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CHAPTER |
INTRODUCTION

The concept of function is basic in all branches of mathematics.
In number theory the number-theoretic, or arithmetic, function plays a
key role, and the study of such functions motivates many of the topics
considered in an elementary number theory course. This paper deals
primarily with number-~theoretic functions ef two variables with special
emphasis on functions defined in terms of unitary divisors.. As the
reader progresses through the material, it becomes evident that in
some cases these functions of two variables are simply generalizations
of more familiar number=theoret£c functioens of cne variable,.

A great many number-theoretic functions, especially those which
are multiplicative, are defined by some property related to divisors.
The author became interested in functions based on unitary divisors.
about three years ago, and this initial interest culminated in a master's
report [7]. This report gives unitary analogues fer +,¢,0, and. o
along with the unitary counterparts of some of their basic properties.
Some of the results of this paper are stated later for future reference,
At this point a brief summary of Chapters II through V provides the
reader with an overview of the topics studied,

In Chapter II number-theoretic functions of two variables are
studied. in the context of the familiar ''divides' relation. Three

particular functions are introduced, arnd various properties are shown,



One of these functions, Ramanujan's sum, appears again in Chapter III,
At this time a class of functions of two variables, the set of even
functions modulo r, is considered, and two representations for this
class of functions are given. One of these representations is in terms
of the Ramanujan sum,

Chapters IV and V are actually the unitary counterparts of
Chapters II and III, and their development parallels that of the earlier
chapters, After a discussion of some functions of two variables defined
in terms of unitary divisors, the paper proceeds with the topic of
unitary functions modulo r. These functions comprise another class
of functions which is a subset of the class of even functions modulo r.
As one might guess, it is possible to find representations for these
unitary functions, and one of these representations is based on the
unitary analegue of the Ramanujan sum. The applications of number-
theoretic functiens to specific problems are many and varied, One of
the most interesting aspects of this study is the application of these
representations to the problem of finding the number of solutions in the
unitary context of certain congruences modulo r. Here a formula is
derived for the number of sclutions, and a characterization is stated

which gives conditions under which there are no solutions.

Preliminary Concepts

It ie impossible to state all of the results frem elementary
number theory which are used here, The reader is expected to have

a knowledge of the basic concepts covered in any good number theery

text, such as, Exploraticns in Number Theory by Jeanne Agnew [1].

A certain amount of basic information in regard to unitary divisors is



essential, These results are listed here for easy reference. Proofs
are not included, but many of the results follow directly from the
definition of uhitary divisor. In many instances proofs can be found in

[7]. Throughout the discussion all integers are positive integers,

Definition 1.1: An integer d is a unitary divisor of an integer r,

written df/r, if d is a divisor of r and (d,r/d) = 1.

Theorem 1.1: If allb and bjc, then a”c.

Theorem 1.2: The unitary divisors of an integer occur in pairs;

that is, d[|r if and only if r/d|r.

m a,
Theorem 1.3: Let r = II p. ' be the canonical representation
i=1 * m b,
of r. The unitary divisors d of r are of the form d= II P; !
i=1
where b, =0 or b, =a,,
i i i
m a,
Theorem 1.4: Let r = II P; ' be the canonical representation
' ‘ i=1 ”
of r. The number of unitary divisors of r, denoted by =+ (r), is
T (r) = 2™,

A modified generalization of the concept of relatively prime is
the concept of semiprime, This definition follows after a description

of some important notaticn,

Definition 1.2: Let a and b be integers where b >0, Then

(a, b) is the greatest.divisor of a which is a uﬁitary divisor of b.

o
B2

Definitien 1.3: If ({a, b)* =1, a is said to be semiprime to b.

Theorem 1.5: Let p be any prime, If a <b, (pa,pb)
b

o= 1. I

b
a >b, (p°,p ) = P



The‘orem 1.6: For integers n and r, ((n, r),r)*= (n, T)ys

Theorem 1.7: Let d be a unitary divisor of r. Then

(r/d,r), =1 ifand onlyif r=4d,

¢

Theorem 1.8: A divisor d of n  is a unitary divisor of r if and

only if df(n,r),. If df(n,r), and (n/d,r/d), =1, then d=(n,r),.

i

Theorem 1.9: If (a,b), =4d, (a/d,b/d),

1
—
.

Theorem 1,10: If a = b(modr), (a,r), = (b,r‘)*.

Sk

’Iheorem'l.ll: For (nl,nz)z 1, (x2nl+x1n2,nln2

'nl)* =1 and (XZ’HZ)* =1,

), =1 if

and only if (x1

Theorem 1.12: Let (s,t)=1. If (x, s)>;c =1 and (x,t)* =1,

then (x, st)>=€ =1,

Theorem 1,13: If r= I pa is the canonical representation of
a Plr a
r, (n,r),= T p and r/(n, rl,= I p
p?n p?/n

Theorem 1, 14: For integers n and r, d”r/(n,r)* if and only

if d||r and (n,d), =1,

ol
58

- A means of combining number-~theoretic functions in the unitary
context is given by the unitary convolution. This product and its

properties are used extensively throughout the paper.

Definition 1,4: Let g and h be number-theoretic functions.

The function f{r) = ﬁ) g(d)h(r/d) is defined to be the unitary convo-
dir
lution of g and h, written (g % hi{r),



Theorem 1.15: If f and g are maultiplicative functions, f * g

is also multiplicative,

The next theorem is actuallyva special case of>the preceding one
|

where g is the identity function,

Theorem 1,16: If f is multiplicative, F(r) = TD f(d) is also
djr

multiplicative.

Theorem 1,17: If f is multiplicative and r = I'I p> is the

. plr

canonical representation of r, Z f(d) = I (1 + f(p?)), where the
dllr plr

product is defined tobe 1 if r =1,

a

Theorem 1,18: If f is multiplicative and r = p is the

II
plr
canonical representation of r, z  f{d) = [ (1 + f(p?)).

T gl
(n,d),=1
The unitary analogue of a regsidue system modulo r is the semi-

reduced residue system modulo r. Its definition and some related

properties follow.

Definition i.5: The set of integers semiprime to r and conw

tained in a residue system modulo r is defined to be a semi-reduced

residue system modulo r,

Theorem 1.19: If x ranges over a semi-reduced residue

system modulo r and (a; r) =1, the values ax also range over a

semi-reduced residue system modulo r.

Theorem 1,20: The integers dx, where d ranges over the

!

unitary divisors of r, and for each d, x ranges over a



semi-reduced residue system modulo r/d constitute a residue system

modulo r,

Once the idea of a semi-reduced residue system has been intro-
duced, a natural question to consider is the unitary analogue of the

Euler ¢-function. This analogue is defined in the following,

Definition 1.6: The function go*(r) is defined to be the number

of positive integers less than or equal to r and semiprime to r.

The unitary analogue of the M8bius function p is given in
Definition 1.7, The results following this definition ferm a sequence
b

of steps whigh could be used to derive the formula for ¢ given in

Theorem 1,28,

Definitioq 1,7: The unitary analogue of the M8bius function is
denoted by p* and is defined to be b (r) = (-1)*") where h(r) is

the number of distinct prime divisors of r.

Theorem 1.21: The function p* is multiplicative.

, 1 if r=1

Theorem 1,22: Z pm(d) =
‘ T od|r 0 if r>1,

Theorem 1.23: (The Unitary Analogue of the MYbius Inversion

Formula) If f(r) is any number-~theoretic functionand F(r) = ﬁ) f(d),
dijr

then f(r) = 2 p (@) F(r/d).
dflr

Theorem‘l..24z If F is multiplicative and F(r)= Z f(d), f

is multiplicative.

b4

Theorem 1.25;: For an integer r, r = T') ¢ (d).
r

d



"
Theorem 1.26: The function cp> is multiplicative,

al

fe
Theorem 1.27: For an integer r, ¢>(r) = r (d)/d.

dﬁrp

Theorem 1.28: Let r = II p° be the canonical representation

of r where r > 1. Then (P*(

Theorem 1,29: If r = II p 1is the canonical representation of

r, ¢*(r/(n.r)*)= o (p*

p2/n
Theorem 1,30: ﬁ 1/;<P>h(d) =1 ¢>, ((n, 7))/ (0, r), 0 ().
dilr
(n,d),=1

The lasgt basic numberrthearetic function for which it {s neces-

sary to define a unitary analogue is o.

Definijtion 1.8: The sum of the unitary divisors of a pesitive

integer-r is ¢ (r),

£

Theqrem 1.31: The function ¢ (r) is multiplicative,

Theorem 1.32: If r>1 and III pa is the canonical represen-
pir

, # a
tation of r, o (r)= I (1 + p7),.
plr

Generalization of the Unitary Diviser to the

k-ary Divisor

After one has studied the concept of unitary diviser and seen it
in actign in various number-theoretic problems, it is natural to look
for a generalization of this cencept. The remainder of this chapter
congiders what is appropriately termed the k~ary diviser. Actually,

two types of divisors are considered, k-ary and k-free, Their study



is combined here as both involve kth powers of integers, and in certain
instances they have commeon properties.

The study of this generalization was inspired by a paper of
Suryanarayana [13] of India. He is responsible for the generalizations
of T to the number of k-ary and k-free divisors of an integer.. These
generalizations then led to formulas for the sum of the k-ary and the
k-free divisors of an integer. The discussion begins with two defini-

tions, the first of which describes some notatien,

Definition 1,9: If k is a fixed positive integer, and a and b

are integers, not both zero, then (a,b) is the greatest divisor of a
g Kk g

and b which is a kth power,

Definition 1,10: A divisor d of r is said to be a k-ary

divisor of r if d6 =r and {d, 6)k =1,

If k=1 4in the preceding definition, d 1is just a unitary divisor
of r. For k=2, d is called a binary divisor of r, and for k=3,
d . is called a ternary divisor of r, The following example provides

some motivation for Theorem 1.33,

Example 1.1: Consider 16 as a divisor of 64, Since (16,4)# 1,

16 is not a unitary divisor of 64. Since (16,4)2 = 22 , 16 is not a

binary divisor of 64. However, (16,4) implies that 16 is a

3 =1
ternary divisor of 64. In fact, for any k > 3, (16'4)1( =1 so that

16 is a k-ary divisor of 64 for k > 3,

Theorem 1.33: If d is a k-ary divisor of r, d isa (ktl)-ary

divisor of r. If d. is nota k-ary divisor of r, d is nota (kel)=ary

divisor of r,



Proof: If d is a k-ary divisor of r, d6=r and (d,6), =1.

k
Since the highest kth power divisor of d and & is 1, no (k+l)-power

can divide both d and 6. Hence, (d,59) 1, and d is a (ktl)-ary

k+1
divisor of r. The second statement is straightforward from the first.

A

A natural extension of the previous theorem is given in the follow-

ing corollary, Its proof is direct from the theorem.

Corollary 1.33.1: If d is a k-ary divisor of r, then for any

q >k, d isa g~ary divisor of r. If k is an integer greater than 1
for which d is not a k-ary divisor of r, then for any q < k, d is

not a q-ary divisor of r,

A topic for consideration along with the study of k-ary divisors
is that of k-free divisors. The foliowing definition describes this

divisor.

Definition 1.11: An integer n >0 is said to be k-free if n is

not divisible by the kth power of any integer greater than 1.

Example 1,2: If n =42, then n is k-free since 42 =2.3.7

and hence is not divisible by the kth power of any integer greater than
1. On the other hand if n = 56, then 56 = 23-7 implies n 1is not

k-free for k=2 or 3,

The next definition prevides some necessary notation,

Definition 1,12: The number of k-ary divisors of r and the sum

S e

of the k=-ary divisors of r are denoted by "I'];(r) and cr]:((r) respec-

tively, The number of k-free divisors of r and the sum of the
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k-free divisors of r are denoted by 'r(k)(r) and O'(k)(r) respec-

tively.

K
It is clear from this definition that -r;(l) = D) =1 and

A

%

1) = 1)y =1, A i i
O'k( ) U(k)( ) more general result relating T and T(k) is
given in Theorem 1, 34.

m a,
Theorem 1,34: If r=1II P, ! is the canonical representation of
r, then -rl(r) = T(Z)(r) = 2m,

£
Proof: On the basis of the given netatien, -rl(r) is the number

* m

of unitary divisoers of r, Hence, 'rl(r) = 2 by Theorem 1.4. Now

'r(z)(r) is the number of square-free divisors of r, To count these
square-free divisors it is sufficieﬁt to count the number of possible
subsets formed from the set A = {pl, ce ,pm} since the product of
those elements in each subset is a square-free divisor of r. But

since there are 2™ possible subsegts, T(Z)(r) = 2™, . A

Before deriving formulas for the number and sum of the k-free
divisors of an integer, it is worthwhile to look at an example showing
how to locate these divisors. Let r = 1II pa denote the canonical

plr
representation of r.

Example 1.3: In terms of its canonical representation

r = 360 = 23-32. 5. In looking for k-free divisors it is necessary to

discard all terms pk, pk+1 s pk+2, «.. « For r = 360, the product

(20+ 21)(30 + 31)(50 + 51) is such that each term in its expansien is a

square-free divisor of 360, and each square-free divisor of 360 is a

term in the expansion. The product (20 + 21 + 22)(30+' 31 + 32)(50+ 51)
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is such that each term in its expansion is a cube-free divisor of 360,

and each cube-~free divisor of 360 is a term in the expansion,

This example leads to a general method for locating the k-free

divisors of r = ]]'[ pa’ . When a <k, form a product with facters
p|r

(p0+ p +...+p%). When a > k, form a product with factors

k-1

(PO"‘ pl+...+p ). The product

I (ltptpi+...+pd)+ T (Léptp +...+p° "]

a<k a>k

is such that each term in its expansieon is a k-free divisor of r, and

each k-free divisor of r is a term in the expansion,

Theorem 1,35: If k > 2 and r = I‘I pa is the canenical
plr

representation of r, then

I

o (a+1)- I (k).

(r)
T(k) a<k a>k

Proof: Consider the product of the previous example. The
theorem follows immediately from the number of terms in each

factor, A

It is clear from this formula that if a<k for every prime in the
canonical representation of r, T(k)(r) = 17(r). The fact that -r(k)(r)
is a multiplicative function of r can be shown rather easily by use of

this formula. This result is noted here for future reference.

Corqllary 1.35.1: The function -, ,(r) is a multiplicative

(k)

function of r,
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Example 1.4: Let r = 360 = 23-32'-5 . For k=2, 5 isthe

only prime with a <2. So " (360) = (1+1)+-2+2 = 8, For k=3,
2)
both 3 and 5 satisfy a <3, Hence, 7(3)(360) = (2+1)(1+1):3 = 18,

For k=4, all primes in the representation satisfy a < 4. Hence,

7(4)(360) = 7(360) = (3+1)(2+1)(1+1) = 24. Furthermore, for any

k>4, 7,,(360) = 7(360) = 24.

(10"
. The product used earlier to find 'r(k)(r) in terms of the

canonical representation of r can also be used to find U(k)(r) .

Theorem 1,36: If k >2 and r= I p® is the canonical

plr

representation of r,

+1 k
PP -D/lp-1) I (p -1)/(p-1).
a<k . a>k
Proof: Again the proof is.immediate from the product of

Example 1. 3. A

If a <k for all primes in the caneonical representation of r, it

is easy to see that o, ,(r) reduces to o(r), This formula also yields

(k)

the fact that G(k)(r) is a multiplicative function of r. These results

parallel those discovered for T(k)(l") .

Corollary 1,36, 1: The function O'(k)(l") is a multiplicative

function of r.

Besides the formula for -r(k)(r) based on the canenical repre-
sentation of r, it is pessible to write T(k)(r) in terms of a special
convolution of p and T, Two lemmas are essential to the derivation

of this second representation. Lemma 1.37 is a kth-power analogue
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of a result of elementary number theory, and its proof is immediate,

Lemma 1.38 shows an important property of this special convelution,

Lemma 1,37: Let (v,s)=1. If dlk and dzk

divisors of r and s respectively, then (dlc‘lz)k is a kth power

are kth pewer

divisor of rs, (d,,d,) =1, and (r/dlk,s/dzk):: 1. Conversely,

1’ 2)
every kth power divisor of rs can be expressed as (dlc;lz)k where

k k k k
d, Ir, d, |s, (d),d)) =1, and (r/d;5,s/d)") = 1.

