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CHAPTER I 

INTRODUCTION 

The need for electrical energy is growing at an unprecedented rate. 

The Federal Power Commission has predicted a quadrupling of electric 

demand and energy consumption between 1970 and 1990 [9]. The investor­

owned electric utility, unlike most corporations, operates as a regu­

lated monopoly and bears the responsibility for satisfying this growing 

demand for its product. The franchised utility does not have the free­

dom to choose its own level of production output and subsequent growth 

since this is dictated by demand. This means that expansion of produc­

tion capacity is fundamentally dependent on the growth of demand. 

Another important aspect in satisfying electrical energy demand is the 

non-storable characteristic of electrical energy which eliminates the 

possibility of meeting demand through production inventory. The elec­

tric utility generally has only three alternatives. The utility must 

continuously meet demand by producing the needed energy or purchasing it 

from outside sources or both. 

Fundamental to the question of purchasing energy or increasing 

generation capacity is the problem of accumulating large amounts of 

capital for the expansion of capacity. Raising capital while simul­

taneously maintaining a desirable market valuation of the company by 

investors is the task of the financial planner. Therefore, it is 

apparent that the capacity expansion policy is closely related to. long 

1 
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range capital budgeting, and that a financial planner must have a clear 

understanding of how increased demand for electrical energy propagates 

through the company's operations and results in capital budgeting 

requirements. Furthermore, long time delays in construction of new 

generating plants and distribution equipment, coupled with the frequent 

difficulty in raising large amounts of capital, require that the utility 

make a careful study of long-range plans for expansion. 

The problem of capacity expansion and the corresponding capital 

budgeting strategy has historically been divided into two problems. 

Engineers and planners have addressed themselves to finding the optimal 

ti~e phasing and expansion of the utility's capacity to meet a growing 

demand. The financial planner has taken inputs from these expansion 

plans and converted this to capital requirements. The financial planner 

then determines the proper mix of sources for raising this capital. 

Examples of both parts of the problem where each assumes away consider­

ation of the other are presented in the literature review. This 

research integrates the two problems and seeks a total approach for 

thei:i;- solution. 

Strategic planning of expansion of the investor-owned electric 

utility requires that the utility be viewed as a complex economic system 

in which the various functions of the firm are interconnected through 

information-feedback relations. Systems analysis provides a formal 

framework for understanding and quantifying the interactions between the 

components of a complex system whether it be an electrical network or a 

socio-economic system. Systems methodology provides the needed tools 

with which utility management can deal with the diverse nature of the 

expansion policy and its impact on the other aspects of the company. 
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The systems approach is based upon the development of a mathemati­

cal model which describes the important properties of the system. 

Therefore, the first step leading to the proper financial and capacity 

expansion policies is the development of a mathematical model of the 

relevant processes of the company. Model building abstracts the salient 

features of the system into mathematical terms. 

In the utility case, a model is required which describes and inter­

relates the capacity expansion process and the financial process. This 

model should be analytic in nature so that maximum utilization can be 

made of system analysis and modern optimal control theory. It addition­

ally should contain enough detail to be useful in computer simulation of 

alternate strategies. Time delays in construction and the intrinsic 

time dependence of financial variables dictates that the model be 

dynamic in nature. Once such a model is developed, it then provides a 

laboratory environment for the analytic development of optimal strate­

gies of expansion, capital budgeting, and purchasing of energy outside 

·the system. 

The first objective of this research is to formulate a continuous 

dynamic model of an investor-owned electric utility which includes capa­

city expansion, the management of purchased power, and the capital 

budge.ting-market valuation nexus. The second objective is to demon ... 

strate the application of the model to the problem of optimizing, over 

time, the three management control variables. Two fundamentally dif­

ferent approaches will be taken in the demonstration phase. First, the 

model will be employed in an analytical study of maximizing the market 

valuation of the utility by investors. A general solution to the 

problem is obtained and a geometric presentation of the control space is 



given. In the second demonstration, an expanded performance index is 

treated via· computer simulation. An important advantage of the model 

illustrated by both of these problems is the easy formulation of the 

necessary conditions for the optimal controls. 

Chapter II is a review of the relevant literature on the use of 

mathematical models to describe the electric utility and it points out 

the unique features of this research compared to past efforts. Chapter 

III contains the description of the model. This description explicitly 

states the assumptions underlying the model development and their justi­

fication. In Chapter IV, a typical optimal control problem is posed and 

necessary conditions for the optimal decision variables are developed. 

These necessary conditions are appUied.".through· an analyticaJ.··approach 

and the optimal strategies are found and given economic interpretation. 

In Chapter V, a modified performance index is considered and the 

necessary conditions for its optimal trajectories are defined. A 

computer solution of the resulting two-point boundary value problem is 

included along with an economic interpretation of the optimal controls. 

A comparison of this optimal strategy with a ·typical utility strategy 

is presented. Chapter VI contains the summary and conclusions of the 

research along with recommendations for further investigations. An 

Appendix is included which contains the details of the computer tech­

nique utilized to solve the two-point boundary value problem and the 

listing of the program. Also contained in the Appendix is a glossary of 

symbols and their corresponding definitions for reference. 



CHAPTER II 

REVIEW OF RELATED LITERATURE 

Introduction 

This chapter describes and discusses previous research in the 

mathematical modeling of the firm and, in particular, the electric util­

ity. Since the modeling of the firm crosses several disciplinary lines, 

the approaches to the problem are diverse depending upon the ultimate 

objective of the model's use. Mathematical models of the firm, for the 

most part, can be divided into three distinct groups. These are micro­

economic models, computer corporate models, and financial capital 

budgeting models. Examples of each type are presented, including their 

objectives and assumptions. Additionally, there has been research done 

on related topics to the utility modeling which involve operations re­

search models and the methodology of modeling business management 

systems. In conclusion, a brief summary of the various modeling ap­

proaches is given along with an explanation of how the current research 

differs from previ9us work. 

Microeconomic Models 

In microeconomic terms, the electric utility is defined as a fran­

chised monopoly under regulation. Abstraction of the electric utility 

into mathematical terms by economists has been motivated by their need 

5 
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to determine the differences in behavior between the regulated and un­

regulated firm. The objective of this type of economic research is to 

reveal the proper production output and allocation of input resources to 

maximize profit. Regulation of the utility takes the form of a maximum 

limit on the rate-of-return on invested capital. In all other respects, 

management is permitted to pursue its objective of maximization of pro­

fit. These models, like most microeconomic models, are static in nature 

and are assumed to be in equilibrium; i.e., changes in variables with 

respect to time are neglected. These models provide economic under­

standing of the resource allocation behavior of the monopolistic firm 

under rate-of-return regulation. 

Averch [2] was one of the first to model the monopolistic firm 

under regulation. A similar model was constructed almost simultaneously 

for the natural gas utility by Wellisz [~o]. Baumol [3] provides a 

clear overview of their research and results. Since the Averch and 

Johnson model is typical of this type modeling, a brief description is 

provided. 

The A-J model assumes a firm that produces one output product and 

has two input resources, labor and capital, each of which is available 

to the firm in unlimited quantities at a fixed price per unit. The pro­

duction function for the firm's output product and demand function for 

this product are assumed in general terms and are functions of the in­

put resources and price per unit of the product respectively. The 

profit equation is defined as total revenue (product of price of output 

product and quantity of output product) minus the products of input 

resource prices and their respective quantities used in the production. 

The rate-of-return constraint takes the form of an inequality and along 
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with the demand function and production function provides the con­

straints for an algebraic optimization problem. The Lagrange multiplier 

technique is applied to obtain the optimum quantities of output and 

input resources of capital and labor. This model, though limited in 

scope, has yielded one significant hypothesis concerning the allocation 

of capital resources. This result is that a firm as described will be 

more capital intensive (large optimum capital-labor quantity ratio) than 

the unregulated profit maximizing firm. 

The A-J model has several obvious limitations in so far as provid­

ing any understanding of the proper capacity expansion and capital 

budgeting strategy. Its most apparent: limitation is that the model is 

concerned only with resource allocation, and it assumes that it can 

choose any output it desires, while in reality the franchised electric 

utility is required to meet the demand for its product. The second 

major limitation is that none of the variables or relations are allowed 

to vary through time. Another restriction is the assumed objective 

function. Maximization of profit is the usual objective in micro­

economic theory. However, financial management concentrates on the 

maximization of the firm's value to its stock.holders and future 

investorsa The microeconomic model also neglects the financial process 

of the firm. Though the quantity of capital is determined, no consider­

ation is given as to how this capital is to be obtained. A final re­

striction of the A-J model is that the production and demand functions 

are in general terms, and therefore are usel~ss in any actual applica­

tion of the model to a utility unless a realistic production function 

and demand function can be hypothesized. 
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Computer Corporate Models 

Another approach to the modeling of the firm which has become popu­

lar recently is referred to as computer corporate modeling. Computer 

corporate models are digital computer programs that simulate the oper­

ations of a firm and translate the results of these operations into 

economic and financial forecasts [43]. The corporate model is dis­

tinguished from other management science models in that it attempts to 

embrace all facets of the operation of the firm. The corporate model 

ties the production and financial sectors of a company together with 

the objective of providing the planner and manager an information tool 

plus a simulation program with which alternate strategies can be 

evaluated. 

Gershefski [17] provides information on the varied development and 

application of this type modeling to a wide spectrum of different corp­

orations, including the investor-owned electric utility. A survey con­

ducted by the Planning Executives Institute of Oxford Ohio of 323 

companies in 1969 as to their activities in corporate modeling yields 

some interesting observations [17]. The survey uncovered these facts 

about corporate modeling by the industrial community: 

1. Corporate modeling was not initiated to any extent until 1966. 

2. One hundred companies out of the reporting 323 will have cor­

porate models in development or operation by the end of 1969. 

3. Electric utilities, banks, and the petroleum industry have 

used corporate modeling most extensively. 

4. On the average it takes 3.5 man-years to develop a working 

version of a corporate model. 



5. Ninety-five percent of the models were strictly simulation 

type while the other five percent were mathematical pro­

gramming or optimization models. 

6. Ninety percent of the models were deterministic. 

The proprietary nature of corporate modeling has impeded its dis­

closure by the developing corporation. For this reason, there are very 

few detailed examples of corporate models in the literature. However, 

because of a unique joint effort by two corporations, one example of 

corporate modeling of an investor-owned electric utility is available 

for review. This is the corporate model developed jointly for a hypo­

thetical electric utility by General Electric Company and Boston Edison 

Company, an investor-owned electric utility [8]. Their objective was 

to develop a complete computer program of the utility so that alterna­

tive strategies of operation and financial planning could be evaluated. 

This model development was achieved by combining the efforts of 

accountants and engineers from both companies. The model combines 

engineering and financial-accounting considerations in a single unified 

package. The model consists of two major computer programs and an 

auxiliary program. These are the production simulation program, the 

economic simulation program, and an auxiliary nuclear fuel management 

programG 

9 

Given an input demand for electrical energy, the production simula­

tion section detennines the short-term optimum operating or dispatching 

policy via a production cost program. This policy reflects the opera­

tion characteristics of the various modes of generating electricity; 

i.e., how much power will be generated from thermal units, pumped-hydro 

units and nuclear units? This program uses computer optimization 
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techniques and incremental cost criteria for its generator dispatching 

policy. Additional inputs of contractual buying and selling of elec-

tricity can be included. Regression analysis of historical data is used 

to project monthl~ maintenance and material costs. 
',, 

The economic simulation program determines revenue, given demand 

and several rate classes. Expenses are determined from outputs of the 

production program. Taxes and depreciation are determined using normal 

accounting procedures and cash flows are monitored to obtain a realistic 

picture of a firm's financial operation. Construction of new generating 

and transmission equipment is initiated in two ways. One way of 

starting new construction is through input data which is useful for 

testing a construction strategy. Another way of initiating new con-

struction is through internal plant investment ratios~dollars per 

kilowatt of peak load for each plant class. As the system load grows, 

the program automatically constructs new plants to maintain the speci-

fied investment ratios. The construction process of projects inputed 

are simulated and monthly expenditures are charged against the project 

in a separate work-in-progress account. When the construction phase is 

completed~ the project is transferred to an in-service plant. As in the 

construction process, financing can be automatic or preplanned or both 

methods can be used sequentially. 

The auxiliary nuclear fuel program provides a means of studying 

alternative methods of nuclear plant operation. This includes the 

accounting of nuclear fuel inventories and periodic fuel expenses and 

the financing of nuclear fuel.requirements. With minimum cost as a 

goal, the program determines the reloading schedule for the nuclear 

plants. 
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The output of this model is divided into two parts. One part 

describes the system characteristics: each unit's maintenance outage 

schedule, number of start-ups, capacity factor, energy produced, and 

operating costs. Summations of these quantities across all generating 

units provides total utility operating characteristics. The second part 

of the output deals with the financial operation. Four financial 

reports are produced for each year simulated. These include the income 

statement, a cash flow report, and a balance sheet of year end assets, 

capitalization, and liability accounts. These four statements are also 

available on a monthly interval. 

Although a computer corporate model is a beneficial simulation tool 

because of its completeness, it does not possess a useful mathematical 

structure for the application of systems analysis or optimal control. 

This lack of mathematical tractability is a consequence of the use of 

internal optimization of dispatching generators, the use of regression 

analysis, and the general heuristic philosophy of modeling utilized. 

The usefulness of the computer corporate modeling technique in defining 

the proper capacity expansion, purchasing energy and capital budgeting 

strategies is at best sub-optimal, since the corporate model can only 

evaluate strategies .but not generate them. It additionally becomes 

costly to simulate the computer model because of its detail. 

