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CHAPTER J 

INTRODUCTION 

The concept of function is basic in all branches of mathematics. 

In number theory the number-theoretic, or arithmetic, function plays a 

key rE>le, and the study of such functions motivates many of the topics 

considered in an elementary number theory course. This paper deals 

primarily with number -theoretic functions of two variables with special 

emphasis on functions defined in terms of unitary divisors .. As the 

reader progresses through the material, it becomes evident that in 

some cases these functions of two variables are simply generalizations 

of more familiar numbe:r-theoretic functions of one variable. 

A great many number-theoretic functions, especially those which 

are multiplicative, are defined by some property related to divisors. 

The author became interested in functions based on unitary divisors, 

about three years ago, and this initial interest culminated in a master's 

report [7]. This report gives unitary analogues for T, cp, a-, and.µ. 

along with the unitary counterparts of some of their ba.sic; properties. 

Some of the :results of this paper are stated later for future reference. 

At this point a brief summary of Chapters II through V provides the 

reader with an overview of the topics studied. 

In Chapter II number-theoretic functions of two variables are 

studied in the context of the familiar 11divides 11 relation. Three 

particular functions are introduced, and various properties are shown. 
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One of these functions, Ramanujan's sum, appears again in Chapter III. 

At this time a class of functions of two variables, the set of even 

functions modulo r, is con side red, and two representations for this 

class of functions are given. One of these representations is in terms 

of the Ramanujan sum. 

Chapters IV and V are actually the unitary counterparts of 

Chapters II and III, and their development parallels that 0f the earlier 

chapters. After a discussion of some functions of two variables defined 

in terms of unitary divisors, the paper proceeds with the topic of 

unitary functions modulo r. These functions comprise another class 

of functions which is a subset of the class of even functions modulo r. 

As one might guess, it is possible to find representations for these 

unitary functions, and one of these representations is based on the 

unitary analogue of the Ramanujan sum. The applications of number­

theoretic functions to specific problems are many and varied. One of 

the most interesting aspects of this study is the application of these 

representations to the problem of finding the number of solutions in the 

unitary context of certain congruences modulo r. Here a formula is 

derived for the number of solutions, and a characterization is stated 

which gives conditions under which there are no solutions. 

Preliminary Concepts 

It is irnpos!"lible to state all of the results from elementary 

number theory which are used here. The reader is expected to have 

a knowledge of the basic concepts covered in any good number theory 

text, such as, Explorations 1.n Number Theory by Jeanne Agnew [ l]. 

A certain amount of basic information in :regard to unitary divisors is 



3 

essential, These results are listed here for easy reference. Proofs 

are not inc:luded, but many of the results follow directly fr0m the 

definition of unitary divisor. In many instances proofs can be found in 

[7]. Throughout the discussion all integers are positive integers. 

DeHniHon 1. l: An integer d is a unitary divisor of an integer r, 

written d II r, if d is a divisor of r and (d, r/d) = 1. 

Theorem 1. 1: If a /I b and b II c, then a I/ c;. 

Theorem l. 2: The unitary divisors of an integer occur in pairs; 

that is, d II r if and only if r /d II r. 

Theorem I. 3: Let r = 

of r. The unitary divisors 

m a. 
l II p. 

i= 1 i, 

d of r 

be the canonical re pre sen tat ion 
m bo 

are of the form d = II p. 1 

i= 1 1 

where b. = 0 or b. = a .• 
1 l 1 

m ao 
Theorem 1. 4: Let r = II p. 1 be the canonical representation 

i= I 1 

of r. The number of unitary divisors of r, denoted by T,\r), is 

!::~ m 
T (r) = 2 , 

A modified generalization of the concept of relatively prime is 

the concept of semiprime, This definition follows after a description 

of some important notation. 

Definition l, 2: Let a and b be integers where b > 0. Then 

(a, b ),:~ is the greatest divisor of a which is a unitary divisor of b. 

Definition 1. 3: If {a, bL, = l 1 a is said to be semiprime to b. 
'"' 

Theorem I. 5: Let p be any prime. b ( a b) l • If If a<, p,p ,,,= 
' ""l" 

a b b 
a > b, (p , p )* = p • 
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Theorem 1. 6: For integers n and r, ((n, r), r), = (n, r), • 
::i1«< >,C: 

Theorem 1. 7: Let d be a unitary divisor of r. Then 

(r /d, r)* = 1 if and only if r = d, 

Theorem 1. 8: A divisor d of n is a unitary divisor of r if and 

only if d II (n, r)*. If d II (n, r),:~ and (n/d, r /d)* = 1, then d = (n, r)*. 

Theorem 1. 9: If (a, b)* = d, (a/d, b/d)* = 1. 

Theorem l, 10: If a b (mod r), (a, r)* = (b, r)*. 

and only if (x 1, n 1),, = 1 .. /:. and 

Theorem 1. 12: Let (s, t) = 1. If (x, s)* = l and (x, t)* = l, 

then (x, st)* = 1. 

Theorem 1.13: If 

a 
r, (n, rL,, = II p and 

'•' pa In 

r = II pa is the canonical representation of 
Plr a 

r/(n, rL,, = II p • 
,,, pa( n 

Theorem 1. 14: For integers n and r, d II r I (n, r)* if and only 

if d II r and (n, d),:< = 1 . 

A means of c0mbining number-theoretic func;tions in the unitary 

context is given by the unitary convolution. This product and its 

properties are used extensively throughout the paper. 

Definition l, 4: Let g and h be number-theoretic functions. 

The function f(r) = ~ g(d) h(r /d) is defined to be the unitary convo~ 
d II r 

lution of g and h, written (g * h)(:r), 



Theorem 1. 15: If f and g are multiplicative furlctions, f * g 

is also multiplicative. 

The next theorem is actually a special case of the preceding one 

where g is the identity function, 

Theorem L 16: If f is multiplicative, 

multiplicative. 

F(r) ::. ~ f(d) 
d II r 

is also 

Theorem 1. 17: If f is multiplicative and r = II pa is the 
plr 

canonical representation of r, ~ f(d) = n ( l + f(pa)), where the 
d II r pj r 

product is defined to be 1 if r ';::: l , 

Theorem 1. 18: If f is multiplicative and r •'°' II pa is the 
pjr 

canonical representation of r, ~ f(d) ::! 

d Ii r 
(n, d)*:: 1 

IJ (l+f(pa)). 
pq.f n 

The unitary analogue of a residue system modulo r is the semi-

reduced re sid~e system modulo r. Its definition and some related 

properties follow. 

Definition l. 5: The set ofiptegers semiprirpe to r and con-

tained in a residue syste:r:n modulo r is defined to be a semi-reduced 

residue system modulo r. 

Theorem 1. 19: If x ranges over a semi-reduced residue 

system modulo r and (a, r) ·:i:o 1, the values ax also range over a 

semi-reduced residue system modulo r. 

Theorem 1. 20: The integers dx. where d ranges over the 

unitary divisors of r, and for each d, x ranges over a 

5 
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semi .. :i;edu~ed residue system modulo r /d constiln:ite a residue system 

modulo r, 

Once the idea of a semi-reduced residue system has been intro-

duced, a natural question to consider is th,e unitary analogue of the 

Euler cp-function. This analogue is defined in the following, 

':.: 
Definition 1. 6: The function cp (r) is defined to be the number 

of positive integers lesi;; than or equal to r and semiprime to r. 

The unitary analogue of the Mtlbius funGtion µ is given in 

Definition 1. 7 , The results following this definition form a sequence 

::::: 
of steps whi<;;h could be used to dedve the formula for cp given in 

Theorem 1. 28. 

Definition ~. 7; The unitary analogue of ~he Mtlbius function is 

denoted by µ* and is defined to be µ':~(r) = (-l)h(r) where h(r) is 

the numqer of distinct prime divi~orf! of r. 

>!~ 
Theorem 1. 21: The function µ 

Theorem 1. 22: 

is multiplicative. 

r = l 
~ µ''(d) = 

,,. { 1 if 

d/lr 0 if r>l 

Theorem 1. 23: (The Unitary Anal0gue of the MCJblus Inversion 

Formula) If f(r) 

>:~ 

is any number-theoretic function and F(r) = ~ f(d), 
d llr 

"" ~ µ (d) F(r/d). 
d II :r 

then f(r) 

Theorem 1. 24! If F is ;multipltca(!ive and 

is multiplicative. 

F(r) = ~ f(d), 
d llr 

>l( 
Theorem L 25: For an integer r, r = ~ cp (d). 

d JI r 

f 



7 

* Theorem 1. 26: The function cp is multiplicative. 

Theorem 1. 47: For an integer * r , cp (r) :; 
, >!~ 

r ~ 1-L (d)/d. 
dJlr 

Theorem 1. 28: Let a 
r ::: II p be ~he canonical representation 

·!cplr a a 
cp''(r):;r II (1.1/p) = II (p .. 1). 

Plr Plr 
of r where r > 1. Then 

a 
Theorem l, 2 9: lf r ::: II p is the canonical representation of 

* a Plr 
r, cp (r/(n,r),,) = II (p -1), 

,, pa{n 

Theorem 1. 30: 

The lai;it basic numberrtheoreUc function for which it is neces-

sary to define a unitary anal0gue ts er. 

Definition L 8: The S'l;J.m c:>f the unitary divisors of a positive 

integer - r is 

:i:~ 

Theorem 1. 31: The ftmc:tion er (r) is multiplicative, 

Theorem 1. 32: If r > 1 and is the canonical repre sen-

* q. tation of r, er (r) = II (1 + p ) , 
Plr 

Generalization of the Unitary Divisor to the 

k-ary Divisor 

After one has studied the concept of tmitq.ry divisor and seen it 

in ac;:tion in varioµs number-theoretic problems, it is natural to· look 

for a g;eneraliz;ation of this ccmcept. The remainder of this chapter 

considers what is appropriately termed the k ... ary divisor, Actually, 

two types of divisors are considered, k-ary and k~free, Their study 
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is combined here as both involve kth powers of integers, and in certain 

instances they have common properties. 

The study of this generalization was inspired by a paper of 

Suryanarayana [ 13] of India. He is responsible for the generalizations 

of T to the number of k.,.,ary and k-free divisors of an integer,. These 

generalizations then led to formulas for the sum of the k ... ary and the 

k-free divis0rs of an integer. The discussion begins with two defini­

tions, the first of which describes some notation. 

Definition 1. 9: If k is a fixed positive integer, and a and b 

are integers, not both zero, then (a, b)k is the greatest divisor of a 

and b wMch is a kth power •. 

Definition 1. 10: A divisor d of r is said to be a k-ary 

divisor of r if d6 = r and {d, 6)k = 1, 

If k == 1 in the preceding definition, d is just a unitary divisor 

of r. For k = 2, d is called a binary divisor of r, and for k = 3 , 

d is called a ternary divisor of r, The following example provides 

some motivation for Theorem 1. 33. 

Example 1. l: Consider 16 as a divisor of 64, Since ( 16, 4) i: 1, 

16 is not a 1}nitary divisor of 64. Since (16, 4) 2 = 22 , 16 is not a 

binary divisor of 64. However, (16, 4) 3 = I implies that 16 is a 

ternary divisor of 64. In fact, for any k > 3, (16, 4)k = l so that 

16 is ~ k~ary divisor of 64 for k > 3. 

Theorem 1. 33: If d is a k-ary divisor of r, d is a (k+ 1 )-ary 

divisor of r. If d . is not a k~ary divisor of r, d is not a (k-1 )-ary 

divisor of r. 
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Proof: If d is a k-ary divisor of r, do = r and (d, o)k = 1. 

Since the highest kth power divisor of d and 6 is 1, no (k+l)-power 

candivideboth d and 6. Hence, (d,o)k+l=l, and d isa (k+l)-ary 

divisor of r. The second statement is straightforward from the first. 

~ 

A natural extension of the previous theorem is given in the follow-

ing corollary. Its proof is direct from the theorem. 

Corollary 1. 33. l: If d is a k-ary divisor of r, then for any 

q > k, d is a q,,.ary divisor of r. If k is an integer greater than l 

for which d is not a k-ary divisor of r, then for any q < k, d is 

not a q-ary divisor of r. 

A topic for consideration along with the study of k-ary divisors 

is that of k,..free divisors. The following definition desc;ribes this 

divisor. 

Definition 1. 11: An integer n > 0 is said to be k-free if n is 

not divisible by the kth power of any integer greater than l. 

Example 1. 2: If n = 42, then n is k-free since 42 = 2 • 3 · 7 

and hence is not divisible by the kth power of any integer greater than 

1 • On the other hand if n = 56, then 

k-free for k = 2 or 3, 

3 
56 = 2 • 7 implies n is not 

The next definition provides some necessary notation. 

Definition 1. 12: The number of k-ary divisors of r and the sum 

of the k-ary divisors of r are denoted by T:(r) and O":(r) respec­

ti.vely. The number of k-free divisors of r and the sum of the 



k-free divisors of r are denoted by T(k)(r) and cr(k)(r) respec­

tively. 

It is clear from this definition that and 

* 
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crk(l) = O"'(k)(l) = 1, A more general result relating is 

given in Theorem 1. 34. 

Theorem 1, 34: I£ 
m a. 

l 
r = II p. 

i= 1 l 
is the canc;mical representation 0£ 

~:!-1 
)=~~~ 

= zm. * r, then T 1(r) = T(Z)(r) 

* Proof: On the basis of the given notation, Tl (r) is the number 

of unitary divisors of r . * m Hence, Tl (r) = 2 by Theorem 1. 4. Now 

T(2 )(r) is the number of square-free divisors of r, To count these 

square-free divisors it is sufficient to count the number of possible 

subsets formed from the set A = { p 1, .. ,, pm} since the product of 

those elements in each subset ii:; a square -free divisor of r. But 

since there are 2m possible subsets, 

Before deriving formulas for the number and sum of the k-free 

divisors of an integer, it is worthwhile to look at an example showing 

how to locate these divisors, Let r = II pa denote the canonical 
Plr 

repre sentat\on of r, 

Example 1. 3: In terms of its canonical representation 

3 . 2 
r ;::: 360 = 2 • 3 • 5. In looking for k-free divisors it is necessary to 

discard all terms 
k k+l k+2 

p,p ,p , ••.• For r = 360, the product 

(2°+2 1)(3°+3 1)(5°+5 1). htht ht . "t .. :i.s sue; a eac erm in i s expansion is a 

square-free divisor of 360, and each square-free divisor of 360 is a 

term in the expansion. The product (20 + 2 1 + 22 )(3 O + 3 1 + 3 2 )(50 + 5 1) 



is such, that each term in its expansion is a cube-free divisor of 360, 

and each cube .. free divisor of 360 is a term in the expansion, 

This example leads to a general method for locating the k-free 

divisors of r = :i;r pa. 
Plr 

When a < k, form a product with fact0rs 

( 0 1 a h p + p + •.• + p ) • W en a·> k, form a product with factors 

0 1 k,-1 (p + p + •.• + p ) , The product 

2 a 2 k-1 
II {l+p+p +,.,+p )·II {l+p+p + .•• +p ) 

a<k a>k 

is such that each term in its expansion is a k-free divisor of r, and 

each k~free divisor of r is a term in the expansion1 

Theoreml.35: If k>2 and r= II pa isthecanc:mical 
Plr 

representation 0f r, then 

II (atl)· 
a<k 

II (k) • 
a>k 

Proof: Consider the product of the previous example. The 

theorem follows immediately from the number 0f terms in each 

factor. 

11 

It is clear from this formula that if a< k for every prime in the 

canonical representation of r, T (k)(r) = T(r). The fact that T (k)(r) 

is a multiplicative function of r can be shown rather easily by use of 

this form"Q.la. This result is noted here for future reference. 

Cor~llary 1. 35. 1: The funcUon T(k)(r) is a multiplicative 

function of r • 
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Example 1. 4: Let 3 2 
r = 360 = 2 • 3 • 5 • For k = 2 , 5 is the 

only prime with a < 2. So T (360) = ( 1+1) • 2 • 2 = 8. For k = 3, 
(2) 

both 3 and 5 satisfy a<3. Hence, T(3 )(360) =·(2+1)(1+1)•3 = 18. 

For k = 4, all primes in the representation satisfy a< 4. Hence, 

-r(4 )(360) = -r(360) = (3+1)(2+1)(1+1) = 24. Furthermore, for any 

k ~ 4 1 T(k)(360) = T(360) = 24. 

The product used earlier to find T (k) (r) in terms of the 

canonical representation of r can also be used to find CT (k) (r). 

Theorem 1. 36: If k > 2 and r = II pa is the canonical 
p/r 

representation of r , 

a+l ; k 
CT(k)(r) = II (p - l)/\IP - 1) • II (p - l)/(p - 1). 

a<k a>k 

Proof: Again the proof is. immediate from the product of 

Example I. 3. 

If a < k for all pr~mes in the canonical representatian of r, it 

is easy to see that CT(k)(r) reduces to CT(r), This formula also yields 

the fact that CT(k)(r) is a multiplicative function of r. These results 

parallel those d~scovered for T(k)(r). 

C0ro!lary 1, 36. 1: The funqtion CT (k) (r) is a multiplicative 

function of r . 

Besides the formula for T(k)(r) based on the canonical repre­

sentation of r, it is possible to write T(k}(r) in terms of a special 

convolution of µ and T. Two lemmas are essential to the derivation 

of this second representation. Lemma 1. 37 is a kth-power analogue 
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of a result of elementary number theory, and its proof is immediate. 

Lemma 1. 38 shows an important property of this special convolutLon. 

k k 
Lemma 1. 37: Let (r, s) = l. If d 1 and d 2 are kth power 

divisors of r and s respectively, then (d 1d 2 )k is a kth power 

k k 
divisor of rs, (d 1, d 2 ) = 1 , and (r /d 1 , s /d2 ) = 1 • Conversely, 

every kth power diviaor of rs can be expressed as 

k k (r/d 1 ,s/d2 )=1. 

Throughout this paper various convolutions are encountered .. In 

most instances a particular problem requires a particular convolution. 

