THE EFFECT OF VOCABULARY TRAINING UPON THE DEVELOPMENT OF VOCABULARY, COMPREHENSION,

TOTAL READING, AND RATE OF READING

OF COLLEGE STUDENTS

By

MINNIE M. GNEWUCH

Bachelor of Arts Harris Teachers College St. Louis, Missouri 1957

Master of Education University of Oklahoma Norman, Oklahoma 1967

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF EDUCATION May, 1973

۰.

OKLAHOMA STATE UNIVERSITY LIBRARY

FEB 15 1974

THE EFFECT OF VOCABULARY TRAINING UPON THE DEVELOPMENT OF VOCABULARY, COMPREHENSION, TOTAL READING, AND RATE OF READING OF COLLEGE STUDENTS

Thesis Approved:

Adviser hesis Dean of the Graduate College

PREFACE

The basic objective of this study was to examine the possibility of helping students at the college level to improve their vocabularies. In working with students in the Reading Center and remedial classes, it was noted that vocabulary was an area where there appeared to be little growth, particularly with older students.

Extensive search of the literature revealed many successful vocabulary studies with younger students but few at the college level. Some basic ideas drawn from these studies led to the development of the method used in this program.

Results of this study suggest the program was successful, particularly with students enrolled in a reading improvement course. Apparently, students in these classes considered vocabulary an important goal in increasing their reading ability. Results also indicate teacher training and experience have a tremendous influence upon student achievement.

The author wishes to express appreciation for the encouragement and assistance of Dr. Bernard Belden, Chairman, and Drs. Darrell Ray, Julia McHale, John Hampton, and Russell Dobson, doctoral committee members. Without their generous time, suggestions, and constructive criticism this study would not have been possible.

The author also wishes to express appreciation to the graduate assistants who willingly participated in teaching the Reading

iii

Improvement and Study Skills classes, testing the students, and supervising their work.

Appreciation is also expressed to Dr. David Weeks, and my husband, Donald Gnewuch, for assistance in the statistical analysis of the data.

A very special thanks is given to Mickey Jones for typing the first draft and to Velda Davis and Marilynn Bond for their excellent typing and general assistance in the preparation of the final copies of this dissertation.

Finally, I would like to express my sincerest gratitude to my husband, Donald, for his patience, devotion, and love throughout this study, and to our lovely children, Kathy, 13, Becky, 11, Debbie, 10, Carl, 8, and Sarah, 4, the unsung heroes for their sacrifice, patience, understanding, and love in tolerating two parents working on doctoral degrees simultaneously.

TABLE OF CONTENTS

Chapter	Pa	ıge
I. 1	THE PROBLEM	1
	Introduction	1 2 3 4 5 6 9
II. I	REVIEW OF THE LITERATURE	13
	Introduction	13 13 17 19 23
III. I	DESIGN, METHODOLOGY, AND PROCEDURES	24
	Introduction	24 25 26 29 30 31 32 33
IV. S	STATISTICAL ANALYSIS	3 5
	Introduction	35 36 43 77
v. S	SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	80
	Review of the Study	80

Chapter

Page

	($, $ $, $ $,$	
V . I	Lontinued)	
••	(OOII C THRCA/	

	Conclusions	L
SELECTED	BIBLIOGRAPHY	}
APPENDIX	A - INSTRUCTIONS	L
APPENDIX	B - SAMPLE WORK SHEETS AS COMPLETED BY STUDENTS 104	F
APPENDIX	C - CODED COMPUTER PRINT-OUT OF RAW DATA	3
APPENDIX	D - COMPUTER PROGRAMS	3

LIST OF TABLES

Table		Page
I.	Name and Per Cent of Communality of Variables Used in Factor Analysis	. 36
II.	Correlation Matrix	• 37
111.	Eigenroots and Per Cent of Variance Before and After Varimax Rotation	. 38
IV.	Factor Loadings After Varimax Rotation	. 39
۷.	Correlation and Per Cent of Common Variance Between Significant Variables of Factor One	. 42
VI.	Analysis of Covariance, Vocabulary: Groups	45
VII.	Weighted Means, t-Ratio, and Probability Vocabulary: Groups	• 46
VIII.	Analysis of Covariance, Comprehension: Groups	. 52
IX.	Analysis of Covariance, Total Reading: Groups	. 54
х.	Weighted Means, t-Ratio, and Probability, Total Reading: Groups	. 55
XI.	Analysis of Covariance Rate of Reading: Groups	. 58
XII.	Weighted Means, t-Ratio, and Probability, Rate of Reading: Groups	. 60
XIII.	Analysis of Covariance, Vocabulary: Teacher	. 63
XIV.	Weighted Means, t-Ratio, and Probability, Vocabulary: Teacher	. 65
XV.	Analysis of Covariance, Comprehension: Teacher	. 67
XVI.	Analysis of Covariance, Total Reading: Teacher	. 70
XVII.	Weighted Means, t-Ratio, and Probability, Total Reading: Teacher	. 72

Table		Page
XVIII.	Analysis of Covariance, Rate of Reading: Teacher	74
XIX.	Weighted Means, t-Ratio, and Probability, Rate of Reading: Teacher	76
XX.	Summary of Statistical Tests of Hypotheses	79
XXI.	Summary of Means and Exact Probability of Rejected Group Hypotheses	8 6
XXII.	Summary of Means and Exact Probability of Rejected Teacher Hypotheses	89

CHAPTER I

THE PROBLEM

Introduction

This is a study of the effect of a vocabulary improvement program based on Dale's (1967) principle of word acquisition and various principles of learning.

Review of the literature indicates there is a definite relationship between vocabulary, intelligence scores, concept level, comprehension, language ability, and reading ability (Hunt, 1953; Casper, 1953; McDonald and Pauk, 1956; O'Donnell, 1962; Williams, 1963). At the elementary and secondary school level, studies indicate students vocabulary can be increased through direct instruction on specific words (Otterman, 1955; Reid, 1958; Eichholz and Barbe, 1961; Gray and Holmes, 1938).

However, there are few experimental studies on vocabulary improvement to indicate this is true at the college level. The question is, can colleges help students to improve their vocabulary? And, if so, does this also improve their reading ability? Thus, there is a need for additional testing of vocabulary improvement programs at the college level. It is hoped this present study will help to shed some light on the problem.

Need for the Study

Vocabulary studies indicate a definite relationship between vocabulary, intelligence scores, concept level, comprehension, language ability, and reading ability, all of which are highly correlated with success and achievement in school.

There are many experimental studies and research on vocabulary improvement at the elementary level. These studies indicate students can increase their vocabulary with direct and deliberate instruction. However, at the college level, there are too few experimental studies on vocabulary to say how successful a program at this level can be.

Previous studies, mostly at the elementary level suggest several techniques which were successful in helping students increase their vocabularies. These techniques include (1) wide experiences with objects and ideas, (2) spoken and written symbols for experiences, (3) intensive training on specific words, (4) the abundant use of audio and visual materials, and (5) the use of words in context rather than in isolation. How true these findings are at the college level is not known.

The few studies at secondary and college levels work with vocabulary lists, word parts, and grammar. These have been disappointing as only the more able students appear to gain in these programs. College students were also found to reject prepared lists, even when these were written into context. Students found word lists unsuccessful as the words were difficult and the students failed to remember the definitions later.

The methods in these studies fail to account for the individuality of students, their backgrounds of experiences, their interests, or their present reading ability. Programs where students work on an individual basis are rare. However, because of the individual nature of vocabulary, methods which present all students with the same words are defeating their real purpose. It was, therefore, desirable to find a method where each student determined which words to learn, using his own interest and background as a guide.

Theoretical Background

The method used in this study is based on Edgar Dale's principle of word acquisition, which follows learning theory in helping students as individuals, rather than part of a group. Dale (1967) describes the process of learning words as a continuum. On one end are words as an individual first becomes aware of them; that is, cognizance of the word through hearing or seeing it. On the other end is word usage; that is, he can speak and/or write them when necessary. Between the ends is a "twilight zone", where the individual has some idea or feeling for the meaning. How clear these ideas are depend upon how far along the continuum they are. Words are constantly moving along this continuum, new words are added, and some are moved into the individual's usable vocabulary. Dale suggests the "twilight zone" as the place to work to improve vocabulary, for it is unique to each person and provides words he knows something about and, therefore, can recall later. By working in this area, one can speed up the acquisition of new words. This follows the learning principle of proceeding from the known to the unknown.

Other learning principles used in developing the method used in this study include student involvement, quick reinforcement, or

correction of response and learning in small steps. Student involvement was accomplished through each students' active selection of the words to study, independent of others and guided by his own interest, background, and reading ability. Learning in small steps was accomplished with a goal of only five words each session, especially since the words were not totally new. Reinforcement or correction of responses was accomplished by students checking their responses with the dictionary.

In addition to the principles of learning followed here, the context of words was considered. As words carry meaning only in relation to other words, it was decided students should select words already in context. Thus, they were forced to give the correct meaning of the word in a particular context.

Finally, this program attempted to establish habits and attitudes in dealing with words which would continue after college. Because students were quite adept at reading textbooks for concepts and ignoring unknown words, and because textbooks were generally read only on assignment, seldom reread and rarely touched after the courses were finished, the use of these books for vocabulary improvement was rejected. Instead, it was decided to use materials students read on their own time. Magazines and newspapers were chosen for the materials as it was observed students were always reading these before class and at odd times all over the campus.

Problem Statement

The present study was an investigation of the effect of a vocabulary program upon vocabulary, comprehension, reading ability, and rate of reading of college students. The program was designed to increase

students' awareness of words and word meanings in context by using basic learning principles and materials frequently used by college students.

Assumptions and Limitations

It is assumed the <u>Nelson-Denny Reading Test</u> used in this study gives an adequate measure for college students of the various reading skills for which it is intended.

It is also assumed the students in the Reading Improvement and Study Skills classes in this study are typical of Oklahoma State University students who have enrolled before and will enroll in following semesters for these courses. This sample is, therefore, considered representative of the population of Reading Improvement and Study Skills classes at Oklahoma State University. However, the results of this study must be considered in the light of certain limitations and should not be considered representative of all groups or schools.

The time used in this study limits the results. Five words, twice a week for twenty minutes for twelve weeks is equivalent to 120 words in eight hours of instruction. Absenteeism and failure of some students to finish the work in the required time reduces considerably the effect of the method.

There are also limitations due to the problem of leakage when using live data. On several occasions students from control groups asked when these words were due. Getting information from friends in other classes they decided they missed an assignment when absent.

The problem of being unable to randomly assign individual students to groups reduces the external validity of the experiment. Groups, therefore, cannot be assumed to be homogeneous. However, much of this has been overcome by the use of analysis of covariance (see pp. 31-32).

The attrition rate for Reading Improvement classes was 38%, while it was only 9% for the Study Skills classes. This reduced the size of the 1220 control group considerably, which has had some affect on the results.

Therefore, the results of this study are only to be inferred or pertinent to future students in Reading Improvement and Study Skills classes at Oklahoma State University or similar schools.

Definitions of Terms

The following terms and symbols used in this paper are here defined and will retain the meaning set forth at this point.

1220 is a symbol representing Education 1220, the Reading Improvement classes at Oklahoma State University. This was a non-credit course which met three, fifty minute periods weekly. Some lectures and discussions of techniques were given, but most of the semester students worked in small groups and/or individually on skills found deficient during the initial testing periods.

1232 is a symbol representing Education 1232, a two-hour credit, Study Skills course at Oklahoma State University. This course also met three, fifty minute periods weekly. Students were instructed through lectures and discussions in the various techniques of study, test taking, and library usage. They were given opportunity to practice these techniques during laboratory sessions using textbooks from their other classes. In addition, students were informed of their deficient reading skills and shown ways to improve these skills.

Classification refers to the grade level or year of college credit

the student had obtained at the beginning of the semester.

Context refers to the sentence or part of a sentence necessary for understanding of a term used.

N-D is a symbol which designates the <u>Nelson-Denny Reading Test</u>. This is a test for high school and college students covering ninth to fourteenth grade level of reading ability. The four separate raw scores obtained from the test are vocabulary, comprehension, total reading, and rate. There are two alternate forms, each consists of 100 vocabulary items, and 36 comprehension items. All items are simple multiple choice. This is a timed test, allowing 10 minutes for the vocabulary portion and 20 minutes for the comprehension and rate portion. The first minute of the comprehension portion is used to determine rate.

Standardization of the N-D was made first on a stratified random sampling at the high school level of 8,000 cases at each grade level ninth through twelfth. This sampling was based on secondary school enrollment by region and community size within a region. This information was taken from the <u>Statistical Abstracts of the United States 1956</u>. Second, a sample of college and university level population was selected, based on Fall 1955 enrollment figures in five different kinds of institutions of higher education. Institutions were chosen by random selection within each category, and a per cent of cases from each taken. In grades 13 and 14, 4,000 cases were used. In grades 15 and 16, 3,500 cases were used. This is 500 less, due to the drop of junior colleges at this level.

A total of 152 schools in 38 states were used at the secondary level; and 33 junior colleges, universities, liberal arts colleges, teachers' colleges, and state teachers' colleges in 21 states and

District of Columbia were used at the higher level.

Form A and B were alternately distributed to students in the testing, which was under the supervision of local school administration. Complete directions for test administration were given to the examining schools.

Townsend (1968) questions any reliable use of the grade norms as the passages are of college level difficulty and urges care in interpretation of rate, as rate based on less than four minutes, and not on word count, is not accurate.

Orr (1968) criticizes the comprehension passages as difficult, involved, and essentially poor writing. However, as a whole, he still considers it a good test, stating the standardization was good, although small groups were used.

Reliabilities for vocabulary, rate, and total reading are high, ranging from .92 to .93. Comprehension has only a .81 realiability.

Pre-test scores are scores students earned on Form B of the <u>Nelson-Denny Reading Test</u>. This form was given at the beginning of the semester. In the statistical analysis, X represents the pre-test scores.

Post-test scores are scores students earned on Form A of the <u>Nelson-Denny Reading Test</u>. This form was administered at the completion of the study. In the statistical analysis, Y represents the post-test scores.

Operational definitions of vocabulary, comprehension, total reading, and rate are the comparable portions on the <u>Nelson-Denny Reading</u> <u>Test</u>.

Statistical Exploration and Hypotheses Testing

In this study, a factor analysis was first run on 13 variables. This procedure allowed for a better understanding regarding the relationships between the N-D test scores and the other variables. It was also used to identify factors underlying the variables (Kerlinger, 1965).

Analysis of covariance tests followed by t-tests were used to test the hypotheses in this study. The adjusted means from the N-D raw scores were used for the independent variable. The dependent variables used were (1) treatment groups, (2) control groups, (3) Reading Improvement classes, (4) Study Skills classes, (5) teacher training, and (6) teacher experience.

The following hypotheses were formulated for this research. The hypotheses are stated in null form.

<u>Hypothesis 1.</u> There is no significant difference in the adjusted means of vocabulary scores on the N-D between 1220 and 1232 groups.

<u>Hypothesis 2</u>. There is no significant differences in the adjusted means of vocabulary scores on the N-D between treatment and control groups.

<u>Hypothesis 3</u>. There is no significant difference in the adjusted means of vocabulary scores on the N-D between 1220 treatment and 1220 control groups.

<u>Hypothesis 4</u>. There is no significant difference in the adjusted means of vocabulary scores on the N-D between 1220 control and 1232 control groups.

Hypothesis 5. There is no significant difference in the adjusted

means of vocabulary scores on the N-D between 1220 treatment and 1232 treatment groups.

<u>Hypothesis 6</u>. There is no significant difference in the adjusted means of vocabulary scores on the N-D between 1232 treatment and 1232 control groups.

<u>Hypothesis 7</u>. There is no significant difference in the adjusted means of comprehension scores on the N-D between 1220 and 1232 groups.

<u>Hypothesis 8</u>. There is no significant difference in the adjusted means of comprehension scores on the N-D between treatment and control groups.

<u>Hypothesis 9</u>. There is no significant difference in the adjusted means of comprehension scores on the N-D between 1220 treatment and 1220 control groups.

<u>Hypothesis 10</u>. There is no significant difference in the adjusted means of comprehension scores on the N-D between 1220 control and 1232 control groups.

<u>Hypothesis 11</u>. There is no significant difference in the adjusted means of comprehension scores on the N-D between 1220 treatment and 1232 treatment groups.

<u>Hypothesis 12</u>. There is no significant difference in the adjusted means of comprehension scores on the N-D between 1232 treatment and 1232 control groups.

<u>Hypothesis 13</u>. There is no significant difference in the adjusted means of total reading scores on the N-D between 1220 and 1232 groups.

<u>Hypothesis 14</u>. There is no significant difference in the adjusted means of total reading scores on the N-D between treatment and control groups. <u>Hypothesis 15</u>. There is no significant difference in the adjusted means of total reading scores on the N-D between 1220 treatment and 1220 control groups.

<u>Hypothesis 16</u>. There is no significant difference in the adjusted means of total reading scores on the N-D between 1220 control and 1232 control groups.

<u>Hypothesis 17</u>. There is no significant difference in the adjusted means of total reading scores on the N-D between 1220 treatment and 1232 treatment groups.

<u>Hypothesis 18.</u> There is no significant difference in the adjusted means of total reading scores on the N-D between 1232 treatment and 1232 control groups.

<u>Hypothesis 19</u>. There is no significant difference in the adjusted means of rate scores on the N-D between 1220 and 1232 groups.

<u>Hypothesis 20</u>. There is no significant difference in the adjusted means of rate scores on the N-D between treatment and control groups.

<u>Hypothesis 21</u>. There is no significant difference in the adjusted means of rate scores on the N-D between 1220 treatment and 1220 control groups.

<u>Hypothesis 22</u>. There is no significant difference in the adjusted means of rate scores on the N-D between 1220 control and 1232 control groups.

<u>Hypothesis 23</u>. There is no significant difference in the adjusted means of rate scores on the N-D between 1220 treatment and 1232 treatment groups.

<u>Hypothesis 24</u>. There is no significant difference in the adjusted means of rate scores on the N-D between 1232 treatment and 1232 control groups.

<u>Hypothesis 25</u>. There is no significant difference in the adjusted means of vocabulary scores on the N-D due to amount of teacher training.

<u>Hypothesis 26</u>. There is no significant difference in the adjusted means of vocabulary scores on the N-D due to amount of teacher experience.

<u>Hypothesis 27</u>. There is no significant difference in the adjusted means of comprehension scores on the N-D due to amount of teacher training.

<u>Hypothesis 28</u>. There is no significant difference in the adjusted means of comprehension scores on the N-D due to amount of teacher experience.

<u>Hypothesis 29</u>. There is no significant difference in the adjusted means of total reading scores on the N-D due to amount of teacher training.

<u>Hypothesis 30</u>. There is no significant difference in the adjusted means of total reading scores on the N-D due to amount of teacher experience.

<u>Hypothesis 31</u>. There is no significant difference in the adjusted means of rate scores on the N-D due to amount of teacher training.

<u>Hypothesis 32</u>. There is no significant difference in the adjusted means of rate scores on the N-D due to amount of teacher experience.

CHAPTER II

REVIEW OF THE LITERATURE

Introduction

Literature contains numerous research studies on college reading improvement programs. Most of these are general in nature, concerning the results of these reading improvement programs, speed reading or adult literacy. Few of these studies deal directly with vocabulary improvement.

Even though sufficient research on vocabulary is lacking at this level, teachers and administrators of secondary schools and colleges list vocabulary as one of the vital aspects of remedial and corrective reading programs (Schleich, 1967). In looking at the high school and elementary levels, there have been numerous studies dealing directly with vocabulary and methods of improving students vocabulary.

Therefore, this review of literature will first focus on studies at the college level. Then, studies at the secondary and elementary levels will be discussed. The parallel findings from all the levels will be discussed in the summary.

Literature at the College Level

Blair (1941) made a study of vocabulary improvement, with extensive use of a dictionary and word lists. In this study, he used junior and

senior class college students in educational psychology and secondary education classes. The experimental group consisted of 101 subjects; the control group consisted of 136 subjects. The vocabulary portion of the <u>Nelson-Denny Reading Test</u> was used for measuring gains. The experimental group discussed the importance of improving vocabulary, and decided to use the dictionary to look up each new word they found during the semester. Each week, they turned in a list of new words and where they were found, giving the context and meaning. This information was recorded in a notebook, reviewed periodically, and turned in to the instructor at the end of the semester. Students turned in an average of 119.3 words for the semester. Results of the post-tests show the experimental group gained an average of 3.6 points, while the controls gained only 1.0 points. However, when groups were matched for initial scores, there was only .8 points difference. Class examination revealed students doing more words gained more.

Westfall (1951) describes a vocabulary improvement course at Colorado A and M, and gives results for six quarters. A vocabulary test, used in the courses, was based on the Webster's Collegiate Dictionary. This was a 100 word, multiple-choice test, with five possible synonyms. Students averaged 50.49% of words at the beginning of the course.

In the program, students were required to keep a vocabulary notebook, accumulating a minimum of 300 words during the semester. Final tests show a gain of 4.54% in vocabulary. In relation to the number of words the test covers, this would be an increase of 4,994 words in three months. Besides the tremendous increase in words, students also gained in their ability to deal with words. There were also gains in GPA

scores.

Hunt (1953) studied the relationship of vocabulary, structural analysis, and reading at the college level. Using 168 students from the University of California, he ran correlations on various scores from reading tests given to the group. Results indicate all were moderately interrelated. Structural analysis related somewhat lower to vocabulary and reading than vocabulary and reading correlated with each other. Also, the more intelligent subjects were better with structural analysis of words.

Young (1953) used words from the <u>Cooperative Vocabulary Test</u> in a pre- and post-test experiment to compare the vocabulary growth of college students, using three different methods. Each of the groups had 150 students. Group one read the selections orally. Group two listened to the stories on tape. Group three read the stories silently. Using chi-square and the significance of mean differences, he found all subjects had a significant gain in vocabulary scores after the presentation of words. The group listening to the tapes made the lowest gain scores. The oral reading group showed the largest gain, but this was not significantly greater than the silent reading group.

Casper (1953) reports on a reading improvement program at Purdue. Pre- and post-test of classes show students had significant gains on all tests on speed and comprehension. He states vocabulary seems to be an important factor in comprehension; however, when does vocabulary end and comprehension start? Comprehension involves the understanding of language, but words alone do not give exact meaning.

McDonald and Pauk (1956) describe the results of a reading improvement program at the college level. The experimental group consisted of 116 students taking college reading improvement. The control group was 142 students who wanted the course, but could not enroll due to limited facilities. These students agreed to come for the testing. Vocabulary scores from the <u>Cooperative Reading Test</u> were used for pre- and posttests. The program used machines and speed devices. Achievement of the two groups were compared using analysis of covariance. Results indicate a significant gain in speed of comprehension at the .01 level of confidence for the experimental group. This group also exceeded the control group on first semester GPA, and on cumulative GPA's after two and three semesters. In addition, a significantly smaller portion of experimental group dropped from school.

Brown (1959), in his book on communication, states word power is reading power. Words are important to understand textbooks. Working with college students in an earlier dictionary study, he developed a master list of 14 words. Each master word had a prefix, root, and suffix. Students learned these words, their parts, and various spellings of these, and their meanings. They were then expected to apply this knowledge to other terms they met, in order to discover the meanings of the new words.

These vocabulary improvement studies and programs at the college level indicate a high correlation between vocabulary, structural analysis, comprehension, and reading ability (Hunt, 1953; Casper, 1953; McDonald and Pauk, 1956; Brown, 1959).

A few studies indicate college students can increase their vocabulary through an intensive program working on specific words (Blair, 1941; Westfall, 1951; Young, 1953; Brown, 1959).

Literature at the Secondary School Level

Dunkel (1944) studied the ability to use the precise meaning of words in grades 10, 12, and 14. This study used a vocabulary test in which words were written into paragraphs. Following the paragraphs, five sentences were given. Subjects were to mark the sentence with the same meaning as the word used in the paragraph. Results indicate the ability to determine the precise meaning was related to the ability to read with comprehension. Education and maturity led to the development of this ability.

Anderson (1949) made a factor analysis study of reading ability. He used 500 randomly selected fifth and sixth year secondary school students. Results indicate one main factor, and that is reading comprehension ability. However, vocabulary contributed 57.6% of the total variance. Intelligence scores contributed 13.2%, and grammar and spelling contributed 29.2% of the total variance.

Hage and Stroud (1959) studied the relationship between verbal and nonverbal intelligence scores and reading proficiency with 800 ninth graders. Using scores from the <u>Lorge-Thorndike</u>, <u>Pressey Reading Rate</u> <u>and Comprehension</u>, and the <u>Iowa Tests of Basic Skills</u>, partial and multiple correlations were run on various parts. Subjects were divided into four groups by the reading test scores. Top and bottom groups were compared. Results indicate reading ability was highly correlated to intelligence scores. The verbal intelligence had the highest correlation to school achievement, which increased when math scores were removed. This study also questions the use of the <u>Lorge-Thorndike</u> <u>Intelligence Test</u> as a measure of a student's ability, as the verbal

portion requires reading ability, and this probably is being measured rather than intellectual ability.

Ramsey (1960), in a study of 138 eleventh grade students, attempted to find which variables were the best predictors of success in improving reading ability. The highest relationship was between intelligence scores and reading ability.

O'Donnell (1962) studied the relationship between awareness of grammatical structure and reading comprehension with 101 high school seniors. Using the structural linguistics approach to English grammar, the author compiled a list of basic structural relationships, and then constructed a test to measure this ability. He ran a correlation between scores on the structural test, <u>Cooperative Test of Reading</u> <u>Comprehension</u>, and the <u>Iowa Grammar Information Test</u>. Results show a correlation of .44 between level of comprehension and awareness of structure; .46 between level of comprehension and knowledge of grammar; .46 between vocabulary and structure scores; .90 between vocabulary and grammar; .76 between vocabulary and level of comprehension. In this study, vocabulary is indicated to be the most important factor in reading comprehension.

These studies on vocabulary improvement at the secondary school level indicate a high correlation between vocabulary, comprehension, intelligence scores, and structure of language (Dunkel, 1944; Anderson, 1949; Hage and Stroud, 1959; Ramsey, 1960; O'Donnell, 1962). This is precisely what was indicated by studies on vocabulary improvement at the college level.

Literature at the Elementary School Level

Otterman (1955) made a study with seventh grade students using word parts. In this study, 220 students were in control groups and 220 students were in experimental groups. Students were matched on sex, age, MA, average reading scores, and spelling. Thirty lessons, lasting ten minutes each day, were held for six weeks. In each lesson, one prefix or root word was taught. A total of 250 words were used as illustrations in the lessons. These words were not new to the students. Students were tested before and after the experiment. Results indicated only students with the highest intelligence scores showed a significant gain in interpretation of new words. All experimental students improved in spelling, particularly those with initial low scores, low MA's, and boys. There was no significance between groups on improvement of general vocabulary, reading comprehension, and speed.

Eichholz and Barbe (1961), using Dale's principle of word acquisition, developed a self-checking device designed to improve the general vocabulary of students. This study involved four self-contained classrooms of seventh graders for eight weeks. The device consisted of a series of 20 multiple-choice word tests, each with three forms. The correct answer was the same on each, but different distractors were given. The forms fit a self-checking board which students punched. The words were written into a story. Once each week, the experimental groups were given 30 minute, informal talks to stimulate and improve their vocabulary. Words on the test were not taught or used as examples. At the same period, students were given two practice forms of the test and the story. They were asked to do this as homework. The

third form was given the following week for evaluation. The control groups were given no talks or practice material, but were given three forms of the test each week. At the end of eight weeks, a final multiple-choice test of 60 words, used in the first three lessons, was given. Results showed the experimental group had a retention rate of 79.5% of the words. They had learned 5.6 words on the final test. The control group had learned only 1.0 words. The conclusion drawn was that the only difference between groups was the number of times words were seen in context. Informal interviews revealed this device had the greatest appeal for the average student.