Capital Budgeting Models 

Capital budgeting models have been developed by financial theorists 

in an attempt to determine the proper financial decision process. Van 

Horne [38] describes this decision process-in three parts. The first 

decision is "should we invest?" In the electric utility case, this 
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question can be stated specifically as "should we invest in more capa­

city or purchase additional energy as needed to meet demand?" The 

second step in the decision process is determining the mix or structure 

of desired capital for investment. There are many ways to raise 

capital, such as, issuance of common stock retain earnings, or incurring 

long term debt through various debt instruments. The third step in the 

decision process is the di vidend1 decision. It is difficult to separate 

the dividend decision from the second part of the financial process 

since retained earnings and dividends are complimentary. The optimum 

decisions of step two and three are those that maximize the present 

market value of the firm. In general terms, this objective function 

represents the firm's ability to attract the investment of capital. 

Davis [10] presents a unique capital budgeting model for a regu­

lated utility in which he formulates a dynamic mathematical model of a 

utility and determines the optimum capital budgeting strategy for maxi­

mization of "capital attraction capability" using modern optimal control 

theory. A brief description of the model, including its assumptions 

and objectives follows, since Davis' work represents the only dynamic 

financial analysis of the firm found in the literature which spans both 

market valuation and capital expansion considerations. 

The Davis model is a second order nonlinear continuous state model 

of a utility, encompassing operations and investment in an analysis of 

financial activity. The objective of the model is to determine the 

optimum amounts of retained earnings and new equity capital allocated 

to investment and simultaneously determine the impact of rate-of-return 

regulation on these decision processes. 
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The formulation is entirely financial in nature, which distinguish­

es it from economic models of the firm in that it subsumes the produc­

tion function of the utility and assumes that the utility operates along 

its optimal expansion path in regard to resource allocation. The model 

consists of two nonlinear first order differential equations describing 

the change with respect to time of the stock price and equity per share. 

These equations include behavioral assumptions pertaining to market 

valuation and the utility's operation. In the model development, Davis 

assumes the following: 

1e Investors are indifferent between capital gains and dividends. 

2. Constant debt-equity ratio. 

J. The firm's income is always the maximum rate-of-return on 

equity times total equity. 

4. The rate of growth of assets is constant. 

5. The dollar value of new equity subscribed is detennined as a 

proportion of current earnings. 

The objective function reflects mathematically the present value 

of the equity owner's holdings. The control problem therefore is to 

determine the optimum new equity issue and retained earnings policy to 

maximize this objective function subject to the differential constraints 

of the model plus additional inequality constraints of upper bounds on 

investment growth and rate-of-return on equity. 

The solution of the optimal control problem reveals the impact of 

rate-of-return on the capital budgeting stra'.t;egy. As Davis [ 10] points 

out, "The allowed rate not only affects the values of the strategies, 

it also affects the very structure of the solution in that totally dif­

ferent solutions result from different ranges in the rate-of-retu;rn. 11 
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There are several characteristics of the Davis formulation that 

restricts its general usefulness to the objective of this research and 

therefore distinguishes the two different research efforts. For ex­

ample, the exclusion of the production process and factors of production 

and the assumption that the firm will always earn its maximum rate-of­

return precludes the consideration of purchasing or producing energy by 

the utility to meet demand. Secondly, the assumption that the firm's 

growth will be constant uncouples the time varying demand for energy 

from the financial process. This means that Davis has neglected the 

possibility of an optimum capacity expansion policy. The last restric­

tive assumption is that new equity issuance is based on current earnings. 

This makes little sense financially or economically, but does simplify 

the control problem. These assumptions are relaxed or removed in this 

research. 

Other Models 

In addition to the three general types of mathematical modeling 

already presented, there have. been a number of other attempts to model 

specific aspects of the firm which are related closely to the objectives 

of this research. They deal with the optimal capacity expansion policy, 

optimum investment for a monopoly, and methodology of modeling manage­

ment systems. 

Arrow [1] was the first to deal with the general problem of deter­

mining the optimum expansion of capacity of a firm's production given a 

demand for the firm's product as a known function of time for some time 

interval. Arrow assumed that capacity.can never decrease over time and 

that the rate of increase of capacity is limited by an upper bound. It 
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is further assumed that capital equipment suffers no depreciation, that 

all maintenance costs are proportional to output production, and that 

the product is nonstorable. Price of the output product, interest rate, 

cost per unit of increase in capacity, and production costs are constant 

over the relevant time interval. 

The profit per unit of output is assumed to be unity and therefore 

the instantaneous total profit is the minimum of demand or capacity. 

This means that the firm is free to satisfy all or any part of the 

product demand. The objective of the expansion policy is to maximize 

the accumulation of the stream of profit through time minus the costs of 

adding capacity discounted to the beginning of the time interval. The 

problem is stated in such a way as to make use of the minimax theorem of 

game theory. The optimal expansion policy then takes the form of the 

level of capacity for each instant of time in the given time interval. 

It is shown that the optimal expansion policy involves decomposition of 

the time interval into smaller intervals in each of which one of the 

following three policies obtains: no expansion, expansion with capacity 

equal to demand, or expansion at the maximum permissable rate. Examples 

of the algorithm are given for various forms of demand function in­

cluding a sinusoidal form. 

Though the objectives of Arrow's efforts and the author's are simi­

lar, the assumptions are quite different. Arrow's model allows for 

providing any part of demand, but does not require that all of the 

demand be met. It also does not allow for obtaining production capacity 

from external sources. The assumption that maintenance is a function of 

output is another restrictive assumption which distinguishes the two 

formulations. 
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Berretta [6] provides another example of optimal capacity expansion 

in which demand is assumed to increase at a geometric rate and the objec-

tive is the minimization of the present worth of the total system cost 

to meet this growing demand. Other research with the same basic assump-

tions can be found in [1~] and [25]. There is the additional possibil~ 

ity of importing products when the internal supply is not adequate to 

meet demand. Dynamic programming is used to obtain the optimal expan~ 

sion policy. An illustration of the model is presented for the aluminum 

industry in Argentina. Berretta shows that a constant period between 

expansions is not the optimal, but that the time intervals between 

successive expansions decreases over the planning horizon. The major 

limitation of Berretta•s work to the author's research objectives is the 

assumption that demand is always increasing at a geometric rate which 

neglects the possibility of seasonal variations which are a part of the 

electric utility demand. 

Thompson [3~] formulates a dynamic continuous time model of a firm 

encompassing operations and investments which :forms an optimal control 

problem. A somewhat different capacity expansion objective is defined 

in this case since no assumptions are made concerning the demand for the 

firm's product. The objective of the firm is to maximize, subject to 

various constraints, the discounted value of operating profits less the 

costs of new capacity and the interest on borrowed funds over a fixed 

decision-making interval plus the discounted value of capacity at the 

end of the period. The model takes the form of a second order state , 

model in which capacity and long term debt are the state variables. 

Scale of production and rate of purchase of new capacity are the control 

variables. Necessary conditions for the optimal solution are determined 



and the solution is characterized as a conventional b~g-bang 

control. 

The objectives of the Thompson model are again similar to the 

objectives of this research. However, the financial aspects are re­

stricted to only obtaining capital through debt and there are no re­

quirements to meet a demand for the product. The profit per unit of 

output, output from a unit of capacity per unit of time and price of a 

unit of capacity are variables which must be hypothezized as functions 

of time externally. 
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Thompson [35], using the same general structure as developed in 

[3~], expands the model to include the characterization of a dynamic 

demand law. This linear demand law for a monopoly is detennined by the 

intercept and slope of the function relating the output level of produc­

tion to the price per unit of output. The demand law is affected by 

three state variables (called "stock variables" by Thompson) which are 

defined as the informative advertising stock variable, brand advertising 

stock variable and the price per unit of output. In addition to these 

state variables, capacity of production and net debt are also state 

variables a 

A similar objective to the goal of [34,] is defined which is to 

maximize the discounted value of savings over a finite time interval 

plus the discounted value of the firm's assets at the end of the 

interval. These assets include both the actual capacity of production 

and the stock variables of advertising. The management control vari­

ables and the change in price. The :ri:nn·is:":vie.wE!d:,as::havingone 

financial account for borrowing or saving. The model addresses itself 

to the general problem of specifying the proper dynamic pricing and 
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output of the product with the additional freedom of changing the demand 

law for its product through advertising. Optimal control theory and the 

calculus of variations are employed to obtain the necessary conditions 

of the optimal trajectories and these conditions are interpreted in 

economic terms through the observation that the corresponding adjoint 

variables can be viewed as marginal products of the state variables to 

the objective function. 

The appropriateness of this model to the present research objec­

tives is limited since as in [3~], the financial aspects of the model 

are too restrictive. The advertising considerations, though interesting, 

are not relevant if one has assumed the future demand for electrical 

energy. Furthermore the electric utility does not enjoy the freedom of 

setting its price since this is the function of a regulatory commission. 

Krouse [23] presents a methodology for dealing with multi-stage 

decision processes of financial planning. This modeling technique con­

sists of abstracting and aggregating the important characteristics of 

the corporate financial process into a linear discrete set of state 

equations. Linearity is easily maintained in accounting relations and 

regression analysis is applied to behavioral relations. Also provision 

is made for random disturbances in the accuracy of describing these 

dynamic relations and thus noise sources are included in the formulation. 

The objective function allows for the more realistic situation of 

a corporation in that it reflects a multi-objective criterion. This is 

accomplished through the use of a quadratic performance index which has 

two different types of terms. These terms represent "target" objectives, 

such as a debt equity ratio: of 1/2, and other terms which are to be 

absolutely extremized, such as, profitability or sales. This 



multiple-objective criterion make it possible to consider both short­

term and long-term financial goals. Mathematically, the model then 

takes the form of a linear discrete stochastic state system with a 

quadratic performance criterion. The maximum principle and dynamic 

programming both can be applied to models of this classic format to 

yield optimal financial strategies. 

19 

The primary difference in the methodology suggested by Krouse and 

the methods used in this research are the modeling approximation of 

linear models to describe non-linear behavior, and secondly the differ­

ence in formulation of an objective function. The quadratic criterion 

requires that you know what you want the target variables to attain. 

The linearization makes the model only valid for small perturbations 

around its nominal state values and thus gives very little global 

description of behavior. Here again, Krouse's work, like the models 

previously presented, considers the financial process, but not the 

capacity expansion policies. 

Summary 

Various modeling efforts of the firm and, in some cases, electric 

utilities have been reviewed. Their assumptions and objectives have 

been described along with the distinguishing differences between these 

efforts and the author's research. These objectives will be briefly 

summarized in order to provide a clear understanding of how this 

research fits into the overall picture of mathematical modeling of the 

investor-owned electric utility. 

Microeconomic models were introduced first and it was shown that 

they are concerned primarily with static resource allocation and the 
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output level for maximization of profit. Computer corporate models are 

digital computer programs that simulate the operations of a firm. The 

objective of a corporate model development is to provide a detailed 

simulation tool which can be used to test alternative strategies of 

operating the company. Capital budgeting models attempt to determine 

the proper financial decision process of raising capital. These 

financial decisions include the optimum dividend decision, issuance of 

equity decision and incurrence of debt decision which maximizes the 

market valuation of the firm's equity. 

The other models described represent a collection of specialized 

operations research and management science research developments. These 

include models for determining the optimum expansion of capacity for 

maximum profit or minimum cost. Thompson [35] also includes the 

consideration of advertising and pricing in finding the optimum capacity 

expansion policy. Krouse [23] presents a methodology for handling the 

financial process with linear systems and a multi-dimensional objective. 

None of the models presented offers a total framework for the general 

problem of determining the optimum expansion of capacity, the corres­

ponding capital budgeting strategy, and purchasing of energy from 

outside sources to maximize the capital attraction capability of the 

utility. 



CHAPTER III 

MODEL DESCRIPTION 

Introduction 

One of the objectives of this research is to determine the inter­

relationships between financial decisions and capacity expansion poli­

cies for the investor-owned electric utility. To accomplish this task, 

a mathematical model of the financial and capacity expansion processes 

has been developed. This model possesses mathematically tractable 

characteristics for the implementation of optimal control techniques 

and simultaneously contains adequate detail for ·Use as a simulation tool. 

To abstract a large complex economic system jnto a meaningful 

mathematical model, one must make a number of simplifying assumptions. 

These assumptions are included in the model description as needed to 

further explain the model.. The validity of the assumptions cannot be 

judged entirely on their agreement with the real world, but must be 

weighed according to their relative importance to the objectives for 

which the model was formulated. The essence of mathematical modeling 

lies in the ability to make assumpt+ons which exclude the irrelevant 

and focus on the relevant. 

The utility model established by this research contains three sub­

sections. These are the capacity process, financial process; .and internal 

and external constraint.s. Figure 1 prese:nts the gen.eral .structure of the 
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model showing the three subsections, their variables of interconnection 

and the exogeneous system input variables. The following chapter text 

is functionally organized, each section describing the capacity process, 

financial process and internal and external constraints in order. 

Capacity Process 

This subsection of the model contains the equations which describe 

the growth or retirement of the generation capacity of the electric 

utility. Capacity is defined as the maximum rate at which electrical 

energy can be generated, transmitted, and distributed to the consumer. 

It has the dimension of power, normally in megawatts. The two most im-

portant factors affecting the dynamics of capacity are (1) the construe-

tion of new capacity and subsequent time delays in this construction and 

(2) the retirement of capacity. The term retirement refers to discon-

tinuance of the use of generators when they become physically inoperable 

or otherwise too costly to operate. 

The capacity process is modeled with a set of three continuous 

linear state equations. The three state variables are capital invested 

in capacity, total capacity installed, and the total of all capacity 

retired. There is an additional dependent variable defined as the 

actual capacity available for use. The model has the form: 

A = Ku (J.1) 

c[(1/K) A - TC] (J.2) 
. 

RC = ~(TC - RC) (J.J) 

AC = T6 - RC (J.4) 

where 

. 
A = dA/dt (convention will be used throughout thesis) 



A - Dollars invested in capacity 

TC - Total capacity (historical sum of all capacity installed 

including capacity already retired) 

RC - Retired capacity 

AC - Actual usable capacity 

K - Dollars/unit of capacity (construction cost) 

u - New capacity/unit of time 

c Represents time delay in construction (1/c is time constant 

of construction) 

~ - Represents the rate of retirement (fraction of capacity 

retired/unit of time). 