In working with kth power divisors it is necessary to use a convolution 

involving kth powers. Such a convolution is defined in Lemm.a 1. 38, 

and it is seen that this convolution preserves the multiplicative 

property. It should also be noted that this convolution is only a special 

case of the ordinary convolution with the sum being taken over the kth 

power divisors of r rather than the divisors of r. 

Lemma 1.38: If g and h are multiplicative, 

is a multiplicative function of r. 

Proof; Let r = st where (s, t) = 1. By the definition of fk 1 

k 
fk(st) = kl: g(d) h(st/d ) . 

d I st 
By the previous lemma, 

Since g and h are multiplicative, 
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Hence, fk is multiplicative. 

With these preliminaries out of the way Theorem 1. 39 gives a 

formula for T (k) (r) in terms of µ and T, 

k 
Theorem 1, 39: For k ~ 2, T(k) (r) = ~ µ(d) T(r /d ) , 

dklr 

Proof:. By the previous lemma the right hand side of the desired 

equaLity is multiplicative. Since is also multiplicative •. it is 

sufficient to show the formula for 
a 

r = p where p is a prime. For 

a< k, 

a k a 
~ µ{d) T(p /d ) = µ(l) T(p ) = a+ 1. 

dk!Pa 

Also, T(k)(pa) =a+ 1 when a< k. For a> k, 

a k a a-k 
k~ µ(d) T(p /d ) = µ{l) T(p ) + µ(p) T(p ) 

d !Pa 

= (a+ I) .. (a ·· k + l) 

= k • 

For a 
a> k, T(k)(p) = k, and the theorem follows. 

The last big topic of this chapter is the derivation of formulas for 

T:(r) and a-:(r), Unlike the procedure for T(k)(r) and o-(k)(r), 

T:(r) and a-:(r) are shown first to be multiplicative, and the 

formulas follow as consequences of this multiplicative nature. Lemma 

1. 40 helps to prove that these functions are muld.plicative. 
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Lemma 1. 40: Let (r, s) = 1. The integer d 1 is a k ... ary 

divisor of r and d 2 is a k-ary divisor of s if and only if d 1d 2 is 

a k-ary divis0r of rs . 

Proof: Let d 1 be a k-ary divisol' of r and d 2 a k-ary 

divisor of s. Then d 1 /r, (d 1,r/d 1)k = 1, d 2 /s, and (d2 ,s/d2 )k= l. 

It is clear that a 1a 2 /rs. It remains to be shown that 

k 
(d 1d 2 , rs/d 1d 2 )k =·l. Suppose that (d 1d 2 , rs/d 1d 2 )k = x > 1. Then 

k kl there exists a prime p such that p /d 1d 2 and p rs/d 1d 2 • Since 

(d 1, d 2 ) = 1, either pk/d 1 or pk/d2 . Without loss of generality 

. suppose pk/a 1 . Since (r, s) = 1, it follows that (r/d 1, s/d2 ) == l, 

So if pk/rs/d 1d 2 , either pk/r/d 1 or pk/s/d2 • Since pk/a 1 and 

(r, s) = 1, it follows that pk/r/d 1 . So pk/d 1 and pk/r/d 1 , a 

contradiction to (d 1 , r/d 1)k = 1, Thus, (d 1d 2 , rs/d 1d 2 )k = 1, and 

d 1 d 2 is a k-ary divisor of rs . 

The converse is proved similarly. 

Theorem 1. 41: The functions T:(r) and cr:(r) are multiplica-

tive functions of r 1 

Proof: Let r = st where (s, t) = 1. By the previous lemma 

d 
l 

is a k~ary divisor of s and d 2 is a k .. ary divisor of t if and 

only if d 1 d 2 is a k-ary divisor of st. Hence, 

(d 1, s/d 1)k = (d2 , t/d 2 )k = l if and only if (d 1d 2 , st/d 1d 2 )k = l. Thus, 

T:(s) •=(t) = T:(su) and cr:(s) <T:(t) = CT:( st). 6 

Suppose that 
10 

r = p where p is a prime, and suppose that the 

number of 3-ary divisors of r is to be determined. It is necessary 

to ascertain which numbers t 
p satisfy (pt plO-t) = l. 

' 3 
It is easy to 
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see that for t = 0, 1, 2, 8, 9 1 and 10, the condition holds. H0wever, 

t l 0 -t 3 t 
for t = 3 , 4, 5, 6 , and 7 , (p , p )3 = p . So for 3 < t < 7 1 p 

10 
is not a k-.ary divisor of p • These are the values of t which 

satisfy k < t < 10 - k and hence satisfy 10 > 2k. Theorem I. 42 

pinpoints the k-ary divisors of a prime power. 

a 
Theorem 1. 42: If a < 2k, any divisor of p is a k-ary 

divis0r of 
a 

p • If a > 2k, for any t such that t k<t<a-k, p is 

not a k-ary divisor of pa. 

Proof: Suppose that a < 2k and 

b < a. It must be shown that 
b a-b 

(p 'p )k = 1 • 

x must be the kth p0wer of p. kl b Hence, p p 

Then 
b 

d = p where 

b a-b 
If (p • p . )k = x > 1 ' 

and pk/ pa-b so that 

2k/ a p p . This implies a .'.::, 2k, a contradiction. So if a < 2k, any 

divisor of 
a 

p 
a 

is a k-ary divisor of p , 

If a ~ 2k, then k < a - k. Let t be any integer such that 

k<t<a-k. For any of these values of t , 
t a-t k 

{p , p )k = p , and 

pt is not a k-ary divisor of pa. 

Theorem 1..4~: · If 

r, T:(r) = II (a+l) • 
a< 2k 

>:.: 

r "' II pa 
p/r 

II (2k). 
a>Zk 

is the canonical representation of 

Proof: Since Tk(r) is multiplicative, the formula can be 

>!:: a 
determined from Tk{p ) where a< 2k and where a > 2k. If 

a < 2k, any divisor of 
a 

p is a k-ary divisor of 
a 

p . Hence, 

* a a Tk(p ) = 'T{p ) = a+ l . If a > 2k, for any t such that k :::_ t < a - k, 

t a 
p is not a k-ary divisor of p • There are (a - k) - k + l of these 

values of t. So for a > 2k, 
:=!e a 

Tk(p)::: (a+l) - [(a-k) -k+ l] = 2k. 

Theref0re, 
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II (a+l) • II (2k). 
a<2k a>2k 

An immediate result of the previous theorem is that if a < 2k 

* for all values of a, Tk reduces to the ordinary T functi~m. This 

basic formula also shows how the number 0f k-ary divisors can be 

expressed as a particular number of k-free divisors. 

Proof: From Theorem I. 35 '. T (Zk) (r) = II (a+l) II (2k) • 
a<2k a>2k :;ir< 

But this is just Tk(r) from Theorem 1. 43. Hence, 

Example 1. 5: Again take r = 360 = z3 · 3 2 · 5. To find the 

number of unitary divisors by use of this formula, note that 5 is the 

only prime for which a < 2. 
>l<: 

Hence, T 1(36 0) = ( l + I) · 2 • 2 = 8 • The 

corollary can be used to find the number of binary divisors since for 

each prime, a < 2k = 4. 
>:~ 

So T 2 (360) - (3 + 1)(2 + 1)(1+1) = 24. In 

fact 1:(360) = 24 for every k > 2. 

The multiplicative nature of cr:(r) and the result of Theorem 

1. 42 which points out the k-ary divisors of a prime power motivate 

the derivation of the formula for <T:(r). 

Theorem l. 44: Let k > 2 and 

representation of r. Then 

r = II pa be the canonical 
Plr 

a+ l , ( a -k+ 1 ff k ) /' ) II (p - l) I (p - l) • II l + p ) · •1P - 1 lP - l 1 

a<2k a>Zk 



a Pro0f: If a < 2k, any divisor of p is a k-ary divisor of 

* a 2 a a atl 
So crk(p) = l+p+p + ..• +p:: cr(p) = (p -1)/(p-l). If 
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a 
p . 

a > 2k, pt is not a k-ary divisor of pa for any integer t satisfying 

k < t ::: a - k. Hence, 

k-1 a-k+l k-1 = (l+p+.,.+p )+p (l+p+ ••• +p ) 

Upon multiplying these two results, 

cr:(r) =IT (pa+l~l)/(p-1)· IT (l+pa-k+l)·(pk-1)/(p-l). 
a<2k a>2k 

,,, 

It is immediate that cr~(r) reduces to the ordinary cr function 

when a < 2k for all primes p in the canonical representati0n of r. 

Example 1. 6: This last example sh0ws some calculations made 

with the formula of Theorem 1, 44, In order to make the problem 

interesting, let r = 2 8 • 3 6 · s2 and find the sum of the binary divisors 

of r. Since k = 2, a < 2k = 4 for p = 5. Thus, 

= 11~709~072. 

To find the sum of the 4-ary divisors, note that a< 2k ... 8 for p = 5 
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and p = 3 . Hence, 

= (53 .. 1)(37 -1)(1 +28-4+1)(24 -lJ 
5-1 3-1 2-1) 

= 16, 772, 085 . 

The sum of the 5-ary divisors is just o-(r) since a< 2k = 10 for 

all the primes represented. 

In the next chapter the reader is introduced to the xn.ain consider-

ation of this paper, number-theoretic functions of two variables. The 

first functions of this type which are studied are defined in terms of 

the ordinary divides relation. Later on, some unitary analogues of 

these same functions are also encountered. In either situation an 

interesting topic to pursue further is the k-ary generalizations of these 

functions of two variables. This topic is not considered in this paper. 



CHAPTER II 

FUNCTIONS OF TWO VARIABLES 

This is the first of four chapters which consider number ... theoretic 

functions of two variables. The three functions studied here are 

·interesting in their own right and also provide new ways of obtaining 

some of the standard functions of one variable encountered in elemen­

tary number theory. The first of these functions, the Nagell totient 

function, is a generalization of Euler 1 s cp -function. The other two are 

closely related. One is an exponential type function, and the 0ther, 

Ramanujan-' s sum, is a special sum of these exponential functions. 

They provide a basis for the discussion of even functions modulo r 

found in the next chapter. Later on, the unitary analogues of Nagell' s 

function and Ramanujan 1 s sum are also considered. 

The Nagell Totient Function 

The discussion begins with the definition of Nagel1 1s function and 

two examples which show its use. 

Definition 2. l: Let n be a nonnegative integer and r a positive 

integer. The Nagell totient function,' denoted by 8(n, r), is defined to 

be the number of integers x such that 

(i) l < x < r 

(ii) (x, r) = (n - x, r) = 1. 

20 
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E:x:arnple 2. 1: As an example, if n ::: 16 and r :: 12, then x is 

such that l :S, x :::_ 12, lfowever, the valuesi of 2, 3, 4, 6, 8, 9, 10 1 

and 12 fo:r x do not satisfy (x, 12) = 1, For x = l or x:: 7, 

(x, 12) = 1. But since (16 -x, 12) = 3 iti both instances, these values 

of x must not be counted. This leaves only x = 5 and x = 11, both 

of which do satisfy (i) and (ii). Hence, 8(16, 12) = 2 • 

Example 2. 2: For a second example suppose that n = r = 12. 
A 

As before, x = 2 1 3, 4, 6, 8 1 9, 10, ap.d 12 must be omitted since 

(x 1 12) f. 1 , For x = 1 1 5, 7, or 11 both (x, 12) = 1 and 

(12 -x, 12) :: 1. Hen<;;e, 8(12, 12) i::: 4. Note that thi.1> is precisely the 

value of <,0{U). Thi9 following theorem shows that :i.f n = r, then 

8(n, r) == <p(r), the Euler totient function. 

Theore;rn 2. 1: If p. = r, then e(n, r) :: <,0(r). 

Proof! The condition (x, r) = 1 implies (r -x, r) = 1. Hence, 

e(r,r) ::;<p('r). 

Other properties concerning the N;:i.gell totient function could be 

considered. No doubt some of these may have already occurred to the 

reader, However, this function is considered here only to introduce 

the topic of functions of two variables, and further consideration is 

saved for its unitary analogue. Attention is now focused on the other 

two functionE? mentioned at the beginning of this chapter. 

The e -Function 

To set ~he stage £qr the ddinition of the exponential type function, 

let r be a posihve integer and let F be a field of characteristic zero 
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containing the rth roots of unity. 

Definition 2. 2: Let z and n be integers, l'he e -,.£unction is 
2;rizn 

defined by e (n) :;:: e(zn, r) :;:: e 
z 

r 

The preferred notation for this function is e(zn, r) since it is 

easier to write than the last expression and dearer in meaning possibly 

than the first, 

The first theorem concerning the e .. func;Uon qites some of its 

properties which facilitate the work to foHow, Since the first four 

properties follow readily from the algebraic properties Qf the integers 

and the laws of e;x:ponents, their proofs are omitted, 

Theorem 2. 2: The following proper tie 1:1 hold for the e -function: 

(i) e(zn, r) = e(n.z, r). 

(ii) e(z(n +:rn), r) = e(zn~ r) e(zm, r). 

(iii) e((z+z')n,r) = e(zn,r)e(z'n,r). 

n (iv) e(zn, ;r) = (e(z, r)) , 

(v) The e"'functions a..re the rth roots of unHy, 

(vi) For all n, e(zn, r) = e(z'n~ r) if and only if z z 1 (mod r). 

Proof of (v): In its exponential form 
r 2Tiizn (e(zn,r)) :;:: e = 1, 

Hence, the e -functions are only the rth roots of unity. 

Proof of (vi): If e(zn, r) = e{z'n, l;'), the definition of the 

e -function implies that z = z' + kr and henqe z := z 1 (mod r). 

Now if z ::: z' (mod, r), then r I z - z'. Thus, e((z .. z')n 1 r) = 1 

and e(zn, r) = e(z'n, r). 
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The next ~heorem shows what happens when the functions e(zn, r) 

are 1:1umrned over the integers n in a complete residue system 

modulo r. lmportant to this proof is the fact that 
n 

e(zn, r) = (e(z, r)) • 

Theorem 2. ;3: :E e (zn, r) 
n(mod r) 

::: { r if z := 0 (mod r) ' 

0 if z ± 0 (mod r) 
where 

the summation is over the integers· n in a complete res~due system 

modulo r. 

Proof: If z := 0 (mod r), then r I z and e(zn, r) = 1, Hence, 

:E e(zn, r) = r, On the other hand suppose z $. 0 (mod r). Then 
n(mod r) 
sinc;e e(zn, r) = (e(z, r))n, 

:E e(zn, r) = 
n(mod r) 

:r ... l 
:E (e(z, r))n = 

n:zO 

r (e(z, r)) .,. 1 
e(z,r)-I 

But sinc;e r 
(e(z, r)) = 1 ~ the sum in this case is 0. 

Several d~fferent types of sums play important r0les in the theory 

of numbers, One of the more common of these is the convolution 

product. Many recent elementary number theory texts devote a chapter 

to this topie. A modification of this product which is suitable in the 

unitary context is the unitary c;onv(')lution c;;onsiderec:l in [7], Both of 

these are reiated to the muHipH<J:ation of Diriqhlet series and are s0me-

times c;aUed Dirichlet products, Another type of product suggested by 

the product of power series is the Cauchy p:rod,uct, Of these products 

it is the Cauchy prqduct wliieh provides the necessary machinery to 

work with sums of products of the e .. func;tion, 

Definition 2. 3; If f and g are arithm13tic functi(1>nS for which 

f(n) = f(m) and g(n) ::; g(m) when m := n (:mod r), then the Cauc;hy 
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product h of f and g is defined by 

h(n) = f o g(n) = E f(a) g(b) 
n S::a+b(mod r) 

where a and b are chosen from a complete residue system modulo r 

and n a +b (mod r). 

An alternate form for this product is often used. Since 

n a+b(modr), then b n - a (mod r), and 

L: f(a) g(b) = L: f(a) g(n.,. a). 
n :=a+b(mod r) a(mod r) 

The theorem which follow::; gives a formula for the Cauchy 

product of two e ..,functions. Es sen,tia! to the proof of this result are 

the basic properties of the e-,func;tion and the summation evaluated in 

Theorem Z, 3. 

Theorem 2.4: If a and b range over a complete residue 

system modulo r, the Cauchy product 

e(zn, r) P e(z'n, r) = E e(za, r) e(z 'b, r) 
n ::;a+b(mod r) 

" [ e(zn, r) if z z' (mod r) 

U z 1:. z'(modr) 

Proof: From the alternate form for the Cauchy product, 

e(zn,r) o e(z'n,r) = L: e(za,r)e(z'(n ... a),r). 
a(mod r) 

The properties of the e .. function imply that 

e(za, r) e(z'(n-a), r) = e{z'n, r) e((z ... z 1 )a, r), But since e(z'n, r) is 



independent of the inde;x: of summation, this last sum is just 

e(z 1n,r) !: e((z-z')a,r). 
a(mod r) 

!: e ( ( z - z 1 )a, r) 
a(mod r) 

The :result is now immedJate since 

: { 

0

r if Z - Z I 

if z - z 1 1. 0 (mod r) 

0 (mod r) 

The ne~t theorem shows that the set of functions e(zn, r) for 
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z = 0, 1, ... , r - 1 is linearly independent over the field F, Although 

this proof is based on the standard procedure for showing a set to be 

linearly independent, it does require the calculation of a Cauchy 

product of e-funchions and thus :rp.akes use of the formula of the 

previous theorem, 

Theorem 2. 5: The func:;tions dzn, r) for z = 0, 1, .•. , r - 1 are 

linearly independent over F. 

r -1 
Proof: Let g(n) = !i a e(zn, r) = 0 

z=O z 
wl+ere a 

z 
is in F. Also, 

let e(z 1n, r) be one of the functions under consideration where z 1 is 

fixed, From the definition of g(n), 

g(n) o e(z'n, r) ( 
r ~ 1 ) 

= !i az e(zn, r) 
z=O 

oe(z'n,r). 

