OKLAHOMA STATE UNIVERSITY LIBRARY

MAR 13 1975

A MODULAR GENERAL PURPOSE APPROACH TO THE SIMULATION OF CONSTANT SPEED DISCRETELY SPACED RECIRCULATING

CONVEYOR SYSTEMS

Thesis Approved:

vell Adviser Graduate College Dean of the

PREFACE

This dissertation includes a feasibility study and partial development of a general purpose simulation model that can be used to study the operational aspects of constant speed discretely spaced recirculating complex conveyor systems. The study includes both a general and a detailed description and explanation of the model development which utilizes a modular format. These modules are stacked together like building blocks to construct the entire conveyor system. In order to test the feasibility of the approach and validate the model, the simulation modules are used to simulate the operation of two large manufacturing companies' recirculating conveyor systems. The simulation modules are written in General Purpose Simulation System language for the IBM 360 Model 65 computer. Source listings, flowcharts, and simulation outputs are included in this research.

The author wishes to express his appreciation to his major adviser, Dr. M. Palmer Terrell, for his guidance and assistance throughout this research. Appreciation is also expressed to the other committee members, Dr. G. T. Stevens who served as committee chairman, Prof. Frederick M. Black who stimulated the author's interest in simulation, and Dr. James E. Shamblin for his invaluable support and encouragement.

Sincere appreciation is expressed to my wife, Lana, for typing the initial and final drafts of the manuscript.

iii

Finally, special gratitude is expressed to my wife and our children, Robin and Jonathan, for their understanding, encouragement, and many sacrifices.

LIST OF TABLES

.

Table		Page
I.	Facility Utilization Statistics I	. 84
II.	In-Process Storage Statistics I	. 85
III.	Queue Statistics	. 86
IV.	Table Statistics I	. 88
ν.	Facility Utilization Statistics II	93
VI.	In-Process Storage Statistics II	. 94
VII.	Table Statistics II	. 95

22.	Modular	Floor	Plan	of	Cor	ivej	yor	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• .	81
23.	Conveyor	Floor	r Plar	n	•••	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	91

.

ix

CHAPTER I

INTRODUCTION

The principle objective of this research is to demonstrate the feasibility of a general purpose simulation model which can be used to study and develop an understanding of the operational aspects of constant speed discretely spaced recirculating complex conveyor systems. It is <u>not</u> the purpose of this research to develop that all-encompassing model, but only to demonstrate the feasibility of the approach.

Many industrial manufacturers use recirculating conveyor systems not only for transporting goods to various locations in the plant but also for storing goods and for smoothing out irregularities in the flow of goods to loading and unloading stations. There are many types of recirculating conveyor systems, such as: drag line or tow line conveyors, bucket conveyors, overhead monorails, suspended tray conveyors, trolley conveyors, carrousels, and towveyors. Regardless of the basic type, all are typified by running at a constant speed, having discretely spaced hooks or dogs, and recirculating or forming a closed loop. All are often referred to as powered line conveyors.

The conveyor system in a manufacturing plant is merely a subsystem of the entire integrated system. The design of the conveyor subsystem must be carefully considered since the conveyor interacts with a great

many other subsystems of the plant. Both the mechanical and the performance aspects of its design must be dealt with. The mechanical aspects of the design problem such as conveyor dimensions, conveyor strength, frame structure, installation factors, size of the drive unit, starting loads, maximum imposed loads, and method of lubrication appear to be well understood. Solutions to these types of problems can be found with existing scientific and mathematical techniques. The performance aspects of the design problem such as capacity and utilization of the conveyor as an in-process storage device, traffic density, potential bottlenecks in the system, utilization of load and unload stations, and average queues that form at the various points are not well understood. Solutions to these types of problems can not readily be found. The combinatorial aspects of these types of problems are so large that the solution defies analytical techniques such as the direct application of numerical analysis or classical queueing theory.

Many of the performance aspects of recirculating conveyor systems are a result of relationships between and among other characteristics and parameters that are not presently understood. A search of the literature indicates that there is neither the data nor the methodology available to define these relationships or study the performance characteristics.

Research Objectives

In order to demonstrate the feasibility of a general purpose simulation model which can be used to study recirculating conveyor systems, five subobjectives were undertaken sequentially:

- The examination and analysis of the functional components of a particular complex integrated conveyor system, with the objective of identifying the functional components and parameters of the system.
- 2. The identification and description of the components and parameters of the types of interfaces that do occur between the functional components of the complex recirculating conveyor system.
- 3. The development and encoding of a computer simulation model using a modular format to represent the functioning of the components identified in 1. and 2. above.
- 4. The demonstration that the "plug-in" simulation modules provide a feasible approach for building a general purpose simulation model.
- 5. The use of the "plug-in" simulation components to simulate the recirculating conveyor system referenced in 1., 2., and 3. above to validate the model logical construction, and further validate the simulation modules and demonstrate the feasibility of the approach by using the modules to simulate another unrelated recirculating conveyor system.

Stages of the Investigation

The investigation took place in four distinct stages. The first stage consisted of selection and study of a particular complex conveyor system. The system chosen for analysis was the warehouse distribution system of a large manufacturing company. This researcher was required to refrain from identifying the company. The company had kindly consented to cooperate in this research, and several personal visits to the company were necessary to study the system and obtain the data about the system that was available.

The model construction and validation, the second stage, was the most time consuming. The model was encoded in General Purpose Simulation System (GPSS), simulated, and validated in the Oklahoma State University IBM 360 Model 65 Computer.

The third stage was a simulation of the manufacturing company's conveyor system and a validation of the model by evaluating the results of the simulation.

The fourth stage was a simulation of another recirculating conveyor system of a manufacturing company which also wishes to be unnamed.

Before proceeding into a description of the first conveyor system chosen for study, a brief review of the literature will be presented.

CHAPTER II

LITERATURE REVIEW

This chapter summarizes the present state of knowledge applicable to this research by a summary of the published work that has been accomplished in the past fifteen years. Before proceeding to the literature review, a framework must be established to classify the prior research.

Classification of Conveyor Research

The type of conveyor system that has been used for study in this research is the constant speed discretely spaced recirculating conveyor system. This type of conveyor system was selected because it was believed that a general purpose simulation model could be developed to study the performance aspects of any particular constant speed discretely spaced recirculating conveyor system. The primary objective of this research is to demonstrate the feasibility of a general purpose simulation model. The three characteristics of conveyor systems studied in this dissertation will be used as a framework within which to classify prior research. Regardless of the actual form it may take such as overhead trolley, suspended tray, tow line, etc., the conveyor system must possess these three characteristics: (1) it must run or move at a constant speed, (2) it must have discretely

spaced hooks or dogs which may or may not be loaded with goods, and (3) it must be a recirculating system or it must form one or more closed loops in which goods placed on the conveyor can pass a given point in the system more than once. If a particular conveyor system lacks one or more of these characteristics, it can not be analyzed or studied by the research approach presented in this study.

The first necessary characteristic that a conveyor system must possess is it must run at a constant speed. The so called "power and free" type conveyors do not meet this requirement because the hooks or dogs may be stopped at locations along the conveyor for random periods of time. Also large systems which consist of many subsystems that move at different speeds do not meet this requirement.

The second necessary characteristic is the conveyor must consist of discretely spaced hooks or dogs which may or may not be loaded. This means that the distance between adjacent hooks of the conveyor is a constant. Let k be the constant distance between adjacent hooks. Then the loads on the hooks would occur at spacings of nk where n is an integer random variable $(n = 1, 2, 3, 4, \dots)$. Most endless belt conveyors do not meet this requirement. A belt load such as sand, grain, or ore would obviously not be spaced discretely but is spaced continuously along the belt. Even unit loads on an endless belt do not meet the requirement since the distance between adjacent loads is a continuous random variable. Some types of endless belt conveyors are fitted with discretely spaced dividers which means that the

belt has "hooks" or load positions which are uniformly spaced but not necessarily uniformly occupied.

The third necessary characteristic is the conveyor must recirculate or form one or more closed loops. Many types of short feeder conveyors such as endless belts, rollers, or powered rollers do not recirculate goods which fail to be removed from the conveyor but simply dump them off at the end. Large complex conveyors especially the tow line type may be used for delivery of goods to a great number of locations in a plant or a warehouse. Often these types of systems form several closed loops. In these conveyors, loaded or unloaded carts can take a variety of routes to pass a given point in the system more than once. Simple systems such as carrousels and single loop overhead trolley type continuous chain conveyors frequently form an easily recognizable single closed loop.

Prior Research

After an extensive literature review, it was evident that no researcher has attempted to study or develop the model proposed by this dissertation. The prior investigations summarized below do not in most cases relate directly to the particular conveyor system that is the subject of this study; however, all of them deal with materials handling or the various aspects of conveyor theory or application.

Probably the first to study some of the performance aspects and mechanical principles of conveyor systems was Kwo (14). The system that he studied was a recirculating overhead suspended

hook type conveyor which was fed by a single load station and unloaded by an unload station. The mathematical equations that he developed showed how to calculate limiting values of conveyor speed, capacity, and uniformity of loading. In a later study by Kwo (15), he crystallized the design problem of overhead recirculating conveyor systems and presented a method of arriving at feasible conveyor designs. He lists twelve steps in the design process which include solving mathematical equations developed by Kwo as design criteria. At about the same time Helgeson (12) was also working on the design problem of overhead recirculating conveyor systems. He developed a theory useful in the study of these conveyors which link a production system with uncertain production rate with a using system with uncertain consumption. These production and using systems were subject to severe mechanical limitations imposed by such a conveyor. He also developed a practical planning technique including the use of a nomograph to assist the conveyor systems planner in achieving a better solution to the conveyor systems design problem than by the "rule of thumb" techniques that were commonly in use.

Palm (20) and Khinchine (13) were two of the early researchers in the area of randomly spaced nonrecirculating waiting line systems who through the use of queueing theory studied the overflow problem. Their solution techniques were applied to conveyor systems by Disney (9, 10) who studied randomly spaced nonrecirculating conveyor systems as a delivery device for one and two channel unloading stations. His solution technique utilizes

multichannel ordered entry queueing theory, and he also develops system performance equations for local storages positioned between the conveyor and the unload station. In a later continuation of his work in these types of conveyor systems, Cinlar and Disney (7) study the overflow problem first examined by Palm (20) and Khinchine (13). Cinlar and Disney (7) develop a distribution of a stream of overflows from a finite queue from randomly spaced nonrecirculating conveyor systems in which the processes are Markovian. In an extension of the work of Disney (9, 10), Gupta (11) researched the use of generating functions to produce a new solution technique to the two channel queueing problem with ordered entry.

Among the first researchers to study how a conveyor affects an unload station, if the unload station is a work station, were Reis and Hatcher (24) and Reis, Dunlap, and Schneider (25). This early work was extended by Reis, Brennan, and Crisp (26) who used a Markovian type analysis for the delay at the conveyor supplied work stations. They also developed a set of work rules for the operation of the work station. In another extension of this research by Beightler and Crisp (2) the work station problem was formulated as a discrete time queueing process to improve the work rules. Crisp, Skeith, and Barnes (8) continued the work on conveyor supplied work stations using simulation.

In a more general context, Morgan (16) examines a two-link materials handling system exemplified by a set of shovels in the first link dumping material into a hopper. The hopper is emptied into a fleet of trucks that transport the material in the second link. The solution technique involves the solution of a set of simultaneous

equations dealing with system parameters.

Pritsker (16) uses both simulation and ordered entry queueing theory to examine both recirculating and nonrecirculating conveyor systems which supply more than one work station. The work stations may or may not have a local storage capacity. With respect to his work in recirculating conveyor systems, he found through simulation that when the rate of recirculation became significant, the multichannel queueing theory no longer accurately predicts the probabilities associated with system performance parameters. In an extension of Pritsker's work, Phillips (21) and Phillips and Skeith (22) also used simulation to study randomly spaced recirculating conveyor systems. These simulation models considered the recirculation aspects of conveyor systems differently. Pritsker (16) worked with a constant delay for goods which are recirculating. Phillips and Skeith (22) force a queue to form if the recirculating conveyor is occupied which caused the recirculation delay to be a random variable rather than a constant. The remainder of this chapter includes the more recent developments in conveyor research.

Burbridge (4) used GERT to analyze a particular conveyor system which has both primary and recirculating arrivals. The conveyor system of interest has one unloading station which has a local storage. Units arrive at the loading station from an outside source or from the conveyor. If the local storage is full, the units arriving from the conveyor must recirculate and arrive again at a later time.

Agee and Cullinane (1) present a methodology for determining the transient response of a two link materials handling system. A straight line gravity feed conveyor connecting two production centers is an example of such a system. The system is modeled as a nonrecirculating, multiple source, multiple server, limited waiting space queueing process.

Brady (3) examines the effect of operator work time variability in fixed transfer and in free transfer conveyor systems. The comparisons made indicate the superiority of the free transfer system in terms of output efficiency and jig requirements under specified conditions.

The early work of Muth (17) dealt with continuous flow conveyors. He studied recirculating conveyors that were used both as a delivery and a storage device. Later work by Muth (18, 19) examined closed loop conveyor systems with discrete material flow. This work extended a previous solution to the problem of conveyor design for arbitrary loading and unloading patterns. Solutions to difference equations representing material flow were obtained numerically by generalized matrix inverses. Several specific cases were presented graphically.

The most significant contribution to the research of constant speed discretely spaced recirculating conveyor systems was that of Bussey and Terrell (5, 6). They used simulation to study a single loop constant speed discretely spaced recirculating conveyor. The conveyor was supplied by a single server and unloaded at n unload stations.

The simple single loop model of Bussey and Terrell is a starting point and provides a spring board for this research.

CHAPTER III

CONVEYOR SYSTEM DESCRIPTION

The recirculating conveyor system of the first manufacturing company was chosen for study because it is sufficiently large and complex to adequately accomplish the research objectives set forth earlier in this dissertation. The conveyor system moves finished goods through a 500,000 square-foot warehouse via a sub-floor towline conveyor. The towline looks like a chain running in the floor with "hooks" spaced every twenty one feet along the chain. Each of these hooks may or may not be pulling a cart along with it. There are 380 carts in the system at all times.

A floor plan diagram of the conveyor system is shown in Figure 1. Among its functions are delivery of finished goods from manufacturing to storage or from storage to the rail and truck docks and delivery of incoming goods from the rail and truck docks to storage. The main loop shown in Figure 1 by a dashed line is 5600 feet long, and the towline travels at 70 feet per minute. However, each cart may not be required to travel the entire length of the main loop. Carts may be programmed manually for any of 20 destinations around the loop, and they will always travel the shortest distance to arrive at their destinations. The destinations are any one of the non-powered

spurs at the ends of storage aisles. The following carts push the carts into the spur. After unloading and or loading it is manually brought back to the powered towline and programmed for a new destination. Carts are programmed manually by moving magnet-tipped probes at the front of each cart. As the cart moves along the loop, the probes activate reed switches embedded in the floor, causing switches to open which send the cart to its proper destination.

Figure 1. Conveyor Diagram

. 13

Each cart weighs 500 pounds, and it may be traveling loaded or unloaded. The carts are loaded and unloaded by fork lift trucks which either place or remove pallets of finished goods on or off the carts. The cart is then programmed for a destination by the fork lift truck operator and placed back on line. Finished goods which enter the warehouse from the manufacturing area via fork lift trucks are loaded on empty carts. The carts are then programmed for a destination in the warehouse by the production programming dispatcher. Computer punch cards are supplied to him daily or sometimes even hourly to tell him the proper destination for each load. If the destination or spur for which the cart is programmed is full, the cart will recirculate on the portion of the conveyor which forms the shortest closed loop past its assigned destination rather than recirculating the entire loop. Transfer sections allow carts to take a short-cut between sections of the loop so that they can reach their destination without traversing the entire 5600 foot main loop. They can travel around one segment of the loop in less than 30 minutes compared to 80 minutes for the entire loop. Empty carts can also recirculate and be removed as required to be loaded with complete orders for delivery to either the truck or rail docks, or with incoming shipments for storage.

As shown in Figure 1, there are decision points along the route at which logical considerations must be undertaken. For example, when a loaded cart from the manufacturing area and production programming dispatcher attempts to go on the main line, it may have to compete for a hook with a cart that is recirculating.

Since the cart on the main line has the right-of-way, the loaded cart from the production programming dispatcher must wait until an empty hook on the main line appears. It can then seize the hook and start to move on the main line. Figure 2 shows two carts moving from left to right and arriving at one of these decision points after having passed the truck dock.

Figure 2. Merge Interface

The cart on the left is on the main line, is loaded, and has the right-of-way. The cart on the right has just been unloaded at the truck dock and placed on the powered spur empty. The empty car

must wait and seize the hook directly behind the loaded cart to proceed along the main line. This decision point or interface occurs between functional components of the conveyor at four different locations along the line. For modeling purposes it will be identified as a MERGE module.

Another decision point occurs at each of the destination spurs that a cart passes. As the cart encounters each spur, it must decide if this is its destination or not, and if it is the proper destination, it must decide if the spur is full or not. Figure 3 shows carts moving from left to right.

Figure 3. Unload and Load Station Interface

The four carts in the foreground (two empty and two loaded) which are bumper-to-bumper have been automatically side-tracked and stopped at their assigned destination spur. Each of these carts has been pushed further up the spur and out of the way by the following cart. Another loaded cart to the left of these four carts has just passed that destination spur, and since that spur is either full or is not its assigned destination, it is continuing on along the main line. There are nineteen destination spurs of this type along the conveyor. These spurs will be identified as an UNLOAD AND LOAD STATION module for modeling purposes.

There are also four points along the towline at which the cart has the option of taking a powered towline to the right or taking another powered towline to the left. There are several towlines in the system which disappear under the floor and reappear at other points. Figure 4 shows two carts moving from bottom to top. The cart on the right has selected the powered towline to the right since its destination lies in that direction. The cart on the left has selected the powered towline to the left since its destination lies in that direction. For modeling purposes, this interface or decision point will be identified as a SPLIT module.

The powered spur on which empty carts are loaded with finished goods from the manufacturing area is the final interface necessary to completely describe the conveyor system. There is only one of these spurs along the conveyor. The empty carts with this destination form a queue as shown in Figure 5. The carts are

Figure 4. Split Interface

moving from bottom to top around the U-turn area and then toward the bottom. The first cart in the queue has been loaded and is waiting for the dispatcher to program and release it. In the model this spur will be identified as the PRODUCTION PROGRAMMING LOAD STATION module.

Figure 5. Production Programming Load Station Interface

CHAPTER IV

MODEL CONSTRUCTION AND VALIDATION

One of the most used general purpose techniques in modeling is the modular format. After the interfaces or decision points in the system had been identified and categorized, they were encoded as general purpose modules. These modules were then stacked together like building blocks to construct the entire conveyor system. The remainder of this chapter is a logical description of each of those modules and an argument for their validation.

Preliminary Considerations

Early in the research, it was decided to use GPSS/360 as the simulation language. This was done primarily for three reasons: (1) it is a discrete event oriented language in which one can easily encode and debug rather complex discrete event oriented systems, (2) it provides easily obtainable output statistics, and (3) the use of GPSS/360 MACRO statements lend themselves to a general purpose modular approach. The modules which had to be used several times in building the system were encoded in general purpose macros which could be used over and over by changing the various MACRO arguments.

The units of traffic that are created and move through a

system encoded in GPSS/360 are called transactions. In this conveyor system a transaction represents either a hook or a cart. Each transaction possesses parameters as its key attributes. Only three parameters were necessary to describe the conveyor system transactions. The convention used in this model is: (1) Pl = 0 implies the transaction is a hook, Pl = 1 implies the transaction is a cart, (2) P2 = 0 implies the transaction is an empty cart, P2 = 1 implies the transaction is a loaded cart, and (3) P3 = 0,1,2,...19 implies the cart has been assigned any one of twenty possible destinations around the loop. All the transactions were given a Priority = 1 initially. This was necessary for timing and logical considerations in the MERGE module which will be discussed later. Three savevalues, X1, X2, and X3, were used and will be described in the next section.

Since GPSS/360 is oriented toward integer-valued variables, the unit of time used in the model is milliminutes, or the clock time is scaled by a factor of 1000.

Near the end of each of the general purpose modules is an ADVANCE block which delays each transaction the specific clock time that it would take that transaction to move on the conveyor to the next sequential module. The transactions are evenly spaced in time around the conveyor since the conveyor is a constant speed discretely spaced recirculating system.

Cart and Hook Generator Module

The CART AND HOOK GENERATOR module actually builds the conveyor system by filling it with hooks and carts. Once the system becomes full of hooks and all the carts are placed

somewhere in the system, this module becomes inoperative. There is only one CART AND HOOK GENERATOR (CAHG) module in the system, and it is designed to be placed directly before the PRODUCTION PROGRAMMING LOAD STATION (PPLS) module.

General Description

The CAHG module may be represented as a box shown in Figure 6. The entrance to the module is labelled NTR. There is only one exit from the module.

Figure 6. Cart and Hook Generator Module

The module generates empty carts until some user specified upper limit is reached. It also generates hooks until the first transaction which enters the module at NTR shuts off the hook generator.

This module also has the capability to assist the system in

reaching steady state very rapidly by channelling empty carts into the system when the PPLS spur becomes full and queue CARS is not empty.

Detailed Description

The first part of this module is the cart generator. A variable is used to calculate the delay time between succeeding hooks on the powered towline. X2 is initialized at the hook spacing and X3 at the conveyor speed.

1 VARIABLE (X2*1000)/X3
The formula used to calculate this delay time in milliminutes is
given below.

(Hook spacing)*(1000)/(Conveyor Speed)

The empty carts are created by the next sequential block.

GENERATE V1,,,X1,,3

The carts are generated at the same interval as the hook spacing and only X1 (initialized at the number of carts in the system) carts are generated.

The empty carts then enter a queue of empty carts and attempt to seize the facility which allows them to capture a hook and begin to move on the towline.

QUEUE CARS SEIZE CAR

The facility consists of a logic gate which is opened by an empty hook later in this module.

GATE LS 20

The empty cart which has just passed through this gate then

closes the gate behind it before departing the queue, releasing the facility and destroying itself.

LOGIC R	20
DEPART	CARS
RELEASE	CAR

TERM TERMINATE

The empty cart is destroyed because the hook which it captured has now been transformed into the empty cart as will be shown later in this module.

The hooks are created by the next sequential block in this module.

GENERATE V1,,,,1,3

These hooks have a priority equal to one and three parameters. They are created at the hook spacing defined by the user in variable number one.

The hooks then enter a logic gate which allows them to proceed to the next sequential block unless a transaction has set logic switch 19. If logic switch 19 has been set, the hooks are then sent to the alternate exit which directs them to the TERMINATE block.

GATE LR 19, TERM

The purpose of this block is to shut off the hook generator once the closed loop which contains this module becomes full of hooks. This means the powered towline has been completely constructed and the hook generator is no longer needed.

The newly created hook is then transferred around the entrance to this module to location BEGN.

,BEGN

TRANSFER

The entrance to this module is labelled NTR and the first transaction which completes the closed loop and enters this module at NTR shuts off the hook generator by setting logic switch 19 as has been discussed previously.

NTR LOGIC S 19

The transaction which proceeds to the next sequential block may be either a hook or a cart. It is first tested to determine what it is.

BEGN TEST E P1,0,SKIP

If it is a hook (Pl = 0), it proceeds to the next sequential block. If it is a cart (Pl = 1), it takes the alternate exit and is directed to location SKIP.

A hook then encounters another TEST block which determines if there are any empty carts in the queue called CARS waiting to capture a hook. If queue CARS is zero, the hook takes the alternate exit and is directed to location SKIP.

TEST G Q\$CARS,0,SKIP

If there are carts waiting in the queue, the hook proceeds to the next sequential block.

In the next block, the hook determines if the powered spur which feeds the PPLS module is full of carts or not. The maximum capacity of this spur is determined by the user and in this case it is 35 cars.

TEST LE Q\$LCR1,35,BYPS

If the spur is not full, the hook proceeds to the next sequential block. If the spur is full, the hook takes the alternate exit and is directed to location BYPS.

A hook continuing to the next sequential block sets logic

switch 20 which opens the gate for an empty cart as discussed earlier in this module.

LOGIC S 20

The empty cart is terminated and the hook is now transformed into an empty cart by placing a one in parameter one.

ASSIGN 1,1

All the transactions which were directed to location SKIP from various places in the module and the newly formed empty carts are transferred to the entrance to the PPLS module.

SKIP TRANSFER ,LST1

The last section of this module is a technique to assist the conveyor model to reach steady state very rapidly. When the PPLS powered spur is full of empty carts waiting to be loaded and there is a pool of empty carts waiting in queue CARS to enter the model also, the carts in queue CARS are short-circuited into the model empty just to get them into the system. The first block that a hook going through this section of the model encounters sets logic switch 20 to open the gate for an empty cart as discussed earlier.

BYPS LOGIC S 20

Another hook is created and sent to location LHOl in the PPLS module. This is done to preserve the timing and logic of the conveyor system.

SPLIT 1,LHO1

The hook which proceeds to the next sequential block is transformed into an empty cart by changing parameter one to a one. ASSIGN

The empty cart is then given a destination by a function which

1,1

is defined by the user.

ASSIGN 3,FN\$DECP

The cart is then transferred into the PPLS module at a point where it can capture a hook and go on line without having to wait to be loaded.

TRANSFER ,LSZ1

A source listing of the CAHG module is given in Figure 7 and the module flow chart is given in Figure 8.

l	VARIABLE GENERATE QUEUE SEIZE GATE LS LOGIC R DEPART	(X2*1000)/X3 V1,,,X1,,3 CARS CAR 20 20 CARS
	RELEASE	CAR
TERM	TERMINATE	
	GENERATE	Vl,,,,l,3
	GATE LR	19,TERM
	TRANSFER	,BEGN
NTR	LOGIC S	19
BEGN	TEST E	P1.0.SKIP
	TEST G	Q\$CARS.0.SKIP
	TEST LE	Q\$LCR1.35.BYPS
	LOGIC S	20
	ASSIGN	1.1
SKIP	TRANSFER	LST1
BYPS	LOGIC S	20
	SPLIT	l.LHOl
	ASSIGN	1.1
	ASSIGN	3.FN\$DECP
	TRANSFER	1.971
	TTR 70 0 1 1 1 1	9 L L L L L L L L L L L L L L L L L L L

Figure 7. Source Listing of CAHG Module

Figure 8. Flow Chart of CAHG Module

Figure 8. (Continued)

Production Programming Load Station Module

The module which must immediately follow the CAHG module is the PRODUCTION PROGRAMMING LOAD STATION (PPLS) module. This module is an interface in the system at which empty carts are loaded with finished goods from the manufacturing area. The carts are given a destination and placed on the conveyor by the dispatcher.

General Description

The PPLS module may be represented as a box shown in Figure 9. The entrance to the module is labelled LST1, and there is only one exit from the module. In this module empty carts are delayed by a user specified load time and are given a destination by a user specified function. The user must also specify the distance to the next module entrance. The logic in this module maintains the integrety and timing of the powered towline as hooks and carts pass through it.

Figure 9. Production Programming Load Station Module

Detailed Description

The entrance to the module is labelled LST1, and the first block in the module determines if the entering transaction is a cart or a hook.

LST1 TEST E P1,1,LHK1

A hook takes the alternate exit and is transferred to location LHK1. A cart proceeds to the next block.

The cart then causes a new transaction to be created, and the cart

SPLIT 1,LEC1

is transferred to location LEC1.

The newly created transaction is transformed into a hook.

LHOl	ASSIGN	1,0
	ASSIGN	2,0
	ASSIGN	3,0

The hook then passes through a logic gate which either allows the hook to proceed to the next sequential block or transfers it to location LTH1.

LHK1 GATE LR 3,LTH1

If the hook proceeds to the next sequential block, it is transferred to the end of this module.

TRANSFER ,LSO1

If the hook transfers to LTH1, then a cart has captured it and will be taking its place on the conveyor.

The cart which was transferred to location LECl joins the queue of carts waiting to be loaded at the PPLS module.
LEC1 QUEUE

To save CPU time these carts are linked onto user chain LCH on a FIFO basis.

LINK LCH,FIFO,LFA1

A cart may then seize the loading facility and depart the queue.

DEPART LCR1

If the cart is already loaded it is transferred around the loader to location LDC1.

TEST E P2,0,LDC1

An empty cart proceeds and enters into the in process storage. ENTER IPS

It is then delayed while being loaded. The mean and spread modifier are specified by the user. In this case the load time is a normally distributed random variable with a mean of two minutes and a standard deviation of .4 minutes.

LVB1 VARIABLE FN\$NORM*400

ADVANCE 2000,V\$LVB1

The function NORM is the standard normal function which uses random number generator number one.

The empty cart is transformed into a loaded cart by changing parameter two to a one.

ASSIGN 2,1

And the loaded cart is given a destination by a user defined function. In this case the function is called DLCP.

ASSIGN 3, FN\$DLCP

The loaded cart releases the loading facility and unlinks the

next cart from the user chain.

LDC1 RELEASE LCR1

UNLINK LCH,LFA1,1

The cart then attempts to seize a facility that consists of the logic necessary to capture a hook and proceed on line.

LSZI SEIZE LCH1

After seizing the facility the cart sets logic switch three which indicates to the next available hook that a cart is waiting to capture it.

LOGIC S 3

The cart then stops at the logic gate to wait for a hook to open it.

3

GATE LR

Once the gate is opened by a hook, the cart releases the facility to go on line and transfers to the end of the PPLS module.