Equation (3.1) describes the rate of change through time of the assets 

invested in capacity and it is shown to be solely dependent on the 

capacity expansion variable u and the construction cost parameter, K. 
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The parameter K is based on the assumption that for any planning period, 

one mode of generating electrical energy would be utili~ed. This could 

be either nuclear, coal or some other method and therefore a single 

cost of construction characterizes that mode. Since long range finan­

cial and capacity expansion planning is the objective, this assumption 

eliminates the question of what mode of generation should be constructed. 

Additionally, the question of economies of size as to cost of construct­

ing large plants or smaller plants is handled through the assignment of 

one parameter for the construction cost. 

The second equation relates the change in total historical capacity 

installed to the dollars invested in capacity, the total capacity 

installed, and parameters K and c (time constant of construction). The 

parameter c like K represents the construction delay for the given mode 
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of generation under consideration and is justified for the same reason 

as the cost of construction parameter. This equation has the character-

istic of a first order time delay since total capacity continues to 

change as long as dollars invested in capacity is not equal to total 

capacity, but will cease to change when they are equal. The speed of 

adjustment of the capacity installed to the dollars allocated to expand-

ing capacity is completely dependent on the time constant of 

construction, c. 

The retired capacity Equation (J.J) is based on the assumption that 

a certain percentage of active' .capaci t:Y .is" rendered unlisa:ble' per unit-;., 

of time. There is no attempt to determine vintage years or life ex-

pectancy of equipment. This percentage of retirement per unit of time, 

~' is generally a very small number. 

The final Equation (J.~) is not a state equation, but an auxiliary 

equation defining a useful dependent variable which is a function of 

total capacity; TC, and retired capacity, RC, The difference in these 

two capacity variables yields the instantaneous level of actual usuable 

capacity on line available to satisfy demand. 

To provide a better understanding of the behavior of these equa-

tions, the response of the third order system will be given for two 

different inputs of the management control variable, u. The system can 

be rewritten in matrix form as: 

A 0 0 0 A K 

+ 0 u. (J.5) 
. 

TC c/K -c 0 TC 

. 
RC 0 RC 0 



The unforced solution (u = o) 

A(t) 

TC(t) 

RC(t) 

AC(t) 

of this system yields 

= A(O) 

= TC(O) 

= TC(0)[1 - e -~t] 

= TC(O)e-St 
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(3.6) 

(3.7) 

(3.8) 

(3.9) 

where it is assumed that the initial conditions on A and RC are A(O), 

and zero, respectively, and the initial condition, TC(O), is equal to 

A(O) 
~· This response is to be expected, since if there is no increase in 

capacity, the actual capacity will decay at the exponential rate of S 

(retirement rate). 

The capacity expansion variable, u, is a decision variable. After 

careful consideration and planning, the committment for expansion is 

made over a near zero time interval which mathematically can be charac~ 

terized as a delta function. If u(t) = ~(t), a delta function, then the 

unit impulse response of the system is easily determined. The eigen-

values are o, -c, and -S and the response is: 

A(t) = A(O) + K 

TC(t) = TC(O) + (1 - e-ct) 

[ -~t J 1· -~ -ct = ~TC(O) ( 1 - e ) + r'"""° e 
l"'-c 

TC(t) 

Ac(t) ( ) -St c [ -ct -St] =TCOe +-i::i- e -e 
l"'.-c 

c -~t 
+ - e S-c 

(3.10) 

(3.11) 

(J.12) 

(3.13) 

It is assumed that capacity is constructed much quicker than it 

degeJ;lerates into retired capacity which means· that c >> ~. Equation 

(3.10) indicates that the assets invested in capacity will be character-

ized by a step increase of K from its initial condition, and where 

Equation (3.11) shows the TC increases one unit in capacity through the 
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first order delay with time constant 1/c. The equation for RC satisfies 

the zero initial condition and approaches TC(O) + 1 as time approaches 

infinity. Equation (3.13) analytically describes the response of actual 

capacity, AC, and demonstrates a concave behavior with it increasing 

to a value approaching TC(O) + 1 at a rate similar to the time constant 

of construction. AC then decreases monotonically from TC(O) + 1 to 

approach zero as time becomes large at a rate near the retirement rate, 

~. This behavior is observed because of the assumption that c>>$. 

Figure 2 illustrates the response of actual capacity to a unit impulse 

in the control variable u. 

This model therefore captures the two most important features of 

the dynamics of generation capacity: ( 1) the construction delay between 

committing capital to new capacity and the realization of that capacity, 

and (2) the inevitable retirement of capacity. 

Financial Process 

This segment of the model describes the behavior of the capital 

structure of the investor-owned electric utility. The internal finan­

cial variables relevant to the long-range capital budgeting for con­

struction of new capacity are the total equity, the long-term debt, 

price of a share of common stock, numbe~ of shares of stock, and the 

net income flow. Exogeneous factors affecting these internal variables 

are the interest rate, investors' expected rate of return, cost of 

marketing common stock, the price of electrical energy, and the costs 

of input resources to the production of energy. The following descrip­

tion focuses on the relations governing the behavior of these internal 
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variables and specifies their relationship to the external economic 

factors. 

The equity of the utility is defined as the net worth of the 

company's capital stocks, capital surplus, and earned surplus (or 

retained earnings). This definition is taken from Weston [41] and 

excludes preferred stockholder holdings, since it is assumed that common 

stock is the only instrument of equity. Equity therefore has two com-

ponents: retained earnings and revenue from the sale of common stock. 

Retained earnings represents that portion of the net income that is not 

paid in dividends to the stockholders. From these assumptions, the 

level of equity can be changed in only two ways, and the rate of equity 

change can be represented as 

E [I - d • N] + [(1-&) p • N] (J.14) 

where 

E - Total equity of the company 

I - Net income per unit of time 

d - Dividend per share per unit of time 

N - Number of outstanding shares of common stock 

P - Market price of one share of common stock 

~ - the percentage cost of marketing a share of common stock. 

The first bracketed term represents the change in equity due to reten-

tion of earnings while the second bracketed term represents the change 

in equity due to the issuance of new stock. It will be noted that the 

. 
cost of marketing new stock has been included and that N designates 

the time rate of change in the number of shares of common stock. 

Long-term debt is assumed to be non-maturing and is implemented 

in the model as a dependent variable through a debt-equity ratio 
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parameter. The debt-equity ratio, as its name denotes, is the ratio of 

long-term debt to the total equity of the company. Davis [10] points 

out that in the current literature there is no conclusive agreement for 

describing the mechanism underlying changes in debt-equity ratio in a 

firm to be found. However, once a debt-equity ratio is determined, 

there is a tendency to maintain this ratio in future expansiondecisions. 

This has been verified through conversations with financial planners of 

Oklahoma Gas and Electric Company and Public Service Company of Okla-

homa. Historically, their ratios have not varied more than a few per-

cent. Therefore, it will be assumed that this ratio is constant and not 

dependent on any otber financial variables. This assumption motivates 

the following expression for long-term debt: 

Q(t) = h • E(t) (3.15) 

where 

Q(t) - long-term debt 

h - debt equity ratio. 

Unlike the equity and long-term debt equation, the equation 

describing the price of a share of common stock is exclusively behavior-

al. The necessary basic assumptions required to express the price of a 

share of common stock are "perfect markets," and "rational behavior," 

as defined by Miller [27]. 

In "perfect markets," no single buyer or seller of stock is large 
,, 

enough· for his transactions to have an appreciable impact on the current 

trading price and all traders have equal access to relevant information 

concerning the characteristics of the shares. Also, there are assumed 

to be no tax differential and/or preferences between dividends and 

capital gains in the market. 



31 

"Rational behavior" means that investors always prefer more wealth 

to less and are indifferent as to whether a given increment to their 

wealth takes the form of dividends or an increase in the market value 

of their holding of shares. 

Under these assumptions Miller states that the value of shares is 

governed by the following fundamental principle. 

P(t+1) - P(t) + d(t) = PP(t) (J. 16) 

where 

P(t+1) - The expected price of a share of common stock at the end 

of a unit trading period 

P(t) - The present price of a share of common stock 

d(t) - The present dividend per share 

p - Expected rate-of-return by investor (O s; ~ s; 1). 

Equation (3.16) states that in any trading period the market will 

adjust the price so that dividends plus expected capital gains equal 

the rate-of-return the investor requires on an investment P(t). Follow-

ing the same reasoning as Davis [10], a dynamic relation for the stock 

price can be developed. If 

P(t+1) - P(t) + d(t) - pP(t) > 0 (3.17) 

then the market will react to increase the price of the stock. On the 

other hand, if 

P(t+1) - P(t) + d(t) - pP(t) < 0 (3. 18) 

then the market will respond to decrease the current price of a share 

of stock. Modeling this concept with continuous variables yields 

. 
p (3.19) 
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where c0 represents the trading activity factor and denotes how quickly 

the market responds to changes in dividend rates. As defined, ~ repre-

sents the rate-of-return expected by prospective investors. McDonald 

[24] has developed an econometric model to estimate this rate-of-return 

for the equities of electric and gas utilities and estimates are given 

for these returns for 1969 in four regions of the United States. 

The number of shares of common stock is strictly dependent on the 

management's decision on new stock issuance, u (t), as follows: 
s 

where 

N = u (t) 
s 

(J.20) 

u (t) - Management control variable (number of shares issued/unit 
s 

of time). 

u (t) is always greater than zero, and since the number of shares of 
s 

stock has a positive initial condition, N is a nondecreasing function 

. 
of time. It is noted that u (t) can be substituted for N in the equity 

s 

Equation (J.14). 

The final variable needed to complete the financial process is the 

net income flow. This is the accounting segment which determines the 

net income per unit of time and involves the calculation of the total 

revenue per unit of time and subsequent subtraction of fixed and vari-

able costs of production. 

The algebraic equation specifying the net income is 

I [R·D(t)•LF]-F[:(D(t)-u )]-G(AC)-D(AC)-[P •u J-[I •h•E] (J.21) 
P P p n 

where 

I - Net income per unit of time 

R - Average price per unit of energy 
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D(t) - Specified peak power demand (energy per unit of time) 

LF - Load Factor (energy produced/peak demand X time) 

F[D(t)-u J - Fuel cost per unit of time as function of energy 
p 

produced internally 

G(AC),- Maintenance cost per unit of time as function of 

active capacity available 

D(AC) - Depreciation cost per unit of time as function of 

active capacity available 

P Price per unit of purchased energy 
p 

u - Power purchased from outside sources 
p 

I - Interest rate on long-term debt. 
n 

The other variables have been previously defined. 

The first bracketed term on the right of Equation (3.21) is the 

total revenue per unit of time calculated as the product of the average 

price per unit of energy, peak power demand, and load factor. It is 

assumed that peak demand for electrical energy is specified and is com-

pletely deterministic and expressed as a continuous function of time. 

This demand includes residential, commercial, and industrial demands. 

It also includes the demand for company energy contracted by other 

utilities through purchase agreements. It is further assumed that the 

load factor (energy produced/peak demand•time) is specified. 

These assumptions are justified since a typical utility supports a 

group of analysts to estimate the future growth of demand using trend 

analysis and other economic forecasting techniques. They consider 

industrial growth within the utility's service area and technological 

changes which will affect the demand for electrical energy. The load 

factor of the utility's system is a measure of the utilization of the 



generation capacity and is estimated through similar analysis of his­

torical data and technological forecasts. Since demand is an aggrega­

tion of residential, commercial and industrial consumers, a single 

price for a unit of energy is assumed. Since the load factor is 

dimensionless, the dimensions of the bracketed term [R·D(t)·LF] are 

$/time. 
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The last five terms on the right side of Equation (J.21) represent 

the most significant variable and fixed costs of production. The first 

of these terms is the fuel cost per unit of time and is a variable cost 

since it varies with the generated power which is the difference between 

the peak demand and purchased power. De Salvia [12] contends that the 

variable cost per unit of output is almost constant. This hypothesis 

is based on the fact that fuel cost is the most significant component 

of variable cost. De Salvia presents data on the variation of the in­

cremental fuel cost (mills/kwhr) for fossil fuel steam generators of 

various sizes. This data indicates a maximum variation of the incre­

mental fuel cost of only 15% on a 100 megawatt generator operated over 

its minimum to maximum output range. For this reason, it is assumed 

that the fuel cost is a linear function of energy output. It is noted 

that this is a fuel cost per unit of time since energy per unit of 

time~ power, is the argument of the fuel function. 

The third term in Equation (J.21) is the maintenance cost, denoted 

G(AC). This is a fixed cost, not dependent on generated output. Main­

tenance cost is assumed independent of output based on De Salvia's 

findings. He states that most maintenance activity is programmed and 

not directly dependent on the level of output. The maintenance cost 

is therefore only a function of the actual operating capacity. 



In Chapter IV it is postulated that the maintenance cost per unit 

of time is a linear function of actual capacity. 

The depreciation cost denoted D(AC) is the cost covering the 

dissipation of the durable goods of plant and equipment defined as 

actual capacity of production. Mihalasky [26] defines straight-line 

depreciation as: 

Method of depreciation whereby the amount to be recovered 
(written off) is spread uniformly over the estimated life 
of the asset in terms of time periods or units of output. 
May be designated "percent of initial value." 

Straight-line depreciation is assumed for D(AC) with no salvage value. 

The fourth term on the right side of Equation (3.21) represents 

the variable cost of purchasing power from external sources. It is 

the product of the price of purchased energy, P , and purchased power, 
p 

u • This product gives the cost of purchased energy per unit of time 
p 

in $/unit of time. 

35 

The last cost term, [I •h•E], is the cost of long-term debt. Long­
n 

term debt is expressed as the product of the debt-equity ratio and total 

equity through Equation (3.15). It is assumed that the interest rate 

is an exogeneous parameter and is not dependent on any of the internal 

variables of the model. Since interest rate is a ratio of percentage 

of principal per unit of time and h•E is the principal in dollars, the 

product of the two is $/unit of time, a cost flow. This completes the 

discussion of the separate terms of the income flow equation and in-

dicates the detail of the model in specifying the costs of production 

of electrical energy. 
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Internal and External Constraints 

Additional constraints are needed to complete the description of 

the utility model. These constraints are imposed from both within and 

outside the utility. Mathematically,they take the form of equality and 

inequality relations. These constraints insure that the company always 

meets its demand for energy and the total amount paid in dividends is 

less than the current net income. Also, these relations tie the capa-

city process and financial process together by insuring that the total 

equity plus long-term debt equals the total assets i~vested in capacity. 