2)
Throughout this paper various convolutions are encountered. In
most instances a particular problem requires a particular cenvelution,
In working with kth power divisors it is necessary to use a convolution
involving kth powers. Such a convolution is defined in Lemma 1, 38,
and it is seen that this convolution preserves the multiplicative
property. It should also be noted that this convolution is only a special
case of the ordinary convolution with the sum being taken over the kth

power divisors of r rather than the divisers of r.

Lemma 1.,38: If g and h are multiplicative,

fk(r) = kZ‘) g’(d)h(r/dk) is a multiplicative function of r.
d*|r

Proof; Let r = st where (s,t) = 1. By the definitien of fk’

f (st) = = g(d)h(st/dk). By the previous lemma.
k dkl
st
) k. k
f(st) = D gdd,)h(st/d )
dl | s
k
dy [t

Since g and h are multiplicative,
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- k k
fk(st) = kZ) g(dl)h(s/dl) kZ g(dz)h(t/dz) = fk(s)fk(t).
d,*[s d X[t
Hence, f, 1is multiplicative. A

k

With these preliminaries out of the way Theorem 1.39 gives a

formula for -r(k)(r) in terms of p and .

w(d) T(r/d%),

Th 1,39: F k> 2, =
eorem 9 or > 'r(k)(r) dk'r

Proof:. By the previous lemma the right hand side of the desired
equality is multiplicative, Since "r(k)(r) is also multiplicative, it is
sufficient to show the formula for r = pa' where p 1is a prime, For
a<k,

dkz': ap,(d) "r(pa/dk) = (1) =(p
1Y

Also, T(k)(pa) = a+1 when a<k, For a > k,

k . -k
Z L w@ t(%/dY) = (D) ™) +ulp) 7T
d*[p? |
=(a+1)-(a-k+l)
= k.
For a > k, -r(k)(pa) = k, and the theorem follows. A

The last big topic of this chapter is the derivation of foermulas for

1o to

"rk(r) and 0“;:(1"). Unlike the procedure for —r(k)(r) and cr(k)(r),

P |
sk sle

Tk(l‘) and crk(

formulas follow as consequences of this multiplicative nature. Lemma

r) are shown first te be multiplicative, and the

1.40 helps to prove that these functions are multiplicative.
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Lemma 1,40: Let (r,s) =1, The integer dl is a k~ary
diviser of r and d2 is a k~ary divisor of s if and only if dld2 is

a k-ary diviser of rs.

Proof: Let dl be a k-ary divisor of r and d2 a k-ary

divisor of s, Then dllr, (dl’r/dl)k: 1, d,|s, and (dZ’S/dZ)k: 1.

5|
It is clear that dldzlrs . It remains to be shewn that
k

(dldz, rs/dldz)k =-1. Suppose that (dle’ r*s/dldz)k = x >1, Then
there exists a prime p such that pkldld2 and pklr’s/dld2 . Since
(dl,dz) = 1, either pkld1 or pk]d2 . Without loss of generality

. suppose pkld Since (r,s) =1, it follows that (r/dl, s/dz-) =1,

1
So if pklrs/dldz, either pklr/d1 or pkls/dz. Since pkld1 and
(r,s) =1, it follows that pk’r/dl. So pk[c‘l1 and pk[r/dl, a
contradiction to (dl’r/dl)k: 1, Thus, (dldz’rs/dldz)k: 1, and
dld2 is a k-ary divisor ef rs.

The converse is proved similarly. A

Theorem 1.41: The functiens T;(r) and cr;i(r) are multiplica=-

tive functions of r,

Proof: Let r = st where (s,t) =1. By the previous lemma

dl is a k-ary divisor of s and d2 is a k~ary divisor of t if and

only if c‘lld2 is a k-ary divisor of st. Hence,

- T
St/dldz)k 1. Thus,

(dl’ s/d])k = (dZ’ t/dZ)k =1 if and only if (dle’

b E B % e e
'rk(s) 'r‘k(t) = 'r;:(sl:) and o‘k(s) o‘k(t) = o‘k(st). A

Suppese that r = plo where p is a prime, and suppose that the

number of 3-ary divisors of r is to be determined. It is necessary

to ascertain which numbers pt satisfy (pt, plo"t =1, Itis easy to

)3
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see that for t=0,1,2,8,9, and 10, the condition holds, Hewever,

for t=3,4,5,6, and 7, (pt,ploﬂt)3=p3. So for 3 it_{?, P

is not a k-ary divisor of plo° These are the values of t which

t

satisfy k < t < 10 -k and hence satisfy 10 > 2k, Theorem 1,42 -

pinpoints the k-ary divisors of a prime power.

Theorem 1.42: If a < 2k, any divisor of pa is a keary

diviser of pa. If a > 2k, forany t suchthat k <t <a-k, pt is

not a k-ary diviseor of pa.

Proof: Suppose that a <2k and d]pa. Then d=pb where

a-b, _ b a-l
he=1. If (pp 7y

x must be the kth power of p., Hence, pklpb and pklpa-b so that

b:< a, It must be shown that (pb,p =x>1,
2k a . . - .

P lp . This implies a > 2k, a contradiction. So if a <2k, any
divisor of pa is a k-ary divisor of pa.

If a > 2k, then k < a-k. Let t be any integer such that

k <t <a-k. For any of these values of t, (pt, pa’mt)k = k, and
pt is not a k-ary divisor of pa. A
Theorern 1,43: If r = IiI pa is the canonical representation of
E P|r
r, v (r)= T {at+l)- T (2k).
a<2k a>2k

Proof: Since T:(I“) is multiplicative, the formula can be
determined from -r:(pa) where a <2k and where a > 2k, If
a <2k, any divisor of pa is a k-ary divisor of pa'. Hence,
Tk(p ) = r{p) =a+i. If a > 2k, for any t suchthat k<t<a-k,
pt is not a k-ary divisor of pa. There are {a-~-k) -k + 1 of these
values of t, So for a > 2k, T:(pa) = {a+1) - [(a-k) ~k+ 1] = 2k,

Therefore,
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Tk(r) = 1II (a+l)- 1I (2k), A
a<2k a>2k

An immediate result of the previous theorem is that if a < 2k

e
for all values of a, T reduces to the ordinary T function, This
basic formula also shows how the number of k-ary divisors can be

expressed as a particular number of k-free divisors.

K

Corollary 1.43.1: Tk(r) = T(Zk)(r)'

Proof: From Theorem 1,35, T(Zk)(r) = 1II (a+l). II (2k) .
" ' a<2k a>2k
But this is just -rk(r) from Theorem 1.43. Hence,
e

Tk(r) = T(Zk)(r)° A

Example 1.5: Again take r = 360 = 23- 32- 5. To find the

number of unitary divisors by use of this formula, note that 5 is the
only prime for which a < 2. Hence, 'r?;(360) = (l+1)-2-2 = 8, The
corollary can be used to find the number of binary divisors since for
each prime, a <2k = 4., So —r:(360) = (3+1)2+1)(1+1) = 24, In

fact T;(360) = 24 for every k > 2.

sa
>

The multiplicative nature of trk(r) and the result of Theorem

1.42 which points out the k-ary divisors of a prime poewer meotivate

the derivation of the formula for o‘;((r) .

Theorem 1.44: Let k > 2 and r = 1"[ pa' be the canonical
plr
representatien of r., Then
* +1 , -k+1 k ,
o (r) = T (p* -D/{p-1)- T (1+p" TN < (p - 1)/{p-1),

a<2k a.z_Zk
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Proef: If a <2k, any divisor of pa is a k-ary divisor of pa.

e

So o (p*) =l+ptp +...+tp" = olp?

p)=1(p

2k, pt is not a k-ary divisor of pa for any integer t satisfying

L yp-1. 1

©
Y,

k <t <a-k, Hence,

sk k- -k+ -k+2
oY) = (L tpt .t e (T 2T
= (L4pt., . +pyap i op 4R
k-1,,, . a-k+l
= (l+p+..,t+p Wi +op )
k

_ p -1 a-ktl
- p-l (1+P )-

Upon multiplying these two results,

o= 1 T on/p- - (+p

a<2k a>2k

a-ktly Ry /p-1). A

It is immediate that 0';(1") reduces to the ordinary o function

when a < 2k for all primes p in the canonical representation of r,

Example 1.6: This last example shows some calculations made

with the formula of Theorem 1,44, In order to make the problem

interesting, let r = 28 . 36 . 52 and find the sum of the binary divisors

of r. Since k=2, a<2k =4 for p=5. Thus,

(G s oY)

11,709, 072.

I

o, (r)

To find the sum of the 4-ary divisors, note that a <2k = 8 for p=5
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and p=3. Hence,

3 7 4
o 5° .1Y/3" -1 8-4+1\/2" -1
o3t = (F) (5= + )5

16,772, 085 .

The sum of the 5-ary divisors is just o(r) since a <2k = 10 for

all the primes represented.

In the next chapter the reader is introduced to the main consider-
ation of this paper, number-theoretic functions of two variables, The
first functions of this type which are studied are defined in terms of
the ordinary divides relation. Later on, some unitary analogues of
these same functions are also encountered. In either situation an
interesting topic to pursue further is the k-ary generalizations of these

functions of two variables. This topic is not considered in this paper.



CHAPTER 1I

FUNCTIONS OF TWO VARIABLES

This is the first of four chapters which consider number-theoretic
functions of two variables, The three functions studied here are
interesting in their own right and also provide new ways of obtaining
some of the standard functions of cne variable encountered in elemen-
tary number theory. The first of these functions, the Nagell totient
function, is a generalization of Euler's ¢-function, The other two are
closely related. One is an exponential type function, and the other,
Ramanujan'’s sum, is a special sum of these exponential functions.
They provide a basis for the discussion of even functions modulo r
found in the next chapter, Later on, the unitary analogues of Nagell's

function and Ramanujan's sum are also considered,

The Nagell Totient Function

The discussion begins with the definition of Nageli's function and

two examples which show its use.

Definition 2.1: Let n be a nonnegative integer and r a positive
integer. The Nagell totient function, denoted by 6(n, r), is defined to

be the number of integers x such that
(i) 1 <x<r

(ii) x,r) = (n-x,r) =1,

20
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Example 2.1: As an example, if n= 16 and r =12, then x is

such that 1 < x < 12, However, the values of 2,3,4,6,8,9,10,
and 12 for x do not satisfy (x,12)=1, For x=1 or x=7,
(x,12) = 1, But since (l6-x,12) =3 1in both instances, these values
of x must not be counted, This leaves only x =5 and x =11, both

of which do satisfy (i) and (ii). Hence, 6(16,12) =2,

Example 2,2: For a second example suppose that n =r = 12,

As before, x=2,3,4,6,8,9,10, and 12 must be omitted since
(x,12) 41, For x =1,5,7, or 11 both (x,12) =1 and

(12 -x,12) = 1. Hence, 6(12,12) = 4, Note that this is precisely the
value of ¢(12). The following theorem shows that if n = r, then

O(n, r) = ¢(r), the Euler totient function.

Theorem 2.1: If n=r, then 6(n, r) = @(r).

Proof: The condition (x,r) =1 implies (r-x,r)=1. Hence,

8(r,r) = o(r). A

Other properties concerning the Nagell totient function could be
considered. No doubt some of these may have already occurred to the
reader, However, this function is considered here only to introduce
the topic of functions of two variables, and further consideration is
saved for its unitary analogue. Attention is now focused on the other

two functions mentioned at the beginning of this chapter.

The e-Function

To set the stage for the definition of the exponential type function,

let r be a positive integer and let F be a field of characteristic zero
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containing the rth roots of unity,

Definition 2,2: Let z and n be integers, The e-function is
T 2mizn '

defined by ez(n) = ef{zn,r) = e r .

The preferred notation for this function is e(zn,r) since it is
easier to write than the last expression and ¢learer in meaning possibly
than the first,

The first theerem concerning the e-function cites some of its
properties which facilitate the work to follew, Since the first four
properties follow readily from the algebraic properties of the integers

and the laws of exponents, their proofs are omitted,

Theorem 2.2: The following properties hold for the e-function:

(i) e(zn, r) = elnz,r).

H

(ii) e(z(n+m), r) e(zn, r)e(zm, r).
(iii) e((z+z')n,r) = e(zn,r)e(z'n, r).
(iv) e(zn, r) = (e(z, )",
(v) The e=functions are the rth roets of unity,
(vi) For all n, e(zn,r) = e(z'n,r) if and only if z = z'(modr),
Proof of (v): In its exponential form (e(zn, r))r = e21Tizn =

Hence, the e-functions are only the rth roots of unity.

Proof of (vi): If e(zn,r) = e(z'n,r), the definition of the

e-function implies that z = z' + kr and hence 2z = z'{(modr),.

Now if z = z'(modr), then rlza-z'. Thus, e{{z-2z')n,r) =1

and e(zn,r) = e(z'n, r), A
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The next theorem shows what happens when the functions e(zn,r)

are summed over the integers n in a complete residue system

modulo r, Important to this proof is the fact that e(zn,r) = (e(z, r))n,
r if z = 0 (modr)
Theorem 2. 3: z e(zn, r) = _ , Where
n(mod r) 0 if z £ 0(modr)

the summation is over the integers n in a complete residue system

modulo r,

Proof; If z = 0(modr), then r’z and e(zn,r) =1, Hence,

b e(zn, r) = r, On the other hand suppose z % 0(modr). Then
n(mod r)

since e(zn,r) = (e(z, r))",
r-l n _ (e(z, )" -1
Z e(en,r) = I (efz, ) = SGATAT
n(mod r) n=0 !
But since (e(z, r))r =1, the sum in this case is 0, A

Several different types of éums play important roles in the theory
of numbers, One of the more common of these is the convolution
product. Many recent elementary number theory texts devote a chapter
to this topic. A modification of this product which is suitable in the
unitary context is the unitary convelution gonsidered in [7], Both of
these are related to the multiplication of Dirichlet series and are some-~
times called Dirichlet products, Another type of product suggested by
the product of power series is the Cauchy product, Of these products
it is the Cauchy product whieh »provides the necessary machinery to

work with sums of proeducts of the e-function,

_Defi'nition 2.3: If {f and g are arithmetic functions for which

f(n) = f(m) and g(n) = g(m) when m = n(modr), then the Cauchy
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product h of f and g is defined by

h(n) = fo g(n) = = f(a) g(b)
n =a+b(modr)

where a and b are chosen from a complete residue system modulo r

and n = a+b (modr).

An alternate form for this preduct is often used. Since
n = a+b(modr), then b = n-a(modr), and

= f(a) g(b) = = f(a)g(n -a).
n=at+b(meod r) a(mod r)

The theorem which follows gives a formula for the Cauchy
product of two e~functions. Essential to the proof of this result are
the basic properties of the e-function and the summation evaluated in

Theorem 2,3 .

Theorem 2.4: If a and b range over a complete residue

system modulo r, the Cauchy product

= e(za,r)e(z'b, r)
nZatb(mod r)

e(zn, r) 0 e(z'n, r)

r.e(zn, r) if z z' (mod r)

0 if z % z' (modr)

Proof: From the alternate form for the Cauchy product,

e(zn, r) O e(z'n, r) = = e(za, r)e(z'(n-a), r).
a{mod r)

The properties of the e-function imply that

e(za, r)e(z'(n-a), r) = e{z'n, r)e{(z-z")a, r), But since e(z'n,r) is
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independent of the index of summation, this last sum is just

e(z'n, r) zZ e({z ~z"a,r). The result is now immediate since
a(moaod r)

‘r if z - z!