RELEASE LCH1

TRANSFER ,LSO1

A hook which has been destined to be captured by a waiting cart opens the cart's logic gate by resetting logic switch three and the hook is destroyed.

LTH1 LOGIC R 3

TERMINATE

The end of the module is of course an ADVANCE block which delays a transaction the length of time it takes it to travel on the towline to the next sequential module. The delay time is calculated in a variable which is defined by the user. The formula used to calculate the delay time in milliminutes in this case is shown below.

((Distance to next module)/(Conveyor Speed))*(1000)

The transaction is finally transferred to the next sequential module or module entrance.

LAV1 FVARIABLE (55/X3)(1000) LSO1 ADVANCE V\$LAV1 TRANSFER ,MAO

A source listing of the PPLS module is given in Figure 10 and

a flow chart of the module is shown in Figure 11.

LSTl	TEST E	Pl,l,LHKl
	SPLIT	l,LECl
LHOl	ASSIGN	1,0
	ASSIGN	2,0
	ASSIGN	3,0
LHKl	GATE LR	3,LTH1
	TRANSFER	,LSOl
LECl	QUEUE	LCR1
	LINK	LCH,FIFO,LFAl
LFAl	SEIZE	LCR1
	DEPART	LCR1
	TEST E	P2,0,LDCl
	ENTER	IPS
LVBl	VARIABLE	fn\$norm*400
	ADVANCE	2000,V\$LVB1
	ASSIGN	2,1
	ASSIGN	3,FN\$DLCP
LDC1	RELEASE	LCR1
	UNLINK	LCH,LFAl,l
LSZ1	SEIZE	LCH1
	LOGIC S	3
	GATE LR	3
	RELEASE	LCH1
	TRANSFER	LS01
LTH1	LOGIC R	3
	TERMINATE	
LAVl	FVARIABLE	(55/X3)(1000)
LSOl	ADVANCE	V\$LAVl
	TRANSFER	,MAO

Figure 10. Source Listing of PPLS Module

Figure 11. Flow Chart of PPLS Module

Figure 11. (Continued)

Split Module

The SPLIT module which has been described in Chapter III is a decision point in the system at which a cart must decide to take either the right or left powered towline.

General Description

The SPLIT module may be represented as a box shown in Figure 12 which has one entrance and two exits. A transaction which enters this module can not be delayed since there are no blocks in this module which can deny entry to a transaction.

Figure 12. Split Module

There are three types of transactions which enter this module. The logic is designed to process each of these three types as separate cases.

Case 1. (X = hook) If a hook enters the SPLIT module, then another hook will be created in the module, and a hook will be sent to each exit. (Y = hook and Z = hook)

Case 2. (X = cart whose destination lies to the left) If a cart which desires to go to the left enters, then a hook will be created and sent to the right. (Y = cart and Z = hook)

Case 3. (X = cart whose destination lies to the right) If a cart which desires to go to the right enters, then a hook will be created and sent to the left. (Y = hook and Z = cart)

Detailed Description

The first statement that an entering transaction encounters in this module determines if the transaction is a hook or a cart.

TEST E Pl,l,HOOK A cart continues on to the next sequential block or a hook takes the alternate exit and is transferred to location HOOK.

A cart which continues to the next sequential block is tested to see if its destination lies to the right or to the left. This is done by means of a boolean variable and a TEST block.

1 BVARIABLE P3'GE'9*P3'L'17

TEST E BV1,1,CRGHT

If the value of the boolean variable is one, the cart's destination is to the left and it proceeds to the next sequential block. If the value of the boolean variable is zero, the cart's destination is to the right and the cart takes the alternate exit and is transferred to location CRGHT. The boolean variables are defined by the user and may vary in form in different SPLIT mdoules.

The cart whose destination is left proceeds to the next sequential block.

TEST LE Q\$LCR1,999,CRGHT The arguments of this block are defined by the user and the condition must be true for a cart to proceed to the left. In the case shown, the queue of cars waiting to be loaded at the PPLS module must be less than or equal to 999. Since there are only 380 carts in the system, this block has no effect on the system. If the 999 were changed to 36 in one of the SPLIT modules and the queue of empty carts at the PPLS module was greater than 36, then a cart whose destination lies to the left would be sent to the right to recirculate in the system by taking the alternate exit CRGHT.

A car proceeding to the left encounters the next block.

SPLIT

l HRGHT

Since the timing and integrety of both powered towlines must be maintained, a hook is created and sent to location HRGHT which sends it to the right.

The cart is then transfered to the ADVANCE block which delays the cart for the time it takes it to reach the next module to the left.

,ALEFT

TRANSFER

The hook that has been created and sent to the right is first made into a hook by setting all three parameters

HRGHT ASSIGN 1,0 ASSIGN 2,0 ASSIGN 3,0

equal to zero.

The hook is then transfered to the ADVANCE block which delays the hook for the time it takes it to reach the next module to the right.

TRANSFER ,ARGHT

A car proceeding to the right encounters the next block. CRGHT SPLIT 1,HLEFT

A hook is created and sent to location HLEFT which sends it to the left to maintain the timing and integrety of both powered towlines.

The cart is then transfered to the ADVANCE block which delays the cart for the time it takes it to reach the next module to the right.

TRANSFER ARGHT

The hook that has been created and sent to the left is first made into a hook by setting all three parameters equal to zero.

HLEFT ASSIGN 1,0 ASSIGN 2,0 ASSIGN 3,0

The hook is then transfered to the ADVANCE block which delays the hook for the time it takes it to reach the next module to the left.

TRANSFER ,ALEFT

A hook which enters this module at the entrance is split into two hooks so that a hook can leave at each of the two exits. The following two blocks perform this function.

HOOK SPLIT 1,ALEFT

TRANSFER ,ARGHT

The delay time to the next module is calculated using variables and the time is in milliminutes. The formula used is given by:

(Distance to next module)*(1000)/(Conveyor Speed).

The last blocks in this module are the ADVANCE block and exits of the module which have been previously discussed.

l	VARIABLE	236*1000/X3
ALEFT	ADVANCE	Vl
	TRANSFER	,MODULE TO LEFT
2	VARIABLE	60 * 1000/X3
ARGHT	ADVANCE	٧2

TRANSFER ,MODULE TO RIGHT

A source listing of the SPLIT module is given in Figure 13 and a flow chart of the module is shown in Figure 14.

Unload and Load Station Module

The UNLOAD AND LOAD STATION (UALS) module is a general purpose module that occurs in the conveyor system at points where a cart may or may not decide to sidetrack itself at one of the unpowered spurs. Here the cart is unloaded and or loaded, and then placed back on the towline.

TEST E Pl,1,HOOK 1 BVARIABLE P3'GE'9*P3'L'17 TEST E BV1,1,CRGHT TEST LE Q\$LCR1,999,CRGHT SPLIT 1,HRGHT ,ALEFT TRANSFER HRGHT ASSIGN l,0 2,0 ASSIGN ASSIGN 3,0 TRANSFER ,ARGHT CRGHT SPLIT 1,HLEFT ,ARGHT TRANSFER HLEFT ASSIGN 1,0 2,0 ASSIGN ASSIGN 3,0 TRANSFER ,ALEFT HOOK SPLIT 1,ALEFT TRANSFER ,ARGHT 236*1000/X3 1 VARIABLE ALEFT ADVANCE Vl TRANSFER ,MODULE TO LEFT 2 VARIABLE 60*1000/X3 ARGHT ADVANCE V2 TRANSFER ,MODULE TO RIGHT

Figure 13. Source Listing of SPLIT Module

Figure 14. Flow Chart of SPLIT Module

Figure 14. (Continued)

General Description

The UALS module may be represented as a box shown in Figure 15. Any transaction may enter this module; however, only those carts with the proper destination are allowed to be unloaded and or loaded. The module has only one entrance and one exit.

The user defines the load and unload times and the maximum station queue. The user also defines the maximum number of empty carts if any to keep at the station at all times. Destination functions and the distance to the next module entrance must be supplied by the user. The module logic maintains the timing of the towline as it passes through it.

Detailed Description

The first block that an entering transaction encounters in the UALS module determines if it is a cart or a hook. ENTR TEST E Pl,l,HOKE

A hook is sent to location HOKE.

A cart proceeds and is tested to determine if this module is its destination or not.

TEST E P3,8,EXIT

If this module is not the proper destination, the cart is sent to the exit.

A cart whose destination is this module is tested again to determine if the station queue is full or not.

TEST L Q\$STA,15,EXIT

If the station queue is greater than or equal to some user specified number, the cart is sent to the exit to recirculate in the system.

If the station queue is smaller than the user specified number, the cart joins the station queue.

QUEUE STA

A transaction is then created and sent to location HOKE to be transformed into a hook to preserve the timing and integrety of the towline.

SPLIT 1,HOKE The cart is tested to determine if it is loaded or empty. TEST E P2,1,ECAR An empty car is sent to location ECAR.

A loaded car proceeds and attempts to seize the unloading facility.

SEIZE UNLDR

The unload time is specified by the user and in this case it is a normally distributed random variable with a mean of four minutes and a standard deviation of .8 minutes.

UAV VARIABLE FN\$NORM*800

ADVANCE 4000,V\$UAV

The cart is now unloaded and must leave the in process storage.

LEAVE IPS

The unloaded cart's parameter two is changed to zero to indicate that it is now empty and the unload facility is released.

ASSIGN 2,0 RELEASE UNLDR

A policy that may or may not be adopted at the load and unload station modules is to keep a number of empty carts at the station to be loaded later on. The user specifies the maximum number empty carts to be retained at the station. After the empty cart releases the unload facility, it determines if the maximum number of empty carts is present at the station or not. If maximum number is not present, the empty cart is transferred to the queue of empty carts waiting at the station.

TEST GE CH\$UCH,1,ECAR If the empty cart queue is at its maximum number, the empty cart continues to the next sequential block. The cart is given a destination by a user defined function and is transferred to a location in the module, FGOL, where it can capture a hook and go on line.

ASSIGN 3,FN\$DEC1

TRANSFER ,FGOL

Empty carts waiting to be loaded enter the empty car queue and then are linked onto user chain UCH.

ECAR QUEUE ECAR

LINK UCH,FIFO,UCHO

One empty cart determines if the chain has reached its maximum number or not.

UCHO TEST G CH\$UCH,1

When the number of empty carts becomes greater than the user specified maximum, the empty cart can seize the loading facility and depart the empty car queue.

SEIZE LDR DEPART ECAR

The loading time is specified by the user and in this case it is a normally distributed random variable with a mean of two minutes and a standard deviation of .4 minutes.

UVL VARIABLE FN\$NORM*400

ADVANCE 2000,V\$UVL

Since the cart has been loaded, it can now enter the in process storage and be designated as a loaded cart by changing parameter two to a one. ENTER IPS ASSIGN 2,1

The loaded cart then releases the loading facility, unlinks the next empty cart from the user chain, and is assigned a destination by a user defined function.

RELEASE	LDR
UNLINK	UCH,UCHO,1
ASSIGN	3.FN\$DLC1

The logic necessary for a cart to capture a hook and proceed on the towline is contained in facility FGOL. The cart seizes the facility, sets logic switch four, and waits at a logic gate for a hook to open it.

FGOL SEIZE FGOL

LOGIC	S	4
GATE	LR	4

Once a hook has reset logic switch four, the cart can proceed through the gate release the facility, depart the station queue, and be transferred to the module exit.

RELEASE	FGOL
DEPART	STA
TRANSFER	,EXIT

A hook which enters this module or is created in this module is transferred to location HOKE where it is transformed into a hook.

HOKE	ASSIGN	1,0
	ASSIGN	2,0
	ASSIGN	3,0

The hook then determines if a cart is waiting to capture it by passing through a logic gate.

GATE LR 4,THKE If no cart is waiting, the hook is transferred to the exit. TRANSFER ,EXIT

If a cart is waiting, the hook takes the logic gate alternate exit THKE, resets logic switch four which allows the cart to proceed by opening its gate, and then the hook is destroyed.

THKE LOGIC R 4

TERMINATE

The module exit of course consists of an ADVANCE block which delays the transaction for the time it takes it to reach the next module.

UVB VARIABLE (120*1000)/X3

EXIT ADVANCE V\$UVB

The transaction continues to the next sequential module.

A source listing of the UALS module is given in Figure 16 and a flow chart of the module is shown in Figure 17.

Merge Module

The MERGE module which has been previously described is a decision point or interface in the system at which two different powered towlines come together to form one powered towline.

General Description

The MERGE module may be represented as a box shown in Figure 18. This module has two entrances. Carts at the ROW

ENTR	TEST E TEST L QUEUE SPLIT TEST E SEIZE	P1,1,HOKE P3,8,EXIT Q\$STA,15,EXIT STA 1,HOKE P2,1,ECAR UNLDR
UAV	VARIABLE ADVANCE LEAVE ASSIGN RELEASE TEST GE ASSIGN TRANSFER	FN\$NORM*800 4000,V\$UAV IPS 2,0 UNLDR CH\$UCH,1,ECAR 3,FN\$DEC1 ,FGOL
ECAR	QUEUE LINK	ÉCAR UCH, FIFO, UCHO
UCHO	TEST G SEIZE DEPART	CH\$UCH,1 LDR ECAB
UVL	VARIABLE ADVANCE ENTER ASSIGN RELEASE UNLINK ASSIGN	FN\$NORM*400 2000,V\$UVL IPS 2,1 LDR UCH,UCHO,1 3,FN\$DLC1
FGOL	SEIZE LOGIC S GATE LR RELEASE DEPART TRANSFER	FGOL 4 FGOL STA ,EXIT
HOKE	ASSIGN ASSIGN ASSIGN GATE LR TRANSFER	1,0 2,0 3,0 ¹ ,THKE ,EXIT
THKE	LOGIC R TERMINATE	4
UVB EXIT	VARIABLE ADVANCE	(120 * 1000)/X3 V\$UVB

Figure 16. Source Listing of UALS Module

Figure 17. Flow Chart of UALS Module

ι,

Figure 17. (Continued)

.

Figure 18. Merge Module

entrance have the right-of-way and can proceed to the exit without being delayed. Carts which enter the module at the OTH entrance may or may not be delayed. If delayed they join a queue shown symbolically as "Q" in Figure 18.

There are ten different logical situations which might occur at the MERGE module. The logic is designed to process each of these cases.

Case 1. (ROW = cart or hook and OTH = nothing) If a hook or a cart enters the module at ROW and nothing has entered the

module at OTH, the hook or cart is transferred immediately to the module exit.

Case 2. (ROW = nothing and OTH = cart or hook) If a hook or a cart enters the module at OTH and nothing has entered the module at ROW, the hook or cart is transferred immediately to the module exit.

Case 3. (ROW = hook, OTH = hook, Q = 0) If a hook enters the module at ROW and at OTH, and there is nothing in the queue, then the OTH hook is destroyed and the ROW hook is transferred to the module exit.

Case 4. (ROW = hook, OTH = hook, Q = +) If a hook enters the module at ROW and at OTH, and there are carts in the queue, both hooks are destroyed and the first cart in the queue is transferred to the module exit.

Case 5. (ROW = hook, OTH = cart, Q = 0) If a hook enters the module at ROW and a cart enters at OTH, and there is nothing in the queue, the ROW hook is destroyed and the OTH cart is transferred to the module exit.

Case 6. (ROW = hook, OTH = cart, Q = +) If a hook enters the module at ROW and a cart enters at OTH, and there are carts waiting in the queue, the ROW hook is destroyed, the OTH cart joins the queue, and the first cart in the queue is transferred to the module exit.

Case 7. (ROW = cart, OTH = hook, Q = 0) If a cart enters the module at ROW, and a hook at OTH, and there is nothing in the queue, the OTH hook is destroyed and the ROW cart is transferred to the module exit.

Case 8. (ROW = cart, OTH = hook, Q = +) If a cart enters the module at ROW, and a hook at OTH, and there are carts waiting in the queue, the OTH hook is destroyed and the ROW cart is transferred to the module exit.

Case 9. (ROW = cart, OTH = cart, Q = 0) If a cart enters the module at ROW, and a cart enters at OTH, and there is nothing in the queue, the OTH cart joins the queue and the ROW cart is transferred to the module exit.

Case 10. (ROW = cart, OTH = cart, Q = +) If a cart enters the module at ROW, and a cart enters at OTH, and there are carts waiting in the queue, the OTH cart joins the queue, and the ROW cart is transferred to the module exit.

Detailed Description

This module has two entrances, and the program logic first deals with the entrance at which the carts have the right-of-way. Carts arriving at this entrance never have to wait or form a queue. This module contains several layers of logic to deal with any of the possibilities which might occur.

A cart which has been directed to the right-of-way entrance sets logic switch one and passes through a logic gate.

ROW LOGIC S

GATE LS 2,EXIT

1

Before the conveyor system has been completely constructed, carts or hooks may arrive at only one entrance of the MERGE module (either the right-of-way entrance or the other entrance). The first entry at location ROW (the right-of-way entrance) sets

logic switch one. This action indicates to the logic at the other entrance that there has been an entry at the ROW entrance. Similar logic appears at the other entrance (labelled OTH). The first entry at the other entrance sets logic switch two indicating to the logic at the ROW entrance that an entry has occurred at the OTH entrance. The entry at the ROW entrnace then passes through the logic gate. If there has been <u>no</u> entry at the OTH entrance, it takes the alternate exit of the gate block and proceeds to location EXIT at the end of this module.

If there has been an entry at the OTH entrance, the transaction proceeds to the next sequential block. The next layer of logic insures and maintains the timing and integrety of the towlines. First a transaction sets logic switch three and encounters a gate block operating in the conditional entry mode.

3

Ъ

LOGIC S

GATE LS

Logic similar to the above occurs at this point in the program at the OTH entrance. Transactions which encounter this logic must be timed with transactions encountering logic at the OTH entrance, but arrivals at both entrances may not occur at the same clock time. This logic causes the transaction which arrived at one of the entrances first to wait (at the gate block) for the transaction to arrive at the other entrance. Once both transactions have arrived, either one may begin to move first. First assume the transaction at the ROW entrance moves first. Later, the case in which the transaction at the OTH entrance moves first will be considered.

The next sequential block for the transaction at the ROW entrance determines if it is a cart or a hook.

TEST E Pl,l,HOOK

A hook takes the alternate exit and is transferred to location HOOK.

A cart proceeds and sets logic switch six.

LOGIC S 6

This indicates to the logic at the OTH entrance that a cart is present at the ROW entrance.

The cart then is stopped to allow the transaction at the OTH entrance to move if it has not already moved.

PRIORITY O,BUFFER

The priority of the cart is changed back to one, and the cart is delayed again to allow the transaction at the OTH entrance to move first since it

PRIORITY 1

PRIORITY O,BUFFER

must determine if it has to wait and join a queue or proceed.

Finally the cart's priority is changed back to one again and it proceeds on out the module exit.

٦

3

PRIORITY

The transaction which leaves at the module exit resets the logic for the next pair of entries and is then transferred to the ADVANCE block at the end of the module.

EXIT LOGIC R

LOGIC R 4 LOGIC R 5

LOGIC R 6 TRANSFER ,AOUT

The logic at the OTH entrance is somewhat parallel to the logic at the ROW entrance. The first transaction to arrive at the OTH entrance sets logic switch two indicating an arrival at this entrance, and then passes through a logic gate.

OTH LOGIC S

GATE LS 1,EXIT

2

If a transaction has not arrived at the ROW entrance, the arrival at the OTH entrance takes the alternate exit through the GATE block and is transferred to location EXIT.

If there has been an arrival at the ROW entrance, the transaction at the OTH entrance continues to the next sequential block at which it sets logic switch four. It proceeds and encounters a gate block operating in the conditional entry mode.

LOGIC S 4

GATE LS 3

The purpose of this layer of logic has been discussed previously. Now assume that the transaction at this entrance moves first since the case in which the transaction at the ROW entrance moves first has already been discussed.

The next block determines if the transaction is a hook or a cart.

TEST E Pl,l,TERM

If the transaction is a hook it is destroyed since the cart or hook at the ROW entrance will survive and continue out the module exit. A cart continues and sets logic switch five which indicates a cart has arrived at the OTH entrance.

LOGIC S 5

The cart is delayed to allow the transaction at the ROW entrance to move after which its priority is changed back to one.

PRIORITY O,BUFFER PRIORITY 1

The transaction at the ROW entrance moves until it encounters a sequence of blocks similar to those shown above. Now the cart at the OTH entrance continues to move.

The next sequential block determines if there is a queue of carts at the OTH entrance waiting for an empty hook to enter at the ROW entrance.

GATE NU FAC,QUE

If the facility FAC is in use, a cart is waiting and the entering cart is transferred to the queue of carts at location QUE.

If <u>no</u> carts are waiting, the cart continues to the next block. The next block determines if there is a cart at both entrances or not. This is done by means of a boolean variable.

MBV BVARIABLE LS5*LS6

TEST E BV\$MBV,1,CRHK

If the value of the boolean variable is zero, there is a hook at the ROW entrance and the cart can continue out of the module by being transferred to location CRHK.

If the value of the boolean variable is equal to one, there is a cart at both entrances, and the cart at the OTH entrance must

join the queue. It joins the queue and is linked onto a user chain to save CPU time.

QUE QUEUE

LINK MCH,FIFO,MSZ

MQU

The first transaction in the waiting line can seize a facility which contains the logic necessary to capture a hook.

MSZ SEIZE FAC

It sets logic switch seven and then waits at a GATE block for a hook at the ROW entrance to reset logic switch seven to allow the cart to proceed.

LOGIC S 7 GATE LR 7

After a hook at the ROW entrance opens the gate, the cart can depart the queue, release the facility, unlink the next cart from the user chain, and transfer to the module exit.

DEPART	MQU
RELEASE	FAC
UNLINK	MCH,MSZ,1
TRANSFER	,EXIT

A cart at the OTH entrance captures a hook by setting logic switch seven before being transferred to the module exit.

CRHK LOGIC S

TRANSFER ,EXIT

7

A hook at the ROW entrance is transferred to location HOOK. Here it is first delayed twice for the same reason that a cart at the ROW entrance way delayed twice. HOOK PRIORITY 0,BUFFER

PRIORITY 1 PRIORITY 0,BUFFER PRIORITY 1

Then the hook encounters a logic gate that determines if a cart is waiting at the OTH entrance or not.

GATE LR 7,THOO

If a cart is not waiting the hook is transferred to the module exit.

TRANSFER ,EXIT

If a cart is waiting the hook opens the gate for the cart by resetting logic switch seven and is then destroyed.

7

0

THOO LOGIC R

TERMINATE

At the end of the module is the ADVANCE block that delays the transaction for the time it takes it to reach the next module entrance.

AOUT ADVANCE

MVB VARIABLE (90*1000)/X3

ADVANCE V\$MVB

The transaction then proceeds to the next sequential module.

A source listing of the MERGE module is given in Figure 19 and a flow chart of the module is shown in Figure 20.

Model Validation

Two concepts of ascertaining the model's representation of reality are used by this researcher. The first concept is

ROW	LOGIC S	1
	GATE LS	2,EXIT
	LOGIC S	3
	GATE LS	4
	TEST E	Pl,1,HOOK
	LOGIC S	6
	PRIORITY	O,BUFFER
	PRIORITY	1
	PRIORITY	O,BUFFER
	PRIORITY	1
EXIT	LOGIC R	3
	LOGIC R	4
	LOGIC R	5
	LOGIC R	6
	TRANSFER	,AOUT
OTH	LOGIC S	2
	GATE LS	l,EXIT
	LOGIC S	4
	GATE LS	3
	TESTE	Pl,1,TERM
	LOGIC S	5
	PRIORITY	O,BUFFER
	PRIORITY	1
	GATE NU	FAC,QUE
MBV	BVARIABLE	LS5*LS6
	TEST E	BV\$MBV,1,CRHK
QUE	QUEUE	MQU
	LINK	MCH,FIFO,MSZ
MSZ	SEIZE	FAC
	LOGIC S	7
	GATE LR	7
	DEPART	MQU
	RELEASE	FAC
	UNLINK	MCH,MSZ,1
	TRANSFER	,EXIT
CRHK	LOGIC S	7
	TRANSFER	,EXIT
HOOK	PRIORITY	O,BUFFER
	PRIORITY	l
	PRIORITY	O,BUFFER
	PRIORITY	1
	GATE LR	7,THOO
	TRANSFER	,EXIT
THOO	LOGIC R	7
	TERMINATE	
AOUT	ADVANCE	0
MVB	VARTARIE	(00*1000)/X3
	VAILLADID	

.

.

Figure 19. Source Listing of MERGE Module

Figure 20. Flow Chart of MERGE Module

Figure 20. (Continued)

Figure 20. (Continued)

Figure 20. (Continued)

validation. The objective of validation is to establish that each module responds in a logical manner that is not unlike the actual system. This objective asks the question, "Is each module logically correct?" The second concept is verification. The objective of verification is to establish that the entire simulation model responds in a manner that does not misrepresent the response of the actual system under typical conditions.

The first phase of the model validation was accomplished during the model construction. In cases where logic was designed to deal with a number of different situations, the situations were exhaustively enumerated. This researcher then simulated each case of the module logic by hand to validate its construction.

The second phase of validation was accomplished by a series of trial computer simulations of each module to insure the correctness of the logic. All possible cases of module inputs were deterministically programmed and the output was analyzed to insure the module's correctness under all situations.

The third phase of validation consisted of building a small conveyor simulation model that consisted of one of each of the five modules. A series of trial computer simulations were performed with this model to test the modules. The future events chain, current events chain, users chains, and other GPSS output statistics were used to determine if each module's response was logically correct.

It was not the objective of this research to perform a model verification; however, further arguments for the model's validation are presented in Chapter VI and Chapter VII.

CHAPTER V

MODEL USER'S GUIDE

The model developed in the previous chapter is somewhat large and lengthy. For example, a conveyor system of average size and complexity may require more than 1000 GPSS/360 blocks, and on the IBM 360 system one hour of simulation time may require as much as one minute of CPU time. The purpose of this chapter is to assist the user in programming his conveyor system using the model developed through this research.

Primary Considerations

Conveyor systems of average complexity will probably require the 256 K version of GPSS/360 and the use of the REALLOCATE feature. Increasing the size of COMMON is the most important function of the REALLOCATE card in this model. The use of REALLOCATE is described in the GPSS/360 Operator's Manual (H20-0311 under OS/360 or H20-0327 under DOS/360).

If the normal distribution is used for load and unload times, then the standard normal distribution must be defined as a GPSS function. Other necessary functions include probability distributions of the possible destinations of empty carts from each UALS module, and probability distributions of the possible destinations of loaded carts from each UALS module. Many of

these distributions may be the same and need not be duplicated. The functions should be labelled, not numbered.

Three savevalues used throughout the model must be specified. These may be specified by INITIAL cards. Savevalue number one (X1) must be initialized at the number of carts in the system. If the system does not use carts and the goods transferred on the conveyor are attached directly to the hooks, then X1 should be initialized at the number of hooks in the system. X2 must be initialized at the distance between hooks on the conveyor. X3 must be initialized at the speed of the conveyor. If X2 is defined in feet, then X3 must be defined in feet per minute.

One storage must be defined in the model. The storage label is IPS which stands for in process storage. It is defined by a STORAGE card as equal to the number of carts in the system. The purpose of this storage is to give the user an indication of the utilization of carts as an in process storage.

Any tables that the user wishes to use must also be defined. The user may want to tabulate the destinations of loaded carts that pass a particular point in the model. This may be a tabulation of carts that are recirculating in the system. The user must supply the TABLE card and insert TABULATE cards at proper places in the model.

The users considerations in the CAHG module and the PPLS module have been discussed in Chapter IV since these modules only occur once in the system. The other three modules occur from four to nineteen times throughout the model. To facilitate their programming and use, they have been encapsulated in GPSS/360 MACROS. The

remainder of this chapter explains these MACROS.

Macro Modules

A source listing of the three modules programmed in macros is shown in Appendix A. A macro is a string of frequently used blocks defined by the user, which he may later call with only one card. The only advantage obtained by using macros is the elimination of the need to code and keypunch repetitive strings of blocks.

The definition of macros requires two control cards. A STARTMACRO card labelled with the name of the macro is placed in front of the actual macro blocks, and an ENDMACRO card is placed at the end of the macro. The actual macro definition cards are placed between these two control cards. These macro definition cards follow the normal GPSS block format except that some fields may be replaced by macro arguments. Macro arguments are represented by following a special character # with a letter (A-J) which represent arguments 1-10 respectively. A maximum of ten arguments per macro is allowed.

Macros are called by means of the MACRO card labelled with the name of the macro being called. The macro arguments to be substituted into the macro definition cards are listed in the MACRO card. As a simple example of a macro, the block sequence shown below defines a macro.

RONI STARTMACRO

#C SEIZE #A ADVANCE #B RELEASE #A

ENDMACRO

This macro labelled RONI can be called with the MACRO card shown below.

RONI MACRO 1,400,FAC

The above card would produce the following block sequence in the compiled program.

FAC	SEIZE	1
	ADVANCE	400
	RELEASE	1

Merge Module

The MERGE module is constructed of three GPSS/360 MACROS labelled MERG1, MERG2, and MERG3. These MACRO cards when used in order with the arguments defined will be compiled as a complete MERGE module. The remainder of this section is an explanation of the MACRO arguments.

