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CHAPTER I 

INTRODUCTION 

The purpose of this pap.er is to use the tools of non-standard 

ana],ysis to develop some of the material found in many introductory 

topology texts. Every attempt has been made to ksep the exposition ele­

mentary. The student who is prepared for a normal introductory topolog;r 

course should also have a sufficient b~u~kground for this material. All 

topological and non-standard concepts which are used are defined within 

the paper. This should minimize Q7 need for an outside reference, and 

it should also eliminate any questions concerning n~tation or use of a 

particular term which might be defined differently in various texts. 

Chapter II introduces the concepts from non-standard analysis 

which are used in the remainder of the paper. The non-standard real 

numbers, which are introduced in Chapter III, provide the reader with 

some specific examples of the concepts discussed in the previous chapter. 

These examples are also referenced when new material is later presented. 

Chapter IV introduces topological spaces and initiates a study of 

these spaces. As a part of this development, the concept of nearness is 

rigorous],y defined. Neighborhoods and open sets are then characterized 

using this definition of nearness. 

1 
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In Chapter v, a non-standard characterization of closed sets is 

given. This characterization is the same as that given by Abraham 

Robinson [14]; hc:;>wever, it is derived somewhat differe:mtly. .As part of 

this derivation two new generalized definitions of nearness are made. 

One of the important aspects of non-standard analysis is its appeal to 

intuition. Throughout the remaJ:nder of the paper, these generalized 

definitions are used to describe as intuitively as possible many standard 

concepts. Particular topics that are developed include continuity,­

connectedness, the separation axioms, compactness, and product spaces. 

The term "non-standard analysis" was coined by Abraham Robinson in 

1960. His objective on this date was to provide. a logically consistent 

system for calculus using in.finitely small and infinitely large numbers. 

The language of infinitesimals had been used earlier by- Leibniz, who 

stated that the same success could be obtained with infinite numbers as 

with the finite. Needless to say, Leibniz failed to provide the basis 

for the success he thought possible. It was not until Robinson decided 

to use other models for the real numbers that this success was achieved. 

This paper avoids Robinson's.use of type theocy in constructing a 

non-standard model by using the framework presented by Moshe Machover 

and Joram Hirschfeld. [11]. This simplified framework allows presentation 

of the material in a manner that conf onns closely to the usual usage of 

set theoretic terminology. As has been indicated earlier, one of the 

interesting things this allows is a rigorous definition of the intuitive 

concept of nearness. It is quite natural for one to seek a better 

intuitive feeling for nearness in an arbitrary- topological space. Many 
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mathematicians, either when explaining proofs to others or when seeking 

proofs for themselves, often use the intuitive idea of a small ball or 

sphere about a point when examining a neighborhood., regard.less of the 

actual topology involved. What non-standard. analysis does in an arbi­

trary topological space is to allow one to use directly his intuition 

for nearness by making the term precise, in the same way that the term 

"infinitesimal" was first made precise in the space of real numbers by 

Robinson. 

A theorem that exemplifies how well this concept of nearness is 

used in the non-standard characterization of topological concepts is 

the following: 

A function f from a topological space (I, rr) to a topological 

space (X', tr') is continuous at p EX iff f(q) is near 

f(p) whenever q is near P• 

Although the remainder of this paper will avoid type theory, it 

is instructive to examine this theorem in terms of types. (Points are 

called objects of type zero, sets of points are objects of type one, 

and families of sets of points are objects of type two, etc.) Note 

that the previous non-standard characterization of continuity involves 

only objects of type zero, whereas the usual definition involves sets of 

points, i.e. objects of type 1. As further evidence that non-standard 

characterizations are often simpler, examine the following non-standard 

characterization of compactness~ 

A set K in a topological space (X, tr) is compact iff every *Point 

of K is near some point of K. 



This is also a statement involving only objects of type zero, 

as contrasted to the usual definition which involves type two objects, 

i.e. families of sets of points. 

4 

Unfortunately, perhaps, the most difficult material will have to 

be presented first. The concept of a non-standard model and the 

associated terminology must either be given or referenced. The choice 

has been to include in Chapter II that which is pertinent to the devel­

opment of the material in later chapters. The technique used will be 

that of Machover and Hirschfeld. Although the proofs included here are 

in more detail than those by Machover and Hirschfeld, the reader is 

advised that many of their interesting points about non-standard models 

have not been included, due to the limited purpose of this paper. For 

the most part it is the terminology and the results of the theorems of 

Chapter II which will be used later. The reader may well want to skim 

this chapter and then pursue the remaining chapters in depth before 

delving into the proofs of this back;ground material. If this is done, 

the remaining chapters should still be easily comprehensible. 



CHAPTER II 

NON-STANDARD MODELS 

The language of infinitesimals was used even before the time of 

Leibniz. Due to the lack of a rigorous foundation .fo.r such terminology, 

this language was later abandoned by most mathematicians in f'avor of' 

Weierstrass's epsilon-delta notation. It may seem surprising that 

terminology dormant since the nineteenth .century has been revived and 

given a rigorous .fo.undation in 1960. The key to the breakthrough was 

the newly developing field of mathematical, or symbolic, logic. The 

notion of' a "formal language" enabled Abraham Robinson to make precise 

the earlier vague claims that had been made concerning infinitesimals. 

The concept of a formal language i~ somewhat difficult to become 

adjusted to, particularly since the same language will be used to 

describe different universes of objecta. In order to clarify some of 

this, a couple of analogies will now be made. 

The key to working with a non-standard model is to conceive of the 

system that you are working with as embedded in a somewhat larger 

system. The role of a non-standard model is analogous to t~at of an 

extension field in algebra. To prove results about a system, one might 

consider the original system as embedded in a larger framework, do most 

of the work in this framework; and then try to reinterpret these results 

in the original system. 

5 



6 

The primary capability that one must have to use this powerfUl 

proof technique is to be able to write precisely a formal sentence 

expressing the idea under consideration. It will be seen shortly that 

this sentence is true in the given system if and only if it is true in 

the enlargement. Anyone who has ever programmed a computer is somewhat 

aware of the problems encountered when one expresses ideas using a fixed 

set of symbols according to specified rules. Mathematicians are not 

normally so limited and use, in addition to their :formal language, the 

even more complex and less formally understood J.~guage of society. 

Thus it is difficult to ax.press precisely md ~l'J'flholically .UJ ideas 

which can be stated in an informal language. In fact, not all proper­

ties of the real nwnbers are expressible formally. Rather than being a 

weakness this is the very feature which makes non-standard models so 

useful. Any property formally expressible will l;>e formally shared by 

both the original system and the non-standard model. For example, both 

the reals and the non-standard reals are fields. However, the original 

system and the non-standard model may well differ on properties which 

are not formally expressible. For example, the Archimedean property, 

which is not formally expressible, holds for the standard real nwnbers 

but does not hold for the non-standard real numbers. 

The following exampl~ may be instructive when one later considers 

interpreting a formal sentence in more than one systemo Consider the 

statement: Yx [x ~ 0 ... :t[y" (xy = 1)]. To determine the truth value of 

this statement, one must assume a particular nwnber system and the 

operation of multiplication upon that system. Interpreted in the system 

o:f integers it is false, while it is true in both the rational and the 
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real number systems. In which number systems is the following statement 

true: 2 
VX (x :!:: x )? 

It is now time to answer some of the questions that the previous 

discussion has hopefully led you to formulate. First of all, how are 

ideas expressed precisely and formally? 

If you are working with a given system, such as a topological space 

(X, 3'), then a universe of diseourse will be assumed. Before indicating 

a construction of this universe, note that the most important feature is 

that it will be quite large enough to contain as objects all concepts 

commonly studied in mathematics. In particular, this univers~ will 

contain all points of the set X above, and it will be closed under 

finite unions, finite cartesian products, and the power set operator. 

All concepts that are commonly used are considered as sets in this 

universe. For example, if X is the set of real numbers, then the con­

cept of addition (+) is the object represented by a certain set of 

ordered pairs whose first term is itself an ordered pair of real numbers 

(e.g. ((3, 5), S) E (+)). Customary abbreviations will be followed in 

this paper. For example, ((3, 5), 8) E (+) will be abbreviated as 

3 + 5 = s. 

Since the universe of discourse for the reals is closed under 

finite cartesian products, it will contain all n-ary relations and in 

particular all real functions of n-1 real variables as objects. 

The universe of discourse U is converted into a mathematical system 

by specifying one binary relation and two binary operations over U. 
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The binary relation is .S.t the membership relation on u. The first 

binary operation is Et forming an ordered pair (i.e. a pr b == (a, b)). 

The second is !E.t applying a function to its argument. In this paper 

f ap x will be customarily abbreviated f(x) [e.g. cos ap TI • cos(n) 

and sin ap{+ap(n pr x)J = sin (n + x)J. So that U will be closed under 

ap as well as under pr, f ap x will be defined to be ¢ when f is not a 

function or when f is a fUnetion otherwise undefined for x. 

As indicated earlier, the existence of the universe of discourse U 

is actually more important to this paper than its actual construction; 

nonetheless, for the sake of completeness the construction is outlined 

below. 

If a topological space is to be consid•~ed or, as will be the case 

later, if a collection of spaces is under consideration, then let ! be 

the set of all points in these spaces. 

2 .• 1 Definitiong The ... uni........,o.-n ~ 2£ A, ~ = {a : a E b for some b E A}. 

Note that the union set of A may be considered as an extension of 

the usual set theoretic union. If A is merely a collection of sets, 

then UA is just the usual union of all sets in A. The union set of A 

is defined even if A is not a set or if A has some members which are not 

sets. When A is not a set or when it is a set with no non-empty set as 

a member, then UA = ¢. 

2.2 Definition: A set S is transitive if a E b and b E S imply 

a E s. 



In order to extend V to a set U0 which is transitive, let !s_ ... V 

and Vk • UVk-l for each natural number k. Then let -
U0 • U{Vk: k • O, 1, 2, •••}• -
2.3 Lemma: U0 is a transitive set such that V c: U0 • 

Proof: Clearly V c: U0 by the definition of u0 • Now assume 

9 

a E b and b E U0 • Since b E U0 , b E V j for some natural number j. 

Note from the definition of Vj+l that Vj+l = {a : a E b for some 

b E Vj}. It then follows that a E Vj+l• Since Vj+l c:' U0 , a E U0 • 

Hence U0 is transitive. 0 

The power set of A, {a : a c: A}, will be denoted by P(A). If A 

is not a set, then P(A) ... ¢. 

Now let Uk ... Uk-l U P(Uk-l) for each natural number k. Finally -
let the universe .£! discourse U be defined by U = U{Uk : k = o, 1, 

2, ···}· 

2.4 Lemma: Each Uk, k = o, 1, 2, ••• is transitive. 

Proof: (by induction on k) First recall that U0 has already 

been shown to be transitive. Secondly, assume that Uk is transitive, 

that b E Uk+l' and that a E b. By definition of Uk+l' it follows 

that either b E Uk or b E P(Uk). If b E Uk' then the transitive 

property of Uk implies that a E Uk. If on the other hand b E P(Uk), 

then b c: Uk• In this case, a E b implies that a E Uk• In either 

case a E Uk, which is a subset of Uk+l" Therefore a E Uk+l' which 

means Uk+l is transitive. 0 
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2.5 Theorem: The universe of discourse U is transitive. 

Proof: Assume that a E b and that b E u. From the definition 

of u, it follows that b E Uj for some j. Since each Uj is tran­

sitive, a E b and b E Uj imply that a E Uj• Uj is a subset of u, 
thus a E U and U is therefore transitive. 0 

2.6 Lepuna: If S is a transitive set and the set b is an element of s, 

then b is a subset of Se 

Proof: Let the set b be an element of the transitive set s. If 

b = ¢, then clearly b c s. If b ~ ¢, then let a be an arbitrary 

element of b. Since a E b, b E s, and S is transitive, it follows 

that a E s. Hence b c s. 0 

2.7 Theorem: The universe of discourse U is closed under P, the power 

set operator. 

Proof: If a E U then a E Uj for some j. If a is a set, then 

the previous lemma and the transitivity of Uj imply that a c: Uj• 

Hence P{a) c: P(Uj)• If a is not a set, then P{a) = ¢ and again 

P{a) c: p(Uj)• Since P(Uj) c: Uj+l' P{a) cP{Uj) implies p(a) c Uj+l• 

Thus P(a) E P(Uj+l). Since P(Uj+l) c Uj+2 and Uj+2 c: U, it follows 

that p{a) E u. Therefore U is closed under P. 0 

2.8 Lemma: If b E U, the universe of discourse, and a c b, then 

a E U. 

Proof: If a c: b then a E P{b)o Since b E U and U is closed 

under P, P{b) Eu. Thus a EU since a E P(b), P{b) Eu, and U is 

transitive. 0 
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2.9 Theorem: The universe of :discourse U is clo!ed under u, the union 

set .operator. 

Proof: Assume that a E U and that c E U(a). Since a E U, 

a E Uj for.some j. From the definition of U, it follows that c e U(a) 

implies that c Eb for some b Ea. Since Uj _is tran=:iitive, b Ea, 
I 

and a E Uj, it follows that b E Uj. Then c Eb, b E Uj, and Uj 

tran~itive imply that c E Uj. Hence U(a) c Uj $Ild therefore 

U(a) E P(Uj). Since P(Uj) c: Uj+l and Uj+l c: U, it_follows that 

U(a) Eu. Therefore-U is_ closed under the union set operator. 0 

2.10 Lermna: If a c U and a c: Uj for some j, then a E U. 

Proof: If a c: Uj' then a E P(Uj). Thus a EU since 

P(uj) c: uj+l and uj+l c: u. o 

2.11 Corolla:ry: Uk E U for each non-negative integer k. 

Proof: Uk cu, Uk c:: Uk' and the previous lemma yield this 

immediately. O 

2.12 Lermna: If a is a finite subset. of U, then a E u. 

Proof: For a~¢, let a• {c1, c2, •••, en} be a subset of U 

for some_ natural number n. Since a c U each cj E u. Thus for each 

j a k may bE:j selected such that cj E Uk. L~t m be the maximum value of 
I 

the k's as j varies from 1 to n. Since . Uq c:;: U1 c U12 • • •, each 

In either case a c: U and so by . . m 

the preceding leJ!l11la it may be concluded_that a Eu. 0 
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2.13 Theorem: The universe of discourse U is closed under finite unions 

(i.e. usual set theoretic unions of sets). 

Proof: If the sets a1, a2, •••, 8:n are elements of u, where 

n > o, then {a1, a2, •••, an} is a finite subset of u. Therefore the 

preceding lemma guarantees that {a1, a2, •••, 8:nl Eu. As previously 

indicated the union set U{a1, a2, •••, 8:nl • (a1 U a2 U ••• U an)• 

Since U is closed under U, (a1 U a2 ••• U an) EU. Thus U is closed 

under finite unions. 0 

For a, b E u, the ordered pair (a, b) is identified with the 

set [{a}, [a, b}}. Thus :f.'or A, BEU, Ax B • [{{a}, {a, b}} : a EA, 

be B}. By considering _(a) • a, the ordered n-tuple for n ~ 2 can 

be defined recursively as ( a1, a2, • • •., 8:n) • (( a1, a2, • • • , an-l) , 8:n) • 

2.lf± Theorem: The universe o:f.' discourse U is closed under finite 

cartesian products. 

Proof: (by induction on k) Assume that A, B E u. If either A or 

B have no elements, then A x B • ¢ and trivially A x B E u. So 

suppose both A anci B contain some elements. Note then that a E A and 

b E B imply that {a}, {a, b) E P(A U B). Thus {{aJ, {a, b}) 

E P P(A U B). Therefore Ax B EPP P(A U B). Since U is closed under 

P, PP P(A U B) E U. Hence A x B E PP P(A U B), PP P(A U B) E u, 

and U transitive imply that A x B E U. For n ~ 2, let 

The proof follows without difficulty. 0 



1.3 

The construction of the universe is now complete. For emphasis 

note that if the construction of U is based upon a set x, then U con­

tains. all families of subsets.of X and so will contain all topologies 

(which are certain families of subsets of X). on x. ·The next task is to 

describe how to express formally a mathematical concept about the 

objects in the universe of discourse. 

The formal lansp.age I: will be vecy similar to the usual set 

theoretic language with the restriction that it will be.more precise 

and systematic, and it will use some new symbo!s to replace verbal. 

expressions (e.g. ap). 

The language cl! is required to have at least one symbol to denote 

each object in the universe of discourse. These symbols have a fixed 

meaning and are called constants. The distinction being made between 

an object in U and the symbol int representing that object should not 

be foreign since this is similar to the distinctJ.on made in some texts 

between the number "two" and the nwrieral "2" representing that number. 

All objects that have well~known symbols representing them, such as 

"¢" for the empty set, "<'' for the less than relation, "+" for addition, 

etc. , will have the same symbols us~d to name. them in .Z • When symbols 

from ;t. are used as variables, the range of' the variables is all of U. 

This is the expected thing, but it becomes extremely important to be 

cognizant of this when more than one universe of discourse is being 

considered. 
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In addition to the symbols for the objects in U and other symbols 

which are used as variables with range U, ~ has the symbols "E", "pr", 

and "ap" to denote the binary relation and binary operations on U. ;f 

also contains "=" to designate equality. 

A properly combin~d expression involving a finite number of con-

stants, variables, and operational symbols "pr" and "ap" is called a 

term of.£. Formulas obtained by properly combining"=" and "E" with -
two terms of .:fare called atomic formulas, i.e. these are the atoms 

from which the world of mathematics will be described. 

~ also contains the logical connectives '!...i', "/\", "v", ":....", and 

'ti.." which designate respectively "not" or "it is not the case that", 

"and", "or", "implies", and "if and only if" or "iff". In this paper 

..., will often be abbreviated in context, e.g.• E will be abbreviated as 

</.. It is important that the symbols "if" and ":il" which represent the 

guantifiers "for all" and "there exists at least one" be interpreted 

with respect to some universe of discourse. A variable will always 

follow each of these quantifiers. 

By combining the atomic formulas with connectives and quantifiers, 

and iterating a finite number of times, all formulas of;!. are obtained. 

Some mathematical concepts are not expressible formally because it would 

take an infinite iteration to express the concept. For example, the 

Archimedean property (nonexistence of infinitesimals) of the standard 

reals can be expressed using an infinite set of sentences. For each 

r ER (reals), all but a finite number of the following sentences are 

true: 
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r > 1, r + r > 1, r + r + r > 1, •••· 

The principle cannot be expressed by a single sentence, however, and 

this is precisely why the property can hold for the standard reals but 

does not hold for the non-standard reals. Note that 

V r{r ~ R :iln[n E N A V m(m E N A m > n) ~ m•r > 1]} 

is not a sentence in ;e the language for the universe of discourse for 

the reals. The reason for this is that mor need not make sense. For 

more on this see Lightstone [7]. (Note that m > n is an abbreviation 

for (m, n) E (>).) 

Terms with variables do not denote obj~cts in the universe until a 

constant or another term without variables is substituted for each 

variable. Similarly some formulas do not have a truth value unless the 

variables are all "bound" either to a specific set of constB!\tS or by a 

formula t. To clarify some of the vagueness of this concept of bound 

variables consider the following examples: 

(i) any occurence of the variable x in the form "V x t" or 

":iJ x t" is said (by Machover and Hirschfeld) to be bound. 

(ii) :trx yy[y ¢ x] has all variables bound (the formula is true). 

(iii) VJr[/ (y E x)] _does not have x bound (has no truth value). 

(iv) Vx Yy[y ~ x] has all variables bound (formula is false). 

Formulas in which all variables are bound, and hence which have a truth 

value, are called sentences. 
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So far a universe of discourse U has been constructed and a brief 

description of the language . .;;t , which can be used to express propo­

sitions about u, has been given. It is now time to see how the language 

~ can be used to describe other universes_ of discourse (such as non­

standard ones) and what possible relationships might exist between 

universes so described. 

Suppose some people on a world in another universe use exactly the 

same symbols that we use to name the objects (perhaps quite different 

from the objects in our universe) in their universe. Then the same 

language would be describing two universes. Naturally, objects in the 

two universes which bear the same name are of special interest. It might 

" " be interesting to see what James w. Hall 322-38-4674 is in another 

universe. This is analogous to the situation about to be examined. 

Let I be the mapping which assigns to each constant of :/: the 

object in U which that constant names. Since there is a constant in~ 

for each object in u, I is an onto map. The system U = (U; I; E; 

pr, ap). concisely represep.ts a summary of the discussion so far. The 

universe of discourse U indicates the range of the quantifiers. It 

tells how the constants of £ are to be interpreted, . while E, pr, and 
.. 

ap specify how the relation and operations on U are to be interpreted. 

Note that the other connectives (=, ~, etc.) always have the same 

meaning. The system !! is called an interpretation .2! t_. 

It will turn out that a non-standard model will also be an inter­

pretation of ;t (with certain restrictions of course) • Another 

interpretation of :t.., U* = (U*; I*; *E; pr*, ap*), will now be 
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* compared to tl • (U; I; e; pr, ap). Note the symbols in ~ have a 

meaning corresponding to their respective counterparts in •· I* is a 

mapping from ;£. into (need not be onto) a universe of discourse u* 

(perhaps distinct from U). Although *e is a binary relation on u*, 
it is arbitrary and need not be the membership.: relation. Similarly pr* 

and ap* are arbitrary binary operation·~ under.'which u* is closed. 

2 .15 Definition: Two interpretations of ;f , 

w*. (u*; r*; *e; pr*, ap*) and 

iu' • [U'; I'; 'E; pr', ap') 

are isomoD?hic if there is a 1-1 mapping Y of u* onto u' satisfying 

the following conditions: 

(i) for every constant "c" of ~. I 1 ("c") • !(I*(11c11 )). 

(ii) for every a and b in u*, a *e b if f' v(a) 'e t(b). 

(iii) for every a and b in u*, Y(a pr* b) • Y(a) pr' 'f(b). 

(iv) for every a and b in u*, !(a ap* b) = t(a) ap' Y(b). 

If Y is not onto, but satisfies the other properties, t is then called 

an isomorphic embeddine; of ti* into u'. 

2 .16 Definitioni An interpretation tI* of £ is a model for S a set of 

sentences of i!. if every sentence of Sis true in ~*. (For emphasis 

note t.hat the interpretation is in ,r*. Hence the quantifiers relate to 

objects in u*, *E is the relation on u*, etc.) 

~will be used to designate the set of all sentences of .>!which are 

true in the original interpretation t.t. !I is certainly a model for 1' 
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and 21 and all interpretations of .:R isomorphic to t1 are called the 

standard model. If ti*' is a model of K but is not isomorphic to tt, 

then tr* is called a non-standard model. Our interest will be narrowed 

shortly to a particular type of non-standard model which will be used 

throughout the remainder of the paper. Note that the validity of the 

definition of a standard model depends upon the next lemma. 

2.17 Lemma: If ti*' is a model for S and ti*' and ti' are isomorphic, 

then 21' is also a model for s. 