Since the Cauchy product distributes over sums [9], 

g(n) o e(z 1n, r) = 
r ... l 

!i a e(zn, r) o e(z 1n, r). 
z z=O 

But from the previous theorem e(zn, r) o e(z'n, r) "" r. e(z 1n, r) if 

z := z 1 (mod r) • Hence, g(n) o e(z 1n, r) = a 1 r · e(z'n, r) = 0. z But 
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since r is a positive integer and e(z 1n, r) :/; 0, then a 1 :r.: 0. Since 
z 

z 1 was a fixed yet avbitrary choice for z, then a = 0 for 
z 

z = O, 11 ,.,, r..,. 1, and ~he functions e(zn, r) are linearly independent 

over F. .6. 

A generalized Cauchy product of e ... functions in which the second 

variables are replaced by two divisors of r is evaluated in Theorem 

2, 7, The following lemma allows this product to be expressed in 

terms of these divisors rather than by a congruence. 

Lemma 2.6: Suppose d 1e 1 = r 1 d 2e2 = r, (x,d 1) = 1 1 and 

(y,d2 ) = 1 where d 1 ::::_x>0 and d 2 ::::_ y > 0. Then the following 

hold: 

ye 2 (mod r) if and only if xe 1 = ye 2 

(i,ii) xd 2 ;=ydl :ifandonlyif d 1 =d2 and x=y. 

Proof of (i): Because d 1e 1 = r and x ~ d 11 then 

Similarly, 0 < y e 2 ~ r, Thus, since xe 1 and 

are members of the same complete residue system modulo r, they 

are congruent if and only if they are equal, 

Proof of (ii): If xe 1 = ye 2 , then e 1 = r/d 1 and e 2 = r/d2 

imply x(r/d 1) = y(r/d2 ). Hence, xd2 = yd 1 • The converse follows 

in a similar manner. 

Proof of (Hi): If c;t 1 = d 2 and x = y, then xd 2 = yd 1 • 

Suppose xd2 =yd 1 . Thus, x/yd 1 . Butsince (x,d 1)=1, then 
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x/y. Similarly, xd2 = yd 1 and (y,d2 ) = 1 ~mply that y/x. So 

y = x, and ~t follows that d 1 = d 2 • A 

Theorem2.7: If d 1 /r, d 2 !r, (x,d 1) = 1, and (y,dz) = 1 

where d l ~ x > 0 and dz > y > 0, then 

{
r ! e(nx, d) 

~ e(ax,d 1)e(by,dz) = 
n :=a+b\mod r) 0 

if d 1 = dz = d and x = y-

otherwise 

Proof: Since d 1 !r, thereexistsan e 1 suchthat d 1e 1 =r. 

Likewise there exists an e 2 such that dzez = r . Denote the left 

side of the de sired equation by S, From the a~ternate form of tl).e 

Cauchy product, 

S :i: ~ e(ax,d 1)e((n-a}y,dz), 
a(mod r) 

Since e(ax,d 1)e((n-a)y,dz);:: e(ny,dz)e(ax,d 1)e(-ay,dz) and since 

e(ny, dz) is independent of the ~ndex of summation, 

S = e(ny, dz) ~ e(ax, d 1) e(-ay, dz). 
a(mod r) 

If the e-functions in this summation are multiplied in exponential form, 

itr follows that e(ax,d 1)e(-ay,dz) = e(a(xdz-yd 1),d 1dz), Now 

d 1e 1 = r and d 2 e 2 = r imply x/d 1 - y/d 2 = (xe 1 -ye2)/r. Thus, 

e(a{xdz-yd 1),d 1d 2 ) = e(a(xe 1-yez),r) and 

S = e(ny,d2 ) ~ e(a(xe 1-yez),r) 
a(mod r) 

This summation can be evaluated by use of the formula in Theorem z. 3 

so that 



I: e(a(xe 1 ~ye 2 ) 1 r) 

a(mod r) 

0 (mod r) 
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But by the previous lemma x e 1 

and x = y . Thus, 

y e 2 (mod r) if and only if d 1 = d 2 

S = {r

0

·e(nx,d) if d 1 = d 2 = d 

otherwise 

The Ramanujan Sum 

and x = y 

The last func;tion c;;onsidered here is the Rarnanujan sum. This 

function has been studied since 1900 by many mathematicians, 

including Jens en in 1913 and Landau. AUhough Ramanujan' s contribu-

tion to its study did not appear until 1918 1 Hardy and Wright [10] note 

that Ramanujan was the first mathematician to see the full importance 

of this function and to use it sys~ematic;ally, Grosswald [8] gives 

Hardy credit for c;:alling this sum a Ramanujan sum, Although this 

particular application is not pursl,led here, Ramanujan' s sum is 

especially important in the theory of the representation of numbers by 

sums of sqµares. 

Definition 2, 4: A Ramanujan sum, denoted by c(n, r), is defined 
2irizn 

by c(n,r)=:Ee r where z ranges over a reduced residue 
z 

system modulo r. The integer n is called the argument, and r is 

called the index. 



It is important to note that this sum is over a :reduced residue 

system modulo r. Later on when the unitary analogue of c (n, r) is 

discussed, the index of summation changes appropriat~ly to a semi-

reduced residue system modulo r. 

2irizn 

Since e r = e(zn, r), then c(n, r) = :E e(zn, r) where the 
z 

summatton is defined as above, . This notation will be used whenever 
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possible. Also, since the e-functions are the rth roots of unity, the 

summands in the Ramanujan sum are the rth roots of unity, Finally, 

it is c;lear from the definition that c(n, 1) = 1 for all values of n, 

This first theorem about Ramanujan sums will be used later and 

follows quickly from a basic noHon about reduced residue systems. 

Theorem 2. 8: If (a, r) = 1, then c(an, r) = c(n, r). 

Pro0f: Su.ppose that z ranges over a reduced residue system 

modulo r. Because (a, r) = 1, the values for az will also range 

over a reduced residue system modulo r. Hence, the definitions of 

c(an, r) and c(n, r) are equivalent, 

With the help of one lemma it is not difficult to show that 

Ramanujan sums are multipliqative functions of their indices. Since 

this lemma is a part of elementary number theory, its proof is not 

included here but can be found in Gros swald [8]. 

Lemma 2. 9: Let (m 11 m 2 ) = l 1 Let h 1 run through a reduced 

residue system modulo m 1 and let h 2 run through a ;reduced residue 

system modulo m 2 , Then h = h 2m 1 + h 1m 2 runs through a reduced 

residue system modulo m 1m 2 , 
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Theorem 2. l 0: Ramanuja,.n sums are multiplicative functions of 

their indices; that is, if (r~ s) :;: 1 1 then c(n, r) c(n, s) :;: c(n, rs) for 

all integers n. 

Proof: Let (r, s) :;: 1. Let z 1 run through a reduced residue 

system modulo r and z 2 run independently through a reduced residue 

system modulo s. Then by the definitions of c(n, r) and c(n, s) and 

from the laws of exponents 

c(n, r) c(n, s) :;: ~ e(z 1 n, r) ~ e(z2n, s) 

z l Zz 

:;: ~ ~e((z 1 s+z2 r)n,rs) 
z 1 z2 

By the previou!3 lemma this double sum eari. be expressed in the form 

~ e(nz, rs) 
z 

where z :;: z 1 st z 2 r runi:; through a red\,lced rei;;id'l,le f;Jystem 

modulo rs. But since this is only the definition of c(n, rs), then 

c(n, r) c(n, i;i) = q(n, rs). 

The following theorem provides a neat representation for c(n, r) 

as a special convolution E>f the· M8bius function and the identity function. 

Theorem 2. 11: Let (n, r) = k. Then c(n, r) = ~ d µ(r /d). 
d/k 

Proof: Let z :rc;i.nge over a complete set of residues moduk1 r. 

By the summation property of µ, 
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= {01 if 

if 

(z, r) = 1 

(z,r) f. 1 

Recall that the definition of c(n, r) requires H to be a sum of 

e-functions over a reduced residue system modulo r. Bence, if the 

coefficient L: µ(d 1) is inserted with each term in a sum of 
d 1/(z,r) 

e-func;:tions over a complete residue system modulo r, the E!Ummation 

changes f:rom a complete residue system modulo r to a reduced 

re sidl,le system modulo r. Thus, 

c(n,r) = L; e(zn,r) L: µ(d 1) 
z(mod r) d 1/ (z, r) 

and d 1 / r, and the order of summation in 

the above equation can be interchanged so that one i:;um is over the 

divisors of r and one is over the divisors of z. Hence, 

L; e(zn, r) 

dl/ z 

l<z<r 

Since d 1 / z, there exists an s such that z = s d 1 . Also, since 

1 < z ~ r 1 then s = 1, 2, ... , r Id 1 . So with z = s d 1 , 

r/d 1 

c;:(n, r) = L; µ(d 1) L; e(i:id 1n, r) 
d 1/ r s=l 

r/d 1 
= L: f.:~ (d 1) L; e ( s n, r Id 1 ) . 

d 1 /r s=l 

This second equality follows by ,writing e(s dl n, r) in exponential form, 
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Now the summation over s is r/d 1 if r/d 1 In and is 0 if r/d 1 (n. 

Thus, 

c(n, r) = ~ µ(d 1)r/d 1 
d1 Ir 

r/d 1 In 

If r/d 1 is replaced by d, c(n, r) = ~ · µ(r/d)d. However, dlr 
dlr,dln 

and d / n if and oq.ly if d I k with k :;: (n, r), Hence, 

c(n, r) = ~ dµ(r/d). 
dlk 

Corollary 2. 11. 1: Let p be a prime, 

( i) If p b II n a q.d 0 < b < a , then c(n, pa) = {O b 
-p 

if a - 'b > 2 

if a - b = 1 

(U) U pb II n and b ~ a, a a-1 
then c;(n, p ) = p (p - 1) • 

{ 
0 if a > 2 

(Hi) If p{n, theq. c(n,pa) = -1 if a= 1 

1 if a = 0 

Proof of (i) : Le!l p be a prime and suppose pb II n where 

O<b<a. 
a b 

Then (n, p ) = p • Hence, from the previ0us theorem 

The value of this expression can be determined by looking at the last 

b a-b 
term p µ(p ) sinc;e a - b is the smallest expoq.ent involved in that 

position. If a - b > 2, all the terms are 0. If a - b = l, only the 

last term 
b 

p µ(p) is nonzero, Hence, 
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rpb 
if a - b > 2 

a 
c (n, p ) = 

if a .. b = l 

Proof of (ii) : If pb II n 
a a 

and b · > a , then ( n, p ) = p • In this 

a a 
c(n,p) = ~ dµ(p /d) 

. djpa 

a-1 a a-1 
= p µ(p) + p µ(l) = p (p - 1) case 

Proof of (iii): Now suppose p(n. Then pa (n and 
a (n, p ) = 1 • 

Hence, 

if 

if 

if 

Coroflary2.ll,2: c(l,r) = µ(r). 

Proof: Since (1, r) = 1 for all values of r, 

c(l, r) = ~ dµ(r/d) = 
d j 1 

µ ( r) . 

a > 2 

a = 1 

a = 0 

At this point it would be interesting to compute some Ramanujan 

sums using both the definition and the theorem. As will be seen, when 

the definition is employed, the calculation involves determining cosine13 

and sines for particular values. On the other hand, the use of the 

theorem involves mainly a knowledge of the definition of µ. 

Example 2. 3: The Ramanujan 13um c(lO, 6) is calculated fir13t 

by the definition, If z runs through a reduced residue system 

modulo 6, z has the values l and 5. Thus, 

c(lO, 6) - ~ e(lOz, 6) = e(lO, 6) + e(SO, 6) 
z= 1, 5 



= (cos lOrr/3 + i sin lOrr/3) + (cos 50rr/3 + i sin 501T/3) 

= ( ... 1/2., i{3/2) + (-1/2 + i{3/2) 

= -1 ! 

To use the formula. of the preceding theorem first note that 

{10i6)=2, Hence, c(lO, 6) = ~ d µ(6/d) = µ(6) + 2 · 1.t(S) = -1 ~ 
d/2 
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Example 2. 4: Suppose c(6, 9) is to be determined. The integers 

z in a redu~'ed residue system modulo 9 are 1, 2 1 4, 5, 7, and 8, 

Thus, by the definition c(6, 9) = ~ e(6z, 9) where z takes on the 
z 

values listed above. Ther~fore, 

c(6, 9) = e(6, 9) + e(l2, 9) + e(24, 9) + e(30, 9) + e(42, 9) + e{48, 9) 

= (cos 41T/3 + i sin4tr/3) + (cos 8rr/3 + i sin 81T/3) + 

(cos 16ir/3 + i sin 16rr/3) + (cos 201T/3 + i sin 20rr/3) + 

(cos28rr/3 + isin281T/3) + (cos321T/3 + isin321T/3) 

= 3(-1/2 - 1{3/2) + 3(-1/2 + i/3/2) = -3. 

This last calculation was even longer than that of the previou13 example. 

Since c(6, 9) = c(6, 32 ) and 3 /16, this result can be determined 

rather quickly by using part (i) of the first corollary, Elince h = 1 

and a = 2, a - b = 1, and it follows immediately that c(6, 9) = -3. 

Htllder [3] is responsible for a formula which gives Ramanujan' s 

sum in terms of cp and µ:. This representation is different from that 

of Theorem 2. 11 as no convolution is involved. The proof of this 

result relies heavily upon Corollary 2. 11, 1 which states the value of 

c(n, pa) where p is a prime, and a is any positive integer, In fact, 
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since all of the functions involved here are multiplicative, it suffices 

to verify the formula for prime powers in the canonical representation 

of r. 

Theorem2.12: If m= r/(n,r), then c(n,r) =cp(r)µ.(m)/cp(m). 

Proof: Let p by any prime in the canonical representation of r 

and a any positive integer. Since c(n, r), cp, and µ. are all multi-

plicative with respect to r, it is sufficient to show the equality for 

a 
r = p • It is necessary to consider three cases, one where 

b 
p /In 

with 0 < b <a, one where pb/ln with b ~ 9-, and one where p{n. 

If pb l/n with 0 < b <a, then m = pa /pb. If R denotes the 

right side of the de sired expression, 

a a-b I a-b R = cp(p )µ.(p ) cp(p ) a-1 a-b I a-b-1 b a-b = p (p-1)µ.(p ) p (p-1) = p µ.(p ) . 

Hence, 

Thus, 

If pb I/ n with 

If p{n, then 

if a-b>2 

if a - b = 1 

b>a, m=l and 
a a-1 

R = cp (p ) = p (p - l) . 

a 
(n, p ) = 1 . So R = a a a a 

cp(p )µ.(p )/cp(p) = µ.(p ). 

R = { ~1 1 
if 

if a > 2 

if a = 1 

0 a = 

These values for R are the same as those obtained for 
a 

c(n, p ) in 

Corollary 2. 11. 1. Hence, the equality follows. 



36 

The following corollary is not a result which 11 naturally 11 comes 

to mind, However, it is essential in Chapter III and does follow from 

this particular representation of Ramanujan' s sum, 

Corollary 2. 12. 1: If d and 5 are divisors of r, then 

c(r/5,d)<p(o) = c(r/d,o)<p(d). 

Proof: Let d and 5 be divisors of r. The corollary follows 

from the fact that d/(r/5,d) = 5/(r/d, 5). 

Orthogonality Properties of Raman.ujan Sums 

Ramanujan sums are interesting in themselves as examples of 

functions of two variables. But their importance in this context lies 

mainly in the fact that they are essential to the development of the 

representation of even functions modulo r, a topic to be considered in 

the next c;hapter. With this purpose in milnd the remainder of this 

chapter is concerned wHh two orthogonality properties of Ramanujan 

sums. Theorem 2, 13 is a result which later on will classify 

RamanujanJs sum as a special type of function. 

Theorem 2. 13: If (n, r) = k, then c(n, r) = c(k, r). 

Proof: Since (n, r) = k, then c(n, r) = 4: dµ(r/d). Now 
djk 

(k, r) = ((n, r), r) ::: k, Thus, c(k, r) has precisely the same repre-

sentation as c(n, r). 

The next theorem is the first of the aforementioned orthogonality 

properties. The key to its proof lies in expressing the product of the 

Ramanujan sums as a product of sums of e -functions and then 
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arranging the summation so that the formula in The0rem 2. 7 for the 

generalized Cauchy product of e~functions can be appliedf 

Theorem 2. 14: If d 1 / r and dz/ r, then for every n, 

~ c(a, d 1) c(b, d 2 ) 
n =:a+b(mod r) 

= { or • c (n, d) if 

if 

d =d =d 1 2 

Proof: Denote the left side of the desired equation by L, By 

the definition of Ramanujan' s sum along with a change in the order of 

summation 

as runs through a reduced residue system modulo d 1 , and zz 

runs through a reduced residue system modulo dz. Without loss of 

generality, assume d 1 ~ z 1 > 0 and dz~ zz > 0, Thus, by 

Theorem Z. 7, 

where 

L = 

r ~ e(nz 1,d) if d 1 =dz=d and z 1 =zz 
zl 

0 otherwise , 

ranges over a reduced residue system modulo d. Hence, 

[ c(n, d) if d 1 = dz= d 

L = 

if dl # dz 

{: 
if r = l 

Corollarz Z. 14. l: ~ c(a, r) = 
a{mod r) if r > 1 
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Proof: If r = 1, then !: c(a, r) :;:; c;(a, 1) ::: 1. Suppose 
a(mod r) 

r > 1 and let d 1 :;: r and d 2 = 1 in the previous theorem. Then 

!: c (a, r) c ( b, 1 ) = !: c (a, r) since c {b, 1) ::; 1 , On the other 
a(mod r) a(mod r) 
hand., I: c(a, r) = 0 since r f. 1. Thes~ last two equations 

a(mod r) 
show that !: c (a., r) :;: 0 if r > 1 • A 

c;t(mocl r) 

'l'heor~m 2. 16 is the second orthogonality property for 

RarnanlJjan sums. In this instanc:e the property is given in terms of 

the divisors of r rather than by a congruenc;:e. The proof begins by 

looking at the same sum as that stated in the f~rst orthogonality property 

and proceeds by replacing a complete residue system a modulo r by 

an equivalent system.. The following lemma from elementary number 

th~ory allows i;iuc;:h c;:hanges to be made. 