Finally, constraints are used to fix maximum limits on the level of 

purchased power and issuance of new stock. 

The fundamental responsibility of the franchised electric utility 

is to satisfy the demand for electrical energy. However, the peak 

demand D(t) is a function of time, displaying a seasonal variation. 

This is easily explained since in the southwestern'United States, 

greater electrical energy consumption takes place in the summer than in 

the winter due to air conditioning. The opposite situation occurs in 

the south central part of the United States where there is extensive use 

of electrical energy for heating. This seasonal variation plus the 

overall growth of energy demand characterizes the demand mathematically 

as a sinusoidal function superimposed on a ramp function. In order to 

meet the time-varying peak demand, the active capacity on line, AC, 

plus the power purchased u must always be greater than or equal to the 
p 

peak demando Thus, 

AC(t) + u (t) - D(t) ~ O, tE[o,T] 
p 

(J.22) 
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where 

T - Planning horizon (time interval of interest). 

This constraint is illustrated in Figure J and it is noted that AC(t) 

is greater than D(t) at o, but is less than D(t) at t = .5 which requires 

the purchase of power, u (.5), to satisfy the equality of the inequality 
p 

condition. This figure demonstrates why the constraint cannot be an 

equality relation. 

Basic to the next two constraints is the assumption that the assets 

defined as total equity and long-term debt does not include working 

capital. This assumption subsumes the cash flow of the utility and 

concentrates on the capital needed for expansion. Elimination of the 

possibility of reserve funds being used for operating costs or dividends 

dictates that the dividends be paid from the current net income flow. 

The total dividend flow, therefore, cannot be greater than the income 

flow and the following constraint is imposed on the model: 

I - d • N "1!: 0, t E [o, T] • (J.2J) 

Again 9 it must be remembered that net income flow is rate of dollars 

per unit of time, and d is the dividend per unit of time. 

The capacity and financial processes are coupled together by in-

voking the condition that the capital' needed for capacity expansion must 

come from the two modes of raising capital; equity and long term debt. 

ThUS9 

A(t) = E(t) + Q(t), t E [o,T] • (J.24) 

Making use of the debt-equity ratio Equation (J.15), (J.24) can be 

written as 

A(t) E(t)[i + h] • (J.25) 
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This equality insures that capital assets will track the needed assets 

for expansion of capacity of production. This allows the elimination 

of the state variable A(t) in favor of the term E(t)[i + h] in the 

differential Equation (3.2), reducing the total utility model to a fifth 

order system. The expansion of capacity is then initiated through the 

dividend management control variable d(t) and/or issuance of new equity, 

u ( t). 
s 

A limit is placed on the amount of capacity that can be obtained 

from outside the utility and this limitation takes the form of an upper 

bound on u (t). 
p 

(3.26) 

Also, a limitation is placed on the maximum amount of new stock which 

can be issued per unit of time 

(3.27) 

Finally, all variables are constrained to be non-negative. 

The total mathematical model of the utility which describes the 

interconnected dynamics of the capacity and financial processes can now 

be presented in its entirety. 

ic = {(i~h)E - Tc] 

RC = S[TC - RC] 

E [ I - d. NJ + Et - ~ ]p • u 

. 
N u 

s 

s 

I [R 0 LF·D(t)] - F[D(t) - u )] - G(AC) 
p 

-D(AC) - [p •U ] - [I 0 h.E] 
P P n 

AC TC - RC 

(3 •. 28) 

(3'. 29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 
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AC + u - D(t) ~ 0 
p 

(3.35) 

I - d•N ~ 0 

u 
p 

with initial conditions on the state variables 

TC(O) TC0 

RC(O) 0 

E(O) = EO 

P(O) Po 

N(O) NO 

(3.36) 

(3.37) 

(3.38) 

(J.39) 

Figure 4 illustrates the model and its structure with a Forrester 

diagram. Forrester [15] suggests a methodology of describing industrial 

systems. The rectangular figures represent "levels" or states of the 

system. The "valve" shaped figures control the flow into and out of 

the states of the systems. The solid arrowed lines represent the flow 

of a physical quantity while the unlabeled irregular forms are external 

11 sources'' or 11 sinks" depending on the direction of the flow emanating 

from these reservoirs. The dotted lines are information channels. For 

example, the flow into the total capacity state is dependent on equity 

through an information channel. Dotted circles are dependent variables 

which can be calculated from the state variables and other internal and 

external parameters. Exogeneous inputs and parameters are denoted by 

their name under horizontal lines connected to information channels. 

Forrester's diagram of the utility model shows the information-feedback 

structure of the model and the coupling of various variables to each other. 
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Summary 

The mathematical model of the electric utility has been presented. 

It has been shown that the model includes three sections. These include 

the capacity process, financial process, and internal and external 

constraints. 

The capacity process describes the expansion and retirement of 

capacity including the time delay in construction. The financial 

process contains the behavior of the total equity, long term debt, price 

of a share of common stock, number of shares of outstanding stock, and 

the net income flow of the µtility. Internal and external constraints 

mathematically describe the restrictions on the states of the system 

and management control variables imposed from internal and external 

conditions. A Forrester diagram is shown and interpreted to illustrate 

the general structure of the model and the couplings between subsections. 

The model offers a mathematical representation useful for both 

analysis and simulation. It has a mathematical form amenable to the 

application of modern control theory. It also has enough detail to be 

useful as a simulation tool. It should be noted that the parameters 

defined in the model can either be constants or functions of time or of 

other variables when the model is used in simulation. This provides the 

necessary flexibility for useful computer simulation. 

In order to provide a clear understanding of the model and the 

assumptions underlying its development, all basic assumptions are listed 

below. For easy reference, they are classified by the model section to 

which they apply. 



Capacity Process 

1. One mode of generation capacity is assumed for the planning 
period. The mode might be nuclear, coal, natural gas, or any 
other method of generating electrical energy. This single 
mode can be characterized by a parameter K, cost of con­
struction of new capacity per unit of capacity, and a time 
constant of construction, .c. 

Financial Process 

2. It is assumed that there are only two components of equity; 
retained earnings and common stock. Retained earnings repre­
sent that amount of net income not paid in dividends to 
stockholders. 

J. A debt-equity ratio is specified which eliminates the debt 
decision from the financial decision process. 

~. It is assumed that all debt is non-maturing. 

5. Common stock is the only instrument of equity ownership. This 
excludes preferred stock, convertible instruments, etc. 

6. It is assumed that investors are indifferent between dividends 
and capital gains, and there are no tax differentials that 
could influence preference between dividends and capital gains. 
No single investor's transactions affect the price of a share 
of stock. 

7Q Expected rate-of-return by investors in common stock is 
assumed to be constant with time. 

8. The costs to the utility include fuel costs, maintenance 
costs, financial depreciation of plant and equipment, 
purchased energy costs, and interest on long-term debt. 

aQ Fuel cost is assumed to be a linear function of energy 
produced. 

b. Maintenance costs include both capital and labor of 
i;naintainirtg' 'the:. capadty and are a.:ssullled ·-to'- be a~ function 
of actual capacity. 

c. Straight line depreciation is assumed on actual capacity 
with no salvage value. 

9. It is assumed that peak demand for electric energy is speci­
. fied and is completely deterministic and in function form. 

a. It includes residential, commercial, and industrial demand. 



b. It includes energy promised to other electric utilities 
through purchase agreements. 

10. It is assumed that the load factor (energy produced/peak 
demand time) is specified and in functional form. 

4A 

11. The price of electric energy will be represented by one value 
which is an aggregation of all the rate classes. 

12. The interest rate is assumeq to be specified and not dependent 
on any other financial variables. 

Internal and External Constraints 

13. The franchised firm is required to meet peak demand for energy 
by producing it or purchasing it from outside the utility. 

14. It is assumed that the utility is in a growth period, i.e., 
net income is always greater than zero. 

15. The total assets of the utility do not include working capital 
but only capital invested in plant and equipment. 

16. The purchase agreement for energy is constrained only by an 
upper limit on the maximum power than can be demanded. 

17. The issuance of new stock per unit of time is bounded above 
by a maximum limit, usMAX" 



CHAPTER IV 

OPTIMIZATION OF FINANCIAL OBJECTIVE FUNCTION 

Introduction 

The model developed in the previous chapter will now be used to 

analytically determine optimum planning strategies for the electric 

utility. These strategies include decisions on dividend levels, 

issuance of new stock and purchases of power from external sources 

subject to the constraints of the mathematical model. Fundamental to 

the optimization process is a carefully defined objective function or 

performance criterion which is to be extremized. This chapter defines a 

suitable objective function and poses the related optimal control 

problem. The analytic solution of the control problem is obtained and 

interpreted. The analytic approach provides insight into the sensi­

tivity of the optimum strategies to the variables and parameters of the 

utility model. This is in contrast to a computer optimization solution 

which yields only the strategies, but gives no understanding of what 

affected the decision process. 

Financial Objective Function 

As stated in the introductory chapter, the objective of this 

research is to develop optimal planning strategies.for the maximization 

of a financial planner's goal. This goal has been described as the 

1±5 
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market valuation of the electric utility. Market valuation is a measure 

of the company's ability to attract investment by prospective investors 

via common stock sales. This financial goal is suggested by several 

writers on financial theory. The objective is based on the idea that 

the optimal investment program is the one that is most beneficial to the 

suppliers of investment funds. Williams [4:2] first suggested a mathe-

matical expression for the market valuation of common equity. This 

expression has been used in later research efforts and financial texts 

such as [10], [18], and [38]. The expression takes the mathematical 

form: 

T 

PI P(T)e-pT + ~ d(t)e-~t dt ( 4:. 1) 

to 
where 

_ PI - Performance Index 

d(t) - Dividend per share per unit of time. 

As T ~=, Equation (4:.1) becomes the classical definition of the present 

price of a share of common stock. 

d(t)e-~t dt (4:. 2) 

where 

P0 - The present value of a share of common stock. 

Equation (4:.1) reflects the present worth of the discounted stream 

of dividends from t 0 to T plus the discounted final value of the price 

of a share of common stock. This mathematical form assumes that the in-

vestor is indifferent between dividends and capital gains; an assumption 

already made in the development of the dynamic model for the share price 

given by Equation (J.19). It further assumes that Fl, therate-of-return 



expected by an investor, is constant through time. This assumption is 

the result of the general financial stability of a regulated utility and 

a relatively fixed debt-equity ratio. 

Optimal Control Problem 

With the statement of the performance index complete, the optimal 

control problem can now be formally posed. 

Maximize: 

Subject to: 

T 

PI = P(T)e-pT + s d(t)e-pt dt 

0 

. c[t~h E - Tc] TC 

. 
~[TC - RC] RC = 

. 
[I - d•N] + [(1-6)Pu] E = s 

. 
C [a(t) - pP] p 

0 

. 
N u 

s 

AC TC - RC 

I= [R0 LF•D(t)] - F[D(t) - u ] - G(AC) . p 

- D(AC) - P u - [I •h·E] 
p p n 

AC(t) + u (t) - D(t) ~ 0 
p 

I - d 0 N:2: 0 

O S:u S:u 
p pMAX 

(4.J) 

(4.4) 

(4.6) 

(4.7) 

(4.10) 

(4.11) 

(4.12) 

(4.1J) 



0 :s; u 
s 

:s; 
usMAX 

d ::!: 0 • 

( 4. 14) 

(4.15) 

Relations (4.4)-(4.15) mathematically asks the question - What are the 

time functions of purchased power u , issuance of new equity u , and the 
p s 

dividend per share d, which maximizes the market valuation of the 

utility stock subject to the constraints? 

To expedite the mathematical development of this control problem, 

the variables are; renamed per the following relations. It should be 

noted that the Appendix has a glossary of variables for reference. 

TC-+-x1 

RC~x2 

E -+-xJ 

P~x4 

N~x5 

d-+ud 

It has also been assumed that the functions for fuel cost, maintenance 

cost and depreciation cost are linear with respect to their correspond-

ing arguments. These functions are therefore represented by the constant 

coefficients Cf' Cm' and CD' respectively. The control problem will be 

restated in these ne~ terms, noting that the actual capacity AC is 

expressed as x1 ,.. x2. 
T 

Maximize: PI x4 (T)e-~T + s -~t dt = ud e (4.16) 

u , u s' ud 0 p 

Subject to: 

x1 = c[t""h 
K XJ -x] 1 . (4.17) 



I = R•LF•D(t) - CfD(t) + Cfup - Cmx1 

+ Cmx2 - c0 x 1 + C0 x2 - Pp up - Inh xJ 

0 s; u 
p 

0 s; u 
s 

s; 
usMAX 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

It should be noted that since all the control variables are non-negative 

and the states have non-negative initial conditions then x. > 0 for i = 1, 
1 

Consider a system whose state at time t is represented by a real 

n-dimensional vector x(t) = [x1 (t), •••. , x (t)]. This state vector is 
- n 

determined by a system of differential equations with initial conditions. 

dx. 
dti = fi (t,~,~)' xi (to) for i = 1, ••• , n (4.28) 

where 
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The m-dimensional vector u(t) is called the control function vector. 

Additional constraints are imposed and take the form 

g.(t,x,u);;;:.; 0 j 1, ••• , r • (4.29) 
J --

The problem of optimal control is to choose the control J:!,(t) so as to 

bring the system from the given initial state to some terminal state 

satisfying all constraints in such a way as to extremize a functional 

t1 

J(~) = g[t1,2S<t1)] + s· ~(t,2S,J:!.)dt • (4.30) 

to 

The integral in Equation (4.30) can be evaluated for a given control 

vector function J:!,(t). It is further assumed that .:!;!_(t) is piecewise 

continuous on the time interval [t0 ,t1]. 

