A MODULAR GENERAL PURPOSE APPROACH TO THE SIMULATION OF CONSTANT SPEED DISCRETELY

SPACED RECIRCULATING
CONVEYOR SYSTEMS

Thesis Approved:

902080

PREFACE

This dissertation includes a feasibility study and partial development of a general purpose simulation model that can be used to study the operational aspects of constant speed discretely spaced recirculating complex conveyor systems. The study includes both a general and a detailed description and explanation of the model development which utilizes a modular format. These modules are stacked together like building blocks to construct the entire conveyor system. In order to test the feasibility of the approach and validate the model, the simulation modules are used to simulate the operation of two large manufacturing companies' recirculating conveyor systems. The simulation modules are written in General Purpose Simulation System language for the IBM 360 Model 65 computer. Source listings, flowcharts, and simulation outputs are included in this research.

The author wishes to express his appreciation to his major adviser, Dr. M. Palmer Terrell, for his guidance and assistance throughout this research. Appreciation is also expressed to the other conmittee members, Dr. G. T. Stevens who served as committee chairman, Prof. Frederick M. Black who stimulated the author's interest in simulation, and Dr. James E. Shamblin for his invaluable support and encouragement.

Sincere appreciation is expressed to my wife, Lana, for typing the initial and final drafts of the manuscript.

Finally, special gratitude is expressed to my wife and our children, Robin and Jonathan, for their understanding, encouragement, and many sacrifices.

LIST OF TABLES

Table Page
I. Facility Utilization Statistics I 84
II. In-Process Storage Statistics 85
III. Queue Statistics 86
IV. Table Statistics I 88
V. Facility Utilization Statistics II 93
VI. In-Process Storage Statistics II 94
VII. Table Statistics II 95
22. Modular Floor Plan of Conveyor 81
23. Conveyor Floor Plan 91

CHAPTER I

INTRODUCTION

The principle objective of this research is to demonstrate the feasibility of a general purpose simulation model which can be used to study and develop an understanding of the operational aspects of constant speed discretely spaced recirculating complex conveyor systems. It is not the purpose of this research to develop that all-encompassing model, but only to demonstrate the feasibility of the approach.

Many industrial manufacturers use recirculating conveyor systems not only for transporting goods to various locations in the plant but also for storing goods and for smoothing out irregularities in the flow of goods to loading and unloading stations. There are many types of recirculating conveyor systems, such as: drag line or tow line conveyors, bucket conveyors, overhead monorails, suspended tray conveyors, trolley conveyors, carrousels, and towveyors. Regardless of the basic type, all are typified by running at a constant speed, having discretely spaced hooks or dogs, and recirculating or forming a closed loop. All are often referred to as powered line conveyors.

The conveyor system in a manufacturing plant is merely a subsystem of the entire integrated system. The design of the conveyor subsystem must be carefully considered since the conveyor interacts with a great
many other subsystems of the plant. Both the mechanical and the performance aspects of its design must be dealt with. The mechanical aspects of the design problem such as conveyor dimensions, conveyor strength, frame structure, installation factors, size of the drive unit, starting loads, maximum imposed loads, and method of lubrication appear to be well understood. Solutions to these types of problems can be found with existing scientific and mathematical techniques. The performance aspects of the design problem such as capacity and utilization of the conveyor as an in-process storage device, traffic density, potential bottlenecks in the system, utilization of load and unload stations, and average queues that form at the various points are not well understood. Solutions to these types of problems can not readily be found. The combinatorial aspects of these types of problems are so large that the solution defies analytical techniques such as the direct application of numerical analysis or classical queueing theory. Many of the performance aspects of recirculating conveyor systems are a result of relationships between and among other characteristics and parameters that are not presently understood. A search of the literature indicates that there is neither the data nor the methodology available to define these relationships or study the performance characteristics.

Research Objectives

In order to demonstrate the feasibility of a general purpose simulation model which can be used to study recirculating conveyor systems, five subobjectives were undertaken sequentially:

1. The examination and analysis of the functional components of a particular complex integrated conveyor system, with the objective of identifying the functional components and parameters of the system.
2. The identification and description of the components and parameters of the types of interfaces that do occur between the functional components of the complex recirculating conveyor system.
3. The development and encoding of a computer simulation model using a modular format to represent the functioning of the components identified in 1. and 2. above.
4. The demonstration that the "plug-in" simulation modules provide a feasible approach for building a general purpose simulation model.
5. The use of the "plug-in" simulation components to simulate the recirculating conveyor system referenced in 1., 2., and 3. above to validate the model logical construction, and further validate the simulation modules and demonstrate the feasibility of the approach by using the modules to simulate another unrelated recirculating conveyor system.

Stages of the Investigation

The investigation took place in four distinct stages. The first stage consisted of selection and study of a particular complex conveyor system. The system chosen for analysis was the warehouse distribution system of a large manufacturing company. This researcher was required to refrain from identifying the company.

The company had kindly consented to cooperate in this research, and several personal visits to the company were necessary to study the system and obtain the data about the system that was available.

The model construction and validation, the second stage, was the most time consuming. The model was encoded in General Purpose Simulation System (GPSS), simulated, and validated in the Oklahoma State University IBM 360 Model 65 Computer.

The third stage was a simulation of the manufacturing company's conveyor system and a validation of the model by evaluating the results of the simulation.

The fourth stage was a simulation of another recirculating conveyor system of a manufacturing company which also wishes to be unnamed.

Before proceeding into a description of the first conveyor system chosen for study, a brief review of the literature will be presented.

LITERATURE REVIEW

Abstract

This chapter summarizes the present state of knowledge applicable to this research by a summary of the published work that has been accomplished in the past fifteen years. Before proceeding to the literature review, a framework must be established to classify the prior research.

\section*{Classification of Conveyor Research}

The type of conveyor system that has been used for study in this research is the constant speed discretely spaced recirculating conveyor system. This type of conveyor system was selected because it was believed that a general purpose simulation model could be developed to study the performance aspects of any particular constant speed discretely spaced recirculating conveyor system. The primary objective of this research is to demonstrate the feasibility of a general purpose simulation model. The three characteristics of conveyor systems studied in this dissertation will be used as a framework within which to classify prior research. Regardless of the actual form it may take such as overhead trolley, suspended tray, tow line, etc., the conveyor system must possess these three characteristics: (I) it must run or move at a constant speed, (2) it must have discretely

spaced hooks or dogs which may or may not be loaded with goods, and (3) it must be a recirculating system or it must form one or more closed loops in which goods placed on the conveyor can pass a given point in the system more than once. If a particular conveyor system lacks one or more of these characteristics, it can not be analyzed or studied by the research approach presented in this study.

The first necessary characteristic that a conveyor system must possess is it must run at a constant speed. The so called "power and free" type conveyors do not meet this requirement because the hooks or dogs may be stopped at locations along the conveyor for random periods of time. Also large systems which consist of many subsystems that move at different speeds do not meet this requirement.

The second necessary characteristic is the conveyor must consist of discretely spaced hooks or dogs which may or may not be loaded. This means that the distance between adjacent hooks of the conveyor is a constant. Let k be the constant distance between adjacent hooks. Then the loads on the hooks would occur at spacings of $n k$ where n is an integer random variable ($n=1,2,3,4, \cdots$). Most endless belt conveyors do not meet this requirement. A belt load such as sand, grain, or ore would obviously not be spaced discretely but is spaced continuously along the belt. Even unit loads on an endless belt do not meet the requirement since the distance between adjacent loads is a continuous random variable. Some types of endless belt conveyors are fitted with discretely spaced dividers which means that the
belt has "hooks" or load positions which are uniformly spaced but not necessarily uniformly occupied.

The third necessary characteristic is the conveyor must recirculate or form one or more closed loops. Many types of short feeder conveyors such as endless belts, rollers, or powered rollers do not recirculate goods which fail to be removed from the conveyor but simply dump them off at the end. Large complex conveyors especially the tow line type may be used for delivery of goods to a great number of locations in a plant or a warehouse. Often these types of systems form several closed loops. In these conveyors, loaded or unloaded carts can take a variety of routes to pass a given point in the system more than once. Simple systems such as carrousels and single loop overhead trolley type continuous chain conveyors frequently form an easily recognizable single closed loop.

Prior Research

After an extensive literature review, it was evident that no researcher has attempted to study or develop the model proposed by this dissertation. The prior investigations summarized below do not in most cases relate directly to the particular conveyor system that is the subject of this study; however, all of them deal with materials handling or the various aspects of conveyor theory or application.

Probably the first to study some of the performance aspects and mechanical principles of conveyor systems was Kwo (14). The system that he studied was a recirculating overhead suspended
hook type conveyor which was fed by a single load station and unloaded by an unload station. The mathematical equations that he developed showed how to calculate limiting values of conveyor speed, capacity, and uniformity of loading. In a later study by Kwo (15), he crystallized the design problem of overhead recirculating conveyor systems and presented a method of arriving at feasible conveyor designs. He lists twelve steps in the design process which include solving mathematical equations developed by Kwo as design criteria. At about the same time Helgeson (12) was also working on the design problem of overhead recirculating conveyor systems. He developed a theory useful in the study of these conveyors which link a production system with uncertain production rate with a using system with uncertain consumption. These production and using systems were subject to severe mechanical limitations imposed by such a conveyor. He also developed a practical planning technique including the use of a nomograph to assist the conveyor systems planner in achieving a better solution to the conveyor systems design problem than by the "rule of thumb" techniques that were commonly in use.

Palm (20) and Khinchine (13) were two of the early researchers in the area of randomly spaced nonrecirculating waiting line systems who through the use of queueing theory studied the overflow problem. Their solution techniques were applied to conveyor systems by Disney (9, 10) who studied randomly spaced nonrecirculating conveyor systems: as a delivery device for one and two channel unloading stations. His solution technique utilizes
multichannel ordered entry queueing theory, and he also develops system performance equations for local storages positioned between the conveyor and the unload station. In a later continuation of his work in these types of conveyor systems, Cinlar and Disney (7) study the overflow problem first examined by Palm (20) and Khinchine (13). Cinlar and Disney (7) develop a distribution of a stream of overflows from a finite queue from randomly spaced nonrecirculating conveyor systems in which the processes are Markovian. In an extension of the work of Disney (9, 10), Gupta (11) researched the use of generating functions to produce a new solution technique to the two channel queueing problem with ordered entry.

Among the first researchers to study how a conveyor affects an unload station, if the unload station is a work station, were Reis and Hatcher (24) and Reis, Dunlap, and Schneider (25). This early work was extended by Reis, Brennan, and Crisp (26) who used a Markovian type analysis for the delay at the conveyor supplied work stations. They also developed a set of work rules for the operation of the work station. In another extension of this research by Beightler and Crisp (2) the work station problem was formulated as a discrete time queueing process to improve the work rules. Crisp, Skeith, and Barnes (8) continued the work on conveyor supplied work stations using simulation.

In a more general context, Morgan (16) examines a two-link materials handling system exemplified by a set of shovels in the first link dumping material into a hopper. The hopper is emptied into a fleet of trucks that transport the material in the second link. The solution technique involves the solution of a set of simultaneous
equations dealing with system parameters.
Pritsker (16) uses both simulation and ordered entry queueing theory to examine both recirculating and nonrecirculating conveyor systems which supply more than one work station. The work stations may or may not have a local storage capacity. With respect to his work in recirculating conveyor systems, he found through simulation that when the rate of recirculation became significant, the multichannel queueing theory no longer accurately predicts the probabilities associated with system performance parameters. In an extension of Pritsker's work, Phillips (21) and Phillips and Skeith (22) also used simulation to study randomly spaced recirculating conveyor systems. These simulation models considered the recirculation aspects of conveyor systems differently. Pritsker (16) worked with a constant delay for goods which are recirculating. Phillips and Skeith (22) force a queue to form if the recirculating conveyor is occupied which caused the recirculation delay to be a random variable rather than a constant. The remainder of this chapter includes the more recent developments in conveyor research.

Burbridge (4) used GERT to analyze a particular conveyor system which has both primary and recirculating arrivals. The conveyor system of interest has one unloading station which has a local storage. Units arrive at the loading station from an outside source or from the conveyor. If the local storage is full, the units arriving from the conveyor must recirculate and arrive again at a later time.

Agee and Cullinane (1) present a methodology for determining the transient response of a two link materials handling system. A straight line gravity feed conveyor connecting two production centers
is an example of such a system. The system is modeled as a nonrecirculating, multiple source, multiple server, limited waiting space queueing process.

Brady (3) examines the effect of operator work time variability in fixed transfer and in free transfer conveyor systems. The comparisons made indicate the superiority of the free transfer system in terms of output efficiency and jig requirements under specified conditions.

The early work of Muth (17) dealt with continuous flow conveyors. He studied recirculating conveyors that were used both as a delivery and a storage device. Later work by Muth (18, 19) examined closed loop conveyor systems with discrete material flow. This work extended a previous solution to the problem of conveyor design for arbitrary loading and unloading patterns. Solutions to difference equations representing material flow were obtained numerically by generalized matrix inverses. Several specific cases were presented graphically.

The most significant contribution to the research of constant speed discretely spaced recirculating conveyor systems was that of Bussey and Terrell $(5,6)$. They used simulation to study a single loop constant speed discretely spaced recirculating conveyor. The conveyor was supplied by a single server and unloaded at n unload stations.

The simple single loop model of Bussey and Terrell is a starting point and provides a spring board for this research.

CONVEYOR SYSTEM DESCRIPTION

The recirculating conveyor system of the first manufacturing company was chosen for study because it is sufficiently large and complex to adequately accomplish the research objectives set forth earlier in this dissertation. The conveyor system moves finished goods through a 500,000 square-foot warehouse via a sub-floor towline conveyor. The towline looks like a chain running in the floor with "hooks" spaced every twenty one feet along the chain. Each of these hooks may or may not be pulling a cart along with it. There are 380 carts in the system at all times.

A floor plan diagram of the conveyor system is shown in Figure l. Among its functions are delivery of finished goods from manufacturing to storage or from storage to the rail and truck docks and delivery of incoming goods from the rail and truck docks to storage. The main loop shown in Figure 1 by a dashed line is 5600 feet long, and the towline travels at 70 feet per minute. However, each cart may not be required to travel the entire length of the main loop. Carts may be programmed manually for any of 20 destinations around the loop, and they will always travel the shortest distance to arrive at their destinations. The destinations are any one of the non-powered
spurs at the ends of storage aisles. The following carts push the carts into the spur. After unloading and or loading it is manually brought back to the powered towline and programmed for a new destination. Carts are programmed manually by moving magnet-tipped probes at the front of each cart. As the cart moves along the loop, the probes activate reed switches embedded in the floor, causing switches to open which send the cart to its proper destination.

Figure 1. Conveyor Diagram

Each cart weighs 500 pounds, and it may be traveling loaded or unloaded. The carts are loaded and unloaded by fork lift trucks which either place or remove pallets of finished goods on or off the carts. The cart is then programmed for a destination by the fork lift truck operator and placed back on line. Finished goods which enter the warehouse from the manufacturing area via fork lift trucks are loaded on empty carts. The carts are then programmed for a destination in the warehouse by the production programming dispatcher. Computer punch cards are supplied to him daily or sometimes even hourly to tell him the proper destination for each load. If the destination or spur for which the cart is programmed is full, the cart will recirculate on the portion of the conveyor which forms the shortest closed loop past its assigned destination rather than recirculating the entire loop. Transfer sections allow carts to take a short-cut between sections of the loop so that they can reach their destination without traversing the entire 5600 foot main loop. They can travel around one segment of the loop in less than 30 minutes compared to 80 minutes for the entire loop. Empty carts can also recirculate and be removed as required to be loaded with complete orders for delivery to either the truck or rail docks, or with incoming shipments for storage.

As shown in Figure l, there are decision points along the route at which logical considerations must be undertaken. For example, when a loaded cart from the manufacturing area and production programing dispatcher attempts to go on the main line, it may have to compete for a hook with a cart that is recirculating.

Since the cart on the main line has the right-of-way, the loaded cart from the production programming dispatcher must wait until an empty hook on the main line appears. It can then seize the hook and start to move on the main line. Figure 2 shows two carts moving from left to right and arriving at one of these decision points after having passed the truck dock.

Figure 2. Merge Interface

The cart on the left is on the main line, is loaded, and has the right-of-way. The cart on the right has just been unloaded at the truck dock and placed on the powered spur empty. The empty car
must wait and seize the hook directly behind the loaded cart to proceed along the main line. This decision point or interface occurs between functional components of the conveyor at four different locations along the line. For modeling purposes it will be identified as a MERGE module.

Another decision point occurs at each of the destination spurs that a cart passes. As the cart encounters each spur, it must decide if this is its destination or not, and if it is the proper destination, it must decide if the spur is full or not. Figure 3 shows carts moving from left to right.

Figure 3. Unload and Laad Station Interface

The four carts in the foreground (two empty and two loaded) which are bumper-to-bumper have been automatically side-tracked and stopped at their assigned destination spur. Each of these carts has been pushed further up the spur and out of the way by the following cart. Another loaded cart to the left of these four carts has just passed that destination spur, and since that spur is either full or is not its assigned destination, it is continuing on along the main line. There are nineteen destination spurs of this type along the conveyor. These spurs will be identified as an UNLOAD AND LOAD STATION module for modeling purposes.

There are also four points along the towline at which the cart has the option of taking a powered towline to the right or taking another powered towline to the left. There are several towlines in the system which disappear under the floor and reappear at other points. Figure 4 shows two carts moving from bottom to top. The cart on the right has selected the powered towline to the right since its destination lies in that direction. The cart on the left has selected the powered towline to the left since its destination lies in that direction. For modeling purposes, this interface or decision point will be identified as a SPLIT module.

The powered spur on which empty carts are loaded with finished goods from the manufacturing area is the final interface necessary to completely describe the conveyor system. There is only one of these spurs along the conveyor. The empty carts with this destination form a queue as shown in Figure 5. The carts are

moving from bottom to top around the U-turn area and then toward the bottom. The first cart in the queue has been loaded and is waiting for the uispatcher to program and release it. In the model this spur will be identified as the PRODUCTION PROGRAMMING LOAD STATION module.

Figure 5. Production Programming Load Station Interface

CHAPTER IV

MODEL CONSTRUCTION AND VALIDATION

One of the most used general purpose techniques in modeling is the modular format. After the interfaces or decision points in the system had been identified and categorized, they were encoded as general purpose modules. These modules were then stacked together like building blocks to construct the entire conveyor system. The remainder of this chapter is a logical description of each of those modules and an argument for their validation.

Preliminary Considerations

Early in the research, it was decided to use GPSS/360 as the simulation language. This was done primarily for three reasons: (1) it is a discrete event oriented language in which one can easily encode and debug rather complex discrete event oriented systems, (2) it provides easily obtainable output statistics, and (3) the use of GPSS/360 MACRO statements lend themselves to a general purpose modular approach. The modules which had to be used several times in building the system were encoded in general purpose macros which could be used over and over by changing the various MACRO arguments.

The units of traffic that are created and move through a
system encoded in GPSS/360 are called transactions. In this conveyor system a transaction represents either a hook or a cart. Each transaction possesses parameters as its key attributes. Only three parameters were necessary to describe the conveyor system transactions. The convention used in this model is: (l) Pl = 0 implies the transaction is a hook, $\mathrm{Pl}=1$ implies the transaction is a cart, (2) $\mathrm{P} 2=0$ implies the transaction is an empty cart, $P 2=1$ implies the transaction is a loaded cart, and (3) $\mathrm{P} 3=0,1,2, \ldots 19$ implies the cart has been assigned any one of twenty possible destinations around the loop. All the transactions were given a Priority $=1$ initially. This was necessary for timing and logical considerations in the MERGE module which will be discussed later. Three savevalues, X1, X2, and X3, were used and will be described in the next section.

Since GPSS/360 is oriented toward integer-valued variables, the unit of time used in the model is milliminutes, or the clock time is scaled by a factor of 1000.

Near the end of each of the general purpose modules is an ADVANCE block which delays each transaction the specific clock time that it would take that transaction to move on the conveyor to the next sequential module. The transactions are evenly spaced in time around the conveyor since the conveyor is a constant speed discretely spaced recirculating system.

Cart and Hook Generator Module

The CART AND HOOK GENERATOR module actually builds the conveyor system by filling it with hooks and carts. Once the system becomes full of hooks and all the carts are placed
somewhere in the system, this module becomes inoperative. There is only one CART AND HOOK GENERATOR (CAHG) module in the system, and it is designed to be placed directly before the PRODUCTION PROGRAMMING LOAD STATION (PPLS) module.

General Description

The CAFG module may be represented as a box shown in Figure 6. The entrance to the module is labelled NTR. There is only one exit from the module.

Figure 6. Cart and Hook Generator Module

The module generates empty carts until some user specified upper limit is reached. It also generates hooks until the first transaction which enters the module at NTR shuts off the hook generator.

This module also has the capability to assist the system in
reaching steady state very rapidly by channelling empty carts into the system when the PPLS spur becomes full and queue CARS is not empty.

Detailed Description

The first part of this module is the cart generator. A variable is used to calculate the delay time between succeeding hooks on the powered towline. $X 2$ is initialized at the hook spacing and X3 at the conveyor speed.

1 VARIABLE (X2*1000)/X3
The formula used to calculate this delay time in milliminutes is given below.
(Hook spacing)*(1000)/(Conveyor Speed)
The empty carts are created by the next sequential block.
GENERATE VI,,, Xl, ,3
The carts are generated at the same interval as the hook spacing and only XI (initialized at the number of carts in the system) carts are generated.

The empty carts then enter a queue of empty carts and attempt to seize the facility which allows them to capture a hook and begin to move on the towline.

QUEUE CARS
SEIZE CAR
The facility consists of a logic gate which is opened by an
empty hook later in this module.
GATE LS 20
The empty cart which has just passed through this gate then
closes the gate behind it before departing the queue, releasing the facility and destroying itself.

LOGIC R 20
DEPART CARS

RELEASE
CAR

TERM TERMINATE

The empty cart is destroyed because the hook which it captured has now been transformed into the empty cart as will be shown later in this module.

The hooks are created by the next sequential block in this module.

GENERATE Vl,,,,,1,3

These hooks have a priority equal to one and three parameters. They are created at the hook spacing defined by the user in variable number one.

The hooks then enter a logic gate which allows them to proceed to the next sequential block unless a transaction has set logic switch 19. If logic switch 19 has been set, the hooks are then sent to the alternate exit which directs them to the TERMINATE block.

GATE LR 19,TERM
The purpose of this block is to shut off the hook generator once the closed loop which contains this module becomes full of hooks. This means the powered towline has been completely constructed and the hook generator is no longer needed.

The newly created hook is then transfered around the entrance to this module to location BEGN.

TRANSFER ,BEGN

The entrance to this module is labelled NTR and the first transaction which completes the closed loop and enters this module at NTR shuts off the hook generator by setting logic switch 19 as has been discussed previously.

NTR LOGIC S 19

The transaction which proceeds to the next sequential block may be either a hook or a cart. It is first tested to determine what it is.

BEGN TEST E Pl,0,SKIP
If it is a hook ($\mathrm{Pl}=0$), it proceeds to the next sequential block. If it is a cart $(P l=1)$, it takes the alternate exit and is directed to location SKIP.

A hook then encounters another TEST block which determines if there are any empty carts in the queue called CARS waiting to capture a hook. If queue CARS is zero, the hook takes the alternate exit and is directed to location SKIP.

TEST G Q\$CARS,0,SKIP
If there are carts waiting in the queue, the hook proceeds to the next sequential block.

In the next block, the hook determines if the powered spur which feeds the PPLS module is full of carts or not. The maximum capacity of this spur is determined by the user and in this case it is 35 cars. TEST LE Q\$LCR1,35,BYPS If the spur is not full, the hook proceeds to the next sequential block. If the spur is full, the hook takes the alternate exit and is directed to location BYPS.

A hook continuing to the next sequential block sets logic
switch 20 which opens the gate for an empty cart as discussed earlier in this module.

LOGIC S 20
The empty cart is terminated and the hook is now transformed into an empty cart by placing a one in parameter one.

ASSIGN 1,1
All the transactions which were directed to location SKIP from various places in the module and the newly formed empty carts are transfered to the entrance to the PPLS module.

SKIP TRANSFER
,LSTI
The last section of this module is a technique to assist the conveyor model to reach steady state very rapidly. When the PPLS powered spur is full of empty carts waiting to be loaded and there is a pool of empty carts waiting in queue CARS to enter the model also, the carts in queue CARS are short-circuited into the model empty just to get them into the system. The first block that a hook going through this section of the model encounters sets logic switch 20 to open the gate for an empty cart as discussed earlier.

BYPS LOGIC S 20
Another hook is created and sent to location LHOL in the PPLS module. This is done to preserve the timing and logic of the conveyor system.

SPLIT I,LHOI
The hook which proceeds to the next sequential block is transformed into an empty cart by changing parameter one to a one.

ASSIGN 1,1

The empty cart is then given a destination by a function which is defined by the user.

ASSIGN 3,FN\$DECP
The cart is then transferred into the PPLS module at a point where it can capture a hook and go on line without having to wait to be loaded.

TRANSFER ,LSZ1
A source listing of the CAHG module is given in Figure 7 and the module flow chart is given in Figure 8.

1 VARIABLE $(X 2 * 1000) / X 3$
GENERATE $\mathrm{Vl},,, \mathrm{Xl}, \mathrm{}$,
QUEUE:
SEIZE
GATE LS
LOGIC R
DEPART
RELEASE
TERM TERMINATE
GENERATE
GATE LR TRANSFER
NTR LOGIC S
BEGN TEST E Pl,0,SKIP
TEST G Q\$CARS,0,SKIP
TEST LE Q\$LCR1,35,BYPS
LOGIC S 20
ASSIGN 1,1
SKIP TRANSFER ,LSTl
BYPS LOGIC S
SPLIT 1,LHO1
ASSIGN 1,1
ASSIGN 3,FN\$DECP
TRANSFER ,LSZ1
Figure 7. Source Listing of CAHG Module

Figure 8. Flow Chart of CAHG Module

Figure 8. (Continued)

Production Programming Load Station Module

The module which must immediately follow the CAHG module is the PRODUCTION PROGRAMMING LOAD STATION (PPLS) module. This module is an interface in the system at which empty carts are loaded with finished goods from the manufacturing area. The carts are given a destination and placed on the conveyor by the dispatcher.

General Description

The PPLS module may be represented as a box shown in Figure 9. The entrance to the module is labelled LSTl, and there is only one exit from the module. In this module empty carts are delayed by a user specified load time and are given a destination by a user specified function. The user must also specify the distance to the next module entrance. The logic in this module maintains the integrety and timing of the powered towline as hooks and carts pass through it.

Figure 9. Production Programming Load Station Module

Detailed Description

The entrance to the module is labelled LSTl, and the first block in the module determines if the entering transaction is a cart or a hook.

```
LSTl TEST E Pl,I,LHKl
```

A hook takes the alternate exit and is transferred to location LHKl. A cart proceeds to the next block.

The cart then causes a new transaction to be created, and the cart

SPLIT I,LECI
is transferred to location LECI.

The newly created transaction is transformed into a hook.

LHO1 ASSIGN
1,0
ASSIGN
2,0
ASSIGN 3,0

The hook then passes through a logic gate which either allows the hook to proceed to the next sequential block or transfers it to location LTHI. LHKI GATE LR 3,LTHI

If the hook proceeds to the next sequential block, it is transferred to the end of this module.

TRANSFER
,LSO1

If the hook transfers to LTHl, then a cart has captured it and will
be taking its place on the conveyor.
The cart which was transferred to location LECI joins the queue of carts waiting to be loaded at the PPLS module.