I

0 (modr)
=z e((z-z"a, r) = : A
a(mod r) 0 if z ~ z' Z 0 (modr)

The next theorem shows that the set of functions e(zn,r) for
z=0,1,...,r~-1 is linearly independent over the field F, Although
this proof is based on the standard procedure for showing a set to be
linearly independent, it does require the calculation of a Cauchy
product of e-functions and thus makes use of the formula of the

previous theorem,

Theorern 2.5: The fungtions e(zn,r) for z=0,1,.,,,r-1 are

linearly independent over F,
r-1
Proof: Let g(n)= = aze(zn, r) = 0 where a, is in F. Also,
z=0
let e(z'n,r) be one of the functions under consideration where z' is

fixed, From the definition of g(n),

g(n) © e(z'n, r) = = a, e(zn, r)|] o e(z'n, r) .

Since the Cauchy product distributes over sums [9],

r-1
g(n) o e(z'n,r) = = a.ze(zn, r) oe(z'n, r).
z=0
But from the previous theorem e(zn,r) 0 e(z'n,r) = r.e(z'n,r) if

z Z z'(modr). Hence, g(n)oe(z'n,r) = az,r-e(z'n,r) = 0. But
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since r is a positive integer and e{z'n,r) # 0, then a, = 0. Since
z' was a fixed yet arbitrary choice for z, then a, = 0 for
z =0,1,,..,r-1, and the functions e(zn,r) are linearly independent

~over F. A

A generalized Cauchy product of e-functions in which the second
variables are replaced by two divisors of r is evaluated in Theorem
2,7, The following lemma allows this product to be expressed in

terms of these divisors rather than by a congruence.

Lemma 2.6: Suppose dle1 =r, d2e2=r, (x,d1)= 1, and

(y,dz) = 1 where d1 >x>0 and d,> y>0. Then the following

2
hold:
(1) xe, = ve, (mod r) if and only if xe; = ye, ;
(i1) xe,; = vye, if and only if de = ydl ;

(iii) xd2 = yd1 if and only if d1 = d2 and x =1y,

Proof of (i): Because dle1 =r and x < dl’ then

0 < xe, <r, Similarly, 0<ye and ve

1 2 1

are members of the same complete residue system modulo r, they

< r, Thus, since xe 2

are congruent if and only if they are equal,

Proof of {ii): If xe; = yve,, then ey = r/d1 and e, = r/d2

imply x(r/dl) = y(r/dz). Hence, xd2 = ydl. The converse follows

in a similar manner.

Proof of (iii): If dI: d2 and x = y, then xd2= ydl.

Suppose xdZ = ydl. Thus, xlydl. But since (x,dl)z 1, then
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x|y. Similarly, xd2= ydl and (y,d2)=1 imply that y|x., So

y = x, and it follows that d1 = d2 . A
Theorem 2. 7: If dlfr, dzlr, (x,d;) =1, and (y,d,)=1
where dl > x>0 and d‘2 >y >0, then

r:e(nx,d) if d1=d2=d and x =y

= e(ax,dl)e(by,dz)
n=a+b(mod r) ‘ 0 otherwise

Proof: Since d.|r, there exists an e

1 r.

1 such that dlelz

Likewise there exists an e such that dze2 = r. Denote the left

2
side of the desired equation by S, From the alternate form of the
Cauchy product,
S = = e(ax,dl)e((n—a)y,dz) \
a(mod r)
Since e(ax, dl)e((n -aly, d2) = e(ny, dz) e(ax, dl) e(-avy, d2) and since

e(ny, d is independent of the index of summation,

5)

S = e(ny,d = e(ax,dl)e(-ay,dz).

)
2 a(mod r)

If the e-functions in this summation are multiplied in exponential form,
it follows that e(ax,dl)e(-ay,dz) = e(a(xdz-ydl),dldz), Now

dje; = r and dye, = r imply x/dl— y/d2 = (xel-yez)/r. Thus,
e(a(xdz-ydl),dldz) = e(a(xel—yez),r) and

S = e(ny’, dz) a(mid r)e(a(xel—yez), r) .

This summation can be evaluated by use of the formula in Theorem 2.3

so that
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r if xe -ye 0 (mod r)

2
= e(a(xel-yez), r) =
a(mod r)

0 if xe vye, % 0(mod r)

But by the previous lemma xe; = ve, (modr) if and only if d1 = d2

and x =vy. Thus,

0 otherwise A

The Ramanujan Sum

The last function gonsidered here is the Ramanujan sum. This
function has been studied since 1900 by many mathematicians,
including Jensen in 1913 and Landau. Although Ramanujan's contribu-
tion to its study did not appear until 1918, Hardy and Wright [10] note
that Ramanujan was the first mathematician to see the full importance
of this function and to use it systematigally, Grosswald [8] gives
Hardy credit for calling this sum a Ramanujan sum, Although this
particular application is not pursued here, Ramanujan's sum is
especially important in the theory of the representation of numbers by

sums of squares,

Definition 2,4: A Ramanujan sum, denoted by c(n,r), is defined

2wizn

by c¢c(n,r) =X e T where z ranges over a reduced residue
z
system medulo r, The integer n is galled the argument, and r is

called the index,
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It is important to note that this sum is over a reduced residue
system modulo r, Later on when the unitary analogue of c¢(n,r) Iis
discussed, the index of summation changes appropriately to a semi-

reduced residue system modulo r,

2mizn

Since e T = e(zn,r), then ¢(n,r) = Z e(zn,r) where the
zZ
summation is defined as above.. This notation will be used whenever
possible. Also, since the e-functions are the rth roots of unity, the
summands in the Ramanujan sum are the rth roots of unity, Finally,
it is clear from the definition that c¢(n,1) = 1 f{for all values of n,

This first theorem about Ramanujan sums will be used later and

follows quickly from a basic notion about reduced residue systems.

: Theorerp 2.8: If (a,r)=1, then c(an,r) =c(n,r).

Proof: Suppose that z ranges over a reduced residue system
modulo r., Because (a,r) =1, the values for az will also range
over a reduced residue system modulo r. Hence, the definitions of

c(an,r) and c(n,r) are equivalent, A

With the help of one lemma it is not difficult to show that
Ramanujan sums are multiplicative functions of their indices. Since
this lemma is a part of elementary number theory, its proof is not

included here but can be found in Grosswald [8].

Lemma 2.9: Let (ml,mz) =1, Let h1 run through a reduced

residue system modulo m. and let h, run through a reduced residue

1 2

system modulom,, Then h=h m, + hlm runs through a reduced

2 2

residue system modulo m.m

17z’
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Theorem 2,10: Ramanujan sums are multiplicative functions of

their indices; thatis, if (r,s) =1, then c¢(n,r)c(n,s) = c(n, rs) for

all integers n.

Proof: Let (r,s) =1, Let z, run through a reduced residue

system meoedulo r and =z, run independently through a reduced residue

2

system modulo s. Then by the definitions of c¢(n,r) and c(n,s) and

from the laws of exponents

Z e(z
z

10 r) = e(z2

1 )

c(n, r)c(n, s) n, s)

2 Ze(lz,s +z,r)n,rs),

A Z 1 2
1 %2

1

By the previous lemma this double sum can be expressed in the form

Z e(nz, rs)
Z

where z = z s+ Z,T runs through a reduced residue system
modulo rs. But since this is only the definition of c¢(n,rs), then

c(n, r)c(n,s) = ¢(n, rs). A

The following theorem provides a neat representation for c¢(n,r)

as a special convolution of the Mbbius function and the identity function.

Theorem 2.11: Let (n,r) = k. Then c¢(n,r) = {de(r/d).
dik

Proof: Let z range over a complete set of residues moduloe r,

By the summation property of p,
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0 if (z,r) # 1

Recall that the definition of c¢{(n,r) requires it to be a sum of
e-functions over a reduced residue system modulo r. Hence, if the
coefficient 2z u(d

d,[(z, r) !
e-functions over a complete residue system module r, the summation

) is inserted with each term in a sum of
changes from a complete residue system modulo r to a reduced
residue system meodulo r. Thus,

c(n, r) = = e(zn, r) b p.(dl) .

If dll(z, r), then dl |z and dlir , and the order of summation in
the above equation can be interchanged so that one sum is over the

divisors of r and one is over the divisors of z. Hence,

c(n,r) = = p,(dl) 2 e(zn,r).
dylr 7 dyle
1<z<r

Since dllz, there exists an s such that z = sd Also, since

1
l1 <z < r, then s = 1,2,...,r/d1. So with zzsdl,
r/d1
¢cln, r) = X p,(dl) = e(sdln,r)
dllr s=1
r/d1
= Z M(dl) Z e(sn,r/d,).
1
dlll‘ s=1

. This second equality follows by writing e(s dln, r) in exponential form,
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Now the summation over s is r/d, if r/dlln and is 0 if r/dlln.

1
Thus,

cln, r) = = p.(dl)r/d1 .
dllr

r/d1|n

If r/d1 is replaced by d, e¢(n,r) ~Z u{r/d)d. However, d’r

d|r,d|n
and d|n ifand only if d|k with k = (n,r)., Hence,

c(n,r) = = dp(r/d). A
d|k

Corollary 2.11.1: Let p be a prime,

0 if a-b>2
() If p°n and 0<b<a, then c(n,p’) =

1
o
-
h
)
1
lop
1
—

(i) I p°[n and b >a, then c(n,p?) = p> p-1).

_ 0 if a > 2
(iii) If pf/n, then c{n,p°) =< -1 if a =
1 if a

t
[e]

Proof of (i): Let p be a prime and suppose pb Hn where

0 <b <a.. Then (n,pa) = pb. Hence, from the previous theorem

a-b

b~ 1 -b+1 b
a) 1 a I-L(P Dy

¢(n, p7) = Zbdu(pa/d) = pP)t+t.,.+tp Tulp ) +p

dlp

The value of this expression can be determined by looking at the last

b a-b
term p~p(p

) since a-b 1is the smallest exponent involved in that
position. If a-b > 2, all the terms are 0. If a-b =1, only the

last term pbp(p) is nonzero, Hence,
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0 if a-b>2
c(n,p) = .
b . :
-p if a - b =1
s b ' a a .
Proof of (ii): If p |[n and b > a, then (n,p") = p~. In this
-1 -1
case c(n, pa) = Z dP«(Pa/d) = Pa n(p) ""PaP-(l) = Pa (p-1).

d|p?
Proof of (iii): Now suppose p*n. Then pa*n and (n, pa) =1,

Hence,

Corol‘larLZ.ll,Z: c(l, r) = p(r).

Proof: Since (l1,r) =1 f{for all values of r,

c(l,r) = X du(r/d) = u(r). A
d|1
At this point it would be interesting to compute some Ramanujan
sums using both the definition and the theorem. As will be seen, when
the definition is employed, the calculation involves determining cosines
and sines for particular values. On the other hand, the use of the

theorem involves mainly a knoewledge of the definition of .

Exam_ple 2. 5 The Ramanujan sum ¢(10,6) is calculated first

by the definition, If z runs through a reduced residue system

modulo 6, z has the values 1 and 5. Thus,

c(10,6) = = €(10z,6) = e(10,6) + e(50, 6)
z=1,5
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1

(cos 10m/3 + isin10w/3) + (cos 507/3 + isin 507/3)

(-1/2 =i [3/2) + (-1/2 +1//3/2)

:..l'

To use the formula of the preceding theorem first note that

(10,6) = 2, Hence, c(10,6) = zlY du(6/d) = u(6) +2-u(3) = -1,
|2

Example 2.4: Suppose c(6,9) is to be determined. The integers

z in a reduced residue system modulo 9 are 1,2,4,5,7, and 8,
Thus, by the definition ¢(6,9) = Z e(6z,9) where z takes on the
z

values listed above, Therefore,

c(6,9) = e(6,9) +e(12,9) +e(24,9) + e(30,9) + e(42,9) + (48, 9)

il

(cos4n/3 + isin4m/3) + (cos8w/3 + isin87/3) +
(cos 167/3 + isin 167/3) + (cos207w/3 + isin20w/3) +

(cos 287/3 + isin287/3) + (cos32w/3 + isin32w/3)

n

3(-1/2 - i/3/2) +3(-1/2 +i /3 /2) = -3,

This last calculation was even longer than that of the previous example.
Since ¢(6,9) = c(6, 32) and 316, this result can be determined
rather quickly by using part (i) of the first corollary, Since b =1

and a =2, a-b =1, and it follows immediately that c(6,9)= 3.

HYlder [3] is responsible for a formula which gives Ramanujan's
sum in terms of ¢ and . This representation is different from that
of Theorem 2.11 as no convolution is invelved. The proof of this
result relies heavily upon Corollary 2.11,1 which states the value of

c(n, pa) where p is a prime, and a 1is any positive integer, . In fact,
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since all of the functions involved here are multiplicative, it suffices
to verify the formula for prime powers in the canonical representation

of r,

Theorem 2. 12: If m= r/(n,r), then c(n,r) =¢(r)pm)/o(m).

Proof: Let p by any prime in the canonical representation of r
and a any positive integer. Since c(n,r), ¢, and p are all multi-
plicative with respect to r, it is sufficient to show the equality for
r = pa. It is necessary to consider three cases, one where pb ”n
with 0 < b <a, one where pb ”n with b > a, and one where p*’n.

If pb |n with 0<b<a, then m = pa/pb. If R denotes the

right side of the desired expression,

a-b a-b a-1 a-b a-b-1

R = op)plp De®™ ™) = p (p-Dplp™ )/p (p-1) = pbu(pa-b)-

Hence,

0 if a-b > 2

-pb if a-b =1

If pfn, then (n,p>)=1. So R = o(p)up)/e(d") = uipo).

Thus,
0 if a > 2
R =4¢=-=11if a =1
1 if a =20

These values for R are the same as those obtained for c(n,pa) in

Corollary 2.11.1. Hence, the equality follows. A
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The following corollary is not a result which ''naturally'" comes
to mind, However, it is essential in Chapter III and does follow from

this particular representation of Ramanujan's sum.,

. Corollary 2,12, 1: If d and & are divisors of r, then

c(r/6,d) ¢(8) = c(r/d, 8) ¢(d).

Proof: Let d and & be divisors of r, The corollary follows

from the fact that d/(r/6,d) = &/(r/d4,8) . A

Orthogonality Preperties of Ramanujan Sums

-Ramanujan sums are interesting in themselves as examples of
functions of two variables, But their importance in this context lies
mainly in the fact that they are essential to the development of the
representation of even functions modulo r, a topic to be considered in
the next chapter. With this purpose in mind the remainder of this
chapter is concerned with two orthegonality properties of Ramanujan
sums, Theorem 2,13 is a result which later on will classify

Ramanujan's sum as a special type of function.

Theorem 2,13: If (n,r) = k, then c¢(n,r) = c(k, r),

Proof: Since (n,r) = k, then c(n,r) = IZ du(r/d). Now
d|k
(kyr) = ((n,r),r) = k, Thus, c(k,r) has precisely the same repre-

sentation as c{n, r). A

The next theorem is the first of the aforementioned orthogonality
properties. The key to its proof lies in expressing the product of the

Ramanujan sums as a product of sums of e-functions and then
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arranging the summation so that the formula in Theorem 2.7 for the

generalized Cauchy product of e-functions can be applied,

Theorem 2, 14: If dllr and dzlr, then for every n,

rec(n,d) if cl1 ‘-=d2 =d

> c(a,dl)c(b,dz) = '

Proof: Denote the left side of the desired equation by L, By

the definition of Ramanujan's sum along with a change in the order of

summation
L= X = e(azl,dl)e(bzz,dz)
z.,%Z, n=atb(modr)
1°72
as z, runs through a reduced residue system modulo d1 , and zZ,

runs through a reduced residue system modulo d2 . Without loss of
generality, assume d1 2z > 0 and d2 2 25> 0, Thus, by

Theorem 2.7,

rzZ e(nzl,d) if d1=d2=d and z)= 2,

0 otherwise ,
where z, ranges over a reduced residue system modulo d. Hence,

r-c(n,d) if d1=d2=d

0 if dla‘éd2

1 if r=1
Corollary 2,14, 1: = cla, r) = .
a(mod r) 0 if r>1
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Proof: If r =1, then z c(a,r) = ¢(a,l) = 1. Suppose
a(modr)

r>1 and let d1 =r and d2 = 1 in the previous theorem. Then

= c(a,r)c(b, 1) = z ¢c(a, r) since c¢(b,1) =1, On the other
a(mod r) a(mod r)
hand, Z cf(a,r) =0 since r # 1., These last two equations
a(modr)
show that  efla,r) =0 if r>1,. A
a(mod r)

Theorem 2. 16 is the second orthogonality property for
Ramanyjan sums. In this instange the property is given in terms of
the divisors of r rather than by a congruence. The proof begins by
looking at the same sum as that stated in the first orthogonality property
and proceeds by replacing a complete residue system a modulo r by
an equivalent system. The following lemma from elementary number

theory allows such changes to be made.