Hillard (1924) attempted to find a single factor which might contribute to low comprehension scores. With 166 students at fifth grade level, he gave four different tests on comprehension, and correlated each part of the tests. Results indicated intelligence and vocabulary had the highest correlations with comprehension on all the tests.

Films were used by Reid (1958), in a study with fifth graders, to increase their knowledge of technical and general terms. The films were introduced by setting a purpose in looking for new ideas and words. Following the film, a discussion period was utilized to clarify how and where terms were used, and their meanings. The teacher took notes on the discussion. After several weeks, 25 words were written on the board, and the children were asked their meanings. Without comment, the teacher wrote down their suggestions. Later, a test was made using these same words. The children's suggestions were included in the multiple-choice answers. Results of the tests indicate children learned many new words and extended their levels of word meanings.

Gray and Holmes (1938), in their classic studies on the development of meaning vocabularies, stress the importance of experience, directly and indirectly, with objects and ideas, along with the spoken and written symbols for these experiences. These studies consisted of a series of experiments at the fourth grade level to discover methods of developing a meaningful vocabulary in reading. All experimental groups were given specific help to form clear, vivid associations between word meanings and their written symbols. Control groups had no guidance, except as individuals asked. Results show specific help, frequent use of definitions, illustrations, and discussions helped students gain uniformly in verbs, nouns, and adjectives. Control groups gained mostly in nouns and verbs. Help was particularly useful for pupils with limited vocabularies, achievements, or abilities. Pupils also developed greater accuracy in word recognition, fluency, and comprehension in silent reading.

Braun (1963) studied concept formation as related to reading ability in a random selection of 139 boys in grades 3, 5, and 7. All children in these classes who were reported as either over-achievers or under-achievers were used as a special control group. Subjects were individually tested on a concept test, developed by the author, and on the appropriate WISC subtests. Reading and achievement test scores for all subjects were also used in analysis of the profiles. The conceptformation test consisted of 20 concepts.

Results indicate there is a significant correlation between reading ability and concept formation, which increases with age. Also the overachievers had better concept formation.

Williams (1963) measured the comprehensive vocabulary of 216

children, ranging from 6 to 15 years of age. Vocabulary was measured through a dictionary sample to find the growth of vocabulary over a period of years. It was felt a vocabulary measure would give an index of expected standards for children. Results of the testing indicate a rapid development of word recognition between the reading ages of 7 and 8. There was a relatively slow rate of growth in word recognition at higher reading ages. Williams suggests the optimum level of word recognition may be set by the level of language understanding of the student.

Using 134 children in grades 3, 5, 7, and 8, plus 15 college graduates, Kruglov (1953) ran a study to determine if vocabulary can show the level of conceptual thinking. The author devised a ten-item test. Each item had five multiple-choice answers, all of which were correct. Subjects were to choose the best answer in five minutes. Results indicate subjects chose answers at their own conceptual level, rather than a higher, more abstract level. Younger subjects chose more descriptive answers; whereas, older ones chose more synonyms. He suggests vocabulary can be used to understand the conceptual level of children.

Vocabulary studies at the elementary level suggest vocabulary is highly related to concept formation, understanding of language, intelligence scores, and comprehension (Hillard, 1924; Kruglor, 1953; Braun, 1963; and Williams, 1963). These findings are the same as those for secondary and college level students.

These studies also indicate elementary students can increase their vocabulary by direct and indirect experiences with objects, ideas, and words. Students improved in vocabulary through the use of intensive training on specific words; exposure to the spoken and written symbols

for these words; using the words in context; and by using audio-visual materials (Otterman, 1955; Eichholz and Barbe, 1961; Reid, 1958; Gray and Holmes, 1938).

Otterman (1955) found students with high intelligence scores gained significantly in reading ability through the study of word parts, but for the average student there was no significant gain in reading ability.

Summary

There are numerous vocabulary studies, most of these are at the elementary level. There are few vocabulary studies at the college level. At this level, most studies have been on reading improvement programs. However, teachers and administrators of secondary schools and colleges have stated their concern about vocabulary improvement. Many of these people consider vocabulary as one of the vital aspects of remedial and corrective reading.

Studies at all levels indicate vocabulary, concepts, intelligence scores, comprehension and reading ability are highly correlated. These studies suggest that achieving a large vocabulary is essential to success as a reader. Perhaps as factorial studies suggest, vocabulary, intelligence scores, reading ability, and concept formation are part of one common factor .. that of verbal language (Thurstone, 1946; Anderson, 1949).

CHAPTER III

DESIGN, METHODOLOGY, AND PROCEDURES

Introduction

This study was made to investigate the effectiveness of a vocabulary improvement program with college students. The subjects were 407 students who completed Reading Improvement and Study Skills classes in the fall 1971 semester at Oklahoma State University.

A method was developed to increase students participation and interest in building their vocabulary. This method was an individualized approach based on principles of learning and word acquisition. Materials were chosen on the basis of interest and accessibility to the students.

This study used a pre-test, post-test, control group design. The <u>Nelson-Denny Reading Test</u> was used for evaluation of the program. Statistical analysis of the data included a factor analysis and analysis of covariance.

Sample

The population for this study includes all students who enroll in Reading Improvement (1220) and Study Skills Class (1232) at Oklahoma State University. All students in these classes who completed the fall 1971 semester comprised the sample population. This included 179 students from Reading Improvement classes and 236 students from Study

പ.

Skills classes. This gave a total sample population of 415. From this total, four students were dropped because they were in both treatment and control groups, due to the fact they were enrolled in both classes. Therefore, the study actually involves 175 students from 1220 classes and 232 students from 1232 classes, giving a total sample population of 407 students. Of these, 318 were in treatment groups, and 89 were in control groups.

Students were assigned to control and experimental classes by groups, rather than individuals. Extraneous factors such as history, maturation, and election, cannot be assumed the same for all groups. The groups also varied considerably in size. Therefore, analysis of covariance was used. This method adjusts initial scores to equalize groups, and then compares the adjusted means of the groups.

Classes were predominately freshman and sophomore students with a sprinkling of upper classmen and graduate students. Students were drawn from all colleges at the university. These subjects were chosen due to their accessibility to the experimenter. (See Appendix C, columns 16-18.)

Instructors consisted of nine graduate teaching assistants with a wide range of experience and background. Some were working on a master's degree with no previous experience at this level, and others were close to finishing a doctorate with several years working experience at this level.

Site and Duration of the Study

This study was conducted in the Reading Center at Oklahoma State University. The center was stocked with a wealth of materials at the college level; a good library of books on reading and study techniques,

specific skill development materials, paper backs, dictionaries (including unabridged), newspapers, magazines, films, pacing machines and devices, tapes, records and individual carrels. Students checked out books for home use, and were encouraged to work in the center any time it was open for additional practice. This was from 7:30 A.M. to 9:30 P.M. on most days.

This program ran for twelve weeks. Subjects worked twenty minutes, twice each week. This totals 480 minutes or 8 hours of work with approximately 120 words.

Data Gathering Procedures

Each instructor administered and scored the N-D tests for their own groups in class during the first week. Each subject's test results, sex, classification, teacher, age, college, and section were then coded onto master sheets to later facilitate the use of computer cards.

Following the testing period, all instructors were given a basic vocabulary improvement outline to guide their instruction in vocabulary improvement. Lectures stressed various methods found in literature, to improve vocabulary, including the method used in this study. No attempt was made to have instructors follow the outline, however, the method used in this study had to be thoroughly covered. It was expected that greater reliability of results would be obtained if different instructors presented the method using their own lecture method and background of experience. (Kerlinger, 1965, pp. 444-459.)

The remainder of the first two weeks students spent in acquainting themselves with materials in the center and in working with their

instructors developing individual improvement programs based on skills found deficient during the initial testing program.

At the end of the second week, 1220 sections were listed consecutively 11, 12, 13, etc. Then, by use of a table of random numbers, three were designated control groups. This same procedure was used for 1232 classes (Popham, 1967). Instructors were then informed of the results and given materials for all treatment groups.

At the beginning of the third week all subjects in treatment groups were instructed to bring a collegiate dictionary to class for vocabulary study. Then they were given printed instruction sheets which described the steps in this method. They were also given a folder for filing their individual word sheets (see Appendix A). Instructors reviewed the procedures with classes the first two sessions, and then periodically checked student papers for completeness and accuracy. When necessary, the procedure was again explained. Students were encouraged to continue their work and to use the words they were writing outside the classroom. They were also encouraged to guess at meanings using the context for clues.

The control groups received no additional vocabulary instruction. Although material with vocabulary instruction was available, it was not emphasized, nor attention called to its use in these classes. Instructors were to watch for students who would take the initiative to work in this area, however, none was reported in the control group.

The program lasted for twelve weeks. The fourteenth week of the semester, the folders were collected and form A of the Nelson-Denny was administered in class by the instructors. Test results, number of words completed in the program, total time used in the program, and the

number of sessions worked for each student was then coded onto master sheets for use in typing computer cards.

Computer cards were made, and programs written for factor analysis and analysis of covariance. Results were then recorded and interpreted, and conclusions drawn.

The Program

After the initial vocabulary lectures, students in the treatment groups were given printed instruction sheets which described the steps of the method used in this study (see Appendix A).

Students were to skim articles rapidly and identify five words in their twilight zone. These words were written on a word sheet along with the context in which they were found, and underlined. In parenthesis following the context, they wrote their guess of the word meaning. After completing five words, students used the dictionary to check the definitions. If their guess was correct, it was left; if incorrect, the definition was crossed out and a correct one written using the dictionary as a guide.

Students worked twice each week for twenty minutes. They could stop after finishing five words, or they could continue until the twenty minutes had lapsed. No one was allowed additional time, even if five words had not been completed. Many students regularly finished eight to ten words, while others completed just two or three words. (Students averaged 67.62 words in 14.26 sessions. The mean number of words completed each work session was 4.67.) Each session a word sheet was completed, dated, and filed until the end of the semester.

Periodically instructors checked student's work, encouraging their
efforts and questioning them on some words to keep motivation and interest high.

Materials Used

Materials used were current news articles from magazines and newspapers popular with college students. These news materials covered a large range of reading ability and interests. Sufficient quantity of papers and magazines were provided in the classroom. A weekly clean-out of old magazines and newspapers kept the material current. Students were also allowed to bring their own magazines. The students were expected to seek their own level of reading and use materials of interest to them.

Instrument Used

The <u>Nelson-Denny Reading Test</u> was used in this study. It is a test for high school and college students covering ninth to fourteenth grade level reading ability. Four separate raw scores are given: vocabulary, comprehension, total reading, and rate. There are two alternate forms, each consists of 100 vocabulary items, and 36 comprehension items. All items are simple multiple choice. Although the raw comprehension score is doubled, the test remains weighted in favor of the vocabulary score. The entire test is a timed experience, rather than a power test. The working time for the vocabulary portion of the test is 10 minutes; for the comprehension and rate portion it is 20 minutes.

Form B was used as a pre-test as many students had been exposed to Form A in Freshman Orientation during the previous weeks. Form A was used for the post-test.

Procedures for Coding Data

After initial testing, each student's pre-test scores, sex, classification, age, and teacher were coded onto master sheets by class sections. No special order was given students within a class, but each was assigned the number of his group and a student number according to his position on the master sheet. Class and student number remained the same throughout the study. Missing numbers in the raw data lists are students dropped from the study.

Word sheets used in the study kept score of the number of words studied and time used. Each session, a new word sheet was used. At the end of the study the words, time, and sessions for each student were tallied and coded onto the master sheets.

After the post-tests, the raw scores from these were also coded onto the master sheets for each student.

The coded master sheets were used to facilitate punching of computer cards. After all the data was coded, one computer card was punched for each student in the sample. Only students where all information was recorded remained in the study. Most were dropped due to incomplete data. However, four were dropped because they were taking both courses, and were in control groups in one class and treatment groups in the other class.

1220 classes were assigned group numbers from 11 to 27. 1232 classes were assigned group numbers, 51 to 63. All teachers were randomly assigned numbers 1 to 9. Age was recorded in the nearest whole number. Sex was assigned 1, male; and 2, female. Class designations were: 1, Freshman; 2, Sophomore; 3, Junior; 4, Senior; 5, Special student; and 6, Graduate student. Nelson-Denny numbers are the raw

scores for each part of the test. Words, time, and sessions were the actual number tallied from the word sheets.

Computer cards were designed using columns of three for easier reading of printouts. Missing numbers are students dropped from the study. Some variables gathered have not been utilized in this study, as they did not bear on the particular problem. However, they are available for further study. Coded raw data printout is in Appendix C.

All cards were punched and verified, and then computer programs for statistical analysis were written.

Statistical Procedures

Factor Analytic Technique

The basic assumption behind most achievement testing is that the tests used are themselves unitary measures of the achievement in question. According to Kerlinger (1965, p. 681), this assumption is quite probably false. Kerlinger suggests that psychological-educational research areas be proceeded by factor analytic exploration of the variables in that area. With the availability of a modern high speed digital computer such exploration is a practical preliminary step in educational research.

A factor analysis was run to gain a better understanding regarding the relationships between the N-D test scores and between these test scores and the other variables. The factor analysis was also used to identify the factors underlying the variables.

Analysis of Covariance

The analysis of covariance was made because subjects were not

randomly assigned to treatment and control groups, but rather the groups were assigned to treatment and control. Therefore, the groups in this study cannot be considered homogeneous. Analysis of covariance adjusts for initial differences by equalizing the means of the groups. It then compares these adjusted means of the groups. The statistical procedures followed are those described by Snedecor and Cochran (1967, pp. 419-446).

Statistical Analysis

The analysis of the data was carried out in two phases utilizing the 360-65 IBM computer located in the Computer Center of Oklahoma State University. The computer programs used are given in Appendix D.

The first phase of the analysis was to make a factor analysis and correlations for the following variables: (1) age, (2) classification, (3) pre-test vocabulary, (4) pre-test comprehension, (5) pre-test total reading, (6) pre-test rate, (7) post-test vocabulary, (8) post-test comprehension, (9) post-test total reading, (10) post-test rate, (11) words, (12) time, (13) sessions (see Appendix D, program one). This program yielded the means and standard deviations of each of the variables, a 13 variable correlation matrix (Table II), as well as the findings from the factor analysis (Tables III to V).

The second phase was the statistical testing of the hypotheses. Program two given in Appendix D is the computer program which was written in order to compute the various statistics needed for calculating the analysis of covariance described in Chapter IV. These were the pre- and post-test mean scores, standard deviations, Pearson product moment correlation between scores of the two tests; pre- and posttest sum of squares, sum of the cross products, and slope of the Beta lines. The F ratios and t-ratios needed for testing the hypotheses were computed with the aid of an electronic calculator. The exact proabilities of no difference between groups as determined by the hypotheses were calculated using computer program three in Appendix D.

Summary

A pre-test, post-test control group was the design used in this study. There were two control groups and two treatment groups. A total of 407 subjects who completed Reading Improvement and Study Skills classes in the fall 1971 semester at Oklahoma State University were used in the study. Of these, 318 were in the treatment groups, and 89 in the control groups. Classes were randomly assigned to treatment or control groups rather than individual students.

A plan was devised to increase students participation and interest in building their vocabulary. Using various principles of learning and Dale's description of word acquisition, basic criterions were established for a method. These included student involvement, quick reinforcement or correction of responses, learning in small steps, and attaching new ideas to old.

Materials were chosen on the basis of high interest and accessibility to college students. Printed news media was chosen for this. Materials were provided and changed frequently to keep the articles current.

The <u>Nelson-Denny Reading Test</u> was used for evaluation of the program because it is considered as one of the better standardized measurements at this level and is easy to administer and score.

The method of word study required students to quickly skim articles

and identify five words in their twilight zone. These were recorded in context on word sheets along with definitions of words. The definitions were checked with a dictionary and corrected if wrong. Students worked twenty minutes twice a week for twelve weeks.

Statistical analysis consisted of factor analysis to find the correlation between pre- and post-test scores on vocabulary, comprehension, total reading and rate, age, classification, words, time; and analysis of covariance because subjects were assigned to treatment and control groups as classes rather than individuals. Analysis of covariance eliminates any initial differences in groups which may occur, and then compares the adjusted means for the groups. All statistical data was made through computer programs (Appendix D).

CHAPTER IV

STATISTICAL ANALYSIS

Introduction

A factor analysis was first run on 13 variables listed in Table I. Four factors, accounting for 83% of the variance, were extracted. These four factors were named: (1) reading ability, (2) effort, (3) maturity, and (4) rate of reading (Kerlinger, 1965, p. 681).

Tests of analysis of covariance were then run to examine the adjusted means of various groups on the four portions of the N-D test (Snedecor and Cochran, 1967, pp. 419-446). This technique adjusts posttest results to remove pre-test differences and gives a lower experimental error, allowing for more precise comparison of various groups. If the F ratio from the analysis of covariance gave a probability of no difference between means of .1 or higher, the hypotheses were not rejected.

If the probability of no difference between means was less than .1, it was considered significant and t-tests were run to locate the source of the difference. If the t-ratio gave a probability of no difference between means of .05 or higher, the hypothesis was not rejected. If the probability of no difference between means was lower than .05, the hypothesis was rejected.

Factor Analysis

Procedures

.4

A factor analysis was made to identify factors which underlie variables and the relationships which exist among these variables. Thirteen variables were included in the analysis. These variables are listed in Table I.

TABLE I

Variable Number	Variable	Per Cent of Communality
1	Age	81.97
2	Classification	80.98
3	Pre-test vocabulary score	82.21
4	Pre-test comprehension score	66.28
5	Pre-test total reading score	88.02
6	Pre-test rate score	80.60
7 [.]	Number of words completed	94.65
8	Time used in study in minutes	95.67
9	Post-test vocabulary score	77•53
10	Post-test comprehension score	68.46
11	Post-test total reading score	91.02
12	Post-test rate score	73.15
13	Number of sessions student worked in treatment	98.46

NAME AND PER CENT OF COMMUNALITY OF VARIABLES USED IN FACTOR ANALYSIS

TABLE II

CORRELATION MATRIX

Vari- ables	1	2	3	4	5	6	7	8	9	10	11	12	13
1	1.000	0.614	0.227	0.110	0.185	-0.043	-0.016	0.043	0.219	0.170	0.219	0.090	0.022
2	0.614	1.000	0.312	0.186	0.272	0.002	-0.176	- 0.151	0.279	0.178	0.261	1•142	- Q•155
3	0.227	0.312	1.000	0.650	0.906	0.326	-0.097	-0.099	0.803	0.608	0.794	0.376	-0.103
4	0.110	0.186	0.650	1.000	0.906	0.357	-0.121	-0.117	0.521	0.571	0.607	0 .3 69	- 0.118
5	0.185	0.272	0.906	0.906	1.000	0.375	-0.121	-0.119	0.725	0.647	0.768	0.411	-0.122
6	-0.043	0.002	0.326	0•357	0.375	1.000	0.017	-0.034	0.221	0.216	0.246	0.549	-0.002
7	-0.016	-0.176	-0.097	- 0.121	-0.121	0.017	1.000	0.910	-0.101	-0.067	-0.096	-0.045	0.954
8	0.043	-0.151	-0.099	-0.117	-0.119	-0.034	0.910	1.000	-0.076	-0.084	-0.090	-0.062	0.967
9	0.219	0.279	0.803	0.521	0.725	0.221	-0.101	-0.076	1.000	0.596	0.908	0.343	-0.088
10	0.170	0.178	0.608	0.571	0.647	0.216	-0.067	-0.084	0.596	1.000	0.875	0.337	-0.064
11	0.219	0.261	0.794	0.607°	0.768	0.246	-0.096	-0.090	0.908	0.875	1.000	0.381	-0.087
12	0.090	0.142	0.376	0.369	0.411	0.549	- 0.045	- 0.062	0.343	0.337	0.381	1.000	-0.038
13	0.022	-0.155	-0.103	-0.118	-0.122	-0.002	0•954	0.967	-0.088	-0.064	-0.087	-0.038	1.000

Program three was used to run the factor analysis. This program can be found in Appendix C. First, a correlation matrix was constructed in which each variable was correlated with each other variable. This is found in Table II. Next, the principal axis method of factor analysis was used to obtain factor loadings. The size of the minimum eigenroot extracted was 1.0. Using this procedure, four factors, accounting for 83.01% of the variance, were extracted. The size of the eigenroot and the percentage of the variance extracted by each factor is given in Table III.

TABLE III

Factor	Eigenroot	Per Cent Variance Principal Axis Method	Per Cent Variance Varimax Rotation
1	5.280	40.61	35.30
2	2.830	21.77	22.39
3	1.547	11.90	12.76
4	1.133	8.71	12.54

EIGENROOTS AND PER CENT OF VARIANCE BEFORE AND AFTER VARIMAX ROTATION

The varimax rotation of the principal axis factor loading matrix was then made. The last column of Table III gives the per cent of variance extracted by each factor after the varimax rotation was made. The last column of Table I gives the percentage of communality for each variable used in the factor analysis. Variable loadings on each factor after using varimax rotation, are given in Table IV. No ambiguous variables were found as each variable loaded on one and only one factor. The lowest significant loading was .750. The highest nonsignificant loading was .305.

TABLE IV

Variable	Factor 1	Factor 2	Factor 3	Factor 4
1	• 121	•060	•895	022
2	• 173	143	<u>.870</u>	•042
3	<u>.868</u>	042	• 169	• 194
4	•750	079	.009	• 305
5	<u>.888</u>	068	•098	.276
6	• 184	•020	081	<u>.874</u>
7	063	<u>•969</u>	055	.002
8	056	<u>•975</u>	003	042
9	<u>.863</u>	028	• 158	.057
10	.823	015	•044	.061
11	•943	025	•118	.067
12	•277	014	• 105	.801
13	060	<u>•990</u>	019	.009

FACTOR LOADINGS AFTER VARIMAX ROTATION

Factor Names:

Factor 1:Reading AbilityFactor 2:EffortFactor 3:MaturityFactor 4:Rate of Reading

Note: Loadings considered significant are underlined.

The correlations between the variables with significant loadings on each factor were examined. The procedure used for calculating correlation confidence limits about ρ is given in Snedecor and Cochran (1967, 185 f.).¹ First, z, which is later converted to r, was calculated. Calculations:

N = 407 $\sigma_z = .0497519$ t_{tab} (two tailed) at .05 level is equal to 1.96. t_{tab} (two tailed) at .01 level is equal to 2.5758. t_{tab} (two tailed) at .001 level is equal to 3.2905. z = $\sigma_z t_{tab\infty df}$ At the .05 level of significance z = .0497519 × 1.96 = .09751.

At the .05 level of significance $z = .0497519 \times 1.96 = .09751$. At the .01 level of significance $z = .0497519 \times 2.5758 = .12815$. At the .001 level of significance $z = .0497519 \times 3.2905 = .16370$.

The table used for converting z to r was found in Blalock (1960, 456 f.).

At the .05 level of significance, the confidence limit around zero ρ indicating no significant correlation equals $\pm .0972.^2$

At the .01 level of significance, the confidence limit around zero p indicating no significant correlation equals $\pm.1286$.

At the .001 level of significance, the confidence limit around zero p indicating no significant correlation equals $\pm .1623$.

Although significant, correlations ranging between $\pm .0972$ and $\pm .4$ are of low order.

¹The formula for z is: $z = \sigma_z t_{tab \infty df}$. The formula for calculating is: $\sigma_z = \frac{1}{\sqrt{(N-3)}}$. t_{tab} is found on page 549 of Snedecor and Cochran.

²This means that all correlations which are more than +.0972 as well as those which are less than -.0972 are significant.

A correlation of $\pm .0972$ between two variables accounts for less than 1% of the total variation. Even when the correlation is $\pm .4$, the shared variance is still only 16%.

Results of Factor Analysis

Results of the factor analysis shows each of the 13 variables loaded onto one of four factors. There were no ambiguous variables. The four factors were named (1) reading ability, (2) effort, (3) maturity, and (4) rate of reading.

<u>Factor One</u>. Factor one named "reading ability" consisted of six variables considered significant. These are pre-test N-D scores for (1) vocabulary, (2) comprehension, and (3) total reading; and post-test · N-D scores for (4) vocabulary, (5) comprehension, and (6) total reading. All correlations between these variables listed in the correlation matrix (Table II) were found to be significant. The correlation and per cent of common variance are given in Table V.

Although some variables are higher than others, all these variables have high correlations to each other.

<u>Factor Two</u>. Factor two is named "effort". Three variables are considered to be significant. These are (1) number of words a student completed, (2) time spent on the study, and (3) number of sessions a student worked. Extremely high significant correlations were found between these variables. A correlation of .910 was found between number of words completed and time spent in the program. A correlation of .954 was found between number of words completed and number of sessions worked. A correlation of .967 was found between time spent in

TABLE	V
-------	---

SIGNIFICANT VARIABI	LES OF FACTOR ONE	:
Variables	r	Common Variance
Pre-test N-D vocabulary scores corre:	lated with:	
Pre-test comprehension	.650	42%
Pre-test total reading	•906	83%
Post-test vocabulary	.803	64%
Post-test comprehension	•608	37%
Post-test total reading	•794	62%
Pre-test N-D comprehension scores com	rrelated with:	
Pre-test total reading	•906	83%
Post-test vocabulary	•521	27%
Post-test comprehension	•571	32%
Post-test total reading	.607	37%
Pre-test N-D total reading scores con	rrelated with:	
Post-test vocabulary	•725	52%
Post-test comprehension	•647	41%
Post-test total reading	• 768	58%
Post-test N-D vocabulary scores corre	elated with:	
Post-test comprehension	•596	35%
Post-test total reading	• 908	83%
Post-test N-D comprehension scores co	orrelated with:	
Post-test total reading	. 875	76%

CORRELATION AND PER CENT OF COMMON VARIANCE BETWEEN SIGNIFICANT VARIABLES OF FACTOR ONE

the program and number of sessions worked. Almost 83% of the variance of variables 7 and 8 is common variance, 90% of the variance of variables 7 and 13 is common variance, and 92% of the variance of variables 8 and 13 is common variance.

<u>Factor Three</u>. Factor three is named "maturity". Two variables are considered to be significant. These are students' age and grade classification. There was a high significant correlation of .614 between these two variables. This is shown in the correlation matrix given in Table II. Almost 38% of the variance of each of the variables is variance held in common.

<u>Factor Four</u>. Factor four is named "rate of reading". Two variables are considered to be significant. These are pre-test N-D rate scores and post-test N-D rate scores. A significant correlation of .549 was found between these two variables. This is shown in the correlation matrix given in Table II. About 30% of the variance of each of the variables is variance held in common.

Analysis of Covariance

Justification for Technique

In this study, the N-D pre-test taken of each subject before the treatments were applied predicts to some degree the final response on the post-test by each subject. This was indicated by the extremely high correlation obtained between pre-test and post-test scores when the factor analysis was run. (See Appendix D and Factor 1, Table II.)

By using analysis of covariance, one can adjust the post-test

results so as to remove pre-test differences and also obtain a substantially lower experimental error. This allows for more precise comparisons among the treatments. This technique has the further advantage of adjusting for biases. In this study, students were not randomly assigned to classes, used in this study, but rather allowed to select their own. These classes, rather than individual students, were randomly assigned to treatment or control groups. Analysis of covariance adjusts for any bias which may have resulted from this procedure (Snedecor and Cochran, 1967, pp. 419-446).

Procedure

In describing the procedures used, Table VI and Table VII will be referred to. Similar procedures are followed in the other Tables VIII to XIX.