LECI QUEUE LCRI

To save CPU time these carts are linked onto user chain LCH on a FIFO basis.

LINK LCH,FIFO,LFAI
A cart may then seize the loading facility and depart the queue.

LFAI SEIZE
LCRI

DEPART LCRI

If the cart is already loaded it is transferred around the loader to location LDCl.

TEST E P2,0,LDC1
An empty cart proceeds and enters into the in process storage. ENTER IPS

It is then delayed while being loaded. The mean and spread modifier are specified by the user. In this case the load time is a normally distributed random variable with a mean of two minutes and a standard deviation of .4 minutes. LVBI VARIABLE FN\$NORM*400

ADVANCE 2000,V\$LVB1
The function NORM is the standard normal function which uses random number generator number one.

The empty cart is transformed into a loaded cart by changing parameter two to a one.

ASSIGN 2,1
And the loaded cart is given a destination by a user defined function. In this case the function is called DLCP.

ASSIGN 3,FN\$DLCP
The loaded cart releases the loading facility and unlinks the
next cart from the user chain.
LDCI RELEASE LCRI
UNLINK LCH,LFAl, 1
The cart then attempts to seize a facility that consists of the logic necessary to capture a hook and proceed on line.

LSZI SEIZE LCHI

After seizing the facility the cart sets logic switch three which indicates to the next available hook that a cart is waiting to capture it.

LOGIC S 3
The cart then stops at the logic gate to wait for a hook to open it.

GATE LR 3
Once the gate is opened by a hook, the cart releases the facility to go on line and transfers to the end of the PPLS module.

RELEASE LCHI
TRANSFER ,LSO1
A hook which has been destined to be captured by a waiting cart opens the cart's logic gate by resetting logic switch three and the hook is destroyed.

LTH1 LOGIC R
3
TERMINATE
The end of the module is of course an ADVANCE block which delays a transaction the length of time it takes it to travel on the towline to the next sequential module. The delay time is calculated in a variable which is defined by the user. The formula used to calculate the delay time in milliminutes in this case is
shown below.
((Distance to next module)/(Conveyor Speed))*(1000)
The transaction is finally transferred to the next sequential
module or module entrance.
IAV1 FVARIABLE (55/X3)(1000)

LSO1 ADVANCE TRANSFER
(55/X3)(1000)

V\$LAV1
,MAO
A source listing of the PPLS module is given in Figure 10 and
a flow chart of the module is shown in Figure ll.

TT1	TEST E	Pl, 1 ,LHKl
	SPLIT	1, LECl
LHO1	ASSIGN	1,0
	ASSIGN	2,0
	ASSIGN	3,0
LHK1	GATE LR	3,LTHl
	TRANSFER	,LSO1
LECl	QUEUE	LCR1
	LINK	LCH,FIFO,LFAl
LFAI	SEIZE	LCRI
	DEPART	LCR1
	TEST E	P2,0,15Cl
	ENTER	IPS
LVB1	VARIABLE	FN\$NORM*400
	ADVANCE	2000,V\$LVB1
	ASSIGN	2,1
	ASSIGN	3,FN\$DLCP
LDCl	RELEASE	LCRI
	UNLINK	LCH,LFAl, 1
LSZ1	SEIZE	LCH1
	LOGIC S	3
	GATE LR	3
	RELEASE	LCHI
	TRANSFER	,LSO1
LTH1	LOGIC R	3
	TERMINATE	
IAV1	FVARIABLE	(55/X3) (1000)
LSO1	ADVANCE	V\$LAV1
	TRANSFER	,MAO

Figure 10. Source Listing of PPLS Module

Figure 11. Flow Chart of PPLS Module

Figure ll. (Continued)

Split Module

The SPLIT module which has been described in Chapter III is a decision point in the system at which a cart must decide to take either the right or left powered towline.

General Description

The SPLIT module may be represented as a box shown in Figure 12 which has one entrance and two exits. A transaction which enters this module can not be delayed since there are no blocks in this module which can deny entry to a transaction.

There are three types of transactions which enter this module. The logic is designed to process each of these three types as separate cases.

Case 1. ($\mathrm{X}=$ hook) If a hook enters the SPLIT module, then another hook will be created in the module, and a hook will be sent to each exit. ($Y=$ hook and $Z=$ hook)

Case 2. ($X=$ cart whose destination lies to the left) If
a cart which desires to go to the left enters, then a hook will be created and sent to the right. ($Y=$ cart and $Z=$ hook)

Case 3. ($\mathrm{X}=$ cart whose destination lies to the right) If a cart which desires to go to the right enters, then a hook will be created and sent to the left. ($Y=$ hook and $Z=$ cart)

Detailed Description

The first statement that an entering transaction encounters in this module determines if the transaction is a hook or a cart.
TEST E
Pl,l, HOOK

A cart continues on to the next sequential block or a hook takes the alternate exit and is transferred to location $H O O K$.

A cart which continues to the next sequential block is tested to see if its destination lies to the right or to the left. This is done by means of a boolean variable and a TEST block.

1 BVARIABLE $\quad 3^{\prime} G E{ }^{\prime} 9^{* P 3^{\prime}} \mathrm{L}^{\prime} 17$ TEST E BVI,I, CRGHT If the value of the boolean variable is one, the cart's destination is to the left and it proceeds to the next sequential block. If
the value of the boolean variable is zero, the cart's destination is to the right and the cart takes the alternate exit and is transferred to location CRGHT. The boolean variables are defined by the user and may vary in form in different SPLIT mdoules.

The cart whose destination is left proceeds to the next sequential block.

TEST LE Q\$LCRI,999,CRGHT
The arguments of this block are defined by the user and the condition must be true for a cart to proceed to the left. In the case shown, the queue of cars waiting to be loaded at the PPLS module must be less than or equal to 999. Since there are only 380 carts in the system, this block has no effect on the system. If the 999 were changed to 36 in one of the SPLIT modules and the queue of empty carts at the PPLS module was greater than 36 , then a cart whose destination lies to the left would be sent to the right to recirculate in the system by taking the alternate exit CRGHT.

A car proceeding to the left encounters the next block. SPLIT $\quad 1$, HRGHT Since the timing and integrety of both powered towlines must be maintained, a hook is created and sent to location HRGHT which sends it to the right.

The cart is then transfered to the ADVANCE block which delays the cart for the time it takes it to reach the next module to the left.

The hook that has been created and sent to the right is first made into a hook by setting all three parameters HRGHT ASSIGN l,0 ASSIGN 2,0 ASSIGN $\quad 3,0$
equal to zero.

The hook is then transfered to the ADVANCE block which delays the hook for the time it takes it to reach the next module to the right.

TRANSFER
, ARGHTT

A car proceeding to the right encounters the next block.
CRGHT SPLIT $1, H L E F T$
A hook is created and sent to location HLEFT which sends it to the left to maintain the timing and integrety of both powered towlines.

The cart is then transfered to the ADVANCE block which delays the cart for the time it takes it to reach the next module to the right.

TRANSFER ,ARGHT

The hook that has been created and sent to the left is first made into a hook by setting all three parameters equal to zero.

HLEFT ASSIGN $\quad 1,0$
ASSIGN $\quad 2,0$
ASSIGN 3,0
The hook is then transfered to the ADVANCE block which delays the hook for the time it takes it to reach the next module
to the left.
TRANSFER ,ALEFT
A hook which enters this module at the entrance is split into two hooks so that a hook can leave at each of the two exits. The following two blocks perform this function.

HOOK SPI.IT 1, ALEFT
TRANSFER ,ARGHT
The delay time to the next module is calculated using variables and the time is in milliminutes. The formula used is given by: (Distance to next module)*(1000)/(Conveyor Speed).

The last blocks in this module are the ADVANCE block and exits of the module which have been previously discussed.

1 VARIABLE 236*1000/X3

ALEFT ADVANCE

TRANSFER

2 VARIABLE

ARGHT ADVANCE

TRANSFER
A source listing of the SPLIT module is given in Figure 13 and a flow chart of the module is shown in Figure 14.

Unload and Load Station Module

The UNLOAD AND LOAD STATION (UALS) module is a general purpose module that occurs in the conveyor system at points where a cart may or may not decide to sidetrack itself at one of the unpowered spurs. Here the cart is unloaded and or loaded, and then placed back on the towline.

1	TEST E	Pl, 1 , HOOK
	BVARIABLE	P3'GE'9*P3'L'17
	TEST E	BVI,1, CRGHT
	TEST LE	Q\$LCR1,999, CRGHT
HRGHPT	SPLIT	1,HRGHT
	TRANSFER	,ALEFT
	ASSIGN	1,0
	ASSIGN	2,0
	ASSIGN	3,0
	TRANSFER	, ARGHT
CRGHT	SPLIT	1,HLEFT
	TRANSFER	, ARGHT
HLEFT	ASSIGN	1,0
	ASSIGN	2,0
	ASSIGN	3,0
	TRANSFER	, ALEFT
HOOK	SPLIT	1,ALEFT
	TRANSFER	, ARGFT
1	VARIABLE	236*1000/X3
ALEFT	ADVANCE	V1
	TRANSFER	,MODULE TO LEFT
2	VARIABLE	60*1000/X3
ARGHT	ADVANCE	V2
	TRANSFER	,MODULE TO RIGHT

Figure 14. Flow Chart of SPLIT Module

Figure 14. (Continued)

The UALS module may be represented as a bor shown in figure 15 . Any transaction may enter this module; however, only those carts with the proper destination are allowed to be unloaded and or loaded. The module has only one entrance and one exit.

Figure 15. UALS Module

The user defines the load and unload times and the maximum station queue. The user also defines the maximum number of empty carts if any to keep at the station at all times. Destination functions and the distance to the next module entrance must be supplied by the user. The module logic maintains the timing of
the tow]ine as it passes through it.

Detailed Description

The first block that an entering transaction encounters in the UALS module determines if it is a cart or a hook.

ENTR TEST E Pl, $1, H O K E$
A hook is sent to location HOKP.
A cart proceeds and is tested to determine if this module is its destination or not.

TEST E P3,8,EXIT
If this module is not the proper destination, the cart is sent to the exit.

A cart whose destination is this module is tested again to determine if the station queue is full or not.

TEST L Q\$STA,15,EXIT
If the station queue is greater than or equal to some user specified number, the cart is sent to the exit to recirculate in the system.

If the station queue is smaller than the user specified number, the cart joins the station queue.

QUEUE STA
A transaction is then created and sent to location HOKE to be transformed into a hook to preserve the timing and integrety of the towline.

SPLIT 1, HOKE
The cart is tested to determine if it is loaded or empty.
TEST E P2,1,ECAR

An empty car is sent to location ECAR.
A loaded car proceeds and attempts to seize the unloading facility.

SEIZE
UNLDR

The unload time is specified by the user and in this case it is a normally distributed random variable with a mean of four minutes and a standard deviation of .8 minutes.

UAV VARIABLE FN\$NORM*800
ADVANCE 4000,V\$UAV
The cart is now unloaded and must leave the in process storage.

LEAVE IPS

The unloaded cart's parameter two is changed to zero to indicate that it is now empty and the unload facility is released.

ASSIGN 2,0

RELEASE UNLDR

A policy that may or may not be adopted at the load and unload station modules is to keep a number of empty carts at the station to be loaded later on. The user specifies the maximum number empty carts to be retained at the station. After the empty cart releases the unload facility, it determines if the maximum number of empty carts is present at the station or not. If maximum number is not present, the empty cart is transferred to the queue of empty carts waiting at the station.

TEST GE CH\$UCH,I,ECAR
If the empty cart queue is at its maximum number, the empty
cart continues to the next sequential block. The cart is given a destination by a user defined function and is transfered to a location in the module, FGOL, where it can capture a hook and go on line.

ASSIGN $\quad 3, F N \$ D E C l$
TRANSFER ,FGOL
Empty carts waiting to be loaded enter the empty car queue and then are linked onto user chain UCH.

ECAR QUEUE ECAR

LINK UCH,FIFO,UCHO
One empty cart determines if the chain has reached its
maximum number or not.
UCHO TEST G CH\$UCH,I
When the number of empty carts becomes greater than the user specified maximum, the empty cart can seize the loading facility and depart the empty car queue.

SEIZE LDR

DEPART ECAR
The loading time is specified by the user and in this case it is a normally distributed random variable with a mean of two minutes and a standard deviation of .4 minutes.

UVI VARIABIE FN\$NORM*400
ADVANCE 2000,V\$UVL
Since the cart has been loaded, it can now enter the in process storage and be designated as a loaded cart by changing parameter two to a one.
ENTER IPS
ASSIGN 2,1
The loaded cart then releases the loading facility, unlinksthe next empty cart from the user chain, and is assigned adestination by a user defined function.
RELEASE LDR
UNLINK $\mathrm{UCH}, \mathrm{UCHO}, 1$
ASSIGN 3,FN\$DLCI
The logic necessary for a cart to capture a hook and proceedon the towline is contained in facility FGOL. The cart seizesthe facility, sets logic switch four, and waits at a logic gatefor a hook to open it.
FGOL SEIZE FGOL
LOGIC S 4
GATE LR 4
Once a hook has reset logic switch four, the cart canproceed through the gate release the facility, depart thestation queue, and be transferred to the module exit.
RELEASE FGOL
DEPART STA
TRANSFER ,EXIT
A hook which enters this module or is created in this module
is transferred to location $H O K E$ where it is transformed into ahook.
HOKE ASSIGN 1,0
ASSIGN 2,0
ASSIGN 3,0

The hook then determines if a cart is waiting to capture it by passing through a logic gate.

GATE LR 4,THKE
If no cart is waiting, the hook is transferred to the exit.

TRANSFER ,EXIT

If a cart is waiting, the hook takes the logic gate alternate exit THKE, resets logic switch four which allows the cart to proceed by opening its gate, and then the hook is destroyed. THKE LOGIC R

4

TERMINATE

The module exit of course consists of an ADVANCE block which delays the transaction for the time it takes it to reach the next module.

UVB VARIABLE (120*1000)/X3

EXIT ADVANCE V\$UVB

The transaction continues to the next sequential module.

A source listing of the UALS module is given in Figure 16 and a flow chart of the module is shown in Figure 17.

Merge Module

The MERGE module which has been previously described is a decision point or interface in the system at which two different powered towlines come together to form one powered towline.

General Description

The MERGE module may be represented as a box shown in Figure 18. This module has two entrances. Carts at the ROW

ENTR	TEST E	Pl,l,HOKE
	TEST E	P3,8,EXIT
	TEST L	Q\$STA,15,EXIT
	QUEUE	STA
	SPLIT	1,HOKE
	TEST E	P2,1,ECAR
	SEIZE	UNLDR
UAV	VARIABLE	F'N\$NORM*800
	ADVANCE	4000,V\$UAV
	LEAVE	IPS
	ASSIGN	2,0
	RELEASE	UNLDR
	TEST GE	CH\$UCH, 1 ,ECAR
	ASSIGN	3,FN\$DECI
	TRANSFER	,FGOL
ECAR	QUEUE	ECAR
	LINK	UCH, FIFO, UCHO
UCHO	TEST G	CH\$UCH,1
	SEIZE	LDR
	DEPART	ECAR
UVL	VARIABLE	FNSNORM*400
	ADVANCE	2000,V\$UVL
	ENTER	IPS
	ASSIGN	2,1
	RELEASE	LDR
	UNLINK	UCH, UCHO, 1
	ASSIGN	3,FN\$DLCl
FGOL	SEIZE	FGOL
	LOGIC S	4
	GATE LR	4
	RELEASE	FGOL
	DEPART	STA
	TRANSFER	,EXIT
HOKE	ASSIGN	1,0
	ASSIGN	2,0
	ASSIGN	3,0
	GATE LR	4,THKE
	TRANSFER	, EXIT
THKE	LOGIC R	4
	TERMINATE	
UVB	VARIABLE	(120*1000)/X3
EXIT	ADVANCE	V\$UVB

Figure 16. Source Listing of UALS Module

Figure 17. Flow Chart of UALS Module

Figure 17. (Continued)

Figure 17. (Continued)

Figure 18. Merge Module
entrance have the right-of-way and can proceed to the exit without being delayed. Carts which enter the module at the OTH entrance may or may not be delayed. If delayed they join a queue shown symbolically as "Q" in Figure 18.

There are ten different logical situations which might occur at the MERGE module. The logic is designed to process each of these cases.

Case 1. (ROW = cart or hook and OTH = nothing) If a hook or a cart enters the module at ROW and nothing has entered the
module at OTH, the hook or cart is transferred immediately to the module exit.

Case 2. (ROW $=$ nothing and $O T H=$ cart or hook) If a hook or a cart enters the module at $O T H$ and nothing has entered the module at ROW, the hook or cart is transferred immediately to the module exit.

Case 3. (ROW = hook, OTH = hook, $\mathrm{Q}=0$) If a hook enters the module at ROW and at OTH, and there is nothing in the queue, then the OTH hook is destroyed and the ROW hook is transferred to the module exit.

Case 4. (ROW $=$ hook, OTH $=$ hook, $Q=+$) If a hook enters the module at ROW and at OTH, and there are carts in the queue, both hooks are destroyed and the first cart in the queue is transferred to the module exit.

Case 5. (ROW = hook, OTH = cart, $Q=0$) If a hook enters the module at ROW and a cart enters at OTH, and there is nothing in the queue, the ROW hook is destroyed and the OTH cart is transferred to the module exit.

Case 6. (ROW $=$ hook, $O T H=$ cart, $Q=+$) If a hook enters the module at ROW and a cart enters at $0 T H$, and there are carts waiting in the queue, the ROW hook is destroyed, the OTH cart joins the queue, and the first cart in the queue is transferred to the module exit.

Case 7. (ROW = cart, OTH = hook, $Q=0$) If a cart enters the module at ROW, and a hook at $O T H$, and there is nothing in the queue, the $O T H$ hook is destroyed and the ROW cart is transferred to the module exit.

Case 8. (ROW = cart, OTH $=$ hook, $Q=+$) If a cart enters the module at FOW, and a hook at OTH, and there are carts waiting in the queue, the OTH hook is destroyed and the ROW cart is transferred to the module exit.

Case 9. (ROW $=$ cart, $O T H=$ cart, $Q=0$) If a cart enters the module at ROW, and a cart enters at OTH, and there is nothing in the queue, the $O T H$ cart joins the queue and the ROW cart is transferred to the module exit.

Case 10. (ROW $=$ cart, $\mathrm{OTH}=$ cart, $\mathrm{Q}=+$) If a cart enters the module at ROW, and a cart enters a.t OTH, and there are carts waiting in the queue, the OrH cart joins the queue, and the ROW cart is transferred to the module exit.

Detailed Description

This module has two entrances, and the program logic first deals with the entrance at which the carts have the right-of-way. Carts arriving at this entrance never have to wait or form a queue. This module contains several layers of logic to deal with any of the possibilities which might occur.

A cart which has been directed to the right-of-way entrance sets logic switch one and passes through a logic gate. ROW LOGIC S I

GATE LS 2,EXIT
Before the conveyor system has been completely constructed, carts or hooks may arrive at only one entrance of the MERGE module (either the right-of-way entrance or the other entrance). The first entry at location ROW (the right-of-way entrance) sets
logic switch one. This action indicates to the logic at the other entrance that there has been an entry at the ROW entrance. Similar logic appears at the other entrance (labelled OTH). The first entry at the other entrance sets logic switch two indicating to the logic at the ROW entrance that an entry has occurred at the OTH entrance. The entry at the ROW entrnace then passes through the logic gate. If there has been no entry at the OTH entrance, it takes the alternate exit of the gate block and proceeds to location EXIT at the end of this module. If there has been an entry at the OTH entrance, the transaction proceeds to the next sequential block. The next layer of logic insures and maintains the timing and integrety of the towlines. First a transaction sets logic switch three and encounters a gate block operating in the conditional entry mode.

LOGIC S 3

GATE LS 4

Logic similar to the above occurs at this point in the program at the OTH entrance. Transactions which encounter this logic must be timed with transactions encountering logic at the OTH entrance, but arrivals at both entrances may not occur at the same clock time. This logic causes the transaction which arrived at one of the entrances first to wait (at the gate block) for the transaction to arrive at the other entrance. Once both transactions have arrived, either one may begin to move first. First assume the transaction at the ROW entrance moves first. Later, the case in which the transaction at the OTH entrance moves first will be considered.

The next sequential block for the transaction at the ROW entrance determines if it is a cart or a hook.

TEST E Pl,l,HOOK
A hook takes the alternate exit and is transferred to location HOOK.

A cart proceeds and sets logic switch six.
LOGIC S
6

This indicates to the logic at the OTH entrance that a cart is present at the ROW entrance.

The cart then is stopped to allow the transaction at the $O T H$ entrance to move if it has not already moved.

PRIORITY $0, B U F F E R$

The priority of the cart is changed back to one, and the cart is delayed again to allow the transaction at the OTH entrance to move first since it

PRIORITY I

PRIORITY O,BUFFER
must determine if it has to wait and join a queue or proceed.
Finally the cart's priority is changed back to one again and it proceeds on out the module exit.

PRIORITY I

The transaction which leaves at the module exit resets the logic for the next pair of entries and is then transferred to the ADVANCE block at the end of the module.

EXIT LOGIC R 3

LOGIC R 4

LOGIC R 5
LOGIC R 6
TRANSFER , AOUTThe logic at the OTH entrance is somewhat parallel to thelogic at the ROW entrance. The first transaction to arriveat the $O T H$ entrance sets logic switch two indicating an arrivalat this entrance, and then passes through a logic gate.
OTH LOGIC S 2
GATE LS 1,EXIT
If a transaction has not arrived at the ROW entrance, the arrivalat the $O T H$ entrance takes the alternate exit through the GATEblock and is transferred to location EXIT.If there has been an arrival at the ROW entrance, thetransaction at the OTH entrance continues to the next sequentialblock at which it sets logic switch four. It proceeds andencounters a gate block operating in the conditional entry mode.
LOGIC S 4
GATE IS 3
The purpose of this layer of logic has been discussed previously.Now assume that the transaction at this entrance moves firstsince the case in which the transaction at the ROW entrancemoves first has already been discussed.The next block determines if the transaction is a hook ora. cart.
TEST E Pl,1,TERMIf the transaction is a hook it is destroyed since the cart orhook at the ROW entrance will survive and continue out themodule exit.

A cart continues and sets logic switch five which indicates a cart has arrived at the OTH entrance.

LOGIC S 5
The cart is delayed to allow the transaction at the ROW entrance to move after which its priority is changed back to one.

PRIORITY $0, B U F F E R$
PRIORITY
1

The transaction at the ROW entrance moves until it encounters a sequence of blocks similar to those shown above. Now the cart at the OMH entrance continues to move.

The next sequential block determines if there is a queue of carts at the OMH entrance waiting for an empty hook to enter at the ROW entrance.

GATE NU FAC,QUE
If the facility $F A C$ is in use, a cart is waiting and the entering cart is transferred to the queue of carts at location QUE.

If no carts are waiting, the cart continues to the next block. The next block determines if there is a cart at both entrances or not. This is done by means of a boolean variable. MBV BVARIABLE LS5*LS6

TEST E
BV\$MBV,1,CRHK
If the value of the boolean variable is zero, there is a hook at the ROW entrance and the cart can continue out of the module by being transferred to location CRHK.

If the value of the boolean variable is equal to one, there is a cart at both entrances, and the cart at the OTH entrance must
join the queue. It joins the queue and is linked onto a user
chain to save CPU time.
QUE QUEUE MQU
LINK MCH,FIFO, MSZ
The first transaction in the waiting line can seize a
facility which contains the logic necessary to capture a hook.
MSZ SEIZE FAC
It sets logic switch seven and then waits at a GATE block for
a hook at the ROW entrance to reset logic switch seven to allow
the cart to proceed.
LOGIC S 7
GATE IR 7
After a hook at the ROW entrance opens the gate, the cart can
depart the queue, release the facility, unlink the next cart
from the user chain, and transfer to the module exit.
DEPART MQU
RELEASE FAC
UNLINK MCH , MSZ , 1
TRANSFER ,EXIT
A cart at the $O T H$ entrance captures a hook by setting logic
switch seven before being transferred to the module exit.
CRHK LOGIC S 7
TRANSFER , EXITA hook at the ROW entrance is transferred to location HOOK.
Here it is first delayed twice for the same reason that a cart
at the ROW entrance way delayed twice.

```
HOOK PRIORITY O,BUFFER
    PRIORITY l
    PRIORITY O,BUFFER
    PRIORITY l
```

 Then the hook encounters a logic gate that determines if a
 cart is waiting at the OTH entrance or not.
GATE LR 7,THOO
If a cart is not waiting the hook is transferred to the
module exit.
TRANSFER ,EXIT
If a cart is waiting the hook opens the gate for the cart by
resetting logic switch seven and is then destroyed.
THOO LOGIC R ?
TERMINATE
At the end of the module is the ADVANCE block that delays
the transaction for the time it takes it to reach the next module
entrance.
AOU' ADVANCE 0
MVB VARIABLE $(90 * 1000) / X 3$
ADVANCE V\$MVB
The transaction then proceeds to the next sequential module.
A source listing of the MERGE module is given in Figure 19 and
a flow chart of the module is shown in Figure 20.

```
Model Validation
```

Two concepts of ascertaining the model's representation of reality are used by this researcher. The first concept is

ROW	LOGIC S	1
	GATE LS	2,EXIT
	LOGIC S	3
	GATE LS	4
	TEST E	Pl, $1, \mathrm{HOOK}$
	LOGIC S	6
	PRIORITY	0, BUFFER
	PRIORITY	1
	PRIORITY	0,BUFFER
	PRIORITY	1
EXIT	LOGIC R	3
	LOGIC R	4
	LOGIC R	5
	LOGIC R	6
	TRANSFER	,AOUT
OTH	LOGIC S	2
	GATE LS	1,EXIT
	LOGIC S	4
	GATE LS	3
	TEST E	Pl, 1, TERM
	LOGIC S	5
	PRIORITY	O,BUFFER
	PRIORITY	1
	GATE NU	FAC, QUE
MBV	BVARIABLE	LS5*LS6
	TEST E	BV\$MBV,1,CRHK
QUE	QUEUE	MQU
	LINK	MCH, FIFO, MSZ
MSZ	SEIZE	FAC
	LOGIC S	7
	GATE LR	7
	DEPART	MQU
	RELEASE	FAC
	UNLINK	MCH, MSZ, 1
	TRANSFER	, EXIT
CRHK	LOGIC S	7
	TRANSFER	, EXIT
HOOK	PRIORITY	O,BUF'FER
	PRIORITY	1
	PRIORITY	0,BUFFER
	PRIORITY	1
	GATE LR	7,THOO
	TRANSFER	, EXIT
THOO	LOGIC R	7
	TERMINATE	
	ADVANCE	0
MVB	VARIABLE	(90*1000)/X3
	ADVANCE	V\$MVB

Figure 19. Source Listing of MERGE Module

Figure 20. Flow Chart of MERGE Module

Figure 20. (Continued)

Figure 20. (Continued)

Figure 20. (Continued)
validation. The objective of validation is to establish that each module responds in a logical manner that is not unlike the actual system. This objective asks the question, "Is each module logically correct?" The second concept is verification. The objective of verification is to establish that the entire simulation model responds in a manner that does not misrepresent the response of the actual system under typical conditions.

The first phase of the model validation was accomplished during the model construction. In cases where logic was designed to deal with a number of different situations, the situations were exhaustively enumerated. This researcher then simulated each case of the module logic by hand to validate its construction.

The second phase of validation was accomplished by a series of trial computer simulations of each module to insure the correctness of the logic. All possible cases of module inputs were deterministically programmed and the output was analyzed to insure the module's correctness under all situations.