Lemma 2, 15: The integers a = zd where d ranges over the

divisars of r, and for each d, z ranges over a reduced residue

system modulo r/d constitute a complete residue system modulo r.

Theorem 2,16: If dllr and dzlr, then
r if d1 = d2
z c(r/d,dl)c(r/dz,d) = .
d|r fd, #4
0 i 1 5 -
Proof; Let
R = = C(agdl)c(b,dz) = = c(a,dl)c(n—a,dz) .
n=a+b(mod r) a(mod r)

From the previous lemma a complete residue system a modulo r is

given by a = z(r/d) where d ranges over the diviso.rs of r, and
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for each d, z ranges over a reduced residue system module d. So

R=ZX Z c(zr/d,dl)c(n-zr/d,dz)
Z d’r

as z ranges over a reduced residue system modulo d for every
divisor 4 of r. Since dl lr, then (z,dl) =1, and it follows that

c(zr/d,dl) = c(r/d,dl). Hence,

R = Z c(r/d,d,) ZT c(n~2zr/d,d,)
1 2 2

d [ r
where 2z ranges over a reduced residue system modulo d, Consider

only the z-sum. By the definition of Ramanujan's sum,

= c(nwzr/d,dz) =z Xz e((n-zr/d)x,dz)
z Z x

where x runs through a reduced residue system modulo d Now

2 L
e((n-zr/d)x, dZ) = e(nx,dz)e(—zrx/dz,d). Because z ranges over a
reduced residue system modulo d, this z-sum may be written as

> e(nx,d

2 2) = e(-zrx/dz,d) = c(n,dz)c(mzr/dz,d) .

z

Since (-z,d) =1, then c(-—zr/dz,d) = c(r/dz,d). Hence,

R

Z ¢(r/d, dl) c(n, dZ) c(r/dz, d)
d]r

c(n,dz) dZ c(r/d,dl)c(r/dz,d) .
|r

However, from the first orthogonality property,
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r.c(n,d) if d1=d2=d

0 if d,#4d,,
Therefore, it follows from these two values of R that:

r if dl‘—' 2
Z c{r/d,d.)c(r/d_,d) = .
alx 1 2
0 if d #4d, A

r if r]n
Corollary 2.16.1: X c(n,d) = .
' dlr 0 if rfn

Proof: In the previous theorem let d. =1, Since c(r/d,dl) =1,

1
r if d2=1
Z c(r/d,,d) = .
dlr 2
0 if d2¢1

So the nonzero terms of the sum occur when d2 = 1. In this case
c(r/d,,d) = c(r,d). Since dlr, (r,d)=d. If r|n, then (n,d)=4d.
So (r,d) = (n,d) if rln. By Theorem 2,13,

c(r,d) = c((r,d),d) = c((n,d),d) = ¢(n,d) if r|n. So

r if rln

0 if rfn A
The e-function of this chapter laid the foundation for the develop-

ment of Ramanujan's sum. Now Ramanujan's sum plays a key role in

the study of even functions module r.



CHAPTER 1III
EVEN FUNCTIONS MODULO r

This chapter deals with a class of functions of two variables
called even functions modulo r.. Representations for these functions
are derived, one of which involves the function c¢(n,r). In Chapter V
the unitary counterpart of the even function module r, called the
unitary function modulo r, is discussed. At that time it is shown that
a unitary function modulo r is also. an even function modulo r, Hence,
the representations derived in this chapter are significant in finding
representations for the unitary function medulo r,

L.et r be an arbitrary positive integer and F a field of charac-
teristic zero which contains the rth roots of unity. If n is a non-
negative integer, f(n,r) is an element of F associated with the pair
of integers n and r; thatis, f is a function of n and r. In this
setting the central theme of this chapter is that the class of even
functions medulo r is identical to either of two classes of functions.
One class is defined by f(n,r) = 2 «a(d)c(n,d) where «o(d)e F, and

r

the other class is defined by f{(n,r) = = g(d, r/d) where g is an
d|(n, r)
arbitrary function with values in F.

Definition 3. 1: The functien {(n,r) is an even function of n

modulo r if it satisfies the following:

41
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—

(i) fim, r) = f(n,r) if m = n(modr) ;

(ii) f(n,r) = f(k,r) if k = (n,r).

From (ii) it is evident that for every n the value of an even
function f(n,r) 1is determined by the greatest common divisor of n
and r, (n,r). Also, since n+r = n(modr), then f{ntr,r) = f(n,r),
and an even function modulo r is periodic in n with period r, Part
(ii) of the definition is sufficient to show that f is an even function
modulo r and hence can be taken as a characterization of even functions

modulo r,

Theorem 3,1: The function f(n,r) is an even function of n

modulo r if and only if f(n,r) = f(k,r) for k= (n,r).

Proef: If f(n,r) is an even function of n modulo r, the
condition holds. Suppose that the condition holds. For any m and n
with m = n(medr), (m,r) = (n,r) = k, Thus,

f(n, r) = f(k,r) = f((m, r), r) = f(m, r). Hence, part (i) of the defini-

tion is satisfied, and f(n,r) is even modulo r. A

One of the results of the previous chapter was that
c(n, r) = c(k,r) where k= (n,r). This property, along with the
above theorem, shows that Ramanujan's sum is an even function
modula r. This is nice to know; however, in deriving the representa-
tions for even functions modulo r, sums are encountered which involve
c{n,d) for d{r rather than c(n,r) itself. It is convenient to extend
the definition of even function modulo r and define f(n,d) as an even

function of n modulo r,
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Definition 3.2: Suppose f(n,r) is an even function of n

rhodulo r and d'r . Then f(n,d) is an even function of n modulo r

if and only if f(n,d) = f((n, r),d).

Theorem 3,2: If 6 is any divisor of r, then c¢(n,0) is an

even function of n modulo r.,

Proof: If 6lr , the proof is complete if c(n, 6) = c((n, r), §).
From the characterization for Ramanujan's sum,
c(n,8) = = du(8/d) and c{(n,r),d) = = d'u(s/d"),
d|(n, 8) d'[((n, 1), 8)
Since the set of divisors of (n,d) is the same as the set of divisors of

((n, r), 8), the two sums are identical, and it follows that c¢(n, &) is an

even function of n modulo r, A

With these preliminaries out of the way the exciting part of the
chapter is at hand. The first representation for f(n,r), an even
function of n modulo r, is in terms of Ramanujan's sum. To show
that a representation of this form defines an even function modulo r is
straightforward from the definition, The hard part is to show that an
even function modulo r has this representation. At this point in the

proof an outline of the major steps involved is given,

Theorem 3.3: Every even function f(n,r) of n modulo r can

be represented by the form

fln,r) = 2 a(d)c(n,d) {1)

where a(d)e F, Conversely, every function of the form (1) is even
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modulo r, and the coefficients «(d) = a(d,r/d) are given by

a(d) = 1/r Z f(r/dl,r)c(r/d,dl) (la)

dlfr

or by the equivalent formula

r
a(d) = 1/(re(d)) Z f(m,r)c(m,d). (1b)

m=1

Proof: In order to show that the function f{(n,r) = X a(d)c(n,d)
is an even function modulo r, it is necessary to show tha<mii:’r
f(n,r) = f(k,r) where k = (n,r). This follows immediately from the
fact that c¢{n,d) = c(k,d) for all divisors d of r.

Now let f(n,r) be an even function of n modulo r and k = (n, r).
The proof will be complete once two main points are verified. First,
it must be shown that f(n,r) has a representation of the type (1) with
a(d) defined by (la). Secondly, formulas (la) and (lb) must be
shown to be equivalent,

To justify the first point, consider a representation of the type
(1) with a(d) determined by (la). To make the notation simpler let
(1) be denoted by S. Substituting (la) into (1) for «(d) and noting

that c¢(n,d) 1is an even function modulo r for d[r,

S = z(l > f(r/dl,r)c(r/d,d1)>c(n,d)
alr\* dllr

=L 5 f(r/d},T) T c(r/d,d))e(k,d).
Todr d|r

By the second orthogonality property for Ramanujan sums
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> c(r/d,d,)c(k,d) = = c(r/d,d )c( : ,d)
dlr 1 dlr 1 Tk

r if dlk:r

0 if dlkaér

This means that the nonzero terms in S occur only when dlk =r 50
that S = f(k, r)., But f(k,r) = f(n,r) since f(n,r) 1is an even function
modulo r. Hence, f(n,r) has the representation (1) where a(d) is
given by (la),.

In order to show that (la) and (1lb) are equivalent representations
for a(d), begin with «(d) defined by (lb)., This sum is taken over
the integers x in a complete residue system modulo r. Lemma 2.15

allows this sum to be made over an equivalent complete residue system

of the form rx/dl where dl’r and (x,dl) =1, With this change in
summation
1
a(d) = = = f(rx/d,,r)c(rx/d,,d).
re(d) 4 1r  (x,r)=1 1 1
x(moddl)

Since dllr and (x,r) =1, then (rx/dl,r) = r/dl, and thus
f(rx/dl,r) = f(r/dl,r) since f(n,r) 1is an even function modulo r.

Theorem 2.8 implies c(rx/dl,d) = c(r/dl,d) since {x,d) =1,

Hence,

a(d) = = = f(r/d,, r)c(r/d,,d).
r¢(d) dllr (x, r)=1 ! 1
x(moddl)

Since the x 1is no longer present in the inner summation, this sum
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merely counts one f(r/dl, r)c(r/dl,d) for each x in a reduced
residue system modulo d1 . So the inner sum is only

1) . But since d1 and d are arbitrary
divisors of r, c(r/dl,d) w(d

f(r/dl, r)c(r/dl,d) e (d

1) = c(r/d,dl) ¢(d) as was shown in

Chapter II, Thus,

- 1 : \
a(d) = o (d) derf(r’/dl,r’)c(r/d,d1)<p(d) ,
1
and the representation (la) follows. A

Theorems 3,4 and 3.5 establish the equivalence of the class of
functions f(n, r) = [ z g(d, r/d) mentioned earlier and the set of
di(n, )

all even functions modulo r. With this second representation it is

possible to characterize an even function modulo r by either formula,

Theorem 3.4: Every even function medulo r may be written in

the form
f(n, r) = ~ g(d,r/d), (2)
d|(n, )
where
gd,r/d) =d T a(dd,)pld,). ' (2a)
dllr/d

Conversely, every function of this form is even modulo r.,

Proof: I.et f(n,r) be an even function modulo r. Then {(n,r)

has the representation f(n,r) = IZ a(d)c(n, 6). Since
5|r
c(n, 8) = = du(d/d), then f(n,r) = = a(d) = dp(d6/d). Now
d|(n, &) &|r d|(n, &)

6|r and dl(n,6) is equivalent to d'(n,r), 6|r, and dl6 so that
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f(n,r) = z d Z  a(8)u(d/d). Since d|6, there exists a d1
d|(n,r) &|r,d|8
such that dd1 = 8§, Since 6&|r, then dd, |r, and it follows that

d1 |r/d. With these alterations

f(n, r) = z d z a(ddl)p(dl)'
)

Hence, f(n,r) may be written in the form (2) where g(d, r/d) has the
form (2a).
To prove the converse suppose that f(n,r) = Z g(d,r/d) and
d|(n, r)
that k = (n,r). Since d ] (n, r) if and only if d | ((n, r), r), it follows

that f(n,r) = f(k,r), and f£(n,r) 1is even modulo r, A

Theorem 3,5: An even function of the form (2) has a represen-

tation of the form (1) where the coefficients a(d) are determined by

a(d) = 1/r = g(r/d,d)-d'.
d'|r/d

Proof: If f(n,r) is an even function modulo r, by Theorems

3.4 and 3.3 it may be assumed that f(n,r) = z  g(6,r/d) and
&|(n, r)
f(n, r) = 'Zoz(d)c(n,d) . Also, Theorem 3.3 implies that
d|r

a(d) = 1/r Z f(r/dl,r)c(r/d,dl) .

dlfr
Since f(r/dl,r) = = g(D, r/D), then
D](r/dl,r)
a(d) = 1/r Z C(r/d,dl) = g(D, r/D) .
dllr D|(r/dy, r)

The second sum is over the divisors D of r/d1 because
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(r/dy,r) = r/d;. Since d,|r and Dlr/d1 if and only if D|r and

1|
d, |r/D, then

a(d) = 1/r Z g(D,r/D) = c(r/d,dl) .
D]r dllr/D

Since D|r, there exists an element d' such that Dd' = r. Hence,

a(d) = 1/r = g(r/d',d') = c(r/d,dl) .

arlr 4, la

But by Coerollary 2,16.1,

d' if d'|r/d
z c(r/d,d.) =
d,|a 1
1 0 if d'fr/d
Therefore, a(d) = 1/r Z g(r/d',d')rd' as was required, A
d'|r/d

"In summary this chapter dealt with an interesting class of
functions of two variables, the class of even functions modulo r. The
Ramanujan sum introduced in Chapter II turned out to be one of these
even functions, It was shown that an even function meodulo r can be
characterized by either one of two representations, one of which is in
terms of Ramanujan's sum,

" In the next chapter attention is given to functions of two.-variables
defined in terms of the unitary divisor, Three particular functions are
studied, two of which are analogues of functions considered in
Chapter II. Not only are the results interesting and important to the

entire discussion, but the methods by which the results are obtained
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should also be noticed, particularly the parallels between the methods

of Chapters IV and V and Chapters II and III,



CHAPTER IV
SOME UNITARY ANALOGUES

In Chapter II several functions of two variables were discussed,
and it was noted that the unitary analogues of these functions would also
be developed. This chapter deals with the unitary analogues of the
Nagell totient function and of Ramanujan's sum. A unitary convolution
for two variables is also defined which leads to the unitary analogues of
the Anderson-Apostol, Landau, and Brauer~Rademacher identities.
The study of this convolution gives an added bonus for under special

% 3 B3

conditions it reduces to p.“, ¢ , and o respectively., The discus-

sion begins with the function G*(n, r).

The Function G’P(n, r)

Definition 4.1: If n 1is a nonnegative integer and r is a pesitive

integer, the unitary analogue of the Nagell totient function, denoted by

e
32

8 (n,r), is defined to be the number of integers x such that
(i) 1 <x<r

(1) (¢, 1)y = (a-x,1), =1,

Example 4. 1: Suppose that n = 24 and r = 10. Then one

must determine the numbers x sothat 1 < x < 10 and

(xy10)>:< = (24 -x,10),, =1. Ofthe set 1.<x <10, only 1,3,7, and

|0
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9 satisfy (x, 10)>l< = 1. Since (15, 10)* = 5, 9 does not satisfy

Sk

(24 -x,10), = 1. Thus, 6 (24,10) = 3.

Just as the Nagell function reduces to Euler's function in the case

sk %
~where n = r, under this same condition 6 (n,r) reduces to ¢ (r).

b3
Theorem 4.1: If n=r, then 6 (n,r) = ¢ (r).