Proof: Since tt* and ~r' are isomorphic the atomic sentences 

are, by definition of the isomorphism, true in at* iff they are true 

in V'• Since sentences are finite combinations of atomic sentences, 

connectives, and quantifiers, it follows by induction that a sentence 

is true in PJ* iff it is true in 21•. 0 

The following the,orem is an important key to understanding how and 

why to use a non-standard model. It allows one to ge freely from a 

universe to its non-standard counterpart. 

2.18 Theorem: If 21* is any model (standard or non-standard) of M 

then a sentence of £ is true in tJ.* if f it is true in at. 

Proof: If a sentence S is true in tit then S E M and is therefore 

true in iy* which is a model for J(;. Conversely, if S is false in ti 

then-, S € :K and hence IS is true in at,' i.e. S is also false in 

"1.*· 0 
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As observed.above, if two interpretations of a language are iso­

morphic then a given sentence in ~ is either true in both 

interpretations or in neither. On the other hand, if different inter­

pretations of a language are given can one be isomorphically embedded 

in the o·ther? In the case that an interpretation ~r* is also a model 

for M there is a quite natural way of embedding ~into tl*o In the 

following, "c" denotes a symbol in ~ while c and c* denote objects 

in U and u* respectively, where ~I = (U; I; E; pr, ap) and lI* • (u*; 

r*; *e; pr*, ap*). It !s supposed that 

I : ;f • onto ~ U is defined by I("c") • c and 

r*: ;t into ~ u* is defined by r*{"c") = c*. 

It then seems quite natural, since the symbol "c" identifies the 

object c under the interpretation lf and c* under tr*, to identify c 

and c*. Following our intuition, let 'f : U into) u* be defined 

by 'f{c) = c*. 

Notice that 'f maps every object in U to some object in U*o For if 

c e u, there exists at least one symbol "c" in £ such that 

I("c") = c. Hence I*{"c") = c* and therefore c* is an element in U 

such that t(c) = c*. Secondly, note that 'f is a well-defined corres-

pondence, for if "c" and "d" both denote the same object in U9 then 



c = d. That_ is, c = d is a sentence in .;f which is true in ti and 

thus c* = d* is true in tr* which is also a model of :K. 

2.19 Theorem: The natural embedding 'f of tT into a model u* of 1' is 

an isomorphic embeddingo If I* is a mapping-of :I.. onto u*, then 

tI* is a standard model .. 
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Proof: First of all it is clear from the definition of ' that 

I*("c") = y(I("c")) o Now i.f a ~ b is a sentence of £. true in ti then 

the interpretation a* ~ b* must be true in ti*. That is, if a ~ b 

then y(a) ~ y(b). Thus Y is a 1-1 mapping. To conclude that y is an 

isomorphic embedding it must further be shown that: 

(i) a E b ~ y(a) *E t(b) i.e. a* *e b* 

(ii) a = b pr c - y(a) = y(b) pr* t(c) i.e. a* = b* pr* c* 

(iii) a = b ap c - v(a) = !(b) ap* y(c) i.e. a* = b* ap* c* .. 

Note that each of i, ii, and iii above contains a sentence of ;;e 

under the two interpretations, V and tI* respectively. Thus i, ii, 

and iii are consequences of the fact that u* is a model of ~ and that 

truth in one interpretation implies truth in the other. If, in addition, 

r* is a mapping from ~ onto u*, then t is a mapping from U onto 

u*. This follows by first noting that if I* is onto then for each c* 

in u* there exists a "c" in £ such that I*("c") = c*. Since I 

is also onto, there is some c in U such that I("c") -= c. Then by 

definition of v, y(c) = c*. Therefore tis onto and so ti* .is a 

standard model. 0 
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The previous two ~heorems make working with non-standard models 

seem ve-ry natural. Rather than considering the non-standard model as 

completely apart from the standard world, the standard world is con­

sidered as part of the larger non-standard world. Thus from now on 91* 

will be considered as merely an extension of ~. Thus any object c in 

ll will be identified with the associated c* in tr*. Objects of tr* 

that are in PT are called standard. objects while those that are in 

ll\~r (i.e. in 1lJ* but not in tl) are called non-standard obJects. 

There are non-standard objects in 91* iff ~J* is a non-standard model. 

All models used later in connection with topological spaces, other 

than the original standard model itself, will be assumed to be a specfic 

type of non~standard model called an enlargement. A description of an 

enlargement requires a special type of relation which shal~ now be con­

sidered. 

A relation R over U is a set of ordered pairs; the left domain of 

R is the set of all first members of the ordered pairs in the set R. 

In the f~llowing (a pr b) f R will be abbreviated by a R b. A bina-ry 

relation R is called concurrent if for any natural number n and any n 

objects a1 ~ a2 , 000 9 an in the left domain of R there exists some b 

such that Since U is infinite, 

an example of a concurrent relation over U. 

Now every formula t of J?. with two free (not bound) variables 

defines a bi.nary relation Ri;; over U where Rt is given by 

RT = ((a, b) : t(a~ b) is true in ~l}o 
IJI 

is 



22 

To verify the existence 0£ enla~gements, the compactness theorem 

from symbolic logic will be assumed [3]. The compactness theorem 

guarantees that if a language £' has a set of sentences S such that 

every finite subset 0£ S has a model, then S also has model. 

Since U is infinite, there is at least one formula t(x, y) such 

that R1 is concurrent (eog. t(x, y) given by "x ~ y"). Now for 

each formula t of ~ for which R11 is concurrent, a new constant "c " t 

(i.e. a constant not previously in~) is invented. With M still 

designating these~ of all sentences of tetrue in~. let x1 be the set 

of all sentences of the form t(a, ci) where each "a" is a constant 

of £.. These sentences are not in ~ but are in an enlarged language cl!.' 

obtained from df. Then let X' = ~ U[U(M1 : Rt is congurrent}]. Let 

S be a .finite subset of sentences from ~·. Examining s, note that a 

sentence of S containing constants only from U is still tru~ in the 

interpretation ~. 

For any fixed t there are at most a finite number of sentences of 

M~ ins. Let t(a1, c1), • 0 •, t(8n_, c1) designate these sentences. 

Since R is concurrent there is some b E U such that a R b, • • •, 
1 t 

an R1 b. Let I" be a mapping .from £/ to U such that I" agrees with 

I for all constants of ~' that are also in ~. Then define I"(c1) = b. 

Thus each of t(a1, c1), 0 ••, t(a0 , c~) is true in '4f' = (U; I"; E; 

pr, ap). Hence ll" is a model for S. By the arbitrariness of s, the 

compactness theorem guarantees there is a model ~· = (U'; I'; 'E; 

pr', ap') for the set ~v of sentences of ;£'. 
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Now let tt* = (u*; I*; *E; pr*, ap) be the same as U' with the 

exception that I* is the restriction of I' to '([. Then U* is an 

interpretation of£ and a model of X. The interpretation tt* is called 

an enlar5ement of ~. 

In the work which follows an arbitrary but fixed enlargement will 

always be assumed. The major properties of an _enlargement which are 

used in the remainder of the paper are summarized in the following 

theorem. 

2.20 Theorem: If ~ is an enlargement of u, then 

(i) v* is a non-standard model of X 

(ii) For every formula t(x, y) of d? for which R is concurrent 

there is an object ciR in u* such that when t(a, b) is 

true for some b EU, then t(a, c1) is true in ~*. 

Proof: As mentioned eal_'lier, the construction of ~ forces tr*" 

to be a model of ~. 

The second part also follows from the construction since the com-

pactness theorem guaranteed that iI' was a model for )£'. That is, all 

sentences of the form <P(a, c1) in J(' are true in ~U'. Since c1 

is an object in U', ct is in U* = U'. 

That v* is a non-standard model may be verified from examining 

any formula t(x, y) which yi.elds a concurren.t relation R1, such as 

t(x, y) given by x 1 y. Since there is an object in W* corresponding 

to c91 , which is a constant in ct'' but not in ;e, the natural embedding 



~ w~ich relates ;t., U, and u* cannot map any object in U to ct in 

u*. Thus 'is not onto, _cw is a non-standard object, and u* must 
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be a non-standard model. O 

The construction is now complete. A very nice non-standard model, 

i.e. an enlargement, has been constructed. The natural embedding .has 

provided an intuitive way of treating an enlargement u* of U as if U 

were actually contained in u*. Further, once any property about U is 

formally stated this property holds when reinterpreted in tr*. Now a 

few theorems and remarks will be given so that the powerful proof 

technique outlined above may be used with dexterity. 

2.21 Remark: Since U is closed with respect to pr and ap, an 

ordered pair of standard objects is standard, as is a standard function 

applied to a standard object. Also if a E A where A is a standard 

set, then a is also a standard element since U is a transitive set. 

However, if a *E A where A is a standard set then a may well be non-

standardo In the next chapter it will be seen that this is the case 

with infinitesimal real numbers. 

For each concept which is definable for objects in U there is a 

corresponding concept in 91*. For example, a *set S is an object in u* 

that is either ¢ or is a collection of object~ from U* such that at 

least one of these *objects a *E S~ Recall that *e may not be the 

membership relation on U, but is merely a binary relation on U. None­

thele~s, a member a of S for which a *E S is called a *member of s. 

Our interest will be in those members of S which are indeed *members of 

s. A definition concerning these *objects will be given shortly. 
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Another *concept is that 9f a *(ordered pair), i.e. pr* applied to 

two objects of u*. A *relation in u* is a *set of ~(ordered pai~s). 

When considering a *function f it is necessary to "*" many of the 

words such as saying f *maps the *set A *into the *set B. The reason 

for this is that the mapping is done by *(ordered pairs) and is per­

formed on *sets. 

2.22 Definition: The scope of a *set s, denoted'§', is the set of all 

*members of s. 

~is a well-defined collection of *objects, but it need not be a 

standard set, and in fact it might not even be a *set since it might 

not be a *object of u*. Since every standard object is considered as 

a *object, every standard set will be contained in its scope. That is, 

every standard element of S is in '§'. The next chapter shows that 

*elements of S need not be elements of s. 

2.23 Theorem: If A is a finite standard set then 1: = A, i.e. the 

only *members of A are its standard elements. 

Proof: If A = ¢ the result follows from the definition of the 

natural embedding, so let A EU be given by A= (a1, a2, ···, an). 

Then the sentence "Va( a E A.,.. a = a1 V a = ~ V • • • V a = an)" is 

true in ~, and hence in 11;*. The interpretation is 

" * ) " -wa {a E A ~ a = a1 v a = a2 V • • • V a = an ~ 

Therefore a *E A iff a = a1, a2, • 0 •, an-l' or an. That is 1 = A. 0 
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Sentences, recall, have at mo.at a finite number of connectives and 

quantifiers. Thus the above argument is not applicable to infinite sets 

since their elements could not be enumerated in a single sentence. 

2.24 Theorem: The scope of the union (intersection) of a finite 

collection of_ *sets i·s the union (intersection) of their scopes. 

Proof: The following sentence defines the union of a finite 

collection of sets of U: Yx YA1 YA2 • 0 • YAn[x E A1 V x E A2 V ••• 
I 

V x E An ff x E A1 U A2 U • 0 • U An]o The translation in *~ is 

Yx VA1 yA2 Y • 0 • VAn[x *E A1 V x *E A2 V ••• V x *E An 8 x *e A1 U A2••• 

U An]• Since xis a member of ~ U ~ U ••• U ~ iff xis a *member 
A ft.. !),, 

of A1 or of A2 or of • • • or of An, Ai U A2 U • • • U ~ = 

Ai'"\J A2 l.! '"700 ~. By replacing U by n and "or" by ~and" a proof 

that t 1 n ~2 n • • 0 n ~n = ~An will result. a 

2.25 Corollaryi For *sets X, A, B, if X = A U B, where A n B = ¢, 

then 'X' = ~ u ~· and i n 'B' = ¢. 

6 '-', -1'\b- * * 2.2 Corollary: h B_= A\B, where A and Bare subsets of the set X. 

2.27 Theoremg For each fUnction f and set A, ~ = f('.A). 

Proof: The following sentence defines f (A) in ~: 

vx[x E f(A) "" ~(y E A /\ f(y) = x)J. 

Reinterpreted in t1*, this sentence says r'(A) = f (~). 0 

~ 
2.28 Theorem: For each fUnction f and set A, r-1(A) = r-1 (~). 
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Proof: Given f and A this follows from the interpretation of the 

" -1 " * sentence v.x[x E f (A) .-. Sy(y E A /\ f(x) = y)J in V • O 

2.29 Theorem• The .fungtion f maps the set A onto the set B iff f maps 

1: onto 'B'. 

Proof: The following sentence defines what it means for the 

function f to map the set A onto the set B in ti: 

VY[Y E B ... :B'x(x E. A/\ f(x) = y)J. 

Reinterpreted in *!J, this sentence says f maps 'A ·unto 'B'. 

In the context of the following discussion it may sometimes be 

said that A is the set whose scope is "A'. The foliowing theorem -
justifies all such statements. 

0 

2.30 Theorem: The correspondence which assigns a scope to each *set is 

a 1-1 correspondence. 

Proof: The following sentence defines set equality in al: 

VA YB[A = B ~ Vx(x E A+-+ x E B)]. 

Translated in ~l* it says *sets are equal iff their scopes are equal. O 

The remaining material in this chapter also comes from Machover 

and Hirschfeld [11]. There are two central concepts, that of "Nuc" 

and "Fil"· The theorems which concern these concepts provide the 

justification for some later manipulations. Thus one might want to 

defer this material until the need for such justification arises~ 



2.;1 Definition: A collection of subsets F of X is called a filter 

on X if: 

(i) A, B E F ~ A n B E F 

(ii) A E F, Ac B c X ~BE Fo 

Note that ¢ may be an elem:nt _of F ace-Ording to this definition. 
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Hence P(X) is a trivial filter on x. One of the important filters 

to be considered in Chapter IV will be that of the neighborhood family 

of a pointo 

2,32 Lemma: If F a is a filter on X for each a in some index set A, 

then n(Fa: a EA} is also a filter on x. 

2.33 Lemma: If G c P(X) and G' is the family of all finite inter­

sections of members of G, then G" "" [A : B c A for some BEG'} is a 

filter on x. 

G" is said to be generated by G. If the intersection of any 

finite number of members of G has a subset belonging to G, then G is 

said to be a base for G". -
2.34 Definition2 A non-trivial filter F on X is called an ultrafilter 

if nc non-trivial filter on X properly contains F. 

For proofs of the next two lemmas concerning ultrafilters see 

Thron [19]. 

2.35 Lemma: Every non-trivial filter on X is contained in an ultra-

filter. 
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2.36 Lemma: If F is an ultrafilter on X and A c x, then exactly one 

of A and X\A is an element of F. 

2.37 Definition: For G c P(X) the nucleus of G is given by 

~ = n{t: A E GJ. If N = NucG for some G c r(x), then N is said 

to be nuclear. 

2.JS Theorem: If G c P(X) and F is the filter generated by G, then 

NucF = NucG. 

Proofg Since G c av c:: G" = F, the definition of Nuc implies 

NucF c NucG. To est.ablish NucG c NucF, consider an arbitrary set 

A E F. Since G generates F, there exist a finite number of sets 

0 •• Bn in G such that B1 n B2 n ••• n Bn c A. It then 
~ I"'\ A /'::.. 

follows that B1 n B2 n ••• n Bn c: A. Now if a E NucG, then 
D. A-. 16:.. ~ a€ B1 n Bz. ••• n Bn c A. Since A was arbitrary from F, 

a f= i1 ~ : A E FJ = NucF. 

Therefore NucG c NucF. Hence NucF = NucG. 0 

2.39 Definitiong If G cr(X) and A *e G such that ~c NucG, then 

A is called an infinitesimal *member of G. 

2.40 Theorem: Every filter has an infinitesimal *member. 

Proof: Let G be-base for the filter F (such a base exists since F 

.) ( ) " " is a base for itself and define a formula ~ x, y by y E G A y c x • 
I 

Then consider the associated relation Rt on U. Since G is a base for 

F, the left domain of Rt is F. Then since the intersection of a finite 
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•••, An of sets from Fis some A E F, 

must contain some set B from the.base G. That is, there exists a B 

such that A1 Rt B, •••, ~Rt B. Hence Rt is concurrent, and so in 

the enlargement 9r* there is some c, *E u* such that c, *E G* and 

for each A E F, it is true that c1 *c: A (i.e. 'B', c 1). Thus 

-&, c [n {~ : A E FJ] which equals NucF. Since G c F, it also follows 

that c, *€ F. Therefore c1 is an infinitesimal *member of F. 0 

2.41 Definitiong If Sc: X' then FilS = {A : Ac X and Sci}. 

2.42 Theorem: FilS is a filter. 

Proof: If A, B E FilS, then S c ~ and S c f3'. Hence 

S c * n B'. -Since * n tJ = Ali'B, S c A(;B. Therefore A n B E FilS. 

Secondly, if B c A and B E FilS, then 13' c ~ and S c 13' imply 

S c ~o Hence A E FilS. It follows that FilS is a filter. O 

2.43 Theorem: 
A 

If A c B and B c X, then FilB c FilA. For any 

filters F and G, Fil (NucF) = F and F c G iff NucG c NucF. 

Proof: The first statement follows from the definition of Fil. 

Now assume that A E F. r.... The definition of Nuc implies that NucF c A. 

Since Fil (NucF) ={A: Ac X and NucF ci}, A E Fil (NucF). A was 

an arbitrary element of F so it follows that F c Fil (NucF). To 

establish the other inclusion let A'E Fil (NucF). The definition of 

Fil implies that NucF c 1t.. Since F is a filter, there exists an 



infinitesimal *member C of F. Thus e c NucF which equals 

n (i : A E FJ. Together NucF c i and U' c NucF imply that c c A. 
Hence the sentence ~x[x E FA xc A] is true in !li*. Since F and A 
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are standard, this sentence is also true in u. Therefore some element 

B of Fis a subset of A. Since F is a filter, B E F, and B c A, it 

follows that A E F. Hence the inclusion Fil (NucF) c F follows. 

Therefore Fil (NucF) = F. 

Lastly P note that F c G implies NucG c NucF, by the definition 

of Nuc. On the other hand, if NucG c NucF, then by the first part 

of the theorem, Fil (NucF) c Fil (NucG). Therefore, by the previous 

result, F c G. O 

2.44 Theoremg For any two filters F and G, Nuc (F n G) = NucF U NucG. 

Proof: F n G is a filter since F and G are. Now F 0 G c F and 

F n G c G. Therefore the previous result implies NucF c Nuc (F n G) 

and NucG c Nuc (F n G). Hence NucF U NucG c Nuc (F n G). On the 

other hand, suppose x *E X but x t NucF U NucG. Then there exists an 

A E F and a B E G such that x *i A and x *t B. Therefore 

x ¢ ~ U -B and, 
r:.. I" .-----..... ,/ ,.........-..., 

since A U B = A u B, x r A U B. Now note that 

E (F n G). 
~ 

So x ¢ A U B implies x ¢ Nuc (F n G). Therefore 

Nuc (F n G) c NucF U NucG. Hence the equality Nuc (F n G) = 

NucF U NucG follows. 

(A U B) 

0 

Although the union of filters may not be a filter, it is sometimes 

useful to consider the filter which is generated by a union of filterso 

The following result is used later in a proof concerning local 

compactness. 
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2.45 Theorem: Let G = U{Fi : i E I} where Fi is a filter for each 

i E I, an indexing set. Then Nuc (G") = n{NueFi : 1 E I} where G" 

is the filter generated by G. 

Proof: Since G" is generated by G, it follows from Theorem 2.38 

that NueG" = NucG. B".r definition NucG = n {i : A E G} • From the 

definition of G it may be ascertained that 

n{~ ~ A E G} = n{~ : A E Fi for some i E I}. 

Then note that n{i i A E Fi for some i E I} = n(n{* : A E Fi} i E I}. 

Finally, from the definition of Nue it follows that 

n(n{~ : A E Fi} : i E I} = n{NueFi : i e I}. 

Thus, from all these equalities, NucG" = n{NucFi : i E I}. D 



CHAPTER III 

THE NON-STANDARD REALS 

The previous chapter has outlined a procedure for producing an 

enlargement for any given set x. There are also other procedures for 

producing non-standard models. One of these is called the ultrapower 

technique. This technique has the added feature that in the case of the 

real numbers it not only guarantees a non-standard model, but it also 

provides specific examples of elements that are non-standard real 

numbers. Thus the major purpose of this chapter is to provide the 

reader with some *points of a set which are not points of that set, 

that is, to show that the scope of a set may properly contain that seto 

Throughout the remainder of this chapter the natural numbers will 

be denoted by N and the real numbers by R. a will designate an ultra-. 
filter containing the cofinite (Frechet) filter on N. That is, a is an 

ultrafilter containing all subsets S of N where N\S is finite$ 

Now let RN = {f : f is a function from N into R). Since RN may 

be described equivalently as the set of all real sequences, sequential 

notation shall be used to represent the elements of RN. For example, 

- N - ( ) if x E R then x = X19 ~· X39 90 " where xj E R for each j E N. 

The ultrafilter u will now be used to define an equivalence relation on 

RN0 - - E N · - - { } If x, y R , define "e" by x e y iff n E N : ~ = Yn E u. 

33 
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In particular, x • y if x and y differ in only a finite number of 

coordinates. 

3.1 Lemma: The relation• is an equivalence relation on RN. 

- N - - ( Proof: For each x E R , x = x since n E N : xn = xnJ = N E a. 

Hence • is reflexive. If x • y, then (n E N : xn = y J E a. Note n 

that {n E N : Yn • xn} = {n E N : xn = yn}. Hence y ex, and so e 

is symmetric. If x • y and y • w, then A = (n E N : xn = yn) E a 

and B = {n ~ N : y = w } E O. Since a is a filter, A n B E a. Note n n 

that A n B c {n E N : x = w J = C. This implies C E u since u is n n 

a filter. Hence x aw, and so a is transitive. 

Let R* denote RN/a, the collection of equivalence classes of 

RN with respect to the equivalence relation a. (This explains the 

reason for calling this technique the ultrapower technique. R* is 

constructed by first forming the cartesian product RN and then 

reducing it modulo an ultrafilter.) For simplicity, x = (x1, x2 , 

x3, •••) will be used to denote the equivalence class to which x 
belongs. R* will be called the non-standard reals. 

There is a natural way of embedding the reals into R*. Let 

V : R ~ R* be defined by !(r) equals the equivalence class in R* 

to which the constant function r belongs. That is, 

y(r) = r = (r, r, r, ••o)e 

0 

3.2 Definition: Each r E R* for which there is some r E R such 

that r = !(r) will be called a standard element of R* or a standard 
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~ number. All other members of R* are called non-standard ~ 

numbers. 

For convenience, R will be considered as a subset of R* and each 

standard real number r = Y( r) may be denoted by r. Thus 

O = (O, o, o, •••) may be identified by O and T = (1, 1, 1, •••) by 1. 