The third phase of validation consisted of building a small conveyor simulation model that consisted of one of each of the five modules. A series of trial computer simulations were performed with this model to test the modules. The future events chain, current events chain, users chains, and other GPSS output statistics were used to determine if each module's response was logically correct.

It was not the objective of this research to perform a model verification; however, further arguments for the model's validation are presented in Chapter VI and Chapter VII.

MODEL USER'S GUIDE

The model developed in the previous chapter is somewhat large and lengthy. For example, a conveyor system of average size and complexity may require more than 1000 GPSS/360 blocks, and on the IBM 360 system one hour of simulation time may require as much as one minute of CPU time. The purpose of this chapter is to assist the user in programming his conveyor system using the model developed through this research.

Primary Considerations

Conveyor systems of average complexity will probably require the 256 K version of GPSS/360 and the use of the REALIOCATE feature. Increasing the size of COMMON is the most important function of the REALLOCATE card in this model. The use of REALLOCATE is described in the GPSS/360 Operator's Manual (H2O-03ll under OS/360 or H2O-0327 under DOS/360).

If the normal distribution is used for load and unload times, then the standard normal distribution must be defined as a GPSS function. Other necessary functions include probability distributions of the possible destinations of empty carts from each UALS module, and probability distributions of the possible destinations of loaded carts from each UALS module. Many of
these distributions may be the same and need not be duplicated. The functions should be labelled, not numbered.

Three savevalues used throughout the model must be specified. These may be specified by INITIAL cards. Savevalue number one (XI) must be initialized at the number of carts in the system. If the system does not use carts and the goods transferred on the conveyor are attached directly to the hooks, then $X 1$ should be initialized at the number of hooks in the system. X2 must be initialized at the distance between hooks on the conveyor. X3 must be initialized at the speed of the conveyor. If $X 2$ is defined in feet, then $X 3$ must be defined in feet per minute.

One storage must be defined in the model. The storage label is IPS which stands for in process storage. It is defined by a STORAGE card as equal to the number of carts in the system. The purpose of this storage is to give the user an indication of the utilization of carts as an in process storage.

Any tables that the user wishes to use must also be defined. The user may want to tabulate the destinations of loaded carts that pass a particular point in the model. This may be a tabulation of carts that are recirculating in the system. The user must supply the TABLE card and insert TABULATE cards at proper places in the model.

The users considerations in the CAHG module and the PPLS module have been discussed in Chapter IV since these modules only occur once in the system. The other three modules occur from four to nineteen times throughout the model. To facilitate their programming and use, they have been encapsulated in GPSS/360 MACROS. The
remainder of this chapter explains these MACROS.

Macro Modules

A source listing of the three modules programmed in macros is shown in Appendix A. A macro is a string of frequently used blocks defined by the user, which he may later call with only one card. The only advantage obtained by using macros is the elimination of the need to code and keypunch repetitive strings of blocks. The definition of macros requires two control cards. A STARTMACRO card labelled with the name of the macro is placed in front of the actual macro blocks, and an ENDMACRO card is placed at the end of the macro. The actual macro definition cards are placed between these two control cards. These macro definition cards follow the normal GPSS block format except that some fields may be replaced by macro arguments. Macro arguments are represented by following a special character \# with a letter (A-J) which represent arguments l-l0 respectively. A maximum of ten arguments per macro is allowed.

Macros are called by means of the MACRO card labelled with the name of the macro being called. The macro arguments to be substituted into the macro definition cards are listed in the MACRO card. As a simple example of a macro, the block sequence shown below defines a macro.

RONI STARTMACRO
\#C SEIZE \#A

ADVANCE \#B

RELEASE \#A

ENDMACRO
This macro labelled RONI can be called with the MACRO card shown below.

RONI MACRO
$1,400, \mathrm{FAC}$
The above card would produce the following block sequence in the compiled program.

FAC SEIZE 〕.
ADVANCE 400
RELEASE 1

Merge Module

The MERGE module is constructed of three GPSS/360 MACROS labelled MERGl, MERG2, and MERG3. These MACRO cards when used in order with the arguments defined will be compiled as a complete MERGE module. The remainder of this section is an explanation of the MACRO arguments.

MERGI MACRO
\#A, \#B, \#C, \#D, \#E, \#F, \#G, \#H, \#I, \#J
\#A - any unique three letter label
\#B - any unique three letter label
\#C - any unique three letter label
\#D -- any unique three letter label
\#F - any unique three letter label
\#F - any unique three letter label
\#G - any unique three letter label
\#H - any unique three letter label
\#I - any unique three letter label
\#J - any unique three letter label

MERG2 MACRO

$$
\# A, \# B, \# C, \# D, \# E, \# F, \# G, \# H, \# I, \# J
$$

\#A - same as \#A of MERGI
\#B - same as \#B of MERGI
\#C - any unique three letter label
\#D - any unique three letter label
\#E - BV\$ (same as \#D of MERG2)
\#F - LS\$ (same as \#C of MERGI)*LS\$
(same as \#F of MERGI)
\#G - any unique three letter label
\#H - any unique three letter label
\#I - any unique three letter label
\#J - same as \#I of MERGI
MERG3 MACRO \#A,\#B,\#C
\#A - any unique three letter label
\#B - V\$ (same as \#A of MERG3)
\#C - delay time in milliminutes to the next module entrance, i.e. (090*1000)/X3 or (Distance in feet * 1000)/X3

Split Module
The SPLIT module is also constructed of three GPSS/360 macros. They are labelled SPLTl, SPLT2, and SPLT3. The remainder of this section is an explanation of their MACRO arguments.

SPLTl MACRO

$$
\# A, \# B, \# C, \# D, \# E, \# F, \# G, \# H, \# I, \# J
$$

\#A - any unique three letter label
\#B - any unique three letter label

```
    #C - any unique three letter label
    #D - any unique three letter label
    #E - any unique three letter label
    #F - any unique three letter label
    #G - any unique three letter label
    #H - logical condition regarding P3 which is the argument
        of a boolean variable that equals one for a cart to
        proceed out the left exit, i.e.
        P3'GE'9*P3'L'17 or P3'GE'17+P3'L'9
    #I - BV$ (same as #G of SPLTI)
    #J - the sime that Q$LCRl must reach for a cart with a
    destination to the left be diverted to the right,
    i.e. }999\mathrm{ or 36
SPLT2 MACRO
        #A,#B,#C,#D,#E
    #A - any unique three letter label
    #B - location label of the entrance to the next sequential
    module to the left
    #C - same as #A of SPITl
    #D - V$ (same as #A of SPLT2)
    #E - delay time to the entrance to the next sequential
    module to the left in milliminutes, i.e. (236*1000)/X3
SPLT3 MACRO
                        #A,#B,#C,#D,#E
#A - any unique three letter label
#B - location label of the entrance to the next sequential
    module to the right
#C - same as #B of SPLTl
#D - V$ (same as #A of SPLT3)
```

\#E - delay time to the entrance to the next sequential module to the left in milliminutes, i.e. (060*1000)/X3

Unload and Load Station Module

The UALS module is again constructed of three GPSS/360 macros. They are labelled ULSTl, ULST2, and ULST3. The remainder of this section is an explanation of these MACRO arguments.

ULSTI MACRO
\#A, \#B, \#C, \#D, \#E, \#F, \#G, \#H, \#I, \#J
\#A. - any unique three letter label\#B - any unique three letter label\#C - any unique three letter label\#D - any unique three letter label\#E - Q (same as \#D of ULSTI)
\#F - V\$ (same as \#D of ULSTI)
\#G - destination number of this module, i.e. l,2,3,etc.
\#H - mean unload time in milliminutes, i.e. 4 minutes $=4000$
milliminutes
\#I - the maximum number of carts that can be in the station
queue, i.e.. 15 or 35
\#J - variable argument which is the spread modifier of the
mean unload time in milliminutes, i.e. FN\$NORM*800
\#A, \#B, \#C, \#D, \#E, \#F,\#G,\#H,\#I
\#A - same as \#C of ULSTI
\#B - any unique three letter label
\#C - CH\$ (same as \#A of ULST2)
\#D - V\$ (same as \#B of ULST2)
\#E - FN\$ (the label of the function which defines the probability distribution of the possible destinations of empty carts which leave this module), i.e. FN\$DECl
\#F - any unique three letter label
\#G - mean load time in milliminutes, i.e. 2 minutes $=2000$ milliminutes
\#H - the maximum number of empty carts to be retained at the module minus one, i.e. l,2,etc.
\#I - variable argument which is the spread modifier of the mean load time in milliminutes, i.e. FN\$NORM*400

ULST3 MACRO
\#A,\#B, \#C, \#D, \#E, \#F,\#G,\#H,\#I
\#A - same as \#B of ULST2
\#B - any unique three letter label
\#C - same as \#B of ULSTl
\#D - same as \#A of ULSTl
\#E - any unique three letter label
\#F - V\$ (same as \#E of ULST3)
\#G - same as \#D of ULSTl
\#H - FN\$ (the label of the function which defines the probability distribution of the possible destinations of loaded carts which leave this module), i.e. FN\$DICl
\#I - delay time to the entrance to the next sequential module in milliminutes, i.e. (601*1000)/X3

Model Order

The general structure of the model should be similar to that of the conveyor system. Before the actual system modules, the
deck should include:

1. REALLOCATE cards
2. SIMUILATE card
3. Three general purpose MACRO modules
4. FUNCTION definition cards including the standard normal distribution if it is used.
5. TABLE definition cards if they are used.
6. Three INITIAL cards for $\mathrm{Xl}, \mathrm{X2}$, and X 3
7. STORAGE definition card labelled IPS

Since the model forms a closed loop, any point in the model may be used as a starting point. If a transaction which leaves a module should not enter the next sequential module, an unconditional transfer should be inserted into the deck for proper routing. The CAHG module and the PPLS module must be constructed by the user, but the three general purpose modules do not need to be constructed. To use these three modules, the user need only insert the three MACRO definition cards and supply their arguments.

The last part of the model deck should be a run timer to stop the simulation. The user can define his own run timer. The following run timer lets the model run for two hours to reach steady state. A RESET card is used, and the model is simulated for twenty hours.

GENERATE 120000

TERMINATE I

START I

RESET

START
10

FIRST MODEL SIMULATION

Abstract

After the conveyor system modules had been developed and validated, they were combined into a model of the first large manufacturing company's conveyor system which was described in Chapter III. This chapter includes a discussion of the simulation of that model and its output statistics.

Simulation Model

Figure 1 shown in Chapter III is a graphical representation of the manufacturing company's warehouse distribution conveyor system. This was a useful starting point in building the simulation model by visualizing the overall system. A blueprint of the floor plan of the towline was obtained. Measurements of distances along the towline were taken from the blueprint and transcribed on the towline floor plan shown in Figure 2l. The blueprint floor plan was also used to aid in the identification of the position of the modules which were used to construct the simulation model of the system. To aid in building the model correctly, Figure 21 was transformed into Figure 22 which is a modular representation of the conveyor system. Figure 22 shows the type of module that was used at each interface, and the destination identification number is given for each of the UALS

Figure 21. Conveyor System Floor Plan

Figure 22. Modular Floor Plan of Conveyor
modules and the PPLS module. A complete source listing of this conveyor system is given in Appendix A.

The functions used for possible destinations of empty and loaded carts were estimated with the aid of the manufacturing company's Industrial Engineering Department. These functions are difficult to validate with hard data and often must be approximated. Two TABLE definition cards were used to tabulate the number of loaded carts that pass two points in the model. Xl , the number of carts in the system, was initialized at 380, X2, the hook spacing, was initialized at 21 feet, and $X 3$, the conveyor speed, was initialized at 70 feet per minute.

The module parameters or arguments such as maximum station queue etc. were obtained from the conveyor specifications on the blueprint. Other parameters such as the mean and standard deviation of the load and unload times etc. were estimated with the aid of the company's Industrial Engineering Department. Unconditional TRANSFER cards were added to the model where it was necessary to direct the transactions to their proper destinations. The series of blocks shown below was added to the model between the right exit of the third SPLIT module and the non right-of-way entrance to the second MERGE module and between the right exit of the fourth SPLIT module and the right-of-way entrance to the first MERGE module.
TAA TEST E P2,1,TRA

TABUIATE RECI
TRA TRANSFER . ,MBO
The purpose of these blocks was to tabulate the number of loaded
carts by destination which passed that point in the module. The table labelled RECl tabulated the carts at the first location described above, and table labelled REC2 tabulated the carts at the second location described above.

Finally the conveyor system was simulated for twenty hours after having reached steady state. A snap interval of four hours was used to give output statistics after each four hours of simulation.

Output Statistics

The standard GPSS/360 output statistics produced at the end of the simulation is given in Appendix A. The user chain statistics are of little value to the analysis of the simulation because the user chains were added only to save CPU time. The data from them can be more easily and completely obtained from the queue statistics. Many of the facilities in the model were used for logical purposes only (allowing a cart to capture a hook). The statistics from these facilities is of little value. Each UALS module consists of a loading facility and an unloading facility. The percent utilization of these facilities and the PPLS module is summarized in Table I.

The Table I statistics directly reflect the user defined functions of possible destinations of loaded and empty carts. If these functions were changed, the changes would become apparent in the load and unload facility utilization statistics. The facility statistics also contain the average time per transaction. This time corresponds directly to the mean loading or unloading
time and is of no value except for comparing it to the user defined mean. The total number of entries gives the user an idea of how many carts were processed by each facility. This statistic can be obtained from the queue or facility statistics. It will be discussed later in this chapter.

TABLE I
FACILITY UTILIZATION STATISTICS I

UALS Module (Destination)	Unload Facility Utilization (\%)	Load Facility Utilization (\%)
1	35.9	4.4
2	38.2	6.1
3	34.6	5.4
4	28.8	8.8
5	41.5	6.1
6	33.9	7.1
7	39.1	8.6
8	34.5	10.2
9	17.1	4.3
10	16.7	4.6
11	14.3	4.0
12	19.7	5.0
13	19.5	5.9
14	18.8	5.4
15	21.3	5.0
16	31.4	63.5
17	6.4	7.1
18	7.6	7.2
19	4.5	9.8
PPLS	100.0	

The value of recirculating conveyors as an in-process storage may be either under estimated or over estimated. Table II summarizes the storage statistics for this simulation.

TABLE II
IN-PROCESS STORAGE STATISTICS I

Total Capacity (no.)	Average Contents (no.)	Average Utilization (\%)	Total Entries (no.)	Average Time/ Transaction (min.)	Maximum Contents (no.)
380	64	16.8	1722	44.6	131

The capacity of the storage was set by the user at the total number of carts in the system. In this simulation for this system, the utilization of this storage was low (16.8\%). The average time/ transaction tells the user that it took an average of 44.6 minutes for a loaded cart to reach its destination and be unloaded. This time might be useful for planning purposes such as planning delays for customers in placing and receiving orders. The average time a cart is delayed at a UALS module might also be used in this estimate. This statistic and other queue statistics are summarized in Table III.

TABLE III

QUEUE STATISTICS

UALS Module (Destination)	Average Contents (no.)	Total Entries (no.)	Average Time/ Transaction (min.)
1	5.8	139	50.5
2	5.5	155	42.2
3	5.2	143	43.6
4	6.4	143	53.5
5	6.4	165	46.3
6	5.2	149	41.7
7	6.1	174	42.2
8	5.0	169	35.8
9	2.3	64	42.2
10	2.3	66	41.3
11	2.2	56	47.4
12	2.3	74	37.3
13	2.3	78	35.3
14	2.3	74	37.0
15	2.3	77	36.2
16	8.1	761	12.7
17	4.9	74	78.9
18	4.9	84	69.9
19	3.9	77	61.5
PPLS	40.4	635	76.4

The average station queue contents gives the user an indication of the average number of carts present at the module at any time. The total entries tells how many carts passed through
each UALS module. The average time per transaction gives the average total time a cart was delayed at a UALS module for unloading and or loading plus waiting time. Queue statistics are also given for the waiting lines that can build up at the MERGE modules. These statistics indicate that the two most critical bottlenecks in the simulation model occur at the point where carts from the PPIS module attempt to capture a hook on the main loop and where the two loops merge just prior to the rail docks. The sizes of these queues may be influenced by the accuracy of the user defined functions which are probability distributions of possible destinations of empty and loaded carts. The sizes of these queues may also be influenced by the total number of carts that are loaded and unloaded at the UALS modules. The actual observed sizes of these queues and the simulated sizes of these queues can be used to test the system sensitivity to external or internal changes such as increasing the number of carts or decreasing the cart delay time at the UALS modules.

Finally the two user defined tables $R E C l$ and REC2 are given in Table IV. These tables were used to count the number of carts that pass a point in the model. Table RECl counts the number of loaded carts from UALS modules $8-15$ which are recirculating around the loop or have a load to be unloaded at the truck docks. Table REC2 counts the loaded carts which pass another point in the model. The user may put these types of tables any place in the model where he desires to obtain statistics. The table may be configured to count empty carts, loaded carts or both. They may also be used for model verification purposes.

TABLE IV
TABLE STATISTICS I

UALS Module (Destination)	Observed Frequency Table RECl (no.)	Table REC2 (no.)
0	0	0
1	0	39
2	0	45
3	0	38
4	0	40
5	0	39
6	0	40
7	0	41
8	0	40
9	15	5
10	16	7
11	16	4
12	24	3
13	28	2
14	28	5
15	31	0
16	0	0
17	0	0
19		

The second manufacturer's recirculating conveyor system was chosen for study because it is a different type of recirculating conveyor than the one modeled previously. This chapter includes a brief system description, a discussion of the simulation model, and the simulation output statistics.

System Description

This conveyor system is an overhead type conveyor which transports components from a subassembly load station to two final assembly unload stations. The products are placed directly onto discretely spaced hooks which are an integral part of the overhead conveyor. The conveyor system is somewhat less complex than the one previously studied; however, it is different in that carts are not used. The products are placed directly on the hooks.

A floor plan diagram of the conveyor system is shown in Figure 23. Components which are placed on the conveyor at the load station first pass through an inspection area. Here the components are given a 100% inspection as they move on the conveyor. This portion of the system does not affect the operational aspects of the conveyor itself and is represented in the model as a delay. Approximately 70% of the components are the type which are removed
from the conveyor at the first unload station encountered and the remainder are destined for the second unload station.

There are 1200 hooks on the 600 foot conveyor which is operated at a speed of 10 feet per minute. The distance between hooks is 6 inches and it takes a hook one hour to complete the circuit. There are 360 feet of conveyor between the load station and the first unload station, 120 feet between the first and second unload stations, and 120 feet between the second unload station and the load station.

Simulation Model

The conveyor system may be completely constructed using four simulation modules developed earlier in this research. The CAHG module is necessary without modification to build the conveyor. The PPLS module without modification was used to represent the load station. Two UALS modules with one minor modification was used to represent the two unload stations. Since the two UALS modules were being used for unloading purposes only an unconditional TRANSFER block was added to the module to branch the transactions around the load portion of the module.

The function used for the possible destination of the loaded hooks was estimated by the company's Industrial Engineering Department. One table was defined in this simulation model to tabulate the number of components which recirculated on the conveyor. Xl, the number of carts in the system, was initialized at 1200 which is the number of hooks in the system. To the model, this means there is a cart on every available hook. X3, the

Figure 23. Conveyor Floor Plan
conveyor speed, was initialized at 10 feet per minute. The distance between hooks could not be directly incorporated into a savevalue since it was a fractional value. This distance is used only in variable number one and was placed in that variable directly. The module parameters and the arguments of the two UALS modules were obtained from observation of the system in operation and from the company's supervisory personnel. The data for the load and unload times was estimated with the aid of the company's Industrial Engineering Department. Following the last UALS module, the sequence of blocks shown below was added to the model to tabulate the number of components that recirculated on the conveyor and then transfer the hooks to the entrance to the CAHG module.
TEST E P2,1,TRA
TABULATE RECl
TRA TRANSFER ,NTR
Finally the model was simulated for eight hours of operation after having reached steady state. Appendix B shows a source listing of the conveyor system model and lists the standard GPSS/360 output statistics produced at the end of the simulation.

Output Statistics

Since the conveyor system is a simple one, only three different statistics are of any value. The facility statistics give the average utilization of the load and unload stations, the storage statistics give the utilization of the conveyor as an in process storage, and the table statistics can be used to calculate the percentage of the components that recirculate. The queue statistics
and user chain statistics are of no value since no queues can form in this one loop conveyor system.

Table V gives the average utilization of the load station and two unload station modules. This statistic can be influenced by the maximum station queue policy that is used in the UALS modules. After observing this system in operation, it was determined that the person unloading components from the conveyor had enough time to select and unload only two items from the conveyor at once. The maximum station queue was therefore set at two.

TABLE V
FACIIITY UTIIIZATION STATISTICS II

Module	Average Utilization (\%)
Load Station	73.3
First Unload	77.8
Second Unload	75.0

The capacity of the conveyor as an in-process storage was set by the user at the total number of hooks in the system. In this simulation the average utilization was somewhat higher (68.5\%) than in the previous model (16.8\%). This is probably due to the fact
that the overhead conveyor is a different type of conveyor. It is also being used for a different purpose and it is loaded and unloaded in a different manner. Table VI summarizes the storage statistics for this simulation.

TABLE VI
IN-PROCESS STORAGE STATISTICS II

Total Capacity (no.)	Average Contents (no.)	Average Utilization (\%)	Total Entries (no.)	Average Time/ Transaction (min.)	Maximum Contents (no.)
1200	822	68.5	9629	41.0	846

Table VII gives the results of the recirculation statistics tabulated in the model. These results were tabulated in table RECl. More of the items destined for unload station number two recirculated than those destined for unload station number one. Although less components are assigned to be unloaded at UALS module number two (30%), the mean unload time is significantly larger (. 140 minutes compared to .060 minutes for UALS number one). The simulation time of eight hours means that 9600 (8 X 1200) hooks passed a given point in the system after the conveyor is constructed. There were 744 entries into table RECl. This means that 7.75% of
the components recirculated on the conveyor or that the probability of recirculation of any one component is . 0775 .

TABLE VII

TABLE STATISTICS II

UALS Module (destination)	Observed Frequency (no.)
1	193
2	551

This chapter includes a summary of how the research objectives set forth in Chapter I were accomplished and suggests areas for future research.

Conclusions

The first research objective was to examine the functional components of a particular complex integrated conveyor system, with the objective of identifying the functional components and parameters of the system. After confining the research to constant speed discretely spaced recirculating complex conveyor systems, a survey of the literature and an on site observation assisted this researcher in identifying the functional components and parameters of this particular type of conveyor system. These components and parameters were later incorporated into the basic structure of the simulation model. Examples of these components and parameters include: (1) conveyor speed, (2) hook spacing, (3) number of carts, (4) finite distance between decision points, etc.

The second research objective was to identify and describe the components and parameters of the types of interfaces that do occur between the functional components of the complex recirculating conveyor system. Chapter III of this dissertation described four
major interfaces or decision points that occur in the particular system selected for study. A fifth interface was later identified by this researcher to complete the analytical description of the conveyor system.

The third objective was to develop and encode a computer simulation model using a modular format to represent the functioning of the components identified in the first two research objectives. The development and encoding of the five simulation modules of the second research objective is described in Chapter IV. The first section of Chapter V describes to the user how the components and parameters of the first research objective were incorporated into the simulation model.

The fourth research objective was to demonstrate that the "plug-in" simulation modules provide a feasible approach for building a general purpose simulation model. The manner in which the modules were developed in Chapter IV was centered around a general purpose technique. The validation of the modules in Chapter IV required the construction and simulation of a small conveyor system that consisted of one of each of the five modules. Without changes in the modules, they were in Chapter VI put together to form a large conveyor system. This flexibility of the modular approach demonstrates the feasibility of a general purpose simulation model for constant speed discretely spaced recirculating conveyor system. The general purpose approach is further demonstrated in Chapter V. by providing the user with a general user guide in programming a simulation model using these five modules. Chapter VII also demonstrated the feasibility of the
approach by using the general purpose modules to simulate another unrelated conveyor system.

Finally the fifth research objective was to use the "plug-in" simulation components to simulate the recirculating conveyor system to validate the model construction and to further validate the simulation modules and demonstrate the feasibility of the approach by using the modules to simulate another unrelated recirculating conveyor system. Chapter VI and Chapter VII of this dissertation describe the simulation models and their results.

Recommendations

There are three major areas for future research in the area of constant speed discretely spaced recirculating conveyor systems.

Since this dissertation proved its feasibility, the allencompassing general purpose simulation model should be developed. This may require the development of additional modules to provide for all the cases that might be encountered. It also might require modification of one or more of the five modules that have been developed in this dissertation to provide compatibility with future modules or to provide flexibility in simulating a variety of conveyor systems.

A second area of research should be a rigid mathematical verification of a particular conveyor system simulation model. This may require the researcher to find a conveyor system about which a great deal of hard performance data already exists. If this is not possible, the researcher should be required to obtain a significant amount of hard performance data concerning a particular
conveyor system. This verification should serve as a further test of the general purpose approach.

The third area of research should be to use the general purpose model, once developed, to devise a set of mathematical "prediction equations" for the general purpose model. The equations could be used to predict the outcome of simulation models of conveyor systems without having to run the simulation on the computer. The equations would emperically describe the functional components and complex interactions of the simulation model.