The first step was to compute the means, standard deviation, sums of squares, and products shown in Table VI. Computer program two was used for this purpose. The within groups (error) degrees of freedom are found by subtracting the between groups degrees of freedom from the total degrees of freedom. In similar manner, the sum of x^2 , the sum of the xy, and the sum of y^2 are obtained.

The within groups (error) sum of products (Σxy) is the quantity called Exy. The within groups (error) sum of squares of X (Σx^2) is called Exx. The reduction due to regression is Exy^2/Exx with one degree of freedom. By subtracting this quantity from the within groups (error) sum of y^2 , the deviations from regression are obtained. This quantity is then divided by the degrees of freedom to obtain the deviation mean square. The next step is to compute β and the adjusted means.

TABLE VI

122	20	1232	Overall
$\frac{T}{X} = 142)$ $\frac{X}{X} = 33.887$ $\frac{Y}{Y} = 37.873$ SDX = 12.013 SDY = 12.978	$\frac{C(N = 33)}{X} = 36.485$ $\frac{X}{Y} = 38.303$ $\frac{SDX}{X} = 11.117$ $\frac{SDY}{X} = 12.636$	$\frac{T(N = 176)}{X = 33.830} \qquad \frac{C(N = 56)}{X = 38.00} \\ \frac{X}{Y = 34.875} \qquad \frac{X}{Y = 39.51} \\ \frac{SDX = 9.227}{SDY = 9.793} \qquad \frac{SDX = 11}{SDY = 11.} \\ $	$\begin{array}{rcl} (N &= & 407) \\ 0 & \overline{X} &= & 34.639 \\ 8 & \overline{Y} &= & 36.838 \\ 834 & & SDX &= & 10.898 \\ 729 & & SDY &= & 11.633 \end{array}$
	ANA	ALYSIS OF SUMS OF SQUARES AND PRODUCT	'S
Source Total Between Groups Within Groups (Reduction due t Deviations from Deviations	Ce (Error) to Regression n Regression s mean square = 48.2756	$\begin{array}{cccc} \frac{df}{406} & \frac{\Sigma_{x}^{2}}{48,337.94} \\ 3 & 940.50 \\ 403 & 47,397.44 \\ 1 \\ 402 \\ 5 & b = .8515 \end{array}$	$ \frac{\Sigma xy}{41, 120.19} \qquad \frac{\Sigma y^2}{55,073.31} \\ 762.67 \qquad 1,303.28 \\ 40,357.52 \qquad 53,770.03 \\ 34,363.23 \\ 19,406.79 $
$\begin{array}{rcl} \underline{\overline{Y}}_{1} & = & \\ \underline{\overline{Y}}_{2} & = & \\ \underline{\overline{Y}}_{3} & = & \\ \underline{\overline{Y}}_{4} & = & \end{array}$	37.873 - (.8515)(33.88 38.303 - (.8515)(36.48 34.875 - (.8515)(33.83 39.518 - (.8515)(38.00	$F = \frac{228}{48}$	$\frac{7774}{2756} = 4.73899$ 93 significant since p < .1
Note: X = Y = T = C = N =	= pre-test score = post-test score = treatment = control = number of subjects	<pre>SD = standard deviation df = degrees of freedom b = slope of the regression line p = probability of no difference in the population mean</pre>	\overline{Y}_1 = adjusted mean of 1220 T \overline{Y}_2 = adjusted mean of 1220 C \overline{Y}_3 = adjusted mean of 1232 T \overline{Y}_4 = adjusted mean of 1232 C

ANALYSIS OF COVARIANCE, VOCABULARY: GROUPS

TABLE VII

WEIGHTED MEANS, t-RATIO, AND PROBABILITY VOCABULARY: GROUPS

Groupings	Degrees of Freedom	Weighted Adjusted Mean of First Group	Weighted Adjusted Mean of Second Group	t-Ratio	Probability
$(\overline{Y}_1 + \overline{Y}_2) - (\overline{Y}_3 + \overline{Y}_4)$	405	38.177 (N = 175)	35.828 (N = 232)	3.36533	0.001
$(\overline{Y}_1 + \overline{Y}_3) - (\overline{Y}_2 + \overline{Y}_4)$	405	36.881 (N = 318)	36.684 (N = 89)	0.23565	0.808
$\overline{Y}_1 - \overline{Y}_2$	173	38.513 (N = 142)	36.731 (N = 33)	1.32299	0.184
$\overline{Y}_{2} - \overline{Y}_{4}$	87	36.731 (N = 33)	36.656 (N = 56)	0.04903	0.959
$\overline{Y}_1 - \overline{Y}_3$	316	38.513 (N = 142)	35.563 (N = 176)	3.75099	<0.001
$\overline{Y}_3 - \overline{Y}_4$	230	35.563 (N = 176)	36.656 (N = 56)	1.02122	0.308

Note: \overline{Y}_1 = adjusted mean of 1220 treatment groups \overline{Y}_2 = adjusted mean of 1220 control groups \overline{Y}_3 = adjusted mean of 1232 treatment group \overline{Y}_4 = adjusted mean of 1232 control group N = number of subjects

Significant level <.05

$b = E_{XY}/E_{XX}$.

The adjusted means are calculated by the following formula as illustrated in the table:

$$\overline{\mathbf{Y}}_{\cdot-\mathbf{b}}(\overline{\mathbf{X}}_{1} \cdot - \overline{\mathbf{X}}_{\cdot})$$

This procedure reduces the error term and also adjusts post-test results by pre-test scores.

An F test for significance of difference was computed on the adjusted means. The numerator for the F ratio is obtained by using the formula Eyy-Exy²/Exx, where Eyy is the symbol for deviations from regression. The denominator for the F ratio is deviation mean square. The F ratio and degrees of freedom were used in computer program three to compute the exact probability of no difference, represented by ρ on Table VI.

If the probability of no difference was less than .1, a t-test was run to test the differences between various groupings of the adjusted means. The results are given in Tables VIII to XIX.

In calculating the t-test, a weighting procedure was used to obtain the harmonic mean. This was done because of the complication introduced by the fact groups and classes were of unequal sizes which required that the means being pooled be weighted (Blalock, 1960, p. 61). The weighing was accomplished by the following technique: Suppose the F test called for a test of the difference between groups one and two; three and four:

> Y_1 = the adjusted mean for group one N_1 = the number of subjects in group one

The formula used was:

$$D = \frac{Y_1 N_1 + Y_2 N_2}{N_1 + N_2} - \frac{Y_3 N_3 + Y_4 N_4}{N_3 + N_4}$$

The results are the numerator for the t-ratio. The denominator for the t-ratio is the deviation mean square. The following formula was used:

$$S_{D} = \sqrt{\frac{Sy \cdot x^{2} (1 + \frac{txx}{Exx})}{N_{1}} + \frac{Sy \cdot x^{2} (1 + \frac{txx}{Exx})}{N_{2}}}$$

 $Sy \cdot x = deviations mean square$

txx = treatments mean square for X

 $t = \frac{D}{S_D}$

Degrees of Freedom = $N_1 + N_2 - 2$

The exact probability of no difference between the means (D=0) was then computed using computer program three (Snedecor and Cochran, 1967, pp. 419-446).

Results of Analysis of Covariance

Four separate analysis of covariance tests were run to compare the ajusted means of various groups on vocabulary, comprehension, total reading, and rate. Each test used a two by two grouping for comparison. These groups were (1) 1220 treatment, (2) 1220 control, (3) 1232 treatment, and (4) 1232 control.

If the results from this procedure showed the probability of no difference was greater than .1, the null hypothesis was not rejected. If the results showed that the probability of no difference was less than .1, the difference was considered significant. In that case, t-tests were run to find the source of difference. Six groupings were used in running the t-tests, (1) 1220 groups to 1232 groups, (2) treatment groups to control groups, (3) 1220 treatment to 1220 control, (4) 1220 control to 1232 control, (5) 1220 treatment to 1232 treatment, and (6) 1232 treatment to 1232 control. In using the t-test, a probability of no difference of .05 or less was considered significant and in those cases the null hypothesis of no difference was rejected.

<u>Vocabulary: Groups</u>. An analysis of covariance was run on the pretest and post-test scores from the vocabulary portion of the N-D. The four groups included were (1) 1220 treatment, (2) 1220 control, (3) 1232 treatment, and (4) 1232 control.

The adjusted mean yielded an F ratio of 4.73899. The probability of no difference between means was 0.003 (see Table VI). This difference was considered significant. Therefore, as it was decided to run t-tests for all probabilities of no difference of .1 or less, six t-tests were run for further analysis to locate the source of difference.

Hypothesis 1 states that there is no significant difference in adjusted means of vocabulary scores on the N-D between 1220 and 1232 groups. The harmonic mean of the first group (1220) was 38.177 and for the second group (1232) was 35.828. This is a difference of 2.349 in favor of the 1220 group. The t-test between these two groups yielded a t-ratio of 3.36533. This gave a probability of no difference between means of 0.001 (see Table VII). As this is less than the rejection level of .05, Hypothesis 1 was rejected.

Hypothesis 2 states that there is no significant difference in adjusted mean of vocabulary scores on the N-D between treatment and control groups. The harmonic mean of the first group (treatment) was

36.881 and for the second group (control) was 36.684. This is a difference of .197 in favor of the treatment group. The t-test between these two groups yielded a t-ratio of 0.23565. This gave a probability of no difference between means of 0.808 (see Table VII). As this is higher than the rejection level of .05, Hypothesis 2 was not rejected.

Hypothesis 3 states that there is no significant difference in adjusted means of vocabulary scores on the N-D between 1220 treatment and 1220 control groups. The adjusted mean of the first group (1220 treatment) was 38.513 and for the second group (1220 control) was 36.731. This is a difference of 1.782 in favor of the treatment group. The t-test between these two groups yielded a t-ratio of 1.32299. This gave a probability of no difference between means of 0.184 (see Table VII). As this is higher than the rejection level of .05, Hypothesis 3 was not rejected.

Hypothesis 4 states that there is no significant difference in adjusted means of vocabulary scores on the N-D between 1220 control groups and 1232 control groups. The adjusted mean of the first group (1220 control) was 36.731 and for the second group (1232 control) was 36.656. This is a difference of .075 in favor of the 1220 control group. The t-test between these two groups yielded a t-ratio of 0.04903. This gave a probability of no difference between means of 0.959 (see Table VII). As this is higher than the rejection level of .05, Hypothesis 4 was not rejected.

Hypothesis 5 states that there is no significant difference in adjusted means of vocabulary scores on the N-D between 1220 treatment and 1232 treatment groups. The adjusted mean of the first group (1220 treatment) was 38.513 and for the second group (1232 treatment) was 35.563. This is a difference of 1.092 in favor of the 1220 groups. The t-test between these two groups yielded a t-ratio of 3.75099. This gave a probability of no difference between means of <0.001 (see Table VII). As this is less than the rejection level of .05, Hypothesis 5 was rejected.

Hypothesis 6 states that there is no significant difference in adjusted means of vocabulary scores on the N-D between 1232 treatment and 1232 control groups. The adjusted mean of the first group (1232 treatment) was 35.563 and for the second group (1232 control) was 36.656. This is a difference of 1.092 in favor of 1232 control. The t-test between these two groups yielded a t-ratio of 1.02122. This gave a probability of no difference between means of 0.308 (see Table VII). As this is higher than the rejection level of .05, Hypothesis 6 was not rejected.

<u>Comprehension: Groups</u>. An analysis of covariance was run on the pre-test and post-test scores from the comprehension portion of the N-D. The four groups included were (1) 1220 treatment, (2) 1220 control, (3) 1232 treatment, and (4) 1232 control.

The adjusted means of group one was 45.101, of group two was 44.443, of group three was 44.990, and of group four was 45.082. The adjusted means yielded an F ratio of 0.05703. The probability of no difference between means was 0.981 (see Table VIII). Hypotheses 7, 8, 9, 10, 11, and 12 stated there is no significant difference in adjusted means of comprehension scores on the N-D between various groups. (See Hypotheses 7-12, p. 10.) As the probability of no difference between means was higher than the rejection level of .1, Hypotheses 7, 8, 9, 10, 11, and 12 were not rejected.

TABLE VIII

ANALYSIS OF COVARIANCE, COMPREHENSION: GROUPS

.

1220		1232			
$\begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	46 41	$\frac{T(N = 176)}{X = 37.500}$ $\frac{X}{Y = 44.670}$ SDX = 10.830 SDY = 8.821	$\frac{C(N = 56)}{X} = 41.071$ $\frac{X}{Y} = 46.464$ SDX = 12.036 SDY = 11.152	0 5	$\frac{(N = 407)}{X} = 38.172$ $\frac{X}{Y} = 44.998$ SDX = 11.460 SDY = 9.829
	ANALYSIS OF	SUMS OF SQUARES	AND PRODUCTS		
Source	df	Σ x²		$\Sigma_{\mathbf{x}\mathbf{y}}$	Σy²
Total Between Groups Within Groups (Error) Reduction due to Regression Deviations from Regression Deviations mean square	406 3 403 1 402 = 67.7986	53,456. 1,648. 51,807. b = .4766	00 71 29	25,382.75 689.43 24,693.32	39,319.25 294.43 39,024.82 11,769.77 27,255.04
$\frac{\underline{Y}_{1}}{\underline{Y}_{2}} = 44.408 = (.4)$ $\frac{\underline{Y}_{2}}{\underline{Y}_{2}} = 46.788 - (.4)$ $\frac{\underline{Y}_{3}}{\underline{Y}_{3}} = 44.670 - (.4)$ $\frac{\underline{Y}_{4}}{\underline{Y}_{4}} = 46.464 - (.4)$	justed <u>Means</u> 766)(36.718-38.172) 766)(43.091-38.172) 766)(37.500-38.172) 766)(41.071-38.172)	= 45.101 = 44.443 = 44.990 = 45.082	$F = \frac{3.8664}{67.7986}$ $p = 0.981$	= 0.05703 not significant s	ince $p > .1$
Note: X = pre-test sc Y = post-test sc T = treatment C = control N = number of sc	$\begin{array}{llllllllllllllllllllllllllllllllllll$	tandard deviation egrees of freedon lope of the regra robability of no n the population	ns m ession line difference mean	$\overline{\underline{Y}}_1$ = adjusted $\overline{\underline{Y}}_2$ = adjusted $\overline{\underline{Y}}_3$ = adjusted $\overline{\underline{Y}}_4$ = adjusted	mean of 1220 T mean of 1220 C mean of 1232 T mean of 1232 C

Total Reading: Groups. An analysis of covariance was run on the pre-test and post-test scores from the total reading portion of the N-D. The four groups included were (1) 1220 treatment, (2) 1220 control, (3) 1232 treatment, and (4) 1232 control.

The adjusted means of group one was 83.959, of group two was 80.169, of group three was 80.628, and of group four was 81.601. The adjusted means yielded an F ratio of 2.10574. The probability of no difference between means was 0.097 (see Table IX). This difference was considered significant. Therefore, as it was decided to run t-tests for all probabilities of no difference of .1 or less, six t-tests were run for further analysis to locate the source of difference.

Hypothesis 13 states that there is no significant difference in adjusted means of total reading scores on the N-D between 1220 and 1232 groups. The harmonic mean of the first group (1220) was 83.245 and for the second group (1232) was 80.863. This is a difference of 2.381 in favor of the 1220 group. The t-test between these two groups yielded a t-ratio of 1.89475. This gave a probability of no difference between means of 0.055 (see Table X). This is exactly the rejection level of .05. Hypothesis 13 was, therefore, not rejected.

Hypothesis 14 states that there is no significant difference in adjusted means of total reading scores on the N-D between treatment and control groups. The harmonic mean of the first group (treatment) was 82.116 and for the second group (control) was 81.070. This is a difference of 1.045 in favor of the treatment group. The t-test between these two groups yielded a t-ratio of 0.69447. This gave a probability of no difference between means of 0.505 (see Table X). As this is higher than the rejection level of .05, Hypothesis 14 was not rejected.

TABLE IX

ANALYSIS OF COVARIANCE, TOTAL READING: GROUPS

1220		1232		
$\frac{T(N = 142)}{X = 70.373} \qquad \frac{C(N = 33)}{X = 79.576} \\ \frac{X}{Y = 82.275} \qquad \frac{X}{Y = 85.091} \\ SDX = 20.964 \qquad SDX = 22.700 \\ SDY = 20.636 \qquad SDY = 22.539 \\ \frac{C(N = 33)}{X = 79.576} \\ \frac{X}{Y = 85.091} \\ \frac{SDX}{Y = 22.539} \\ \frac{C(N = 33)}{X = 79.576} \\ \frac{C(N = 33)}{X $	$\frac{T(N)}{X} = \frac{T}{Y}$ $SDX = \frac{T}{SDY} = \frac{T}{SDY}$	$ \begin{array}{rcl} & 176 \\ \hline & 1.307 \\ \hline & 79.614 \\ = 18.132 \\ = 16.488 \\ \end{array} \begin{array}{r} & \underline{C}(N = 56 \\ \hline & X = 79.0 \\ \hline & Y = 86.1 \\ \hline & SDX = 21 \\ \hline & SDY = 19 \\ \end{array} $) 71 61 .677 .812	$\frac{(N = 407)}{X = 72.720}$ $\frac{X}{Y = 81.887}$ SDX = 20.349 SDY = 19.156
Source	ANALYSIS OF SUMS (DF SQUARES AND PRODU $\sum x^2$	CTS	Σ ν 2
Total Between Groups Within Groups (Error) Reduction due to Regression Deviations from Regression Deviations mean square =		168,535.00 4,944.44 163,590.56 .7179	120,130.00 2,681.56 117,448.44	149,353.00 2,292.24 147,060.76 84,321.10 62,739.66
$\frac{\text{Adjus}}{Y} = 82.275 - (.7179)$ $\frac{Y}{Y} = 85.091 - (.7179)$ $\frac{Y}{Y} = 79.614 - (.7179)$ $\frac{Y}{Y} = 86.161 - (.7179)$	$\frac{\text{ted Means}}{(70.373-72.720)} = 83.$ $\frac{(79.576-72.720)}{(71.307-72.720)} = 80.$ $\frac{(71.307-72.720)}{(79.071-72.720)} = 81.$	$F = \frac{32}{15}$ $F = \frac{32}{15}$ $F = \frac{32}{15}$ $F = 0.0$ $F = 0.0$	<u>8.6399</u> = 2.10574 6.0688 = 2.10574 097 significant sind	ce p < .1
Note: $X = pre-test scoreY = post-test scoreT = treatmentC = controlN = number of sub;$	SD = standar re df = degrees b = slope o p = probabi jects in the	rd deviation s of freedom of the regression li lity of no differen population mean	$\overline{Y}_1 = adjuste$ $\overline{Y}_2 = adjuste$ ne $\overline{Y}_3 = adjuste$ ce $\overline{Y}_4 = adjuste$	ed mean of 1220 T ed mean of 1220 C ed mean of 1232 T ed mean of 1232 C

TABLE X

WEIGHTED MEANS, t-RATIO, AND PROBABILITY TOTAL READING: GROUPS

Groupings	Degrees of Freedom	Weighted Adjusted Mean of First Group	Weighted Adjusted Mean of Second Group	t-Ratio	Probability
$(\overline{Y}_1 + \overline{Y}_2) = (\overline{Y}_3 + \overline{Y}_4)$	405	83. 245 (N = 175)	80.863 (N = 232)	1.89475	0.055
$(\overline{Y}_1 + \overline{Y}_3) = (\overline{Y}_2 + \overline{Y}_4)$	405	82.116 (N = 318)	81.070 (N = 89)	0.69447	0.505
$\overline{Y}_1 - \overline{Y}_2$	173	83.959 (N = 142)	80.169 (N = 33)	0.56242	0.115
$\overline{Y}_{2} - \overline{Y}_{4}$	87	80.169 (N = 33)	81.601 (N = 56)	0.52000	0.610
$\overline{Y}_1 - \overline{Y}_3$	316	83.959 (N = 142)	80.628 (N = 176)	2.35275	0.018
$\overline{Y}_3 - \overline{Y}_4$	230	80.628 (N = 176)	81.601 (N = 56)	0.50530	0.620

Note: $\overline{Y_1}$ = adjusted mean of 1220 treatment groups $\overline{Y_2}$ = adjusted mean of 1220 control groups $\overline{Y_3}$ = adjusted mean of 1232 treatment groups $\overline{Y_4}$ = adjusted mean of 1232 control groups

- N = number of subjects

Significant level <.05

Hypothesis 15 states that there is no significant difference in adjusted means of total reading scores on the N-D between 1220 treatment and 1220 control groups. The adjusted mean of the first group (1220 treatment) was 83.959 and for the second group (1220 control) was 80.169. This is a difference of 3.790 in favor of the 1220 treatment group. The t-test between these two groups yielded a t-ratio of 1.56242. This gave a probability of no difference between means of 0.115 (see Table X). As this is higher than the rejection level of .05, Hypothesis 15 was not rejected.

Hypothesis 16 states that there is no significant difference in adjusted means of total reading scores on the N-D between 1220 control and 1232 control groups. The adjusted mean of the first group (1220 control) was 80.169 and for the second group (1232 control) was 81.601. This is a difference of 1.432 in favor of the 1232 control group. The t-test between these two groups yielded a t-ratio of 0.52000. This gave a probability of no difference between means of 0.610 (see Table X). As this is higher than the rejection level of .05, Hypothesis 16 was not rejected.

Hypothesis 17 states that there is no significant difference in adjusted means of total reading scores on the N-D between 1220 treatment and 1232 treatment groups. The adjusted mean for the first group (1220 treatment) was 83.959 and for the second group (1232 treatment) was 80.628. This is a difference of 3.331 in favor of the 1220 treatment group. The t-test between these two groups yielded a t-ratio of 2.35275. This gave a probability of no difference between means of 0.018 (see Table X). As this is lower than the rejection level of .05, Hypothesis 17 was rejected.

Hypothesis 18 states that there is no significant difference in adjusted means of total reading scores on the N-D between 1232 treatment and 1232 control groups. The adjusted mean for the first group (1232 treatment) was 80.628 and for the second group (1232 control) was 81.601. This is a difference of .973 in favor of the 1232 control group. The t-test between these two groups yielded a t-ratio of 0.50530. This gave a probability of no difference between means of 0.620 (see Table X). As this is higher than the rejection level of .05, Hypothesis 18 was not rejected.

<u>Rate of Reading: Groups</u>. An analysis of covariance was run on the pre-test and post-test scores from the rate portion of the N-D. The four groups included were (1) 1220 treatment, (2) 1220 control, (3) 1232 treatment, and (4) 1232 control.

The adjusted means of group one was 357.625, of group two was 364.386, of group three was 337.505, and of group four was 348.953. The adjusted means yielded an F ratio of 2.39769. The probability of no difference between means was 0.066 (see Table XI). This difference was considered significant. Therefore, as it was decided to run t-tests for all probabilities of no difference of .1 or less, six t-tests were run for further analysis to locate the source of difference.

Hypothesis 19 states that there is no significant difference in adjusted means of rate scores on the N-D between 1220 and 1232 groups. The harmonic mean of the first group (1220) was 358.900 and for the second group (1232) was 340.268. This is a difference of 18.631 in favor of the 1220 group. The t-test between these two groups yielded a t-ratio of 2.43722. This gave a probability of no difference between

TABLE XI

ANALYSIS OF COVARIANCE, RATE OF READING: GROUPS

1:	220	1232				Overall		
$\frac{T(N = 142)}{X = 222.880}$ $\frac{Y = 349.831}{SDX = 64.998}$ SDY = 87.300	$\frac{C(N = 33)}{X = 213.242}$ $\frac{X}{Y = 350.000}$ SDX = 60.513 SDY = 84.438	T X Y SI SI	(N = 176) = 242.324 = 343.011 DX = 71.360 DY = 87.119	$\frac{C(N = 56)}{X = 250.268}$ $\frac{X}{Y = 359.893}$ SDX = 90.148 SDY = 106.718		$\frac{(N = 407)}{X = 234}$ $\overline{X} = 348$ $\overline{X} = 348$ $\overline{SDX} = 72$ $\overline{SDY} = 90$	275 280 2.346 0.088	
<u></u>		ANALYSIS OF SU	MS OF SQUARES	AND PRODUCTS				
Source	9	df	Σx^2	Σ	cy	Σy ^æ		
Total Between Groups Within Groups Reduction due Deviations fro Deviation	s (Error) to Regression om Regression ns mean square = 577	406 3 403 1 402 75•4644	2,130,208. 58,128. 2,072,080. b = .6840	$\begin{array}{cccc} 0 & 1,414, \\ 0 & -2, \\ 0 & 1,417, \end{array}$,976.0 ,256.0 ,232.0	3,303,168 12,093 3,291,075 969,338 2,321,736	.0 .0 .3 .6	
$\frac{\overline{Y}}{\underline{Y}} = \frac{1}{\underline{Y}}$	Adjusted = 349.831 - (.6840) = 350.000 - (.6840) = 343.011 - (.6840) = 359.893 - (.6840)	<u>Means</u> 222.880-234.275 213.242-234.275 242.324-234.275 250.268-234.275	5) = 357.625 5) = 364.386 5) = 337.505 5) = 348.953	$F = \frac{13,847}{5,775}$ p = 0.066 s	<u>.7500</u> = 2.39769 .4640 = ignificant sinc	ep <. 1		
Note: X Y T C N	<pre>= pre-test score = post-test score = treatment = control = number of subject</pre>	SD = st $df = de$ $b = st$ $p = pt$ $cs it$	tandard deviat egrees of free lope of the re robability of n the populati	ion dom gression line no difference on mean	\overline{Y}_1 = adjusted \overline{Y}_2 = adjusted \overline{Y}_3 = adjusted \overline{Y}_4 = adjusted	mean of mean of mean of mean of	1220 T 1220 C 1232 T 1232 C	

means of 0.014 (see Table XII). As this is lower than the rejection level of .05, Hypothesis 19 was rejected.

Hypothesis 20 states that there is no significant difference in adjusted means of rate scores on the N-D between treatment and control groups. The harmonic mean of the first group (treatment) was 346.489 and for the second group (control) was 354.676. This is a difference of 8.186 in favor of the control group. The t-test between these two groups yielded a t-ratio of 0.89410. This gave a probability of no difference between means of 0.624 (see Table XII). As this is higher than the rejection level of .05, Hypothesis 20 was not rejected.

Hypothesis 21 states that there is no significant difference in adjusted means of rate scores on the N-D between 1220 treatment and 1220 control groups. The adjusted mean of the first group (1220 treatment) was 357.625 and for the second group (1220 control) was 364.386. This is a difference of 6.761 in favor of the 1220 control group. The t-test between these two groups yielded a t-ratio of 0.45695. This gave a probability of no difference between means of 0.653 (see Table XII). As this is higher than the rejection level of .05, Hypothesis 21 was not rejected.

Hypothesis 22 states that there is no significant difference in adjusted means of rate scores on the N-D between 1220 control and 1232 control groups. The adjusted mean for the first group (1220 control) was 364.386 and for the second group (1232 control) was 348.953. This is a difference of 15.432 in favor of the 1220 control group. The ttest between these two groups yielded a t-ratio of 0.92106. This gave a probability of no difference between means of 0.637 (see Table XII). As

TABLE XII

WEIGHTED MEANS, t-RATIO, AND PROBABILITY RATE OF READING: GROUPS

Groupings	Degrees of Weighted Adjuste oupings Freedom of First Gro		d Mean Weighted Adjusted Mean up of Second Group		Probability
$(\overline{Y}_1 + \overline{Y}_2) = (\overline{Y}_3 + \overline{Y}_4)$	405	358.900 (N = 175)	340.268 (N = 232)	2.43722	0.014
$(\overline{Y}_1 + \overline{Y}_3) = (\overline{Y}_2 + \overline{Y}_4)$	405	346.489 (N = 318)	354.676 (N = 89)	0.89410	0.624
$\overline{Y}_1 - \overline{Y}_2$	173	357.625 (N = 142)	364.386 (N = 33)	0.45695	0.653
$\overline{Y}_2 - \overline{Y}_4$	87	364.386 (N = 33)	348.953 (N = 56)	0.92106	0.637
$\overline{Y}_1 - \overline{Y}_3$	316	357.625 (N = 142)	337•505 (N = 176)	2.33610	0.018
$\overline{Y}_3 - \overline{Y}_4$	230	337•505 (N = 176)	348.953 (N = 56)	0.97731	0.669

Note: $\overline{Y_1}$ = adjusted mean of 1220 treatment groups $\overline{Y_2}$ = adjusted mean of 1220 control groups $\overline{Y_3}$ = adjusted mean of 1232 treatment groups $\overline{Y_4}$ = adjusted mean of 1232 control groups N = number of subjects

Significant level <.05

.

this is higher than the rejection level of .05, Hypothesis 22 was not rejected.