3.3 Example: x = (1, 2, 3, •••, n, •••) and y = (1, 1/2, 1/3, •••, 

1/n, •••) are non-standard real numbers. To see this, compare x to any 

standard real number r (i.e. r = (r, r, r, •••)). The set 

A = [n E N : ~ = r) is either ¢ or contains exactly one natural number 

as r E R\.N or r E N. (Since a is an equivalence relation it is 

permissible to let the equivalence class be represented by any of its 

members, so in particular it was assumed that r was represented by 

(r, r, r, •••).) Since A is finite, N\A E o. Thus At O and so x 
and r are distinct equivalence classes. Thus x is a non-standard real 

number for it is no_t equal to an:y standard -real number. Similarly y 
may be shown to be non-standard. In fact, any x = (Xi,, ~' x3, •••) 

is non-standard if {n E N : ~ = r) is finite for each r E R. Thus 
' 

the reader now has an infinite supply of *points which are not points. 

The major purpose of the chapter has been achieved provided the 

reader is willing to accept that R* is a no~-standard model for the 

reals. Since a rigorous proof of this would entail another discussion 

similar to that of the preceding chapter, a proof will not be provided. 

Instead, an indication of how concepts of R can be reinterpreted in R* 

will be given. For each concept concerning the real numbers there is a 

corresponding concept for R*o Generally speakingv this concept for R* 
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is obtained by using the usual definitions associated with operations 

on functions and perhaps reinterpreting properties of R through the 

ultrafilter a. The following definitions and lemmas illustrate these 

remarks. 

3.4 Definition: For x = (x1, ~' x3, •••) and Y = (y1, y2, y3, •••) 

in R*, i < y iff (n E N : ~ < Yn) E a. 

3 5 D f . it' F ( ) i'n R*, • e in ion: or x = x1, ~' x3, ••• 

3.6 Definition: If i E R* and r < Iii for each standard real number 

r, then i is said to be infiniteJ.y large. 

Of course no standard real number is infinitely large, but there 

are many infinitely large non-standard real numbers. 

3.7 Example: i = (1, 2, 3, •••, n, •••) is infinitely large. To 

verify this note that for each r E R there is some n E N such that 

r < m for each m > n. Clearly Iii = x. If A= (j E N : rj < xj}, 

then N\A is finite. Hence A E n and so r < Ii/ for each r E R. 

Therefore x is infinitely large. Similarly it may be shown that w and 

z are infinitely large where 

w = (0 9 1/2, 2 9 o, 1/3, 4, o, o, n, 8, -35, 16, 32, 64, •••, 2n, ···) 

and z = (O, -1, 1/2, 1, O, -2, 1/3, 2, -3, 3, •••, -n, n, •••). 

3.8 Definition: If i E R* and 0 < Ii I < Ir/ for each non-zero real 

number r, then x is called an infinitesimal. 

3.9 Example: y = (1, 1/2, 1/3, ···, 1/n, •••) is an infinitesimal. 
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Note first of all that \yl = y. It is clear that 0 < y. Now for 

each non-zero real nUIIJ.ber r there exists an n E N such that m > n 

implies 1/m < /rl. Thus if A= {j EN: yj < lrjl ), then N\A is 

finite. Hence A E O and so l'YI < frf for each non-zero r E R. 

Therefore y is an infinitesimal. Similarly it may be shown that z and 

w are infinitesimals where 

z = (o, o, 1/2, o, o, 1/4, o, o, o, 1/8, o, 1/16, 1/32, 1/64, ••• , 1/2n, 

•••) and w = (1/2, o, 1/3, 0 9 1/4, o, -1/9, 222, 1/8, 1/27, 1/16, 

-1/81, •••, 1/2n, l/(-3)n, oo•). 

3,10 Definition: If r is a standard real number and r - x is zero 

or any infinitesimal, then x is said to be near r. -
3.11 Example: 

(i) The set of points near zero is the set containing zero and all 

infinitesimals. 

(ii) If x is an infinitesimal then y • x + r is near r for each 

standard real number r. Thus the set S of points near r is 

given by S = [i + r : xis zero or an infinitesimal). 

3.12 Definitiong x ' ···) 3 
* ~ - --in R , x + y = (x1 + y1, x2 + y2 , x3 + y3, •••) and x Y = (x1 y1, 

x2 Y2t X3 Y3t •o•). 

3.13 Lemma: 0 is the additive identity for R* and 1 is the multi­

plicative identityo The additive inverse of x = (x1, X;cv x3, •••) is 

- ( ) - -1 given by -x = -x1, -X;c, -x3, ••• • If x is defined by 



- -1 ( ) x = a1, a2, a3, ••• where 

8n = t~l if 

0 if ~ • o, 

-~ -then x is the multiplicative inverse of x. 

Van Osdol (20] proves the.se results while establishing that R* 

is an ordered field. Considered as fields, ! is an embedding of R (a 

complete ordered field) into R* (an ordered field). 
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Two other important concepts of R which can be reinterpreted in R* 

are now given for future reference. 

3.14 Definition: For each subset S c R, the associated *set s* in 

R* is defined by S* • (XE R* : {n E N : ~ E S) E o). 

3.1z Example: i • (1, 2, 3, •••, n, •••) is a *elemen~_of N*. For 

verification note that {n E N : ~ E N) • N which belongs to a. Thus 

x is an example of an infinitely large (non-standard) natural number. 

Another example of an infinitely large naj;ural number is 

••• 2n •• •) ' ' . 
3o16 Definition: If f ~ S ... R is a funct~on from Sc R, then the 

associated *function f* : s* - R* i~ defined by f*(x) = y where 

~ES 

~ i So 
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3.17 Example: Let f : N ... R be defined by f(n) = 1/n. Then 

f* : N* ... R* will *map the infinite natural number i = (1, 2, 3, •••, 

n, •••) onto the infinitesimal y = (1, 1/2, 1/3, •••, 1/n, •••). The 

function also *maps w = (O, 1/2, 2, o, 1/J, 4, o, o, n, S, -35, 16, 
r· 

32, 64, •••, 2n, •••) onto the infinitesimal z = (O, o, 1/2, o, o, 

1/4, o, o, o, 1/8, o, 1/16, 1/32, 1/64, •••, 1/2n, •••). 



CHAPTER IV 

TOPOLOGICAL SPACES 

The study of topology evolved as a generalization of the notions 

associated with open subsets on the real lineo In the work which 

" " " " follows, it is often helpful to sketch an appropriate ball or sphere 

about a fixed point in order to obtain.an intuitivp idea of what other 

" " " " points are near the fixed point. The actual picture of the ball may 

not appear like an open set in the reals, but the purpose for making it 

is the same - to enlighten .it.s maker. Once a clear conception of an 

idea has been achieved, non-stand:ard. analysi~ will often allow the idea 

to be expressed in intuitively worded language.. Without further ado, it 

will be assumed that for each set X under discussion, X is a standard set 

identified with x* in some enlargement based upon the universe of 

discourse constructed from Xo 

4.1 Definitiong Let X be a non-empty set and let ~ be a family of sub-

sets of X satisfying& 

(i) X, ¢ E :Jo 

(ii) The union of any f~ly {Oa g_a EA} of members of ;r is 

again a member of :Jo 
' 

(iii) The finite intersection of arcy' family [Ok k = 19 2 9 ° 00 9 n} 

of members of :r is again a member of :Jo 

40 



;r is then called a topology for X. The pair (X, 3') is called a 

topological space (space) and the me_mbers of 3' are called open~· 

Note that property (i) is included m~nly for emphasis as it 

follows from properties (ii) and.(iii) by using¢ as an indexing set. 
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The following examples may_easily be verified to be topological 

spaces. Spaces which are given names will be referred to later by these 

names. 

4.2 Exampleg 

(i) Let X =(a, b 1 c} end 3' =((a}, (b, c}, X, ¢), then 

(X 7 3') is a three-point topological spacee 

(ii) Discrete topological space 

Let X f ¢ be an arbitrary set and :r =- P(X); (X, :r) is 

then called a discrete space. (P is the power set operator.) 

(iii) Indiscrete topological space 

Let X ~ ¢ be an arbitrary set and :r = fX, ¢}; (X, rr) is 

then called an indiscrete space. 

(iv) Cofinite topological space 

Let X ~ ¢ be an arbitrary set and :r be the family consisting 

of ¢ and all subsets of X whose complements in X 'are finite; 

(x, rr) is then called a cofinite space~ 

(v) Co-countable topological space 

Let X ~ ¢ be an arbitrary set and 3' be the family consisting 

of ¢ and all subsets of X whose complements in X are countable; 

(X, :r) is then called a co-countable spaceo 



A given set may have many topologies_. For example, if X is the 

set of real numbers, then X could have the discrete, indiscrete, co­

finite, and co-countable topologies {as well as the usual topology and 

many others). Thus when considering a space, both the set and the 

topology must be made clear. 

The definitions which follow give the terminology which is used to 

describe the relationship among different topologies on the same set. 

4.~ Definition: Let X be a set and let F be the family of all topol­

ogies for x. Then F can be partially ordered by set inclusion, i.e. 

the ordering is given by 3' ~ 3'' for ;r, 3'' E F iff 3' c ;r•. If 

3' ~ 3'', then ;r is said to be weak•r or coarser than 3'' while 3'' is 

said to be stronger or finer than rr. If neither 3' ~ 3'' nor 3'' ~ ;, 

then 3' and 3'' are said to be non-comparable, 

It is easily seen that the discrete topology for X is the finest 

topology for X while the indiscrete topology is the coarsest topology 

for x. 

One activity that occurs repeatedly in point set topology is the 

formation of new spaces from old ones. Perhaps the easiest way to do 

this is given without proof-in the following theorem, while a warning 

is given by the following example. 

4.4 Theorem: The intersection of an arbitrary non-empty family of 

topologies for X is again a topology for X. 
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4.5 Example: The union of a family of topologies for X need not be a 

topology for X. Let X = (a, b, c}, then rr = ((a}, (b, c}, X, ¢} 

and cl'' = ((b}, (a, c}, X, ¢} are topologies for x. Note that (b, c) 

and {a, c} are members Of rr u rr'. If rr u IT' is a topology for x, 

then the intersection of (b, c} and (a, c} must be a member of 
j 

Z U rr•. This is not the caseo 

One more standard definition will be given before enough machinery 

is present to begin with some non-standard treatment of topology. 

4.6 Definition: Let p be a point in the space (X, rr). A subset N of 

X is called a neighborhood (nbhd) of p iff there exists an open set 0 

such that p E 0 and O c: N. The family of all nbhds of p is called 

the ~ system at p. This nbhd system will be denoted by !e. throughout 

this paper. 

Note that Np ~ ¢ since X is always a nbhd of p. In fact, even 

more can be said about the structure of this family. 

4.7 Theorem: Np is a filter. 

Each open set is a nbhd of each of its points, but a nbhd of a 

point need not be open. All that is necessary is that it contain some 

open set about the point. This is sufficient, however, to provide a 

simple criterion for determining when a subset of a space is open. 

4.8 Theorem: Let (X, IT) be a space, and let 0 c X. 0 is open iff 

0 contains a nbhd of each of its points. 
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This provides sufficient material to introduce the very important 

" " " " non-standard term monad and to rigorously define the c9ncept near • 

When_reading the following definition beware that p must be a standard 

. * i point and not merely a po nt. 

4.9 Definition: The monad of the point p, a(el, in the space (X, rr) 

is equal to Nuc Np. 

4.10 Lemma: µ(p) = n{~ : N E Np} 

The proof of this lemma consists of recalling the definition of 

Nuc G where G c P(X). The lemma is given for emphasis since this will 

be the characterization of µ(p) used most frequently in the work 

which follows. 

4.11 Example: 

A " (i) For the three-point space in Example 4.2.i, µ(a) = {a) n X. 

Thus µ(a) • {a}. (The scope of any finite set is that set.) 

Similarly, µ(b) = {b, c} and µ(c) = {b, c). 

(ii) For each point pin a discrete spac~ (X, rr), µ(p) • {p). 
/\ 

(iii) For each point pis an indiscrete space (X, d), X = µ(p). 

For X finite this means X = µ(p). When X is infinite, Q may 

well contain non-standard points and in this case X is a 

* proper subset of µ(p). 

What the preceding lemma is saying is that µ(p) consists 

precisely of the *points which are in every nbhd of po Thus, intui­

tively speald.ng, the points of µ(p) must be very close to P• This 
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leads to ~he followi~g d~finition_of the concept of nearness. First 

note that the topology involved completely determines the monad at each 

point. No notational change will be made to denote this where the 

topology on X is considered fixed in any given discussion. It will not 

be shown now, but it is interesti~g to point out that a converse to the 

above statement also holds. Namely, if the monads of every pciint in X 

are given then a unique topology d is determined for x. 

4.12 Definition; In the space (X, i), a *point q is said to be near -
the point p if q E µ(p). If q is near p for some p E X, then q is 

called a near-standard *point. otherwise, q is said to be remote. 

4.13 Example: 

(i) * In the three-point space of Example 4.2.i, a is the only point 

near a. The points b and c are ~oth near each other. 

' * (ii) For each point p in a discrete space, the only point near 

* p is p itself. Thus each non-standard point of a discrete 

space is remote. 

(iii) In an indiscrete space, every point is near every other point. 

In addition, when the space is infinite there may be non­

standard points near any given point (i.e. there may be 

non-standard near-standard *points). 

(iv) When the usual topology for the reals is given, it can then be 

noted that all infinitely large real numbers are remote *points 

while all infinitesimals are· non-standard *points which are 

near-standard. In particular, x = (1, 2, 3, •••, n, •••) is 



remote while y = (1, 1/2, 1/3, •••, 1/n, •••) is near-

standard. 

It may now be said rigorously, as well as intuitively, that the 

points of µ(p) must be near p. It would certainly be expected that 

the point p is near itself. Since the point p is in every nbhd of p 

and thus a *point in every one of its nbhds, it does indeed follow that 

p E µ(p). Thus p is near itself and so each standard point is near­

standard. Caution - it does not. make sense to say p is near p for 

non-standard p, and similarly nearness is not a symmet~c relationship 

* for points. In fact, q may be near the point p while µ(q) is not 

even defined. This is true when q is a *point but not a point in the 

space (X, i). If p and q are standard then iii is possible for p and q 

to be near each other. A characterization of a T0-space will later 

involve an examination of when this is possible. 

4.14 Example: If a is near b, then b need not be near a. Let 

X = (a, b) and rr = {~, {a}, X), Note that µ(a) = ~ n ~ and 
/\ 

µ(b) = x. Hence µ(a) = (a) and µ(b} = x. Thus a is near b, but b 

is not near a. 

Nearness is a transitive relationship, i.e. if r is near q and q is 

near p, then r is near P• Before examining the proof' of this in the 

next theorem, note that r near q implies q is standard and q near p 

implies p is standard while r may be non-standard. 

4.15 Theorem~ If p and q are points in the space (X, a} with q near 

p, then µ(q) c µ(p). 
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Proof: If p and q are standard points in the space (X, J) with 

q near p, then q E µ(p), i.e. q is a *point of every nbhd of p. Since 

q is a standard point, q is a point of every nbhd of p.' Let N E Np 

contain the open set 0 about p. Since 0 is also a nbhd of p, q E O. 

Hence N ~ontains an open set 0 about q and N is thus a nbhd of q. 

Therefore if N E Np, then N E Nq. It follows that Np c Nq. Whence 
/\ /\ 

n{N : N E Nq) c n{N : N E Np), i.e. µ(q) c µ(p). 0 

Bourbaki [1] gives an intuitive description of open sets. This 

description says that an open set is a set which is a neighborhood of 

each of its points; hence an open set contains all points sufficiently 

close to an arbitrary point in the set. The following development 

produces a non-standard characterizat~on of open,sets which almost uses 

these same words. 

4.16 Lerruna: A set N containing the point p in the space (X, d) is a 

* /\ nbhd of p iff N contains every point near p (i.e. µ(p) c N). 

/\ 
Proof_: By definition, Fil µ(p) = {N : N c X and µ(p) c N). 

Since µ(p) = NucNp, Fil µ(p) =Fil (NucNp). Theorem 2.43 guarantees 

that Fil (NucNp) = Np. From these equalities it follows that 

Np = {N : N c X and µ(p) c 9). That is, N E Np iff µ(p) c ~. 

Hence N is a nbhd of p iff N contains every *point near p. 

4.17 Theorem~ A subset 0 of the space (X, d) is open iff p E 0 

0 

* /\ implies O contains all points near p (i.e. µ(p) c O for each p E e). 
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Proof: By Theorem 4.8, 0 is open iff it contains a nbhd of each 

of its points. Thus by the previous lenuna, 0 is open iff p E O 

. * . implies O contains every point near p. 

If (X, rr) is a topological space where the cardinality of rr is 

great, it may be difficult to comprehend which subsets of X are open. 

In this case, it would be desirable to characterize rr by some simpler 

subfamily of rr. As·an example, the singletons might be considered to 

0 

characterize the topology for a discrete space since any open set can be 

expressed as a union of singletons. As is indicated in the following 

definition, this subfamily of singlet~ns is in some sense a base upon 

which the entire topology rests. 

4.18 Definition: A subfamily B of a topology rr of X is a base for rr 
- -

iff every member of rr is the µ:nion_of members of B. rr is said to be 

generated by B. 

It now becomes advantageous, although the previous definition con-

siders finding a base for a known topology, to consider what 

char~cteristics a family of subsets of X must have to generate some 

topology. 

4.19 Theorem: A family F of subsets of X is a base for a topology rr 

for X iff 

(i) X = U(B: B E F). 

(ii) If p EA n B where Av B E F, then there exists a C E F 

such that p E C and C c A n B. 



This theorem is a useful tool since not every family of subsets 

of X is a base for a topology. This fact is obvious from the theorem 

if X carmot be obtained as a union of members of the family; however, 

the following example shows that (i) may hold while (ii) fails. 
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4.20 Example: Ba {{a, b), {b, c), X, ¢) is not a base for a topology 

for X a {a, b, c}. For if it were, then both {a, b) and {b, cJ 

would be in the topology so generated. Thus {b) a {a, b) n {b, c) 

would be in this topology. This carmot be since {b) is not express­

ible as a union of members of Bo 

When the concept of a base was being introduced, it was mentioned 

that the base might characterize the open sets in a simpler way. This 

is exemplified by examining a base for the usual space of real numbers. 

4.21 Example: Let R be the set of real numbers. For each r E R and 

for every v > 0 let S(r, v) = {x : x E R and Ir - xi < vJ. Then 

B = {S(r, v)~ r E R, v > OJ satisfies the criteria of the previous 

theorem and is thus a base for a topology for R. This topology E is 

called the usual topology- £2!:.!i and the space will be denoted by 

(R, E). 

Similar to the way a base simplifies the characteri~ation of open 

sets a nbhd base mi~ht simplify the investigation of the nbhd system 

about a point in the space. Since the monad of a point is determined 

by the nbhd system, it might then be advantageous to examine µ(p) in 

terms of the nbhd base. 
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4.22 Definition: A subfamily Mp of Np where p is a point in the space 

(X, er) 

Mp. 

is a nbhd base for Np iff every nbhd of p contains a member of --

4.23 Lemma: If p E (X, er), then µ.(p) = nf~ ME Mp} where Mp a 

nbhd base for Np. 

/\ /\ 
Proof: Since Mp c Np, it follows that n{N : N E Np} c nfM : 

/\ /\ 
M E Mp}. By Lemma 4.10, µ.(p) = n{N : N E Np). Hence µ.(p) c n(M : 

ME Mp}. To verify the other set inclusion, assume that q ¢ µ.(p). 
/\ 

Since q ¢ n(N g N E Np}, there must exist some N E Np such that 

q ¢ ~. Mp is a nbhd base so N contains some M E Mp. It follows that 

q ¢ ~ and thus q ¢ n(~ : M E Mp}. This verifies that nfA : M E Mp} c 

µ.(p). Therefore µ.(p) = n{~ : ME Mp}'. 0 

4.24 Exampleg Note that the family of sets S(r, v) where v > 0 is 

a nbhd base at r E (R, E), the usual space of real numbers. 

It is now time to justify the different uses of the term "near" 

made earlier in this paper. One definition of nearness was given for 

the non-standard real numbers and another definition was given for an 

arbitrary topological space. When the topology for the reals is the 

usual topology E 9 then these definitions are equivalent. To see this, 

let us first examine the points near zero in the space (R, E). If q 

is near O, then q E µ.(O)c . From the preceding example and lemma it 

follows that q *E S(O, v) for each v > o. By the definition of 

S(O, v), q *E S(O, v) implies that lql < v. Since this is true for 

each v > o, q is either zero or an infinitesimal, i.e. q is near zero 
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in the terminol-ogy of Chapter III. ~us if q is near zero in terms of 

the definition interpreted for the space (R, E), then q is near zero 

in terms of the definition given earlier in Chapter III specifically 

for the non-standard Reals. By reversing the last few steps of this 

_argument, one may verify that nearness of q to zero in R* of Chapter 

I~I implies q is near zero in (R, E). Similarly, for each p in (R, E) 

it follows that µ(p) = {q: p - q is zero ~r"an infinitesimal). 

The present task will be to continue giving some of the basic 

definitions in order to form a framework for later discussions. 

4.25 Definition: A family S of subsets of X is a subbase for ; of the 

space (X, d) iff the family of all finite interse~tions of members 

of s forms a base ford• rr is then said to be subgenerated by s. 

As was the case when a base was defined, the definition of a sub­

base is made with regard to an existing topology. It was earlier 

pointed out that not every family of subsets generates a. topology, but 

it may now be seen that any given family of subsets is contained in 

some topology. Obviously S c:P(X), the di~crete topology for x. 
However, there may exist a coarser topology containing s. In fact, S 

subgenerates such a topology. 

4.26 Theorem: For any family S of subsets of X, S subgenerates a 

topology rr which is the coarsest topology containing s. 

4.27 Examples 

(i) The family of open rays, sets of the form 



{x : x E R and x > p} or {x : x E R and x < p} where 

pis a real number, constitute.a subbase for (R, E). 

(ii) The family S = {-¢, {a, b}, {b, c}, X} subgenerates the 

topology :r = {¢, (b}, (a, bl, {b, c), _X) where X = {a, 

b, c}. 
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It was mentioned earlier that there are many possible topologies 

on some sets. Not only was a relationship among the topologies 

examined, but it was also suggested that new topologies could be formed 

by intersections of known topologies. Ot4er ways of forming new topol­

ogies from known ones will be discussed when the terms "relative 

topology" and "product topology" are defined. The simplest of these 

will now be examined while product spaces will be postponed until a 

later chapter. 

4.2s Theorem: If A is subset in the space (X, :r), then the family 

:rA =(An 0: 0 E ;,r) is a topology.for A. 