Lemma 2, 15; The integers a = zd where d l;'anges over the 

divisors of r, and for each d, ~ ranges over a ;reduced residue 

system modulo r /d constitute a complete residue system modulo r. 

Theoremi,16: If d 1 lr and d2 lr, then 

!: c(r/d,d 1)c{r/d2,d) 
air 

Proof: Let 

R ~ I: c(a,d 1)c(b,d2 ) = :z c(a,d 1)c(nMa,d2). 
n Ea+b(mod r) a(mod r) 

From the previous lemma a complete residue EJystem a modulo r is 

given by a= z(r/d) where d ;ranges over the divisors of r, and 
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for each d, z ranges over a reduced residue system modulo d. So 

as z ranges over a reduced residue system modulo d for every 

divisor d of r. Since d 1 Ir, then (z, d 1) = 1 , and it follows that 

c(zr/d,d 1) = c(r/d,d 1). Hence, 

where z ranges over a reduced residue system modulo d. Consider 

only the z-sum. By the definitLon of Ramanujan 1s sum, 

L: c(n~~r/d,d2 ) = L: L: e((n-zr/d)x,d2 ) 
z z x 

where x runs through a reduced residue system modulo d 2 , Now 

e((n-zr/d)x,d2 ) = e(nx,d2 )e(-zrx/d2 ,d). Because z ranges over a 

reduced residue system modulo d, this z-sum may be written as 

L: e(nx,d2 ) L: e(-zrx/d2 ,d) = c(n,d2 )c(,..,zr/d 2,d). 
x z 

Since (-z,d)=l, then c(-zr/d2 ,d) = c(r/d2 ,d), Hence, 

R = L: c(r/d,d 1)c(n,d2)c(r/d2 ,d) 
air 

= c(n,d2 ) L: c(r/d,d 1)c(r/d2 ,d). 
air 

However, from the first orthogonality property, 



R = {r

0

°c(n,d) if 

if 

d = d = d 1 2 

Therefore, it follows from these two values of R that· 

~ c(r/d,d 1)c(r/d2 ,d) 
dlr 

= {ro 

{ 
if 

Corollary 2. 16. l: . ~ c(n, cl) = r 
· dlr 0 if 

if 

rln 

r{n 
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Proof: In the previous theorem let d 1 =1. Since c(r/d, d 1) = 1, 

:2:; c(r/d2 , d) 
dlr 

= {r
0 

if 

if 

d = 1 
2 

So the nonzero terms of the sum occur when d 2 = 1 . In this case 

c(r/d2 ,d) = c(r,d). Since <llr, (r,d) = d. If rln, then (n,d) = d. 

So (r, d) = (n~ d) if r In. By Theorem 2. 13, 

c(r,d) = c((r,d),d) = c((n,d),d) = c(n,d) if rln. So 

~ c(n, d) 
air 

= { r
0 

if 

if 

rln 

r{n 

The e-function of this chapter laid the foundation for the develop-

ment of Ramanujan' s sum. Now Ramanujan' s sum plays a key role in 

the study of even functions modulo r. 



CHAPTER III 

EVEN FUNCTIONS MODULO r 

This chapter deals with a class of functions of two variables 

ca!led even functions modulo r. Representations for these functions 

are derived, one of which involves the function c(n, r), In Chapter V 

the unitary counterpart of the even function modulo r, called the 

unitary function mod-µlo r, is discussed. At that time it is sh0wn that 

a unitary functicm modulo r is also an even function modulo r. Hence, 

the representations derived in this chapter are significant in finding 

representations for the unitary function modulo r. 

Let r be an arbitrary positive integer and F a field of charac -

teristic zero which contains the rth roots of unity. If n is a non~ 

negative integer, f{n, r) is an element of F associated with the pair 

of integers n and r; that is, f is a function of n and r ~ In this 

setting the central theme of this chapter is that the class of even 

functions modulo r is identical to either of two classes of functions. 

One class is defined by f(n, r) = ~ a(d) c{n, d) where a(d) e F, and 
d/r 

the other class is defined by f(n, r) = ~ g(d, r/d) where g is an 
d/(n,r) 

arbitrary function with values in F. 

Definition 3. I: The function f(n, r) is an even function of n 

modulo r if it satisfies the following: 

41 



(i) f(m, r) :::; f(n, r) if m S n (mod r) 

(ii) f(n, r) = f(k, r) if k = (n, r) , 
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From (ii) it is evident that for every n the value of an even 

function f(n, r) is determined by the greatest common divisor of n 

and r 1 (n, r). Also, since n + r =: n (mod r), then f(n+r, r) = f(n, r) 1 

and an even function modulo r is periodic in n with period r. Part 

(ii) of the definition is sufficient to show that f is an even function 

modulo r and hence can be taken as a charq.cterization of even functions 

modulo r, 

Theorem 3. 1: The function f(n, r) is an even function of n 

modulo r if and only if f(n, r) = f(k, 1;") for k = (n, r). 

Proof: If f(n, r) is an even fund ion of n modulo r, the 

condition holds. Suppose that the condition holds. For any m and n 

with m =: n (mod r), (m, r) = (n, r) = k. Thus, 

f(n, r) = f(k, r) = f((m, r), r) = f(m, r). Hence, part (i) of the defini-

tion is satisfied, and f(n, r) is even modulo r. 

One of the results of the previous chapter was that 

c(n, r) = c(k, r) where k = (n, r). This property, along with the 

above theorem, shows that Ramanujan 1 s sum is an even function 

modulo r. This is nice to know; however, in deriving the representa­

tions for even functions modulo r, sums are encountered which involve 

c(n, d) for d Ir rather than c(n, r) itself. It is convenient to extend 

the definition of even function modulo r and define f(n, d) as an even 

function of n modulo r, 



43 

Definition 3. 2: Suppose f(n, r) is an even function of n 

modulo r and d Ir. Then f(n, d) is an even function of n modulo r 

if and only if f(n, d) = f((n, r), d), 

Theorem 3. 2: If 6 is any divisor of r, then c(n, 6) is an 

even function of n modulo r. 

Proof: If 6/r, theproofisc:ompleteif c(n,6) = c((n,r),6), 

From the characterization for Ramanujan' s sum, 

c(n, 6) = 2: dµ(6/d) 
dl(n,6) 

and c((n, r), 6) = 2: d' µ(6/d'), 
d' / ((n, r), 6) 

Since the set of divi:;;ors of (n, 6) is the same as the set of divisors of 

((n, r), 6), the two sums are identical, and it follows that c(n, 6) is an 

even function of n modulo r. 

With these preliminaries out of the way the exciting part of the 

chapter is at hand. The first representation for f(n, r), an even 

function of n modulo r, is in terms of Ramanujan's sum. To show 

that a representation of this form defines an even function modulo r is 

straightforward from the definition, The hard part is to show that an 

even function modulo r has this representation. At this point in the 

proof an outline of the major steps involved is given. 

Theorem 3. 3: Every even function f(n, r) of n modulo r can 

be represented by the form 

f(n, r) - 2: a(d) c(n, d) 
d/r 

( 1) 

where a(d) i:: F. Conversely, every function of the form (l) is even 



modulo r, and the coefficients a (d) = a{d, r /d) are given by 

Q! (d) = l/r ~ f(r/d ,r)c(r/d,d1) 
d 1 Ir 1 

or by the equivalent formula 

r 
a(d) = l/(r<,0{d)) ~ f(m,r)c(m,d) 

m=l 
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(la) 

( 1 b) 

Proof: In order to show that the function f(n, r) = ~ a{d) c(n, d) 
dlr 

is an even function modulo r, it is necessary to show that 

f(n, r) = f(k, r) where k = (n, r). This follows immediately from the 

fact that c (n, d) = c (k, d) for all divisors d of r. 

Now let f(n, r) be an even function of n modulo r and k = (n, r). 

The proof will be complete once two main points are verified. First, 

it must be shown that f(n, r) has a representation of the type (1) with 

a(d) defined by (la). Secondly, forml!.las (la) and (lb) must be 

shown to be equivalent, 

To justify the first point, consider a representation of the type 

(1) with a(d) determined by (la). To make the notation simpler let 

(1) be denoted by S, Substituting (la) into (1) for a(d) and noting 

that c(n, d) is an even function modulo r for d Ir, 

= 

By the second orthogonaUty property for Ramanujan sums 



dfr c(r/d,d1)c(k,d) = dfr c(r/d,d 1)c(r/k ,d) 

= ro if dl k = r 

if d I k f. r 
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This means that the nonzero terms in S occur only when d 1 k = r so 

that S = f(k, r). But f(k, r) = f(n, r) since f(n, r) is an even function 

modulo r. Hence, f(n, r) has the representation (1) where a(d) is 

given by (la). 

In order to show that (la) and (lb) are equivalent representations 

for a(d), begin with a(d) defined by (lb). This sum is taken over 

the integers x in a complete residue system modulo r. Lemma 2. 15 

allows this sum to be made over an equivalent c;omplete residue system 

of the form r x/ d 1 where d 1 Ir and (x, d 1) = 1 . WHh this change in 

summation 

a(d) = L: f(rx/d 1,r)c(rx/d 1,d) 
(x,r)=l 

x(mod d 1) 

Since d 1 I ;r and (x, r) = l, then (rx/d 1, r) = r/d 1 , and thus 

f(rx/d 1, r) = f(r/d 1, r) since f(n, r) is an even funcnon modulo r. 

Theorem 2.8 :i,mplies c(rx/d 1,d) ""c;(r/d 1,d) since (x,d) = 1, 

Hence, 

O:' (d) = 
I 

L: f(r/d 1,r)c(r/d 1,d) 
(x, r)=l 

rcp{d) 

x(mod d 1 ) 

Since the x is no longer pre sent in the inner summation, this sum 



merely counts one f(r/d 11 r) c(r/d 1, d) for each x in a reduced 

residue system modulod 1 . So the inner sum is only 

f(r/d 11 r)c(r/d 1,d)cp(d 1). But since d 1 and dare arbitrary 

divis0rs of r, c(r/d 1, d) cp(d 1) = c(r/d, d 1 ) cp(d) as was shown in 

Chapter II, Thus, 

a(d) - 1 
rcp(d) 

and the representation (la) follows. 
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Theorems 3. 4 and 3. 5 establish the equivalence of the class of 

functions f(n, r) = ~ g(d 1 r /d) mentioned earlier and the set of 
d i (n, r) 

all even functions modulo r. With this second representation it is 

possible to characterize an even function modulo r by either formula, 

Theorem 3. 4: Every even function modulo r may be written in 

the form 

f(n, r) - ~ g(d, r /d) 
di(n,r) 

(2) 

where 

g(d, r/d) = (2a) 

Conversely, every function of this form is even modulo r. 

Proof: Let f(n, r) be an even function modulo r. Then f(n, r) 

has the representation f(n, r) = ~ a(6) c(n, 6). Since 
cir 

c(n,6) = ~ dµ(o/d), then f(n,r) = ~ a(6) ~ dµ(o/d). Now 
di(n,6) cir di(n,6) 

cir and di(n,6) is equivalent to di(n,r), oir, and ale so that 
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f(n,r) = 2: d 2: a(5)µ(o/d). Since dl5, there exists a d 1 
dl(n,r) 5lr,dl5 

suchthat dd 1 =5, Since olr, then dd 1 lr, anditfollowsthat 

cl 1 Ir Id. With these alterations 

f(n,r) = 2: d 2: a(dd 1)µ(d 1). 
dl(n,r) dllr/d 

Hence, f(n, r) may be written in the form (2) where g(d, r/d) has the 

form (2a). 

To prove the converse suppose that f(n, r) = :!: g(d 1 r/d) and 
d I (n, r) 

that k = (n, r). Since d I (n, r) if and only if d I ((n, r), r), it follows 

that f(n, r) = f(k, r) , and f(n, r) is even modulo r , 

Theorem 3, 5: An even function of the form (2) has a represen-

tation of the form (1) where the coefficients a(d) are determined by 

a(d) = l/r 2: g(r/d',d')·d', 
a' I rid 

Proof: If f(n, r) is an even function mod1,1lo r, by Theorems 

3. 4 and 3. 3 it may be a1:1sumed that f(n, r) = 2: g(5, r/5) and 
5l(n,r) 

f(n, r) = :!: a(d) c(n, d). Also, Theorem 3. 3 implies that 
air 

Q! (d) 

Since f(r /d 1 , r) = 2: g(D, r /D), 
Dl(r/d 1,r) 

then 

Q! (d) = l/r 2: c(r/d,d 1) 2: g(D,r/D) 
a1 1r Dl(r/d1,r) 

The second sum is over the divisors D of r /d 1 because 
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(r/d 1pr) = r/d 1 • Since d 1 1r and Dlr/d 1 ifandonlyif Dir and 

d 1 I r ID , then 

a(d) = l/r 2: g(D,r/D) 2: c(r/d,d 1) 
D / r d 1 / r /D 

Since D / r, there exists an element d 1 such that Dd 1 = r. Hence, 

a(d) = l/r 2: g(r/d',d') 2: c(r/d,d 1) 
d'/r a1 /d' 

But by Corollary 2, 16. 1, 

Therefore, a(d) 

= { d
0

1 
if 

if 

= l/r 2: g(r/d',d')•d' 
d' Ir/a 

a' Ir ;a 

d' { r /d 

as was required. 

In summary this chapter dealt with an interesting class of 

functions of two variables, the class of even functions modulo r. The 

Ramanujan sum introduced in Chapter II turned out to be one of these 

even functions, It was shown that an even function modulo r can be 

characterized by either one of two representations, one of which is in 

terms of Raman-qjan 1 s sum. 

In the next chapter attention is given to functions of two variables 

defined in terms of the unitary divisor. Three particular functions are 

stuclied, two of which are analogues of functions con side red ~n 

Chapter II. Not only are the results interesting and important to the 

entire discussion, but the methods by which the results are obtained 
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should also be noticed, particularly the parall~ls between the methods 

of Chapters IV and V and Chapters II and III, 



CHAPTER IV 

SOME UNITARY ANALOGUES 

In Chapter II several funcHons of two variables were discussed, 

and it was noted that the unitary analogues of these functions would also 

be developed. This chapter deals with the unitary analogues of the 

Nagell totient function and of Ramanujan' s sum. A unitary convolution 

for two variables is also defined which leads to the unitary analogues of 

the Anderson-Apostol, Landau, and Brauer .. Rademacher identities. 

The stud,y of this convolution gives an addeQ. bonus for under special 

* * * conditions it reduces to µ , <P , and er respectively. The discus~ 

sion begins with hhe function * e (n,r). 

* The Function 0 (n, r) 

Definition 4. 1: If n is a nonnegative integer and r is a positive 

intege.r, the unitary analogue of the Nagell totient function, denoted by 

* e (n, r), is defined to be the number of integers x such that 

(i) 1 < :x; < r 

(it) (x, r)* = (n .-x, r)* = 1. 

E~ample 4 .. 1: Suppose that n = 24 and r = 10. Then one 

must determine the numbers x so that 1 < x < 10 and 

(x, 10)* = (24-x, 10)* = 1. Of the set l .< x < 10, only l, 3, 7, and 
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9 satisfy (x 1 10)* = 1. Since (15, 10)* = 5, 9 does not satisfy 

(24 -x, 10)* = 1. * Thus, 9 (24,10) = 3. 

Just as the Nagell function reduces to Euler's function in the case 

where n = r, under this same condition 
>:c e (n, r) * reduc;:es to cp (r). 

Theorem 4. 1: If n = r, then 
>l~ .>le 

e (n, r) = cp (r). 

Proof: The number of integers x such that 1 < x < r and 

(x, r) ,, = 1 is 
"' 

* <p (r). If (x,r),:~=l, then (r - x, r) ,, = l . ,,, Hence, it 

follows that 
* >!C e (r, r) = cp (r). 

It is clear from the definition that 
>!< e (n, 1) = 1 . Other evalua-

tions would be useful, but if the definition were used each time 
>!<: e (n, r) 

was calculated, the work could become rather tedious. A formula 

characterizing this function can be found using the multiplicative 

* property of e (n, r) and the value of 

a any positive integer. 

* a e (n, p ) for any prime p and 

The proof that * e (n, r) is a multiplicative function of r is 

particularly interesting since it uses the properties of unitary divisors 

and one of the basic concepts of algebra, that of isomorphism. If 

r = st where (s, t) = 1, s -:/: 1, and t -:/: 1, then e':~(n, r) is multi-

plicative if 
:i:c: >:~ ::::c 

e (n, r) = e (n, s) e (n, t) . Here appropriate sets R, S, 

and T are deHned, and it is shown that R is isomorphic to S x T. 

The actual isomorphism is shown in Theorem 4. 3 ; Lemma 4. 2 

provides some necessary preliminaries. 

Lemma 4, 2: Let r = st where (s, t) = 1 1 s f. I, and t f. 1. 

For each nonnegative integer n define the sets S, T, and R as 



follows: 

s = {y l 1 < y < s and (y, s)* = (n - y, s)* = l} 

T= {z: 1 < z < t and (z, t )* = (n - z, t )* = l} 

R= {x: 1 < x < r and (x, r)* = (n - x, r)* = 1} . 

If x is in R, and y and z are defined by the congruences 

x y (mod s) and 0 .:::, y < s 

x !:: z (mod t ) and 0 < z < t 

then y is· in S, and z is in T. 

Proof: By the definition of S it is necessary for y to satisfy 

1 < y .:::_ s and (y, s)* = (n. y, s)* = 1. Because 0 ~ y < s, the 

first condition follows if y # 0 • If y = 0' x := y (mods) implies 
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( 1) 

(2) 

that s /x. Since r = st where (s, t) = 1 ' then s 11 r. So s /x and 

s 11 r imply sj(x,r)*. But since (x, r)* = 1' then s = 1 ' a contra-

diction to the hypothesis. Thus, y # 0. 