Just as Terrell and Bussey's work provided a spring board for this dissertation, this researcher hopes that this thesis provides a catalyst for yet further work in this field.
(1) Agee, Marvin H., and Thomas P. Cullinane. "Analyzing Two Link Materials Handling Systems for Short Run Production Jobs." Operations Research Society of America, 4lst National Meeting (New Orleans, 1972).
(2) Beightler, Charles S., and Robert M. Crisp, Jr. "A Discrete Analysis of Conveyor-Serviced Production Stations." Operations Research, Vol. 16 (1968), 986-1001.
(3) Brady, W. "A Comparison of the Effect of Work-Time Variation in Two Types of Conveyor Systems." International Journal of Production Research, Vol. 11 (1973), 171-182.
(4) Burnbridge, John J. "An Approach to the Analysis of a Conveyor System." Operations Research Society of America, 38th National Meeting (Detroit, 1970).
(5) Bussey, Lynn E., and M. Palmer Terrell. "Characteristics of Constant-Speed Recirculating Conveyors with Markovian Loadings and Services." Operations Research Society of America, 39th National Meeting (Dallas, 1971).
(6) Bussey, Lynn E., and M. Palmer Terrell. "A Model for Analyzing Closed-Loop Conveyor Systems with Multiple Work Stations." Proceedings of the 1973 Winter Simulation Conference, The Institute of Management Sciences (San Francisco, 1973).
(7) Cinlar, Erhan, and Ralph L. Disney. "Stream of Overflows from a. Finite Queue." Operations Research, Vol. 15 (1967), 131-134.
(8) Crisp, Robert M., Ronald W. Skeith, and J. Wesley Barnes. "A Simulated Study of Conveyor-Serviced Production Stations." International Journal of Production Research, Vol. 7 (1969), 301-309.
(9) Disney, Ralph L. "Some Multichannel Queueing Problems with Ordered Entry." Journal of Industrial Engineering, Vo1. 13 (1963), 46-48.
(10) Disney, Ralph L. "Some Results of Multichannel Queueing Problems with Ordered Entry -- An Application to Conveyor Theory." Journal of Industrial Engineering, Vol. 14 (1963), 105-108.
(11) Gupta, S. K. "Analysis of a Two-Channel Queueing Problem with Ordered Entry." Journal of Industrial Engineering, Vol. 17 (1966), 54-55.
(12) Helgeson, W. R. "Planning for the Use of Overhead Monorail Non-Reversing Loop Type Conveyor Systems for Storage and Delivery." Journal of Industrial Engineering, Vol. ll (1960), 488-492.
(13) Khinchine, A. Y. "Mathematical Methods in the Theory of Queues." Statistical Monographs, No. 7. New York: Hafner Publishing Company, 1960.
(14) Kwo, T. T. "A Theory of Conveyors." Management Science, Vol. 6 (1958), 5l-71.
(15) Kwo, T. T. "A Method for Designing Irreversible Overhead Loop Conveyors." Journal of Industrial Engineering, Vol. ll (1960), 459-466.
(16) Morgan, J. T. "Two-Link Material Handling Systems." Operations Research, Vol. 14 (1966), 16-24.
(17) Muth, Eginhard. "Systems Engineering Applied to the Analysis of Continuous Flow Conveyors." Technical Report No. 64 , Department of Industrial and Systems Engineering, University of Florida (Gainesville, 1962).
(18) Muth, Eginhard. "Analysis of Closed-Loop Conveyor Systems." AIIE Transactions, Vol. 4 (1972), 134-143.
(19) Muth, E. J. "Closed Loop Conveyor Systems with Discrete Material Flow." Operations Research Society of America, 41st National Meeting (New Orleans, 1972).
(20) Palm, C. "Research on Telephone Traffic Carried by Full Availability Groups." Tele, Vol. l (1957), l-l07.
(21) Phillips, Donald T. "A Markovian Analysis of the ConveyorServiced Ordered Entry Queueing System with Multiple Servers and Multiple Queues." (Unpub. Ph.D. dissertation, the University of Arkansas, 1969).
(22) Phillips, Donald T., and Ronald W. Skeith. "Ordered Entry Queueing Networks with Multiple Servers and Multiple Queues." AIIE Transactions, Vol. l (1969), 333-342.
(23) Pritsker, A. Alan B. "Applicetion of Multichannel Queueing Results to the Analysis of Conveyor Systems." Journal of Industrial Engineering, Vol. 17 (1966), 14-21.
(24) Reis, I. L., and J. M. Hatcher. "Probabilistic Conveyor Analysis." International Journal of Production Research, Vol. 2 (1963), 186-194.
(25) Reis, Irvin L., Lloyd L. Dunlap, and Morris H. Schneider. "Conveyor Theory: The Individual Station." Journal of Industrial Engineering, Vol. 14 (1963), 212-217.
(26) Reis, Irvin L., James J. Brennan, and Robert M. Crisp, Jr. "A Markovian Analysis for Delay at Conveyor-Serviced Production Stations." International Journal of Production Research, Vol. 5 (1967), 201-211.
(27) General Purpose Simulation System/360 -- User's Manual, Pub. No. 1120-0326-2. White Plains, New York: International Business Machines Corp., 1968.
APPENDIX A
SOURCE LISTING AND COMPUTER OUTPUT FOR FIRST
MODEL SIMULATION

REALL DCATE XAC, $1200, B L 0,1200$,FAC, 100 STO 1 CUE 100 LOG 100
REALLOCATE TAB,5,FUN, 12,VAR,75,FSV,5,HSV,5,CHA, 30,GRP, $1, B$ BR, 10
1
2
3 REALLCCATE FMS,1,HMS,1,COM, 75000

Block Nu*EER	* LCC	OP ERAT ION	A, B, C, D, E, F, G	COMMENTS	CARD number
		SIMULATE	Arbicroresfo		NUMBER
	MERGI	Startmacro			5
	\#J	LOGIC S	\#J		6
		GATE LS	\#G.\#A		7
		LOGIC S	\#D		8
		GATE LS	\#E		9
		TEST E	P1,1,\#B		10
		LOGIC S	\#C		11
		PRIORITY	0. BUFFER		12
		PRIORITY	1		13
		PRIDRITY	O, BUFFER		14
		PRIORITY	1		15
	*	LOGIC R	\#F		16
		LOGIC R	\#C		17
		LOGIC R	40		18
		LOGIC R	\#E		19
		TR ANS FER	, \#I		20
	\#H	LOGIC S	\#G		21
		GATE LS	\#, \#, \#A		22
		LOGIC S	\#E		23
		GATE LS	\#		24
		TEST E	P1, 1, TERM		25
		LOGIC S	$\#$ F		26
		PRIORITY	O, BUFFER		27
		PRIORITY	1		28
		Endmacro			29
	MERG 2	StARTMACRO			30
		GATE NU	\#G, \#G		31
	\#0	BV ARIABLE	\#F		32
		TEST E	\#E, 1, \#H		33
	\%	Queue	WG		34
		LIAK	\#C,FIFO, \#C		35
	*	SEILE	\#G		36
		LOGIC S	\#C		37
		GATE LR	\#C		38
		DEPART	\#G		39
		RELEASE	\#G		40
		UNLINK	\#C,\#C,1		41
		TR AN SFER	, \#A		42
	\#H	LOGIC S	\#C		43
		TRANSFER	,\#A		44
	\#B	PRIORITY	O,B UFFER		45
		PRICRITY	1		46
		PRIDRI TY	0 , BUFFER		47
		PRIORITY	1		48
		gate Lr	\#C, \#I		49
		transfer	, \#A		50
	\# I	Lagic R	\#C		51
		terminate			52
	\#J	AD VANCE	0		53
		ENDMACRO			54
	MERG3	St ART MACRO			55
	\#A	variable	\#C		56
		ADV ANCE	\# B		57
		ENOMACRO			58

Mengl	macrn	NAX, NAH, MAA, NAB, MAC, MAD, MAE, MAD, MAG, MAR
MAK	LJGIC S	MAP
	gate ls	MAE, MAX
	LJaic s	MAB
	GATE LS	MAC
	TEST E	Pl, I, MAH
	LOGIC S	PAA
	PRIORITY	0,buffer
	PRIORITY	1
	PRIORITY	O,B UFFER
	PRIORITY	1
max	LJGIC R	MAD
	LOGIC R	MAA
	LOGIC R	$M \triangle B$
	LOGIC R	MAC
	TRANSFER	, MA G
*AO	LOGIC S	MAE
	GA TE LS	MAR, MAX
	LOGIC S	MAC
	GATE LS	MAB
	TEST E	P1,1, TERM
	LOCIC S	MAO
	PRICRITY	O, BUFFER
	PRIORITY	1
MERG2	MACRD	MAX,MAH,MAF,MAV,BV\$MAV,LSSMAA*LSSMAD,MAU,MAP, MAT,MAG
	gate nu	MAS,MAQ
MAV	BVARIABLE	LSSMAA*LSSMAD
	TEST E	BVSMAV, L, MAP
MAS	QUEUE	MAd
	LINK	MAF,FIFC,MAF
M $A F$	SEIzE	MAQ
	LOGIC S	MAF
	GATE LR	MAF
	DEPART	MAU
	RELEASE.	MAS
	UYLINK	MAF,MAF, 1
	transfar	, MAX
MAP	LIGIC S	MAF
	TRANSFER	, MAX
HAH	PGICRITY	0, BUFFER
	PRIDPITY	1
	PRIORITY	O, duFfer
	PRICRITY	1
	GATE LR	maf, mat
	TRANS FER	, max
nat	LoGic a terminate	MAF
mag	ADVANCE	0
nerge	MACRC	MAS ,VSMAS, (090*1000)/X3
$m a s$	variable	(c90* 1000)/×3
	AJVANCE	\checkmark fmas
ULSTl	MACPO	UAH, UAJ, UAB, UAG, GSUAG,V\$JA, 1,400U, 15, FiNfiJRM*BU0
UAQ	test	P1, 1, UAH
	TEST	P3,1,UA0
	TEST L	LSUAR,15,UAD
	queus	UAd
	SPLIT	1, UAH

```
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& 102 \\
& 103
\end{aligned}
\]} & & test e & P2, 1, VAB \\
\hline & & SEILE & UAH \\
\hline & \multirow[t]{5}{*}{UAQ} & variable & FNSNORM*800 \\
\hline 104 & & AiJVANCF & \(40 J 0, V\) SUAQ \\
\hline 105 & & leave & 1 PS \\
\hline 106 & & ASSIGN & 2,0 \\
\hline \multirow[t]{2}{*}{107} & & RELEASE & \(\cup\) AH \\
\hline & \multirow[t]{4}{*}{LLST2} & MACRO & UAB, UAL, CH\$UAB, V\$UAL, FN\$CECL,JAS, 2JJU, ! FNSNORM*4J0 \\
\hline 108 & & TEST GE & CHSUAB, 1, UAB \\
\hline 109 & & ASSIGN & 3,FNSDEC1 \\
\hline 110 & & transfir & , UAL \\
\hline 111 & \multirow[t]{2}{*}{UAE} & queue & UAB \\
\hline 112 & & LINK & UAB,FIFD, UAS \\
\hline 113 & \multirow[t]{3}{*}{UAS} & TEST G & CHS UAB, 1 \\
\hline 114 & & SEILE & UAL \\
\hline \multirow[t]{2}{*}{115} & & DEPART & UAB \\
\hline & \multirow[t]{6}{*}{UAL} & variable & FNSNORM*400 \\
\hline 116 & & ADVANCE & \(2000, \mathrm{~V}\) SUAL \\
\hline 117 & & ENTER & 1 PS \\
\hline 118 & & ASSIGN & 2,1 \\
\hline 119 & & RELEASE & \(\cup \mathrm{AL}\) \\
\hline \multirow[t]{2}{*}{120} & & UNLI NK & UAB, UAS, 1 \\
\hline & \multirow[t]{2}{*}{ULST3} & MACRO & UAL, UAI, UAS, UAH, UAT, VSLAT,UAQ,FN\$DLCl, (120* \(10001 / \times 3\) \\
\hline 121 & & ASSIGN & 3.FN\$DLCl \\
\hline 122 & \multirow[t]{6}{*}{LAL} & SEI2E & UAO \\
\hline 123 & & LOGIC S & UAI \\
\hline 124 & & GATE LR & UAI \\
\hline 125 & & release & vaju \\
\hline 126 & & DEPART & UAN \\
\hline 127 & & transfer & - Val \\
\hline 128 & \multirow[t]{5}{*}{UAH} & ASSIGN & 1,0 \\
\hline 129 & & ASSIGN & 2,0 \\
\hline 130 & & ASSIGN & 3.0 \\
\hline 131 & & GATE LR & UAI, UAT \\
\hline 132 & & TRANS FER & , vaio \\
\hline \multirow[t]{3}{*}{134} & \multirow[t]{2}{*}{Lat} & LOGIC R & UAI \\
\hline & & termina te & \\
\hline & UAT & variable & (120*1000)/x3 \\
\hline \multirow[t]{2}{*}{135} & LAO & AD VANCE & vsuat \\
\hline & ULST1 & MACRO & UBH, UBO, UBB, UBQ, QS UB Q, Vs UB2, \(2,4000,15, F\) NSNORM* 000 \\
\hline 136 & \multirow[t]{7}{*}{UBQ} & TEST E & P1,1,UBH \\
\hline 137 & & TEST E & P3,2,UBE \\
\hline \(13 \beta\) & & TEST L & -SUBU, 15, LiBO \\
\hline 139 & & Queue & U B \\
\hline 140 & & SPLIT & 1, U8H \\
\hline 141 & & TEST E & P 2, 1, UB \\
\hline \multirow[t]{2}{*}{142} & & SEILE & UBH \\
\hline & \multirow[t]{5}{*}{UBQ} & vakiable & FNS NURM*800 \\
\hline 143 & & ADVANCE & 4000, V5UBQ \\
\hline 144 & & leave & 1 PS \\
\hline 145 & & ASSIGV & 2 ,0 \\
\hline \multirow[t]{2}{*}{146} & & rel'ease & UBH \\
\hline & \multirow[t]{4}{*}{ULST2} & Macro &  \\
\hline 147 & & TEST GE & CHS UBB, 1 , UBB \\
\hline 148 & & ASSIGN & 3,FNSOECl \\
\hline 149 & & transfer & , UBL \\
\hline 150 & Uヵら & queue & UBis \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 151 & \multirow{4}{*}{UBS} & LINK & UBR,FIFC,UBS & 237 \\
\hline 152 & & TEST G & CHSUBB, 1 & 237 \\
\hline 153 & & SEILE & U8L & 237 \\
\hline \multirow[t]{2}{*}{154} & & DEPART & UBU & 237 \\
\hline & \multirow[t]{6}{*}{UBL} & variable & FNSNORM*400 & 237 \\
\hline 155 & & ADVANCE & \(2000, \mathrm{~V}\) SUBL & 237 \\
\hline 156 & & Enter & IPS & 237 \\
\hline 157 & & ASSIGN & 2,1 & 237 \\
\hline 158 & & RELEASE & U日L & 237 \\
\hline \multirow[t]{2}{*}{159} & & UNL INK & UBB, UB S, 1 & 237 \\
\hline & \multirow[t]{2}{*}{ULST3} & MACRO & UBL, UB I, URD, UBH, UBT, VSUBT, UBQ,FN\$OLC \(1,1601 * 10001 / \times 3\) & 238 \\
\hline 160 & & ASSIGN & 3,FN\$DLCI & 238 \\
\hline 161 & \multirow[t]{6}{*}{UBL} & SEILE & UBO & 23 A \\
\hline 162 & & LOGIC S & U8I & 238 \\
\hline 163 & & GATE LR & UBI & 238 \\
\hline 164 & & RELEASE & 480 & 238 \\
\hline 165 & & CEPART & \(\cup B Q\) & 238 \\
\hline 166 & & transfer & , U80 & 238 \\
\hline 167 & \multirow[t]{5}{*}{UBH} & ASSIGN & 1,0 & 238 \\
\hline 168 & & ASSIGN & 2,0 & 238 \\
\hline 169 & & ASSIGN & 3,0 & 238 \\
\hline 170 & & gate Lr & UBI, UBT & \(2{ }^{2} 8\) \\
\hline 171 & & transfer & , UBO & 238 \\
\hline 172 & \multirow[t]{2}{*}{UBT} & LOGIC R & UBI & 239 \\
\hline \multirow[t]{2}{*}{173} & & TERMINATE & - & 238 \\
\hline & LBT & variable & (601*10001/x3 & 238 \\
\hline \multirow[t]{2}{*}{174} & UBO & ADVANCE & \(\checkmark\) SUET & 238 \\
\hline & ULSTI & macro & UCH, UCO, UCB, UCQ, Q SUCQ,VSUCA, 3,4000,15,FNSNORM*800 & 239 \\
\hline 175 & \multirow[t]{7}{*}{LCQ} & TEST E & P1,1,UCH & 239 \\
\hline 176 & & TEST E & P3, 3, UC 0 & 239 \\
\hline 177 & & TEST L & Qsuca, 15.uco & 239 \\
\hline 178 & & QuE UF & UCS & 239 \\
\hline 179 & & SPLIT & 1, NCH & 239 \\
\hline 180 & & TEST E & P2, 1, UCE & 239 \\
\hline \multirow[t]{2}{*}{181} & & SEILE & UCH & 239 \\
\hline & \multirow[t]{5}{*}{UCD} & VARIABLE & F NSNORM*800 & 239 \\
\hline 182 & & ADVANCE & \(4000, \mathrm{~V}\) \$UCQ & 239 \\
\hline 183 & & LEA VE & IPS & 239 \\
\hline 184 & & ASSIGN & 2,0 & 239 \\
\hline \multirow[t]{2}{*}{185} & & RELEASE & \(\cup \mathrm{CH}\) & 239 \\
\hline & \multirow[t]{4}{*}{ULST2} & MACRU & UCB, UCL, CHS UCB, V\$UCL, FN \$DECI, UCS, 2300, 1 , FNSNORM \(* 400\) & 240 \\
\hline 1.86 & & TEST GE & CHSUCB, 1, UCB & 240 \\
\hline 187 & & ASSIGN & 3,FNDCECl & 240 \\
\hline 188 & & TRANSFER & - UCL & 240 \\
\hline 189 & \multirow[t]{2}{*}{uce} & Queue & UCB & 240 \\
\hline 190 & & LINK & UCB,FIFO,UCS & 240 \\
\hline 191 & \multirow[t]{3}{*}{UCS} & TEST G & CHSUCR. 1 & 240 \\
\hline 192 & & SEIZE & UCL & 240 \\
\hline \multirow[t]{2}{*}{193} & & DEPART & UCB & 240 \\
\hline & \multirow[t]{6}{*}{UCL} & variable & FNSNORM*400 & 240 \\
\hline 194 & & AdV Ance & 2030,V suck & 240 \\
\hline 195 & & ENTER & 1 PS & 240 \\
\hline 196 & & ASSIGN & 2,1 & 240 \\
\hline 197 & & release & \(\mathrm{uCL}^{\text {c }}\) & 240 \\
\hline \multirow[t]{2}{*}{198} & & UNLINK & UCB, UCS 1 & 240 \\
\hline & ULST3 & MACRO & UCL, UCI, UCJ, UCH, UCT, VSLCT, UC \% F NBDLCL, \(1430 \pm 10031 / \times 3\) & 241 \\
\hline 199 & & ASSIGN & \(3, \mathrm{FNBDLCl}\) ( & 241 \\
\hline
\end{tabular}
```

200	UCL	SEIZE	UCO
201		LOGIC S	UCI
202		GATE LR	UC I
203		RELEASE	UCO
204		DEPART	UCG
205		TR AN SFER	－しく
206	UCH	ASSIGN	1.0
207		ASSIGN	2.0
208		ASSIGN	3，0
209		GATE LR	UCI，UCT
210		TRANSFER	－UCO
211	UCT	LOGIC R	UCI
212		tegminate	
	LC T	variable	（430＊10001／x3
213	UCU	ADVANCE	\checkmark SUCT
	LLSTl	MACRO	UDH，UDO，UDB，UDO，2 SUDE，V\＄UD，4，40J0，15，FNSNJRM＊ 800
214	UDQ	TEST E	P1，1，UDH
215		TEST E	P 3，4，U00
216		TEST L	4SUCQ，15，UDO
217		QUE UE	U0Q
218		SPLIT	1，UDH
215		TEST E	P2，1，UDB
220		SEI2E	UDH
	U0Q	VARIABLE	FNSNORM $* 800$
221		ADVANCE	4OUO，V\＄U00
222		LEAVE	IPS
223		ASSIGN	2，0
224		Release	UDH
	ULST 2	MACRO	
225		TEST GE	CHSUDB，1，UDB
226		ASSIGN	3，FASDEC1
227		TRANSFER	，UDL
228	LDB	QUEUE	UOB
229		LINK	UDB，FIFO，UDS
230	UDS	TEST G	ChiUdB， 1
231		SEIZE	UCL
232		DEPART	UDB
	UOL	VARIABLE	FNSNURM＊400
233		ADVANCE	2000 ，V\＄UDL
234		En TER	IPS
235		ASSIGN	2.1
236		release	UDL
23，7		UNL INK	UD3，U0 S， 1
	ULST3	MACRO	
238		ASSIGN	$3, \mathrm{FNSDLC1}$
239	UCL	SEIZE	400
240		LOGIC S	UCI
241		GA TE LR	UDI
242		release	U00
243		DEPART	uca
244		TRANSFER	，600
245	UDH	ASSIGN	1.0
246		ASSIGN	2，0
247		ASSIGN	3，0
248		GATE LR	UCI，UDT
249		TRANSFER	，voて
250	UUT	LOGIC R	Uט：

```
```

251		erminate	
	UCT	VARIABLE	(487*1000)/×3
252	UDC	advance.	\checkmark ¢UCT
	ULST1	MACRO	
253	UEQ	test e	P1,1,UEH
254		TEST	P3,5,UEC
255		TEST L	QSUEG,15,UES
256		Queuf	UEO
257		SPLIT	$1 . U E H$
258		TEST E	P2,1,UEB
259		SEILE	UER
	LEQ	variable	FNS NORM* 800
260		ADVANCE	4000, VSUEQ
261		leave	1 PS
262		ASSIGN	2,0
263		RELEASE	UEH
	LLST2	MACRO	UEB, UEL, CHSUER, VSUEL, FN \$DEC 1, UES, 2000, 1, FNSNJRY*400
264		TEST GE	CHS UEB, 1, UEB
265		ASSIGN	3,FNSDEC1
266		transfer	-UEL
267	UEb	queue	UES
268		LINK	UEB, FIFO,UES
265	LES	TEST G	CHSUEB,l
270		SEILE	UEL
271		DEPART	U EB
	LEL	variable	FNS NORM* 400
272		ADVANCE	2000,VSUEL
273		ENTER	1 PS
274		ASSIGN	2,1
275		release	UEL
276		UNLIAK	UEB,UES,1
	ULST3	macro	UEL, UEI, UEO, UEH, UET, VS UET, JEQ,FNS DLCl, (120*1000)/×3
277		ASSIGN	3,FNSDLCL
278	LEL	SEI2E	UEO
279		LOGIC S	UEI
280		GATE LR	UEI
281		RELEASE	UEJ
282		DEPART	UEQ
283		TRANSFER	, UEO
284	LEH	ASSIGN	1.0
285		ASSIGN	2,0
286		ASSIGN	3,0
28,7		GATE LR	UEI, UE T
288		TRANSFER	, UEO
289	Let	LJGIC R	UEI
290		terminate	
	UET	variable	(120*1000)/×3
291	UEC	ADVANCE	VSUET
	ULSTI	MACRO	
292	UFQ	TEST E	P1,1,UFH
293		TEST E	P3,6,UFC
294		TEST L	QSUFG, 15,UF O
295		queue	UFQ
296		SPLIT	1 OUF
297		TEST E	P 2, 1, UFB
298		SEILE	UFH
	LFQ	variable	FNS MORM* 800

```
\begin{tabular}{|c|c|c|c|c|}
\hline 299 & & ADVANCE & 40JO,V\$UFO & 248 \\
\hline 300 & & leave & IPS & 248 \\
\hline 301 & & ASSIGN & 2,0 & 248 \\
\hline 302 & & release & UFH & 248 \\
\hline & ULST2 & MACRO & UFS, UFL, CH\$ UF B, V\$ UF L, FN\$DECL, UF S, 2000, 1, FN\$ NORM* 400 & 249 \\
\hline 303 & & TEST GE & CHSUFB, 1,UFE & 249 \\
\hline 304 & & ASSIGN & 3,FASDECl & 249 \\
\hline 305 & & TRANSFER & , UFL & 249 \\
\hline 306 & LFB & queue & UFB & 249 \\
\hline 307 & & LINK & UFB,FIFC, UFS & 249 \\
\hline 308 & UFS & TEST G & Ctsufb, 1 & 249 \\
\hline 309 & & SEIZE & UFL & 249 \\
\hline 310 & & DEPART & UFB & 249 \\
\hline & UFL & VARIABLE & FNSNORM \({ }^{\text {4 }} 400\) & 249 \\
\hline 311 & & AOVANCE & 2000,VSUFL & 249 \\
\hline 312 & & ENTER & IPS & 249 \\
\hline 313 & & ASSIGN & 2,1 & 249 \\
\hline 314 & & RELEASE & UFL & 249 \\
\hline 315 & & UNL INK & UFB, UFS, 1 & 249 \\
\hline & ULST3 & MACRO & UFL, UFI, UFO,UFH,UFT, V\$UFT, UFQ,FN\$DLC \(1,(165 * 10001 / \times 3\) & 250 \\
\hline 316 & & ASSIGN & 3 ,F NS DLCl & 250 \\
\hline 317 & UFL & SEIZE & UFO & 250 \\
\hline 318 & & LOGIC S & UFI & 250 \\
\hline 315 & & GATE LR & UFI & 250 \\
\hline 320 & & RElease & UFJ & 250 \\
\hline 321 & & DEPART & UFQ & 250 \\
\hline 322 & & TRANSFER & - UFO & 250 \\
\hline 323 & UFH & ASSIGN & 1,0 & 250 \\
\hline 324 & & ASSIGN & 2,0 & 250 \\
\hline 325 & \(\cdots\) & ASSIGN & 3,0 & 250 \\
\hline 326 & & gate LR & UFI, UFT. & 250 \\
\hline 327 & & TRANSFER & , UF O & 250 \\
\hline 328 & UFT & LOGIC R & UFI & 250 \\
\hline 329 & & terminate & & 250 \\
\hline & LFT & variable & (165*1000)/x3 & 250 \\
\hline 330 & UFO & ADVANCE & \(\checkmark\) SUF T & 250 \\
\hline & ULST1 & MaCRO &  & 251 \\
\hline 331 & UGQ & TEST E & P1,1,UGH & 251 \\
\hline 332 & & TEST E & P 3, 7, UG 0 & 251 \\
\hline 333 & & TEST L & O\&UGQ,I5,UGO & 251 \\
\hline 334 & & QUEUE & UGQ & 251 \\
\hline 335 & & SPLIT & 1,UGH & 251 \\
\hline 336 & & TEST E & P2,1,UGB & 251 \\
\hline 337 & & SEIZE & UGH & 251 \\
\hline & UGu & variable & FNSNORM *800 & \(25!\) \\
\hline 338 & & AD VANCE & \(4000 . V \$ U G Q\) & 251 \\
\hline 339 & & LEAVE & IPS & 251 \\
\hline 340 & & ASSIGN & 2.0 & 251 \\
\hline 341 & & release & UGH & 251 \\
\hline & ULST2 & MACRO & UGB, UGL, CH\$UGB, VSUGL, FNBUEC1,US S, 2000,1,FNS NORM*400 & 25? \\
\hline 342 & & test ge & CHsUGB, l, UGB & 252 \\
\hline 343 & & ASSIGN & 3.5 NS DEC 1 & 252 \\
\hline 344 & & transfer & , UGL & 252 \\
\hline 345 & LGB & QUEUF & UGb & 252 \\
\hline 346 & & Link & UGB,FIFJ, UG S & 252 \\
\hline 347 & UGS & TEST G & Ctisucb, & 252 \\
\hline 348 & & SEILE & UGL & 252 \\
\hline
\end{tabular}
```