The problem presented, excluding the constraints of Equation (4.29) 

is a special form of the Bolza problem of the calculus of variations. 

In solving problems with constraints, several avenues have been explored. 

Sage [32] considers this general problem and transforms the constraints 

of Equation (4.29) into r additional real state variables, z(t) where 

2 
dy . 

....::.J..dt = g . ( t ' x ' u ) ' y . ( 0 ) = 0 
J - - J 

for j 1, ••• , r. (4.31) 

This was first suggested by Valentine [37]. This insures that the con-

straints are satisfied since z(t) is squared. This approach leads to a 

set of differential equations of 2S and z and corresponding adjoint vari-

ables which increases the order of the system. Hestenes [19] and 

Berkovitz [5] developed similar necessary conditions for this problem by 

transforming the problem into a problem of calculus of variations, and 

appending the inequality constraints to the Hamiltonian with additional 
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Labrange parameters for the constraints. This method, like Valentine's, 

increases the complexity and number of necessary conditions to be 

satisfied. 

Another approach is given by the "Maximum Principle" developed by 

Pontryagin [29]. The "Maximum Pr~nciple" provides a solution to the 

optimal control problem when the control functions are restricted to a 

given set of admissible controls. The assumptions and the "Maximum 

Principle" are presented without proof for the fixed final time problem 

of Equations (4.28) through (4.30). 

It is assumed that the m-dimensional vector function .!!_(t) is 

piecewise continuous and its.range is in a closed convex m-dimensional 

subspace, U. A scalar function defined as the Hamiltonian is 

n 

H(:ic,.!!_,1,t> = Ht,~,.!!_) + I Aifi (t,~,.!!_) 
i=1 

(4.32) 

where A. is a continuous function called the adjoint variable of state 
1 

x .• With these definitions, the necessary conditions for maximizing the 
1 

performance index are: 

X = -H x 

with boundary conditions 

and 

1( t1) = gx[lt1 ,~( t1) J 

~(t2 and l<t0 ) are free and 

H(x* u* A* t) :.!: - ,_ ,_ ' H (x,u,>..,t) 
uE'il - - -

(4.33) 

(4.34) 

(4.35) 

(4.36) 

(4.37) 

where subscripts on H and g indicate partial derivatives with respect to 
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the subscript variable. Further conditions are implied by Equation 

(4.37), since the Hamiltonian must be maximized for the optimum control 

function u*(t), the following conditions hold 

H >o implies u'!' = uiMAX (4.38) 
u. ·1 

1 

H 0 implies ::;; u~ ::;; 
uiMAX (4.39) 

u. uiMIN · ·1 
1 

H <o implies u'!' uiMIN (4.40) 
u. 1 

1 

where H is the partial derivative of the Hamiltonian with respect to 
u. 

1 

u. and is called the 11 Swi tching function." These conditions insure that 
1 

the Hamiltonian is maximized with respect to~· It also shows that the 

control solution lies on the surface of the admissible control space U. 

The maximum principle can be applied to the electric utility con-

trol problem given in Equations (4.16) through (4.27). The first con-

sideration is the admissible control subspace, U. Relations (4.23) 

through (4.27) define the admissible control region. The control region 

must be shown to be closed and convex. The region is closed since the 

boundaries are included through the inclusion of the equality sign in 

all the inequalities defining the region. The control space in this 

problem is three dimensional with u , u , and ud the control variables. 
s p 

The boundaries in the u coordinate are clearly determined with an 
s 

upper and lower bound. 

::;; 
usMAX 0 

(4.41) 

The lower limits on u are more 
p 

complex than would appear from (4.25), 

since u 
p 

is also bounded by (4.23). Considering both relations, if 

D(t) - (x -x ) <o 
1 2 

then the lower bound of ( 4. 25) is invoked and u ::::: O. 
p 

If D(t) - (x1-x ) >o then u ::::: D(t) - (x1-x ) , which implies that 
2 p 2 
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up~ MAX[D(t) - (x1-x2 ), o]. This insures that peak demand is met, but 

prevents u from becoming negative. The upper limit on u is dependent 
p p 

on both (4.24) and (4.25). Since u is contained in I, the income flow 
p 

equation, up and ud are related through (4.24). Expanding (4.24) yields 

(4.42) 

where 

It is further assumed that other parameters and coefficients in the in-

come equation are constant and therefore the function, f, is only a 

function of D(t), x 1 ,x2 , and x3 • It has been assumed that I is always 

positive, and if PP >Cf' then f[D(t),x1 ,x2 ,x3 ] > o. 

In general terms (4.42) can be written 

(4.43) 

where 

so that ud and up are related through a linear equation with the ud and 

u interc:epts of the plane a function of D(t), x 1 ,x2 ,x3 , and x5• The 

p { b-a1ud] 
upper limit on up from (4.25) is a upMAX so that up~ MI ~pMAX a 2 • 

ud has a lower bound of zero. This completes the description of the 

boundaries of the control subspace. Figure 5 shows the admissible con-

trol region in the control space. The "pie" shaped figure represents 

the control subspace and is a function of the states of the system. The 

dotted boundaries are invoked when through time the values of D(t) and 

the states of system require it. The admissible control space is the 

intersection of convex sets and therefore is convex. The subspace is 

described analytically with the following relations: 



Figure 5. The Admissible Control Subspace 



b-a u 
2 p 

a1 

The Hamiltonian for the problem is 

where 

' -~t [ J [ J H(x,u,A,t) ude + A.1 c 1x3-cx1 + A.2 ~x1-Sx2 

+ A.3 [R•LF•D(t)-CfD(t)-(Pp-Cf)up+(~+CD)x2 
-(Cm+Cx)x1-Inhx3-udx5+(1-6)x4us] 

+ A4[COud-CO~x4] + A5us 

C _ ( 1+h)C 
1 - K 

The necessary conditions of the optimal trajectory are: 

and 

x3 = R·LF•D(t) - CfD(t) - (Pp-Cf)up + (Cm+CD)x2 

- (Cm +CD)x1 - In h x3 - udx5 + ( 1-6)x4us 
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(4.44) 

(4.45) 

(4.46) 

(4.48) 

(4.50) 

(4.51) 

(4.52) 

(4.53) 

(4.55) 

(4.56) 
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(4.57) 

(4.58) 

The initial condition for x is given as ~· The transversality con-

dition provides the final values of the adjoint vector A. 

0 

0 

l(T) ::: 0 (4.59) 

e 
-PT 

0 

The partial derivatives of the Hamiltonian with respect to the three 

control variables are: 

H -pt 
A3X5 + COA4 (4.60) e -

ud 

H A3[cf - PP] (4.61) 
u p 

H ::: (1-6)x4A3 + A5 (4.62) 
u 

s 

and are the "switching" functions of the Hamiltonian, since the sign of 

these functions determine the corresponding control function as 

described in Equations (4.38), (4.39), and (4.4o). 

In order to determine the switching functions, one must first solve 

the ten differential Equations (4.49) through (4.58). This is generally 

a difficult task when the equations are nonlinear and the boundary 

conditions are split. However, in this case, it is noted that the 

adjoint equations and state equations are uncoupled. It should be 

further noted that the equations for A1, A2, and A3 do not contain A4 
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and A5, or the control functions. It is, therefore, possible to solve 

these three homogeneous linear equations with the variation of constants 

formula. If 

W=AW 

W(O) = W0 

where W is an n-dimensional state vector of a linear system and A is 

a constant n X n matrix, then 

. 
At 

W(t) = e- w0 • 

The A1 , A2 , and AJ equations can be solved backward in time by changing 

the sign on their state functions and since 

= 0 

Equation (4.65) implies that A1(t), A2(t), and A3(t) are uniformly zero. 

= 0 

0 

This result reduces Equations (4.52) and (4.53) to 

Applying the proper boundary conditions from (4.59) gives 

[-(1+~0 )~T+c0~] 
e 

0 
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Thus, all of the adjoint variables are uniformly zero over the 

interval [o, T] with the exception of A4(t). Substitution of (4.67) and 

(4.69) into the switching functions (4.60) through (4.62) gives: 

(4.70) 

H 0 
u 

(4.71) 
p 

H = 0 . 
u 

(4.72) 
s 

From (4.38) through (4.40), it follows that only ud is determined from 

(4.70) through (4.72). Since H (t) > 0 for t E [o, T], ud will equal 
ud 

its maximum value over the time interval by Equation (4.38). A feedback 

control law for ud is the result of Equation (4.38) since the upper 

bound of ud given by (4.43) and (4 • .46) is a function of certain states 

of the SY.stem and D(t). Now, 

I(D(t),x1 ,x2 ,x3 ) 

x5 
(4.73) 

The remaining control variables u and u become independent of the 
p s 

Hamiltonian due to the zero values of H and H This condition is 
u u 

s p 
defined as a "singular" condition [7]. A singular condition arises in 

optimal control problems when the control variable enters the 

Hamiltonian in a linear fashion and the corresponding control switching 

function becomes zero for a non-zero time interval. Bryson [7] presents 

a chapter on the solution of singular control problems where all the 

techniques considered assume that at least one state variable enters the 

Hamiltonian in a nonlinear manner ... This nonlinearity does not include 

bilinear terms such as the products of control and state variables 

found in (4.47). This essential assumption cannot be made in this 
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control problem, and for this reason, traditional methods of handling 

singular conditions are of no help. 

To resolve the singular condition problem on H 
u 

s 
original problem can be restated after eliminating ud 

and H , the 
u 

p 

from the control 

vector by using (4.73). This is justified since it has been determined 

that ud will maintain its Upper bound independent of the other controls. 

The modified control problem is as follows: 
T 

Maximize: PI = x4 (T)e -pT + s [ (R•LF-Cf)D( t)-(P p -Cf)up -(CD+Cm)x1 

u ' u p s 

Subject to: 

x1 

x2 

X3 

X4 

XS 

= 

= 

= 

= 

0 

C1x3 - Cx1 

S (x -x ) 
1 2 

(1-~)usx4 

c0 [(R•LF-Cf)D(t)-(Pp-Cf)up-(CD+Cm)x1 

u 
s 

+ (CD+Cm)x2-In h x3 ]/x5-c0 p x4 

x -1 x2 + 

0 s; 

0 s; 

x. > 0 
1 

u - D(t) :<!: 0 
p 

u s; 
upMAX p 

u s; 
usMAX s 

i 1, 2, 3, 4, 5 

(4.74) 

(4.75) 

(4.76) 

(4.77) 

(4.78) 

(4.80) 

(4.81) 

(4.82) 

(4.83) 



The Hamiltonian for this new problem is 

H(x,A., u, t) = [ (R•LF-Cf)D( t )-(PP -c·f)up -(Cm +C)x1 +(Cm +CD) x2· 

-pt 
-In h x3] e x5 + A.1 [C1x3-C x1 J + A.2[~x1-Sx2] 

+A.}(1-5 )usx4 ]+A.4 c0 [[ (R•LF-Cf)D( t)-(P p -Cf)up 

The ''Maximum Principle" can be used again to develop the necessary 

conditions of the extremal trajectory. The adjoint differential 

equations are: 

-pt 
I he 
n 

A. 5 = [(R·LF-Cf)D(t)-(Pp-Cf)up-(Cm+CD)x1 

--pt COA.4 
+(CD+Cm)x2-In h x3J ~ + 2"° [(R•LF-Cf)D(t) 

x5 x5 

:_(p -C .. )u: -(c: +C )x +(C +C .)x -I h x ] 
p f .p m D 1 m D 2 n 3 

and the state equations are: 

60 

(4.84) 

(4.85) 

(4.86) 

(4.87) 

(4.88) 

(4.89) 

(4.90) 

(4.91) 
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(4.92) 

co 
x, = ~ [(R•LF-C )D(t)-(P -C )u -(C +C )x 

<± x 5 f p f p D m 1 

+(CD+Cm)x2-In h x3 J-c0 p x4 (4.93) 

The initial condition on xis~ and from the transversality condition, 

the final condition of the adjoint vector A is the same as in 

Equation (4.59) and is 

l(T) = 

0 

' 0 

0 

-PT e 

0 

(4.95) 

The switching functions of this new Hamiltonian given by Equation (4.84) 

are 

H 
u 

p 

H 
u 

s 

= 

(4.97) 

It is now necessary to determine the signs of H and H over the 
u u 

p s 
interval [o, T] since they determine the control variables. 

To accomplish this, the solution trajectory will be synthesized by 

the reverse time construction. This method is similar to that found in 

[ 11] and [ 13]. The synthesis solution consists of starting at t = T 

where the adjoint variables are known from the transversality condition. 

The state variables are known to be positive by Equation (4.83) at the 

terminal time. The switching function can be evaluated at t = T. 
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If H 
u 

p 
(T) or H (T) is zero, then they must be tested to see if they are 

u 
s 

zero for a non-zero time interval. The test is made by time differen-

tiation of the switching function. If the switching function is zero 

for a non-zero time interval, then all derivatives of that switching 

function with respect to time must be zero. If the singular condition 

is not sustained, then the switching function at t = T- must be either 

positive or negative where T- = T - llit as lit·_. o. The corresponding 

control function is then known by Equations (4.38), (4.39), and (4.40). 

This control value is maintained until its switching function becomes 

zero at which time, another test for a singular condition will be 

required. The procedure is repeated until the solution is carried back 

to (t = O). 