If (y, sL,, = d, then d / y and d II s. Because d II s and s I/ r, 
'•' 

then d II r. Since d is a divisor of both y and s, it follows that 

d /x because x := y (mods), Hence, d /x and d II r imply d II (x, r),,,. 
'•' 

But (x, r)* = 1 from the definition of R. Therefore, d = 1 • 

To complete the proof suppose that (n -y, s),:~ = d 1 • A succes­

sion of steps similar to those above yields d 1 a unitary divisor of 

(n -x, r),,,. But since 
'•' 

(n - x r) = 1, then d 1 = 1. These three steps ' ':~ 

imply that y must be in S. In a similar manner it follows that z is 

in T. 
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* Theorem 4. 3: For each nonnegative integer n, a (n, r) is a 

multiplicative function of r. 

Proof: Let r = st where (s, t) = 1 , s 'f:. 1 , and t 'f:. 1. Also 

let S,. T, and· R be defined by (1). Define the mapping g .: R-S x T 

by g(x) = <y,z> where y and z are defined by the congruenc;;es (Z). 

The fact that g is well defined follows quic;kly from its own definition 

and the congruences (2), . It remains to be she>wn that g is one~to-one 

and ontoi 

Let g(x) = <y,z> and g(x') = <y,z>. By the deflnition of g, 

x y (mods) x' y (mods) 

and 

x z (m0d t) x' z (mod t) • 

Since {s, t) = 1, the system of congruences 

v y(mods) 

v == z (mod t) 

must have only one solution in the c10sed interval [O, st]~ Thus, 

x = x', and g is one-to-0ne, 

To show that g is onto S x T let <y, z> e S x T and let x 

denote the unique solution of the 13ystem of congruences 

v y (mods) 

v z (mod t) 

in the interval [O, st]. The pro0f is c0mplete if x e R, that is, if 

1 < x < r and {x, r)* = (n -x, r)* = 1. Since (x, s)* = 1 and 

(x, t)* = 1 where (s, t) = 1,. Theorem l. 12. implies that 
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(x, st)*= {x, r)* = 1. Likewise, (n .. x, r)* = 1. So x is in R, and 

g is onto as was required. 

Since g ·is both one-to-one and onto, R is isomorphic to 

S x T , and the number of elements in R is equal to the number of 

* elements in S x T. Therefore, 9 (n, r) is a multiplicative function 

of r. 

If p is any prime and a is a positive integer, * ·a e (n, p ) is the 

number of integers x such that 
a 

l < x ::_ p and 

a a 
(x,.p )* = (n ~ x, p ),:< = 1 , It is necessary to distinguish between the 

cases Pain and pa(n * a in determining e (n, p ) . 

Theorem 4. 4: If p is any prime and n is a fixed nonnegative 

integer, 

pa - 1 if pa In 
>:<: a e (n, p ) = 

Proof: Let X = { 1, 2, •. ,, pa~ l} and suppose pa In, Note that 

X contains the candidates x to be counted in determining * a e (n, p ) • 

The only unitary divisors of 
a 

p are 1 and 
a 

p ' But for every 

x e: X, pa (x and pa (n - x , Hence, (x, pa)* = (n - x, pa)* = 1 for all 

x ex. Therefore, if pa In' e':~(n, pa) = pa - 1. 

Now suppose pa {n and again consider the integers x e X. The 

set X + {O} is a complete residue system modulo pa, Hence, there 

exists an x in X+{O} suchthat x:=n(modpa). B1.:1.tsince pa{n, 

x f. 0. This means there is an x e X such that 
a 

(n.., x, p )* -:f 1 . 

Hence, 
>::: a a e (n, p ) = p ~· 2 
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Since 
;ilc 

e (n, r) is multiplic;;1.tive and since * a e (n, p ) has been 

dete rmin,ed for any prime p, it is rather easy to find a formula for 

* e (n, r). Before this formula is stated, one point needs to be made in 

regard to notation, The canonical representation of r will be denoted' 

by 

r. 

r = IT pa, unless otherwise specified, 
p/r 

Theorem 4. 5: Let r = IT pa be the canonical representation of 
p/r 

Then 

>'< 
P;roof: Suppose that n is held fixed. Since e I (n, r) is a 

multiplicative function of r' e':~(n, r) * a = IT/ e (n, p ) • Since * a e (n, p ') 
p r 

is 
a 

p - 1 if pa/ n and, is pa - 2 if pa{n, then 

* E~ample 4. 2: The calculation of 8 (24, 10) is easily done with 

this formula. Note that 10 = 2·5~ and 2/24 but 5f24. Thus, 

* e (24,lO) = (2-1)(5 ... 2) = s. 

Now let r = IT -pa 
p/r 

be the canonical representation of r • If 

for every prime p, pa fn, * the formula for 8 (n, r) contains only 

factors of the form pa - 2. If pa /n for every prime p that divides 

>!t; 
r' e (n, r) is chari:i.cterized by a product o~ factors of the form 

a p - 1. These results are stated in the following corollaries, the 

>!~ :* 
second of which gives another condition for whic;h e (n, r) = <p (r). 

CoroUary 4. 5. l: Let 

of r. If (n, rL, = 1, then ,,, 

r = IT pa be the canonical representation 
>:~ p/r a a 

8 (n,r) =II (p .. 2) = r. II (1-2/p ). 
p/r p/r 
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Proof: Since (n, r)* = 1, no prime power in the canonical 

representation of r can divide n. Thus, pa { n for any p. So from 

the general formula * a 9 (n, r) = II (p - 2). 
Plr 

The second quality is 

straightforward. 

Corollary 4. 5. 2: Let 

tion of r , If r In, then 

r -- II pa b h . 1 t e t e canon1ca represen a-
P Ir 

* a 9(n,r)= II(p-1)= 
Plr 

r . a 
II ( 1 - 1 /p ) 

Plr 

>:~ 
~ cp (r) • 

Proof: Since rln, Pain foreveryprime p that divides r, 

::* a 
9 (n, r) = II (p - I) Now 

plr 
and 

II (pa ~ 1) = II pa 

Plr Plr 
r . 

a 
II ( 1 ~ 1 /p ) 

Plr 

But this last expression is only 
>!=e 

cp (r) • Hence, if r In, then 
:::o: >:.: 

9 (n, r) = cp (r), 

When c(n, r) was studied earlier, one of the properties listed 

was the value of the sum of aU c(n, d) where d was a divisor of r. 

>!< 
A similar evaluation is made here for 9 (n, d), but the sum is taken 

over the unitary divisors of r. Such sums, called unitary convolu-

tions, were introduced in Chapter I, In the unitary case the convolu-

tion has an especially simple form since the only unitary divisors of 

pa are 1 and p.a so that ~ reduces to two terms. Theorem 
dJlpa 

4. 6 gives the values for four unitary convolutions. Each property is 

stated and proved separately. 
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a 
Theorem 4. 6: Let r = TI p be the canonicaL re pre sentatlon 

pjr 
of r, Then (i) through (iv) hold. 

(i) 

Proof: Let r have the given representation. Since * e (n, r) is 

>:< 
multiplicative with respect to r, ~ 8 (n, d) is also multiplicative, 

d 11 r 
and the value of this sum c;;an be determined by calculating 

* a ~ 8 (n, d) for each p such that p II r, By Theorem 4. 4, 
dllpa 

;;* * ~!< a 
~ e (n, d) = e (n, 1) + e (n, p ) 

d ii Pa 
* a = 1 + e (n, p ) 

Thus, 
~~ 

~ e (n, d) = 
d 11 r 

a a 
TI p • TI (p - 1) • 

a I a Y' p n p 1n 

a 
In Chapter I it was noted that if r = TI p · , then 

a 
(n, r )* = TI p and that 

Pain 

p/r 
<llir/(n,r),:~ ifandonlyif <llir 

(n, d),,, = 1, Hence, 
'.'I'" 

* ~ e (n, d) = 
d II r/(n, r)* 

* ~ e (n, d) 
d 11 r 

(n, dL.= 1 ,,. 

Theorem 1. 18 implies 

* * a ~ 8 (n,d) = TI (1+8 (n,p )) 
d II r pa (n , 

(n, d)*"" 1 

since e'\n, r) is multiplicatLve. However, pa (n implies 

and 
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* a a e {n, p ) = p - 2 so that this last product is 
a 

II (p ... 1). Hence, 
pa{n 

* a a {n, r)* · ~ e (n, d) = II p • a~ (p - 1) : 
dl/r/(n,r)* Pain p 1n 

h( ( ) ) * * = 2 n, r * · II (2pa - 3) • <p ((n, r)*)/<p (r). 
pa{n 

Proof: Since 
):( * e · and <p are both multiplicative, their quotient 

and hence the sum of their quotients over the unitary divisors of r are 

':~ 
both multtplicative, This quotient makes sense since <p is never 

zero. Thu~, it is sufficient to consider * ' * ~ e (n, d)/rp (d). 
d I/Pa 

This sum 

>le ':..:: ~:e a * a 
is only e (n, l)/<p (1) + e (n, p )/<p (p ) so that 

= {l+(pa-1)/(pa .. l) =2 

1 +{pa -2)/(pa - 1) = (2pa - 3)/{pa ~ 1) 

The first equaUty of (ii) follows by taking the product of these factors 

over the appropriate values of pa. 

The product II (2pa - 3)/(pa ~ l) can be written in a slightly 
pa{n * a 

simpler form by using the fact that cp (r/(n, r),,J = II {p · - 1). Since 
,, pa Y n 

* * * 1 cp (r I (n, r),:~) = cp (r) /cp ((n, r),:), 

a a a * * II (Zp - 3)/(p - 1) = II (2p - 3) • cp {(n, r),:)/cp (r) • 
pa{n pa{n 

Because the number of distinct prime divisors of (n, r)*, denoted by 

h((n, rLJ ~ is equal to the number of distinct primes in the canonical 
'•' 
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representation of r which divide n, II 2 = 2h((n, r)*). With this 
Pain 

substitution the second equality of (ii) follows, 

(iii) 

* * * = (n, r)* q> (r) /0 (n, r) q> ((n, r)*) • 

Prooft As in the previous proofs * S = ~ 1/0 (n, d) has only 
dllpa 

two terms, So 

* * a S = 1/0(n,l)+1/0 (n,p) 

a a 
p/(p .. 1) = { 1 + l / (p :- 1 ) = 

l+l/(p .. 2)= 
a a ay 

(p - 1) I (p - 2) if p 1 n 

The first equality of (iii) follows by taking the product of these factors 

over the appropviate values of pa. 

The se~ond equc;i.lity foUows as a result of breaking the above 

product up into four separate product~. If P denotes the product of 

the first equality, 

Since the product of the last twe> terms in P is * 1 /9 (n, r), then the 

second equality of (iii) follows. 
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(iv) * * * I; 1/0 (n, d) !: 1/cp (d) = r/0 (n, r). 
d II r d II r 

(n, d)*= 1 

P;roof: By Theorem 1. 30 

* * * !: 1 /cp (d) = r • cp ((n, r)*)/(n, r)* cp (r). 
d 11 r 

(n, d)*= 1 

Multiplying th.ts expression, by th!'Lt ©f (iii) yields the desired result. !;:,,. 

The final theorem regarding * * a (n, r) allows a (n, r) to be 

* * rep:re sent:ed as a special convoiutio~ of µ. and cp • As was true for 

* many of the previous proofs, this result is based on the fact that µ. 

* and cp are multiplicative and hence upon one of the basic properties 

of multipli.cative functic;ms stated in 'l'heorem 1. 18. 

a 
Thee rem 4. 7: If r = II p is the ~anonical representation of 

PI r 
r, then 

* a (n, r) = * cp (r) * * !: µ. ( d )/ cp ( d ) . 
d 11 r 

(n, d)*= 1 

* * * · Proof: Since both µ. and cp are multiplicative, and cp is 

never 0, their quotient is muLtiplicative, Hence, by Theorem 1. 18, 

* a ·a * a Now cp (p ) = p - 1 and µ. {p ) = -1 so that 



Since * a 
tp { r) = II (p .. 1) 

pjr 

* <P (r) 

* = e (n, r) 

~:c 

The Fµnction c (n. r) 

The second unitary analogue tp be studied in this qhapter is the 

unitary analogu~ of R~manujan's sum. Eckford Cohen [5] used this 

* * 
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function to obtain formulas for cp and µ as well ai; some unitary 

analogµes of other number-theoretic identities. These results are 

noted in the ensuing discussion, The main purpose, however, is to 

study this unitary analogue as a function of two variables while noting 

the parallels in this development with that of the ordinary Ramanujan 

sum. 

The e-function studied earlier will have its same meaning in t:his 

c;ontext. Since this function does not depend on divisor13, it is inappro-

pi;iate to consider any kind of -µnj.tary analogue for it. But just as this 

function was central to the definition of c(n, r), it is very important 

in defining * c (n, r), the unitary analogue of c(n, r). In fact, the 

* definition is the same except that far c (n, r) the summation is over 

the integers in a semi .. redu.ced residue system modulo r, 

Definition 4, 2: The function * c (n, r) is defined by 

* c (n, r) = L e(nx, r) where x ranges over a semi~reduced residu.e 
x 
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system mo~ulo r. 

It is evident from the definition that * c (n, 1) = 1. Also, the 

* summands in c (n, r) are the rth roots of unity, as was also the case 

for the summands of c(n, :r). Before pursuing any other properties of 

this function, it is helpful to see a calculation made with the defiaition. 

>:C 
Ex:ample 4; 3: Suppose the problem is to evaluate c ( 4., 12). 

The set T :;:: { 1, 2, 5, 7, 10, 11} is a semi~reduced residue system 

* modulo 12. Thus, c (4, 12) = ~ e(4x, 12) where x a T. So 
x 

* c (4, 12) = e(4, 12) + e(8 1 12) + e(20, 12) + e(28, 12) + e(40, 12) + e(44, 12) 

= 3(c;os2ir/3·+ isin2ir/3) + 3(cos41T/3) + isin4'1T/3) 

= S(-1/2 + i{f/2) + 3(..,1/2 p i{3/2) = -3. 

'* If n ::; 0, c (n, r) reverts to the familiar function * <P (r) as the 

following theorem shows, 

* * Theorem 4, 8: c (O, r) = <P (r) • 

* Proof: For n = 0, c (0, r) = ~ 1 where x ranges thr~mgh the 
x 

set of integers in a semi-.reduced residue system modular. This 

sum merely counts all th()se integers in a semi-reduced residue system 

modulo r, * * Thus, c (0, r) = <P (r), 

The next result parallels an earlier property for the ordinary 

Ra:r;nanujan sum stated in Theorem 2. 8. 

Theorem 4. 9: If (a, r) = l, then >:C * c (an, r) = c (n, r). 
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Proof: Suppose x runs through a ser.ni-.reduced residue system 

modulo r, Since (a, r) = 1, the values ax also run through a semi-

* reduced residue system modulo r, Thus, the values of c (an, r) and 

::i:c: 
c (n, r) are the sarn.e. 

A complete residue system modulo· r can be characterized by 

the set of integers dz where d ranges over the unitary divisors of 

r, and for every d, z ranges over a semi~reduced residue system 

modulo r/d. This result is essential in verifying the formula for the 

* sum of the functions c (n, d) where d II r. 

Theorem 4. 10: * ~ c (n, d) 
d II r 

= {r i. f 

0 if 

rln 

r(n 

Proof: In Chapter II it was shown that 

~ e(nz, r) 
z(mocl r) 

= {
0
r if 

if 

rln 

r{n 

where the summation is over the integers z in a complete residue 

system modulo r, Due to the re suLt mentioned prior to this theorem, 

~ e(nz,r) = ~ ~ e(ndz,:r) 
z(modr) dllr (z,r/d)~c=l 

The inner sum here is 

oq.ly c;>:~(n, r/d). Thus, 

~ c*(n, r/d) ""' ~ e(nz, r) 
d II r z(mod r) 

= {
0
r if 

if 

rln 

r{n 

The r/d may be replaced by d since this will effect only a change in 

the order of summation, With this substitution the equation follows, ~ 



Recall that in Corollary 2. 16, 1 it was shown that 

Thus, * 2: c (n, d) 
d 11 r 

>li: 
c (n, r) and c(n, r) 

2: c(n,d) 
dlr 

= {r
0 

if 

if 

rln 

r(n 

and 2: c(n, d) have the same value even though 
dlr 

are not necessarily the same, 
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The result of the following corollary is not new, but the approach 

is different from that in [7], 

>le 
Corollary 4. 10. 1: If r is a,n integer, 2: cp (d) = r. 

d 11 r 

Proof: Since * >!~ 
c (0, d) = cp (d) and r I 0, then 

>:.: * 
2: cp (d) = 2: c (0, d) = r. 

d II r d II r 

* As one might suspect, c (n, r) is a multiplicative function of r. 

The proof proceeds in the same manner as that for c(n, r), except 

that semi-reduced residue systems are used instead of reduced residue 

systems. 

>I~ 

Theorem 4. 11: The function c (n, r) is a multiplicative function 

of r; that is, ~f 
>!:: >::: >:.: 

(r,s) = 1, then c (n,rs) = c (n,rJc (n,s). 

Proof: Let z 1 range over a semi-reduced residue system 

modulo r and z2 

modulo s. Then 

range over a semi-reduced residue system 

* >:~ 
~ (n, r) c (n, s) = 2: e(nz 1, r) 2: e(nz , s) 

zl Zz 2 

= 2: 2:e(n(z 1s+z2 r),rs) 
zl z2 
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this latter equality following from the properties of exponents. 

Because {z: z = z 2 r + z 1 s} ranges over a semi .. reduced residue 

system modulo rs, the double sum above can be written as the single 

sum ~ e(nz, rs) where z ranges over a semi-reduced residue 
z \ 

system modulo rs. * * >le Thus, c (n, r) c (n, s) = c (n, rs) • 

>?< >le 
Since · c (0, r) = cp (r), the following corollary is immediate, 

:* 
C0rollary 4. 11. 1: The function cp (r) is multiplicative. 

In the preliminaries to this paper the unitary analogue µ of the 

* MClbius function was discussed, Just as c (n, r) leads to a different 

* way to obtain cp (r) 1 it also provides an alternate means of studying 

* µ (r), While the results E>btained in this manner are not new, the 

approach is 1rather interesting, To begin the discussion µ is defined 

in a manner analogqus to a property known about µ. In [7] Theorem 

4. 14 was used as the definition, and Definition 4, 3 was derived as a 

theorem. 