MERG1 MACRO

#A,#B,#C,#D,#E,#F,#G,#H,#I,#J

#A	-	any	unique	three	letter	label	
# B		any	unique	three	letter	label	
#C	-	any	unique	three	letter	label	
#D	•	any	unique	three	letter	label	
#E		any	unique	three	letter	label	
#F	-	any	unique	three	letter	label	
#G	-	any	unique	three	letter	label	
#H	-	any	unique	three	letter	label	
#I	-	any	unique	three	letter	label	
#J	-	any	unique	three	letter	label	

#A - same as #A of MERG1

#B - same as #B of MERG1

#C - any unique three letter label

#D - any unique three letter label

#E - BV\$ (same as #D of MERG2)

#F - LS\$ (same as #C of MERG1)*LS\$

(same as #F of MERG1)

#G - any unique three letter label

#H - any unique three letter label

#I - any unique three letter label

#J - same as #I of MERG1

MERG3 MACRO

#A,#B,#C

#A - any unique three letter label

#B - V\$ (same as #A of MERG3)

#C - delay time in milliminutes to the next module entrance, i.e. (090*1000)/X3 or

(Distance in feet * 1000)/X3

Split Module

The SPLIT module is also constructed of three GPSS/360 macros. They are labelled SPLT1, SPLT2, and SPLT3. The remainder of this section is an explanation of their MACRO arguments.

SPLT1 MACRO #A,#B,#C,#D,#E,#F,#G,#H,#I,#J #A - any unique three letter label #B - any unique three letter label #C - any unique three letter label

#D - any unique three letter label

#E - any unique three letter label

#F - any unique three letter label

#G - any unique three letter label

#H - logical condition regarding P3 which is the argument of a boolean variable that equals one for a cart to proceed out the left exit, i.e.

P3'GE'9*P3'L'17 or P3'GE'17+P3'L'9

- #I BV\$ (same as #G of SPLT1)
- #J the size that Q\$LCR1 must reach for a cart with a destination to the left be diverted to the right,

i.e. 999 or 36

SPLT2 MACRO

#A,#B,#C,#D,#E

#A - any unique three letter label

#B - location label of the entrance to the next sequential module to the left

#C - same as #A of SPLT1

#D - V\$ (same as #A of SPLT2)

#E - delay time to the entrance to the next sequential

module to the left in milliminutes, i.e. (236*1000)/X3

SPLT3 MACRO #A,#B,#C,#D,#E

#A - any unique three letter label

#B - location label of the entrance to the next sequential module to the right

#C - same as #B of SPLT1

#D - V\$ (same as #A of SPLT3)

#E - delay time to the entrance to the next sequential module to the left in milliminutes, i.e. (060*1000)/X3

Unload and Load Station Module

The UALS module is again constructed of three GPSS/360 macros. They are labelled ULST1, ULST2, and ULST3. The remainder of this section is an explanation of these MACRO arguments.

#A - any unique three letter label #B - any unique three letter label #C - any unique three letter label #D - any unique three letter label #E - Q\$ (same as #D of ULST1) #F - V\$ (same as #D of ULST1) #G - destination number of this module, i.e. 1,2,3,etc. #H - mean unload time in milliminutes, i.e. 4 minutes = 4000 milliminutes

- #I the maximum number of carts that can be in the station queue, i.e. 15 or 35
- #J variable argument which is the spread modifier of the mean unload time in milliminutes, i.e. FN\$NORM*800

ULST2 MACRO

#A,#B,#C,#D,#E,#F,#G,#H,#I

#A - same as #C of ULST1
#B - any unique three letter label
#C - CH\$ (same as #A of ULST2)
#D - V\$ (same as #B of ULST2)

- #E FN\$ (the label of the function which defines the probability distribution of the possible destinations of empty carts which leave this module), i.e. FN\$DEC1
- #F any unique three letter label
- #G mean load time in milliminutes, i.e. 2 minutes = 2000
 milliminutes
- #H the maximum number of empty carts to be retained at the module minus one, i.e. 1,2,etc.
- #I variable argument which is the spread modifier of the mean load time in milliminutes, i.e. FN\$NORM*400

- #A same as #B of ULST2
- #B any unique three letter label
- #C same as #B of ULST1
- #D same as #A of ULST1
- #E any unique three letter label
- #F V\$ (same as #E of ULST3)
- #G same as #D of ULST1
- #H FN\$ (the label of the function which defines the probability distribution of the possible destinations of loaded carts which leave this module), i.e. FN\$DLC1
- #I delay time to the entrance to the next sequential module in milliminutes, i.e. (601*1000)/X3

Model Order

The general structure of the model should be similar to that of the conveyor system. Before the actual system modules, the

deck should include:

- 1. REALLOCATE cards
- 2. SIMULATE card
- 3. Three general purpose MACRO modules
- 4. FUNCTION definition cards including the standard normal distribution if it is used.
- 5. TABLE definition cards if they are used.
- 6. Three INITIAL cards for X1,X2, and X3
- 7. STORAGE definition card labelled IPS

Since the model forms a closed loop, any point in the model may be used as a starting point. If a transaction which leaves a module should not enter the next sequential module, an unconditional transfer should be inserted into the deck for proper routing. The CAHG module and the PPLS module must be constructed by the user, but the three general purpose modules do not need to be constructed. To use these three modules, the user need only insert the three MACRO definition cards and supply their arguments.

The last part of the model deck should be a run timer to stop the simulation. The user can define his own run timer. The following run timer lets the model run for two hours to reach steady state. A RESET card is used, and the model is simulated for twenty hours.

GENERATE	120000
TERMINATE	l
START	l
RESET	
START	10

CHAPTER VI

FIRST MODEL SIMULATION

After the conveyor system modules had been developed and validated, they were combined into a model of the first large manufacturing company's conveyor system which was described in Chapter III. This chapter includes a discussion of the simulation of that model and its output statistics.

Simulation Model

Figure 1 shown in Chapter III is a graphical representation of the manufacturing company's warehouse distribution conveyor system. This was a useful starting point in building the simulation model by visualizing the overall system. A blueprint of the floor plan of the towline was obtained. Measurements of distances along the towline were taken from the blueprint and transcribed on the towline floor plan shown in Figure 21. The blueprint floor plan was also used to aid in the identification of the position of the modules which were used to construct the simulation model of the system. To aid in building the model correctly, Figure 21 was transformed into Figure 22 which is a modular representation of the conveyor system. Figure 22 shows the type of module that was used at each interface, and the destination identification number is given for each of the UALS

Figure 21. Conveyor System Floor Plan

Figure 22. Modular Floor Plan of Conveyor

.

modules and the PPLS module. A complete source listing of this conveyor system is given in Appendix A.

The functions used for possible destinations of empty and loaded carts were estimated with the aid of the manufacturing company's Industrial Engineering Department. These functions are difficult to validate with hard data and often must be approximated. Two TABLE definition cards were used to tabulate the number of loaded carts that pass two points in the model. X1, the number of carts in the system, was initialized at 380, X2, the hook spacing, was initialized at 21 feet, and X3, the conveyor speed, was initialized at 70 feet per minute.

The module parameters or arguments such as maximum station queue etc. were obtained from the conveyor specifications on the blueprint. Other parameters such as the mean and standard deviation of the load and unload times etc. were estimated with the aid of the company's Industrial Engineering Department. Unconditional TRANSFER cards were added to the model where it was necessary to direct the transactions to their proper destinations. The series of blocks shown below was added to the model between the right exit of the third SPLIT module and the non right-of-way entrance to the second MERGE module and between the right exit of the fourth SPLIT module and the right-of-way entrance to the first MERGE module.

TAA TEST E P2,1,TRA

TABULATE RECL

TRA TRANSFER ,MBO

The purpose of these blocks was to tabulate the number of loaded

carts by destination which passed that point in the module. The table labelled REC1 tabulated the carts at the first location described above, and table labelled REC2 tabulated the carts at the second location described above.

Finally the conveyor system was simulated for twenty hours after having reached steady state. A snap interval of four hours was used to give output statistics after each four hours of simulation.

Output Statistics

The standard GPSS/360 output statistics produced at the end of the simulation is given in Appendix A. The user chain statistics are of little value to the analysis of the simulation because the user chains were added only to save CPU time. The data from them can be more easily and completely obtained from the queue statistics. Many of the facilities in the model were used for logical purposes only (allowing a cart to capture a hook). The statistics from these facilities is of little value. Each UALS module consists of a loading facility and an unloading facility. The percent utilization of these facilities and the PPLS module is summarized in Table I.

The Table I statistics directly reflect the user defined functions of possible destinations of loaded and empty carts. If these functions were changed, the changes would become apparent in the load and unload facility utilization statistics. The facility statistics also contain the average time per transaction. This time corresponds directly to the mean loading or unloading

time and is of no value except for comparing it to the user defined mean. The total number of entries gives the user an idea of how many carts were processed by each facility. This statistic can be obtained from the queue or facility statistics. It will be discussed later in this chapter.

TABLE I

UALS Module (Destination)	Unload Facility Utilization (%)	Load Facility Utilization (%)
1	35.9	4.4
2	38.2	6.1
3	34.6	5.4
4	28.8	8.8
5	41.5	6.1
6	33.9	7.1
7	39.1	8.6
8	34.5	10.2
9	17.1	4.3
10	16.7	4.6
11	14.3	4.0
12	19.7	5.0
13	19.5	5.9
1 ¹ 4	18.8	5.4
15	21.3	5.0
16	31.4	63.5
דר	6.4	7.1
18	7.6	7.2
19	4.5	9.8
PPLS	NA	100.0

FACILITY UTILIZATION STATISTICS I

The value of recirculating conveyors as an in-process storage may be either under estimated or over estimated. Table II summarizes the storage statistics for this simulation.

TABLE II

IN-PROCESS STORAGE STATISTICS I

Total	Average	Average	Total	Average Time/	Maximum
Capacity	Contents	Utilization	Entries	Transaction	Contents
(no.)	(no.)	(%)	(no.)	(min.)	(no.)
380	64	16.8	1722	44.6	131

The capacity of the storage was set by the user at the total number of carts in the system. In this simulation for this system, the utilization of this storage was low (16.8%). The average time/ transaction tells the user that it took an average of 44.6 minutes for a loaded cart to reach its destination and be unloaded. This time might be useful for planning purposes such as planning delays for customers in placing and receiving orders. The average time a cart is delayed at a UALS module might also be used in this estimate. This statistic and other queue statistics are summarized in Table III.

TABLE III

UALS Module (Destination)	Average Contents (no.)	Total Entries (no.)	Average Time/ Transaction (min.)
1	5.8	139	50.5
2	5.5	155	42.2
3	5.2	143	43.6
4	6.4	143	53.5
5	6.4	165	46.3
6	5.2	149	41.7
7	6.1	174	42.2
8	5.0	169	35.8
9	2.3	64	42.2
10	2.3	66	41.3
11	2.2	56	47.4
12	2.3	74	37.3
13	2.3	78	35.3
14	2.3	74	37.0
15	2.3	77	36.2
16	8.1	761	12.7
17	4.9	74	78.9
18	4.9	84	69.9
19	3.9	77	61.5
PPLS	40.4	635	76.4

QUEUE STATISTICS

The average station queue contents gives the user an indication of the average number of carts present at the module at any time. The total entries tells how many carts passed through

The average time per transaction gives the each UALS module. average total time a cart was delayed at a UALS module for unloading and or loading plus waiting time. Queue statistics are also given for the waiting lines that can build up at the MERGE modules. These statistics indicate that the two most critical bottlenecks in the simulation model occur at the point where carts from the PPLS module attempt to capture a hook on the main loop and where the two loops merge just prior to the rail docks. The sizes of these queues may be influenced by the accuracy of the user defined functions which are probability distributions of possible destinations of empty and loaded carts. The sizes of these queues may also be influenced by the total number of carts that are loaded and unloaded at the UALS modules. The actual observed sizes of these queues and the simulated sizes of these queues can be used to test the system sensitivity to external or internal changes such as increasing the number of carts or decreasing the cart delay time at the UALS modules.

Finally the two user defined tables REC1 and REC2 are given in Table IV. These tables were used to count the number of carts that pass a point in the model. Table REC1 counts the number of loaded carts from UALS modules 8-15 which are recirculating around the loop or have a load to be unloaded at the truck docks. Table REC2 counts the loaded carts which pass another point in the model. The user may put these types of tables any place in the model where he desires to obtain statistics. The table may be configured to count empty carts, loaded carts or both. They may also be used for model verification purposes.

TABLE	IV
-------	----

TART.	r ST	ATT	SULT	CS.	Т
THDDE	5 O L	n_{\perp}	NTT	$\omega \omega$	-

UALS	Observed Frequency		
Module (Destination)	Table RECl	Table REC2	
(Destination)	(110.)	(10.)	
0	0	0	
l	0	39	
2	0	45	
3	0	38	
4	0	40	
5	0	39	
6	0	40	
7	0	41	
8	0	40	
9	15	5	
10	16	7	
11	16	4	
12	24	3	
13	28	2	
14	28	5	
15	31	6	
16	0	0	
17	0	0	
18	0	0	
19	0	0	

CHAPTER VII

SECOND MODEL SIMULATION

The second manufacturer's recirculating conveyor system was chosen for study because it is a different type of recirculating conveyor than the one modeled previously. This chapter includes a brief system description, a discussion of the simulation model, and the simulation output statistics.

System Description

This conveyor system is an overhead type conveyor which transports components from a subassembly load station to two final assembly unload stations. The products are placed directly onto discretely spaced hooks which are an integral part of the overhead conveyor. The conveyor system is somewhat less complex than the one previously studied; however, it is different in that carts are not used. The products are placed directly on the hooks.

A floor plan diagram of the conveyor system is shown in Figure 23. Components which are placed on the conveyor at the load station first pass through an inspection area. Here the components are given a 100% inspection as they move on the conveyor. This portion of the system does not affect the operational aspects of the conveyor itself and is represented in the model as a delay. Approximately 70% of the components are the type which are removed

from the conveyor at the first unload station encountered and the remainder are destined for the second unload station.

There are 1200 hooks on the 600 foot conveyor which is operated at a speed of 10 feet per minute. The distance between hooks is 6 inches and it takes a hook one hour to complete the circuit. There are 360 feet of conveyor between the load station and the first unload station, 120 feet between the first and second unload stations, and 120 feet between the second unload station and the load station.

Simulation Model

The conveyor system may be completely constructed using four simulation modules developed earlier in this research. The CAHG module is necessary without modification to build the conveyor. The PPLS module without modification was used to represent the load station. Two UALS modules with one minor modification was used to represent the two unload stations. Since the two UALS modules were being used for unloading purposes only an unconditional TRANSFER block was added to the module to branch the transactions around the load portion of the module.

The function used for the possible destination of the loaded hooks was estimated by the company's Industrial Engineering Department. One table was defined in this simulation model to tabulate the number of components which recirculated on the conveyor. X1, the number of carts in the system, was initialized at 1200 which is the number of hooks in the system. To the model, this means there is a cart on every available hook. X3, the

Figure 23. Conveyor Floor Plan

conveyor speed, was initialized at 10 feet per minute. The distance between hooks could not be directly incorporated into a savevalue since it was a fractional value. This distance is used only in variable number one and was placed in that variable directly.

The module parameters and the arguments of the two UALS modules were obtained from observation of the system in operation and from the company's supervisory personnel. The data for the load and unload times was estimated with the aid of the company's Industrial Engineering Department. Following the last UALS module, the sequence of blocks shown below was added to the model to tabulate the number of components that recirculated on the conveyor and then transfer the hooks to the entrance to the CAHG module.

TEST E	E	P2,1,TRA
TABULA	ATE	RECL
TRA TRANSF	ER	,NTR

Finally the model was simulated for eight hours of operation after having reached steady state. Appendix B shows a source listing of the conveyor system model and lists the standard GPSS/360 output statistics produced at the end of the simulation.

Output Statistics

Since the conveyor system is a simple one, only three different statistics are of any value. The facility statistics give the average utilization of the load and unload stations, the storage statistics give the utilization of the conveyor as an in process storage, and the table statistics can be used to calculate the percentage of the components that recirculate. The queue statistics

and user chain statistics are of no value since no queues can form in this one loop conveyor system.

Table V gives the average utilization of the load station and two unload station modules. This statistic can be influenced by the maximum station queue policy that is used in the UALS modules. After observing this system in operation, it was determined that the person unloading components from the conveyor had enough time to select and unload only two items from the conveyor at once. The maximum station queue was therefore set at two.

TABLE V

Module	Average Utilization (%)
Load Station	73.3
First Unload	77.8
Second Unload	75.0

FACILITY UTILIZATION STATISTICS II

The capacity of the conveyor as an in-process storage was set by the user at the total number of hooks in the system. In this simulation the average utilization was somewhat higher (68.5%) than in the previous model (16.8%). This is probably due to the fact that the overhead conveyor is a different type of conveyor. It is also being used for a different purpose and it is loaded and unloaded in a different manner. Table VI summarizes the storage statistics for this simulation.

TABLE VI

Total	Average	Average	Total	Average Time/	Maximum
Capacity	Contents	Utilization	Entries	Transaction	Contents
(no.)	(no.)	(%)	(no.)	(min.)	(no.)
1200	822	68.5	9629	41.0	846

IN-PROCESS STORAGE STATISTICS II

Table VII gives the results of the recirculation statistics tabulated in the model. These results were tabulated in table REC1. More of the items destined for unload station number two recirculated than those destined for unload station number one. Although less components are assigned to be unloaded at UALS module number two (30%), the mean unload time is significantly larger (.140 minutes compared to .060 minutes for UALS number one). The simulation time of eight hours means that 9600 (8 X 1200) hooks passed a given point in the system after the conveyor is constructed. There were 744 entries into table REC1. This means that 7.75% of the components recirculated on the conveyor or that the probability of recirculation of any one component is .0775.

TABLE VII

UALS Module (destination)	Observed Frequency (no.)
. l	193
2	551

TABLE STATISTICS II

CHAPTER VIII

CONCLUSIONS AND RECOMMENDATIONS

This chapter includes a summary of how the research objectives set forth in Chapter I were accomplished and suggests areas for future research.

Conclusions

The first research objective was to examine the functional components of a particular complex integrated conveyor system, with the objective of identifying the functional components and parameters of the system. After confining the research to constant speed discretely spaced recirculating complex conveyor systems, a survey of the literature and an on site observation assisted this researcher in identifying the functional components and parameters of this particular type of conveyor system. These components and parameters were later incorporated into the basic structure of the simulation model. Examples of these components and parameters include: (1) conveyor speed, (2) hook spacing, (3) number of carts, (4) finite distance between decision points, etc.

The second research objective was to identify and describe the components and parameters of the types of interfaces that do occur between the functional components of the complex recirculating conveyor system. Chapter III of this dissertation described four

major interfaces or decision points that occur in the particular system selected for study. A fifth interface was later identified by this researcher to complete the analytical description of the conveyor system.

The third objective was to develop and encode a computer simulation model using a modular format to represent the functioning of the components identified in the first two research objectives. The development and encoding of the five simulation modules of the second research objective is described in Chapter IV. The first section of Chapter V describes to the user how the components and parameters of the first research objective were incorporated into the simulation model.

The fourth research objective was to demonstrate that the "plug-in" simulation modules provide a feasible approach for building a general purpose simulation model. The manner in which the modules were developed in Chapter IV was centered around a general purpose technique. The validation of the modules in Chapter IV required the construction and simulation of a small conveyor system that consisted of one of each of the five modules. Without changes in the modules, they were in Chapter VI put together to form a large conveyor system. This flexibility of the modular approach demonstrates the feasibility of a general purpose simulation model for constant speed discretely spaced recirculating conveyor system. The general purpose approach is further demonstrated in Chapter V by providing the user with a general user guide in programming a simulation model using these five modules. Chapter VII also demonstrated the feasibility of the

approach by using the general purpose modules to simulate another unrelated conveyor system.

Finally the fifth research objective was to use the "plug-in" simulation components to simulate the recirculating conveyor system to validate the model construction and to further validate the simulation modules and demonstrate the feasibility of the approach by using the modules to simulate another unrelated recirculating conveyor system. Chapter VI and Chapter VII of this dissertation describe the simulation models and their results.

Recommendations

There are three major areas for future research in the area of constant speed discretely spaced recirculating conveyor systems.

Since this dissertation proved its feasibility, the allencompassing general purpose simulation model should be developed. This may require the development of additional modules to provide for all the cases that might be encountered. It also might require modification of one or more of the five modules that have been developed in this dissertation to provide compatibility with future modules or to provide flexibility in simulating a variety of conveyor systems.

A second area of research should be a rigid mathematical verification of a particular conveyor system simulation model. This may require the researcher to find a conveyor system about which a great deal of hard performance data already exists. If this is not possible, the researcher should be required to obtain a significant amount of hard performance data concerning a particular

conveyor system. This verification should serve as a further test of the general purpose approach.

The third area of research should be to use the general purpose model, once developed, to devise a set of mathematical "prediction equations" for the general purpose model. The equations could be used to predict the outcome of simulation models of conveyor systems without having to run the simulation on the computer. The equations would emperically describe the functional components and complex interactions of the simulation model.

Just as Terrell and Bussey's work provided a spring board for this dissertation, this researcher hopes that this thesis provides a catalyst for yet further work in this field.

A SELECTED BIBLIOGRAPHY

- (1) Agee, Marvin H., and Thomas P. Cullinane. "Analyzing Two Link Materials Handling Systems for Short Run Production Jobs." <u>Operations Research Society of America</u>, 41st National Meeting (New Orleans, 1972).
- (2) Beightler, Charles S., and Robert M. Crisp, Jr. "A Discrete Analysis of Conveyor-Serviced Production Stations." Operations Research, Vol. 16 (1968), 986-1001.
- (3) Brady, W. "A Comparison of the Effect of Work-Time Variation in Two Types of Conveyor Systems." <u>International Journal</u> <u>of Production Research</u>, Vol. 11 (1973), 171-182.
- (4) Burnbridge, John J. "An Approach to the Analysis of a Conveyor System." <u>Operations Research Society of America</u>, 38th National Meeting (Detroit, 1970).
- (5) Bussey, Lynn E., and M. Palmer Terrell. "Characteristics of Constant-Speed Recirculating Conveyors with Markovian Loadings and Services." <u>Operations Research Society of</u> America, 39th National Meeting (Dallas, 1971).
- (6) Bussey, Lynn E., and M. Palmer Terrell. "A Model for Analyzing Closed-Loop Conveyor Systems with Multiple Work Stations." <u>Proceedings of the 1973 Winter Simulation Conference</u>, The Institute of Management Sciences (San Francisco, 1973).
- (7) Cinlar, Erhan, and Ralph L. Disney. "Stream of Overflows from a Finite Queue." <u>Operations Research</u>, Vol. 15 (1967), 131-134.
- (8) Crisp, Robert M., Ronald W. Skeith, and J. Wesley Barnes.
 "A Simulated Study of Conveyor-Serviced Production Stations." <u>International Journal of Production Research</u>, Vol. 7 (1969), <u>301-309</u>.
- (9) Disney, Ralph L. "Some Multichannel Queueing Problems with Ordered Entry." Journal of Industrial Engineering, Vol. 13 (1963), 46-48.
- (10) Disney, Ralph L. "Some Results of Multichannel Queueing Problems with Ordered Entry -- An Application to Conveyor Theory." Journal of Industrial Engineering, Vol. 14 (1963), 105-108.

- (11) Gupta, S. K. "Analysis of a Two-Channel Queueing Problem with Ordered Entry." Journal of Industrial Engineering, Vol. 17 (1966), 54-55.
- (12) Helgeson, W. R. "Planning for the Use of Overhead Monorail Non-Reversing Loop Type Conveyor Systems for Storage and Delivery." Journal of Industrial Engineering, Vol. 11 (1960), 488-492.
- (13) Khinchine, A. Y. "Mathematical Methods in the Theory of Queues." <u>Statistical Monographs</u>, No. 7. New York: Hafner Publishing Company, 1960.
- (14) Kwo, T. T. "A Theory of Conveyors." <u>Management Science</u>, Vol. 6 (1958), 51-71.
- (15) Kwo, T. T. "A Method for Designing Irreversible Overhead Loop Conveyors." Journal of Industrial Engineering, Vol. 11 (1960), 459-466.
- (16) Morgan, J. T. "Two-Link Material Handling Systems." Operations Research, Vol. 14 (1966), 16-24.
- (17) Muth, Eginhard. "Systems Engineering Applied to the Analysis of Continuous Flow Conveyors." <u>Technical Report No. 64</u>, Department of Industrial and Systems Engineering, University of Florida (Gainesville, 1962).
- (18) Muth, Eginhard. "Analysis of Closed-Loop Conveyor Systems." AIIE Transactions, Vol. 4 (1972), 134-143.
- Muth, E. J. "Closed Loop Conveyor Systems with Discrete Material Flow." <u>Operations Research Society of America</u>, 41st National Meeting (New Orleans, 1972).
- (20) Palm, C. "Research on Telephone Traffic Carried by Full Availability Groups." <u>Tele</u>, Vol. 1 (1957), 1-107.
- (21) Phillips, Donald T. "A Markovian Analysis of the Conveyor-Serviced Ordered Entry Queueing System with Multiple Servers and Multiple Queues." (Unpub. Ph.D. dissertation, the University of Arkansas, 1969).
- (22) Phillips, Donald T., and Ronald W. Skeith. "Ordered Entry Queueing Networks with Multiple Servers and Multiple Queues." <u>AIIE Transactions</u>, Vol. 1 (1969), 333-342.
- (23) Pritsker, A. Alan B. "Application of Multichannel Queueing Results to the Analysis of Conveyor Systems." Journal of Industrial Engineering, Vol. 17 (1966), 14-21.

- (24) Reis, I. L., and J. M. Hatcher. "Probabilistic Conveyor Analysis." International Journal of Production Research, Vol. 2 (1963), 186-194.
- Reis, Irvin L., Lloyd L. Dunlap, and Morris H. Schneider.
 "Conveyor Theory: The Individual Station." Journal of Industrial Engineering, Vol. 14 (1963), 212-217.
- (26) Reis, Irvin L., James J. Brennan, and Robert M. Crisp, Jr.
 "A Markovian Analysis for Delay at Conveyor-Serviced Production Stations." <u>International Journal of Production</u> <u>Research</u>, Vol. 5 (1967), 201-211.
- (27) <u>General Purpose Simulation System/360 -- User's Manual</u>, Pub. No. 1120-0326-2. White Plains, New York: International Business Machines Corp., 1968.