4.29 Definition: The topology :rA = {A n 0 : 0 E 3} associated with 

the set A in the space (X, d) is called the relative topology of A 

with respect to :r and (A, :rA) is called a subspace of (X, :r). A 

property of (X, :r) which is also a property of each subspace of 

(X, :r) is an hereditaq property. 

4.30 Example: 

{i) Consider A = [3, 5) in the space (R, E). Note that 

[3, 4), (3, 4), and (4, 5) are open sets in the relative 



topology of A while [4, 5) is not. Further notice that 

[3, 4) is open in (A, EA) but not in {R, E). 

(ii) Consider {R, E) and (J, EJ) where J denotes the set of 

integers. It is easy to verify that EJ is the discrete 

topology for J. 

It was mentioned that the monads of the points of X determine a 

unique topology for x. This result of Machover and Hirschfeld is 
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interesting and will be examined now, but the reader is advised that no 

future use will be made of the result in this paper. 

4.~1 Theorem: Let A(p) be an arbitrary subset of Q for each p E X 

and let IT= {O c X ; A{p) c $ for each p E 0). Then IT is a topology 

for x. 

Proof: First note that ¢, X are in rr. Now suppose that 

{08·: a E A} is a family of members of rr. 
/\ 

for some a EA. Since 08 Err, A{p) c Oa. 

If p E UOa' then p E Oa 
A 

Thus A(p) c UOat and so 

the union of the members is also in rr. (Note that 08 c U08 implied 

$a c~.) Similarly, if {Ok: k = 1, 2, •••, n} is a finite family 

of members of rr, let p E nok. Then p E Ok for each k, and so 

'( ) /\ ( ) /\ . A 
I\ p c: Ok for each k. Hence A. p c nok which equals nok. Thus IT 

contains nok. Therefore IT is topology for X. 0 

4.;2 Corollaz:y: The topology IT determined by the family of A.(p)'s is 

the strongest topology such that >.(p) c µ(p) for each p E x. 



Proof: Let p E X and N E Np in the space (X, d) formed by 

the family of ·A(p)'s. Then there is some 0 Ed such that p E O 
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/I.. /\ 
and 0 c N. Thus A(p) c 0 and so A.(p) c N. Since this is true for 

each N E Np, A(p) c n{~ : N E Np). Hence A.(p) c µ(p) for each p in 

(x, d). 

Now suppose d' is a topology for X strictly stronger than d' 

the topology determined by the family of A(p)'s. That is, there exists 

some O in rr' that is not in rr. Thus for some p E o, A.(p) ¢. $. How­

ever in (X, rr•), µ(p) c $. Therefore X(p) ¢. µ(p). Hence dis the 

strongest topology for X such that A(p) c µ(p). 0 

No claim of set equality was made in the previous corollary. In 

general, equality may not hold, as may be inferred from the conditions 

in the following theorem. 

4.33 Theorem: A.(p) = µ(p) iff the following conditions hold: 

(i) A.(p) is nuclear for each p E x. 
(ii) p E A.(p) for each p E x. 

(iii) If A E Fil A(p) then there is some B E Fil A.(p) such that 

q E B implies A E Fil A.(q). 

Proof: (~) Since µ(p) = Nuc Np, A.(p) is nuclear whenever 

A.(p) = µ(p). Further, if µ(p) = A.(p) then p E A.(p) since pis 

always in µ(p). Now suppose A E Fil A.(p) which equals 

/\ 
{Ac X ~ A.(p) c A). 
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Since µ.(p) = >.(p), it follows that µ.(p) ct Hence A E Np and 
/\ 

thus contains some open set B about P• Since B is open, µ(r) c B for 

each r E B. B c A and µ(r) = A(r) imply that A(r) c ~ for each 

r E B. Therefore A E Fil A(r) for each r E B. 

(~) Due to the previous corpllary, >.(p) will equal µ(p) if it 

can be established that µ(p) c A(~)· Since >.(p) is .assumed nuclear, 

Theorem 2.38 guarantees that A(p) = NucF for some filter F cP(X). 

If it can be established that Fil A(p) c Np, then it will follow that 

µ(p) c A(p). To see this note that Fil >.(p) c Np implies, by Theorem 

2.43, that Nuc Np c Nuc(Fil A(p)). Thus µ(p) c Nuc(Fil ).(p)). Now 

examine Nuc(Fil A(p)). Recall that >.(p) = NuqF. By Theorem 2.43, 

NucF = Nuc(Fil NucF). Substitute twice fer NucF to obtain 

).(p) = Nuc(Fil ).(p)). From the preceding inclusion, it follows that 

µ.(p) c A(p). 

To establish Fil A(p) c Np, let A E Fil A(p) and define 

C = [q : A E Fil A(q)}. By the choice of A and the definition of c, 
. /\ 

p E c. If q E c, then A(q) c ~· Thus by the assumption that 

q E >.(q), it follo~s that q *EA and so q EA· since q is standard. 

This shows that C c A. Now A will be a nbhd of p, i.e. A E Np, if 

it can be shown that C is an open set about p. By definition of the 
/\ 

topology formed by the family of ).(p1s, C is open if A(q) c C for 

each q E C. So suppose q E C. Then A E Fil A(q) and by assumption 

there must exist a B E Fil A(q) such that r E B implies A E Fil 

>.(r). Note that A E Fil ).(r) means that r EC and thus B cc. 



B E Fil ~(q) implies A(q) c: ~ and thus B c: C implies A(q) c: a. 
Hjmce C is open and A must be a nbhd of p. Thus Fil A(p) c: Np and 

the theorem follows. 

4.34 '.§xample: 

(i) Let X = {a, b, c}, A(a) = {a], A(b) • {b, c}, and 
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0 

/\ 
A(c) • {b, c]. Then the topology a • {O c: X : A(p) c: 0 for 

each p e o} is given by d = {¢, {a], {b, c}, X}. Note 

that this is the space given in Example 4.11.i. It may be 

observed that A(p) = µ{p) for each p E x. Also note that 

the conditions of Theorem 4.33 are satisfied. 

(ii) Let X = {a, b, c}, A(a) = {b}, A(b) = {b, c}, A(c) = {c}. 

Then the topology 3' which is formed is given by 3' = £¢, 
{c}, {b, c}, X}. The monads of the points are : µ(a) = {a, 

b, c}, µ{b) = {b, c), and µ{c) = {c). Clearly A(p) c: µ{p) 

for each p EX; however, A(a) is a proper subset of µ(a). 

The condition of Theorem 4.33 that fails is that a~ A{a). 



CHAPTER V 

GENERALIZATIONS OF NEARNESS 

This chapter will continue the development of some of the basic 

properties of a general topological space. Recall that q is near p iff 

q E µ(p), that is, the monad of a point pis the set of *points near 

P• An attempt to generalize this concept of nearness will now be made. 

5.1 Definition: In the space (X, rr), the *set A is~ the point p 
. A 

iff some *point of A is near p {i.e. if An µ{p) ~ ¢). 

That the concept of nearness actually has been generalized may be 

verified by examining the following theorem. 

2•2 Theorem: If p is a point in the space (X, rr) and q is a *point of 

X then the *set whose scope is {q} is near p iff q is near p. In 

particular, if p and q are points in X then the set {qJ is near p iff 

q is near p. 

Proof: By definition the *set A is near p iff some *point of A is 

near p. Hence if ~ = fqJ 9 then A is near p iff q is near p. Now if 
A 

q is a point in X then {qJ is a finite standard set. Hence {q} = {qJ. 

It therefore follows that the point q is near the point p iff the set 

{q) is near p. D 
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2·3 Example: If {q) is near p, then p need not be near q and {p) 

need not be near q. Recall Example 4.14, The point a was near b so 

{al is near b. However, b is not near a and so {b) is not near a. 

This example points out that although nearness is an intuitive 

concept it must be used carefully with regard to the topology in 
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question. It is also important to emphasize that the terminology must 

be used carefullyo While the term "near" has been defined and must be 

used prudently, the term "close" has not been {and will not be) given 

a rigorous definition and will be used more loosely in a descriptive 

context. 

The concept of nearness will now be related to the standard 

concepts of accumulation points and closed sets. An accumulation point 

of a set is sometimes loosely described as a point that the set is 

close to. Accumulation points of a set will now be defined and the 

accuracy of this description will be examined using non-standard 

techniques. 

2·4 Definitions A point p is called an accumulation point {ace pt) 

£.!. A c X in the space (X 9 rr) if every nbhd N of p has a non-void 

intersection with A\{p). The set of all ace pts of A, accA, will 
~ 

be called the derived set of A. ------
This definition indicates that A must -be very close to its ace pts; 

nonetheless, it is possible for p _¢ A to be an ace pt of A and for 

p E A not to be an ace pt of A. 



5.5 Example: 

(i) Let A= (O, 1) in the space (R, E). Note that accA 

= [o, 1], but neither 0 nor 1 is an element of A. 

(ii) Let A = {O} in the spaee (R, E). Note that accA = ¢. 
Thus 0 E A but is not an ace pt of A. 

(iii) Let X be the set of real numbers and let rr consist of X, ¢ 
and all left rays where a left ray is a set.of the form 
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{x : x < r} for r a real number. From now on this topology 

will be referred to as the left-ra.y topolosr ~ ~ Reals. 

If A = {O} then accA = {x : x > o). 

The following theorem relies heavily on the concepts developed 

in the chapter on non-standard models. In particular, the proof of 

this non-standard char~cterization of ace pts uses properties of an 

enlargement and certain facts about set theoretic operations with the 

scopes of sets. 

5.6 Theorem: A point p is an ace pt of the set A in the space (X, rr) 

iff some *point of A other than p is near p (i.e. iff µ(p)n 

<A\fpl) ~ ¢>· 

Proof: (~) Since p is an ace pt of A, each nbhd of p contains 

a point of A other than p. Now the intersection of a finite number of 

nbhds of p is again a nbhd of p.- Hence the relation defined by the 

formula x E Np A y f A A y ~ p A y E x is concurrent. Since tI* is 

an enlargement, it fol~ows that there exists some q *e A such that 

q ~ p and whenever NE Np, q *E No Hence q E µ(p) n (~\{p}) 
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/\ 
which_means µ{p) n (A\(p}) ~ ¢. Therefore some *point of A other 

than p is near P• 

{+-) Suppose p f accAo Then there must exist a nbhd N of p such 

that N n (A\{p}) • ¢0 Since the scope of an intersection of two sets 
A /""-. 

is the intersection their scopes, N n (A\(p) = ¢. Similarly 
/\ /\ /"'.. /\ ~ 
N n {A\{p}) = ¢ and finally N n (A\(p}) = ¢. Hence 

I\ 
µ.(p) n (A\{p}) = ¢0 Therefore if some *point of A other than p is 

near p, then p is an ace pt of A. 0 

5.7 Coroll.f¥:yi The standard set A is near the p~int p in the space 

(X, rr) iff p E A or p E accA. 

/\ 
Proofg By definition, A is near p iff A n_µ.{p) ~ ¢. Also, 

/\ /\ 
An µ.(p) l ¢ iff either p E A or µ{p) ('I (A\{p}) ~ ¢. This last 

condition is equivalent to saying p E A or p E accAo 

The following example emphasizes that points must not be used in 

place of *points i.n Definition 5"lo 

5.8 Exampleg The set A in the space (X, rr) may be near the point q 

without any point of A being near q. Let the space be (R, E), 

A= (o, 1), and q = lo Then (0 9 1) is near 1, but no point of 

{O, 1) is near lo 

0 

That the sufficiency part of Theorem 5.2 may not_be_generalized to 

infinite sets is clear from the previous example; nonetheless, the 

theorem may be generalized to finite setso One way to do this is to 

prove· the result directly using the fact that a finite standard set 
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contains only standard *points. This result is also immediate from 

the following lemma. 

5.9 Lemma: If A, B c: X, then A U B is near the point p in (X, Z) 

iff either A is near p or B is near p$ 

Proof: A U B is near p iff 
A 

true iff either µ(p) n A ~ ¢ or 

near p or B is near po 

~ 
µ(p) n (A U B) ~ ¢. This is 

A 
µ{p) n B ~ ¢, that is, iff A is 

D 

5.10 Corolla;ryg If A is a finite set in (X, rr) which is near p then 

some point of A is near p. 

5.11 Exampleg Lemma 5.9 may not. be extended to the union of an 

infinite family of sets. Let (R, E) be the space with In = (1/n, 2) 

for each natural number n. Note that (O, 2) = UI and that (o, 2) n 

is near o. However, In is not near 0 for any n. 

The proof of the following theorem is so similar to the proof of 

Lemma 5.9 that only the result will be given here. 

5.12 Theoremg The point p is an ace pt of A U B in the space (X 7 rr) 

iff p E accA or p E accBo 

Machover and Hirschfeld state that results are often easier to 

invent using non-standard analysis since the language is more intuitive 

and natural. As but one example of this, note the clarity of the idea 

presented by the next lemma in this papere 



5.13 Lemma: If, i~ the space (X, rr), the *set A is near the point 

p and p is near the point q, then A is near q. 

Proof: If A is near Pt then µ(p) n ~ ~ ¢. Since p is near q, 

µ(p) c µ(q) by Theorem 4.15. Hence µ.(q) n ~ ~ ¢, and therefore A 

is near q. 
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D 

5.14 Example: The convers~ of Lemma 5.13 does not hold. In the space 

(R, E), let A = (O, 1) 7 p = o, and q = 1. Note that A is near 

p and A is near q, but p is not near q. Further, let (X, rr) be the 

left-ray topology on the reals with A• (1, 2), p = o, and q = 3. 

Then A is near q and p is near q, but A is not near p. 

5.15 Example: Lemma 5.13 cannot be extended to a theorem about ace pts. 

It is possible for p E accA and p to be near q with q being an ace pt 

of A. Consider the three point space of Example 4.2.i with p = c, 

A = (a, b), and q = b. 

A closed set is a standard concept which is sometimes thought of 

as a set which contains all points that it is close to. That this 

thought process is essentially correct will be shown now. 

5.16 Definition : A set C in the space (X, rr) is said to be closed 

if accA c A. 

(i) The sets {O) and [0 7 1] are closed in (R, E) while 

[o, 1) and (o, 1) are not closed. Note that [o, 1) is 

neither closed nor open in (R, E)o 



(ii) If A is any set in the discrete space (x, d), then 

accA • ¢• Thus every set in this space is closed. 

(iii) If A is any non-void set in the indiserete space (X, ;), 

then aecA • X unless A is a singleton. For singleton sets 

A, aecA = X\A. Thus the only closed sets in this space are 

¢, x. 

5.1s Theorem: A set C in the space (X, ;) is closed iff C contains 

all points which it is near to. 

Proof: (-+) Suppose that C is closed and that C is near the point 

p. Then_ p EC or p E accC by Corollary 5.7. Since C is closed, 

accC c c. So in either case p E c. Therefore C contains all points 

that it is near to. 

(~) Assume that C nea.J;" p implies p E c. Now suppose C is not 
I 

closed. This means that there is some p E accC such that p ¢ c. By 

Corollary 5-· 7, p E aceC implies C is near p·. Thus the as_surnption 

indicates p E c. From this contradiction its follows that C must be 

closed. 

The concept of an ace pt is one of the most useful in topology, 

not just because it is intimately related to the concept of nearness 

and thus the the topology of the space, but also because it leads to 

another characterization of open sets. In fact, many books use the 

following important result to define closed sets. 

a 

5.19 Theorem: A set C in the space (X, rr) is open iff X\C is closed. 
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Proof: (~) If C is a closed subset of X and p ¢ c, then it 
/\ 

follows from Theorem 5.1S that µ(p) n C = ¢. Thus for each p E X\C, 
/\ /j, /"-... 

µ(p) c X\G = X\C. Hence, by Theorem 4.17, X\C is open. 

'~) Similarly, if X\C 

p E X\C. That is, if p ¢ C 

Theorem 5.1s. 

is open then µ(p) c £\d for each 
/\ 

then µ(p) n C = ¢. Hence C is closed by 

D 

It is worthwhile to notev as shown by Example 5o17, that a set need 

not be either closed or openo A set can be both closed and open as X 

and¢ always are. Such sets are often called_clopen and will be 

discussed later under the topic of connectedness. 

Many textbooks in topology combine Theorem 5.19 and the definition 

of a topology in order to obtain the following lemma. 

5.20 Lemma: In the space (X, rr), 

(i) X and ¢ are closed. 

(ii) The intersection of any family- (Ca a E A) of closed 

subsets of X is again closed. 

(iii) The finite union of any family {ck : k = 1, 2, •••, n) of 

closed subsets of X is again closed. 

Although the intersection of a finite family of open sets is open, 

the intersection of an arbitrary family of open sets need not be open. 

Similarly, the union of an arbitrary family of closed sets need not be 

closed. 
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5.21 Example: In (R, E), the set {O} is not open but it is the 

intersection of the family of open· s~ts of the form (-1/n, 1/n) 

where.n is a natural number. In this same space, the set (o, 2] is 

not closed but it is the union of the family of closed sets of the form 

[1/n, 2] where n is a natural number. 

It is a common mistake to conclude that the derived set of A is 

closed. That accA need not be closed is shown by the following example. 

5.22 Example: Let (X, st) be the left-ray topology on the reals. If 

A= {OJ, then accA = (x : x > 0). Let B = accA then 0 E accB but 

0 t B. Hence B = accA is not closed. 

By definition, a set is closed if it contains its derived set. The 

concept that will now be considered is that of forcing a set to contain 

its ace pts. 

5,23 Definition: Let (X, ;r) be a space with A c x. The closure of 

A is the set A = A U accA. To distinguish the closure of A in the 

spaces (X, SJ') and (x, ;r') 

~· (A ) may be incorporated. 

' 
the names rr-closure (Ac3°) ' and ;r -closure 

5.24 Example: Let (X, ;r) be (R, E) while (X, ;r') is the reals 

with the left-ray topology. If A is chosen to be {O}, then 

' 7fJ = {O} while "'J!I = {x : x ~ O}. 

This example emphasizes the importance of being cognizant of the 

topology in question before A is formedo 



5.25 Theorem: Let Ac X in the space (X, d)• Then 

A = {p E X : A is near p}. 

Proof: The proof of this theorem follows inunediately .from the 
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definition of A and Corollary 5.7. 0 

It is obvious that A ci; however, it is almost true that Ac A. 

This is shown by an upcoming lenuna. The inunediate task is to show that 

the sets for which Ac A are a very special and familiar type of set. 

5.26 Theorem: A = A in the space (X, rr) iff A is closed. 

Proof: (~) Assume A = I. If A is near p, then p E A by the 

previous theorem. Hence p E A and so A contains all points that it 

is near to. A is closed by Theorem 5.18. 

(Em-) Conversely, if A is closed then A contains all points which 

it is near to. Hence Ac A. Since A is always a subset of A, 

Note the similarity between Theorem 5.25 and the next theorem. 

0 

The following result, which is given without proof, is often a very 

usefUl characterization of A to use when constructing standard proof's. 

Perhaps the reason for this is the fact that it expresses the intuitive 

concept of nearness associated with A more clearly than the definition 

which was given. However, this idea war; even more precisely spelled 

out in the non-standard terminology of Theorem 5.25. 



5.27 Theorem: Let A be a set in the space (X, rr). Then p EA iff 

N n A ~ ¢ for each N E Np. 
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5.2s Lemma: If A is a subset of the closed set C in the space (X, rr), 

then 'Acc. 

Proof: Suppose C is closed and p E A'. Then A is near p and so 

µ(p) n ~ ~ ¢. Now A c C, so µ(p) n e ~ ¢ and thus C is near P• 

Hence p E C since C is closed. Therefore Ac c. 0 

This leads to the following alternative for forming I. In some 

texts this criterion is used to define A. 

5.29 Theorem: Let Ac x in the space (X, rr). Then A is closed and 

A = n{c : c is closed and A c c). 

5.~0 Theorem: Let (X, rr) be a space with A, B c X. Then the 

following statements involving closures are true: 

(i) ~ =I ¢ and I = x. 
(ii) I = I. 

(iii) If A c B, then 'A c'B. 

(iv) A u B =Au 'B. 

(v) An B c An B. 

Proof: 

(i) X and ¢ are open so ¢ and X are closed. Thus by Theorem 5.26 

~ = ¢ and X = x. 
(ii) Theorem 5.29 guarantees A is closed so A equals its closure 

by Theorem 5.26. 



(iii) Ii' Ac B then A c'B and thus Lemma ;.28 assures A c'B 
since B is closed. 

(iv) By Theorem 5.25, p E A 0 B iff A U B is near p. Now 
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A U B is ~ear p iff A or B is near p as shown by Lemma 5.9. 

This is true iff p E A or p E 'B. 
(v) Similarly if p E A n B, then A n B is near P• It is 

easily shown that both A and B must be near p. Thus p 

p EI n 'B. o 

5.31 Example: A n B need not be contained in A n B. Let the space 

be (R, E) and A = (O~ 1) while B = (1, 2). Then An B = {l}, 

while A n B = ¢. 

5.32 Example: Theorem 5.30.iv does not necessarily hold for arbitrary 

unions. For verification recall Example 5.11. 

Using intuition and the previous definitions of nearness as guides, 

the concept oi' nearness will once again be generalized. 

5·3J Definition: In the space (X, rr), the *set A is~ the set B 

iff A is near some point of B. 

To verify that this definition is a generalization oi' the concept 

of nearness, examine the following theorem. 

5.34 Theorem 

A is near P• 

The *set A in (X, :r) is near {p} where p E.X iff 



5.35 Theorem: Let A, B, and C be subsets of X-in the space (X, rr) 

while p and q are points. Then the following st~tements are tru.e: 

(i) {p} is near {q) iff p is near q. 

(ii) If A c C and A is near p, then C is near P• 

(iii) If A c C and A is near B, then C is near B. 

(iv) If C c A and A is not near p, then C is not near p. 

(v) If C c A and A is not near B, then C is not near B. 

(vi) If Cc A and Bis not near.A, then Bis not near c. 
(vii) A is near B U C iff A is either near B or near c. 

(viii) B tJ C is near A iff either B or C is near A. 

Proof: 
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(i) By the previous theorem, {p} is near {q) iff {p) is 

near qo Now {p} is near q iff p is near q by Theorem 5.2. 

(ii) 
A A A 

If Ac C, then Ac C. A near p implies µ.(p) n A ~ ¢. 
A 

Hence µ.(p) n C ~ ¢, and so C is near p. 

(iii) If 1 A is near B, then A is near some point of B. Since 

Ac c, part (ii) implies C is also near this pointo Thus C 

is near B. 

(iv), (v), (vi), (vii), (viii) The proofs of these statements are 

similar to the proofs of the previous parts. 0 

To illustrate how well this definition coincides with our intuition 

about closeness the next result will be presented. 

5.~6 Theorem: The set A is near the set B in the space (X, rr) iff 

A n B f: ¢. 
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Proof: A is near B iff A is near p for some point p in B. Now 

A is near p iff p E A'. Hence A is near B iff A n B ~ ¢. 