‘Proof: The number of integers x suchthat 1 < x < r and

(x,rv),=1 is ¢ (r). I (x,r)*= 1, then (r-x,r)*= 1. Hence, it

B

e

follows that 6 (r,r) = <p>‘<(r). A

It is clear from the definition that G*(n, 1) = 1. Other evalua-~
tions would be useful, but if the definition were used each time G*(n, r)
was calculated, the work could become rather tedious, A formula
characterizing this function can be found using the multiplicative
property of G*(n, r) and the value of G*(n,pa) for any prime p and
a any positive integer,

The proof that e*(n, r) is a multiplicative function of r is
particularly interesting since it uses the properties of unitary divisors

and one of the basic concepts of algebra, that of isomorphism, If

r = st where (s,t) =1, s #1, and t # 1, then 6>'<(n, r) is multi-

sk S sk

plicative if 6"‘(n, r) = 6 (n,s) 0 (n,t). Here appropriate sets R, S,
and T are defined, and it is shown that R is isomorphic to S x T.
The actual isomorphism is shown in Theorem 4.3 ; Lemma 4.2

provides some necessary preliminaries,

Lemma4,2: Let r =st where (s,t)=1, s#1, and t#1.

For each nonnegative integer n define the sets S, T, and R as
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follows:

1}

(n-2z,t), 1} (1)

S={y:1<y<s and (y,8),= (n-y,s),

1]
i

T={z:1.<2z <t and (z,t),

R={x:1<x<r and (x,71),= (n-x71), =1}.
If x isin R, and y and z are defined by the congruences

X = y(mods) and 0 <Ly

In
7

"
]

= z(modt) and 0 <z <t ,
then y is'in S, and z isin T.

Proof: By the definition of S it is necessary for y to satisfy
1 <y<s and (y, s)*= (n—y,s)*= 1. Because 0 <y < s, the
first condition follows if y # 0. If y=0, x = y(mods) implies
that s|x. Since r = st where (s,t) =1, then s|r. So s|x and
s“r imply s,(x, r)*. But since (x, r)* =1, then s =1, acontra-
diction to the hypothesis. Thus, y # 0.

I (y,s), = d, then dly and dls. Because dlls and s|r,
then d”r. Since d 1is a divisor of both y and s, it fellows that
d[x because x = y(mods), Hence, dlx and d“r imply dH (x, r)*.
But (x, r)>:< = 1 f{rom the definition of R. Therefore, d =1,

To complete the proof suppose that (n-y,s), = d A succes-

1°
sion of steps similar to those above yields d1 a unitary divisor of

(n-x, )

se
bd

But since (n -x, r)>:< =1, then d1 = 1, These three steps
imply that y must be in S. In a similar manner it follows that =z -is

in T, A
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: *
Theorem 4.3: For each nonnegative integer n, 0 (n,r) isa

multiplicative function of r,

Proof: Let r = st where (s,t)=1, s# 1, and t# 1, Also
let S, . T, and R be defined by (1). Define the mapping g: R—->SxT
by g(x) = <y,z> where y and z are defined by the congruences (2).
The fact that g is well defined follows quickly from .its own definition
and the congruences (2), . It remains to be shown that g is one-to-one
and onto,

Let g(x) = <y,z> and g(x') = <y,z>. By the definition of g,

x = y (mod s) x! = y (mod s)
and

X = z (modt) x' = z(modt) .
Since (s,t) = 1, the system of congruences

v = y (mod s)

v = z(modt)

must have only one solution in the closed interval (o, st], Thus,
x = x', and g is one~to-one,
To show that g is onto S xT let <y,z>e S xT andlet x

denote the unique solution of the system of congruences

v = y(mods)

<
f

= z (modt)

in the interval [0, st]. The proof is complete if x ¢ R, thatis, if
l1<x<r and (x,r),= (n-x,1),=1. Since (x,s), =1 and

AL L,
3k % B3

(x,t)* =1 where (s,t) =1, Theorem 1.12 implies that
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(x, st), = (x,r), = 1. Likewise, (n-x,r), =1, So x isin R, and
g is onto as was required.
Since g is both one-to-one and onto, R is isomorphic to
S xT, and the number of elements in R is equal to the number of
B

elements in S xT. Therefore, 0 (n,r) is a multiplicative function

of r. A

sle
If p is any prime and a 1is a positive integer, © (n,pa) is the

number of integers x suchthat 1 < x < pa and
(x,,pa’)>.,< = (n-x, pa')>,< = 1, It is necessary to distinguish between the

e

cases paln and pa*n in determining © (n,pa).

Theorem 4.4: If p is any prime and n is a fixed nonnegative

integer,

p> -1 if p>|n

6 (n,p") =
p* -2 if p*/n.

Proof: Let X ={1,2,... ,p-1} and suppose pa'|n‘, Note that

%

X contains the candidates x to be counted in determining 0 (n,pa) .

The only unitary divisors of pa are 1 and pa ., But for every

xe X, pa*x and pa*n-x. Hence, (x,pa)*z (n—x,pa)*:l for all

s
3R

xg X. Therefore, if paln,, ) (n,pa) = pa-l.
Now suppose pa(n and again consider the integers xe¢ X, The
set X + {0} 1is a complete residue system modulo pa . Hence, there

exists an x in X + {0} such that x = n(modpa). But since pa(n,

x # 0. This means there is an xe¢ X such that (n-x, pa')>:< # 1,

S

Hence, 6 (n,p) = p-~2 if p*/n. A
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Je
£

3K
Since 6 (n,r) is multiplicative and since 6 (n,pa) has been
determined for any prime p, itis rather easy to find a formula for
e>'<(n, r). Before this formula is stated, one point needs to be made in

regard to notation, The canonical representation of r will be denoted"

by r= 1 pa, unless otherwise specified.,
p|r
Theorem 4.5: Let r= II pa be the canonical representation of
plr
r. Then 6 (n,r) = p®-1). I (pa'_Z),

I a
p?|n p*fn
Prooef:. Suppose that n is held fixed, Since 6>‘=(n, r) isa

B X 5k
multiplicative function of r, 6 (n,r) = T’I 0 (n,pa). Since 0 (n, pa")
pir
is pa-l if pa[n and-is pa—Z if pa(n, then

0 (n,r) = I (p-1): I (p
p*|n p*/n

Example 4.2: The calculation of 8 (24,10) is easily done with

this formula, Note that 10 = 2.5, and 2|24 but 5/24. Thus,

0°(24,10) = (2-1)(5-2) = 3.

Now let r = T'I p2 be the canonical representation of r, If
Plr
for every prime p, pa’{n , the formula for 6>"(n, r) contains only

factors of the form pa -2, If paln for every prime p that divides
%
r, 6 (n,r) is characterized by a product of factors of the form

pa ~-1. These results are stated in the following corollaries, the

B3

second of which gives another conditioen for which G*(n, r) = ¢ (r).

Corollary 4.5.1: Let r = III pa be the canonical representation
. olr

of r. If (n,r), =1, then © (n,r) = I (p>-2) = r- T (1-2/p%).

plr p|r
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Proof: Since (n,r), =1, no prime power in the canonical

representation of r can divide n. Thus, pa(n for any p. So from

the general formula 6>'<(n, r) = I]I (p> - 2). The second quality is
plr
straightforward. A
Corollary 4.5.2: Let r = I'I pa be the canonical representa-
plr

tion of r, If r’n, then

Sk 3k

8 (n,r) = T (p -1) =1+ I (1-1/p%) = ¢ ().

plr plr

Proof: Since r!n, pa(n for every prime p that divides r,
and 8 (n,r) = I (po-1). Now
plr
a a
I(p -1)= Tp" MW (1-1/p") =r. I (1-1/p).
p|r plr  plr p|r

T

But this last expression is only <pq‘(r) . Hence, if r [nF then

8 (n,r) = ¢ (r), A

When c(n,r) was studied earlier, one of the properties:listed
was the value of the sum of all c¢(n,d) where d was a divisor of r,
A similar evaluation is made here for e*(n,d) , but the sum is taken
over the unitary divisors of r. Such sums, called unitary convolu-
tions, were introduced in Chapter I, In the unitary case the convolu-
tion has an especially simple form since the only unitary divisors of
pa' are 1 and pa so that d”Z) a reduces to two terms. Theorem

b

4.6 gives the values for four unitary convolutions. Each property is

stated and proved separately.
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Theorem 4.6: Let r = 1r p> be the canonical representation
plr
of r, Then (i) through (iv) hold.
. * a a 0
(i) Z 0 (n:d) = aH P - I (P -1) = (n, I‘)* * Z 8 (n'd)',
dfr p*ln p*/n dfr/(n,r)

*
Proof: Let r have the given representation. Since © (n,r) is

K
)

multiplicative with respect to r, Z 0 (n,d) is also multiplicative,

d “ r
and the value of this sum can be determined by calculating

x
2 0 (n,d) for each p such that pallr . By Theorem 4.4,

a
dfp
e b3 % a
= ae (n,d) = 6 (n,1)+6 (n,p)
dlfp |
=1+6 (n,p")
p*  if p*|n
pa—l if pa(n
Thus, = G*(n,d) = 1II pa- v (pa—l).
dlfx p*ln p*In
In Chapter I it was noted that if r = ll'I pa, then
plr
(n, 1), = If p” and that dl/r/(n,r), ifandonlyif dfr and
p?|n
(n,d)>=¢ = 1, Hence,
* *
S 0 (md) = = 6 (nd.
d”r/(n’ r)>{< d”r
(n,d),=1

Theorem 1,18 implies

> 0 (n,d) = T (L+6 (n,p%))
dfr p?/[n
(n,d),=1

Sl
since © (n,r) is multiplicative. However, pa{n implies
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G*(n,pa) = pa -2 so that this last product is II (pa -1). Hence,
a
p?/n

b
(n, 1), * = 6 (nd) = I p- I (%1, A
dllr/(n, v)y p*|n p°/n
(i) = 8 (ndfe (d = T 2+ I (2p"-3)/(p>-1)
dfx p?|n  p?/n

h sk K

= 2 ((n, I")*) . I (Zpa -3). o ({(n, I')*)/(p (r).
p?/n

Proof: Since e>'q and <p>'g are both multiplicative, their quotient

and hence the sum of their quotients over the unitary divisors of r are

bl
both multiplicative, This quotient makes sense since ¢ is never

b

zero, Thus, it is sufficient to consider 0 (n,d)/¢>'q(d) . This sum

Z a
d[[p
. e B e a A a
is only 0 (n,1)/¢ (1) +6 (n,p )/e (p ) so that

1+(p> - 1)/(p>=1) =2 if p°|n
z 0 (n,d)e (d) =

dilp 1+ (p~ -2)/(p> - 1) = 2p% -3)/(p> - 1) if p*/n

The first equality of (ii) follows by taking the product of these factors
over the appropriate values of pa .

The product aI} (2p> = 3)/(p> ~1) can be written in a slightly
P in *
simpler form by using the fact that ¢ (r/(n, r)y) = I} (p
p?in

a._ 1). Since

sk

o (x/(n, 1)) = ¢ (X))o (0, 1)),

)
58

e e
I (2p7-3)/(p%-1) = W (2p7-3)- ¢ (I, x),)/e (r).
p*[n p*/[n
Because the number of distinct prime divisors of (n, r)*, denoted by

h((n, r),), is equal to the number of distinct primes in the canonical

*
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h((nx r)*) .

representation of r which divide n, I 2 =2 With this
p?|n
substitution the second equality of (ii) follows, A

1t
o
©
S~
o

(iii) > 1/67(n,d) -
dfr p?|n p?/n

S

(n, 1)y 0 (£)/0 (0, r)g (0, 7)) .

Proof: As in the previous proofs S = "T') 1/9"‘(n,d) has only
dip?
two terms, So

Sl sk
1/6 (n, 1)+ 1/6 (n,p>)

wn
1!

1+1/(p" - 1) = p*/(p°- 1) if p*|n

1

1+1/(p>-2) = (po-1)/(p>-2) if p°/n

The first equality of (iii) follows by taking the product of these factors
over the appropriate values of pa . |

The second equality follows as a result of breaking the above
product up into four separate products. If P denotes the product of

the first equality,

P= 0 pr- I 1/(p7-1) T (p°=1): I 1/(p" -2)
p*|n p?|n p?/n p*/n

=m0y e (e/mr)y) s I 1/(pY-1) - I 1/(p%-2) .
p-[n & p*/n

Since the product of the last two terms in P is 1/,9>l<(n, r), then the

second equality of (iii) follows. A
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%

(1v) = 1/6m,d) = 1/p (@) = /6 (a, 1) .

Proof: By Theorem 1,30

Z 1/67@ = -0 (0, 1))/ (0, 1), 0 (1),
dfr
(n, d),=1

Multiplying this expression by that of (iii) yields the desired result, A

The final theorem regarding 9>‘<(n, r) allows 9>'<(n, r) to be

sk sk
represented as a special convolution of p and ¢ . As was true for

many of the previous proofs, this result is based on the fact that pl‘

&
and ¢ are maultiplicative and hence upon one of the basic properties

of multiplicative functions stated in Theorem 1, 18,

Theorem 4,7: If r = 1II pa is the canonical representation of

r, then

0 1) =0 (r) = (@) (d).
dH r
(n, d),=1

B

b3 b
" Proof: Since both p and ¢ are multiplicative, and ¢ is

never 0, their quotient is multiplicative, Hence, by Theorem 1,18,

e

z W@)le @ = 1 (1 +u”°(pa>/¢*<pa))
dlflr p*/n
(n,d),=1



61

Since cp*(r) = II (pa-l) )
plr
"oz @@ 1 et-ns 1 6t 2/6%-1)
dfjr p|r p”{n
(n,d), =1
= I (p>-1) o (p =-2)
p”|n p*{n
=0 (o), A

sle

The Function c¢ (n, r)

The second unitary analogue to be studied in this chapter is the
unitary analogue of Ramanujan's sum. Eckford Cohen [5] used this
functien to obtain formulas for ga* and I_L* as well as some unitary
analogues of other number-theoretic identities. These results are
noted in the ensuing discussion. The main purpose, however, is to
study this unitary analogue as a function of two variables while noting
the parallels in this development with that of the ordinary Ramanujan
sum.

The e-function studied earlier will have its same meaning in this
context. Since this function does not depend on divisors, it is inappro-
priate to consider any kind of unitary analegue for it, But just as this
function was central to the definition of c(n,r), it is very important
in defining c*(n, r), the unitary analogue of c(n,r). In fact, the
definition is the same except that for c*(n, r) the summation is over

the integers in a semi-reduced residue system modulo r,

Definition 4.2: The function c (n,r) is defined by

e
>R

¢ (n,r) = Z e(nx, r) where x ranges over a semi-reduced residue
x
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system modulo r.

e

It is evident from the definition that ¢ (n,1) =1, Also, the
b
summands-in ¢ (n,r) are the rth roots of unity, as was also the case

for the summands of c¢(n,r). Before pursuing any other properties of

this function, it is helpful to see a calculation made with-the definition.

Al
s

Example 4;3: Suppose the problem is to evaluate ¢ (4,12).

The set T ={1,2,5,7,10,11} is a semi-reduced residue system

6

modulo 12, Thus, c (4, 12) = Z e(4x,12) where xe T. So
b'q

B

c (4, 12)

i

e(4,12) + e(8,12) + e(20, 12) + e(28, 12) + e(40, 12) + e(44, 12)

i}

3(cos2n/3 + isin2w/3) + 3(cos4w/3) + isin4w/3)

H]

3(-1/2 +iyf37/2) + 3(-1/2 - 1 [3/2) = -3 ,

<ol b3
If n=0, ¢ (n,r) reverts to the familiar function ¢ (r) as the

following theorem shows,

3 3

Theorem 4,8: ¢ (0,r) = gos(r) .

b
Proof: For n=0, ¢ (0,r) = 21 where x ranges through the
X

set of integers in a semi-reduced residue system modulo r, This
sum merely counts all theose integers in a semi-reduced residue system

Bl sk

modulo r, Thus, ¢ (0,r) = ¢ (r), A

The next result parallels an earlier property for the ordinary

Ramanujan sum stated in Theorem 2.8.