Hypothesis 23 states that there is no significant difference in adjusted means of rate scores on the N-D between 1220 treatment and 1232 treatment groups. The adjusted mean for the first group (1220 treatment) was 357.625 and for the second group (1232 treatment) was 337.505. This is a difference of 20.119 in favor of the 1220 treatment group. The t-test between these two groups yielded a t-ratio of 2.33610. This gave a probability of no difference between means of 0.018 (see Table XII). As this is lower than the rejection level of .05, Hypothesis 23 was rejected.

Hypothesis 24 states that there is no significant difference in adjusted means of rate scores on the N-D between 1232 treatment and 1232 control groups. The adjusted mean for the first group (1232 treatment) was 337.505 and for the second group (1232 control) was 348.953. This is a difference of 11.448 in favor of the 1232 control group. The ttest between these two groups yielded a t-ratio of 0.97731. This gave a probability of no difference between means of 0.669 (see Table XII). As this is higher than the rejection level of .05, Hypothesis 24 was not rejected.

<u>Vocabulary: Teacher</u>. An analysis of covariance was run on the pre-test and post-test scores from the vocabulary portion of the N-D using the classes from the nine different teachers.

The adjusted means for teacher one was 38.624, for teacher two was 36.121, for teacher three was 38.004, for teacher four was 34.597, for teacher five was 44.559, for teacher six was 34.839, for teacher seven was 37.216, for teacher eight was 34.962, and for teacher nine was

38.650. The adjusted means yielded an F ratio of 5.98777. This gave a probability of no difference between means of <0.001 (see Table XIII). This difference was considered significant. Therefore t-tests were made to locate the source of difference.

Hypothesis 25 states that there is no significant difference in adjusted means of vocabulary scores on the N-D due to the amount of teacher training. Therefore, teachers were divided into two groups by training: group one consisted of teachers working toward a master's degree and group two consisted of teachers working toward a doctoral degree. A t-test was run to compare these two groups. Teachers four, seven, and eight were included in group one and teachers one, two, three, five, six, and nine were included in group two. The harmonic mean of group one was 35.075, of group two was 38.127. This is a difference of 3.052 in favor of group two (doctoral students). The t-test between these two goups yielded a t-ratio of 4.51761. This gave a probability of no difference between means of <0.001 (see Table XIV). As this is lower than the rejection level of .05, Hypothesis 25 was rejected.

Hypothesis 26 states that there is no significant difference in adjusted means of vocabulary scores on the N-D due to the amount of teacher experience. Therefore, teachers were divided into two groups by experience. Group one included teachers just beginning and group two those with one or more years teaching experience at this level. A ttest was run to compare these two groups. Teachers one, two, three, four, and eight were included in group one. Teachers five, six, seven, and nine were included in group two. The harmonic mean of group one was 36.134 and for group two was 38.271. This is a difference of 2.136 in

TABLE XIII

Teacher	N	x	Ŷ	SDX	SDY
T ₁	47	35.128	39.043	12.132	13.908
Ta	27	31.556	33.481	8.604	9.315
T3	46	35.674	38.891	14.053	13.402
T_4	64	34.453	34.438	8.913	9.674
T ₅	16	28.438	39.250	8.617	11.355
T ₆	31	35 .8 06	35.839	11.784	12.498
Τ ₇	19	35.000	37.526	8.013	10.689
T ₈	89	33.921	34.348	10•149	10.692
Т _Э	68	36.765	40.471	10.875	10.473
Overall	407	34.639	36.838	10.898	11.633
<u></u>	۵۰ <u>ــــــــــــــــــــــــــــــــــــ</u>	ANALYSIS OF SUM	IS OF SQUARES AND PROD	UCTS	
Source		df	$\Sigma \mathbf{x}^{\mathbf{z}}$	Σ xy	Σ y 2
Total Between Groups Within Groups (Error) Reduction Due to Regression Deviations From Regression		406 8 398 1 397	48,337.94 1,332.52 47,005.42	41,120.19 869.63 40,250.56	55,073.31 2,677.19 52,396.12 34,466.39 17,929.72
Deviations Mean Square = 45.1630			b = .8563		
Canada an Chanana an Anna an Anna Anna Anna Anna An					

ANALYSIS OF COVARIANCE, VOCABULARY: TEACHER

63

,

ADJUSTED MEANS

$$\overline{Y}_{1} = 39.043 - (.8563)(35.128 - 34.639) = 38.624$$

$$\overline{Y}_{2} = 33.481 - (.8563)(31.556 - 34.639) = 36.121$$

$$\overline{Y}_{3} = 38.891 - (.8563)(35.674 - 34.639) = 38.004$$

$$\overline{Y}_{4} = 34.438 - (.8563)(34.453 - 34.639) = 34.597$$

$$\overline{Y}_{5} = 39.250 - (.8563)(28.438 - 34.639) = 44.559$$

$$\overline{Y}_{6} = 35.839 - (.8563)(35.806 - 34.639) = 34.839$$

$$\overline{Y}_{7} = 37.526 - (.8563)(35.000 - 34.639) = 37.216$$

$$\overline{Y}_{8} = 34.348 - (.8563)(33.921 - 34.639) = 34.962$$

$$\overline{Y}_{9} = 40.471 - (.8563)(36.765 - 34.639) = 38.650$$

Note: \underline{N} = number of subjects

- \overline{X} = mean of pre-test scores
- $\overline{\mathbf{Y}}$ = mean of post-test scores
- SD = standard deviation
- df = degrees of freedom
- b = slope of the regression line
- p = probability of no difference
- in the population mean
- $\overline{Y}_1 \overline{Y}_9$ = adjusted mean of groups for teachers 1-9

 $\mathbf{F} = \frac{270.4258}{45.1630} = 5.98777$

p = 0.000077

significant since p < .1
TABLE XIV

WEIGHTED MEANS, t-RATIO, AND PROBABILITY VOCABULARY: TEACHER

Groupings	Degrees of Freedom	Weighted Adjusted Means of First Group	Weighted Adjusted Means of Second Group	t-Ratio	Probability
$(\overline{Y}_4 + \overline{Y}_7 + \overline{Y}_8) = (\overline{Y}_1 + \overline{Y}_2 + \overline{Y}_3 + \overline{Y}_5 + \overline{Y}_6 + \overline{Y}_9)$	405	35.075 (N = 172)	38.127 (N = 235)	4.51761	<0.001
$(\overline{Y}_1 + \overline{Y}_2 + \overline{Y}_3 + \overline{Y}_4 + \overline{Y}_8) = (\overline{Y}_5 + \overline{Y}_6 + \overline{Y}_7 + \overline{Y}_9)$	405	36.134 (N = 273)	38.271 (N = 134)	3.00887	0.003

Note: $\overline{Y}_1 - \overline{Y}_9$ = adjusted mean of groups for teachers 1-9

N = number of subjects

Significance level $\leq .05$

favor of group two (more experience). The t-test between these two groups yielded a t-ratio of 3.00887. This gave a probability of no difference between means of 0.003 (see Table XIV). As this is lower than the rejection level of .05, Hypothesis 26 was rejected.

<u>Comprehension: Teacher</u>. An analysis of covariance was run on the pre-test and post-test scores from the comprehension portion of the N-D using the classes from the nine different teachers.

The adjusted mean for teacher one was 46.185, for teacher two was 42.459, for teacher three was 44.947, for teacher four was 44.714, for teacher five was 47.104, for teacher six was 44.566, for teacher seven was 44.507, for teacher eight was 45.017, and for teacher nine was 45.494. The adjusted means yielded an F ratio of 0.57449. This gave a probability of no difference between means of 0.800 (see Table XV).

Hypotheses 27 and 28 stated there was no significant difference in adjusted means of comprehension scores on the N-D due to the amount of teacher training or experience. (See Hypotheses 27 and 28, p. 12.) As the probability of no difference between means was higher than the rejection level of .1, Hypotheses 27 and 28 were not rejected.

<u>Total Reading: Teacher</u>. An analysis of covariance was run on the pre-test and post-test scores from the total reading portion of the N-D using the classes from the nine different teachers.

The adjusted mean for teacher one was 84.480, for teacher two was 77.670, for teacher three was 83.858, for teacher four was 80.401, for teacher five was 92.288, for teacher six was 79.094, for teacher seven was 81.643, for teacher eight was 79.789, and for teacher nine was 84.816. The adjusted means yielded an F ratio of 3.71536. This gave a

TABLE XV

Teacher	Ň	. x	. <u>Y</u>	SDX	SDY
Tl	47	38.468	46.043	10.488	9.403
$T_{\mathcal{Z}}$	27	40 . 444	43.556	10.475	9.496
T ₃	46	36.478	44.130	11.588	10.652
T ₄	64	39.281	45.250	10.573	8.189
T_5	16	32.000	44.125	10.909	13.009
T ₆	31	39.806	45.355	14.559	10.733
T 7	19	38.211	44.526	9.105	8.101
T ₈	89	38.764	45.303	11.532	9.808
T9	68	37.088	44.971	11.471	10.114
Overall	407	38.172	44.998	11.460	9.829
		ANALYSIS OF SUM	S OF SQUARES AND PROD	UCTS	<u>,</u>
Source		_df_	$\Sigma \mathbf{x}^{\mathbf{z}}$	Σ χ	Σ y 2
Total		406	53,456.00	25,382.75	39,319.25
Between Groups		8	1,157.60	133.99	179.99
Within Groups (Err	or)	398	52,298.40	25,248.76	39,144.26
Reduction Due to F	Regression	1			12,189.66
Deviations From Re	gression	397			26,954.60
Deviatio	ons Mean Square	e = 67 . 8957	b = .	4828	<u> </u>

ANALYSIS OF COVARIANCE, COMPREHENSION: TEACHER

TABLE XV (Continued)

ADJUSTED MEANS $\overline{Y}_1 = 46.043 - (.4828)(38.468 - 38.172) = 46.185$ $\overline{Y}_2 = 43.556 - (.4828)(40.444 - 38.172) = 42.459$ $\overline{Y}_3 = 44.130 - (.4828)(36.478 - 38.172) = 44.947$ $\overline{Y}_4 = 45.250 - (.4828)(39.281 - 38.172) = 44.714$ $\overline{Y}_5 = 44.125 - (.4828)(32.000 - 38.172) = 47.104$ $\overline{Y}_6 = 45.355 - (.4828)(39.806 - 38.172) = 44.566$ $\overline{Y}_7 = 44.526 - (.4828)(38.211 - 38.172) = 44.507$ $\overline{Y}_8 = 45.303 - (.4828)(38.764 - 38.172) = 45.017$ $\overline{Y}_9 = 44.971 - (.4828)(37.088 - 38.172) = 45.494$

Note: $\frac{N}{X}$ = number of subjects $\frac{N}{X}$ = mean pre-test score

e a la service de la calque a la calque a la calque e

- $\overline{\mathbf{Y}}$ = mean of post-test score
- SD = standard deviation
- df = degrees of freedom
- b = slope of the regression line
- $\overline{Y}_1 \overline{Y}_9$ = adjusted mean of groups for teachers 1-9

- $F = \frac{39.0057}{67.8957} = 0.57449$ p = 0.8001
- not significant since p > .1

probability of no difference between means of <0.001 (see Table XVI). This difference was considered significant. Therefore, t-tests were made to locate the source of difference.

Hypothesis 29 states that there is no significant difference in adjusted means of total reading scores on the N-D due to the amount of teacher training. Teachers were classified as previously: group one, those working toward a master's degree and group two, those working toward a doctorate. Group one consisted of teachers four, seven, and eight and group two consisted of teachers one, two, three, five, six, and nine.

A t-test was made to compare these two groups. The harmonic mean of group one was 80.221 and group two was 83.494. This is a difference of 3.272 in favor of group two (doctoral students). The t-test between these two groups yielded a t-ratio of 2.665. This gave a probability of no difference between means of 0.007 (see Table XVII). As this is lower than the rejection level of .05, Hypothesis 29 was rejected.

Hypothesis 30 states that there is no significant difference in adjusted means of total reading scores on the N-D due to the amount of teacher experience. As previously stated, teachers were classified as group one, beginning teachers, and group two, experienced teachers. Teachers one, two, three, four, and eight were included in group one. Teachers five, six, seven, and nine were included in group two.

A t-test was made to compare these two groups. The harmonic mean of group one was 81.216 and for group two was 83.935. This is a difference of 2.718 in favor of group two (experienced teachers). The ttest between these two groups yielded a t-ratio of 2.10679. This gave a probability of no difference between means of 0.033 (see Table XVII).

TA	BL	E	XV	Ί

ANALYSIS OF COVARIANCE, TOTAL READING: TEACHER

	•••	-			

Teacher	N	x	Ŷ	SDX	SDY
Tl	47	73•553	85.085	20.719	21.370
Ta	27	72.000	77.148	18.020	17.460
T ₃	46	71.478	82.957	24.151	21.706
T4	64	73.703	79.688	17.036	15.376
T_5	16	60.438	83.375	17.783	21.613
T ₆	31	75.613	81.194	24.202	22.148
Tγ	19	73.211	82.000	15.175	15.788
T_8	89	72.685	79.764	20.018	17 . 882
Tg	68	73.824	85.618	20.288	18.837
Overal1	407	72.720	81.887	20.349	19.156
	<u> </u>	ANALYSIS OF SUMS	OF SQUARES AND PRODU	CTS	
Sour	ce	df	$\Sigma \mathbf{x}^2$	Σ xy	<u>Σ</u> y ²
Total		406	168,535.00	120,130.00	149,353.00
Between Groups	(F ara an)	8	2,940.61	-48.88	2,847.23
Reduction Due	(Error)	390 1	105,594.39	120,170.00	140,505.77 87,218,91
Deviations Fro	om Regression	397			59,286.85
Devi	iations Mean Square	= 149.3372	b = •	7257	

TABLE XVI (Continued)

ADJUSTED MEANS
$\overline{Y}_1 = 85.085 - (.7257)(73.553 - 72.720) = 84.480$
$\overline{Y}_2 = 77.148 - (.7257)(72.000 - 72.720) = 77.670$
$\overline{Y}_3 = 82.957 - (.7257)(71.478 - 72.720) = 83.858$
$\overline{Y}_4 = 79.688 - (.7257)(73.703 - 72.720) = 80.401$
$\overline{Y}_5 = 83.375 - (.7257)(60.438 - 72.720) = 92.288$
$\overline{Y}_6 = 81.194 - (.7257)(75.613 - 72.720) = 79.094$
$\overline{Y}_7 = 82.000 - (.7257)(73.211 - 72.720) = 81.643$
$\overline{Y}_8 = 79.764 - (.7257)(72.685 - 72.720) = 79.789$
$\overline{Y}_9 = 85.618 - (.7257)(73.824 - 72.720) = 84.816$

Note: $\frac{N}{X}$ = number of subjects $\frac{\overline{X}}{\overline{X}}$ = mean of pre-test scores \overline{Y} = mean of post-test scores

.

- SD = standard deviation
- df = degrees of freedom
- b = slope of the regression line
- $\overline{Y}_1 \overline{Y}_9$ = adjusted mean of groups for teachers 1-9

 $F = \frac{554.8411}{149.3372} = 3.71536$ p < 0.001 significant since p < .1

.

TABLE XVII

WEIGHTED MEANS, t-RATIO, AND PROBABILITY TOTAL READING: TEACHER

بالتاب بتعاصيرهم الال

Groupings	Degrees of Freedom	Weighted Adjusted Means of First Group	Weighted Adjusted Means of Second Group	t-Ratio	Probability
$(\overline{Y}_4 + \overline{Y}_7 + \overline{Y}_8) = (\overline{Y}_1 + \overline{Y}_2 + \overline{Y}_3 + \overline{Y}_5 + \overline{Y}_6 + \overline{Y}_9)$	405	80.221 (N = 172)	83.494 (N = 235)	2.66593	0.007
$(\overline{Y}_1 + \overline{Y}_2 + \overline{Y}_3 + \overline{Y}_4 + \overline{Y}_8) - (\overline{Y}_5 + \overline{Y}_6 + \overline{Y}_7 + \overline{Y}_9)$	405	81.216 (N = 273)	83.935 (N = 134)	2.10679	0.033

Note: $\overline{Y}_1 - \overline{Y}_9 :=$ adjusted mean of groups for teachers 1-9

N = number of subjects

Significance level $\leq .05$

As this is lower than the rejection level of .05, Hypothesis 30 was rejected.

<u>Rate of Reading: Teacher</u>. An analysis of covariance was run on the pre-test and post-test scores from the rate portion of the N-D using the classes from the nine different teachers.

The adjusted mean for teacher one was 335.475, for teacher two was 387.281, for teacher three was 361.278, for teacher four was 343.610, for teacher five was 394.176, for teacher six was 355.202, for teacher seven was 354.330, for teacher eight was 340.686, and for teacher nine was 331.538. The adjusted means yielded an F ratio of 2.60948. This gave a probability of no difference between means of 0.008 (see Table XVIII). This difference was considered significant. Therefore, t-tests were made to locate the source of difference.

Hypothesis 31 states that there is no significant difference in adjusted means of rate scores on the N-D due to the amount of teacher training. Again, the groups used earlier for teacher training were employed. Group one consisted of teachers four, seven, and eight working toward a master's degree, and group two consisted of teachers one, two, three, five, six, and nine working toward a doctorate.

A t-test was made to compare these two groups. The harmonic mean of group one was 343.281 and for group two was 351.938. This is a difference of 8.656 in favor of group two (doctoral students). The t-test between these two groups yielded a t-ratio of 1.13976. This gave a probability of no difference between means of 0.253 (see Table XIX). As this is higher than the rejection level of .05, Hypothesis 31 was not rejected.

Hypothesis 32 states that there is no significant difference in

TABLE XVIII

ANALYSIS OF COVARIANCE, RATE OF READING: TEACHER

Teacher	N	x	Ţ	SDX	SDY
\mathbf{T}_{1}	47	197.298	310.276	48.759	89.774
Tz	27	221.852	378.815	51.211	99•533
T3	46	229.848	358.261	70.445	84.240
T4	64	251.125	355.094	78.351	82.062
Тб	16	180.000	357.188	32.646	54.176
T ₆	31	262.000	374.097	89.251	95.177
T ₇	19	277.579	383.842	64.828	72.919
T8	89	232.146	339.236	73.423	88.437
Ta	68	242.721	337.294	66.878	94.992
Overall	407	234.275	348.280	72.346	90 . 088
<u> </u>		ANALYSIS OF SU	MS OF SQUARES AND PRO	DUCTS	
Sourc	e	df	Σx ²	Σ xy	Σy²
Total Between Groups Within Groups (Error)	406 8 398	2,130,208.00 198,711.00 1,931,497.00	1,414,976.00 98,746.00 1,316,230.00	3,303,168.00 160,998.00 3,142,170.00
	o Regression	1			896,952.68

TABLE XVIII (Continued)

ADJUSTED MEANS $\overline{Y}_1 = 310.276 - (.6815)(197.298 - 234.275) = 335.475$ $\overline{Y}_2 = 378.815 - (.6815)(221.852 - 234.275) = 387.281$ $\overline{Y}_3 = 358.261 - (.6815)(229.848 - 234.275) = 361.278$ $\overline{Y}_4 = 355.094 - (.6815)(251.125 - 234.275) = 343.610$ $\overline{Y}_5 = 357.188 - (.6815)(180.000 - 234.275) = 394.176$ $\overline{Y}_6 = 374.097 - (.6815)(262.000 - 234.275) = 355.202$ $\overline{Y}_7 = 383.842 - (.6815)(277.579 - 234.275) = 354.330$ $\overline{Y}_8 = 339.236 = (.6815)(232.146 - 234.275) = 340.689$ $\overline{Y}_9 = 337.294 = (.6815)(242.721 - 234.275) = 331.538$

Note: N = number of subjects

- \overline{X} = mean of pre-test scores
- $\overline{\mathbf{Y}}$ = mean of post-test scores
- SD = standard deviation
- df = degrees of freedom
- b = slope of the regression line
- p = probability of no difference in the population mean
- $\overline{Y}_1 \overline{Y}_9$ = adjusted mean of groups for teachers 1-9

- $\mathbf{F} = \frac{\mathbf{14},757.8200}{5,655.4600} = 2.60948$
- p = 0.008
- significant since p < .1

TABLE XIX

WEIGHTED MEANS, t-RATIO, AND PROBABILITY RATE OF READING: TEACHER

Groupings	Degrees of Freedom	Weighted Adjusted Means of First Group	Weighted Adjusted Means of Second Group	t-Ratio	Probability
$(\overline{Y}_4 + \overline{Y}_7 + \overline{Y}_8)^{2} - (\overline{Y}_1 + \overline{Y}_2 + \overline{Y}_3 + \overline{Y}_5 + \overline{Y}_6 + \overline{Y}_9)$	405	343.281 (N = 172)	351•938 (N = 235)	1.13976	0.253
$(\overline{Y}_1 + \overline{Y}_2 + \overline{Y}_3 + \overline{Y}_4 + \overline{Y}_8) = (\overline{Y}_5 + \overline{Y}_6 + \overline{Y}_7 + \overline{Y}_9)$	405	348.552 (N = 273)	347•723 (N = 134)	0.10388	0.913

Note: $\overline{Y}_1 - \overline{Y}_9$ = adjusted mean of groups for teachers 1-9

٢

N = number of subjects

Significance level ≤ 05

adjusted means of rate scores on the N-D due to the amount of teacher experience. The groups used earlier for teacher experience were employed. Group one consisted of teachers one, two, three, four, and eight with no previous experience and group two consisted of teachers five, six, seven, and nine with one or more years experience at this level.

A t-test was run to compare these two groups. The harmonic mean of group one was 348.552 and for group two was 347.723. This is a difference of .829 in favor of group one (no experience). The t-test between these two groups yielded a t-ratio of 0.10388. This gave a probability of no difference between means of 0.913 (see Table XIX). As this is higher than the rejection level of .05, Hypothesis 32 was not rejected.

Summary

Thirteen variables (see Table I) were run in a factor analysis to find which ones correlated with each other. Each variable loaded onto one of four factors. These four factors, which accounted for 83% of the variance are (1) reading ability, (2) effort, (3) maturity, and (4) rate of reading.

Reading ability consisted on all pre- and post-tests of the N-D for vocabulary, comprehension, and total reading. Effort consisted of the number of words a student finished, the amount of time used, and the number of sessions he worked. Maturity consisted of age of students and grade classification. Rate of reading consisted of the pre- and posttest rate scores from the N-D.

Analysis of covariance tests were run to examine the adjusted means of various groups on the four portions of the N-D. This technique was used to adjust post-test scores for initial biases and to reduce

experimental error. When an F ratio yielded a probability of no difference between means of .1 or higher it was not considered significant and the hypotheses were not rejected. When probability of no difference between means was less than .1, t-tests were made between the various groups to locate the source of difference. A t-ratio yielding a probability of no difference between means of .05 was used as the level to reject hypothesis.

Hypotheses 1, 5, 17, 19, 23, 25, 26, 29, and 30 were all rejected at the .05 level of no difference between means. Table XX summarizes the statistical tests for the hypotheses.

TABLE XX

SUMMARY OF STATISTICAL TESTS OF HYPOTHESES

<u> </u>	Nelson-Denny Test					
Grouping	Vocabulary	Comprehension	Total Reading	Rate		
1220 and 1232	HO_{1} $p = 0.001$	HO 7 N.S.	HO 13 N.S.	$HO_{19} = 0.014$		
Treatment and Control Groups	HO ₂ N.S.	но ₈ N.S.	HO ₁₄ N.S.	HO ₂₀ N.S.		
1220 Treatment and 1220 Control	но ₃ N.S.	HO ₉ N.S.	но ₁₅ N.S.	HO ₂₁ N.S.		
1220 Control and 1232 Control	HO ₄ N.S.	^{HO} 10 N.S.	HO ₁₆ N.S.	HO 22 N.S.		
1220 Treatment and 1232 Treatment	HO_{5} p < 0.001	HO 11 N.S.	$HO_{17} = 0.018$	HO_{23} p = 0.018		
1232 Treatment and 1232 Control	^{HO} 6 N.S.	HO ₁₂ N.S.	HO ₁₈ N.S.	но ₂₄ N.S.		
Master's and Doctoral Teachers	HO_{25} p < 0.001	но ₂₇ N.S.	HO_{29} p = 0.007	HO 31 N.S.		
Beginning and Experienced Teachers	HO_{26} p = 0.003	но ₂₈ N.S.	HO_{30} p = 0.033	HO ₃₂ N.S.		

N.S. = not significant

. . .

 \leq .05 = level of significance

÷

CHAPTER V

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Review of the Study

Reviewing literature and studies on reading improvement at the college level revealed a lack of substantial information on improvement in vocabulary. However, in working with college students, it was noted this area was unlikely to show significant improvement. Therefore, this study was conducted to test an educationally sound method of vocabulary improvement designed for college students.

This study was conducted during the fall semester of 1971 at Oklahoma State University using a sample population of 407 students from the Reading Improvement (1220) and Study Skills (1232) classes. Classes from both 1220 and 1232 were randomly assigned to experimental and control groups. All students were given vocabulary improvement instruction. Pre- and post-tests using the <u>Nelson-Denny Reading Tests</u> were given to all the students to allow analysis of adjusted means of the groups before and after treatment.

Students in experimental classes worked twice a week using periodical materials. They located words, guessed at the meaning, and used dictionaries to check the meaning. Each student chose his own words, based on his knowing something about the word and yet not actually being able to define it.

After the initial vocabulary instruction control groups received no

additional help with vocabulary unless they asked for it. (Note: no student in the control groups asked for help.)

A factor analysis was made on thirteen variables to investigate their interrelationships and to identify underlying factors. Four factors were identified. All the variables loaded heavily onto one of these four factors. These factors were named reading ability, effort, maturity, and rate of reading.

Analysis of covariance tests were made to analyze the adjusted means between the various groups. If results of the F ratio yielded a probability of no difference between means of less than .1, it was considered significant and t-tests were made to analyze groups more precisely to discover the source of difference. Results for all these tests are given in Chapter IV.

Nine hypotheses of no difference between adjusted means were rejected at the .05 level of probability of no difference between population means.

Conclusions

Factor Analytic Technique

The factor analysis made on the thirteen variables listed in Table I indicated that each of the variables loaded onto only one of four factors. These factors which accounted for 83% of the variance, were named (1) reading ability, (2) effort, (3) maturity, and (4) rate of reading.

Six tests loaded onto factor one, "reading ability". These were the pre-test and post-test scores for vocabulary, comprehension, and total reading on the N-D.

Although the amount of correlation varies, all six tests correlate highly with each other. One would expect pre- and post-test scores measuring the same skill to be highly correlated. This is true here. Also, as expected, vocabulary and comprehension correlate highly with total reading. However, the high correlations found between vocabulary and comprehension scores were not expected, as these are supposedly measuring different abilities.