If one concentrated upon the words rather than the meaning of 

Lemma 5.13, it might mistakenly be expected that this result would 

generalize along with the concept of nearness. It is not difficult to 

construct examples, such as the following, which show that this is not 

the case. 

0 

5.37 Exampleg The *set A can be near the set B which is near the point 

p without A being near p. To see this, let A ... (O, 1), B ... (O, 2), 

and p ... 2 in the space (R, E). Similarly, if C ... (2, 3) with A 

and B as before, then A is near B and B is near c, but A is not near c. 

5.38 Exampleg A may be near B without B being near A. Let A = {a) 

and B = (b) in Example 4.14. Since a is near b, A is near B; how-

ever, b is not near a, so B is not near A. 

The concept that shall now be developed is in some sense a dual 

concept of that of an ace pt. These interior points, once defined, will 

determine when a set is open in a manner dual to the way ace pts deter-

mine when a set is closedo 

5.39 Definitiong A point p is an interior point (int pt) of the set A 

in the space (X, IT) iff A E Np. The set of all int pts of A, ! 0 , 

will be called the interior of A. ------
5.40 Exampleg 

(i) Let A= [o, 1) in the space (R, E). Note that A0 = (O, 1). 



(ii) Let N be the set of natural numbers in (R, E). Then 

No • ¢. 

(iii) Let (X, 3') be the space of integers with the cofinite 

topolo~ and let A = X\{OJ. Then A0 = A. 
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It is obvious from the definition of A0 that A0 c A and that 

for each p E A0 there must be an open set containing p and contained 

in A. This will be recorded for future use in an upcoming theorem, 

but first examine what this means in non-standard terms. What is 

suggested is that points close to an int pt of A are also in A. Doing 

what is suggested often results in a theorem in non-standard analysis; 

this is the case here. 

5.41 Theorem& Let Ac X in the space (X, 3'). Then A0 = {p EX : q 

near p implies q *E A) (i.e. A0 = {p EX : µ(p) c ~)). 

Proof: (~) If p E A0 , then A E Np. Hence µ(p) = n(N': N E Np) 
/\ 

is a subset of Ao 

I\ 
(+-) If µ(p) c A, then Lemma 4.16 guarantees that A E Np. Hence 

p E A0 • 0 

5.42 Theorem: A = A0 in the space (X, 3') iff A is open. 

Proof: (~)If A= A0 then µ(p) c~ for each p EA and thus 

A is open by the non-standard characterization of open sets. 

(E-) If A is open, then µ(p) c~ for each p EA. Hence p E A0 

by the previous theoremo 

subset of A, 0 A = A • 

0 Therefore A c A • Since A0 is always a 

0 



The previous theorem and Theorem 5.26 illustrate the concept of 

duality between ace pts and int pts. The following theorems not only 

serve to illustrate the duality between these concepts but also· show 

that interiors and closures of sets determine each other, much as 

open and closed sets determine each other. 

5.43 Lemm~: If O is an open subset of A in the space (X, rr), then 

0 c A0 • 

Proof: If p E O, 0 c A, and 0 is open, then A E Np. Hence 
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p E A0 and 0 c A0 o 0 

5.44 Theorem: Let Ac:: X in the space (X, rr). Then A0 is open and 

Ao = U{O : 0 is open and 0 c:: A). 

As a matter of convenience, A' will be used to represent X\A 

in the next two theorems. For example (X\A)0 will be denoted by 

5.45 Theorem: Let (X, rr) be a space with A c X. Then the following 

statements are true: 

(i) A0 = A0-'. 

(ii) A0 ' =A'-. 

(iii) A= A' 0 '. 

This theorem may be used as a tool to establish the next theorem, 

which is the dual of Theorem 5.30. 
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5.46 Theorem: Let (X, d) be a space with A c: x. ~en the following 

statements are tr11e: 

(i) rf = ¢ and 

(ii) A00 = A0 • 

0 x = x. 

(iii) If Ac: B, then Ao c B0 • 

(iv) (An B) 0 •Aon B0 • 

(v) A0 U B0 c (AU B)0 o 

5.47 Example: (AU B) 0 need not be contained in A0 U B0 • Let 

A = [o, 1) and B = (1, 2] in the space (R, E). Then 

A0 U a0 = (o, 1) U (1, 2) while (A U B)0 = (O, 2). 

5.48 Example: Theorem 5.46.iv does not necessarily hold for arbitrary 

intersections. For each natural number n let In = (-1/n, 1/n) in 

(R, E). Then I~ = In for each n. Hence n-crl I~= {O) while 

(~1 In)o = ({O))o = ¢• 

The next concept that will be examined is that of points which 

both a set and its complement are close to. 

5.49 Definition: A point p is a boundary point (bdry pt) of the set A 

in the space (X 9 ~) iff every nbhd of p has. a non-vo~d intersection 

with both A and X\A. The boundary of A, b(A), is the set of all 

bdry pts of A. 

5.50 Theorem: The point p is a bdry pt of A in the space (X, d) iff 

both A tµid X\A are near P• 
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Proof: By definition, p E b(A) iff N n A , ¢ and N n X\A , ¢ 

for each N E Np. This is equivalent to saying that p E A and 

p E X\A. Hence by the non-standard characterization of closures, 

p E b(A) iff both A and X\A are near P• 

5.51 Theorem: The point p E b(A) iff p ¢ A0 and p ¢ (X\A)0 • 

Proof: By the previous theorem it follows that p E b(A) iff 

µ.(p) n ~ ~ ¢ and µ.(p) n X\A ~ ¢. Hence p E b(A) iff µ.(p) ¢~ 
and µ.(p) ¢ ~. Therefore p E b(A) iff p f. (X\A)0 and p ¢ A0 • O 

The intimate relationships among the concepts of closure, interior, 

and boundary are reiterated in a corollary to the previous theorems. 

5.52 Corollary: If A is a ~et in the space (X, ;), then the following 

statements are true: 

(i) b(A) = A\A0 =An x\A = b(X\A). 

(ii) X\b(A) =Ao U (X\A) 0 • 

(iii) A= A u b(A). 

(iv) A0 = A\b(A). 

Since the open sets of (X, rr) are the members of the topology 

and thus determine all topological properties, it is very worthwhile to 

have various criteria available to determine whether a given set is 

open or not. Several such criteria have already been given. In 

particular, a set was shown to be open iff its complement was closed. 

Two additional criteria shall now be formulated by examining (iii) and 

(iv) above. 
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5.53 Corollary: The set A in (X, d) is closed iff b(A) c: A and A 

is open iff A n b(A) = ¢. O 

Two remaining topics which relate to closures and interiors will 

now be defined but will not be examined in detail. The first topic is 

a generalization of a property of the set of rational numbers in the 

space (R, E). The rational numbers, as Arnold Steffensen [18] has 

described it, are evenly distributed throughout the set of real numbers 

in the sense that the rationals are close to every real number. In 

other words, if Q is the set of rationals in (R, E), then Q = R. 

5.54 Definition: A subset D in the space (X, rr) is called dense 

iff i5 = x. 

5.55 Example~ 

(i) As previously mentioned Q is dense in (R, E). 

(ii) If A is any non-void set in an indiscrete space, then A is 

dense. 

(iii) If (X 9 3') is an infinite space with the cofinite topology 

and A is an infinite subset of x, then A is a dense set. 

The following non~0standard characterization of dense sets verifies 

that the intuitive description by Steffensen was indeed accurate. 

5.56 Lemma: D is a dense subset of (X, 3') iff D is near every point 

in the space. 

Proof: By definition, D is dense iff D = x. Since i5 contains 
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precisely the points which D is .near, D is dense iff D is near each 

point of x. Cl 

A standard version of this lemma which also indicates this notion 

of "evenly distributed" is given in the following theorem. This 

theorem is a particularly useful criterion in real analysis. 

5.57 Theorem: A subset D of the space (X, 3') is dense iff each non-

void open set contains a point of D. 

~roof: (-+) Suppose O is a non-void open set such that 0 n D = ¢. 
A A A A 

If p E o, then µ(p) c O. Now 0 n D = ¢, so µ(p) n D = ¢. There-

fore D is not near p and so D carmot be dense. 

(~) If D is not dense, then D ~ x. So for some point p, D is 
/."'-... 

not near p. Hence µ(p) c X\D. This means that X\D must be a nbhd of 

D and therefore X\D must contain an open set about p missing D. Cl 

The last topic to be defined is that of a set which may be thought 

of as ~ot covering much of the space. 
I 

5.58 Definition: The set N in the space (X, 3') is nowhere dense iff 

i' = ¢. 

5.59 Example: If (X, 3') is an infinite space with the cofinite 

topology, then all finite subsets of X are nowhere dense. 

These last two concepts are related by the following theorem. 

5.60 Theorem: N is a nowhere dense subset of (X, rr) iff X\N is a 

dense set. 
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Proof: N is nowhere dense when N° = ¢. By Theorem 5.41, this 
~ . 

is true iff 11(p) n (X\N) ~ ¢ for each p E x. This is true iff 

X\N is near each p E x. Hence N is nowhere dense iff X\N is 

dense. D 



CHAPTER VI 

CONTINUOUS FUNCTIONS AND HOMEOMORPHISMS 

In this chapter, the concept of continuity which is so important 

in analysis and the concept of a homeomorphism which is so important in 

topology will be examined. Functions, which are purely set theoretic, 

will be examined when there are topologies on both the domain and range 

spaces. Topologies determine nearness of points and hence, as will be 

noted shortly, the continuity of functions. 

A continuous function often is described loosely as one which 

preserves closeness of points. That is, if p and q are close then their 

images, f(p) and f(q), also should be close when f is continuous. 

Non-standard topology, in fact, characterizes continuity in almost these 

exact terms. The approach w:i;.11 be to define continuity in the standard 

fasi!ion, to present the intuitively worded non-standard characterization, 

and then to develop some theorems with non-standard proofs. 

6.1 Definition: A function f from the space (X, rr) to the space 

(X', rr•), de;..,'ed by f~ X ~ X' or fi (X, CT)~ (X', 3"'), is 

continuous ~ ~ point p in X iff for each nbhd N of f(p) there 

exists a nbhd M of p shch that f(M) c N. If Ac X and f is con-

tinuous at each point pf A, then f is said to be continuous .£!:!:. A. If 
cl 

A = X, then f is called a continuous function from (X, rr) to 

78 
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(X', rr•). If f is not continuous at_p or on A then f is called 

respectively discontinuous at p or discontinuous on A. A property -------------- --
preserved under a continuous map is called a continuous imap;e property. 

6.2 Example: 

(i) Every function from a discrete space to an arbitrary space 

is continuous. 

(ii) Every function from_ an 8:I"bitrary space to an ind.iscrete space 

is continuouse 

(iii) Regardless of the topologies involved, every constant function 

is continuous. 

(iv) The identity function from (X, rr) to (X, rr) is continuous. 

Throughout the remainder of this paper neighborhoods of points, 

monads of points, and nearness of points must be observed more carefully 

than before. From now on _there often will be at least two topological 

spaces under consideration simultaneously. To avoid unduly complicated 

notation, the usual notation will be continued without explicit mention 

of the topology involved since this will be clear from the context. 

The next example emphasizes the importance of the topology in 

determining the continuity of a function. As is shown below, a function 

may be continuous with respect to some topologies and discontinuous 

with respect to others. 

6.3 Example: Let X = {a, bv c} 9 rr be the indiscrete topology, rr• be 

the discrete topology, and f be the identity function on x. Then 
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f: (X, rr) -t (X, rr) is continuous while f: (X, rr) -1 (X, rr') is 

discontinuous. 

The following theorem gives the non-standard characterization of 

continuity. Its occurence has been heralded in the previous pages; 

however, a word of warning will be soundedo The *Points which are near 

p may be non-standard as well as standard in this characterization. 

6.4 Theorem: A function f from the space (X, rr) into the space 

(X', IT') is continuous iff q near p implies f(q) is near f(p). 

Proof: (....,.) Assume that f is a continuous function and that q is 

near p. Let N be an arbitrary nbhd of f(p). Since f is continuous 

at each point of X and in particular at p, there exists M E Np such 

that f(M) c N. Now q E ~ since q is near p, and so f(q) E ~. N 

was arbitrary so f(q) E ~ for each nbhd of f(p). Hence 

f(q) E µ(f(p)) and f(q) is therefore near f(p). 

(f-) Assume that q near p implies f(q) is near f(p), but f is 

not continuous. Since f is not continuous, there is a nbhd N of f(p) 

such that M = f-1(N) is not a nbhd of p. Hence by the non-standard 

characterization of nbhds, µ(p) ¢. ~. Let q E µ(p)\~. Since q is near 

p, f(q) is near f(p) by assumption. Hence f(q) E ~ and therefore 
/\ 

q E M. From this contradiction it follows that f must be continuous. O 

6.5 Corollary~ The function f which maps (X, 3') onto (X', :ft) is 

continuous iff A is a *subset o.f X near p E X implies f (A) is near 

f(p). Sinilarly, f is continuous iff the *subset A of X near B c X 

implies f(A) is near f(B). 
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Proof: Assume that f is a continuous function from X onto X' 

and that A is a *subset of X near p E x. Then som~ *point q of A is 

near p. By the previous theorem, f(q) must be near f(p). This 

implies that f(A) is near f(p). Conversely, assume that if A is any 

*subset of X near p EX then f(A) is_near f(p). Then, in partic­

ular, when A= {q), {q) near p implies f({q)) = f(q) is near f(p). 

That is, if q is near p then f(q) is near f(p). Therefore f is con­

tinuous by the previous theoremo 

Similarly, assume that f is continuous and that the *set A is near 

B. Then A must be near some point p EB. By the preceding proof, 

f(A) must be near f(p). Hence f(A) is near f(B). Conversely, 

assume the *set A near B c X implies f(A) is near f(B). Then, in 

particular, this is true when B • {p). It follows from the preceding 

proof that f is continuous. 0 

Thus together '.rheorem 6.4 and Corollary 6.5 sey that a .function is 

continuous iff it preserves nearness. 

The next theorem is a frequently used result in analysis which is 

given to indicate the ease with which some non-standard proofs of 

theorems may be writteno 

6.6 Theorem: If f is a continuous function from (X, d) onto (X', rr•) 

and g is a continuous function from (X', d') to (X'', IT''), then 

the composition .function g o f is also a continuous function. 

Proof: If f is a continuous function from (X7 IT) onto (X' 9 IT') 

and q is near p, then f(q) is near f(p). Since g is a continuous 
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function from (X', d') to (X'', d'') and f(q) is near f(p), it 

follows that (g o f) (q) • g(f(q)) is near g(f(p)) = (g o f) (p). 

Thus go f is a continuous f'unction from (X, rr) to (X'', 3''')• 0 

Earlier several different criteria ~ere given to determine when a 

set is open. The next theorem similarly gives several standard 

criteria for determining when a function is continuous. 

6.7 Theorem: If f is a function from (X, 3') to (X', 3'') 9 then the 

following statements are equivalent: 

(i) f is a continuous function. 

(ii) If O E rr' then f-1(0) E d• 

(iii) If Bis a basic open set in (X', 3''), then f-1(B) is 

open in (X, d). 

(iv) If Sis a subbasic open set in (X', IT'), then f-1(s) is 

open in (X, 3'). 

( ) ( ) -1( ) . . v If C is closed in X', U' , then f C is closed in 

(X, ;r). 

(vi) If A c- x, then f(A) c ftij • 
.,, .. ;rr• ..... ·;OF 

(vii) If B c X', then f-l{B) c r-1(B). 

Proof: (i)-+ (ii) Assume that f is continuous and that 0 E 3''· 

Let p be an arbitrary point of f-1(o). If q is near p then f(q) is 

near f(p) by Theorem 6e4• Since 0 is open about f(p), the non-
/\ 

standard characterization of open sets guarantees that f(q) E Oa 

Since q is a *point whose image is a *point of o, it must be true that 

q *e f-1(o). Hence r-1(0) is open for it contains all *points near 

the arbitrary point p. By standard techniques, it is not difficult to 
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show that each part of this theorem implies the next part until (vi) 

implies (vii). It can then be shown that (vii) implies 1i) in order to 

complete the proof. 

6.8 Example: Set equality need not hold in either (vi) or (vii) of 

the previous theorem. For (vi) let f: (X, d) ~ (R, E) be defined by 

f(x) = 1/x where (X, rr) is the usual subspace of positive real 

numbers. Also let A = {x : x > 1). Then 'i!f = {x : x ~ 1), 

f(A) = {y : 0 < y < 1), f(-;!J) = {y : 0 < y ~ 1}, and "FTIJE = 
{y : 0 ~ y ~ 1}. For (vii) let X = fa, b, c}, rr be the discrete 

topology and :.r' the i 'ld .~crete topology for x. Let f be the identity 

function from (X, 3') to (X', 3'') and B = '{a, b}. Then B3'' • X 

-lc'!St'') . -le rr and so f .B" • X while f BJ = B. 

In the very special case of (R, E), the usual space of real 

numbers, different definitions of continuity are often given. Not all 

of these are equivalent in an arbitrary space, however. As an example, 

continuity defined in terms of sequences will now be examined. 

6.9 Definition: A sequence (xl, Xzt ••• , X3t ···) in (X, rr) is 

said to converge .~ ~ point p E X if f each nbhd of p contains all 

but a finite number of the terms of the sequence. This will be denoted 

by lim ~ = P• 

In particular, a sequence (x1, x2, •••, xn' •••) in (R, E) 

converges to the poi.nt p iff each nbhd S(p, v) of p contains all but 

a finite number of the terms of the sequence. Thus by the definition 

of S(p, v) the sequence converges iff for each real number v > 0 



there exists an m EN such that n > m implies I~ - pj < v. 

Although we try to impress upon freshman calculus students that it is 

not permissible to place infinity into an expression, what this 

definition is intuitively saying is that tenns infinitely far out in 

the sequence are infinitesimally close to the limit. 

Before showing that in some sense the student is correct to sub­

stitute infinity into the expression, consider the following example. 

For clarity, the sequences (which are functions from N to R) will be 

examined using functional notation. 

6.10 Example: Using the standard definition of convergence, it is easy 

to verify that the sequence defined by f(n) = 1/n converges to zero 

in (R, E). Now proceed as in Example 3.17 and evaluate this function 

at the infinite natural number given by x = (1, 2, 3, •••, n, •••). 

f*(i) = (1, 1/2, 1/3, ••• , 1/n, •••) which is an infinitesimal. That 

is, the sequence f is infinitely close to the limit zero when evaluated 

at x. 

6.11 Theorem: The sequence f converges to p in (R, E) iff f(x) is 

near p for each infinite natural number i. 

Proof: (~) Assume that the sequence f converges to p and that 

v > O. Then there exists an mv E N such that for each natural number 

n > m'i7, lf(n) - Pl< v. If i is an infinite natural number, then 

certainly x > mv· Hence lf*(x) - p I < v. The standard natural 

number m'i7 depends on the standard real number 'i7 9 but regardless of 



the mv in question, the infinite x will be greater than mv• Hence 

lf*(i) - Pl < v for every non-zero real number v. Thus r*(x) is 

near p. 

(+-) Conversely, assume that for each infinite natural number x 
that f*(x) is near p. That is, \f*(x) - pj < v for each non-zero 

v E R. Hence given v, the following sentence is true for R*: 

!m \m.[(n EN An> m) ~ lf(n) - pl < v]. 
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Rei?terpreted for R, the sentence says that the sequence f converges to 

P• 0 

Although, a sequence (in an arbitrary space) which converges to p 

may be described loosely as becoming very close to p, it need not be 

the case that any standard point in the sequence is near p. 

6.12 Example: The sequence defined by f(n) = 1/n converges to 0 in 

(R, E); however, f(n) i µ(0) for any n EN. He~ce no point in the 

sequence is near o. 

6 .13 Example:_ A sequence may converge to more than one point. Let 

(X, rr) be the real numbers with the cofinite topology, and consider 

the sequence defined by f(n) = n. If p E X then for any M E Np, 

X\M is finite. Hence M contains all but a finite number of the terms 

of the sequence. Therefore this sequence converges to p for each 

p E x. 

6.14 Proposition: If (X, rr) is a space with the co-countable topology, 

then lim xn = p iff for some' natural number m, xn = p for n > m. 
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Proof: Clearly if . "ii = p for n > m for some m, then each nbhd 

of p contains all but a finite number of the terms of the sequence. 

Conversely, if lim "ii = p, then ~ach nbhd of p contains all but a 

finite number of the terms of the sequence. Let N = O U{p} where 

0 = X\{x1, :xz, •••, "rJ.t ·~·J. N is an open nbhd of p and ~he only term 

of the sequence that N can contain is Po Since N contains all but a 

finite number of the terms of the sequence, x must be p for n > m n . 

for some m. CJ 

6.15 Definition: Let f: (X, rr)-+ (X', rr')• The function f is called 

sequentially continuous!'.!::, p EX iff for each sequence (x1, Xz• •••, 
"ii• •••) in X which converges top, the sequence (f(Xi), f(:xz), ••• , 

f("rJ.), •••) in X' converges to f(p). If f is sequentially con­

tinuous at each point of X, then f is callerl sequentially continuous. 

6.16 Example: Let f: (R, E) ~ (R, E) be defined by f(x) = 2x. 

Suppose (s1, s2, •••, s ' ···) n converges·to s. Let ii! be an arbitrary 

infinite natural number. Then lsiii - sl is either zero or some 

infinitesimal y. Thus f2s- - 2sl = 2ls- - sl is zero or some infin-m m 
itesimal 2y. Hence (2s1, 2s2, •••, 2sn' •••) = (f(s1), f(s2), •••, 

f(sn)' •••) converges to f(2s). Therefore f is sequentially contin­

uous. The following theorem and example compare continuity and 

sequential continuity. 

6.17 Theorem: If f: (X, IT)-... (X', rr') is continuous then f is 

sequentially continuous. 



6.18 Example: A sequentially continuous .func~ion need not be contin­

uous. Let X = fx ER :1 'x $ 3) be given the eo-eo'Wltable topology 

:r, and let X' = fx ER : 1 $ x ~ 2} be given the relative topology 

rr' as a subspace of (R, E). Define f: (X, :r) ~ (x•', :r') by 

If (x1, ~' 

osition 6.14 

••• , x ' n 

x = p n 

{
x if x EX' 

f(x) = 
1 if x ¢_ X'. 

•••) converges top in 

for n > m for some m. 

(X, rr), then by Prop­

Hence (f(x1), f(~), 

•••, f(~), •••) has f(xn) = f(p) for n > m. Thus this sequence 

converges to f(p) in (X', rr') and so f is sequentially continuous. 

However, f is not continuous. To see this let M = (1, 2) be a subset 

of X'. Note that Mis open in (X', 3''), but f-1(M) = M is not 

open in (X, rr) since X\M is not countable. 

Two other types of functions which might appe~r to be closely 

related to continuous tunctions will be defined. The defi~tions are 

given so that an outside reference will not be needed, but there is 

actually no general relationship among the three types of tunctions. 

