-
morphism, it will suffice to show that f is open, i.e. that f(r) near
f(p) implies r is near p. Thus suppose that f(r) is near f£(p) in
the image space. Since f is onto, there exist r *¢ X and p e X
which are the preimages of f(r) and f(p) respectively. The
compactness of (X, J) guarantees that r is near some point q € X.

By the continuity of f, f(r) is near f(q) in the Tp~space (X', &').
Hence f(q) = f(p), since £(r) cannot be near two distinct points
in a T -space. Since f is 1-1, q = p, Therefore r is near p, and

the desired conclusion thus follows. O

As an example of the power of this theorem, consider the following

proposition.

9.1k Proposition: Let (X, ), (X, 3') and (X, 3'') be three dis-

tinct spaces with J'' strictly stronger than J' which is strictly
stronger than 3. If (X, ¥') 1is a compact Tg-space, then (X, 3'') is

Hausdorff but not compact, while (X, J) is compact but not Hausdorff.
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Proof: Assume that (X, 3') i1s a compact T -space with J
strictly weaker than J' and J'' strictly stronger than J', It
is then clear that (X, J'') is Hausdorff, since J'' ‘is stronger than
3'. Now let f be the identity map from (X, 3') to (x;"U). Since
the inverse of any open set is open, f is continuous. (X, J) is thus
compact, for it is the continuous image of a compact set. To see that
(X, 3) is not Tpy again consider the function f. By the previous
theorem, if (X, §) is Ty, then f would be a homeomorphism. This is
impossible since & is distinct from J'. Similarly, the identity
function g from (X, 3'') to (X, ') is a continuous function, but
not a homeomorphism. Therefore (X, 3'') cannot be compact or else
g would be a l-1 continuous function of a compact space onto a

Ty—space. O

There are several other types of compactness which might be
investigated; however, the only other type to be examined in this paper

will be that of local compactness.

9.15 Definition: A space (X, J) is locally compact at a point p of

X if there exists a compact nbhd of p in (X, J). If (X, J) is
locally compact at each point of X, then (X, J) is called a locally

compact space. A is a locally compact subset of X iff (4, 3A) is

a locally compact subspace.

9.16 Example:

(1) A1l discrete, indiscrete, and cofinite spaces are locally

compact.
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(i1) (R, E) is locally compact but not compact.

(111) The family of intervals of the form [a, b) where a, b € R
is a base for a topology on the reals Let Y be the topology
generated by this base. Then it may be éhown that (R, Y) is
not locally compact. (R, Y) will hencefdrth be called the

closed-left-~interval topology for R.

Now recall that a near-standard *point of (X, J) is a ¥ooint
which is near some point of X. The space (X, J) was shown to be
compact precisely when each ¥point of X is near some point of X. Thus
each *point of a compact space is near-standard., However, in spaces
which are not compact there are ¥points which are not near-standard.
The relationship between compactness and near-standard points is
examined further in the next theorem which also characterizes locally
compact spaces. But first, a lemma will be given so that the proof of

the theorem may be expedited.

9.17 Lemma: - If 8 is a filter in the space (X, 3) and Np is the nbhd
system of p € X, then Nuc 3 Nu(p) # ¢ iff FNNF @ for each

FE3 and N € Np (i.e. iff p is a contact point of 8).

Proof: Let G denote the filter generated by 8 U Np. Using the
fact that Nuc G = Nuc & N Nuc Np which equals Nuc 3 N u(p), it
follows that G # P(X) precisely when Nuc 8 N u(p) # #. For if
G = P(X) then clearly Nuc G = ¢, and if G is properly contained in
P(X) then Nuc G properly contains Nuc P(X) which equals . Since
G#PX), §¢£G. BUNp generates G, hence there cannot exist F € &

and ‘N € Np such that FNAN = ¢. 0
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9.18 Theorem: A space (X, J) is locally compact iff every near-
standard *point of X is a *point of some compact subset of X.

Proof: (~p) Assume that (X, ) is locally compact and that g is
a near-standard *point of X. Then by definition, g must be near some
- point p.. Since (X, J) is locally compact, there exists a compact

nbhd X of p. Hence u(p) g:ﬁ, and so certainly q *€ K.

(&) Assume that p € X and that every near-standard *point of X
is a ¥element of some compact subset of X. Let 8 be the filter
generated by the family C of sets whose complements are compact. Note
that, since the union‘of two compact sets is compact, the intersection
of the complements of two. compact sets is again‘the complement of a

compact set. Hence C constitutes a base for the filter &.