APPENDIX A

٦

SOURCE LISTING AND COMPUTER OUTPUT FOR FIRST

MODEL SIMULATION
*** G P S S / 3 6 0 / D S V E R S I D N 1 * * * *** IBM PROGRAM NUMBER 360A-CS-17X { V1M4} *** REALLOCATE XAC,1200,BLD,1200,FAC,100,ST0,1,GUE,100,LDG,100 REALLOCATE TAB,5,FUN,12,VAR,75,FSV,5,HSV,5,CHA,30,GRP,1,BVR,10 REALLOCATE FMS,1,HMS,1,CDM,75000

BLOCK							CARD
NU⊭BER	*LCC	OPERATION SIMULATE	A, B, C, D, E, F, G	0	COMMENTS		NUMBER 4
	MER G1	STARTMACRO					5
	#J	LOGIC S	#J				6
		GATELS	#G - #A				7
		LOGIC S	#D				8
		GATE IS	#F				9
		TEST E	P1.1.#B				10
		LOGICS	#C				ĩĩ
		PRIORITY	0.BUFFER				12
		PRIORITY	1				13
		PRIORITY	0.BUFFER				14
		PRIORITY	1				Ĩ5
	# A	LOGIC R	#F				16
		LOGIC R	#C				17
		LOGIC B	#0				18
		LOGIC R	#E				19
		TR ANS FER	. #1				20
	#H	LOGICS	#G				21
		GATELS	#_].#A				22
		LOGICS	#E				23
		GATELS	#D				24
		TEST E	P1.1.TERM				25
		LOGIC S	#F				26
		PRIORITY	0.BUFFER				27
		PRIORITY	1				28
		ENDMACRO					29
	MERG 2	STARTMACRO					30
	~	GATE NU	#G, #G				31
	#D	BVARIABLE	#F .				32
		TEST E	#E,1,#H				33
	≇G	QU EU E	₩G				34
		LINK	#C,FIF0,#C				35
	#C	SEIZE	#G				36
		LOGIC S	#C				37
		GATE LR	#C				38
		DEPART	#G				39
		REL EAS E	#G				40
		UNLINK	#C,#C,1				41
		TR AN SF ER	,# ∆				42
	#H	LOGIC S	#C				43
		TRANSFER	•#A				44
	#8	PRIORITY	0,BUFFER				45
		PRICRITY	1				46
			0,BUFFER				41
		PRIORITY	1				48
							49
	* 1	INANSFER	**				50
	#1	TEDNINATE	*•				51
	# 1		٥				52
	# U	ENDMACED	0				75 5/
	NERGA	STARTMACPO					54
	#Δ	VARIABLE	#r				55
		ADVANCE	#R				57
		ENDRACRO	T U				58

SPLT1	ST ARTMACRO	
	TEST E	P1,1,#C
#G	BVARIABLE	#H
	TEST E	#I,1,#E
	TEST LE	G\$LCR1,#J,#E
	SPLIT	1,#D
	TRANSFER	, #A
₩D	ASSIGN	1.0
	ASSIGN	2.0
	ASSIGN	3.0
	TRANSFER	•#B
#E	SPLIT	1,#F
	TRANSFER	•#B
#F	ASSIGN	1,0
	ASSIGN	2.0
	ASSIGN	3,0
	TRANSFER	•#A
#C	SPLIT	1,#A
	TRANSFER	•#B
	ENDMACRO	•
SPLT2	ST ARTMACRO	
# A	VARIABLE	#E
#C	ADVANCE	#D
	TR ANS FER	• #B
	ENDMACRO	
SPL T3	STARTMACRO	
# A	VARIABLE	#E
≢C	ADVANCE	#6
	TR AN SFER	,#B
~ .	ENDMACRO	
ULST1	STARTMACRO	
#D	TEST E	P1,1,#A
	TEST E	P3,#G,#B
	TEST L	#E,#I,#B
	QUEUE	#D
	SPL IT	1,#A
	TEST E	P2,1,#C
	SEIZE	#A
#D	VARIABLE	#J
	AD VANCE	#H•#F
	LEAVE	IPS
	ASSIGN	2+0
	RELEASE	# A
	ENDMAC RO	
UL ST2	STARTMACRC	
	TE ST GE	#C•#H•#A
	ASSIGN	3,#E
	TRANSFER	,#B
#A	QUEUE	# A
	LINK	#A, FIFO,#F
# F	TEST G	#C,#H
	SEIZE	#B
	DEPART	#A
# 13	VARIABLE	#1
	AUVANCE	#G;#D
	ENTER	162
	ASSIGN	2,1

```
RELEASE
                  #B
       UNLINK
                  #A,#F,1
       ENDMACRO
 ULST3 STARTMACRD
       ASSIGN
                  3.#H
 ₩A
       SEIZE
                  #C
       LOGIC S
                  # B
       GATE LR
                  #B
       RELEASE
                  #C
       DEPART
                  #G
       TRANSFER
                  ,#C
 #D
       ASSIGN
                  1.0
       ASSIGN
                  2,0
       ASSIGN
                  3,0
       GATE LR
                  #8,#E
       TRANSFER
                  +#C
 #E
       LOGIC R
                  #B
       TERMINATE
 #E
       VARIABLE #I
 #C
       ADVANCE
                  #F
       ENDMACRO
 NORM FUNCTION RN1,C31
0,-5.00/.00023,-3.50/.00058,-3.25/.00135,-3.00/.00300,-2.75/
.00620,-2.50/.01220,-2.25/.02280,-2.00/.04010,-1.75/.06680,-1.50/
•10570,-1.25/.15870,-1.00/.22660,-0.75/.30850,-0.50/.40130,-0.25/
.50000,0.00/.59870,0.25/.69150,0.50/.77340,0.75/.84130,1.00/
.89440,1.25/.93320,1.50/.95990,1.75/.97730,2.00/.98780,2.25/
· $9380,2.50/.99700,2.75/.99865,3.00/.99942,3.25/.99977,3.50/1.0,5.00
DLCP FUNCTION RN1,D15
.11,1/.22,2/.33,3/.44,4/.55,5/.66,6/.77,7/.88,8/.90,9/.92,10/.94,11/
-.96,12/.98,13/.99,14/1.0,15
CECP FUNCTION RN1, D19
.04,1/.08,2/.13,3/.17,4/.22,5/.25,6/.3,7/.35,8/.38,9/.42,10/.45,11/
.49, 12/.52, 13/.56, 14/.60, 15/.75, 16/.83, 17/.91, 18/1.0, 19
 ELCI FUNCTION RN1, D11
. C1, 9/. 02, 10/.03, 11/.04, 12/.06, 13/.08, 14/.1, 15/.8, 16/.87, 17/.94, 18/
1.0,19
 CEC1 FUNCTION RN1, D10
.40,0/.43,1/.47,2/.50,3/.54,4/.57,5/.61,6/.65,7/.73,8/1.0,16
DLC9 FUNCTION RN1,04
.7.16/.8,17/.9,18/1.0,19
DEC9 FUNCTION RN1,012
.25,0/.3,9/.35,10/.4,11/.45,12/.5,13/.55,14/.6,15/.85,16/.9,17/
.95,18/1.0,19
DLCT FUNCTION RN1,D15
.07, 1/.14, 2/.22, 3/.29, 4/.37, 5/.44, 6/.53, 7/.60, 8/.65, 9/.70, 10/.75, 11/
. 80,12/. 80,13/.93,14/1.0,15
CECT FUNCTION RN1,D19
.7,0/.71,1/.72,2/.74,3/.75,4/.76,5/.77,6/.78,7/.8,8/.81,9/.82,10/
. 84,11/.85,12/.87,13/.88,14/.9,15/.93,17/.96,18/1.0,19
CLCR FUNCTION RN1, D15
.09,1/.18,2/.27,3/.36,4/.44,5/.53,6/.61,7/.70,8/.75,9/.79,10/.83,11/
. 87, 12/. 91, 13/. 96, 14/1.0, 15
CECR FUNCTION
                 RN1, D2
.80,0/1.0,16
REC1 TABLE
                  P3,0,1,20
 REC2 TABLE
                  P3,0,1,20
```

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

		INITIAL	X1,380
		INITIAL	X2,21
	100	INITIAL	X3,70
	122	STURAGE	380
,	1	VARIABLE	(X2*1000)/X3
2		OUTEUE	V L # # # X L # # 2
2		QU	CAR 3 CAP
4		GATE IS	20
5		LOGIC R	20
6		DEPART	CARS
7		RELEASE	CAR
8	TERM	TERMINATE	
9		GENERATE	V1,,,,1,3
10		GATE LR	19, TERM
11		TRANSFER	• BEGN
12	NTR	LOGIC S	19
1.5	BEGN		P1, U, SKIP
14		TEST	WOLAKS + U + SK IP
15			20 Marres 1 122 10 162
17		ASSIGN	1.1
18	SKIP	TRANSFER	+LST1
19	BYPS	LOGIC S	20
20		SPLIT	1 .LHC1
21		ASSIGN	1,1
22		ASSIGN	3 • FN \$DECP
23		TRANSFER	,LSZ1
24	LST1	TEST E	P1,1,LHK1
25		SPLIT	1,LEC1
20	LHOI	ASSIGN	1.0 .
29		ASSIGN	2,0
29	тнк 1	GATE IR	3 J TH1
30		TRANSFER	•1501
31	LEC1	QUEUE	LCR1
32		LINK	LCH,FIFO,LFA1
33.	LFA1	SEIZE	LCR1
34		DEPART	LCR1
35		TEST E	P 2, 0, LDC 1
36		ENTER	IPS
	L V8 1	VARIABLE	F N\$ NURM*400
37,		ADVANLE	2000,V\$LV81
20		ASSIGN	
40	1.001	RELEASE	
41	2001	UNLINK	
42	L SZ 1	SEIZE	LCH1
43		LOGIC S	3
44		GATE LR	3
45		RELEASE	LCH1
46		TRANSFER	LS01
47	LTH1	LUGIC R	3
48	1 41/1		155 (82)(10))
49			1007801110001
50	LJUI	TRANSFER	*#EA¥I

.

	MEN G1	MACRO	MAY	22.)
51	MAS		MAD	230
52	(AIN	CATE IS		230
52		LOCIC S	MAG	230
54				200
55		TECT E		230
55			PL 9 L 9 MAR	230
20		LUGIC S		230
51		PRIURITY	U, BUFFER	230
58		PRIURITY	1	230
59		PRIORITY	O-BUMPER	230
60		PRIORITY	1	230
61	MAX	LOGIC R	MAD	230
62		LOGIC R	ΜΔΑ	230
63		LOGIC R	MAB	230
64		LOGIC R	MAC	230
65		TRANSFER	, MA G	2 30
66	MAC	LOGIC S	MAE	230
67		GATE LS	MAR + MAX	230
68		LOGIC S	MAC	230
69		GATE LS	MAB	230
70		TEST E	P1.1.TERM	230
71		LOGIC S	MAD	230
72		PRICRITY	0.BUFFFR	230
73		PRIDRITY		230
	MERG2	MACRO	MAX.MAH.MAF.MAV.BV.SMAV.ISSMAA*ISSMAD.MAO.MAO.MAP.MAT.MAG	231
74		GATE NU		231
••	MAV.	BVARIABLE		2-31
75		TEST E		231
76	NA D	0115115	NA.)	231
77	I HAN Q		MAR ETEO MAR	231
70			MAR JE IE UJMAE Hans	231
10	MAF	SEIZE		231
19		LUGIUS	MAF	231
80		GATE LR	MAF	231
81		DEPART	MAQ	231
82		RELEASE	MAQ	231
83		UNL INK	MAF,MAF,1	231
84		TRANSFER	• MAX	231
85	, MAP	LOGIC S	MAF	231
86		TRANSFER	, MA X	231
87	MAH	PRICRITY	0, BUFFER	231
88		PRIOPITY	1	231
8.9		PRIORITY	0,BUFFER	231
90		PRICRITY	1	231
91		GATE LR	MAF, MAT	231
92		TR ANS FER	• MAX	231
93	₩AT	LOGIC R	MAF	231
94		TERMINATE		231
95	MAG	ADV ANC F	0	231
	MERG3	MACRO	MAS +V \$M AS + (090 + 1000)/X 3	232
	MAS	VARTABLE	((90*1.000) / x3	232
96			V 4M AS	232
<i>,</i> ,	111 CT1	MACED	T +0 59 HAH -11A B -11A B -(1A B - €61 A C - V \$1 A C - V \$1 A C - 1 € - 55 #6 D D # 20 00	222
07		TECT E	01 1 11811 01 1 11811 01 1 10 10 10 10 10 10 10 10 10 10 10 10	200
71	UAQ	1531 E		233
70		TEST L		233
77				233
100		WUEU5	LAU LAU	233
101		SALLI	HA Ue I	233

•

-

	102	TEST E	D 7. 1. UAB	222	
	102	CCTTC		200	
	105	JEILE		235	
	UAQ	VARIABLE		233	
	104	AUVANCE	4000,V \$U AQ	233	
	105	LEAVE	I PS	233	
.*	106	ASSIGN	2,0	233	
	107	RELEASE	UAH	233	
	UL ST	2 MACRO	UAB -UAL -CHEUAB - VSUAL - ENEDECI - UAS - 2000 - 1 - ENENORM #400	234	
	108	TEST GE	CHSHAR, 1, HAR	714	
	1.00	ASSICN	2 ENCDE(1	234	
	110	TDANSEED		234	
	110	TRANSPER	, UAL	234	
	III UAB	QUEUE	UAB	234	
	112	LINK	UAB+FIFD,UAS	234	
	113 UAS	TEST G	CH\$ UAB,1	234	
	114	SEIZE	UAL	234	
	115	DEPART	UAB	234	
	UAL	VARIABLE	FN\$NORM#400	234	
	116	ADV ANC F	2000 - V SULAI	234	
	117	ENTED		234	
	110		2.1	234	
	118	ASSIGN	211	234	
	119	RELEASE	UAL	234	
	120	UNLINK	UAB,UAS,1	234	
	ULST	3 MACRD	UAL, UAI, UAO, UAH, UAT, V\$ LAT, UAQ, F N\$DLC1, (120*1000)/X3	235	
	121	ASSIGN	3,FN\$DLC1	235	
	122 LAL	SEIZE	DAU	235	
	123	LOGICS	UAI	235	
	124	GATE IR	H AT	235	
	125			230	
	125	DEDADE		232	
	120	DEPART	UAN	235	
	127	TRANSFER	, UAU	235	
	128 UAH	ASSIGN	1,0	235	
	129	ASSIGN	2,0	235	
	130	ASSIGN	3,0	235	
	131	GATE LR	UAI. UAT	235	
	132	T R ANS E FR	-UAO	235	
	133 1.47		llat	235	
	134	TEDMINATE	04	232	
	1.34		(120+1000) (X2	235	
	, UA1	VARIABLE		235	
	135 UAU	AU VANCE	VSUAT	235	
	ULST	1 MACRO	UBH,UBO,UBB,UBQ,Q\$UBQ,V\$UBQ,2,4000,15,FN\$NORM#800	236	
	136 UBQ	TEST E	P1,1,UBH	236	
	1.37	TEST E	P3,2,U8C	236	
	138	TEST L	↓\$U84,15,080	236	
	139	QUEUE	UBQ	236	
	140	SPLIT	1 -UAH	236	
	141	TEST E	P 7. 1.1188	236	
	147	55176		200	
	142	JEILE		230	
	00W	VARIABLE		236	
	145	ADVANCE	4000, V \$ 084	236	
	144	LEAVE	I PS	236	
	145	ASSIGN	2,0	236	
	146	RELEASE	UBH	236	
	ULST	2 MACRO	U88,U8L,CH\$U88,V\$U8L,FN\$DEC1,U8S,2000,1,FN\$NBRM*400	237	
	147	TE ST GE	Сна Ивв.1. Ивв	237	
	148	ASSIGN	3. EN \$DEC 1	237	فسل
	140	TDANCEDO	1101	227	نې
	150 000	OUCUE		227	0
	100 089	QUEUE	nan	201	

151		LTNK	UBB - ETE CAURS	237
152	UBS	TEST		237
153	005	SE17E		237
154		DEBACT	5 BE	227
174	191	VADIABLE	000 EN4NORM★400	227
155	ODL			237
155		AUVANUS ENTER		231
150		SIN LER AGG TON	1F3	257
157		ASSIGN	2,1	231
158		RELEASE		237
194				231
1.4.0	ULS 13	MACKU	0 8L 1 0 8 1 1 0 8 1 1 0 8 1 1 4 2 0 8 1 1 0 8 4 1 1 2 0 1 4 1 0 0 1 4 1 0 0 1 4 2 0 0 1 7 2 3	238
160		ASSIGN	3 PRSULCI	238
161	UBL	SEIZE	UBU	238
162		LUGICS	UBI	238
163		GATE LR	UBI	238
164		RELEASE	080	238
165		CEPART	UBQ	238
166		TRANSFER	1080	2 38
167	UBH	ASSIGN	1,0	238
168		ASSIGN	2,0	238
169		ASSIGN	3,0	238
170		GATE LR	UBI,UBT	238
171		TRANSFER	+UBO	238
172	UB T	LUGIC R	UBI	239
173		TERMINATE	•	238
	LBT	VARIABLE	{6U1 #1000 }/X3	. 238
174	UBO	ADVANCE	V \$UB T	238
	UL ST1	MACRO	UCH, UCD, UCB, UCQ, Q\$UCQ, V\$UCQ, 3, 4000, 15, FN\$NORM#800	239
175	LCO	TEST E	P1 +1 +UCH	239
176		TEST E	P3.3.UC0	239
177		TEST	05100-15-100	239
178		DUFUE		239
179		SPLIT	1.10	239
180		TEST E	P2-1-1168	239
1.61		SETZE	1000	239
	μcο	VARTARIE	EN\$N08 M#800	239
182	004	ADVANCE	4000 - V \$UCO	230
192		LEAVE	100011100CW	230
184		ASSICN	2 0	227
1 45		DELENCE	210	230
107		MACDO	UCH LICH LICH CHARLER MALICE ENADERS LICE 2000 1 ENANDOMARON	237
1.84	ULSIZ	MACKU		240
1.00				240
1.67		ASSIGN	3 FNDUELL	240
188		TRAN SEER	, UL	240
189	ULE	QUEUE		240
190		LINK	UC8,FIF0,UCS	240
191	UCS	TEST G	CH\$UCB,1	240
192		SEIZE	UCL	240
193		DEPART	UCB	240
	UCL	VARIABLE	FN\$NURM*400	240
194		ADVANCE	2030,V \$UCL	240
195		ENTER	I PS	240
196		ASSIGN	2,1	240
197		RELEASE	UCL	240
198		UNLINK	UCB,UCS,1	240
	LII ST3	MACRO	UC1 . UC1 . UC3 . UCH . UCT . V\$ LCT . UCw .F N\$D1 C1 . (430*1000) / X3	241
	02013			- · · ·

	200	UCL	SEIZE	UC0	241
	201				241
	202		CATE IP		241
	202		DELEACE		241
	203		RELEASE		241
	204		DEPART		241
• 1	205		TRANSFER		241
	206	UCH	ASSIGN	1,0	241
	207		ASSIGN	2,0	241
	208		ASSIGN	3,0	241
	209		GATE LR	UCI,UCT	241
	210		TRANSFER	• UC D	241
	211	UCT	LOGIC R		241
	212		TERMINATE		241
		LC T	VARIABLE	(430*1000)/X3	241
	213	UCU	ADVANCE	V SUCT	241
		LESTI	MACRO	UDH+UDD+UDB+UDQ+Q\$UDQ+4,4000+15+EN\$N08M#800	242
	214	uno	TEST E	P1.1.UDH	242
	215		TEST E		242
	216		TEST		242
	217				242
	210				242
	210				242
	217				242
	220	1100	SEIZE		242
		004	VARIABLE		242
	221		AUVANCE	4000,745000	242
	222		LEAVE	IPS	242
	223		ASSIGN	2,0	242
	224		RELEASE	UDH	242
		UL ST 2	MACRO	UDB;UDL;CH\$UDB;V\$UDL;FN\$DEC1;UDS;2000;1;FN\$NORM#400	243
	225		TEST GE	CHSUDB, 1, UDB	243
	226		ASSIGN	3 +F N\$ DE C 1	243
	227		TRANSFER	, UDL	243
	228	UDB	QUEUE	U DB	243
	229		LINK	UDB.FIFO.UDS	243
	230	UDS	TEST G	CHSUDB.1	243
	231		SET7E		243
	232		DEPART	UDB .	243
	232	101	VARIANIE		243
	233	000	ADVANCE		243
	234		ENTER		243
	225		ASSICN	2 1	243
	124		DELEASE		243
	230				243
	23,1	111 6 7 2	UNEINK		243
	1 20	01313	ACCTON	0 L (0 L (0 L) 0 D) 0 D) 0 L (V S 0 L) 0 2 / N S D L () (4874 L 0 0) 7 X S	244
	238		ASSIGN		244
	239	UDL	SEIZE		244
	240		LOGICS	001	244
	241		GATE LR	UDI	244
	242		RELEASE	uα	244
	243		DEPART		244
	244		TRANSFER	,000	244
	245	UDH	ASSIGN	1,0	244
	246		ASSIGN	2 +0	244
	247		ASSIGN	3,0	244
	248		GATE LR	UDI, UDT	244
	249		TRANSFER	, UD C	244
	250	UDT	LUGICR	ÚDI -	244

	251		TERMINATE		244	
		UCT	VARIABLE	(487*1000)/X3	2.44	
	252	UDC	ADVANCE	V SULCT	244	
	272	111 571	MACRO	1500 1501 150, 1522, 150, 05157, 7515, 5, 43, 0, 15, 5, 40, 0, 15, 5, 10, 10, 00, 10, 0, 10, 10, 10, 10, 10,	245	
	252		TECT C		245	
	200	UEW	1621 6		245	
	254		1551 5	P3,5,UEC	245	
	255		TEST L	Q\$UEQ;15;UED	245	
	256		QUEUE	UEQ	245	
	257		SPLIT	1 •U EH	245	
	258		TEST E	P 2 • 1 • UE 8	245	
	259		SFIZE	UEB	245	
		LEO	VARIABLE	ENS N08M#800	245	
	260				245	
	200		ADVANCE .		245	
	201		LEAVE		245	
	262		ASSIGN	2,0	245	
	263		RELEASE	UEH	245	
		ULST2	MACRO	UEB,UEL,CH\$UEB,V\$UEL,FN\$DEC1,UES,2000,1,FN\$NDRM#400	246	
	264		TEST GE	CH\$ UEB + 1 + UEB	246	
	265		ASSIGN	3-ENSDEC1	246	
	266		TDANCEED		246	
	200	1126	ONEUE		246	
	201	UED	QUEUS		240	
	268		LINK		246	
	265	LE S	TEST G	CH\$UEB +1	246	
	270		SEIZE	UEL	246	
	271		DEPART	U EB	246	
		LEI	VARTABLE		246	
	272		ADVANCE	2000-V\$NEL	246	
	272		ENTER		246	
	213		ENTER .		246	
	214		ASSIGN	2 1	246	
	275		RELEASE	UEL	246	
	276		UNLINK	UEB, UES, 1	246	
		ULST3	MACRO	UEL, UEI, UEO, UEH, UET, V\$ UET, JEQ, FN\$DLC1, (120*1000)/X3	247	
	277		AS S I GN	3 • FN \$DL C 1	247	
	278	LEL	SET 7E	UED.	247	
	270				247	
	200				247	
	200		GALT LK		241	
	2.81		RELEASE	0E2	241	
	282 .		DEPART	UEQ	247	
	283		TRANSFER	•UE0	247	
	284	LEH	ASSIGN	1,0	247	
	285		ASSIGN	2.0	247	
	286		ASSIGN	3-0	247	
	287		GATE IR		247	
	20,1		TOANCERO		241	
	200	1 G T T	IN ANSFER		241	
	289	UEI	LUGIC K	UEI	247	
	290		TERMINATE		247	
		UET	VARIABLE	(120*1000)/X3	247	
	291	UEC	ADVANCE	V \$U ET	247	
		UL ST1	MACRO	UFH, UF0, UF8, UF0, Q\$UF0, V\$UF0, 6, 4000, 15, FN\$NDRM*800	248	
	292	UEQ	TEST E	P1.1.UEH	248	
	293	•	TEST E	93-6-116	24.9	
	20/				270	
	274		1231 L		240	
	295		QUEUE		248	
	296		SPLIT	1 JUFH	248	
	297		TEST E	P 2, 1, UF B	248	<u>ا</u> ب ا
	298		SEIZE	UFH	248	E .
•		LFQ	VARIABLE		248	ω
				··········		

	299		ADVANCE	4332 MALEO	249	
	200		ADVANUE		248	
	300		LEAVE		248	
	301		ASSIGN	2,0	248	
	302		RELEASE	UFH	248	
		UL ST2	MACRO	UF8,UFL,CH\$UF8,V\$UFL,FN\$DEC1,UFS,2000,1,FN\$NDRM*400	249	
	3 0 3		TEST GE	CH\$UFB.1.UFP	249	
	304		ASSIGN	3 -FNSDEC1	249	
	305		TOANSEED		249	
	3.04		OUTUE		243	
	508	UFB	QUEUE		249	
	307		LINK		249	
	308	UFS	TEST G	Ch\$UFB, 1	249	
	309		SEIZE	UFL	249	
	310		DEPART	UFB	249	
		UFL	V AR I ABL E	FN \$N0RM \$400	249	
	311		ADVANCE	2000 - V SUE1	249	
	212		ENTED		240	
	212				243	
	213		4551614	2,1	249	
	314		RELEASE	UFL	249	
	315		UNL INK	UFB J UF S J 1	249	
		ULST3	MACRO	UFL,UFI,UFO,UFH,UFT,V\$UFT,UFQ,FN\$DLC1,(165*1000)/X3	250	
	316		ASSIGN	3 -F NS DI C1	250	
	317	UEL	SE17E		250	
	310	0.2			250	
	510				250	
	315		GATE LR	UFI	250	
	320		RELEASE	UFO	2 5 0	
	321		DEPART	UFQ	250	
	322		TRANSFER	, UF D	250	
	323	UFH	ASS IGN	1.0	250	
	324		ASSIGN	2 - 0	250	
	225		ACCICN		250	
	222		A3310N		250	
	520		GALE LK		230	
	327		TRANSFER	90+ 0	250	
	328	UFT	LOGIC R	UFI	250	
	329		TERMINATE		250	
		LFT	VARIABLE	(165*1000)/X3	250	
	330	UFO	ADVANCE	V \$UF T	250	
		UL ST1	MACRO	UGH-UGD-UGB-UGD-0 \$UGD-V-\$UGD-7-4000-15-EN \$N728#\$800	251	
	221	000	TEST E		251	
	222	000			251	
	222		IESI E	P 3, 7,000	251	
	333		TEST L	Q\$UGQ,15,00	251	
	334		QUENE	UGà	251	
•	335		SPLIT	1,UGH	251	
	336		TEST E	P2+1+UG8	251	
	337		SEIZE	UGH	251	
		dG.	VAR TABLE	ENSNORM #800	251	
	220		ADVANCE		251	
	330		ADVANCE		251	
	222		LEAVE		251	
	340		ASSIGN	2,0	251	
	341		RELEASE	UGH	251	
		ULST2	MACRO	UGB,UGL,CH\$UGB,V\$UGL,FN\$DEC1,U3S,2000,1,FN\$NORM*400	252	
	342		TEST GE	CH\$UGB, 1,UGB	252	
	343		ASSIGN	3 • F N\$ DEC1	252	
	344		TRANSFER	- 161	252	
	345	1.0.8	OUFILE		252	
	344	-00			252) (
	240				202	ц
	241	062	1251 6		252	£~*
	348		SEIZE	UGL	2.52	

349	DEPART	U ĈR	252
	LGL VARIABLE	F N3 NORM*400	252
350	ADVANCE	20J0,V\$UGL	252
351	ENTER	I PS	257
352	ASSIGN	2-1	252
353	RELEASE	ug	252
354	LINETNE		252
554	LISTA MACRO	UCL LCT UCD UCH UCT VENCT UCC ENERGIA (120*10003/23	252
255	ASS LON		255
354	43310N		253
353			200
357			253
358	GALE LR		255
309	RELEASE		253
360	DEPART		253
361	IKANSFER		253
362	LGH ASSIGN	1,0	253
363	ASSIGN	2,0	253
364	ASSIGN	3,0	253
365	GA TE LR	UGI ,UGT	253
366	TRANSFER	, UGO	253
3.67	UGT LOGIC R	UGI	253
368	TERMINATE		25 3
	UGT VARIABLE	(120*1000)/X3	253
369	UGC ADVANCE	V SU GT	253
	ULSTI MACRO	UHH,UHC,UHB,UHC,Q\$UHC,V\$UHQ,8,4000,15,FN\$NORM*800	254
370	UHQ TEST E	Р 1, 1, UHH	254
371	TEST E	P3,8,UH0	254
372	TEST L	G\$UHQ.15.UHO	254
373	QU EU E		254
374	SPLIT	1.UHH	254
375	TEST E	P 2 • 1 • UHB	254
376	SEIZE		254
2.2		EN\$NORM#BOO	254
377	ΔΟΥΔΝΟΕ	40.30. V\$100	254
378	LEAVE	IPS	254
379	ASSIGN	2 - 0	254
380	RELEASE		254
200	ULST2 NACRO		255
381	TEST GE		255
392	ASSICN		255
393	TDANSEED		255
. 394			255
295			255
204			255
297	CH3 (C31 G CEI7E		255
200			299
566			255
200			255
207			230
390			200
146	ASSIGN		200
392	KELEASE Ministratio		255
393		U = U = U = U = U = U = U = U = U = U =	200
30.4	UESIS MAUKU	UNE \$UNI \$UNU \$UNH \$UHI \$V\$UHI \$J MQ\$ EN\$UECI \$ {U/0*1000 }/X3	276
394	ASSIGN		200
395	UHL SEIZE		250
. 356	LUGIC S		256
397	GATE LR	UHI	256

398		RELEASE	UHO	256
399		DEPART	URQ	256
400		TRANSFER	+ UHC	256
401	UHH	ASSIGN	1,0	256
402		ASSIGN	2,0	256
403		ASSIGN	0• E	256
404		GATE LR	UHI,UHT	256
405		TR ANS FER	• UHD	256
406	UHT	LOGIC R	UHI	255
407		TERM INA TE		256
	UHT	VARIABLE	(078*1000)/X3	256
408	LHO	AD VANCE	V\$UHT	256
	SPL T1	MACRO	SAL, SAR, SAH, SAA, SAC, SAB, SAV, P3°GE°9*P3°L°17, BV5 SAV, 999	257
4 09		TEST E	P1,1,SAH	257
	SAV	BVARIABLE	P3 • GE • 9 * P3 • L • 17	257
410		TEST E	BV\$ SAV, 1, SAC	257
411		TEST LE	Q\$L CR1, 999, SAC	257
412		SPLIT	1.584	257
413		TR ANSFER	SAL	257
414	SAA	ASSIGN	1.0	257
415		ASSIGN	2,0	257
416		ASSIGN	3.0	257
417		TRANSFER	SAR	257
418	SAC	SPLIT	1 • SAB	257
419		TRANSFER	SAB	257
420	SAB	ASSIGN	1.0	257
421		ASSIGN	2.0	257
422		ASSIGN	3.0	257
423		TRANSFER	- SAI	257
424	SAH ~	SPLIT	1.541	257
425	-	TRANSFER	SAR	257
	SPL T2	MACRO	SAX . MBR . SAI . V \$ SAX . (236#1000)/X3	258
	SAX	VARIABLE	(236*1000)/X3	258
426	SAL	ADVANCE	V \$\$ AX	258
427		TRANSEER	- MB R	258
	SPLT3	MACRO	SAY .MDD.SAR.V\$SAY.(060*1000)/X3	259
	SAY	VARIABLE	(06.0*1.000.)/X3	259
428	SAR	AD VANCE	282	259
429	•	TRANSFER	- MD Q	259
	MERG1	MACRO	MEX . MBH. MBA. MBB. MBC. MBD. MBE. MBO. MBG. MBR	260
430	MBR	LOGIC S	MBR	260
431		GATE LS	MBE.MBX	260
432		LOGIC S	MBB	260
433		GATE LS	MBC	260
434		TEST E	P1.1.MBH	260
435		LOGIC S	MBA	260
436		PRIORITY	0.BUFFER	260
437		PRIORITY	1	260
438		PRIORITY	0,BUFFER	260
439		PRIORITY	1	260
440	МВХ	LOGIC R	MBD	260
441		LOGIC R	MBA	260
442		LOGIC R	MBB	260
443		LOGIC R	MBC	260
444		TRANSFER	• MaG	260
445	M80	LOGICS	MBE	260
445		GATE LS	MER, MBX	260