Since this would necessitate six examples to verify their independence, 

the examples will be omitted. 

6.19 Definition: A function f from the space (X, :r) to the space 

(X', 3"') is called an open function if f(O) E 3'' for each 0 Err. 

If the image of every closed set in (X, :r) is closed in (X', :r•), 

then f is called a closed function. 



6.20 Theorem: The function f: (X, d) ~ (X', rr') is open iff 

µ(p) c ~ implies µ(f(p)) c :£@') for each N c x. 
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Proof: (~) Assume that f is an open function and suppose that 
/\ 

µ(p) c N. By the non-standard characterization of nbhds, N is a nbhd of 

p. Hence there exists an open set 0 c N about p. Since f is an open 
/:'. ~ A 

function, f(O) is openo Thus µ.(f(p)) c f(O). Since f(O) c f(N), 

it follows that µ(f(p)) c ;M. 
/\ /\, 

(~) Assume that µ(p) c N implies µ(f(p)) c f(N), and suppose 

that 0 is open. If q E f(O), then q = f(p) for some p E o. Since 
/\ ~ 

O is open, µ(p) co. Thus by assumption µ(f(p)) c f(O). That is, 
~ 

~i(q) c f(O). Hence f(O) E ;r•, and so f is an open function. O 

The following_ lemma is a result given by Machover and Hirschfeld 

and is useful in establishing the next theorem. 

it,;'· /\ 

6.21.Lemma: If µ(f(p)) c f(µ(p)) then µ(p) c N implies 

µ.(f(p)) c f'(N). 

Proof: 
/\ 

Assume that µ(f(p)) c f(p.(p)) and suppose µ(p) c N. If 

q E µ.(f(p)), 

which equals 

follows. 

then q E f(µ(p)). Since µ(p) c ~' f(µ.(p)) cf(~ 

£@. Thus q E ;{N) and the desired inclusion 

[J 

By observing both continuous functions and open functions, it may 

be noted that an open function takes open sets to open sets while the 

inverse of a continuous function brings open sets back to open sets. 

Upon the basis of this comparison, it might be expected that a function 



would be open if q is near p whenever f(q) is near f(p). This 

expectation cuu.ld arise since a continuous f'u.11ction maps points near p 

to points near f'(p). This result follows from the previous theorem 

and lemma in this paper. 

6.22 Theorem: Let f be a function from (X, rr) onto (X', rr'). If 

q is near p whenever f(q) is near f(p) then f' is an open function. 

Proof: Assume that q is near p whenever f(q) is near f(p). 

Since f is onto, if' x E µ.(f(p)) then· x = f'(q) for some *point q of' 

X, and so by assumption q E µ.(p). If' q E µ.(p) then f'(q) E f(µ.(p)), 

i.e. x E f(µ.(p)). Hence µ,(f'(p)) c f(µ.(p)). Therefore by the previous 

lemma, µ.(p) c ~ implies µ.(f(p)) c f(A}. Thus the previous theorem 

guarantees that f is an open f'unction. · 0 

6.23 Example: The converse of the previous theorem does not hold. Let 

f: (R, E) ~ (X, rr) be the characteristic function for the rationals 

where X = (o, 1) and rr is the indiscrete topology on X. The function 

f is open; however, f(2) = 1 is near 0 = f(n), while 2 is not near 

To emphasize the importance of f' being ont9 in the previous 

theorem, the next example is presented • 

. 6.24 Example: If q is near p whenever f'(q) is ·near f(p) then it 

does not necessarily follow that f is open. Let (R, rr) be the reals 

with the indiscrete topology and define f: (R, rr) _., (R, E) by 

f (x) = fi x = 0 

x ~ 0 



Since f(R) = (O, 1) which is not an element of E, f is not open. 

However, f(q) near f(p) certainly implies q is near p. For 

regardless of the point p in question, q is near p in the indiscrete 

space (R, d'). 
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The topic that shall now be investi_gated is that of identifying 

the similarity of topological properties of a space and its image under 

a mapping. Thus what needs closer consideration is the identification 

of the concept of nearness by the function. If f: (X, d') ~ (X, rr•) 

is the identity map from a discrete space to-.an indiscrete space, then 

f is continuous. Further, if q is near p then f(q) is near f(p); 

however, f(q) may be near f(p) without q being near p. Thus the 

continuity of f insures that f preserves nearness of points. To 
-1 guarantee that f also preserves nearness, it would be necessary for 

f-l to also be continuous. 

There is a Greek word "homoiomorph" which means of similar form or 

structure. From this comes the terminology which is used in the next 

definition to identify spaces of similar structure. 

6.25 Definition: If f: (X, d')-+ (X', rr•) is a one-to-one continuous 

function from X onto X' such that r-1 is also continuous, then f 

is called a homeomorphism and the spaces are said to be homeomorphic. 

A property of a space preserved under a homeomorphism is called a 

topological property. 

Topology is sometimes described as the study of topological 

properties. To one unfamiliar with the development required to define 
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a topological property, this description must surely sound circular. 

Nonetheless, within the context o! this paper, this description is an 

accurate one. Topology is the study of the abstract equivalence of 

spaces due to the nearness of points. The spaces may be different when 

examined under other structures, for example under an algebraic struc­

ture; however, from a topological viewpoint they are indistinguishable. 

6.26 Example: 

(i) Each space is homeomorphic to itself since the identity map 

is a homeomorphism from (x, rr) to (x, rr). 

(ii) The usual space of real numbers (R, E) is homeomorphic to 

the subspace (A, EA) 

from this subspace to 

where A = (o, 1). A homeomorphism 

(R, E) is given by f(x) = 2(-ll) x x- • 

As part (ii) of the previous example shows, neither length nor 

distance is a topological property. 

6.27 Theorem: Let f: (X, rr) ~ (X', 3'')• Then saying f is a homeo­

morphism is equivalent to stating that f is a 1-1 function from X onto 

X' and q is near p iff f(q) is near f(p). 

Proof: The function f is continuous iff q near p implies f(q) 

is near f(p). Likewise the function f-l is continuous iff f(q) 

near f(p) implies q is near p. The theorem follows. 0 

6.2S Theorem: A function f: (X, 3')-+ (X', 3'') is a homeomorphism iff 

f is a continuous, one-to-one, open function from X onto x•. 
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Proof: (-i) If f is a homeomorphism then f(q) near f(p) 

implies q is near p. Thus by the non-standard characterization of ,an 

open function, f is open. The remaining conditions follow from the 

definition of a homeomorphism. 

(t-) If f is open and O E :r, then the conditions imply that 

(f-1)-1(0) = f(O) e :r•. Hence f-1 is continuous and so,f is a homeo-

morphism. 0 

One example due to Kuratowsld. will be g;i.ven to show that, although 

spaces may- be homeomorphic, care mu.st still be exercised in choosing a 

function that actually performs the identification between the spaces. 

6.29 Example: The function f from the space given below onto itself is 

one-t~ne and continuous, but it is not a homeomorphism. Consider the 

following subspaces of (R, E), (X, :r) and (X', :r•) where X consists 

, of all intervals of the form (3n, Jn+1) and all points 3n + 2 for 

n a non~negative integer. X' = (X\{2}) U (1}. Define 

{
x if x ~ 2 

h: _ (X, 3') -t (X', 3'', by h(x) = 
1 if x • 2 

and 

if x s:: 1 

g: (X', :T') -J (X, :r) by g(x) = - 1 if 3 < x < 4 

x - 3 if x ~ 5. 

Note that h, g are one-to-one, continuous, and onto. Hence so is the 

composition f = g o h. However f is not a homeomorphism of (X, :r) 

onto (X, :r) since {2} is open but f({2}) = (1/2) is not open. 



CHAPTER VII 

CONNECTED SPACES 

The major theme of this chapter will be the concept of connected­

ness. Following the usual procedure, the concept opposite 

connectedness will first be defined. On9e separated sets have been 

de£1:ned, both of these concepts will be examined in non-standard terms. 

From an intuitive viewpoint, sets are connected if they cannot be 

severed into distinct pieces. This is, of course, a very loose 

description since it is not clear what is meant by sever, by distinct, 

or by a piece. Nonethelef!s, this description does indicate that the 

emphasis here seems to be more upon non-closeness rather than upon 

closeness. 

This aside has been given not merely to give a preliminary feel 

for the definitions which follow, but also to provide a point of 

reference. When the non-standard characterization for these concepts 

is given, it then can be noted once again how incisively the non­

standard terminology portrays the ideas represented by these names. 

7.1 Definition: Let (X, rr) be a space with A, B c X. Then A and B 

are separated ~ each other iff A n B = ¢ = A n B'. A and B separate 

X or form a separation of (X, rr) iff A and B are non-void separated 

sets whose union is x. 

9.3 
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7.2 Example: 

(i) In the space (R, E), (O, 1) and (1, 2) are separated but 

do not form a separation of (R, E). Likewise, (O, 1) and 

[2 1 3) are separated but do not form a separation of (R, E). 

The sets (o, 1) and [1 1 2) are not separated in (R, E). 

(ii) If (X, rr) is a discrete space of more than one point, then 

A and X\A separate X when ¢ ~ A ~ x. 
(iii) Let (X, rr) be the three point space in Example 4.2.i. Then 

f aJ and fb, cl separate X. 

7•J Theorem: A and B are separated iff neither A- nor B is near the 

other. 

Proof: A and B are separated iff I n B = ¢ = A n B'. Thus by 

Theorem 5.36, A and B are separated iff neither A nor B is near the 

other. 

7.4 Theorem: Let (X, rr) be a space, and let A, B, and C be subsets 

of x. Then the following statements are true: 

(i) ¢ and A are separated. 

(ii) If C c A and A and B are separated, then B and C are 

separated. 

(iii) If A and B are separated and A and C are separated, then 

A and B U C are separated. 

0 
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Proof: 

( i) A is not near ¢ and ¢ is not near A so A and ¢ are separated. 

(ii) If A and B are separated then B is not near A. Since C c A, 

Theorem 5.35 guarantees that B is not near c. Also A is not 

near B. Hence C cannot be near B. Thus B and C are 

separated. 

(iii) If A is separated from both B and c, then A is not near 

either set. Thus A cannot be near their union. Likewise 

neither B nor C is near A so their union cannot be near A. 

Thus A and B U C are separated. 

The next theorem gives sufficient conditions that are sometimes 

useful in standard proofs to establish when two sets are separated in 

a space. 

7.5 Theorem: Let (X, rr) be a space with A and B subsets of x. If 

there exist disjoint open sets M and N such that A c M and B c N, 

then A and B are separated. 

Proof: Let a be an arbitrary element in A. Since M is an open 

0 

set containing A, µ(a) c ~. Now M n N = ¢ implies ~ n ~ = ¢. Hence 

µ(a) n ~ = ¢, and so N is not near a. Therefore N is not near A. Thus 

B is not near A since B c N. Similarly A is not near B. This means 

that A and B are separated. 0 

7.6 Example: The converse of the prev:i,ous theorem is not valid. Let 

X = {a, b, cJ with rr = [¢, {c}, {a, cl, (b; cJ, x}. If A= {a} and 

B = {b}, then A and B are separated. However the smallest open sets 



containing A ~d B are respectively (a, cJ and fb, c} which have 

f c} as their intersection. 
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7.7 Definition: The space (X, rr) is COilllected iff there does not 

exist a separation of (X, rr). Stated positive~y, (X, :r) is connected 

ii'f B • ¢ whenever X • A U B, A ~ ¢, and A and B are separated. 

(X, rr) is called disconnected if it i& not connected. A subset·Y of X 

is co~ected if (Y, rry) is a connected space. 

7.S Theorem: The space (X, rr) is cormected iff A ~ ¢ ~ B and 

A U B • X implies either A is near B or B is near A. 

Proof: (.,...) Assume (X, rr) is connected. Then the non-void sets 

A and B carmot separate x. Since A and B are not separated Theorem 7.3 

guarantees either A is near B or B is near A. 

{f-) If A ~ ¢ ~ B and A lJ B = X implies either A is near B or 
. . 

B is near A, then A and B are not separated. Hence there does not exist 
' 

a separation of (X, :r). Therefore (X, rr) is cormected. 

7•2 Example: 

(i) Discrete spaces of more than one point are disconnected. 

(ii) Indiscrete spaces are connected. 

0 

7.10 Definition: A subset of the space (X, :r) that is both open and 

closed is called clopen. 

This te:rminology will be used in the next theorem which gives 

several equivalent standard criteria for determining connectedness. 



7.11 ~heorem: The following statements are equivalent in the space 

(x, d): 

(i) (X, rr) is connected. 

(ii) The only clopen subsets of (X, rr) are ¢ and x. 
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(iii) If (X', rr•) is a discrete space with X' =fl, O}, then 

there does not exist a continuous function from (X, rr) onto 

(X', rr•). 

(iv) X cannot be represented as the union of two non-void disjoint 

open sets. 

Proof: (i) -t (ii). Suppose that A IX is a non-void clopen 

subset of the connected space (X, rr). Then X\A is also a clopen 

subset of X which is not equal to X or ¢, but it is disjoint from A. 

Hence by Theorem 7.5, A and X\A separate (X, rr). This would mean 

(x, a) is disconnected, hence the conciusion follows. 

(ii) -t (iii). Suppose that f: (X, rr) ~ (X', a•) is continuous 

and onto. Then r-1(fo}) is unequal to¢ or X and it is clopen. Since 

this contradicts (ii), the conclusion follows. 

(iii) -J (iv). Suppose X could be represented by the union of the 

non-void open sets A and X\A. Then the characteristic function of A, 

f: (X, rr) ~ (X', rr'), which is defined by 

[
l xEA 

f (x) = 
0 x E X\A 



is a continuous function from (X, rr) onto (X', rr1 ). Since this 

contradicts (iii), the conclusion follows. 

(iv) _.,. (i). Suppose that (X, rr) is disconnected, then there 
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exist non-void sets A and B which separate x. Hence neither A nor B 

is near the other. It is then clear that A n B = ¢. It also follows 

that A and B must both contain all points they are near to. Thus A 

and B are closed. Since they must be complements of each other, both 

A and Bare open. This contradicts (iv); hence the conclusion 

follows. O 

The next theorem and example relate connectedness to some 

properties defined in earlier chapters. This will be the style through-

out the remaining portion of this paper. Once a concept has been 

defined and examined with regard to non-standard. criteria, it will then 

be tested to see what properties it possesses. 

7.12 Theorem: Connectedness is both a continuous image property and a 

topological property. 

Proof: Assume that f is a continuous function from the connected 

space (X, rr) onto the space (X', d 1 ). Suppose that (X', IT') is 

disconnected. Then there exist subsets A and B of X' which form a 

separation of (X', <l'). Thus neither A nor Bis near the other, and 

so by Corollary 6.5 neither 

. -1( ) d After examiru.ng f A an 

f-1(A) nor f-1(B) is near the other. 

f-1(B) carefully, it follows that they 

are not only separated but also separate x. This means that (X, IT) 

is disconnected which contradicts the hypothesis. Hence (X', rr') 



must be connected. Therefore connectedness is preserved under a 

continuous map and so certainly under a homeomorphism. 

7.13 Example: Connectedness is not an hereditary property. Consider 

the subspace of (R, E) given by (A, EA) where A = B U c, 
B = [o, 1), and C = (2, 3). Since A is the union of two non-void 

disjoint relatively open subsets, A is separated by B and c. 
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D 

7.14 Lerruna: If C is a connected subset of A lJ B in the space (X, rr) 

where A and B are separated, then either C c A or C c B. 

Proof: Assume C is a connected subset of A U B where A and B 

are separated. Since neither A nor B is near the other, it follows 

that neither A n C nor B n G is near the other. Thus A n C and 

B n C are separated subsets of the connected set c. Hence one of 

A n C and B n C is empty, and so either C c A or C c B. 0 

The following example and theorem show that the union of a 

collection of connected sets need not be connected, but by restricting 

the sets in the collection a connected set may always be obtained. 

7.15 Example: A = (O, 1) and B = (2, 3] are both connected subsets 

of (R, E), but AU B is disconnected. 

7.16 Theorem: Let F be a family of connected subsets of (X, rr) such 

that no two members of F are disjoint. Then Uf C : C E F) is also 

connected. 

Proof: Let S = UfC : C E Fl and suppose that A and B separate 

S. Now by Lerruna 7.14, each C E F is either a subset of A or of B. 
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Without_loss of generality assume C c:: A. Then for any other 

C' E F, C n C' ~ ¢ impli~s C' is a1so a subset of A. Hence 

S c:: A c:: s and B = ¢. Therefore A and B cannot have separated S a.tter 

all, and so S is connected. 

7.17 Iheorem: If C is a connected subset of (X, a) such that 

Cc A c::C, then A is also connected. 

0 

Proof': Suppose that B and D separate A. If C c:: 4 cc, then 

Cc BUD cc. Since neither B nor Dis empty, they each conta:i,n some 

point of c. Thus C is near both B and D by Theorem 5.36. However, by 

Lemma 7.14 Cc:: B or Cc D. Thus eithe;r C and D or C and B are 

separated. Hence either C is not near D or C is not near B. From this 

contradiction it follows that A is connected. 0 

7.1e Corollary: The closure of' a connected subset of (X, rr) is also 

connected. 

Although a space may be disconnected, there will always exist 

connected subsets since the singletons will be connected. Therefore it 

is always possible to express the space as a union of connected sets; 

however, it may well be possible to express.the space as the union of 

connected sets with more elements. The concept that will now be 

examined is that of' maximal connected sets. 

7.12 Definition: A corgeonent of' a space (X, rr) is a connected subset 
. . - ' 

A of X such that Ac:: B'c X with B connected implies B =A. 

7.20 Theorem: Each compone:n,t of a space is closed. 
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Proofs If A is a compon~nt of' (X, 3'), then A is connected. 

Thus by Corollanr 7.1a, I is connected. By the maximality of A, A • i. 
Hence A is closed. O 

By considering the union of the family of connected subsets con­

taining p E x, the proof of' the next theorem follows in the standard 

fashion. 

7.21 Theorem: The components of (X, 3') partition x. 

In some sense, it would seem that the number of components of a 

space could be used to gauge how.connected or di'sconnected the space is. 

This is partially verified by the following theorem. 

7.22 Theorem: A space (X, 3') is connected iff' (X, 3') has only one 

component. 

Proof: (-i) Assume that (X, 3') is. connected and that A is an 

arbitrary component in the space. Since A c X andk :A i:s ·tl1.·iHlllt4'"'4r 

A = x.. Thus X is the unique component of (X, 3'). 

(~) Conversely, assume that A is the only component of x. Since 

the components of the space partition x, X is the union of the com-

ponents. Hence X = A, and so X is connected. 0 



CHAPTER VIII 

THE SEPARATION AXIOMS 

As remarked earlier, topology is sometimes defined as the study of 

topological propert~es; i.e. those properties preserved by homeomor­

phisms. Theorem 6.4 and Corollary 6.5 have shown that a continuous 

function is one which preserves nearness. Thus it would seem that a 

function would have a better chance of being continuous when the domain 

space has few points near other points and when the range space has 

many points near other points. In terms of open sets, a function is 

more likely to be continuous when ~he domain space has many open sets 

and the range space has relatively few open sets. As an example of 

this, recall that each tunction from a discrete space to an arbitrary 

space is continuous and,each function from an arbitrary space to an 

indiscrete space is also continuous. 

From the preceding discus~ion, it may seem that many properties of 

a space are related to tbe cardinality of its topolqgy. In this chapter, 

a colle9tion of concepts known collectively as the separation axioms 

will be examined. Roughly, the separation axioms gauge the availability 

of open sets for use in separating points, sepaJ:'.ating points from closed 

sets, and separating closed sets. The reader is advised that not all 

texts use the same names or definitions for these axioms. The 

terminology here will agree with that of Kelley [4] but will disagree 

with that of Steen [17]. 

102 



10.3 

8.1 Definition: A space (x,.d). is_ a T0-space (Kolomogorov space) 

if whenever Pt q E x, p ~ q, there exists V e :r suoh that either 

p e·v and q f v or else q EV and pi v. 

Intuitively speaking, what has been said is that no two distinct 

points of a T0 -space are close to each other. In non-standard tenns, 

this is stated rigorously in the following theorem. 

8.2 Theorem: (X, d) is T0 iff no two distinct points of X are near 

each other. 

Proof: (~) Assume that (X, ;J) is T0 and that p and q are 

distinct points_ in the space. Then suppose without loss of generality 

that N is a neighborhood of p such that q f N •. Since q is standard, 
/\ 

qi N and hence q ¢ µ(p). That is, q is not near p and hence p and q 

cannot be near each other. 

((--) Assume that p and q are arbitrary distinct points in (X, d) 

and that p -and q are not near each other. Then wiyhout loss of gener-
. /\ 

ality, q is not near p. Hence q i µ(p) = n{N : N is a nbhd of p}. 
' /\ 

Thus there exists a nbhd N of p such that q ¢ N. Since q is standard, 

0 

Examples related to the separation axioms will be given after all 

levels of separation have been defined. If these definitions are new 

to you, it_might be advisable to examine the examples immediately after 

reading these definitions. 

8.3 Definition: A space (X, rr) is a T1 -space (Frechet space) if 



whenever p, q E x, 
q IV and q e w, 

p ~ q, 

p ~ w. 

there exist v, 
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WE :r such that p Ev, 

Thus a T1 -space_is one in which each of two distinct points in the 

space has an open nbhd missing the other point. Hence the following 

theorem could be used to intuitively describe the space. 

s.4 Theorem: (X, ;r) is T1 iff no point of X is near another point. 

Proof: (~)Let p be any point in the T1 -space (X, ;r). Then for 

any other q E X, there exists a neighborhood N about q such that 

p f. N. Since p is a standard point, p ¢ ~. Hence p f. µ(q) and p 

is not near q. 

(~) Let p, q be arbitrary elements in JC. Assuming no point is 

near another, p ¢ µ(q). Hence there exi.ats an open neighborhood V 

about q such that p *i V. Since pis standard, p EV. Similarly 

there exists a neighborhood V about p missing q. Hence (X, ;) is a 

T1 -space. O 

8.5 Theorem: Every T1 -space is a T0 -space. 

Proof: Assume that p and q are arbitrary distinct points of the 

T1 -space (X, rr). Then neither p nor q can be near the other. Hence 

certainly t~ey are not near each other. Thus the space is T0 • O 

The next theorem is sometimes a useful criterion for determining 

when a space is T1 • Its proof recalls some earlier non-standard ideas. 

8.6 Theorem: A space (X, rr)c is T1 iff every singleton subset of X 

is closed. 
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Proof: (-+)Assume that p EX in the T1 -space (X, :). If 

q is any other point of x, then p is not near q• Hence {p) cannot be 

near q. Thus fp) contains all points of X that it is near to, and so 

{p) is closed. 