By definition, Nuc 3 = n{? : F € 3). If r is a near-standard
*point, then by assumption r *€ X\F for some F € 3. Therefore
r *¢ Nuc 8. Hence Nuc 8 can contain only remote *points. On the
other hand, if r is remote *ppint theh r is not a *point of any compact

set. Thus Nuc & = {r s r is a remote *point of XJ.

From this it follows that u(p) N Nuc 8 = @. For else some remote
*point would be near p which is a contradiction. Thus by the previous
lerma, there must exist F € 8 and N € Np such that Fn N = .
Since C is a base for &, F contains some C € C. Note that CN N = ¢
and X\C is compact. Thus X\C which contains N must be a compact

nbhd of p. Therefore X is locally compact. O
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It is interesting to compare the non-standard characterization
of local compactness with the standard definition. As with much of the
study involving non-standard analysis there is a "trade-off" inﬁolved.
In some respects the non~standard characterization is simpler and in
other respects it is more complicated. More difficult in the respect
that *points and the associated non~standard terminology is involved,
but simpler since it is now necessary to consider only compact sets

instead of compact nbhds.

It is clear from the definitions that each compact set is locally
compact. The converse of this statement was exhibited to be false by
Example 9.16.,ii. Nonetheless, there is a close relationship between
compactness and local compactness in the sense that theorems involving
compactness often have duals involving local compactness. The next
theorems are given, in part, to illustrate some of these parallel ideas.
The proofs are also intended to exhibit the use of the non-standard

characterization of local compactness.

9.19 Theorem: The intersection of a locally compact set and a closed

set is locally compact.

Proof: Assume that L is a locally compact subset of (X,_a) and
that C < X is closed. Let r be a near-standard *point of L N C.
Since r is a near standard *point of thq locally compact set L, there
exists Kc L such that r *¢ K and K is compact in (I, 31). It then
follows that L N C is closed in (L, KL) and so K N C dis a compact

subset of (L, 3L) which has r as a *point. Then KN C is also a
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compact subset of L N C. Hence L N C is locally compact by the

non-gtandard characterization of local compactness. O

9.20 Corollary: Every closed subset of a locally compact set is

locally compact.

9.21 Example: Let Q be the set of rational numbers. Then (R, E) is

a locelly compact set with a subspace (Q, QE) which is not locally
compact. Hence local compactness is not hereditary. To see this
examine any compact nbhd K of zero. K cannot be a compact subset of Q

since it contains *points which are near the irrationals.

9.22 Example: Local compactness is not a continuous image property.

Consider (R, J) the reals with the discrete topology which is locally
compact and (R, Y) (the left-closed-interval topology) which is not
locally compact. The identity function from (R, 3) to (R, Y) is

continuous but does not preserve local compactness.

9,23 Theorem: Local compactness is a topological property.

Proof: Assume that f is a homeomorphism from the locally compact
space (X, J) onto (X', 3'). Let r be a near-standard *point of X!
and take g to be the *point of X for which f(q) = r. Since r is near-
standard,. r is near some f(p) € X*. It follows that q is near pin X
since f i1s a homeomorphism. Hence q is a near-standard *point and must
therefore be a *pointfcf K for some compact set K in X. It follows
that f£(X) is a compact subset of X' and that r *€& f(K). Therefore

(X', 3') 4is locally compact. 0



CHAPTER X
PRODUCT SPACES

Product spaces were mentioned briefly at the end of Chapter IV.
There it was suggested that one activity that frequently reoccurs in
topology is that of forming new spaces from known spaces. The simplest
way suggested was to intersect known topologies on a set in order to
form a new topology. The other previously mentioned technique, which

has been used repeatedly in this paper, is that of forming subspaces.

This chapter will investigate the formation and properties of
product spaces. Not only are these ldeas of sufficient merit to justify
their inclusion as basic standard material, but they also provide
material for some good illustrations of further non-standard proofs of
some standard theorems. In particular, some theorems involving

product invariant properties will be proven.

10.1 Definition: The cartesian product X of a collection of sets Xa
where a € A (an indexing set) is given by X =‘rTXa = {f: £fis a
function from A into Uxa such that f(a) € X, for each a ¢ Al. X,

will be called the a=~th coordinate set of X and f(a) will be called

the a-th coordinate of the point f. A function Pa which maps the
product set X into the coordinate set X = such that P_(x) = x(a) for

each x € X is called a projection.