Evaluating H and H 
u u 

at t = T with the values of A (T) and noting 

that 
p s 

x. >o for i = 1,2,3,4,5 gives 
1 

H 
u 

p t=T 

H 
u 

s 
= 0 (4.99) 

Since PP >Cf and c0 >o, the control variable up (T) must be equal to its 

lower bound MAX[D(t)-x1 + x2 , o] by Equation (4.40). Hu must be tested 
s 

for a non-zero time interval singular condition. Taking the time deriva-

tive of H yields 
u 

s 

Hu = A.3 (1-&)x4 + A. 3 (1-6)~4 + A.5 
s 

substituting Equations (4.87), (4.89), and (4.93) in for 

respevtively, and remembering that A. 1 (T), A.3 (T) = 0 while 

(4.100) 
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H (4.101) 
u 

s 
t:T 

where I is the Net Income flow, and I, In' h, (1-5), x4 , x5 , and c0 

are all positive and, therefore, 

H I 0 
u 

(4.102) 

s t=T 

Equation (4.102) shows that the singular condition on H is not 
u 

s 
sustained, and since H >o and H = o, then H ! < o. 

u u u 
s t::T s 

t=T s 
t=~= 

Maximization of the Hamiltonian requires that for H < 0 then u = O. 
u s 

s 
The next step in the control synthesis process is finding the next 

switching time (value of time between 0 and T where H = 0 or H = O)' u u 
s p 

if it exists. To find the time response of H 
' u 

requires the time 
p 

response of A4 and x5 • x5 is a positive constant since x5 = us and 

u = o. The backward time response of 
s 

(4. 103) 

necessitates a change of variable. Let ~ T-t and then for some state 

variable y(t) 

~ _ ~ d(T-t) 
dt - d 'T dt (4.104) 

This change of variable allows the integration of a state variable 

equation backwards in terms of 'T instead of t, and it only requires that 

the state function be multiplied by -1. Equation (4.103) in terms of 

'T becomes 

(4.105) 
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with initial condition of A4 (T=0)=e-PT. The solution is 

, ( ) _ -p(CoT+T) 
11. 4 T - e (4.106) 

-PT Note that A4 ( '!") monotonically decreases from e as T ~T, and is always 

positive for as: rs: T. Therefore, H is negative for the complete time 
u 

p 
interval and there are no switching times for H in [o, T]. 

u 

The backward time response of H 
u 

s 

p 

is dependent on the backwar~ time 

response of A3 (r) and A5 (T). The adjoint differential equations can 

be solved in the following order: A4 ~A5 and A4 ~A2 ~A 1 ~A3 • The 

solution of A4 has been found to be positive so that 

-I -p(T-T) 
==2e 

x5 

I -~(C0 T+T) 
- - [c e ] 

2 0 
(4.107) 

x5 

with A5 (T=0)=0 and x5 = 0 and, therefore, x5 is constant. The net 

income flow, I, is always positive so that A5 (r) is negative according 
. 

to (4.107). Since A5=o at T=O and A.5 ( T) <o, the solution must 

remain negative on the interval 0 <rS: T. 

To obtain the solution of A.3 (T), requires that Aa(T) and A1 (T) must 

first be solved. The solution for A (T) can be stubstitutetl~into·the 
2 -

A1 (T) equation. A.2(T) is obtained by changing the sign on the state 

function of Equation (4.86) and replacing t with T-T. The solution of 

this resulting equation is 

a PT 
-- e -P+S 

(4. 108) 

where 

a e 
-PT 

substituting this equation into A1 (T) yields 
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A.1 ( 1") } [p f:)C J . -pc 1" 1 P'i o c o 
- c -S a oe 

0 

· [p aC } - s ~ - 0 -S 1" - CA +S pc -S 1 
0 

(4. 109) 

with 

The first three terms on the right hand side of Equation (4.109) are 

forcing functions. It has been assumed in Chapter III that S <<1, 

therefore the sum of these three tenns is negative in the interval from 

[o, T]. A first order differential equation with zero initial condition 

and a negative forcing function has a non-positive solution, and 

therefore A. 1 (1") <o for o<'iS: T. 

Considering now the backward differential equation 

I h 
n -p(T+'l") 

--e 
x5 

where 

C I h 
0 n 

x5 
(4.110) 

The A. 3 ( 'r) is driven by negative forcing functions since A. 1 <o, and has 

a zero initial condition. Therefore, A.3 (1") <o for 0 <'l"S: T. It has been 

shown that A.3 and A.5 are both negative on the half closed interval [o, T). 

of t, and so there does not exist a switching time for H in that 
u 

p 
interval. 

u 

This completes the solution of the control vector function 

[ud,u ,u ]. These optimum control functions are: 
p s 

I ( D ( t ) , x1 , x2 , xJ ) 

x5 
(4.111) 
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(lt.112) 

u (t) = 0 • 
s 

Interpretation of the Control Functions 

(Lt.113) 

The interpretation of this control stategy is as follows: For the 

maximization of the market valuation performance criterion, the utility 

" should; (1) retain no income, but pay the maximum amount of dividends 

available, (2) purchase energy only when the demand exceeds the avail-

able capacity of the utility, and (J) issue no new shares of common 

stock. Each of these management decisions will be discussed below. 

Heuristically, it might be argued that the utility could benefit; 

i.e., maximize the market valuation objective function by giving up 

dividends to retain earnings. These retained earnings would be used to 

expand capacity. Since it is generally assumed that the utility could 

produce the energy at a cheaper rate than it could purchase energy, it 

seems reasonable that expansion of capacity would increase the income 

flow and subsequently higher future dividends could be paid from this 

increased income;, However, the optimal control :solution shows such a 

strategy to be non-optimal. The fact that the divide1ld is the most 

observable measure of the utility's performance to the investor 

dominates the performance criterion, and it makes any other possible 

dividend decisions sub;9ptimal. 

If the price of purchased energy is greater than the variable fuel 

cost, then energy should only be purchased for "peaking" demands (D(t) 

exceeds the actual capacity of the utility). This has been the tradi-

tional policy of the electric utility industry. It is supported by the 



idea that as long as the utility has fixed costs in its plant and 

equipment, this capacity should be utilized to meet demand. Another 

result of the analytic solution of the purchased power decision is the 

reverse decision to purchase the maximum available amount of power to 

meet demand if PP <Cf. 

where H >o if P <Cf. 
u p 

p 

This is observed in Equation (4.98) for H 
u 

p 
This means that the generate or buy decision 

is not a comparison of P against all the variable and fixed costs of 
p 
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producing energy, but it is based on a comparison of P and the variable 
p 

cost of production. This phenomena has been observed in the electric 

utility industry. For example, hydroelectric facilities operated by the 

federal government has sold energy under flood conditions at prices 

below private utility fuel costs. ElectriG utilities have responded to 

this condition by purchasing all of this available "dump energy." 

The stock issuance decision has been found to be uniformly zero 

over the planning period [o, T]. This supports the intuitive concept 

that any issuance of stock dilutes the ownership of equity and directly 

reduces the market value per share. This is seen from the integrand of 

the modified performance criterion of Equation (4.74) which is the 

income per share. Since this integrand is inversely proportional to the 

number of shares of outstanding stock, it becomes apparent that the 

optimum stock issuance strategy is to not issue new stock. 

There are other interesting results of the analytic solution to be 

observed in the form of the adjoint variables' response. The adjoint 

variable can be considered the marginal change in the objective criteri-

on to a uni·t:: change in its corresponding state variable. There are two 

sets of adjoint variables - they are the original set described in 



Equations (4.49) through (4.53) and the adjoint variables of the modi­

fied performance index, Equations (4.85) through (4.89). 
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The original A1 (t), A2 (t), A3(t), and A5(t) were found to be uni­

formly zero across the planning period. This means that changes in the 

total capacity, retired capacity, equity, and number of shares of stock 

had no affect on the market valuation. The marginal product of the 

price of a share of stock, A4(t), was always positive and thus explains 

the maximum dividend decision. 

The second set of adjoint variables corresponding to the modified 

index represent the marginal products of the accumulation of the dis­

counted stream of income per share over the planning period plus the 

final value of the price of a share discounted. The marginal product,, 

\ 4 (t), was again found to be positive and therefore positive changes in 

the price of a share increased the performance criterion. The marginal 

product of retired capacity, A2 (t), was also positive. As retired 

capacity grows, fixed costs of maintenance and depreciation decreased 

and income increases. The marginal products, A1 (t) and A3(t), are 

always negative which means that total capacity and equity increases 

.diminish the income flow through higher maintenance, depreciation, and 

long term debt costs. The number of shares marginal product, A5(t), is 

negative which follows from the discussion of the stock issuance de-

cision. Increases in the number of shares of stock inversely decreases 

the income per share. 

As it was stated in the beginning of this chapter, the importance 

of these control strategies depends on the importance of electric 

utility places on market valuation. It is obvious that a utility would 

not strictly adopt these strategies as a philosophy of capacity 
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expansion and investment, since the utility has other objectives equally 

as important as market valuation. However, the results of this optimal 

control problem give the planner a greater insight into what does and 

does not increase or decrease the market valuation of the utility's 

common stock. The next chapter presents a multiple objective criterion 

which more closely reflects the goals of the utility. 



CHAPTER V 

C<l4PUTER OPTIMIZATION OF AN EXPANDED FINANCIAL 

PERFORMANCE CRITERION 

Introduction 

The optimal control strategies for a selected market valuation 

criterion were developed in Chapter IV. It was shown that, in order to 

maximize the market value of the common stock equity, the utility should 

not invest in new capacity (retained earnings and new equity issuances 

were zero over the planning horizon). Since capacity is continuously 

being retired, the net effect of this strategy is a decreasing level of 

actual capacity available for generation. The increasing demand for 

energy is met through increasing levels of purchased power. 

In order to further demonstrate applications of the model in ex­

pansion planning, a more general performance measure of utility expansion 

is considered in this chapter. The financial performance criterion 

posed in Chapter IV is modified to also reflect the goal of the utility 

to expand its own capacity to meet the demand for electrical energy. 

The necessary conditions for the maximization of this modified per~. 

formance index are easily developed using the maximum principle and a 

two-point boundary value problem is obtained. However, instead of 

pursuing an analytical solution as in the previous chapter, numerical 

values for a typical utility are assigned to the parameters of the model 

70 
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and a computer technique is used to solve the split boundary value 

problem. The technique used to obtain the solution is described in the 

Appendix. 

The computer solution provides full time trajectories of the three 

optimal control variables namely power purchase, stock issuance and 

dividend payment, along with the five state variables. For comparison 

purposes, the utility model is simulated assuming a typical utility 

strategy and the time responses of the utility stock price and capacity 

expansion variables are presented and discussed. 

As mentioned earlier, one purpose of the model is to allow a rapid 

analysis, synthesis and optimization of long range expansion and finan-

cial planning strategies by utility management. The analytical model 

developed in this research has a form which will facilitate this use. 

This chapter illustrates the ease with which the model can be used to 

develop necessary conditions for optimizing a given performance 

criterion. 

Modified Performance Criterion 

The performance index described in Chapter IV represents one goal 

of the financial planner. In order to include the additional goal of 

constructing generating capacity to meet a growing energy demand, the 

original performance index must be modified. The modification is the 

addition of the discounted level of actual capacity at the final time, 

T, thus producing the new index: 

T 

PI 1 = P(T)e-pT + AC(T)e -pT + ~,~ d( t )e -pt dt • (5.1) 

0 
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Thompson [34, 35], in defining the optimal investments and oper-

ations of a firm, includes the discounted final level of production 

capacity. Since the optimal solution is found for a fixed planning 

horizon will begin with an adequate production capacity to meet future 

demands. Since AC is measured in kilowatts and the original performance 

index is dimensioned in dollars, weighting constants are added to yield 

the following form: 

·T 

Pli = wi[P(T)e-~T +~ s d(t)e-pt dt] + W2[AC(T)e-PTJ (5.2) 

0 

where 

AC(O) 
and = AC(O)+P(O) • 

P(O) 
AC(O)+P(O) 

The constants wi and w2 will equally weight the importance of the level 

of capacity and the market valuation of the utility's common equity 

based on initial values of these variables. The new control problem can 

now be stated using the notation of Equations (4.i5) through (4.26). 

T 

Maximize: Pli = 
[ -PT wi x4 (T)e , ~ -pt 

+~ Ude at] 

u ,u ,ud 0 
p s 

+ w2[xi (T) - x2 (T) ]e -j!)T (5.3) 

Subject to: 

xi Gix3 - Cxi (5.4) 

x2 ~[xi - x2] (5.5) 

X3 [r - udx5 ] + [(i-&)x4us] (5.6) 

X4 c0 [ua - px4 J (5.7) 

x5 u 
s 

(5.8) 
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I = [R 0 LF-C ]D(t) - (P -Cf)u - (Cm +C,n)x1 f p p 

+ (Cm+CD)x2 - In:h ~3 (5.9) 

x1 - x2 + u - D(t) ~ 0 (5. 10) 
p 

I - udx5 ~ 0 (5.11) 

0 :s; u p 
:s; 

upMAX (5.12) 

0 :s; u :s; (5. 13) 
s usMAX 

ud ~ udMIN (5.1{±) 

Development of Necessary Conditions 

and Solution 

The maximum principle presented in Chapter IV can be applied in a 

direct fashion to establish the necessary conditions for this new 

control problem. Since the admissible control subspace is similar to 

the one in the previous problem, the admissible control space is closed 

and convex. 

The Hamiltonian is very nearly the same as in the previous control 

problem, and therefore the necessary conditions for the maximization of 

the modified performance criterion are similar with the exception of 

the boundary conditions on the adjoint variables at the final time are 

different. The Hamiltonian is: 

( ' ) -~t ' [ J ' [. . J H ~'~'~'t w1ude + ~ 1 c 1x3-cx1 + ~ 2 ~x1-~x2 

+ A. [R·LF·D(t)~efD(t)-(P -Cf)u +(C +C0 )x -(C +c0 )x1 3 p p m 2 m 

-In.h x3-udx5+ ( 1-6 )x4 us]+ A. 4 [c0ud-CO ~ x4 ] + A. 5us (5. 15) 
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and the adjaint differential equations 'are: 
• 
A1 = cA1 - •A2 + A3Ccm+CD) C5.i6> 

• 
A2 = IBA2 - A3Ccm+CD) <5~11> 

• 
A3 = -c1A1 + In h ~') (5.18) 

. . 
A4 = -{1-l)us'\3 + c0 i., A4: (5.19) 

(5.20) 

The state equations are: 

(5.21) 

(5.22) 

• 
x) = (R•LF-Cf)D(t) - (Pp-Cf)up - (Cm+CD)~1 

+ (Cm+~)?C2 - udx5 + (1~6)x4:us (5.23) 

(5.25) 

('. 