Definition 4. 3: The unitary ana~ogue of the MClbius function µ, 

* denoted by µ , is defined by 

* ~ µ (d) 
d II r 

= {01 if 

if 

r = 1 

r > 1 

One immediate consequence of this definition is that 
:{:; 

µ (1) = l. 

The following theorem gives the value for 
>!~ a 

µ (p ) where p is a 

pdme, and a is a positive integer. 
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Theorem 4. 12: If p is a prime, and a is a positive integer, 

* a µ. (p ) = -1 • 

a * Proof: Since p > 1, the definition. of µ. implies that 

!; µ. * (d) = 0. Because 1 and pa are the only unitary divisors of 
dllpa 
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* * a * * a pa , µ. ( 1) + µ. (p ) = 0 • However, µ. ( 1) = 1 implies µ. (p ) = -1 • A 

* * The definition given for µ. is rather· indirect. If µ. (r) can be 

* shown to be one of the functions c (n, r), there would follow a precise 

. * * means of calculating µ. , but more important than ~Ms, µ. would be 

* * multiplicative, The proof that µ. (r) = c (1, r) requires the unitary 

analogue of the Ml::lbius inversion formula stated in Theorem 1. 23. 

* * Theore.m 4. 13: µ. (r) = c (1, r). 

* Proof: Let g(r) = !; c (1, d). Since 
all r 

r(l 

then 

From the inversion formula, * * c (1, r) = !; µ. (d) g(r/d), 

since 
a 11 r 

-- { 
0
1 if r = d . ' 

g(r/d) 

if r -:f:. d 

However, 
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* the only nonzero vah:4e~ in the sum for c (1, r) occur when r = d. 

* * Thus, c (1, r) :::: µ (r), ~ 

* Since c (:q, r) is a muhiplicative function of r, the above 

* theorem implies that µ. is multiplicative. 

* Cor0lla,ry 4, 13. 11 The fonctien µ. (r) is a multiplicative 

function of r • 

* Since µ. is multiplicative, it ii; rather eae;y to find its c;harac .. 

terization in terms of the prime divhors of r. 'l'his characterizatian 

is the usu.al definition for µ. *. 

Theorem 4. 14: lf h(r) denotee; the n~mber of distinct prime 

divisors of r. then * h(r) µ. (r) = ( .. 1) • 

Then 

h(r) a. 
Proof: Let r = II p, 1 be the canonical representation of r. 

i= 1 l 

>:< 
µ (r) = 

h(r) * a. 
II µ. (p. i,) i:;: 

. 1 l i= 

h(r) 
II (-1) = 

i=l 

A sec;ond application of the unitary in.version formula is seen in 

* the next theorero whic:ih shows that e (n, r) is a special unitary 

* convolution of µ. and. the identity function. This is arialogous to the 

earlier result of Theorem Z, ll. 

>:< * The.g:rem 4, 151 c (n, r) = ~ µ (r/d) · d. 
' ' · liillr,dln 

Proof: Define the function g by g ( r) = { r if 
0 if 

rln 

rf n 
, Theorem 

4. 10 implies that :E c*(n~ d) = g(.1r). By the unitary inversion 
. dllr 
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formula, 

* * c (n, r) = I: µ (d) g(r/d), 
dllr 

The only nonzero terms in this expression occur when r/dln and thus 

when g(r /d) = r /d. Therefore, these conditions imply that 

>!4 
c(n,r)= * * ~ µ (d) • r /d = I: µ (r /d) • d • 

dllr dllr,dln 
r/dln 

* C or o lla r y 4 . 1 5 . 1 : cp ( r ) = * I: µ (d) • r /d • 
d 11 r 

::::c * 
Proof: Recall that cp (r) = c (0, r). In the case n = 0, the 

condition d In is redundant, Thufil, 

>:~ ~:4 
cp (r) ::;: I: µ (d) 1 r /d 

d 11 r 

Corollary 4t 15. Z: Let p be a pdme and a any positive integer. 

Then 

::::c a 
>:~ a __ { cp (p ) if 

c (n, p ) 

-1 if 

Proof: The unitary divisors of pa are only I and pa. If 

Pain, both of these values are acceptable in the formula af Theorem 

4. 15, So 

~* a 
c (n~ p ) = 

* a * a = µ ( 1) • p + µ (p ) 
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<\y a * a * a If p 1 n, d "" p must be discarded. Hence, c (n, p ) = µ (p ) = -1. /:::,, 

This example shows that * c (4, 12) can be calculated much more 

easily with this characterization than by !!he definition, 

Example 4. 4: First note that * * c (4, 12) = :2::: µ (12/d) • d ! 

dl/12,dj4 
The unitary divisors of 12 are 1, 3, 4, and 12, but the sum is only 

over 1 and 4 since 3{4 and 12(4. So 

A Unitary Convolution of Two Variables 

The special unitary convolution in Theorem 4. 15 ·is well worth 

further study, Since this sum is over the unitary divisors of r which 

are also divisors of n, the convolution here is more restricted than 

the usual unitary convolution. Also, the fact that the sum depends on 

common divisors of r and n implies that the convolution is com .. 

pletely determined by the values it takes on when n and r are powers 

of the same prime. Moreover, the difference between this convolution 

and the regular unitary convolution lies cml y in the choice of d since 

the terms of the summation do not involve n. This dependence on 

both n and r leads to a general definition of a function of two 

va:riables defined in terms of this restricted convolution. 

Definition 4, 4: If h(r) and k(r) a+e m11ltiplicative functions, 

H(n, r) = :2::: h(d)k(r/d). 
allr,djn 
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The function ;H(n, r) Hke most of the others studied is a multi-

plicative function of r, But :El{n, r) has the added bonus ef being 

multiplicaHve with respect to n, The importance 0f these two facts 

becomes apparent as the discussion continues. 

Theorem 4. 16: If n is held fixed, H(n, r) is a multiplicative 

function of r, 

Proof; Let r = st wher~ (s, t) = l , The p:roof is complete if 

H(n, r) = H(n, s) H(n, t), Since d II st whe;re (s 1 t) = 1, ~hen . d = d 1d 2 

where d 1 II s, d 2 II t, and (d 1, d2 ) = 1, Because (d 1, d 2 ) = 1. then 

d 1d2 jn if and only if d 1 In and d 2 jn, Thus, since h and k are 

multiplicative, 

which implies that H(n, r) = E(n, a) H(n, t). 

Theorem 4, 17: The function H(n, r) is a multiplicative function 

of n, 

Proof: Suppose that n = n 1 n2 where (n 1, n 2 ) = 1, To show 

that H(n, r) is a multiplicative function of n, it is necessary to show 

that H(n,r)=H(n 1,r)H(n2,r), Stnce djn 1n 2 where (n 1,n2)=1, d 

can be written as the product d 1d 2 where d 1 ln 1 , d 2 ln2 , and 

(d 1,d2 ) = 1. Al.ao, (P. 1,d2 ) = 1 implies d 1d 2 1!r if and only if 

d 1 llr and d 2 llr. Thus, 

~ h(d)k(r/d) = ~ h(d 1)k(r/d 1) ~ h(d2 )k(r/d2) 
dl!r,dln d 1 llr,d 1 jn 1 d 2 1!r,d2 ln2 
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since both h and k are multiplicative, Hence, 

H(n, r) = H(n. 1, r) H(r;i.2 , r), and H(n, r) is a multiplicative function 

of n. t::. 

The function E(n, r) helps to bridge the gap between the discus­

* s ion of c (n, r) and the last function, denoted by f(n, r), to be 

considered in this chapter. Definition 4. 5 describes f(n, r). 

Defil'lition 4, 5: Let h(r) and g(r) be multiplicative functions. 

* Define f(n,r) by f(n,r) = :I; ·h(d)g(r/d)µ. (r/d) ar::id 
d II r,d In 

f(O, r) = F(r). 

. Since * µ. is multiplicative, it is apparent from the definition 

that f(n, r) is just a speeial case of H(n, r) * where k = g • µ. 

Hence, f(n, r) enjoys the same properties as H(n, r). This means 

f(n, r) is a multip~icative function of both n and ;r, Furthermore, 

f{n, r) is completely determined by the values it takes on when n and 

r are powers of the same prime. 

The following example shows the calculation of £( 10, 18) . As 

such· it merely shows how the formula is used, The real interest 

occu:i;'s when h and g are knowp. functions, ~nd f(n, r) turns out to 

be something k~own. 

Example 4, 5: If f( 10, 18) is to be evq.luated, the sum is over 

all d in the intersection of { 1, ~, 9, 18} and { 1, 2, 5, 10}, Thus, 

.>:c * f(lO, 18) = h(l) g(l8) µ. (18) + h(2) g(9) µ. (9). Since * µ. (18) = 1 and 
)~ 

µ. (9) = -1, then f(lO, 18) ""h(l)g(l8) - h(2)g(9). 

One reason for studying f(n, r) is that for special choices of h 

and g the function f(n, r) reduces tG one of the unitary analogues 
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encountered earlier. This function gives a general category to, which 

the unitary analogues belong, The three theorems which follow are 

special cases of f(n, r), 

The0rem4.18: If h(r)=r and 
>!~ 

g(r) = 1, then f(n, r) = c (n, r). 

Proof: Let h and g be the given functions, With these substi-

tutions in the definition of f(n, r), 

* f(n, r) = ~ dµ (r/d) 
d II r,dln 

This sum is * c (n, r) * by Theorem 4. 15, Hence, f(n, r) = c (n, r). 

Theorem 4.19: If h(r) = r and g(r) = 1, then F(r) * = <P (r) ._ 

Proof: From the previous theorem h(r) = r and g(r) = 1 

>~ 
imply f(n, r) = c (n, r). Th-µs, F(r) = f(O, r) 

::::~ * = c (0, r) = <P (r). 

Theorem 4, 20: If h(r) = r q,nd g(r) * = µ (r) , then 
::::c 

F(r) =CJ (r). 

Proof: Since F(r) = f(O, r), n = 0. The conditien d I 0 of the 

summation is redundant. So with h(r) = r and g(r) = µ>:~(r), 

::l< ::::d 
F(r) = ~ df-L (r/d)µ (r/d) 

d 11 r 

::;c 
Because µ (r /d) is either l or -1, F(r) = ~ d , But this sum 

d 11 r -·· 
only adds up all the unitary divisors of r so that F(r) = CJ,,,(r), .6. 

Suppose now that h and g are arbitrary multiplicative func-

tions, For n = 0 the function f(n, r) is defined only in terms of 



the unitary convolution i:iince the condiHo~ d I 0 is redundant .. If 

n• = 0 and r = pb for any prime p, then f(O, pb) = F(pb~ can be 

written as the difference h(pb) .. g(pb). From this it follows that if 

b b b 
h(p ) -I- g(p ) for au p:rimes p and all b·> 0 I then F(p ) -I- 0' 

Moreover, F(r) -I- 0 for all positive integers. 

Theorem 4. 21; For b > 0 and p any prime, 

F(pb) = h(pb) .. g(pb). 

Proof: With d = 1 or b 
p ' 

b b * b F(p ) = ~ h(d) g(p /d) µ. (p /d) 
d!ipb 

b * b b * = h(l)g(p )µ. (p) +h(p )g(l)fi.(1). 
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Because h and g are multiplicative, h(l) = 1 and g(l) = 1, Thus, 

*b - * b b b µ. (p ) = -1 and µ. ( 1) = 1. imply F(p ) = h(p ) .,. g(p ) , 6. 

Since f(n, r) is mu.ltiplicative with respect to r,. its value can 

be determined by looking at II f(n, pb) where r = II pb -is the 
pjr pjr 

Ganonical representation of r. This property is seen in action in the 

following corollary, 

CoroLlar:y ~· 21! 1: If r In, then f(i:i, r) = F(r). 

Proof: Since r In, the sum, in f{n~ r) is only over the unitary 

divisors of r. Now 

b b * b f(n, p ) = ~ h(d) g(p /d) µ (p /d) 
d Ii Pb 

b b b = h(p ) ~ g(p ) = F(p ) • 



b Thus, f(n, p ·) 

£(n, r) ;:: 

when r Jn, Hence, 

F(r). 

Another reason for studying f(n, r) is that it is helpful in the 

formulation 0f unitary analogues for the Anderson-Apostol, Landau, 
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and Brauer-Rademacher identities, Alth0ugh these identities look 

rather complicated, they are proved without too much difficulty since 

all of the func::hions involved are multiplicative. In fac::t, j,f one can 

keep from becoming disenchanted by all the details, these proofs are 

good examples of how to use the multiplicative property on a function 

which is m-ultiplic::ative with respec;t to both variables. 

a b 
Suppose that q and p are unequal primes, Siq.ce (q , p ) = 1, 

a b it foltows tha~ f(q , p ) ::; 1, and in the determination of £ by its 

multiplicative property the only factors that need to be retained are 

a b . a b 
terms of the form £(p , p ) • Lemma 4. 22 gives the value of f(p , p ) 

in the two cases a < b and a > b, This value involves the function 

F of Theorem 4~ 21, 

Lemma 4. 22: Let a and b be arbitrary positive integers, If 

p is any prime common to the c;anonic::al representations of n and r, 

a b 
f(p 'p ) 

= {-g(pb) if a< b 

F(pb) if a > b 

Proof: Recall that ( a b) - 1 p ,p >:~- if a < b and that 

a b b 
(p , p )* = p if a > b, By Theorem 1. 8, 

So 
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a b b * b b If a< b, f(p.,p) = h(l)g(p )µ (p) = ... g(p ), If a> b, 

f(pa,pb):; h(l)g(pb)µ*(pb)+h(pb)g(l)µ*(l) = h(pb)-g(pb) = F(pl:)), A 

Theorem 4, 23 deals with the unitary anal0gue of the Anderson-

Apc:istol ident:ity. The theorem'~ firstco:rolla.ry shows an interesting 

* * * relationship between c (n, r) and the functions cp and µ • This 

c:;orollary itself is the analogue of Th,eo rem 2. 12. The i;;ecqnd Gorollary 

* gives a relationship for er • In thh theorem as well as in those to 

follow it is assumed that p is a prime oc:;c::urring in the eanonical 

:representations of bPth n and r. Also, a and b a11e po.sitive 

integers, 

·Theorem 4. 23: 1£ g is a, rnultipli~ative function and 

m- r/(n,r)*' then 

* f(n, r) = F(r) g(m) µ (m)/F(m) • 

Proof: Since all of the functions involved are multiplicative, it is 

sufficient to el!!tablish the identity for common prime powers of n and 

a I:> a b b r. When a < b 1 (p , p · )* = 1 and f(p , p ) = .. g(p ·) • In this case 

b a b b 
m = r/(n1 r)* = p /(p , p )>.~ = p • So if R denotes the right side of 

the desired equality, R = F(pb) g(pb) µ *(pb)/F(pb) = -g(pb), and th<:) 

identity holds for a < b, 

a b b a b b 
For a. ~ b ~ (p , p )* = p ·and f(p , p ) = F(p · ) , So m. = ! , 

b * b and R = F(p )g(l)µ (1)/F(l) = F(p ). Hence, the identity is valid 

for prime powers with a ~ b, and it follows that the identity is valid 

for all n and r . 



76 

Corollary 4, 23. 1: If m = r /(n, r)*, then 

* * * * c (n, r) = cp (r) µ (rn)/cp (m) ~ 

Proof: Let h(r) = r and g(r) = 1 in the definition of f(n, r). 

* * With these choic;es, f(n, r) = c (n, r) and F(r) = cp (r) by Theorems 

4, 18 and 4. 19 respectively. If the~e substitutions are made in the 

identity of the previous theorem, th~ result is immediate, 

>!~ 
For no~ation purposes CT· (n, r) is written for f(n, r) when 

h(r) = r and * g(r) = µ (r). With this notation the next corollary 

follows. 

>!C >li; * 
Corollary 4, 23. 2: Lf m = r /(n, r)*, then CT (m) IJ" (n, r) = IJ" {r), 

I 

Proof: If h(r) ::: r and 
>:~ 

g(r) = µ (r), Theorem 4. 20 implies 

* * * F(r) ::: er (r) and F(m) ::: CT (m). HenGe, with f(n, r) = CT (n, r), 

!Y*(n, r) ::: cr*(r) 1-/~(m) µ*(m)/CT*(m). But µ~:~(m) µ*(m) = 1 so that 

* >!<: >:<: 
CT (n, r) "" er (r)/fJ' (m) .6. 

The second identity is the unHary analogue of the generalized 

Landau identity. 

Theorem 4. 24: If g and h are multiplicative, 

d Ii r g(d)/F(d) ::: h(r) F((nJ r)~:)/F(r) h((n, ;r)*) • 

(n, d)*= 1 

Proof: The idenhity is invei:;tigated for prime powers common to 

n and r as previously defined. Let L denote the left side of the 

de sired equality and suppose a < b. Then 
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L = 

b 
The unitary divisors of p are 1 and 

b 
p , both of which satisfy the 

condition (pa, d )* = 1 , Hence, 

b b 
1 + g(p ) /F(p ) • 

Since F(pb) = h{pb) ,.. g(pb), L = h(pb)/F(pb). If R denotes the 

right side, R = h(pb) F(l)/F(pb)h(l) = h(pb)/F(pb). Thus, L = R 

when a< b, 

Now sµppose that a .:::, b and recall that this implies 

a b b b 
(p , p )* = p , ~n this case the only unitary d~visor d of p which 

satisfies (pa, d)* = 1 is d = 1. Henc;;e, L = g(l)/F(l) = 1, On the 

b b b b 
other hand R = h(p ) F(p )/F(p )h(p ) = 1. So L = R for a ~ b, 

and the identity follows for all n and r. 