This indicates that one common factor, here labeled "reading ability", underlies the comprehension and vocabulary portions of the N-D rather than two distinct reading abilities. This supports partially Thurstone's findings in reanalysis of the <u>Davis' Reading Tests</u>. One common factor was found to underlie all nine tests (Thurstone, 1946). Three factors loaded onto factor two, named "effort". These were (1) number of words a student finished; (2) time, in minutes, spent on the study; and (3) number of sessions a student worked. Correlations between these variables were extremely high, all above .91. More than 83% of the variance of these variables was variance held in common.

This indicates that students who finished more words also spent more time working. Also, students who worked more, attended more sessions. This would indicate some students are willing to put forth more effort in their courses.

Two variables had significant loadings on factor three, named "maturity". These were students' age and students' grade classification. Almost 83% of the variance of these was common variance.

Although this may not always be true, factor three shows that for the sample used in this study freshmen tended to be younger than upper classmen.

Two variables loaded onto factor four, named "rate of reading". These were the pre-test and post-test rate scores from the N-D.

This indicates students who read faster at the beginning of the semester tend to end up faster readers at the end. This was definitely the case for the sample used in this study.

It is of interest that neither the pre-test nor post-test rate scores loaded on factor one "reading ability". Relatively low correlations in the .3 to .4 range were found when examining the correlation matrix and the six comprehension, vocabulary, and total reading variables. This data suggests a distinct ability, not highly related to other reading abilities, is measured when reading rate is measured. (Note: Davis' set of tests did not include a test for rate.) This finding certainly does not support many reading improvement programs which use rate as the core of their programs. This also supports Townsend's statement about using care in the interpretation of rate based on a test of less than four minutes and not on word count (Townsend, 1968).

Analysis of Covariance

Due to the high correlation between pre- and post-test scores and the lack of random assignment of students to classes, it was imperative to use analysis of covariance to compare the groups for hypotheses testing (Snedecor and Cochren, 1967). This procedure adjusts post-test scores to compensate for pre-test differences and lowers experimental error. Therefore, a more precise comparison of groups can be made.

Tests of analysis of covariance were run on the four portions of the N-D between various groups. The four portions were vocabulary,

comprehension, total reading, and rate. The groups were 1220 treatment, 1220 control, 1232 treatment, and 1232 control; beginning teachers, experienced teachers, master's level teachers, and doctoral level teachers. When the F ratio from the analysis of covariance yielded a probability of no difference between means of .1 or higher, hypotheses for these groups were not rejected. When the F ratio yielded a probability of no difference between means lower than .1, t-tests were run between all groups for that variable to locate the source of difference. When the t-ratio yielded a probability of no difference between means of .05 or higher, the hypothesis was not rejected. When the t-ratio yielded a probability of less than .05, the hypothesis was rejected. Therefore, Hypotheses 1, 5, 17, 19, 23, 25, 26, 29, and 30 were rejected at the probability of less than .05 level of no difference between means.

Hypothesis 1 states that there is no significant difference in adjusted means of vocabulary scores on the N-D between 1220 and 1232 groups. The harmonic adjusted mean for the 1220 group was 38.177 and for the 1232 group was 35.828. The t-test of the difference between means, (2.349), resulted in a probability of no difference in the population mean of 0.001. Therefore, Hypothesis 1 was rejected. Reading Improvement, 1220 groups, did significantly better than Study Skills, 1232 groups, in vocabulary on the N-D.

Hypothesis 5 states that there is no significant difference in adjusted means of vocabulary scores on the N-D between 1220 treatment and 1232 treatment groups. The adjusted mean for the 1220 group was 38.513, and for the 1232 group was 35.563. The t-test of the difference between means, (2.949), resulted in a probability of no difference

in the population mean of <0.005. Therefore, Hypothesis 5 was rejected. Treatment groups of 1220 did significantly better than treatment groups of 1232 in vocabulary on the N-D.

Hypothesis 17 states that there is no significant difference in adjusted means of total reading scores on the N-D between 1220 treatment and 1232 treatment groups. The adjusted mean for the 1220 group was 83.959 and for the 1232 group was 80.628. The t-test of the difference between means, (3.331), resulted in a probability of no difference in the population mean of 0.018. Therefore, Hypothesis 17 was rejected. Treatment groups of 1220 did significantly better than treatment groups of 1232 in total reading on the N-D.

Hypothesis 19 states that there is no significant difference in adjusted means of rate scores on the N-D between 1220 and 1232 groups. The harmonic adjusted mean for the 1220 groups was 358.900 and for the 1232 groups was 340.268. The t-test of the difference between means, (18.631), resulted in a probability of no difference in the population mean of 0.014. Therefore, Hypothesis 19 was rejected. Reading Improvement, 1220 groups, did significantly better than Study Skills, 1232 groups, on rate on the N-D.

Hypothesis 23 states that there is no significant difference in adjusted means of rate scores on the N-D between 1220 treatment and 1232 treatment groups. The adjusted mean for the 1220 group was 357.625, and for the 1232 group was 337.505. The t-test of the difference between means, (20.119), resulted in a probability of no difference in the population mean of 0.018. Therefore, Hypothesis 23 was rejected. Treatment groups of 1220 did significantly better than treatment groups of 1232 in rate on the N-D.

Table XXI summarizes the means and exact probability of the re-

TABLE XXI

.

SUMMARY OF MEANS AND EXACT PROBABILITY OF REJECTED GROUP HYPOTHESES

Hypothesis (Variable)	Adjusted X of Groups	Exact Probability	
HO ¹ (Vocabulary)	(1220) 38.177 (1232) 35.828	p = 0.001	
HO ⁵ (Vocabulary	(1220T) 38.513 (1232T) 35.563	p < 0.005	
HO ₁₇ (Total Reading)	(1220T) 83.959 (1232T) 80.628	p = 0.018	
HO ₁₉ (Rate)	(1220) 358.900 (1232) 340.268	p = 0.014	
HO ₂₃ (Rate)	(1220T) 357.625 (1232T) 337.505	p = 0.018	

Note: T = treatment groups $\overline{X} = mean$

Level of significance for $p \leq .05$

There is a significant difference in favor of 1220 classes for all the hypotheses rejected and this difference favors 1220 treatment groups. All 1232 and control groups fail to show any significant difference. This suggests that the treatment was successful with students enrolled in 1220, the Reading Improvement classes. Apparently, students in these classes were concerened with improving their reading skills and accepted the importance of vocabulary; whereas, students enrolled in 1232, the Study Skills classes, did not accept vocabulary as an important goal for improvement of study techniques. This supports the idea of being sensitive to student goals when planning the objectives for a course. Although students appeared to be conscientiously working in all the classes, the findings of this study would indicate the procedure used was not profitable for the Study Skills classes.

However, it should also be noted here that the Reading Improvement, 1220, classes are non-credit and the attrition rate is high. Even with some students failing or dropping college, 1232 classes experienced a 9% drop while there was a 38% drop in 1220 classes. This accounts for part of the higher scores for the 1220 group, as only the most interested students finished the course. It would reduce the attrition rate and encourage students to finish if credit were given for this course.

All hypotheses concerning comprehension in this study failed to test statistically significant and so the null hypothesis of no difference between means was not rejected. Neither classes nor treatments nor teachers had a significant effect on comprehension in this study.

Hypotheses 25 to 32 tested teacher variable as to training and experience. Teachers were divided into two groups on training, those working on a master's degree in group one and those working on a doctor's degree in group two. Teachers were also divided into two groups on experience, those beginning work with college students in group one and those with one or more years of experience at this level in group two.

Hypothesis 25 states that there is no significant difference in

adjusted means of vocabulary scores on the N-D due to the amount of teacher training. The harmonic adjusted mean of group one, (master students), was 35.075 and for group two, (doctoral students), was 38.127. The t-test of the difference between means, (3.052), resulted in a probability of no difference in the population mean of <0.005. Therefore, Hypothesis 25 was rejected. Doctoral students did a significantly better job of teaching vocabulary than did master's students.

Hypothesis 26 states that there is no significant difference in adjusted means of vocabulary scores on the N-D due to amount of experience. The harmonic adjusted mean of group one, (beginning teachers), was 36.134 and for group two, (experienced teachers), was 38.271. The t-test on the difference between means, (2.136), resulted in a probability of no difference in the population mean of 0.003. Therefore, Hypothesis 26 was rejected. Teachers with one or more years experience did a significantly better job of teaching vocabulary than did inexperienced teachers.

Hypothesis 29 states that there is no significant difference in adjusted means of total reading scores on the N-D due to the amount of teacher training. The harmonic adjusted mean of the first group, (master's students), was 80.221 and for the second group, (doctoral students), was 83.494. The t-test on the difference between means, (3.272), resulted in a probability of no difference in the population mean of 0.007. Therefore, Hypothesis 29 was rejected. Doctoral students did a significantly better job of teaching reading than did master's students.

Hypothesis 30 states that there is no significant difference in adjusted means of total reading scores on the N-D due to the amount of

teacher experience. The harmonic adjusted mean of the first group, (beginning teachers), was 81.216 and for the second group, (experienced teachers), was 83.935. The t-test on the difference between means, (2.718), resulted in a probability of no difference in the population mean on 0.033. Therefore, Hypothesis 30 was rejected. Teachers with one or more years experience did a significantly better job of teaching reading than did inexperienced teachers.

Table XXII summarizes the means and exact probability of the rejected null hypotheses for teachers.

TABLE XXII

	-			
Hypothesis (Variable)		_Adj X of	usted Groups	Exact Probability
HO ₂₅ (Vocabu	ılary)	(M) (D)	35.075 38.127	p < 0.005
HO ₂₆ (Vocabu	lary)	(B) (E)	36•134 38•271	p = 0.003
HO ₂₉ (Total	Reading)	(M) (D)	80.221 83.494	$\mathbf{p} = 0.007$
HO ₃₀ (Total	Reading)	(B) (E)	81.216 83.935	p = 0.033
Note:	$\overline{\mathbf{X}}$ = mean		B = begin	ning teacher
	M = master's te	eachers	E = exper	ienced teacher
	D = doctoral terms	achers	Level of	significance

p ≤ .05

SUMMARY OF THE MEANS AND EXACT PROBABILITY OF REJECTED TEACHER HYPOTHESES

Teacher training and experience made an extremely significant impact on student achievement in this study, much more than class or treatment. Also, teacher training made more than ten times the impact of teacher experience on student achievement. This not only indicates the importance of these two variables, but strongly supports the importance of upgrading our schools. If teacher training has such a tremendous influence at this level where students are very much on their own, it should have an even greater effect with students in the lower levels of our schools. It would, therefore, be advisable to use every available resource to encourage teachers at all levels to acquire more training.

The difference between means of rate for groups taught by different teachers was not significant. This is quite interesting in view of the factor analysis findings of this study which indicates rate has little in common with the other parts of the test. This suggests rate scores, at least as far as this test, can be easily improved by the very inexperienced as readily as the experienced teacher. However, more experience and training enable a teacher to do a better job of teaching reading skills.

To summarize, there were several important conclusions of this study. One factor appears to underlie the vocabulary, comprehension, and total reading scores on the N-D. Rate was a factor by itself and appears to have little correlation to other reading abilities. The method used in this study was more effective for 1220 groups and 1220 treatment groups. A good part of this success, no doubt, is due to the goals students set for themselves in these classes. The last conclusion is that teacher training and experience has a tremendous influence upon

student achievement and it is, therefore, considered imperative to use all available resources to encourage teachers to continue their training after college.

Recommendations

Practical Recommendations

Results of this study strongly suggest several recommendations for educational institutions. First, Reading Improvement could be given status as a credit course to encourage students to finish, as it appears to fulfill its purpose. It could well be used as a prerequisite or concurrent course to Study Skills. Second, the method used in this study was effective in increasing vocabulary and, therefore, further possibilities of its use should be explored. Third, the method was mostly successful in the 1220 classes which suggests one look very closely to student rather than teacher goals for courses at this level. Finally, the extremely effective impact of teacher training on student achievement suggests one do all in his power to encourage and make available additional training for all teachers.

Methodological Recommendations

The use of a factor analytic technique appears to be a promising method in analyzing correlation of variables within a program and the amount of common variance between them. This could reduce duplication of effort and testing.

Analysis of covariance is a valuable method in education where groups are seldom equal in size and abilities and where complete randomization of subjects is impossible This allows post-test scores to be adjusted to compensate for pre-test biases; lowering the experimental error and giving a more precise comparison between group means.

Theoretical Recommendations

The method developed here is based on the idea of improving vocabulary using words already partially known by working in materials students enjoy This is not only educationally sound, but in all probability will continue after the students are out of college Although the method was successful, the study indicates that vocabulary should be developed on an individual basis, taking into account each students interest, background, and ability.

SELECTED BIBLIOGRAPHY

Alm, Richard S.

1957 "Teaching Reading is Our Business." <u>English Journal</u>, XLVI, 11-19.

Anderson, Charles.

- 1949 "A Factorial Analysis of Reading." <u>British Journal of</u> Educational Psychology, IXX (November), 220-221.
- Anderson, Irving H., and Walter F. Dearborn.
 - 1952 <u>The Psychology of Teaching Reading</u>. New York: Ronald Press Company.
- Belmont, Lillian, and Herbert G. Birch.
 - 1966 "The Intellectual Profile of Retarded Readers." <u>Perceptual</u> and Motor Skills, XXII, 787-816.

Betts, Emmett.

1957 <u>Foundation of Reading Instruction</u>. New York: American Book Co., Chapter 24.

Blair, Glenn Myers.

- 1941 "An Experiment in Vocabulary Building." <u>Journal of Higher</u> Education, XII (February), 99-101.
- Blalock, Hubert M.
 - 1960 Social Statistics. New York: McGraw-Hill.
- Braun, Jean S.
 - 1963 "Relation Between Concept Formation Ability and Reading Achievement at Three Developmental Levels." <u>Child</u> Development, XXXIV, 2 (September), 675-682.

Brown, James I.

1952 Efficient Reading. Boston: D. C. Heath and Company.

Brown, James I.

- 1959 "Vocabulary: Key to Communication." <u>Education</u>, LXXX (October), 80-84.
- 1966 <u>Reading Improvement Through Vocabulary Development: The CPD</u> Formula. National Reading Conference, 15th Year Book.

Buswell, G. T., and John Leonore.

1931 <u>The Vocabulary of Arithmetic</u>. Supplementary Educational Monographs (Chicago Department of Education), XXXVIII, 41-42.

Corlett, Donna Jean.

1959 "A Correlational Analysis of Study Skills and Attitudes, Library Skills and Reading Skills at the University of Portland."

Cosper, Russell, and Barriss Mills.

1953 "Reading Comprehension and Speed." <u>School and Society</u>, LXXVII (June), 359-362.

Curoe, Philip R. V.

1939 "An Experiment in Enriching the Active Vocabularies of College Seniors." School and Society, XLIX (April), 522-524.

Curoe, Philip R. V., and William G. Wixted.

1940 "A Continuing Experiment in Enriching the Active Vocabulary of College Seniors." <u>School and Society</u>, LII (October), 372-376.

Dale, Edgar.

- 1934 "Study of Factors Influencing the Difficulty of Reading Materials for Adults of Limited Reading Ability." Library Quarterly, 4 (July), 384-412.
- 1941 How to Read a Newspaper. Chicago: Scott, Foresman, and Co.
- 1956 "The Problem of Vocabulary in Reading." <u>Educational</u> Research Bulletin, XXXV (May), 113-123.
- 1960 "How to Improve Your Vocabulary." <u>Newsletter</u>, XXV, 7 (April).
- 1965 "Vocabulary Development of the Underprivileged Child." Elementary English, XLII (November), 778-786.
- 1967 <u>Can You Give the Public What It Wants?</u> New York: World Book Encyclopedia and Cowles Ed. Corp.

Dale, Edgar, and Taker Razik.

1963 Bibliography of Vocabulary Studies. Ohio State U. 2nd ed.

Dale, Edgar, and Vivian Weedon.

1939 "The Effect of a Time Interval on Words Known." <u>Educational</u> Research Bulletin, XVIII (May), 123-126+.

D'Amico, Louis A., et al.

1959 "Relationship Between MAT Scores and Achievement in Junior College Subjects." <u>Educational and Psychological Measure-</u> <u>ments</u>, XIX, 4 (Winter), 611-616.

Davis, Frederich B.

- 1944 "Fundamental Factors of Comprehension in Reading." Psychometrika, IX, 185-197.
- 1952 "Research in Reading in High School and College." <u>Review of</u> Educational Research, XXII (April), 76-88.
- 1961 <u>The Assessment of Change</u>. National Reading Conference 10th Year Book, 86-99.

Dolch, E. W.

1946 "The Reading Picture." <u>Clarement College Reading Conference</u>. 11th Year Book, 183-186.

Dunkel, Harold.

1944 "Testing the Precise Use of Words." <u>College English</u>, V (April), 386-389.

Eicholz, Gerhard, and Richard Barbe.

1961 "An Experiment in Vocabulary Development." <u>Educational</u> <u>Research Bulletin</u>, XL, 1 (January), 1-7, 28.

Geerlofs, Marjorie, and Martin Kling.

1968 <u>Current Practice in College and Adult Developmental Reading</u> Programs, IRA, Del. N. Y.

Gray, William S., and Eleanor Holmes.

1938 <u>The Development of Meaning Vocabularies in Reading: An</u> <u>Experimental Study</u>. University of Chicago (No. 6) (February), 1-140. Hage, Dean S., and James B. Stroud.

1959 "Reading Proficiency and Intelligence Scores, Verbal and Nonverbal." Journal of Educational Research, LII, 7 (March, 1959), 258-262.

Harris, Theodore L.

1948 "Making Reading an Effective Instrument of Learning in the Content Fields." <u>47 Year Book of National Society for the</u> <u>Study of Education</u>. U. of Chicago Press, Chicago, Illinois, Part II, 116-135.

Hilliard, George Haratio.

1924 "Probable Types of Difficulties Underlying Low Scores in Comprehension Tests." <u>Iowa University</u>, <u>Studies in Education</u>, II, 6 (March), 1-60.

Holmes, and H. Singer.

1966 <u>Speed and Power in Reading in High School</u>. U. S. Dept. of HEW, Office of Educ., Bureau of Educational Research and Development, Supt. of Doc. Catalog #FS5.230:30016. Washington, D. C.: U. S. Government Printing Office.

Hunt, Jacob Tate.

1953 "The Relationship Among Vocabulary, Structural Analyses, and Reading." Journal of Educational Psychology, LII, 4 (April), 193-202.

Hunt, Lyman C.

1957 "Can We Measure Specific Factors Associated With Reading Comprehension?" Journal of Educational Research, LI (November), 161-171.

Kerlinger, Fred N.

1965 <u>Foundations of Behavioral Research</u>. New York: Holt, Rinehart, Winston.

Kruglov, Lorraine P.

1953 "Qualitative Differences in Vocabulary Choices of Children as Revealed in Multiple-Choice Tests." Journal of Educational Psychology, XLIV, 229-243.

Kyte, George C.

1953 "A Core Vocabulary in the Language Arts." <u>Phi Delta Kappan</u>, XXXIV (March), 231-234. McCullough, Constance M.

- 1957 "What Does Research Reveal About Practice in Teaching Reading?" <u>English Journal</u>, XLVI, 475-490.
- 1958 "Context Aids in Reading." The Reading Teacher, XI, 225-229.
- 1959 "Implications of Research on Children's Concepts." <u>The</u> Reading Teacher, XIII (December), 100-107.
- McDonald, Arthur S., and Walter J. Pauk.
 - 1956 "Teaching College Freshmen to Read." <u>Phi Delta Kappan</u>, XXXVIII (December), 104-109.

Neville, Donald.

1967 "Learning Characteristics of Poor Readers as Revealed by the Results of Individually Administered Intelligence Tests." <u>Vistas in Reading</u>. International Reading Association Conference Proceedings, XI, 554-559.

O'Donnell, Roy.

- 1962 "Awareness of Grammatical Structure and Reading Comprehension." <u>High School Journal</u>, XLV, 184-188.
- Orr, David B.
 - 1968 <u>Reading Tests and Reviews</u>. Ed. Oscar Krisen Buros. Highland Park, New Jersey: Gryphon Press.

Osgood, Charles E., George I. Suci, and Percy Tannenbaum.

1957 <u>The Measurement of Meaning</u>. Urbana, Ill.: University of Chicago Press.

Otterman, Lois M.

- 1955 "The Value of Teaching Prefixes and Word Roots." Journal of Educational Research, XLVIII (April), 611-614.
- Popham, W. James.
 - 1967 <u>Educational Statistics</u>, <u>Use</u>, <u>and Interpretations</u>. New York: Harper and Row.

Pressey, L. C.

1926 "Specific Elements Making for Proficiency in Silent Reading, When General Intelligence is Constant." <u>School and Society</u>, XXIV (November), 589, 592. Pressey, L. C., and W. S. Moore.

1932 "The Growth of Mathematical Vocabulary From the Third Grade Through High School." School Review, XL, 449-454.

Ramsey, Wallace.

1960 "An Analysis of Variables Predictive of Reading Growth." Journal of Developmental Reading, III, 158-164.

Reid, Florence E.

1958 "Films Provide a Rich Source for Vocabulary Study." Journal of Educational Research, LI (April), 617-621.

Richardson, J.

- 1950 "A Factorial Analysis of Reading Ability in Ten Year Old Primary School Children." <u>British Journal of Educational</u> Psychology, XX, 200-201.
- Sachs, H. J.
 - 1943 "Reading Method of Acquiring Vocabulary." Journal of Educational Research, XXXVI (February), 457-464.

Sanders, Ella M., et al.

- 1960 "Verbal-Quantitative Ability and Certain Personality and Metabolic Characteristics of Male College Students." <u>Educational and Psychological Measurement</u>, XX, 3 (Autumn), 491-503.
- Schleich, Muriam.
 - 1967 "Remedial Studies at the Secondary Level." <u>Combining</u> <u>Research Results and Good Practice</u>. International Reading Association Conference Proceedings, XI, 2, 109-116.

Serra, Mary C.

- 1953 "How to Develop Concepts and Their Verbal Representations." Elementary School Journal, LIII (January), 275-285.
- 1953 "The Concept Burden of Instructional Materials." <u>Elementary</u> School Journal, LIII, 508-512.

Shannon, J. R., and Marian A. Kittle.

1942 "An Experiment in Teaching Vocabulary." <u>Teachers College</u> Journal, XIV (September), 1-6.

Shaw, Philip.

1961 "Reading in College." <u>Development In and Through Reading</u>. 60th Year Book of National Society for the Study of Education, Chicago, Ill. Part I, Chapter XIX, 336-354.

Siegel, Sidney.

1956 <u>Nonparametric Statistics for the Behavioral Sciences</u>. New York: McGraw-Hill Book Company, 116-126.

Snedecor, George W., and William G. Cochran.

1967 <u>Statistical Methods</u>. 6th ed. Ames, Iowa: Iowa State University Press.

Strang, Ruth.

1962 "Progress in the Teaching of Reading in High School and College." <u>The Reading Teacher</u>, XVI (December), 170-177.

1964 Diagnostic Teaching of Reading. New York: McGraw-Hill.

Thorndike, E. L.

1917 "Reading as Reasoning: A Study of Mistakes in Paragraph Reading." Journal of Educational Psychology, VIII, 323-332.

Thorndike, E. L., and Irving Large.

1944 <u>The Teacher's Word Book of 30,000 Words</u>. New York: Bureau of Publications, Columbia University, Teachers College, 1-274.

Thurstone, L.

- 1946 "Note on a Reanalysis of Davis Reading Test." <u>Psychometrika</u>, XI, 185-188.
- Townsend, Agatha.
 - 1968 <u>Reading Tests and Reviews</u>. Ed. Oscar Krisen Buros. Highland Park, New Jersey: Gryphon Press.

Veldman, Donald J.

1967 <u>Fortran Programming for the Behavioral Sciences</u>. New York: Holt, Rinehart, Winston.

Waring, Doris.

1939 "An Evaluation of Extensive and Incidental Methods of Teaching Vocabulary." (Unpublished Master's Thesis, University of Michigan.)

Waters, Betty.

1939 "A Teaching Project in Language Vocabulary Enrichment." (Unpublished Master's Thesis, University of Iowa.)

Werner, Heinz, and Edith Kaplan.

1952 "The Acquisition of Word Meanings: A Developmental Study." Monographs of the Society for Research in Child Development, Child Development Publications, XV, 1-120.

Westfall, Alfred.

1951 "Can College Students Expand Their Recognition Vocabularies?" School and Society, LXXIII (January), 25-28.

Wiersema, Mildred Z.

- 1959 "Ceiling Unlimited." Education, LXXX (October), 76-79.
- Williams, Phillip.
 - 1961 "The Growth of Reading Vocabulary and Some of Its Implications." <u>British Journal of Educational Psychology</u>, XXI, 104-105.

Witty, Paul, and James P. Fitzwater.

1953 "An Experiment With Films, Film Readers, and the Magnetic Sound Track Projector." Elementary English, XXX, 232-241.

Witty, Paul, Theodore Stolary, and William Cooper.

1952 "Some Results of a Remedial Reading Program for College Students." School and Society, LXXVI (December), 376-380.

Young, James D.

1953 "An Experimental Comparison of Vocabulary Growth by Means of Oral Reading, Silent Reading, and Listening." <u>Speech</u> Monographs, XX (November), 273-276.
APPENDIX A

INSTRUCTIONS

•

OUTLINE OF LECTURE TO TEACHERS

Vocabul'ary Improvement

- I. Types of vocabulary.
 - A. Receptive: listening, reading
 - B. Expressive: writing, speaking
- II. Growth of vocabulary: Edgar Dale

/_____/ continuum Step 1. cognizant of word Step 2. hazy area of "twilight zone" Step 3. usable, can write or speak word

III. Why improve vocabulary?

- A. Each year of college demands some 300-500 new technical terms in each area, plus a greater number of general terms. This gives a weekly load of 50-60 new words.
- B. Reading quickly and effectively requires a large vocabulary.
- C. Your vocabulary tells something about you.

IV. Ways to improve.

- A. <u>Underline words</u>: books, magazines; focus your attention and guess at the meaning. Check your guess the next time you use the word. If necessary, check the dictionary.
- B. <u>Word file or lists</u>: Collect from lectures, books, texts; file by subject; review daily, before written assignments, and tests.
- C. <u>First hand experiences</u>: increases range and depth; movies, talking with others, exhibits, working, political activities, hikes, etc. Learn something new; cooking, football, gardening, etc.
- D. Work a little each day: Set a goal of 5-10 new words.
- E. Read More: gives variety of meanings.
- F. Use the new words: in conversation or writing.
- G. <u>Read aloud</u>: improves pronunciation and calls attention to the whole word.
- H. Learn word parts: roots, prefixes, suffixes, and meanings.
- I. <u>Develop interest in word origins</u>: Laird, <u>The Miracle of</u> <u>Language</u>; Funk, <u>Word Beginnings and Their Romantic</u> <u>Stories</u>; Myers, <u>The Foundations of English</u>; Funk, <u>Thirty</u> <u>Days to a More Powerful Vocabulary</u>.
- J. <u>Use the dictionary</u>: Learn the diacritical markings and how to pronounce words. Learn a few rules to help here.

V. Summary:

Be aggressive, notice words and meanings, set a goal of the number of new words to add daily.

INSTRUCTION SHEET TO STUDENTS

Procedures:

- 1. Select a magazine or newspaper.
- 2. Skim quickly to identify five words in your "twilight zone".
- 3. Write the sentence or phrase the word appears in and underline the word.
- 4. In parenthesis after each sentence write your meaning of the word. If you do not know, put a question mark.
- 5. Check the meaning with your dictionary. If your guess is correct, leave it. If your guess is wrong, draw a line through it and write a correct definition in your own words using the dictionary as a guide.