127
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The material now being covered is still assumed to be in the
context of the previous discussions concerning a universe of discourse
U and an enlargement ﬂ* based upon U. A is assumed to be a subset of
V, the set which is used to construct U. For each a ¢ A (standard
elements of A only), X, is also assumed to be a subset of V. These
assumptions guarantee that U contains all points and topologies of the

product set X.

If each coordinate set has a topology upon it, then it is customary
to form a topology on the product set which is somehow related to each
of the individual topologies upon the coordinate sets. To be of any
significant value, it is crucial that this topology be influenced by
the topologies on each of the coordinates. For example, one could give
the product space the discrete, indiscrete, or other well-known topol-—
ogies, but this would be ignoring the topological properties of the
coordinate spaces. The customary way of doing this is such that the
projection functions are forced to be continuous. The topology about
to be defined is also called, in honor of its discoverer, the Tichonov

topology.

10,2 Definition: ILet S = {UcCX ='era t U= Pa-l(Oa) for some

a € A and some Oa € Sa}. The topology for X subgenerated by this
family S of inverse images of the open sets in the coordinate spaces is

called the product topology for X.

10.3 Definition: If a property is possessed by the product space when-
ever it is possessed- by each coqrdipate space, the property is said to

be product invariant.
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It should be clear from the definition of the product topology,
that this is the weakest topology for which a}l the projection functions
are continuous. Also note that since a basic open set is formed by
taking finite intersections of subbasic open sets, that each basic open
set is restricted only in a finite number of coordinates. Thus if B
is basic open then B =“r[Ua where Ua € Sa and Ua = Xa for all but
a finite number of coordinates. Since any open set contains a basic
open set, points in any open set must be restricted in at most a finite
number of coordinates. This is true even when the indexing set is

uncountable, such as A = (0. 1).

Product spaces can become awkward to work with even when the
coordinate spaces are relatively simple. The following trivial example

is given to illustrate the previous definitions.

10.4 Example: Let X = {ay by ¢}y, X, = {1, 2}, 3, = {g, {a}, {b, c},
X;} and J, = {, {1}, X,}. Then a subbase for the product topology

J for
X=X X, = [(a 1 (a 2), (b 1)y (b 2), (e4 1)y (e 2))

is the set S of inverse images of the projection functions.
TR, | | -1
5={p (@), p, ({a})y vovy P (X0} =
[¢i’{(ap 1); (a, 2)3 [(b, 1), (b, 2), (cy 1), (cy 2)},
{(ay 1), (by 1), (cy 1)}, X}. Thus a base B for J would consist of all

finite intersections of members of S.

B= (g, ((ay 1), (a1 D)) {0y 1), (b 2), (ey Dy () 2],
{(ay 1)y (v, 1), (cy 1)}, {(a, 1)}, {(P' 1), (cy 1)}, X}.
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Then T consists of the set of all unions of members of B. The monads

of all points in each space will now be given:

fi

p(1) = {1}, w(2) = {1, 2}, u(a) = {ad, u(b) = {b, c}

w(e) = fo, e}y p((ay 1)) = {(a, 1 ul(ay 2)) = {(a) 1), (a, )}
p((oy 1)) = {(by 1), (cs 1)}y w((by 2)) = {(by 1), (0y 2), (cy 1),

(cy 2)} ul(ey 1)) = {(by 1),y (cy 1)}, and p(c, 2) = {(v, 1), (b, 2),
(cy 1)y (cy 2)1.

What is suggested by the monads in this example is that p is near
q in the product space iff p(a) is near q(a) for each coordinate of

p and q. The next theorem shows that this is true in general.

10.5 Theorem: Let (X, §) be the product space formed by the spaces

(Xa, Sa) where a € A, Then p is near g in (X, J) iff each coor-

dinate of p 1s near the respective coordinate of q.

Proof: (-)) Assume that p is near q in X ='rrxa. The a~th
coordinate of p is Pa(p) and of q is Pa(q). Since P, is continuous

and so preserves nearness, it follows that Pa(p) must be near Pa(q).

(&) Assume that vp(a) is near g(a) for each coordinate a € A.
To show that p is near q, it will suffice to show that p € g for each
basic open nbhd of gq. If B is‘a basic open nbhd of g, then
B = ﬂ{Sk: k =1, «++, n} for some finite collection of subbasic open

sets 3, about q. If Sk is any subbasic open set about g, then by

k

definition of the product topology S, is the inverse image Pak-l(ca A
3

k
for some open set Oak about, some ak-th coordinate of q. Now by
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A
assumption p(ak) is near q(ak), thus p(ak) € Oak' Hence for each
-1 . A
k=1, 2, e*°yn, p *e Pak (Oak) which equals Sk' Therefore p € B

and it follows that p is near q. N

This theorem is certainly not surprising when the product space has
a finite number of coordinates. When the indexing set A is the set
(0, 1), then nearness is still required at each and every coordinate.
In particular, if p is near g then it is not permissible for p(a) not
to be near q{a) on a non-empty set of coqrdinates of Lebesgue measure

ZeIrO.