Boundary conditions on the adjoint variables are given.by Equation 
\ 

(4:.36) as · 

~(T) = g [T,x(T)J = 
x -

o. 

0 
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and the initial conditions given on the state variables are 

-X(O) = x 
~· 

(5.27) 

The switching functions of the new control problem are as follows: 

H -Pt 
-. AJX5 + coA.4: (5.28) == w1e 

ud 

H = A.J[cf - PP] (5.29) u p 

H = u ( 1-&)x4:A.J + A.5 • (5.JO) 
s 

By examination of Equations (5.16) through (5.20), the adjoint 

variables A. 1 , A. 2 , and A.3 are uncoupled from the other adjoint variables 

and independent of the state and control variables. Therefore, their 

solution is simply a linear homogeneous solution. However, unlike the 

solution presented in Chapter IV, the boundary conditions on A.1' A.2, 

and A.3 are not all zero. This means that A. 1 , A.2, and A.3 are not uni-

formly zero on the interval [o, T]. Furthermore, the adjoint equations 

for A4: and A.5 contain the control functions which are in turn dependent 

on the switching functions. Thus, the solution to the adjoint and 

state equations must be found simultaneously and satisfy the boundary 

conditions before the optimal controls are obtained. The solution is 

direct ·via a computer simulation - optimization technique. 

Before the computer solution can proceed, numerical values must be 

assigned to the parameters of the model and the demand function speci-

fied. Through conversations with local investor-owned electric utility 

executives, approximate values for the parameters were determined for a 

typical utility. Also, typical peak demand data for a utility was 

obtained and approximated by a time function. The solution to the 
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optimal control problem was obtained for this typical utility for a 

planning horizon of ten:_ years. ,All parameters are assumed to be constant 

for the planning period, although the computer technique is not limited 

to this assumption and time-varying parameters could be implemented. 

Table ! lists these parameters along 'with their corresponding values 

used in the simulation. Table II contains the initial values of the 

state variables for the utility. w1 and w2 are evaluated from their 

definition given in Equation (5.2) and the values of Table II with the 

exception that w2 is one-half the value found from this formula. D(t) 

is given the functional form 16.6t - (~.17t + 500) cos (ITt/6) + 1500. 

A description of the computer technique used to solve the two-point 

boundary value problem is presented in the Appendix including a listing 

of the computer program. 

Comparison of Optimal and Typical Strategies 

The optimum strategy variables of purchasing power, issuing new 

equity, and dispensing dividends were found for the modified performance 

index. This is compared with a typical strategy expected to be followed 

by the utility. 

The usual dividend decision for an electric utility is that two­

thirds of the income will be paid in dividends while a third is retained 

for reinvestment. The typical utility will purchase power to satisfy 

demand only when necessary. The issuance of stock by a utility 

generally takes place once a year and it has been characterized in this 

comparison to be an issue of 400,000 shares in June of every year for 

the ten year planning period. These typical strategy variables are 

based on conversations with utility executives. 
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TABLE I 

MODEL PARAMETER VALUES FOR TYPICAL UTILITY 

Parameter 

~ - retirement rate 

C - construction rate 

h - debt-equity ratio 

K - construction cost 

c0 - market activity factor 

~ - expected rate-of-return by 
investor 

~ - cost of marketing stock 

R - price of energy sold 

LF - load factor 

c -f 
cost of fuel 

c -D 
cost of depreciation 

c - cost of maintenance m 

P - price of energy purchased 
p 

I - interest rate 
n 

Value for Typical Utility 

3%/year 

1/c = time constant 3 years. 

50% 

$100/KW 

8.35%/year 

9%/year 

10% of market price 

1.2¢/KW•Hr 

50% 

2.6 ritills/KW•Hr 

3%/year 

2% of initial investment/year 

3 mills/KW•Hr 

5.5%/year 



TABLE II 

INITIAL VALUES OF STATE VARIABLES 
FOR TYPICAL UTILITY 

State Variable Initial Value 

TC(O) - Installed Capacity 1,800 megawatts 

RC(O) - Retired Capacity 0 

E(O) - Total Equity $120 million 

P(O) - Price of a share $12/share 

N(O) - Number of shares 10 million shares 

78 
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Figure 6 shows the optimum dividend decision denoted u~ and the 

typical dividend decision variable, ud plotted against time for the ten 

year period. It. should be noted that constraints on dividend payment 

have been applied to the optimum case; namely a minimum of 10¢ a share 

per month and a maximum of 80% of the income per share per month. The 

optimum follows the typical curve until t = 2.75 where it switches to 

its minimum until approximately t = 8.75 years where it resumes its 

upper bound. 

Figure 7 shows the optimum power purchases, denoted by u* and the 
p 

typical purchase, u plotted against time for the ten year period. 
p 

Since both u* and u are used only for peaking, the comparison shows 
p p 

that the optimum actual capacity exceeds the future demand at all times 

after the sixth year. The resulting actual capacity from the typical 

strategy is never greater than the peak demand in the summer months for 

the planning period, since u is non-zero for every summer. 
p 

Figure 8 illustrates the optimum and typical control variables of 

the issuance of common stock, u • 
s 

The typical issuance, u , is charac­
s 

terized as a sequence of pulses with amplitude 400,000 shares. The 

optimum issuance, u* is a constant 3460 shares per month. 
s' 

The response of the stock price per share for the two cases is 

shown in Figure 9. The optimum price trajectory, P*, is greater than 

the price for the typical strategy for the first three years. However, 

after three years, the optimum price falls below the typical price for 

the rest of the planning period. This is due to the fact that the 

optimum dividend variable u~ goes to 10¢/month near the end of the 

second year and remains there until the beginning of the ninth year. 

The P* response begins to rise in the ninth year. It is also noted that 
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P displays a seasonal variation which is delayed in phase from ud. This 

variation is due to the seasonal variation in company income I and the 

delay is dependent on the trading activity factor Cb· 
The response of the actual capacity variable for the optimum and 

typical controls is shown in Figure 10. Additionally, the peak demand 

function D(t) is also plotted to illustrate the relation between the two 

expansion programs and the peak demand. The optimum expansion policy 

AC* is below the typical capacity trajectory for the first several years. 

AC* begins to increase when the retained earnings are increased 

(u* =minimum value). At the end of the planning period, AC* is 2500 
d 

megawatts greater than AC. It should be noted that when D(t) is greater 

than AC or AC*, then u and u* are non-zero. This plot explains the 
p p 

fact that u* is zero after the sixth year. 
p 

The last consideration is the value of the performance index for 

the two cases. The optimum case yields a value of ~.58 for the per-

formance index, while the typical case gives a value of ~.1J. This 

indicates that for the mo~ified perfonnance index the optimum strategy 

obtained is superior to the typical strategy. It becomes obvious by 

looking at Figures 9 and 10, that there is a trade-off between maxi-

mization of capacity and maximization of market value. By maintaining 

dividends, the typical strategy keeps the price of stock and thus the 

market value above the optimum price response. However, at the cost of 

lower market value, the optimum strategy diverts dividends back into 

investment in capacity. This results in a greater level of capacity at 

the final time for the optimum strategy as compared to the typical case. 
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Summary 

To illustrate the ease with which the utility model can be used to 

develop optimal strategies via computer simulation, an expanded per-

formance criterion has been considered in this chapter. The necessary 

conditions for optimality are seen to be easily written by direct appli-

cation of the maximum principle and subsequently implemented on the 

computer. 

The particular utility problem solved utilized typical parameters 

for an investor-owned company and the results of the optimization were 

compared with an assumed typical strategy for the company. The optimum 

dividend decision was shown to switch to a low level during the planning 

interval to provide revenue for capacity construction. This con-

struction ultimately led to a much higher capacity available at the end 

of the planning period than was produced by the non-optimal typical 

utility strategy of continuously paying dividends proportional to 

income. Although only one optimization case was considered the value of 

the model in the investigation of many different planning situations has 
' ' 

been demonstrated. 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

Summary 

This thesis has been devoted to the mathematical modeling and 

optimization of an investor-owned electric utility. The objective was 

to develop from basic economic and accounting principles, a tractable 

and efficient dynamic model which could be used for the analysis and 

optimization of long-range management decisions. Specific decisions 

considered are: (1) when should energy be purchased from outside 

sources as opposed to investing in new generation capacity, (2) when 

should capacity expansion be initiated, if desirable, and (3) how 

should capital be raised for such expansion. 

This research was motivated by the fact that the electric utility 

industry faces a growing demand for electrical energy. Each utility 

company has three options in fulfilling this demand. It may either 

increase its capacity of production or purchase energy from external 

sources or both. Fundamental to the question of expanding capacity is 

problem of accumulating large amounts of capital to support this ex­

pansion. Therefore, the proper expansion policy and capital budgeting 

strategy are interrelated. Historically, the problem of expanding 

capacity and determining the corresponding capital budgeting strategy 

has been divided into two separate problems. This research combines 

the two into a unified planning problem. 
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In reviewing the literature on modeling of the electric utility, 

it was found that diverse approaches had been taken, depending upon the 

ultimate objective of the model's use. These included resource alloca­

tion, computer simulation, and capital budgeting models, as well as 

other models satisfying specific objectives. In each case, these models 

failed to meet the objectives of this research in one or more of the 

following ways: (1) The resource allocation models were static and 

exclusively designed to determine the optimum production input mix of 

capital and labor for maximization of profit. (2) The computer corpor­

ate models encompass the utility's operations in detail, but lack the 

analytical framework for the application of optimal control theory. 

(J) The capital budgeting models give the structure for determining the 

optimum financial decisions of dispensing dividends and issuing stock, 

but excludes the production process. (~) The other models reviewed 

which include optimal capacity expansion models and investment models 

partially meet the objectives of the research, but none of these models 

combine the capacity expansion with the investment structure in one 

model. 

The model developed in this research includes both the capacity 

expansion and financial processes. The mathematical form of the model 

is a nonlinear fifth order system of differential equations with addi­

tional inequality constraints on the state and control variables. The 

model consists of three sections; the capacity process, financial 

process, and internal and external constraints. The capacity process 

section models the flow of capital for new capacity with corresponding 

construction time delay and the gradual .retirement of capacity. The 

financial process section models the behavior of the company's total 



equity, long term debt, price of a share of common stock, number of 

outstanding shares of stock, and the net income flow of the utility. 

The internal and external constraints section mathematically describes 

the physical and financial restrictions on the states and management 

control variables imposed by desired operational conditions. 

The value of the model to a utility financial planner was demon­

strated in two distinct ways. First, the model was employed in an 

analytical study of the optimum management strategy to maximize the 

market valuation of the company's common stock. The general solution of 

the optimal control problem was obtained and the fundamental mathemati­

cal relations between the management control variables and the system 

state variables were developed. A geometric presentation of the control 

space was obtained and interpreted. The followi'"ng strategy was 

determined: (1) convert all net income into dividends, (2) purchase 

energy only when the demand exceeds the available capacity of the 

utility, and (3) issue no new shares of common stock. 

The interpretation of this strategy is that the dividend decision 

is the dominant factor in the market valuation criteria and should, 

therefore, be at its upper bound. Furthermore, power should be pur­

chased only to handle peak loads. This decision was found to be depen­

dent upon the relative size of the variable cost of fuel and the price 

of purchased energy, and not on the combined fixed and variable costs of 

producing the energy and the purchase price. If the price of purchased 

energy falls below the fuel cost then the optimum strategy switches to 

purchase the maximum amount of energy available from external sources. 

The non-issuance of stock is supported by the fact that any issuance 

reduces the market valuation since dividends are reduced per share. 
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In the second demonstration of the model., an expanded performance 

index was proposed which balanced the desired use of revenue between 

dividend payment and capacity expansion. Typical model parameter values 

and a time function for the peak power demand were postulated. A com­

puter optimization of the performance index was obtained and a compari­

son was made between the optimum management strategy found and a typical 

strategy. 

Conclusions 

The following specific contributions of this research can be 

cited: 

1. A new mathematical model of the investor-owned electric 

utility has been developed and demonstrated. The unique 

features of the model are: 

a. The model brings together the financial and capacity 

expansion processes for the utility and interrelates their 

individual dynamic characteristics. 

b. The model provides for three distinct management control 

variables for long-range planning; external power purchase, 

common stock dividend payment, and new equity issuance. 

c. The analytical form of the model allows the application of 

modern control theory and standard computer simulation 

methods to rapidly obtain optimal management strategies 

for a wide range of postulated future conditions and opera­

tional constraints during a given planning interval. 

2. Two optimization problems have been solved using the model. 

One problem demonstrates the analytical properties of the 



model and corresponding optimal controls and the second 

problem demonstrates the flexibility and ease with which 

the model can be simulated in a computer-aided optimization. 
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In summary, the modeling and optimization studies carried out during 

the research have yielded a new type of approach to long-range utility 

planning. The approach is at a conceptual and mathematical level where 

the planner can rapidly find and/or evaluate rather general policies of 

financial management. The model lacks the detail of large-scale 

accounting-type models but trades this detail for the very desirable 

feature of rapid optimization. Furthermore, the model allows the 

planner to examine general concepts of planning through analytical 

studies or obtain specific results through computer optimization. 

Recommendations for Further Research 

There are a number of desirable investigations and extensions 

related to this research that might be considered. These include 

refinements in the model as follow: 

1. Provide for the economies of size in the construction and 

-maintenance of capacity. 

2. Include other instruments of equity such as preferred stock 

and other convertible instruments. 

J. Provide for accelerated depreciation. 

4. Include rate-of-return regulation on income. 

5. Consider making the interest rate a function of other 

financial variables to reflect the bond rating mechanism. 

Other extensions to this research certainly should include the in­

vestigation of other performance c~iterions. These might include the 
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multiple objective of maximizing the market valuation while minimizing 

the variation between the demand function and the available capacity. 

Another possible criterion is the maximization of profit or minimization 

of costs while expanding capacity according to a given demand function. 