Notes:

- 1. Write the time you begin and finish the exercise. After 20 minutes, time will be called and you must proceed to other material even if you have not finished five words. You may take less time.
- 2. You are to do this exercise two periods each week. Date each sheet you use.
- 3. You may use more than one word in a sentence.
- 4. Do not use names of people and organizations.
- 5. The meaning of your word must be correct for the context in which it is used.

Examples:

- 1. This <u>documentary</u> examines (program)(report based on actual data collected)
- 2. Sports are a <u>reflection</u> of American attitudes, values, and prejudices. (mirror-eg. to show what is true)

APPENDIX B

÷,

.

SAMPLE WORK SHEETS AS COMPLETED BY STUDENTS

.

Laterial Used AU Total Time 15 (D)(05 legianing Time La victory that led to a powerful conglomerate 'a looing the dicense basito television station. (opposition) a mass; a single mass 2. Washington lawyers, respectful of the UCC's dedication, sophistication, and clout, advise many licenseer to megotiate & pettle [?) to strike; hit 3. Not per them the fervor of flag- waving and patrictic speeches (existement) andor; zeal; great wormth of emotion. 4 But there is onether dimension to this resurgent notionalism: bear (up coming) rising on tonding to rise 5. a one side are the "nationalist" academies, a vaciferous, loosly organized ministy (?) Moisy, clanarous)

October 26 Que - 3000 10,1971 15 min 1) organized labor has abandoned its initial bellicosity (relielion) 1) liberal benefits and extra amenities (allowances) attractive features . 3) help us solve our horrendous problem (horrible) 4) congany reacted with exemplary can low (indictanting) owing as a model or example 5) Even more <u>vocifierouoly</u> anti-American canCidate (forocioaly?) neisily or clamorally

Course & Section: 1000 Jer. > __ Date:_____ Material Used:_____ _ Ending Time: /. 35_ Total Time: 18 mm. Beginning Time: /: 37 R. This fall some of the south's most RECALC: Famit school distance (RADICAL & SEPERATE to RACE) NOT RESPONCE OF handleing. Ľ whose two other children also astend R. bieneial schools (Black & white) des egregation as palatable as posible С. (Zurer & Zurck) Agase able to Bemind O. white Exodus. (Retworks) A MASS SEPARTURE E. A consoltium of mississippi bants (A not Ending, 10ts many) ASSOCIAte \$ SOCIER

Name :

APPENDIX C

2

7

CODED COMPUTER PRINT-OUT OF RAW DATA

. •

								00760		31												
	00	0000000 3456784	01111 90123	1111 4567	1122 8901	222 234	222223	333333	3334 789	4444	444444	455	5559	5555 5678	5560 890)	6666 1234	5666 456	5661 789(777 0123	1771 3450	7777 5789	8 0
CARD											1.1											
0001	С	DATA I	DECK	OF M	IINNI	EG	NEWUCH	1														
0002	С.	DATA /	ARRAN	GEME	NT 1	(F6	1,241F	3)														
0003	С	CLASS	AND	STUD	ENT	NUM	BER															
0004	ē	0.0	- 364		SSIN	0.1	1+27=1	2201RE	۸D.	ТМР	.NO.5	1-6	3=12	222	I S TI	เกษ	SK		1			
0005	ř	čo	. 566	= STI	DENT	NO	TN 2	SECTI	กม	••••		• •					3.1.7					
0006	ř	COL. 7	-9 ± T	FACE		IIMA	6 0	, ard it														
00007	č	001 1	-12-	ACE		01.0	- · ·															
0007	č	COL 11	-12-	AUE	1 - 14														· •			
0008	. <u>.</u>	COLI		SEAT	L=m	• 2			-													
0009	5	-CUL-IG	2-18-	CULL	EGE	LLA	22: T=	FRUSH,	Z ≠ :	SUPP	1, 3,=JI	. .	4=51	κε	011	HERS	5					
0010	Ľ	N-D PI	RETES	H RA	W SC	URE	5															
0011	Ľ.	LUI	L.19-	21=4	OCAB	ULA	K Y															
0012	C	COL	L•22-	24=0	OMPR	EHE	NSION															
0013	C	COL	L.25-	27 = T	OTAL	RE.	ADING															
0014	С	C01	L.28-	30=P	ATE																	
0015	С	COL.31	L-33=	NUMB	ER O	F WI	ORDS A	TTEMPT	ED													
0016	С	. COL . 34	4-36=	TIME	UŞE	DI	N STUD	Y IN M	INU.	TES.												
0017	С	N-D PC	DSTTE	STR	AW S	COR	ES															
0018	С	C 01	.37-	39=1	OCAB	ULA	RY															
0019	С	COL	L.40-	42=0	OMPR	EHE	NSION															
0020	С	COI	L. 43-	45=T	DTAL	REA	DING															
0021	ċ	CO1	. 46-	48=8	ATE																	
0022	č	COL.4	9-51=	COLL	EGE	1=	AG. 2=	AS. 3=	BU.	4=8	ED. 5=1	EN.	6=t	HE .	7=1	VN.	8=(GR.	9=1	1		
0023	Ċ.	COL - 52	- 54=	NO.	OF S	FSS	LONS S	TUDENT	why	REI		REA	THE	ΝT						-		
0024	č	TTIF	DEP	RETE	STS	COR	FS							•••								
0025	č	00	- 55-	57=1	OC AB		RV															
0026	ř	COL	. 58-	60=0	OMPR	FHE	NSTON															
0027	č	c ni	. 61-	63=1	OTAL	PE.	ADING															
0028	ιč.	200	64-	66-0	ATE	N L I	NUTING															
0020	ř	T11 E		00-1	ECT	scol	DEC															
0027	č		2.7	60~1			NE3 .															
0030	ž	00	- 70-	77-0	ONDO																	
0031	ž	00		75-7	OTAL	00	NOTIC															
0032	č	00		70-0	ATE	RE	AUING															
0033	L		• / 0-	18=4	AIL		75										~ ~					
0034				1	1 33	42	15235		41	40	87338	?		40	23	48	22	65	63	05	83	
0035		1103 1	1 18	1	1 29	34	03129		29	44	132 97	1		30	32	30		31	2/	46	00	
0036		1105	1 18	1	1 40	44	40111		49	221	01298	2		13	29	68	21	80	18	80	70	
0037		1106	1 18	1	1 45	42	87195		41	50	97407	2		n	23	64	31	11	14	16	93	
0038		1107 1	1 18	2	1 24	50	14111		30	-40	10287	د		19	14	46	21	39	45	42	66	
0039		1108	1 18	2	1 31	32	03195		37	46	83318	2		34	28	30	31	21	63	60	18	
0040		1109 1	117	1	1 24	46	70165		37	46	83238	5		19	64	40	17	57	63	60	44	
0041		1110 1	18	1	1 59	46	105269		η	601	31639	2		91	64	83	65	98	92	96	99	
0042		1111 1	1 18	1	1 52	58	110188		55	641	19298	2		84	88	87	26	89	97	93	70	
0043		1112 1	L 18	1	1 28	32	60129		33	42	75298	1		27	28	26	9	47	51	49	70	
0044		1114 1	1 17	1	1 29	44	73141		35	54	89262	2		30	59	45	11	52	82	68	56	
0045		1116 1	1.18	1	1 28	46	74279		31	18	49338	5		27	64	46	69	42	5	16	83	
0046		1201 1	18	2	1 30	30	60153	110330	35	38	73250	-4	22	32	23	26	14	52	40	46	50	
0047		1202 1	1 18	1	1 31	18	49188	20 80	44	38	82396	3	4	34	6	14	26	71	40	59	92	
0048		1203 1	L 18	2	1 27	34	61188	110370	31	46	77226	2	22	25	32	28	26	42	63	52	38	
0049		1204 1	L 18	1	1 30	34	64141	63333	47	44	91371	6	20	30	32	32	11	77	57	70	89	
0050		1205 1	18	2	1 34	36	70245	114277	32	54	86396	6	21	42	37	40	57	44	82	64	92	
0051		1207 1	18	1	1 25	16	41129	41173	27	30	57207	2	10	20	5	9	9	31	21	25	26	
0052		1208 1	18	1	1 40	46	86177	40135	38	50	88287	3	8	58	64	62	21	59	74	67	66	
0053		1209 1	18	2	1 61	60	121226	94339	80	681	48396	4	19	93	90	93	48	99	99	99	92	
0054		1210 1	18	1	1 11	26	35195	88355	20	36	56275	5	18	3	16	6	31	16	35	23	62	

	0000000	001	111	111	11) 789	122	222	222 567	223 890	33	333 345	333 567	1334 1890	44)12	444	444 678	455 901	555 234	555 567	5566 8901	234	6666 567	566 7890	777 012	7777 3456	7778
CARD																										
0055	1211	1	18	2	1	27	26	53	195	8	524	-5	28	40	68	216	6	17	25	16	18	31	34.	45	39	32
0056	1213	1	18	2	1	43	30	73	257	9	940	3	37	52	89	2 7 5	6	22	66	23	45	61	57	78	68	62
0057	1214	ī	24	ī	3	35	40	75	117	9	729	95	39	44	83	298	2	19	18	24	20	5	35	37	30	50
0058	1215	-ī	18	2	ĩ	31	34	65	195	11	536	66	34	48	82	359	2	23	34	32	33	31	50	68	59	87
0059	1216	ī	19	ī	ī	23	30	53	269	10	531	0	25	40	65	359	3	21	17	23	18	65	26	45	35	87
0060	1217	ī	18	2	ī	35	4 A	83	195	8	82	51	40	52	92	262	2	18	45	69	58	31	63	78	71	56
0061	1218	ī	18	ī	ī	26	34	60	188	6	016	ii.	34	46	80	275	4	12	22	32	26	26	50	63	56	62
0062	1219	ī	18	ī	ī	36	44	80	177	3	718	10	35	44	79	309	9	9	47	59	54	21	52	57	55	74
0063	1221	÷ī.	18	ī	ī	37	28	65	299	ž	610	56	37	42	79	384	Ś	. 9	50	19	33	76	57	51	55	91
0064	1303	2	20	ī	3	36	46	82	235	-			36	38	74	426	1		20	42	29	40	27	21	22	89
0065	1305	ž	17	ī	ī	41	60	101	214				41	52	93	446	3		61	90	79	42	65	78	72	96
0066	1306	2	18	2	ī	38	38	76	203				30	48	78	407	. 6		53	42	49	36	39	68	53	93
0067	1309	2	19	2	ī	21	26	47	203				19	42	61	309	6		14	16	13	36	14	51	30	74
0068	1310	2	18	ī	1	28	40	68	177				29	32	61	298	2		27	48	37	21	37	25	30	70
0069	1314	2	25	ī	2	57	64	121	309				55	68	123	501	. 5		83	95	90	74	80	99	90	97
0070	1316	ž	19	ī	ī	30	38	68	165				29	32	61	298	2		32	42	37	17	37	25	30	70
0071	1401	2	29	2.	1	29	26	54	153	8	446	30	25	34	59	2 3 8	6	24	27	16	19	14	26	30	27	44
0072	1402	2	18	2	1	28	26	54	257	5	019	8	32	42	74	349	6	10	27	16	19	61	44	51	48	85
0073	1403	2	18	2	1	19	32	51	177	14	64	70	26	36	62	262	2	25	11	28	16	21	28	35	31	56
0074	1404	2	18	1	1	34	34	68	141	4	719	7.	36	50	86	287	2	11	42	32	37	11	55	74	64	66
0075	1406	2	18	2	1	33	36	69	290	10	442	25	35	36	71	426	6	23	40	37	39	72	52	35	43	95
0076	1407	2	18	1	1	28	40	69	177	10	44(00	30	36	66	226	- 5	21	27	48	37	21	39	35	37	38
0077	1409	2	18	2	1	36	46	82	226	3	328	30	45	50	95	327	2	14	47	64	57	48	73	74	74	80
0078	1414	2	18	1	1	18	36	54	188	7	02(57	20	32	52	250	3	15	10	37	19	26	16	25	19	50
0079	1415	2	18	. 1	1	35	42	77	235	5	523	39	40	50	88	713	2	13	45	53	50	52	63	74	67	99
0080	1416	2	18	2	1	33	38	71	203	11	438	37	39	46	85	491	6	: 22	- 40	42	41	36	61	6.3	63	97
0081	1417	2	18.	1	1	10	16	26	141	7	133	39	8	32	40	275	2	17	3	- 5	3	11	2	25	8	62
0082	1418	2	18	2	1	21	42	63	257	10	241	0	41	40	81	407	6	22	14	53	30	61	65	45	57	93
0083	1503	2	17	1	1	28	36	64	153	7	523	30	31	30	61	338	1	15	27	37	32	14	42	21	28	83
0084	1504	2	18	1	1	38	54	92	299	10	139	95	45	46	91	417	3	20	53	82	70	76	73	63	70	94
0085	1506	2	18	2	1	39	56	95	235	7	024	+6	41	56	97	384	6	14	55	85	73	52	65	86	76	91
0086	1507	2	17	1	1	28	46	74	226	10	93	53	25	48	73	426	4	22	27	64	46	48	26	68	46	95
0087	1510	2	18	1	1	34	44	78	214	11	63	<u>n</u>	41	50	-91	396	3	23	42	59	52	42	65	74	70	32
0088	1601	3	18	2	1	30	26	56	235	8	329	35	87	58	145	349	2	16	32	16	21	52	99	90	99	85
0089	1602	3	15	1	1	42	38	80	290	15	13	15	40	38	78	318	2	20	63	42	24	12	63	40	53	/8
0090	1603	3	18	Z	1	44	38	82	235	12	13	13	42	42	84	359	6	20	69	42	57	52	67	51	61	87
0091	1605	3	18	1	1	40	40	80	245	7	92	50	37	58	95	338	2	17	58	48	54	21	57	90	14	83
0092	1606	2	18	1		23	40	20	100	-1	733		21			212	- 4	10	50	40	50	20	21	21	43	70
0093	1608	د	18	2	1	31	42	19	203		724	+ 1	42		50	290	3	10	20	22	22	50	201	21	17	70
0094	1609	د	1.1	2	+	29	30	27	271	10	130	37	20	24	70	298 230	4	19	30	23	22	01	20	21	42	44
0095	1610	2	10	2	+	10	20	21	100	11			40	20	66	230 	1	22	10	10	~~	24	24	21	22	04
0096	1612	2	18	4	1	10	22	40	163	10	220	22	27	30	57	440 1.21	2	17	10	10	12	14	14	21	10	90
0097	1610	2	10	1	+	12	20	40	105	- 7	220	5.4	20	36	50	730 707	2	22	10	17	12	21	24	20	27	46
0090	1610	2	10	1	1	50	54	1 04	214	6	842		56	48	104	476	2	22	81	82	82	42	50	68	83	95
0100	14 20	2	10	-	-	40	22	47	106	1 ^	0.20	56	26	40	204	340	2	20	59	10	20	21	55	68	61	85
0101	1620	2	19	ĩ	î	26	20	44	105	- X	420	10	31	30	61	262	ā	14	22	Â	12	31	42	21	30	56
0102	1701	2	22	î	î	15	12	27	215	1 2	241	5	22	26	4.8	318		21	- 6	3	ĩ	52	20	14	15	78
0103	1702	· •	18	i	ì	35	30	65	177	13	344	•0	32	30	62	371	2	22	45	23	33	21	44	21	31	89
0104	1703	3	18	2	ī	32	28	60	245	īź	34	15	34	36	70	275	2	23	37	19	26	57	50	35	42	62
0105	1704	. 3	18	ĩ	î	12	14	26	257	īō	339	36	34	72	106	417	2	20	4	4	- 3	61	50	99	85	94
0106	1705	ž	20	ż	ź	73	62	135	488	īĭ	134	+9	75	62	137	591	4	21	96	92	96	97	97	91	96	99
0107	1706	3	17	2	ī	27	38	65	235	10	940	80	26	32	58	501	6	21	25	42	33	52	28	25	26	98
0108	1708	3	18	2	ī	27	28	55	257	13	34	20	35	44	79	338	4	21	25	19	20	61	52	57	55	83

÷

80/80 LIST

PAGE 002

`. .

	0000000	001 890		1111 3456	11	122	2222	2222	223	333	333	3334	44	4444	4444	455 901	5559	555	5566 8901	234	5666	661	777	7777	7778
CARD																									
0109	1709	3	18	2	1	43	50	932	299	1 0 5	420	42	50	924	407	6	21	66	74	71	76	67	74	71	93
0110	1710	3	18	1	1	40	36	762	269	28	460	42	44	86	524	5	23	58	37	49	65	67	57	64	99
0111	1712	3	18	1	1	41	52	93	195	105	417	39	50	89	417	5	21	61	78	71	31	61	74	68	94
0112	1715	3	18	1	1	35	30	652	245	119	455	37	44	81	396	5	23	45	23	33	57	57	57	57	92
0113	1716	3	18	1	1	37	34	712	257	103	440	46	42	882	262	2	22	50	32	41	61	75	51	67	56
0114	1717	3	18	2	1	39	44	832	226	113	420	43	58)	1014	491	2	21	55	59	58	48	69	90	80	97
0115	1718	3	18	2	1	23	38	61	188	117	417	27	42	69	318	6	21	1.7	40	28	26	31	51	40	78
0116	1801	3	19	1	1	37	38	752	226	100	455	38	44	823	309	- 5	23	50	42	48	48	59	57	59	74
0117	1802	3	18	1	1	34	36	70	141	50	315	36	56	922	238	- 5	16	42	37	40	11	55	86	71	44
0118	1803	3	18	1	1	28	30	582	257	84	390	36	46	823	327	. 5	20	27	23	24	61	55	63	59	80
0119	1805	3	18	- 1	1	34	38	722	279	107	430	36	36	723	349	2	22	42	42	43	69	55	35	45	85
0120	1806	3	18	2	1	33	38	71	129	20	275	41	46	872	298	6	14	40	42	41	9	65	63	65	70
0121	1807	3	18	2	1	44	42	862	214:	113	457	43	44	873	371	3	23	69	53	62	42	69	57	65	89
0122	1808	3	18.	2	1	75	56)	1314	475	128	440	70	62	132	250	2	22	98	85	96	98	98	95	98	50
0123	1810	3	27	. 1	1	41	621	1032	299	80	460	43	52	95	513	3	23	61	93	81	76	69	78	74	98
0124	1811	3	18	2	1	43	36	79	269	121	409	35	46	614	407	6	23	66	37	53	65	52	63	57	93
0125	1812	3	18	1	1	68	50	1182	245	52	250	59	56	115	550	.5	13	96	74	91	57	92	86	91	99
0126	1814	3	18	1	ļ	31	42	732	226	87	250	29	52	613	327	6	14	31	53	45	48	37	78	57	80
0127	1815	3	18	1	1	33	26	59	195	85	330	34	26	-57.	349	3	19	40	16	25	31	50	14	25	85
0128	1816	3	18	1	1	34	32	662	245	118	335	33	38	712	298	5	17	42	28	35	57	47	40	43	70
0129	1818	3	18	2	1	21	34	552	245	101	355	23	34	573	359	3	18	14	32	20	57	22	30	25	87
0130	1902	2	17	1	1	20	20	40	508	85	345	13	28	413	338	2	18	13			92	.?	17		83
0131	1903	2	18		1	21	40	674	220	43	347	22	40	119	+20	4	19	22	47	30	48	20	63	43	75
0132	1908	~	10				24	501	214 3/5	.07	400	42	20.	1022	240	~ ~	12	12	25	79	42	15	90	20	72
0133	1912	2	18	1	-	21	32	274	247.	102	409	30	20	6.74	440		22	27	22	22	20	34		63	70
0135	2001	7	10	1	4	21	50	274	203	22	42U	19	20	1767	2.20	2	10	14	21	22	20	14	11	14	20
0136	2005	7	10		÷.	40	26	73	000	01	200	43	40	023	371	- 2	14	71	12	7 0 4 6	74	40	76	40	00
0137	2005	7	27	÷.	Ē	52	27	041	05	41	2 3 2	43	52	116	617		12	69	10	20	25	07	50	74	07
0139	2013	- 2	1.8	- î	1	22	28	502	216	65	262	22	30	A1 2	150	7	10	16	10	15	42	22	40	20	90
0139	2101	ī	18	î	î	37	54	911		61	240	38	60	982	75	2	12	50	82	49	69	26	92	77	62
0140	2102	î	18	2	î	47	42	892	57	95	350	42	44	86	171	4	19	75	53	66	66	61	57	64	89
0141	2105	ĩ	18	ī	i	36	40	761	68	65	260	37	52	892	75	2	13	47	48	49	49	26	78	68	62
0142	2106	ĩ	18	2	ī	32	42	74	77	ιōō	370	21	42	633	109	- 4	20	44	53	46	46	žī	51	32	74
0143	2107	ī	18	ī	ī	- 4	30	341	165	99	339	20	36	562	207	- 3	20	1	23	5	5	17	35	23	26
0144	2108	1	18	2	1	26	26	521	77	35	95	22	36	58)	85	3	7	22	16	17	17	21	35	26	17
0145	2110	1	18	2	1	28	40	682	203	80	221	26	38	642	2 3 8	· 3	16	27	48	37	37	36	42	33	44
0146	2113	1	18	1	1	30	34	64)	195	35	121	44	48	922	275	2	7	32	32	32	32	31	68	71	62
0147	2202	5	24	-1	2	29	14	431	117	56	340	37	36	733	396	1	17	17	2	5	7	33	21	26	89
0148	2203	5	18	2	1	23	28	512	203	81	318	37	48	853	327	2	18	17	19	16	36	57	68	63	80
0149	2204	5	19	2	1	31	32	631	177	77	277	43	54	972	287	6	16	34	28	30	21	69	82	76	66
0150	2205	5	18	1	1	19	24	431	117	67	275	38	18	562	287	1	14	11	13	10	7	59	5	23	66
0151	2206	5	25	1.	2	26	26	521	88	68	290	36	38	743	349	5	16	12	10	9	22	31	25	27	79
0152	2207	5	18	1	1	21	24	45)	153	32	190	42	48	904	17	1	9	14	13	11	14	67	68	69	94
0153	2208	5	17	2	1	37	34	711	195	82	314	54	30	843	396	2	19	50	32	41	31	88	21	61	92
0154	2209	5	18	2	1	37	54	911	951	01	385	50	58)	1083	84	6	21	50	82	69	31	82	90	86	91
0155	2211	5	18	2	1	41	38	791	88	89	291	60	66	264	+26	2	18	61	42	53	26	93	99	96	95
0156	2212	5	18	1	1	36	32	681	1531	05	382	44	50	943	396	2	21	47	28	37	14	71	74	73	92
0157	2213	5	18	2	1	43	46	891	165	90	314	47	62	1093	349	2	1.9	66	64	66	17	77	95	87	85
0158	2214	5	18	2	1	32	54	862	214	85	303	40	56	963	371	6	19	37	82	62	42	63	86	75	89
0159	2215	5	18	Z	1	27	32	591	177	65	280	23	34	572	238	4	14	25	28	25	21	22	30	25	44
0160	2216	5	17	2	1	13	26	392	226	58	286	19	28	473	518	4	15	.5	16	.7	48	14	17	14	78
0161	2217	2	18	Z	1	24	28	522	:35)	100	299	41	44	854	+36	. 6	20	15	19	17	22	65	51	63	96
0162	2220	5	18	1	.1	16	20	301	. ((20	10	17	50	223	36	د	4		8	•	21	11	37	20	85

PAGE 003

٠

111

PAGE 004

	0000000	001 890	111	111 456	11: 784	L 2 2 901	222	2222	23	333333 123456	3334 7890	444 012	4444 3456	444 5789	559 012	555 234	5559 5671	5566 8901	234	567	66 890	777 0123	7777 3456	7778
CARD																		_	_	_				
0163	2301	6	18	1	1	45	50	951	65		38	44	823	327	2		71	74	73	17	59.	57	59	80
0164	2302	6	18	1	1	57	64)	1212	99		55	64	1194	+91	2		89	95	93	76.	89	97	93	97
0165	2303	6	18	1	1	26	32	582	03		18	38	562	298	5		22	28	24	36	12	40	23	70
0166	2304	6	17	.1	1	35	52	872	90		25	40	653	318	5		45	78	64	72	26	45	35	78
0167	2305	6	18	1	1	39	48	872	45		32	44	763	384	2		55	69	64	57	44	57	51	91
0168	2306	6	18	1	1	39	58	972	03		38	58	963	318	2		55	88	75	36	59	90	75	78
0169	2308	6	17	1	1	18	14	321	41		21	26	472	298	2		10	- 4	5	11	18	14	14	70
01 70	2309	6	18	2	1	52	48	1002	14		55	62	1172	298	2		84	69	78	42	89	95	92	70
0171	2310	6	17	2	1	35	22	572	69		39	44	833	327	3		45	10	22	65	61	57	60	80
0172	2311	6	17	2	1	33	66	993	44		35	50	854	46	2		40	97	77	88	52	74	63	96
0173	2314	6	18	1	1	35	44	791	77		42	56	984	17	2		45	59	53	21	67	86	77	94
0174	2315	6	18	1	1	39	42	812	69		52	42	943	349	5		55	53	56	65	86	51	73	85
0175	2316	6	18	2	1	52	641	163	09		59	661	1,253	359	2		84	95	90	79	92	99	96	87
0176	2317	6	19	1	1	22	32	541	65		32	30	622	238	3		16	28	19	17	44	21	31	44
0177	2318	6	18	2	1	18	30	482	26		16	36	522	298	4		10	23	13	48	9	35	19	70
0178	2321	6	19	1	1	26	10	36	75		35	40	752	216	2		22	2	6	2	52	45	49	32
0179	2401	7	18	2	1	47	46	932	69	71173	44	48	914	+07	- 4	14	75	64	71	65	71	68	70	93
0180	2403	7	18	2	1.	25	34	592	26	66251	22	42	643	818	6	13	20	32	25	48	20	51	33	78
0181	2404	7	18	2	1	30	32	622	99	85188	34	34	684	36	6	17	32	28	29	76	50	30	39	96
0182	2406	1	18	2	1	26	20	4.62	03	65177	33	50	833	327	4	13	22	- 8	12	36	47	74	60	80
0183	2408	4	18		1	30	32	622	26	92299	34	- 54	884	6H	2	19	32	28	29	48	50	82	67	97
0184	2410	4	15	1	1	30	40	162	69	89237	34	46	804	20	2	18	41	48	49	62	50	63	26	95
0185	2411	4	18	1	1	22	40	952	42	72300	51	42	934	+80	٤	16	87	48	73	21	83	51	12	97
0186	2412	1	18		1	32	22	842	14	29391	40	52	983	559	2	20	31	78	60	42	(2)	.78	T	87
0187	2502	7	18	1	1	39	54	931	88	72355	33	40	734	+26	2	20	25	82	$\frac{n}{2}$	26	47	45	46	95
0100	2504	4	10	1	-		40	507	27	10220	21	221	0/5	117	?	19	60	04	07	22	50	18	02	14
0107	2505	4	10	1	1	22	20	572	2.04	77547	24	20	045	1.5	2	17	40	10	22	07	20	14	16	98
01 90	2500	÷	10	ĩ	i	42	40	822	00	67270	57	50	1074	.07	5	14	47	26	57	74	20	74	12	90
0102	2510	7	10	÷.	î	22	20	713	22	74220	36	A 0	044	07	2	1.6	40	40	41	04	55	40	<u>21</u>	02
0193	2511	7	18	2	î	36	36	727	19	66197	38	54	922	196	6	14	47	37	43	82	59	82	71	92
01.94	2512	7	19	ĩ	ĩ	29	28	572	99	69280	17	42	597	109	2	14	30	19	22	76	11	51	27	74
0195	2514	7	1é	5	î	43	48	914	75	81279	55	44	99	359	4	16	66	69	69	98	Âġ	57	78	87
0196	2515	ż	18	2	ĩ	37	50	873	27	44141	38	46	842	38	3	Ĩĝ	50	74	64	84	59	63	61	44
0197	2516	7	18	2	ī	27	30	572	35	80314	34	26	602	262	2	16	25	23	22	52	50	14	29	56
0198	2601	3	21	ī	ī	54	38	922	03	72314	45	48	932	98	2	16	86	42	70	36	73	68	72	70
01 99	2603	3	24	ĩ	3	60	48	081	651	08395	58	581	163	59	4	20	80	48	69	10	79	80	81	76
0200	2605	3	18	1	1	36	42	771	41	81313	35	46	813	118	2	16	47	53	50	11	52	63	57	78
0201	2608	3	17	1	1	15	50	352	35	76269	25	42	672	287	2	15	6	8	6	52	26	51	38	66
0202	2611	3	23	2	1	21	38	591	89	78280	25	40	653	27	3	15	14	42	25	26	26	45	35	80
0203	2701	1	20	1	4	53	50)	033	68	47170	57	521	1096	539	2	9	61	51	57	89	70	60	67	99 .
02 04	2702	1	18	2	1	34	34	682	14)	04420	35	36	712	250	4	21	42	32	37	42	52	35	43	50
02 05	2703	1	19	1	2	49	64)	131	53	95380	54	62)	163	318	1	19	67	95	83	13	78	91	85	68
0206	2704	1	19	2	2	31	40	712	14	70240	34	46	803	318	2	14	20	39	27	37	27	47	35	68
0207	2705	1	19	1	1	36	22	582	57	97400	35	32	673	149	5	20	47	10	24	61	52	25	38	85
0208	2706	1	18	1	1	46	46	921	65	53280	48	48	963	318	5	14	73	64	70	17	79	68	75	78
0209	2707	• 1	20	1	1	40	42	921	95	62260	44	561	002	275	2	13	58	53	57	31	71	86	79	62
0210	2708	1	18	1	1	35	34	691	65	97368	37	52	892	216	4	19	45	32	39	17	57	78	68	32
0211	2709	1	19	1	1	26	30	561	53	70273	24	34	581	85	6	14	22	23	21	14	24	30	26	17
0212	2710	1	26	1	6	75	581	332	03	37420	89	56)	453	18	8	21	94	77	92	30	99	70	97	62
0213	5101	8	17	1	1	34	38	722	90	98404	34	44	783	27	3	22	42	42	43	72	50	57	53	80
0214	5102	8	17	1	1	31	34	652	03	74264	35	40	753	84	3	15	34	32	33	36	52	45	49	91
0215	5103	8	18	1	Ť.	41	42	832	45	02265	38	5Z	903	349	4	20	61	53	58	57	59	78	69	85
0216	5104	8	18	I	L.	28	32	602	20	17314	29	44	152		Z	17	27	28	20	48	31	51	40	0.0

PAGE	005
------	-----

. . . .