10,6 Corollary: Let (X, J) be the product space formed by the spaces

(Xa, Ka) where a € A. If B is a ‘subset of X near X, then Pa(B) is
near x_  for each a € A. Similarly, if B is near C <X then Pa(B)

is near P_(C) for each a € A.

Proof: Assume that the fsubset B of the product space (X, J) is
near x € X. Then there exists r € B such that r is near x. By the
previous theorem, this means r, is near X, for each a € A. Since
r. Ye Pa(B), it follows that P_(B) is near x, for each a € A. The

a

remaining part of the proof is also straightforward. |

Although it might seem desirable, the converses of the statements

in the previous corollary are not true.

10.7 Example: If B is a *subset of the product space (X, ) and

x € X, then it is possible for Pa(B) to be near X, for each a ¢ A

without B being near x. Similarly, it is possible for Pa(B) to be
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near” P_(C) for each a € A where C CX without B being near C.
To see this, let B = {(a, 2), (b, 1)} and x = (a, 1) in Example 10.L.

For the second case let C = {(a, 1)}.

10.8 Theorem: Every projection function is open.

Proof: Assume that (X, 3) is the product space whose coordinate
spaces are (Xa, Ua) where a € A. By Lemma 6.21 it will suffice to
show that u(Pc(x)) CZPc(p(x)) for each x € X. So suppose r is near
X, in the c-th coordinate space. Then define y by

x, afc
y. =

g
(3

r 8 = Ce

The previous theorem guarantees that y is near x. Further, Pc(y) =T,
Hence r € Pc(u(x)) and the desired inclusion follows. Therefore

P, is open. O

Since nearness of points in a product space in completely
determined by nearness of the coordinates, it should not be surprising
that the continuity of a function from a space into a product space
can be determined completely by considering each of the coordinate

spaces.

10.9 Theorem: Let f: (X', 3') = (X, J) be a function from an

arbitrary space to the product space X =‘rTXa, a € A, Then f is

continuous iff Pa o f is continuous for each a € A,

Proof: The function f is continuous iff x' near y' in (xr, ')

implies f(x') = x is near y = f(y') in (X, 3). Now x is near y iff
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Pa(x) is near Pa(y) for each a € A. Hence f is continuous iff x'
near y' dimplies (Pa o £)x' is near (Pa o f)y' for each a € A,

i.e. iff each Pa o £ is continuous. O

The next theorem gives yet another criterion for determining
when a space is Hausdorff. It was chosen because of the importance of
T, -spaces and because the proof brings together some of the non-standard

characterizations previously developed.

10.10 Theorem: The space (X, §) is T, iff the diagonal of the

product space formed by X x X 1is a closed set.

Proof: (—) Assume (X, J) is T, and suppose the diagonal D of
the product space (X x X, J') is near the point (x, y). Then some
*point (p, p) of D must be near (x, y). Hence p is near both x and
¥, which cannot be in a Ty-space unless x =y. Thus (x, y) € D and

D is closed,

(¢~) Assume that the diagonal D of the product space (X x X, J')
is closed and suppose p is. near both x and y in thg space (X, ). |
Now (p, p) is near (x, y). Thus D is near (x, y) and so
(xy ¥) € D since D is closed. Therefore x =y and so (X, J) is
Ty O

One important feature of product spaces is that every coordinate
space is homeomorphic to some subspace of the product space. More
importantly, the subspace may be chosen so as to contain an arbitrary

point in the product space.
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10.11 Theorem: Let x be a point in the product space (X, J). Then

each coordinate space (Xa, Sa) is homeomorphic to some subspace of

(X, ) containing x.

Proof: Assume that x is a point in the product space (X, J). For
the c-th coordinate space (Xc, Ec),' define f: (Xc, Uc) — (X, 3) by
f(p) =y where y_  =x for a # ¢, while ¥, = p. Note that f is
a one-to-one function from X, onto f(xc) c X and that x € f(xc).
Since p is near q in (Xc, SC) iff f(p) is near f(q), it follows

that f is a homeomorphism to the subspace formed by £(X,). 0

Some important properties that are product invariant are the T,
and T, separation axioms, comnectedness, and compactness. Proofs of

some of these invariancies are included below.