gl VAFIAdLE FAjNOKM*400
ADVANCE 2OUO,V$UGL
ENTER IPS
ASSIGN 2,
RELEASE UGL
LLST3 MACRO UGB,UGS,I MGL,LGI,UGO,UGH,UGT,VSUGT,UGA,FNSDLCI,(120*1UUO)//X3
ASSIGN 3,FN$DLC1
LGL
SEIZE
GOGIC S UGI
RELEASE UGO
OEPART UGO
TRANSFER UGQO
ASSIGN 1.0
ASSIGN 2.0
gate lr ugi,ugt
TRANSFER ,UGO
TFRMINATE (120*1000)/\times3
lgG AOVANCE
ULSTI MACRO UHH,UHC,UHB,UHQ,QSUHG,V$UH2,8,40JO,15,FNSNORM*8OU
UHQ TEST E Pl,1,UHH
P1,1,UHH
P3,8,UHO
TFST L GSUHQ,15,UHO
QUEUE UHQ
SPLIT 1,UHH
TEST E P2,1,UHB
VARIABLE FASNORM*BOO
ADVANCE 4OJO,V$LHO
LEAVE IPS
RELEASE
RELEASE
ULST2 MACRO
TEST GE
ASSIGN
CH$UHB,1,UH
,UHL
LH3 QUELE UHB
UHB
TEST G CHSUFB,I
SEILE UHL
\mathrm{ VEPART 有 UHB}
FN$NORM*400
AOVANCF ?OUO,V$UHL
IPS
EVTER
RELEASE UHL
MNLINKK URB,UHS,I
3,FN$OLC1
ASSIGN
Uru
LJGIC S UHI
GUGIC SR UHI

```
\begin{tabular}{|c|c|c|c|c|}
\hline 398 & & release & UHO & 256 \\
\hline 399 & & DEP ART & Und & 256 \\
\hline 400 & & transfer & , UHC & 256 \\
\hline 401 & UHH & ASSIGN & 1,0 & 256 \\
\hline 402 & & ASSIGN & 2,0 & 256 \\
\hline 403 & & ASSIGN & 3,0 & 256 \\
\hline 404 & & gate le & UHI, UHT & 256 \\
\hline 405 & & TRANS FER & , UHO & 256 \\
\hline 406 & LHT & LOGIC R & UHI & 255 \\
\hline 407 & & terminate & & 256 \\
\hline & UHT & variable & 1078*1000 1/x3 & 256 \\
\hline 408 & LHO & ad vance & VIUHT & 256 \\
\hline & SPLTI & MACRO & SAL, SAR, SAH, SAA, SAC, SAB, SAV,P3'GE'9*P3'L'17, BVBSAV,999 & 257 \\
\hline 409 & & test e & P1, 1, SAH & 257 \\
\hline & SAV & bVariable & P3'GE'9*P3*L'17 & 257 \\
\hline 410 & & TEST E & BVSSAV, 1,SAC & 257 \\
\hline 411 & & TEST LE & CSLCR1,999,SAC & 257 \\
\hline 412 & & SPLIT & 1,SAA & 257 \\
\hline 413 & & TR ANS FER & , SAL & 257 \\
\hline 414 & SAA & ASSIGN & 1,0 & 257 \\
\hline 415 & & ASSIGN & 2,0 & 257 \\
\hline 416 & & ASSIGN & 3.0 & 257 \\
\hline 417 & & transfer & , sar & 257 \\
\hline 418 & SAC & SPLIT & 1,SAB & 257 \\
\hline 419 & & TRANSFER & , SAR & 257 \\
\hline 420 & SAB & ASSIGN & 1.0 & 257 \\
\hline 421 & & ASSIGN & 2,0 & 257 \\
\hline 422 & & ASSIGN & 3,0 & 257 \\
\hline 423 & & TRANSFER & , SAL & 257 \\
\hline 424 & SAH - & SPLIT & 1,SAL & 257 \\
\hline 425 & & trans fer & - SAR & 257 \\
\hline & SPLT2 & MACRO & SAX,MBR'SAL,V\$SAX, (236*1000)/X3 & 258 \\
\hline & SAX & variable & (236*1000)/×3 & 258 \\
\hline 426 & SAL & AOVANCE & \(v\) \$ \(\mathrm{Sax}^{\text {a }}\) & 258 \\
\hline 427 & & TRANSFER & , MBR & 258 \\
\hline & SPLT3 & MACRO & SAY,MDO,SAR,V\$SAY, (060* 1000 )/X3 & 259 \\
\hline & SAY & VARIABLE & 1060*10001/X3 & 259 \\
\hline 428 & SAR & AD VANCE & vssay & 259 \\
\hline 429 & & TRANSFER & , MDO & 259 \\
\hline & MERG1 & MACRO & M \({ }^{\text {M }}\), MBH, MBA, MBB, MBC, MBD, MBE,MBO, MBG, MBR & 260 \\
\hline 430 & MBR & louic s & MBR \({ }^{\text {M }}\), \({ }^{\text {M }}\) & 260 \\
\hline 431 & & gate ls & mbe,mbx & 260 \\
\hline 432 & & LOGIC S & M Bb & 260 \\
\hline 433 & & GATE LS & MBC & 260 \\
\hline 434 & & TEST E & P1, 1, MBH & 260 \\
\hline 435 & & LOGIC 5 & MÊA & 260 \\
\hline 436 & & PRIORITY & O,BUFFER & 260 \\
\hline 437 & & PRIORITY & \[
1
\] & 260 \\
\hline 43 E & & Priokity & 0 , BUFFER & 260 \\
\hline 439 & & PRICRITy & 1 & 260 \\
\hline 440 & MBX & LOGIC R & MBD & 260 \\
\hline 441 & & LOGIC \({ }^{\text {a }}\) & M8A & 260 \\
\hline 442 & & Logic R & MBB & 260 \\
\hline 443 & & LOGIC R & MEC & 260 \\
\hline 444 & & TRANSFER & , HBG & 260 \\
\hline 445 & M 8 & LOGIC S & MBE & 260 \\
\hline 445 & & gate LS & MER,MBX & 280 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{447} & Logic s & MBC \\
\hline \multicolumn{2}{|l|}{448} & gate ls & M \({ }_{\text {¢ }}\) \\
\hline \multicolumn{2}{|l|}{449} & TEST E & P1, 1, TFRM \\
\hline \multicolumn{2}{|l|}{450} & LUGIC 5 & MED \\
\hline \multicolumn{2}{|l|}{451} & PRIDRITY & J.BUFFER \\
\hline \multirow[t]{2}{*}{452} & & PRIDRITY & 1 \\
\hline & \multirow[t]{2}{*}{NERG2} & MACRO & MEX, MBH, MBF, MBV, BV sMBV,LS SYBA \#LS SMBD, MBi, MBP, MB T, MBG \\
\hline \multirow[t]{2}{*}{453} & & gate nu & MBQ,MBU \\
\hline & \multirow[t]{2}{*}{MBV} & BVAP IABLE & LSSMBA*LSsmb0 \\
\hline 454 & & TEST S & GVSMBV, 1 , MBP \\
\hline 455 & \multirow[t]{2}{*}{MBQ} & queue & MBQ \\
\hline 456 & & LINK & MBF, FIFO,MBF \\
\hline 457 & \multirow[t]{7}{*}{M \(\mathrm{BF}^{\text {F }}\)} & SSILE & MBU \\
\hline 458 & & LJGIC S & MBF \\
\hline 459 & & gate lr & MBF \\
\hline 460 & & DEPART & MBE \\
\hline 461 & & RELEASE & MBQ \\
\hline 462 & & UNLIAK & MEF,MBF, 1 \\
\hline 463 & & TRANSFER & , MBX \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{r}
464 \\
405
\end{array}
\]} & \multirow[t]{2}{*}{mbi} & LOGIC S & M \({ }^{\text {m }}\) \\
\hline & & TRANSFER & , Mbx \\
\hline 405
466 & \multirow[t]{6}{*}{MBH} & PRIDRITY & U,3 LFFER \\
\hline 467 & & PRIDEITY & 1 \\
\hline 468 & & PRIDRITY & O, BUFFER \\
\hline 469 & & PR IORITY & 1 \\
\hline 470 & & gate lr & mbF,MbT \\
\hline 471 & & transter & , MBX \\
\hline 472 & MBT & LOGIC R & MBF \\
\hline 473 & & terminate & \\
\hline \multirow[t]{3}{*}{474} & MBG - & AD VANCE & 0 \\
\hline & MERG3 & MACRO & MBS,V\$MBS.( 392* 1000)/X3 \\
\hline & MBS & variable & (39 2*1000)/X3 \\
\hline \multirow[t]{2}{*}{475} & & AD VANCE & VSmbs \\
\hline & \multirow[t]{8}{*}{\[
\begin{aligned}
& \text { ULSTI } \\
& \text { UIG }
\end{aligned}
\]} & MACRO &  \\
\hline 476 & & TEST E & Pl,I,U1H \\
\hline 477 & & TEST E & P3, s, UI 0 \\
\hline 478 & & TEST L & csulu, 5, UID \\
\hline 479 & & queut & UIU \\
\hline 480 & & SPLIT & 1, UIH \\
\hline 481 & & TEST E & P2,1, U1B \\
\hline \multirow[t]{2}{*}{482} & & SEILE & UIH \\
\hline & \multirow[t]{5}{*}{Uİ} & variable & FASNURM*1000 \\
\hline 48,3 & & ADVANCE & \(50.0, V\) SUIQ \\
\hline 484 & & LEAVE & 1 PS \\
\hline 485 & & ASSIGN & 2.0 \\
\hline \multirow[t]{2}{*}{486} & & relense & UIH \\
\hline & \multirow[t]{4}{*}{ULST2} & macro &  \\
\hline 487 & & TEST GE & CH\$UIB, \(1, \mathrm{UI} \mathrm{B}\) \\
\hline 488 & & ASSIGN & 3,FN\$CEC9 \\
\hline 489 & & transfer & , UIL \\
\hline 490 & \multirow[t]{2}{*}{Ule} & dueus & U It \\
\hline 491 & & LINK & Uib, +ifu, uis \\
\hline 492 & \multirow[t]{3}{*}{UIS} & TESTG & しH\$ Uİ, 1 \\
\hline 493 & & SEILE & \(U \mathrm{IL}\) \\
\hline \multirow[t]{2}{*}{454} & & DEPAK T & U18 \\
\hline & UIL & variablé & FM.sNORM*500 \\
\hline 495 & & AOVANCE & 2 5uo.vsuIL \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 496 & & ENTEP & IPS & 264 \\
\hline 497 & & ASSIGN & 2,1 & 264 \\
\hline 498 & & Release & UIL & 264 \\
\hline 499 & & UNL INK & UIB, UIS. 1 & 264 \\
\hline & ULST3 & Macro & UIL, UII, UIO, UIH,UIT,VSUIT, JIQ,FNSOLC9, (080* \(10001 / \times 3\) & 265 \\
\hline 500 & & ASSIGN & 3,FNSDLC9 & 265 \\
\hline 501 & UIL & SEI2E & U10 & 265 \\
\hline 502 & & LOGIC S & UII & 265 \\
\hline 503 & & GATE LR & U1I & 265 \\
\hline 504 & & release & \(\cup 10\) & 265 \\
\hline 505 & & DEPART & UIQ & 265 \\
\hline 506 & & TRANSFER & , UIO & 265 \\
\hline 507 & UIH & ASSIGN & 1.0 & 265 \\
\hline 508 & & ASSIGN & 2,0 & 265 \\
\hline 509 & & ASSIGN & 3,0 & 265 \\
\hline 510 & & gate LR & UIIfUIT & 265 \\
\hline 511 & & TRANSFER & , UI 0 & 265 \\
\hline 512 & U1T & LOGIC R & UII & 265 \\
\hline 513 & & terminate & & 265 \\
\hline & LIT & VARIABLE & (080*1000)/×3 & 265 \\
\hline 514 & UIO & ADVANCE & Vsult & 265 \\
\hline & ULST1 & MACRC & UJH, UJO, UJB, UJQ, QSUJQ, VSUJQ, 10, 5000, 5, FN\$NJRM* 1000 & 266 \\
\hline 515 & uso & TEST E & P1,1,UJH & 266 \\
\hline 516 & & test e & P3,10, UJO & 266 \\
\hline 517 & & TEST L &  & 266 \\
\hline 518 & & QUEUE & U10 & 266 \\
\hline 519 & & SPLIT & liUJH & 266 \\
\hline 520 & & TEST E & P2,1,UJB & 266 \\
\hline 521 & & SEIZE & UJH & 266 \\
\hline & UJQ - & variable & FN SNORM \(* 1000\) & 266 \\
\hline 522 & & AUVANCE & 5000,VSUJQ & 266 \\
\hline 523 & & LEAVE & IPS & 266 \\
\hline 524 & & ASSIGN & 2,0 & 266 \\
\hline 525 & & RELEASE & U JH & 266 \\
\hline & ULST2 & MACRO & UJZ, UJL, CHSUJB, V\$UJL, FN\$DEC 9 , UJS, 2500,1 ,FN\$NORM*500 & 267 \\
\hline 526 & & TEST GE & CH\$UJB, 1, UJ B & 267 \\
\hline 527 & & ASSIGN & 3,FMbDEC9 & 267 \\
\hline 528 & & transfer & , UJJL & 267 \\
\hline 529 & UJB & Queue & UJ3 & 267 \\
\hline 530 & & LINK & UJB,FIFO,UJS & 267 \\
\hline 531 & UJS & TEST G & CHSUJB, 1 & 267 \\
\hline 532 & & SEILE & UJL & 267 \\
\hline 53,3 & & depart & UJB & 267 \\
\hline & UJL & variable & FNSNORM \(* 500\) & 267 \\
\hline 534 & & ADVANCE & 2500,V\$UJL & 267 \\
\hline 535 & & ENTER & IPS & 267 \\
\hline 536 & & ASSIGN & 2,1 & 267 \\
\hline 537 & & RELEASE & UJL & 267 \\
\hline 538 & & UNLINK & UJB, UJS, 1 & 267 \\
\hline & ULST3 & MACRO &  & 268 \\
\hline 539 & & ASSIGN &  & 268 \\
\hline 540 & UJL & SEILE & UJO & 268 \\
\hline 541 & & LOGIC S & UJI & 268 \\
\hline 542 & & GATE LR & UJI & 268 \\
\hline 543 & & RELEASE & U」O & 268 \\
\hline 544 & & DEPART & U Ja & 268 \\
\hline 545 & & TRANSFEP & , UJO & 268 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 546 & \multirow[t]{5}{*}{UJH} & ASSIGN & 1,0 & 268 \\
\hline 547 & & ASSIGN & 2,0 & 268 \\
\hline 548 & & ASSIGN & 3.0 & 268 \\
\hline 549 & & gate LR & UJI, UJT & 268 \\
\hline 550 & & TRANSFER & .uso & 268 \\
\hline 551 & \multirow[t]{2}{*}{LJT} & LOGIC R & UJI & 268 \\
\hline \multirow[t]{2}{*}{552} & & terminate & & 268 \\
\hline & UJT & variable & (080*1000)/x3 & 268 \\
\hline \multirow[t]{2}{*}{553} & UJO & advance & \(\checkmark\) \$UJT & 268 \\
\hline & LLST1 & MACRO & UKH, UKG, UKB, UKQ, QSUKR, VSUKג, 11,5003,5,FNSNORM*1000 & 269 \\
\hline 554 & \multirow[t]{7}{*}{UKG} & TEST E & P1, 1, UK H & 269 \\
\hline 555 & & TEST E & P3,11, UKO & 269 \\
\hline 556 & & TEST L & TSUKQ,5,UKO & 269 \\
\hline 557 & & queue & UK0 & 269 \\
\hline 558 & & SPLIT & 1,UKH & 269 \\
\hline 559 & & TEST E & P2,1, UKB & 269 \\
\hline \multirow[t]{2}{*}{560} & & SEILE & UKH & 269 \\
\hline & \multirow[t]{5}{*}{UKG} & variable & FNS NORM*1000 & 269 \\
\hline 561 & & ADVANCE & 500 O , vs UKG & 269 \\
\hline 562 & & Leave & IPS & 269 \\
\hline 563 & & ASSIGN & 2,0 & 269 \\
\hline \multirow[t]{2}{*}{564} & & RELEASE & UKH & 269 \\
\hline & \multirow[t]{4}{*}{ULST2} & MACRD & UKB, UKL, CH\$UKB, V\$UKL, FNSUEE 9, UK S, 2500,1, FNS NOR M* 500 & 270 \\
\hline 565 & & TEST GE & CHSUKB, 1 , UKB & 270 \\
\hline 566 & & ASSIGN & 3,FNSOEC 9 & 270 \\
\hline 567 & & TRANS FER & , UKL & 270 \\
\hline 568 & \multirow[t]{2}{*}{LKB} & QUEUE & UKB & 270 \\
\hline 569 & & LINK & UKB, FIFG, UKS & 270 \\
\hline 570 & \multirow[t]{3}{*}{Liks} & test g & Chsukb, 1 & 270 \\
\hline 571 & & SEIZE & UKL & 270 \\
\hline \multirow[t]{2}{*}{572} & & OEPART & UKB & 270 \\
\hline & \multirow[t]{6}{*}{UKL} & VAriable & FNSNORM*500 & 270 \\
\hline 573 & & ADVANCE & 2500, VS UKL & 270 \\
\hline 574 & & ENTER & IPS & 270 \\
\hline 575 & & ASSIGN & 2,1 & 270 \\
\hline 576 & & RELEASE & UKL & 270 \\
\hline \multirow[t]{2}{*}{577} & & UNL Itik & UKB,UKS, 1 & 270 \\
\hline & \multirow[t]{2}{*}{ULST3} & MACRO & UKL, UKI, UKO,UKH, UKT, V\$UKT,JKG,FNSDLC9, (080\% 1000 )/X3 & 271 \\
\hline 578 & & ASSIGN & 3,FN\$OLC 9 & 271 \\
\hline 579 & \multirow[t]{6}{*}{LKL} & SEILE & UKU & 271 \\
\hline 580 & & LJGIC S & UKI & 271 \\
\hline 581 & & gate LR & UKI & 271 \\
\hline 582 & & Rfiease & UKO & 271 \\
\hline 583 & & DEPART & UKQ & 271 \\
\hline 534 & & transfer & , UK & 271 \\
\hline 585 & \multirow[t]{5}{*}{LKH} & ASSIGN & 1.0 & 271 \\
\hline 536 & & ASSIGN & 2,0 & 271 \\
\hline 587 & & ASSIGN & 3,0 & 271 \\
\hline 588 & & GATE LR & UKI, UKT & 271 \\
\hline 589 & & transfer & , UKO & 271 \\
\hline 590 & \multirow[t]{2}{*}{UKT} & LOGIC R & UKI & 271 \\
\hline \multirow[t]{2}{*}{591} & & terminate & & 271 \\
\hline & UK T & variable & ( 180 0*1000)/x3 & 27! \\
\hline \multirow[t]{2}{*}{592} & UKO & ADVANCE & V WKT & 271 \\
\hline & ULSTI & macro & ULH, ULO, ULB, ULQ, GSULG,VSULQ, 12,500J, 5, FN SNORM*1000 & 272 \\
\hline 593 & ULQ & TEST E & P 1, 1, ULH & 272 \\
\hline 594 & & test e & P3,12, ULO & 272 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 595 & & TEST L & Usula, 5,utu & 272 \\
\hline 596 & & QUEUE & ULW & 272 \\
\hline 597 & & SPLIT & 1,ULH & 272 \\
\hline 598 & & TEST E & P2, 1, UL B & 272 \\
\hline 595 & & SEILE & ULH & 272 \\
\hline & ULQ & variable & FNSNORM* 1000 & 272 \\
\hline 600 & & ADV ANCE & 5000,V SULQ & 272 \\
\hline 601 & & LEAVE & 1 PS & 272 \\
\hline 602 & & ASSIGN & 2,0 & 272 \\
\hline 603 & & release & ULH & 272 \\
\hline & LLST2 & 2 MACRO & ULB,ULL, CH\$ULB, V\$ULL, FN \$DEC9,ULS, 2500, 1, FN\$NORM*500 & 273 \\
\hline 604 & & TEST GE & Chsulb, 1, ULB & 273 \\
\hline 605 & & ASSIGN & 3,FN\$DECS & 273 \\
\hline 606 & & TRANSFER & , ULL & 273 \\
\hline 607 & ULi & Queue & ULB & 273 \\
\hline 608 & & LINK & ULB, fifo, uls & 273 \\
\hline 609 & ULS & TEST G & CH\$ULB, 1 & 273 \\
\hline 610 & & SEIZE & ULL & 273 \\
\hline 611 & & DEPART & ULB & 273 \\
\hline & ULL & VARIABLE & FNSNORM*500 & 273 \\
\hline 612 & & ADVANCE & 2500,V sULL & 273 \\
\hline 613 & & ENTER & 1 PS & 273 \\
\hline 614 & & ASSIGN & 2,1 & 273 \\
\hline 615 & & release & ULL & 273 \\
\hline 616 & & UNLINK & ULB, ULS, 1 & 273 \\
\hline & ULST3 & 3 MACRD & ULL, ULI, ULD, ULH, ULT, V\$LLT,ULQ,FN\$DLC9, 221 (1000)/x3 & 274 \\
\hline 617 & & ASSIGN & 3,FN\$DLC9 & 274 \\
\hline 618 & ULL & SEILE & ULO & 274 \\
\hline 619 & & LOGIC S & ULI & 274 \\
\hline 620 & & - gate lr & ULI & 274 \\
\hline 621 & & RELEASE & ULO & 274 \\
\hline 622 & & DEPART & ULQ & 274 \\
\hline 623 & & TRANSFER & - ULO & 274 \\
\hline 624 & ULH & ASSIGN & 1.0 & 274 \\
\hline 625 & & ASSIGN & 2.0 & 274 \\
\hline 626 & & ASSIGN & 3,0 & 274 \\
\hline 627 & & GATE LR & ULI, ULT & 274 \\
\hline 628 & & transfer & , ULO & 274 \\
\hline 629 & LLT & LOGIC R & ULI & 274 \\
\hline 630 & & terminate & & 274 \\
\hline & ULT & variable & (221*1000)/x3 & 274 \\
\hline 631 & ULO & Aüvance & VSULT & 274 \\
\hline & ULST1 & MaCRO &  & 275 \\
\hline 632 & LMQ & TEST E & P1, 1, UM & 275 \\
\hline 633 & & TEST F & P3,13, UMO & 275 \\
\hline 634 & & TEST L & Q SUMQ, 5, UMO & 275 \\
\hline 635 & & queve & UMu & 275 \\
\hline 636 & & SPLIT & 1,UMH & 275 \\
\hline 637 & & TEST E & P2,1,UMB & 275 \\
\hline 638 & & SEILE & UMH & 275 \\
\hline & UMQ & variable & FNSNCRM*1000 & 275 \\
\hline 639 & & ADV'ANCE & 5000, V Sume & 275 \\
\hline 640 & & LEA VE & 1 PS & 275 \\
\hline 641 & & ASSIGN & 2,0 & 275 \\
\hline 642 & & release & UMH & 275 \\
\hline & ULST? & MACRO & UMB, UML, CH\$ UMB, VSUML,FN\$DEEC9,UMS, 2500,1,FNSNORM*500 & 276 \\
\hline 643 & & TEST GE & CH\$UMB, 1, UMB & 276 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 644 & & ASSIGN & 3 ,FNSOEC 9 & 276 \\
\hline 645 & & transfer & , UML & 276 \\
\hline 646 & LMM & queve & UMB & 276 \\
\hline 647 & & LINK & UMB, FIFG, UMS & 276 \\
\hline 648 & UMS & TEST G & Chsumb, 1 & 276 \\
\hline 649 & & SEIze & UML & 276 \\
\hline 650 & & OEPART & UMB & 276 \\
\hline & UML & variable & FNS NORM*500 & 276 \\
\hline 651 & & aovance & 2500,Vs UML & 276 \\
\hline 652 & & ENTER & IPS & 276 \\
\hline 653 & & ASSIGN & 2,1 & 276 \\
\hline 654 & & release & UML & 276 \\
\hline 655 & & UNL INK & UMB, UMS, 1 & 276 \\
\hline & ULST3 & MACRO & UML, UMI , UMO, UMH, UMT, VSUMT, JMA, FNSOL C9, (080* 1000 )/ \(\times 3\) & 277 \\
\hline 656 & & ASSIGN & 3,FNSDLC 9 & 277 \\
\hline 657 & LML & SEIZE & UMO & 277 \\
\hline 658 & & LOGIC S & UMI & 277 \\
\hline 659 & & gate LR & UMI & 277 \\
\hline 660 & & RELEASE & UMO & 277 \\
\hline 661 & & DEPART & UMQ & 277 \\
\hline 662 & & TRAN SFER & - UmO & 277 \\
\hline 663 & UMH & ASSIGN & 1,0 & 277 \\
\hline 664 & & ASSIGN & 2,0 & 277 \\
\hline 665 & & ASSIGN & 3,0 & 277 \\
\hline 666 & & GATE LR & UMI, UMT & 277 \\
\hline 667 & & TRANSFER & , UMO & 277 \\
\hline 668 & UMT & LOGIC R & UMI & 277 \\
\hline 669 & & TERMINATE & & 277 \\
\hline & UMT & VARIABLE & (080*1 \(0001 / \times 3\) & 277 \\
\hline 670 & UMO - & ADV ANCE & \(\checkmark\) SUMT & 277 \\
\hline & ULST 1 & Macro & UNH, UNO, UNB, UNQ, Q SUNQ , V SUNQ, 14, 5000, 5, FN SNJRM*1000 & 278 \\
\hline 671 & UNQ & TEST E & P1, 1, UNH & 278 \\
\hline 672 & & TEST E & P3,14, UNO & 278 \\
\hline 673 & & TEST L & QSUNQ, 5 , UNO & 278 \\
\hline 674 & & QUEUE & UNQ & 278 \\
\hline 675 & & SPLIT & 1,UNH & 278 \\
\hline 676 & & TEST E & P2,1,UNB & 278 \\
\hline 677 & & SEIZE & UNH & 278 \\
\hline & UNQ & variable & FNSNORM*1000 & 278 \\
\hline 678 & & ao vance & 5000, VSUNQ & 278 \\
\hline 679 & & Leave & 1 PS & 278 \\
\hline 680 & & ASSIGN & 2.0 & 278 \\
\hline 681 & & RELEASE & UNH & 278 \\
\hline & ULST2 & MACRO & UNB, UNL, CHS UNB, V\$ UNL, FNSDEC \({ }^{\text {, }}\), UNS, 2500,1 , FNS NORM*500 & 279 \\
\hline 682 & & TEST GE & CHSUNB, 1, UNB & 279 \\
\hline 683 & & ASSIGN & 3 \% 1 MSDC9 & 279 \\
\hline 684 & & transfer & , UNL & 279 \\
\hline 685 & UNB & queve & UNB & 279 \\
\hline 686 & & LINK & UNB, FIFC,UNS & 279 \\
\hline 687 & UNS & TEST G & CH\$UNB, 1 & 279 \\
\hline 688 & & SFILE & U NL & 279 \\
\hline 689 & & DEPART & UNB & 279 \\
\hline & UNL & \(\checkmark\) VRIABLE & FN\$NORM*500 & 279 \\
\hline 690 & & advance & \(2500, \mathrm{~V}\) SUNL & 279 \\
\hline 691 & & ENTER & IPS & 279 \\
\hline 692 & & ASSIGN & 2,1 & 279 \\
\hline 693 & & RELEASE & UNL & 279 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{694} & & UNLINK & UNB, UNS. 1 & 279 \\
\hline & \multirow[t]{2}{*}{LLSt3} & machu & UNL, UNI, UNO, UIVM, UNT, VbUNT, JNG,FNBULCH, (U8U*LUUJI/X? & 280 \\
\hline 695 & & ASSIGr & 3,FN\$OLC9 & 280 \\
\hline 696 & LNL & SEIZE & UNO & 280 \\
\hline 697 & & LOGIC S & UNI & 280 \\
\hline 698 & & gate LR & UNI & 280 \\
\hline 699 & & release & uno & 280 \\