80/80 LIST

	0000000	00) 89(1111	111	11:	L222	2222	222	223	333:	333	333	4444	444 345	444 678	455 901	555 234	555 567	5566 8901	234	6666 156	566' 7891	777	7777 3456	7778
CARD																									
0217	5105	8	18	1	1	30	28	58	309	983	334	27	50	77	426	2	20	32	19	24	79	31	74	55	95
0218	5106	8	18	1	1	54	641	18	226	70	367	46	56	102	480	2	20	86	95	91	48	75	86	81	97
0219	5107	Â	1.6	2	ī	24	34	5.8	257	100	278	30	28	58	318	3	20	19	32	24	61	39	17	26	78
0220	5108	Ā	ĨĂ	ĩ	ĩ	13	14	27	195	5.0	380	25	34	59	287	· 3	19	5	4	3	31	26	30	27	66
0221	5109	Ă	18	2	î	24	34	20	165	1 04	308	26	36	64	226	. í	20	10	37	26	17	34	35	33	3.8
0222	5110	Ā	18	ĩ	î	21	28	50	1 95	100	203	30	3.8	6.8	294	2	20	âź	10	25	31	30	4ó	30	20
0223	5111	6	10	÷	÷	21	32	43	274	44	270	26	20	45	426	5	15	34	26	20	<u> </u>	26	46	35	06
0224	5112	Ä	18	î	î	20	32	61	203	1 00/	420	28	4.2	70	420	ĩ	22	30	28	28	95	34	51	42	95
0225	5112		1.0	5	÷	21	22	43	100	112	276	32	44	78	262	5	22	34	2.0	20	26	44	43	53	56
0226	5116	â	1.9	ĩ	÷	20	46	75	257	96.	200	27	40	75	275	1	20	30	64	44	61	21	69	20	62
0227	5115	A	1.0	î	î	20	32	72	270	00.	365	34	3.6	72	<u>.</u>	5	21	58	2.8	43	٠ ۵	50	40	45	96
0228	5116	Ä	18	- î	-î	40	48	88	356	65	200	30	50	89	371	2	13	58	69	65	ŏń	61	74	6.6	69
0229	5110	Å	1.6	î	÷	40	34	74	210	48	1 2 1	46	46	02	3 84	3	6	59	32	46	82	75	63	71	ġ i
0230	5119	Å	18	- î -	î	50	54	ι'nΖ	214	712	380	56	48	ı ńż	426	3	тó	81	82	82	42	60	66	Å3	95
0231	5120	Ă	25	î	â	37	58	05	180	1 022	440	1.0	5.0	40	407	2	22	ĩà	77	45	20	21	76	44	<u>.</u>
0232	5201	8	18	5	ī	30	32	62	203	1.02.		32	36	68	318	2		32	28	29	36	44	35	30	78
0233	5202	Å	1.0	5	î	20	40	602	200			26	32	5.8	407			30	40	20	76	28	25	26	03
0234	5202	Å	1.8	5	- î	47	401	107	327			50	54	1 ÁL	384			75	90	85	84	A2	21	83	a 1
0235	5204	Ă	1.8	2	î	35	40	75	257			32	40	72	318	2		45	4.8	49	61	44	45	45	78
0236	5205	ĕ	18	ĩ	î	24	34	-5.0	235			47	62	inā	287	4		10	32	24	52	77	31	87	66
0237	5206	Ř	18	î	-î	28	30	58	177			28	40	68	226	2		27	23	24	21	34	45	39	38
0238	5207	ă	1.8	î	î	27	36	63	226			25	3.0	63	262	2		25	37	30	4.9	26	40	32	56
0239	5208	Ä	24	î	2	32	28	60	165			37	40	77	250	1		22	13	15	15	11	30	Ξĩ.	3.8
0240	5210	8	19	5	ĩ	59	621	21	368			55	561	111	4 4 0	5		01	63	01	à2	89	86	80	97
0240	5211	8	18	ĩ	î	34	20	54	177			34	40	74	327	2		42	, , ,	10	21	50	45	48	an
0242	5212	Ř	1.4	ĩ	ŝ	50	44	64	203			52	54	1 0 6	262	5		A1	50	72	36	Á6	21	85	56
0243	5213	A	1.8	î	î	68	681	36	511			80	66	146	630	2		01	QA.	Q.A	99	90	00	ăã	99
0244	5214	Å	24	î	â	40	20	60	75			30	30	64	226	5		áĭ.	2	Â	í	35	7	17	21
0245	5215	A	18	î	ĩ	36	47	78	141			31	60	91	216	3		47	53	52	11	42	92	70	32
0246	5216	Ă	18	5	î	42	40	82	257			38	54	92	318	4		63	4.9	57	ÂÎ	59	21	71	78
0247	5217	Ă	21	ĩ	â	55	50	105	235			47	50	97	550	3		66	51	60	45	46	52	49	98
0248	5218	Ă	21	2	2	20	40	60	153			27	30	57	161	4		6	39	15	13	14	10	ii	7
0249	5219	Ä	19	ī	ī	26	10	36	75			35	40	.75	216	2		22	2	6	2	52	45	49	32
0250	5220	Å	18	2	ĩ	34	38	72	245			32	40	72	318	3		42	42	43	57	44	45	45	78
0251	5301	Ā	ĨĂ	ī	5	37	3.8	75	214			34	56	90	426	5		32	34	31	37	27	76	49	92
0252	5302	Ð	18	2	ī	24	28	52	235			30	40	70	384	2		19	19	17	52	39	45	42	91
0253	5303	Ä	18	ĩ	ĩ	33	3.8	71	245			36	42	78	491	- 4		40	42	41	57	55	51	53	97
0254	5304	ă	18	ĩ	ĩ	33	56	89	344			36	56	92	426	3		40	85	66	88	55	86	71	95
0255	5305	8	18	ī	ĩ	38	34	72	214			34	44	78	238	2		53	32	43	42	50	57	53	44
0256	5306	Ā	18	2	2	35	50	85	203			36	52	88	426	- 4		28	63	45	30	31	65	46	92
0257	5307	ē	19	ī	2	42	46	88	214			42	581	ιõõ	298	2		47	53	49	37	48	81	65	60
0258	5308	8	25	ī	4	26	32	58	129			29	24	53	349	2		4	10	5	6	6	3	2	74
0259	5309	8	20	ī	3	39	40	79	188			23	76	99	327	3		28	24	24	17	5	99	59	65
0260	5310	8	18	ī	ĩ	28	44	72	214			27	40	67	327	2		27	59	43	42	31	45	38	80
0261	5311	8	17	1	1	24	32	56	299			27	48	75	309	3		19	28	21	76	31	68	49	74
0262	5312	8	19	1	2	29	30	59	117			30	46	76	275	2		17	17	14	7	19	47	30	50
0263	5313	8	19	1	2	36	48	84	356			28	54	92	491	2		30	58	43	86	16	71	53	96
0264	5314	8	18	1	1	10	16	26	141			8	32	40	275	2		3	5	З	11	2	25	A	62
0265	5315	8	18	2	ī	21	34	55	245			23	34	57	3 5 9	3	÷	14	32	20	57	22	30	25	87
0266	5316	8	18	1	1	40	36	76	279			41	50	91	407	2		58	37	49	69	65	74	70	93
0267	5317	8	17	2	1	23	28	51	203			22	30	52	238	3		17	19	16	36	20	21	19	44
0268	5319	8	20	1	3	47	581	05	438			33	44	77	436	2		50	78	64	97	21	37	26	91
0269	5320	8	20	1	3	33	28	61	195			32	32	64	250	2		15	7	8	20	19	10	11	31
0270	5401	8	17	1	.1	32	42	74	356)	1002	297	29	36	65	384	3	19	37	53	46	90	37	35	35	91
																				•					

.

	0000000	001	111	111	111	1222	222	222	223	3333	333	334	444	444	4444	555	555	555	5566	666	666	566	777	177	7778
	1234567	89(0123	\$456	789	9012	234	567	890	1234	567	890	0123	3456	5789	012	234	567	8901	234	+5,67	7890	0123	3456	7890
CARD	F											• •	• •			•	• •	• •			• •	• •			
02/1	5402	8	17	1	1	18	40	58	153	843	10	19	36	55.	309	و	16	10	48	24	14	14	35	22	74
0272	5403	8	21	1	3	40	48	88	245	833	00	43	501	1014	426	3	19	31	48	37	45	45	80	61	89
0273	5404	8	25	1	2	67	60	127	235	773	35	66	68)	1344	426	2	17	93	88	93	48	92	99	95	92
0274	5405	8	17	-2	1	22	24	46	203	762	72	28	22	503	359	2	16	16	13	12	36	34	_9	17	87
0275	5406	8	19	Ş	2	39	40	79	214	1053	45	33	56	89:	309	2	21	38	39	36	37	25	76	48	64
0276	5407	8	18	1	1	30	34	64	129	542	15	32	30	702	226	3	12	-32	32	32	9	44	40	42	38
0277	5408	8	10	1	1	16	20	36	177	903	56	17	36	533	3 38	3	19	7	8	6	21	11	35	20	83
02 78	5409	8	17	1	1	32	32	64	177	752	25	37	50	873	349	3	14	37	28	32	21	57	74	65	85
0279	5410	8	17	2	1	16	24	40	309	752	10	12	36	483	327	4	15	7	13	8	79	4	35	15	80
0280	5411	8	20	2	2	41	46	87	165	1104	15	49	44	933	349	3	22	44	53	48	15	67	41	54	79
0281	5412	8	19	1	2	41	34	75	245	682	75	38	50	883	359	2	14	44	25	31	53	36	59	46	82
0282	5413	8	10	2	1	34	28	62	235	1052	90	31	46	772	238	2	21	42	19	29	52	42	63	52	44
02 83	5415	8	19	1	2	42	48	90	203	1043	52	47	50	972	275	2	21	47	5 Q	53	30	62	59	60	50
0284	5416	9	19	1.	2	37	46	83	235	693	05	42	44	863	309	3	18	32	53	42	48	48	41	43	64
02 85	5418	8	17	2	ŀ	25	38	63	290	652	45	31	50	814	491	4	14	20	42	30	72	42	74	57	97
0286	5419	8	23	2	2	43	58	101	203	1183	13	51	50)	1093	371	2	23	50	84	70	30	72	81	77	84
0287	5501	9	20	1	3	53	40	101	299			61	601	1214	468	3		66	48	59	66	83	85	85	94
0288	5502	9	19	1	2	53	44	97	257			46	56	1023	318	3		76	40	64	57	60	76	68	68
0289	5503	9	19	1	2	31	40	71	257			38	46	8,4	513	2		20	39	27	57	36	47	40	97
0290	5504	9	19	-1	2	65	52	117	279			66	56	1226	600	3		92	68	87	65	92	76	89	99
0291	5505	9	18	1	2	49	56	105	235			60	54	1144	436	2		67	79	75	48	86	71	83	92
0292	5506	9	18	2	-1	36	52	88	226			43	48	913	359	2		47	78	65	48	69	68	69	87
0293	5507	9	17	2	1	54	46	100	235			51	48	993	359	2		86	64	78	52	83	68	78	87
0294	5508	9	19	2	2	46	42	88	299			48	42	903	349	6		59	44	49	71	65	35	49	79
0295	5509	9	19	1	1	43	38	81	195			43	48	912	250	3		66	42	56	31	69	68	69	50
0296	5510	9	18	1	1	35	56	91	511			44	58)	102	578	2		45	85	69	99	71	90	81	99
0297	5511	9	18	2	1	.33	36	69	257			39	22	613	349	4		40	37	39	61	61	_9	30	85
0298	5512	9	18	1	1	53	64	117	319			52	52	1044	407	3		85	. 95	91	82	86	78	83	93
0299	5513	2	22	1	4	52	64	116	319			58	56	1144	446	3		58	92	76	75	72	70	72	95
0300	5514	9	19	2	1	27	50	77	214			43	32	75	359	4		25	-74	50	42	69	25	49	87
0301	5515	9	19	2	2	13	22	35	403			25	22	472	298	4		2	6	Z	9 Z	11	3		60 .
0302	5516	9	19	1	2	.37	40		195			34	48	82	349	3		32	39	34	26	21	53	38	19
0303	5517	9	21	1.	2	59	46	105	368			56	54	110	550	2		85	53		88	81	11	19	98
0304	5518	9	20	1	2	20	34	54	269			31	40	11	338	د	1	- 6	25	11	61	33	30	31	76
0305	2214	3	20	1	-	42	44	84	222			42	50.	77:	549	د		34	32	35	80	40	22	40	
0306	5520	3	20	-	2	41	26	61	124		• •	31	20	934	210	9		44	10	~~~	~~	33	10	24	22
0307	5601	2	18	1		31	16	49	199	1033	48	44	28	82	340	د	21	34		14	20	11	40	24	92
0308	5602	3	17		+	42	40	70	100	1002	40	49 EE	52	1014	210	7	23	65	22	07	20	00	70	00	70
0309	5605	~	11	· 2		27	74	13	172	043	00	22	22.		210		23	22	22		20	67	- 19	41	07
0310	5604	3	18	1	+	21	30	67	120	943	49	34	20	57	408	2	20	20	42	22	13	21	21	25	34
0311	5005	9	18	· 1	1	22	10	41	129	9751	16	21	30	714	201	2	21	20		27	5 2	21	21	27	20
0312	5606	2	10	2	-	20	22	40	233	1063	12	30	30	724	2 30	7	23	36	20	20	22	50	30	45	00
0313	5007	2	10.	.2	-	51	26	75	207	713		20	24	0.	271	7	14	34	12	20	0.0	76	20	41	20
0314	5600	0	10	2	1	32	24	56	270	1152	44	10	42	763	20	2	23	37	13	21	90	47	51	49	91
0315	5609	~	10		-	32	14	20	41 J	012	77	55 61	= 2	07	260	2	23	41	4.	41	75	45	94	74	50
0317	5611	0	10	1	1	36	46	82	277 745	963	11	35	40	75	407	2	20	47	64	57	57	52	45	49	93
0317	5613	0	21	1	-	20	32	62	270	1066	11	24	36	603	128	2	20	17	21	16	65	10	21	1á	76
0310	5614	~	10	1	1	41	52	01	276	1052	32	36	44	801	116	2	21	41	76	71	44	55	57	56	78
0320	5615	0	10	1	1	30	36	66	245	1033	77	35	44	703	127	4	22	32	37	35	57	52	57	55	80
0320	5617	0	10	i	i	22	32	54	165	1084	02	32	30	62	238	7	22	16	28	19	ĩ,	44	21	ŝĩ	44
0322	5610	0	1.9	÷	÷	26	38	72	214	782	<u>.</u>	35	44	813	238	2	17	45	42	Â.	42	52	63	57	44
0322	2010		1.0	2	1	20	16	55	105	1092	66	10	44	833	216	4	22	55	5	20	31	61	57	60	32
0224	5620	0	10	1	2	44	40	02	203	792	46	4í	50	913	196	2	17	53	58	56	30	45	50	51	Â
0324	2020	7	47		۷		40	72	202	2		- F =	20			~		در	20	20	20			~	.

-

80/80 LIST

PAGE 006

•

PAGE 007

		0000000	001111	111	1112	2222	222223	333333	3334 7890	4444	44444	4559	5555	555	5566	6666	5666	667	177	1771	7778
	CARD		C/OILS											••••				• / •		,,,,,	
	0325	5621	9 18	2	12	n 22	421881	06318	38	42	92287	6	20	13	10	9	26	59	51	71	66
	0326	5701	4 17	ī	i i	3 28	41141	73331	18	46	64262	ĩ	17	5	19	á	11	12	63	11	56
	0327	5702	4 10	- î	2 4	6 59	1 043441	100200	2.2	581	00456	÷.	20	50	à.	72	24	2.0	01	66	0.
	0320	5702	4 10	÷	1 7	6 20	44994	4 6 7 4 1	51	201	01 74 7	2	12	12	40	36		40	4 6	70	54
	0320	5705	4 10	÷.	1 2	5 40 5 10	51153	0 92 41	24	20	71202	2	12	22	*0	55	10	55		6.2	70
	0329	5704	4 10	-	1.2	5 10	211221	05420	20	42	10310	2	~~	40		10	14	22	21	22	78
	0330	5705	4 15	2	12	~ ~ ~ ~	44220	82380	18	44	62248		19	10	10	10	48	12	21	31	70
	0331	5706	4 18	2	1 3	4 40	801951	111323	39	46	85407	4	22	42	64	54	31	61	63	63	43
	0332	5707	4 26	1	44	2 48	90153	04369	45	52	97275	3	21	31	45	37	8	40	58	49	44
	0333	5708	4 20	1	33	4 36	70290	96299	28	46	74371	3	20	16	16	14	63	11	44	22	79
	0334	5709	4 18	1	1 1	928	472351	108354	23	44	67371	2	22	11	19	13	52	22	57	38	89
	0335	5710	4 18	2	14	8 36	842031	101280	39	50	89309	- 4	20	77	37	60	36	61	74	68	74
	0336	5711	4 19	. 1	1 2	8 30	58214	65300	36	46	82359	4	15	27	21	24	42	55	63	59	87
	03.37	5712	4 18	1	12	9 32	61299	91365	28	42	70371	1	20	30	25	28	76	34	51	42	89
	0338	5713	4 18	2	13	746	83475	35 71	37	52	89609	3	7	50	64	58	98	57	78	68	9 9
	0339	5714	4 18	2	13	546	81327	85199	29	52	81384	3	17	45	64	56	64	37	78	57	91
	0340	5715	4 18	1	12	7 32	59290	66260	18	32	50287	3	14	25	28	25	72	12	25	17	66
	0341	5716	4 18	1	1 3	3 44	771881	105323	27	52	79338	3	21	40	59	50	26	31	78	55	83
	0342	5717	4 18	2	12	l 22	43203	98310	34	24	58318	2	20	14	10	10	36	50	11	26	78
	0343	5718	4 18	2	14	7 50	97344	92435	33	58	91436	4	22	75	74	75	68	47	90	70	96
	0344	5719	4 Í7	2	1 3	1 40	711883	110316	31	46	77250	4	22	34	48	41	26	42	63	52	50
	0345	5720	4 18	2	1 3	4 52	86257)	105290	31	40	71327	3	21	42	78	62	61	42	45	43	80
	0346	5801	4 18	1	1 3	8 46	82235	90291	48	48	96407	3	21	53	64	57	52	79	68	75	93
	0347	5802	4 18	ž	13	4 54	88235	85278	36	42	78287	2	17	42	82	65	52	55	51	53	66
	0348	5803	4 17	ī	1 3	8 40	78279	100346	40	46	86338	3	20	53	48	52	69	63	63	64	83
	0349	5804	4 20	ī	24	A 46	94344	35117	48	50	98359	2	7	64	53	59	84	65	59	62	82
	0350	5805	4 19	ī	1 4	2 44	863331	05312	36	42	78417	- 4	21	63	59	64	86	55	51	53	94
	0351	5806	4 18	- 5	1 2	30	58269	96319	22	40	62384	4	20	27	23	21	65	20	45	31	91
	0352	5807	4 19	-5	. î ă	1 38	68279	81235	24	44	68371	à	16	32	42	37	69	24	57	30	89
	0353	5808	4 10	5	2 3	1 32	634131	100244	40	4.9	88396	4	20	20	21	18	ŏź.	42	53	46	Ř9
	0354	5800	4 10	÷	24	6 67	100403	70253	40	401	17670	2	14	50	62	70	62	47	60	86	00
·	0355	5810	4 22	÷	24	2 602	103203	77272	41	401	81262	2	16	50	88	72	30	45	30	36	44
	0355	5010	4 22	-	1 1	5 60	03400	00280	21	24	57612		10	45	40	60	0.0	42	14	26	0.9
	0350	5011	4 10	2	1 4	2 20	74100	90207	21	20	60319	4	17	40	21	46	26	42	40	20	78
	0357	5012	4 10	5	1 2	1 34	601881	0/207	20	20	40747	- 7	21	17	27	25	26	16	45	20	56
	0350	5015	4 10	÷.	1 2	5 30 6 66	702401	107760	20		00202	-	20	42	50	62	46	41	44	74	70
	0260	2014	4 10	÷.	1 3	, ,,,	05 24 01	117346	27	20	74350	2	20	=	40	41	46	55	40	40	47
	0300	5815	4 10	-	1 2	7 50	07207	01363	20	2.0	14337	2	21	50	74	44	0.0	50	40	40	
	0301	2010	4 10	4	1 3	1 20	43100	30400	20	40	77237	2	20	20	21	10	22	27	20	26	7.7
	0302	5010	4 1 7	1	2 3	1 22	00100	50400	22	40	12321	4	20	20	~ 1	10	66	23	50	29	00
	0363	5818	4 17	2	11	5 20	202211		23	42	01201	4	20	10			21	22	21	22	90
	0364	2819	4 18		1 3	48	851771	102301	41	50	91396	2	20	50	0.4	01	21	22			72
	0365	5820	4 18	1	1 3	4 4 4 4	78214	105284	29	54	83501	د ا	21	42	29	22	42	31	82	50	98
	0366	5901	4 18	1	1 3	5 44	82235	82342	38	24	92309	د	14	22	24	21	22	24	82	11	14
	0367	5902	4 18	1	1.3	5 42	78226	100370	30	44	14321	و	20	41	51	52	48	39	21	46	80
	0368	5903	4 17	Ŀ	13	8 38	76235	89335	33	44	77491	2	19	53	42	49	22	47	51	52	97
	0369	5904	4 18	1	1 3	3 48	81245	99290	20	42	62298	2	20	40	69	56	57	16	51	31	70
	0370	5905	4 18	1	23	4 42	761951	105293	40	48	88396	1	21	26	44	32	26	42	53	46	89
	0371	5906	4 18	2	13	2 44	762031	100286	37	50	87309	4	21	37	59	49	36	57	74	65	74
	0372	5907	4 18	1	13	8 54	922451	100304	34	56	90318	3	20	53	62	70	57	50	86	69	78
	03 7 3	5908	4 18	2	1 3	5 24	59129	78360	26	38	64207	2	18	45	13	25	9	28	40	33	26
	0374	5909	4 20	1	12	5 34	60299	99345	35	38	73349	3	20	22	32	26	76	52	40	46	85
	0375	5910	4 17	2	1 3	4 36	702351	105293	33	40	73309	4	21	42	37	40	52	47	45	46	74
	0376	5911	4 18	2	1 1	8 24	422141	105284	31	46	77309	4	21	10	13	9	42	42	63	52	74
	0377	5912	4 18	1	1 4	5 60	105203	80281	47	601	07407	3	18	71	90	83	36	77	92	86	93
	0378	5913	4 18	1.	.1 4	2 36	782451	100119	37	54	91501	2	20	63	37	52	57	57	82	70	98