¢ b

Theorem 4.9: If (a,r) =1, then ¢ (an,r) = ¢ (n,r).
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Proof: Suppose x runs through a semi-reduced residue system
modulo r, Since (a,r) =1, the values ax also run through a semie-

b
reduced residue system modulo r, Thus, the values of ¢ (an,r) and

c*(n,r) are the same. A
A complete residue system modulo r can be characterized by
the set of integers dz where d ranges over the unitary divisors of
r, and for every d, z ranges over a semi-reduced residue system
modulo r/d. This result is essential in verifying the formula for the

E

sum of the functions ¢ (n,d) where dfr.

r if r|n

. Theorem 4.10: X C*(n,d) = .
' ' d| r 0 if r{n

Proof: In Chapter II it was shown that

r if r'n

= e(nz, r) =

z(mod r) 0 if r(n

where the summation is ever the integers z in a complete residue
~system meodulo r, Due to the result mentioned prior to this theorem,

> e(nz, r) = X > e(ndz, r) , The inner sum here is
z(mod r) d|r (z, r/d),=1

only ¢*(n, r/d). Thus,

r if r]n
%

Z ¢ (n,r/d) = Z  e(nz,r) =

dlr z(mod r) 0 if r/n

The r/d may be replaced by d since this will effect only a change in

the order of summation. With this substitution the equation follows, A
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Recall that in Corollary 2,16, 1 it was shown that

r if r|n
Z c(n,d) =
djr .
0 if r{n
Thus, ﬁ) c>‘<(n,d) and ? c(n,d) have the same value even though
d|r d|r

B
¢ (n,r) and c(n,r) are not necessarily the same,

The result of the following corollary'is not new, but the approach

is different from that in [7].

Corollary 4,10.1: If r is an integer, ﬁ qo)'d(d) = r,
- dfir

E %
Proof: Since c¢ (0,d) = qo<(d) and r|0, then

S o) = = ¢ 0,4) = r. A
alx alx

ale
s

‘As one might suspect, ¢ (n,r) is a multiplicative function of r.
The proof proceeds in the same manner as that for c(n,r), except
that semi-reduced residue systems are used instead of reduced residue

systems.,

)
38

Theorem 4.11: The function ¢ (n,r) is a multiplicative function

Sl sle e
b kg

of r; thatis, if (r,s) =1, then cp(n,rs) = ¢ (n,ric (n,s),

Proof: Let z, range overa semi-reduced residue system

modulo r and 2z, range over a semi-reduced residue system

2

modulo s. Then

Sk ES

¢ (n,r)e (n,s) = X e(nzl,r) = e(nzz,,s)
21 %2
= =z Z e(n(zls + zzr), rs) ,

Z]. ZZ
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this latter equality following from the properties of exponents.

Because {z:z= Z,T + le} ranges over a semi=reduced residue

system modulo rs, the double sum above can be written as the single

sum X e(nz,rs) where z ranges over a semi-reduced residue
zZ

B B3 sk E3
system module rs, Thus, ¢ (n,r)c (n,s) = ¢ (n,rs). A

ke b3

Since ¢ (0,r) = ¢ (r), the following corollary is immediate.

B9

Corollary 4. 11, 1: The function ¢ (r) is multiplicative.

In the preliminaries to this paper the unitary analogue p,* of the

1,
sk

Md8bius function was discussed. Just as ¢ (n,r) leads to a different
s
way to obtain ¢ (r), it also provides an alternate means of studying

p,‘(r) . Whii}e the results obtained in this manner are not new, the

approach is trather interesting, To begin the discussion p.* is defined
in a manner analogous to a property known about ., In [7] Theorem

4. 14 was used as the definition, and Definition 4,3 was derived as a

theorem.

Definition 4.3: The unitary analogue of the Mdbius function p,

e
denoted by p , is defined by

1 if r =1
S
2w (d) = '
df|x 0 if r > 1
One immediate consequence of this definition is that p.m(l) =1,

ala

The following theorem gives the value for p.l (pa) where p is a

prime, and a is a positive integer.



66.

Theorem 4.12: If p is a prime, and a is a positive integer,

then |.L>‘<(pa) = ~1,

%
Proof: Since pa > 1, the definition of p  implies that

2 w(d)=0. Because 1 and pa are the only unitary divisors of

sk ¥ a Sl ¥ a

P2, p (1) +u (p°) = 0. However, p (1) =1 implies p (po)=-1. A

sk

The definition given for p  is rather indirect, If |.L>l‘(r) can be

o
shown to be one of the functions ¢ (n,r), there would fellow a precise

)

M 4
means of calculating pu , but more important than this, p  would be

S

multiplicative, The proof that u*(r) =c¢ (1,r) requires the unitary

analogue of the Md&bius inversion formula stated in Theorem 1. 23,

sk sk

Theorem 4.13: p (r) = ¢ (1,r).

b

Proof: Let g(r) = 2 ¢ (1,d). Since

d”r
r if rll
¢ (1,4) = ,
d|[= 0 if rf1
then
1 if r=1
g(r) =
0 if r#1
B3 e
From the inversion formula, c (1,r) = ﬁ n (d) g(r/d). However,
diir
since
1 if r=4d
g(r/d) = g
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*
the only nonzero values in the sum for c¢ (l,r) occur when r =d,

X %

Thus, ¢ (1,7) = w (r). A

i

Since c¢ (n,r) is a multiplicative function of r, the above
£
theorem implies that p  is multiplicative.

3¢
Corollary 4,13, 11 The functien p (r) is a multiplicative

function of r,

H3 .
Since W is multiplicative, it is rather easy to find its charac-
terization in terms of the prime divisors of r. This characterization

S

is the usual definition for pu ,

The orem 4 14; If h(r) denotes the number of distinct prime

divisors of r, then p*(r) = (-l)h(r) .
h(r) a.
Proof: Let r = 1I P, ! be the canonical representation of r.
i=1
Then
. h(r) , a, h{r)
3 h
Wi(r) = I }.L(pil')= m(-1) = (-1)PE) A
i=1 i=1

A second application of the unitary inversion formula is seen in

sle
>R

the next theorem which shows that ¢ (n,r) is a special unitary
s
convolution of p  and the identity function, This is analogous to the

earlier result of Theorem 2, 11.

Theorem 4,15: ¢ (n,r) = =  p (r/d)-d.
' i ' dir,d|n
r if r|n
Prooef: Define the function g by g(r) = , Theorem
0 if r*n

4,10 implies that ﬁ) c*(n, d) = g(r). By the unitary inversion
‘ dfr \
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formula,

% N

¢ (n,r) = Z u (d)g(r/d),
dllr

The only nonzero terms in this expression occur when r/dln and thus

when g(r/d) = r/d. Therefore, these conditions imply that

Fmyry = 2 @ era= 2 WMrsa)-d., A
dfr dljr,d|n
r/d|n
e e
- Corollary 4.15.1: ¢ (r) = zﬁ) po(d) - r/d.
‘ dir

3l £
Proof: Recall that <p‘(r) = ¢ (0,r)., Inthe case n =0, the

condition d|n is redundant, Thus,

o) = = u @) r/d . A
d”r

Corollary 4.15.2: Let p be a prime and a any positive integer,

Then

a . a
¢ (p°) if p ln
-1 if pfn

Proof: The unitary divisors of pa are only 1 and pa.l.. If
paln , both of these values are acceptable in the formula of Theorem

4.15, So

B a
c (nxp ) -

I
o
-
e
o)
~
[o N}

!
=
—
ol

+
-
&)
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= pa—l or tpl(pa) .

£ % a

It pa’(n, d= pa must be discarded. Hence, ¢ (n, pa) =p (p)=-=1.4

%

This example shows that ¢ (4, 12) can be calculated much more

easily with this characterization than by the definition, !

Example 4.4: First note that c (4, 12) = T p(l2/d) - d,
' dj|12,d]4

The unitary divisors of 12 are 1,3,4, and 12, but the sum:is only

over 1 and 4 since 3[4 and 12[4. So

% sk sk 2

c (4,12) = p (12)+p (3) - 4 = (-1)"+ (-1)(4) = -3,

A Unitary Convolution of Two Variables

The special unitary convolution in Theorem 4. 15 is well worth
further study, Since this sum is over the unitary divisors of r which
are also divisers of n, the convolution here is more restricted than
the usual unitary convolution. Also, the fact that the sum depends on
common divisors of r and n implies that the convolution is com-
pletely determined by the values it takes on when n and r are powers
of the same prime. Moreover, the difference between this convolution
and the regular unitary convolution:lies only in the choice of d since
the terms of the summation do not involve n, This dependence on
both n and r leads to a general definition of a function of two

variables defined in terms of this restricted convolution.

Definition 4,4: If h(r) and k(r) are multiplicative functions,

H(n, r) =

= Z  h(d)k(r/d).
d|r,d|n
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The function H(n, r) like most of the others studied is a multi-
plicative function of r, But H(n,r) has theadded bonus of being
multiplicative with respect to n, The importance of these two facts

becomes apparent as the discussion continues.

Theorem 4,16: If n is held fixed, H(n,r) is a multiplicative

function of r.,

Proof: Let r = st where (s,t)=1, The proof is complete if

H(n, r) = H(n, s)H(n,t). Since d”st where (s,t)=1, then. d = d.d

172
where d, s, d,[t, and (d,,d,) =1, Because (d,,d,)=1, then
dldzln if and only if dlln and dzln, Thus, since h and k are
multiplicative,

~Z  h(d)k(r/d) = z h(d,) k(s/d,) 2 h(d,) k(t/d,)
d”r:d,n dIHS,dlln dz”t!dzln
which implies that H(n, r) = H(n, s)H(n,t). A

Theorem 4, 17: The function H(n,r) is a multiplicative function

of n,

Proof: Suppose that n = n,n, where (nl,n

1% )=1, To show

2

that H(n, r) 1is a multiplicative function of n, it is necessary to show

that H(n,r) = H(n,r)Hn,, r). Since d|nn, where (n,n,) =1, d
can be written as the product dle where d1 [nl . dZ_ ]nz , and
(dl’dZ) = 1. Also, (dl’dZ) =1 implies dle “r if and only if

dIHr and dZHr. Thus,

= h(d) k(r/d) = z h(dl)k(r/dl) z h(dz)k(r/dz)
d”r,dln dl']r,dlfnl dzllr,dzlnz



71

since both h and k are multiplicative. Hence,
H(n, r) = H(nl, r) H(tjlz, r), and H(n,r) is a multiplicative function

of n. A

The function H(n,r) helps to bridge the gap between the discus-
S
sion of ¢ (n,r) and the last function, denoted by £f(n,r), to be

considered in this chapter. Definition 4.5 describes f(n, r).

Definition 4,5: Let h(r) and g(r) be multiplicative functiens.

Define f(n,r) by f(n,r) = = vh(d)g(r/d)p‘*(r/d) and
dHr,d]n
£(0, r) = F(r).

b

. Since p“ is multiplicative, it is apparent from the definition
that f(n,r) is just a special case of H(n,r) where k=g:* p,* .
Hence, f(n,r) enjoys the same properties as H(n,r), This means
f(n, r) is a multiplicative funct‘ion of both n and r, Furthermore,
f(n, r) 1is completely determined by the values it takes on when n and
r are powers of the same prime.

The following example shows the calculation of £(10,18). As
such it merely shows how the formula is used., The real interest
occurs when h and g are known functions, and f(n,r) turns out to

be something known.

Example 4, 5: If f(10, 18) is to be evaluated, the sum is over

all d in the intersection of {1,2,9,18} and {1,2,5,10}, Thus,
£(10,18) = h(1)g(18) (18) + h(2)g(9)p (9). Since p (18) =1 and

|J..’ (9) = -1, then £(10,18) = h(1)g(18) ~ h(2)g(9).

One reason for studying f(n, r) is that for special choices of h

and g the function f(n,r) reduces to one of the unitary analogues
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encountered earlier. This function gives a general category to which
the unitary analagues belong, The three theorems: which follow are
special cases of f(n,r).

R
Theorem 4, 18: If h(r)=r and g(r)=1, then f(n,r)=c (n,r),

Proof: Let h and g be the given functions, With these substi-

tutions in the definition of f(n, r),

fn,r) = X dp (x/d).
dffr,d|n
% sk
This sum.is ¢ (n,r) by Theorem 4,15, Hence, f(n,r)=¢ (n,r). A

'Ifheo‘rvem 4.19: If h(r)=r and g(r)=1, then F(r) = ¢ (r).

A

Proof: From the previous theorem h(r)=r and g(r)=1

2 of B
* sk

imply f(n,r) = ¢ (n,r). Thus, F(r) = £0,r) = ¢ (0,1) = ¢ (r). A

X

Theo:em 4,20: If h(r) = r and g(r) = p (r), then

g

F(r) = o (r).

Proof: Since F(r) = f(0,r), n=0. The conditien dIO of the

summation is redundant. So with h(r) = r and g(r) = p (r),
sk %
F(r) = Z dp (r/d)g (x/d) .
d”r
Because p>‘c(r/d) is either 1 or -1, F(r) = ]Z[ d . But this sum
dijr ¢
only adds up all the unitary divisors of r so that F(r) = o (r), A

Suppose now that h and g are arbitrary multiplicative func-

tions, For n =0 the function f(n,r) is defined only in terms. of
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the unitary convolution since the condition d|0 is redundant. If

n=0 and r =pb for any prime p, then f(O,pb) = F(pb) can be

written as the difference h(pb) - g(pb) . From this it follows that if

b

b
h(pb) # g(p ) for all primes p and all b >0, then F(p ) # 0,

Moreover, F(r) # 0 for all positive integers.

Theorem 4,21: For b>0 and p any prime,

F(p®) = hip”) - glp°).

Proof: With d=1 or pb,

F(p) =

Because h and g are multiplicative, h(l) =1 and g(l) =1,  Thus,

_ * : b b b
p(p7)==-1 and p (1) =1 imply F(p’) = h(p") - g(p’) . A

Since f(n,r) is multiplicative with respectto r, its value can
be determined by looking at 1{'[ f(n, pb) where r = I’I pb 'is the
pir pir

canonical representation of r, This property is seen in action.in the

following corollary,

Corollary 4.21,1: If r]n, then f(n,r) = F(r).

Proof: Since r|n, the sum.in f(n,r) is only over the unitary

divisors of r, Now

f(n, pb)

tl
oy
(o}
g
o
o
~
[oR
_‘: hYA
)
on
~
[o R

I
=
o
1
o
o
1
o
ol
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Thus, f(n, pb)

F(pb) when r]n, Hence,

Another reason for studying f(n,r) is that it is helpful in the
formulation of unitary analogues for the Anderson<Apostol, Landau,
and Brauer—Rademac}.ler identities, Although these identities look
rather complicated, they are proved without too much difficulty since
all of the functions involved are multlplicative., In fact, if one can
keep from becoming disenchanted by all the details, these proofs are
good examples of how to use the multiplicative property on a function
which is multiplicative with respect to both variables,

Suppose that @ and p are unequal primes, Since (qa,pb) =1,

it follows that f(qa, pb) = 1, and in the determinatien of f by its
multiplicative property the only factors that need to be retained are
terms. of the form f(pa, pb) . Lemma 4,22 gives the value of f(pa, pb)
in the two cases a <b and a > b, This value involves the function

F of Theorem 4,21,

Lemma 4,22: Let a and b be arbitrary positive integers. If

p is any prime commeon to the canonical representations of n and r,

—g(pb) if a<b

F(p') if a>b

Proof: Recall that (pa', pb)>:< =1 if a<b -and that

(Pas Pb)>,< = pb if a > b, By Theorem 1.8, bz: ) = Za:. _
S de ’d’p d” (p sp )*
o
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(%, 9%) = T, ke e/,
afl (%, p )y
b
If a<b, f(pg.pb) = h(l) g(p )u*(pb) = -g(pb). If a>b,

£(p%, p%) = h(1) g™ p (e®) +h (D) g() k(1) = h(e®) - g(p°) = Fp?).

Theorem 4,23 deals with the unitary analogue of the Anderson-
Apostol identity, The theorem's firstcorollary shows an interesting
relationship between c*(n, r) and the functions (p* and p.* ., This
corollary itself is the analogue of Theorem 2,12, The secondcorollary
gives a relationship for 0'*. In this theorem as well as in thase to
follow it is assumed that p is a prime occurring in the ganonical

representations of both n and r. Also, a and b are positive

integers,

Theorem 4.23: If g is a multiplicative function and

m = r/(n, ), , then

b

f(n,r) = F(r)g(m)p (m)/F(m).