( +-) Conversely,_ assume that {p} is closed for each p e x. Then 

{pJ is not near any other point q of x. Hence p is not near q. Thus 

(x, :) is T1 • D 

Exampl~ 5.22 showed that accA did not have to be a closed set. 

Th& next theorem claims, however, that all T1 -spaces do have accA closed 

for- each subset-A. The standard proof of this theorem will be omitted. 

The policy of this paper is to omit some proofs when a standard proof 

seems more direct and concise than a contrived non-standard proof. In 

the case of the following theorem (as well as Theorem 5.29) another 

point needs to be made. No non-standard proof of this theorem was 

discovered. Perhaps a lengthy indirect proof using non-stQl?.dard 

techniques does exist, but it seems quite unlikely that a concise non­

standard proof does exist. The reason for this lies in the definition 

of the concept of nearness. Nearness is a veey intuitive idea, a veey 

useful concept in non-standard analysis, and a fundamental notion of 

topology. It is not as fundamental, though, as the notion of a neigh­

borhood upon which its definition relies. One standard proof of the 

following theorem uses the definition of a T1 -space and certa:i.n nbhds to 

produce a straightforward proof. Several obvious attempts to prove this 

theorem using non-standard. terminology, and hence nearness, failed. 



The reason for this seems to be that nearcesa:is not a basic enough 

notion to get at the heart of this relatively straightforward idea. 

Since neamess to *points is meaningless, it is.im.possi'ble using the 

concept of neal'Iless to relate, through accA, any nearness of A to a 
I 
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*point p which is an ace pt of accA. The reader certainly is invited 

to attempt a proof of the following theorem-in order to clarify some 

of the nebulous comment~ made above. 

§•7 Theorem: If Ac: X in the T1 ~space (X, d) then accA is closed. 

The following theorem also is given to shaw that,_ although non­

standard analysis is a valuable- tool, it is not the answer to all 

problems. The proof of this theorem relies upon the concept of 

finiteness and the fundamental concept of a neighborhood; these are 

standard ideas. Therefore, the rol~ of non-standard anal:ysis shou;Ld 

be ~o suppJemem , but not to replace, standard analysis .. 

s.s Theorem: Given Ac: X in the T1 -space (X, rr), p E accA iff 

every open nbhd of p contains an infinite number of points of A. 

8.9 Definition: ~ space (X, rr) is a Ta-space (Hausdorff space) if 

whenever p, q E X and p ~ q, there exist disjoint open sets V and 

W such that p E V and q E w. 

Thus a T.-space is one in which there exist distinct neighborhoods 

for each pair of distinct points. Therefore the separation is more 

restrictive than saying that two points cannot be close. The separation 

will not even allow distinct points to be close to the same point. 



107 

In non-standard terms, the monads of different points are ~isjoint, as 

is shown in the following theorem. 

8.10 Theorem: A space (X, rr) is Hausdorff iff no ~point is near two 

distinct points of x. 

Proof: . (~) If (X, ~) is T2 , then for any p, q, p ~ q in 

X there exist neighborhoods V and W of p and q respectively such that 

V n W = ¢. This implies that @ = ¢, and hence ~ n Q = ¢. Thus 

µ(p) n µ(q) = ¢, i.e. n~ *point can be near both p and q. 

(~) If no *point is near two distinct points of X, then 

µ(p) n µ(q) = ¢ for distinct p and q in x. While it would be true 

that ~ n ·~ = ¢ implies v n w = ¢ for standard v and w, it is not 

permissible to conclude immediately from µ(p) n µ(q) = ¢ that 

neighborhoods V and W exist such that V n W = ¢. Th~refore, exer­

cising greater cautipn, note that since the nbhd systems Np and Nq 

are filters, there exist infinitesimal *nbhds V and W of p and q 

respectively. That is, V *E .Np and W *E Nq such that ~ c NucNp 

which equals 11· (p) and ~ c NucNq which equals µ. (q) • Thus the 

following sentence is true in ti*: 

:trx ~[x E= Np /\ y E Nq /\ ~(z E x /\ z E y]J. 

Since Np and Nq are standard objects, the interpretation in lt must 

also be true. Therefore p and q have disjoint nbhds, Hence (X, rr) 

0 
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8.11 Theorem: (~, :r) is Hau,sdori'f ii'f for each p E X, n{M M E Np 

and M is closed) • {p). 

Proof: (-+) Assume t~at (~, :r) is T2 and that p E x. If 

q ~ p is another point of' x, then there exist disj,oint .open sets·~ and 

w, such that p E V · and ~ q E w. Then p E V and V c: X\W imply that 

X\W is a closed nbhd of p missing q. Hence q f: n(M : M E Np and M 

is closed) for q ~ p. Therefore this intersection must be {p). 

(+-) Assume for each p E X . that (p} • n{M : M E Np and M is 

closed). If p E X and q is distinct from p, then there exists a 

closed nbhd M of p such that q f M. Hence M is not near q and so no 

*point of Mis near q. Now if·r is an arbitrary *point near p then 
I\ 

r E JA(p) which is contained in;M. Therefore r is not near q, and so 

(X, :r) is Ta by the non.standard characterization of T~..;.spaces. Cl 

8.12 Theorem: Every Te-space is also a T1 -space and a T0 -space. 

Proof: Assume that p and q are arbitrary distinct points in the 

T2 -space (X, ::r). Both p and q are points (and so are *points) which 

are near themselves and hence in the T.-space neither can be near the 
- ~ 

other. Thus (X, 3') is T1 and hence must be T0 • Cl 

As was shown in Example 6.13_1 sequences may converge to more than 

one point in an arbitrary space. It is well known that this is not 

true ia (R, E). The property of (R, E) that prevents this is the 

8.12 Theorem: In a Hausdorff space limits of convergent sequences are 

unique. 
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T9 -spaces are very nice spaces since they.behave similarly to 

(R, E) in so many respects. A;nother· example of this is given by the 

following proposition. 

S.14 Proposition: If f and g are continuous functions into a Hausdorff 

space, then fx : f(x) ~ g(x)} is open. 

Proof: Assume that f and g are continuous functions from (X, rr) 

into the T&-space (X', rr•). Let V = {x: f(x) ~ g(x)} and suppose 

q is near p Ev. Since f and g are continuous, f(q) and g(q) are 

near f(p) and g(p) respectively. If f(q) • g(q), then that 

*point would be near both f(p) and g(p) in a T2 -space. By 

assumption f(p) ~ g(p), therefore it cannot be that the same *point 

is near two distinct points. Hence f(q) ~ g{q), and so q *Ev. 
/\ 

That is, µ(p) c v. Therefore Vis open. 0 

S.15 Definition: A space (X, rr) is an R-space (regular space) if 
• 

whenever p EX and F is a closed subset of X such that p IF, then 

there exist disjoint open sets V and W such that p E V and F c w. 
' 

A space (X, rr) is a T3 -space if it is a regular T1 -space. 

Thus a space is regular if every closed ~et and every point not 

contained in the closed set can be separated by disjoint open sets. 

S.16 Theorem: A space (X, rr) is regular iff for.each p EX and for 

each open nbhd V of Pt there exists an open nbhd W of p such that 

p f W and W c v. 

S.17 Corollarz: The space (X, rr) is regular iff the closed nbhds of 

p form a nbhd base for each p E x. 
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8.18 Theorem: A space (X, ~) is an R-space iff for eaeh point p and 

each *point q not near p there exist disjoint open sets V and W such 

that p E v and q *e w. 

Proof: (....,.) Assume that p is a point and that q is a *point in 

the R-space (X, 3) such that q is not near p. Let Mp denote the 

family of closed nbhds of p. Since Mp is a nbhd base for Np, 
/\ 

µ(p) • nfM: ME Mp) by Lemma 4.23. Since q ¢ µ(p), there must exist 
/\ 

a closed nbhd M of p such that q ¢ M. Let V • r.f and let W • X\M. 

Then q *E W and p E V since p is an int pt of M. Further, 

v n w. ¢. 

(f-) Suppose that the space (X, 3) ~s not regular. Then there 

exists a point p of X such that the family Mp of closed nbhds of p 

does not form a nbhd base for Np.· Thus there must be some nbhd N of 

p such that no M e Mp is a subset of N. Therefore if M e Mp, there 

is some q E M such that q ; N. Now the intersection of a finite 

number of closed nbhds of p is- ag.ain a closed nbhd of p. Hence the 

relation defined by the formula x F. Mp /\ y E x /\ y f. N is concurrent. 

It follows that there is some *point q such that q *i N but q *e M 
/\ 

whenever M E Mp. Thus q E n{M : M E Mp} which equals Nuc Mp, but 

q f Nuc Np which equals µ(p). Thus q is a *point which is not near p. 

- * -Now let V be any open set about p. Since V E Mp, q E V and cannot 

be a *point of (x\v)0 • Hence there cannot exist an open set W con­

taining q and disjoint from v. The statement follows by contra-

position. 0 
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8.19 Theorem: Eve:ry T8 -space is a T8 -space. 

Proof: Assume that p and q are distinct poi~ts in the Ts-space 

(X, rr). Since (X, rr) is Ts' it is by definition T1 • Hence {p) 

is a closed set. Therefore, by regularity, there exist disjoint open 

sets containing p and q. Thus (X, rr) is Hausdorff. 0 

8.20 Definition: A space (X, rr) is an N-space (~ normal space) if 

for disjoint closed sets F and G, there exist disjoint open sets V and 

W such that F c V and G cw. A space is a T4 -space iff it is a 

normal T1 -space. 

8.21 Theorem: A space (X, rr) is normal iff for each closed set F and 

open set V containing F, there exists an open set W such that F c W 

and We v. 

8.22 Theorem: A space (X, rr) is normal iff for every two *points p 

and q such that p *f F and q *E G for some disjoint closed sets 

F and G, there exist disjoint open sets V and W such that p *E V and 

* q E w. 

Proof: (-+) Assume that p and q are *points in the N-space (X, rr) 

and that there are closed sets F and G such that p *E F and q *e G. 

Since F and G are disjoint closed sets, there exist by the normality 

of (X, rr) disjoint open sets V and W such that F c V and G c w. 
Hence p *e V and q *e w. 

(~) Assume that (x, rr) is not an N-space. Then there must 

exist disjoint closed sets F and G that cannot be separated by open 
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sets. Thus i! V is an open set containing F, the open set . X\V 

cannot contain G. Therefore V n G ~ ¢. Now the intersection of a 

finite number of open sets containing F is also an open set containing 

F. Thus the closure of the intersection of a finite number of such sets 

must contain a point of G. Hence the intersection of their closures 

will contain a point of G. Therefore the relation defined by the 

following formula is concurrent: x E ::r /\ F c x /\ y E i /\ y E G~ It 

follows that there must be sbme *point q su"ch that q * E G and such 

* - . that q E V for each open set V containing F. 

* Now let S be the family of all opep sets A such that q E A. If 

A E S then A n F ~ ¢. Otherwise X\A = V would be an open set con­

taining F while q *¢ v. This is a contradiction. 

Now the intersection of a finite number of open sets with q as a 

*element is also an open set with q as a *element. Hence the relation 

defined by the following fo~la is concurrent: 

x F S /\ y E F /\ y E x. 

It follows that there must e:x:Lst some *point p such that p *e F and 

p *E A whenever A F s. Therefore there cannot exist disjoint open 

sets V and W such that p *e V and q *e w. Otherwise, if V is an 

* - * open set with q as a element, then V has p as a element and so 

P *i_ (X\V)0 • 0 

8.23 Theo~em: Every T4 -space is a T3 -space. 



113 

Proof: Assume that p i~ not an e~ement of the closed set F in 

th~ T4 -space (X, ~)• Since (X, :r) mu~t be a T1-space, {p} is a 

closed set disj~int from F. Therefore normality assures disjoint open 

sets V and W such that· p E V and F c w. Hence (X, ;r) is a 

T8 -space. 

The following examples are included. for completeness so that a 

·novice will have readily available examples of spaces which satisfy 

some of the separation axioms but not others. 

a.24 Example: 

(i) The indiscrete space (X, ;r) where X is not a singleton is 

not a T0 -space. 

(ii) The space (X, ;r) where X • {a, b, c} and ;r = {¢, {a}, 

(b, cJ, X} is not T0 , but neither is it an indiscrete 

space. 

(iii) The space (X, :r) where X • {a, b} and_ ;r • £¢, {a}, X} 

is T0 but not T1 • The left-ray topo~ogy on the Re~ls 

also has this property. 

(iv) The cofinite space (X, ;r) where X is infinite is T1 but 

not T2 • 

(v) The space (X, ;r) where X is the set of real numbers and ;r 

is the topology subgenerated by the family I of intervals 

(a, b) and the set Q of rational numbers is T2 but is not 

T3 • That (X, 3') is not T3 may be seen by examining the 

point zero ~d the closed set X\Q. 

0 
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(vi) The space (X, :r) of part (ii) is regular and ?lormal. but it 

is not T0 and hence not T1 , T8 , T3 , or T4 • 

(vii) The space (X, 3') of part (iii) is normal but not regular. 

(viii) Let X be the upper-half plane together with the x-axis, i.e. 

X .- {(x, y) : x E R, y E R, and y ~ O). A basis for a 

topology :r for Xis B where B consists of all open spheres 

in X (sets o:f form {(?C, y) :- y > o, (x ... Xo)2 + (y - y0 ) 2 < r} 

where Xe E R and y0 , r > 0) together with sets of the 

form S U{(x, 0)} where S is an open sphere tangent to the 

real axis at the point (x, 0). (X, d') is regular but not 

normal. To see that (X, d') is not normal, examine Q the 

set of rationals and I the set of irrationals on the x-axis, 

R.- It may be seen that every subset of-R contains all points 

that it is near to. Thus both Q and I must be closed. Since 

there do not e.x:ist disjoint open sets about Q and I, the 

result follows. 

(ix) Every discrete space is T4 and hence satisfies all the 

separation axioms defined in this paper. 

(x) The space (R, E) is ~ot discrete, but it does satisfy all 

of the separation axioms def;i.ned in this paper. 

As mentioned at the beginning of this chapter, the separation 

axioms gauge, in some sense, the availability of open sets in the 

space. Thus it should not be too surprising to find that each of the 

separation axioms is a topological property. As the proofs are very 

similar, only the following theorem will be proven in this paper. 
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8.22Theorem: The homeomorphic ;Lmage of a Hausd~rf.t space is a 

Ha~sdorff space. 

Proof: Asswne that (x, 3'} is TS? and that f: -(x, -:r). _, (X', 3'') 

is a homeomorphism from X onto x•. Let p' and q' be distinct 

points of (X', 3''). Suppose r' is a *point near both p' · and q•. 

Since f is a homeomorphism,_ r = r-1(r') - is near both p. f-1(p') 

and q = f-1(q1). This is a contradiction since (X, 3') is T2 • 

Therefore (X', 3'1 ) is Tm• 0 

8.26 ExwnJ>le: The identity function from the discrete space (X, 3') 

to the indiscrete space (X, :r•) is continuous. If X contains more 

than one point, then (X, 3') satisfies all of the separation axioms 

while (X, 3'') satisfies none of them. Hence, none of the separation 

axioms is a continuous image property. 

All of the separation axioms defined in this paper, with the 

-exception of normality, are hereditary properties. One proof will be 

given here to illustrate the proof of this claim. 

S.27 Theorems Every subspace o! a Ta -~pace is also a Ta -space. 

Proof: Asswne that (A, 3'A) is a subspace of the Ta-space (X,:3'), 

that p E A, and that q is a *point of A not near p. Since (X, 3') 

is Ta' there exist disjoint open sets v;"w in (X, :r) such that 

p EV and q *e w. Now p E V n A and q *e W n A. Since these sets 

are disjoint and open in (A, :rA), the subspace is also T3 • O 



CHAPTER IX 

COMPACT SPACES 

As mentioned at tne beginnin~ of Chapter IV, many of the concepts 

of topology have evolved as generalizations of concepts associated with 

the particular topological space {R, E). The main concern of this 

chapter will be the concept of compactness. Compactness in an arbitrary 

space is another case where the conclusion of an important theorem 

{in particular the Heine-Borel Theorem) of real analysis becomes a 

definition in topology. In {R, E) there are several different equiv­

alent criteria for determining the compactness of a set, not all of 

which generalize or are equivalent in an arbitrary space. 

If a compa9t set is intuitively thought of as a set in which the 

points are packed fairly close together, then the following standard 

definition and non-standard characterization are portrayed justly. 

Much of the importance of compactness is derived from the well behaved 

way in which continuous functions act upon compact sets. 

9.1 Definition: A family C of subsets of X is called a covering of 

(X, 3") iff X = U f A : A E C). If C' is a subfamily of C which also 

covers X, then C' is a subcover.;!:_ns of (X, rr). In this case C is 

said to be reducible .!:.2, the subcovering c•. By an abuse of language, 

116 



a f'amily of' open sets which cove:r~ X is called an open covering of' 

(X, d)• If' the covering e has only a :t.'inite number of' members, then 

e is called a finite covering. 
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9.2 Definition: A space (X, d). is_coffi12act·iff' every open covering of' 

(X, d) is reducible to a finite subcovering. A is a compact subset of' 

X iff (A, dA) is a compact subspac~. 

For emphasis note that the quantifier in the preceding definition 

is "every''. If just any open covering reducible to a finite subcovering 

would make the space compact, then each space would be compact. This 

may be seen by taking the subf'amtly {X} of' the family :r. 

Machover and Hirschfeld call the next theorem by Robinson one of 

the most important and useful theorems of' non-standard analysis. Their 

proof' will be given below, but to full.y appreciate tiheir description of 

the theorem one would need to pursue deeper results than this paper will 

present. 

9.; Theorem: A subset K of the space (X, d) is compact if'f' every 

*point of' K is near some standard point of K. 

Proof': (~) Assume that K is a compact subset of (X, d) and 

that q *E K. Suppose, however, that q is not near any point of' K. 

Then for each p E K there ex:i,sts some open nbhd MP of p such that 

q *i rf. Now the family [MP : p E K) cle_arly is an open cover of the 

compact set K, and so there exists a finite subcovering {MP1 , MP•, 

•••, !fnJ ·of K. Thus the following sentence is true in tr and hence in 

tJ*: '\IX[x EK_,.. x E MP1 V x E MPa V ••• V x E MPn]. Thus the 
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interpretation in - ti* will not allow q to be a *point of K; for else 

q would be a *element of MPj for some j a 1, 2, •••, n. This is a 

contradiction since the original assumption was that q *e K; hence 

the supposition that q was not near any point of K must be incorrect. 

(f-) Assume that K is not compact. Then let C be an open covering 

of K which is not reducible to a finite subcovering. Thus for each 

finite subfamily {01 , o~, •••,On} of C there exists a p EK such 

that p ¢ Oj for j a 1, 2, •••, n. Hence the following formula 

defines a concurrent relation: x E C A y E K A y ~ x. Therefore there 

exists a *point q such that q *E K but q is not a *element of any 

0 E C. Now C covers K, so for each p E K there is some 0 E C such 
A 

that p E o. This means that 0 is an open set about p such that q ~ O; 

therefore q is not near p. Thus if K is not compact there is a *point 

q of K which is not near any point p E K. 

2·4 Example: 

(i) The sets {o} and [2, 3] are compact subsets of (R, E), 

but (R, E) is not compact. This follows since the open 

covering consisting of the intervals (n, n + 2) when n is 

an integer it is not reducible to·a finite subcovering. 

(ii) Every indiscrete space is compact. 

(iii) Finite discrete spaces are compact while infinite discrete 

s~aces are not compact. 

(iv) Every cofinite space is compact. 

9.5 Example: Compact sets need not be closed in an arbitrary topo­

logical space. Recall the left-ray topology on the reals. In this 

D 
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space, {O) is compact but it is not closed. 

It is well lmown, however, that compact subsets of (R, E) . are 

cloBed.- The next theorem presents the topological property of (R, E) 

that makes this true. 

9.6 Theorem: Every compact subset of a Hausdorff space is c1osed. 

Proof: Assume that K is a compact subset of the T1 -space (X, d). 

Suppose_that K is near the point p. Then some *point r of K must be 

ne~ p. Since K is compar+ , this *Point r must be near some point q of 

K. Now the space is Ta, so r cannot be near two distinct points, 

Hence p = q which is an element of K. K must therefore be closed since 

it contains all points that it is near to. 

9.7 Example: The closure of a compact set need not be compact. Con­

sider the set A= (-oo, OJ in the space of Reals with the left-ray 

topology. A is compact since any basic open set containing the.point 

0 also covers A. However, A is the whole space which is not compact. 

This may be seen by deliberating upon the open covering consisting of 

all rays of the form (- oo , r) where r is a real number. 

9.s Example: The subset [o, 1) of the compact subset [o, 1] of 

(R, E) is not compact. Hence compactness is not an hereditary 

property. 

The next corollary gives sufficient restrictions upon subsets of 

compact sets to force them to also be compact. Thus this property of 

(R, E) does generaiize to arbitrary spaces. 



2•2 Theorem: The intersection of a compact set and a closed set is 

compact. 
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Proof: Assume that K is compact and that C is closed in (X, rr). 

Let r *e K n c. Since r is a *point in the compact set K, r must be 

near p for some p E K. Now C is closed, so C must also contain p. 

It follows that K n C is compact since there exists a p E K n C 

such that r is near p. 

9.10 Corollary: Every closed subset of a compact set is compact. 

The next few theorems serve to illustrate the nice behavior of 

compact sets when acted upon by continuous functions. 

0 

'9.11 Theorem: Compactness is both a continuous image and a topological 

property. 

Proof: Assume that f is a continuous function from (X, rr) to 

(X', rr') and that K is a compact subset of~ with image K' under f. 

Suppose that r' is a *element of K'. Then r' = f(r) for some 

r *EK. Since K is compact, r is near p for some p EK. Thus, in K', 

r' = f(r) is near p' = f(p) since f is continuous. The existence of 

the point p' E K' which r' is near to 'implies that K' is compact. 

Thus compactness is preserved by a continuous function and so certainly 

it is preserved by a homeomorphism. 0 

9.12 Corollcµ:z: The continuous image o.f' a compact set K from (X, :.r) to 

the Hausdorff space (X', rr') is closed. 



Proof: By the previous theorem, f(K) is compact. Then by 

Theorem 9.6, f(K) is closed since (x•, 3'') is Ta• 
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D 

The following theorem can be very useful when one is working with 

£unctions into Ta-spaces. 

9.13 Theorem: A one-to-one ~ontinu~us £unction from a compact space 

onto a Ta-space is a homeomorphism. 

Proof: Assume that £: (X, 3') ~ (X' , 3"') is a continuous function 

from a compac~ space onto a T8 -space. To establish that f is a homeo­

morphism,_it will suffice to show that f is open, i.e. that f(r) near 

f(p) implies r is near p. Thus suppose that f(r) is near f(p) in 

the image space. Since f is onto, there exist r *EX and p EX 

which are the preimages of f{r) and f(p) respectively. The 

compactness of (X, :r) g\larantees that r is near some point q E x. 
By the continuity of £, f(r) is near f(q) in the T2~space (X', U•). 