		· · · ·		
447	LOGIC S	MBC	260	
448	GATE IS	MBB	260	
440	TECT		240	
449	IESI E	P 19 19 ICKM	200	
450	LUGIC S	MED	260	
451	PRIORITY	0.BUFFER	260	
452	PRIORITY		260	
- J L		THE MEN HER HER OVER AN CENER HER HER HER HER HER HER	241	
P C	RGZ MACRU	₩£X;₩₽₩;₩₽F;₩₽¥;₽¥;₩₽¥;E3;₽₩₽4;E3;₽₩₽₽;₩₽₩;₩₽₽;₩₽₽;₩₽	201	
453	GATE NU	MBQ,MBQ	261	
ME	IV BVARIABLE	LS\$MBA≠LS\$MBD	261	
454	TEST C	RV&MRV_1_MRD	261	
455 NO			241	
400 00	Q QUEUE		201	
456	LINK	MBF#FIFO#M8F	261	
457 MB	F SEIZE	MBQ	261	
458	LOGIC S	MBE	261	
459	CATE IP	MDE	261	
+ <i>J</i> ,			201	
460	DEPART	MBQ	201	
461	RELEASE	MBQ	261	
462	UNLINK	MEE-MBE-1	261	
443	TRANCEED	NB Y	261	
+0J	TRANSLER		201	
464 22	P LUGIC S	MBF	261	
405	TRANSFER	, MBX	261	
466 MB	H PRIORITY	0.3 LEFER	261	
447	PP IOP ITY		261	
401	FRIGRIT		201	
468	PRIORITY	0,80FFER	201	
469	PR IOR I TY	1	261	
470	GATE LR	MBF+MBT	251	
471	TRANSFER	- MB X	251	
477 MD	T LOCIC D		241	
412 10		MDF	201	
473	T ERM INAT E		261	
474 MB	IG 🐃 AD VANCE	ں U	261	
ME	RG3 MACRO	MBS.V\$MBS.(392+1000)/X3	262	
			2.2	
· • •	S VARIABLE		202	
415	AU VANCE	A2WR2	262	
UL	ST1 MACRO	JIH;UIU;UIB;UIQ;Q\$UIQ;V\$UIQ;9;5000;5;FN\$NQRM*1300	263	
476 UI	Q TEST E	P1.1.UIH	263	
477	TLET E		263	
470			143	
478	IESI L	# #0 I # + 5 + 0 ID	205	
479 .	QUEUE	UIQ	263	
480	SPLIT	1,UIH	263	
481	TEST E	P.2. 1.111B	263	
401	¢C176		243	
402	36126	014	205	
. UI	Q VARIABLE	FNSNORM*1000	263	
48,3	ADV ANCE	5030, V \$U IQ	263	
484	I E A VE	I PS	263	
105	ASSICN		26.2	
409	A3310N		203	
480	RELEASE	0 IA	203	
ίμ	ST2 MACRO	UIB,UIL,CH\$UIB,V\$UIL,FN\$DEC9,UIS,25JJ,1,FN\$NORM*500	264	
487	TEST GE		264	
488	ASSIGN	3. ENSTRICO	264	
100	TOANCEED		204	
407	TRANSPER		204	
490 UI	18 QUEUF	U IB	264	
491	LINK	UIB,FIFU,UIS	264	
497 11	S TEST G	UH\$11B.1	264	
402	0 10 170		244	
472	56126		204	
454	DEPART	018	Z64 H	<u>.</u>
U	L VARIABLE	FN\$NORM*500	264 +	
495	ΔΟΥΔΝΟΕ	250 Q • V \$U TI	264	7
			₩ ⁻	

496		ENTER	IPS	264	
497		ASSIGN	2,1	264	
498		RELEASE	UIL	264	
499		UNL INK	UIB,UIS,1	264	
	ULST3	MACRO	UIL.UII.UID.UIH.UIT.V\$UIT.JID.ENSDLC9.(080*1000)/X3	265	
500		ASSIGN	3.ENSDIC9	265	
501	0.11	SEIZE		245	
502	010			205	
502				203	
503		GATE LR		265	
504		RELEASE	010	265	
505		DEPART	UIQ	265	
506		TRANSFER	, UI O	265	
507	ιH.	ASSIGN	1,0	265	
508		ASSIGN	2 + 0	265	
509		ASSIGN	3,0	265	
510		GATE LR	UII,UIT	265	
511		TRANSFER	•UI D	265	
512	UIT	LOGIC R		265	
513	•••	TERMINATE		265	
21.2	117	VARIABLE	(08/0#10/10)/X3	265	
514	ů to	ADVANCE		265	
514	111 5 11	MACRO	19011 1114 110 1119 1110 06110 16110 10 5000 5 516030841000	205	
E 1 E	UL311	TEET E	01110101010101010101010101010000101010000	200	
515	016			200	
210		IEST E	P3, 10, 030	200	
517		TEST L	Q\$U JQ+5 ,U JD	266	
518		QUEUE	QLU	. 266	
519		SPLIT	1,UJH	266	
520		TEST E	P2+1+UJB	266	
521		SEIZE	UJH	266	
	UJQ ~	VARIABLE	FN \$NORM \$1000	266	
522		ADVANCE	5000,V\$UJQ	266	
523		LEAVE	IPS	266	
524		ASSIGN	2.0	266	
525		RELEASE	U.H	266	
	111 572	MACRO	UB JUL CHSTUR, VSUL SENSDEC 9 JULS, 2500 J SENSNORM#500	267	
526	02 3 7 2	TEST CE		267	
527		ASSTON		201	
520		TOANCEED		201	
520 /		TRANSFER	, UJL	201	
529	018	QUEUE	UJB	207	
530		LINK	UJB + IFU + UJS	267	
531	015	TEST G	CH\$UJB,1	267	
. 5.32		SEIZE	UJL	267	
53,3		DEPART	UJB	267	
· ·	UJL	VARIABLE	FN \$NORM #500	267	
534		ADVANCE	2500,V\$UJL	267	
535		ENTER	IPS	267	
536		ASSIGN	2,1	267	
537		RELEASE	UJL	267	
538		UNLINK	UJB • UJ S • 1	267	
	ULST3	MACRO	UJI.UJI.UJD.UJH.UJT.V\$UJT.JJJ.FN.SDIC.9.(080*1000)/X3	268	
539		ASSIGN	3.EN\$DI(9	268	
540	uп	SETTE		268	
541				268	
542		CATE IP		200	
542				200	
543		NELEADE		200	5
344 E/E		DEPAKI		200	5
747		I KAN SEEP	, UJ G	200	Ĵ

546	ын	ASSIGN	1.0		268
547		ASSIGN	2.0		268
548		ASSTON	3-0		268
549		CATE ID			268
550		TRANSEER			268
550	1.17	IKANSECK			200
551	6.11	LUGIC K	U JI		268
222		TERMINATE			268
	UJT	VARIABLE	(080*1000)/X3		268
222	010	ADVANCE	V SU JI		268
	CLSTI	MACRO	UKH, UKO, UKB, UKQ, Q\$UKQ, V\$UKQ, 11, 5000, 5, FN\$NORM#1000		269
554	UKÇ	TEST E	P1, 1, UK H		269
555		TEST E	P3,11,UKO		269
556		TEST L	Q\$UKQ,5,UKO		269
557		QU EU E	UKQ		269
558		SPLIT	1,UKH		2 6 9
559		TEST E	P 2, 1, UKB		269
560		SETZE	UKH		269
	UKQ	VARIABLE	FN\$NDRM*1000		269
561		AD VANCE	500 0, V\$ UKQ		269
562		LEAVE	IPS		269
563		ASSIGN	2.0		269
564		RELEASE		· · · · · · · · · · · · · · · · · · ·	269
	ULST2	MACRO	UKB. HKL. CHSUKB. V SUKL. EN SDEC 9. HK S. 2500.1. ENSNOS M#500		270
565	01312	TEST OF	CHELLKB.1.ILKB		270
566		ASSTON	3 - ENGDEC 0		270
567		TDANCEED			270
569	I KA			•	270
500	GND				270
509	1.00	LINK C			270
570	UKS	1251 6			270
571	~	SEIZE	UKL		270
572		UEPARI	UKB		270
	UKL	VARIABLE	FN\$NORM *500		270
573		AD VANCE	2500, V\$ UKL		270
574		ENTER	IPS		270
575		ASSIGN	2,1		270
576		RELEASE	UKL		270
577		UNL INK	UKB+UKS+1		270
	UL ST3	MACRO	UKL+UKI+UK0+UKH+UKT+V\$UKT+JKQ+FN\$DLC9+(080*1000)/X3		271
578		ASSIGN	3.FN\$DLC9		271
579	ίκl	SEIZE	UKO		271
580		LOGIC \$	UKI		271
581		GATE LR	UKI		271
582		RELEASE	UKO		271
5 83		DEPART	U KQ		271
584		TRANSFER	UK D		271
585	ыкн	ASSIGN	1.0		271
586		ASSIGN	2.0		271
587		ASSIGN	3.0		271
588		GATE IR			271
589		TRANSFER	• UK0		271
590	нкт		lik f		271
591		TERMINATE			271
- > 1	UKT	VADIADIE	1 00 0#1 0 001 / Y2		271
502					271
246	UNU CT1				273
5.0.2		MALKU	UEM ;UEU ;UED ;UEQ ;E>UE E;Y>UEQ ;E2 ; DUUQ ; D ; FN >NURM =1000		216
575	UL Q	1531 5			272
294		1231 E	r3,12,ULU		216

595		TEST L	Q\$ULQ,5,UL0	272
596		UEUE	U Lu	272
597		SPLIT	1.00 #	272
598		TEST E	2 2 1 3 U B	272
500		66176		272
277		30120		212
	ULQ	VARIABLE	FN\$NURM#1000	272
600		ADV ANCE	5000,V\$ULQ	272
601		LEAVE	I PS	272
602		ASSIGN	2.0	272
603		RELEASE	ΩÎH	272
	11 512	MACRO	118	272
404	66.012	TEST CE		273
604				215
605		ASSIGN	3 FRADECA	273
606		TRANSFER	, ULL	273
607	ULB	QU EU E	ULB	273
608		LINK	ULB,FIFO,ULS	273
609	UL S	TEST G	C H\$ ULB • 1	273
610		SE17E		273
611		DEPART		272
		VADIADIE		273
(ULL	VARIABLE		213
612		ADVANCE	2500, v \$ULL	273
613		ENTER	I PS	273
614		ASSIGN	2,1	273
615		RELEASE	ULL	273
616		UNLTINK	ULB -H4 S - 1	273
	ET2 B	MACRO		274
617	06315	ACCION		214
(10		ASSIGN		214
018	ULL	SEIZE	UED	214
619		LUGICS	ULI	274
620	·	GATE LR	ULI	274
621		RELEASE	ULO	274
622		DEPART		274
623		TRANSFER	-01.6	274
624		ASSIGN		274
476		ACCICN		217
025		ASSIGN		214
020		ASSIGN	3 0	274
627		GATE LR	ULI, ULI	274
62.8		TRANSFER	,ULD	274
629	LLT	LOGIC R	ULI	274
630		TERMINATE		274
	បរា	VARIABLE	(221 *1000)/ X3	274
631	uin	ADVANCE		274
		MACRO	1440 MAD MAD MAD AFUNA MADAA 12 5000 5 50510.041/200	275
124		TECT C	01111 0110 1 0110 1 0112 1 2 3 0112 1 2 3 0 012 1 2 1 2 0 0 2 3 2 4 No HOK 14 1 0 0 0	275
032	umų			215
633		1651 E	P 3,13,UNU	275
634		TEST L	Q\$UMQ,5,UMO	275
635		QUENE	UMQ	275
636		SPLIT	1 • UMH	275
637		TEST E	P 2 • 1 • UMB	275
638		SEIZE		275
	UMO	VARIABLE	ENSND##1000	275
4 2 0	0.14			213
V 10		ADVANCE		215
040		LEAVE	142	Z 75
641		ASSIGN	2,0	275
642		RELEASE	UMH	275
	ULST2	MACRO	UMB,UML,CH\$UMB,V\$UML,FN\$DEC9,UMS,2500,1,FN\$NORM*500	276
643		TEST GE	CH\$UMB.1.UMB	276

644		ASSIGN	3,FN\$DEC9	276
645		TRANSFER	, UML	276
646	UMB	O UE UE	Ú MB	276
647		LINK	UM8 FIFO, UMS	276
648	UMS	TEST G	CH\$UMB.1	276
649		SEIZE	UML	276
650		DEPART	UMB	276
•••	UMI	VARIABLE	ENS NORM #500	276
651	..	AQ VANCE	2500+V\$UML	276
652		ENTER	IPS	276
653		ASSIGN	2 • 1	276
654		RELEASE	UML	276
655		UNL INK	UMB • UMS • 1	276
	UL ST3	MACRO	UML .UMI .UMD .UMH .UMT .VSUMT .UMQ. FNSDL C9. (080*1000) /X3	277
656		ASSIGN	3.FNSDLC9	277
657	UME	SEIZE	UMO	277
658	•	LIGICS	UMT	277
659		GATE IR	UMT	277
660		RELEASE	U MO	277
661		DEPART	LIMO	277
662		TRANSFER		277
663	UMH	ASSIGN		277
664		ASSIGN	2.0	277
665		ASSIGN	3.0	277
666		GATE IR		277
667		TRANSFER	-1MU	277
668	LIMT	LOGICR		277
669	•	TERMINATE		277
00,	LIM T	VARIARIE	(080#10001/X3	277
670	JIMO ~	ADVANCE	VEINT	277
0.10		MACON	UNH UND UNB UND O \$100 V \$100 14 5000 5 EN \$128#1000	278
671	UNO	TECT E		278
672	UNE	TEST	P3.14.UNO	278
672		TEST		278
674				278
675			1.1104	278
676		TEST E	P2.1.1/NB	278
677		CE17E		278
• • •	UNO			278
679	UNE	ADVANCE	5000-V\$IIN0	278
679		IEAVE		278
680		ASSIGN	2.0	278
681		DELEASE	1114	278
001	10 ST2	MACRO	HNR -UNI -CHAUNR - VAUNE -ENADECO - UNS - 2500 -1 - ENANDOM#500	279
692	01312	TEST OF	CHSINE, 1. JINB	279
683		ASSTON	3.EN\$DEC9	279
684		TDANSEER		279
685	UNB		UNB	279
686	UND			279
687	UNS	TEST	C H\$UNB+ 1	279
688	0.10	SELZE	UNI	279
689		DEPART	LINB	217
	LINI		EN \$NDRM #500	279
690	JIL		2.50.0 × V \$11NI	279
691		ENTER	IPS	279
692		ASSIGN	2.1	279
693		RELEASE		279
		N L L L M J L		217

694		UNLINK		279	
	LLST3	MACRO	UNL + UNI + UND + UNH + UNT + V + UNT + J NG + F NSDE C9 + (080*100J)/X3	280	
695		ASSIGN	3 • FN \$DL C 9	280	
696	I NI	SEI 7E		280	
697	Q.V.L			280	
698		CATE IN		280	
699		DELEASE		200	
700		NELEASE		280	
700		JEPAP I		280	
701		TRANSFER		280	
702	UNH	ASSIGN		280	
703		ASSIGN	2,0	280	
7 04		ASSIGN	3.0	280	
705		GATE LR	UNI,UNT	280	
706		T R ANS F ER	, UNO	280	
707	UNT	LOGIC P	UNI	280	
708		TERMINATE		280	
	UNT	VARIABLE	(08 0 * 10 00) / X 3	280	
709	LNO	ADVANCE	VSUNT	280	
	UL ST1	MACRO	UGH, UGB, UGB, UGQ, Q\$UCC, V\$UCQ, 15, 5000, 5, FN\$NORM#1000	281	
710	100	TEST E	P1-1-100H	281	
711		TESTE	P3.15.000	281	
712		TEST	05100-5-100	281	
712				281	
714				201	
715				281	
715		1521 5		281	
/10		SEIZE		281	
	LUN	VARIABLE	F NS N(IK MET DOLO	281	
/1/		ADV ANCE	5000, V\$ 000	281	
718		LEAVE	I PS	281	
719	· · ·	ASSIGN	2,0	281	
720		RELEASE	UCH	281	
	UL ST2	MACRO	UCB #UDL #CH\$UDB#V \$UDL#FN\$DEC9#UDS#2500#1#FN\$NORM#500	2 82	
721		TEST GE	C H\$ UOB , 1 , UOB	282	
722		ASSIGN	3 • FN \$DEC9	282	
723		TRANSFER	, UO L	282	
724	UDB	QUEUE	UO3	282	
725		LINK	UCB-FIFO-UOS	282	
726	LOS	TE ST G	CH\$U08-1	2 82	
727		SEIZE	401	282	
72.8		DEPART		282	
	I DI	VARIABLE		282	
729	0,0	ADVANCE	250.4 \$101	282	
730		ENTER		282	
721		ASSICN	2.1	282	
727		A S S I G N C E		202	
732		NELEASE		202	
661	ULCTO	UNLINK		2.92	
7.7.	06213	MACRO	001,001,003,004,001,49011,000,FN90109,1326#100037X3	283	
134		ASSIGN	3, FN \$00009	283	
735	LCL	SEIZE		2 83	
736		LOGIC S	vol	283	
737		GATE LR	VCI	2 83	
738		RELEASE	068	283	
739		DEPART		283	
740		TRIANS FER	• UDC	283	اسا
741	LÜH	ASSIGN	1,0	2.83	5
742		ASSIGN	2,0	283	Ň
743		ASSIGN	3,0	283	
-					

7	44	GATE LR	UOI, UOT	283
7	45	TRANSFER	• UO D	2 8 3
7	46 UOT	LOGIC R	unt -	283
7	47	TERMINATE		283
	1.01	VADTABLE	(326±1000)/¥3	293
7	48 100			203
•			CDI CDG CDU CDA CDC CDG CDV D3F114 DV6CDV 000	205
7	AC SPET	TEST F	2 DC 1 2 DC 1 2 DC 1 3 DC 1 3 DC 1 3 DC 1 3 D 1 1 C 2 C 1 D 1 3 3 D 1 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	204
'	47 COV	1531 5		204
	304	DVAR IABLE		284
	50	1551 5	BV \$5 BV , 1,5 BC	284
-	51	IEST LE	Q\$LCR1,999,SBC	284
<u>'</u>	52	SPLIT	1,584	284
<u>'</u>	53	TRANSFER	, SBL	284
7	54 \$BA	ASSIGN	1,0	28 4
7	55	ASSIGN	2,0	284
7	56	ASSIGN	3,0	284
7	57	TRANSFER	, SBR	284
7	58 SBC	SPLIT	1,SBB	284
7	59	TRANSFER	+SBR	284
7	60 SBB	ASSIGN	1.0	284
7	61	ASSIGN	2.0	284
7	62	ASSIGN	3.0	284
7	63	TRANSEER	- SB I	284
7	64 SBH	SPLIT	1.SBI	284
7	55	TRANSFER	SAR	284
1	CDIT.	2 MACRO	1905 SBL VESBY 1098±10001/V3	204
	CPY	VADTABLE	1008+10001/23	202
7	66 CDI	ADVANCE		209
7	47 301	TDANCE		203
'	01 COLT	IKANSPEK		285
	SPLIS	A MACKU	5 DT #MCK # 5 DK # V # 5 DT # (100 # (100) / X 3	286
-	284	VARIABLE	(150*1000)/X3	286
<u>-</u>	68 SBK	AUVANCE	AZRA	286
	64	TRANSFER	MLK	286
_	GLST	LMACRO	UPH ,UPU ,UPB , UPQ , Q\$UPQ , V \$UPQ , 16 , 1000 , 70 , FN \$NORM * 200	287
<u>'</u>	70 UPQ	TEST E	P1,1,UPH	287
<u> </u>	71	TEST E	P3,16,UP0	287
7	72	TESTL	Q\$UPQ,70,UPC	287
7	73	QUEUE	UPQ	287
7	74	SPLIT	1 • J PH	287
7	75	TEST E	P2,1,UPB	287
7	76	SEIZE	UPH	287
	UPQ	VARIABLE	FN\$NDRM *200	287
7	דל	AD VANCE	1000, V\$ UPQ	287
7	78 .	LEAVE	IPS	287
7	79	ASSIGN	2,0	287
7	80	RELEASE	UPH	287
	ULST	2 MACRO	UPB,UPL,CH\$UPB,V\$UPL,FN\$DECT,UPS,2000,1,FN\$NBRM*400	288
7	81	TEST GE	CH\$UP8.1.UPB	288
7	82	ASSIGN	3 FNSDECT	288
7	83	TRANSFER	UPL	288
7	84 UPB	QUEUE	UP8	288
7	85	LINK	UPB +FIFO+UPS	200
7	86 UPS	TEST G	CHSUPB.1	200
7	87	SEL7E		200
7	88	DEPART	LIPB .	200
		VADIARIE	EN\$ NORM #400	200
. 7	89		2 00 0 . VS UPI	200
		AU TAINUL		200

.

	790		ENTER	IPS	288	
	791		ASSTON	2.1	288	
	792		DELEACE		200	
	700		ACLEAS :		200	
	193		UNLINK	048 +042 +1	288	
		ULST3	MACRU	UPL, UPI, UPB, UPH, UPT, V\$ LPT, UPQ, FN\$DLCT, {256+1000}/X3	289	
	794		ASSIGN	3,FN\$DLCT	289	
	795	I P I	SEIZE		289	
	704				200	
	770				207	
	191		GATE LK	01	289	
	798		RELEASE	UPO	289	
	799		DEPART	UPu	289	
	800		TRANSFER	• UPG	289	
	801	пры	ASSIGN		289	
	001	0111	ACCION		200	
	802		ASSIGN	2.0	289	
	803		ASSIGN	3,0	289	
	804		GATE LR	UPI, UPT	289	
	805		TRANSFER	• UP 0	289	
	806	I PT	INGTO R	11PT	289	
	907		TEDMINATE		200	
	007		TERMINATE		259	
		011	VARIABLE	(255*1000)/X3	289	
	808	LPO	A D VA NC E	V\$UPT	289	
	809		TR AN SEER	, MC O	290	
		MERG1	MACRO	MCX + MCH + MCA + MCB + MCC + MCD + MCC + MCG + MCR	291	
	81.0	NCD	LOGICS		201	
	011		CATE IS		201	
	011		GATE LS		291	
	812		LUGIC S	MCB	291	
	813		GATE LS	MCC	291	
	814		TEST E	Р 1, 1, МСН	291	
	815		LOGIC S	MCA	291	
	81.6		PRIORITY	0-BUEEER	291	
	017		OD LODITY		201	
	010		PRIORITY		201	
	818		PRIURITY	0,BUFFER	291	
	819		PRIORITY	1	291	
	820	MCX	LOGIC R	MCD	291	
	821		LOGIC R	MCA	291	
	822		LOGIC R	MCB	291	
	823		LOCIC 8	N CC	291	
	023		TRANSCER		201	
	027		TRANSFER		291	
	825	MCO	LUGIC S	MCE	291	
	826		GATE LS	MCR , MCX	291	
	827		LOGIC S	MCC	291	
	828		GATELS	MCB	291	
	829		TEST E	PlaitERM	291	
	820				201	
	030				2.71	
	0.21		PRIORITY		291	
	832		PRICRITY	1	291	
		MERG 2	MACRD	MCX,MCH,MCF,MCV,BV\$MCV,LS\$MCA+LS\$MCD,MCQ,MCP,MCT,MCG	292	
	833		GATE NU	M CQ + M CQ	292	
		MCV	BVARTABLE	L S\$ MCA * L S \$M CD	292	
	834		TEST E	B VS MC V - 1 - MC P	202	
	035	нсо			202	
	057	nuy	NO EU E		676	
	050		LINK		2.92	
	837	MCF	SEIZE	MCQ	292	
	838		LOGIC S	MCF	292	
	839		GATE LR	MCF	292	5
	840		DEPART	MCO	292	12
•	841		RELEASE		292	-
	U • 4		NUL LADI		- / -	

842		UNI TNK	MCE.MCE.1	292
843		TRANSFER	MCX	292
844	MC P	LOGICS	MCF	292
845		TRANSFER	- MC X	292
846	MCH	PRIGRITY	0 - BUFFFR	297
847		PRINRITY	1	202
848		PRIORITY	D. BUEFER	202
849		PRIDRITY	1	292
850		GATE IP		272
851		TRANSFER		292
852	NC T	INGIC P		272
853	FC 1	TERMINATE		2 7 2
854	NCG		0	272
0.74	MERCE	MACED	MCS_V&MCS_(275*1000)/Y3	272
	MCS	VADIABLE		2 73
	HC 3	ADVANCE		293
675	CO1 71	AUVANCE	¥ 37 L3	293
054	38611	MACKU	201 12CK 12CH 12CH 22CH 22CH 22CH 122. GE. 11 462. C. 41 BA 22CA 1444	294
870	6.6.14	IESI E		294
	SUV	BVARIABLE	P3* GE*17+P3*L*9	294
857		IEST E	BV\$ SCV, 1, SCC	294
858		TEST LE	Q SL CR 1, 999, SCC	294
859		SPLIT	1,SCA	2 94
860		TR AN SF ER	, SC L	294
861	SCA	ASSIGN	1,0	294
862		ASSIGN	2,0	294
863		ASSIGN	3,0	294
864		TRANSFER	+SCR	294
865	SCC	SPLIT	1,SCB	294
866		TRANSFER	• SCR	294
867	\$C8 ~	ASSIGN	1,0	294
868		ASSIGN	2,0	294
869		ASSIGN	3,0	294
870		TRANSFER	+ SCL	2 94
871	SCH	SPLIT	1,SCL	294
872		TRANSFER	• SCR	294
1 - C C C C C C C C	SPLT2	MACRO	SCX, MDR, SCL, V \$SCX, (165+1000)/X3	295
	SC X	VARIABLE	(165+1000)/x3	295
873 .	SCL	ADV ANCE	V \$SCX	295
874		TRANSFER	• MD R	2 95
	SPLT3	MACRO	SCY+TAA+SCR+V\$SCY+(060*1000)/X3	296
	SCY	VARIABLE	(050*1000)/X3	296
875	SCR	AD VANCE	V\$SCY	296
87.6		TR AN SEER	• TA A	296
877	TAA	TEST E	P2.1.TRA	297
878		TABULATE	RFC1	298
879	TκΔ	TRANSFER	- MB()	299
	ME RG1	MACRO		300
880	MDR	LOGIC S	MoR	300
881	11213	GATE IS	MDE-MDX	300
82		LOGICS	MDA	300
883		GATE IS	MDC	300
884		TEST E	P1.1.MOH	300
885				300
886			A_BUESED	300
897			1 1	300
001				300
000			U BOULLER	300
007		PRIUKITY	1	300

890	MD X	LOGIC R	MDD	300
891		LUGIC R	MDA	300
892		LOGIC R	MCB	300
893		LOGIC P	MDC	300
894		TRANSFER	, MDG	300
895	MDO	LOGIC S	MDE	300
896		GATE LS	MOR . MO X	300
897		LOGIC S	MDC	300
898		GATE LS	MDB	300
899		TEST E	P1.1.TERM	300
900		LOGICS	MDD	300
901		PRIORITY	0,BUFFER	300
902		PRIORITY	1	300
	FERG2	MACRO	MCX + MDH + MDF + M DV + BV \$M DV + L S\$MDA *L S\$MDD + MDQ + MDP + MD T + MDG	301
903		GATE NU	MDQ, MDQ	301
	MCV	BVAR IABLE	LS\$MDA #LS\$MDD	301
904		TEST E	BV\$MDV,1,MDP	301
905	MDQ	QUEUE	MDQ	301
906		LINK	MDF, FIFO, MDF	301
907	₽DF	SEIZE	MDO	301
908	-	LOGIC S	MDF	301
909		GATE LR	MDF	301
910		DEPART	MDO	301
911		RELEASE	MDU	301
912		UNL INK	MDF.MDF.1	301
913		TRANSFER	MDX	301
914	MOP	LOGIC S	MDF	301
915		TRANSFER	+ MDX	301
916	MOH	PRIORITY	0.BUFFER	301
917	~	PRIORITY	1	301
918		PRIORITY	0.BUFFER	301
919		PRIDRITY	1	301
920		GATE LR	MDF, MDT	301
921		TRANSFER	, MDX	301
922	MD T	LOGIC R	MDF	301
923		TERMINATE		301
924	MDG	ADV ANCE	0	301
	MERG 3	MACRO	MDS,V\$MDS,(267#1000)/X3	302
	MÐS	V AR I ABL E	(267*1000)/X3	30 2
925		ADVANCE	V\$MDS	302
	UL ST1	MACRO	UQH, UQU, UQB, UQQ, Q\$UQQ, V\$UQU, 17, 2000, 35, FN\$NORM*400	303
. 926	UQQ	TEST E	P1, 1, UQH	303
927		TEST E	P3,17,UQC	3 03
928		TEST L	Q\$UQQ,35,UQD	303
929		QUEUE	UQU	303
930		SPLIT	1 JUQH	303
931		TEST E	P 2, 1, UQB	303
932		SEIZE	UGH	303
	LQQ	VARIABLE	F N\$ NORM*4 00	303
933		ADVANCE	2000, V\$ UQQ	303
934		LEAVE	IPS	303
935		A S S'I G N	2,0	303
936		RELEASE	UQH	303
	ULST2	MACRO	UQB,UQL,CH\$UQB,V\$UQL,FN\$DECR,UQS,2500,1,FN\$NDRM*50C	304
937		TEST GE	CH\$ UQB, 1, UQB	304
938		ASSIGN	3.FN\$DECR	304
939		TRANSFER	,UQL	3 04