Proof: Since all of the functions involved are multiplicative, it is

sufficient to establish the identity for common prime powers of n and

r., When a<b, (pa, pb')>:< =1 and f(pa,pb) = -.g(pb). In this case

m = r/(n, 1), = pb/(pa,pb)* = pb. So if R denotes the right side of

the desired equality, R = F(p°)g(p”)p (p°)/F(p°) = -g(p°), and the
identity holds for a < b,

For a > b, (pa’,pb)#< = pb and f(pa,pb) = F(pb), So m.=1,
and R = F(pb)g(l)p.*(l)/F(l) = F(pb). Hence, the identity is valid

for prime powers with a > b, and it follows that the identity is valid

for all n and r. A
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Corollary 4,23.1: If m = r/(n,r)*, then

b k¢ %R

Fmr) = o ) pm) e (m)

Proof: Let h(r) = r and g(r) =1 in the definition of f{(n, r),
b sk
With these choiges, f(n,r) = ¢ (n,r) and F(r) = ¢ (r) by Theorems
4,18 and 4,19 respectively, If these substitutions are made in the

identity of the previous theorem, the result is immediate, A

ES
For notation purposes o (n,r) is written for f(n,r) when

sk

h(r) =r and g(r) = p (r)., With this notation the next corollary

follows.

x s %

Corol‘lary 4.23,2: If m = r/(n,r)*, then ¢ (m)e (n,r) = o (r),

B

Proof: If h(r)=r and g(r) = p (r), Theorem 4.20 implies

b s %

F(r) = o (r) and F(m) = ¢ (m). Henge, with f(n,r) = o (n, r),

S ¢ sk sk b

p."‘(m)‘/(r (m). But p.> (m) o (m) =1 so that

qQ
G
2
I
q
)
k=
)

i, r) = o (r)/o (m) . A

The second identity is the unitary analogue of the generalized

Landau identity.

Theo_rem 424 If g and h are multiplicative,

z  g(d)/F(d) = h(r) F((n, r) )/F(r)h((n, r),) .
af[x
(n: d)>}4=1
Proof: The identity is investigated for prime powers common to

n and r as previously defined. Let L denote the left side of the

desired equality and suppose a <b. Then
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The unitary divisors of pb are 1 and pb, both of which satisfy the

condition (pa,d)* = 1, Hence,

L = g(1)/F(1) + g(p®)/F(p°) = 1+ g(p®)/F(p°) .

Since F(pb) = h(pb) - g(pb), L = h(pb)/F(pb.). If R denotes the
b b

right side, R = h(p?) F(1)/F(p°)h(l) = h(p°)/F(p?). Thus, L = R
when a <b,

Now suppose that a > b and recall that this implies

(pa, pb)>=< = pb . In this case the only unitary divisor d of pb which

is d=1. Hence, L = g(l)/F(1)=1, On the

b)/l*“(pb)h(pb)zl. So L=R for a> b,

satisfies (p'a, d), =1
b
other hand R = h(p ) F(p

and the identity follows for all n and r. A

This identity also offers two corollaries, the first of which was
noted earlier in Theorem 1.30. This points out again how many of
these results can be approached from altogether different angles. The

ste

second coerollary gives the value for a special convolutien of p.q‘ and

s
1/0 .

* sk S
Corollary 4.24.1: z 1/ <(d) =ro ((n1))/e <(r) t(n, T)y .
d ”r
(n,d),=1

Proof: When h(r) =t and g(r)=1, F(r) = ¢ (r). With h

and g defined in this manner, the result follows immediately. A



3 % b 0
Corollary 4. 24, 2: Z p(d)e (d
' d “ r
(n, d)*=1

e Sk

Proof: Let h(r)=r and g(r)=p (r), Since F(r) = o (r),

the result is obvious. A

The unitary analogue of the Brauer-Rademacher identity is a
special unitary convolution of p* and the quotient h/F, where h is
multiplicative, As was also the case for the other identities, when h -
and g are specially defined, this identity gives a relationship involving

some of the known number~theoretic functions,

Theorem 4,25: If h is a multiplicative function of r,

F(r) ,zl h(@)p (x/d)/F@) = u (r)Em, 1)
dilr
(n,d)=:<=1

Proof: Again let L. and R denote the left and right sides of the

desired identity and calculate each side for prime powers. If a<b,

L=R=gp®, If a>b, L=R=-Fp?, A

E3 Sk sk b sk
Corollary 4,25, 1: ¢ (r) ﬁ dp (r/d)/e (@) = p (r)c (n, ).
' dir
(h.,‘ d)>{<:1

Proof: With h(r) =r and g(r)=1 forall r, f(n,r) = c>ﬁ(n,r)

and F(r) = (p*(r)T So this coerpllary is a direct consequence of the

Brauer-Rademacher identity, A

Corollary 4, 25, 2: cr*(r) ﬁ} dp*(r/d)/c*(d) = px(r)cr (n, r).
‘ dilr
(n,d),=1

T
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sk

Proof: If h(r) = r and g(r) = p (r) for all values of r, the
identity is immediate. A

b

The study of 6*(1'1, r), ¢ {(n,r), and H(n,r) provides one with
three different settings in which to work with the unitary diviser. It
was seen that these functions are really only generalizations of functions
of one variable in the unitary centext, One of the most significant facts
displayed in this chapter is the power of a multiplicative function; many
of the results of this chapter were obtained with relative ease since the
function was shown first to be multiplicative.

Just as the Ramanujan sum gave some foundation to the study of
even functions modulo r, the function c*(n, r) provides a basis for

the study of the class of unitary functions modulo r to be discussed in

Chapter V,



CHAPTER V
UNITARY FUNCTIONS MODULO r

Throughout this paper certain parallels between the development
of functions based on ordinary divisors and functions based on unitary
divisors have been noted. One such parallel exists between the
concepts of (n,r) and (n, r)* . Recall from Chapter III that f£(n, r)
is an even function of n meodulo r if and only if f(n,r) = f((n, r), r),
A natural question goncerns what functions have the property that
f(n,r) = f((n, r)*, r). Definition 5,1 classifies f(n,r) as a special

type of function whenever this condition is met,

Definition 5,1: Let f(n,r) be a complex~-valued function defined

for all n, I f{(n,r) = f{(n, r)*, r), then f(n,r) 1is said to be a

unitary function of n modulo r,

Since ¢(n,r) is an even function modulo r, one might look to
E
¢ (n,r) in hopes of finding an example of a unitary function medulo r,

Theorem 5.1 shows that this is a goed choice.

Theo;‘em 5,1: The function c’l‘(n, r) is a unitary function

modulo r,

ok 13
Proof: By Theorem 4.15, ¢ (n,r) = 2 p (r/d)-d. Since
d” r,d(n
d]n and d ” r if and only if d ” (n, r)* , the abeve sum may be written

as

N
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B

But this last sum is just c({(n, s T Hence, ¢ (n,r) is a unitary

function of n modulo r, A

Again the definition of unitary module r is extended to f(n,d)
where d|r. Recall that a similar case was considered for even
functions moedule r in Chapter III, The following definition gives the

necessary information.

Definition 5,2: Let f(n,r) be a unitary function modulo r. The

function f(n,d) is a unitary function modulo r for d|r if and only if

f(n,d) = £((n, 1),,d).

Theorem 5.2 shows that ¢ (n,d) is unitary medulo r for dlr.

This result is very important in the later discussion,

E
Theorem 5.2: The function ¢ (n,d) is a unitary function

modulo r for every d such that dfr,

e

Proof: By Theorem 4,15, ¢ (n,d) = X u.(d/D)+D. Since
D||d;D | )
D[|d and D|n ifand only if Df(n,d),, ¢ (n,d)= T  (d/D)-D.
D[ (n,d),

It can be shown that for d “ r, ((n, r)>k ,d),. = (n, d), . Hence, it follows

E
b &

that o (n,d) = ¢ ((n, r)y,d), and c;*(n,d) is unitary modulo r. A

Many of the results of this chapter are unitary analogues of
results discussed earlier in Chapters II and III, In fact the motivating
force behind this chapter is the desire to find representations for

unitary functions modulo r just as it is possible to find representations
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for even functions modulo r. The fact that a unitary function modulo r
is also an even function modulo r helps in determining these represen-
tations and also shows the connec¢tion between these two ¢classes of

functions,

. Theorem 5.3: The set of unitary functions modulo r is a subset

of the set of even functions meduloe r.

Proof: Suppose that f(n,r) 1is a unitary function medule r.. The
definition of unitary modulo r implies that f((n,r), r) = f(((n, r), r)* , r).

By Theorem 1,6, ((n,r), ), = (n, ),

N

so that f((n, r), r) = f((n, 1), T).
But since f(n,r) is unitary medulo r, f((n,r),r) = {((n, r)*, r) = f(n, r),
However, f((n,r),r) = f(n,r) implies f(n,r) is an even function
module r, A

o

A direct consequence of these first two theorems is that c%(n, r)
is an even function modulo r, As such it is possible to express
c*(n, r) in terms of either of the two representations for even functions
modulo r. By using the second representation found in Theorem 3.4,
c*(n, r) can be shown to be a special sum of the ordinary Ramanujan

functions c¢(n,d) for dlr, The conditions for this sum require new

notation,

Definition 5.3: The largest square-free divisor of r is denoted

by wv(r).

Lemma 5.4: For unitary divisors d, and d, of r,

1 2

v(dl) = v(dz) if and only if d1= dZ‘

Proof; If dlzdz, then v(dl)
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m a,

Suppose that v(d,) = v(d and that r = I Py ' is the

)
2 1

1=
canonical representation of r. Since dl [r and dz lr,

1)

m c
d1= Ip where ¢, =0 or ci=a.i forall i=1,...,m
i=1
and
m b,
d2= I'Ip.l where b, =0 or b,=a, forall i=1,..,,m
. 1 1 1 1

i=1

By the definition of square-free divisor,

m ci’.
v(dl) = II p, where ¢! =0 or ¢! =1
i i i
i=1
and
m b,i
= g 1 = I =
v(dz) i1:"[lpi where bi 0 or bi- 1,

Without loss of generality suppose the representations for v(dl) and
c! b!
v(dz) are in ascending order, Then since v(dl) = v(dz), p; b= p; t
for every i=1,.,.,m. So either c{ = bi' =0 or c,{ = b{ =1, In
c. b
either case ¢, = bi sa that P; be P, ' for these values of 1i. Hence,
dl = d2 . A

o
s

With the added condition that v(d) = v(r), c (n,r) can be
written as the sum of c¢(n,d) where dlr. This proof, as well as
several of the others in this chapter, is lengthy, It should be noted
that length doe s not necessarily imply difficulty, In werking with
summations of the kind involved here it is often necessary to

rearrange terms or to adjust the index of summation so that some
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known property can be applied, These adjustments must be done very

carefully so that the summations are still equal,

Sk

Theorem 5.5: ¢ (n,r) = 2 c¢(n,d).

Proof: From Theorem 4.15, c*(n, r) = = dpfﬁ(r/d) . A
w d”r,d,n

general formula for ¢ (n,r) is to be shown, Since d”r and d]n,
df(n, ry. If cm(n, r) is defined as a sum over the values d for-which

d|(n, r), the condition (d,r/d) =1 is last, To avoid this loss,

als <,
% sk

c (n,r) may be writtenas ¢ (n,r) = = G>'<(d,r/d) where
d|(n, r)

b sk

G (rl,rz) = (rZ)B(rl,rz) and

1 if (r),7,) = 1
B(rl,rz) = .

0 if (rl,rz) # 1

% . . . .
This second expression for c (n,r) is equivalent to the first one since

B compensates for the condition (d,r/d) =1, Also, this last expres-

~

sion is just that of an even function modulo r as stated in Theorem 3.4.

ale als
R <

Hence, by Theorem 3.5, ¢ (n,r) = Z « (d,r)c(n,d) where

KA d‘r
B sk
a (d,r) = 1/r ’Z) G (r/6,8)6. The proof is complete if it can be
blr/d
shown that a‘(d, r) =1 when v(d) = v(r) and is 0 otherwise.

sk .
If G (r/5,6) is written in terms of its definition above,

%

aa
¢

@ d,r) = 1/r = |[u
6|r/d

b

(8)B(r/5, 8)r/8]+ &

= W (8)B(r/s, 6) .
6|r/d

1

From the definjtion of (rl, rz) ,



1 if 6”r
B(r/5,8) =
0 if &lfr.

%k
Hence, the nonzero terms in « (d,r) occur when b&|/r so that

E e

a (d, r) = = :
6 lx,5|r/d

divisor of r ifand only if &|/(r/d, r),, « (d,1) = = ().

5/l(r/d, r),

%!

Si¢

But the summation property of p .implies that
1 if (r/d,r), =1

0 if (r/d,r), #1

Se

Theorem 1.7 implies that (r/d, r)* =1 ifand only if r=d. The

previous lemma says r =d if and only if v(r) = v(d), Thus,
1 if v(r) = v(d)

0 if v(r) # v(d)

and cm(-n, r) = Z c(n,d).
dlr
v{d)=v(r)

¥
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(8), Because a divisor 6 of r/d -is a unitary

Since p (r) = ca‘(l,r) and p(d) = c(1,d), this corollaryis a

direct consequence of the theorem,

b

- Corollary 5.5, 1: u (r) = Z u(d).
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¥
Orthogonality Properties for ¢ (n,r)

The unitary counterpart of the first orthegonality property for
Ramanujan sums is shown in the next theorem. The key to its proof is
to write the functions c*(a,dl) and c*(b,dz) in terms of the ordinary
‘Ramanujan sum by using the previous theorem and then to rearrange

the summation so the orthogonality property for ordinary Ramanujan

sums can be applied.

Theorem 5,6: If d1 and d2 are unitary divisors of r,

r.-c*(n,d) if dl = dZ: d

b

>3 ¢ (a,d.)e (b,d,) =

n=a+b(mod r)

1
0 if d,#4d,
‘Proof: Let L denote the left side of the desired equation, If

% %
¢ (a, dl) and cx(b, dZ) are written in terms of the ordinary Ramanujan

sum,

L = = = c(a,Dl) = c(b,DZ)
n=a+b(mod r) D1 d1 Dzld2
v(Dl)=v(d1) v(D2')=v(d2)
= = = c(a,Dl)_c(b,DZ) .
Dlldl,DZde n=a+b(mod r)
V(D1)=v(dl)

V(D2)=v (d,)

The inner sum of this expression can be evaluated by use of the first

orthogonality property for ordinary Ramanujan sums, This says that

r.c(n,D) if D,=D,=D

= c(a,D c(b,DZ) = '

)
n=a+b(mod r) L
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So the nenzero terms in L. occur when D1 = D‘2 =D, and L may be

gimplified to

L = = re.c¢(n,D),
D]dl,Dldz

v(D)=v(d,)=v(d,)

Recall} that for unitary divisors d‘1 and dz of r, v(dl) = v(dz) if
and only if dl = d2 . . Hence,
roc (n,d) if dj=d,=d
L =r b ¢(n,D) = .
Dld, 0 if d,#d,
v(D)=v(d1) A

-For the case n =0 and a =b, this property can be expressed

*
in terms of ¢ ,

Corollary 5.6,1: If d1 and d2 are unitary divisors of r,

%
re (d) if d,=d,=d
e b3
Z ¢ (a,dl)c: (a,dz) =

a(modr) 0 if d 44,

Proof: If n =0 in the previous theorem,

rec (0,d) if d;=d,=d
> c<a,d.)c(a,d,) = |
c (al 1 av 2 -

a(modr) ‘g
0 if dl# d,

e J

The result follows from the fact that ¢ (0,d) = <p>i (d). A

The orthogonality property of Theorem 5.6 can be extended

rather easily to s variables now that it has been shown for two
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variables. This extended form is very useful in the discussion at the

end of this chapter.