This identity also offers two corollaries, the first of which was 

noted earlier in Theorem 1. 30. This points out again how many of 

these results can be approached from altogether different angles. The 

* sec,:ond corollary gives the value for a special convolutiem of µ and 

>l4 
1 Irr • 

Corollary 4. 24, 1: 
:;::c >14 * 

~ 1 /cp (d) = r <p ((n, r)~:J /cp (r) • (n, r)* • 
d II r 

(n, d)*= 1 

Pre>0f: When h(r) = r and * g(r) = 1, F(r) = <p (r): With h 

and g defined in this manner, the result follows immediately. 6. 
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Corollary 4. 24, 2: * * = r O" ((n, r)*) I (n, r)* O'" (r). 

* Proof: Let h(r) = r and g(r) = µ (r), Since F(r) * :::; Q'" (:J;), 

the result is obvious, 

The unitary analogue of the Brauer-Rademacher identity is a 

* special unitary convolution of µ and the quotient h/ F, where h is 

multiplicative, As was also the case' for the ether identitie~, when h -

and g are specially defined, this identity gives a relationship involving 

sc5me of the known number-theoretic functions, 

Theorem 4, 25: If h is a multiplicative function of r, 

F(r) * ~ h(d) µ (:i; /d) /F(d) = 
d II r 

* µ (r)f(n,r). 

(n, d),:~= 1 

Proof: Again let L and R denote the left and right sides of the 

desired identity and calculate each side for prime powe:J;s. If a< b, 

b b 
L :;:: R ;::: g(p ) , If a :::._ b, L = R = .. F(p ) , 

and 

* Corollary 4. 25, I: cp (r) 
>:~ ::::.: 

~ dµ (r/d)/cp (d) = 
d 11 r 

(h; d),~:;:: 1 

* Proof: With h(r) = r and g(r) = 1 for all r, f(n, r) = c (n, r) 

:::.:.: 

F(r) = cp (r) r So this corollary is a direct consequence of the 

Brauer ... Rademac;her idenHty, 

* Corollary 4. 2 5. 2 : er ( r ) 
>:~ * 

~ dµ (r/d)/cr (d) 
d II r 

(n, d),:~= 1 

>:< >!~ 
- µ (r)cr {n,r). 
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>:i: 
Proc;>f: If h(r) = r and g(r) = µ. (r) for all values of r, the 

idenHty is immE)diate. 

The study of * * e (n, r), c (n, r), and H(n, r) provides one with 

three different settings in which to w0rk with the unitary divisor. It 

was seen that these functions are really only gene ralizatlons of functions 

of one variable in the unitary context, One of the most significant facts 

displayed in this chaptel;' is the power of a rnulHplicative function; many 

of the results of this chapter were obtained with relative ease since the 

function was shown first to be multipli.Gative. 

Just ai;; the Ra:i;nanujan sum gave some foundaUon to the study of 

even functions mod1l.lo r, the function * c (n, r) provides a basLs for 

the study of the class of unitary functions modulo r to be discussed in 

Cha.pter V, 



CEAPTER V 

UNITARY ;FUNCTIONS 'MODULO r 

Throughout this paper certain parallels between the development 

of functions based on ordinary divisors and function1S based on unitary 

divisors have been nC>ted. One such parallel exists between the 

concepts of (n, r) and (n, r )* •. Recall from Chapter III that f(n, r) 

is an even funQHon of n modulo r if and only if f(n, :r) :;;c f((n, r), r) r 

A natural question concerns what functions have the property that 

f(n, r) = f((n, r)*, ;r). Definition 5. l ~laesi!ies f(n, r) as a special 

type of function whenever this condit~on is met. 

Definition 5. l: Let f(n, r) be a complex;..va,lued function defined 

for all n, H f(n, r) = f((n, r)*, r), then f(n, r) is said to be a 

unitary function of n modulo r 1 

Since c(n, r) is an even function modulo r, one might look to 

* c; (n, r) in hopes of finding an example of a unitary function modulo r, 

Theorem 5. 1 shows that this is a go0d c;h0ic;e. 

* Theorem 5. l: The function c (1;1, r) is a unitary function 

modulo r. 

* * Proof: By Theorem 4, 15, <;: (n, r) = ~ µ (r /d) • d-. 
dllr,djn 

Since 

d In and d II r V and only if d II (n,, r)* , the above sum may be written 

as 
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* ( ) c n, r = * ~ µ (r /d) · d 
d II r 

dJ(n,r)* 

* But this last sum is just c((n, r)*, r). Hence, c (n, r) is a ut'l.ita:ry 

functio~ of n modulo r, .6.. 

Again th~ definition of unitary modulo r is extended to f(n 1 d) 

where d II r. RecaU that a similar case was considered for even 

functions modulo r in Chapter III, The following definition gives the 

necessary information, 

Defir,tition 5, 2: Let f(n, r) be a unitary fuq.ction modulo r. The 

function f(n, d) is q. unitary function modulo r for d II r if and only if 

f(n, d) = f((n, r)*, d). 

Theorem 5. 2 shows thiit * c (n, cl) is unitary modulo r for d II r. 

This result is very important in the later discussion. 

* Theoren+ 5. 2: The iuni::;tion c:: (n, d) is a unitary function 

modulo r for every d such that d II r , 

* :::¢ 
Proof: By Theorem 4, 15, c: (n, d) = ~. µ (d/D) • D. Since 

D Jjd/b j,. 
~ * D lid and DI n i£ and only if D II (n, d)*, c'''(n, d) = ~ µ {d/D) · D. 

D II (n, d)* 
It can be shown that for d II r, ((n, r)*, d)):¢ = (n, d)*. Hence, it follows 

that >:~ * 
c (n, d) = c ((n, r)*, d), and is unitary modulo r. 

Many of the result~ of this chapter are unitary analogues of 

results discussed earlier in Chapters II and III. In fact the motivating 

force behind this chapter is the desire to find representations for 

unitary functions modulo r just as it is possible to find representations 
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for ~ven f\l.nctions modulo r. The fa1;t that a l.mita.ry function modulo r 

is also an even fµncHon :modulo r h!:!lps in determining these represen .. 

tations and also shows the connection between these two c;;las se s ()f 

functions, 

Thecrem 5. 3: The set of unitary functions modulo r is a subset 

of the set of even functions modulo t. 

Proof: Suppose that f(n, r) is a unitary function modulo r .. The 

definition of unitary modulo r implies that f((n, r), r) = f(((n~ r), r)*, r). 

By Theorem I. 6, ((n, r), r)>~ ::; (n1 r)* so that f((n, r), r) = f((n, r)*, r). 

But since f(n 1 r) is unitary modulQ r, f((n. 1 r), r) = f((n, r)~, r) = f(n, r), 

However, f((n, r), r) = f(n, :r) implies f(n, r) is an even function 

modulo r. 

* A direct consequence of these first two theorems is that c (n, r) 

is an even function modulo r . As such it is po s a ible to e:x;pre s s 

* c (n 1 r) in terms of either of the two representations for even functions 

modu.lo r. By usiqg the second representatic;m found· in Theorem 3. 4 1 

* e (n, r) can be shown to be a special sum of the ordinary Ramanujan 

functions c(n 1 d) for d Ir. The conditions for thia sum require new 

notation. 

Definition 5. 3: The largest square-free divisor of r is denoted 

by v(r). 

Lemma 5. 4: For unitary divisors d 1 and d of r 1 2 



Suppose that v(d 1) = 

canonical representation of 

v (d 2 ) and that 

r. Since d 1 II r 

m c. 
dl II p. 

l where 0 = c. = or c. = a. 
i= 1 l l l 1 

and 

m b. 
d2 II p. 1 where b. :;: 0 b. = or =a. 

. 1 l l l ], 
i= 

By the definition of square -free div~sor, 

m c! 
v (d 1) II p. l where c! 0 = = 

i=d l 
l 

and 

m b! 
v (d2) = II p. l where b! = 0 

i= 1 l 
l 

m a. 
l 

r = II pi is the 
i=l 

and d 2 II r, 

for all i = 1, •.• , m 

for all i = 1, •. , 11 m . 

or c: ! - 1 
l 

or b! = 1 . 
1 

Without loss of g~nera,lity suppose the representation$ for 

v(d2 ) are in ascending order, Then since v(d 1) = v(d 2 ) t 
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for every i = 1, . , .• m • So e i tbe r c ! 
l 

= b ! = 0 or c ! = b ! = l • In 
c. b· 

c. = b. so that p. 1 = p 1. 
1 

l l l 

l l l 

for these values of i. Hence, either casE'( 

>:~ 

With the added condition that v(d) c:; v(r), c (n, r) can be 

written as the sum of c(n, d) where d Ir. This proof, as well as 

several of the others in this chapter, is lengthy, It sh01ald be noted 

that lt;!ngth d,oe s not nec;e s sarUy imply difficulty. ln working with 

summations of the kind involved here it is often necessary to 

rearrange terms or to adjust the index of summation so that some 
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known property can be appHed. These adjuistrn.ents must be done very 

carefully so that the summattons are still equal, 

"~ Theorem 5. 5: c' (n, r) = ~ c(n, d) 
djr 

v(d)=v(r) 

* * Proof: From Theorem 4. 15, c (n, r) = ~ d µ (r /d). A 
di!r,djn 
Since d II r and d. j n , 

::f~ 

general formula for c (n, r) is to be shown. 

dj(n,r). 

dj(n,r), 

>:~ 
If c (n, r) is defined as a sum over the values d for which 

the condition (d, r /d) = 1 is lost, To avoid this loss, 

c*(n~ r) may be written as c*(n, r) = ~ a':~(d, r/d) 
dj(n,r) 

where 

This secpnd expression for c,:~(n, r) is equivalent to the first one since 

13 compensates for the condition (d 1 r /d) = 1 • Also, this last exp res -
r 

sion is just that of an even function moc!ulo r as stated ~n Theorem 3. 4. 

':< >!~ 
Hence, by Theorem 3. 5, c (n, r) = ~ a (d, r) c(n, d) where 

* * d Ir a (d, r) = l/r ~ G (r/6, 6)6. The proof is complete if it can be 
ojr/d 

h h ,~ 

s own t at a (d, r) = 1 when v(d) = v(r) and is 0 otherwise. 

* If G (r/6, 6) is written in terms of its definition above, 

* ~ a (d,r) = 1/r ~ [µ"(6)j3(r/6,6)r/6]· 6 

= 

From the definHion of 

6jr/d 

~ µ'\6)j3(r/6, 6) 
6jr/d 



-- {01 if !3(r/6, 6) 

if 

>l< 
Hence, the nonzero terms in QI (d, r) occur when 6 II r so that 

* * 
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QI {d, r) = ~ µ ( 6), 
6/lr,6Jr/d 

div:i.sor of r if and only if 

Because a divisor 6 of r /d is a unitary 

* * 611 (r/d, r),:~, QI (d, r) = ~ µ (6) • 
6 II (r /d, r)* 

* But the sum.ma ti on property of µ implies that 

* --{
0

1 if (r/d,r)*=l 
a (d, r) 

i,f (r /d, r)>:~ -/- 1 

Theorem 1. 7 implie ~ that (r /d, r),.e = 1 if and only if r = d. The 
' 

previous lemma says r = d if and only if v(r) = v(d). Thus, 

,,, = { 
0

1 if v ( r ) = v ( d) 
Ol"(d,r) . 

if v(r) -:f v(d) 

* and c (n, r) = Z c(n1 d). 
dlr 

v(d)=v(r) 

Since 
,~ * 

µ (r) = c (1, r) and µ(d) = c(l,d), this corollary is a 

direct consequence of the theorem, 

* Corollary 5. 5, 1: µ (r) = 
, I 

~ µ(d) • 
dlr 

v(d)=v(r) 
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~·~ 
Orthogonality Properties for c' (n, r) 

The unitary counterpart of the first orthogonality property for 

Ramanujan sums is shown in the next theorem. The key to illf:; proof is 

to write the functions in terms of the ord1nary 

Ramanujan sum by using the previous theorem and then to rearrange 

the summation so the orthogonality property for ordinary Ramanujan 

sums can be applied, 

Theorem 5, 6: If d 1 and dz are unitary divisors of r, 

Proof: Let L denote the left side of the desired equation, If 

* >:< 
c (a, d 1) and c' (b, dz) are written in terms of the 0rdinary Ramanujan 

sum, 

L = 2: 
n :=a+b(mod r) 

= 2: 
D1/d1,Dz/d2 

v(D 1)=v(d 1) 

v(Dz)=v(dz) 

2: c(a, D 1) 

Dl I dl 
v(D 1)=v(d 1) 

2: c(b,Dz) 
Dz /dz 

v (Di)=v (dz) 

2: c(a 1 D 1)c(b,Dz) 
n=:a+b(mod r) 

The inner sum of this expression c:an be evaluated by use of the first 

orthogonality property for ordinary Ramanuja.n sums. This says that 

2: c(a,D 1)c(b,D2 ) 
n;:: a+b(mod r) 

= {
0

r 0 c:;(n 1 D) if 

if 

D = D = D 
1 z 
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So the n11.mzero terms in L occur when D 1 ::: D2 = D, and L may be 

simplified to 

L = ~ r•c:(n,D) 
D id 1, D ld2 

v(D)=v(d 1)=v(d2 ) 

Recall that for unitary divisors di ancl d 2 of r, v(d 1) = v(d 2 ) if 

and only if d 1 = d 2 . Hence 1 

L = r ~ c(n, D) 
Dldl 

v(D):::v(d 1) 

* = {r
0

·c (n,d) if 

if 

For the case n ::: 0 and a = b, this property can be expressed 

* in terms of qJ • 

Corollary ~· 6. 1: If d 1 and d 2 are unitary divisors of r, 

* * ~ c (a,d 1)c: (a,d2 ) 
a(mod r) 

* 
= { or <P ( d) if 

if 

d = d = d 1 2 

Proof: If n ::: 0 in the previous theorem, 

if q. l = d2 = d 

* * The result follows from the fact that c (0, d) = <P (d). 

The orthogonality property of Theorem 5. 6 can be extended 

rather easily to s variables now thq.t it has been shown for two 
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variables .. Thie extended form is very usef"Q.1 in the discussion at the 

end of this; chapter. 

ThE!orem 5. 7: If d 1, d 2,, •,, ds are unitary divisors of r with 

s ·> 2 then 
"1"!'9'11 • ' .• ' 

·, 
\ 

s .. l * 
{ ~ (n,d) i£ dl:;: .•• =dlil=d 

otherwise 

Pro0f! The proof follews from Theorem 5. 6 by in,duction on s ~A 

Repreeentatiens for Unitary Functions Module r 

Theorem 5. 8. ie the first of two represe.ntations for unitary 

functions modulo r, l3oth of these representations a.re somewhat 

similar to the representations for even func;tions modulo r discussed 

in Chapter III. In particular, the re pre senl!ati0n in this theorem is 

similar t<i> the second repre~entation for even functions module r given 

. ln Theorems 3. 4 and 3. 5 as it is based on the functic:m 

f(n. r) = ~ g(d, r/d). It is deal," that f(n, r) defined. in this 
d/lr,dln. 

manner is unitary modulo r since d II r and d In implies d II (n, r)*. 

The function µ.~ <;:an be used to express g in terms 0£ f by an 

expression similar to the MCJbius lnversiton Formula. 

Theorem 5, 8: If f(n, r) is a unJtary functi0n modulo r, f(n, r) 

has the reprei;;;entatic:m 



f(n, r) = !: g(d, :r /d) 
d II r 1 d In 
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( 1) 

where g(:r 1, r 2 ) h determined for r 1 > 0, r 2 > 0, (r 1, r 2 ) = 1,. and 

r = r 1 r 2 by 

(2) 

C0nve:rsely, if (r 1, r 2 )"' 1 and f(n 1 r) is a unitary functi0n defined 

by (1) 1 ~hen g(r 1,·r2 ) has the representaUqn (2). 

Proof; Let f(n, r) be a unitary func:tion modulo t and let 

g(r 1, r 2 ) be defined l:>y (2) for integers r 1 and r 2 such that 

(r 1, r 2) :;: 1. Let Q = 4: g(Gl., r /d). It must be shown that 
djj;r,djn 

Q '"' f(n, r). Sinc:;e g h defined by (2), 

Q = !: ( ~ f(d./D, r) µ *(n)) , 
dilr njjd 
djn 

Sin<::e d II r and d In if and only if d II (n1 r )*, 

Q = !: !: f(d/D, r) µ * (D). ;Beqause D II d, it follows that 
djj(n,r)* Dlid 

o = d/D is also a unitary divisor of d. It can be shewn that the set 

of integers for which d JI (n, r)* and D II d is the same as the set of 

integers for whic;:h o II (n; r)* and D II (n, r)~/f:J. I-:lenc;:e, 

* Q = !: f( o, r) !: µ (D) • The only l'lonzero terms in Q 
o 11 (n, r)* D II (n, r)*/ 0 

occ;:u:r; when (n, r)* Io = 1 , that is, when (n 1 r)* = o. With 

(n, r)* = o, Q = f((n, r)*, r) = f(n, r) since f is a unitary function 

modulo r, 
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* To prove the converse let P :r::; ~ £(r 1 /d, :r) µ (d.) where 
d II r1 

f(r 1 /d, r) is defined by (1). The proof is c;omplete if P = g(r 1, :r,-2 ), 

Sin.ce f{r 1 /d, r) is defin.ed by ( 1), 

Sine~ D II r and DI r /d, then D II r 1 /d, and it follows that the set 

of integers for whic::h dl!r 1 aq.d Dljr 1 /d is the same !'let of integers 

for which Dllr 1 and dl!r 1/D, Hence, 

* The summ<jl.tion pl"operty 9f µ implies the only nonzero terms in P 

ocQur when r 1 /D = 1, that is, when r 1 = D. Thue, 

The seqond representation for unitary functions modulo r is 

simHar in form t0 the first representation for even functions modulo r 

ghi:en in Theorem :3. 3, For the unHary case c(n, d) is :replaced by 

* * c (n, d) and <p(d) by <p (d), and the summations involve unitary 

divisors, This representation actualLy c0mes from two theorem$. 