\hline 700 & & depaf & UNQ & 280 \\
\hline 701 & & transfer & , UNG & 280 \\
\hline 702 & LNH & ASSIGN & 1, & 280 \\
\hline 703 & & ASSIGN & 2.0 & 280 \\
\hline 704 & & ASSIGN & 3,0 & 280 \\
\hline 705 & & GATE LR & UAI, UNT & 280 \\
\hline 706 & & TRANS FER & , UnO & 280 \\
\hline 707 & UnT & Logic \({ }^{\text {a }}\) & UNI & 280 \\
\hline \multirow[t]{2}{*}{708} & & TERMINATE & & 280 \\
\hline & UNT & variable & (080*1000) \(/ \times 3\) & 280 \\
\hline \multirow[t]{2}{*}{709} & LNO & ADVANCE & vSUNT & 280 \\
\hline & ULST1 & macro & UOH, UOO, LOR, UOQ, QSUCC, VSUCO, 15,5000,5, FNSNORM*1000 & 281 \\
\hline 710 & \multirow[t]{7}{*}{60} & test e & P1,1,U0H & 281 \\
\hline 711 & & TEST E & P3,15, UCC & 291 \\
\hline 712 & & TEST L & QSUOQ, 5, 000 & 281 \\
\hline 713 & & queve & UGQ & 281 \\
\hline 714 & & SPLIT & 1, UOH & 281 \\
\hline 715 & & test e & P 2, 1, Ј08 & 28: \\
\hline \multirow[t]{2}{*}{716} & & SEILE & UCH & 281 \\
\hline & \multirow[t]{5}{*}{100} & variable & FNS NDRM* 1000 & 281 \\
\hline 717 & & ADV ANCE & 5000, V\$ 400 & 281 \\
\hline 718 & & Leave & 1 PS & 281 \\
\hline 719 & & ASSIGN & 2.0 & 281 \\
\hline \multirow[t]{2}{*}{720} & & release & UOH & 281 \\
\hline & \multirow[t]{4}{*}{ULST2} & MACRO & UCB, UOL, CHsUOB, VSUOL, FNSOEC9, UOS, 2500, 1, FN SNORM \(\ddagger 500\) & 28 ? \\
\hline 721 & & TEST GE & CHSU08, 1, UOB & 282 \\
\hline 722 & & ASSIGN & 3,FNSDEC9 & 282 \\
\hline 723 & & TRANSFER & , UNL & 282 \\
\hline 724 & \multirow[t]{2}{*}{U08} & queue & Y 03 & 282 \\
\hline 725 & & LINK & UCB,FIFO.UOS & 282 \\
\hline 726 & \multirow[t]{3}{*}{Los} & TEST G & CHSUOB. 1 & 282 \\
\hline 727 & & SEILS & UOL & 282 \\
\hline \multirow[t]{2}{*}{728} & & OEPART & U 0 b & 282 \\
\hline & \multirow[t]{6}{*}{LOL} & Variable & FNS NORM*5 U & 282 \\
\hline 7.29 & & ADVANCE & 2500, v suol & 232 \\
\hline 73,0 & & ENTER & I PS & 282 \\
\hline 731 & & ASSIGN & 2,1 & 282 \\
\hline 732 & & RELEASE & UOL & 292 \\
\hline \multirow[t]{2}{*}{733} & & UNLINK & UCB, UOS, 1 & \(28 ?\) \\
\hline & \multirow[t]{2}{*}{ULST3} & MACRE &  & 283 \\
\hline 734 & & ASSIGN & 3,FN\$DLC9 & 28 \({ }^{\text {2 }}\) \\
\hline 735 & \multirow[t]{6}{*}{LCL} & SEIIE & uco & 283 \\
\hline 136 & & LOGIC S & vot & 283 \\
\hline 737 & & GATE LE & UOI & 283 \\
\hline 738 & & release & UCO & 283 \\
\hline 739 & & DEPART & UCu & 283 \\
\hline 740 & & TqANSFFF & , U10 & 293 \\
\hline 741 & \multirow[t]{3}{*}{LuH} & ASSIGN & 1,0 & 2.83 \\
\hline 742 & & ASSIGN & 2,0 & 283 \\
\hline 743 & & ASSIGN & 3,0 & 283 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\[
744
\]} & GATE LR & UOI, UOT \\
\hline \multicolumn{2}{|l|}{\[
745
\]} & TRANSFER & , vod \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& 740 \\
& 747
\end{aligned}
\]} & ULT & LOGIC R & UuI \\
\hline & & terminate & \\
\hline & LCT & VARIABLE & (326*1000)/×3 \\
\hline \multirow[t]{2}{*}{748} & U00 & advance & V\$U0T \\
\hline & SPLTI & macro & SBL, SBR, SBH,SBA, SBC, SBE, SBV, P 3'E' 16, BVS SB V, 999 \\
\hline \multirow[t]{2}{*}{749} & & TEST E & Pl, \(1,5 \mathrm{SH}\) \\
\hline & \multirow[t]{5}{*}{SBV} & bVARIABLE & P3'E'16 \\
\hline 750 & & TEST E & BV \(\$ 5\) BV, 1, SBC \\
\hline 751 & & TEST LE & QSLCR1,999,SBC \\
\hline 752 & & SPLIT & 1,SBA \\
\hline 753 & & transfer & -SBL \\
\hline 754 & \multirow[t]{4}{*}{SBA} & ASSIGN & 1,0 \\
\hline 755 & & ASSIGN & 2,0 \\
\hline 756 & & ASSIGN & 3,0 \\
\hline 757 & & TRANSFER & , SBR \\
\hline 758 & SBC & SPLIT & 1,SBB \\
\hline 759 & & transfer & , SBR \\
\hline 760 & §В & ASSIGN & 1.0 \\
\hline 761 & & ASSIGN & 2,0 \\
\hline 762 & & ASSIGN & 3.0 \\
\hline 763 & & TRANSFER & , S8L \\
\hline 764 & \multirow[t]{2}{*}{SBH} & SPLIT & 1,SBL \\
\hline \multirow[t]{3}{*}{765} & & transfer & , Sbr \\
\hline & SPLT 2 & MaCRo & SBX,UPQ, SBL, VS SBX, 1098*10001/X3 \\
\hline & SBX & variable & (098*1000)/X3 \\
\hline 766 & \multirow[t]{2}{*}{SBL} & ADVANCE & \(\checkmark\) \$S Bx \\
\hline \multirow[t]{3}{*}{767} & & TRANSFER & , \(1 P \mathrm{P}\) \\
\hline & SPLTz & MACRO & SBY, MCR, SBR, V\$5BY, (150*1000)/X3 \\
\hline & SBY & VARIABLE & (150*1000)/X3 \\
\hline 768 & SBR & ADVANCE & \(\checkmark\) \$SBy \\
\hline \multirow[t]{2}{*}{769} & & trans FER & , MCR \\
\hline & \multirow[t]{8}{*}{\[
\begin{aligned}
& \text { ULSTI } \\
& \text { UPQ }
\end{aligned}
\]} & Macro & UPH, UPD, UPB, UPQ, QSUPG,V SUPQ, 16, 1000, 70, FN SNORM*200 \\
\hline 770 & & TEST E & P1,1, UPH \\
\hline 771 & & TEST E & P3,16,UPO \\
\hline 772 & & TEST L & OSUPG,70,UPC \\
\hline 773 & & Queue & UPQ \\
\hline 774 & & SPLIT & \(1 . J \mathrm{PH}\) \\
\hline 775 & & TEST E & P2,1,UPB \\
\hline \multirow[t]{2}{*}{776} & & SEILE & UPH \\
\hline & \multirow[t]{5}{*}{UPQ} & variable & FNSNORM*200 \\
\hline 777 & & ADVANCE & \(1000, \mathrm{~V}\) UPQ \\
\hline 778 & & LEAVE & IPS \\
\hline 779 & & ASSIGN & 2,0 \\
\hline \multirow[t]{2}{*}{780} & & Release & UPH \\
\hline & \multirow[t]{4}{*}{ULSt2} & MACRO & UPE, UPL, CH\$UP \(9, V\) SUPL, FNSDECT, UP S, 2000, \(1, F N \$\) NORM \(\$ 400\) \\
\hline 781 & & TEST GE & CHSUPB,1,UPB \\
\hline 782 & & ASSIGN & 3,FNSDEC T \\
\hline 783 & & TRANS FER & , UPL \\
\hline 784 & \multirow[t]{2}{*}{LPB} & QUE UE & UPB \\
\hline 785 & & LINK & UPB,FIFO,UPS \\
\hline 786 & UPS & TEST G & CHSUPB, 1 \\
\hline 787 & & SEIZE & UPL \\
\hline \multirow[t]{2}{*}{788} & & DEPART & UPB \\
\hline & UPL & Variable & FNS NORM*400 \\
\hline 789 & & AOVANCE & 2000, Vs UPL \\
\hline
\end{tabular}

\section*{283
283
283 \\ 283
283
283 \\ 283
283
283 283
283
284 283
284 284 \\ 284
284 \\ 284
284 \\ 284
284
284 \\ 284
284 \\ 284
284 \\ 284
284
284 \\ 284
284
284 \\ 284
284 \\ 284
284
284 \\ 284
284
284 \\ 284 \\ 284
284 \\ 284
284 \\ 285
285 \\ 285
285 \\ 285
286 \\ 286 \\ 286 \\ 286
287 \\ 287
287 \\ 287
287 \\ 287
287 \\ 287
287 \\ 287
287 \\ 287
287 \\ 287
287
287 \\ 287
287
287 \\ 287
287 \\ 288
288 \\ 288 \\ 288
288 \\ 288
288 \\ 288
288
288 \\ 288
288 \\ 288
288 \\ 288
288 288}
\begin{tabular}{|c|c|c|c|}
\hline 790 & & Enter & IPS \\
\hline 791 & & ASSIGN & 2,1 \\
\hline 792 & & release & UPL \\
\hline 793 & & UNLINK & UPB,UPS,1 \\
\hline & UlSt3 & macru & UPL, UPI, UPQ, UPH, UPT, V\$ LPT, UPQ,FN\$DLCT, 1256 * \(10001 / \times 3\) \\
\hline 794 & & ASSIGN & 3,FN\$OLCT \\
\hline 795 & LPL & SEILE & UPO \\
\hline 796 & & Lagic S & UPI \\
\hline 797 & & GATE LR & UPI \\
\hline 798 & & Release & UPG \\
\hline 799 & & DEPART & UP4 \\
\hline 800 & & TRANSFER & - UPO \\
\hline 801 & UPH & ASSIGN & 1,0 \\
\hline 802 & & ASSIGN & 2.0 \\
\hline 803 & & ASSIGN & 3,0 \\
\hline 804 & & GATE LR & UPI, UPT \\
\hline 805 & & TRANSFER & , UPO \\
\hline 806 & LPT & LOGIC R & UPI \\
\hline 807 & & terminate & \\
\hline & UPT & VARIABLE & (256*1000)/×3 \\
\hline 808 & LPO & ADVANCE & V\$UPT \\
\hline 809 & & TRANSFER & , MCO \\
\hline & MERG1 & macru & MCX, MCH, MCA, MCB, MCC, HCD, MCE, MCO, MCG, MCR \\
\hline 810 & MCR & LOGIC S & MCR \\
\hline 811 & & GATE LS & MCE, MCX \\
\hline 812 & & LOGIC S & MCB \\
\hline 813 & & GATE LS & MCC \\
\hline 814 & & TEST E & P1, 1, MCH \\
\hline 815 & & LOGIC S & MCA \\
\hline 816 & \(\cdots\) & PRIORITY & O,BUFFER \\
\hline 817 & & PRIORITY & 1 \\
\hline 818 & & PRIORITY & 0, BUFFER \\
\hline 819 & & PRIORITY & 1 \\
\hline 820 & MCX & LOGIC R & MCD \\
\hline 821 & & LOGIC R & MCA \\
\hline 822 & & LOGIC R & MCB \\
\hline 823 & & LOGIC R & MCC \\
\hline 824 & & TRANSFER & , MC G \\
\hline 825 & MCO & LOGIC S & MCE \\
\hline 826 & & GATE LS & MCR, MCX \\
\hline 827 & & LOGIC S & MCC \\
\hline 8.28 & & GATE LS & MCB \\
\hline 829 & & TEST E & P1,1,TERM \\
\hline 830 & & LJGIC S & MCD \\
\hline 831 & & Priority & O,BUFFER \\
\hline 832 & & PRICRITY & 1 \\
\hline & MERG ? & MACRD & MCX, MCH, MCF,MCV, BVSMCV,LS\$MCA\#LS\$MCD,MCD, MCP,MCT,MCG \\
\hline 833 & & GATE NU & MCA,MCQ \\
\hline & MCV & BVARIAGLE & LSSMCA*LS SMCD \\
\hline 834 & & TEST E & B VS MCV, 1, MC \({ }^{\text {P }}\) \\
\hline 835 & MCO & Queue & MCO \\
\hline 836 & & LINK & MCF,FIFG,MCF \\
\hline 837 & MCF & SEI2E & MCQ \\
\hline 838 & & LOGIC S & MCF \\
\hline 839 & & GATE LR & MCF \\
\hline 840 & & DEPART & MCO \\
\hline 841 & & release & MCO \\
\hline
\end{tabular}
ULST3 MACRU
3, FN\$OLCT
UPO
\(U P I\)
\(U P D\)
UPG
UPU
- UPO
2,0
3,0
UPI, UPT
UPI
(255*1000)/×3
\$UPT
MCO
\(M C X, M C H, M C A, M C B, M C C, H C D, M C E, M C O, M C G, M C R\)
MCR
CB
MCB
MCC
P1, 1, MCH
0 O,B UFFER
0, BUFFER
MCD
MCA
MCB
MCB
MCC
MCE
MCE
MCR, MCX
MCC
MCB
P1,1,TERM
\(0, B\) UFFER
MCX, MCH, MCF,MCV, BVSMCV,LS \(\$ M C A \# L S \$ M C D, M C Q, M C P, M C T, M C G\)
MCA,MCQ
LSSMCA*LS \(\sin C D\)
B Vs MCV, 1 MC
MCG
MCQ
MCF
MCF
MCO
\(M C O\)

\footnotetext{
288
288
288
288
288
289
}
\begin{tabular}{|c|c|c|c|c|}
\hline 842 & & UNLINK & MCF, MCF, 1 & 292 \\
\hline 843 & & TRANSFER & , MCX & 292 \\
\hline 844 & MCP & LOGIC S & MCF & 292 \\
\hline 845 & & Transfer & , MC X & 292 \\
\hline 846 & MCH & PRIORITY & O,BUFFER & 292 \\
\hline 847 & & PRIORITY & 1 & 292 \\
\hline 848 & & PRIORITY & 0, BUFFER & 292 \\
\hline 849 & & PRIDRITY & 1 & 292 \\
\hline 850 & & GATE LR & MCF, MC T & 292 \\
\hline 851 & & TRANS FER & , MCX & 292 \\
\hline 852 & HCT & LOGIC R & MCF & 292 \\
\hline 853 & & terminate & & 292 \\
\hline 854 & MCG & ADV ANCE & 0 & 292 \\
\hline & MERG3 & macro & MCS, V\$MCS, 1275*10001/x3 & 293 \\
\hline & MCS & VARIABLE & (275*1000)/x3 & 293 \\
\hline 855 & & ADVANCE & \(\checkmark\) SMCS & 293 \\
\hline & SPLT1 & MaC Ro & SCL, SCR, SCH,SCA,SCC, SCB, SCV, P3'GE'17+P3'L'9, BV \$SCV,999 & 294 \\
\hline 856 & & TEST E & P1, 1, SCH & 294 \\
\hline & SCV & BV ARIABLE & P3' GE'174P3'L9 & 2.94 \\
\hline 857 & & TEST E & B ws SCV, 1, SCC & 294 \\
\hline 858 & & TEST LE & Q \$1 CR 1, 999, SCC & 294 \\
\hline 859 & & SPLIT & 1,SCA & 294 \\
\hline 860 & & TRAN SF ER & , SCL & 294 \\
\hline 861 & SCA & ASSIGN & 1,0 & 294 \\
\hline 862 & & ASSIGN & 2.0 & 294 \\
\hline 863 & & ASSIGN & 3,0 & 294 \\
\hline 864 & & TRANSFER & , SCR & 294 \\
\hline 865 & SCC & SPLIT & 1,SCB & 294 \\
\hline 866 & & transfer & , SCR & 294 \\
\hline 867 & SC8 \({ }^{-1}\) & ASSIGN & 1.0 & 294 \\
\hline 868 & & ASSIGN & 2,0 & 294 \\
\hline 869 & & ASSIGN & 3,0 & 294 \\
\hline 870 & & TRANSFER & , SCL & 294 \\
\hline 871 & SCH & SPLIT & 1,SCL & 294 \\
\hline 872 & & TRANSFER & - SCR & 294 \\
\hline & SPLT2 & macro & SCX, MDR , SCL , V \$S CX, 1165 * 1000 //X 3 & 295 \\
\hline & SCX & VARIABLE & (165*1000)/x3 & 295 \\
\hline 873 & SCL & ADV ANCE & \(v\) SSCX & 295 \\
\hline 874 & & TRANSFER & , MDR & 295 \\
\hline & SPLT 3 & MaCRO & SC Y,TAA, SCR, VSSCY, (060*1000)/X3 & 296 \\
\hline & SCY & VARIABLE & (000*1000)/X3 & 296 \\
\hline 875 & SCR & AOVANCE & V\$SCY & 296 \\
\hline 87,6 & & T3ANSFER & , TAA & 296 \\
\hline 877 & tas & TEST E & P2,1,TRA & 297 \\
\hline 878 & & tabulate & REC 1 & 298 \\
\hline 879 & Tra & TRANSFER & , M8U & 299 \\
\hline & MERGI & macro & MLX, MCH, MDA, MDE, MDC, MDD, MDE, MDO, MDG, MDE & 300 \\
\hline 880 & MOR & LOGIC S & MOH & 300 \\
\hline 881 & & gate ls & MCE, MOX & 300 \\
\hline 882 & & LOGIC S & MEb & 300 \\
\hline 883 & & GATE LS & MDC & 300 \\
\hline 884 & & TEST E & P1, 1,MDH & 300 \\
\hline 885 & & LOGIC S & MDA & 300 \\
\hline 886 & & PRILRITY & O,B UFFER & 300 \\
\hline 887 & & PRIORITY & 1 & 300 \\
\hline 888 & & PRTORITY & O,BUFFER & 300 \\
\hline 889 & & PRIORITY & 1 & 300 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 890 & \multirow[t]{5}{*}{MOX} & LOGIC R & MDD \\
\hline 891 & & LOGIC R & MDA \\
\hline 892 & & LOGIC R & MCB \\
\hline 893 & & LOGIC R & MOC \\
\hline 894 & & TRANS FER & , MOG \\
\hline 895 & \multirow[t]{8}{*}{mod} & LOGIC S & MCE \\
\hline 896 & & GATE LS & MOR, MD X \\
\hline 897 & & LOGIC S & MDC \\
\hline 898 & & gate ls & MDB \\
\hline 899 & & TEST E & P1,1, TERM \\
\hline 900 & & LOGIC S & MUD \\
\hline 901 & & PRIORITY & 0,BUFFER \\
\hline \multirow[t]{2}{*}{902} & & PRIORITY & 1 \\
\hline & \multirow[t]{2}{*}{MERG2} & Macro &  \\
\hline \multirow[t]{2}{*}{903} & & GATE NU & MDQ MDQ \\
\hline & \multirow[t]{2}{*}{MEV} & 8VARIABLE & LSSMDA*LSSMDD \\
\hline 904 & & TEST E & BV\$MDV, 1, MDP \\
\hline 905 & \multirow[t]{2}{*}{MDQ} & QUE UE & MDQ \\
\hline 906 & & LINK & MDF, FIFO, MDF \\
\hline 907 & \multirow[t]{7}{*}{m \({ }^{\text {PF }}\)} & SEILE & MDQ \\
\hline 908 & & LOGIC S & MDF \\
\hline 909 & & Gate LR & MDF \\
\hline 910 & & DEPART & MDQ \\
\hline 911 & & RELEASE & MDd \\
\hline 912 & & UNLINK & MOF,MDF, 1 \\
\hline 913 & & transfer & , MOX \\
\hline 914 & \multirow[t]{2}{*}{MDP} & LOGIC S & MDF \\
\hline 915 & & TRANS FER & , MOX \\
\hline 916 & \multirow[t]{6}{*}{MOH} & PRIORITY & 0,BUFFER \\
\hline 917 & & - PR IORITY & 1 \\
\hline 918 & & PRIORITY & 0,BUFFER \\
\hline 919 & & PRIORI TY & 1 \\
\hline 920 & & GATE LR & MDF, MD T \\
\hline 921 & & TRANSFER & , MDX \\
\hline 922 & MO T & LOGIC R & MDF \\
\hline 923 & & terminate & \\
\hline \multirow[t]{3}{*}{924} & MDG & ADVANCE & 0 \\
\hline & MERG 3 & Macro & MDS, VSMDS, (267*1000)/X3 \\
\hline & MDS & \(\checkmark\) ARIABLE & (267*1000)/x3 \\
\hline \multirow[t]{2}{*}{925} & & ADVANCE & VSmbS \\
\hline & \multirow[t]{2}{*}{ULSTI} & MaCRO & UQH, UQU, UQB, UQQ, QSUQQ,VSUQU,17,2000,35,FN\$NORM*400 \\
\hline 926 & & TESt E & P1, 1,U6H \\
\hline 927 & & TEST E & P3,17, UQC \\
\hline 928 & & TEST L & Q\$UQQ, 35. U20 \\
\hline 929 & & QuEUE & 404 \\
\hline 930 & & SPLIT & \(1, \cup \mathrm{OH}\) \\
\hline 931 & & TEST E & P2,1,UQB \\
\hline \multirow[t]{2}{*}{932} & & SEILE & UGH \\
\hline & \multirow[t]{5}{*}{LQQ} & variable & FN\$ NORM*400 \\
\hline 933 & & advance & 2000, Vsu0e \\
\hline 934 & & Leave & 1 PS \\
\hline 935 & & ASSIGN & 2,0 \\
\hline \multirow[t]{2}{*}{936} & & RELEASE & UUH \\
\hline & \multirow[t]{4}{*}{ULST2} & Macro & UGB,UUL, CHSUQB, VSUUL, FNSDECR, UQS, 2500, 1, FNSNDRY*50C \\
\hline 937 & & TEST GE & CHS UQB, 1 , UQ8 \\
\hline 938 & & ASSIGN & 3,FNSOECR \\
\hline 939 & & TrANSFER & , UQL \\
\hline
\end{tabular}
300
300
300
300
300
300
300
300
300
300
300
300
300
301
301
301
301
301
301
301
301
301
301
301
301
301
301
301
301
301
301
\begin{tabular}{|c|c|c|c|c|}
\hline 940 & \multirow[t]{2}{*}{UQB} & Queue & UGB & 304 \\
\hline 941 & & LINK & UQ3, FIFG, UQS & 304 \\
\hline 942 & \multirow[t]{3}{*}{UQS} & TEST © & CHSUQB, 1 & 304 \\
\hline 943 & & SEILE & UGL & 304 \\
\hline \multirow[t]{2}{*}{944} & & DEPART & uab & 304 \\
\hline & \multirow[t]{6}{*}{UQL} & variable & FNSNORM*500 & 304 \\
\hline 945 & & ADVANCE & 2500,VSUQL & 304 \\
\hline 946 & & ENTEP. & IPS & 304 \\
\hline 947 & & ASSIGN & 2.1 & 304 \\
\hline 948 & & pelease & Uol & 304 \\
\hline \multirow[t]{2}{*}{949} & & UNL INK & Uub, UQ S.l & 304 \\
\hline & \multirow[t]{2}{*}{ULST3} & MACRO & UQL, UQI, UQO, UQH, UQT, VSURT, UQQ,FNSDLCR, (325*1000)/X3 & 305 \\
\hline 950 & & ASSIGN & 3 , F NSDLCR & 305 \\
\hline 951 & \multirow[t]{6}{*}{VQL} & SEILE & U00 & 305 \\
\hline 952 & & LDGIC S & UQI & 305 \\
\hline 953 & & GATE LR & ual & 305 \\
\hline 954 & & RELEASE & ueo & 305 \\
\hline 955 & & DEPART & UQQ & 305 \\
\hline 956 & & TRANSFER & , U90 & 305 \\
\hline 957 & \multirow[t]{5}{*}{UQH} & ASSIGN & 1,0 & 305 \\
\hline 958 & & ASSIGN & 2,0 & 305 \\
\hline 959 & & \(\triangle\) SSIGN & 3.0 & 305 \\
\hline 960 & & GATE LR & UGI, UQt & 305 \\
\hline 961 & & TRANSFER & , voo & \(\underline{2} 05\) \\
\hline 962 & \multirow[t]{2}{*}{LQt} & LOGIC R & UQI & 305 \\
\hline \multirow[t]{2}{*}{963} & & terminate & & 305 \\
\hline & VOT & VARIABLE & (325*1000)/X3 & 305 \\
\hline \multirow[t]{2}{*}{964} & \multirow[t]{2}{*}{U0O ULST1} & ADVANCE & Vsuot & 305 \\
\hline & & Macro & URH, URO, URE, URQ, Q \$URQ, V \$URQ, 18, 2000, 35,FN\$ NORM* 400 & 306 \\
\hline 9.65 & \multirow[t]{7}{*}{LRO} & - test e & Pl, I, URH & 306 \\
\hline 966 & & TEST E & P3,18, URO & 306 \\
\hline 967 & & TEST L & QSJRQ, \(35^{\prime}\) URO & 306 \\
\hline 968 & & QUEUE & URO & 306 \\
\hline 969 & & SPLIT & 1,URH & 306 \\
\hline 970 & & TEST E & P2,1,URE & 306 \\
\hline \multirow[t]{2}{*}{971} & & SEILE & URH & 306 \\
\hline & \multirow[t]{5}{*}{URQ} & variable & FN\$NORM*400 & 306 \\
\hline 972 & & ADV ANCE & \(2000, V\) SURQ & 306 \\
\hline 973 & & LEAVE & 1 PS & 306 \\
\hline 974 & & ASSIGN & 2.0 & 306 \\
\hline \multirow[t]{2}{*}{975} & & RELEASE & URH & 306 \\
\hline & \multirow[t]{4}{*}{ULST2} & MACRO & URB, URL, 5 HS URB, VSURL, FNS DECR,URS, 2500,1, FNSIVORM*500 & 307 \\
\hline 976 & & TEST GE & ChsURB, 1, URB & 307 \\
\hline 977 & & ASSIGN & 3,FN\$DECR & 307 \\
\hline 978 & & tr An SFER & , URL & 307 \\
\hline 979 & \multirow[t]{2}{*}{URB} & Queue & URB & 307 \\
\hline 980 & & LINK & URB ,FIFC,URS & 307 \\
\hline 981 & \multirow[t]{3}{*}{UR S} & TEST G & CH\$URB.1 & 307 \\
\hline 982 & & SEIZE & URL & 307 \\
\hline \multirow[t]{2}{*}{983} & & depart & URB & 307 \\
\hline & \multirow[t]{6}{*}{URL} & variable & FNSNORM*500 & 307 \\
\hline 984 & & ADVANCE & \(2500, V\) SURL & 307 \\
\hline 985 & & ENTER & IPS & 307 \\
\hline 986 & & ASSIGN & 2,1 & 307 \\
\hline 987 & & release & \(\cup\) RL & 307 \\
\hline \multirow[t]{2}{*}{988} & & UNLINK & URB, URS, 1 & 307 \\
\hline & ULST3 & MACRO & UKL, UR I, URO, URH, URT, V\$LRT, URU,FN\$OLCR, (325*1000)/X3 & 308 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 989 & & ASSIGN & 3,FNsOLCR & 308 \\
\hline 990 & \multirow[t]{6}{*}{URL} & SEILF & URD & 308 \\
\hline 991 & & LOGIC S & URI & 309 \\
\hline 992 & & gate LR & URI & 308 \\
\hline 993 & & release & URO & 308 \\
\hline 994 & & DEPART & URQ & 308 \\
\hline 995 & & TRANSFER & , URO & 308 \\