940	UQB	QUEUE	U 🕼	304
941		LINK	UQB FIFO,UQS	304
942	UQS	TEST G	CH\$UQB, 1	304
943		SEIZE	U GL	304
944		DEPART	UQB	304
	UOL	VARTABLE	EN \$ N08M #500	304
945		ADVANCE	250.4 \u00e4	304
946		ENTER		304
947		ASSTON	2 · 1	304
04 9				304
940				304
747		MACOO	UND FUND SEL	304
05.0	01313	ASSICH	04110411040104110411104110441104411046110227 10001175	305
950	úA	A 3 3 1 GM		305
951	UQL	35125		303
952				205
953		GATE ER		305
954		RELEASE		305
955		DEPARI		305
956		TRANSFER	1040 - 1040	3 05
957	UQH	ASSIGN	1,0	305
958		ASSIGN	2,0	305
959		ASSIGN	3,0	305
960		GATE LR	UGI,UQT	305
961		TRANSFER	,000	305
962	LQT	LOGIC R	UQI	305
963		TERMINATE		305
•	UQT	VARIABLE	{325*1000}/X3	305
964	000	ADVANCE	V\$UQT	305
	ULSTI	MACRO	URH, URD, URB, URQ, Q\$URQ, V\$URQ, 18, 2000, 35, FN\$NORM#400	306
9.65	URO ~	TEST E	P1.1.URH	306
966		TEST E	P3.18.URD	306
967		TEST L	9\$JR0.35.UR0	306
96.8		QUEUE	180	306
969		SPLIT		306
97.0		TEST E		306
071		56176		306
711	1180			306
072	Ung			306
072	•			306
915		LEAVE	175	308
974		ASSIGN		300
412		RELEASE		306
	01512	MACKU	URB ; URC ; CHS URB ; VSURL ; FNSDEC R ; URS ; 2500 ; I ; FNSNBRM #500	307
976		IESI GE	CH\$URB, I, UKB	307
977		ASSIGN	3 JFN\$DECR	307
978		TRANSFER	, UR L	307
979	URB	QU EU E	URB	307
980		LINK	URB •F IF C • URS	307
981	UR S	TEST G	CH\$URB,1	307
982		SEIZE	URL	307
983		DEPART	URB	307
	URL	VARIABLE	FN\$NORM#500	307
984		ADVANCE	2500, V \$URL	307
985		ENTER	IPS	307
986		ASSIGN	2,1	307
987		RELEASE	U RL	307
988		UNLINK	URB +URS +1	307
	ULST3	MACRO	URL + URI + URO + URH + URT + V\$ URT + URU + EN\$ DLCR + (325*1000) /X3	308
				500

989		ASSIGN	3,FN\$DLCR	308
990	URL	SEIZE	UBO	308
991		LOGIC S	UBI	308
992		GATE LR	UBI	308
993		RELEASE	U 80	308
994		DEPART	UB9	3 0 8
995		TRANSEER	- 180	308
996	URH	ASSIGN	1-0	308
997	••••	ASSIGN	2.0	308
998		ASSIGN	3-0	308
999		GATE IP		308
1000		TRANSFER		308
1001	LIRT			308
1002	0.01	TERMINATE		308
1002		VADIAGLE	1 22 5 # 1 0001 / 22	308
1003		ADVANCE		308
1003		MACOO	Υ 2014 Η 50 Η 1150 Η 1150 - 1050 - 1051 - 1051 - 1052 - 2000 - 255 ΕΝ (ΕΝΟΡΜΦΑΛΟ)	3.09
1004		TECT E	02 1 020102010201020102010301030113120001221 Lutingram	200
1004	0.50	1531 5		300
1005				200
1006			20024-35-050	309
1007		QUEUE		309
1008		SPLIT	I,USH	309
1009		IESI E		309
1010		SEIZE	054	309
	050	VARIABLE		309
1011		ADVANCE	2000, V\$ USQ	309
1012		LEAVE	IPS	309
1013		ASSIGN	2,0	309
1014		RELEASE	USH	309
	UL STZ	MACRO	USB,USL,CH\$USB,V\$USL,FN\$DECR,USS,2500,1,FN\$NORM*500	310
1015		TEST GE	CH\$USB,1,USB	310
1016		ASSIGN	3 • F N\$ DECR	310
1017		TRANSFER	, USL	310
1018	USB	QUEUE	USB	310
1019		LINK	USB +F1F0+USS	310
1020	USS	TEST G	CHSUSB+1	310
1021		SEIZE	USL	310
1022		DEPART	U SB	310
	USL	VARIABLE	EN\$NORM #500	310
1023		ADVANCE	2500,V\$USL	310
1024		ENTER	IPS	310
1,025		ASSIGN	2,1	310
102 E		RELEASE	USL	310
10'27		UNL1NK	USB,USS,1	310
	ULST3	MACRO	USL, US I, USD, USH, UST, V\$UST, USQ, FN\$DLCR, { 193*1000} /X3	311
1028		ASSIGN	3 FNS DLCR	311
1029	USL	SEIZE	U Sù	311
1030		LOGIC S	USI	311
1031		GATE LR	USI	311
1032		RELEASE	U SO	311
1033		DEPART		311
1034		TRANSFER	, USO	311
1035	USH	ASSIGN	1,0	311
1036		ASSIGN	2,0	311
1037		ASSIGN	3.0	311
1038		GATE LR	USI.UST	311
1035		TRANSFER	•US 0	311

1041 TERMINATE UST VARIABLE (193±1000)/X3 1042 USC ADVANCE V\$UST SPLT1 MACRO SOL, SDR, SDH, SDA, SDC, SDB, SDV, P3*E*0, BV\$S DV, 36 1043 TEST E P1, 1, SDH SDV BVARIABLE P3*E*0 1044 TEST E BV\$S DV, 1, SDC 1045 TEST LE USC RC, SDC 1046 SPLIT 1, SDA 1047 TRANSFER, SDL 1048 SDA ASSIGN 1,0 1049 ASSIGN 2,0 1050 ASSIGN 3,0 1051 TRANSFER, SDR 1052 SDC SPLIT 1,SDB 1054 SDB ASSIGN 1,0	
UST VARIABLE (193*1000)/X3 1042 USC ADVANCE V\$UST SPLT1 MACRO SDL, SDR, SDH, SDA, SDC, SDB, SDV, P3*E*0, BV\$SDV, 36 1043 TEST E P1, 1, SDH SDV BVARIABLE P3*E*0 1044 TEST E BV\$SDV, 1, SDC 1045 TEST LE U\$LCR1, 36, SDC 1046 SPLIT 1, SDA 1047 TRANSFER, SDL 1048 SDA ASSIGN 1,0 1048 SDA ASSIGN 2,0 1050 ASSIGN 3,0 1051 TRANSFER, SDR 1052 SDC SPLIT 1, SDB	511
1042 USC ADVANCE V\$UST SPLT1 MACRO SOL, SDR, SDH, SDC, SDB, SDV, P3'E'O, BV\$S DV, 36 1043 TEST E P1, 1, SDH SDV BVARIABLE P3'E'O 1044 TEST E B v\$SDV, 1, SDC 1045 TEST LE Q vt CR1, 36, SDC 1046 SPLIT 1, SDA 1047 TRANSFER , SDL 1048 SDA ASSIGN 1049 ASSIGN 2,0 1050 ASSIGN 3,0 1051 TRANSFER , SDR 1052 SDC SDL 1053 TRANSFER , SDR 1054 SDB ASSIGN 1055 SDB ASSIGN	311
SPLT1 MACRO SDL, SDR, SDH, SDA, SDC, SDB, SDV, P3' E*0, BV\$SDV, 36 1043 TEST E P1, 1, SDH SDV BVARIABLE P3' E*0 1044 TEST E B v\$SDV, 1, SDC 1045 TEST LE UK CR1, 36, SDC 1046 SPLIT 1, SDA 1047 TRANSFER SDL 1048 SDA ASSIGN 1049 ASSIGN 1,0 1045 TRANSFER SDL 1046 SDA ASSIGN 1047 TRANSFER SDL 1048 SDA ASSIGN 1049 ASSIGN 1,0 1049 ASSIGN 2,0 1050 ASSIGN 3,0 1051 TRANSFER SDR 1052 SDC SPLIT 1,5DB 1052 SDE SDR SDR 1054 SDB ASSIGN 1,0	311
1043 TEST E P1,1,SDH SDV BVARIABLE P3'E'O 1044 TEST E BV\$SDV,1,SDC 1045 TEST LE USCR1,36,SDC 1046 SPLIT 1,SDA 1047 TRANSFER, SDL 1048 SDA ASSIGN 1049 ASSIGN 2,0 1050 ASSIGN 2,0 1051 TRANSFER, SDR 1052 SDC SDB 1053 TRANSFER, SDR 1054 SDB ASSIGN	312
SD v BVARIABLE P3*E*0 1044 TEST B V\$SUV.1, SDC 1045 TEST LE USLCR1, 36, SDC 1046 SPLIT 1, SDA 1047 TRANSFER , SDL 1048 SDA ASSIGN 1,0 1049 ASSIGN 2,0 1050 ASSIGN 3,0 1051 TRANSFER , SDR 1052 SDC SDR 1053 TRANSFER , SDR 1054 SDB ASSIGN	312
1044 TEST E B v\$ SD v, 1, SDC 1045 TEST LE Q & CR1, 36, SDC 1046 SPLIT 1, SDA 1047 TRANSFER , SDL 1048 SDA ASSIGN 1,0 1049 ASSIGN 2,0 1050 ASSIGN 3,0 1051 TRANSFER , SDR 1052 SDC SPLIT 1, SDB 1053 TRANSFER , SDR 1054 SDB ASSIGN 1,0	312
1045 TEST LE Q\$LCR1,36,SDC 1046 SPLIT 1,SDA 1047 TRANSFER,SDL 1048 SDA ASSIGN 1049 ASSIGN 1,0 1045 ASSIGN 2,0 1050 ASSIGN 3,0 1051 TRANSFER,SDR 1052 SDC SPLIT 1053 TRANSFER,SDR 1054 SDB ASSIGN	312
1046 SPLIT 1,5DA 1047 TRANSFER,5DL 1048 SDA 1047 ASSIGN 1048 SDA 1049 ASSIGN 1050 ASSIGN 1051 TRANSFER,5DR 1052 SDC 1053 TRANSFER,5DR 1054 SDB 1055 SDB 1054 SDB	312
1047 TRANSFER ,SDL 1048 SDA ASSIGN 1,0 1049 ASSIGN 2,0 1050 ASSIGN 3,0 1051 TRANSFER ,SOR 1052 SDC SPLIT 1,5DB 1053 TRANSFER ,SOR 1054 SDB ASSIGN 1,0	312
1048 SDA ASSIGN 1,0 1049 ASSIGN 2,0 1050 ASSIGN 3,0 1051 TRANSFER ,SDR 1052 SDC SPLIT 1,SDB 1053 TRANSFER ,SDR 1054 SDB ASSIGN 1,0	312
1045 ASSIGN 2,0 1050 ASSIGN 3,0 1051 TRANSFER ,SDR 1052 SDC SPLIT 1,SDB 1053 TRANSFER ,SDR 1054 SDB ASSIGN 1,0	312
1050 ASSIGN 3,0 1051 TRANSFER,SDR 1052 SDC SPLIT 1,SDB 1053 TRANSFER,SDR 1054 SDB ASSIGN 1,0	312
1051 TRANSFER ,SDR 1052 SDC SPLIT 1,SDB 1053 TRANSFER ,SDR 1054 SDB ASSIGN 1,0	312
1052 SDC SPLIT 1,SDB 1053 TRANSFER,SDR 1054 SDB ASSIGN 1,0	312
1053 TRANSFER , SDR 1054 SDB ASSIGN 1,0	312
1054 SDB ASSIGN 1,0	312
	312
1055 ASSIGN 2,0	312
1056 ASSIGN 3,0	312
1057 TRANSFER ,SDL	312
1058 SDH SPLIT 1,SDL	312
1059 TRANSFER, SDR	312
SPLT2 MACRO SCX,NTR,SDL,V \$\$ DX,(313 \$1000 }/X3	313
SDX VAPIABLE (313+1000)/X3	313
1060 SDL ADVANCE V \$SDX	313
1061 TRANSFER INTR	313
SPLT3 MACRO SDY,TAB,SDR,V\$SDY,(142*1000)/X3	314
SDY VARIABLE (142*1000)/X3	314
1062 SDR - AD VANCE V\$SDY	314
1063 TRANSFER , TAB	314
1064 TAB TEST E P2,1,TRB	315
1065 TABULATE REC2	316
1066 TRB TRANSFER ,MAR	317
1067 GENERATE 120000	318
1068 TERMINATE 1	319
START 1	320
RESET	321
START 10,,2	322
END	323

THIS IS SNAP 5 DF 5

	RELATI	VE CLECK	1203	IOOO ABSO	LUTE CLOC	СК	1320000									
	BLOCK	CUDENTS	TOTAL		IDCCNT	TOTAL	41.704	CURRENT	TOTAL	01.05%	CHAR CHT	TOTAL			TOTAL	
	1	a	10146	11	JAREN I	TUTAC		LUKKENI	TOTAL	BLUCK	LURKENT	TUTAL	BLUCK		TUTAL	
	1	ç	0	11	ů.	(.).07	21	0	0	31	Ű	591	41	5	248	
	2	č	ů,	12	0	4007	22		U	12	0	597	42	0	598	
	2	0	0	13	0	4007	23	U		33	0	598	43	0	598	
	4	0	U U	14	0	3410	24	J	4007	34	0	598	44	0	599	
•	5	3	0	15	0	0	25	0	1194	35	0	598	45	0	599	
	6	0	0	16	0	0	Z 6	0	597	36	0	598	46	0	599	
	7	0	0	17	a	ა	27	0	597	37	1	598	47	0	599	
	8	0	15125	18	ں ا	4007	28	0	597	38	0	598	48	0	599	
	9	0	4000	19	0	0	29	0	4007	39	0	598	49	3	4007	
	10	С	4000	20	0	ა	30	Û	3408	40	0	598	50	Ö	4006	
	BLCCK	CUPRENT	TOT AL	BLUCK C	JARENT	TOTAL	BLOCK	CURRENT	TOTAL	вноск	CURRENT	TOT AL	BUDCK C	IRFENT	TOTAL	
	51	o	4007	61	0	4007	71	0	598	81	0	636	91	13	447	
	52	C	4007	62	0	4007	72	õ	598	82	ň	636	67	ő	347	
	53	ō	4007	63	ā	4007	73	ő	509	92	ŏ	636	02	õ	4 2 9	
	54	č	4007	66	õ	4007	74	ă	598	20	0	636	73	0	(30	
	55	õ	4007	4.6	õ	4007	76	0	370	04	U U	030	94	J	658	
	55	0	4007		0	4007	(5	0	13	85	0	2	95	0	4007	
	50	U	3360	66	U U	4005	76	0	596	86	0	2	96	5	4007	
	57	U U	3360	67	J	4006	17	0	596	87	0	647	97	0	4006	
	58	0	3360	68	0	4006	78	0	636	88	0	647	98	0	3997	
	59	0	3360	69	о	4007	. 79	1	636	89	0	6 47	99	Ö	134	
	60	o	3360	70	0	4007	80	0	636	90	0	647	100	0	134	
	BLOCK	CURRENT	TOTAL	elo c k ci	J R R EN T	TOTAL	BLOCK	CURRENT	TOTAL	BLOCK	CURRENT	TOTAL	BLOCK C	URRENT	TOTAL	
	101	0	268	111	0	26	121	1	26	131	0	143	141	0	151	
	102	ō	134	112	ó	26	122	ō	132	132	õ	11	142	ň	114	
	103	c	108	113	õ	26	123	ĩ	132	133	õ	1 3 2	143	ă	114	
	104	ñ	108	114	õ	26	124	· .	132	133		132	145	5	114	
	105	õ	1.00	115	ě	20	. 125	0	132	1.34	ç	132	144	0	115	
	100	0~	100	115	0	25	125	0	132	135	2	4005	145	0	115	
	105	U	108	116	0	26	126	0	132	1 36	0	4007	146	0	115	
	107	0	108	117	0	26	127	0	132	137	0	3996	147	0	115	
	108	Û	108	118	0	26	128	0	143	138	0	151	148	0	115	
	109	0	108	119	0	26	129	0	143	139	0	151	149	2	115	
	110	3	108	120	1	26	130	0	143	140	0	302	150	0	37	
	BLOCK	CURRENT	TOTAL	BLOCK C	JRRENT	TOTAL	вгоск	CURRENT	TOTAL	ві оск		TOTAL	BLOCK		τοτοι	
	151	0	37	161	0	150	1 71	0	12	1.81	0	104	191	0	32	
	152	õ	37	162	ĩ	150	172	ň	150	1 82	ő	104	102	õ	32	
	163	ň	27	142	ò	150	172	č	150	102		104	102	ő	32	
	154	ŏ		105	ě	150	1/3		190	185	U	105	195		32	
	104	0	27	104	0	150	174	29	4007	184	0	105	194	1	32	
	155	U	31	165	0	150	175	0	4006	185	0	105	195	3	32	
	156	0	37	166	0	150	176	o	3994	136	0	105	196	υ	32	
	'157	0	37	167	0	162	177	0	137	1 87	o	105	197	0	32	
	158	ა	37	168	0	162	178	0	137	188	0	1 05	198	o	32	
	159	1	37	169	0	152	179	0	274	189	0	33	199	ż	32	
	160	0	37	170	0	16 Z	180	0	137	1 90	Ō	33	200	ō	136	
	BL OCK	CURRENT	TOTAL	BLOCK C	JRRENT	TOTAL	BLOCK	CURRENT	TOTAL	81.004		TOTAL	BLOCK C		TOTAL	
	201	1	136	211	0	134	221		87	221		5 1 ML	341		130	
	202	÷	136	212	õ	124	221	č	07	201	0	23	241	3	1 2 0	
	202	ň	1 1 3 4	212	21	4004	222	0	5 r	232	0	23	242	5	134	
	204	0	136	21.5	21	4005	223	U	81	233	0	53	243	0	138	
	204	Ű	130	214	U	4006	224	U	87	234	U	53	244	0	138	
	205	U	136	215	0	3993	225	J.	87	235	0	53	245	0	153	
	206	0	149	216	0	140	226	0	87	236	0	53	246	0	153	
	207	0	149	217	0	140	227	1	87	237	1	53	247	0	153	
	208	o	149	21.8	0	280	228	0	53	238	1	53	248	0	153	
	209	0	149	219	o	140	229	0	53	239	0	138	249	ò	15	
	210	0	13	220	э	87	230	0	53	240	1	138	250	õ	138	
								-			-			-		
	-															
									•							

280 1 125 270 0 27 28J 0 157 290 J 157 300 0 102 BLCCK CURRENT TOTAL BLOCK CURRENT	BLCCK CURRENT 251 0 252 22 253 0 254 0 255 0 256 0 257 0 258 0 259 0	TOT AL 138 4006 3990 162 162 324 162 125	BLOCK CURRENT 261 0 262 0 263 0 264 0 265 0 266 3 267 0 268 0 269 0	TO TAL 124 124 124 124 124 124 124 37 37	BLOCK CURRENT 271 0 272 0 273 0 274 0 275 0 276 1 277 1 278 0	TOTAL 37 37 37 37 37 37 37 157	BLOCK CURRENT 281 0 282 0 283 0 284 0 285 0 286 0 286 0 287 0 288 0 289 0	T OT AL 157 157 157 178 178 178 178 178 21	BLOCK CURRENT 291 6 293 J 294 O 295 O 296 O 296 O 297 J 298 J	TOTAL 4006 3985 145 145 290 145 102
308 0 +3 318 1 143 328 0 143 338 0 118 346 0 51 310 6 +3 319 0 143 330 7 4006 340 0 118 350 0 51 310 6 +3 320 0 143 330 7 4006 340 0 118 350 0 51 310 0 164 371 0 392 381 0 103 391 0 63 353 0 51 361 0 162 377 0 165 382 0 103 392 0 63 355 1 51 366 0 192 377 0 105 385 0 62 396 0 162 357 1 168 367 0 168 377 0 103 387 0 62 396 162 396 162 396 1	260 1 BLCCK CURRENT 301 0 302 0 303 0 304 0 305 2 306 0 307 0	125 TOTAL 102 102 102 102 102 43 43	270 0 BLOCK CUPRENT 311 J 312 0 313 0 314 0 315 1 316 1 317 0	37 TOTAL 43 43 43 43 43 43 43 143	230 0 BLOCK CURRENT 321 0 322 0 323 0 324 0 325 0 326 0 327 0	157 157 TOTAL 143 143 166 166 166 166 23	290 J BLOCK CURKENT 331 0 332 0 333 0 334 0 335 0 336 0 337 0	157 157 TOTAL 4007 3984 169 169 338 169 118	234 J 300 0 BLDCK CURRENT 341 0 342 0 343 J 344 2 345 0 346 0 346 0 346 0	102 102 TOT AL 118 118 118 118 51 51
355 1 51 365 0 192 375 0 165 385 0 62 395 0 162 357 1 168 366 0 168 377 0 103 387 0 62 397 0 162 357 1 168 367 0 168 377 0 103 387 0 62 396 0 162 359 0 168 370 0 4006 380 0 103 389 0 62 396 0 162 360 0 168 370 0 4006 380 0 103 389 0 62 396 0 162 360 0 189 411 0 692 421 0 3287 431 0 4006 444 0 4006 444 0 4006 444 0 4006 445 0 4006 445 0 4006 445 0 4006	308 0 309 0 310 C BLCCK CURRENT 351 0 352 0 353 0 254 1	43 43 43 TCTAL 51 51 51 51	318 1 319 0 320 0 BLOCK CURRENT 361 0 362 0 363 0 364 0	143 143 143 TOT AL 168 192 192 192	328 0 329 0 330 7 BLOCK CURRENT 371 0 372 0 373 0 374 0	143 143 4006 TDTAL 3982 165 165 330	338 0 339 0 340 0 BLOCK CURRENT 381 0 382 0 383 1 384 0	118 118 118 TOTAL 103 103 103 62	348 0 349 0 350 0 BLOCK CURPENT 391 0 392 0 393 1 394 3	51 51 51 63 63 53 63
402 0 107 411 0 602 721 0 3287 431 0 4006 441 0 4006 403 0 189 413 0 692 423 0 3287 433 0 4006 444 0 4006 403 0 189 413 0 692 424 0 54 434 0 4006 443 0 4006 444 0 4006 404 0 189 413 0 692 424 0 54 434 0 4006 443 0 4006 446 0 4006 406 0 162 417 0 692 427 0 4006 436 0 694 4446 0 4006 408 4 4006 418 0 6574 428 3 4006 438 0 694 448 0 4006 410 0 3979 420 0 3287 430	355 1 356 0 357 1 358 0 359 0~ 360 0 BLOCK CURRENT 0	51 168 168 168 168 168 TOTAL	365 0 366 0 367 0 368 0 369 6 370 0 ELOCK CURRENT	192 24 168 168 4007 4006	375 0 376 0 377 0 378 0 379 0 380 0 BLOCK CURRENT	165 103 103 103 103 103 103	385 0 386 0 387 0 388 0 389 0 390 0 BLOCK CURRENT	62 62 62 62 63 TOTAL	395 0 396 1 397 0 398 0 399 0 400 0 BLOCK CURRENT	162 162 162 162 162 162 162
410 0 3979 420 0 3287 430 0 4006 440 0 4006 450 0 255 BLCCK CURRENT TOTAL BLOCK CURRENT <t< td=""><td>402 0 403 0 404 0 405 0 406 0 407 0 408 4 409 0</td><td>189 189 189 27 162 162 4006</td><td>412 0 413 0 414 0 415 0 416 0 416 0 417 0 418 0 419 0</td><td>692 1384 692 692 692 692 692 6574 3267</td><td>$\begin{array}{cccc} 421 & 0 \\ 422 & 0 \\ 423 & 0 \\ 425 & 0 \\ 425 & 0 \\ 426 & 11 \\ 427 & 0 \\ 428 & 3 \\ 429 & 0 \\ \end{array}$</td><td>3287 3287 3287 54 27 4006 4005 4005</td><td>$\begin{array}{cccc} 431 & 0 \\ 432 & 0 \\ 433 & 0 \\ 434 & 0 \\ 435 & 0 \\ 436 & 0 \\ 437 & 0 \\ 438 & 0 \\ 439 & 0 \\ \end{array}$</td><td>4006 4006 4006 694 694 694 694</td><td>441 0 442 0 443 0 444 0 445 0 445 0 446 0 447 0 448 0 449 0</td><td>4008 4006 4006 4006 4006 4008 4006 4006</td></t<>	402 0 403 0 404 0 405 0 406 0 407 0 408 4 409 0	189 189 189 27 162 162 4006	412 0 413 0 414 0 415 0 416 0 416 0 417 0 418 0 419 0	692 1384 692 692 692 692 692 6574 3267	$\begin{array}{cccc} 421 & 0 \\ 422 & 0 \\ 423 & 0 \\ 425 & 0 \\ 425 & 0 \\ 426 & 11 \\ 427 & 0 \\ 428 & 3 \\ 429 & 0 \\ \end{array}$	3287 3287 3287 54 27 4006 4005 4005	$\begin{array}{cccc} 431 & 0 \\ 432 & 0 \\ 433 & 0 \\ 434 & 0 \\ 435 & 0 \\ 436 & 0 \\ 437 & 0 \\ 438 & 0 \\ 439 & 0 \\ \end{array}$	4006 4006 4006 694 694 694 694	441 0 442 0 443 0 444 0 445 0 445 0 446 0 447 0 448 0 449 0	4008 4006 4006 4006 4006 4008 4006 4006
456 0 66 466 0 3312 476 0 4006 486 0 41 496 0 21 457 0 66 467 0 3312 477 0 961 487 0 41 497 0 21 458 0 65 468 0 3312 478 0 62 488 0 41 499 0 21 459 0 66 469 0 3312 479 0 62 488 0 41 499 1 21 460 0 66 470 0 3312 480 0 124 490 0 21 500 21 460 0 66 470 0 3312 480 0 124 490 0 21 500 21 8LCCK CURRENT TOTAL BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL 501	410 BL CCK CURRENT 451 0 452 C 453 0 454 0 455 0	3979 TÜTAL 255 255 255 255 247 66	420 0 BLOCK CURRENT 461 0 462 0 463 0 464 0 465 0	3287 TOTAL 66 66 189 189	430 0 BLOCK CURRENT 471 0 472 0 473 0 474 0 475 19	4006 TOTAL 3057 255 255 4006 4006	440 0 BLDCK CURRENT 481 0 482 0 483 0 484 0 485 0	4006 TOTAL 62 41 41 41 41	453 J BLOCK CURRENT 491 J 492 O 493 J 494 J 495 J	255 TOTAL 21 21 21 21 21 21
	456 0 457 0 458 0 459 0 460 0 BLCCK CURRENT 501 0	66 66 66 66 TOT AL 62	466 0 467 0 468 0 469 0 470 0 BLOCK CURRENT 511 0	3312 3312 3312 3312 3312 3312 TO TAL 3045	476 0 477 0 478 0 479 0 480 0 BLUCK CURRENT 521 0 522 0	4006 961 62 124 TOTAL 40	486 0 487 0 488 0 489 0 493 0 BLOCK CURRENT 531 0	41 41 41 21 T OT AL 23	496 0 497 0 498 0 499 1 500 0 BLOCK CUPRENT 541 0	12 21 21 21 21 21 21 53