Hence f(q) = f(p), since f(r) cannot be near two distinct points 

in a T2 -space. Since f is 1-1, q • P• Therefore r is near p, and 

the desired conclusion thus foliows. D 

As an example of the power of this theorem, consider the following 

proposition. 

9.1~ Proposition: Let (X, :r), (X, 3'') and (X, 3''') be three dis­

tinct spaces with 3''' strictly stronger than 3'' which is strictly 

st~onger than 3'. If (X, rr•) is a compact T1-space, th~ (X, 3''') is 

Hausdorff but not compact, while (X, 3') is compact but not Hausdorff. 
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Proof: Assume that (X, :J'') is a compact T8 -space with rr 

strictly weaker than :J'' and rr'' strictly stronger than rr'. It 

is then clear that (X, rr'') is Hausdorff, since :J''' is stronger than 

3"'. Now let f be the identity map from (X, 3"') to (X, 3"). Since 

the inverse of any open set is open, f is continuous. (X, :J') is thus 

compact, for it is the c~ntinuous image of a compact set. To see that 

(X, rr) is not T~, again consider the function f. By the previous 

theorem, if (X, :J') is T~, then f would be a homeomorphism. This is 

impossible since 3' is distinct from :J''. Similarly, the identity 

function g from (X, CJ''') to (X, 3'') is a continuous function, but 

not a homeomorphism. Therefore (X, :J''') cannot be compact or else 

g would be a 1-1 continuous funct~on of a compact space onto a 

D 

There are several other types of compactness which might be 

investigated; however, the only other type to be examined in this paper 

will be that of local compactness. 

2·15 Definition: A space (X, :J') is local;tz compact !i!. point p of 

X if there exists a compact nbhd of pin (X, :J'). If (X, 3') is 

loc~lly compact at each point of X, then (X, 3') is called a locall;Y: 

compact space. A is a locall:y compact subset of X iff (A, :rA) is 

a locally compact subspace. 

9.16 Example: 

(i) All discrete, indiscrete, and cofinite spaces are locally 

compact. 
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(ii) (R, E) is locally compact but not compact. 

(iii) The family of ~tervals of the form [a, b) where a, b E R 

is a base for a topology on the reals Let Y be the topology 

generated by this base. Then it may be shown that (R, Y) is 

not locally compact. (R, Y) will henceforth be called the 

closed-left-interval topology for R. 

Now recall that a near-standard *point of (X, 3') * is a point 

which is near some point of x, The space (X, 3') was shown to be 

compact precisely when each *point of X is near some point of x. Thus 

each *point of a compact space is near-standard. However, in spaces 

which are not compact there are *points which are not near-standard. 

The relationship between compactness and near-standard points is 

examined f'urther in the next theorem which also characterizes locally 

compact spaces. But first, a lemma will be given so that the proof of 

the theorem may be expedited. 

9.17 Lemma: - If a is a filter in the space (X, 3') and Np is the nbhd 

system of p E x, then Nuc a n µ(p) I ¢ iff F n N I ¢ for each 

F E a and N E Np (i.e. iff p is a contact point of u). 

Proof: Let G denote the filter generated by G U Np. Using the 

fact that Nuc G = Nuc an Nuc Np which equals Nuc a n µ(p), it 

follows that G I P(x) precisely when Nuc a n µ(p) ~ ¢. For if 

G = P(X) then clearly Nuc G = ¢, and if G is properly contained in 

P(X) then Nuc G properly contains Nuc P(X) which equals ¢. Since 

G ~ P(X), ¢ f: G. a U Np generates G, hence there cannot exist F E a 

and N E Np such that F n N = ¢. 1 0 



9.18 Theorem: A space (X, er) is locally compact iff every near­

standard *point of X is a *point of some compact subset of x. 
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Proof: (_.) Assume that (X, er) is locally compact and that q is 

a near-standard *point of x. Then by definition, q must be near some 

point 1>•- Since (X, er) is locally compact, there e:xists a compact 

nbhd K of p. Hence µ(p) c;: ~' and so certainly q *E K. 

(f-) Assume that p E X and that every near-standard *point of X 

is a *element of some compact subset of x. Let G be the filter 

generated by the family C of sets whose complements are compact. Note 

that, s~ce the union of two compact sets is compact, the intersection 

of the complements of two compact sets is again the complement of a 

compact set. Hence C constitutes a base for the filter a. 

' /\ 
By definition, . Nuc a = n{F : F E G}. If r is a near-standard 

*point, then by assumption r *E X\F 'for some F E a. Therefore 

r *¢ Nuc a. Hence Nuc a can contain only remote *points. On the 

other hand, if r is remote *p?int then r is not a *po~nt of any compact 

set. Thus Nuc a = {r : r is a remote *point of XJ. 

Fr9rn this it follows that µ(p) n Nuc a = ¢. For else some remote 

*point would be near p which is a contradiction. Thus by the previous 

lermna, there must exist F E a and N E Np such that F n N = ¢. 
Since C is a base for a, F contains some C E C. Note that C n N = ¢ 
and x\c is compact. Thus X\C which contains N must be a compact 

nbhd of p. Therefore X is locally compact. D 
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It is interesting to compar~ th~ non-standard characterization 

of local compactness with the standard definition. As with much of the 

study invol~ng non-standard analysis there is a "tr¢e-off" involved. 

In some respects the non-standard characterization is simpler and in 

other respects it is more complicated. More difficult in the respect 

that *points and the associated non-standard terminology is invo~ved, 

but simpler since it is now necessary to consider only compact sets 

instead of compact nbhds. 

It is clear from the definitions that each compact set is locally 

compact. The converse of this statement was exhibited to be false by 

Example 9.16.ii. Nonetheless, there is a close relationship between 

compactness and local compactness in the sense that theorems involving 

compactness often have duals involving local compactness. The next 

theorems are given, inpl.U't, to illustrate some of these parallel ideas. 

The proofs are also intended to exhibit the use of the non-standard 

characterization of local compactness. 

9.19 Theorem: The intersection of a locally compact set and a closed 

set is locally compact. 

Proof: Assume that L is a locally compact subset of (x,. rr) and 

that c c X is closed. Let r be a near-standard *point of L n c. 

Since r is a near standard *point of the locally compact set L, there 
L' 

exists Kc L such that r *EK and K is compact in (L, rr1). It then 

follows that .L n C is closed in (L, rr1 ) and so Kn C is a compact 

subset of (L, i 1 ) which has r as a *point. Then K n C is also a 



compact subset of L n C. Hence L n C is locally compact by the 

non-standard characte:r:Lzation of local compactness. 

9.20 Corollarz: Every closed subset of a locally compact set is 

locally compact. 
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9.21 Example: Let Q be the set of rational numbers. Then (R, E) is 

a locally compact set with a subspace (Q, ~) which is not locally 

compact. Hence local compactness is not hereditary. To see this 

examine any compact nbhd K of zero. K cannot be a compact subset of Q 

since it contains *points which are near the irrationals. 

9.22 ExamPles Local compactne~s is not a continuous image property. 
; 

Consider (R, rr) the reals with the discrete topology which is locally 
. . 

compact and (R, Y) (the left-closed-interval topology) which is not 

locally compact. The identity function from (R, rr) to (R, Y) is 

continuous but does not preserve local compactness. 

9.2J Theorem: Local compactness is a topological property. 

Proof: Assume that f is a homeomorphism from the locally compact 

space (X, d) onto (X', rr1 ). Let r be a near~standard *point of X' 

and take q to be the *point of X for which f(q) = r. Since r is near­

standard, . r is near some f (p) E .j(f,, It follows that q is: near p in X 

since .f is a homeomorphism. Hence q is a near-standard *point and must 

there.fore be a *point:~.f K for· some compact set Kin X. It follows 

that f(K) is a compact subset of X' and that r *e f(K). There.fore 

(x;•, rr•) is locally comp~ct. 0 



CHAPTER X 

PRODUCT SPACES 

Product spaces were mentioned briefly at the end 0£ Chapter IV. 

There :it was suggested that one activity that frequently reoccurs in 

topology is that 0£ forming new spaces from known spaces. The simplest 

way suggested was to intersect known topologies on a set in order to 

£orm a new topology. The other previously mentioned techn;Lque, which 

has been used repeatedly in this paper, is that of forming subspaces. 

This chapter will inv$stigate the formation and properties of 

product spaces. Not only are these ideas of sufficient merit to justify 

their inclusion as basic standard material,- but they also provide 

material for so~e good illustrations of i'urther non-standa.zV proofs 0£ 

some_ standard theorems. In particular, some theorems involving 

product invariant properties will be proven. 

10.1 Definition: The cartesi,an product X of' a collection of' sets Xa 

where a E A (an indexing set) is given by X • TIXa =ii {£: f is a 

function from A into UXa such that f(a) E Xa £or each a E A). Xa 

will be called tl1.e a-th coordinate !.!.!:, of X and f'(a) will be called 

the a-th coordinate of' the point £. A function P which maps the , a 

product set X into the coordinate set Xa such that Pa(x) = x(a) for 

each x E X is called a projection. 
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The material now being covered is still assumed to be in the 

context of the previous discussions concerning a universe of discourse 

* U and an enlargement tJ based upon u. A is assumed to be a subset of 

V, the set which is used to construct u. For each a EA (standard 

elements of A only), Xa is also ass'!lffied to be a subset of v. These 

assumptions guarantee that U contains all points and topologies of the 

product set x. 

If each coordinate set has a topology upon it, then it is customary 

to form a topology on the product set which is somehow related to each 

of the individual topologies upon the coordinate sets. To be of any 

significant value, it is crucial that this topology be influenced by 

the topologies on each of the coordinates. For example, one could give 

the product space the discrete, ipdiscrete, or other well-known topol­

ogies, but this would be ignoring the topological properties of the 

coordinate spaces. The customary way of doing this is such that the 

projection functions are forced to be continuous. The topology about 

to be defined is also called, in honor of its discoverer, the Tichonov 

topology. 

10.2 Definition: Let S = (Uc X =TfX : U = P - 1(0 ) for some a a a 

a E A and some Oa E rra}· The topology for X subgenerated by this 

family S of inverse images of the open sets in the coordinate spaces is 

called the product topologY for x. 

10.? Definition: If a property is possessed by the product space when­

ever it is possessed-by each coo_rdi~ate space, the property is said to 

be product invariant. 
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It should be clear from the definition of the product topology, 

that this is the weakest topology for which all the projection functions 

are continuous. Also note that since a basic open set is formed by 

taking finite intersections of subbasic open sets, that each basic open 

set is restricted only in a fin?-te number of coordinates. Thus if B 

is basic open then B =TIUa where ua E rr and u = x for all but - a a a 

a finite number of coordinates. Since any open set contains a basic 

open set, points in any open set must be restricted in at most a finite 

number of coordinates. This is true even when the indexing set is 

uncountable, such as A= (O, 1). 

Product spaces can become awkward to work with even when the 

coordinate spaces are relatively simple. The following trivial example 

is given to illustrate the previous definitions. 

10.4 Example: Let X1 = (a, b, c}, X2 = (l, 2}, rr1 = [¢, (a), (b, cJ, 

x1} and rr2 = [¢, (1}, x2}. Then a subbase for the product topology 

rr for 

X = x1 x x2 ={(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)} 

is_ the set S of inverse images of the projection functions. 

s = fP1-1(¢), Pi-1({a}), ••• , P2-1<x2)l ~ 

[¢, ((a, 1), (a, 2)} ({b, 1), (b, 2), (c, 1), (c, 2)}, 

((a, 1), (b, 1), (c, 1)}, X}. Thus a base B for rr would consist of all 

finite intersections of members of s. 

B = [¢, ((a,_ 1), (a, 2)), {(b, 1), (b, 2), (c, 1), (c, 2)), 

{(a, 1), (b, 1), (c, 1)}, ((a, 1)}, {(b, 1), (c, 1)}, x}. 
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Then rr consists of the set of all unions of members of B. The monads 

of all points in each space will now be given: 

µ(1) = (1}, µ(2) = fl, 2}, µ(a) = fa}, µ(b) = (b, c} 

µ(c) = {b, cl, µ((a, 1)) = {(a, 1)), µ((a, 2)) = f(a, 1), (a, 2)), 

µ({b, 1)) = {(b, 1), (c, 1)), µ((b, 2)) = {(b, 1), {b, 2), (c, 1), 

(c, 2)}, µ((c, 1)) = {(b, 1), (c, 1)}, and µ(c, 2) = ((b, 1), (b, 2), 

(c, 1), (c, 2) ). 

What is suggested by the monads in this example is that p is near 

q in the product space iff p(a) is near q(a) for each coordinate of 

p and q. The next theorem shows that this is true in general. 

10.5 Theorem: Let (X, rr) be the product space formed by the spaces 

(Xa' rra) where a E A. Then p is near q in (X, rr) iff each coor­

dinate of p is near the respective coordinate of q. 

Proof: ( ...... ) Assume that p is near q in X = lTXa. The a-th 

coordinate of pis Pa(p) and of q is P (q). Sine~ P is continuous a a 

and so preserves nearness, it follows that Pa(p) must be near P8 (q). 

(t-) Assume that p(a) is near q(a) for each coordinate a E A. 
I\ 

To show that p is near q, it will suffice to show that p E B for each 

basic open nbhd of q. If B is a basic open nbhd of q, then 

B = nfsk: k = 1, •••, n) for some finite collection of subbasic open 

sets Sk about q. If Sk is any subbasic open set about q, then by 

definition Of the product topology Sk is the inverse image P -l(0 ) 
ak ak 

for some open set 0 about some ak-th coordinate of q. Now by 
ak 



assumption p(ak) 

k = 1, 2, ···, n, 

and it follows that p is near q. 

/\ 
thus p(a. ) E 0 • 

-K ak 

which equals sk. 

13], 

Hence for each 
/\ 

Therefore p E B 

0 

This theorem is certainly not surprising when the product space has 

a finite number of coordinates. When the indexing set A is the set 

(o, 1), then nearness is still required at each and every coordinate. 

In particular, if p is near q then it is not permissible for p(a) not 

to be near q(a) on a non-empty set of coordinates of Lebesgue measure 

zero. 

10.6 Caralla:rx: Let (X, d) be the product space formed by the spaces 

(Xa' rra) where a EA. If Bis a *subset of X near x, then Pa(B) is 

near x8 for each a EA. Similarly, if Bis near Cc X then Pa(B) 

is near Pa(C) for each a EA. 

Proof: Assume that the *subset B of the product space {X, d) is 

near x E x. Then there exists r *e B such that r is near x. By the 

previous theorem, this means ra is near xa for each a EA. Sirlce 

ra *e Pa(B), it follows that Pa(B) is near xa for each a EA. The 

remaining part of the proof is also straightforward. 0 

Although it might seem desirable, the converses of the statements 

in the previous corollary are not true. 

10.7 Example: If B is a *subset of the product space (X, rr) and 

x EX, then it is possible for Pa{B) to be near x for each a E A a 

without B being near x. Similarly, it is possible for P8 {B) to be 
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near- Pa(C) for each a EA where Cc X without B being near c. 

To see this, let B = {(a, 2), (b, 1)} and x = (a, 1) in Example 10.4. 

For the second case let C = {(a, l)J. 

10.S Theorem: Every projection .function is open. 

Proof: Assume that (X, rr) is the product space whose coordinate 

spaces are (Xa' rra) where a E A. By Lemma 6.21 it will suffice to 

show that ~,(Pc (x)) c Pc (µ.(x)) for each x E x. So suppose r is near 

x0 in the c-th coordinate space. Then define y by 

{
xa a~ c 

y ... 
t. r a = c. 

The previous theorem guarantees that y is near x. Furthe_r, P0 (y) = r. 

Hence r E P0 (µ(x)) and the desired inclusion follows. Therefore 

Pc is open. 0 

Since nearness of points in a product space in completely 

determined by nearness of the coordinates, it should not be surprising 

that the continuity of a function from a space into a product space 

can be determined completely by considering each of the coordinate 

spaces. 

10.9 Theorem: Let f: (X', rr1 )-+ (X, rr) be a function from an 

arbitrary space to the product space X =lTXa' a EA. Then f is 

continuous iff Pao f is continuous for each a EA. 

Proof: The function f is continuous iff x' near y' in (X', rr 1 ) 

implies f(x') = x is near y = f(y') in (X, rr). Now xis near y iff 
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Pa (x) is near Pa (y) for each a e A. Hence f is continuous iff x• 

near y' implies (Pao f)x' is near (Pao f)y' for each a e A, 

i.e. iff each Pao f is continuous. 

The next theorem gives yet another criterion for determining 

D 

when a space is Hausdorff. It was chosen because of the importance of 

T1 -spaces and because the proof brings together some of the non~standard 

characterizations previously developed. 

10.10 Theorem: The space (I, :r) is T2 iff the diagonal of the 

product space formed by X x X is a closed set. 

Proof: (__.) Assume (I, :r) is Ta and suppose the diagonal D of 

the product space (Ix I, :r') is near the point (x, y). ·Then some 

*point (p, p) of D must be near (x, y). Hence p is near both x and 

y, which cannot be in a T8-space unless x = Y• Thus (x, y) E D and 

D is closed. 

(t-) Assume that the diagonal D of the product space (Xx X, :r') 

is closed and suppose pis.near both x and yin the space (X, :r). 

Now (p, p) is near (x, y). Thus Dis near (x, y) _ and so 

(x, y) E D since D is closed. Therefore x = y and so (X, :r) is 

One important feature of product spaces is that every coordinate 

space is homeomorphic to some subspace of the product space. More 

importantly, the subspace may be chosen so as to contain an arbitrary 

point in the product space. 

D 



134 

10.11 Theorem: Let x be a point in.the product space (X, d)• Then 

each coordinate space (Xa' da) is homeomorphi~ to some subspace of 

(x, rr) containing x. 

Proof: Assume that xis a point in the product space (X, rr). For 

the c-th coordinate space (Xe' IT0 ), define f: (Xe' rrc) ~ (X, rr) by 

f(p) = y where y = x for a ~ c, while ye = p. Note that f is a a 

a one-to-one function from Xe onto f(Xc) c: X and that x E f(Xc)· 

Since pis near q in (Xe' rr0 ) iff f(p) is near f(q), it·follows 

that f is a homeomorphism to the subspace formed by f(X0 ). D 

Some important properties that are product invariant are the T1 

and T2 separation axioms, connectedness, and compactness. Proofs of 

some of these invariancies are included below. 

10.12 Theorem: A product space is T2 iff each coordinate space is 

Proof: Assume that (X, rr) is a product space and that r is near 

both x and y. Now r is near both x and y is equivalent to saying ra 

is near both xa and ya for eac.h coordinate a. The space (X, rr) 

is Hausdorff iff x = Yt i.e. iff x = y for each a, i.e. iff each a a 

coordinate space is T~· 
ir: 

0 

Although this paper will not pursue further results which avail 

themselves of the next theorem, it seems wise to include the result 

since it is referred to by many authors as the most important result of 

general topology. r_rhose who are familiar with a standard proof of this 

theorem should appreciate the brevity and clarity of the non-standard 

proof. 



10.13 Tichonov's Theorem: A product space is compact iff each coor­

dinate space is compact. 

Proof: (.....+) Assume that the product space (X, ~) is compact. 

To show that an arbitrary X0 is compact it will suffice to show 

r 0 *e X0 implies there is some point in X0 which r · is near to. . c 

Now for an arbitrary x E X, define a *point in X by Ya =. xa for 
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a f. c, while y c = r c. Since the product space is compact, y is near 

some z E x. Hence . Ye which equals r 0 is near z0 e X0 • Therefore 

X0 is compact. 

(f-) Assume that each coordinate space is compact and suppose that 

r *E x. Then r 0 *e X0 for each c E A and thus r 0 is near x0 

for some x0 E X0 • Thus the point r is near x, the point in X defined 

all the x0 •s. O 

10.14 Theorem: If a product space is locally compact then each 

coordinate space is locally compact. 

Proof: Assume that the product space (X, d) is locally compact 

and suppose that r 0 is a near-standard *point of Xe• Then re is 

near some xe e X0 • Now let x be a point_ in X whose c-th coordinate is 

x0 • If Ya= xa for a f. c and y0 = r 0 , then y is near x. Hence y 

is a near-standard *point of x. Since the product space is locally 

compact, y *e K for some compact subset K of x. Thus r 0 *e Pc(K), 

which is a compact subset of X0 since Pc is a continuous function. 

This verifies that (X0 , de) is locally compact. 0 



CHAPTER XI 

SUMMARY AND CONCLUSIONS 

The primary purpose of this paper was to present the basic ideas 

of non-standard analysis by illustrating their usage in developing some 

of the basic concepts 0£ topology. Since the primary advantage gained 

by using the non-standard approach is the capability 0£ using more 

intuitively worded terminology, this paper has concentrated upon the 

concept 0£ nearness in an arbitrary topological space. Thus Chapter V 

may be considered as the core of this paper. The previous chapters 

provided a :foundation in non-standard analysis and in topology. The 

remaining chapters illustrated some uses of the concepts 0£ nearness 

developed in Chapter V and continued the development of other related 

concepts. 

While many of the major theorems and characterizations given in 

this paper are equivalen~ to those found in either Robinson [14] or 

Machover and Hirschfeld [11], the terminology used in all chapters 

following Chapter V may differ with these sources. The reason for this 

is that the definition of nearness of *points to points was generalized 

first to nearness of *sets to points and then gene~alized to nearness of 

*sets to sets. These generalizations allow one to make even more use of 

his intuition. 

136 



137 

The reader may question why these particular generalizations of 

nearness were given instead of others which might seem equally plausible. 

The answer is that the generalizations given were those which proved to 

be most useful in describing other concepts. For example, it seemed 

plausible to define the *Point p as being near A c X iff p is near 

some point q E A. It then would be true that p is near {q} iff 

p is near q. However, this definition of nearness has the unpleasant 

feature that p can be near A without p *e A. To see this consider 

x ={a, b, c}, rr = {¢, {b}, {b, c}, x}, the point b, and the set 

{a, c}. 

Non-standard analysis often makes characterizations of topological 

concepts more intuitive and incisive. You may have also observed that 

the construction of proofs is often easier using non-standard termin­

ology. As evidence of the power of non-standard analysis, note that 

Abraham Robinson has already used non-standard analysis to solve a 

previously unsolved problem on compact linear operators. This tooJ is 

also applicable to many other branches of mathematics, including algebra. 

Historically, mathematicians have been extremely conservative -­

often greeting innovation with such uncomplimentary terms as irrational, 

imaginary, radical, negative, or non-standard. It may take several 

years and perhaps a new generation of mathematicians not entrenched in 

standard analysis before non-standard analysis is commonly used by 

mathematicians. Nonetheless, the author expects that the usage of non­

standard analysis will become widespread. HopefUlly, this paper will 

contribute to this increased usage. 
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