Before the first theorem is stated, consider the function 

* f(n, r) = E Q (d, r) c (n, d). It is clear that f(n, r) is a unitary 
d 11 r 

* function m0dulo r since c (n, d) is unitary modulo r for all unitary 
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divisors . d of r. Theorem 5, 9 considers a unitary function f(m, r) 

and shows· it c:;an be writt~J'.'). in the above form. The proef of this 

representation relies on the fact that a unitary func.tien f(n, r) can be 

expressed as f(n, r) :;:: E g(d, r /cl.) , the· representation given' in 
d II r, d In 

· .. the previous theorem. 

Theo:l;'em 5. 9: If f(n, r) is a unitary functien modulo r defined 

by f{n, r)'•;r;,, . E g(d, r/d) 1 f(n, r) has the representation 
dllr,dln 

* f(n, r) = :!: a{d, r) c (n, d) 
q, 11 r 

where 

q(d,:r) 

with d II r. 

Proef: Let f(n. 1 r) be a unitary functicm modulo r defined by 

f(n, r) :;:: E g(Gi, :r;-/d). Define f3(n, d) to be d if d In and 0 ·if 
dllr,dln 

d { n, Then f(n, r) can be multiplied by 13 (n, d) /d, and its value is 

unchanged. Hence, 

f{n, r) = E g(d, r/d)' @(id) . 
d 11 r · 

* By Theorem 4, 10, 13 (n, d) = E c (n, D) so that 
Dlld 

f(n, r) * = E g(d, r/d)/d E o (n,D). 
all r Dlld 

Sinc;:e D II d and d II r, D II r. The set of integers for which d II r and 

D lld is th'e same set of integers for which D II r and r/d 11 r/D. So 

~··· 



* f(n, r) . ..,, l/r ~ c (n, D) I: g(d, r/d) • r/d, 
Dllr r/dllr/D 

and if: £0Uows that f(n, r) hai;; the desired representation, 

Theorem 5. 10: If f(n, r) is an arbitrary unitary function 

motilulo r, f(n, r) can be represented, in the form 

* f(n,r) = !: a(d,r)c (n,d) 
d 11 r 

where a(d, r) is determined by 

a(Eil., r) - 1 * * . I: f(n, r) c (n, d) with d II r, 
r <p (d) · n(mod r) 
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(3) 

(4) 

Proof; Let f(n, r) be a upitary func:tion r:q.e;>dulo r defined by (3 ). 

If this representatiop. is multiplied by c *(n, 6) where o 11 r and if 

thii; new expre i;;sion is summed over aU n in a residue system 

modulo r, 

r * r * * 
~ f(n, r) c (n, o) :;: I: ot(d, r) I: c (n, d) c (n., o) • 

n=l d//r n=l 

By Corollary 5, 6. 1, 

* 
r * * - { or cp (d) 
~ c (n,d)c (n,6) 

n::;l 

if d = 0 

if d =F 0 

With d = o, r . * * ~ f(n,r)c (n,o) =rep (d)a(d,r) fr(.}m which it follows 
n=l 

that O!(d, r) has the representati0n (4). 
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An:.A,pplication. to the Number of Solutiol'l.s 

of Linear Cong:ruen.ee s 

·This paper ccmclµdes with an example of the type of preblem to 

which this material ~an be applied, This last section shows that these 

two representations fer unitary function~ modulo r help to determine 

a formula fer the number of solulti0ns in a unitary context for .linear 

c::ongruenc:e s modulo r. Defin~tion S. 4 deseribe s the congruence to be 

solved anQ. the f\'J,nckion wl;iich counts the number of solutions.· 

Definition 5, 4: The function w (n, r) denotes the number of ' ' ' s 

solutions in x1 modulo r,. i :;: 1, 2,. T., s ~ 0£ the congruence 

where the c0mp1,;1nents x;i are all semiprime to · r and s· ~ 1. 

An. example at this point ii;; ei:ipecially helpful. 

Example 5. ~: The number ef soluti0ns of 18 := x 1 + x 2 (m©d 10) 

is to be determined. The. definiticm of · i;i.>2 (18, 10) requires that the 

components x;i satisfy (xi' 10)~ = 1. This condition is satisfied for 

xi = 1, 3, 7, er 9. In addition, the sum x 1 t x2 must pe congruent 

to 18 modulo 10 where x 1 and x 2 are chosen from { 1•3, 7, 9}. 

For x - 1 1 - the semiprime qmdition is met and 

18 := 8 (mod 10), Likewise x 1 = 7 and x 2 ::; 1 also provide a solu-

If x - 9 1 - , then x 2 = 9. Both values satisfy the semiprime 

requirements, and their sum s0lves the congruence. Hence, they 

provide a s0lution. If x 1 = 3, then x 2 :;: 5. These values s0lve the 

congruence but (5, 10)* # 1. Hence, x 1 = 3 and x 2 = 5 do not 
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provide a s0lution. Since sqlutioris are ebtained only from possible 

sums ef 1, 3 , 7, and 9, all soluti!:ms have been determined and 

w2 (18, 10) =1 3,. Ibis important to nete that bdt:h the eeh,J,tions x 1 = 1, 
i 

x 2 = 7 an~ "\x 1 = 7, x 2 = 1 are couqted, 

The function w1 (n, r), dll'noted by w(n, r), ls the number ef 

solutions of th~ cc;mgruence n :: x 1 (mod r) such that (x 1, r)* = 1 . 
·, j., 

This functiem is.:. very helpful in deriving a general formula for 
., 

w s (n, r). To tm1~ end it is shown fi:rst that w(n, r) is a unitary function 
~· ' 

modulo r. This '·proef reUes en the fact that if a S b (mod r.), 

(a, r)* = (b, r)* , 

Theqrem 5, 11: The functien cp(n, r) is a unitary functiop. 

modulo r. 

Proof: To shew tha.t w(n, r) is a unitary functien medulo r, 

first note that w((n, r)*, r) h t!he number of solutions of 

(n, r)* ::: x 1 (mGlq r) su~h that (x 1, r)*::: 1. So w((n, r)*, r) is 1 or 

0 according to whether ((n, r)*, r)* ::: 1 or ((n, r)*, r)* # 1, Since 

((n~ r)*, r)* = (n, t)*,. w((n, r)*, r) is 1 or 0 according te whether 

(nJ r)* :;: 1 or (Q., r)* # 1. But sinc;e w(n, r) is also 1 or 0 

according te these same c;onditions, w(n, r) = w((n, r)*, r), and 

w(n, :r) is unitary modulo r. 

;Example 5. 2: This example is really a c0ntinuathm of the 
. ' 

previous one and provides some motivatiem for the generalization of 

<,i.>(n, r) to w (n, r), The purpose of this example is t<> shaw that s ' 

- ~ w(al' 10) c,u(~z· 10) • 
18 =a 1+a2 (mod 10) 
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·Recall that w(a 1, 10) is the n"1mber of solutions of a 1 ;: .x; 1 (mod10) 

where (x 11 10)* = l. Similarly, w(Cl,z• 10) is the number of solul:iens 

of ~2 S x 2 (mod 10) where (x2 , 10)* = l. Now w(a1 , 10) is. 1 or 0 

depending en whether (a 1, 10)* = 1 or (a 1, 10)* :/: 1. Likewise, 

w(a2 , 10). is 1 Gr O depending on whether (a2, 10)* = 1 or 

(a2, 10)* :/: 1. So w(a 1, 10) w(a2, 10) = 1 .. if (a 1, 10)* = 1 and 

(a2 , 10)* = 1. But these are the conditions ~or which H is possible to 

have a soluUon for 18 ;:;: a 1 + a 2 (mod 10). · Henc;e, 

Theorem 5, 12 gives a general formula for finding w (n, r) for 
s 

s ::::_ 1. Its proe:if is a culmination 0f many of the key results of this 

<:hapt~r. Soth of the. rep:resentations for l.lnitary functions· modulo r 

are ul!:ied as well as the extended form of the Qrthogonality property. 

While the arithmetic involved ~n using this formula,. is <;>!ten Hme 

consuming, at lea,.st the cenmting procedure employed· in Example 5. 1 

is eLimina.ted. 

Theol;'em 5. 12: The functhm <iJ (n, r) ii; a unitary function 
s 

. modulo r and h given by the formula 

w (n, r) 
s 

* s >.'< * s* = (rp (r)) /r · ~ (µ (d)/rp (d)) c (n, d) • 
d 11 r 

P;i;oof: For s = 1, w(n, r) ia the number of solutions for 

n 5 x 1 (mod r) whe:J;"e (Xp r)* = 1, Sinoe w(n, r) is 1 if (n, r)* = 1 

and is 0 if (n, r)* :/: 1, His possible to write w(p., r) as a sum.of 

* µ (d) over the unitary divisors d of (n, r)* •. Furthermore, since 
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>:i; 
d II (n 1 r)* if and orily if d In and d II r, then w(n, r) = L: µ (d). 

d II r, d In 
So w(ri,r) is in the form (1) of TheoremS,8 where 

* g(r 1, r 2 ) = µ (r 1), r 1r 2 = r, and (r 1, r 2 ) = 1. This representation 

for w(n, r) plus the fact that w(n, r) is unitary modul0 r implies 

that 

>le 
w(n, r) = L: a(d, r) c (n, d) 

d 11 r 

where 

a ( d, r) and d 11 r. 

The task is to simplify a (d, r), Sin,ce * g(rl' r2) = µ (rl)' 

a(d, r) l/r L: 
d 1 11 r /d 

(d 1d 2=r/d) 

Sin~e 
::!< 

(d, d 2 ) = 1 and µ is multiplicative, 

a(d,r) * = µ (d)/r • L: 
d 1 11 r /d 

(d 1d 2=r/d) 

::::~ 

By Corollary 4. 15, 1, this flUmmation is just cp (r/d), and 

* >l< 
a(d, r) = µ. (cl)/r · cp (r/d). 

* * >l< Since dllr, cp (r/d) = cp (r)/<p (d), So with this value for a(d,r), 

and the theorem is true for s = 1 • 



From the definition of w (n, r) it follows that 
s 

w6 (n, r) = _ !: w(a 1, r) • • · w(as' r) , 
n =a 1 +, • , +as (mod r) 

Each w(ai, r) c;:an be replaced by its value determined above so that 

* * µ (d. ) •.• µ (d ) >l< >le 
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>:i: s = (<p (r)/r) L: 
d. 11 r 

1 s 
L:c (a 1,d 1)··•c (as,ds). 

n;;: a 1 t , .. +as (mod r) l 

i:::l, ••• ,s 

By the extended orthogonality property the summation involving the 

* functions c (a., d.) is 
l l 

s .. 1 * r c (n, d) if d 1 = d 2 i:: ••• = d s = d. 

wise, its value is 

w (n, r) 
s 

0. The:refore, 

* s ~~ * s s-1 * = (<p (r)/r) L: (µ (d)/<p (d)) • r c (n, d) 
d 11 r 

* s * * s >:~ ::; (<p (r)) /r • L: (1-1 (d)/<p (d)) • c (n, d) 
d 11 r 

Other-

The fact that w (n, r) is unitary modulo r follows by repeated applica­
s 

tion of the property ((n 1 r)*, r),:~ = (n~ r)* along with the ddinition of 

w (n, r), 
s 

Example 5. 3: ,As a final note to this theorem it is interesting to 

calculate w2 ( 18, 10) by use of the formula. Hence, 

* 2 >!C >:~ 2 >!( 
w2 (18, 10) = (<p (10)) /10 · L: (1-1 (d)/<p (d)) · c (18,d) 

d 11 lo · 
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* with tp ( 1 0) :;: 4 ' 

* * * <.1)2 ( 1 s, 1 o) :;:: 16 / 1 o [ 1 + c ( 18 ., 2) + 1 I 16 · c (18 • s) + 1 /16 • c ( 1 a, 1 o) J. 

* * By CoroUa:ry 4, 15. 2, c (18, 2) = 1 and c (18, 5) = ... 1. Since 

* * c (n, r) is multiplicative with respect to r, c ( 18. 10) = ( 1) • (-1) = -1 , 

So w2 ( 18, 1 o) = 16 I 1 o [ 1 + 1 - 1 I 16 - l I 16 ] = 16 I 1 o • 15 I 8 · = 3 , 

Since w (.n, r) is characterized l;>y a unitary conv0lution of a 
s 

product of multiplicative function.s, w (n, r) is itself multiplicative, 
s 

The function Js{n, r) = rws(n, r)/{tp*{r))s is also multiplicative. 

Since rp*(r) ~ 0 for any value of r, it is possible ~o determine 

conditions under which w (n, r) = 0 by exa:i:r,i.ining J (n, r), Lemma 
s s ' ' 

5, 13 shows the value of J s {n, r) for r = pa where p is a prime. 

This value is used to prove Theorem 5. 14 whic;:h gives a eharac;teriza-

ti on for which w (n, r) = O • 
s 

Proofs are omitted since they f0llow much 

the same pattern as previous ones. 

Lemma 5, 13: If J (n, r) 
$ 

* s = rw (n, r)/{rp {r))., 
s 

{ 1 + (.!)"/(pa. l)s-1 if Pain 

J {n, pa) = s 
1 + ( .. l)s+l /(pa_ l)s pa{n if 

where p is a prime, 

. , 

Theorem 5, 14: The function w ·{n,r) = 0 if and only if one of 
s 

the following sets of conditions holds: 

(i) s = 1, (n, r)* '# 1 ; 

(ii) s is even, r is ~wice an odd integer, and n is odd ; 
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(iii) s ii; odd; .~ > 1, r is twice an odd integer, and n ·is even. 

Condition (i) of the ab.ave theorem.b obvieus from tht\' definition 

of w(n, r). This last example shows some congruences salved quickly 

by cond'itions (U) and (iii), 

. Example 5, 4: c;:onsider the congruence 

15 =:J(;: 1 +x2 +x3 +x4 (me!>dl0). In this case s=4, r= 10=2·5, and 

n = 15. Hen<;e, (ii) implies that w4 (15, 10) = 0. Now leok at 

16 := x 1 + x 2 + x3 (mod 6). Here s = 3, r = 6 = 2 • 3, and n =i 16 so 

that (iii) yields w3 p6,6) = 0. It is imp<;>rtant to remember that the 

number of components x. must be greater than . 1 in order to use i . . . . 

( i~i) • 

!I). summary, the set of unitary functions modulo. r ·is contained 

in the set of even functions modulo r and hence· can be characterized 

by two representations .. One of these representations is defined. in 

* terms of c (n, r), a result analogous to what was true for even 

functions modulo r. These representations aid: in the determination of 

a formula for the number of solutions of a Unear congruence of s 

variables in the unitary context. 

The istudy of functions of two variables could be pursued to include 

other relations, other applications, and new functions based on k .. ary 

divisors. The beginning here indicates the direction such a study would 

take. 



BIBLIOGRAPHY 

( 1) Agnew, Jeanne. Exploratic:ms in Number Theory. Monterey, 
California: Brooks /Cole Publishing Company, 1972. 

(2) Cohen,. Eckford. ''Rings of Arithmetic Functions," Duke Mathe­
matical Jou;rnal, Vol. 19, (1952), 115-129. 

(3) C0hen, Eckford, "A Class of Arithmetical Functions." Proceed­
ings ef the National Academy of Sciences, Vol. 41, (1955), 
939 .. 94:4. 

(4) C0hen, Eckford. "An Extension of Ramanujan' s Sum. II. Additive 
Properties," Duke Mathematical Journal, Vo~, 22, (1955), 
543-550. ~ . ' ' 

(5) Cohen, Eckford. "Arithmetical Functions Associated with the 
Unitary Divisors of an Integer, " Mathernatische Zeitsch:dfi,_ 
Vol. 74, (1960), 66 ... 80. 

(6) Cohen, Eckford. "Uq.itary Functions (Mod r)." Duke Mathemat­
ical Journal, Vol. 28, (1961), 475-485. 
~. 

(7) Gaut~er, Gloria~ "Unitary Divisors and Associated Number ... 
TheoJ,"etic Functions." (UnpubUshed M. S. thesis, Oklahoma 
State University, 1970), 

(8) Grosswald, Emil. Topics ~~ Theory£!:_ Numbers. New 
York: The Macmillan Company, 1966 . 

. (9) Hamel, Thomas Ray. "Selected Algebraic Structures of Number .. 
Theoretic; Func;tions. " (Unpublished Ed. D. thesis, Oklahoma 
State University, 1971). 

(10) Hardy, G. H. and E. M. Wright, An Introduction to the Theory of 
Numbers. Oxford at the Claredon Press, 1960. 

( 11) McCarthy, Pr J. "S()me More Remarks on Arithmetical Identi­
ties." Portugaliae Mathematica, Vol. 21, (1962), 45-57. 

(12) Morgado, Jos.e. ''Unitary Analogue oftheNagellTotientFundion." 
Portugalii;i.e Mathematica, Vol, 21, ( 1962), 221-232, 

(13) Suryanarayana, D. "The Number of k-ary Divisers of an Integer." 
Monatshefte flir Mathematik, Vol. 72, (1968), 445"450~ 

1 () () 



VITA 

Gloria Jane Gautier 

Candidate for the Degree of 

Doctor of Education 

Thesis: NUMBER-THEORETIC FUNCTIONS OF TWO VARIABLES 

·Major Field: Higher Education 

Biog ra phi cal: 

Personal Data: Born in Enid, Oklahoma, September 25, 1945, the 
da\,lghter of Mr. and Mrs, Howard S, Gautier, 

Education: Graduated from Ames High School, Ames, Oklahoma, 
in, May, 1963; received the Bachelor of Science degree with 
high honors from Northwestern Stc;1.te College, Alva, Okla­
homa, in May, 1967, with a major in mathematics; 
rece~ved the Master of Sdence degree from Oklahoma State 
Univen;ity in May, 1970; completed requirements for the 
Doctor of Educ:;ation degree at Oklahoma State University in 

·May, 1973. 

Professional Expel,"ienc;:e: Student Teaching Assistant, Depart­
ment of Mathematics, Northwestern State College, Fall, 
1966 ; Graduate Teaching Assistant, Department of Math­
ematics and Statistic;s, Oklahoma State University, 1967-
1972. 

Professional Membership: Kappa Delta Pi. 