10,12 Theorem: A product space is Ty iff each coordinate space is

T

2.

Proof: Assume that (X, 3) is a product space and that r is near
both x and y. Now r is near both x and y is equivalent to saying r,
is near both X, and Ya for each coordinate a. The space (X, &)

is Hausdorff iff x =y, di.e. iff X, =¥, for each a, i.e. iff each

coordinate space is T_ O

L4

Although this paper will not pursue further results which avail
themselves of the next theorem, it seems wise to include the result
-since it is referred to by many authors as the most important result of
general topology. Those who are familiar with a standard proof of this
theorem should appreciate the brevity and clarity of the non-standard

proof.
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10.13 Tichonov's Theorem: A product space is compact iff each coor-

dinate space is compact.

Proof: (—~)) Assume that the product space (X, 3) is compact.
To show that an arbitrary Xc is compact it will suffice to show
r, *e Xc implies there is some point in Xc which r, is near to.
Now for an arbitrary =x € X, define a *point in X by Va = %, for
a # c, while Vo = Too Since the product space is compact, y is near

some z € X. Hence Y, which equals r. is near Z, € Xc. Therefore

Xc is compact.

(&) Assume that each coordinate space is compact and suppose that
r ¥¢ X. Then r, e X, for each c € A and thus r_ is near x,
for some x, € X,» Thus the point r is near x, the point in X defined

all the xc's. 0

10.1L Theorem: If a product space is locally compact then each

coordinate space is locally compacte.

Proof: Assume that the product space (X; J) 1is locally compact
and suppose that r. is a near-standard *point of Xc. Then r, is
near some X, € Xc. Now let x be a point‘in X whose c-th coordinate is
x,o If y==x for a #£c and ¥, = T,y then ¥y is near x. Hence y
is a near-standard *point of X. Since the product space is locally
compact, ¥ *¢ K for some compact subset K of X. Thus r, *6 PC(K),

which is a compact subset of Xc since Pc is a continuous function.

This verifies that (Xc, 30) is locally compact. O



CHAPTER XI
SUMMARY AND CONCLUSIONS

The primary purpose of this paper was to present the basic ideas
of non-standard analysis by illustrating their usage in developing some
of the basic concepts of topology. Since the primary advantage gained
by using the non-standard approach is the capability of using more
intuitively worded terminology, this paper has concentrated upon the
concept of nearness in an arbitrary topological space. Thus Chapter V
may be considered as the core of this paper. The previous chapters
provided a foundation in non-standard analysis and in topology. The
remaining chapters illustrated some uses of the concepts of nearness
developed in Chapter V and continued the development of other related

concepts.

While many of the major theorems and characterizations given in
this paper are equivalent to those found in either Robinson [14] or
Machover and Hirschfeld [11], the terminology used in all chapters
following Chapter V may differ with these sources. The reason for this
is that the definition of nearness of *points to points was generalized
first to nearness of *sets to points and thgn generalized to nearness of
*sets to sets. These generalizations allow one to make even more use of

his intuition.
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The reader may question why these particular generalizations of
nearness were given instead of others which might seem equally plausible.
The answer is that the generalizations given were those which proved to
be most useful in describing other concepts. For example, it seemed
plausible to define the *point p as being near A < X iff p is near
some point g € A. It then would be true that p is near {q} iff
p is near q. However, this definition of nearness has the unpleasant
feature that p can be near A without p *¢ A. To see this consider
X ={a, b, c}, T = {g, {b}, {by c}, X}, the point b, and the set

fa, cl.

Non-standard analysis often makes characterizations of topological
concepts more intuitive and incisive. You may have also observed that
the construction of proofs is often easier using non-standard termin-
ology. As evidence of the power of non-standard analysis, note that
Abraham Robinson has already used non-standard analysis to solve a
previously unsolved problem on compact linear operators. This tool is

also applicable to many other branches of mathematics, including algebra.

Historically, mathematicians have been extremely conservative —
often greeting innovation with such uncomplimentary terms as irrational,
imaginary, radical, negative, or non-standard. It may take several
years and perhaps a new generation of mathematicians not entrenched in
standard analysis before non-standard analysis is commonly used by
mathematicians. Nonetheless, the author expects that the usage of non-
standard analysis will become widespread. Hopefully, this paper will

contribute to this increased usage.
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