Theorem 5.7: If dl’ dZ' ces ’ds are unitary divisors of r with

s > 2, then
B

B3 b i
= ¢ (a,,d,)c (a,,d,) *r+c (a_,d.)
n5a1+...+as(modr)- 1"l a2 5 8

rS-1¢>.<(n’d) if dl = ... = dS: d

} 0 otherwise
Proof: The proof follows from Theorem 5,6 by induction on s,A

Representations for Unitary Functions Modulo r

Theorem 5,8 is the first of two representations for unitary
functions modulo r, Both of these representations are soemewhat
similar to the representations for even functions module r discussed
in Chapter III, In particular, the representation in this theorem is
similar to the second representation for even functions meduleo r given
in Theorems 3.4 and 3.5 as it is based on the functien
f(n,r) = =z g(d, r/d), Itis clear that f(n,r) defined in this

df[r,d[n

manner is unitary modulo r since dfr and dln implies d[(n, 1 J

T

The function |.1,’ can be used to express g in terms of f by an

expression similar to the Mdbius Inversion Formula.

Theoyrem 5,8: If f(n,r) is a unitary functien medulo r, f(n,r)

has the representation
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fln,r) = Z  g(d, r/d) (1)
df|r,d|n
where g(rl, rZ) is determined for T, >0, r5 >0, (rl, rz) =1, and
=TT, by
glry,r,) = Z i(r;/d, r)u¥@). (2)
dfr,

Conversely, if (rl, rz) =1 and f(n,r) is a unitary function defined

by (1), then g(rl,'r ) has the representation (2).

2
Proof: Let f(n,r) be a unitary fungtion modulo r and let

g(rl,rz) be defined by (2) for integers T and r, such that

(r,l. rz) =1, Let Q= >~ g(d,r/d). It must be shown that
dllr,d|n
Q = f(g, r)., Since g is defined by (2),

Q= = ( = f(d/D.r)p*(D)> :
alx\pa
dfn

Since d|r and d|n if and only if d| (n, )y
Q= = > £(d/D,r)p (D). Because D|d, it follows that
d|[(n, r)x DJd

& = d/D 1is also a unitary divisor of d. It can be shown that the set
of integers for which d| (n, r), and D|/d is the same as the set of

integers for which 8| (n, r)

ala
b

and DH(n,r)>:°/6. Hence,

)
sk

Q = z £(6, r) = u (D). The only nonzero terms in Q
6 “ (nl 1‘)* D ” (ns 1‘)*/6

occur when (n, r)*/ﬁ =1, that is, when (n,r), = 8. With

ala
=R

(n,r)y, =96, Q= {((n, T)y,r) = f(n,r) since f is a unitary function

modulo r,
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*
To prove the converse let P = ﬁ) f(rl/d,r)p (d) where
dilr
1

f(rl/d, r) is defined by (1). The proof is gomplete if P = g(rl, rz) .

Since f(rl/d, r) is defined by (1),

P= = > gD :/D)N\p @) = = gD /D) = pNd).
dfr; | Dfr Dr dfr,

/4 Dr /d

Since D|r and Dfrl/d, then D“-rl/d, and it follows that the set
of integers for which d”r’l and DHrl/d is the same set of integers

for which DHr1 and dHrl/D, Hence,

"P= X gD,r/D) =T pu(d).
Dlr, dfr,/D

e
The summation property of p  implies the only nonzero terms in P

occur when rl/D = 1, thatis, when r) = D. Thus,

P= X gD,r/D) = g(rl,r/rl) = g(rl,rz) . A

The seqgond representation for unitary functions modulo r is
similar in form to the first representation for even functions modulo r
given in Theorem 3.3, For the unitary case c(n,d) is replaced by
c*(n,d) and ¢(d) by qo*(d) , and the summations involve unitary
divisors, This representation actually comes from two theorems.
Before the first theorem is stated, consider the function
f(n,r) = = a(d,r)c (n,d). Itis clear that f(n,r) is a unitary

d ” r
b
function modulo r since ¢ (n,d) 1is unitary module r for all unitary
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divisors .d of r. Theorem 5,9 considers a unitary function {(n, r)
and shows it can be written in the above form, The proof of this
representation relies on the fact that a unitary functien f£(n,r) can be
expressed as f(n,r) = = g(d, r/d), the representation given in

dllr,d|n
,‘the previous theorem.

' Theorem 5.9: If f(n,r) 1is a unitary function module r defined

by f(n, r)‘"'-;,‘_, > g(d,r/d), f(n,r) has the representation
d H r,d ' n

fln,r) = = a(d,r)c*(n,d)
dllr

where

ad,r) = 1/r = g(r/dl.dl)d

d,[[r/a 1

with d|r,

Proof: Let f(n,r) be a unitary functien modulo r defined by
f(n,r) = = g(d,r/d). Define B(n,d) tobe d if d|n and 0. if
dfr,dln
d{n. Then f(n,r) can be multiplied by f(n,d)/d, and its value is

unchanged. Hence,

fn, 1) = TT g(d, r/q)  £L28)
' dir

By Theorem 4,10, B(n,d) = Z” crﬂ(n,D) so that
Did

fn,r) = = g(d,r/d)/d = c'(a,D).
dfr DJld

Since D|d and dfr, D|r. The set of integers for which df/r and

D|/d is thé same set of integers for which DJ/r and r/d[r/D. So
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f(n,r) = 1/r = c*(n,D) > g(d, r/d)+r/d,
Dr r/d|r/D

and it fellows that f(n,r) has the desired representation. A

Theorem 5,10: If f(n,r) is an arbitrary unitary function

modulo r, f(n,r) can be represented in the form

where a(d,r) is determined by

e(d,r) = —a— T f(n,r)c (n,d) with dfr. (4)

re (d) n(modr)
Proof; Let f(n,r) be a unitary function module r defined by (3).
If this representation is multiplied by c*(n, §) where 6&|r and if
this new expression is summed over all n in a residue system

module r,

ste
8

r
f(n,r)c (n,8) = Z a(d,r) =
1 dfr n=

b %

¢ (n,d)c (n,8).

MR

n
By Corollary 5,6.1,

roe (d) if d.= &

r 3k b
Zc (n,d)e (n,8) = .
n=1 0 if d#6
T sie sie
With d =06, Z f(n,r)c (n,8) = ro (d)e(d,r) from which it follows
n=1

that o(d, r) has the representation (4). A
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An: Application to the Number of Solutiens

of Linear Congruences

" This paper concludes with an example of the type of problem to
which this material can be applied, This last section shows that these
two repreéentations for unitary functiens modulo r help to determine
a formula for the number of solutiens in a unitary context for linear
congruences modulo r, Definition 5,4 describes the congruence to be

solved and the function which counts the number of solutions.’

Definiti_on 5,4: The functien ws(n, r) denotes the number of

solutions in X, modulo r, i=1,2,...,s, of the congruence

IH

n = x1+x2.+...+xs(modr)

where the components x; are all semiprime to r and s->1,
An example at this point is especially helpful,

Example 5 1: The number of solutiens of 18 = X + X, (med 10)

is to be determined. The definition of ‘w2(18, 10) requires that the

components X, satisfy (xi, 10)>:< = 1, This conditien is satisfied for

x, = 1,3,7, er 9. In addition, the sum x1+x2 must be congruent
to 18 modulo 10 where x4 and x, are chosen from {1,3,7,9}.

For x1 =1 and x2 = 7 the semiprime condition is met and

18 = 8 (mod 10), Likewise x| = 7 and X, = 1 also provide a solu-

tion, If X, = 9, then X, = 9. Both values satisfy the semiprime

requirements, and their sum solves the congruence, Hence, they

provide a solution. If x) =3, then X, = 5. These values solve the

congruence but (5,10), # 1. Hence, x, = 3 and X, = 5 do not
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provide a solution, Since solutions are obtained only from possible
sums of 1,3,7, and 9, all solutions have been determined and
w2(18, 10) = 3. Itis important to note that bdth the solutions x| = 1,

X, = 7 ansi. X = 7, X, = 1 are counted,.

The function w.(n, r), denoted by w(n,r), is the number of

1
solutions of the congruence n = x, (modr) such that (x,,71),=1.
This functien ié:;-very helpful in deriving a general formula fer

ws(n, r). To thi‘s end it is shown first that w(n,r) is a unitary function

module - r. This;'proof relies on the fact that if a = b(medr),

(2, 1), = (b, 1),

Theorem 5. 11 The functien w(n, r) 1is a unitary function

module r,

Proof: To shew that w(n,r) is a unitary functien moedulo r, ‘
first note that w((n, r)*, r) is the number of solutions of
(n, r)* = X, (mod f) such that (xl, r)* =1, So w((n, r)*, r) is 1 or
0 according to whether ((n, I)ysT)y =1 or ((n, Ty Ty # 1, Since
((n, r)*, r)* = {n, ri}h - w((n, r)*, r) is 1 or 0 according to whether
(n, r)* =1 or (n, r))z< # 1. But singe w(n,r) isalso 1 or 0

according to these same conditions, w(n,r) = w((n,r),,r), and

w(n, r) is unitary medulo r. A

- Example 5,2: This example is really a continuation of the

previous one and provides some motivation for the generalization of

w(n, r) to ws(n, r), The purpose of this example is to show that

©,(18, 10) = = w(a

18 =a.+a_(mod 10)

10) w(az, 10) .
1 2(

1’
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-Recall that w(al, 10) is the number of solutions of ay = X, (mod 10)

where (xl, IO)ﬂ =

. = 1, Similarly, w(a.z, 10) is the number of solutions

of a, = x, (moed 10) where (XZ’ 10)* =1, Now w(al, 10) is-1 or O
depending on whether (al, 10)* =1 or (al, 10)>:< # 1. Likewise,
w(az, 10} is 1 or 0 depending on whether (az, 10)* =1 or

b

(a5, 10),, # 1. So wfa;,10)w(a,,10) =1 if (a;,10), =1 and

Sk

(3.’2’ 10);= 1. But these are the conditions for which it is possible to

—

have a solution far 18 = a2y + a, (mod 10). Hence,

v w2(18, 10) = P w(al, 10) w(az, 10) ,
18 Ea1+a2(mod 10) ‘

Theorem 5, 12 gives a general formula for finding ws(n, r) for
s > 1. Its proef is a culmination of many of the key results of this
chapter, Both of the representations for unitary functions modulo r
are used as well as tirle extended form of the orthogonality property.
While the arithmetic involved in using this formula is often time
consuming, at least the counting procedure employed. in Example 5.1

is eliminated,

Theorem 5.12: The functien c.os(n, r) is a unitary function

modulo r and is given by the formula

o (n,7) = (¢ (r)°/x - i (W (@) /p (@)% n, )
dijr

Proof: For s =1, w{n,r) is the number of solutions for

n = x, (modr) where (xl,r)* =1, Since w(n,r) is 1 if (n, r), =1

1

and is 0 if (n,r), # 1, it is possible to write w(n,r) as a sum of

%
p (d) over the unitary divisors d of (n,r) Furthermore, since

ala
=R
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d||(n, r), if and enly if d|n and df|r, then w(n,r)= z p*
dflr,d|n
So w(n,r) is in the form (1) of Theorem 5,8 where

%
g(rl,l_fz) = N (rl), rr, =1, and (rl,rz) =1, This representation

for w(n,r) plus the fact that w(n,r) is unitary module r implies

that
o, ) = T ald, r)c (a,d)
d”r

where

a(d,r) = 1/r = g(r/dl,d

)d, and dfr,
4 [[x/4 o

Sk

The task is to simplify e(d, r). Since g(rl,rz) =M (rl),

yd, = 1/r = uldd,)d
1 a,|x/d 2

(d1d2=r/d)

ald,r) = 1/r = p,*(r/d

dy|x/a

1 1°

Since (d,d,) =1 and p is multiplicative,

e(d,r) = p @/ T ui@,)e
: d,[lr/d

(d,d,=r/d)

By Corollary 4. 15,1, this summation is just qo*(r/d) , and
a(d,r) = p (d)/r-p (r/d).
>k K b
Since dfr, ¢ ﬁ(r/d) = qa> (r)/e¢ (d), So with this value for a(d,r),

ES

wln, 1) = ¢ (r)/r - T (ﬁ(d)/qo*(d)) @),
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From the definition of ws(n, r) it follows that

wg(n, r) = b w(al, T) e w(as, r),
n5a1+,.,+as(mod r)

.Each w(ai, r) can be replaced by its value determined above so that

e

8 u¢ M (dl) B
w (p, r) = z ¢ (r)/r = ~% cc (a,,d,)
s nEa1+...+as(modr) i=1 di”r @ (di) 1

e E3
- (¢>:<(r)/r)s Z P"*(dl) LA }J‘*(ds)
dflr ¢ (@) e (@)

i=1,..,,s

! sk sk
Zc (al,dl)--'c (as,ds).

= + .-+ ;
nZa,t, as(mod r)

By the extended orthogonality preperty the summation involving the

b . 3k
functions ¢ (a;,d,) is r*7'c'(n,d) if d =d,=...=d_=d. Other-

wise, its value is 0, Therefore,

64l 1) = 6 (0)/0° B W@/ @) 5 e, a)

r

@ ENS/r+ = (W (@/e (@)% ma).
d”r

1

The fact that ws(n, r) is unitary modulo r follows by repeated applica-

along with the definition of

tion of the property ((n,r),, r))l,< = (n, ),

ws(n, r), A

Example 5.3: As a final note to this theorem it is interesting to

calculate @2(18, 10) by use of the formula. Hence,

©,(18,10) = (" (10))%/10 - f (w @)/ @) c*(18,4d) .
d||10
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3

With ¢ (10) = 4,

>k(

w,(18,10) = 16/10[1 +c'(18,2) + 1/16-c"(18,5) + 1/16+¢ (18, 10)].

3 >
By Corollary 4,15,2, c (18,2) =1 and c¢ <(18, 5) = =1, Since
E

>4
¢ (n, r) is multiplicative with respectto r, c (18,10) = (1)«(-1) = -1,

So w,(18,10) = 16/10[1+1 - 1/16 - 1/1‘6] = 16/10.15/8 = 3,

Since ws(n, r) is characterized by a unitary convelution of a
product of multiplicative functions, ws(n, r) 1is itself multiplicative,
The function Js(n, r) = rws(n, r)/(ga’k(r))s ‘is also multiplicative,
Since go*(r) # 0 for any value of r, it is possible to determine
conditions under which ws(n, r) = 0 by examining Js(q, r), Lemma
5.13 shows the value of J'S(n, r) for r = pa where p is a prime.
This value is used to prove Theorem 5. 14 which gives a characteriza-

tion for which ms(ns r) = 0, Proofs are omitted since they follow much

the same pattern as previous ones,

Lemma 5,13: If J (n,r) = rws(n, r)/(tpx(r))s,
s

where p is a prime,

Theorem 5.14: The function ws’(n, r) = 0 1if and only if one of

the following sets of conditions holds:

(ii) s 1s even, r is twice an odd integer, and n :is odd ;
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(iii) s isodd, s>1, r is twice an odd integer, and n ‘is even.

Condition (i) of the above theerem is obvieus from the definition
of w(n,r). This last example shows some congruences solved quickly

by conditions (ii) and (iii),

. Example 5,4: Consider the congruence

15 Ex1+x2 3

n = 15, Henge, (ii) implies that w4(15, 10) = 0., Now leok at

+x +x4(mod10). In this case s=4, r=10=2-5, and

16 = x1-+ x2+ X4

that (iii) yields w3(16, 6) = 0. It is important to remember that the

(mod 6). Here s=3, r=6=2+:3, and n=16 so

number of components x, must be greater than .1 in order to use

(iii) .

In summary, the set of unitary functions modulo r is contained
in the set of even functions modulo r and hence can be characterized
by two representations.  One of these representations is defined in
terms of c*(n, r), a result analogous to what was true for even
functions modulo r. These representations aid in the determination of
a formula for the number of solutions of a linear congruence of s
variables in the unitary context,

The study of functions of two variables could be pursued to include
other relations, other applications, and new functions based on k-ary

divisors. The beginning here indicates the direction such a study would

take.
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