567 0 3107 517 0 64 527 u 4.0 538 1 23 548 0 510 0 3107 518 0 23 538 1 23 548 0 510 0 3107 510 0 125 529 0 23 533 0 23 540 0 650 0 650 0 651 0 541 0 541 0 541 0 541 0 541 0 541 0 541 0 541 0 541 0 545 0 19 551 0 149 554 0 545 0 119 556 0 3093 595 0 555 0 556 0 319 3778 0 19 556 0 3093 596 0 3093 596 0 3099 596 0 3093<	505 506	0 0	6 2 62	515 516	0 0	4006 963	525 526	0	40 40	535 536	0 0	23 23	545 546	0 0	310	
508 0 3107 518 0 63 528 0 40 538 1 23 546 0 510 0 3107 520 0 63 530 0 23 533 0 63 530 0 BLCCK CURRENT 0 54 551 0 54 551 0 55 0 551 0 54 551 0 55 0 551 0 55 0 55 0 55 0 55 0 55 0 55 0 555 0 555 0 555 0 555 0 555 0 555 0 56 0 35 577 0 10 586 0 3033 597 0 19 586 0 3033 597 0 19 586 0 3033 597 0 19 586 0 3033 597 0 19 586 0 3033 597 0 19 586 0	507	0	3107	517	ა	64	527	ú	· 40	537	J	23	547	0	310	
509 0 3107 519 0 120 529 0 23 539 0 23 549 0 BLCCK CURKENT TOTAL ELOCK CUPRENT TOTAL	508	0	3107	518	0	63	528	0	40	538	1	23	548	0	310	
510 0 3107 520 u 63 530 0 23 540 0 63 550 0 BLCCK CUMRENT TOTAL BLOCK CURRENT TOTAL	509	0	3107	519	0	126	529	0	23	539	0	23	549	à	310	
BLECK CUPRENT TOTAL BLECK CUPRENT	510	0	3107	520	U	63	530	0	23	540	0	63	550	Ō	3 04	
351 0 54 551 0 10 10 10 581 0 54 591 0 355 4 64 562 0 355 577 0 10 582 0 54 593 0 54 593 0 54 593 0 54 593 0 54 593 0 54 593 0 54 595 0 355 0 10 576 0 19 576 0 19 576 0 19 577 0 54 560 0 10 577 0 54 560 0 10 577 0 54 560 0 10 56 560 0 10 577 0 54 560 0 56 0 30 303 590 0 56 0 56 0 303 590 0 56 0 0 56 <td>BLCCK</td> <td>CURRENT</td> <td>TOTAL</td> <td>BLOCK C</td> <td>UPRENT</td> <td>TOTAL</td> <td>BLOCK C</td> <td>URRENT</td> <td>TOTAL</td> <td>BLOCK</td> <td>CURRENT</td> <td>TOTAL</td> <td>BLOCK</td> <td>CURRENT</td> <td>TOTA</td>	BLCCK	CURRENT	TOTAL	BLOCK C	UPRENT	TOTAL	BLOCK C	URRENT	TOTAL	BLOCK	CURRENT	TOTAL	BLOCK	CURRENT	TOTA	
352 0 -64 562 0 35 572 0 16 582 0 54 592 3 355 0 667 585 0 35 575 0 19 585 0 3093 595 0 555 0 667 585 0 35 575 0 19 586 0 3093 595 0 556 0 10 577 0 587 0 3093 596 0 556 0 15 5560 0 19 577 0 54 588 0 3033 593 0 3033 593 0 0 55 560 0 19 577 0 54 500 0 3033 593 0 0 56 0 0 303 563 0 3033 563 0 0 0 56 0 0	551	0	54	561	υ	35	571	0	19	581	о	54	591	0	5	
323 4 4006 563 0 35 573 0 19 583 0 54 593 0 555 0 974 566 0 35 575 0 19 585 0 393 595 0 557 0 54 566 0 355 577 1 19 586 0 393 595 0 558 0 108 588 0 3093 599 0 54 569 0 339 599 0 54 600 0 54 600 0 54 600 600 600 641 0 24 622 0 72 632 11 600 644 613 0 24 624 0 3108 635 0 77 644 0 645 0 76 647 0 666 0 76 672 0 3108 <td>552</td> <td>0</td> <td>64</td> <td>562</td> <td>0</td> <td>35</td> <td>572</td> <td>0</td> <td>19</td> <td>582</td> <td>0</td> <td>54</td> <td>592</td> <td>3</td> <td>400</td>	552	0	64	562	0	35	572	0	19	582	0	54	592	3	400	
222 U 4006 564 U 35 574 O 19 584 D 334 594 D 555 0 94 566 0 35 577 1 19 586 D 3033 596 0 556 0 106 568 0 19 578 0 3033 597 0 550 0 54 560 0 19 578 0 3033 597 0 550 0 54 560 0 54 590 0 54 500 0 54 500 0 54 500 0 54 500 0 54 500 0 54 500 0 54 500 57 0 303 975 643 0 72 643 0 72 643 0 77 644 0 660 0 560 152	553	4	4006	563	0	35	573	0	19	5 83	0	54	593	0	400	
225 0 967 355 575 0 19 586 0 3033 595 0 557 0 54 568 0 35 577 1 9 586 0 3033 596 0 559 0 54 569 0 355 570 0 19 576 0 586 0 3033 596 0 560 0 35 570 0 19 579 0 54 590 0 54 600 0 56 600 0 54 600 64 0 64 0 64 0 62 0 72 631 11 607 64 0 64 0 64 0 62 0 72 632 0 176 64 0 66 0 152 54 0 16 637 0 16 637 0 16 </td <td>254</td> <td>U</td> <td>4006</td> <td>564</td> <td>U U</td> <td>35</td> <td>574</td> <td>0</td> <td>19</td> <td>584</td> <td>0</td> <td>54</td> <td>594</td> <td>0</td> <td>97</td>	254	U	4006	564	U U	35	574	0	19	584	0	54	594	0	97	
325 0 32 360 0 35 376 0 10 585 0 3033 596 0 355 0 16 566 0 15 579 0 545 590 3033 597 0 550 0 355 570 0 19 580 0 54 590 0 54 590 0 54 600 0 54 600 0 560 0 54 590 0 54 600 0 560 0 11 601 641 0 24 621 0 72 633 0 975 643 0 662 0 100 633 0 77 643 0 77 643 0 77 644 0 77 643 0 76 77 643 0 76 77 643 0 76 647 0 10	555	0	961	565	0	35	575	0	19	585	0	3093	595	0	_	
256 0 32 256 0 32 276 1 1 266 0 3043 274 0 559 0 35 577 0 19 579 0 54 599 0 3043 544 00 8LDCK CURRENT TOTAL BLCCK CURRENT TOTAL BLCCK CURRENT TOTAL BLCCK CURRENT 641 0 601 0 46 611 0 24 621 0 72 631 11 4007 641 0 602 0 46 613 0 24 623 0 72 631 11 4407 643 0 605 0 44 615 1 24 625 0 3108 635 0 176 643 0 607 0 24 617 0 24 627 0 3108 638 0 47 649	200	Ű	24	200	0	32	270		19	285	U	3093	596	0	'	
550 0 150 0 14 250 0 3033 250 0 BLOCK CURRENT TUTAL BLOCK CURRENT TOTAL BLOCK CURRENT TO 440 0 644 0 152 643 0 77 644 0 152 645 0 152 645 0 152 645 0 152 645 0 152 645 0 152 645 0 152 645 0 152 646 0 152 646 0	558	0	109	567	0	10	570	1	19	507	Ů	3093	597	U	14	
560 0 75 203 0 19 200 0 54 560 0 54 560 0 54 560 0 54 560 0 54 560 0 54 560 0 54 560 0 54 560 0 54 560 0 54 560 0 54 560 0 54 560 0 54 560 0 54 560 0 560 560 600 641 0 24 622 0 72 631 0 77 643 0 77 644 0 605 0 645 0 77 644 0 605 0 46 615 0 27 623 0 3108 635 0 67 645 0 645 0 645 0 77 644 0 77 644 0 77 646 0 <t< td=""><td>559</td><td>ů</td><td>54</td><td>500</td><td>0</td><td>19</td><td>570</td><td>Ů</td><td>19</td><td>500</td><td>0</td><td>3030</td><td>590</td><td>0</td><td></td></t<>	559	ů	54	500	0	19	570	Ů	19	500	0	3030	590	0		
BLOCK CURRENT TOTAL BLOCK CURRENT	560	õ	35	570	ŏ	19	580	ŏ	54	590	0	54	600	0	2	
601 0 48 611 0 24 621 0 72 631 11 4007 641 0 603 0 48 613 0 24 623 0 72 633 0 975 643 0 604 0 48 615 0 24 622 0 3108 635 0 76 644 0 606 0 48 616 1 24 627 0 3108 635 0 76 647 0 608 0 24 618 0 72 629 0 72 633 0 47 648 0 609 0 24 616 0 72 629 0 72 633 0 47 649 0 610 0 24 620 0 76 671 0 77 649 0 45 691 0 45 691 0 655 0 29 664 0<	BLOCK	CURRENT	TOTAL	BLGCK C	URRENT	TOTAL	BLÚCK C	URRENT	TOTAL	HLOCK	CURRENT	TOTAL	BLOCK	CURRENT	τοτ/	
602 0 46 612 0 24 622 0 72 632 0 4006 642 0 603 0 48 613 0 24 623 0 72 633 0 77 644 0 605 0 48 615 0 24 625 0 3108 635 0 152 646 0 606 0 48 616 1 24 627 0 3108 636 0 152 646 0 607 0 24 616 0 72 629 0 72 639 0 47 649 0 610 0 24 610 0 75 672 0 977 682 0 45 691 0 691 0 691 0 691 0 691 0 691 0 691 0 <td< td=""><td>601</td><td>0</td><td>48</td><td>611</td><td>0</td><td>24</td><td>621</td><td>0</td><td>72</td><td>631</td><td>11</td><td>4007</td><td>641</td><td>0</td><td></td></td<>	601	0	48	611	0	24	621	0	72	631	11	4007	641	0		
603 0 48 613 0 24 623 0 72 633 0 975 645 0 604 0 48 615 0 24 625 0 3108 635 0 77 646 0 606 0 48 616 1 24 627 0 3108 636 0 152 646 0 607 0 24 617 0 24 627 0 3108 637 0 76 647 0 608 0 24 618 0 72 629 0 72 639 0 47 649 0 610 0 24 620 75 672 0 977 682 0 47 649 0 651 0 29 661 3 76 671 0 70 681 0 45 692 0 653 0 29 662 3107 675 140 686 25	602	ō	48	612	Ó	24	622	0	72	632	0	4006	642	้อ		
604 0 48 614 0 24 624 0 3108 634 0 77 644 0 605 0 48 615 0 24 625 0 3108 635 0 75 645 0 607 0 24 617 0 24 627 0 3108 635 0 75 646 0 609 0 24 615 0 72 630 0 72 639 0 47 648 0 610 0 24 615 0 72 630 0 72 643 0 47 649 0 610 0 24 661 0 76 672 0 77 682 0 45 691 0 653 0 45 692 0 655 0 25 663 0 107 676	603	0	48	613	ò	24	623	ō	72	633	ō	975	643	ō	4	
605 0 48 615 0 24 625 0 3108 635 0 76 645 0 606 0 24 616 1 24 626 0 3108 635 0 76 647 0 608 0 24 618 0 72 623 0 3036 638 0 47 646 0 609 0 24 610 72 629 0 72 639 0 47 646 0 647 648 0 650 0 75 672 0 77 662 0 47 649 0 653 0 3107 673 0 72 683 0 45 692 0 655 692 0 655 0 3107 675 0 70 686 0 25 695 0 655 633 0 76	604	0	48	614	0	24	624	0	3108	634	0	77	644	ō		
606 0 48 616 1 24 627 0 3108 636 0 152 646 0 607 0 24 617 0 24 627 0 3108 637 0 76 647 0 609 0 24 616 0 72 629 0 72 640 0 47 648 0 610 0 24 612 0 72 630 0 72 640 0 47 650 0 651 0 29 661 0 76 671 0 470 681 0 45 691 0 651 < <th>0 29 664 0 3107 673 0 72 683 0 45 693 0 654 0 29 666 0 3107 675 0 160 70 686 0 25 695 0 656 0 29 666 0 3107 676 0 70</th>	0 29 664 0 3107 673 0 72 683 0 45 693 0 654 0 29 666 0 3107 675 0 160 70 686 0 25 695 0 656 0 29 666 0 3107 676 0 70	605	0	48	615	0	24	625	0	3108	635	0	76	645	С	4
607 0 24 617 0 24 627 0 3108 637 0 76 647 0 609 0 24 618 0 72 629 0 72 639 0 47 649 0 610 0 24 620 0 72 630 0 72 640 0 47 649 0 651 0 29 661 0 76 671 0 4006 661 0 45 692 0 652 C 29 662 0 75 672 0 977 682 0 45 692 0 653 U 29 664 0 3107 675 0 140 685 0 25 693 0 26 697 0 656 0 25 695 0 656 0 25 697 <td< td=""><td>606</td><td>a</td><td>48</td><td>616</td><td>1</td><td>24</td><td>626</td><td>3</td><td>3108</td><td>636</td><td>0</td><td>152</td><td>646</td><td>0</td><td>2</td></td<>	606	a	48	616	1	24	626	3	3108	636	0	152	646	0	2	
608 0 24 618 0 72 629 0 72 639 0 47 648 0 610 0 24 615 0 72 630 0 72 640 0 47 649 0 610 0 24 620 0 72 630 0 72 640 0 47 649 0 610 0 24 620 0 72 630 0 72 640 0 47 649 0 651 0 29 661 0 76 671 0 4006 681 0 45 691 0 653 0 29 664 0 3107 675 0 140 685 0 25 697 0 656 0 29 666 0 3107 675 0 140 688 0 2	607	0	24	617	0	24	62 7	0	3108	637	o	76	647	U	1	
609 0 24 610 0 72 639 0 47 649 0 610 0 24 620 0 72 630 0 72 640 0 47 649 0 651 0 29 661 0 76 672 0 977 682 0 45 692 0 652 C 29 663 0 3107 674 0 72 683 0 45 692 0 654 0 29 665 0 3107 674 0 72 683 0 45 693 0 655 1 29 665 0 3107 676 0 70 685 0 25 696 0 656 0 76 677 0 45 687 0 26 697 0 26 697 0 26 699 0 26 699 0 26 699 0 23 741<	608	0	24	618	٥	72	628	0	3036	6 38	0	47	648	υ	2	
610 0 24 620 0 72 640 0 47 650 3 BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL BLOCK	609	0	24	61 9	-0	72	629	0	72	639	0	47	649	U	2	
BLOCK CURRENT TOTAL BLOCK CURRENT	610	U	24	620	0	12	630	0	72	640	0	47	650	С		
651 0 29 661 0 76 672 0 977 682 0 45 691 0 653 0 29 663 0 3107 673 0 72 683 0 455 692 0 654 0 29 663 0 3107 673 0 72 683 0 455 693 0 655 1 29 665 0 3107 675 0 70 684 0 45 695 0 656 0 29 665 0 3107 676 0 70 686 0 25 695 0 657 0 76 667 0 3031 677 0 45 688 0 26 698 0 658 0 76 670 4 4006 680 0 45 690 26 709 0 660 0 76 670 4 4006 680	BLOCK	CURRENT	TOTAL	BLOCK C	URRENT	TOTAL	BLOCK C	URRENT	TOTAL	BLOCK	CURRENT	TOTAL	BLOCK	CURRENT	TO TA	
C 12 C 27 662 0 15 673 0 77 683 0 45 693 0 653 0 29 664 0 3107 673 0 70 684 0 45 693 0 655 1 29 666 0 3107 675 0 140 685 0 25 695 0 656 0 29 666 0 3107 675 0 140 685 0 25 696 0 657 0 76 667 0 3031 677 0 45 688 0 26 698 0 659 0 76 669 76 679 0 45 689 0 26 699 0 26 699 0 26 690 0 26 690 26 710 0 23 741 0 23 741 0 23 741 0 23 741 0 <th< td=""><td>651</td><td>0</td><td>29</td><td>661</td><td>J</td><td>76</td><td>671</td><td>0</td><td>4006</td><td>681</td><td>5</td><td>45</td><td>691</td><td>Ű</td><td></td></th<>	651	0	29	661	J	76	671	0	4006	681	5	45	691	Ű		
653 0 27 663 0 3107 674 0 72 683 0 473 693 0 655 1 29 665 0 3107 675 0 140 685 0 25 695 0 656 0 29 666 0 3107 675 0 140 685 0 25 695 0 656 0 76 667 0 3031 677 0 45 687 0 26 697 0 659 0 76 667 4 4006 680 0 45 690 0 26 699 0 660 0 76 670 4 4006 680 0 45 690 0 26 699 0 701 0 72 111 0 92 731 0 23 741 0	652		27	662	0	31.07	672	Ŭ	911	682	Ů	45	692	0		
657 0 27 0 645 0 3107 675 0 160 685 0 25 695 0 656 0 29 666 0 3107 675 0 160 685 0 25 696 0 657 0 76 667 0 3031 677 0 45 688 0 26 697 0 659 0 76 669 0 76 679 0 45 689 0 26 699 0 660 0 76 679 0 45 689 0 23 741 0 701 0 72 711 0 962 721 0 52 731 0 23 741 0 702 0 3099 713 0 75 723 0 52 733 1 23 744 <t< td=""><td>654</td><td>0</td><td>29</td><td>666</td><td>0</td><td>3107</td><td>615</td><td>U</td><td>70</td><td>665</td><td></td><td>47</td><td>673</td><td>0</td><td></td></t<>	654	0	29	666	0	3107	615	U	70	665		47	673	0		
656 0 20 666 0 3107 675 0 70 686 0 25 696 0 657 0 76 667 0 3031 677 0 45 687 0 26 697 0 658 0 76 669 0 76 679 0 45 688 0 26 698 0 660 0 76 679 0 45 689 0 26 699 0 660 0 76 670 4 4006 680 0 45 690 0 26 699 0 702 0 72 711 0 982 723 0 52 733 1 23 744 0 703 0 3099 714 0 153 724 0 23 734 0 23 744 0 <th< td=""><td>655</td><td>ĭ</td><td>29</td><td>665</td><td>ň</td><td>3107</td><td>675</td><td>ŏ</td><td>140</td><td>685</td><td>0</td><td>25</td><td>695</td><td>1</td><td></td></th<>	655	ĭ	29	665	ň	3107	675	ŏ	140	685	0	25	695	1		
657 0 76 667 0 3031 677 0 45 687 0 26 697 0 658 0 76 679 0 45 688 0 26 699 0 660 0 76 679 0 45 688 0 26 699 0 660 0 76 670 4 4006 680 0 45 690 0 26 700 0 8LCCK CURRENT TOTAL 8LOCK CURRENT TOTAL 8LOCK CURRENT TOTAL 8LOCK CURRENT TOTAL 8LOCK CURRENT 701 0 23 741 0 703 3099 713 0 75 723 0 52 733 1 23 744 0 704 3099 714 0 150 725 0 23 735 0 75 745 0 76 76 70 72	656	ō	29	666	ő	31.07	676	ō	70	686	ő	25	696	ŏ		
658 0 76 668 0 76 679 0 45 688 0 26 698 0 659 0 76 679 0 45 688 0 26 698 0 660 0 76 670 4 4006 680 0 45 689 0 26 699 0 8LCCK CURRENT TOTAL 8LOCK CURRENT	657	õ	76	667	õ	3031	677	õ	45	687	ő	26	697	õ		
659 0 76 669 0 76 679 0 45 689 0 26 699 0 660 0 76 670 4 4006 680 0 45 699 0 26 700 26 700 0 8L CCK CURRENT TOTAL 8LOCK CURRENT </td <td>€58</td> <td>0</td> <td>76</td> <td>668</td> <td>Ó</td> <td>76</td> <td>679</td> <td>õ</td> <td>45</td> <td>688</td> <td>ō</td> <td>26</td> <td>698</td> <td>0</td> <td></td>	€58	0	76	668	Ó	76	679	õ	45	688	ō	26	698	0		
660 0 76 670 4 4006 680 0 45 690 0 26 7UJ 0 8L CCK CURRENT TGTAL 8LOCK CURRENT TOTAL 8LOCK 23 T35 0 T5 T44 0 706 0 3027 718 0 <td< td=""><td>659</td><td>o</td><td>76</td><td>669</td><td>0</td><td>76</td><td>679</td><td>Ō</td><td>45</td><td>689</td><td>õ</td><td>26</td><td>699</td><td>ō</td><td>-</td></td<>	659	o	76	669	0	76	679	Ō	45	689	õ	26	699	ō	-	
BLCCK CURRENT TGTAL BLOCK CURRENT TGTAL BLOCK CURRENT TGTAL BLOCK CURRENT TOTAL BLOCK CURRENT	66 0	0	76	670	4	4006	680	0	45	690	Ō	26	700	ō	7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BL CCK	CURRENT	TOTAL	8LOCK C	URRENT	TO TAL	BLOCK C	URRENT	TOTAL	BLOCK	CURRENT	TOTAL	BLOCK	CURRENT	то ти	
102 C 3099 712 0 77 722 0 52 732 0 23 742 0 703 0 3099 713 0 75 723 0 52 733 1 23 743 0 704 C 3099 714 0 150 724 0 23 734 0 23 744 0 705 0 3099 715 0 75 726 0 23 736 0 75 745 0 706 0 3027 716 0 52 726 0 23 737 0 75 746 0 706 72 717 0 52 728 0 23 737 0 75 749 0 709 3 4006 719 0 52 729 0 23 739 0 75 749 0 710 C 4007 770 0 52 730	701	U U	72	711	0	982	721	0	52	731	0	23	741	3	310	
103 0 3099 713 0 75 723 0 52 733 1 23 743 0 104 C 3099 714 0 153 724 0 23 734 0 23 744 0 105 0 3099 715 0 75 725 0 23 735 0 75 746 0 106 0 3027 716 0 52 726 0 23 736 0 75 746 0 1070 72 717 0 52 727 0 23 737 0 75 747 0 109 3 4006 719 0 52 729 0 23 739 0 75 749 0 75 749 0 75 749 0 75 749 0 75 75 0 75 75 0 75 75 0 75 75 0 75 75 0 </td <td>702</td> <td>U D</td> <td>3099</td> <td>712</td> <td>5</td> <td>11</td> <td>722</td> <td>0</td> <td>52</td> <td>732</td> <td>0</td> <td>23</td> <td>742</td> <td>0</td> <td>31(</td>	702	U D	3099	712	5	11	722	0	52	732	0	23	742	0	31(
705 0 3097 714 0 153 724 0 23 734 0 23 744 0 705 0 3027 716 0 52 726 0 23 735 0 75 745 0 706 0 3027 716 0 52 726 0 23 736 0 75 745 0 707 0 72 717 0 52 728 0 23 737 0 75 746 0 708 0 72 718 0 52 729 0 23 739 0 75 743 0 709 3 4006 719 0 52 729 0 23 739 0 75 749 0 710 C 4007 720 52 730 0 23 740 0 75 750 0 751 0 749 761 0 232 772	703	0	3099	713	0	75	123	ő	52	733	1	23	743	2	310	
705 0 3077 716 0 52 726 0 23 736 0 75 746 0 707 0 72 717 0 52 726 0 23 736 0 75 746 0 708 0 72 718 0 52 727 0 23 738 0 75 747 0 708 0 72 718 0 52 729 0 23 739 0 75 749 0 710 0 52 729 0 23 740 0 75 749 0 710 0 52 730 0 23 740 0 75 749 0 710 0 52 730 0 23 740 0 75 750 0 8LCCK CURRENT TOTAL 8LOCK CURRENT TOTAL 8LOCK CURRENT TOTAL 8LOCK CURRENT 710 0 378 791 0	705	Č	3099	714	0	153	726	0	23	734	U a	23	744	0	311	
TOT O TO D D TO D D TO D S2 TZ9 O Z3 T39 O T5 T48 L6 709 3 4006 719 0 52 729 O 23 739 O 75 749 D 710 C 4007 720 O 52 730 O 23 740 O 75 750	706	õ	3027	716	ŏ	52	726	0	23	736	0	75	745	0	50	
TOB O T2 T18 J 52 T28 D 23 T38 O T5 T48 L6 709 3 4006 719 0 52 729 0 23 738 0 75 749 D 710 C 4007 720 J 52 730 J 23 739 0 75 749 D 710 C 4007 720 J 52 730 J 23 74J D 75 750 D 8LCCK CURRENT TOTAL 8LOCK CURRENT TOTAL 8LOCK CURRENT TOTAL 8LOCK CURRENT TOTAL 8LOCK CURRENT 761 0 752 781 0 378 791 D 752 0 1498 762 0 232 772 0 752 782 0 378 793 1 753 0 749 763 0 232 773 0 752 783	707	õ	72	717	ő	52	727	õ	23	737	o o	75	767			
709 3 4006 719 0 52 729 0 23 739 0 75 749 0 710 C 4007 720 0 52 730 0 23 739 0 75 749 0 710 C 4007 720 0 52 730 0 23 740 0 75 749 0 BLECK CURRENT TOTAL BLOCK CURRENT TOTAL BLOCK<	748	õ	72	718	ŭ	52	72.8	ă	23	7 38	ő	75	748	16	40	
710 C 4037 720 J 52 730 J 23 740 0 75 750 0 BLCCK CURRENT TOTAL BLOCK CURRENT TOTAL TOTAL BLOCK CURRENT TOTAL TOTAL BLOCK CURRENT TOTAL BL	709	3	4006	719	õ	52	729	õ	23	739	ŏ	75	749		40/	
BLECK CURRENT TOTAL BLOCK CURRENT TOTAL PLOCK CU	71 C	C	4007	720	5	52	730	งั	23	740	õ	75	750	ō	9,	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BLCCK	CURRENT	TOTAL	BLOCK C	UKRENT	TOTAL	SLOCK C	URRENT	TOTAL	BLOCK	CURRENT	TOTAL	BLOCK	CURRENT	TOT.	
752 0 1498 762 0 232 772 0 752 782 0 378 792 0 753 0 749 763 0 232 773 0 752 783 0 378 793 1 754 0 749 764 0 6053 774 0 1504 784 0 377 794 0 755 0 749 765 0 3025 775 0 752 785 0 377 795 0 756 0 749 766 5 4006 776 0 377 785 0 379 796 0	751	0	749	761	ü	232	771	J	752	781	0	378	791	3	31	
153 U 749 763 C 232 773 O 752 783 O 378 793 1 754 U 749 764 U 653 774 O 1504 784 O 377 794 U 755 U 749 765 O 3025 775 O 752 785 O 377 794 U 756 U 749 765 O 3025 775 O 752 785 O 377 795 O 756 U 749 766 5 4006 776 U 377 786 O 377 796 U	752	0	1498	762	0	2 3 2	772	0	752	782	0	378	792	0	3	
755 0 749 765 0 3025 776 0 752 785 0 377 796 0 755 0 749 765 0 3025 775 0 752 785 0 377 795 0 756 0 749 766 5 4006 776 0 377 786 0 376 796 0	753	0	749	763	0	232	773	0	752	783	0	378	793	1	3 :	
756 0 749 766 5 4006 776 0 377 786 0 379 796 0	154	U	744	164	J	6050	114	0	1504	784	0	377	794	J	3'	
	100	U O	749	765	<u> </u>	3025	115	0	152	105	0	311	795	0		
	120	0	747	100	2	4005	110	J	511	185	0	319	196	0	15	
758 0 466 758 7 4006 111 U 311 161 U 317 191 0 758 0 466 758 7 4006 778 0 378 788 0 379 799 0	759	0	464	768	7	4006	779	U O	211	799	0	379	171	ů n		
759 D 232 769 U 4005 779 U 318 789 U 377 799 U	759	ő	232	769	á	4005	779	a	378	7,00	0	379	799		71	
760 0 232 770 0 4005 780 0 378 790 0 380 adu u	760	õ	232	770	ŏ	4005	780	õ	378	790	ŏ	380	800	ŭ	7	

BLECK	URRENT	TOTAL	ELUCK C	UPRENT	TOTAL	BLOCK	CURPENT	TOTAL	BLOCK	CURRENT	TOTAL	BLOCK	CURPENT	TOTAL
801	0	4006	811		4000	821	0	. 4006	5 31	0	762	841	0	85
802	õ	4000	813	ő	4005	823	ň	4306	833	5	762	542	0	50
804	õ	4006	814	å	4005	824	ŏ	4006	834	ő	739	844	ő	679
805	ō	3247	815	้อ	232	825	õ	4006	835	ŏ	83	845	ŏ	679
£C6	0	759	816	ò	232	826	Ó	4006	836	. 0	83	846	õ	3774
807	ð	759	817	0	232	527	0	4006	837	0	84	847	0	3774
808	12	4006	818	Э	232	828	0	4006	838	0	84	848	٥	3774
603	0	4006	819	0	232	329	0	4006	8 39	0	85	849	0	3774
810	0	4006	820	U	4006	830	0	762	940	0	85	850	0	3774
BLOCK	URRENT	TOTAL	BLOCK C	UPRENT	TOTAL	BLOCK	CURRENT	TOT AL	BLOCK	CURRENT	TOTAL	BLOCK	CURRENT	TOTAL
871	<u> </u>	3010	861	U	748	871	0	6006	891	0	4306	891	0	4006
652	0	764	862	0	748	872	0	3003	882	1	4005	892	0	4006
854	õ	4006	864	ő	745	874	0	4005	894	0	4006	895	0	4006
855	13	4006	865	õ	510	375	3	4006	885	õ	750	895	ő	4006
856	ō	4006	866	ō	2 5 5	876	ō	4006	886	õ	7 50	896	ŏ	4006
857	0	1003	867	ð	255	877	ō	4006	887	ō	750	897	ŏ	4006
85 8	C	748	858	С	2 5 5	878	J	158	888	0	750	898	0	4006
859	0	1496	869	0	2 5 5	879	0	4006	889	0	750	899	0	4006
860	0	748	870	٥.	255	880	0	4006	890	0	4006	900	0	3285
BLOCK	CURRENT	TOTAL	BLOCK C	URRENT	TOTAL	BLOCK	CURRENT	TOTAL	BLOCK	CURRENT	TOTAL	BLOCK	CURRENT	TOTAL
901	0.	3285	911	0	3211	921	Ő	28	931	. 0	72	941	ິ	34
903	0	2282	912	0	3211	922	5	3228	516	0	38	942	U O	54
905	ő	3205	915	0	3211	924	0	5228	935	0	20	943	0	
505	ŭ	32 68	915	Ď	17	925	12	4006	935	0	38	945	ő	34
906	0	3268	916	ō	3256	92.6	0	4007	936	ō	38	946	. Ĵ	34
907	0	3211	917	0	3256	927	0	3977	937	Ō	38	947	Ō	34
908	1	3211	918	0	3256	928	0	72	938	0	38	948	0	34
909	0	3211	919	0	3256	929	0	72	939	0	38	949	1	34
\$10	0	3211	920	0	3256	930	o	144	940	0	34	950	2	34
BLCCK	CURRENT	TOT AL	BLOCK C	URRENT	TOTAL	BLOCK	CURRENT	TOTAL	BLOCK	CURRENT	T OT AL	BLUCK	CURRENT	TOTAL
401 652	1	70	951	J	33 40	971	ů	40	981	Ů	35	991	1	10
953	0	69	902	ő	69	372	0	40	202	0	35	772	0	79
\$54	ŏ	69	964	16	4007	974	ŭ	46	984	ő	35	994	0	79
955	õ	69	965	õ	4006	975	ő	46	985	ő	36	995	ŏ	79
956	0	69	966	0	3967	976	Ō	46	986	ō	36	996	õ	120
957	U	1 02	967	0	81	977	0	46	987	ō	36	997	õ	120
958	0	102	968	0	81	978	2	46	988	1	36	998	0	120
959	0	102	969	э	162	979	0 -	35	989	0	36	999	0	120
, 960	Ú	1 J2	970	o	81	990	0	35	990	0	80	1000	0	41
BLCCK (URRENT	T OT AL	BLOCK C	UKRENT	TOTAL	BLOCK	CURRENT	TOTAL	BLOCK	CURRENT	TOTAL	BLOCK	CURFENT	TOTAL
1001	0	79	1011	J	21	1021	5	41	1031	0 Â	73	1041	0	73
1002	15	4.006	1012	0	21	1022	ů	47	1032	0	73	1042	10	4007
1004	ó	4003	1014	õ	27	1024	ŏ	48	1034	0	ני רק	1045	0	3950
1 005	õ	3554	1015	ວັ	27	1025	ŏ	48	1035	ő	116	1045	ă	3401
1006	Û	73	1016	Ū	27	1026	Š	48	1035	ŏ	116	1 346	, J	1194
1007	0	73	1017	1	27	1 02 7	1	48	1037	ō	116	1047	อ	597
1 008	0	146	1018	Э	46	1028	υ	48	1038	0	115	1048	ō	597
1009	0	73	1 61 9	υ	45	1029	ა	74	1039	υ	43	1049	. o	597
1010	0	27	1020	0	47	1030	1	74	1040	0	73	1050	0	597
BLOCK (URRENT	TOTAL	BLOCK C	URRENT	TOTAL	BLGCK	CURRENT	TOTAL	BLOCK	CURRENT	TOTAL	9F OC'K	CURPENT	TOTAL
1051	Ű	597	1061	0	4007									
1052	L	0124	1062	6	4005									
1054	n n	3362	1065	0	4007									
10/7	•	2.36	1004	v	4007									
-														