0379	5914	4	18	1	1	29	36	65257	85320	30	42	72359	3	17	30	37	33	61	39	51	45	87
0380	5916	4	18	1	1	36	26	62391	89233	36	42	78417	2	18	47	16	29	94	55	51	53	94
0381	5917	4	18	1	1	31	36	67106	68192	37	30	67318	2	13	34	37	36	5	57	21	38	78
0382	5918	4	21	2	4	46	30	761531	00176	44	54	98287	- 4	20	42	- 8	17	8	37	64	51	49
0383	5919	4	18	2	1	29	30	59153	85223	27	46	73185	4	17	30	23	25	14	31	63	46	17
0384	5920	4	18	2	ī	35	48	83257	98280	29	40	69327	4	20	45	69	58	61	37	45	40	80
0385	6001	6	20	2	2	54	40	94245	72256	49	44	93513	2	18	78	39	59	53	67	41	54	97
0386	6003	6	19	ī	ī	34	44	78299	88268	25	42	67371	ī	18	42	59	52	76	26	51	38	89
0387	6004	6	1 A	2	ī	31	20	51356	85310	25	42	67480	4	1Å	34	Ŕ	16	90	26	51	38	97
0388	6005	Ă	1.4	ĩ	ĩ	30	46	76344	48340	33	46	79491	à	19	32	64	49	AR	47	63	55	97
0380	6006	ž	17	÷	î	30	14	73413	46175	45	5.91	03501	4	îí	55	32	45	05	72	00	62	ó á
0300	4007	4	10	-	÷	37	42	74460	40115	24	40	76407		14	27	52	75	67	55	20	61	0.2
0370	4000	4	10	-	- 1	47	421	120420	96221	50	4 2 1	10401	2	10	04	02	04	04	02	05	21	73
0371	6000	2	10	2	÷.	24	221	74370	000250	20	2.2	70/17		20	20	~ ~ ~	30	20	72	72	5.2	27
0392	6009	2	10	-		34	40	14219	00350	54		111075	2	21	-2	47	*0	0.9	20	21	22	74
0393	6010	2	11	~	÷	41	42	632141	22433	23	251		-	29	01	23	28	42	87	90	89	22
0394	6012	•	18	1	1	20	24	50257	90365	18	34	22/2	د ا	14	22	13	12	01	12	30	14	02
0395	6013	6	19	2	1	30	26	562991	41416	31	36	67287	- 4	30	32	16	21	16	42	35	38	66
0396	6014	6	18	1	1	37	44	8137.9	78345	32	52	84524	1	20	50	59	56	93	44	78	61	99
0397	6015	6	18	1	1	11	20	31117	74264	18	28	46275	3	16	3	8	- 4	7	12	17	13	62
0398	6016	6	20	1	1	31	30	612031	03390	32	30	62309	3	21	34	23	28	36	44	21	31	74
0399	6019	6	19	2	2	23	40	63235	52280	22	32	54318	2	14	9	39	18	48	8	13	9	68
0400	6021	6	19	1	2	41	36	77165	70313	40	48	88371	2	16	44	29	31	15	42	53	46	84
0401	6101	9	18	1	1	29	34	63235	64290	28	-36	64275	3	16	30	32	30	52	34	35	33	62
0402	6102	9	17	1	1	29	32	612901	13351	30	28	58226	3	23	30	28	28	72	39	17	26	38
0403	6103	9	18	2	1	45	50	952571	05371	50	661	16371	3	22	71	74	73	61	82	99	92	89
0404	6104	9	19	1	1	37	38	751951	05382	42	581	00349	1	21	50	42	48	31	67	90	79	85
0405	6105	9	20	1	2	36	26	62195	81340	38	56	94436	3	19	30	10	17	26	36	76	55	92
0406	6107	9	17	2	1	51	541	052571	01335	54	54)	08371	4	20	82	82	83	61	88	82	86	89
0407	6108	9	18	2	2	30	22	52226	71238	34	36	70426	2	14	19	6	9	44	27	21	23	92
0408	6109	9	18	2	1	30	28	581771	05286	43	44	87349	3	21	32	19	24	21	69	57	65	85
0409	6110	9	17	2	ī	22	46	682351	09396	30	40	70287	3	22	16	64	37	52	39	45	42	66
0410	6111	ġ	18	2	ī	44	38	822141	03380	43	621	05275	- 4	21	69	42	57	42	69	95	84	62
0411	6112	ģ	18	ī	ĩ	42	32	74141	42233	52	501	02262	2	12	63	28	46	11	Ř6	74	81	56
0412	6113	ó	1.4	5	î	26	28	52177	85210	22	36	59185	2	17	22	19	17	21	20	35	26	17
0412	6116	6	1.0	ĩ	÷	27	20	55235	66305	26	44	48340	2	17	25	iá	20	52	24	57	20	85
0414	4115	ć	10	÷	-	21	22	421451	10337	20	5 21	00347	2		26	20	20	17	70	70	70	50
0414	6115	~	10	-	-	21	26	012021	04370	40	221	24275	2	22	71	20	40	24		67	Å.	40
0415	6303	3	10	2	+	47	40	44.24.0	01210	21	40	40304	7	17	10	A 0	22	20	10	40	40	02
0410	6201	2	10	÷.	-	24	34	46177	04313	21	40	75250	7	10	17	27	22	21	50	60	40	50
0417	6202	0	10			27	20	66105	02324	22	40	701 50		10	30	20	22	21	22	47	47 57	20
0418	0203		10	1	1	22	32	04143	82302	24		76150	~	10	51	20	32	21	50	21	22	
0419	6204	8	18		1	39	20	841021	30420	20	42	18298		22	22	14	00	11	22	21	23	
0420	6205	8	19	+	÷	32	44	192141	02415	21	20	81250	2	21	42	29	~ ~ ~	42	44	14	21	20
0421	6206	8	18	1	1.	35	50	85319	89325	48	42	90407	د	18	45	14	61	82	19	51	69	93
0422	6207	8	18	z	1	33	36	69245	91266	31	40	/1501	2	16	40	31	39	5/	42	45	43	48
0423	6208	8	20	1	2	27	20	47106	72237	27	40	67287	9	14	13	. 4	. !	2	14	30	19	55
0424	6209	8	17	1	1	24	26	50195	98427	17	26	43216	2	22	19	16	15	31	11	14	10	32
0425	6212	8	29	1	1	17	20	371651	08350	21	48	69250	9	22	9	- 8	6	17	18	68	40	50
0426	6213	8	20	1	3	41	48	89235	85325	41	48	89338	2	17	33	48	39	40	39	50	43	69
0427	6216	8	18	2	1	25	50	752351	08420	20	36	56262	3	22	20	74	48	52	16	35	23	56
0428	6217	8	18	1	1	31	46	77226	90280	24	56	80318	3	18	34	64	50	48	24	86	56	78
0429	6218	R	18	1	1	25	28	53177	59290	26	48	74318	2	15	20	19	19	21	28	68	48	78
0430	6219	8	19	2	1	28	44	72235	91280	26	50	76275	2	19	27	59	43	52	28	74	51	62
0431	6220	8	20	1	3	46	50	96245	74300	50	521	02359	2	15	47	54	50	45	62	62	62	76
0432	6221	8	18	1	1	33	50	833271	08360	30	52	82426	2	21	40	74	58	84	39	78	59	95

80/80 LIST

CARD

PAGE 008

PAGE 009

80/80 LIST

 6
 20
 66
 37
 53
 76
 69
 40
 57
 87

 3
 22
 34
 48
 41
 26
 37
 21
 27
 17

 3
 29
 57
 78
 16
 95
 95
 96
 56

 3
 20
 66
 48
 58
 61
 59
 57
 59
 89

 4
 22
 45
 13
 25
 72
 50
 30
 39
 66

 3
 11
 14
 6
 48
 73
 86
 80
 89

 2
 20
 34
 48
 41
 42
 28
 68
 48
 87

 3
 22
 22
 42
 32
 52
 24
 51
 37
 80

 4
 22
 30
 14
 4
 64
 80
 89
 22
 22
 24
 32
 24
 74
 22
 32
 24
 74
 33
 34
 44
 92
 24
 10
 5
 30
 51< CARD 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445

 6302
 9
 18

 6304
 9
 19

 6305
 9
 18

 6306
 9
 21

 6307
 9
 18

 6309
 9
 18

 6310
 9
 20

 6311
 9
 17

 6312
 9
 20

2 1 43 36 79299113285 43 38 81359 1 31 40 71188106422 29 30 59185 2 1 65 52117257 93311 63 62125262 1 43 40 83257 73380 38 44 82371 2 1 35 24 59290112400 34 34 68287 1 21 14 35226 51177 45 56101371 1 31 40 71214106350 26 48 74359 1 26 38 64235116440 24 42 66327 1 29 22 51203107422 34 36 70309 1 2 37 40 7721410370 36 42 78262 6312 6313 6314 6315 6316 6317 6318 6319 9 20 9 22 9 19 9 18 9 18 9 18 9 18 9 18 9 18

 1
 29
 22
 51203107422
 34
 36
 70309

 2
 37
 40
 77214103370
 36
 42
 78262

 2
 18
 26
 44203
 83401
 19
 30
 49298

 1
 28
 26
 54165
 90400
 41
 34
 75216

 1
 38
 44
 82226
 32180
 42
 486287

 1
 25
 32
 57214
 86415
 35
 44
 79298

 1
 31
 36
 67195103320
 36
 34
 70396

 1
 23
 24
 47177107430
 27
 32
 59226

1 1 1 2 2 2 0446 0447 0448

APPENDIX D

COMPUTER PROGRAMS

PROGRAM ONE

80/80 LIST

PAGE 001

	000000	0000111111111222222222233333333334444444444
CARD		
0001	//MMG:	1 JOB (12133,499-34-9670,1), MINNIE GNEWUCH
0002	/*ROU	TE PRINT HOLD
0003	// EXI	EC FORTGCLG
0004	//FOR	T.SYSIN DD *
0005	C	FACTOR ANALYSIS PROGRAM
0006	С.	INTERCORRELATION AND FACTOR ANALYSIS CONTROL PROGRAM
0007	C	PARAMETER CONTROL-CARD FIELDS.
8000	C	COL 1-5. NUMBER OF VARIABLES (MAX=12).
0009	C	COL 6-10. NUMBER OF SUBJECTS (MAX=30 FOR TDRS OPTION ONLY).
0010		DIMENSION KF(20), R(40,40), V(40,40), W(40,40), X(40), Y(40),
0011		1 Z(40), KS(40), A(40),S(40)
0012		ND=40
0013	5	CALL CCDS (KF, NV, NS, KA, KB, KG)
0014		K11=KA/10000
0015		K12= MDD (KA/1000,10)
0016		K13= MOD (KA/100,10)
0017		K14= MOD (KA/10,10)
0018		K15= MOD {KA,10}
0019		KEV=K8/1000
0020		K18= MOD (K8/100,10)
0021		K19= MOD (KB/10,10)
0022		K20= MQD (KB,10)
0023		K21= KC/10000
0024		K22= MOD (KC/1000,10)
0025		K23= MOD (KC/100,10)
0026		VN=NV
0027		CALL CORS (NS, NV, R, A, S, KF, ND)
8 500		CALL PRTS (A, NV, 1, "MEAN","S", ND)
0029		CALL PRTS (S, NV, 1, 'SIGM','AS', ND)
0030		IF (K13 .EQ. 1) CALL PRTS (R, NV, NV, R_MA, TRIX, ND)
0031	С	PRINCIPAL-AXIS ANALYSIS.
0032		NF=NV
0033		C=KEV
0034		IF (KEV .LE. 1) GO TO 90
0035		NF=KEV
0036		C= 0.0
0037	90	CALL SEVS (NV, NF, C, R, V, X, Y, ND)
0038		CALL PRIS (X, NF, I, 'EIGN', 'ROUI', ND)
0039		CALL PRTS (Y, NF, 1, PC_T', RACE', ND)
0040		IF (KIB .EQ. IICALL PRIS(V, NV, NF, "P_AX", "LUAD", ND)
0041	С	COMPUTE PRINCIPAL-AXIS FACTOR-SCORE WEIGHTS.
0042		DU 95 J≖ 1,NF
0043		$D0.951 \pm 1.00$
0044	95	R(I,J)=V(I,J)/X(J)
0045		LE TRIZ (EW) IT CALL PRID TRY NYT NET (PRANTYNID) Te trid ed th call dote (d ny net (ddata) - lter nd
0046	· ·	IF (K17 (EW) IF CALL PRID (K) NY) NF("PRACY_TID") NU)
0047	L 130	AUJUST PA REIGNIS FUK MUDIFTING VAKIMAA LUADINGS
0048	130	UU 137 J ~ LINF
0044	125	U(1) 157 L = 140V 0(1) - D(1) 1/2/(1)
0050	1 22	ALLINGTON LINGTON DI LA NUL ANUL NUL NUL NUL
0021	c	LALL AADS INT VERTING DITTING NOT
0052	L.	VALIMAA RUTATION OF FRINCIPAL AAESA
0033		CALL DETS (V. NE. 1. 1077 1. VAR.1. ND)
0054		GALL INTO TAT INTE AF FOLL F FROM FILDE

PAGE 002

	00	00000001111111111222222233333333334444444444
C 400	12	3438 840 23438 840 23438 840 23436 840 23436 840 23436 840 23436 840 23436 840
0055		CALL DETS (V. NV. 1. (DCT + ICONNI, ND)
0055		TELE FRISTING NV, 19 TELESTUDENT, ND, 19 TELESTUDENT, 19 TELES
0057		TE TREE FLORE FREE FREE TREE TREE TREE TREE TREE TR
0057	c	TT TRZZ (CAU) TO CALL FRID TRY NY NEY TRACY (1913) NUT
0050	č	CALL ASPS (W. V. P. NV. NE. NV. ND)
0060		
0061		STOP
0062		FND
0063		SUBROUTINE CCDS (KE-KI-K)-KK-KL-KM)
0064		DINENSION KE(20)- KH(20)
0065		BEAD(5.5)KH
0066		5 FORMAT(20A4)
0067		IF (KH(1), EQ.KH(2)) STOP
0068		READ(5.10) KI-KJ-KK-KL-KM-KF
0069		10 FORMAT(515 / 2044)
0070		WRITE(6+15)KH+KI+KJ+KK+KL+KM+KF
0071		150FORMAT(*1*,2044 // * PARAMETERS*/ * COL 1-5=*, I5 /
0072		151 ' COL 6-10 =', 15 / ' COL 11-15 =', 15 / ' COL 16-20 =',
0073		2 15 / * COL 21-25 =** 15 // * DATA FORMAT =* 2044)
0074		RETURN
0075		END
0076		SUBROUTINE SEVS (NV, NF, C, R, V, E, P, ND)
0077		DIMENSION $R(ND,NV)$, $V(ND,NF)$, $E(NF)$, $P(NV)$
0078	С	COMPUTE TRACE.
0079		Τ=0,
0080		DO 5 I=1,NV
0081		5 T=T+R(I+I)
0082		DO 30 K=1,NF
0083	С	COMPUTE ROOT IN E(K) AND VECTOR IN V(.K).
0084		DO 10 I=1.NV
0085		10 P(I)=1.
0086		E(K)=1.
0087		00 25 M≠1,25
0088		DO 15 [=1.NV
0089		15 V(I+K)=P(I)/E(K)
0090		DO 20 I=1,NV
0091		20 P(I) = SCPF(R, V, -I, K, NV, ND)
0092		EE=SCPF(P, V, 1, K, NV, ND)
0093		25 E(K)=SQRT(ABS(EE))
0094	~	IF (E€.LT.(#C) GO TO 35
0095	C	DEFLATE & MARIKIX.
0096		
0097		
0098		
0099		
0100	c	SO NEFR-1
0101	C	AD DO AS TELNE
0102		
0104		
0105		
0106		SOCORMAT(// + PRINCIPAL AXIS ANALYSIS. / / + TRACE #1. F10-4 //
0107		1 E7-2. 4 PCT. OF TRACE WAS EXTRACTED BY . [3.4 B(DTS.4)
0108		RETURN

PAGE 003

	000000	00001111111111122222222222333333333344444444
CARD		
0109		END
0110		SUBROUTINE AXBS (A.B.C.KA.KB.N.ND)
0111		DIMENSION $A(NO_1)$, $B(NO_1)$, $C(ND_1)$
0112		K = TARS(KA)
0113		
0114		IF (KA) 5-55-10
0115	5	IF (KB) 15-55-25
0116	10	IF (KB) 35-55-45
0117	15	DD 20 I = 1.K
0118		DO 20 J = 1 + L
0119	20	C(1,J) = SCPF(A, B, I, -J, N, ND)
0120		RETURN
0121	25	DD 30 I = 1,K
0122		DO 30 J = 1,L
0123	30	C(I,J) = SCPF(A, B, I, J, N, ND)
0124		RETURN
0125	35	DD 40 I=1,K
0126		00 40 J = 1.L
0127	40	C(I,J) = SCPF(A, B, -I, -J, N, ND)
0128		RETURN
0129	45	DD 50 I = 1+K
0130		$\hat{D}\hat{D}$ 50 J = 1,L
0131	50	C(I,J) = SCPF(A, B, -I, J, N, ND)
0132	55	RETURN
0133		END
0134		FUNCTION SUMF (X.KK.NN.ND)
0135		DIMENSION X(ND,1)
0136		SUMF = 0.0
0137		N=IABS(NN)
0138		K=IABS(KK)
0139		IF (NN) 5,55,10
0140	5	IF (KK) 15,55,25
0141	10	IF (KK) 35,55,45
0142	15	DD 20 I=1.N
0143	20	SUMF=SUMF+X(K,I)**2
0144		RETURN
0145	25	00 30 I=1,N
0146	30	SUMF=SUMF+X(I,K)**2
0147		RETURN
0148	35	DD 40 I=1,N
0149	40	SUMF≠SUMF+X(K,I)
0150		RETURN
0151	45	00 50 I=1,N
0152	50	SUMF=SUMF+X(I,K)
0153	55	RETURN
0154		END
0155		SUBROUTINE CORS (NS,NV,R,A,S,KF,ND)
0156		DIMENSION R(ND,NV),A(NV),S(NV),KF(20)
0157	- ت	T=NS
0158		00 5 I=1+NV
0159		A(I)=0.0
0160		DC 5 J=1,NV
0161	5	R(I, J)=0.0
0162		DU 10 K=1.NS

PAGE 004

	00000	00001111111111222222222333333333334444444444	5555556666666666677777777778 456789012345678901234567890
CARD			
0163		READ (5,KF) S	•
0164		DO 10 I=1+NV	
0165		A[I] = A[I] + S[I]	
0166		DO 10 J=I,NV	
0167	10	R{I,J}=R{[,J}+S{]}*S{J}	
0168		00 15 I=1,NV	
0169		A(I)=A(I)/T	
0170	15	S(I)=SQRT(R(I+I)/T-A(I)**2)	
0171		DO 25 I=1.NV	
0172		00 20 J=I.NV	
0173		IF (S(I)*S(J) .EQ. 0.0) GO TO 20	
0174		$R{J_{j}} = {R{I_{j}}/T - A{I} + A{J}}/{S{I} + S{J}}$	
0175	20	R(I,J)*R(J,I)	
0176	25	R(I+I)=1+0	
0177		WRITE(6.30)	
0178	30	FORMAT (// INTERCORRELATION ANALYSIS')	
0179		RETURN	
0180		END	
0181		SUBROUTINE VORS (NV, NF, V, A, B, C, ND)	
0182		DIMENSION VIND, NEJ, AINVJ, BINVJ, CINVI	
0183			
0184		$00.5 I = I_0 NV$	
-0185		BILL = SORIISUMPIV, -L, -NF, NUIT	
0186	-	$UU = J = I_{0}N^{2}$	
0187		V(1+J) = V(1+J) / B(1)	
0188	10		
- 0144			
0190		$UU 4U N = M_{\rm P} N F$	
0191		IF (M .EQ. N) GO IU 40	
0192		DO TO T = TAUA	
0193		A(1) = V(1,M) + V(1,N) + V(1,N)	
0194	15	$U(1) = Z_{*}U + V(1_{*}M) + V(1_{*}N)$	
0195		AA = SUMF(A, I, NV, ND)	
0196		BD # SUMPIC, Is NV, NDS CUMPIC 1 NV NOS	
0197		$UU = SUMP(A) I_1 = NV_1 NU_2 = SUMP(U_1 I_2 = NV_1 NU_2)$	
01.00		AN = OD = 3 O + VV + BB / L	
0199		AR = 00 = 240 + AA + 00 / 1	
0200		AD = CC - (RATT2 - BOTT2) / I	
0201		1 · ATANIAN / AUT 15 (YO CE O O) CO TO 20	
0202		IF (X0 & GE & 0.03 00 10 20	
0203		Y = Y = 3.1416	
0204	20		
0205	20	TE (ARS(Y) T. 0.01751 CO TO 40	· · · · · · · · · · · · · · · · · · ·
0208		(A = UU(A)	
0201		CY = CIN(Y)	
02.08		SI = 311117 KD = 1	
0209			
0210		$Q = V(T_M) + CY + V(T_N) + SY$	
0212		$v(T_N) = v(T_N) + CY + v(T_M) + SY$	
0213	25	V(T,M) = 0	
0214	ر ۵	CONTINUE	
0215	10	1F (KR .GT. 0) GO TO 10	
0216		DO 50 J = 1,NF	

PAGE 005

,

	000000001111111112222222233333333344 1234567890123456789012345678901234567890	444444445555555555666666666677777777778 1234567890123456789012345678901234567890
LARD		
0217	UU 47 I = 1 + NV	•
0218	$45 \forall [1_9] = \forall \{1_9] = \forall \{1_1] = \forall \{1_1\}$	00.0
0219	DO SE 7 - 1'ANY	00.0
0220	DU 55 L # 1+NV	
0221	DD D(1) = D(1)++2 + 100+0	
0222	WALLE 10+DU/	CTC #1
0223	OCTUDAL (77" VARIEAA RUTATION ANALT	515.7
0224		
0225	END ENDETION SCRE (Y. V. KY. KY. N. ND	1
0220	DIMENSION VIND.13. VIND.13	,
0227		
0220		
0229	J = [ADS(KA)]	
0231	K = 1003(KT)	
0231	5 16 /KVN 15.55:25	
0232	D IF (KT) 10+00+20	
02.75	15 DO 20 I = 1 N	
0235	20 (CDE = (CDE + V/1.1) + V/K.1)	
0236	DETIION	
0237	25 DO 30 f = 1.N	
0238	30 SCPE = SCPE + $X(J_1J_1) + Y(J_2K)$	
0230	PETURN	,
0240	35 DO 40 I = 1.N	
0240	40 SCPE * SCPE + X(1.1) * V(K.1)	
0242	RETURN	
0243	45 D0 50 I = 1.N	
0244	50 SCPE * SCPE + $X(I_{*},I)$ * $Y(I_{*}K)$	
0245	55 RETURN	
0246	END	
0247	SUBBOUTTNE PRTS (X.N.N.KH.K.L.ND)	
0248	DIMENSION X(ND+M)	
0249	IF (M.GT.1) GO TO 20	
0250	WRITE(6.15)	
0251	$DO = 10 I = 1 \cdot N \cdot 10$	
0252	$J = MINO(I + 9 \cdot N)$	
0253	WRITE(6.5)KH.KJ.(K.K+I.J)	
0254	5 FORMAT(2X,2A4,10111)	
0255	10 WRITE(6.15)(X(K.1).K=I.J)	
0256	15 FORMAT(10X,10F11.4)	
0257	RETURN	
0258	20 D0 25 K=1, M, 10	· · ·
0259	WRITE(6,15)	
0260	L=MINO(K+9,M)	
0261	WRITE(6,5)KH,KJ,(J,J=K,L)	
0262	DO 25 I=1,N	
0263	25 WRITE(6,30)I,(X(I,J),J=K,L)	4
0264	30 FORMAT(16.4X,10F11.4)	
0265	RETURN	
0266	END	
0267	//GO.SYSIN DD *	
0268	MINNIE GNEWUCHS FACTOF ANALYSIS OF DATA	
0269	13 4071110001110110	
0270		

PROGRAM TWO

80/80 LIST

PAGE 001

CARD		
0001	\$JOB	12133,499-34-9670 MINNIE GNEWUCH
0002		D[MENSION X4450] + Y4450]
0003	С	TEACHER 9=SECTIONS 55,56,61,63
0004		NS≈68
0005		READ (5,5) (X(I),Y(I),I=1,NS)
0006	5	FORMAT (18X, 1F3.0,15X,1F3.0)
0007		FS≖NS
8000		AX=0.
0009		AY=0.
0010		SX=0.
0011		SY=0.
0012		R=0.
0013		SXY=0.
0014		SXQ=0.
0015		SYQ=0.
0016		B=0.
0017		DO 10 I=1,NS
0018		AX=AX+X(I)
0019		AY=AY+Y(1)
0020		SX=SX+X{I}**2
0021		SY=SY+Y(I)**2
0022	10	R=R+X(I)*Y(I)
0023		SXY=R~{AX=AY}/FS
0024		SXQ= SX-AX+AX/FS
0025		SYQ=SY-AY+AY/FS
0026		B=SX¥/SXQ
0027		AX=AX/NS
0028		AY=AY/NS
0029		SX=SQRT(SX/FS-AX*AX)
0030		SY=SQRT(SY/FS-AY*AY)
0031		R≈(R/FS -AX+AY)/(SX+SY)
0032	C AX.	AY= MEANS: SX,SY= STD DEVIATION; R= PRODUCT MOMENT CORRELATION
0033	C SX	Q,SYQ= SUM OF LITTLE X AND Y SQUARED; SXY= SUM OF LITTLE CROSS PRODUCTS;
0034	C 8=	SLOPE OF THE REGRESSION LINE, Y ON X
0035		WRITE(6,15)AX,AY,SX,SY,R,SXQ,SYQ,SXY,B
0036	15	FORMAT(/' AX=',F9.3,' AY=',F9.3,' SX=',F8.3,
0037		1' SY=',F8,3,' R=',F8.4//' SXQ=',F10.2,' SYQ=',F10.2,' SXY=',
003 B		2F10.2, B=', F8.4//)
0039		STOP
0040		END
0041	SENTR	Y -
0042	\$IBSY	S

PROGRAM THREE

	\$JOB	**************************************
	C PRO	GRAM F RATIO PROBABILITY
1		DIMENSION C(12,12)
2		I=24
3		DO 7 MM±1,I
4		READ (5,6)DA,DB,FRU,FRL
5	6	FORMAT (3X, 2F5.0,2F12.4)
6		FR≖FRU/FRL
7		TTR≠FR
8		FR=FR++2
9		P≠PRBF (DA, DB, FR)
10	7	WRITE(6,11)MM,DA,DB,FRU,FRL,FR,P,TTR
11	11	FORMAT(//! PROBLEM',I3, DA=',F3.0, DB=',F4.0, FRU=',F12.4,
		1' FRL=',F12.4,/' F RATIO=',F9.5,' P='F9.7,'T RATIO=',F9.5/)
12		STOP
13		END
14		FUNCTION PRBF (DA, DB, FR)
15		PRBF=1.
16		IF (DA+DB+FR.EQ.0.) RETURN
17		IF (FR.LT.1.) GO TO 5
18		A≖DA
19		B≠DB
20		F=FR
21		GO TO 10
22	5	A=DB
23		B≖DA
24		F=1./FR
25	10	AA=2./(9.0+A)
26		BB=2•/(9•0+B)
27		Z=ABS(((1BB)*F**(1./3.)~1.+AA)/(BB*F**(2./3.)+AA)**.5)
28		IF(B.LT.4.)Z=Z*(1.+.08*Z**4./B**3.)
29		PRBF=.5/(1.+Z*(.196854+Z*(0.115194+Z*(0.000344+Z*0.019527))))**4
30		IF (FR.LT.1.) PRBF=1PRBF
31		RETURN
32		END

VITA

.

Minnie M. Gnewuch

Candidate for the Degree of

Doctor of Education

Thesis: THE EFFECT OF VOCABULARY TRAINING UPON THE DEVELOPMENT OF VOCABULARY, COMPREHENSION, TOTAL READING, AND RATE OF READING OF COLLEGE STUDENTS

Major Field: Elementary Education

Biographical:

- Personal Data: Born in Morrison, Missouri on November 25, 1934, the daughter of Mr. and Mrs. T. R. Weeke; married the Reverend Donald E. Gnewuch on June 8, 1957; blessed with five children: Katherine, 1959; Rebecca, 1962; Deborah, 1963; Carl, 1964; and Sarah, 1968.
- Education: Graduated from Soldan-Blewett High School, St. Louis, Missouri in June, 1952; received the Bachelor of Arts degree from Harris Teachers College in January, 1957; received the Masters of Education degree from the University of Oklahoma in August, 1967; completed requirements for the Doctor of Education degree at Oklahoma State University in May, 1973.
- Professional Experience: Elmentary Public School Teacher, 1957 to 1961; Supervisor of summer public school playground, St. Louis, Missouri, 3 years; Sunday School Preschool Teacher and Department Leader, 6 years; Member of committee developing preschool educational materials for Concordia Publishing House, St. Louis, Missouri; Private reading tutor, 2 years; Graduate Teaching Assistant in Reading Center at Oklahoma State University, 3 years (developed and taught Study Skills course for college students, including testing and counseling of students); Teaching and supervising practice teachers in reading and elementary education; Diagnostic testing, evaluation and tutoring in Oklahoma State University Reading Center; Reading Specialist and Librarian at Elementary School in Mulhall-Orlando, Oklahoma, 1972-present.

Professional Organizations: International Reading Association, Oklahoma Education Association, National Education Association, Oklahoma Reading Council, Beta Beta Beta, and Kappa Pi.