\hline 996 & \multirow[t]{5}{*}{LRH} & ASSIGN & 1,0 & 308 \\
\hline 957 & & ASSIGN & 2,0 & 308 \\
\hline 998 & & ASSIGN & 3,0 & 308 \\
\hline 999 & & GATE LR & URI, URT & 308 \\
\hline 1000 & & TRANSFER & , URO & 308 \\
\hline 1001 & \multirow[t]{2}{*}{URT} & LOGIC R & URI & 308 \\
\hline \multirow[t]{2}{*}{1002} & & terminate & & 308 \\
\hline & URT & variable & (325* 1000 / \({ }^{\text {3 }}\) & 308 \\
\hline \multirow[t]{2}{*}{1003} & URO & ADV ANCE & \(\checkmark\) SURT & 308 \\
\hline & ULST1 & MACRO &  & 309 \\
\hline 1004 & \multirow[t]{7}{*}{USA} & TEST E & P1,1,USH & 309 \\
\hline 1005 & & TEST E & P3,19,USO & 309 \\
\hline 1006 & & TEST L & Qsuso.35,us O & 309 \\
\hline 1007 & & QUEUE & USQ & 309 \\
\hline 1008 & & SPLIT & 1,USH & 309 \\
\hline 1009 & & TEST E & P2,1,USB & 309 \\
\hline \multirow[t]{2}{*}{1010} & & SEILE & USH & 309 \\
\hline & \multirow[t]{5}{*}{USQ} & variable & FNSNURM*400 & 309 \\
\hline 1011 & & ADVANCE & 2000,V\$USQ & 309 \\
\hline 1012 & & Leave & IPS & 309 \\
\hline 1013 & & ASSIGN & 2,0 & 309 \\
\hline \multirow[t]{2}{*}{1014} & & RELEASE & USH & 309 \\
\hline & \multirow[t]{4}{*}{ULSTz} & MACRO & USB, USL, CHS USB, VS USL , FN\$ OECR, USS, 2500 , 1 ,FNS NORM \(\$ 500\) & 310 \\
\hline 1015 & & TEST GE & CHSUS B, 1, US B & 310 \\
\hline 1016 & & ASSIGN & 3, FNSOECR & 310 \\
\hline 1017 & & transfer & , USL & 310 \\
\hline 1018 & \multirow[t]{2}{*}{LS8} & QUEUE & USB & 310 \\
\hline 1015 & & LINK & USB, FIFO, USS & 310 \\
\hline 1020 & \multirow[t]{3}{*}{USS} & TEST G & CHSUSB, 1 & 310 \\
\hline 1021 & & SEIEE & USL & 310 \\
\hline \multirow[t]{2}{*}{1022} & & DEPART & USB & 310 \\
\hline & \multirow[t]{6}{*}{USL} & variable & FNSNORM*500 & 310 \\
\hline 1023 & & ADVANCE & 2500,V\&USL & 310 \\
\hline 1024 & & ENTER & IPS & 310 \\
\hline 1025 & & ASSIGN & 2,1 & 310 \\
\hline \(102 t\) & & RELEASE & USL & 310 \\
\hline \multirow[t]{2}{*}{\(10^{\prime} 27\)} & & U:WLINK & USB, USS, 1 & 310 \\
\hline & \multirow[t]{2}{*}{ULST3} & MACRO & USL,USI,USO, USH,UST,V\$LST,USU,FNSDLCR, (193* 1000 )/×3 & 311 \\
\hline 1028 & & ASSIGN & 3 ,F NS DLCR & 311 \\
\hline 1029 & \multirow[t]{6}{*}{USL} & SEILE & usú & 311 \\
\hline 1030 & & LOGIC S & USI & 311 \\
\hline 1031 & & GA TE LR & USI & 311 \\
\hline 1032 & & RELEASE & Uso & 311 \\
\hline 1033 & & DEPART & USW & 311 \\
\hline 1034 & & transfer & , USO & 311 \\
\hline 1035 & \multirow[t]{5}{*}{USH} & ASSIGN & 1,0 & 311 \\
\hline \(103 \epsilon\) & & ASSIGN & 2,0 & 311 \\
\hline 1037 & & ASSIGN & 3,0 & 311 \\
\hline 1038 & & gate la & USI, UST & 311 \\
\hline 1035 & & TRANSFER & , USO & 311 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& 1040 \\
& 1041
\end{aligned}
\]} & UST & LOGIC R & USI & 311 \\
\hline & & terminate & & 311 \\
\hline & UST & variable & (193*1000)/x3 & 311 \\
\hline \multirow[t]{2}{*}{1042} & USC & ADVANCE & \(\checkmark\) Sust & 311 \\
\hline & SPLT 1 & MACRO & SOL , SDR, SDH, SDA , SDC , SDE, SDV, P3'E'O, BVSSDV, 36 & 312 \\
\hline \multirow[t]{2}{*}{1043} & & TEST E & P1,1,SDH & 312 \\
\hline & SOV & gVariagle & P3' E'0 & 312 \\
\hline 1044 & & TEST E & B vs SOV, 1, SDC & 312 \\
\hline 1045 & & TEST LE & - SLCR1, 36,S OC & 312 \\
\hline \(104 t\) & & SPLIT & 1,SDA & 312 \\
\hline 1047 & & TRANSFER & , SD L & 312 \\
\hline 1048 & SDA & ASSIGN & 1,0 & 312 \\
\hline 1045 & & ASSIGN & 2,0 & 312 \\
\hline 1050 & & ASSIGN & 3,0 & 312 \\
\hline 1051 & & transfer & , SDR & 312 \\
\hline 1052 & SDC & SPLIT & 1,SDB & 312 \\
\hline 1053 & & TRANSFER & , SDR & 312 \\
\hline 1054 & SDB & ASSIGN & 1.0 & 312 \\
\hline 1055 & & ASSIGN & 2,0 & 312 \\
\hline 1056 & & ASSIGN & 3,0 & 312 \\
\hline 1057 & & TRANSFER & , SDL & 312 \\
\hline 1058 & SOH & SPLIT & 1.SDL & 312 \\
\hline \multirow[t]{3}{*}{1059} & & TRANS FER & , SDR & 312 \\
\hline & SPLT2 & Macro & SCX,NTR,SOL, VSSDX, (313*10001/x & 313 \\
\hline & SOX & variable & \((313 * 1000) / \times 3\) & 313 \\
\hline 1060 & SDL & ADVANCE & \(v\) \$SDx & 313 \\
\hline \multirow[t]{3}{*}{1061} & & TRANSFER & - NTR & 313 \\
\hline & SPLT3 & 3 MACRO & SDY, TAB, SDR , VSSDY, 1142*10001/X3 & 314 \\
\hline & SDY & VARIABLE & (142*1000)/X3 & 314 \\
\hline 1062 & SDR & - ADVANCE & vssor & 314 \\
\hline 1063 & & TR ANSFER & , tab & 314 \\
\hline 1064 & tAB & TEST E & P2,1, \(\mathrm{TRG}^{\text {a }}\) & 315 \\
\hline 1065 & & tabulate & REC2 & 316 \\
\hline 1066 & TRB & TRANSFER & , Mar & 317 \\
\hline 1067 & & GENERATE & 120000 & 318 \\
\hline \multirow[t]{5}{*}{1068} & & TERMINATE & 1 & 319 \\
\hline & & St ARt & 1 & 320 \\
\hline & & RESET & & 321 \\
\hline & & START & 10.02 & 322 \\
\hline & & END & & 323 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|l|}{this is snat ; ja} \\
\hline \multicolumn{2}{|l|}{relative click} & \multicolumn{2}{|l|}{1200000 AB} & \multicolumn{2}{|l|}{bsolute clack} & \multicolumn{9}{|l|}{1320000} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
BLOCK \\
black
\end{tabular}} & colnts & \multirow[b]{2}{*}{total} & & \multirow[b]{2}{*}{curkent} & & \multirow[b]{2}{*}{- ¢ Jck} & \multirow[b]{2}{*}{current} & & & & & & & \\
\hline & CURKENT & & dLock & & total & & & total & HLJCK & Cukrent & total & block & CURRENT & total \\
\hline 1 & 0 & 0 & 11 & \(\bigcirc\) & 0 & 21 & 0 & 0 & 31 & 0 & 597 & 41 & 3 & 598 \\
\hline 2 & c & 0 & 12 & 0 & 4007 & 22 & \(\checkmark\) & 0 & 32 & \(\checkmark\) & 597 & 42 & & 598 \\
\hline 3 & 0 & 0 & 13 & 0 & 4007 & 23 & 0 & 0 & 33 & 0 & 598 & 43 & 0 & 598 \\
\hline 4 & 0 & 0 & 14 & 0 & 3410 & 24 & , & 4007 & 34 & 0 & 598 & 44 & 0 & 599 \\
\hline 5 & \(\checkmark\) & 0 & 15 & 0 & 0 & 25 & , & 1194 & 35 & 0 & 598 & 45 & 0 & 599 \\
\hline 6 & 0 & 0 & 16 & 0 & 0 & 26 & 0 & 597 & 36 & 0 & 598 & 46 & 0 & 599 \\
\hline 7 & 0 & 0 & 17 & 0 & J & 27 & 0 & 597 & 37 & 1 & 598 & 47 & 0 & 599 \\
\hline 8 & 0 & 15125 & 18 & \(\checkmark\) & 4007 & 28 & 0 & 597 & 38 & 0 & 598 & 48 & 0 & 599 \\
\hline 9 & 0 & 4000 & 19 & 0 & 0 & 29 & 0 & 4007 & 39 & 0 & 598 & 49 & 3 & 4007 \\
\hline 10 & c & 4000 & 20 & 0 & \(\checkmark\) & 30 & 0 & 3408 & 40 & 0 & 598 & 50 & 0 & 4006 \\
\hline BLCCK & current & total & bluck & curzent & total & BLOCK & Current & total & block & current & TOT AL & 8LOCK & Curfent & total \\
\hline 51 & - & 4001 & 61 & 0 & 4007 & 71 & 0 & 598 & 81 & 0 & 636 & 91 & \(\bigcirc\) & 547 \\
\hline 52 & c & 40 C 7 & 62 & 0 & 4007 & 72 & 0 & 598 & 82 & 0 & 636 & 92 & 0 & 9 \\
\hline 53 & 0 & 4007 & 63 & - & 4007 & 73 & 0 & 598 & 33 & 0 & 636 & 93 & 0 & 638 \\
\hline 54 & c & 4007 & 64 & 0 & 4007 & 74 & - & 598 & 84 & 0 & 636 & 94 & 0 & 638 \\
\hline 55 & 0 & 4007 & 65 & 0 & 4007 & 75 & 0 & 13 & 85 & 0 & 2 & 95 & 0 & 4007 \\
\hline 56 & 0 & 3350 & 68 & 0 & 4005 & 76 & 0 & 596 & 86 & 0 & 2 & 96 & 5 & 4007 \\
\hline 57 & 0 & 3360 & 67 & 0 & 4006 & 77 & 0 & 596 & 87 & 0 & 647 & 97 & 0 & 4006 \\
\hline 58 & 0 & 3360 & 68 & 0 & 4000 & 78 & 0 & 636 & 88 & 0 & 647 & 98 & 0 & 3997 \\
\hline 59 & 0 & 3360 & 69 & 0 & 4007 & 79 & 1 & 636 & в9 & 0 & 647 & 99 & 0 & 134 \\
\hline 60 & 0 & 3360 & 70 & 0 & 4007 & 80 & 0 & 636 & 93 & 0 & 647 & 100 & 0 & 134 \\
\hline BLOCK & current & total & elock & current & total & black & current & total & block & current & total & block & current & total \\
\hline 101 & 0 & 268 & 111 & 0 & 26 & 121 & 1 & 26 & 131 & 0 & 143 & 141 & 0 & 151 \\
\hline 102 & 0 & 134 & 112 & 0 & 26 & 122 & & 132 & 132 & - & 11 & 142 & 0 & 114 \\
\hline 103 & c & 108 & 113 & 0 & 26 & 123 & 1 & 132 & 133 & 0 & 132 & 143 & 0 & 114 \\
\hline 104 & 0 & 108 & 114 & 0 & 26 & 124 & 0 & 132 & 134 & 0 & 132 & 144 & 0 & 115 \\
\hline 105 & 0 - & 1.8 & 115 & 0 & 25 & 125 & 0 & 132 & 135 & 5 & 4006 & 145 & 0 & 115 \\
\hline 106 & 0 & 108 & 116 & 0 & 26 & 126 & 0 & 132 & 136 & 0 & 4007 & 146 & 0 & 115 \\
\hline 107 & 0 & 108 & 117 & 0 & 26 & 127 & 0 & 132 & 137 & 0 & 3996 & 147 & & 115 \\
\hline 108 & 0 & 108 & 118 & 0 & 26 & 128 & 0 & 143 & 138 & 0 & 151 & 148 & 0 & 115 \\
\hline 109 & 0 & 108 & 119 & 0 & 26 & 129 & 0 & 143 & 139 & 0 & 151 & 149 & 2 & 115 \\
\hline 110 & 3 & 108 & 120 & 1 & 26 & 130 & 0 & 143 & 140 & 0 & 302 & 150 & 0 & 37 \\
\hline BLOCK & current & total & block & current & total & BLock & Current & total & Block & CURRENT & rotal & block & current & TOTAL \\
\hline 151 & 0 & 37 & 161 & 0 & 150 & 171 & 0 & 12 & 181 & 0 & 104 & 191 & 0 & 32 \\
\hline 152 & 0 & 37 & 162 & 1 & 150 & 172 & 0 & 150 & 182 & - & 104 & 192 & 0 & 32 \\
\hline 153 & 0 & 37 & 163 & 0 & 150 & 173 & 0 & 150 & 183 & 0 & 105 & 193 & 0 & 32 \\
\hline 154 & & 37 & 164 & 0 & 150 & 174 & 29 & 4007 & 184 & 0 & 105 & 194 & 1 & 32 \\
\hline 155 & 0 & 37 & 165 & 0 & 150 & 175 & 0 & 4006 & 185 & 0 & 105 & 195 & 0 & 32 \\
\hline 156 & 0 & 37 & 166 & 0 & 150 & 176 & 0 & 3994 & 136 & 0 & 105 & 196 & & 32 \\
\hline '157 & 0 & 37 & 167 & 0 & \(1 \in 2\) & 177 & 0 & 137 & 197 & 0 & 105 & 197 & 0 & 32 \\
\hline 158 & o & 37 & 168 & 0 & 162 & 178 & 0 & 137 & 188 & 0 & 105 & 198 & \(\bigcirc\) & 32 \\
\hline 159 & 1 & 37 & 169 & 0 & 152 & 179 & 0 & 274 & 189 & 0 & 33 & 199 & 2 & 32 \\
\hline 160 & 0 & 37 & 170 & 0 & 162 & 180 & 0 & 137 & 170 & 0 & 33 & 200 & 0 & 136 \\
\hline BLOCK & Current & total & Elock & current & total & 8 \(\quad\) Ock & current & total & block & Current & total & block & CURKENT & total \\
\hline 201 & 1 & 136 & 211 & 0 & 136 & 221 & 0 & 87 & 231 & 0 & 53 & 241 & \(J\) & 138 \\
\hline 2 C 2 & c & 136 & 212 & 0 & 136 & 222 & 0 & 87 & 232 & , & 53 & 242 & 0 & 138 \\
\hline 203 & 0 & 136 & 213 & 21 & 4006 & 223 & 0 & 87 & 233 & 0 & 53 & 243 & 0 & 138 \\
\hline 204 & 0 & 136 & 214 & 0 & 4006 & 224 & 0 & 87 & 234 & 0 & 53 & 244 & 0 & 138 \\
\hline 205 & c & 136 & 215 & 0 & 3993 & 225 & 0 & 87 & 235 & 0 & 53 & 245 & 0 & 153 \\
\hline 206 & 0 & 149 & 216 & 0 & 14.5 & 226 & 0 & 87 & 236 & 0 & 53 & 248 & 0 & 153 \\
\hline 207 & 0 & 149 & 217 & 0 & 143 & 227 & 1 & 87 & 237 & 1 & 53 & 247 & & 153 \\
\hline 208 & 0 & 149 & 218 & 0 & 283 & 228 & 0 & 53 & 239 & 1 & 53 & 248 & 0 & 153 \\
\hline 209 & 0 & 149 & 219 & 0 & 14.3 & 229 & 0 & 53 & 239 & 0 & 138 & 249 & 0 & 15 \\
\hline 210 & 0 & 13 & 220 & \(\bigcirc\) & 87 & 230 & 0 & 53 & 240 & 1 & 138 & 750 & 0 & 138 \\
\hline
\end{tabular}
\begin{tabular}{cc} 
BLCCK & CURRENT \\
251 & 0 \\
252 & 22 \\
253 & 0 \\
254 & 0 \\
255 & 0 \\
256 & 0 \\
257 & 0 \\
258 & 0 \\
259 & 0 \\
260 & 1
\end{tabular}
\begin{tabular}{cc} 
BLCCK & CURRENT \\
301 & 0 \\
302 & 0 \\
303 & 0 \\
304 & 0 \\
305 & 2 \\
306 & 0 \\
307 & 0 \\
308 & 0 \\
309 & 0 \\
310 & 0
\end{tabular}
\begin{tabular}{cc} 
BLCCK & CURRENT \\
351 & 0 \\
352 & 0 \\
353 & 0 \\
354 & 1 \\
355 & 1 \\
356 & 0 \\
357 & 1 \\
358 & 0 \\
359 & 0 \\
360 & 0
\end{tabular}
\(\begin{array}{cc}\text { BLOCK CURENT } \\ 401 & 0 \\ 402 & 0 \\ 403 & 0 \\ 404 & 0 \\ 405 & 0 \\ 406 & 0 \\ 407 & 0 \\ 408 & 4 \\ 409 & 0 \\ 410 & 0\end{array}\)
al CCK CURRENT
\begin{tabular}{|c|c|}
\hline 0000000000 & \[
\begin{aligned}
& \text { E. } 2000 \\
& \text { x } \\
& \underset{3}{3}
\end{aligned}
\] \\
\hline  がすべきべがべががo &  \\
\hline
\end{tabular}


TOTAL
138
4008
4006
3990
102
152
324
162
125
125
TOT 42
102
102
102
102
102
43
43
43
43
43
rota
18
18
18
18
27
16
162
400
400
397

\section*{－}

255
255
255
247
6
6
66
66

へ～が～
\begin{tabular}{rrr} 
TCTAL & BLOCK & CURR ENT \\
51 & 361 & 0 \\
51 & 362 & 0 \\
51 & 363 & 0 \\
51 & 364 & 0 \\
51 & 365 & 0 \\
168 & 366 & 0 \\
168 & 367 & 0 \\
168 & 368 & 0 \\
168 & 369 & 6 \\
168 & 370 & 0
\end{tabular}

BLOCK CURR
261
262
263
264
265
266
267
268
269
270
ELOC
31
\(\begin{array}{ll}\text { OCK CURREN } \\ 311 \\ 312 & 0 \\ 313\end{array}\) ENT
0
0


\({ }^{\text {BLOCK }}\)

\(\begin{array}{r}1072 \\ 12 \\ 124 \\ 124 \\ 124 \\ \hline\end{array}\)
total
T


alock
271
272
273
274
275
276
277
278
279
230
8
321
322
323
324
325
326
327
328
32
33
\(B L O C\)
BLOCK
371
372
373
37
37
37
377
37
379
380
LOCK CUR
271
272
273
274
275
276
277
278
279
230
0
0
0
0
0
1
1
0
1
0
321
323
24
25
26
27
28
39
30
CK CURR
71
72
73
74
75
76
77
78
79
79
80


\section*{}
\(B L J C K\)
471
472
473
474
475
476
477
478
479
480
\(3 L 0 C K\)
521
522
523
524 \(\qquad\)

TOTAL
37
37
37
37
37
37
37
157
157
157
TOTAL
143
143
166
166
166
163
1
1
40
rotal
3982
165
165
330
165
103
103
103
103

BLOCK CURR
281
282
283
284
285
286
297
288
289
290

BLOCK CURKENT
331
33
33
334
3
3
\({ }^{8}\)
381
382
383
384
385
386
387
388
389
390


TOTAL
157
157
157
178
178
178
178
21
157
157

103
103
103
62
62
62
6
6
62
63


BLOCK CURR
291
292
293
294
295
296
297
298
299
300

BLOCK CUREENT
341
TOTAL
+006
4006
3985
145
145
290
145
102
102
102
498
1
1
169

341
342
343
344
345
346
347
348
349
350
\(\begin{array}{cc}\text { BLDCK CURRENT } \\ 391 & 0 \\ 392 & 0\end{array}\)



392
393
39


BLOC
54
54
54
54
\begin{tabular}{l}
491 \\
492 \\
493 \\
494 \\
495 \\
496 \\
497 \\
498 \\
499 \\
500 \\
\hline \(0 c k\) \\
541 \\
542 \\
543 \\
544
\end{tabular}
Cupfent

CUPRENT
0
0
0
0
\begin{tabular}{|c|c|c|c|c|c|}
\hline  &  & Nosionsion &  &  &  \\
\hline 0000000000 ？ & owooooncoct & ocooorocoso & \(0000000000{\underset{\sim}{c}}_{\substack{{\underset{\sim}{x}}_{\begin{subarray}{c}{0} }}^{n}} \\{\hline}\end{subarray}}\) & \(0000000+00 \frac{\substack{n \\ c_{1} \\ x_{1} \\ \hline}}{}\) & 000000 \\
\hline へ &  &  &  & wno &  \\
\hline  &  &  &  & \begin{tabular}{l}
 \\

\end{tabular} &  \\
\hline 00 NOMOOOOO & \[
0000000000{\underset{\sim}{2}}_{\substack{\sum_{\begin{subarray}{c}{x} }}^{n}} \\
{\hline}\end{subarray}}
\] &  &  & \(0000000000 \overbrace{1}^{\text {in }}\) & coocoo \\
\hline  &  &  & N二NANFNNNN： &  &  \\
\hline がゴゴゴざゴコニゴざ &  &  &  & जuvuvuvunur & c． \\
\hline  & \(0000000000{\underset{\sim}{1}}_{\substack{\sum_{0}^{N} \\ \hline}}\) & \(0000000000{\underset{\sim}{c}}_{\substack{\sum_{0}^{n} \\ \hline}}\) & \(0000000000 \sum_{\substack{\sum_{0}^{\infty} \\ \hline \\ \hline}}\) &  & 000coo \\
\hline  & ～N～N～NNONNNNND &  &  &  &  \\
\hline  &  &  &  & \begin{tabular}{l}
 \\

\end{tabular} &  \\
\hline  & \(0000000-00{\underset{\sim}{0}}_{\substack{\sum_{0}^{\infty} \\ \hline \\ \hline}}\) & \(0000000000 \sum_{\substack{\sum_{0}^{n} \\ \hline}}^{n}\) &  &  & oorcoo \\
\hline \begin{tabular}{l}
\(\omega \omega \omega \omega \omega \omega \omega \omega \omega \omega \omega\) 気 \\

\end{tabular} &  &  &  & wwown & W～NTN： \\
\hline  &  &  &  &  & Muccucumut \\
\hline \[
\text { coococroc } \begin{array}{r}
\sum_{2}^{x} \\
\sum_{1} \\
\hline
\end{array}
\] &  &  & \[
0000000000 \stackrel{\text { 哯 }}{\substack{n}}
\] &  & 000000 \\
\hline  &  &  & NOMNNNさささむさ &  &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline blcck & current & total & eluck & curzent & total & block & curbent & total & black & current & Total & Bleck & CURFENT & total \\
\hline 801 & 0 & 40.06 & 811 & \(\bigcirc\) & 4000 & 321 & 0 & 4036 & 931 & 0 & 762 & 841 & 0 & 85 \\
\hline 802 & 0 & 4006 & 812 & \(\bigcirc\) & 4005 & 822 & c & 4306 & 832 & 0 & 762. & 3 \({ }^{\text {＋2 }}\) & 0 & 85 \\
\hline 8 cs & 0 & 4306 & 813 & 0 & 4005 & 023 & 0 & 4306 & 833 & 0 & 762 & 843 & 0 & 85 \\
\hline 804 & 0 & 4306 & 814 & 0 & 4005 & 824 & \(\bigcirc\) & 4036 & 83.4 & 0 & 739 & 844 & 0 & 679 \\
\hline 805 & 0 & 3247 & 815 & 0 & 232 & 325 & 0 & 4006 & 835 & 0 & 83 & 845 & 0 & 6.79 \\
\hline Ec6 & 0 & 755 & 816 & 0 & 232 & 826 & 0 & 4006 & 836 & 0 & 83 & 846 & 0 & 3774 \\
\hline 807 & 0 & 759 & 817 & 0 & 232 & 327 & 0 & 4006 & 837 & \(\bigcirc\) & 84 & 847 & 0 & 3774 \\
\hline 808 & 12 & 4006 & 818 & 0 & 232 & 828 & 0 & 4006 & 838 & 0 & 84 & 848 & 0 & 3774 \\
\hline Eu9 & & 4006 & 819 & 0 & 232 & 329 & 0 & 4006 & 839 & 0 & 85 & 849 & 0 & 3774 \\
\hline 810 & 0 & 4006 & 820 & ， & 4006 & 830 & 0 & 762 & 840 & 0 & 85 & 850 & 0 & 3774 \\
\hline block & curreat & toital & black & clprent & total & вıлек & current & total & BLOCK & current & total & block & current & total \\
\hline 851 & 0 & 3010 & 861 & 0 & 748 & 871 & 0 & 6006 & 891 & 0 & 4306 & 89. & 0 & 4006 \\
\hline 852 & c & 764 & 862 & 0 & 748 & 872 & － & 3003 & 882 & 1 & 4006 & 892 & 0 & 4006 \\
\hline 853 & 0 & 764 & 863 & 0 & 743 & 873 & & 4006 & 883 & 0 & 4006 & 893 & 0 & 4006 \\
\hline 854 & 0 & 4006 & 864 & 0 & 748 & 874 & 0 & 4006 & 894 & 0 & 4006 & 894 & 0 & 4006 \\
\hline E55 & 13 & 4006 & 865 & 0 & 510 & 975 & 3 & 4006 & 885 & 0 & 750 & 895 & 0 & 4006 \\
\hline 856 & 0 & 4006 & 860 & 0 & 255 & － 976 & 0 & 4006 & 886 & 0 & 750 & 996 & 0 & 4006 \\
\hline 857 & 0 & 1003 & 867 & \(\bigcirc\) & 255 & 877 & 0 & 4006 & 887 & 0 & 750 & 997 & 0 & 4006 \\
\hline E58 & c & 748 & 858 & 0 & 255 & 878 & 0 & 158 & 888 & 0 & 750 & 898 & 0 & 4006 \\
\hline 859 & 0 & 1496 & 869 & 0 & 255 & 879 & 0 & 4006 & 889 & 0 & 750 & 899 & 0 & 4006 \\
\hline 860 & 0 & 748 & 870 & 0. & 255 & 880 & 0 & 4006 & 890 & 0 & 4006 & 900 & 0 & 3285 \\
\hline BLOCK & current & toral & block & currevt & TOTAL & BLock & Current & total & buack & current & total & нlock & Curkent & TJTAL \\
\hline 901 & 0 & 3285 & 911 & 0 & 3211 & 921 & 0 & 28 & 931 & 0 & 72 & 941 & J & 34 \\
\hline 5 C 2 & c & 3285 & 912 & 0 & 3211 & 922 & \(\checkmark\) & 3228 & 932 & － & 38 & 942 & 0 & 34 \\
\hline 903 & 0 & 3285 & 913 & 0 & 3211 & 923 & 0 & 3228 & 933 & 0 & 38 & 943 & 0 & 34 \\
\hline 904 & 0 & 34 & 914 & 0 & 17 & 924 & 0 & 4006 & 934 & 0 & 38 & 944 & 0 & 34 \\
\hline 505 & 0 & 3288 & 915 & 0 & 17 & 925 & 12 & 4006 & 935 & 0 & 38 & 945 & 0 & 34 \\
\hline 906 & 0 & 3268 & 916 & 0 & 3256 & 926 & 0 & 4007 & 936 & 0 & 38 & 946 & ， & 34 \\
\hline 907 & 0 & 3211 & 917 & 0 & 3256 & 927 & 0 & 397 & 937 & 0 & 38 & 947 & 0 & 34 \\
\hline 908 & 1 & 3211 & 918 & 0 & 3256 & 928 & 0 & 72 & 938 & 0 & 38 & 948 & 0 & 34 \\