1 C 5 5	b	3352	1065	0	354
1 C5 6	0	3362	1066	°	4001
1 C5 7	0	3362	1067	0	10
1 6 5 8	0	46	1 06 8	D	01
1059	0	47			
1060	14	4006			

USER	CHAIN	TOTAL	AVERAGE	CURRENT	AVERAGE	MAXIMUM
		ENTRIES	T IME/TRANS	CONTENTS	CONTENTS	CONTENTS
	LCH	635	76435.312	37	40.447	49
	MAF	637	14715.570	12	7.811	52
	UAB	27	46452.109	1	1.045	3
	UBB	38	33656.050	1	1.065	3
	UCB	35	36299.199	3	1.058	3
	UCB	54	24330.218	1	1.094	3
	UEB	38	33540.234	1	1.062	3
	UFB	44	29287.203	1	1.073	3
	UGB	52	25216.613	1	1.092	4
	UHB	64	20988.765	1	1.119	4
	MBF	8	150,000		•000	1
	UIB	22	57106.589	1	1.046	3
	UJB	24	52664.707	1	1.053	4
	UKB	20	62443.097	1	1.040	2
	UL B	25	50614.878	1	1.054	3
	UMB	30	42445.632	1	1.061	3
	UNB	28	45502.890	· 1	1.064	4
	L08	24	52507.582	1	1.050	3
	UPB	381	19270.898	1	6.118	32
	MCF	24	60.625		.001	1
	MDF	3252	18859.996	58	51.110	71
۲. ۲	UQB	35	36844.054	1	1.074	3
	URB	37	34907 .726	1	1.076	3
	USB	49	271 00.753	1	1.106	3

FACIL ITY	AVERAGE UTILIZATION	NUMBER ENT FIES	A VERAGE T IME/TRAN 2 102 - 328	SEIZING TRANS• NO•	PREEMPTING TRANS. NO.		
LCHI	- 076	599	153.505	451			
MAG	.986	637	1857.466	116			
ŲAH	.359	1 38	3990.925				
UAL	.044	26	2042.269				
UAC	.967	133	8725.304	91			
UBH	• 382	115	3995.773				
	.001	151	7711 085	21			
UCH	. 346	105	3959-856	51			
UCL	•054	33	1971.272	226			
UCO	.952	137	8346.195	444			
UDH	.288	87	3984.287				
UDL	.088	53	1996.811				
	.971	139	8389.558	381			
UER	.415	125	3985.575	231			
1160	.963	158	7318-472	179			
UFH	.339	102	3998.813				
UFL	.071	43	1983.906				
UFO	.937	144	7810.539	136			
UGH	•391	118	3982.872				
UGL	.086	51	2334.293				
UGO	.948	169	6734.558	297			
	• 343	103	4023.030				
UHO	. 921	163	6787.605	145			
MBQ	.026	66	485.621				
UIH	.171	41	5023.386				
UIL	.043	21	2499.666				
UIC	.019	62	368.838				
U3H	•167	. 40	5014.324				
031	.046	23	2412.912				
UKH	. 143	35	4931 .425				
UKL	.040	19	2558.578				
UKO	.013	54	309.277				
ULH	.197	48	4944.250				
ULL	.050	24	2548.416				
ULC	.018	72	307.694				
UMH	•195	47	4988.273				
	.059	29	24/4.2/2				
UNH	.188	45	5038-843				
UNL	.054	27	2413.444				
UNC	.019	72	331.930				
UOH	.213	52	4916.730				
UCL	.050	23	2609.695				
	.020	75	328.773				
	+ 2 1 4	380	391.101				
UPO	.102	759	162-379				
MCQ	.023	85	334.529				
PON	.977	3212	365.308	459			
LQ.H	.064	38	2025 .447				
UQL	.071	34	2529.029				
000	.958	70	16437.511	514			
	•U/0	40	1980.021				ч
URC	. 012	06	24140222	466			ω
USH	.045	27	2344.407				6
		••					

USI USI	L		.U98 .952		4 7	8 4	246 1544	3.916 9.023		457						
LOGIC SI Switch	WITCH - NR MAR MDR -	- SET NR MAE MDE	(ON) S NR MAF MDB	STATUS NR UAI MDF	NR UBI UQI	NR UCI URI	NR UDI USI	NR JEI	NR U F I	NR UGI	NR UH I	NR MBR	NR MBE	NR 19	NR MCR	MCE

STORAGE	CAPACITY	AV ER AGE	AVERAGE	ENTRIES	AVERAGE TINE/TRAN		MAX I MUM	
IPS	380	63.957	.168	1722	44569.457	63	131	

QUEVE	MAXIMUM	AVERAGE	T UT AL	ZERD	PERCENT	AVERAGE	\$A VERAGE	TABLE	CURRENT
	CONTENTS	CONTENTS	ENTRIES	ENTREES	S ZEROS	TIME/TRANS	TIME/TRANS	NUMBER	CONTENTS
LCR1	49	40.447	635		• 0	76435.312	76435.312		37
MAN	53	8.797	649		•0	16266.601	16266.601		13
UAQ	9	5.849	1 3 9		• 0	50496.644	50496.644		7
UAB	3	2.000	28		.0	85753.812	85753.812		2
UBQ	8	5.454	155		•0	42227.972	42227 .972		5
UBB	3	2.004	39		• 0	61666.714	61666.714		2
UCQ	8	5 .1 95	143		•0	43598.031	43598.031		7
UCB	3	2.004	35		.0	68726.250	68726.250		3
004	10	6.370	143		• 0	53460.320	53460.320		5
ŲDВ	3	2.006	55		•0	43781.835	43781.835		2
UEQ	9	6.367	165		.0	46312.277	46312.277		8
UEB	3	2.000	39		• 0	61543.921	61543.921		2
UFù	7	5.180	149		.0	41724.132	41724.132		6
UFB	3	2.002	45		•0	53407.308	53407.308		2
UGQ	10	6.123	174		.0	42228.992	42228,992		6
LGB	4	2.006	53		•0	45424.808	45424.808		2
UHQ	8	5.045	169		• 0	35829.000	35829,000		7
UHB	4	2.016	64		.0	37813.328	37813.328		2
MB Q	2	.027	66		•0	503.802	503.802		
UIQ	5	2.251	64		• 0	42219.218	42219.218		2
ŲΪΒ	3	2.003	23		•0	104515.250	104515.250		2
UJQ	5	2.269	66		•0	41261.589	41261.589		2
0 J B	4	2.007	25		• 0	96338.187	96338.187		2
UKQ	5	2.211	56		•0	47394.945	47394.945		2
UKB	3	2.000	21		• 0	114297.562	114297.562		2
ULQ	·. 5	2.300	74	7	0 .	37302.160	37302.160		2
ULB	3	2.003	26		•0	92469.562	92469.562		2
UMQ	5	2.296	' 78		.0	35325.035	35325.035		2
UMB	3	2.001	31		• 0	77471.437	77471.437		2
UNQ	5	2.283	74		•0	37033.984	37033.984		2
UNB	4	2.009	28		.0	86132.750	86132.750		2
UDQ	5	2.320	77		•0	36170.347	36170.347		2
UOB	3	2.000	25		•0	96006.312	96006.312		2
UPG	37	8.063	761		• 0	12715.593	12715.593		2
UP B	32	6.483	381		•0	20419.191	20419.191		2
MCQ	2	•024	85		•0	351.646	351.646		
MOQ	72	52.088	3270		• 0	19115.007	19115.007		59
UQQ	ć	4.966	74		•0	78917.812	78917.812		5
UQB	3	2.002	36		•0	66765.375	66765.375		2
URQ	6	4.890	94		.0	69868.750	69868,750		5
URB	3	2.003	37		•0	64991.187	64991.187		2
USQ	6	3.948	77		.0	61528.441	61528.441		4
LSB	3	2.008	49		.0	49176.917	49176.917		2
\$ AV ERAGE	TIME/TRANS =	AVERAGE	TIME/TRANS	EXCLUDING	ZERO ENTRIES				
TRIES	IN TABLE 158	MEAN	ARGUMENT 12.531	STANDARO DEVIA 1	TION .•933	SUM OF ARGUMENTS 1980.000	NON-WEIGHTED		
-------	-----------------	-----------	--------------------	---------------------	---------------	------------------------------	--------------		
	UPPER	OBSERVED	PER CENT	CUMULATIVE	CUMULATIVE	MULTIPLE	DEVIATION		
	LIMIT	FREQUENCY	OF TOTAL	PERCENTAGE	REMAINDER	OF MEAN	FROM MEAN		
	0	່ວ	.00	· 0	100.0	000	-6.481		
	1	0	.00	• 0	100.0	• 079	-5.963		
	2	0	•00	•3	100.0	.159	- 5.446		
	3	0	.00	• 0	100.0	•239	-4.929		
	4	0	.00	• 0	100.0	•319	-4.412		
	5	0	•00	•0	100.0	.398	-3.895		
	6	0	• 00	• 0	100.0	.478	-3.377		
	7	0	.00	• 0	100.0	.558	-2.860		
	8	Û	.00	•0	100.0	.638	- 2. 343		
	9	15	9.49	9.4	90.5	.718	-1.826		
	10	16	10.12	19.6	80.3	• 797	-1.309		
	11	16	10.12	29.7	70.2	.877	792		
	12	24	15.18	44.9	55.0	•957	274		
	13	28	17.72	62.6	37.3	1.037	.242		
	14	28	17.72	80.3	19.6	1.117	•759		
	15	31	19.62	100.0	.0	1.196	1.276		

REMAINING FREQUENCIES ARE ALL ZERO

TABLE REC2 ENTRIES IN TABLE	MEAN AH		STANDARD DEVIA	TION	SUM DE ARGUMENTS	
354		5.158	3	3.125	1826.000	NON-WEIGHTED
UPPER	OBSERVED	PER CENT	CUMULATIVE	CUMULA TI VE	MULTIPLE	DEVIATION
LIMIT	FREQUENCY	OF TOTAL	PERCENTAGE	REMAINDER	DE MEAN	FROM MEAN
0	0	.00	• 0	100.0	000	-1.650
1	39	11.01	11.0	88. 9	•193	-1.330
2	45	12.71	23.7	76.2	•387	-1.010
3	38	10.73	34.4	65.5	•581	690
4	4.)	11.29	45.7	54.2	.775	370
5	39	11.01	56.7	43.2	.969	050
6	40	11.29	68.0	31.9	1.163	.269
7	41	I1.58	79.6	20.3	1.357	•589
8	40	11.29	90.9	9.0	1.550	•909
9	5	1.41	92.3	7.6	1.744	1.229
10	. 7	1.97	94.3	5.6	1.938	1.549
11	4	1.12	95.4	4.5	2.132	1.869
12	3	.84	96.3	3.6	2.326	2.189
13	2	• 56	96.8	3.1	2.520	2.509
14	5	1.41	98.3	1.6	2.714	2.829
15	6	1.69	100.0	.0	2.907	3.149
O CHAINTHE COCOLLENC	TCC ADD ALL DCC	0				

.

REMAINING FREQUENCIES ARE ALL ZERO

APPENDIX B

SOURCE LISTING AND COMPUTER OUTPUT FOR

SECOND MODEL SIMULATION

*** G P S S / 3 6 U / D S V 5 R S I U N 1 * * * *** IBM PROGRAM NUMBER 360A-CS-I7X (VIM4) *** REALLUCATE XAC,1300,3LD,1200,FAC,100,ST0,1,3UE,100,LDG,100 REALLOCATE TA5,5,FUR,12,VAR,75,FSV,5,HSV,5,CHA+30,GRP+1,BVR,10 REALLOCATE EMS,1,H45,1,CDM,75000

.

,

1 2 3

BLOCK						CARD
NUMBER	* L C C	OPERATION	A,ŭ,C,D,E,F,G	COMMENT S		NUMBER
		SIMULATE				4
	ULSTI	STARTMACRO				5
	#D	TEST E	P1,1,#A			6
		TEST E	P 3, #G, #B			7
			# 2 9 # 1 9 # 13			8
			弁し ・			9
		TRET E	17#A DD 1 #C			10
		1 E S I E	PC 9 1 9 # 6			11
	*0		# A 4/1			12
	#0		* F - * E * C			13
		1 EAVE				15
		ASSIGN	2.0			16
		DEPART	#C			10
		RELEASE	¥Δ			18
		ENDMACRO				19
	UL ST2	STARTMACRO				20
		TRAN SEEF	, #3			21
		TEST GE	#C, #H, #A			22
		ASSIGN	3,#E			23
		TR AN SEER	# 3			24
	# A	QU EU F	# A			25
		DEPART	# A			26
		TRANSFER	,#B			27
		LINK	#A,FIFO,#F			28
	#F	TEIST G	#C,#H			29
		SEIZE	#B			30
	#B ~	VARIABLE	#1			31
		ADVANCE	#G,#D			32
		ENTER	IPS			33
		ASSIGN	2,1			34
		RELEASE	#8			35
		UNL HOK	#A, #F, 1			36
		ENUMACRU				37
	UL ST3	STAKIMAGRU	3 (0)			38
	4 4	ASSI6N	う 9 件H 4 C			39
	4 A	35125	#し サラ			40
			#D #0			41
		RELEASE	#C			42
		TRANSFER	*#C			+ 3
	#D	ASSIGN	1.0			45
		ASSIGN	2 .0			- 5
		ASSIGN	3.0			47
		GATE LR	PH.#=			49
		TRANSEEK	* H C			49
	#5	LOGIC R	# 6			50
		TERMINATE				51
	#5	VARIABLE	¥Ι			52
	#C	ADVANCE	#1-			53
		ENDMACPO		-		54
	NORM	FUNC TTON	5 M1 +C31			55
	0,-5.0	0/.00023,-3.	.50/.00058,-3.25/.00	135,-3.00/.00300,-2.75/		56
	• 00620	-2.50/.0122	20,-2.25/.02280,-2.00	0/.04010,-1.75/.06680,-1.5	50 /	57

	.10570	,-1.25/.158	370,-1.00/.22660,-0.75/.30850,-0.50/.40130,-0.25/	58
	.50000	,0.00/.5987	'0,0.25/.69150,0.50/.77340,0.75/.84130, <u>1</u> .00/	59
	.89440	,1.25/.9332	20, 1. 50/. 95990, 1. 75/. 97730, 2. 00/. 98780, 2. 25/	60
	•99380	,2.50/.9970	10,2.75/.99865,3.00/.99942,3.25/.99977,3.50/1.0,5.00	61
	DLCP	FUNCTION	RN1,02	62
	.70,1/	1.0.2		63
	REC1	TABLE	P3,0,1,5	64
		INITIAL	x1,1200	65
		IN IT IAL	X3, 10	66
	1 PS	STORAGE	1200	67
	1	VARIABLE	500/X3	68
1		GENER AT E	V1,,,X1,,3	69
2		QUEUE	CARS	70
3		SEIZE	CAR	71
4		GATE LS	20	72
5		LOGIC R	20	73
6		DEPART	CARS	74
7		RELEASE	CAR	75
8	TERM	TERMINATE		76
9		GENERATE	V1,,,,1,3	77
10		GATE LR	19, T ERM	78
11		TRANSFER	BEGN	79
12	NTR	LOGIC S	19	80
13	BEGN	TEST E	P1,0,5KIP	81
14		TEST G	QSCARS,0,SKIP	82
15		TEST LE	Q \$LCR1, 35, BYPS	83
16		LOGIC S	20	84
17		ASSIGN	1,1	85
18	SKIP	TR ANSFER	,LST1	85
19	BYP S-	LOGIC S	20	87
20		SPLIT	1,LH01 .	88
21		ASSIGN	1,1	89
22		ASSIGN	3,0	90
23		TRANSFER	,LSZ1	91
24	LSTI	TEST E	P1,1,LHK1	92
25		SPLI T	1,LEC1	93
26	L HO 1	ASSIGN	1,0	94
27		ASSIGN	2,0	95
28		ASSIGN	3,0	96
29	LHK1	GATE LR	3,LTH1	97
30		TRANSFER	, LS 01	98
. 31	LEC 1	QUEUE	LCR1	99
32,		LÍNK	LCH,FIFO,LFA1	100
33 🕚	LFA1	SEIZE	LCR1	1 01
34		DEPART	LCR 1	102
35		TEST E	P2,0,LDC1	103
36		ENTER	I PS	104
	L V 8 1	VAR IABLE	FN\$NORM*10	105
37		ADVANCE	40,V \$LV B1	106
38		ASSIGN	2,1	107
39		ASSIGN	3,FN\$DLCP	108
40	LDC1	RELEASE		109
41		UNLINK	LCH,LFA1,1	110
42	L S Z 1	SEIZE	L CH1	111
43		LOGIC S	3	112
44		GATE LR	3	113
45		RELEASE	LCH1	114

.

145

	46		TE AN SEEP	,LS01	115
	47	LTHI	LOGIC R	3	116
	48		TERMINATE		117
		LAVI	VARIABLE	(360×1000)/X3	118
	49	LS 01	ADV ANCE	V SI AV 1	119
	.,	UL STI	MACRO	UAA .UAB .UAC .UAD . 05UAD .V \$UAD .1 .50. 2. EN \$NORM#10	120
	50		TEST E		120
	51	UND	TECT	D2.1.11AB	120
	53			ATTAD 2 HAD	120
	52				120
	55		QUEUE	UAD	120
	54		SPLIT	I,UAA	120
	55		IEST E	P2+1, UAC	120
	56		SEIZE	UAA	120
		UAD	VARIABLE	FN\$NORM*10	120
	57		AD VANCE	60, V\$ UAD	120
	58		LEAVE	IPS	120
	59		ASSIGN	2 10	120
	60		DEPART	UAD	120
	61		RELEASE	U A A	120
		UL ST2	MACRO	UAC, UAE, CH\$UAC, V\$UAE, 0, UAF, 0, 0, 0	121
	62		TR AN SEER	, UAE	121
	63		TEST GE	CHSUAC, O, UAC	121
	64		ASSIGN	3.0	121
	65		TRANSFER	- UA F	121
	66	UAC		LI AC	121
	67	0.00	DEPART	HAC	121
	68		TRANSFER		121
	69		LINK		121
	70	14 5	TEST		1 21
	71		- 56176		121
		LIAE	VADTABLE	0	121
	7 2	UAL	ADVANCE	0.V\$UAE	121
	72		ENTER	10C	1 2 1
	74		ASSICN	1r5 2 1	1 2 1
	75		DELEASE		1 2 1
	74		KELEASE		121
	10		UNE INN	UNC HAC HAD HAA HAH MALAH LAD O (120+1000)/Y2	121
		00210	MACRO	0 AE + 0 AG + 0 AG + 0 AG + 0 AH + V \$0 AH + J AD + 0 + (120* 1000 / X3	122
	70		ASSIGN	3.0	122
	78	UAE	SEILE	UAB	122
	79		LUGICS		122
	80		GATE LR	UAG .	122
	-81		RELEASE	U AB	122
	82,		TRANSFER	JUAB	122
	83	UAA	ASSIGN	1,0	122
	84		ASSIGN	2,0	122
	85		ASSIGN	3,0	122
	86		GATE LR	UAG, UAH	122
	87		TRANSFER	,UAB	122
	88	UAH	LOGIC P.	UAG	122
	89		TERMINATE		122
		UAH	VARIABLE	(120*1000)/X3	122
	90	UAB	AD VÀ NC F	VSUAH	122
		ULSTI	MACRO	U6A, UBB, UBC, UBD, Q\$UBD, V\$UBD, 2,140,2,FN\$NORM#20	123
	91	OBD	TEST E	P1,1,UB4	123
	92		TE ST E	РЗ,2,088	123
,	93		TEST L	Q \$UBD, 2, UBB	123 6
	94		QUEUE	U 20	123

95		501 17	1	1.22
96		TEST		123
97		CCT76		123
	URD			123
0.0	000			123
70		ADVANCE		123
100		LEAVE		123
100		ASSIGN	2 +0	123
101		OSPARI	UBD	123
102		RELEASE	UBA	123
• - •	ULS 12	MACRU	0 ec, 0 8 e, c H\$0 8 c, V \$0 8 e, 0, 0 8 e, 0, 0, 0	124
103		TRAN SFER	, UB E	124
104		TEST GE	CH\$UBC,0,UBC	124
105		ASSIGN	3 ,0	124
106		TR AN SFER	, USE	124
107	UBC	QUEUE	UBC	124
108		DEPART	UBC	124
109		TR AN SF ER	, LBE	124
110		LINK	U &C, FIFO, UBF	124
111	UBF	TE ST G	CH\$UBC+0	124
112		SEIZE	UBÊ	124
	UBE	VARIABLE	0	124
113		AD VANCE	0,V\$UBE	124
114		ENTER	IPS	124
115		ASSIGN	2,1	124
115		RELEASE	UBE	124
117		UNL TNK	UBC+UBF+1	124
	ULST3	MACRO	UBE-UBG-UBB-UBA-UBH-V\$UBH-VBD-0-(120+1000)/X3	125
118		ASSIGN	3.0	125
119	UBF	SEIZE	UBB	125
120	-	LOGICS	UBG	125
121		GATE IR	UBG	125
122		RELEASE	IIBB	125
123		TRANSEER		125
124	LIBA	ASSIGN		125
125	004	ASSIGN	2-0	125
126		ASSIGN	2,0	125
127		CATE IP		125
129		TDANCEED		125
120	, Herm			125
120	uon	TEOMINATE	000	125
150	6.054	1ERMINALE		125
1 - 1 - 1	UBH	VAKIABLE		125
131	OBB	ADVANCE	VAUBH	125
132		LEST E	P 2, 1, 1RA	126
133		TABULATE	RECI	127
134	TRA	TRANSFER	,NTR	128
135		GENERATE	60000	129
136		TERMINATE	1	130
		START	1	131
		DEFET		1.2.2
		RESEI		192

1⁴7

	LU SHAF	4 07	-											
RELATI BLGCK	VE CLOCK COUNTS	480	000 AB	SOLUTE CL	ОСК	540000								
BLOCK	CURRENT	TOTAL	BL OCK	CURRENT	TOTAL	BLOCK	CURRENT	TOTAL	BLOCK	CURRENT	T OT AL	BLOCK	CURRENT	TOTAL
1	0	1	11	0	0	21	0	0	31	0	9552	41	0	9552
2	0	1	12	0	9600	22	0	0	32	0	95 52	42	0	9552
3	0	1	13	0	9600	23	0	0	33	0	95 5 2	43	1	9552
4	0	1	14	0	49	24	0	9600	34	0	9552	44	0	9552
5	0	1	15	0	1	25	0	19104	35	0	9552	45	0	9552
6	0	1	16	0	1	26	0	9552	36	0	8808	46	0	9552
7	0	1	17	0	1	27	0	9552	37	1	8808	47	0	9552
8	0	9601	18	0	9600	28	0	9552	38	0	8808	48	0	9552
9	0	9600	19	0	. 0	29	0	9600	39	0	8806	49	720	9500
10	0	9600	20	0	0	30	0	48	40	0	9552	50	0	9600
BLOCK	CURRENT	TOTAL	BLOCK	CURR ENT	TOTAL	BLOCK	CURRENT	TOTAL	BLOCK	CURRENT	TOTAL	BLOCK	CURRENT	TOT AL
51	0	9554	61	0	6238	71	0	0	81	0	6238	91	0	9600
52	0	6431	62	0	6273	72	0	0	82	0	6238	92	0	9555
53	0	6238	63	0	0	73	0	0	83	0	62 84	93	0	3134
54	0	12476	64	0	0	74	0	0	84	Q	6284	94	0	2573
55	0	6238	65	0	0	75	· 0	0	85	Ó	6284	95	0	5146
56	0	6238	66	0	0	76	0	0	86	0	62.84	96	0	2573
57	1	6238	67	0	0	77	0	0	87	0	46	97	0	2573
58	. 0	6238	68	0	o	78	, 0	6238	88	0	6238	98	1	2573
59	• 0	6238	69	0	0	79	· 1	6238	89	0	6238	99	0	2573
60	0	6238	70	0	. 0	80	0	6238	90	240	9600	100	0	2573
BLOCK	CURRENT	TOTAL	BLOCK	CURRENT	T OT AL	BLOCK	CURR ENT	TOTAL	BLOCK	CURRENT	TOTAL	BLOCK	CURRENT	TOTAL
101	0	2573	111	0	0	121	0	2573	131	240	9500			
102	0	2573	112	0	0	122	0	2573	132	0	96 00			
103	٥	2573	113	0	э	123	0	2573	133	0	744			
104	0	0	114	0	0	124	0	2618	134	0	9600			
105	0 ′	0	115	0	0	125	0	2618	135	0	8			
106	0	0	116	0	0	126	0	2518	136	0	8			
107	0	Ó	117	0	0	127	0	2618						
108	- 0	0	118	0	0	128	0	45						
109	· · 0	0	119	о	2573	129	0	2573						
110	' 0.	0	120	1	2573	130	0	2573						
	•	•	110	•	2210		•							

THIS IS SNAP 40F 4

FACILITY	AVERAGE UTILIZATION	NUMBER ENTRIES	AV ER AG E TIME/TRAN	SE IZ ING TRANS - NO-	PREEMPTING
CAR	.000	1	50.000		
LCR1	.733	9553	36.860	1138	
LCH1	.862	9553	43.315	1132	
AAU	.778	6239	59,907	393	
UAB	.781	6239	60.146	415	
UBA	.750	2574	139.898	1131	
U8B	•714	2574	133.166	158	

STCRAGE	CAPAC ITY	AV ER AGE	AVERAGE	ENTRIES	AVERAGE	CURRENT	MAX IMUM
		CONTENTS	UTILIZATION		TIMEZTRAN	CONTENTS	CONTENTS

				·		
TABLE RECI ENTRIES IN TABLE	MEAN AR		STANDARD DEVIA	TION	SUM OF ARGUMENTS	
144		1. 140		.430	1297.000	NUNTWEIGHTED
UPPER	OBSERVED	PER CENT	CUMULATIVE	CUMULATIVE	MULTIPLE	DEVIATION
LIMIT	FREQUENCY	OF TOTAL	PERCENTAGE	REMAINDER	OF NEAN	FROM MEAN
0	0	.00	-0	100.0	000	-3.969
1	193	25.94	25.9	74.0	. 574	-1.689
2	551	74.05	100.0	•0	1.149	.591
REMAINING FREQUENC	IFS ARE ALL ZER	.				

ATIV

Robert Lee Gourley

Candidate for the Degree of

Doctor of Philosophy

Thesis: A MODULAR GENERAL PURPOSE APPROACH TO THE SIMULATION OF CONSTANT SPEED DISCRETELY SPACED RECIRCULATING CONVEYOR SYSTEMS

Major Field: Industrial Engineering

Biographical:

- Personal Data: Born in Jonesboro, Arkansas, October 17, 1946, the son of MSG (Ret.) and Mrs. Robert L. Gourley.
- Education: Graduated from Lawton Senior High School, Lawton, Oklahoma, in May, 1964; received Bachelor of Science degree in Electrical Engineering from Oklahoma State University in 1969; received Master of Science degree in Industrial Engineering and Management from Oklahoma State University in 1972; completed requirements for the Doctor of Philosophy degree at Oklahoma State University in December, 1973.
- Professional Experience: Project Engineer, United States Army Security Agency, 1969-1970; graduate teaching assistant, Oklahoma State University, School of Industrial Engineering and Management, 1970-1973.