Since the present model considers only one mode of electrical 

generation, a more general model could be developed by viewing the 

present model as a submodel connected to similar submodels for each mode 

of generation. Also, a separate submodel describing transmission and 

distribution facilities could be defined thus yeilding a totally inte­

grated systems model. This would require a separate capacity process 

section for each generation mode and one central financial process 

section. The model could also be modified to include a variation in 

demand for energy as a function of the rate structure. This modifi­

cation would make it possible to investigate various pricing strategies. 
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APPENDIX 

TWO-POINT BOUNDARY VALUE PROBLEM SOLUTION 

Recirculation Algorithm 

The two-point boundary value problem can be characterized in the 

:following manner. Given the equations 

x :f (!_,~) (A.1) 

. 
/.. = g(~,1) (A.2) 

with boundary conditions 

2St 
0 

(A.J) 

(A.4) 

find the solution of (A.1) and (A.2) which satisfies (A.J) and (A.4). 

The recirculation algorithm is an iterative technique for the solution 

of this problem [43]. The algorithm is as follows: 

1. Guess a value for ~(t0 ) and integrate the system of Equations 

(A.1) and (A.2) forward to the terminal time, tf, with ~(t0 ) 

given by Equation (A.J). 

2. Substitute the correct value for ~(tf) and let _!.(tf) be the 

value found from step 1., then integrate (A.1) and (A.2) 

backward in time from tf to t 0 • 
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J. Replace .!_(t0 ) with correct value at the initial time and let 

~(t0 ) be the value found from step 2. 

The process is a repetition of these three steps until (A.J) and 

(A.4) are satisfied. It should be noted that the algorithm could have 

been started at the final time with guesses for .!_(tf) with the same 
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results. This algorithm does not converge in all cases, depending upon 

the nonlinear functions, f and g, the initial guess for l(t0 ) and the 

total time interval tf - t 0 • However, in many cases the algorithm 

converges rapidly through only a few iterations. 

Solution of Necessary Conditions 

The Solution to the necessary conditions of the optimal control 

problem of Chapter V is found using the recirculation algorithm with a 

slight modification. It was shown that Ai' A2 , AJ are uncoupled from • 

the other adjoint variables, the state variables, and the control 

variables. These equations can be integrated from T backward to t = 0 

to obtain their initial conditions exactly. This leaves only A4 and A5 

with missing initial conditions. Guesses are made for these two adjoint 

initial conditions and the total system of ten state and adjoint 

equations are integrated forward to T. The values of the control 

variables are produced by their respective switching functions and 

constraints. Thus, step i of the algorithm is now complete. 

The second step proceeds after adjusting A4 (T) and A5 (T) to their 

correct values. The state variables and Ai' A2 and AJ start step 2 with 

the final values obtained from step i. After the completion of step 2, 

the state variables are set equal to their given initial vector, 2St 
0 

and step 3 proceeds. After the forward integration in step 3, A4 (T) 



and A5(T) were found to be in close agreement with the boundary values 

of the necessary conditions and the solution process was stopped. 

The Computer Program 

The Continuous System Modeling Program (CSMP), developed by IBM 

[20] is utilized for the numerical integration of the optimal control 

necessary conditions. The model variables of the original problem 

presented in Chapter V have been maintained where possible. However, 

some of the parameters have been combined to form new parameters. 

Table III lists these new parameters used in the program and their 

definitions in terms of the original parameters. 
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The solution is found for a ten year planning period with the basic 

unit of time being one month. The values given in Table I in Chapter V 

which are expressed as yearly rates have been adjusted to monthly 

values. These can be located in the "Initial" section of the program 

listing. , A ,Sample output of the actual capflcity., AC-ris· given in 

Figure 11 for reference. A It is noted that AC" has the variable name X6. 
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TABLE III 

COMPUTER VARIABIE NAMES 

Computer Variable Model Variables 

Ai A.i 

Rho p/12 

co Cof 12 

·c C/12 

Ci c ( 1+h) 
0 k. 12 

C2 I •h/12 
n 

CJ (1~~) 

RLF R • LF • 724: 

CD K • Cnf12 

CM C. • K/12 m. 

CF C • LF • 724: 
f 

pp P • LF • 724: 
p 

B ~/12 

TMAX T 

X6 AC 

PR I 



****CONTINUOUS SYSTEM MODELING P~~GRAM•*** 

*** VERSION le 3 ••• 

INITIAL 
CONSTANT NaO 
CONSTANT Ol•O.IJ, 02•1.0, 04•-leO 
INCON Xl0•1.80E+06, X20•o.o, X30•120.E+06, X40•12., X5J•lO.E+06 
INCON Al0-l.,15E-06,A20•-le315E-06,A30•0.0, A40•e406, 450•0.0 
CO,..STANT Wl•t.o, W2•3.23E-06 
CONSTANT Dl•l.o, 02.al.Ot 04•0.0 
CONSTANT CO•l.o, C•.0835t Cl•.00125 
CONSTANT C2•o0022, C3•.9, RH0•.075 
CONSTANT RLF•4.33, PP•t.oa, 8•2.5E-03 
CONSTANT CF•.936, CM•ol67, C0•.25 
CONSTANT USMAX=3460. t UPMAX=.90E+()6t TMAX•l?O. 
OYNAM IC 

Xn•Xl-X2 
03.al .0+04 
TA U:s TMA x- rr MF. 

DTl= 03•( 16 .67 •TlME-( 4. l 7•T IME+Soo. t•CJSC 3. l416•TI MF. /6. t+l500. t•lOOO. 
QT2=04*Cl6.67*TAU-C4.17•TAU+530.l*COSC3.l4l6•TAU/6.t+l530.t*1000. 

OTaDTl+DT2 
PRs IRL F-CF I *DT-1 PP-CF I *UP- I CD+C14 t •C Xl-X21-C 2•X3 
XlD•Dl*ICl*X3-C*Xll 
x20-01•1B•tx1-x211 
X30•Dl*I PR ... XS•UO+C3•US•X41 
X40=D1 *(CO* UD-P.HCJ4rCO• X4 I 
X5D=-Dl*US 
Al 0•02* CC* Al -8•.&2+A3•CCO+CM11 
A20•02•CB*AZ-A3*CCO+CMll 
A~ O• 02 •C-Cl •Al +C2*A 31 
A40:0l*l-C3*A3*US+RHO•CO•A41 
A51J=Dl*UO•A 3 

Xl= lNTGRLCXlo,xu:n 
xz .. 1 NTGRLI xzo .x?OI 
X3=1NTGRLCX30,X3Dt 
X4• INTGRL CX40 rX4DI 
X5•INTGRLCX~v.x~OI 

Al=INTGRLCAlO,AlDI 
A2•1~TGRLCA20,A2DI 
A 3•1 NTGRL I A30,A3DI 
A4•1NTGRLIA40,A4DI 
AS.a [ NTGRL CASO, AS DI 
Pl O•UO*E XPl-RHO* Tl ME I 

P.a INTGRL CO .o, PIO I 
Pl ... , X4* Wl + W2 * ( x1-x211 * FX PC -RHO•l 2 J. '+P 

PROCEO DEM.~P=DEMA~O(DT,xl,x2,A31 . 

11) 

100 

200 

5 
300 
E fllOPRO 

IF CA3* ICF-PPI 110, 10, 5 
OE M.sOT+ X2-Xl 
IFIOEMl 100, loo, 200 
U P=O. 0 
GO TO 300 
UP• OT +X2-Xl 

GO TO 300 
UP•UPMAX 

CONTINUE 

PROCEO UO•OIVICA3,X5,A4,PRI 
IFCEXPC-R.HO•TIME l-A3*X5+A4*COl 15t 15,25 
UD•.1 . 15 
GO TO 35 

25 UO.a.8•PR./X5 
:is CONTINUE 
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H.OPkG 
PROC!=O US=STOCK(A3 ,X4 1,A5) 

IF ( A3*C3*X4+A5) 1, 1, 2 
l US =O .o 

G ,; TO 3 
2 US=USMAX 
3 CD"'J.T I NU E 
END PRU 
TERMINAL 

N=N+l 
IF(N.GE.21GO TO 30 
f\. lO=A 1 
A20= A2 
A3 O=A3 
A40=5.06 
A.50=0 .o 
Dl =l. 0 
02=1.0 
D4=0 .O 
CALL PERUN 
GD TO 70 

-~ 0 I F (N. GE • 3 I GO T 0 40 
A 1 0 =+ 1 • 315 E -06 
A20=-1.315f-06 
A'.\O=O .o 
A 40=. 406 
A 50=0. 0 
Xl 0=X1 
X20=X2 
X30= X3 
X40=X4 
X50=X5 
D l=- 1. 0 
02=-l.O 
04=-l.O 
CALL RERUN 
GO TO 70 

40 IF(N.GF.41GO TO 70 
l\lO=A 1 
A20= A2 
A30=A3 
A 40-=A 4 
A50=A5 
Xl O=l. 8 E+06 
X2\J=O.O 
X30=120. E+Oo 
X40= 12. 
X50=10.F+06 
Dl =l. 0 
O?=l.O 
D4=0. 0 
CALL Rf:PUN 

70 CONT I NUF 
ME THOO RKSF X 
TIMER FINTIM=l20., DELT=.0333,PRDEL=l.O, OUTDEL=3.0 
END 
PRINT X6,X4,UD,UP,US,PI 
P >< T PL T X 6, X 4, U 0, UP , US, A l r A 2, A 3 , A 4, A 5 

!=ND 
STOP 
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TI ME 
o.u 
3.0000E 00 
6. OOOOE 00 
9.0000E ui.l 
1 .2000 E 01 
l. 5000!:' 01 
l .aoooc: 01 
2 .1000 E Jl 
2. 40COE 01 
2 .1000:: 01 
3.000JE 01 
3 .30COE 01 
3.6000E 01 
3.9000E 01 
4.2000[ 01 
4 .5000" l) 1 
4.8000E 01 
5,lOOuE 01 
'i.400uE 01 
5.70GOF. 01 
o .0000 E l) 1 
6.3000F 01 
6. 6GOOF 01 
h .9000" 01 
7,2000E "1 
7.5000E 01 
7 .sooo" 01 
8.lOOOE 1.)1 

<1,4.JOJF i.l l 
8,7000E Ol 
9, OOCOt 01 
S,3000( 1.Jl 
9 .6000 r: Jl 
~. 90COf 01 
1.Ll200"' o;;> 
1 ,()?00 f' 02 
l ,08COF i.l2 
1.1 lOJ~ "2 
1.1400" 02 
1, J 7 OOE C2 
l .2000 E o~ 

X6 
l.80uOE 
l.7888E 
1. 7860E 
l.7927E 
l.804lF 
l.8l65E 
l.8331E 
l .8562E 
1. 88 l 2E 
l,9050E 
l ,9314E 
1. 9639E 
2.01 7"if' 
2.0867E 
2.187lf 
2.3294f 
Z.4P.60E 
?.. 63 59E 
2 • tlO 11 E 
Z,997lE 
3.1965E 
3.3794E 
3. 5710F 
3.7R97E 
4.0074[ 
4.2035F 
4,4058F 
4.6346E 
4, E60?r 
5 .0614• 
5.2679E 
5,5013F 
5 .730'1" 
5,9335F 
6. 14 l 3[ 
6 ,377 ~F 
60 595 ;;>F 
6.7621F 
6,8945!= 
7.0055E 
7,0945F 
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MINIMUM 
l.7857E 06 

I 
06 + 

X6 VERSUS TIME MAX !MUM 
7,0C:45F 06 

I 

06 + 
06 + 
06 + 
06 + 
06 + 
06 + 
06 + 
06 + 
06 -+ 
06 -+ 
06 -+ 
06 --+ 
06 --+ 
06 ---+ 
06 -----+ 
1)6 ------+ 
06 --------+ 
1)6 ---------+ 
06 -----------+ 
06 -------------+ 
06 ---------------+ 
06 ----------------+ 
06 ------------------+ 
06 --------------------+ 
06 ----------------------+ 
06 ------------------------+ 
06 --------------------------+ 
06 ----------------------------+ 
06 ------------------------------+ 
06 --------------------------------+ 
06 ----------------------------------+ 
i)6 -------------------------------------+ 
06 ---------------------------------------+ 
06 -----------------------------------------+ 
06 -------------------------------------------+ 
06 ---------------------------------------------+ 
06 ----------------------------------------------+ 
06 --------------~~-~------------------------------· 
06 ---------------~---------------------------------+ 
06 -------------~~----------------------------------+ 

Figure 11. CSMP Output for Actual Capacity 
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Glossary of Symbols 

- Dollars invested in capacity 

- Actual usable capacity 

- Rate of retirement 

- 1/C represents time constant of construction 

- Coefficient of depreciation cost 

- Coefficient of fuel cost 

- Coefficient of maintenance cost 

- Represents the trading activity factor of common stock 

- Th_e percentage cost of marketing a share of common stock 

- Dividend per share per unit of time 

- Specified power demand 

- Depreciation cost per unit of time as function of actual 
capacity 

- Total equity of company 

- Fuel cost per unit of time as function of energy produced 
internally 

- Maintenance cost per unit of time as function of actual 
capacity 

- Debt-equity ratio 

- Net income per unit of time 

- Interest rate on long-term debt 

- Construction cost per unit of capacity 

- Adjoint variable for the x. state variable 
l 

- Load factor 

- Number of outstanding shares of common stock 

- Market price of one share of common stock 

~ Performance index of market valuation 



p 
p 

Q 

R 

T 

u 

u 
p 

u 
s 

- Modified perfonnance index of market valuation and 
tenninal actual capacity 

- Price per unit of purchased energy 

- Long-tenn debt 

- Expected rate-of-return by investor 

Average price per unit of energy 

- Retired capacity 

- Planning horizon 

- Historical sum of all capacity installed 

- New capacity per unit of time 

- Purchased power 

- Number of shares issued per unit of time 

- Weighting constant on market valuation in modified 
performance index 

Weighting constant on terminal actual capacity in 
modified performance index 
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