\hline 909 & O． & 3211 & 919 & 0 & 3256 & 929 & 0 & 72 & 939 & 0 & 38 & 949 & 1 & 34 \\
\hline 510 & 0 & 3211 & 920 & 0 & 3256 & 930 & 0 & 144 & 940 & 0 & 34 & 950 & 2 & 34 \\
\hline bleck & current & total & BLOCK & current & total & BLIJCK & current & total & block & current & tot AL & eluck & curkent & tital \\
\hline 951 & 0 & 70 & 951 & 3 & 33 & 971 & 0 & 46 & 981 & 0 & 35 & 991 & 1 & \％ \\
\hline 552 & 1 & 70 & 962 & 0 & 69 & 972 & 0 & 46 & 992 & 0 & 35 & 992 & 0 & 79 \\
\hline 953 & 0 & 69 & 963 & 0 & 69 & 973 & 0 & 46 & 983 & 0 & 35 & 993 & \(\bigcirc\) & 79 \\
\hline ¢54 & 0 & 69 & 964 & 16 & 4007 & 974 & \(\bigcirc\) & 46 & 984 & 0 & 35 & 994 & 0 & 79 \\
\hline 955 & & 69 & 965 & 0 & 4006 & 975 & 0 & 46 & 985 & 0 & 36 & 995 & 0 & 79 \\
\hline 956 & 0 & 69 & 966 & 0 & 3967 & 976 & 0 & 46 & 936 & & 36 & 996 & 0 & 120 \\
\hline 957 & － & 102 & 967 & 0 & 81 & 977 & 0 & 46 & 987 & 0 & 36 & 997 & 0 & 120 \\
\hline 958 & 0 & 102 & 968 & 0 & 81 & 978 & 2 & 46 & 988 & 1 & 36 & 998 & 0 & 120 \\
\hline 959 & 0 & 102 & 969 & J & 162 & 979 & 0 & 35 & 989 & 0 & 36 & 999 & 0 & 120 \\
\hline 960 & \(\checkmark\) & \(10 ?\) & 970 & 0 & 81 & 930 & 0 & 35 & 970 & 0 & 80 & 1000 & \(\bigcirc\) & 41 \\
\hline bleck & current & total & elack & current & total & －Lack & cjurent & tJital & 8Lock & current & tutal & black & Curfent & total \\
\hline 1001 & 0 & 79 & 1011 & \(\checkmark\) & 27 & 1021 & 3 & 47 & 1031 & 0 & 73 & 1041 & 0 & 73 \\
\hline 1002 & 0 & 79 & 1012 & \(\checkmark\) & 27 & 1022 & c & 47 & 1032 & 0 & 73 & 1042 & 10 & 4007 \\
\hline 1003 & 15 & 4006 & 1013 & 0 & 27 & 1023 & 0 & 47 & 1333 & 0 & 73 & 1043 & 0 & \％006 \\
\hline 1004 & & 4007 & 1014 & 0 & 27 & 1024 & ， & 48 & ！ 034 & 0 & 73 & 1044 & 0 & 3959 \\
\hline 1005 & 0 & ミッチ & 1015 & 0 & 27 & 1025 & 0 & 48 & 1035 & 0 & 116 & 1045 & 0 & 3401 \\
\hline 1 cco & \(\checkmark\) & 73 & 1016 & ， & 27 & 1025 & J & 48 & Iu3s & 0 & 116 & 1346 & J & 1194 \\
\hline 1007 & 0 & 73 & 1017 & 1 & 27 & 1027 & 1 & 48 & 1037 & 0 & 116 & 1047 & j & 597 \\
\hline 1008 & O & 146 & 1018 & \(\bigcirc\) & 46 & 1328 & \(\bigcirc\) & 48 & 1038 & 0 & 115 & 1048 & 0 & 597 \\
\hline 1 COS & 0 & 73 & 1019 & \(\checkmark\) & 45 & 1029 & J & 74 & 1039 & 0 & 43 & 1049 & 0 & 597 \\
\hline 1010 & 0 & 27 & 1020 & 0 & 47 & 1030 & 1 & 74 & 10\％3 & 0 & 73 & 1053 & 0 & 597 \\
\hline blcck & current & tutal & block & currant & total & black & current & TITAL & btock & cufrent & total & alogk & ClZPENT & mital \\
\hline 1051 & 0 & 597 & 1001 & 0 & 4007 & & & & & & & & & \\
\hline 1 C52 & c & 6724 & 1062 & 6 & 4305 & & & & & & & & & \\
\hline 1053 & \(\checkmark\) & 3362 & 1063 & 0 & 4007 & & & & & & & & & \\
\hline 1054 & 0 & 3352 & 1064 & 0 & 4007 & & & & & & & & & \\
\hline
\end{tabular}

告茑 9

0003



000009


\begin{tabular}{|c|c|c|c|c|c|}
\hline FaCILIty & average utililation. & number ENTHIES & \begin{tabular}{l}
a veragf \\
TIME/TRAN
\end{tabular} & \[
\begin{aligned}
& \text { SEIZING } \\
& \text { TRANS. ND. }
\end{aligned}
\] & FREEMPTING TRANS. NJ. \\
\hline LCR 1 & 1.000 & 579 & 2503.338 & 431 & \\
\hline LCHI & . 076 & 599 & 153.505 & & \\
\hline nag & . 986 & 837 & 1857.466 & 116 & \\
\hline UAH & . 359 & 138 & 3990.925 & & \\
\hline UAL & . 044 & 26 & 2342.269 & & \\
\hline UAC & . 967 & 133 & 8725.304 & 91 & \\
\hline UBH & . 382 & 115 & 3995.773 & & \\
\hline UBL & . 061 & 37 & 1998.053 & & \\
\hline UBC & . 970 & 151 & 1711.085 & 31 & \\
\hline UCH & . 346 & 105 & 3959.856 & & \\
\hline UCL & . 054 & 33 & 1971.272 & 226 & \\
\hline UCO & . 952 & 137 & 8346.195 & 444 & \\
\hline UDH & . 288 & 97 & 3984.287 & & \\
\hline UDL & . 088 & 53 & 1996.811 & & \\
\hline LDO & . 971 & 139 & 8389.558 & 381 & \\
\hline UEH & .4!5 & 125 & 3985.575 & 237 & \\
\hline UEL & . 061 & 37 & 2308.540 & & \\
\hline UEO & . 963 & 158 & 7318.472 & 179 & \\
\hline UFH & . 339 & 102 & 3998.813 & & \\
\hline UFL & . 071 & 43 & 1983.906 & & \\
\hline Lifo & . 937 & 144 & 7810.539 & 136 & \\
\hline UGH & . 391 & 118 & 3982.872 & & \\
\hline UGL & . 086 & 51 & 2334.293 & & \\
\hline UGO & . 948 & 169 & 6734.558 & 297 & \\
\hline UHH & . 345 & 103 & 4023.630 & & \\
\hline \(\mathrm{CHL}_{\text {LH }}\) & . 102 & 53 & 1956.000 & & \\
\hline UHO & . 921 & 163 & 6787.605 & 145 & \\
\hline MBQ & . 026 & 66 & 485.621. & & \\
\hline UiH & . 171 & 41 & 5023.386 & & \\
\hline UIL & . 043 & 21 & 2499.666 & & \\
\hline Uic & . 019 & 62 & 368.838 & & \\
\hline LJH & . 167 & 40 & 5014.324 & & \\
\hline USL & . 046 & 23 & 2412.912 & & \\
\hline UJC & . 027 & 64 & 508.187 & & \\
\hline LKH & . 143 & 35 & 4931.425 & & \\
\hline UKL & . 040 & 19 & 2558.578 & & \\
\hline UKO & . 013 & 54 & 309.277 & & \\
\hline LLH & . 197 & 48 & 4944.250 & & \\
\hline ULL & . 050 & 24 & 2548.416 & & \\
\hline ULLC & . 018 & 72 & 307.694 & & \\
\hline UMH & . 195 & 47 & 4988.273 & & \\
\hline UML & . 059 & 29 & 2474.275 & & \\
\hline LME & . 019 & 76 & 300.355 & & \\
\hline UNH & -188 & 45 & 5338.843 & & \\
\hline UNL & . 054 & 27 & 2413.444 & & \\
\hline UNC & . 019 & 72 & 331.930 & & \\
\hline UaH & . 213 & 52 & 4516.730 & & \\
\hline UCL & . 050 & 23 & 2609.695 & & \\
\hline L00 & . 020 & 75 & 328.773 & & \\
\hline UPH & . 314 & 378 & 997.751 & & \\
\hline UPL & . 635 & 380 & 2006.581 & & \\
\hline UPO & . 102 & 759 & 162.379 & & \\
\hline MCO & . 023 & 85 & 334.529 & & \\
\hline Nov & . 977 & 3212 & 385.308 & 459 & \\
\hline cian & . 064 & 38 & 2325.447 & & \\
\hline UQL & . 071 & 34 & 2529.029 & & \\
\hline uod & . 958 & 75 & 16437.511 & 514 & \\
\hline URH & . 076 & 46 & 1986.021 & & \\
\hline URL & . 072 & 36 & 2414.222 & & \\
\hline URC & . 964 & do & 14467.074 & 486 & \\
\hline USH & . 045 & 27 & 2044.407 & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline storage & CAPACITY & av ERAGE CONTENTS & average UTILIZATION & Entries & \begin{tabular}{l}
average \\
TIME/TRAN
\end{tabular} & CURRENT CONTENTS & maximum CONTENTS \\
\hline IPS & 380 & 63.957 & . 168 & 1722 & 44569.457 & 63 & 131 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline queve & Maximum CONTENTS & AVERAGE contents & TUTAL ENTRIES & \[
\begin{gathered}
\text { LERD } \\
\text { ENTRIES }
\end{gathered}
\] & \begin{tabular}{l}
PERCENT \\
ZEROS
\end{tabular} & \begin{tabular}{l}
AVEzage \\
TIME/TRANS
\end{tabular} & \begin{tabular}{l}
saverage \\
TIME/TRANS
\end{tabular} & table NUMBER & GURRENT COVTENTS \\
\hline LCR1 & 49 & 40.447 & 635 & & . 0 & 76435.312 & 75435.312 & & 37 \\
\hline MAW & 53 & 8.797 & 649 & & .0 & 16266.601 & 16268.601 & & 13 \\
\hline UAQ & 9 & 5.849 & 139 & & . 0 & 50496.644 & 50496.644 & & 7 \\
\hline uab & 3 & 2.000 & 28 & & . 0 & 85753.812 & 85753.812 & & 2 \\
\hline UB4 & 8 & b.454 & 155 & & . 0 & 42227.972 & 42227.972 & & 5 \\
\hline U3B & 3 & 2.004 & 39 & & . 0 & 61666.714 & 61666.714 & & 2 \\
\hline UCQ & 8 & 5.195 & 143 & & . 0 & 43598.031 & 43598.031 & & 7 \\
\hline UCB & 3 & 2.004 & 35 & & . 0 & 68726.250 & 68726.250 & & 3 \\
\hline UD \(\downarrow\) & 10 & 6.370 & 143 & & . 0 & 53460.320 & 53460.320 & & 5 \\
\hline UDB & 3 & 2.006 & 55 & & . 0 & 43781.835 & 43781.835 & & 2 \\
\hline UE & 9 & 6.367 & 165 & & . 0 & 46312.277 & 46312.277 & & 8 \\
\hline UEB & 3 & 2.000 & 39 & & . 0 & 61543.921 & 61543.921 & & 2 \\
\hline UFQ & 7 & 5.180 & 149 & & . 0 & 41724.132 & 41724.132 & & 6 \\
\hline UFB & 3 & 2.002 & 45 & & . 0 & 53407.308 & 53407.308 & & 2 \\
\hline UGQ & 10 & 6.123 & 174 & & . 0 & 42228.992 & 42228.992 & & 6 \\
\hline LG8 & 4 & 2.006 & 53 & & . 0 & 45424.808 & 45424.808 & & 2 \\
\hline UH\% & 8 & 5.045 & 169 & & . 0 & 35829.000 & 35829.000 & & 7 \\
\hline UH8 & 4 & 2.016 & 64 & & . 0 & 37813.328 & 37813.328 & & 2 \\
\hline MBO & 2 & . 327 & 66 & & . 0 & 503.802 & 503.802 & & \\
\hline ula & 5 & 2.251 & 64 & & . 0 & 42219.218 & 42215.218 & & 2 \\
\hline UI 8 & 3 & 2.003 & 23 & & . 0 & 104515.250 & 104515.250 & & 2 \\
\hline UJO & 5 & 2.269 & 66 & & . 0 & 41261.589 & 41261.589 & & 2 \\
\hline UJ & 4 & 2.007 & 25 & & . 0 & 96338.187 & 96338.187 & & 2 \\
\hline UKQ & 5 & 2.211 & 56 & & . 0 & 47394.945 & 47394.945 & & 2 \\
\hline UKB & 3 & 2.000 & 21 & & . 0 & 114297.562 & 114297.562 & & 2 \\
\hline ULQ & 5 & 2.300 & 74 & , & . 0 & 37302.160 & 37302.160 & & 2 \\
\hline ULB & 3 & 2.003 & 26 & & . 0 & 92469.562 & 92469.562 & & 2 \\
\hline UMO & 5 & 2.296 & 78 & & . 0 & 35325.035 & 35325.035 & & 2 \\
\hline UMB & 3 & 2.001 & 31 & & . 0 & 77471.437 & 77471.437 & & 2 \\
\hline UNQ & 5 & 2.283 & 74 & & . 0 & 37033.984 & 37033.984 & & 2 \\
\hline UNE & 4 & 2.009 & 28 & & . 0 & 86132.750 & 86132.750 & & 2 \\
\hline UOQ & 5 & 2.320 & 77 & & . 0 & 36170.347 & 36170.347 & & 2 \\
\hline บов & 3 & 2.000 & 25 & & . 0 & 96006.312 & 96006.312 & & 2 \\
\hline UPG & 37 & 8.063 & 761 & & . 0 & 12715.593 & 12715.593 & & 2 \\
\hline UPB & 32 & 6.483 & 381 & & . 0 & 20419.191 & 20419.191 & & 2 \\
\hline MCO & 2 & . 024 & 85 & & . 0 & 351.646 & 351.646 & & \\
\hline NOL & 72 & 52.088 & 3)70 & & . 0 & 19115.007 & 19115.007 & & 59 \\
\hline U2Q & , & 4.366 & 74 & & . 0 & 789:7.812 & 78917.812 & & 5 \\
\hline UQB & 3 & 2.002 & 36 & & . 0 & 66765.375 & 66765.375 & & 2 \\
\hline URQ & \(\bigcirc\) & 4.890 & 34 & & . 0 & 69868.750 & 69868.750 & & 5 \\
\hline UR \({ }^{\text {a }}\) & \(?\) & 2.003 & 37 & & . 0 & 64991.187 & 64991.187 & & 2 \\
\hline USA & 6 & 3.948 & 77 & & . 0 & 61528.441 & 61528.441 & & 4 \\
\hline LSo & 3 & 2.008 & 49 & & .0 & 47170.617 & 49176.917 & & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TAELE EATRIES & \begin{tabular}{l}
RECI \\
IN TABLE \\
158
\end{tabular} & MEAN & \[
\begin{aligned}
& \text { ARGUMENT } \\
& 12.531
\end{aligned}
\] \\
\hline & UPPER & Ous efved & PER CENT \\
\hline & LIMIT & fr Fguency & Of TOTAL \\
\hline & 0 & \(\checkmark\) & . 00 \\
\hline & 1 & 0 & . 00 \\
\hline & 2 & 0 & . 00 \\
\hline & 3 & 0 & . 00 \\
\hline & 4 & 0 & . 00 \\
\hline & 5 & 0 & . 00 \\
\hline & 0 & 0 & . 00 \\
\hline & 7 & 0 & . 00 \\
\hline & 8 & \(\checkmark\) & . 00 \\
\hline & 9 & 15 & 9.49 \\
\hline & 10 & 16 & 10.12 \\
\hline & 11 & 15 & 10.12 \\
\hline & 12 & 24 & 15.18 \\
\hline & 12 & 28 & 17.72 \\
\hline & 14 & 28 & 17.72 \\
\hline & 15 & 31 & 19.62 \\
\hline remainin & vg fresuf & S Are all & zero \\
\hline
\end{tabular}
STANEARO DEVIA
GUMULATIVE
PERCENTAGE
.0
.0
.3
.0
.0
.0
.0
.0
.0
9.4
19.6
29.7
44.9
62.6
80.3
100.0

ITIUN SUN of arguments 1980.000

NON-WEIVHTEO
cumulative - EMAINDER
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.
100.0
100.0
100.0
100.0
90.5

MULTIP
MULTIPLE
OF MEAN
MULTIPLEAN
-.000
-.000
.079
.159
.019
.159
.239
.159
.239
.319
.319
.398
.398
.478
.558
.478
.558
.638
.638
.718
.718
.797
.797
.877
.877
.957
1.037
1.037
1.117
1.196
deviation FROM MEAN
\(-6.481\)
-6.481
-5.963
-5.446
-5.963
-5.446
-5.446
-4.929
-4.412
-3.895
-3.895
-3.377
-3.377
-2.860
-2.860
-2.343
-2.343
-1.826
-1.826
-1.309
-1.309
-.792
-.274
-.2742
.242
.272
.759
.770
1.275

TAELE QEC2
ENTRIES IA


STAVOARD OEVIATIUN
ATIUN
3.125
cumulative CUMULATIVE PERCENTAGE
11.0
13.7 11.0
23.7 34.4 45.7 56.7 68.0
79.6 90.9 92.3 92.3
94.3 94.3
95.4 95.4
96.3 96.8 96.8
98.3 100.0

REMAIND 100.0 88.5
8.5 88.5
76.2 65.5 54.2 43.2 31.9
20.3 20.3
9.0 9.0
7.6 7.6
5.6
4.5 5.6
4.5
3.6 4.5
3.6
3.1 3.6
3.1
1.6

SUF JF ARGUMENTS 1826.00

Uul TIPLE JF YEAV \(-.000\) - 193 .387
.387 .387
.581
.775 .781
.775
.969 .775
1.969
1.163 1.163
1.357 1.357 1.550
1.744 1.744 1.938
2.132 2.132
2.326 2.326
2.520 2.520
2.714 .907

NON-WETGHTEO
DEVIATION
rom Mean
\(-1.650\)
-1.650
-1.330
- 1.010
\(-.690\)
. .6370
-.3750
-.050
-.060
.269
.589
.589
1.909
1.299
1.229
1.549
1.549
1.869
2.189
2.500
2.829
3.149

\section*{APPENDIX B}
SOURCE LISTING AND COMPUTER OUTPUT FOR SECOND MODEL SIMULATION


Gratlocat xac, -


\(.50000,0.001 .59870,0.251 .69150,0.501 .77340,0.751 .84130,1.001\)
\(.50000,0.00 / .59870,0.25 / .69150,0.50 / .77340,0.75 / .84130,1.001\)
\(.89440,1.25 / .93320,1.50 / .95990,1.75 / .97730,2.00 / .98780,2.251\)
\(.99380,2.501 .99700,2.751 .99865,3.00 / .99942,3.251 .99977,3.50 / 1.0,5.00\)
DLCP FUNC TION
-70,1/1.0.2
INITIAL P3,0,1,5
INITIAL \(\quad \times 3,10\)
PS STORAGE 1200
1 VARIABLE \(500 / \times 3\)
GENERATE V1,., \(\times 1, .3\) QUEUE SEIZE GATE LS LOGIC R DEPART RELEASE
TERMINATE TERMINATE V1,.,.,1, GATE LR 19,TE LOGIC
NTR LOGIC
TEST
TEST G
TEST G P1,0,SKIP
TEST LE QSLCR1,35,8YP
LOGICS 20
KIP TFANSFER
BYPS LOGIC S
\(\begin{array}{ll}\text { SPLIT } & 1.4 \mathrm{HOL}\end{array}\)
ASSIGN 1,1
ASSIGN 3,0 TRANSFER :LSZ1
TEST E Pl,l,LHK
HOI ASSIGN BECI
ASSIGN \(\quad 2.0\) ASSIGN 3.0
HKI GATE LR 3,LTHI TRANSFER \(\quad\) ILSOL
TRANSFER iLSOL
QUEUE LCRI
LINK LCH,FIFO,LFAI
LFAI SEILE LCRI
\(\begin{array}{ll}\text { DEPART } & \text { LCR1 } \\ \text { TEST E } & \text { P2,0,LDC1 }\end{array}\)
test e
ENTER
vB 1
ADVANCE \(\quad 40, V S L V B 1\)
ASSIGN 2,1
ASSIGN 3,FNSOLCP
RELEASE LCRI
SII SEIZE LCHIFAL,1
\(\mathrm{LCHI}_{3}\)
LOGIC S
QFLEASE LCHI
\begin{tabular}{|c|c|c|c|c|}
\hline 46 & & transfee & , LSO] & 115 \\
\hline 47 & LTHI & Lagic e & 3 & 116 \\
\hline 48 & & TFRMINATE & & 117 \\
\hline & Lavi & variable & (360* 1000 / \(\times 3\) & 118 \\
\hline 49 & LSO1 & AdVANCE & \(V\) \$L AV 1 & 119 \\
\hline & UiSti & MACRO & UAA , UAB, UAC , UAD, QSUAD, V \(\$\) UAD, \(1,50,2 . F N\) SNORM* 10 & 120 \\
\hline 50 & UAD & TESTE & P1,1,UAA & 120 \\
\hline 51 & & TEST E & P3,1,UAB & 120 \\
\hline 52 & & TFST L & Q \$UAD,2, UAB & 120 \\
\hline 53 & & QUEUE & UAD & 120 \\
\hline 54 & & SPLIT & 1, UAA & 120 \\
\hline 55 & & TEST E & P2,1, UAC & 120 \\
\hline 56 & & SEILE & UAA & 120 \\
\hline & UAD & VARIABLE & FNS NORM*10 & 120 \\
\hline 57 & & AD VANCE & 60, v\$ UAD & 120 \\
\hline 58 & & leave & IPS & 120 \\
\hline 59 & & ASSIGN & 2,0 & 120 \\
\hline 60 & & OEPART & UAD & 120 \\
\hline 61 & & RELEASE & UAA & 120 \\
\hline & ULST? & MACRO & UAC, UAE, CHSUAC, VSUAE, O, UAF, O, O,O & 121 \\
\hline 62 & & TR ANSFER & , UAE & 121 \\
\hline 63 & & TEST GF & CHSUAC, O, UAC & 121 \\
\hline 64 & & 1 SSIGN & 3.0 & 121 \\
\hline 65 & & tuamsfer & , uaE & 121 \\
\hline 66 & UAC & QUEUE & \(\cup A C\) & 121 \\
\hline 67 & & DEPART & UAC & 121 \\
\hline 68 & & TR ANSFER & - uaE & 121 \\
\hline 69 & & LINK & UAC, FIFO, UAF & 121 \\
\hline 70 & U4F & TEST G & CHS UAC, 0 & 121 \\
\hline 71 & & -SEIzE & UAE & 121 \\
\hline & UAE & variable & 0 & 121 \\
\hline 72 & & ad vance & \(0, \mathrm{v}\) ¢ UAE & 121 \\
\hline 73 & & ENTER & IPS & 121 \\
\hline 74 & & ASSIGN & \(2 \cdot 1\) & 121 \\
\hline 75 & & RELEASE & UAS & 121 \\
\hline 76 & & UNL INK & UAC, UAF, 1 & 121 \\
\hline & ULST3 & MACFO & UAE, UAG,UAB,UAA, UAH,V \$JAH, JAD, O, (120*1000)/X3 & 122 \\
\hline 77 & & ASSIGN & 3.0 & 122 \\
\hline 78 & UAE & SEILE & \(\cup A B\) & 122 \\
\hline 79 & & LOGIC S & UAG & 122 \\
\hline 80 & & GATE LP. & UAS & 122 \\
\hline 81 & & release & UAS & 122 \\
\hline 82. & & transfer & , UAB & 122 \\
\hline 83 & UAA & ASSIGN & 1, ) & 12? \\
\hline 84 & & ASSIGN & 2,0 & 122 \\
\hline 85 & & ASSIGN & 30 & 122 \\
\hline 86 & & gete Le & UAG, UA, & 122 \\
\hline 87 & & TKANSFER & , UAB & 122 \\
\hline 88 & UAH & LOGIC P & UAG & \(12 ?\) \\
\hline 89 & & terminate & & 122 \\
\hline & UAH & variable & 1120*10001/×3 & 122 \\
\hline 90 & UAB & AOVANC F- & VoUAH & 122 \\
\hline & ULSTI & MACRO &  & 123 \\
\hline 91 & UHO & TFST E & P1,1, UEA & 123 \\
\hline 92 & & T-ST E & P3,2, UB \({ }^{\text {d }}\) & 123 \\
\hline 93 & & TFST L & 2 SUBD, 2, UR & 123 \\
\hline 94 & & Queue & Ueo & 123 \\
\hline
\end{tabular}


\footnotetext{
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125

127
128
129
129
130
130
131
132
131
132
133
133
134
}

125
125
125
125

125
125
126
125
126
127

\begin{tabular}{|c|c|c|c|c|c|}
\hline facility & average UTILIZATION & NMBER ENTRIES & AVERAGE TIME/TRAN & \[
\begin{aligned}
& \text { SEIZIVG } \\
& \text { TRANS. NO. }
\end{aligned}
\] & \begin{tabular}{l}
PREEMPTING \\
TRANS. NO.
\end{tabular} \\
\hline car & . 000 & 1 & 50.000 & & \\
\hline LCR1 & . 733 & 9553 & 36.860 & 1138 & \\
\hline LCHI & . 862 & 9553 & 43.315 & 1132 & \\
\hline UAA & . 778 & 6239 & 59.907 & 393 & \\
\hline LAB & . 781 & 6239 & 60.146 & 415 & \\
\hline UBA & . 750 & 2574 & 139.898 & 1131 & \\
\hline UBB & . 714 & 2574 & 133.166 & 158 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Stcrage & CAPACITY & \[
\begin{aligned}
& \text { AVERAGE } \\
& \text { CONTENTS }
\end{aligned}
\] & average UTILIZATION & Entries & AVERAGE TIME/TRAN & Current CONTENTS & maximum EONTENTS \\
\hline IPS & 1200 & 822.048 & . 685 & 9629 & 40978.644 & 818 & 846 \\
\hline
\end{tabular}


\title{
Robert Lee Gourley \\ Candidate for the Degree of
}

Doctor of Philosophy

\section*{Thesis: A MODULAR GENERAL PURPOSE APPROACH TO THE SIMULATION OF CONSTANT SPEED DISCRETELY SPACED RECIRCULATING CONVEYOR SYSTEMS}

Major Field: Industrial Engineering
Biographical:
Personal Data: Born in Jonesboro, Arkansas, October 17, 1946, the son of MSG (Ret.) and Mrs. Robert L. Gourley.

Education: Graduated from Lawton Senior High School, Lawton, Oklahoma, in May, 1964; received Bachelor of Science degree in Electrical Engineering from Oklahoma State University in 1969; received Master of Science degree in Industrial Engineering and Management from Oklahoma State University in 1972; completed requirements for the Doctor of Philosophy degree at Oklahoma State University in December, 1973.

Professional Experience: Project Engineer, United States Army Security Agency, 1969-1970; graduate teaching assistant, Oklahoma State University, School of Industrial Engineering and Management, 1970-1973.```

